

Lecture Notes in Computer Science 7391
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Artur Czumaj Kurt Mehlhorn
Andrew Pitts Roger Wattenhofer (Eds.)

Automata, Languages,
and Programming

39th International Colloquium, ICALP 2012
Warwick, UK, July 9-13, 2012
Proceedings, Part I

13

Volume Editors

Artur Czumaj
University of Warwick
Department of Computer Science and
Centre for Discrete Mathematics and its Applications
Warwick, UK
E-mail: a.czumaj@warwick.ac.uk

Kurt Mehlhorn
Max-Planck-Institut für Informatik
Saarbrücken, Germany
E-mail: mehlhorn@mpi-inf.mpg.de

Andrew Pitts
University of Cambridge
Computer Laboratory
Cambridge, UK
E-mail: andrew.pitts@cl.cam.ac.uk

Roger Wattenhofer
ETH Zurich, Switzerland
E-mail: wattenhofer@ethz.ch

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31593-0 e-ISBN 978-3-642-31594-7
DOI 10.1007/978-3-642-31594-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012940794

CR Subject Classification (1998): F.2, F.1, C.2, H.3-4, G.2, I.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the 39th International Colloquium
on Automata, Languages and Programming (ICALP 2012), held during July
9–13, 2012 at the University of Warwick, UK. ICALP is the main conference and
annual meeting of the European Association for Theoretical Computer Science
(EATCS) and first took place in 1972. This year the ICALP program consisted
of three tracks:

– Track A: Algorithms, Complexity and Games
– Track B: Logic, Semantics, Automata and Theory of Programming
– Track C: Foundations of Networked Computation

In response to the call for papers, the three Program Committees received a total
of 432 submissions: 248 for Track A, 105 for Track B, and 79 for Track C. Each
submission was reviewed by three or more Program Committee members, aided
by sub-reviewers. The committees decided to accept 123 papers for inclusion in
the scientific program: 71 papers for Track A, 30 for Track B, and 22 for Track C.
The selection was made by the Program Committees based on originality, quality,
and relevance to theoretical computer science. The quality of the submissions
was very high indeed, and many deserving papers could not be selected.

The EATCS sponsored awards for both a best paper and a best student paper
(to qualify for which, all authors must be students) for each of the three tracks,
selected by the Program Committees.

The best paper awards were given to the following papers:

Track A: Leslie Ann Goldberg and Mark Jerrum for their paper “The Com-
plexity of Computing the Sign of the Tutte Polynomial (and Consequent
#P-hardness of Approximation)”

Track B: Volker Diekert, Manfred Kufleitner, Klaus Reinhardt, and Tobias
Walter for their paper “Regular Languages are Church-Rosser Congruen-
tial”

Track C: Piotr Krysta and Berthold Vöcking for their paper “Online Mecha-
nism Design (Randomized Rounding on the Fly)”

The best student paper awards were given to the following papers:

Track A: jointly, Shelby Kimmel for her paper “Quantum Adversary (Upper)
Bound” and Anastasios Zouzias for his paper “A Matrix Hyperbolic Cosine
Algorithm and Applications”

Track B: Yaron Velner for his paper “The Complexity of Mean-Payoff Automa-
ton Expression”

Track C: Leonid Barenboim for his paper “On the Locality of Some NP-Complete
Problems”

VI Preface

In addition to the contributed papers, the conference included six invited lec-
tures, by Gilles Dowek (INRIA Paris), Kohei Honda (Queen Mary London),
Stefano Leonardi (Sapienza University of Rome), Daniel Spielman (Yale), Bert-
hold Vöcking (RWTH Aachen University), and David Harel (The Weizmann
Institute of Science). David Harel’s talk was in honor of Alan Turing, since the
conference was one of the Alan Turing Centenary Celebration events, celebrating
the life, work, and legacy of Alan Turing.

The following workshops were held as satellite events of ICALP 2012 on July
8, 2012:

– Workshop on Applications of Parameterized Algorithms and Complexity
(APAC)

– 4th International Workshop on Classical Logic and Computation (CL&C)
– Third Workshop on Realistic models for Algorithms in Wireless Networks

(WRAWN)

We wish to thank all the authors who submitted extended abstracts for consider-
ation, the members of the three Program Committees for their scholarly efforts,
and all sub-reviewers who assisted the Program Committees in the evaluation
process. We thank the sponsors Microsoft Research, Springer-Verlag, EATCS,
and the Centre for Discrete Mathematics and its Applications (DIMAP) for their
support, and the University of Warwick for hosting ICALP 2012. We are also
grateful to all members of the Organizing Committee and to their support staff.
The conference-management system EasyChair was used to handle the submis-
sions, to conduct the electronic Program Committee meeting, and to assist with
the assembly of the proceedings.

May 2012 Artur Czumaj
Kurt Mehlhorn

Andrew Pitts
Roger Wattenhofer

Organization

Program Committee

Susanne Albers Humboldt-Universität zu Berlin, Germany
Albert Atserias Universitat Politecnica de Catalunya, Spain
Andrei Brodnik University of Ljubljana, Slovenia
Harry Buhrman University of Amsterdam, The Netherlands
Bernard Chazelle Princeton University, USA
James Cheney University of Edinburgh, UK
Siu-Wing Cheng HKUST, Hong Kong, SAR China
Bob Coecke Oxford University, UK
Amin Coja-Oghlan University of Warwick, UK
Pierre-Louis Curien CNRS, France
Ugo Dal Lago Università di Bologna, Italy
Benjamin Doerr Max Planck Institute for Informatics,

Germany
Stefan Dziembowski University of Warsaw, Poland
Javier Esparza Technische Universität München, Germany
Michal Feldman Hebrew University, Israel
Antonio Fernandez Anta Institute IMDEA Networks, Spain
Paola Flocchini University of Ottawa, Canada
Fedor Fomin University of Bergen, Norway
Pierre Fraigniaud CNRS and University of Paris 7, France
Philippa Gardner Imperial College London, UK
Philipp Gibbons Intel Labs Pittsburgh, USA
Erich Graedel RWTH Aachen University, Germany
Magnus Halldorsson Reykjavik University, Iceland
Moritz Hardt IBM Almaden Research, USA
Maurice Herlihy Brown University, USA
Daniel Hirschkoff ENS Lyon, France
Nicole Immorlica Northwestern University, USA
Bart Jacobs Radboud University Nijmegen,

The Netherlands
Valerie King University of Victoria, Canada/Microsoft

Research SVC, USA
Bartek Klin University of Warsaw, Poland
Elias Koutsoupias University of Athens, Greece
Dariusz Kowalski University of Liverpool, UK
Piotr Krysta University of Liverpool, UK

VIII Organization

Amit Kumar IIT Delhi, India
Stefano Leonardi Sapienza University of Rome, Italy
Pinyan Lu Microsoft Research Asia, Shanghai, China
Nancy Lynch MIT CSAIL, USA
Kazuhisa Makino University of Tokyo, Japan
Dahlia Malkhi Microsoft Research, Silicon Valley, USA
Laurent Massoulie Thomson Research, Paris, France
Kurt Mehlhorn Max Planck Institut fur Informatik

Saarbrücken, Germany
Julian Mestre University of Sydney, Australia
Aleksandar Nanevski IMDEA-Software, Madrid, Spain
Flemming Nielson Technical University of Denmark, Denmark
Rasmus Pagh IT University of Copenhagen, Denmark
Alessandro Panconesi Sapienza University of Rome, Italy
Rafael Pass Cornell University, USA
Boaz Patt-Shamir Tel Aviv University, Israel
Andrew Pitts University of Cambridge, UK
Harald Raecke Technische Universität München, Germany
Arend Rensink University of Twente, The Netherlands
Peter Sanders University of Karlsruhe, Germany
Davide Sangiorgi University of Bologna, Italy
Piotr Sankowski University of Warsaw, Poland
Saket Saurabh The Institute of Mathematical Sciences,

Chennai, India
Carsten Schuermann IT University of Copenhagen, Denmark
Nicole Schweikardt Goethe-Universität Frankfurt am Main,

Germany
Angelika Steger ETH Zurich, Switzerland
Andrzej Tarlecki Warsaw University, Poland
Patrick Thiran EPFL, Switzerland
Suresh Venkatasubramanian University of Utah, USA
Bjorn Victor Uppsala University, Sweden
Igor Walukiewicz CNRS, LaBRI, France
Roger Wattenhofer ETH Zurich, Switzerland
Thomas Wilke University of Kiel, Germany
James Worrell Oxford University, UK
Masafumi Yamashita Kyushu University, Japan

Organization IX

Additional Reviewers

Aaronson, Scott
Abdalla, Michel
Abdullah, Amirali
Abu Zaid, Faried
Aceto, Luca
Adamczyk, Marek
Adler, Isolde
Agmon, Noa
Ahn, Jae Hyun
Alaei, Saeed
Albers, Susanne
Alessi, Fabio
Alglave, Jade
Almagor, Shaull
Altenkirch, Thorsten
Althaus, Ernst
Ambainis, Andris
Ambos-Spies, Klaus
Anand, S.
Andoni, Alexandr
Anh Dung, Phan
Anshelevich, Elliot
Antoniadis, Antonios
Arjona, Jordi
Arrighi, Pablo
Arvind, Vikraman
Asarin, Eugene
Asharov, Gilad
Aspnes, James
Ateniese, Giuseppe
Atig, Mohamed Faouzi
Azar, Yossi
Aziz, Haris
Bachrach, Yoram
Bae, Sang Won
Bansal, Nikhil
Barceló, Pablo
Bateni, Mohammadhossein
Batu, Tuğkan
Bauer, Andreas
Beame, Paul
Becchetti, Luca
Becker, Florent

Bei, Xiaohui
Benedikt, Michael
Bengtson, Jesper
Berenbrink, Petra
Bernáth, Attila
Berwanger, Dietmar
Bezhanishvili, Nick
Bhaskara, Aditya
Bhattacharyya, Arnab
Bhawalkar, Kshipra
Bidkhori, Hoda
Bienkowski, Marcin
Bienvenu, Laurent
Bierman, Gavin
Bille, Philip
Bilo’, Vittorio
Bingham, Brad
Birget, Jean-Camille
Birkedal, Lars
Björklund, Henrik
Björklund, Johanna
Bloem, Roderick
Blondin Massé, Alexandre
Blumensath, Achim
Blömer, Johannes
Bonchi, Filippo
Bonifaci, Vincenzo
Bonsma, Paul
Boreale, Michele
Borgstrom, Johannes
Bosnacki, Dragan
Bosque, Jose Luis
Bouajjani, Ahmed
Boyle, Elette
Brach, Pawe�l
Brautbar, Michael
Bremer, Joachim
Briet, Jop
Bringmann, Karl
Broadbent, Anne
Brodal, Gerth Stølting
Bucciarelli, Antonio
Buchbinder, Niv

X Organization

Bukh, Boris
Bulatov, Andrei
Cai, Leizhen
Caires, Luis
Calzavara, Stefano
Canetti, Ran
Capecchi, Sara
Carayol, Arnaud
Carbone, Marco
Caskurlu, Bugra
Celis, Laura Elisa
Censor-Hillel, Keren
Chakrabarti, Amit
Chakraborty, Sourav
Chakraborty, Tanmoy
Chan, Sze-Hang
Chatterjee, Krishnendu
Chatzigiannakis, Ioannis
Chekuri, Chandra
Chen, Ning
Chen, Xi
Childs, Andrew
Christodoulou, George
Chung, Kai-Min
Churchill, Martin
Chuzhoy, Julia
Ciancia, Vincenzo
Cicerone, Serafino
Cittadini, Luca
Clairambault, Pierre
Clemente, Lorenzo
Cohen, David
Colcombet, Thomas
Corbo, Jacomo
Cormode, Graham
Cornejo, Alejandro
Courcelle, Bruno
Cygan, Marek
Czerwinski, Wojciech
Czumaj, Artur
D’Souza, Deepak
Dadush, Daniel
David, Alexandre
De Leoni, Massimiliano
De Liguoro, Ugo

de Wolf, Ronald
Degorre, Aldric
Dell, Holger
Demangeon, Romain
Deng, Xiaotie
Deng, Yuxin
Deshpande, Amit
Devanur, Nikhil
Diekert, Volker
Dinitz, Michael
Dinsdale-Young, Thomas
Dittmann, Christoph
Downey, Rod
Doyen, Laurent
Drange, P̊al
Drewes, Frank
Dreyer, Derek
Drucker, Andrew
Duflot, Marie
Dughmi, Shaddin
Durnoga, Konrad
Dyagilev, Kirill
Dyer, Martin
Efthymiou, Charilaos
Eisentraut, Christian
Elbassioni, Khaled
Ellen, Faith
Englert, Matthias
Epstein, Leah
Ergun, Funda
Fahrenberg, Uli
Feige, Uriel
Fekete, Sándor
Ferns, Norman
Filipiuk, Piotr
Finocchi, Irene
Fischer, Johannes
Fogarty, Seth
Forej, Vojtech
Fortnow, Lance
Fotakis, Dimitris
Frandsen, Gudmund Skovbjerg
Freydenberger, Dominik
Frieze, Alan
Fu, Hu

Organization XI

Fujito, Toshihiro
Fukunaga, Takuro
Gabbay, Murdoch
Gacs, Peter
Gal, Anna
Gamarnik, David
Gambin, Anna
Gamzu, Iftah
Ganguly, Sumit
Ganty, Pierre
Garcia Saavedra, Andres
Garćıa, Álvaro
Garg, Naveen
Gargano, Luisa
Gaspers, Serge
Gauwin, Olivier
Gavoille, Cyril
Gawrychowski, Pawel
Gay, Simon
Ge, Rong
Ghaffari, Mohsen
Ghica, Dan
Giachino, Elena
Gimbert, Hugo
Godskesen, Jens Chr.
Goerdt, Andreas
Goergiou, Chryssis
Goldberg, Leslie Ann
Goldhirsh, Yonatan
Golovach, Petr
Gorla, Daniele
Gottesman, Daniel
Goubault-Larrecq, Jean
Gould, Victoria
Grabmayer, Clemens
Grandoni, Fabrizio
Gravin, Nikolay
Grenet, Bruno
Griffin, Christopher
Grigorieff, Serge
Grohe, Martin
Gugelmann, Luca
Guha, Sudipto
Guillon, Pierre
Gupta, Anupam

Guruswami, Venkatesan
Gutin, Gregory
Gutkovas, Ramunas
Göller, Stefan
Haghpanah, Nima
Hague, Matthew
Hajiaghayi, Mohammadtaghi
Halevi, Shai
Halldorsson, Magnus M.
Hallgren, Sean
Hamano, Masahiro
Han, Xin
Hansen, Helle Hvid
Harwath, Frederik
Haviv, Ishay
Hay, David
Herbreteau, Frédéric
Hernich, André
Hertel, Philipp
Herzen, Julien
Hildebrandt, Thomas
Hodkinson, Ian
Hoefer, Martin
Hoenicke, Jochen
Hofheinz, Dennis
Hohenberger, Susan
Holzer, Markus
Horn, Florian
Hsu, Tsan-Sheng
Huang, Chien-Chung
Huang, Zengfeng
Hunter, Paul
Husfeldt, Thore
Høyer, Peter
Hüffner, Falk
Indyk, Piotr
Iosif, Radu
Ishii, Toshimasa
Ito, Takehiro
Jain, Abhishek
Jain, Rahul
Jancar, Petr
Jansen, Bart
Jansen, Klaus
Jeż, �Lukasz

XII Organization

Jones, Neil
Jowhari, Hossein
Jurdzinski, Marcin
Jurdzinski, Tomasz
Kaiser, Lukasz
Kakimura, Naonori
Kaminski, Marcin
Kamiyama, Naoyuki
Kanté, Mamadou
Kapron, Bruce
Kari, Lila
Kartzow, Alexander
Kashefi, Elham
Katoen, Joost-Pieter
Katoh, Naoki
Katz, Jonathan
Kaufman, Tali
Kawachi, Akinori
Kawamura, Akitoshi
Kawase, Yasushi
Kazana, Tomasz
Kesner, Delia
Khabbazian, Majid
Kiefer, Stefan
Kijima, Shuji
Kirsten, Daniel
Kiwi, Marcos
Kiyomi, Masashi
Klasing, Ralf
Kleinberg, Robert
Kliemann, Lasse
Kobayashi, Yusuke
Koenemann, Jochen
Koenig, Barbara
Kolliopoulos, Stavros
Konrad, Christian
Kopczynski, Eryk
Kopparty, Swastik
Kortsarz, Guy
Korula, Nitish
Kosowski, Adrian
Koutavas, Vasileios
Kozen, Dexter
Kratsch, Dieter
Krauthgamer, Robert

Krcal, Jan
Krcal, Pavel
Kretinsky, Jan
Krishnaswamy, Ravishankar
Krugel, Johannes
Kucherov, Gregory
Kufleitner, Manfred
Kullmann, Oliver
Kupferman, Orna
Kuske, Dietrich
Kutzkov, Konstantin
Könemann, Jochen
�La̧cki, Jakub
Laird, Jim
Lammersen, Christiane
Land, Kati
Lasota, Slawomir
Laurent, Monique
Lee, Troy
Lelarge, Marc
Lengrand, Stephane
Leroux, Jerome
Levavi, Ariel
Ley-Wild, Ruy
Li, Shi
Lin, Anthony Widjaja
Lin, Huijia Rachel
Loff, Bruno
Lotker, Zvi
Lu, Chi-Jen
Lui, Edward
Luttenberger, Michael
Löffler, Maarten
M.S., Ramanujan
Macedonio, Damiano
Madet, Antoine
Madry, Aleksander
Maffei, Matteo
Magniez, Frederic
Mahajan, Meena
Maheshwari, Anil
Mahini, Hamid
Mahmoody, Mohammad
Mairesse, Jean
Makarychev, Konstantin

Organization XIII

Malacaria, Pasquale
Malec, David
Malekian, Azarakhsh
Malkis, Alexander
Mandemaker, Jorik
Maneth, Sebastian
Maneva, Elitza
Manthey, Bodo
Marchetti-Spaccamela, Alberto
Mardare, Radu
Martens, Wim
Martin, Greg
Martini, Simone
Marx, Dániel
Massar, Serge
Matisziv, Tim
Mayr, Richard
Mazza, Damiano
McBride, Conor
Mcgregor, Andrew
Medina, Moti
Megow, Nicole
Mei, Alessandro
Mellies, Paul-Andre
Merro, Massimo
Methrayil Varghese, Praveen Thomas
Meyer, Roland
Michail, Othon
Milani, Alessia
Milius, Stefan
Mitra, Pradipta
Miyazaki, Shuichi
Mohar, Bojan
Momigliano, Alberto
Monaco, Gianpiero
Monmege, Benjamin
Montanari, Angelo
Moseley, Benjamin
Mostefaoui, Achour
Mosteiro, Miguel A.
Mozes, Shay
Mucha, Marcin
Mulligan, Dominic
Munagala, Kamesh
Møgelberg, Rasmus Ejlers

Nagarajan, Viswanath
Nandy, Subhas
Nanz, Sebastian
Navarra, Alfredo
Neis, Georg
Nesme, Vincent
Nestmann, Uwe
Neumann, Adrian
Nguyen, Huy
Nicolaou, Nicolas
Niehren, Joachim
Nielson, Hanne Riis
Nies, Andre
Nishide, Takashi
Nussbaum, Yahav
Nutov, Zeev
O Dunlaing, Colm
Obdrzalek, Jan
Obremski, Maciej
Onak, Krzysztof
Ono, Hirotaka
Ooshita, Fukuhito
Oren, Sigal
Orlandi, Alessio
Orlandi, Claudio
Oshman, Rotem
Otachi, Yota
Otto, Friedrich
Otto, Martin
Ouaknine, Joel
Oveis Gharan, Shayan
Padovani, Luca
Paes Leme, Renato
Pakusa, Wied
Panagiotou, Konstantinos
Parker, Matthew
Parrow, Joachim
Parys, Pawel
Patitz, Matthew
Paturi, Ramamohan
Paulusma, Daniel
Pavlovic, Dusko
Perdrix, Simon
Person, Yury
Peter, Ueli

XIV Organization

Petit, Barbara
Philip, Geevarghese
Philippou, Anna
Phillips, Jeff
Pientka, Brigitte
Pietrzak, Krzysztof
Piliouras, Georgios
Pilipczuk, Marcin
Pilipczuk, Michal
Pin, Jean-Eric
Pinkau, Chris
Plandowski, Wojciech
Poll, Erik
Poplawski, Laura
Pountourakis, Emmanouil
Pretnar, Matija
Pruhs, Kirk
Puppis, Gabriele
Pyrga, Evangelia
Rabinovich, Roman
Radeva, Tsvetomira
Radoszewski, Jakub
Rafiey, Arash
Rafnsson, Willard
Raghavendra, Prasad
Rahmati, Zahed
Raman, Parasaran
Rao B.V., Raghavendra
Raskin, Jean-Francois
Rawitz, Dror
Reichardt, Ben
Reichman, Daniel
Renaud, Fabien
Reynier, Pierre-Alain
Riba, Colin
Ribichini, Andrea
Richard, Gaétan
Riveros, Cristian
Roland, Jérémie
Rosamond, Frances
Rosulek, Mike
Rybicki, Bartosz
Röglin, Heiko
Sachdeva, Sushant
Sadakane, Kunihiko

Saha, Chandan
Sahai, Amit
Salavatipour, Mohammad
Salvati, Sylvain
Samborski-Forlese, Julian
Sangnier, Arnaud
Sankur, Ocan
Santha, Miklos
Santhanam, Rahul
Santi, Paolo
Santos, Agustin
Sastry, Srikanth
Satti, Srinivasa Rao
Sauerwald, Thomas
Saxena, Nitin
Scafuro, Alessandra
Scarpa, Giannicola
Schaffner, Christian
Schieferdecker, Dennis
Schnoor, Henning
Schudy, Warren
Schwartz, Roy
Schweitzer, Pascal
Schwoon, Stefan
Scott, Philip
Segev, Danny
Seki, Shinnosuke
Senizergues, Geraud
Serre, Olivier
Seshadhri, C.
Seth, Karn
Sevilla, Andres
Sewell, Peter
Seyalioglu, Hakan
Shah, Chintan
Shapira, Asaf
Shen, Alexander
Shioura, Akiyoshi
Sikdar, Somnath
Silva, Alexandra
Silvestri, Riccardo
Singh, Mohit
Sivan, Balasubramanian
Skrzypczak, Micha�l
Smid, Michiel

Organization XV

Sobocinski, Pawel
Sommer, Christian
Soto, Jose
Spalek, Robert
Spieksma, Frits
Spirakis, Paul
Spöhel, Reto
Srinivasan, Aravind
Srinivasan, Srikanth
Srivastava, Gautam
Stacho, Juraj
Stark, Ian
Staton, Sam
Steurer, David
Stoddard, Greg
Stoelinga, Marielle I.A.
Straubing, Howard
Sun, He
Sun, Xiaoming
Sun, Xiaorui
Sviridenko, Maxim
Swamy, Chaitanya
Szegedy, Mario
Sørensen, Troels Bjerre
Tabareau, Nicolas
Takamatsu, Mizuyo
Takazawa, Kenjiro
Takimoto, Eiji
Tamaki, Suguru
Tamir, Tami
Tanaka, Keisuke
Tanigawa, Shin-Ichi
Taraz, Anusch
Tasson, Christine
Tautschnig, Michael
Telelis, Orestis
Terepeta, Micha�l
Terui, Kazushige
Tesson, Pascal
Thomas, Henning
Thraves, Christopher
Tokuyama, Takeshi
Toninho, Bernardo
Torenvliet, Leen
Toruńczyk, Szymon

Torán, Jacobo
Touili, Tayssir
Tredan, Gilles
Trevisan, Luca
Tulsiani, Madhur
Turrini, Andrea
Törmä, Ilkka
Uchizawa, Kei
Ueno, Kenya
Ueno, Shuichi
Ullman, Jon
Uno, Takeaki
Urzyczyn, Pawe�l
Vaidya, Nitin
Van Breugel, Franck
van Stee, Rob
Van Zuylen, Anke
Vassilvitskii, Sergei
Venema, Yde
Venkitasubramaniam,

Muthuramakrishnan
Venturini, Rossano
Vereshchagin, Nikolay
Versari, Cristian
Verschae, Jose
Vidick, Thomas
Vijayaraghavan, Aravindan
Vilenchik, Dan
Vilenchik, Danny
Villard, Jules
Viola, Emanuele
Visconti, Ivan
Vishkin, Uzi
Vishnoi, Nisheeth
Vitanyi, Paul
Vondrak, Jan
Wachter, Björn
Wahlström, Magnus
Wang, Yajun
Ward, Justin
Wasowski, Andrzej
Weber, Tjark
Wee, Hoeteck
Wei, Zhewei
Weihmann, Jeremias

XVI Organization

Weimann, Oren
Welch, Jennifer
Whittle, Geoff
Wiedijk, Freek
Wiese, Andreas
Williams, Ryan
Wimmer, Karl
Winzen, Carola
Wong, Prudence W.H.
Woodruff, David
Worrell, James
Wu, Yi
Wulff-Nilsen, Christian
Xia, Mingji
Xiao, David
Xie, Ning
Yamamoto, Masaki
Yamauchi, Yukiko
Yannakakis, Mihalis
Ye, Deshi
Yekhanin, Sergey
Yi, Ke

Yin, Yitong
Yokoo, Makoto
Yoshida, Yuichi
Young, Neal
Zadimoghaddam, Morteza
Zaja̧c, Micha�l
Zavattaro, Gianluigi
Zavou, Elli
Zdeborova, Lenka
Zelke, Mariano
Zhang, Chihao
Zhang, Fuyuan
Zhang, Jialin
Zhang, Jiawei
Zhang, Qin
Zhang, Shengyu
Zheng, Colin
Zheng, Jia
Zhong, Ning
Zhou, Yuan
Zohar, Aviv

Table of Contents – Part I

Track A – Algorithms, Complexity and Games

Unsatisfiability Bounds for Random CSPs from an Energetic
Interpolation Method . 1

Dimitris Achlioptas and Ricardo Menchaca-Mendez

The NOF Multiparty Communication Complexity of Composed
Functions . 13

Anil Ada, Arkadev Chattopadhyay, Omar Fawzi, and Phuong Nguyen

Quantum Strategies Are Better Than Classical in Almost Any XOR
Game . 25

Andris Ambainis, Artūrs Bačkurs, Kaspars Balodis,
Dmitrijs Kravčenko, Raitis Ozols, Juris Smotrovs, and Madars Virza

Efficient Submodular Function Maximization under Linear Packing
Constraints . 38

Yossi Azar and Iftah Gamzu

Polynomial-Time Isomorphism Test for Groups with No Abelian
Normal Subgroups (Extended Abstract) . 51

László Babai, Paolo Codenotti, and Youming Qiao

Clustering under Perturbation Resilience . 63
Maria Florina Balcan and Yingyu Liang

Secretary Problems with Convex Costs . 75
Siddharth Barman, Seeun Umboh, Shuchi Chawla, and David Malec

Nearly Simultaneously Resettable Black-Box Zero Knowledge 88
Joshua Baron, Rafail Ostrovsky, and Ivan Visconti

Complexity of Complexity and Maximal Plain versus Prefix-Free
Kolmogorov Complexity . 100

Bruno Bauwens

On Quadratic Programming with a Ratio Objective 109
Aditya Bhaskara, Moses Charikar, Rajsekar Manokaran, and
Aravindan Vijayaraghavan

De-amortizing Binary Search Trees . 121
Prosenjit Bose, Sébastien Collette, Rolf Fagerberg, and
Stefan Langerman

XVIII Table of Contents – Part I

Efficient Sampling Methods for Discrete Distributions 133
Karl Bringmann and Konstantinos Panagiotou

Approximation Algorithms for Online Weighted Rank Function
Maximization under Matroid Constraints . 145

Niv Buchbinder, Joseph (Seffi) Naor, R. Ravi, and Mohit Singh

Improved LP-Rounding Approximation Algorithm for k -level
Uncapacitated Facility Location . 157

Jaroslaw Byrka and Bartosz Rybicki

Testing Coverage Functions . 170
Deeparnab Chakrabarty and Zhiyi Huang

Sparse Fault-Tolerant Spanners for Doubling Metrics with Bounded
Hop-Diameter or Degree . 182

T.-H. Hubert Chan, Mingfei Li, and Li Ning

A Dependent LP-Rounding Approach for the k -Median Problem 194
Moses Charikar and Shi Li

Node-Weighted Network Design in Planar and Minor-Closed Families
of Graphs . 206

Chandra Chekuri, Alina Ene, and Ali Vakilian

Computing the Visibility Polygon of an Island in a Polygonal
Domain . 218

Danny Z. Chen and Haitao Wang

Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable 230
Rajesh Chitnis, Marek Cygan, Mohammadtaghi Hajiaghayi, and
Dániel Marx

Max-Cut Parameterized above the Edwards-Erdős Bound 242
Robert Crowston, Mark Jones, and Matthias Mnich

Clique Cover and Graph Separation: New Incompressibility Results 254
Marek Cygan, Stefan Kratsch, Marcin Pilipczuk,
Micha�l Pilipczuk, and Magnus Wahlström

The Inverse Shapley Value Problem . 266
Anindya De, Ilias Diakonikolas, and Rocco Servedio

Zero-One Rounding of Singular Vectors . 278
Amit Deshpande, Ravindran Kannan, and Nikhil Srivastava

Label Cover Instances with Large Girth and the Hardness
of Approximating Basic k -Spanner . 290

Michael Dinitz, Guy Kortsarz, and Ran Raz

Table of Contents – Part I XIX

Space-Constrained Interval Selection . 302
Yuval Emek, Magnús M. Halldórsson, and Adi Rosén

Polynomial Time Algorithms for Branching Markov Decision Processes
and Probabilistic Min(Max) Polynomial Bellman Equations 314

Kousha Etessami, Alistair Stewart, and Mihalis Yannakakis

Succinct Indices for Range Queries with Applications to Orthogonal
Range Maxima . 327

Arash Farzan, J. Ian Munro, and Rajeev Raman

Universal Factor Graphs . 339
Uriel Feige and Shlomo Jozeph

Parameterized Approximation via Fidelity Preserving
Transformations . 351

Michael R. Fellows, Ariel Kulik, Frances Rosamond, and
Hadas Shachnai

Backdoors to Acyclic SAT . 363
Serge Gaspers and Stefan Szeider

Dominators, Directed Bipolar Orders, and Independent Spanning
Trees . 375

Loukas Georgiadis and Robert E. Tarjan

Hardness of Approximation for Quantum Problems 387
Sevag Gharibian and Julia Kempe

The Complexity of Computing the Sign of the Tutte Polynomial
(and Consequent #P-hardness of Approximation) . 399

Leslie Ann Goldberg and Mark Jerrum

Stochastic Vehicle Routing with Recourse . 411
Inge Li Gørtz, Viswanath Nagarajan, and Rishi Saket

The Online Metric Matching Problem for Doubling Metrics 424
Anupam Gupta and Kevin Lewi

Approximating Sparse Covering Integer Programs Online 436
Anupam Gupta and Viswanath Nagarajan

Streaming and Communication Complexity of Clique Approximation . . . 449
Magnús M. Halldórsson, Xiaoming Sun, Mario Szegedy, and
Chengu Wang

Distributed Private Heavy Hitters . 461
Justin Hsu, Sanjeev Khanna, and Aaron Roth

XX Table of Contents – Part I

A Thirty Year Old Conjecture about Promise Problems 473
Andrew Hughes, A. Pavan, Nathan Russell, and Alan Selman

Minimum Latency Submodular Cover . 485
Sungjin Im, Viswanath Nagarajan, and Ruben van der Zwaan

Constant-Time Algorithms for Sparsity Matroids . 498
Hiro Ito, Shin-Ichi Tanigawa, and Yuichi Yoshida

CRAM: Compressed Random Access Memory . 510
Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung

Improving Quantum Query Complexity of Boolean Matrix
Multiplication Using Graph Collision . 522

Stacey Jeffery, Robin Kothari, and Frédéric Magniez

Faster Fully Compressed Pattern Matching by Recompression 533
Artur Jeż

NNS Lower Bounds via Metric Expansion for l∞ and EMD 545
Michael Kapralov and Rina Panigrahy

Quantum Adversary (Upper) Bound . 557
Shelby Kimmel

Solving Planar k-Terminal Cut in O(nc
√

k) Time 569
Philip N. Klein and Dániel Marx

Fixed-Parameter Tractability of Multicut in Directed Acyclic Graphs . . . 581
Stefan Kratsch, Marcin Pilipczuk, Micha�l Pilipczuk, and
Magnus Wahlström

Preserving Terminal Distances Using Minors . 594
Robert Krauthgamer and Tamar Zondiner

A Rounding by Sampling Approach to the Minimum Size k -Arc
Connected Subgraph Problem . 606

Bundit Laekhanukit, Shayan Oveis Gharan, and Mohit Singh

Classical and Quantum Partition Bound and Detector Inefficiency 617
Sophie Laplante, Virginie Lerays, and Jérémie Roland

Testing Similar Means . 629
Reut Levi, Dana Ron, and Ronitt Rubinfeld

The Parameterized Complexity of k -Edge Induced Subgraphs 641
Bingkai Lin and Yijia Chen

Table of Contents – Part I XXI

Converting Online Algorithms to Local Computation Algorithms 653
Yishay Mansour, Aviad Rubinstein, Shai Vardi, and Ning Xie

Assigning Sporadic Tasks to Unrelated Parallel Machines 665
Alberto Marchetti-Spaccamela, Cyriel Rutten,
Suzanne van der Ster, and Andreas Wiese

A Tight Lower Bound for Planar Multiway Cut with Fixed Number of
Terminals . 677

Dániel Marx

The Power of Recourse for Online MST and TSP . 689
Nicole Megow, Martin Skutella, José Verschae, and Andreas Wiese

Geometry of Online Packing Linear Programs . 701
Marco Molinaro and R. Ravi

Self-assembly with Geometric Tiles . 714
Bin Fu, Matthew J. Patitz, Robert T. Schweller, and Robert Sheline

Quasi-polynomial Local Search for Restricted Max-Min Fair
Allocation . 726

Lukas Polacek and Ola Svensson

Strictly-Black-Box Zero-Knowledge and Efficient Validation of
Financial Transactions . 738

Michael O. Rabin, Yishay Mansour, S. Muthukrishnan, and
Moti Yung

Parameterized Tractability of Multiway Cut with Parity Constraints . . . 750
Daniel Lokshtanov and M.S. Ramanujan

Set Cover Revisited: Hypergraph Cover with Hard Capacities 762
Barna Saha and Samir Khuller

On the Limits of Sparsification . 774
Rahul Santhanam and Srikanth Srinivasan

Certifying 3-Connectivity in Linear Time . 786
Jens M. Schmidt

Epsilon-Net Method for Optimizations over Separable States 798
Yaoyun Shi and Xiaodi Wu

Faster Algorithms for Privately Releasing Marginals 810
Justin Thaler, Jonathan Ullman, and Salil Vadhan

Stochastic Matching with Commitment . 822
Kevin P. Costello, Prasad Tetali, and Pushkar Tripathi

XXII Table of Contents – Part I

Rademacher-Sketch: A Dimensionality-Reducing Embedding for
Sum-Product Norms, with an Application to Earth-Mover Distance 834

Elad Verbin and Qin Zhang

A Matrix Hyperbolic Cosine Algorithm and Applications 846
Anastasios Zouzias

Author Index . 859

Table of Contents – Part II

Invited Talks

On Multiple Keyword Sponsored Search Auctions with Budgets 1
Riccardo Colini-Baldeschi, Monika Henzinger,
Stefano Leonardi, and Martin Starnberger

A Theory Independent Curry-De Bruijn-Howard Correspondence 13
Gilles Dowek

Standing on the Shoulders of a Giant: One Persons Experience of
Turings Impact . 16

David Harel

Session Types and Distributed Computing . 23
Kohei Honda

Algorithms, Graph Theory, and the Solution of Laplacian Linear
Equations . 24

Daniel A. Spielman

Randomized Mechanisms for Multi-unit Auctions
(Extended Abstract) . 27

Berthold Vöcking

Track B – Logic Semantics, Automata and Theory of
Programming

Algebraic Synchronization Trees and Processes . 30
Luca Aceto, Arnaud Carayol, Zoltán Ésik, and Anna Ingólfsdóttir

Streaming Tree Transducers . 42
Rajeev Alur and Loris D’Antoni

Causal Graph Dynamics . 54
Pablo Arrighi and Gilles Dowek

Degree Lower Bounds of Tower-Type for Approximating Formulas with
Parity Quantifiers . 67

Albert Atserias and Anuj Dawar

Monadic Datalog Containment . 79
Michael Benedikt, Pierre Bourhis, and Pierre Senellart

XXIV Table of Contents – Part II

A Machine-Independent Characterization of Timed Languages 92
Miko�laj Bojańczyk and S�lawomir Lasota

Regular Languages of Infinite Trees That Are Boolean Combinations of
Open Sets . 104

Miko�laj Bojańczyk and Thomas Place

Toward Model Theory with Data Values . 116
Miko�laj Bojańczyk and Thomas Place

Robust Reachability in Timed Automata: A Game-Based Approach 128
Patricia Bouyer, Nicolas Markey, and Ocan Sankur

Minimizing Expected Termination Time in One-Counter Markov
Decision Processes . 141

Tomáš Brázdil, Antońın Kučera, Petr Novotný, and
Dominik Wojtczak

Prefix Rewriting for Nested-Words and Collapsible Pushdown
Automata . 153

Christopher Broadbent

A Saturation Method for Collapsible Pushdown Systems 165
Chris Broadbent, Arnaud Carayol, Matthew Hague, and Olivier Serre

Regular Languages Are Church-Rosser Congruential 177
Volker Diekert, Manfred Kufleitner, Klaus Reinhardt, and
Tobias Walter

Time and Parallelizability Results for Parity Games with Bounded
Treewidth . 189

John Fearnley and Sven Schewe

Nominal Completion for Rewrite Systems with Binders 201
Maribel Fernández and Albert Rubio

Discrete Generalised Polynomial Functors . 214
Marcelo Fiore

Computing Game Metrics on Markov Decision Processes 227
Hongfei Fu

Deciding First Order Properties of Matroids . 239
Tomáš Gavenčiak, Daniel Král, and Sang-il Oum

Pebble Games with Algebraic Rules . 251
Anuj Dawar and Bjarki Holm

Exponential Lower Bounds and Separation for Query Rewriting 263
Stanislav Kikot, Roman Kontchakov, Vladimir Podolskii, and
Michael Zakharyaschev

Table of Contents – Part II XXV

Lattices of Logical Fragments over Words (Extended Abstract) 275
Manfred Kufleitner and Alexander Lauser

On the Expressive Power of Cost Logics over Infinite Words 287
Denis Kuperberg and Michael Vanden Boom

Coalgebraic Predicate Logic . 299
Tadeusz Litak, Dirk Pattinson, Katsuhiko Sano, and Lutz Schröder

Algorithmic Games for Full Ground References . 312
Andrzej Murawski and Nikos Tzevelekos

Two-Level Game Semantics, Intersection Types, and Recursion
Schemes . 325

C.-H. Luke Ong and Takeshi Tsukada

An Automata-Theoretic Model of Idealized Algol
(Extended Abstract) . 337

Uday S. Reddy and Brian P. Dunphy

Towards a Unified Theory of Operational and Axiomatic Semantics 351
Grigore Roşu and Andrei Ştefănescu

Loader and Urzyczyn Are Logically Related . 364
Sylvain Salvati, Giulio Manzonetto, Mai Gehrke, and
Henk Barendregt

Languages of Profinite Words and the Limitedness Problem 377
Szymon Toruńczyk

The Complexity of Mean-Payoff Automaton Expression 390
Yaron Velner

Track C – Foundations of Networked Computation

On the Locality of Some NP-Complete Problems . 403
Leonid Barenboim

Growing Half-Balls: Minimizing Storage and Communication Costs in
CDNs . 416

Reuven Bar-Yehuda, Erez Kantor, Shay Kutten, and Dror Rawitz

Super-Fast Distributed Algorithms for Metric Facility Location 428
Andrew Berns, James Hegeman, and Sriram V. Pemmaraju

Preventing Unraveling in Social Networks: The Anchored k -Core
Problem . 440

Kshipra Bhawalkar, Jon Kleinberg, Kevin Lewi,
Tim Roughgarden, and Aneesh Sharma

XXVI Table of Contents – Part II

Edge Fault Tolerance on Sparse Networks . 452
Nishanth Chandran, Juan Garay, and Rafail Ostrovsky

Incentive Ratios of Fisher Markets . 464
Ning Chen, Xiaotie Deng, Hongyang Zhang, and Jie Zhang

Computational Complexity of Traffic Hijacking under BGP and
S-BGP . 476

Marco Chiesa, Giuseppe Di Battista, Thomas Erlebach, and
Maurizio Patrignani

Efficiency-Revenue Trade-Offs in Auctions . 488
Ilias Diakonikolas, Christos Papadimitriou, George Pierrakos, and
Yaron Singer

Deterministic Network Exploration by Anonymous Silent Agents with
Local Traffic Reports . 500

Yoann Dieudonné and Andrzej Pelc

A QPTAS for ε-Envy-Free Profit-Maximizing Pricing on Line Graphs . . . 513
Khaled Elbassioni

Minimizing Rosenthal Potential in Multicast Games 525
Fedor V. Fomin, Petr Golovach, Jesper Nederlof, and
Micha�l Pilipczuk

Multiparty Proximity Testing with Dishonest Majority from Equality
Testing . 537

Ran Gelles, Rafail Ostrovsky, and Kina Winoto

Anonymous Card Shuffling and Its Applications to Parallel Mixnets 549
Michael T. Goodrich and Michael Mitzenmacher

Byzantine Agreement with a Rational Adversary . 561
Adam Groce, Jonathan Katz, Aishwarya Thiruvengadam, and
Vassilis Zikas

Random Hyperbolic Graphs: Degree Sequence and Clustering Extended
Abstract . 573

Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter

Topology-Aware VM Migration in Bandwidth Oversubscribed
Datacenter Networks . 586

Navendu Jain, Ishai Menache, Joseph (Seffi) Naor, and
F. Bruce Shepherd

Counting Arbitrary Subgraphs in Data Streams . 598
Daniel M. Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun

Table of Contents – Part II XXVII

k -Chordal Graphs: From Cops and Robber to Compact Routing via
Treewidth . 610

Adrian Kosowski, Bi Li, Nicolas Nisse, and Karol Suchan

Contention Issues in Congestion Games . 623
Elias Koutsoupias and Katia Papakonstantinopoulou

Online Mechanism Design (Randomized Rounding on the Fly) 636
Piotr Krysta and Berthold Vöcking

Online Packing with Gradually Improving Capacity Estimations and
Applications to Network Lifetime Maximization . 648

Marcel Ochel, Klaus Radke, and Berthold Vöcking

Distributed Algorithms for Network Diameter and Girth 660
David Peleg, Liam Roditty, and Elad Tal

Author Index . 673

Unsatisfiability Bounds for Random CSPs
from an Energetic Interpolation Method

Dimitris Achlioptas1,2,3,� and Ricardo Menchaca-Mendez3

1 University of Athens, Greece
2 CTI, Greece

3 University of California, Santa Cruz, USA

Abstract. The interpolation method, originally developed in statistical physics,
transforms distributions of random CSPs to distributions of much simpler prob-
lems while bounding the change in a number of associated statistical quantities
along the transformation path. After a number of further mathematical develop-
ments, it is now known that, in principle, the method can yield rigorous unsatisfia-
bility bounds if one “plugs in an appropriate functional distribution”. A drawback
of the method is that identifying appropriate distributions and plugging them in
leads to major analytical challenges as the distributions required are, in fact, in-
finite dimensional objects. We develop a variant of the interpolation method for
random CSPs on arbitrary sparse degree distributions which trades accuracy for
tractability. In particular, our bounds only require the solution of a 1-dimensional
optimization problem (which typically turns out to be very easy) and as such can
be used to compute explicit rigorous unsatisfiability bounds.

1 Introduction

The problem of determining the satisfiability of Boolean formulas is central to the un-
derstanding of computational complexity. Moreover, it is of tremendous practical inter-
est as it arises naturally in numerous settings. Random CNF formulas have emerged as
a mathematically tractable vehicle for studying the performance of satisfiability algo-
rithms and proof systems. For a given set of n Boolean variables, let Bk denote the set
of all possible disjunctions of k distinct, non-complementary literals from its variables
(k-clauses). A random k-SAT formula Fk(n,m) is formed by selecting uniformly and
independently m clauses from Bk and taking their conjunction. Such random formu-
las have been shown to be hard both for proof systems, e.g., in the seminal work of
Chvátal-Szemérdi on resolution [7], and, more recently, for some of the most sophisti-
cated satisfiability algorithms known [8].

More generally, in Random Constraint Satisfaction Problems (RCSPs) one has a set
of n variables all with the same (small) domain D and a set of m = rn constraints,
for some constant r > 0, each of which binds a randomly selected subset of O(1)
variables. Canonical examples are finding large independent sets and colorings sparse
random graphs, variations of satisfiability, and systems of random linear equations. We
will be interested in random CSPs (RCSPs) from an asymptotic point of view, i.e., as the

� Research supported by NSF CCF-0546900, a Sloan Fellowship, and ERC grant 210743.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 D. Achlioptas and R. Menchaca-Mendez

number of variables grows. In particular, we will say that a sequence of random events
En occurs with high probability (w.h.p.) if limPr[En] = 1. The ratio of constraints-to-
variables, r = m/n, known as density, plays a fundamental role here as most interesting
monotone properties are believed to exhibit 0-1 laws with respect to density. Perhaps
the best known example is the satisfiability property for random k-CNF formulas. Let
gk(n, r) denote the probability that Fk(n, rn) is satisfiable.

Conjecture 1 (Satisfiability Threshold Conjecture). For each k ≥ 3, there exists a con-
stant rk such that for any ε > 0,

lim
n→∞ gk(n, rk − ε) = 1, and lim

n→∞ gk(n, rk + ε) = 0 .

The satisfiability threshold conjecture, which motivates our work, has attracted a lot of
attention in computer science, mathematics and statistical physics [17,18,16]. At this
point, neither the value, nor even the existence of rk has been established. For k = 3,
the best known bounds are 3.52 < r3 < 4.49, due to results in [9] and [13], respectively.

The last decade has seen a great deal of rigorous results on random CSPs, including
a proliferation of upper and lower bounds for the satisfiability threshold of a number
of problems. Equally importantly, random CSPs have been the domain of an extensive
exchange of ideas between computer science and statistical physics [15], including the
positing of the clustering phenomenon, establishing it rigorously, and relating it to al-
gorithmic performance. In this work we take another step in this direction by taking
a technique from mathematical physics, the interpolation method of Guerra [12], and
using it to show how to derive end-to-end rigorous explicit upper bounds for the satisfi-
ability threshold of a number of problems. To do so, we introduce a new version of the
interpolation method that can be made computationally effective and give a new, much
simpler, extension of the method to CSPs with arbitrary degree distributions.

Our method can be used to prove among other things the following result [5] regard-
ing the satisfiability of mixtures of 2- and 3-clauses.

Theorem 1 ([5]). LetF be a random CNF formula on n variables with (1−ε)n random
2-clauses, and (1 + ε)n random 3-clauses. W.h.p. F is unsatisfiable for ε = 10−4.

Theorem 1, combined with the methods of [3], implies that a number of DPLL al-
gorithms require exponential time on easily satisfiable random 3-CNF formulas. For
example, ORDERED DLL requires exponential time for all r ≥ 2.78, while GUC for all
r ≥ 3.1. Similar results hold for a host of other algorithms, including, for example, all
algorithms analyzed in [2] and [1].

2 Motivation and Past Work

Perhaps the simplest possible upper bound on the satisfiability threshold comes from
taking the union bound over all assignments σ ∈ {0, 1}n of the probability they satisfy
a random formula F = Fk(n, rn). That is,

Pr[Fk(n, rn) is satisfiable] ≤
∑
σ

Pr[σ satisfies Fk(n, rn)] =
[
2(1− 2−k)r

]n → 0 ,

Unsatisfiability Bounds for Random CSPs 3

for all r > r∗k , where 2(1− 2−k)r
∗
k = 1. For example, r∗3 = 5.19.., but a long series of

increasingly sophisticated results has culminated with the bound r3 < 4.48... by Díaz et
al. [9]. At the same time, statistical physics results by Mertens et al. [14] give evidence
that r3 < 4.26....

2.1 Past Work on the Interpolation Method for Random CSPs

The interpolation method is a remarkable tool originally developed by Guerra and
Toninelli [12] to deal with the Sherrignton Kirkpatrick model (SK) of statistical physics.
Following their breakthrough, Franz and Leone [10], in a very important paper, applied
the interpolation method to random k-SAT and random k-XOR-SAT to prove that cer-
tain expressions derived via the non-rigorous replica method of statistical physics for
these problems can, in principle, be used to derive upper bounds for the satisfiability
threshold of each problem. As we will see, though, doing so involves the solution of cer-
tain functional equations that appear beyond analytical penetration. In [20], Panchenko
and Talagrand showed that the results of [10] can be derived in a simpler and uniform
way, unifying the treatment of different levels of Parisi’s Replica Symmetry Breaking.

A crucial ingredient in all the above proofs is a Poissonization device exploiting that
in Erdős-Renyi (hyper)graphs the degrees of the vertices behave, essentially, like in-
dependent, Poisson random variables. Franz, Leone, and Tonnineli [11] extended the
interpolation method to other degree sequences, but at the cost of introducing another
level of complexity (multi-overlaps), thus placing the method even further out of reach
in terms of explicit computations. In [19], Montanari gave a simpler method for dealing
with degree sequences in the context of error-correcting codes, which proceeds by ap-
proximating the intended degree distribution “in chunks”. This, unfortunately, requires
the number of approximation steps to go to infinity (so that the chunk size goes to zero)
in order to give results for the original problem.

Finally, in a recent paper, Bayati, Gamarnik and Tetali [6], showed that a combina-
torial analogue of the interpolation method can be used to elegantly derive an approxi-
mate subadditivity property for a number of CSPs on Erdős-Renyi and regular random
graphs. This allowed them to prove the existence of a number of limits in these prob-
lems. The simplicity of that approach, though, comes at the cost of losing the capacity
to give bounds for the associated limiting quantities.

3 Highlights of the Interpolation Method on RCSPs

For simplicity of exposition we focus on the case where all constraints have the same
arity k ≥ 2. It is very easy to see that the proof goes through transparently for CSPs
that are mixtures of constraints of different arities. Let Ck,n denote the set of all pos-
sible k-constraints on n variables for the CSP at hand and let D denote the domain of
each variable. So, for example, Ck,n could contain all 2k

(
n
k

)
clauses of length k on n

variables, or all
(
n
2

)
D! possible unique-games constraints on a graph with n vertices.

A random CSP instance Ik(n, r) is a conjunction of m constrains taken independently
with replacement from the set Ck,n, where m is a Poisson random variable with mean
E[m] = rn. Note that in the more standard models of random CSPs m is fixed (not a

4 D. Achlioptas and R. Menchaca-Mendez

random variable). Since, though, the standard deviation of the Poisson distribution is the
square root of its mean we havem = (1+o(1))rn w.h.p., thus not affecting any asymp-
totic results regarding densities. At the same time, along with the Poissonization of the
variable degrees, this is key to the original development of the method. Eliminating the
need for Poisson variable degrees and allowing arbitrary (sparse) degree sequence, as
we do in Section 5, is part of the technical contribution in our work.

We shall work with the random variable Hn,r(σ), known as the Hamiltonian, count-
ing the number of unsatisfied constraints in the instance for each σ ∈ Dn. (The ran-
domness of H being in the random choice of the instance). We will sometimes refer to
Hn,r(σ) as the energy function. The goal is to compute lower bounds for the following
quantity as a function of β ≥ 0,

fr = fr(β) = n−1E

[
log

(∑
σ∈Dn

exp (−βHn,r(σ))

)]
. (1)

For each fixed value of β > 0, the sum in fr(β) is dominated by those value assign-
ment having energy (violated constraints) in some narrow window that depends on β.
(The idea being that assignments violating more constraints are penalized too heavily to
contribute significantly to the sum, while assignment violating even fewer constraints
are too rare to have substantial contribution.) Thus, fr(β) effectively counts the number
of assignments at each energy level is known as the free entropy density. Note that as
β is increased fr(β) places more and more weight to assignments violating fewer con-
straints, recovering the number of solutions as β → ∞ (writing β = 1/T this is also
known as the zero-temperature limit). Standard martingale arguments imply that if any
finite β > 0 we have limn→∞ fr(β) < 0, then w.h.p. no solutions exist. The goal of
the interpolation method is to give negative upper bounds for fr(β) and since fr is the
free entropy, we refer to this as entropic interpolation.

Given σ = (x1, x2, . . . , xn) we will write Hn,r(σ) as the sum of m functions
θa(xa1 , ..., xak

), one for each constraint. That is, θa(xa1 , ..., xak
) = 1 if the associ-

ated constraint is not satisfied and 0 otherwise. For example, for k-SAT, we take the
domain of the variables to be {+1,−1}n and for each k-clause ca(xa1 , ..., xak

) we let

θa(xa1 , ..., xak
) =

k∏
j=1

1 + Jajxaj

2
, (2)

where Ja,j ∈ {+1,−1} represents the sign of literal aj in clause ca: +1 if the literal is
negated and −1 otherwise.

The basic object of the interpolation method is a modified energy function that in-
terpolates between Hn,r(σ) and the energy function of a dramatically simpler and fully
tractable model. Specifically, for t ∈ [0, 1], let

βHn,r,t(x1, . . . , xn) =

mt∑
m=1

βθam(xam,1 , ..., xam,k
) +

n∑
i=1

ki,t∑
j=1

log (v̂i,j(xi)) , (3)

where mt is a Poisson random variable with mean E[mt] = trn, the ki,t’s are i.i.d.
Poisson random variables with mean E[ki,t] = (1 − t)kr, and the functions v̂i,j(·) are
i.i.d. random functions distributed as the function defined in (5) below.

Unsatisfiability Bounds for Random CSPs 5

Before delving into the meaning of the random functions v̂i,j(·), which are the heart
of the method, let us first make a few observations about (3). First, note that (3) is simply
the energy function of the original model when t = 1. On the other hand, when t < 1,
we expect that (1 − t)m of the original k-clauses will be replaced by k times as many
functions each of which takes as input a single variable. A helpful way to think about
this replacement is as a decombinatorialization of the energy function wherein k-ary
functions are replaced by univariate, and therefore, independent functions. As one can
imagine, for t = 0 the model is fully tractable. In particular, letting

fr(t) = n−1E

[
log

(∑
σ∈Dn

exp (−βHn,r,t(σ))

)]
, (4)

one can readily compute fr(0) since one can compute Hn,r,0(σ) by examining one
variable at a time. To relate the two models the plan is to give a lower bound for the
change in fr as t goes from 1 to 0, hence the name interpolation, thus bounding fr(1)
by fr(0) plus a term depending on our bound on the derivative.

The main idea of the interpolation method is to select the (still mysterious) univari-
ate functions v̂i,j(·) independently, from a probability distribution that reflects aspects
of the geometry of the underlying solution space. The more accurate the reflection, the
better the bound. One, of course, needs to guess this geometry and here is where the
insights from statistical physics are most valuable. A beautiful aspect of the interpola-
tion method is that it projects all information about the geometry of the solution space
into a single object, a distribution γ as defined below. With that in mind, we now define
the random univariate functions, but without specifying the all-important distribution γ.
This is because the method gives a valid bound for any γ, i.e., the choice of γ affects
the quality but not the validity of the derived bound.

Let v(x) denote the density function of a random variable over D, where the proba-
bilities p1, . . . , p|D| are themselves chosen at random from a distribution γ with support
on the unit (|D| − 1)-dimensional simplex. Let v̂(x) be a random univariate function
defined as follows

v̂(x) =
∑

y1,...,yk−1

exp (−βθ(y1, ..., yk−1, x))
k−1∏
j=1

vj(yj) , (5)

where θ(·) is a random constraint-function and the functions vi(·) are i.i.d. with the
same distribution as v(x).

To interpret the function in (5) it helps to think of its argument x as corresponding to
a particular occurrence of a variable in a constraint c, e.g., a literal occurrence in a ran-
dom k-clause. The idea is for (5) to simulate the biases that this particular occurrence
of x “feels” from its presence in c. To do this we replace c with a brand new random
constraint (appearing as θ in (5)) containing k−1 new variables y1, . . . , yk−1 which are
“private” to θ, i.e., which will occur in no other constraint in the interpolating energy
function. To simulate the statistical joint behavior of the k − 1 original variables in c
due to their participation in clauses other than c, we assume that since the underlying
random hypergraph is sparse, these k − 1 new variables are independent in the absence

6 D. Achlioptas and R. Menchaca-Mendez

of θ, hence the product in (5). Finally, specifying the probability distribution γ govern-
ing the behavior of each ersatz variable is precisely what reflects our beliefs about the
geometry of the space of solutions. Statistical physics considerations suggest candidate
distributions as solutions to distributional equations.

To see how the geometry of the space of solutions enters the distribution γ, consider
two dramatically different settings, precisely those separated by the so-called shattering
(or clustering, or dynamical) transition. In one setting, the set of solutions has the prop-
erty that if a solution is chosen uniformly at random, changing the value of any variable
to any other value can be accommodated by changing, in expectation, the value of O(1)
other variables, i.e., by “local repair”. In such a world, γ is a single density function
over the (|D| − 1)-dimensional simplex. In contrast, after shattering occurs [4] the set
of solutions consists of exponentially many clusters (connected components of solu-
tions), separated by linear Hamming distance. In each cluster, a constant fraction of all
variables take the same value in all solutions in the cluster, while all other variables are
locally repairable. In this world, γ becomes a distribution over densities, the different
densities corresponding to different clusters.

3.1 Why an Energetic Interpolation Method

What motivates our derivation of a different, so-called energetic, interpolation method
is that dealing with the shattered case above leads to massive analytical obstacles, ren-
dering the derivation of explicit, mathematically rigorous bounds problematic. In the
realm of statistical mechanics, these are addressed via a numerical stochastic method
known as population dynamics, used to derive the estimates in [14] for random k-SAT.

In contrast, we will see that the energetic approach leads to bounds which can be de-
rived analytically, precisely because we dramatically collapse the information captured
by γ. In particular, in our bounds γ will be specified by a single real number, while the
bound itself is expressed by truncating an infinite sum to a finite one (at any desired
degree of accuracy) and adding up the corresponding explicit terms, each involving the
joint behavior of a finite number of Poisson random variables.

The reason this approach works is that in bivariate binary CSPs, such as random
[MAX] 2-SAT, random MAX 2-LIN-2, and random (2 + p)-SAT, whenever a frozen
variable appears in a constraint “the wrong way” (the freezing being due to its partici-
pation in other constraints) this necessarily causes the other variable in the constraint to
also freeze. This percolative type of behavior causes the fraction of frozen variables to
take off smoothly in such problems, a situation that can be captured by a simple model
for the distribution γ if one focuses on states of lowest energy. This is precisely what
we exploit in deriving our new upper bounds for these problems.

4 Energetic Interpolation for General CSPs

To develop an energetic interpolation method we replace the (far richer) free entropy
density of the previous section with the following much simpler quantity

ξr = n−1E
[
min
σ∈Dn

Hn,r(σ)

]
, (6)

Unsatisfiability Bounds for Random CSPs 7

known as ground-state energy density, which simply tells us the fraction of violated
constraints in the optimal (least-violating) assignments. By standard martingale argu-
ments the random variable minσ Hn,r(σ) concentrates around its expectation (consider
the martingale exposing the constraints one by one and note that changing any one con-
straint cannot change its value by more than 1). Therefore, if lim infn→∞ ξr > 0 we
can conclude that the satisfiability threshold is upper bounded by r.

The univariate factors in the energy interpolation method are given as follows:

– For 1 ≤ j ≤ |D|, let “j” denote the indicator function that the input is j, i.e., “j” is
1 if its input is j and 0 otherwise.

– Let “*” denote the function that assigns 0 to all elements of D.
– Let h(x) be a random function in {“1”, . . . , “|D|”, “ ∗ ”} with Pr(h(·) = “ ∗ ”) =
1− p and Pr(h(·) = “j”) = p/|D|.

The analogue of (5) is now

ĥ(x) = min
y1,...,yk−1

{
θ(y1, .., yk−1, x) +

k−1∑
i=1

hi(yi)

}
, (7)

where θ(·) is a random constraint-function as before while the functions hi(·) are i.i.d.
random functions distributed as h(x).

Observe that the energy interpolation method models all information about the ge-
ometry of the solution space into a single probability p, which can be interpreted as the
probability that a variable picked at random will be frozen, i.e., have the same value
in all optimal assignments. If that occurs for all k − 1 variables y1, .., yk−1 and they
all happen to be frozen the wrong way as far as θ is concerned, then unless variable x
takes the value desired by θ the function ĥ(x) will evaluate to 1. When, at the end of the
interpolation, we will have replaced all k-ary constraints with univariate random func-
tions ĥ, the optimal overall assignment is simply found by assigning to each variable
the value that makes the majority of its ĥ functions evaluate to 0. The method delivers
a valid bound for any choice of p ∈ [0, 1] and the bound is then optimized by choosing
the best value of p, i.e., performing a single-parameter search.

While we could give lower bounds on (6) for RCSPs defined on Erdős-Renyi (hy-
per)graphs by exploiting the same Poissonization device as in earlier works, we will
instead show how to carry out the method in arbitrary sparse degree distributions.

5 The Interpolation Method on Sparse Degree Sequences

Let di denote the number of times variable i should appear in the random instance and
let Li = {li,j}di

j=1 denote the set of occurrences corresponding to variable i. Note that
the occurrences can be decorated so that, for example in k-SAT, we can specify how
many of the Li occurrences correspond to positive occurrences of the variables and
how many to negative occurrences. It will be helpful to think of each occurrence as
a piece of paper carrying the index of the underlying variable along with any desired
decoration. To form a random instance with m = rn constraints we simply choose a

8 D. Achlioptas and R. Menchaca-Mendez

random permutation of the krn elements of L = {Li}ni=1 and consider the first k to
specify the first constraint, the next k to specify the second constraint etc.

Consider now the following algorithm to build a random Hamiltonian composed of
a mixture of k-ary constraint-factors of the desired CSP and of univariate functions as
in (5). The algorithm has three inputs: The collection of occurrences L, an integer t,
and a sequence x ∈ {b, c}t.

1. Set H = ∅, set L = L, and set j = 1.
2. Select a random permutation π of the elements of L.
3. While j ≤ min{t, |L|} do:

(a) If xj = b then

i. Add a random univariate factor to H with argument π(j).
ii. j ← j + 1

(b) If xt = c then with probability 1/k

i. Add a random k-constraint to H on occurrences π(j), . . . , π(j + k − 1).
ii. j ← j + k

Let H(L, x) denote the family of energy functions produced by the above algorithm.
Observe that when t = |L| and x = u · · ·u, the energy functions produced by the
algorithm have variable degree distribution given by L and consist of univariate factors
only. On the other hand when t = |L| and x = c · · · c the resulting energy functions
consist of m̃ energy constraint functions of arity k where m̃ is a Binomial random
variable with km trials and probability of success 1/k, conditioned on being at most
m. In other words, w.h.p. the instance generated will have the desired degree sequence
except for o(n) variables (and, therefore, o(n) constraints). Since we are interested in
establishing a non-vanishing lower bound for (6) this will not affect any of our results.

The goal now is to relate the ground state energy of these two extreme cases. A
key property, which will allow us to establish such relation, is that H(L, x) is invariant
under any permutation π(x) of the elements in x.

Lemma 1. For every sequence x, and every permutation π, the families H(L, x) and
H(L, π(x)) have the same distribution.

Proof. The very first step of our construction is to take a uniformly random permutation
of the elements of L.

For any L and any s ≤ t, since the order of the steps in x does not matter, let us write
H(L, t, s) to denote the distribution of energy functions generated by the algorithm
when we take t steps in total, t− s of which are additions of a univariate factor. Let

ξL(t, s) = n−1E
[
min
σ∈Dn

HL,t,s(σ)

]
.

Observe that if t = km and s = km, then ξL = ξL(km, km) corresponds to the
original ground state energy, whereas ξL(km, 0) corresponds to the ground state energy
of the model composed of univariate factors only.

Our lower bounds come from the following theorem.

Unsatisfiability Bounds for Random CSPs 9

Theorem 2. For any choice of p ∈ [0, 1], if m = rn then

ξL ≥ ξr(km, 0)− r(k − 1)E [hc]−o(1) , (8)

where

hc = min
y1,...,yk

{
θ(y1, .., yk) +

k∑
i=1

hi(yi)

}
.

To prove this we will prove that as s goes from t to 0, we can control the change of
ξr(t, s). Specifically,

Lemma 2. If m = rn then for any ε > 0, all t ∈ [0, (kr − ε)n], and all 1 ≤ s ≤ t,

E [min{HL,t,s−1(σ)}]− (k − 1)k−1E [hc] ≤ E [min{HL,t,s(σ)}] + o(1) .

Iteratively applying Lemma 2 so that we can increase the number of univariate factors
from 0 to t = (kr − ε)n and letting ε→ 0 yields Theorem 2.

Proof (Lemma 2). Let H0 be an energy function from the family H(L, t − 1, s − 1),
that is, the energy function resulting from executing t− 1 steps of the algorithm where
s− 1 of such steps correspond to adding a univariate factor. The key observation is that
HL,t,s−1(σ) and HL,t,s(σ) can be obtained from H0 by execution an additional step of
the algorithm: HL,t,s−1(σ) corresponds to the processing of a c symbol and HL,t,s(σ)
corresponds to the precessing of a u symbol.

We will show that conditional on any realization of H0 we have

E [min{HL,t,s−1(σ)}|H0]−(k−1)k−1E [hc] ≤ E [min{HL,t,s(σ)}|H0] +o(1) . (9)

That is, the proof reduces to comparing the effect of adding a single univariate factor
to the effect of adding, with probability 1/k, a single constraint. As one can imagine,
the proof of (9) is problem specific. Below we prove it for random k-SAT and random
Max-k-Lin-2. For all other random CSPs with binary domains the proof is very similar.

6 Applying Energetic Interpolation to Random CSPs

6.1 Random k-SAT

Let C∗ ⊆ {0, 1}n be the set of optimal assignments in H0. A variable xi is frozen
if its value is the same in all optimal assignments. The processing of a c symbol will
increase the value of the minimum by at most 1 only if the following two conditions
hold: 1) a new clause is added, which occurs with probability 1/k, and 2) all the literals
appearing in the new random factor correspond to a frozen variables. By the principle
of deferred decisions we can think of the permutation π as generated on-the-fly, i.e., as
we need occurrences to consume. Therefore, if the number of remaining occurrences
is Ω(n) and f denotes the fraction of them that are associated with frozen variables
corresponding to H0, then

E [min{HL,t,s(σ)}|H0]−min{H0} = k−12−kfk +O(1/n) ,

where the last term is due to the fact that we are selecting without replacement.

10 D. Achlioptas and R. Menchaca-Mendez

Similarly, the processing of a u symbol will increase the value of the minimum by 1
if the chosen literal correspond to a frozen variable x and x must take the opposite of
its frozen value to minimize the added factor ĥ(x). Thus the expected change is

E [min{HL,t,s−1(σ)}|H0]−min{H0} = 2−kpk−1f .

Finally,

E [hc] = E

[
min

y1,...,yk

{θ(y1, .., yk) +
k∑

i=1

hi(yi)}
]
= 2−kpk .

By combining the above equations and adding −(k − 1)k−12−kpk we get

E [min{HL,t,s−1(σ)}|H0]− (k − 1)k−12−kpk − E [min{HL,t,s(σ)}|H0]

= k−12−k
(
kpk−1f − fk − (k − 1)pk

)
+O(1/n) .

Finally, the polynomial F (x, p) = kpk−1x+ xk − (k − 1)pk ≤ 0 for all 0 ≤ x, p ≤ 1.
To see this last statement note that (i) F (0, p), F (1, p), F (x, 0), F (x, 1) ≤ 0 and, (ii)
the derivative of F with respect to p is 0 only when p = x, in which case F (x, x) = 0.

6.2 Random Max-k-Lin-2

The constraints in the Max-k-Lin-2 problem are chosen uniformly from the set of all
2nk possible boolean equations on n variables, i.e., the k variables are chosen at random
with replacement and the required parity is equally likely to be 0 or 1. LetC∗ ⊆ {0, 1}n
be the set of optimal assignments in H0. A variable xi is frozen if its value is the same
in all optimal assignments. The processing of a c symbol will increase the value of the
minimum by at most 1 only if the following three conditions hold: 1) a new Boolean
equation is added, which occurs with probability 1/k, 2) all the literals appearing in
the new random factor correspond to frozen variables and 3) the parity of the frozen
variables is different from the one required by the new equation. As in the proof for
random k-SAT above, if the number of remaining occurrences is Ω(n) and f denotes
the fraction of them that are associated with frozen variables corresponding to H0, then,

E [min{HL,t,s(σ)}|H0]−min{H0} = k−12−1fk +O(1/n) .

where the last term is due to the fact that we are selecting without replacement. Simi-
larly, the processing of a c symbol can increase the value of the minimum by 1 if the
chosen literal correspond to a frozen variable x and and x must take the opposite of its
frozen value to minimize the added factor ĥ(x). Thus the expected change is given by

E [min{HL,t,s−1(σ)}|H0]−min{H0} = 2−1pk−1f .

Finally,

E [hc] = E

[
min

y1,...,yk

{θ(y1, .., yk) +
k∑

i=1

hi(yi)}
]
= 2−1pk .

Unsatisfiability Bounds for Random CSPs 11

Combining the above equations and adding −(k − 1)k−12−1pk we get

E [min{HL,t,s−1(σ)}|H0]− (k − 1)k−12−kpk − E [min{HL,t,s(σ)}|H0]

= k−12−1
(
kpk−1f − fk − (k − 1)pk

)
+O(1/n) ,

where the r.h.s. of the equality entails the same polynomial as for random k-SAT.

7 Computing Explicit Energetic Interpolation Bounds for k-SAT

Applying Theorem 2 on a Poisson degree sequence we get that

ξr(0) = E

⎡⎣ min
x∈{0,1}

⎛⎝ s∑
j=1

ĥj(x)

⎞⎠⎤⎦ , (10)

where s is a Poisson random variable with mean kr, and the functions ĥj(·), i.e., random
functions in {“0”, “1”, “ ∗ ”} with Pr(ĥj(·) = “1”) = Pr(ĥj(·) = “0”) = 2−kpk−1.

Let l0, l1, and l∗ denote the number “0”, “1”, and “*” functions respectively among
the ĥj(·) functions inside the summation of equation (10). Conditional on the value
of s, the random vector (l0, l1, l∗) is distributed as a multinomial random vector and,
therefore,

ξr(0) =

∞∑
x=0

x∑
l0=0

x−l0∑
l1=0

min{l0, l1} × Poi(kr, x)Multi(l0, l1, x− l0 − l1) ,

where Multi(·, ·, ·) denotes the multinomial density function.
Changing the limits of all summations to infinity, does not change the value of ξr(0),

since Multi(·, ·, ·) evaluates to zero for negative numbers, hence, we can interchange the
order of the summations to get

ξr(0) =

∞∑
l0=0

∞∑
l1=0

min{l0, l1} ×
∞∑
x=0

Poi(kr, x)Multi(l0, l1, x− l0 − l1) .

The last equation can be simplified by summing out the randomness in the Poisson
random variable. The result is that l0 and l1 become two independent Poisson random
variables with mean k

2k
rpk−1. Thus,

ξr(0) =

∞∑
l0=0

∞∑
l1=0

min{l0, l1} × Poi

(
k

2k
rpk−1, l0

)
× Poi

(
k

2k
rpk−1, l1

)
,

i.e., ξr(0) is the expected value of the minimum of two independent Poisson random
variables l0, l1 with mean λ = k

2k rp
k−1. Finally, we note that

E [min{l0, l1}] =
∞∑
i=0

i

⎛⎝2Poi(λ, i)

⎛⎝1−
i−1∑
j=0

Poi(λ, j)

⎞⎠− (Poi(λ, i))2

⎞⎠ . (11)

To compute a rigorous lower bound for (11) one now simply truncates the sum at any
desired level of accuracy.

12 D. Achlioptas and R. Menchaca-Mendez

Acknowledgements. We are grateful to Andrea Montanari for a number of useful con-
versations.

References

1. Achioptas, D., Sorkin, G.: Optimal myopic algorithms for random 3-sat. In: Proceedings of
the 41st Annual Symposium on Foundations of Computer Science 2000, pp. 590–600. IEEE
(2000)

2. Achlioptas, D.: Lower bounds for random 3-sat via differential equations. Theoretical Com-
puter Science 265(1-2), 159–185 (2001)

3. Achlioptas, D., Beame, P., Molloy, M.: A sharp threshold in proof complexity yields lower
bounds for satisfiability search. Journal of Computer and System Sciences 68(2), 238–268
(2004)

4. Achlioptas, D., Coja-Oghlan, A.: Algorithmic barriers from phase transitions. In: 49th An-
nual IEEE Symp. on Foundations of Computer Science 2008, pp. 793–802 (2008)

5. Achlioptas, D., Menchaca-Mendez, R.: Exponential lower bounds for dpll algorithms on
satisfiable random 3-cnf formulas (2012) (to appear in SAT 2012)

6. Bayati, M., Gamarnik, D., Tetali, P.: Combinatorial approach to the interpolation method and
scaling limits in sparse random graphs. In: STOC 2010, pp. 105–114 (2010)

7. Chvatal, V., Szemeredi, E.: Many hard examples for resolution. Journal of the Association
for Computing Machinery 35(4), 759–768 (1988)

8. Coja-Oghlan, A.: On belief propagation guided decimation for random k-sat. In: Proceed-
ings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
957–966. SIAM (2011)

9. Díaz, J., Kirousis, L., Mitsche, D., Pérez-Giménez, X.: On the satisfiability threshold
of formulas with three literals per clause. Theoretical Computer Science 410(30-32),
2920–2934 (2009)

10. Franz, S., Leone, M.: Replica bounds for optimization problems and diluted spin systems.
Journal of Statistical Physics 111(3), 535–564 (2003)

11. Franz, S., Leone, M., Toninelli, F.: Replica bounds for diluted non-poissonian spin systems.
Journal of Physics A: Mathematical and General 36, 10967 (2003)

12. Guerra, F., Toninelli, F.: The thermodynamic limit in mean field spin glass models. Commu-
nications in Mathematical Physics 230(1), 71–79 (2002)

13. Kaporis, A., Kirousis, L., Lalas, E.: The probabilistic analysis of a greedy satisfiability algo-
rithm. Random Structures & Algorithms 28(4), 444–480 (2006)

14. Mertens, S., Mézard, M., Zecchina, R.: Threshold values of random k-sat from the cavity
method. Random Structures & Algorithms 28(3), 340–373 (2006)

15. Mezard, M., Montanari, A.: Information, physics, and computation. Oxford University Press,
USA (2009)

16. Monasson, R., Zecchina, R.: Tricritical points in random combinatorics: the-sat case. Journal
of Physics A: Mathematical and General 31, 9209 (1998)

17. Monasson, R., Zecchina, R.: Entropy of the K -satisfiability problem. Phys. Rev. Lett. 76,
3881–3885 (1996),
http://link.aps.org/doi/10.1103/PhysRevLett.76.3881

18. Monasson, R., Zecchina, R.: Statistical mechanics of the random k-satisfiability model. Phys.
Rev. E 56, 1357–1370 (1997),
http://link.aps.org/doi/10.1103/PhysRevE.56.1357

19. Montanari, A.: Tight bounds for ldpc and ldgm codes under map decoding. IEEE Transac-
tions on Information Theory 51(9), 3221–3246 (2005)

20. Panchenko, D., Talagrand, M.: Bounds for diluted mean-fields spin glass models. Probability
Theory and Related Fields 130(3), 319–336 (2004)

http://link.aps.org/doi/10.1103/PhysRevLett.76.3881
http://link.aps.org/doi/10.1103/PhysRevE.56.1357

The NOF Multiparty Communication Complexity
of Composed Functions�

Anil Ada1, Arkadev Chattopadhyay2, Omar Fawzi1, and Phuong Nguyen2

1 School of Computer Science, McGill University
{aada,ofawzi}@cs.mcgill.ca

2 Department of Computer Science, University of Toronto
{arkadev,pnguyen}@cs.toronto.edu

Abstract. We study the k-party ‘number on the forehead’ communica-
tion complexity of composed functions f ◦ g, where f : {0,1}n → {±1},
g : {0,1}k → {0,1} and for (x1, . . . ,xk) ∈ ({0,1}n)k, f ◦ g(x1, . . . ,xk) =
f (. . . ,g(x1,i, . . . ,xk,i), . . .). We show that there is an O(log3 n) cost simultaneous
protocol for SYM◦g when k > 1+ log n, SYM is any symmetric function and g is
any function. Previously, an efficient protocol was only known for SYM ◦g when
g is symmetric and “compressible”. We also get a non-simultaneous protocol for
SYM ◦g of cost O((n/2k) logn+k log n) for any k ≥ 2.

In the setting of k ≤ 1+ logn, we study more closely functions of the form
MAJORITY ◦ g, MODm ◦ g, and NOR ◦ g, where the latter two are generalizations
of the well-known and studied functions Generalized Inner Product and Disjoint-
ness respectively. We characterize the communication complexity of these func-
tions with respect to the choice of g. As the main application of our results, we
answer a question posed by Babai et al. (SIAM Journal on Computing, 33:137–
166, 2004) and determine the communication complexity of MAJORITY◦QCSBk,
where QCSBk is the “quadratic character of the sum of the bits” function.

1 Introduction

The ‘number on the forehead’ (NOF) model of communication complexity was intro-
duced by Chandra, Furst and Lipton [7] who used it to obtain branching program lower
bounds. In this model, k players wish to evaluate a function F : X1 ×·· ·×Xk → {±1}
on a given input (x1, . . . ,xk). The input is distributed among the players in a way that
Player i sees every x j for j �= i. This scenario is visualized as xi being written on the
forehead of Player i. In order to compute F(x1, . . . ,xk), the players communicate by
means of broadcasting, according to a protocol which they have agreed upon before-
hand. The goal is to compute F(x1, . . . ,xk) by communicating as few bits as possible.
Note that for k = 2, this model is equivalent to the standard two player model intro-
duced by Yao [24]. We are mainly interested in the case Xi = {0,1}n for all i. Here,
every function can be trivially computed using n+1 bits of communication, and proto-
cols of cost at most polylogarithmic in n are considered to be efficient. Deterministic,
non-deterministic, randomized and quantum communication complexity models natu-
rally manifest themselves in this setting. The overlap of information among the players

� A full version can be found online [1].

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 13–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

14 A. Ada et al.

makes the NOF model interesting, powerful and fruitful in terms of applications. Apart
from the aforementioned application in branching programs, this model also has impor-
tant applications in circuit complexity, proof complexity and pseudorandom generators.

The class ACC0 represents functions computable by polynomial-size, constant-depth
circuits with unbounded fan-in AND, OR, NOT and MODm gates. Showing NP is not
in ACC0 is one of the frontiers in complexity theory. It is well known that a function
in ACC0 has a polylog(n) k-party deterministic communication complexity, where k is
polylog(n) [12,6]. In fact the protocol is simultaneous where all the players, without
interacting, speak once to an external referee who determines the output based only on
the messages she receives. Proving that a function in NP requires super-polylogarithmic
communication in the simultaneous model for polylogarithmic number of players would
result in a major breakthrough. Currently no non-trivial lower bound is known for an
explicit function for k = logn and this has proven to be a formidable barrier. Despite
intense effort, even the 3 player model is far from being well understood and many
important problems that are solved in the 2 player setting remain open in the 3 player
setting. For example, in the 3 player setting, there is no known explicit function that is
hard in the deterministic model but easy in the randomized model. On the other hand,
the equality function is a canonical example of such a function in the 2 player setting.

Most of the well known and studied functions in the standard two party as well as
the multiparty model have the following ‘composed’ structure. Let f : {0,1}n → {±1}
be a function and −→g = (g1, . . . ,gn) be a vector of functions gi : {0,1}k →{0,1}. Define
f ◦−→g (x1, . . . ,xk) = f (. . . ,gi(x1,i,x2,i, . . . ,xk,i), . . .), where x j,i denotes the ith coordinate
of the n-bit string x j. When all the gi are the same, say g, we denote f ◦−→g by f ◦g. In this
notation, the famous communication functions generalized inner product, disjointness
and hamming distance can be written as GIP = MOD2 ◦ AND, DISJ = NOR ◦ AND, and
HD = THRt ◦ XOR respectively. In an important paper [19], Razborov characterizes
the 2 party communication complexity of SYM ◦ AND functions, where SYM denotes
a symmetric function. Shi and Zhang [22] obtain a similar characterization for SYM ◦
XOR functions. Note that when k = 2, AND and XOR are the only interesting “inside
functions” as other functions are either trivial or reduce to the case of AND or XOR.

In this paper, we study the multiparty communication complexity of composed func-
tions with two goals in mind. The first goal is to better understand the power of logn and
more players. The second and more general goal is to understand which combinations of
the “inside” function g and the “outside” function f lead to hard communication prob-
lems and which combinations lead to easy communication problems. The focus of pre-
vious research has been on proving lower bounds for composed functions by selecting
a “hard” outside function and a convenient inside function (see e.g. [20,23,15,8,5,16]).
Our approach is to study composed functions without putting any restriction on g and
obtain characterizations for the communication complexity of composed functions with
respect to the choice of g. This dual approach is particularly interesting in the multiparty
setting where the choice for g increases double exponentially in k.

First, we consider SYM ◦ g functions in the setting of k > logn. This rich class con-
tains many interesting functions and it is tempting to conjecture that some of these
functions are candidates to break the logn barrier mentioned earlier. In particular, since
the majority function MAJ = THRn/2 is conjectured to be outside of ACC0, it is of

The NOF Multiparty Communication Complexity of Composed Functions 15

interest to try to determine the communication complexity of MAJ ◦ g for all g. For
instance, Babai, Kimmel and Lokam [3] identified MAJ ◦MAJ as a candidate function
to be hard for more than logn many players. Later, in a significantly expanded version
of [3], Babai et al. [2] show that MAJ◦MAJ has an efficient simultaneous protocol when
k > 1+ logn. Their upper bound in fact applies to SYM ◦ g where SYM is any sym-
metric function and g is any symmetric “compressible” function. Although the class of
symmetric compressible functions contains natural functions like THRt and MODm, this
class is only a small portion of all symmetric functions as a random symmetric function
is not compressible with high probability. Babai et al. [2] in fact identify QCSB, the
quadractic character of the sum of bits function, as a symmetric inside function g for
which their method fails. In this paper, we remove the symmetry and compressibility
conditions on g and show that functions of the form SYM◦g are easy in the simultaneous
model when k > 1+ logn, for any choice of the inside function g.

Theorem 1 (Informal statement). For any g, there is a simultaneous deterministic k-
party protocol for SYM ◦ g of cost O(log3 n) when k > 1+ logn. When k > 1+ 2logn,
the simultaneous protocol applies to SYM ◦ −→g for any vector of functions −→g . Fur-
thermore, there is a deterministic protocol (non-simultaneous) for SYM ◦ −→g of cost
O((n/2k) logn+ k logn) for any k.

The above result rules out functions of the form SYM◦g as candidates to break the logn
barrier. Moreover, by the well known connections of the multiparty model with Ram-
sey theory [7], our k+ 1 party protocol for NOR ◦ XOR gives the first non-trivial upper
bound on the number of colors needed to color (Fn

2)
k so that no k dimensional corner is

monochromatic. Although communication complexity bounds have been proven using
Ramsey theory, no bounds on Ramsey numbers have been proven via communication
complexity bounds before1.

The insight for our (non-simultaneous) protocols is from the work of Grolmusz
and Pudlák. Grolmusz [10] presented an efficient non-simultaneous protocol for the
function SYM ◦ AND when k ≥ logn players. Later, Pudlák [17] gave an elegant rein-
terpretation of Grolmusz’s protocol. We obtain our simultaneous protocols when k is
sufficiently large by extending [10,17] and combining it with a result of Babai et al [2].

In the setting of k ≤ logn, we study more closely functions of the form MAJ ◦ g,
MODm ◦ g and NOR ◦ g, where the latter two are generalizations of arguably the most
well known and studied functions GIP and DISJ respectively. We are able to obtain
dichotomies, with respect to the choice of g, that characterize the communication com-
plexity of MAJ ◦ g, MODm ◦ g and NOR ◦ g for every g. Furthermore, our results show
that these functions have polynomially related quantum and classical communication
complexities2. It is worth noting that these characterizations are tightly connected to
our upper bound result mentioned above. The upper bounds for these functions in the
setting of k ≤ logn use crucially the ideas developed for the upper bound for SYM ◦ g
in the setting of k > logn. Perhaps surprisingly, even our lower bounds for MODm ◦ g
functions use these ideas as well. We state our results below.

1 The details of this result are given in the full version of the paper.
2 Note that by the work of [14], all our lower bounds hold in the quantum model, but we confine

ourselves to the classical setting for simplicity.

16 A. Ada et al.

Theorem 2 (Informal statement). Let S0 = {y ∈ g−1(1) : y has even weight} and
S1 = {y∈ g−1(1) : y has odd weight}. If m divides |S0|− |S1|, MODm ◦g has a simulta-
neous deterministic protocol of cost O(k logm). On the other hand, if m does not divide
|S0|− |S1|, MODm ◦ g is a very hard function3 in the randomized model, up to ≈ 1

2 logn

many players and m up to n
1
2−δ for a constant δ > 0.

The first strong lower bounds in the NOF model were obtained by Babai, Nisan and
Szegedy [4], who showed a very strong lower bound for the GIP function. Their proof
is later refined by [9,18]. Grolmusz [11] extended the technique of [4] to show a lower
bound for MODm ◦ AND. We obtain our lower bound for MODm ◦ g, where m is coprime
to |S0| − |S1|, by extending the analysis of [9,18]. For other m for which MODm ◦ g
is hard (i.e. m and |S0| − |S1| are not coprime but m does not divide |S0| − |S1|), this
analysis does not apply. In this case, we obtain the lower bound through a reduction to
the previous case. This reduction uses ideas from our upper bound for SYM ◦ g.

Theorem 3 (Informal statement). If |S0| = |S1|, then MAJ ◦ g has a k-party simulta-
neous deterministic protocol of cost O(k logn). If |S0| �= |S1|, MAJ ◦ g is hard in the
randomized bounded error model for k up to ≈ 1

2 logn

The above result is obtained by using our characterization for MODm ◦ g. As immedi-
ate applications, we show for instance that MAJ ◦ MAJ and MAJ ◦ XOR are hard in the
randomized model for k up to ≈ 1

2 logn.

Theorem 4 (Informal statement). NOR ◦ g is hard in the randomized bounded error
model for k up to ≈ 1

2 logn many players if and only if g has support size 1.

This result shows that the hardness of DISJ crucially relies on the fact that g has single-
ton support. The lower bound is obtained by a simple reduction and follows from the
best known lower bound on DISJ = NOR ◦ AND [21]. An important ingredient in our
upper bound is the use of our characterization for MODm ◦ g.

As an application of our MAJ ◦ g characterization (Theorem 3) and our protocol for
SYM ◦ g functions (Theorem 1), we answer an open question posed by Babai et al. [2]
and determine the communication complexity of MAJ◦QCSB. Recall that the techniques
of Babai et al. fail for QCSB as it is a non-compressible function.

Corollary 1 (Informal statement). If k ≡ 1 mod 4, MAJ ◦ QCSBk has cost O(k logn)
in the simultaneous deterministic model, and if k ≡ 3 mod 4, the function is hard in the
randomized model for up to ≈ 1

2 logn many players with. For k> 1+ logn, MAJ◦QCSB

has cost O(log3 n) in the simultaneous deterministic model.

2 Preliminaries

We refer the reader to [13] for details about the communication complexity models

discussed in this paper. For F : X1 × ·· · ×Xk → {±1}, we denote by Dk(F), D||
k (F)

3 Here ‘very hard’ means that even if the error probability of the protocol is allowed to be
exponentially close to 1/2, the function does not have an efficient protocol. Note that achieving
error probability 1/2 is trivial for any function.

The NOF Multiparty Communication Complexity of Composed Functions 17

and Rε
k(F) the k-party deterministic, simultaneous deterministic and randomized ε-error

communication complexities of F respectively. A stronger model allowing quantum
communication between the players can similarly be defined, and in fact, all the lower
bounds in the randomized model that we prove here carry over to the quantum model
using the results of [14].

A subset Ci of X1×·· ·×Xk is a cylinder in the ith direction if membership in Ci does
not depend on the ith coordinate, i.e., if (x1, . . . ,xi, . . . ,xk)∈Ci, then (x1, . . . ,x′i, . . . ,xk)∈
Ci for every x′i ∈ Xi. A cylinder intersection C is an intersection of k cylinders, one in
each direction. It is well known that a k-party deterministic protocol for F of cost c
partitions the input space into at most 2c monochromatic (with respect to F’s output)
cylinder intersections. We identify a cylinder intersection C ⊆ X1 × ·· · ×Xk with its
characteristic function C : X1×·· ·×Xk →{0,1}.

We define the discrepancy of F : X1 × ·· ·×Xk → C under µ and with respect to a
cylinder intersection C as discµ(F,C) =

∣∣Ex∼µ [F(x)C(x)]
∣∣. The discrepancy of F under

µ is discµ(F) = maxC discµ(F,C), where the maximum is over all possible cylinder
intersections C. By the well-known discrepancy method:

Rε
k(F)≥ log

(
1− 2ε

discµ(F)

)
. (1)

In order to upper bound the discrepancy we will use the cube measure. Let µ be a
product distribution over X1×·· ·×Xk, i.e., µ(x1, . . . ,xk) = µ1(x1) · · ·µk(xk), where µi is
a distribution over Xi. We define the cube measure of F under µ as

Eµ(F) = Ex0
1,x

0
2,...,x

0
k

x1
1,x

1
2,...,x

1
k

⎡⎣ ∏
u∈{0,1}k

C u1+···+uk(F(xu1
1 , . . . ,xuk

k))

⎤⎦ ,
where in the expectation, x0

i and x1
i are distributed according to µi, and C denotes the

complex conjugation operator: C b(z) = z if b is even, and C b(z) = z otherwise. It is
not difficult to verify that the cube measure is always a non-negative real number.
In fact, the quantity (EU(F))1/2k

, where U is the uniform distribution, is known as
the hypergraph uniformity norm and is a measure of “quasirandomness” of F . When
F(x1, . . . ,xk) = f (x1 ⊕ ·· · ⊕ xk), the hypergraph uniformity norm of F corresponds to
Gowers uniformity norm of f over Fn

2.

Lemma 1 ([9,18]). Let F : X1 × ·· · ×Xk → C be a complex valued function and µi a
distribution over Xi. Define µ as the product of the µi. Then, discµ(F)≤ (Eµ(F))1/2k

.

In this paper Xi = {0,1}n for all i. We let x = (x1, . . . ,xk) denote an input in ({0,1}n)k.
Often we will view the input as a k× n dimensional matrix X , where the ith row of X
is xi. We reserve the variables xi to denote an n-bit string whose j-th bit is denoted by
xi, j, and reserve the variables yi to denote a single bit. Let Hk denote the k dimensional
hypercube where the vertex set is {0,1}k and there is an edge between two vertices iff
their Hamming distance is 1. Given an input in the k×n dimensional matrix form X , we
associate each column of X with the corresponding vertex of Hk. For each v ∈ {0,1}k,
define nv as the number of times v occurs as a column of X .

18 A. Ada et al.

3 Communication Complexity of Composed Functions

3.1 SYM ◦ g

A boolean function f : {0,1}n → {±1} is called symmetric if the output depends only
on the Hamming weight of the input. In this section we present our deterministic proto-
col for SYM ◦−→g where g is any function. Our result improves upon the result of Babai
et al. [2], who give an efficient simultaneous protocol for SYM◦g, where g is symmetric
and compressible, when k> 1+ logn. First, we remove the symmetry and compressibil-
ity conditions on g and allow inside function(s) to be selected arbitrarily, and second,
we provide a non-trivial protocol even when k ≤ 1+ logn. We obtain our protocols in
the non-simultaneous model by extending the ideas of Grolmusz [10] and Pudlák [17].
We combine this with a beautiful lemma of Babai et al. [2, Lemma 6.10] in order to
make our protocols simultaneous:

Lemma 2 ([2]). Suppose k > 1+ logn and let X be a k×n boolean matrix given as an
input for a k-party communication problem. Let ni be the number of columns of X with
Hamming weight i. Then by communicating O(k2 logn) bits, the players can compute
ni for all i in the simultaneous deterministic model.

We note that in the following theorem, it will be clear from the proof that allowing
different inner functions for different columns is important even to handle functions
f ◦ g when the number of players k � logn.

Theorem 1. Let f : {0,1}n → {±1} be a symmetric function, g : {0,1}n → {0,1} an
arbitrary function, and −→g = (g1, . . . ,gn) a vector of n functions where gi : {0,1}k →
{0,1} are arbitrary functions. Then,

(a) Dk(f ◦−→g)≤ O((n/2k) logn+ k logn),

(b) for k > 1+ logn: D||
k (f ◦ g)≤ O(log3 n),

(c) for k > 1+ 2logn: D||
k (f ◦−→g)≤ O(log3 n).

Proof. We first prove part (a). Fix an input for f ◦−→g given in k× n matrix form X .
The protocol proceeds in two steps. In the first step, the players determine the column
positions of some u ∈ Hk. Later, they use this to compute the output of f ◦−→g .

We now describe the first step. Let X≥3 denote the (k−2)×n dimensional submatrix
of X where the first two rows are deleted. Since X≥3 has n columns and there are 2k−2

possible strings of length k−2, the string s ∈ {0,1}k−2 that appears the least number of
times as a column of X≥3 appears at most n/2k−2 times. Without any communication,
players 1 and 2 can agree on this string (breaking ties in say lexicographical order).
Player 2, using at most n/2k−2 bits of communication, can send player 1 the bits on
player 1’s forehead corresponding to the positions that string s appears. With this infor-
mation, player 1 knows the positions of four vertices 00s, 01s, 10s and 11s. Now player
1 can announce one of these vertices (call it u) and the column indices corresponding
to u. The total cost is at most O((n/2k) logn).

We proceed to step 2. Observe that the columns corresponding to u are taken care
of, that is, we already know the value g j(u) where j is a column index corresponding

The NOF Multiparty Communication Complexity of Composed Functions 19

to u. Let S j = g−1
j (1). For v ∈ {0,1}k, let 1 j(v) = 1 if v is in column j, and 1 j(v) = 0

otherwise. To compute the output of f ◦−→g , it suffices to compute

∑
j

∑
v∈S j

1 j(v), (2)

where the outer sum is over all column indices that do not correspond to u. Consider a
shortest path from v to u: v = w1,w2, . . . ,wt = u. Observe that since 1 j(u) = 0,

1 j(v) =
t−1

∑
i=1

(−1)i+1(1 j(wi)+ 1 j(wi+1)). (3)

Each term (1 j(wi)+1 j(wi+1)) is known by some player because wi and wi+1 differ only
in one coordinate. To compute (2), each player announces her part of the sum. Since
∑ j ∑v∈S j

1 j(v) ≤ n, it suffices for players to send their part of the sum modulo n+ 1.
Therefore this step of the protocol has cost at most k · �log(n+ 1)�. This completes the
proof of part (a). Note that the second step of the protocol is simultaneous while the
first step is not. When k is sufficiently large, we bypass the first step using Lemma 2.

We now prove part (c). Let � = 2+ 2logn. Only the first � players will speak. For
each column j, the rows �+ 1 to k naturally induce a function g′j : {0,1}� → {0,1};

g′j(u) = g j(u ·v) where v ∈ {0,1}k−� appears in column j from row �+1 to k. Thus our

task reduces to finding a protocol for f ◦
−→
g′ with � players. From now on we drop the

superscript in g′j and denote it by g j.
As before we are interested in computing

n

∑
j=1

∑
v∈S j

1 j(v). (4)

Let
−→
0 be the all 0 vertex. Let v ∈ S j and let v = w1, . . . ,wt =

−→
0 be a shortest path

between v and
−→
0 . Then we have

1 j(v) =
t−1

∑
i=1

(−1)i+1(1 j(wi)+ 1 j(wi+1))+ (−1)|v|1 j(
−→
0). (5)

Substitute (5) into (4). Since the quantity in (4) is at most n, we can do arithmetic
modulo n+1. As before, each term (1 j(wi)+1 j(wi+1)) in the sum is known to a player
so the part of the sum involving these terms can be computed by the players using at
most � · �log(n+ 1)� bits. For each j ∈ {1, . . . ,n}, we group the terms involving 1 j(

−→
0)

when substituting (5) into (4) and let c j be the coefficient of 1 j(
−→
0) modulo n+ 1. We

also need to compute ∑ j c j1 j(
−→
0), which can be done as follows. From the original

�×n input matrix X , we create a new matrix X ′ by duplicating the jth column c j many
times. Note that X ′ has at most n2 columns so we can apply Lemma 2 on X ′ to compute
the number of all 0 columns in X ′, which is exactly what we want. This step has cost
O(log3 n). So putting things together, we can compute (4) with at most O(log3 n) bits of
communication. The whole protocol is easily seen to be simultaneous. This completes
the proof of part (c).

20 A. Ada et al.

We conclude with the proof of part (b). The strategy is exactly the same as above. We
need to calculate ∑ j c j1 j(

−→
0). Since all the g j are the same, c j = c for all j for some c.

So we want to compute c∑ j 1 j(
−→
0), which is precisely cn−→0 . We can compute n−→0 using

Lemma 2 when k > 1+ logn. So putting things together, we can compute (4) using at
most O(k2 logn) bits of communication. Given part (c), we are done.

3.2 MODm ◦ g

For (y1,y2, . . . ,yn) ∈ {0,1}n, let MODm(y1,y2, . . . ,yn) =−1 iff ∑n
j=1 y j = 0 mod m. In

this section we show that the complexity of MODm ◦ g is determined by the quantity∣∣|S0|− |S1|
∣∣, where Si is the subset of the support of g that consists of all inputs whose

Hamming weight has parity i. Part (b) of Theorem 2 is important because it will be used
to derive the lower bound in the next subsection.

Theorem 2. Let m ≥ 2 be an integer. The function MODm ◦ g satisfies:

(a) If m divides |S0|− |S1|, then D||
k (MODm ◦ g)≤ k �logm�.

(b) Otherwise, Rε
k(MODm ◦ g)≥ 5n

m24k + log(1− 2ε)− (k+ 1)�logm�− 1.

Before sketching the proof, we first state a lemma which is essential for our protocols
here and in the next subsection.

Lemma 3. Let S0 = {u1, . . . ,ur} and S1 = {v1, . . . ,vr} be subsets of the vertices of Hk

such that for each i, the distance between ui and vi is odd. Then ∑r
i=1 nui +∑r

i=1 nvi

mod m can be computed in the simultaneous model using at most k · �logm� bits. Simi-
larly, if the distance between ui and vi is even for each i, ∑r

i=1 nui −∑r
i=1 nvi mod m can

be computed in the simultaneous model using at most k · �logm� bits.

Proof. Using the notation in the proof of Theorem 1, note that we are interested in
computing ∑r

i=1 ∑n
j=1 1 j(ui)+1 j(vi) mod m. Each term (1 j(ui)+1 j(vi)) can be written

as a telescoping sum as in (3). Each term in the telescoping sum is known by a player.
Since we can do arithmetic modulo m, the desired value can be computed with each
player sending their part of the sum modulo m. So the total cost is k · �logm�. The
second part holds similarly.

Proof (Proof Sketch of Theorem 2). Part (a): Suppose m divides |S0|− |S1| and assume
without loss of generality that |S0| ≥ |S1|. We choose (arbitrarily) a subset S′0 ⊆ S0

of size |S1|. As the distance between an element of S′0 and an element of S1 is odd,
we can compute ∑v∈S′0

nv + ∑v∈S1
nv mod m using Lemma 3. For the remaining el-

ements in S0 − S′0, we pair them with
−→
0 . Hence, using Lemma 3 once again, we can

compute (|S0|−|S1|)n−→0 +∑v∈S0−S′0
nv ≡∑v∈S0−S′0

nv mod m. Thus, we have computed
∑v∈S0∪S1

nv mod m, from which the output of MODm ◦g is determined. Observe that the
sums ∑v∈S′0

nv +∑v∈S1
nv mod m and ∑v∈S0−S′0

nv mod m need not be computed sepa-
rately and that we can compute ∑v∈S0∪S1

nv mod m in one shot using k �logm� bits.
Part (b), Case 1: We consider two cases, depending on whether m and |S0|− |S1| are
coprime or not. The first case is when m and |S0|− |S1| are coprime. The proof makes

The NOF Multiparty Communication Complexity of Composed Functions 21

use of the characterization of the MODm function in terms of exponential sums. Fix
2 ≤ m ∈ N and 0 ≤ a,b ≤ m− 1. Let ω = e2πi/m be an m-th root of unity. The function
EXP

a,b
m is defined as EXP

a,b
m (y1,y2, . . . ,yn) = ωa((∑n

j=1 y j)−b).
The strategy is as follows. Define fm(y1, . . . ,yn) = ∑ j y j mod m. First we show

that for any cylinder intersection, the fraction of points x in the cylinder intersec-
tion that satisfy fm ◦ g(x) = b is roughly (with exponentially small error) 1/m for all
b∈ {0,1, . . . ,m−1}. This step uses an estimate of the cube measure of EXP

a,b
m ◦g under

the uniform distribution.

Lemma 4. Assume m and |S0| − |S1| are coprime. For any a ∈ {1,2, . . . ,m− 1} and

b ∈ {0,1, . . . ,m− 1}, EU(EXP
a,b
m ◦ g)≤ e−8n/(m22k).

It is perhaps remarkable that one can obtain a bound on the cube measure as a func-
tion of only |S0| − |S1| and m. A proof of this lemma can be found in the full ver-
sion [1, Lemma 3.5]. Define the distribution µ that puts equal weight to all x with
fm ◦ g(x) = 0 and fm ◦ g(x) = 1. All other points get 0 weight. It will easily follow that
discµ(MODm ◦ g) is exponentially small and thus the desired lower bound is achieved
using the discrepancy method (Inequality (1)).
Part (b), Case 2: It is not hard to show that the above analysis of Case 1 cannot work
when m and |S0|− |S1| are not coprime. Thus, to get the complete characterization, we
need new ideas. For this, we construct a reduction to Case 1 using insights from the
protocol of Theorem 1. We can assume without loss of generality that |S0|− |S1| > 0.
Let 1 < d = gcd(m, |S0|− |S1|), and let m = dq and |S0|− |S1|= dr, where q and r are
coprime integers. Because m does not divide |S0|− |S1|, q ≥ 2. Our strategy is to use a
protocol for MODm ◦ g in order to construct a protocol for MODq ◦ g′ for some function
g′ for which we can apply the lower bound proved in Case 1.

We start by partitioning the set S0 into sets S′0,T1, . . . ,Td with |S′0| = |S1| and |T1|=
· · ·= |Td |= r. Let g′ be the function whose support is T1. Note that the support of g′ has
size r and consists only of inputs of even Hamming weight. So we can apply the lower
bound of Case 1 to MODq ◦ g′.

Using a protocol for MODm ◦g, we will construct a protocol for MODq ◦g′ as follows.
Fix an input X ∈ {0,1}k×n′ in matrix form. Recall that for each v ∈ {0,1}k, nv denotes
the number of occurrences of v as a column of X . First, using Lemma 3 we can compute
∑v∈S′0∪S1

nv mod m using k �logm� bits of communication. Again using Lemma 3, for
any � ∈ {2, . . . ,d}, the difference ∑v∈T� nv −∑v∈T1

nv mod m can also be computed at
a cost of k �logm� bits. As a result, we can compute

∑
v∈S′0∪S1

nv +
d

∑
�=2

(
∑

v∈T�

nv − ∑
v∈T1

nv
)
≡ ∑

v∈S

nv − d ∑
v∈T1

nv mod m.

Let s = s(X) denote this number. Observe that ∑v∈T1
nv ≡ 0 mod q iff d ∑v∈T1

nv ≡ 0
mod m. So ∑v∈T1

nv ≡ 0 mod q iff ∑v∈S nv ≡ s mod m. The latter can be determined
by running the protocol for MODm ◦g on the input which is obtained from X (viewed as
an k× n′ array) by appending m− s columns all of which belong to S.

In short, the protocol for MODq ◦ g′ on inputs from ({0,1}n′)k consists of two steps:
First, the players compute s. Then they simulate the protocol for MODm ◦g on the input

22 A. Ada et al.

of size ({0,1}n)k specified above, where n = n′+(m− s). A lower bound for MODm ◦g
then follows from Case 1.

3.3 MAJ ◦ g

For each n ≥ 1, the majority function MAJn : {0,1}n → {−1,1} is defined as
MAJn(y1, . . . ,yn) = −1 iff ∑i yi ≥ n/2. When no confusion arises we drop the super-
cript n from MAJn. It is not difficult to show that MAJ ◦ g cannot be much easier than
SYM ◦ g:

Proposition 1. Let g : {0,1}k →{0,1} be a boolean function and f : {0,1}n →{−1,1}
be a symmetric function on n variables. For any ε ≥ 0, Rε′

k (f ◦ g) ≤ Rε
k(MAJ2n ◦ g) ·

�log(n+ 1)� , where ε′ = ε�log(n+ 1)�.

We can combine Proposition 1 with our lower bounds for MODm ◦g functions (Theorem
2) to obtain a characterization for the complexity of MAJ ◦ g for every g.

Theorem 3. Let g : {0,1}k → {0,1} be a boolean function and S be its support. The
function MAJ ◦ g satisfies:

– If |S0|= |S1|, then D||
k (MAJ ◦ g)≤ k · �log(n+ 1)�.

– Otherwise, R1/3
k (MAJ ◦ g)≥ Ω

(
n

(k logk)2·4k logn loglogn

)
.

Theorem 3 can be used to determine the communication complexity of a class of func-
tions considered by Babai et al. [2]. For an odd prime k, define the function QCSBk :
{0,1}k → {0,1} by QCSBk(y1, . . . ,yk) = 1 if and only if y1 + · · ·+ yk is a quadratic
residue modulo k. Recall that z ∈ Fk is a quadratic residue if there exists a ∈ Fk such
that z = a2. The authors of [2] prove that QCSBk is not ‘compressible’, so their proto-
col for k > 1+ logn does not apply for SYM ◦ QCSBk. They leave as an open question
the problem of finding good bounds for the communication complexity of the func-
tion MAJ ◦ QCSBk. The following corollary completely determines the hardness of this
function for any number of players, except in the range between ≈ 1

2 logn and logn.

Corollary 1 (Answers Babai et al. [2]). Let k be an odd prime.

– If k ≡ 1 mod 4, then D||
k (MAJ ◦ QCSBk)≤ O(k logn).

– If k ≡ 3 mod 4, then R1/3
k (MAJ ◦ QCSBk)≥ Ω

(
n

(k logk)24k logn loglogn

)
.

– If k > 1+ logn, then D||
k (MAJ ◦ QCSBk)≤ O(log3 n).

3.4 NOR ◦ g

We obtain a simple and perhaps surprising characterization for the k-player randomized
communication complexity of NOR ◦ g, where NOR(y1, . . . ,yn) = −1 iff (y1, . . . ,yn) =
(0, . . . ,0). In a very recent paper, Sherstov [21] significantly improves on the bounds of
[15],[8] and [5] on the multiparty bounded error communication complexity of disjoint-

ness: R1/3
k (DISJ) ≥ Ω

(
n
4k

)1/4
. First we observe that this lower bound applies - via a

The NOF Multiparty Communication Complexity of Composed Functions 23

simple reduction - to NOR ◦ g when g’s support size is 1. We complement this with an
efficient randomized protocol for NOR ◦ g when g’s support size is more than one. The
main ingrediants of the upper bound is Theorem 2 together with random sampling.

Theorem 4. Let g : {0,1}k → {0,1} be a boolean function and S = {y ∈ {0,1}k :
g(y) = 1} be its support.

– If |S|= 1, R1/3
k (NOR ◦ g)≥ Ω

(
n
4k

)1/4
,

– Otherwise, Rε
k(NOR ◦ g)≤ O(k) for a constant ε.

4 Conclusion

The most well-studied communication problems like GIP, set-disjointness have a com-
posed structure with an outer function f and an inner function g. Recently, this structure
has been exploited by several authors to prove hardness in the NOF model. A natural
question that arises is what combination of f and g results in hardness. Almost all previ-
ous work focused on fixing the inner function g with a convenient property that allows
one to prove hardness for a range of outer functions f . In this work, we address the dual
and natural problem of studying families of functions that arise from varying the inner
function g. We obtain complete characterizations of hard and easy functions in three of
these families: MAJ ◦ g, MODm ◦ g and NOR ◦ g. Our characterizations show that hard
functions in each of these families, somewhat unexpectedly, exhibit simple and elegant
structure.

A key component of our characterization is a new simultaneous protocol for SYM ◦
g that is efficient for every g, when the number of players is more than logn. This
rules out the possibility of composing a symmetric function with any inner function
to take us past the logn barrier for proving strong lower bounds. To the best of our
knowledge, such an impossibility was not known before. In particular, Babai et. al., ten
years ago, posed an open problem of determining the communication complexity of the
function MAJ ◦ QCSBk, where QCSBk is the quadratic residuosity function. Combining
our protocol for SYM◦g with our characterization of MAJ◦g, we are able to completely
answer this question. While this may sound as a setback to the hope of going past
the logn barrier, it highlights the importance of considering block composition where
the inner function acts on a block of columns rather than one column as presented in
this paper. We end this discussion by pointing out an open problem: Is there an inner
function g that acts on two columns such that MAJ◦g is hard for more than logn players?

References

1. Ada, A., Chattopadhyay, A., Fawzi, O., Nguyen, P.: The NOF Multiparty Communication
Complexity of Composed Functions. Technical report, In Electronic Colloquium on Compu-
tational Complexity (ECCC) TR11–155 (2011)

2. Babai, L., Gál, A., Kimmel, P.G., Lokam, S.V.: Communication complexity of simultaneous
messages. SIAM Journal on Computing 33, 137–166 (2004)

24 A. Ada et al.

3. Babai, L., Kimmel, P.G., Lokam, S.V.: Simultaneous Messages vs. Communication. In:
Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 361–372. Springer, Hei-
delberg (1995)

4. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators for
logspace, and time-space trade-offs. J. Comput. Syst. Sci. 45(2), 204–232 (1992)

5. Beame, P., Huynh-Ngoc, D.-T.: Multiparty communication complexity and threshold circuit
size of AC0. In: Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, pp. 53–62. IEEE Computer Society, Washington, DC (2009)

6. Beigel, R., Tarui, J.: On ACC. Computational Complexity 4, 350–366 (1994)
7. Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: Proceedings of the Fif-

teenth Annual ACM Symposium on Theory of Computing, STOC 1983, pp. 94–99. ACM,
New York (1983)

8. Chattopadhyay, A., Ada, A.: Multiparty communication complexity of disjointness. Tech-
nical report. In: Electronic Colloquium on Computational Complexity (ECCC) TR08–002
(2008)

9. Chung, F.R.K., Tetali, P.: Communication complexity and quasi randomness. SIAM Journal
on Discrete Mathematics 6(1), 110–123 (1993)

10. Grolmusz, V.: The BNS lower bound for multi-party protocols is nearly optimal. Information
and Computation 112, 51–54 (1994)

11. Grolmusz, V.: Separating the communication complexities of MOD m and MOD p cir-
cuits. In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 278–287 (1995)

12. Håstad, J., Goldmann, M.: On the power of small-depth threshold circuits. Computational
Complexity 1, 610–618 (1991)

13. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge university press (1997)
14. Lee, T., Schechtman, G., Shraibman, A.: Lower bounds on quantum multiparty communi-

cation complexity. In: Proceedings of the 24th Annual IEEE Conference on Computational
Complexity (CCC), pp. 254–262 (2009)

15. Lee, T., Shraibman, A.: Disjointness is hard in the multiparty number-on-the-forehead model.
Computational Complexity 18, 309–336 (2009)

16. Lee, T., Zhang, S.: Composition Theorems in Communication Complexity. In: Abramsky,
S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010.
LNCS, vol. 6198, pp. 475–489. Springer, Heidelberg (2010)

17. Pudlák, P.: Personal communication (2006)
18. Raz, R.: The BNS-Chung criterion for multi-party communication complexity. Computa-

tional Complexity 9(2), 113–122 (2000)
19. Razborov, A.: Quantum communication complexity of symmetric predicates. Izvestiya:

Mathematics 67(1), 145–159 (2003)
20. Sherstov, A.A.: The pattern matrix method for lower bounds on quantum communication. In:

Proceedings of the 40th Symposium on Theory of Computing (STOC), pp. 85–94 (2007)
21. Sherstov, A.A.: The multiparty communication complexity of set disjointness. Technical re-

port, In Electronic Colloquium on Computational Complexity (ECCC) TR11–145 (2011)
22. Shi, Y., Zhang, Z.: Communication complexities of symmetric XOR functions. Quantum

Information and Computation 9, 255–263 (2009)
23. Shi, Y., Zhu, Y.: Quantum communication complexity of block-composed functions. Quan-

tum Information and Computation 9, 444–460 (2009)
24. Yao, A.C.: Some complexity questions related to distributive computing (preliminary report).

In: Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, pp.
209–213. ACM Press, New York (1979)

Quantum Strategies Are Better Than Classical

in Almost Any XOR Game�

Andris Ambainis1, Artūrs Bačkurs1, Kaspars Balodis1, Dmitrijs Kravčenko1,
Raitis Ozols1, Juris Smotrovs1, and Madars Virza2

1 Faculty of Computing, University of Latvia, Raina bulv. 19, Riga, LV-1586, Latvia
{andris.ambainis,Juris.Smotrovs}@lu.lv,

{abackurs,kbalodis,kdmitry}@gmail.com, raitis.ozols@inbox.lv
2 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of

Technology, 32 Vassar Street, Cambridge, MA 02139, USA
madars@gmail.com

Abstract. We initiate a study of random instances of nonlocal games.
We show that quantum strategies are better than classical for almost
any 2-player XOR game. More precisely, for large n, the entangled value
of a random 2-player XOR game with n questions to every player is at
least 1.21... times the classical value, for 1− o(1) fraction of all 2-player
XOR games.

1 Introduction

Quantum mechanics is strikingly different from classical physics. In the area
of information processing, this difference can be seen through quantum algo-
rithms which can be exponentially faster than conventional algorithms [27,25]
and through quantum cryptography which offers degree of security that is im-
possible classically [5].

Another information-theoretic way of seeing the difference between quantum
mechanics and the classical world is through non-local games. An example of a
non-local game is the CHSH (Clauser-Horne-Shimony-Holt) game [10]. This is
a game played by two players against a referee. The two players cannot com-
municate but can share common randomness or a common quantum state that
is prepared before the beginning of the game. The referee sends an independent
uniformly random bit to each of the two players. Each player responds by send-
ing one bit back to the referee. Players win if x⊕ y = i∧ j where i, j are the bits
that the referee sent to the player and x, y are players’ responses. The maximum
winning probability that can be achieved is 0.75 classically and 1

2 +
1

2
√
2
= 0.85...

quantumly.
There are several reasons why non-local games are interesting. First, CHSH

game provides a very simple example to test the validity of quantum mechanics.
If we have implemented the referee and the two players A, B by devices so that

� Supported by ESF project 2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044 and FP7
FET-Open project QCS. Full version available as arXiv preprint arXiv:1112.3330.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 25–37, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

26 A. Ambainis et al.

there is no communication possible between A and B and we observe the winning
probability of 0.85..., there is no classical explanation possible. Second, non-local
games have been used in device-independent cryptography [1,26].

Some non-local games show big gaps between the classical and the quantum
winning probabilities. For example, Buhrman et al. [8] construct a 2-player quan-
tum game where the referee and the players send values x, y, i, j ∈ {1, . . . , n}
and the classical winning probability is 1

2 + Θ(1√
n
) while the quantum winning

probability is 1. In contrast, Almeida et al. [2] construct a non-trivial example
of a game in which quantum strategies provide no advantage at all.

Which of those is the typical behaviour? In this paper, we study this question
by looking at random instances of non-local games.

More specifically, we study two-party XOR games with uniform distribution
of inputs. This is a subclass of non-local games with 2 players, where the referee
chooses inputs i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , k} uniformly at random and sends
them to the players. The players reply by sending bits x and y. The rules of the
game are specified by an n× k matrix A whose entries are +1 and −1. To win,
the players must produce x and y with x = y if Aij = 1 and x and y with x �= y
if Aij = −1.

We consider the case when the matrix A that specifies the rules of the game
is chosen randomly against all ±1-valued n × k matrices A. For the case when
n = k, we show that

– The maximum winning probability pq that can be achieved by a quantum

strategy is 1
2 + 1±o(1)√

n
with a probability 1− o(1);

– The maximum winning probability pcl that can be achieved by a classical
strategy satisfies

1

2
+

0.6394...− o(1)√
n

≤ pcl ≤
1

2
+

0.8325...+ o(1)√
n

with a probability 1− o(1).

In the literature on non-local games, one typically studies the difference between
the winning probability pq (pcl) and the losing probability 1 − pq (1 − pcl):
Δq = 2pq − 1 (Δcl = 2pcl − 1). The advantage of quantum strategies is then

evaluated by the ratio
Δq

Δcl
. For random XOR games, our results imply that

1.2011... <
Δq

Δcl
< 1.5638...

for almost all games. Our computer experiments suggest that, for large n,
Δq

Δcl
≈

1.305.... For comparison, the biggest advantage that can be achieved in any 2-
player XOR game is equal to Grothendieck’s constant KG [14] about which we
know that [16,23,6]

1.67696.... ≤ KG ≤ 1.7822139781...

Quantum Strategies Are Better Than Classical in Almost Any XOR Game 27

Thus, the quantum advantage in random XOR games is comparable to the max-
imum possible advantage for this class of non-local games.

We find this result quite surprising. Quantum-over-classical advantage usually
makes use of a structure that is present in the computational problem (such as
the algebraic structure that enables Shor’s quantum algorithm for factoring [25]).
Such structure is normally not present in random computational problems.

The methods that we use to prove our results are also quite interesting. The
upper bounds are easy in both classical and quantum case but both lower bounds
are fairly sophisticated. The lower bound for the entangled value requires proving
a new version of Marčenko-Pastur law [19] for random matrices.

The classical value of random XOR games is equal to a natural quantity
(l∞ → l1 norm of a random matrix) that might be interesting for other purposes.
The lower bound for it requires a subtle argument that reduces lower-bounding
the classical value to analyzing a certain random walk.

Related Work. Junge and Palazuelos [17] and Briet and Vidick [7] have con-
structed non-local games with a big gap between the quantum (entangled) value
and the classical value, via randomized constructions. The difference between
this paper and [7,17] is as follows. The goal of [7,17] was to construct a big gap
between the entangled value and the classical value of a non-local game and the
probability distribution on non-local games and inputs was chosen so that this
goal would be achieved.

Our goal is to study the behaviour of non-local games in the case when the
conditions are random. We therefore choose a natural probability distribution
on non-local games (without the goal of optimizing the quantum advantage) and
study it. The surprising fact is that a substantial quantum advantage still exists
in such setting.

2 Technical Preliminaries

We use [n] to denote the set {1, 2, . . . , n}.
In a 2-player XOR game, we have two players A and B playing against a

referee. Players A and B cannot communicate but can share common random
bits (in the classical case) or an entangled quantum state (in the quantum case).
The referee randomly chooses values i ∈ {1, . . . , n} and j ∈ {1, . . . , n} and sends
them to A and B, respectively. Players A and B respond by sending answers
x ∈ {0, 1} and y ∈ {0, 1} to the referee.

Players win if answers x and y satisfy some winning condition P (i, j, x, y).
For XOR games, the condition may only depend on the parity x⊕ y of players’
responses. Then, it can be written as P (i, j, x⊕ y).

For this paper, we also assume that, for any i, j, exactly one of P (i, j, 0) and
P (i, j, 1) is true. Then, we can describe a game by an n × n matrix (Aij)

n
i,j=1

where Aij = 1 means that, given i and j, players must output x, y with x⊕y = 0
(equivalently, x = y) and Aij = −1 means that players must output x, y with
x⊕ y = 1 (equivalently, x �= y).

28 A. Ambainis et al.

Let pS,win be the probability that the players win if they use a strategy S and
pS,los = 1−pS,win be the probability that they lose. We will be interested in the
difference ΔS = pS,win−pS,los between the winning and the losing probabilities.
The classical value of a game, Δcl, is the maximum of ΔS over all classical
strategies S. The entangled value of a game, Δq, is the maximum of ΔS over all
quantum strategies S.

Let pij be the probability that the referee sends question i to player A and
question j to player B. Then [11, section 5.3], the classical value of the game is
equal to

Δcl = max
u1,...,un∈{−1,1}

max
v1,...,vn∈{−1,1}

n∑
i,j=1

pijAijuivj . (1)

In the quantum case, Tsirelson’s theorem [9] implies that

Δq = max
ui:‖ui‖=1

max
vj :‖vj‖=1

n∑
i,j=1

pijAij〈ui, vj〉 (2)

where the maximization is over all tuples of unit-length vectors u1, . . . , un ∈ Rd,
v1, . . . , vn ∈ Rd (in an arbitrary number of dimensions d).

We will assume that the probability distribution on the referee’s questions i, j
is uniform: pij = 1

n2 and study Δcl and Δq for the case when A is a random
Bernoulli matrix (i.e., each entry Aij is +1 with probability 1/2 and −1 with
probability 1/2, independently of other entries).

Other probability distributions on referee’s questions can be considered, as
well. For example, one could choose yij to be normally distributed random vari-

ables with mean 0 and variance 1 and take pij =
|yij|∑n

i,j=1 |yij| . Or, more generally,

one could start with yij being i.i.d. random variables from some arbitrary dis-
tribution D and define pij in a similar way.

Most of our results are still true in this more general setting (with mild as-
sumptions on the probability distribution D). Namely, Theorem 1 and the upper
bound part of Theorem 4 remain unchanged. The only exception is the lower
bound part of Theorem 4 which relies on the fact that the probability distribu-
tion pij is uniform. It might be possible to generalize our lower bound proof to
other distributions D but the exact constant in such generalization of our lower
bound could depend on the probability distribution D.

3 Quantum Upper and Lower Bound

Theorem 1. For a random 2-player XOR game with n inputs for each player,

Δq =
2± o(1)√

n

with probability 1− o(1).

Quantum Strategies Are Better Than Classical in Almost Any XOR Game 29

Proof. Because of (2), proving our theorem is equivalent to showing that

max
‖ui‖=‖vj‖=1

n∑
i=1

n∑
j=1

Aij〈ui, vj〉 = (2± o(1))n3/2

holds with probability 1− o(1).
For the upper bound, we rewrite this expression as follows. Let u be a vector

obtained by concatenating all vectors ui and v be a vector obtained by concate-
nating all vj . Since ‖ui‖ = ‖vj‖ = 1, we have ‖u‖ = ‖v‖ =

√
n. We have

n∑
i=1

n∑
j=1

Aij〈ui, vj〉 = 〈u, (A⊗ I)v〉 ≤ ‖u‖ · ‖A⊗ I‖ · ‖v‖ ≤ ‖A‖n.

By known results on operator norms of randommatrices [30], ‖A‖ = (2+o(1))
√
n

with a high probability.
For the lower bound, we note that

max
‖ui‖=‖vj‖=1

n∑
i=1

n∑
j=1

Aij〈ui, vj〉 = max
‖ui‖≤1,‖vj‖≤1

n∑
i=1

n∑
j=1

Aij〈ui, vj〉.

We have

Theorem 2 (Marčenko-Pastur law, [19]). Let A be a n× n random matrix
whose entries Aij are independent random variables with mean 0 and variance
1. Let C ∈ [0, 2]. With probability 1− o(1), the number of singular values λ of A
that satisfy λ ≥ C

√
n is (f(C)− o(1))n where

f(C) =
1

2π

∫ 4

x=C2

√
4

x
− 1dx.

Let λ1, . . . , λm be the singular values of A that satisfy λi ≥ (2 − ε)
√
n. With

high probability, we have m ∈ [(f(2 − ε) − o(1))n, (f(2 − ε) + o(1))n]. We now
assume that this is the case.

Let li and ri be the corresponding left and right singular vectors: Ari = λili.
(Here, we choose li and ri so that ‖li‖ = ‖ri‖ = 1 for all i.) Let lij and rij be
the components of li and ri: li = (lij)

n
j=1 and ri = (rij)

n
j=1.

We define uj and vj in a following way:

uj = (lij)
m
i=1, vj = (rij)

m
i=1.

We have
n∑

i=1

n∑
j=1

Aij〈ui, vj〉 =
n∑

i=1

n∑
j=1

m∑
k=1

Aij lkirkj

=

m∑
k=1

〈lk, Ark〉 =
m∑

k=1

λk ≥ (2 − ε)m
√
n. (3)

30 A. Ambainis et al.

Since ‖li‖ = ‖ri‖ = 1 and the vectors ui and vj are obtained by rearranging the
entries of li and ri, we have

n∑
i=1

‖ui‖2 =
n∑

i=1

‖li‖2 = m

and, similarly,
∑

i ‖vi‖2 = m. If ui and vi all were of the same length, we would
have ‖ui‖2 = ‖vi‖2 = m

n . Then, replacing ui and vi by u′i =
ui

‖ui‖ and v′i =
vi

‖vi‖
would increase each vector

√
n
m times and result in

n∑
i=1

n∑
j=1

Aij〈u′i, v′j〉 ≥ (2− ε)n3/2.

To deal with the general case, we will show that almost all ui and vi are of
roughly the same length. Then, a similar argument will be used. The key to our
proof is a new modification of Marčenko-Pastur law.

Theorem 3 (Modified Marčenko-Pastur law). Let A be an n× n random
matrix whose entries Aij are independent random variables with mean 0 and
variance 1. Let C ∈ [0, 2]. Let ei be the ith vector of the standard basis. Let
PC be the projector on the subspace spanned by the right singular vectors with
singular values at least C

√
n. Then,

Pr
[∣∣‖PCei‖2 − f(C)

∣∣ > ε
]
= O

(
1

n

)
with the big-O constant depending on C and ε.

The same result also holds for the left singular vectors.

Proof. The proof is given in the full version of the paper. ��
We now complete the proof, assuming the modified Marčenko-Pastur law. Since
PC is spanned by the right singular vectors r1, . . . , rm, we have

‖PCei‖2 =

m∑
j=1

〈rj , ei〉2 =

m∑
j=1

r2ji = ‖vi‖2. (4)

Therefore, the modified Marčenko-Pastur law means that

Pr[‖vi‖2 > f(2− ε) + δ] = O

(
1

n

)
.

Thus, the expected number of i ∈ {1, . . . , n} for which ‖vi‖2 > f(2 − ε) + δ is
O(1). We now apply the following transformations to vectors vi:

1. For each vi with ‖vi‖2 > f(2 − ε) + δ (or ui with ‖ui‖2 > f(2 − ε) + δ), we

replace it by the zero vector
−→
0 ;

Quantum Strategies Are Better Than Classical in Almost Any XOR Game 31

2. We replace each vi by

v′i =
vi√

f(2− ε) + δ

and similarly for ui.

After the first step ‖vi‖2 ≤ f(2 − ε) + δ for all i. Hence, after the second step,
‖v′i‖2 ≤ 1 for all i.

We now bound the effect of those two steps on the sum

n∑
i=1

n∑
j=1

Aij〈ui, vj〉.

Because of (3), the initial value of this sum is at least

(2− ε)m
√
n ≥ (2− ε)(f(2− ε)− o(1))n3/2. (5)

Because of (4), ‖vj‖2 = ‖PCej‖2 ≤ ‖ej‖2 = 1. Similarly, ‖ui‖2 ≤ 1. Hence,
|〈ui, vj〉| ≤ 1 and replacing one vj (or ui) by 0 changes the sum by at most∑n

i=1 |Aij | = n. Replacing O(1) vj ’s (or ui’s) changes it by O(n). Since the sum
(5) is of the order Θ(n3/2), this is a lower order change.

Replacing vi’s by v
′
i’s (and ui’s by similarly defined u′i’s) increases each inner

product 〈ui, vj〉 1
f(2−ε)+δ times and achieves

n∑
i=1

n∑
j=1

Aij〈u′i, v′j〉 ≥
(2 − ε)(f(2− ε)− o(1))

f(2− ε) + δ
n3/2.

Since this can be achieved for any fixed ε > 0 and δ > 0, we get that

max
‖u′

i‖≤1,‖v′
j‖≤1

n∑
i=1

n∑
j=1

Aij〈u′i, v′j〉 ≥ (2 − o(1))n3/2.

��

4 Classical Upper and Lower Bound

In the classical case, we have to estimate

Δcl = max
u1,...,un∈{−1,1}

max
v1,...,vn∈{−1,1}

n∑
i,j=1

Aijuivj . (6)

There are several ways how one can interpret this expression and several contexts
in which similar quantities have been studied before:

1. (6) is equal to the l∞ → l1 norm of A (denoted ‖A‖∞→1). It is known that,
for a random matrix A, ‖A‖∞→1 = Θ(n

√
n) (e.g., from [21] or [18]), but the

exact constant under Θ is not known.

32 A. Ambainis et al.

2. One can also interpret (6) combinatorially, as a problem of “unbalancing
lights” [3]. In this interpretation, n× n matrix represents an array of lights,
with each light being “on” (Aij = 1) or “off” (Aij = −1). We are allowed to
choose a row or a column and switch all lights in this row or column. The
task is to maximize the difference between the number of lights that are on
and the number of lights that are off. It is known that for any n× n matrix

A with ±1 entries, (6) is at least
√

2
πn

3/2 [3, p.19]. We are not aware of any

work on evaluating (6) for a random matrix A in this context.
3. In the context of statistical physics, there has been substantial work on

determining the order of

max
u1,...,un∈{−1,1}

n∑
i,j=1

Aijuiuj (7)

when Aij is a symmetric Gaussian matrix (each Aij = Aji is an independent
Gaussian random variable with mean 0 and variance 1). It is known that
(7) is equal to (1.527...+ o(1))n3/2 with probability 1− o(1). This was first
discovered in [24,22] and rigorously proven by Talagrand [29].

The quantities (6) and (7) are of similar flavour but are not identical and
there is no clear relation between them.

Theorem 4. For a random 2-player XOR game, its classical value Δcl satisfies

1.2789...√
n

≤ Δcl ≤
2
√
ln 2 + o(1)√

n
=

1.6651...+ o(1)√
n

with probability 1− o(1).

This is equivalent to

1.2789...n3/2 ≤ ‖A‖∞→1 ≤ 1.6651...n3/2

for a Bernoulli random matrix A.
In computer experiments, the ratio ‖A‖∞→1

n3/2 grows with n and reaches 1.4519...

for n = 26. By fitting a formula an3/2+bn where the leading term is of the order
n3/2 and the largest correction term is of the order n to the data, we obtained
that

‖A‖∞→1 ≈ 1.53274...n3/2 − 0.472806...n.

Figure 1 shows the fit. Curiously, the constant in front of n3/2 is very close to the
constant 1.527... for the sum (7). We do not know whether this is a coincidence
or there is some connection between the asymptotic behaviour of the two sums.

Proof. The upper bound follows straightforwardly from Chernoff bounds (and is
similar to the argument in [18] which provides an upper bound on (6) which holds
with probability 1−O(1/cn)). We use the following form of Chernoff inequality:

Quantum Strategies Are Better Than Classical in Almost Any XOR Game 33

Fig. 1. ‖A‖∞→1, for random n× n matrices A

Theorem 5. [3, p.263] Let X1, . . . , Xn be independent random variables with
Pr[Xi = 1] = Pr[Xi = −1] = 1

2 and let X = X1 + . . .+Xn. Then,

Pr[X ≥ a] < e−
a2

2n .

Let x1, . . . , xn ∈ {−1, 1} and y1, . . . , yn ∈ {−1, 1} be arbitrary. If Aij ∈ {−1, 1}
are uniformly random, then Aijxiyj ∈ {−1, 1} are also uniformly random. Hence,∑

i,j Aijxiyj is a sum of n2 uniformly random values from {−1, 1}. By Theorem
5,

Pr

⎡⎣∑
i,j

Aijxiyj > Cn
3
2

⎤⎦ < e

−
(
Cn

3
2

)2

2n2 =
1

e
C2n

2

.

By taking C = 2
√
ln 2 + 2

√
lnn√
n

, we can ensure that this probability is less than
1

22nn2 . Then, by the union bound, the probability that
∑

i,j Aijxiyj > Cn
3
2 for

some choice of xi’s and yj ’s is less than 22n 1
22nn2 = 1

n2 .
We now prove the lower bound1. We first show

Lemma 1. Let A be an n× n random Bernoulli matrix. Then,

EA

⎡⎣ max
ui,vj∈{−1,1}

∑
i,j

uivjAij

⎤⎦ ≥ (1.2789...− o(1))n3/2.

1 This lower bound is not necessary for proving the advantage of quantum strategies
which follows by combining the classical upper bound and the quantum lower bound.
But it is interesting for two other reasons. First, it is necessary to show that, for a
random XOR game,

Δq

Δcl
is less than Grothendiek’s constant. Second, as discussed at

the beginning of this section, the classical value is equal to a natural quantity that
comes up in several other settings.

34 A. Ambainis et al.

LetX = maxui,vj∈{−1,1}
∑

i,j uivjAij . By Lemma 1,E[X] ≥ (1.2789...−o(1))n3/2.

To prove that X ≥ (1.2789...− o(1))n3/2 with probability 1− o(1), we show that
X is concentrated around E[X].

Lemma 2. Let X = maxui,vj∈{−1,1}
∑

i,j uivjAij for a random n×n matrix A.
Then,

Pr [|X − E[X]| ≥ an] < 2e−a2/8.

We then apply Lemma 2 with a = logn (or with a = f(n) for any other f(n)
that has f(n) → ∞ when n → ∞ and f(n) = o(

√
n)) and combine it with

Lemma 1.
It remains to prove the two lemmas.

Proof (of Lemma 1). Let A be a random ±1 matrix. We choose ui and vj ,
according to Algorithm 1.

Because of the last step, we get that

n∑
i=1

n∑
j=1

uivjAij =
n∑

j=1

|Sn,j |.

Each of Sn,j is a random variable with an identical distribution. Hence,

E

⎡⎣ n∑
i=1

n∑
j=1

uivjAij

⎤⎦ =
n∑

j=1

E|Sn,j | = nE|Sn,1|. (8)

1. Set u1 = 1.
2. For each k = 2, . . . , n do:

(a) For each j = 1, . . . , n, compute Sk−1,j =
∑k−1

i=1 Aijui.
(b) Let ak = (Z(Sk−1,1), Z(Sk−1,2), ..., Z(Sk−1,n)) where Z(x) = 1 if x > 0,

Z(x) = −1 if x < 0 and Z(x) = 1 or Z(x) = −1 with equal probability 1
2

if x = 0.
(c) Let bk = (Ak1, Ak2, ..., Akn).
(d) Let uk ∈ {+1,−1} be such that ak and ukbk agree in the maximum number

of positions.
3. For each j = 1, . . . , n, let vj be such that vjSn,j ≥ 0 where Sn,j =

∑n
i=1 Aijui.

Algorithm 1. Algorithm for choosing ui and vj for a given matrix A

We now consider a random walk with a reflecting boundary. The random walk
starts at position 0. If it is at the position 0, it always moves to the position 1.
If it is at the position i > 0, it moves to the position i+1 with probability 1

2 +
ε
2

and position i − 1 with probability 1
2 −

ε
2 . Let K

ε
i be the position of the walker

after i steps.

Quantum Strategies Are Better Than Classical in Almost Any XOR Game 35

Lemma 3. |Sn,1| = Kε
n for some ε = (1 + o(1))

√
2
πn .

Proof. bi = (Ai1, . . . , Ain) is a vector consisting of random ±1’s that is indepen-
dent of ai. Hence, the expected number of agreements between ai and uibi is

(12 +
ε
2)n where ε = (1+ o(1))

√
2
πn [3, p.21]. Moreover, the probability of ai and

uibi agreeing in location j is the same for all j.
Hence, if |Si−1,1| > 0, we have |Si,1| = |Si−1,1|+1 with probability 1

2 +
ε
2 and

|Si,1| = |Si−1,1| − 1 with probability 1
2 −

ε
2 . If |Si−1,1| = 0, then we always have

|Si,1| = 1. ��

Lemma 4. For a random walk with a reflecting boundary and ε = α√
n
, we have

E[Kε
n] ≥ (f(α) − o(1))

√
n where

f(α) =
1

2

(
e−

α2

2

√
2

π
+ α+

(
1

α
+ α

)
Erf

(
α√
2

))
.

Proof. The proof is given in the full version of the paper. ��
By combining (8) and Lemmas 3 and 4, the probability of winning minus the

probability of losing in the classical case of a random XOR game is at least

f

(√
2

π

)
√
n · n · 1

n2
=

2 + 2e−1/π + (2 + π)Erf
(

1√
π

)
2
√
2π

n− 1
2

= 1.2789076012442957...n−1
2 .

��

Proof (of Lemma 2). Let

f(A11, A12, . . . , Ann) = max
ui,vj∈{−1,1}

∑
i,j

uivjAij .

Then, changing one Aij from +1 to −1 (or from −1 to +1) changes
∑

i,j uivjAij

by at most 2. This means that f(A11, . . . , Ann) changes by at most 2 as well. In
other words, f is 2-Lipschitz. By applying Azuma’s inequality [20, p. 303-305]
with c = 2, t = n2, λ = a

2 , we get

Pr [|f(A11, . . . , Ann)− E[f(A11, . . . , Ann)]| ≥ an] < 2e−a2/8.

��

5 Conclusion

We showed that quantum strategies are better than classical for random in-
stances of XOR games. We expect that similar results may be true for other
classes of non-local games.

36 A. Ambainis et al.

A possible difficulty with proving them is that the mathematical methods
for analyzing other classes of non-local games are much less developed. There
is a well developed mathematical framework for studying XOR games [9,11,31]
which we used in our paper. But even with that, some of our proofs were quite
involved. Proving a similar result for a less well-studied class of games would be
even more difficult.

Acknowledgments. We thank Assaf Naor, Oded Regev, Stanislaw Szarek and
several anonymous referees for useful comments and references to related work.

References

1. Acin, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-
independent security of quantum cryptography against collective attacks. Physical
Review Letters 98, 230501 (2007)

2. Almeida, M.L., Bancal, J.-D., Brunner, N., Acin, A., Gisin, N., Pironio, S.: Guess
your neighbour’s input: a multipartite non-local game with no quantum advantage.
Physical Review Letters 104, 230404 (2010), also arXiv:1003.3844

3. Alon, N., Spencer, J.: The Probabilistic Method. Wiley (2000)
4. Bai, Z., Silverstein, J.: Spectral Analysis of Large Dimensional Random Matrices.

Springer (2010)
5. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public key distribution and

coin tossing. In: Proceedings of the IEEE International Conference on Computers,
Systems, and Signal Processing, Bangalore, p. 175 (1984)

6. Braverman, M., Makarychev, K., Makarychev, Y., Naor, A.: The Groethendieck
constant is strictly smaller than Krivine’s bound. In: Proceedings of FOCS 2011,
pp. 453–462 (2011)

7. Briet, J., Vidick, T.: Explicit lower and upper bounds on the entangled value of
multiplayer XOR games, arxiv: 1108.5647

8. Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.: Near-optimal and explicit Bell
inequality violations. In: Proceedings of Complexity 2011, pp. 157–166 (2011); also
arxiv: 1012.5403

9. Cirel’son, B. (Tsirelson): Quantum generalizations of Bell’s inequality. Letters in
Mathematical Physics 4, 93–100 (1980)

10. Clauser, J., Horne, M., Shimony, A., Holt, R.: Physical Review Letters 23, 880–884
(1969)

11. Cleve, R., Höyer, P., Toner, B., Watrous, J.: Consequences and limits of non-
local strategies. In: Proceedings of CCC 2004, pp. 236–249 (2004); also quant-
ph/0404076

12. Davidson, K., Szarek, S.: Local operator theory, random matrices and Banach
spaces. In: Johnson, W.B., Lindenstrauss, J. (eds.) Handbook on the Geometry of
Banach Spaces, vol. 1, pp. 317–366. Elsevier (2001)

13. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn.
Addison-Wesley, Reading (1994)

14. Grothendieck, A.: Resume de la theorie metrique des produits tensoriels
topologiques. Boletim Sociedade De Matematico de Sao Paulo 8, 1–79 (1953)

15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of STOC 1996, pp. 212–219 (1996)

Quantum Strategies Are Better Than Classical in Almost Any XOR Game 37

16. Krivine, J.-L.: Sur la constante de Grothendieck. Comptes Rendus de l’Académie
des Sciences, Series A-B 284, A445–A446 (1977)

17. Junge, M., Palazuelos, C.: Large violation of Bell inequalities with low en-
tanglement. Communications in Mathematical Physics 306(3), 695–746 (2011);
arXiv:1007.3043

18. Linial, N., Mendelson, S., Schechtman, G., Shraibman, A.: Complexity measures
of sign matrices. Combinatorica 27(4), 439–463 (2007)

19. Marčenko, V.A., Pastur, L.A.: Distribution of eigenvalues for some sets of random
matrices. Math. USSR Sbornik 1, 457–483 (1967)

20. Mitzenmacher, M., Upfal, E.: Probability and Computing. Randomized Algorithms
and Their Analysis. Cambridge University Press (2005)

21. Montero, A.M., Tonge, A.M.: The Schur multiplication in tensor algebras. Studia
Math. 68(1), 1–24 (1980)

22. Parisi, G.: The order parameter for spin glasses: a function on the interval 0-1.
Journal of Physics A: Mathemathical and General 13, 1101–1112 (1980)

23. Reeds, J.A.: A new lower bound on the real Grothendieck constant (1991) (unpub-
lished manuscript), http://www.dtc.umn.edu/reedsj/bound2.dvi

24. Sherrington, D., Kirkpatrick, S.: Infinite ranged models of spin glasses. Physical
Review B 17, 4384–4403 (1978)

25. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: FOCS 1994, pp. 124–134. IEEE (1994)

26. Silman, J., Chailloux, A., Aharon, N., Kerenidis, I., Pironio, S., Massar, S.: Fully
distrustful quantum cryptography. Physical Review Letters 106, 220501 (2011)

27. Simon, D.R.: On the power of quantum computation. In: FOCS 1994, pp. 116–123.
IEEE (1994)

28. Stanley, R.: Enumerative Combinatorics, vol. 2. Cambridge University Press (1999)
29. Talagrand, M.: The generalized Parisi formula. Comptes Rendus de l’Académie des

Sciences, Series I 337, 111–114 (2003)
30. Tao, T.: Topics in Random Matrix Theory, Draft of a book,

http://terrytao.files.wordpress.com/2011/02/matrix-book.pdf

31. Wehner, S.: Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt inequal-
ities. Physical Review A 73, 022110 (2006)

http://www.dtc.umn.edu/reedsj/bound2.dvi
http://terrytao.files.wordpress.com/2011/02/matrix-book.pdf

Efficient Submodular Function Maximization
under Linear Packing Constraints�

Yossi Azar1 and Iftah Gamzu2

1 Blavatnik School of Computer Science, Tel-Aviv Univ., Israel
azar@tau.ac.il

2 Computer Science Division, The Open Univ.,
and Blavatnik School of Computer Science, Tel-Aviv Univ., Israel

iftah.gamzu@cs.tau.ac.il

Abstract. We study the problem of maximizing a monotone submodular set
function subject to linear packing constraints. An instance of this problem con-
sists of a matrix A ∈ [0, 1]m×n , a vector b ∈ [1,∞)m, and a monotone submod-
ular set function f : 2[n] → R+. The objective is to find a set S that maximizes
f(S) subject to AxS ≤ b, where xS stands for the characteristic vector of the set
S. A well-studied special case of this problem is when f is linear. This special
linear case captures the class of packing integer programs.

Our main contribution is an efficient combinatorial algorithm that achieves
an approximation ratio of Ω(1/m1/W), where W = min{bi/Aij : Aij > 0}
is the width of the packing constraints. This result matches the best known per-
formance guarantee for the linear case. One immediate corollary of this result
is that the algorithm under consideration achieves constant factor approximation
when the number of constraints is constant or when the width of the constraints
is sufficiently large. This motivates us to study the large width setting, trying to
determine its exact approximability. We develop an algorithm that has an approx-
imation ratio of (1−ε)(1−1/e) when W = Ω(lnm/ε2). This result essentially
matches the theoretical lower bound of 1− 1/e. We also study the special setting
in which the matrix A is binary and k-column sparse. A k-column sparse matrix
has at most k non-zero entries in each of its column. We design a fast combina-
torial algorithm that achieves an approximation ratio of Ω(1/(Wk1/W)), that is,
its performance guarantee only depends on the sparsity and width parameters.

1 Introduction

Let f : 2[n] → R be a set function, where [n] = {1, 2, . . . , n}. The function f is called
submodular if and only if f(S)+ f(T) ≥ f(S ∪T)+ f(S ∩T), for all S, T ⊆ [n]. An
alternative definition of submodularity is through the property of decreasing marginal
values. Given a function f : 2[n] → R and a set S ⊆ [n], the function fS is defined by
fS(j) = f(S∪{j})−f(S). The value fS(j) is called the incremental marginal value of

� This research was supported in part by the Israeli Centers of Research Excellence (I-CORE)
program (Center No.4/11), the Israel Science Foundation (grant No. 1404/10), and by the
Google Inter-university center. Due to space limitations, some proofs are omitted from this
extended abstract. We refer the reader to the full version of this paper (available online at
http://arxiv.org/abs/1007.3604), in which all missing details are provided.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 38–50, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient Submodular Function Maximization 39

element j to the set S. The decreasing marginal values property requires that fS(j) is
non-increasing function of S for every fixed j. Formally, it requires that fS(j) ≥ fT (j)
for all S ⊆ T . Since the amount of information necessary to convey an arbitrary sub-
modular function may be exponential, we assume a value oracle access to the function.
A value oracle for the function f allows us to query about the value of f(S) for any
set S. Throughout the rest of the paper, whenever we refer to a submodular function,
we shall also imply a normalized and monotone function. Specifically, we assume that
a submodular function f also satisfies f(∅) = 0 and f(S) ≤ f(T) whenever S ⊆ T .

In this paper, we focus our attention on the problem (or rather class of problems)
of maximizing a monotone submodular set function subject to linear packing con-
straints. Formally, the input of this problem consists of a matrix A ∈ [0, 1]m×n, a vector
b ∈ [1,∞)m, and a monotone submodular set function f : 2[n] → R+. The objective
is to find a set S that maximizes f(S) subject to AxS ≤ b, where xS stands for the
characteristic vector of the set S. We note that the domain restrictions on the entries of
A and b are without loss of generality since arbitrary non-negative packing constraints
can be reduced to the above form by first eliminating any element j for which there is
some constraint i such thatAij > bi, and then scaling the input (see, e.g., the discussion
in [26]). A well-studied special setting of our problem is when the objective function
f is linear, namely, there is a weight vector c ∈ Rn

+ such that f(S) =
∑

j∈S cj . This
special setting captures the class of packing integer programs, which models many fun-
damental combinatorial optimization problems, including maximum independent set,
hypergraph matching, and disjoint paths.

Previous Work. There has been a long line of research on maximizing monotone sub-
modular functions subject to matroid and knapsack constraints. Arguably, the most clas-
sic scenario is maximizing a submodular function subject to a cardinality constraint,
that is, max{f(S) : |S| ≤ k}. It is known that a simple greedy algorithm achieves an
approximation ratio of 1−1/e for this problem [23]. Furthermore, this result is optimal
in two different ways: (i) given only oracle access to f , one cannot attain a better ap-
proximation ratio without asking exponentially many value queries [22], and (ii) even
if f has a compact representation, it is still NP-hard to obtain a better approximation re-
sult [11]. The greedy approach and its variants has been shown to be useful in additional
constraint structures [15,19,6,18]. One relevant setting is maximizing a monotone sub-
modular function under a knapsack constraint [30]. A knapsack constraint is essentially
a single packing constraint, and may be viewed as the weighted analog of a cardinality
constraint. Sviridenko [27] demonstrated that a greedy algorithm with partial enumera-
tion achieves an approximation guarantee of 1− 1/e for this problem.

Another approach that has been proven effective in handling submodular function
maximization under different constraint structures is based on approximately solv-
ing a continuous fractional relaxation of the problem, followed by pipage or random-
ized rounding. The pipage rounding technique was originally developed by Ageev and
Sviridenko [1], and was adapted to submodular maximization scenarios by Calinescu,
Chekuri, Pál and Vondrák [5]. Vondrák [28] utilized the continuous relaxation approach
to achieve a tight (1 − 1/e)-approximation for maximizing a monotone submodular
function subject to a matroid constraint, and Kulik, Shachnai and Tamir [20] used
this approach to attain a (1 − ε)(1 − 1/e)-approximation for maximizing a monotone

40 Y. Azar and I. Gamzu

submodular function under a constant number of packing constraints. Later on, Chekuri,
Vondrák and Zenklusen [8] presented a dependent randomized rounding scheme that
can be utilized to extend those results for maximizing a monotone submodular function
subject to one matroid and constant number of packing constraints. Recently, Feldman,
Naor and Schwartz [14] presented a new unified continuous relaxation approach that
finds approximate fractional solutions in both monotone and non-monotone scenarios.

Our Contribution. Our main result is an efficient multiplicative updates algorithm for
maximizing a monotone submodular function subject to any number of linear packing
constraints. The approximation ratio of our algorithm matches the best known perfor-
mance guarantee for the special case when the objective function f is linear, which
is achieved using the randomized rounding technique [25,24,26]. More precisely, let
W = min{bi/Aij : Aij > 0} be the width of the packing constraints, we attain the
following result.

Theorem 1. There is a deterministic polynomial-time algorithm that attains an approx-
imation guarantee of Ω(1/m1/W) for maximizing a monotone submodular function
under linear packing constraints.

It is worth noting that our combinatorial algorithm is deterministic and efficient. More-
over, our technique is different than the two leading approaches used in the past
for submodular maximization, namely, the greedy approach and the continuous re-
laxation approach. Our algorithm is based on a multiplicative updates method (see,
e.g., [31,16,2,4]). This method is known to be fruitful for approximately solving prob-
lems that can be cast as linear and integer programs. Nevertheless, the analysis of these
algorithms relies heavily on primal-dual results, which are not applicable in our sub-
modular setting. We believe that this new approach may be suitable for other submod-
ular optimization problems. We also like to remark that a comparable approximation
guarantee may be obtained using the continuous relaxation approach applied with ran-
domized rounding [7]. However, in contrast with that approach, our algorithm is deter-
ministic, efficient and combinatorial. In particular, the continuous relaxation approach
runs in polynomial-time but is very far from being practical.

One immediate corollary of Theorem 1 is that the algorithm under consideration
achieves a constant factor approximation when the number of constraints is constant or
when the width of the packing constraints is sufficiently large, say W = Ω(lnm). This
motivates us to study the large width setting, trying to determine its exact approxima-
bility. The following theorem summarizes our result in this context.

Theorem 2. There is a deterministic polynomial-time algorithm that achieves an ap-
proximation ratio of (1− ε)(1− 1/e) for maximizing a monotone submodular function
subject to linear packing constraints when W = Ω(lnm/ε2), for any fixed ε > 0.

We note that this result almost matches the theoretical lower bound of 1 − 1/e, which
already holds for maximizing a monotone submodular function subject to a cardinality
constraint [23,11]. Specifically, the large width setting captures the hard instances of
that problem. We remark that the (1 − 1/e)-approximation in the submodular setting
stands in contrast with a (1 + ε)-approximation which can be achieved by randomized
rounding when the objective function is linear and the width is sufficiently large.

Efficient Submodular Function Maximization 41

We also study the interesting special setting of the problem in which the constraints
matrix is binary, namely, A ∈ {0, 1}m×n instead of A ∈ [0, 1]m×n. We demonstrate
how to fine-tune our algorithm and its analysis to achieve an improved approximation
guarantee of Ω(1/m1/(W+1)). We like to emphasize that this result is optimal unless
P = ZPP. Recently, Bansal et al. [3] considered the special case of maximizing a
submodular function under k-column sparse packing constraints. In this setting, the
constraints matrix has at most k non-zero entries in each column. They developed an
algorithm whose approximation ratio only depends on the sparsity and width parame-
ters of the input matrix. Specifically, they presented a Ω(1/k1/W)-approximation algo-
rithm that employs the continuous relaxation approach in conjunction with randomized
rounding and alteration. We make a first step towards attaining their performance guar-
antee in a deterministic and efficient way. We present a fast combinatorial algorithm
for the binary k-column sparse setting whose approximation ratio only depends on the
sparsity and width parameters of the input matrix. The following theorem outlines this
result.

Theorem 3. There is a deterministic polynomial-time algorithm that achieves an ap-
proximation guarantee of Ω(1/(Wk1/W)) for maximizing a monotone submodular
function under binary packing constraints.

Other Related Work. The problem of maximizing a non-monotone submodular func-
tion without any structural constraints is known to be both NP-hard and APX-hard since
it generalizes the maximum cut problem. Feige, Mirrokni and Vondrák [12] developed
an algorithm whose approximation ratio is 0.4. This result was iteratively improved
by Oveis Gharan and Vondrák [17], and then by Feldman, Naor and Shwartz [13] to
a ratio of 0.42. Lee, Mirrokni, Nagarajan and Sviridenko [21] presented a (1/4 − ε)-
approximation algorithm for non-monotone submodular maximization subject to a con-
stant number of packing constraints. This result was iteratively improved by Chekuri,
Vondrák and Zenklusen [9], and then by Feldman, Naor and Shwartz [14] to a ratio
of 1/e − ε. Vondrák [29], and very recently, Dobzinski and Vondrák [10] developed
general approaches to derive inapproximability results in the value oracle model.

2 Submodular Maximization with Linear Packing Constraints
In this section, we develop a multiplicative updates algorithm for the problem and an-
alyze its performance. An important input parameter of our algorithmic template is an
update factor. This parameter plays an essential role in achieving the desired approxi-
mation guarantees in the two settings of interest. We first consider the general problem,
and demonstrate that there is an update factor for which our algorithm attains an ap-
proximation ratio ofΩ(1/m1/W). In particular, this implies that the algorithm achieves
constant factor approximation for input instances that have a large width, e.g., instances
with W = Ω(lnm). This motivates us to study this large width setting, trying to deter-
mine its exact approximability. We match (up to a disparity of ε) the theoretical lower
bound of 1− 1/e using a different update factor and a refined analysis.

2.1 The Algorithm

The multiplicative updates algorithm, formally described below, maintains a collection
of weights that are updated in a multiplicative way. Informally, these weights capture

42 Y. Azar and I. Gamzu

the extent to which each constraint is close to be violated under a given solution. The
algorithm is built around one main loop. In each iteration of that loop, the algorithm
extends the current solution with a non-selected element that minimizes a normalized
sum of the weights. When the loop terminates, the algorithm returns the resulting so-
lution in case it is feasible; otherwise, either the last selected element or the result-
ing solution without that element is returned, depending on their value. Recall that
fS(j) = f(S ∪ {j}) − f(S) is the incremental marginal value of element j to the set
S, and xS is the characteristic vector of the set S.

Algorithm 1. Multiplicative Updates

Input: A collection of linear packing constraints defined by A ∈ [0, 1]m×n and b ∈ [1,∞)m,
a monotone submodular set function f : 2[n] → R+, an update factor λ ∈ R+

Output: A subset of [n]
1: S ← ∅
2: for i← 1 to m do wi ← 1/bi end for
3: while

∑m
i=1 biwi ≤ λ and S
= [n] do

4: Let j ∈ [n] \ S be the element with minimal
∑m

i=1 Aijwi/fS(j)
5: S ← S ∪ {j}
6: for i← 1 to m do wi ← wiλ

Aij/bi end for
7: end while
8: if AxS ≤ b then return S
9: else if f(S \ {j}) ≥ f({j}) then return S \ {j}

10: else return {j} end if

2.2 Analysis

In the remainder of this section, we analyze the performance of the algorithm. We be-
gin by establishing several lemmas that hold independently of the value of the update
factor. Later on, we consider specific update factors, and study their effect on the ap-
proximation ratio of the algorithm. For ease of presentation, it would be convenient to
first introduce some notation and terminology:

– Let S∗ ⊆ [n] be a solution that maximizes the submodular function subject to the
linear packing constraints, with value of f(S∗).

– Let St be the solution at the end of iteration t of the algorithm, and note that S0 = ∅
indicates the solution at the beginning of the algorithm. Moreover, let γ(t) denote
the element selected at iteration t of the algorithm, and let δt = f(St) − f(St−1)
be its incremental marginal value to the solution. Finally, let wit be the value of wi

at the end of iteration t of the algorithm, and remark that wi0 = 1/bi is the value of
wi at the beginning of the algorithm.

– Let Λt =
∑m

i=1 biwit and αt =
∑m

i=1Aiγ(t)wi(t−1)/δt. Notice that the algorithm
may proceed to iteration t+ 1 only if Λt ≤ λ, and that Λ0 = m. Also note that αt

is the value which gave rise to the selection of element γ(t) at iteration t.

Correctness. We prove that the algorithm outputs a feasible solution. This is achieved
by demonstrating that the returned solution respects the packing constraints.

Lemma 1. The algorithm outputs a feasible solution.

Efficient Submodular Function Maximization 43

Approximation. We turn to analyze the approximation guarantee of the algorithm. We
begin by establishing a generic algebraic bound applicable for any monotone submod-
ular function and any arbitrary sequence of element additions.

Proposition 1. Given a submodular function f : 2[n] → R+, a set collection S0 ⊆
S1 ⊆ · · · ⊆ St ⊆ [n], and a set S∗ ⊆ [n] satisfying f(S∗) > f(St) then

t∑

=1

f(S
)− f(S
−1)

f(S∗)− f(S
−1)
≤ ln

(
f(S∗)− f(S0)

f(S∗)− f(St)

)
.

We continue by bounding the value of the optimal solution using the main parameters
of the algorithm at the end of iteration �.

Proposition 2. f(S∗) ≤ f(S
) + Λ
/α
+1 in every iteration �.

Proof. The element selected at iteration �+1 minimizes the term
∑m

i=1 Aijwi
/fS�
(j)

with respect to every j ∈ [n]\S
. This clearly implies thatα
+1 ≤
∑m

i=1Aijwi
/fS�
(j)

for every j under consideration. Rearranging the terms in this inequality, we can bound
the marginal value of each element j ∈ [n] \ S
 with respect to S
, and obtain that
fS�

(j) ≤
∑m

i=1 Aijwi
/α
+1. Let J∗ = {j : j ∈ S∗ and j /∈ S
} be the set of ele-
ments selected by the optimal solution, but not selected by the algorithm up to the end
of iteration �. Note that J∗ ⊆ [n] \ S
, and notice that

f(S∗) ≤ f(S∗ ∪ S
) ≤ f(S
) +
∑
j∈J∗

fS�
(j) ,

where the first inequality follows from the monotonicity of f , and the last inequality
holds as a result of its submodularity. Specifically, the latter inequality is obtained using
the decreasing marginal values property. We now focus on bounding the above right-
hand side term. For this purpose, we utilize the bound derived earlier on the marginal
values of the elements in [n] \ S
, and attain

∑
j∈J∗

fS�
(j) ≤

∑
j∈J∗

m∑
i=1

Aijwi

α
+1
=

m∑
i=1

wi

α
+1

∑
j∈J∗

Aij ≤
m∑
i=1

biwi

α
+1
=

Λ

α
+1
,

where the last inequality follows by recalling that the elements in J∗ are a subset of the
elements in the optimal solution, and thus, constitute a feasible solution respecting all
constraints. As a result,

∑
j∈J∗ Aij ≤ bi.

We next prove that the algorithm attains an approximation guarantee of Ω(1/m1/W)
when the update factor is λ = eWm. Recall that W = min{bi/Aij : Aij > 0} is the
width of the constraints.

Lemma 2. The algorithm archives Ω(1/m1/W)-approximation by using λ = eWm.

Proof. Suppose the main loop terminates after t iterations. Notice that when the loop
terminates either St = [n] or

∑m
i=1 biwit > eWm. In the former case, one can easily in-

fer that the returned solution is 1/2-approximation to the optimal solution. Specifically,

44 Y. Azar and I. Gamzu

if St is returned by the algorithm then the outcome is clearly optimal since St consists
of all elements, and if one of St \ {j} or {j} is returned then the value of the solution is
a 1/2-approximation since max{f(St \ {j}), f({j})} ≥ (f(St \ {j}) + f({j}))/2 ≥
f(St)/2, where the last inequality uses the submodularity of f . In fact, one can easily
validate that the above analysis also holds in case that f(St) ≥ f(S∗), which can hap-
pen since St may be infeasible. Hence, in the remainder of the proof, we shall assume
that f(S∗) > f(St) and that the loop terminates with Λt =

∑m
i=1 biwit > eWm.

We concentrate on upper bounding the value of Λt. For this purpose, we analyze the
change in

∑m
i=1 biwi along the loop iterations. Observe that for any � = 1, . . . , t,

Λ
 =
m∑
i=1

biwi
 =
m∑
i=1

biwi(
−1) ·
(
eWm

)Aiγ(�)/bi

≤
m∑
i=1

biwi(
−1) ·
(
1 +

eWm1/WAiγ(
)

bi

)

=

m∑
i=1

biwi(
−1) + eWm1/W
m∑
i=1

Aiγ(
)wi(
−1)

= Λ
−1 + eWm1/Wα
δ
 .

The first inequality follows by plugging a = em1/W and y = WAiγ(
)/bi to the
inequality ay ≤ 1 + ay, which is known to be valid for any a ∈ R+ and y ∈ [0, 1],
and the last equality results from the definition of α
. By Proposition 2, we know that
α
 ≤ Λ
−1/(f(S

∗)− f(S
−1)) in case f(S∗) > f(S
−1). The latter condition clearly
holds since f(S∗) > f(St) by previous assumption, and f(St) ≥ f(S
−1) for any �
under consideration. Therefore,

Λ
 ≤ Λ
−1 ·
(
1 +

eWm1/W δ

f(S∗)− f(S
−1)

)
≤ Λ
−1 · exp

(
eWm1/W δ

f(S∗)− f(S
−1)

)
,

where the last inequality holds since 1 + y ≤ ey . The resulting recursive definition can
be used, in conjunction with the base case Λ0 = m, to upper bound Λt by

Λt ≤ Λ0 ·
t∏

�=1

exp

(
eWm1/W δ�

f(S∗)− f(S�−1)

)
= m · exp

(
eWm1/W

t∑
�=1

f(S�)− f(S�−1)

f(S∗)− f(S�−1)

)
.

Recall that we assumed that the loop terminated with Λt > eWm. This lower bound
on Λt can be utilized, together with the upper bound on Λt, to yield

1 ≤ em1/W
t∑

=1

f(S
)− f(S
−1)

f(S∗)− f(S
−1)
≤ em1/W ln

(
f(S∗)− f(S0)

f(S∗)− f(St)

)
,

where the last inequality is due to the Proposition 1. We note that f(S0) = 0 since f
is normalized and S0 = ∅. Subsequently, one can obtain that 1− 1/ exp(1/em1/W) ≤
f(St)/f(S

∗) using simple algebraic manipulations. This can be further simplified to
1/(em1/W + 1) ≤ f(St)/f(S

∗) by reutilizing the fact that 1 + y ≤ ey . Notice that

Efficient Submodular Function Maximization 45

this proves that the algorithm archives Ω(1/m1/W)-approximation since the value of
the returned solution is at least f(St)/2. This follows from arguments similar to those
presented at the beginning of the proof.

We are now ready to complete the proof of the first main result of the paper. We note
that this result matches the best known approximation guarantee for the case that the
objective function f is linear, achievable using the randomized rounding technique.

Proof of Theorem 1. By Lemma 1 and Lemma 2, we know that when the algorithm
uses an update factor of λ = eWm, it constructs a feasible solution which approximates
the optimal solution within a factor of Ω(1/m1/W).

One immediate corollary of this theorem is that the algorithm under consideration at-
tains a constant approximation guarantee when the number of constraints is constant or
when the width is sufficiently large, sayW = Ω(lnm). In particular, one can reexamine
the analysis presented in the proof of Lemma 2, and deduce that the approximation ratio
of the algorithm approaches 1/(2e + 2) for sufficiently large W ’s. A natural followup
question is whether one can improve upon this result. In what follows, we demonstrate
that we can beat this approximation ratio by a careful selection of the update factor.
We present a refined analysis that proves an approximation ratio of (1 − ε)(1 − 1/e)
when W = Ω(lnm/ε2). In particular, our analysis avoids the two-factor loss due to the
max-selection in the last two lines of the algorithm.

Lemma 3. The algorithm achieves an approximation ratio of (1 − 4ε)(1 − 1/e) by
using λ = eεW when W ≥ max{lnm/ε2, 1/ε} for any fixed ε > 0.

We are now ready to complete the proof of the second principal result of the paper.
We note that this result almost matches the theoretical lower bound of 1 − 1/e, which
already holds for maximizing a monotone submodular function subject to a cardinality
constraint [23,11]. In particular, our large width setting captures the hard instances of
the latter problem as this problem can be solved in polynomial-time whenW = O(1/ε)
by enumerating over all sets of size at most W .

Proof of Theorem 2. Given an instance of the problem in which W = Ω(lnm/ε2)
for any fixed ε > 0, Lemma 1 and Lemma 3 guarantee that employing the algorithm
with an update factor of λ = eεW/4 results in a feasible solution that approximates the
optimal solution within a factor of (1− ε)(1− 1/e).

3 Submodular Maximization with Binary Packing Constraints

We consider the special setting of monotone submodular maximization under binary
packing constraints, namely, when A ∈ {0, 1}m×n instead of A ∈ [0, 1]m×n. Note that
we may assume without loss of generality that b ∈ Nm

+ since each vector entry can be
rounded down to the nearest integer without any consequences whatsoever. This natural
setting has been considered in the past for linear objective functions. Similarly to the
general linear case, the randomized rounding technique attains the best known approx-
imation guarantee in this case as well. In particular, it achieves an approximation ratio
of Ω(1/m1/(W+1)). This outcome is also known to be optimal unless P = ZPP [6].

46 Y. Azar and I. Gamzu

We can demonstrate that our multiplicative updates approach from Section 2 can be
utilized to obtain the above-mentioned improved approximation guarantee for the un-
derlying setting. This requires a fine-tuning of the algorithm and its analysis.

We next develop a different multiplicative updates algorithm for the special setting
in which the constraints matrix is k-column sparse. In this case, the number of 1-value
entries in each column of the input matrix is at most k. We prove that our algorithm
achieves an approximation guarantee that does not depend on the number of rows m,
but only depends on the sparsity parameter k and width parameter W . More precisely,
we establish that the algorithm attains an approximation ratio of Ω(1/(Wk1/W)).

3.1 The Algorithm

The multiplicative updates algorithm, formally described below, maintains a collection
of weights that capture the extent to which each constraint is close to be violated under
a given solution. The algorithm is built around one main loop. In each iteration of that
loop, the algorithm considers a remaining element whose marginal contribution to the
current solution is maximal, and adds it to the solution set if its corresponding sum of
weights is sufficiently small. In any case, the element under consideration is removed
from the list of remaining elements. When the loop terminates, the algorithm returns
the resulting solution.

Algorithm 2. Column Sparse Multiplicative Updates

Input: A collection of linear packing constraints defined by A ∈ {0, 1}m×n and b ∈ Nm
+ ,

a monotone submodular set function f : 2[n] → R+, an update factor λ ∈ R+

Output: A subset of [n]
1: S ← ∅, R← [n]
2: for i← 1 to m do wi ← 0 end for
3: while R
= ∅ do
4: Let j ∈ R be the element with maximal fS(j)
5: if

∑m
i=1 Aijwi < (λ− 1) then S ← S ∪ {j}

6: R← R \ {j}
7: for i← 1 to m do wi ← λ

∑
j∈S Aij/bi − 1 end for

8: end while
9: return S

3.2 Analysis

In what follows, we analyze the performance of the algorithm. We begin by establishing
an algebraic bound applicable for any monotone submodular function and any solution
set of elements, attained by an algorithm that considers the elements in a greedy fashion.
Note that our algorithm indeed considers the elements in such fashion. We define the
greedy elements sequence E(f, S) = 〈e1, . . . , en〉 of a submodular function f and a set
S as the ordered sequence of elements considered by a greedy process whose outcome
is S. Specifically, the greedy process is initialized with R0 = [n] and S0 = ∅. Then ,
it runs for n steps, where in each step t, it considers the element et ∈ Rt−1 that has a
maximum marginal value with respect to the current solution set St−1, and adds it to the
solution set St of the next step if et ∈ S. In any case, the element et is removed from
Rt−1 to obtain the set Rt of remaining elements for the next step. With this definition
in mind, let Et = {e1, . . . , et} be the set of first t elements in the sequence.

Efficient Submodular Function Maximization 47

Proposition 3. Given a submodular function f : 2[n] → R+, a set S ⊆ [n], their
greedy elements sequence E(f, S) = 〈e1, . . . , en〉, and another set S∗ ⊆ [n] satisfying
|S ∩ Et| ≥ α · |S∗ ∩ Et| for every t ∈ [n] and a parameter α ≤ 1, it holds that
f(S) ≥ (α/(α + 1)) · f(S∗).

Proof. Let us assume without loss of generality that the greedy process goes over the
elements according to the order 1 to n, namely, E1 = {1}, E2 = {1, 2}, and so on. We
note that this assumption is valid since one can appropriately rename the elements. Fur-
thermore, let S = {a1, . . . , a|S|} and S∗ = {b1, . . . , b|S∗|} be the respective elements
of S and S∗ sorted in an increasing order. Let us suppose that 1/α is integral. We em-
phasize that this assumption is merely for simplicity of presentation, as we demonstrate
later. We match between each element of S and 1/α distinct elements from S∗. Specif-
ically, each element at is matched to the elements set S∗

t = {b(t−1)/α+1, . . . , bt/α}.
Notice that every element of S∗ is matched to an element of S; else, it must be that
|S∗| > |S|/α, but this contradicts the fact that |S| = |S∩En| ≥ α · |S∗∩En| = α|S∗|.
We next argue that each at ≤ b(t−1)/α+1. As a result, we attain that each

fS∩Eat−1(at) ≥ fS∩Eat−1(b(t−1)/α+1), . . . , fS∩Eat−1(bt/α) .

The last inequality holds since we known that when the element at was considered
by the greedy process, all the elements of S∗

t were still available, and therefore, their
marginal value with respect to the solution S ∩ Eat−1 was no more than the marginal
value of the element at. Consequently,

f(S∗) ≤ f(S) +
∑

b∈S∗\S
fS(b) = f(S) +

�α|S∗|
∑
t=1

∑
b∈S∗

t

fS(b)

≤ f(S) +
1

α

|S|∑
t=1

fS∩Eat−1(at) =

(
1 +

1

α

)
f(S) ,

where both inequalities hold by the submodularity of f . For the purpose of establishing
the previously mentioned argument, suppose by way of contradicting that there is some
t for which at > b(t−1)/α+1. Let us concentrate on the elements set E(t−1)/α+1. Notice
that |S∩E(t−1)/α+1| ≤ t−1, whereas |S∗∩E(t−1)/α+1| = (t−1)/α+1. This implies
that |S ∩E(t−1)/α+1| < α · |S∗ ∩E(t−1)/α+1|, a contradiction. We conclude by noting
that our assumption that 1/α is integral can be easily neglected. Specifically, one need
to modify that proof in such a way that a fractional part of an element from S∗ may
be matched to an element form S. Then, notice that at most two fractional parts of an
element of T are matched to elements of S, and those elements must appear before the
element of S∗ in the greedy elements sequence.

We now turn to establish our main result for the special setting of maximizing a mono-
tone submodular function under k-column sparse packing constraints.

Proof of Theorem 3. We first claim that the algorithm outputs a feasible solution, that
is, a solution that respects the packing constraints. Suppose by way of contradiction
that � is the first element that is added to S and induces a violation in some constraint
i at iteration t of the main loop. Note that Ai
 = 1. Let St be the solution at the end of

48 Y. Azar and I. Gamzu

iteration t, and notice that
∑

j∈St
Aij = bi+1 since all the entries of A are binary. This

implies that wi = λ− 1 at the beginning of the iteration in which � was considered, and
thus,

∑m
i=1 Ai
wi ≥ λ− 1. Inspecting the selection rule, one can infer that � could not

have been selected.
We next prove that the algorithm attains an approximation ratio of Ω(1/(Wk1/W))

when the update factor is λ = k+1. Recall thatW is the width of the constraints, which
is equal to min{bi} in our case. Similarly to before, we denote by S∗ ⊆ [n] a solution
that maximizes the submodular function subject to the linear packing constraints. Let
〈e1, . . . , en〉 be the ordered sequence of elements considered by our algorithm, and
note that it is essentially the greedy elements sequence E(f, S). Moreover, let Et =
{e1, . . . , et} be the set of first t elements in that sequence, S∗

t = S∗∩Et be the elements
of Et in the optimal solution, St = S ∩ Et be the elements of Et in our algorithm’s
solution, and wit = λ

∑
j∈St

Aij/bi − 1 be the value of wi at the end of iteration t of the
algorithm. We prove the two following propositions:

Proposition 4. For every t ∈ {0, . . . , n},

|St| ≥
∑m

i=1 biwit

Wλ1/W (k + λ− 1)
.

Proposition 5. For every t ∈ {0, . . . , n},

|S∗
t | ≤ |St|+

∑m
i=1 biwit

λ− 1
.

We can now utilize the above propositions and get that for every t ∈ {0, . . . , n},

|S∗
t | ≤ |St|+

∑m
i=1 biwit

λ− 1
≤ |St|+

Wλ1/W (k + λ− 1)

λ− 1
|St| =

(
1 + 2Wλ1/W

)
·|St| ,

where the last equality holds as λ = k+1. Therefore, we can employ Proposition 3 with
α = 1/(1 + 2Wλ1/W), and attain that our algorithm’s solution approximates the opti-
mal solution to within a factor of α/(α+1) = 1/(2+2Wλ1/W) = Ω(1/(Wk1/W)).

Acknowledgments. The authors thank Chandra Chekuri, Ilan Cohen, Gagan Goel, and
Jan Vondrák for valuable discussions on topics related to the subject of this study.

References

1. Ageev, A.A., Sviridenko, M.: Pipage rounding: A new method of constructing algorithms
with proven performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)

2. Azar, Y., Regev, O.: Combinatorial algorithms for the unsplittable flow problem. Algorith-
mica 44(1), 49–66 (2006)

3. Bansal, N., Korula, N., Nagarajan, V., Srinivasan, A.: On k-Column Sparse Packing Pro-
grams. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 369–382.
Springer, Heidelberg (2010)

Efficient Submodular Function Maximization 49

4. Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mechanism de-
sign. In: 37th STOC, pp. 39–48 (2005)

5. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a Submodular Set Function
Subject to a Matroid Constraint (Extended Abstract). In: Fischetti, M., Williamson, D.P.
(eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Heidelberg (2007)

6. Chekuri, C., Khanna, S.: On multidimensional packing problems. SIAM J. Comput. 33(4),
837–851 (2004)

7. Chekuri, C., Vondrák, J.: Personal Communication (2010)
8. Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange prop-

erties of combinatorial structures. In: 51st FOCS, pp. 575–584 (2010)
9. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via the multi-

linear relaxation and contention resolution schemes. In: 43rd STOC, pp. 783–792 (2011)
10. Dobzinski, S., Vondrák, J.: From query complexity to computational complexity. In: 44th

STOC (2012)
11. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)
12. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. In:

48th FOCS, pp. 461–471 (2007)
13. Feldman, M., Naor, J(S.), Schwartz, R.: Nonmonotone Submodular Maximization via a

Structural Continuous Greedy Algorithm (Extended Abstract). In: Aceto, L., Henzinger, M.,
Sgall, J. (eds.) ICALP 2011 Part I. LNCS, vol. 6755, pp. 342–353. Springer, Heidelberg
(2011)

14. Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for submodular
maximization. In: 52nd FOCS, pp. 570–579 (2011)

15. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing
submodular set functions II. Math. Program. Study 8, 73–87 (1978)

16. Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow and other
fractional packing problems. SIAM J. Comput. 37(2), 630–652 (2007)

17. Gharan, S.O., Vondrák, J.: Submodular maximization by simulated annealing. In: 22nd
SODA, pp. 1098–1116 (2011)

18. Goundan, P.R., Schulz, A.S.: Revisiting the greedy approach to submodular set function
maximization (2007) (manuscript)

19. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Inf. Process.
Lett. 70(1), 39–45 (1999)

20. Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject to multiple
linear constraints. In: 20th SODA, pp. 545–554 (2009)

21. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone submod-
ular functions under matroid or knapsack constraints. SIAM J. Discrete Math. 23(4), 2053–
2078 (2010)

22. Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum of a sub-
modular set function. Math. Operations Research 3(3), 177–188 (1978)

23. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing
submodular set functions I. Math. Program. 14, 265–294 (1978)

24. Raghavan, P.: Probabilistic construction of deterministic algorithms: Approximating packing
integer programs. Journal of Computer and System Sciences 37(2), 130–143 (1988)

25. Raghavan, P., Thompson, C.D.: Randomized rounding: a technique for provably good algo-
rithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987)

26. Srinivasan, A.: Improved approximation guarantees for packing and covering integer pro-
grams. SIAM J. Comput. 29(2), 648–670 (1999)

27. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack
constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

50 Y. Azar and I. Gamzu

28. Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle
model. In: 40th STOC, pp. 67–74 (2008)

29. Vondrák, J.: Symmetry and approximability of submodular maximization problems. In: 50th
FOCS, pp. 651–670 (2009)

30. Wolsey, L.A.: Maximising real-valued submodular functions: Primal and dual heuristics for
location problems. Math. Operations Research 7(3), 410–425 (1982)

31. Young, N.E.: Randomized rounding without solving the linear program. In: 6th SODA, pp.
170–178 (1995)

Polynomial-Time Isomorphism Test for Groups

with No Abelian Normal Subgroups

(Extended Abstract�)

László Babai1,��, Paolo Codenotti2, and Youming Qiao3,� � �

1 University of Chicago
laci@cs.uchicago.edu

2 University of Minnesota
paolo@ima.umn.edu

3 Institute for Theoretical Computer Science,
Institute for Interdisciplinary Information Sciences,

Tsinghua University
jimmyqiao86@gmail.com

Abstract. We consider the problem of testing isomorphism of groups
of order n given by Cayley tables. The trivial nlog n bound on the time
complexity for the general case has not been improved upon over the past
four decades. We demonstrate that the obstacle to efficient algorithms
is the presence of abelian normal subgroups; we show this by giving a
polynomial-time isomorphism test for groups without nontrivial abelian
normal subgroups. This concludes a project started by the authors and
J. A. Grochow (SODA 2011). Two key new ingredient are: (a) an algo-
rithm to test permutational isomorphism of permutation groups in time,
polynomial in the order and simply exponential in the degree; (b) the
introduction of the “twisted code equivalence problem,” a generalization
of the classical code equivalence problem by admitting a group action on
the alphabet. Both of these problems are of independent interest.

Keywords: Group Isomorphism, Permutational Isomorphism, Code
Equivalence.

1 Introduction, Main Results

The isomorphism problem for groups asks to determine whether or not two
groups of order n, given by their Cayley tables (multiplication tables), are iso-
morphic. As pointed out long ago [7,15], if G is generated by k elements then
isomorphism can be decided, and all isomorphisms listed, in time nk+O(1). Since

� See http://people.cs.uchicago.edu/∼laci/papers for the full version of this paper.
�� This collaboration was supported in part by László Babai’s NSF Grants CCF-

0830370 and CCF 1017781. The views expressed in this paper are those of the
authors and do not necessarily reflect the views of the NSF.

� � � Youming’s work was supported in part by the National Basic Research Program of
China Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foun-
dation of China Grant 61033001, 61061130540, 61073174.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 51–62, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

52 L. Babai, P. Codenotti, and Y. Qiao

k ≤ log2 n for all groups, this gives an nlog2 n+O(1)-time algorithm for all groups
and a polynomial-time algorithm for finite simple groups (because the latter
are generated by 2 elements [20,1]). In spite of considerable attention to the
problem over the decades, no general bound with a sublogarithmic exponent has
been obtained. While the abelian case is easy (O(n) by [9]), just one step away
from the abelian case lurk the most notorious cases: nilpotent groups of class 2
(groups G such that the quotient G/Z(G) is abelian, where Z(G) is the center
of G). No complete structure theory of such groups is known; recent work in
this direction by James B. Wilson [22,23] commands attention. Recently, special
classes of non-nilpotent solvable groups have been considered [11,16,4].

The group isomorphism problem is of great importance to computational
group theory; heuristic methods (e. g., Cannon and Holt [6]) have been imple-
mented in the Magma and GAP computational algebra systems for groups are
given as permutation groups, represented by sets of generators. In this context
the isomorphism problem is graph-isomorphism hard and therefore no subexpo-
nential (exp(no(1))) worst-case algorithm can currently be expected (n is now
the size of the permutation domain), while efficient practical algorithms remain
a possibility.

While class-2 nilpotent groups have long been recognized as the chief bottle-
neck in the group isomorphism problem, this intuition has never been formalized.
The ultimate formalization would be to reduce the general case to this case. As
a first step, we consider a significant class without a complete structure theory
at the opposite end of the spectrum: groups without abelian normal subgroups.
Following Robinson [17], we call such groups semisimple1.

In 2010, J. A. Grochow and the present authors started a project to test
isomorphism of semisimple groups [3]. In that paper we observed, based on an
elementary analysis of the group structure, that this problem can be solved in
time nlog logn, and using a combination of additional structure theory and combi-
natorial/algorithmic techniques, we gave a polynomial time algorithm assuming
the boundedness of certain parameters. The main result of the present paper,
stated next, concludes the project.

Theorem 1. Isomorphism of semisimple groups given by their Cayley tables
can be decided in polynomial time.

We note that semisimplicity of a given group can be decided in polynomial time
(trivially for groups given by Cayley tables and nontrivially even for permutation
groups given by generators [14]).

Our second main result concerns permutational isomorphism.

Definition 1. Two permutation groups G,H ≤ Sk are permutationally isomor-
phic if ∃π ∈ Sk such that Gπ = H, where Gπ := {π−1σπ | σ ∈ G}.
1 We note that various authors use the term ‘semisimple group’ in several different
meanings (see e. g. [21]). The definition we use conforms to the general practice
in algebra that an algebraic structure (ring, algebra, inner product space, etc.) is
semisimple if its ‘radical’ is trivial; each concept of ‘radical’ then corresponds to a
notion of semisimplicity. In our case, the ‘radical’ is the solvable radical, i. e., the
largest solvable normal subgroup.

Polynomial-Time Isomorphism Test for Groups 53

Theorem 2. Permutational Isomorphism of permutation groups G,H ≤ Sk,
given by lists of generators, can be decided in time poly(|G|) ck, for an absolute
constant c.

The proofs of these two main results are intertwined. First we solve the per-
mutational isomorphism problem for the special case of transitive groups in a
stronger sense (see Section 1.1); then we use this to solve our main problem,
isomorphism of semisimple groups, via “twisted code equivalence.” The general
case of the permutational isomorphism problem follows via a simple reduction
(cf. [3, Theorem 7.2]).

The two main ingredients that support Theorem 1 and 2 are: permutational
isomorphism of transitive permutation groups and twisted code equivalence. We
explain them in the next section.

1.1 Technical Ingredients

Theorem 3. There exists an absolute constant c such that for all pairs of tran-
sitive permutation groups G,H ≤ Sk (a) the number of permutational auto-
morphisms of G is at most |G| ck; (b) we can list the set of all permutational
isomorphisms of G and H in time |G| ck.

The proof involves a detailed group-theoretic study of the structure of transitive
permutation groups. (See Section 4 for an outline of the proof.)

Another key ingredient is the concept of “twisted code equivalence,” a general-
ization of the code equivalence problem, and a problem of independent interest.
A code of length � over a finite alphabet Γ is a subset of ΓA for some set A
with |A| = �. An equivalence of the codes A ⊆ ΓA and B ⊆ ΓB is a bijec-
tion A → B that takes A to B. If |Γ | = 2 then the code is a Boolean function
or hypergraph, so the code equivalence problem is a generalization of the hy-
pergraph isomorphism problem. Slightly simplifying and extending Luks’s C

dynamic programming algorithm for hypergraph isomorphism [12] to treat code
equivalence, in [3] we gave an algorithm to test equivalence of codes of length �
over an alphabet Γ in time (c|Γ |)2
, for an absolute constant c. In the present
paper we introduce a generalization of this problem by allowing to permute the
symbols by some group W acting on Γ , independently for each coordinate.

Definition 2 (Twisted code equivalence). Let A ⊆ ΓA, B ⊆ ΓB be codes
of length � over Γ . Let a group W act on Γ . Given a bijection π : A → B and
a function w : B →W , the pair (π, w) is a W -twisted equivalence of the codes
A and B if by applying π to the coordinates of each codeword in A and then
applying w(b) to the entry in position b for each b ∈ B we obtain the code B.

Generalizing the algorithm from [3] and improving its data management, we
obtain the following result, proved in Section 3. Our algorithm uses a coset in-
tersection subroutine and operates on rather large alphabets. In our case,W will
have a low-degree faithful permutation representation, and we take advantage
of this.

54 L. Babai, P. Codenotti, and Y. Qiao

Theorem 4. Let Γ be an alphabet, W ≤ Sym(Γ), and assume a faithful permu-
tation representation of W of degree d is given. The set of W -twisted equivalences
of two codes A,B ⊆ Γ
 can be found in time cd
poly(|A|, |W |, |Γ |).
In the special case where W = {id}, twisted code equivalence is simply code
equivalence and the theorem gives a running time of c
 poly(|Γ |, |A|). This im-
provement in the dependence on |Γ | over the previous bound of (c|Γ |)2
 from [3]
is critical to our main result.

1.2 Strategy for the Main Result

Our approach is motivated by the Babai-Beals filtration of groups [2] (see [3,
Section 7.5]). Specifically, the socle of a group is the product of its minimal
normal subgroups. The socle of a semisimple group G is the direct product of
nonabelian simple groups, and G acts on the set of simple factors of the socle
by conjugation, producing a permutation group of degree at most log60 |G|. (60
is the order of A5, the smallest nonabelian simple group.)

First we observe that isomorphism of groups that are direct products of simple
groups can be tested in polynomial time. So we can assume that our semisimple
groups G and H have isomorphic socles. The second observation is that an
isomorphism of the socles extends in at most one way to an isomorphism of G
and H . Moreover, given an isomorphism of the socles, we can find the unique
extension if it exists (Observation 8). Our next step is to identify isomorphic
simple factors of the socles with a canonical copy. From now on we look for
only those isomorphisms that respect the specific identification. We note that
the number of identifications to consider is polynomially bounded ([3, Lemma
4.1]). We look at the conjugation action of the groups G and H on the set of
simple factors of their socles. The orbits of this action correspond to the minimal
normal subgroups. Our alphabets will be the isomorphism types of these actions
under identification-preserving isomorphisms; these can be computed using our
algorithm for transitive permutational isomorphism (Theorem 3). The problem
then reduces to twisted code equivalence over these alphabets. The twisting
groups consist of the identification-preserving automorphisms of the alphabets;
they can be represented as permutation groups acting on the set of simple factors,
thus giving a small value of d for the application of Theorem 4.

1.3 Organization of the Paper

We first present the two technical ingredients: twisted code equivalence in Sec-
tion 3, and permutational isomorphism of transitive groups in Section 4. We
outline the proof of the main result, Theorem 1, in Section 5. Detailed proofs,
and in some cases the detailed statements, appear in the full version of this
paper.

2 Group-Theoretic Preliminaries

For a function f : X → Y , we write xf for the image of x ∈ X .

Polynomial-Time Isomorphism Test for Groups 55

General group theory. For groups H,G, we write H ≤ G to say that H is a
subgroup of G. Given groups G and H , ISO(G,H) denotes the set of G → H
isomorphisms; Aut(G) = ISO(G,G). The set ISO(G,H) is either empty or a
coset of Aut(G). For g ∈ G, conjugation by g means the map g : G → G defined
by x !→ xg := g−1xg. For S ⊆ G and g ∈ G we set Sg = {sg | s ∈ S}.

Permutation groups. Let Sym(Ω) denote the symmetric group acting on the set
Ω, the group of all permutations of Ω. We write Sk for Sym([k]) where [k] =
{1, . . . , k}. Permutation groups of degree k are subgroups of Sym(Ω) with |Ω| =
k. A homomorphism ϕ : G → Sym(Ω) is called a permutation representation of
G of degree |Ω|; such a homomorphism defines a G-action x !→ xπ := xϕ(π) on Ω
(x ∈ Ω, π ∈ G). We say that ϕ is faithful if it is injective. Let Alt(Ω) ≤ Sym(Ω)
denote the alternating group. Let G ≤ Sym(Ω). The orbit of x ∈ Ω is the set
xG := {xπ : π ∈ G}. The length of an orbit is its size. A permutation group
G ≤ Sym(Ω) is transitive if xG = Ω for some (any) x ∈ Ω. The stabilizer Gx of
a point x ∈ Ω is Gx = {π ∈ G | xπ = x}.

Given a G-action on Ω, a nonempty set B ⊆ Ω is a block of imprimitivity (or
simply “a block”) if (∀π ∈ G)(Bπ = B or B ∩ Bπ = ∅). A transitive action is
primitive if all blocks are trivial (the singletons or the whole domain Ω), and
imprimitive otherwise. Let G ≤ Sym(Ω) and H ≤ Sym(Δ). The wreath product
G # H is a permutation group acting on Ω × Δ viewed as |Δ| copies of Ω. |Δ|
copies of G act independently on each copy of Ω and H permutes the copies.
This defines the standard action of this group. In its product action, the same
group acts on ΩΔ, such that the copies of G act on each coordinate and H
permutes the coordinates.

Algorithms for permutation groups. For the purposes of computation, a permu-
tation group G ≤ Sym(Ω) will be represented by a list of generators. Many
basic computational tasks for permutation groups, including membership test-
ing, finding the order of a group, finding pointwise stabilizers of subsets of the
domain, finding blocks of imprimitivity, can be performed in polynomial time
([19,8,10], cf. [18]).

3 Twisted Code Equivalence

Let EQW (A,B) denote the set of W -twisted equivalences of the codes A and B.
(See Section 1.1 for the definitions.) Note that this is either empty or a coset of
the group EQW (A,A) ≤W # Sym(A).

In this section we prove the following, more precise version of Theorem 4.

Theorem 5. Let A ⊆ ΓA and B ⊆ ΓB be codes of length �. Let W ≤ Sym(Γ),
and assume we are given a faithful permutation representation of W of degree
d. Then EQW (A,B) can be found in time O(2
(d+1) |W | |Γ | |A|2 log |A|).

56 L. Babai, P. Codenotti, and Y. Qiao

Proof. For a subset U ⊆ A we call a function y : U → Γ a “partial string over
A.” The set U is the domain of y, denoted dom(y), and |U | the length of y. For
a partial string y over A, let Ay be the set of strings in A that are extensions of
y. We make analogous definitions for B.

We construct a dynamic programming table with an entry for each pair (y, z)
of partial strings, y over A and z over B, of equal length such that Ay �= ∅,
and Bz �= ∅. For each such pair (y, z), we store the set I(y, z) of W -twisted
equivalences of the restriction A∗

y of Ay to A\ dom(y) with the restriction B∗
z of

Bz to B\ dom(z). Note that the I(y, z) are either empty or cosets of the groups
EQW (A∗

y ,A∗
y) ≤W # Sym(A\ dom(y)), and hence they can be stored efficiently.

We start with full strings y ∈ A, z ∈ B and work our way down to dom(y) =
dom(z) = ∅, at which point we shall have constructed all A → B twisted W -
equivalences. When y, z are full strings, we have |Ay | = 1, |Bz| = 1, and I(y, z)
is trivial.

Let y, z be proper partial strings of length h, and assume we have constructed
I(y′, z′) for all y′, z′ of length greater than h. To construct I(y, z) we augment
the domain of y by one index r ∈ A\dom(y), and the domain of z by one index,
s ∈ B \ dom(z). We fix r, and make all possible choices of s ∈ B \ dom(z). For
each s ∈ B \ dom(z) and σ ∈ W , we will separately find the set of all elements
of I(y, z) that move s to r, and act on the symbol in that position by σ.

More formally, for γ ∈ Γ , and r ∈ A \ dom(y), let y(r, γ) be the partial string
extending y by γ at position r, and let σ ∈ W , s ∈ B \ dom(z). Given some
π : (A\dom(y)\{r})→ (B \dom(z)\{s}), let π∗ : (A\dom(y)) → (B \dom(z))
extend π by sending r to s; and for w : (B \ dom(z) \ {s}) → W , let w∗ :

(B \ dom(z)) → W extend w by sending s to σ. Let I∗(y, z ; r
(γ, σ)−−−→ s) be the

set of all (π∗, w∗) for (π,w) ∈ I(y(r, γ), z(s, γσ
−1

)). Then

I(y, z) =
⋃
s∈B

⋃
σ∈W

⋂
γ∈Γ :Ay(r,γ) �=∅

I∗(y, z ; r
(γ, σ)−−−→ s).

If z(s, γσ
−1

) ∈ B, then we can look up the value of I(y(r, γ), z(s, γσ
−1

)) in
the table and use that to compute the corresponding I∗. If for some σ and
γ, z(s, γσ

−1

) �∈ B, then I(y(r, γ), z(s, γσ
−1

)) is empty and so is I∗.
Analysis. We consider �|A| partial strings of A (all prefixes), and 2
|A| par-

tial strings of B (we can assume |A| = |B|, otherwise we reject equivalence). So
the number of table entries we store is at most 2
 � |A|2. The cost of comput-
ing each dynamic programming entry is �|Γ ||W | coset intersection operations,
and �|Γ ||W | times the cost of checking whether some Ay′ is empty. Standard
techniques allow us to compute the I∗ and paste cosets together in polynomial
time. The cost of coset intersection is O(2
 d) [12]. (Stronger bounds for coset
intersection are available but not needed here.) The cost of checking if Ay′ is
empty is log |A| if we add a preprocessing step to sort A. ��
We shall need a simple generalization of this result to multiple alphabets. (As
before, we refer to the full version for all missing details.)

Polynomial-Time Isomorphism Test for Groups 57

4 Permutational Isomorphism for Transitive Groups

4.1 Further Group-Theoretic Preliminaries

Permutational Isomorphism. If G ≤ Sym(Ω) and H ≤ Sym(Δ) are permutation
groups, a bijection π : Ω → Δ is a permutational isomorphism from G to H if
Gπ = H . We denote the set of all G → H permutational isomorphisms by
PISO(G,H); PAut(G) := PISO(G,G). We say G and H are permutationally
isomorphic if PISO(G,H) �= ∅. Each π ∈ PISO(G,H) induces an isomorphisim

π̂ : G → H . Let P̂ISO(G,H) := {π̂ | π ∈ PISO(G,H)}.

Proposition 1. Given G,H ≤ Sk and f ∈ Sk, we can decide in poly(k) time
whether or not f ∈ PISO(G,H). Proof: use membership testing.

Bounds on primitive groups. Let G ≤ Sk. We call G a giant2 if k ≥ 7 and
G = Sk or Ak. These two groups are far larger than any other primitive group.

Lemma 1. Let G ≤ Sk be primitive and let H ≤ Sk. (a) If G is non-giant then

|PAut(G)| ≤ exp(Õ(
√
k)). (The tilde hides polylog factors.)

(b) If G is non-giant then we can list PISO(G,H) in time exp(Õ(
√
k)).

(c) We can find the coset PISO(G,H) in quasipolynomial time (exp(polylog(k)).

The proof requires the classification of finite simple groups via Cameron’s clas-
sification of the large primitive groups [5].

Structure trees. For a transitive group G ≤ Sym(Ω), a G-invariant tree is a
rooted tree whose set of leaves is Ω and to which the G-action extends as tree
automorphisms. (Such extension is necessarily unique.) A G-invariant tree is a
structure tree for G if every internal node has at least 2 children, and for every
internal node u of the tree, the action of the stabilizer Gu on the set of children
of u is primitive. The following observation will allow us to list all structure trees
of a transitive group.

Lemma 2. Let G ≤ Sym(Ω) be a transitive permutation group of degree k.
Then (a) G has at most k2 log k structure trees; (b) we can list all structure trees
of G in time O(k2 log k+O(1)).

Subdirect products, diagonals. Given groupsG1, . . . , Gr, we write πj :
∏r

i=1Gi →
Gj for the projection map of the direct product onto the j-th factor. A subdirect
product of the Gi is a subgroup H ≤

∏r
i=1Gi such that πj(H) = Gj for each

j. A particularly important example of subdirect products is a diagonal. Let
V1, . . . , Vr be isomorphic groups, (∀i)(Vi ∼= T). A diagonal of (V1, . . . , Vr) is an
embedding φ : T ↪→

∏r
i=1 Vi such that Im(φ) is a subdirect product of the Vi.

Its image is denoted diag(V1×· · ·×Vr). The standard diagonal of T r is the map
Δ : t !→ (t, . . . , t).

2 We remark that Sk and Ak are primitive for k ≥ 3. We look at k ≥ 5 and k
= 6
since Ak is simple when k ≥ 5; and Aut(Ak) ∼= Sk when k ≥ 4, k
= 6.

58 L. Babai, P. Codenotti, and Y. Qiao

For permutation groups, analogously, we can define permutational diagonals.
Let Vi ≤ Sym(Ωi) (for i ∈ [r]) be permutation groups, permutationally isomor-
phic to T ≤ Sym(Ξ). (In particular, for every i, |Ωi| = |Ξ|.) A permutational
diagonal of

∏r
i=1 Vi is a list of permutational isomorphisms φi ∈ PISO(T, Vi) (so

φ̂i : T → Vi is the corresponding isomorphism). Let φ̂ : T →
∏
Vi be defined

by t !→ (tφ̂1 , . . . , tφ̂r). We use pdiag(V1,× · · · × Vr) to denote the image φ̂(T) for
some permutational diagonal of (V1, . . . , Vr).

For example, given G ≤ Sym(Ω), consider the induced action of Gr on Ωr.
The standard diagonal T of Gr acting on {(ω, . . . , ω) | ω ∈ Ω} is a permutational
diagonal defined by the identity bijections.

Fact 6. Let G ≤ H1×· · ·×Hm be a subdirect product, where each Hi is a simple
group. Then G is a direct product of diagonals.

Fact 7. Let G ≤ Alt(Ω1)× · · · ×Alt(Ωm), where (∀i)(|Ωi| ≥ 5, �= 6) be a subdi-
rect product of alternating groups. Then G is a direct product of permutational
diagonals.

4.2 Transitive Groups: Outline of the Proof of Theorem 3

Let G ≤ Sym(Ω) and H ≤ Sym(Δ) be transitive permutation groups of degree
k = |Ω| = |Δ|. Our job is to list all their permutational isomorphisms in time
ck|G|. Our strategy is to fix a structure tree of G and work by induction on its
depth. The base case is when G is primitive; this is settled by Lemma 1.

We call a structure tree T of G and a structure tree U of H compatible if their
depth is the same and, for every �, the primitive groups arising on level � in G
and H (as actions of the stabilizers of a node on level � on the children of that
node) are permutationally isomorphic.

By Lemma 2, we can try all structure trees of H that are compatible with the
chosen structure tree of G. So we may assume we have fixed structure trees T
and U on G and H , resp., and we are looking for permutational isomorphisms
respecting them. Assume these trees have depth d ≥ 1 (the root is level 0). Let
G∗ denote the action of G on T (d− 1): the set of nodes at level d− 1; define H∗

analogously. Assume by induction that the set PISO(G∗, H∗) is available. Now,
for each π ∈ PISO(G∗, H∗) we wish to list the set PISO(G,H, π) of extensions
of π to elements of PISO(G,H).

For i ∈ T (d− 1) let Ωi denote the set of children of i and let G(i) denote the
action of Gi, the stabilizer of i, restricted to Ωi. Note that {Ω1, . . . , Ωm} is a
maximal system of imprimitivity for G, where m = |T (d− 1)|. For j ∈ U(d− 1),
define Δj and H(j) analogously. Since T and U (the structure trees) are com-
patible, all the G(i) and H(j) are permutationally isomorphic primitive groups.
Let K be the pointwise stabilizer of T (d− 1) in G, and L the corresponding sta-
bilizer in H . So K �G is the kernel of the restriction homomorphism G → G∗;
analogously for L � H . Let K(i) be the restriction of K to Ωi; and L(j) the
restriction of L to Δj . We now distinguish two cases.

Polynomial-Time Isomorphism Test for Groups 59

Case 1. G(i) is not a giant. In this case, by Lemma 1, the number of permuta-
tional isomorphisms between G(i) and H(iπ) is at most ch where h = k/m =
|Ωi|. We can combine these in (ch)m = ck ways, settling this case.
Case 2. G(i) is a giant. This case is more technical. For simplicity, in this case
we shall assume K(i) = Alt(Ωi) in this outline. The basic observation is that
K(i)�G(i) and therefore either K(i) = {id} (Case 2a) or K(i) is a giant (Case
2b).
Case 2a. K(i) = {id}. If this is true for some i, it is true for all. Therefore,
K = {id}, so G embeds in G∗, i. e., π has at most one extension. Let us call
this unique extension ϕ if it exists. Let x ∈ Ωi; we wish to find y = xϕ ∈ Δiπ .
One can show that if such a y exists then it is unique, and to find such a y it
is sufficient to consider the stabilizer Gx and look for a corresponding stabilizer
Hy for some y ∈ Δiπ .
Case 2b. K(i) = Alt(Ωi). Clearly, PISO(G,H) ⊆ PISO(K,L). While this is
always true, under Case 2b we shall also see that the set PISO(K,L;π) has
“affordable size,” so we can list PISO(K,L;π) and check each of its elements
(Proposition 1). Assuming h ≥ 5, h �= 6, we can bound the number of extensions
of π by 2m|K|, and list them in time O(2m|K|k).

5 Semisimple Group Isomorphism: The Proof of
Theorem 1

5.1 The Framework

Recall our strategy from Section 1.2. If G is semisimple then Soc(G) is the direct
product of its minimal normal subgroups; and each minimal normal subgroup
is the direct product of isomorphic nonabelian simple groups. Both of these
decompositions are unique. The conjugation action of G permutes the simple
factors of the socle; this defines a permutation representation G → Sk where k
is the number of simple factors of the socle. The kernel of this representation is
denoted Pker(G); this is the first characteristic subgroup in the BB chain [2].
So G/Pker(G) is a permutation group of degree k ≤ log60 |G|. The orbits of this
permutation representation correspond to the minimal normal subgroups of G;
in particular, it is transitive exactly if G has a unique minimal normal subgroup
(namely, the socle).

Lumping together isomorphic minimal normal subgroups, we obtain the prod-
uct decomposition Soc(G) =

∏d
i=1

∏zi
j=1Ni,j

∼=
∏d

i=1K
zi
i , where the Ni,j are

the minimal normal subgroups and (∀i, j)(Ni,j
∼= Ki). The Ki are pairwise non-

isomorphic. LetNij =
∏ti

h=1 Vijh be the decomposition ofNij into simple factors.
Let Ti

∼= Vijh be a canonical copy of the simple factors of Ki
∼= Nij .

Our first trick is to fix an isomorphism between Ti and each Vijh, i.e., a
diagonal of

∏
j,h Vijh for each i. Since Ti is generated by two elements, we have

|Aut(Ti)| ≤ |Ti|2, and therefore the number of diagonals we need to consider is
at most |Soc(G)|2. Let φ and ψ be diagonals of Soc(G) and Soc(H), resp., with
respect to their factorizations into simple factors. We write ISOds(G,H ;φ, ψ)
for the set of G→ H isomorphisms which respect these diagonals.

60 L. Babai, P. Codenotti, and Y. Qiao

Observation 8 ([3, Corollary 3.1]) If G and H are semisimple groups then
(a) any isomorphism f : Soc(G) → Soc(H) extends in at most one way to a
f : G → H isomorphism; and, (b) given f we can decide if f exists, and find it
if it does, in polynomial time.

Part (a) of the observation follows from a well-known fact [17, Claim 3.3.19,
page 90] (cf. [6, sec. 3.1], [3, Lemma 3.1]). It follows that an isomorphism χ ∈
ISOds(G,H ;φ, ψ) is uniquely determined by the permutational isomorphism it
induces between G/Pker(G) and H/Pker(H).

5.2 Semisimple Groups with a Unique Minimal Normal Subgroup

Corollary 1. Let G and H be semisimple groups with a unique minimal normal
subgroup. (a) |Aut(G)| ≤ |G|O(1), and (b) we can list ISO(G,H) in time |G|O(1).

Proof. Fix a diagonal φ of Soc(G) and consider all diagonals ψ of Soc(H); in
each case, we shall compute ISOds(G,H ;φ, ψ). Because simple groups have 2
generators, the latter needs to be performed ≤ |Soc(G)|2 ≤ |G|2 times (cf. [3,
Lemma 4.1]).

By part (a) of Observation 8, every isomorphism χ ∈ ISOds(G,H ;φ, ψ)
is uniquely determined by the permutational isomorphism it induces between
G/Pker(G) and H/Pker(H). Therefore the number of automorphisms respecting
φ is at most the number of permutational automorphisms of G/Pker(G), which
in turn is at most ck|G/Pker(G)|, by part (a) of Theorem 3. Since k = O(log |G|),
this proves part (a). For part (b), we apply the algorithm in part (b) of Theo-
rem 3 to the transitive permutation groups G/Pker(G) and H/Pker(H) and list
all π ∈ PISO(G/Pker(G), H/Pker(H)). For each such π, let f be the isomor-
phism of Soc(G) and Soc(H) determined by π and the diagonals φ, and ψ. For
each such f , apply part (b) of Observation 8 to check whether f extends to an
isomorphism f : G→ H . ��

5.3 All Semisimple Groups

In this subsection we outline the reduction of testing isomorphism of the semisim-
ple groups G,H to twisted code equivalence. Since isomorphism of the socles and
their direct decomposition to minimal normal subgroups are easy to test, we may
assume that Soc(G) = Soc(H) and they have the same decomposition into min-
imal normal subgroups, using the notation from Section 5.1. The conjugation
action of G on Soc(G) embeds G into

∏
i

∏
j Aut(Nij); we call this embedding

α, and let G∗ = α(G); we define the embedding β and H∗ = β(H) analogously.
We view G∗ and H∗ as permutation groups acting on Soc(G).

Having fixed diagonals as in Section 5.1, we are only interested in those per-
mutational isomorphisms G∗ → H∗ which act on the socles by permuting the
copies of the Ki and within them, permuting the copies of Ti, respecting their
standard diagonals. Let X be the set of these G∗ → H∗ permutational isomor-
phisms (given as a coset). If we knew X , by [17, Claim 3.3.19, page 90], we

Polynomial-Time Isomorphism Test for Groups 61

can recover the coset of G → H isomorphisms respecting the diagonals by the
formula αXβ−1. We now describe how to find X .

Let G∗
ij denote the restriction of G∗ to Nij , and similarly H∗

ij the restriction
of H∗ to Nij . By Cor. 1, we can compute the isomorphism types of the G∗

ij and
H∗

ij under permutational isomorphisms in X . Let Γ1, . . . , Γr be representatives
of these isomorphism types. These will be our alphabets. For each i, j, pick
an arbitrary isomorphism ϕij of this type between G∗

ij and the corresponding
representative, and analogously for H∗.

We create codes G and H over the alphabets Γi as follows. Let σ ∈ G∗, and
let σij ∈ G∗

ij denote the restriction of σ to Nij . The string associated with σ is

σ = (σ
ϕij

ij)ij . Then G = {σ | σ ∈ G∗}. Define H analogously.
For � ∈ [r], let W
 be the group of automorphisms of Γ
 induced by per-

mutational automorphisms that preserve the standard diagonals. These auto-
morphisms are determined by the permutation they induce on the set of simple
factors. Thus if Γ
 is acting on a copy of Ki(= T ti

i) then W
 has a faithful
permutation representation of degree ti.

Let χ : G∗ → H∗ be a permutational isomorphism respecting the standard
diagonals (i. e., χ ∈ X). So χ induces a permutation π(χ) of the minimal normal
subgroups. π = π(χ) determines χ up to elements of theW
 applied to each letter
of the codes G and H . In other words, the set X of G∗ → H∗ isomorphisms we
are looking for corresponds exactly to the set of (W
)-twisted equivalences of G
and H .

Analysis. Fixing diagonals will only add a factor of |Soc(G)|2 ≤ |G|2. The
algorithm for groups with a unique minimal normal subgroup (part (b) of Corol-
lary 1) takes polynomial time. The length of the codes is the number of mini-
mal normal subgroups, which is O(log |G|). The alphabets Γ
 are subgroups of
G∗ ∼= G and hence (∀�)(|Γ
| ≤ |G|). The groups W
 have polynomial size by
part (a) of Corollary 1, and faithful permutation representations of degree ti.
Therefore the permutation group where we will perform coset intersection will
have a permutation representation of degree k =

∑
i,j ti, the number of simple

factors of Soc(G), which is O(log |G|). Finally the size of the codes themselves
is the order of the groups. Therefore the total running time of the twisted code
equivalence algorithm is polynomial. ��

6 Comparison with Prior Work

A 2003 paper by Cannon and Holt [6] describes a practical method to test isomor-
phism of permutation groups. Sec. 3 of their paper is dedicated to semisimple
groups, underlining the significance of this class. Naturally, our framework is
based on the same simple structural observations regarding the socle as theirs
(Sec. 5.1); the most notable common element is part (a) of Obs. 8. After these
initial observations, the two algorithms diverge in accordance with their very dif-
ferent goals: [6] describes heuristic algorithms with no performance guarantees
and with reference to programs that use backtracking which would count as ille-
gal steps for us; [6] reports practical efficiency. We devise algorithms which take
time, polynomial in the order of the group, a prohibitive cost in their context.

62 L. Babai, P. Codenotti, and Y. Qiao

References

1. Aschbacher, M., Guralnick, R.: Some applications of the first cohomology group.
J. Algebra 90(2), 446–460 (1984)

2. Babai, L., Beals, R.: A polynomial-time theory of black-box groups I. In: Groups
St Andrews 1997 in Bath. LMS Lect. Notes, vol. 260, pp. 30–64. Cambr. U. Press
(1999)

3. Babai, L., Codenotti, P., Grochow, J.A., Qiao, Y.M.: Code equivalence and group
isomorphism. In: Proc. 22nd SODA, pp. 1395–1408 (2011)

4. Babai, L., Qiao, Y.M.: Polynomial-time isomorphism test for groups with abelian
Sylow towers. In: 29th STACS, pp. 453–464 (2012)

5. Cameron, P.J.: Finite permutation groups and finite simple groups. Bull. London
Math. Soc. 13(1), 1–22 (1981)

6. Cannon, J.J., Holt, D.F.: Automorphism group computation and isomorphism test-
ing in finite groups. J. Symb. Comput. 35, 241–267 (2003)

7. Felsch, V., Neubüser, J.: On a programme for the determination of the automor-
phism group of a finite group. In: Proc. Conf. on Computational Problems in
Algebra, Oxford, 1967, pp. 59–60. Pergamon Press (1970)

8. Furst, M.L., Hopcroft, J., Luks, E.M.: Polynomial-time algorithms for permutation
groups. In: Proc. 21st FOCS, pp. 36–41. IEEE Comp. Soc. (1980)

9. Kavitha, T.: Linear time algorithms for abelian group isomorphism and related
problems. J. Comput. Syst. Sci. 73(6), 986–996 (2007)

10. Knuth, D.E.: Efficient representation of perm groups. Combinat. 11, 57–68 (1991)
11. Le Gall, F.: Efficient isomorphism testing for a class of group extensions. In: 26th

STACS, pp. 625–636 (2009)
12. Luks, E.M.: Hypergraph isomorphism and structural equivalence of boolean func-

tions. In: Proc. 31st ACM STOC, pp. 652–658. ACM Press (1999)
13. Luks, E.M., Miyazaki, T.: Polynomial-time normalizers for permutation groups

with restricted composition factors. In: 13th ISAAC, pp. 176–183 (2002)
14. Luks, E.M., Seress, Á.: Computing the Fitting subgroup and solvable radical for

small-base permutation groups in nearly linear time. In: Workshop on Groups and
Computation II, DIMACS Series in DMTCS, pp. 169–181 (1991)

15. Miller, G.L.: On the nlog n isomorphism technique. In: 10th STOC, pp. 51–58 (1978)
16. Qiao, Y.M., Sarma, J.M.N., Tang, B.: On isomorphism testing of groups with

normal Hall subgroups. In: Proc. 28th STACS, pp. 567–578 (2011)
17. Robinson, D.J.S.: A Course in the Theory of Groups, 2nd edn. Springer (1996)
18. Seress, Á.: Permutation Group Algorithms. Cambridge Univ. Press (2003)
19. Sims, C.C.: Computation with permutation groups. In: Petrick, S.R. (ed.)

Proc. 2nd Symp. Symb. Algeb. Manip., pp. 23–28. ACM Press (1971)
20. Steinberg, R.: Generators for simple groups. Canad. J. Math. 14, 277–283 (1962)
21. Suzuki, M.: Group Theory II. Springer (1986)
22. Wilson, J.B.: Decomposing p-groups via Jordan algebras. J. Algebra 322,

2642–2679 (2009)
23. Wilson, J.B.: Finding central decompositions of p-groups. J. Group Theory 12,

813–830 (2009)

Clustering under Perturbation Resilience

Maria Florina Balcan and Yingyu Liang

School of Computer Science, Georgia Institute of Technology
ninamf@cc.gatech.edu, yliang39@gatech.edu

Abstract. Motivated by the fact that distances between data points in many
real-world clustering instances are often based on heuristic measures, Bilu and
Linial [6] proposed analyzing objective based clustering problems under the as-
sumption that the optimum clustering to the objective is preserved under small
multiplicative perturbations to distances between points. In this paper, we provide
several results within this framework. For separable center-based objectives, we
present an algorithm that can optimally cluster instances resilient to (1 +

√
2)-

factor perturbations, solving an open problem of Awasthi et al. [2]. For the k-
median objective, we additionally give algorithms for a weaker, relaxed, and more
realistic assumption in which we allow the optimal solution to change in a small
fraction of the points after perturbation. We also provide positive results for min-
sum clustering which is a generally much harder objective than k-median (and
also non-center-based). Our algorithms are based on new linkage criteria that
may be of independent interest.

Keywords: clustering, perturbation resilience, k-median, min-sum.

1 Introduction

Problems of clustering data from pairwise distance information are ubiquitous in sci-
ence. A common approach for solving such problems is to view the data points as
nodes in a weighted graph (with the weights based on the given pairwise information),
and then to design algorithms to optimize various objective functions such as k-median
or min-sum. For example, in the k-median clustering problem the goal is to partition
the data into k clusters Ci, giving each a center ci, in order to minimize the sum of
the distances of all data points to the centers of their cluster. In the min-sum cluster-
ing approach the goal is to find k clusters Ci that minimize the sum of all intra-cluster
pairwise distances. Yet unfortunately, for most natural clustering objectives, finding the
optimal solution to the objective function is NP-hard. As a consequence, there has been
substantial work on approximation algorithms [1,5,7,8,9] with both upper and lower
bounds on the approximability of these objective functions on worst case instances.

Recently, Bilu and Linial [6] suggested an exciting, alternative approach aimed at
understanding the complexity of clustering instances which arise in practice. Motivated
by the fact that distances between data points in clustering instances are often based
on a heuristic measure, they argue that interesting instances should be resilient to small
perturbations in these distances. In particular, if small perturbations can cause the op-
timal clustering for a given objective to change drastically, then that probably is not

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 63–74, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

64 M.F. Balcan and Y. Liang

a meaningful objective to be optimizing. They specifically define an instance to be
α-perturbation resilient for an objective Φ if perturbing pairwise distances by multi-
plicative factors in the range [1, α] does not change the optimum clustering under Φ.
They consider in detail the case of max-cut clustering and give an efficient algorithm
to recover the optimum when the instance is resilient to perturbations on the order of
O(

√
nΔ) where n is the number of points and Δ is the maximum degree of the graph.

They also give an efficient algorithm for instance of unweighted max-cut that is resilient
to perturbations on the order of O(nδ) where δ is the minimum degree of the graph.

Two important questions raised by the work of Bilu and Linial [6] are: (1) the de-
gree of resilience needed for their algorithm to succeed is quite high: can one develop
algorithms for important clustering objectives that require much less resilience? (2) the
resilience definition requires the optimum solution to remain exactly the same after per-
turbation: can one succeed under weaker conditions? In the context of separable center-
based objectives such as k-median and k-center, Awasthi et al. [2] partially address the
first question and show that an algorithm based on the single-linkage heuristic can ef-
ficiently find the optimal clustering for α-perturbation-resilient instances for α = 3.
They also conjecture it to be NP-hard to beat 3 and prove beating 3 is NP-hard for a
related notion.

In this work, we address both questions raised by Bilu and Linial [6] and additionally
improve over Awasthi et al. [2]. First, for separable center-based objectives we design a
polynomial time algorithm for finding the optimum for instances resilient to perturba-
tions of valueα = 1+

√
2, thus beating the previously best known factor of 3 of Awasthi

et al. [2]. Second, for k-median, we consider a weaker, relaxed, and more realistic no-
tion of perturbation-resilience where we allow the optimal clustering of the perturbed
instance to differ from the optimal of the original in a small ε fraction of the points.
This is arguably a more natural though also more difficult condition to deal with. We
give positive results for this case as well, showing for somewhat larger values of α that
we can still achieve a near-optimal clustering. We additionally give positive results for
min-sum clustering which is a generally much harder objective than k-median (and also
non-center-based). For example, the best known guarantee for min-sum clustering on
worst-case instances is an O(δ−1 log1+δ n)-approximation in time nO(1/δ) due to [5];
by contrast, the best guarantee known for k-median is factor 3 + ε due to [1].

Our results are achieved by carefully deriving structural properties of perturbation-
resilience. At a high level, all the algorithms we introduce work by first running appro-
priate linkage procedures to produce a tree, and then running dynamic programming to
retrieve the best k-clustering in the tree. To ensure that (under perturbation resilience)
the tree output in the first step has a low-cost pruning, we derive new linkage procedures
(closure linkage and approximate closure linkage) which are of independent interest.

Our Results: We provide several results for clustering perturbation-resilient instances
in the metric space for separable center-based objectives and for the min-sum objective.

In Section 3 we improve on the bounds of Awasthi et al. [2] for α-perturbation re-
silient instances for separable center-based objectives, giving an algorithm that effi-
ciently 1 finds the optimum for α = 1 +

√
2. Commonly used separable center-based

1 For clarity, efficient means polynomial in n (number of points) and k (number of clusters).

Clustering under Perturbation Resilience 65

objectives, such as k-median, are NP-hard to even approximate, yet we can recover the
exact solution for perturbation resilient instances. Our algorithm is based on a new link-
age procedure using a new notion of distance (closure distance) between sets that may
be of independent interest.

In Section 4 we consider the more challenging and more general notion of (α, ε)-
perturbation resilience for k-median, where we allow the optimal solution after per-
turbation to be ε-close to the original. We provide an efficient algorithm which for
α > 2 +

√
7 produces (1 + O(ε/ρ))-approximation to the optimum, where ρ is the

fraction of the points in the smallest cluster. The key property we derive and exploit is
that, except for εn bad points, most points are α closer to their own center than to any
other center. Using this, we then design an approximate version of the closure linkage
criterion that allows us to carefully eliminate the noise introduced by the bad points and
construct a tree with a low-cost pruning that is a good approximation to the optimum.

In Section 5 we provide the first efficient algorithm for optimally clustering α-min-
sum perturbation resilient instances. Our algorithm is based on an appropriate modifi-
cation of average linkage that exploits the structure of such instances.

Due to the lack of space we only provide sketches for most proofs in this paper. Full
proofs appear in the long version of the paper [4]. In the long version, we also provide
sublinear-time algorithms, showing algorithms that can return an implicit clustering
from only access to a small random sample.

2 Notation and Preliminaries

In a clustering instance, we are given a set S of n points in a finite metric space, and we
denote d : S×S → R≥0 as the distance function.Φ denotes the objective function over
a partition of S into k < n clusters which we want to optimize, i.e. Φ assigns a score to
every clustering. The optimal clustering w.r.t. Φ is denoted as C = {C1, C2, . . . , Ck},
and its cost is denoted as OPT . The core concept we study in this paper is the pertur-
bation resilience notion introduced by Bilu and Linial [6]. Formally:

Definition 1. A clustering instance (S, d) is α-perturbation resilient to an objective Φ
if for any d′ : S×S → R s.t. ∀p, q ∈ S, d(p, q) ≤ d′(p, q) ≤ αd(p, q), there is a unique
optimal clustering C′ for Φ under d′ that equals the optimal clustering C under d.

In this paper, we focus on center-based and min-sum objectives. For center-based ob-
jectives, we consider separable center-based objectives defined by Awasthi et al. [2].

Definition 2. A clustering objective is center-based if the solution can be defined by
partitioning S into k clusters P = {P1, P2, . . . , Pk} and assigning a set of centers
p = {p1, p2, . . . , pk} ⊆ S for the clusters. Such an objective is separable if it further-
more satisfies the following two conditions: 1) The objective function value of a given
clustering is either a (weighted) sum or the maximum of the individual cluster scores;
2) Given a proposed single cluster, its score can be computed in polynomial time.

For example, for the k-median objective which we study substantially, the objective
is Φ(P ,p) =

∑k
i=1

∑
p∈Pi

d(p, pi). Other examples of center-based objectives in-

clude k-means for which Φ(P ,p) =
∑k

i=1

∑
p∈Pi

d2(p, pi), and k-centers for which

66 M.F. Balcan and Y. Liang

Φ(P ,p) = maxki=1 maxp∈Pi d(p, pi). The centers in the optimal solution are denoted
as c = {c1, . . . , ck}. Clearly, in an optimal solution, each point is assigned to its nearest
center. In such cases, the objective is denoted as Φ(c).

We also consider a different type of objective function: the min-sum objective. For
this objective, S is partitioned into k clusters P = {P1, P2, . . . , Pk}, and the goal is to
minimize Φ(P) =

∑k
i=1

∑
p,q∈Pi

d(p, q).
In Section 4 we consider a generalization of Definition 1 where we allow a small

difference between the original and the new optimum after perturbation. Formally:

Definition 3. Let C be the optimal k-clustering and C′ be another k-clustering of a set
of n points. We say C′ is ε-close to C if minσ∈Sk

∑k
i=1 |Ci \ C′

σ(i)| ≤ εn, where σ is a
matching between indices of clusters of C′ and those of C.

Definition 4. A clustering instance (S, d) is (α, ε)-perturbation resilient to an objec-
tive Φ if for any d′ : S × S → R s.t. ∀p, q ∈ S, d(p, q) ≤ d′(p, q) ≤ αd(p, q), the
optimal clustering C′ for Φ under d′ is ε-close to the optimal clustering C under d.

For simplicity, we use shorthand d(A,B) =
∑

p∈A

∑
q∈B d(p, q) and d(p,B) =

d({p}, B). Also, we will sometimes assume that mini |Ci| and εn is known. (Other-
wise, we can simply search over the n possible different values for each parameter.)

3 α-Perturbation Resilience for Center-Based Objectives

In this section we show that, for α ≥ 1+
√
2, if the clustering instance is α-perturbation

resilient for separable center-based objectives, then we can efficiently find the optimal
clustering. This improves on the α ≥ 3 bound of Awasthi et al. [2] and stands in sharp
contrast to the NP-Hardness results on worst-case instances. Our algorithm succeeds
for an even weaker property, the α-center proximity, introduced in Awasthi et al. [2].

Definition 5. A clustering instance (S, d) satisfies the α-center proximity property if
for any optimal cluster Ci ∈ C with center ci, Cj ∈ C(j �= i) with center cj , any point
p ∈ Ci satisfies αd(p, ci) < d(p, cj).

Lemma 1. ([2]) Any clustering instance that is α-perturbation resilient to separable
center-based objectives also satisfies the α-center proximity.

The proof follows by constructing a specific perturbation that blows up all the pairwise
distances withinCi by a factor of α. By α-perturbation resilience, the optimal clustering
remains the same, which then implies the desired result. In this section, we prove our
results for α-center proximity. The results also hold for α-perturbation resilience since
it implies α-center proximity. We begin with some key properties.

Lemma 2. For any points p ∈ Ci and q ∈ Cj(j �= i) in the optimal clustering of an
α-center proximity instance, when α ≥ 1 +

√
2, we have:

(1) d(ci, q) > d(ci, p), (2) d(p, ci) < d(p, q).

Clustering under Perturbation Resilience 67

Proof. (1) By Lemma 1, d(q, ci) > αd(q, cj). By triangle inequality, d(ci, cj) ≤
d(q, cj) + d(q, ci) < (1 + 1

α)d(q, ci). Also, d(p, cj) > αd(p, ci) and thus d(ci, cj) ≥
d(p, cj)− d(p, ci) > (α − 1)d(p, ci). The result follows by these inequalities.
(2) It also follows from triangle inequality. The proof appears in [2]. ��

Lemma 2 implies that for any optimal cluster Ci, the ball of radius maxp∈Ci d(ci, p)
around the center ci contains only points from Ci, and moreover, points inside the ball
are each closer to the center than to any point outside the ball. Inspired by this structural
property, we define the notion of closure distance between two sets as the radius of the
minimum ball that covers the sets and has some margin from points outside the ball.
We show that any (strict) subset of an optimal cluster has smaller closure distance to
another subset in the same cluster than to any subset or union of other clusters. Using
this, we will be able to define an appropriate linkage procedure that produces a tree on
subsets that will all be laminar with respect to the optimal clusters. This will then allow
us to extract from the tree the optimal solution using dynamic programming. We now
define the notion of closure distance and then present our algorithm.

Definition 6. Let B(p, r) = {q : d(q, p) ≤ r}. The closure distance dS(A,A′) be-
tween two disjoint non-empty subsets A and A′ of point set S is the minimum d ≥ 0
such that there is a point c ∈ A ∪ A′ satisfying the following requirements:
(1) coverage: the ball B(c, d) covers A and A′, i.e. A ∪ A′ ⊆ B(c, d);
(2) margin: points inside B(c, d) are closer to the center c than to points outside,

i.e. ∀p ∈ B(c, d), q �∈ B(c, d), we have d(c, p) < d(p, q).

Note that for any A,A′, dS(A,A′) = dS(A
′, A) ≤ maxp,q∈S d(p, q), and it can be

computed in polynomial time.

Algorithm 1. Separable center-based objectives, α perturbation resilience
Input: Data set S, distance function d(·, ·) on S.
Phase 1: Begin with n singleton clusters.
• Repeat till only one cluster remains: merge clusters C,C′ which minimize dS(C,C

′).
• Let T be the tree with single points as leaves and internal nodes corresponding to the merges.

Phase 2: Apply dynamic programming on T to get the minimum cost pruning C̃.
Output: Clustering C̃.

Theorem 1. For (1+
√
2)-center proximity instances, Algorithm 1 outputs the optimal

clustering in polynomial time.

The proof follows from the following key property of the Phase 1 of Algorithm 1.

Theorem 2. For (1 +
√
2)-center proximity instances, Phase 1 of Algorithm 1 con-

structs a binary tree such that the optimal clustering is a pruning of this tree.

Proof. We prove correctness by induction. In particular, assume that our current clus-
tering is laminar to the optimal clustering – that is, for each cluster A in our current

68 M.F. Balcan and Y. Liang

clustering and each C in the optimal clustering, we have either A ⊆ C, or C ⊆ A or
A ∩ C = ∅. This is clearly true at the start. To prove that the merge steps preserve the
laminarity, we need to show the following: ifA is a strict subset of an optimal clusterCi,
A′ is a subset of another optimal cluster or the union of one or more other clusters, then
there exists B from Ci \A in the current clustering, such that dS(A,B) < dS(A,A

′).
Let d = maxp∈Ci d(ci, p), p

∗ = argmaxp∈Ci d(ci, p). We first prove that there is
a cluster B ⊆ Ci \ A in the current clustering such that dS(A,B) ≤ d. There are
two cases. First, if ci �∈ A, then define B to be the cluster in the current clustering
that contains ci. By induction, B ⊆ Ci \ A. Then we have dS(B,A) ≤ d since there
is ci ∈ B, and (1) for any p ∈ A ∪ B, d(ci, p) ≤ d, (2) for any p ∈ S satisfying
d(ci, p) ≤ d, and any q ∈ S satisfying d(ci, q) > d, by Lemma 2 we know p ∈ Ci and
q �∈ Ci, and thus d(ci, p) < d(p, q). Second, if ci ∈ A, we pick any B ⊆ Ci \ A and a
similar argument gives dS(A,B) ≤ d.

As a second step, we need to show that d < d̂ = dS(A,A
′). There are two cases:

the center for dS(A,A′) is in A or in A′. In the first case, there is a point c ∈ A

such that c and d̂ satisfy the requirements of the closure distance. Pick a point q ∈
A′, and suppose Cj is the optimal cluster that contains q. As d(c, q) ≤ d̂, and by
Lemma 2 d(cj , q) < d(c, q), we must have d(cj , c) ≤ d̂ (otherwise it violates the
second requirement of closure distance). Then we have d = d(p∗, ci) < d(p∗, cj)/α ≤
(d + d(ci, c) + d(c, cj))/α from Lemma 1 and triangle inequality. Since d(ci, c) <
d(c, cj)/α, we can combine the above inequalities and compare d and d(c, cj), and
when α ≥ 1 +

√
2 we have d < d(c, cj) ≤ d̂.

Fig. 1. Illustration for comparing d and dS(A,A′) in Theorem 2

Now consider the second case, when there is a point c ∈ A′ such that c and d̂ satisfy
the requirements of the closure distance. Pick a point q ∈ A. We have d̂ ≥ d(c, q)
from the first requirement, and d(c, q) > d(ci, q) by Lemma 2. Then from the second
requirement d(ci, c) ≤ d̂. So by Lemma 2, d = d(ci, p

∗) < d(ci, c) ≤ d̂. ��

Note: Our factor of α = 1+
√
2 beats the NP-hardness lower bound of α = 3 of [2] for

center proximity instances. The reason is that the lower bound requires the addition of
Steiner points that can act as centers but are not part of the data to be clustered (though

Clustering under Perturbation Resilience 69

the upper bound of [2] does not allow such Steiner points). One can also show a lower
bound for center proximity instances without Steiner points. In particular one can show
that for any ε > 0, solving (2−ε)-center proximity k-median instances is NP-hard [10].

4 (α, ε)-Perturbation Resilience for the k-Median Objective

In this section we consider a natural relaxation of the α-perturbation resilience, the
(α, ε)-perturbation resilience, that requires the optimal clustering after perturbation to
be ε-close to the original. We show that for (α, ε)-perturbation resilient instances, with
α > 2+

√
7 and ε = O(ε′ρ) where ρ is the fraction of the points in the smallest cluster,

we can in polynomial time output a clustering that provides a (1 + ε′)-approximation
to the optimum. Thus this improves over the best worst-case approximation guarantees
known when ε′ ≤ 2 and also beats the lower bound of (1 + 2/e) on the best approxi-
mation achievable on worst case instances for metric k-median [9] when ε′ ≤ 1/e.

The key idea is to understand and leverage the structure implied by (α, ε)-perturbation
resilience. We show that perturbation resilience implies that there exists only a small
fraction of points that are bad in the sense that their distance to their own center is not
α times smaller than their distance to any other centers in the optimal solution. We then
use this bounded number of bad points in our clustering algorithm.

4.1 Structure of (α, ε)-Perturbation Resilience

To understand (α, ε)-perturbation resilience, we need to consider the difference between
the optimal clustering C under d and the optimal clustering C′ under d′, defined as
minσ∈Sk

∑k
i=1 |Ci\C′

σ(i)|. Without loss of generality, we assume in this subsection that

C′ is indexed so that the argmin σ is the identity, and the difference is
∑k

i=1 |Ci \ C′
i|.

We denote by c′i the center of C′
i .

In the following we call a point good if it is α times closer to its own center than to
any other center in the optimal clustering; otherwise we call it bad. Let Bi be the set
of bad points in Ci. That is, Bi = {p : p ∈ Ci, ∃j �= i, αd(ci, p) > d(cj , p)}. Let
Gi = Ci \Bi be the good points in cluster Ci. Let B = ∪iBi and G = ∪iGi. We show
that under perturbation resilience we do not have too many bad points. Formally:

Theorem 3. Suppose the clustering instance is (α, ε)-perturbation resilient to k-median
and mini |Ci| > 6α

α−1εn. Then |B| ≤ εn.

Here we describe a proof sketch of the theorem. In the full version we provide the
detailed proof, and also point out that the bound in Theorem 3 is an optimal bound
for the bad points in the sense that for any α > 1 and ε < 1

5 , we can construct an
(α, ε)-perturbation resilient 2-median instance which has εn bad points.

Proof Sketch of [Theorem 3] The main idea is to construct a specific perturbation
that forces certain selected bad points to move from their original optimal clusters.
For technical reasons, we only perturb a selected subset of bad points, and show that
they move out after perturbation. Then the (α, ε)-perturbation resilience leads to a
bound on the number of selected bad points, which can also be proved to be a bound

70 M.F. Balcan and Y. Liang

on all the bad points. The selected bad points B̂i in cluster Ci are defined by arbi-
trarily selecting min(εn + 1, |Bi|) points from Bi. Let B̂ = ∪iB̂i. For p ∈ B̂i,
let c(p) = argmincj ,j �=i d(p, cj) denote its second nearest center; for p ∈ Ci \ B̂i,
c(p) = ci. The perturbation we consider blows up all distances by a factor of α except
for those distances between p and c(p). Formally, we define d′ as d′(p, q) = d(p, q) if
p = c(q) or q = c(p), and d′(p, q) = αd(p, q) otherwise.

The key challenge in proving a bound on the selected bad points is to show that
c′i = ci for all i, i.e., the optimal centers do not change after the perturbation. Then in the
optimum under d′ each point p is assigned to the center c(p), and therefore the selected
bad points (B̂) will move from their original optimal clusters. By (α, ε)-perturbation
resilience property we get an upper bound on the number of selected bad points.

Suppose C′
i is obtained by adding point set Ai and removing point set Mi from Ci,

i.e.Ai = C′
i\Ci,Mi = Ci\C′

i . At a high level, we prove that ci = c′i for all i as follows.
We first show that for each cluster, its new center is close to its old center, roughly
speaking since the new and old clusters have a lot in common (Claim 1). We then show
if c′i �= ci for some i, then the weighted sum of the distances

∑
1≤i≤k |Ci|d(ci, c′i)

should be large (Claim 2). However, this contradicts Claim 1, so c′i = ci for all i.

Claim 1. For each i, d(ci, (Ci ∩ C′
i) \ B̂i) ≥ α+2

α+1
|Ci|
3 d(ci, c

′
i).

Proof Sketch: The key idea is that under d′, c′i is the optimal center, so it has no more
cost than ci on C′

i . Since B̂i\Mi and Ai are small compared to (Ci∩C′
i)\B̂i, c′i cannot

save much on B̂i \Mi and Ai, thus it cannot have much more cost on (Ci ∩ C′
i) \ B̂i

than ci. Then c′i is close to (Ci ∩ C′
i) \ B̂i, and so is ci, then c′i is close to ci. Formally,

we have d′(c′i, C
′
i) ≤ d′(ci, C′

i). We divide C′
i into (Ci ∩C′

i) \ B̂i, B̂i \Mi and Ai, and
move terms on (Ci ∩C′

i) \ B̂i to one side (the cost more than ci on (Ci ∩C′
i) \ B̂i), the

rest terms to another side (the cost saved on B̂i \Mi and Ai). After translating from d′

to d, we apply triangle inequality and obtain the claim. ��

Claim 2. Let Ii = 1 if ci �= c′i and Ii = 0 otherwise. Then we have∑
1≤i≤k Iid(ci, (Ci ∩ C′

i) \ B̂i) ≤
∑

1≤i≤k
|Ci|
3 d(ci, c

′
i).

Proof Sketch: The key idea is that the clustering that under d′ assigns points in C′
i \ B̂i

to ci and points p in B̂i \Mi to c(p), saves much cost on (Ci ∩ C′
i) \ B̂i compared to

the optimal clustering {C′
i} under d′, if c′i �= ci. Then {C′

i} must save this cost on other
parts of points. So {c′i} should be near these points and {ci} should be far away, and
the weighted sum of the distances between {c′i} and {ci} should be large. Formally,∑

i d
′(c′i, C

′
i) ≤

∑
i[d

′(ci, C′
i \ B̂i)+

∑
p∈B̂i\Mi

d′(c(p), p)] since {c′i} are the optimal

centers for C′
i under d′. By dividing C′

i into Ai, B̂i \Mi and (Ci ∩ C′
i) \ B̂i, and by

the fact α
∑

i d(ci, Ci) ≤ α
∑

i d(c
′
i, Ci) since ci are the optimal centers, we can show

that {C′
i} should save as much as approximately (α− 1)

∑
i d(ci, (Ci ∩C′

i) \ B̂i) cost
on points other than (Ci ∩C′

i) \ B̂i. Then the result follows by triangle inequality. ��
These claims lead to

∑
1≤i≤k |Ci|d(ci, c′i) [1− (α + 2)Ii/(α+ 1)] ≥ 0. If Ii = 0, then

d(ci, c
′
i) = 0; if Ii = 1, the coefficient of d(ci, c′i) is negative. So the left hand side is

at most 0. Then all terms equal 0, i.e. d(ci, c′i) = 0(1 ≤ i ≤ k). Then points in B̂i will

Clustering under Perturbation Resilience 71

move to other clusters after perturbation, which means that B̂i ⊆Mi, thus B̂ ⊆ ∪iMi.
Then |B̂| ≤ |∪iMi| ≤ εn. In particular, |B̂i| ≤ εn for any i. Then |Bi| ≤ εn, otherwise
|B̂i| would be εn+ 1. So B̂i = Bi, and B̂ = B and |B| = |B̂| ≤ εn. ��

4.2 Approximating the Optimal Clustering

Since (α, ε)-perturbation resilient instances have at most εn bad points, we can show
that for α > 4 such instances satisfy the ε-strict separation property (the property that
after eliminating an ε fraction of the points, the remaining points are closer to points in
their own cluster than to other points in different clusters). Therefore, we could use the
algorithms in [3] to output a tree with a pruning ε-close to the optimal clustering. How-
ever, this pruning might not have a small cost and it is not clear how to retrieve a small
cost clustering from the tree constructed by these generic algorithms. Here we design
a new algorithm for obtaining a good approximation for (α, ε)-perturbation resilient
instances. This algorithm first uses a novel linkage procedure based on an approximate
version of the closure condition in Section 3 to construct a tree, and then processes the
tree to output a desired clustering. We first define the approximate closure condition.

Definition 7. Suppose C′ is a clustering of S and p, q ∈ S.
Let Up,q denote the set of clusters that are nearly contained in the ball B(p, d(p, q)),
i.e. Up,q = {C|C ∈ C′, |C \ B(p, d(p, q))| ≤ εn, C ∩ B(p, d(p, q)) �= ∅}.
The ball B(p, d(p, q)) satisfies the approximate closure condition with respect to C′ if
| ∪C∈Up,q C| ≥ mini |Ci| − εn and the following conditions are satisfied:
(1) approximate coverage: it covers most ofUp,q, i.e. |∪C∈Up,qCi\B(p, d(p, q))| ≤ εn;2

(2) approximate margin: after removing a few points outside the ball, points inside
are closer to each other than to points outside, i.e. ∃E ⊆ S \B(p, d(p, q)),|E| ≤ εn,
s.t. ∀p1, p2 ∈ B(p, d(p, q)), q1 ∈ S\B(p, d(p, q))\E, we have d(p1, p2) < d(p1, q1).

We are now ready to present our main algorithm for the (α, ε)-perturbation resilient in-
stances, Algorithm 2. Informally, it starts with singleton points in their own clusters. It
then checks in increasing order of d(p, q) whether the ball B(p, d(p, q)) satisfies the ap-
proximate closure condition, and if so it merges all the clusters nearly contained within
B(p, d(p, q)). As we show below, the tree produced has a pruning that respects the op-
timal clustering. However, this pruning may contain more than k-clusters, so in the
second phase, we clean the tree so that there is a pruning with k-clusters that coincides
with the optimal clustering on the good points. Finally we run dynamic programming to
get the minimum cost pruning, which provides a good approximation to the optimum.

Our main result in this section is Theorem 4, which follows from Lemma 3 for Phase
1 of the algorithm and Lemma 4 for Phase 2.

Theorem 4. For (α, ε)-perturbation resilient instances to k-median, if α > 2 +
√
7

and ε ≤ ρ/8 where ρ = mini |Ci|/n, then in polynomial time, Algorithm 2 outputs a
tree T̃ that contains a pruning ε-close to the optimal clustering. Moreover, if ε ≤ ρε′/8
where ε′ ≤ 1, the clustering produced is a (1 + ε′)-approximation to the optimum.

2 Note that in the definition of Up,q , each cluster in it has at most εn points outside B(p, d(p, q)).
But the approximate coverage is stronger: Up,q , as a whole, can have at most εn outside.

72 M.F. Balcan and Y. Liang

Algorithm 2. k-median, (α, ε) perturbation resilience
Input: Data set S, distance function d(·, ·) on S, mini |Ci|, ε > 0
Phase 1: Initialize C′ to be the clustering with each singleton point being a cluster.
• Sort all the pairwise distances d(p, q). For d(p, q) in ascending order,
• If B(p, d(p, q)) satisfies approximate closure condition and |Up,q| > 1, merge Up,q .
• Construct the tree T with points as leaves and internal nodes corresponding to the merges.
Phase 2: If a node has only singleton points as children, delete his children; get T ′.
• Assign any singleton node p to the non-singleton leaf of smallest median distance; get T̃ .
Phase 3: Apply dynamic programming on T̃ to get the minimum cost pruning C̃.
Output: Clustering C̃, (optional) tree T̃ .

Lemma 3. If α > 2 +
√
7, ε ≤ ρ/8, then the tree T contains nodes Ni(1 ≤ i ≤ k)

such that Ni \B = Ci \B.

Proof Sketch: For each i, we let q∗i = argmaxq∈Ci\B d(ci, q). The proof follows from
two key facts: (1) If C′ \B is laminar to C \B right before checking some d(p, q), and
Up,q contains both good points from Ci and Cj(i �= j), then d(ci, q∗i) and d(cj , q∗j) are
checked before d(p, q). (2) If C′ \B is laminar to C \B right before checking d(ci, q∗i),
we have that right after checking d(ci, q

∗
i) there is a cluster containing all the good

points in cluster i and no other good points.
Consider any merge step s.t. Up,q contains good points from both Ci and Cj(j �= i).

Fact (1) implies both d(ci, q∗i) and d(cj , q∗j) must have been checked, and then fact (2)
implies all good points in Ci and Cj respectively have already been merged. So the
laminarity is always satisfied. Then the lemma follows from fact (2).

We now prove fact (1). Suppose that there exist good points from Ci and Cj in
Up,q. From the laminarity assumption, the fact that clusters in Up,q have only εn points
outside B(p, d(p, q)) and |B| ≤ εn, we can show there exist good points pi ∈ Ci and
pj ∈ Cj in B(p, d(p, q)). When α > 2 +

√
7 we can show d(ci, q

∗
i) < d(pi, pj)/2, and

by triangle inequality d(pi, pj)/2 ≤ d(p, q), so d(p, q) > d(ci, q
∗
i). The same argument

leads to d(p, q) > d(cj , q
∗
j). So d(ci, q∗i) and d(cj , q∗j) are checked before d(p, q).

We now prove fact (2). It is sufficient to show that ∪C∈Uci,q
∗
i
C \ B = Ci \ B

and Uci,q∗i satisfies the approximate closure condition. First, Uci,q∗i contains no good
points outside Ci by fact (1). Second, any C containing good points from Ci is in
Uci,q∗i . By fact (1), C has no good points outside Ci. Since B(ci, d(ci, q∗i)) contains all
good points in Ci, C has only bad points outside the ball, so C ∈ Uci,q∗i . We finally
show Uci,q∗i satisfies the approximate closure condition. Since in addition to all good
points in Ci, ∪C∈Uci,q

∗
i
C can only contain bad points, it has at most εn points outside

B(ci, d(ci, q∗i)), so approximate coverage condition is satisfied. And we can show for
α > 2+

√
7, 2d(ci, q∗i) is smaller than the distance between any point in B(ci, d(ci, q∗i))

and any good point outside Ci. Then let E = B \ B(ci, d(ci, q∗i)), approximate margin
condition is satisfied. We also have | ∪C∈Uci,q

∗
i
C| ≥ |Ci \B| ≥ mini |Ci| − εn. ��

Lemma 4. If α > 2+
√
7, ε ≤ ε′ρ/8 where ε′ ≤ 1, then C̃ is a (1+ ε′)-approximation.

Proof Sketch: By Lemma 3, T has a pruning P that contains Ni(1 ≤ i ≤ k) and
possibly some bad points, such that Ni \ B = Ci \ B. Therefore, each non-singleton

Clustering under Perturbation Resilience 73

leaf in T ′ has only good points from one optimal cluster and has more good points than
bad points. This implies that each singleton good point in T ′ is assigned to a leaf that
has good points from its own optimal cluster.

So after Phase 2, P in T becomes P ′ = {N ′
i} in T̃ such that N ′

i \B = Ci \B. It is
sufficient to prove the cost of P ′ approximates OPT , i.e. to bound the increase of cost
caused by a bad point pj ∈ Cj ending up in N ′

i(i �= j). There are two cases: pj belongs
to a non-singleton leaf node in T ′ or pj is a singleton in T ′. In either case, we can find
K = (mini |Ci|−εn)/2−εn good points pit fromCi in the leaf in which pj ends up in
T̃ , and K good points pjs from Cj in any other leaf containing only good points from
Cj , such that d(pj , pit) ≤ d(pj , pjs). Then d(pj , ci)− d(pj , cj) can be bounded by

1

K

{ ∑
1≤t≤K

[
d(pj , pit) + d(pit, ci)

]
−
∑

1≤s≤K

[
d(pj , pjs)− d(pjs, cj)

]}
≤ 1

K
OPT .

As |B| ≤ εn, the cost of P ′ is ≤ (1 + εn
K)OPT . Setting ε′ ≥ εn

K gives the lemma. ��
We note that approximate margin condition in the Definition 7 can be verified in

O(n3) time by enumerating p1, p2 ∈ B(p, d(p, q)), q1 �∈ B(p, d(p, q)), and checking if
there are no more than εn such q1 that there exist p1, p2 violating the condition. So the
algorithm runs in polynomial time.

5 α-Perturbation Resilience for the Min-Sum Objective

In this section we provide an efficient algorithm for clustering α-perturbation resilient
instances for the min-sum k-clustering problem (Algorithm 3). We use the following
notations: davg(A,B) = d(A,B)/(|A||B|) and davg(p,B) = davg({p}, B).

Theorem 5. For (3 maxi |Ci|
mini |Ci|−1)-perturbation resilient instances to min-sum,

Algorithm 3 outputs the optimal min-sum k-clustering in polynomial time.

Algorithm 3. Min-sum, α perturbation resilience
Input: Data set S, distance function d(·, ·) on S, mini |Ci|.
Phase 1: Connect each point with its 1

2
mini |Ci| nearest neighbors.

• Initialize the clustering C′ with each connected component being a cluster.
• Repeat till one cluster remains in C′: merge clusters C,C′ that minimize davg(C,C

′).
• Let T be the tree with components as leaves and internal nodes corresponding to the merges.

Phase 2: Apply dynamic programming on T to get the minimum cost pruning C̃.
Output: Output C̃.

Proof Sketch: First we show that the α-perturbation resilience property implies that
for any two optimal clusters Ci and Cj and any A ⊆ Ci, we have αd(A,Ci \ A) <
d(A,Cj). This follows by considering the perturbation where d′(p, q) = αd(p, q)
if p ∈ A, q ∈ Ci \ A and d′(p, q) = d(p, q) otherwise, and using the fact that
the optimum does not change after the perturbation. This can be used to show that

74 M.F. Balcan and Y. Liang

when α > 3 maxi |Ci|
mini |Ci|−1 we have: (1) for any optimal clusters Ci and Cj and any

A ⊆ Ci, A′ ⊆ Cj s.t. min(|Ci \A|, |Cj \ A′|) > mini |Ci|/2 we have davg(A,A′) >
min{davg(A,Ci \A), davg(A′, Cj \A′)}; (2) for any point p in the optimal cluster Ci,
twice its average distance to points in Ci \ {p} is smaller than the distance to any point
in other optimal cluster Cj . Fact (2) implies that for any point p ∈ Ci its |Ci|/2 nearest
neighbors are in the same optimal cluster, so the leaves of the tree T are laminar to the
optimum clustering. Fact (1) can be used to show that the merges preserve the laminar-
ity with the optimal clustering, so the minimum cost pruning of T will be the optimal
clustering, as desired. See the full version for the details. ��

6 Discussion and Open Questions

In this work, we advance the line of research on perturbation resilience in clustering in
multiple ways. For α-perturbation resilient instances, we improve on the known guar-
antees for center-based objectives and give the first analysis for min-sum. Furthermore,
for k-median, we analyze and give the first algorithmic guarantees known for a relaxed
but more challenging condition of (α, ε)-perturbation resilience, where an ε fraction of
points are allowed to move after perturbation. We also give sublinear-time algorithms
for k-median and min-sum under perturbation resilience in the long version.

A natural direction for future investigation is to explore whether one can take ad-
vantage of smaller perturbation factors for perturbation resilient instances in Euclidian
spaces. More broadly, it would be interesting to explore other ways in which perturba-
tion resilient instances behave better than worst case instances (e.g., natural algorithms
converge faster).

Acknowledgments. This work was supported by NSF grant CCF-0953192, by AFOSR
grant FA9550-09-1-0538,by a Microsoft Research Faculty Fellowship, and by a Google
Research award.

References

1. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search
heuristics for k-median and facility location problems. SIAM J. Comput. 33(3) (2004)

2. Awasthi, P., Blum, A., Sheffet, O.: Center-based clustering under perturbation stability. Inf.
Process. Lett. 112(1-2), 49–54 (2012)

3. Balcan, M.F., Gupta, P.: Robust hierarchical clustering. In: COLT (2010)
4. Balcan, M.F., Liang, Y.: Clustering under Perturbation Resilience. CoRR, abs/1112.0826

(2011)
5. Bartal, Y., Charikar, M., Raz, D.: Approximating min-sum -clustering in metric spaces. In:

STOC (2001)
6. Bilu, Y., Linial, N.: Are stable instances easy? In: Innovations in Computer Science (2010)
7. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation algorithm

for the k-median problem. J. Comput. Syst. Sci. 65(1) (2002)
8. de la Vega, W.F., Karpinski, M., Kenyon, C., Rabani, Y.: Approximation schemes for clus-

tering problems. In: STOC (2003)
9. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location problems. In:

STOC (2002)
10. Reyzin, L.: Data stability in clustering: A closer look. CoRR, abs/1107.2379 (2011)

Secretary Problems with Convex Costs�

Siddharth Barman, Seeun Umboh, Shuchi Chawla, and David Malec

University of Wisconsin–Madison
{sid,seeun,shuchi,dmalec}@cs.wisc.edu

Abstract. We consider online resource allocation problems where given
a set of requests our goal is to select a subset that maximizes a value mi-
nus cost type of objective. Requests are presented online in random order,
and each request possesses an adversarial value and an adversarial size.
The online algorithm must make an irrevocable accept/reject decision as
soon as it sees each request. The “profit” of a set of accepted requests is
its total value minus a convex cost function of its total size. This problem
falls within the framework of secretary problems. Unlike previous work
in that area, one of the main challenges we face is that the objective func-
tion can be positive or negative, and we must guard against accepting
requests that look good early on but cause the solution to have an ar-
bitrarily large cost as more requests are accepted. This necessitates new
techniques. We study this problem under various feasibility constraints
and present online algorithms with competitive ratios only a constant
factor worse than those known in the absence of costs for the same fea-
sibility constraints. We also consider a multi-dimensional version of the
problem that generalizes multi-dimensional knapsack within a secretary
framework. In the absence of feasibility constraints, we present an O(�)
competitive algorithm where � is the number of dimensions; this matches
within constant factors the best known ratio for multi-dimensional knap-
sack secretary.

1 Introduction

We study online resource allocation problems under a natural profit objective:
a single server accepts or rejects requests for service so as to maximize the total
value of the accepted requests minus the cost imposed by them on the system.
This model captures, for example, the optimization problem faced by a cloud
computing service accepting jobs, a wireless access point accepting connections
from mobile nodes, or an advertiser in a sponsored search auction deciding which
keywords to bid on. In many of these settings, the server must make accept or
reject decisions in an online fashion as soon as requests are received without
knowledge of the quality of future requests. We design online algorithms with the
goal of achieving a small competitive ratio—ratio of the algorithm’s performance
to that of the best possible (offline optimal) solution.

� This work was supported in part by NSF awards CCF-0643763 and CNS-0905134.
A full version [6] of this paper can be found at http://arxiv.org/abs/1112.1136.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 75–87, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

76 S. Barman et al.

A classical example of online decision making is the secretary problem. Here
a company is interested in hiring a candidate for a single position; candidates
arrive for interview in random order, and the company must accept or reject each
candidate following the interview. The goal is to select the best candidate with
as high a probability as possible. What makes the problem challenging is that
each interview merely reveals the rank of the candidate relative to the ones seen
previously, but not the ones following. Nevertheless, Dynkin [12] showed that it
is possible to succeed with constant probability using the following algorithm:
unconditionally reject the first 1/e fraction of the candidates; then hire the next
candidate that is better than all of the ones seen previously. Dynkin showed
that as the number of candidates goes to infinity, this algorithm hires the best
candidate with probability approaching 1/e and in fact this is the best possible.

More general resource allocation settings may allow picking multiple candi-
dates subject to a certain feasibility constraint. We call such a problem a gen-
eralized secretary problem (GSP) and use (Φ,F) to denote an instance of the
problem. Here F denotes a feasibility constraint that the set of accepted requests
must satisfy (e.g. the size of the set cannot exceed a given bound), and Φ de-
notes an objective function that we wish to maximize. As in the classical setting,
we assume that requests arrive in random order; the feasibility constraint F is
known in advance but the quality of each request, in particular its contribution
to Φ, is only revealed when the request arrives. Recent work has explored vari-
ants of the GSP where Φ is the sum over the accepted requests of the “value”
of each request. For such a sum-of-values objective, constant factor competitive
ratios are known for various kinds of feasibility constraints including cardinality
constraints [18,20], knapsack constraints [4], and certain matroid constraints [5].

In many settings, the linear sum-of-values objective does not adequately cap-
ture the tradeoffs that the server faces in accepting or rejecting a request, and
feasibility constraints provide only a rough approximation. Consider, e.g., a wire-
less access point accepting connections. Each accepted request improves resource
utilization and brings value to the access point. However as the number of ac-
cepted requests grows the access point performs greater multiplexing of the spec-
trum, and must use more and more transmitting power in order to maintain a
reasonable connection bandwidth for each request. The power consumption and
its associated cost are non-linear functions of the total load on the access point.
This directly translates into a value minus cost type of objective where the cost
is an increasing function of the total size of accepted requests.

Our goal then is to accept a set A out of a universe U of requests such that
the “profit” π(A) = v(A) − C(s(A)) is maximized; here v(A) is the total value
of all requests in A, s(A) is the total size, and C is a known increasing convex
cost function1.

Note that when the cost function takes on only the values 0 and∞ it captures a
knapsack constraint, and therefore the problem (π, 2U) (i.e. where the feasibility

1 Convexity is crucial in obtaining any non-trivial competitive ratio—if the cost func-
tion were concave, the only solutions with a nonnegative objective function value
may be to accept everything or nothing.

Secretary Problems with Convex Costs 77

constraint is trivial) is a generalization of the knapsack secretary problem [4]. We
further consider objectives that generalize the �-dimensional knapsack secretary
problem. Here, we are given � different (known) convex cost functions Ci for 1 ≤
i ≤ �, and each request is endowed with � sizes, one for each dimension. The profit
of a set is given by π(A) = v(A)−

∑

i=1 Ci(si(A)) where si(A) is the total size of

the set in dimension i.
We consider the profit maximization problem under various feasibility con-

straints. For single-dimensional costs, we obtain online algorithms with com-
petitive ratios within a constant factor of those achievable for a sum-of-values
objective with the same feasibility constraints. For �-dimensional costs, in the
absence of any constraints, we obtain an O(�) competitive ratio. We remark
that this is essentially the best approximation achievable even in the offline set-
ting: Dean et al. [10] show an Ω(�1−ε) hardness for the simpler �-dimensional
knapsack problem under a standard complexity-theoretic assumption. For the
multi-dimensional problem with general feasibility constraints, our competitive
ratios are worse by a factor of O(�5) over the corresponding versions without
costs. Improving this factor is a possible avenue for future research.

We remark that the profit function π is a submodular function. Recently
several works [14,7,17] have looked at secretary problems with submodular ob-
jective functions and developed constant competitive algorithms. However, all
of these works make the crucial assumption that the objective is always nonneg-
ative; it therefore does not capture π as a special case. In particular, if Φ is a
monotone increasing submodular function (that is, if adding more elements to
the solution cannot decrease its objective value), then to obtain a good compet-
itive ratio it suffices to show that the online solution captures a good fraction
of the optimal solution. In the case of [7] and [17], the objective function is not
necessarily monotone. Nevertheless, nonnegativity implies that the universe of
elements can be divided into two parts, over each of which the objective essen-
tially behaves like a monotone submodular function in the sense that adding
extra elements to a good subset of the optimal solution does not decrease its
objective function value. In our setting, in contrast, adding elements with too
large a size to the solution can cause the cost of the solution to become too large
and therefore imply a negative profit, even if the rest of the elements are good in
terms of their value-size tradeoff. As a consequence we can only guarantee good
profit when no “bad” elements are added to the solution, and must ensure that
this holds with constant probability. This necessitates designing new techniques.

Our Techniques. In the absence of feasibility constraints (see Section 3), we note
that it is possible to classify elements as “good” or “bad” based on a threshold on
their value to size ratio (a.k.a. density) such that any large enough subset of the
good elements provides a good approximation to profit; the optimal threshold
is defined according to the offline optimal fractional solution. Our algorithm
learns an estimate of this threshold from the first few elements (that we call
the sample) and accepts all the elements in the remaining stream that cross the
threshold. Learning the threshold from the sample is challenging. First, following
the intuition about avoiding all bad elements, our estimate must be conservative,

78 S. Barman et al.

i.e. exceed the true threshold, with constant probability. Second, the optimal
threshold for the sample can differ significantly from the optimal threshold for
the entire stream and is therefore not a good candidate for our estimate. Our
key observation is that the optimal profit over the sample is a much better
behaved random variable and is, in particular, sufficiently concentrated; we use
this observation to carefully pick an estimate for the density threshold.

With general feasibility constraints, it is no longer sufficient to merely classify
elements as good and bad: an arbitrary feasible subset of the good elements is not
necessarily a good approximation. Instead, we decompose the profit function into
two parts, each of which can be optimized by maximizing a certain sum-of-values
function (see Section 4). This suggests a reduction from our problem to two
different instances of the GSP with sum-of-values objectives. The catch is that
the new objectives are not necessarily non-negative and so previous approaches
for the GSP don’t work directly. We show that if the decomposition of the profit
function is done with respect to a good density threshold and an extra filtering
step is applied to weed out bad elements, then the two new objectives on the
remaining elements are always non-negative and admit good solutions. At this
point we can employ previous work on GSP with a sum-of-values objective to
obtain a good approximation to one or the other component of profit. We note
that while the exposition in Section 4 focuses on a matroid feasibility constraint,
the results of that section extend to any downwards-closed feasibility constraint
that admits good offline and online algorithms with a sum-of-values objective2.

In the multi-dimensional setting (discussed in Section 5), elements have differ-
ent sizes along different dimensions. Therefore, a single density does not capture
the value-size tradeoff that an element offers. Instead we can decompose the value
of an element into � different values, one for each dimension, and define densities
in each dimension accordingly. This decomposes the profit across dimensions as
well. Then, at a loss of a factor of �, we can approximate the profit objective
along the “best” dimension. The problem with this approach is that a solution
that is good (or even best) in one dimension may in fact be terrible with respect
to the overall profit, if its profit along other dimensions is negative. Surprisingly
we show that it is possible to partition values across dimensions in such a way
that there is a single ordering over elements in terms of their value-size tradeoff
that is respected in each dimension; this allows us to prove that a solution that
is good in one dimension is also good in other dimensions. We present an O(�)
competitive algorithm for the unconstrained setting based on this approach in
Section 5, and defer a discussion of the constrained setting to the full version of
the paper.

Related Work. The classical secretary problem has been studied extensively; see
[15,16] and [24] for a survey. Recently a number of papers have explored vari-
ants of the GSP with a sum-of-values objective. Hajiaghayi et al. [18] consid-
ered the variant where up to k secretaries can be selected (a.k.a. the k-secretary

2 We obtain an O(α4β) competitive algorithm where α is the best offline approxima-
tion and β is the best online competitive ratio for the sum-of-values objective.

Secretary Problems with Convex Costs 79

problem) in a game-theoretic setting and gave a strategyproof constant-competitive
mechanism. Kleinberg [20] later showed an improved 1 − O(1/

√
k) competitive

algorithm for the classical setting. Babaioff et al. [4] generalized this to a set-
ting where different candidates have different sizes and the total size of the
selected set must be bounded by a given amount, and gave a constant fac-
tor approximation. In [5] Babaioff et al. considered another generalization of
the k-secretary problem to matroid feasibility constraints. A matroid is a set
system over U that is downwards closed (that is, subsets of feasible sets are
feasible), and satisfies a certain exchange property (see [22] for a comprehen-
sive treatment). They presented an O(log r) competitive algorithm, where r is
the rank of the matroid, or the size of a maximal feasible set. This was sub-
sequently improved to a O(

√
log r)-competitive algorithm by Chakraborty and

Lachish [8]. Several papers have improved upon the competitive ratio for special
classes of matroids [1,11,21]. Bateni et al. [7] and Gupta et al. [17] were the first
to (independently) consider non-linear objectives in this context. They gave on-
line algorithms for non-monotone nonnegative submodular objective functions
with competitive ratios within constant factors of the ratios known for the sum-
of-values objective under the same feasibility constraint. Other versions of the
problem that have been studied recently include: settings where elements are
drawn from known or unknown distributions but arrive in an adversarial or-
der [9,19,23], versions where values are permuted randomly across elements of a
non-symmetric set system [25], and settings where the algorithm is allowed to
reverse some of its decisions at a cost [2,3].

2 Notation and Preliminaries

We consider instances of the generalized secretary problem represented by the
pair (π,F), and an implicit number n of requests or elements that arrive in
an online fashion. U denotes the universe of elements. F ⊆ 2U is a known
downwards-closed feasibility constraint. Our goal is to accept a subset of elements
A ⊆ U with A ∈ F such that the objective function π(A) is maximized. For a
given set T ⊆ U , we use O∗(T) = argmaxA∈F∩2T π(A) to denote the optimal
solution over T ; O∗ is used as shorthand for O∗(U).

We now describe the function π. In the single-dimensional cost setting, each
element e ∈ U is endowed with a value v(e) and a size s(e). Values and sizes are
integral and are a priori unknown. The size and value functions extend to sets of
elements as s(A) =

∑
e∈A s(e) and v(A) =

∑
e∈A v(e). The “profit” of a subset

is given by π(A) = v(A)− C(s(A)) where C is a non-decreasing convex function
of size, C : Z+ → Z+, satisfying C(0) = 0. The following quantities will be useful
in our analysis:

– The density of an element, ρ(e) := v(e)/s(e). We assume w.l.o.g that densi-
ties of elements are unique and let eγ denote the unique element with density
γ.

– The marginal cost function, c(s) := C(s) − C(s − 1). Note that this is non-
decreasing.

80 S. Barman et al.

– The inverse marginal cost function, s̄(ρ), is defined to be the maximum size
for which c(s) ≤ ρ.

– The density prefix for a given density γ and a set T , PT
γ := {e ∈ T : ρ(e) ≥

γ}, and the partial density prefix, P̄T
γ := PT

γ \ {eγ}. We use Pγ and P̄γ as

shorthand for PU
γ and P̄U

γ respectively.

We will sometimes find it useful to discuss fractional relaxations of the offline
problem of maximizing π subject to F . To this end, we extend the definition
of subsets of U to allow for fractional membership. We use αe to denote an α-
fraction of element e; this has value v(αe) = αv(e) and size s(αe) = αs(e). We
compute the cost C(s) for a non-integral size s by piecewise linear interpolation.
We say that a fractional subset A is feasible if its support supp(A) is feasible.
Note that when the feasibility constraint can be expressed as a set of linear
constraints, this relaxation is more restrictive than the natural linear relaxation.

Note that since cost is a convex non-decreasing function of size, it may at
times be more profitable to accept a fraction of an element rather than the
whole. That is, argmaxα π(αe) may be strictly less than 1. For such elements,
ρ(e) < c(s(e)). We use F to denote the set of all such elements: F = {e ∈
U : argmaxα π(αe) < 1}, and I = U \ F to denote the remaining elements.
Our solutions will generally approximate the optimal profit from F by running
Dynkin’s algorithm for the classical secretary problem; most of our analysis will
focus on I. Let F ∗(T) denote the optimal (feasible) fractional subset of T ∩ I
for a given set T . Then π(F ∗(T)) ≥ π(O∗(T ∩ I)). We use F ∗ as shorthand for
F ∗(U), and let s∗ be the size of this solution.

In the multi-dimensional setting each element has an �-dimensional size s(e) =
(s1(e), . . . , s
(e)). The cost function is composed of � different non-decreasing
convex functions, Ci : Z+ → Z+. The cost of a set of elements is defined to be
C(A) =

∑
i Ci(si(A)) and the profit of A is its value minus its cost: π(A) =

v(A)− C(A).

3 Unconstrained Profit Maximization

We begin by developing an algorithm for the unconstrained version of the gen-
eralized secretary problem with F = 2U , which already exhibits some of the
challenges of the general setting. Note that this setting captures as a special
case the knapsack secretary problem of [4] where the goal is to maximize the
total value of a subset of size at most a given bound. In fact in the offline setting,
the generalized secretary problem is very similar to the knapsack problem. If all
elements have the same (unit) size, then the optimal offline algorithm orders
elements in decreasing order of value and picks the largest prefix in which each
element contributes a positive marginal profit. When element sizes are different,
a similar approach works: we order elements by density, and note that either a
prefix of this ordering or a single element is a good approximation (much like the
greedy 2-approximation for knapsack). The full version of this paper [6] provides
a detailed analysis of the algorithm as well as other missing proofs.

Secretary Problems with Convex Costs 81

Precisely, we show that |O∗ ∩ F| ≤ 1, and we can therefore focus on approxi-
mating π over the set I. Furthermore, letA(U) denote the greedy subset obtained
by considering elements in I in decreasing order of density and picking the largest
prefix where every element has nonnegative marginal profit. The following lemma
implies that either A(U) or the single best element is a 3-approximation to O∗.

Lemma 1. We have that π(O∗) ≤ π(F ∗) + maxe∈U π(e) ≤ π(A(U)) +
2maxe∈U π(e). Therefore the greedy offline algorithm achieves a 3-approximation
for (π, 2U).

The offline greedy algorithm suggests an online solution as well. In the case
where a single element gives a good approximation, we can use the classical
secretary algorithm to get a good competitive ratio. In the other case, to get
good competitive ratio, we only need to estimate the smallest density, say ρ–, in
the prefix of elements that the offline greedy algorithm picks, and then accept
every element that exceeds this threshold.

We pick an estimate for ρ– by observing the first few elements of the stream
U . Note that it is important for our estimate of ρ– to be no smaller than ρ–.
In particular, if there are many elements with density just below ρ–, and our
algorithm uses a density threshold less than ρ–, then the algorithm may be
fooled into mostly picking elements with density below ρ– (since elements arrive
in random order), while the optimal solution picks elements with densities far
exceeding ρ–. We now describe how to pick an overestimate of ρ– which is not too
conservative, that is, such that there is still sufficient profit in elements whose
densities exceed the estimate.

In the remainder of this section, we assume that every element has profit
at most 1

k1+1π(O
∗) for an appropriate constant k1, to be defined later. (If this

does not hold, the classical secretary algorithm obtains an expected profit of
at least 1

e(k1+1)π(O
∗)). Then Lemma 1 implies π(F ∗) ≥ (1− 1/(k1 + 1))π(O∗),

maxe∈U π(e) ≤ (1/k1)π(F
∗), and π(A(U)) ≥ (1− 1/k1) π(F

∗).
We divide the stream U into two parts X and Y , where X is a random subset

of U . Our algorithm unconditionally rejects elements in X and extracts a density
threshold τ from this set. Over the remaining stream Y , it accepts an element
if and only if its density is at least τ and if it brings in non-negative marginal
profit. Under the assumption of small element profits, we can use a concentration
lemma of Feige et al. [13] to show that π(X∩A(U)) is concentrated and is a large
enough fraction of π(O∗). This implies that with high probability π(X ∩A(U))
(which is a prefix of A(X)) is a significant fraction of π(A(X)). Therefore we
attempt to identify X∩A(U) by looking at profits of prefixes of X . We will need
the following lemma about A().

Lemma 2. For any set S, consider subsets A1, A2 ⊆ A(S). If A1 ⊇ A2, then
π(A1) ≥ π(A2). That is, π is monotone-increasing when restricted to A(S) for
all S ⊆ U .

We define two good events. E1 asserts that X ∩ A(U) has high enough profit.
Our final output is the set PY

τ . E2 asserts that the profit of PY
τ is a large enough

82 S. Barman et al.

Algorithm 1. Online algorithm for single-dimensional (π, 2U)

1: With probability 1/2 run the classic secretary algorithm to pick the single most
profitable element else execute the following steps.

2: Draw k from Binomial(n, 1/2).
3: Select the first k elements to be in the sample X. Reject these elements.

4: Let τ be largest density such that π(PX
τ) ≥ β

(
1− 1

k1

)
π(F ∗(X)) for constants β

and k1 to be specified later.
5: Initialize selected set O← ∅.
6: for i ∈ Y = U \X do
7: if π(O ∪ {i}) − π(O) ≥ 0 and ρ(i) ≥ τ and i /∈ F then
8: O ← O ∪ {i}
9: end if
10: end for

fraction of the profit of Pτ . Recall that A(U) is a density prefix, say Pρ– , and
so X ∩ A(U) = PX

ρ– . Let E1 denote the event that π(PX
ρ–) > β π(Pρ–), where

β is a constant to be specified later. Conditioned on E1, we have π(PX
ρ–) >

β (1− 1/k1)π(F
∗) ≥ β (1− 1/k1)π(F

∗(X)). Note that threshold τ , as selected
by Algorithm 1, is the largest density such that π(PX

τ) ≥ β (1− 1/k1)π(F
∗(X)).

Therefore, E1 implies τ ≥ ρ–, and we have the following lemma.

Lemma 3. Conditioned on E1, O = Pτ ∩ Y ⊆ A(U).

On the other hand, PX
τ ⊆ Pτ ⊂ A(U) along with Lemma 2 implies

π(Pτ) ≥ π(PX
τ) ≥ β (1− 1/k1) π(F

∗(X)) ≥ β (1− 1/k1) π(P
X
ρ–) ≥ β2 (1− 1/k1)

2 π(F ∗)

where the second inequality is by the definition of τ , the third by optimality and
the last is obtained by applying E1 and A(U) ≥ (1− 1/k1)F

∗.
We define ρ+ to be the largest density such that π(Pρ+)≥β2 (1− 1/k1)

2
π(F ∗).

Then ρ+ ≥ τ , which implies Pρ+ ⊆ Pτ and the following lemma.

Lemma 4. Event E1 implies O ⊇ Y ∩ Pρ+ .

Based on the above lemma, we define event E2 : π(PY
ρ+) ≥ β′π(Pρ+), for an

appropriate constant β′. Conditioned on events E1 and E2, and using Lemma 2
again, we get π(O) ≥ π(PY

ρ+) ≥ β′β2(1− 1/k1)
2π(F ∗). To wrap up the analysis,

we show that E1 and E2 are high probability events.

Lemma 5. If no element of U has profit more than 1
113π(O

∗), then Pr[E1 ∧
E2] ≥ 0.52, where β = 0.262 and β′ = 0.094.

Putting everything together we get the following theorem.

Theorem 1. Algorithm 1 achieves a competitive ratio of 616 for (π, 2U) using
k1 = 112 and β = 0.262.

Secretary Problems with Convex Costs 83

Proof. If there exists an element with profit at least 1
113π(O

∗(U)), the classical
secretary algorithm (Step 1) gives a competitive ratio of 1

113e ≥ 1
308 . Otherwise,

using Lemma 5, with β′ = 0.094, we have E[π(O)] ≥ E[π(O) | E1 ∧ E2] Pr[E1 ∧
E2] ≥ 0.52β′β2(1−1/k1)

2π(F ∗) ≥ 0.52β′β2(1−1/k1)
2 (1− 1/(k1 + 1))π(O∗) ≥

1
307π(O

∗). Since we flip a fair coin to decide whether to output the result of
running the classical secretary algorithm, or output the set O, we achieve a
2max{308, 307} = 616-approximation to π(O∗) in expectation (over the coin
flip).

4 Matroid-Constrained Profit Maximization

We now extend the algorithm of Section 3 to the setting (π,F) where F is a
matroid constraint. In particular, F is the set of all independent sets of a matroid
over U . We skip a precise definition of matroids and will only use the following
facts: F is a downward closed feasibility constraint and there exist an exact
offline and an O(

√
log r)-competitive online algorithm for (Φ,F), where Φ is a

sum-of-values objective and r is the rank of the matroid. The algorithms and
detailed proofs for this section are given in the full version [6] of the paper.

In the unconstrained setting, we showed that there always exists either a
density prefix or a single element with near-optimal profit. So in the online setting
it sufficed to determine the density threshold for a good prefix. In constrained
settings this is no longer true, and we need to develop new techniques. Our
approach is to develop a general reduction from the π objective to two different
sum-of-values type objectives over the same feasibility constraint. This allows us
to employ previous work on the (Φ,F) setting; we lose only a constant factor in
the competitive ratio. We will first describe the reduction in the offline setting
and then extend it to the online algorithm using techniques from Section 3.

Decomposition of π. For a given density γ, we define the shifted density function
hγ() over sets as hγ(A) :=

∑
e∈A (ρ(e)− γ) s(e) and the fixed density function

gγ() over sizes as gγ(s) := γs − C(s). For a set A we use gγ(A) to denote
gγ(s(A)). It is immediate that for any density γ we can split the profit function
as π(A) = hγ(A)+ gγ(A). In particular π(O∗) = hγ(O

∗)+ gγ(O
∗). Our goal will

be to optimize the two parts separately and then return the better of them.
Note that the function hγ is a sum of values function where the value of an

element is defined to be (ρ(e)− γ)s(e). Its maximizer is a subset of Pγ , the set
of elements with nonnegative shifted density ρ(e) − γ. In order to ensure that
the maximizer of hγ , say A, also obtains good profit, we must ensure that gγ(A)
is nonnegative, and therefore π(A) ≥ hγ(A). This is guaranteed for a set A as
long as s(A) ≤ s̄(γ).

Likewise, the function gγ increases as a function of size s as long as s is
at most s̄(γ), and decreases thereafter. Therefore, in order to maximize gγ , we
merely need to find the largest (in terms of size) feasible subset of size no more
than s̄(γ). As before, if we can ensure that for such a subset hγ is nonnegative
(e.g. if the set is a subset of Pγ), then the profit of the set is no smaller than its
gγ value. This motivates the following definition of “bounded” subsets:

84 S. Barman et al.

Definition 1. Given a density γ a subset A ⊆ U is said to be γ-bounded if
A ⊆ Pγ and s(A) ≤ s̄(γ).

Proposition 1. For any γ-bounded set A, π(A) ≥ hγ(A) and π(A) ≥ gγ(A).

For a density γ, we define Hγ := argmaxH∈F ,H⊆Pγ
hγ(H) along with Gγ :=

argmaxG∈F ,G⊆P̄γ
s(G).

Following our observations above, both Hγ and Gγ can be determined effi-
ciently (in the offline setting) using standard matroid maximization. However,
we must ensure that the two sets are γ-bounded. Further, in order to compare
the performance of Gγ against O∗, we must ensure that its size is at least a
constant fraction of the size of O∗.

We show in the full version of this paper that there exists a density ρ– for
which Hγ and Gγ satisfy these properties. The following is our main claim of
this section.

Lemma 6. There exists a density ρ– such that for any density γ > ρ–,
π(O∗(P̄γ)) ≤ π(Hγ) + π(Gγ). Furthermore, π(O∗) ≤ π(Hρ–) + π(Gρ–) +
2maxe∈U π(e).

This lemma immediately gives us an offline approximation algorithm for (π,F):
for every element density γ, we find the sets Hγ and Gγ ; we then output the
best (in terms of profit) of these sets or the best individual element. We obtain
the following theorem:

Theorem 2. The algorithm outlined above 4-approximates (π,F) in the offline
setting.

The Online Setting. Our online algorithm, as in the unconstrained case, uses
a sample X from U to obtain an estimate τ for the density ρ–. Then with
equal probability it applies the online algorithm for (hτ ,F) on the remaining set
Y ∩ Pτ or the online algorithm for (s,F) (in order to maximize gτ) on Y ∩ Pτ .
The algorithm is described in detail in the full version of the paper. Lemma 6
indicates that it should suffice for τ to be larger than ρ– while ensuring that
π(O∗(Pτ)) is large enough. As in Section 3 we define the density ρ+ as the
upper limit on τ , and claim that τ satisfies the required properties w.h.p.

Theorem 3. If there exists an α-competitive algorithm for the matroid secretary
problem (Φ,F) where Φ is a sum-of-values objective, then the online algorithm
outlined above achieves a competitive ratio of O(α) for the problem (π,F).

5 Multi-dimensional Profit Maximization

In this section, we consider the GSP with a multi-dimensional profit objective.
Recall that in this setting each element e has � different sizes s1(e), . . . , s
(e),

Secretary Problems with Convex Costs 85

and the cost of a subset is defined by � different convex functions C1, . . . ,C
. The
profit function is defined as π(A) = v(A) −

∑
i Ci(si(A)).

As in the single-dimensional setting, we partition U into two sets I and F
with F = {e ∈ U : argmaxα π(αe) < 1}. We show in the full version that, as
before, an optimal solution cannot contain too many elements of F: |O∗∩F| ≤ �.
We therefore devote the remainder of this section to approximating π over I.
Here we focus on the unconstrained problem (π, 2U), but our results extend to
constrained settings as well [6].

Our high level approach is to distribute the value of each element across the �
dimensions, thereby defining densities and decomposing profit across dimensions
appropriately. We do this in such a way that a maximizer of the ith dimensional
profit for some dimension i gives us a good overall solution (albeit at a cost of a
factor of �).

Formally, let ρ : U → R
 denote an �-dimensional vector function ρ(e) =
(ρ1(e), . . . , ρ
(e)) that satisfies

∑
i ρi(e)si(e) = v(e) for all e. We set vi(e) =

ρi(e)si(e) and πi(A) = vi(A) − Ci(si(A)) and note that π(A) =
∑

i πi(A). Let
F ∗
i denote the maximizer of πi over I. Then, π(F ∗) ≤

∑
i πi(F

∗
i).

Given this observation, it is natural to try to obtain an approximation to π by
solving for F ∗

i for all i and rounding the best one. This does not immediately work:
even if πi(F

∗
i) is very large, π(F

∗
i) could be negative because of the profit of the set

being negative in other dimensions. Instead, with each element we can associate
a density vector ρ such that for any two elements e and e′ either ρ(e) component
wise dominates ρ(e′) or vice versa. We call such vectors proper densities. We show
that under ρ the best set F ∗

i indeed gives an O(�) approximation to O∗(I).
Proper density vectors induce a single ordering over elements, say, e1, . . . , en.

Note that each F ∗
i is a (fractional) prefix of this sequence. Let F ∗

1 be the shortest
prefix and let A = {e1, . . . , ek1} denote the integral part of F ∗

1 . A satisfies the
inequality π(F ∗) ≤ �(π(A)+maxe π(e)). Thus A or the single best element gives
us an offline O(�)-approximation for (π, 2U) in the multi-dimensional setting.

The Online Setting. Note that proper densities essentially define a 1-dimensional
manifold in �-dimensional space. We can therefore hope to apply our online al-
gorithm from Section 3 to this setting. However, there is a caveat: the algorithm
from Section 3 uses the offline algorithm as a subroutine on the sample X to
estimate the threshold τ ; näıvely replacing the subroutine by the O(�) approxi-
mation described above leads to anO(�2) competitive online algorithm3. In order
to improve the competitive ratio to O(�) we pick the threshold τ more carefully.
(The online algorithm is described in detail in the full version of the paper).

Via a similar argument as for Theorem 1, we get

Theorem 4. Algorithm 1 with the modifications outlined above is O(�) compet-
itive for (π, 2U) where π is a multi-dimensional profit function.

3 Note the (1− 1/k1)
2 factor in the final competitive ratio in Theorem 1; this factor

is due to the use of the offline subroutine in determining τ .

86 S. Barman et al.

References

1. Babaioff, M., Dinitz, M., Gupta, A., Immorlica, N., Talwar, K.: Secretary problems:
weights and discounts. In: SODA 2009 (2009)

2. Babaioff, M., Hartline, J., Kleinberg, R.: Selling banner ads: Online algorithms
with buyback. In: Fourth Workshop on Ad Auctions (2008)

3. Babaioff, M., Hartline, J.D., Kleinberg, R.D.: Selling ad campaigns: Online algo-
rithms with cancellations. In: EC 2009 (2009)

4. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary prob-
lem with applications. In: Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, pp. 16–28 (2007)

5. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and on-
line mechanisms. In: SODA 2007 (2007)

6. Barman, S., Umboh, S., Chawla, S., Malec, D.L.: Secretary problems with convex
costs. CoRR, abs/1112.1136 (2011)

7. Bateni, M.H., Hajiaghayi, M.T., Zadimoghaddam, M.: Submodular secretary prob-
lem and extensions. In: Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, pp. 39–52 (2010)

8. Chakraborty, S., Lachish, O.: Improved competitive ratio for the matroid secretary
problem. In: SODA 2012 (2012)

9. Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism
design and sequential posted pricing. In: STOC 2010 (2010)

10. Dean, B.C., Goemans, M.X., Vondrák, J.: Adaptivity and approximation for
stochastic packing problems. In: SODA 2005 (2005)

11. Dimitrov, N.B., Plaxton, C.G.: Competitive Weighted Matching in Transversal Ma-
troids. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 397–408.
Springer, Heidelberg (2008)

12. Dynkin, E.B.: The optimum choice of the instant for stopping a Markov process.
Soviet Math. Dokl 4(627-629) (1963)

13. Feige, U., Flaxman, A.D., Hartline, J.D., Kleinberg, R.D.: On the Competitive
Ratio of the Random Sampling Auction. In: Deng, X., Ye, Y. (eds.) WINE 2005.
LNCS, vol. 3828, pp. 878–886. Springer, Heidelberg (2005)

14. Feldman, M., Naor, J., Schwartz, R.: Improved competitive ratios for submod-
ular secretary problems. In: Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pp. 218–229 (2011)

15. Ferguson, T.: Who solved the secretary problem. Statist. Sci. 4(3), 282–289 (1989)

16. Freeman, P.R.: The secretary problem and its extensions: a review. International
Statistical Review 51(2), 189–206 (1983)

17. Gupta, A., Roth, A., Schoenebeck, G., Talwar, K.: Constrained non-monotone
submodular maximization: Offline and secretary algorithms. Internet and Network
Economics, 246–257 (2010)

18. Hajiaghayi, M.T., Kleinberg, R., Parkes, D.C.: Adaptive limited-supply online auc-
tions. In: EC 2004 (2004)

19. Kennedy, D.P.: Prophet-type inequalities for multi-choice optimal stopping.
Stochastic Processes and their Applications 24(1), 77–88 (1987)

20. Kleinberg, R.: A multiple-choice secretary algorithm with applications to online
auctions. In: SODA 2005 (2005)

Secretary Problems with Convex Costs 87

21. Korula, N., Pál, M.: Algorithms for Secretary Problems onGraphs andHypergraphs.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5556, pp. 508–520. Springer, Heidelberg (2009)

22. Oxley, J.: Matroid Theory. Oxford University Press (1992)
23. Samuel-Cahn, E.: Comparison of threshold stop rules and maximum for indepen-

dent nonnegative random variables. The Annals of Probability 12 (1984)
24. Samuels, S.: Secretary problems. In: Handbook of Sequential Analysis, pp. 381–405.

Marcel Dekker (1991)
25. Soto, J.A.: Matroid Secretary Problem in the Random Assignment Model. In:

SODA 2011 (2011)

Nearly Simultaneously Resettable Black-Box

Zero Knowledge

Joshua Baron1, Rafail Ostrovsky2, and Ivan Visconti3

1 UCLA, Los Angeles, CA, USA 90095
jwbaron@math.ucla.edu, rafail@cs.ucla.edu

2 Università di Salerno, 84084 Fisciano (SA) - Italy
visconti@dia.unisa.it

Abstract. An important open question in Cryptography concerns the
possibility of achieving secure protocols even in the presence of physical
attacks. Here we focus on the case of proof systems where an adversary
forces the honest player to re-use its randomness in different executions.
In 2009, Deng, Goyal and Sahai [1] constructed a simultaneously re-
settable non-black-box zero-knowledge argument system that is secure
against resetting provers and verifiers.

In this work we study the case of the black-box use of the code of
the adversary and show a nearly simultaneously resettable black-box
zero-knowledge proof systems under standard assumptions. Compared
to [1], our protocol is a proof (rather then just argument) system, but
requires that the resetting prover can reset the verifier up to a bounded
number of times (which is unavoidable for black-box simulation), while
the verifier can reset the prover an arbitrary polynomial number of times.
The main contribution of our construction is that the round complexity
is independent of the above bound. To achieve our result, we construct
a constant-round nearly simultaneously resettable coin-flipping protocol
that we believe is of independent interest.

Keywords: Reset attacks, Black-box simulation.

1 Introduction

In this work, we study the feasibility of achieving efficient zero-knowledge proof
systems in the presence of physical attacks. Specifically, we examine the role
of the black-box use of the code of the adversary with respect to simultane-
ously resettable proof systems. Such proof systems are of interest as examples of
proof systems that are secure under very relaxed constraints on the re-use of the
same randomness in multiple executions. In the case of resettable zero knowledge
(rZK), a malicious verifier may cheat against an honest prover who must use
the same random tape polynomially many times. Further, resettably sound zero
knowledge constrains the randomness used by the verifier: a malicious prover
may try to cheat against an honest verifier who must use the same random tape
polynomially many times. The former property was introduced and instantiated

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 88–99, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Nearly Simultaneously Resettable Black-Box Zero Knowledge 89

by Canetti, Goldreich, Goldwasser and Micali [2]; the later property was in-
troduced by Micali and Reyzin [3] and later instantiated by Barak, Goldreich,
Goldwasser and Lindell [4]. Because rZK is a generalization of concurrent zero
knowledge (cZK) [5,6,7,8,9], every rZK proof system is a cZK proof system. A
question opened by [4] and resolved by [1] is “Does there exist a resettably sound
rZK proof system for all NP?”. [1] answered this question in the affirmative, but
they required a construction with a security proof that required a non-black-box
simulator strategy, which utilize the specific strategy of a cheating verifier in
its specification. Currently, there is no known practical protocol that relies on
a non-black-box1 simulation strategy, while for instance there do exist efficient
constructions for cZK and concurrent non-malleable zero knowledge that rely on
black-box simulation strategies [10,11], which work against any verifier strategy.

It is proved in [4] that resettably sound black-box zero-knowledge arguments
can be constructed for languages in BPP. Instead, we study whether there ex-
ist t-bounded resettably sound rZK proof systems with black-box simulation, and
more in general, with only a black-box use of the code of the adversary (i.e.,
both the simulation and the proof of soundness do not rely on non-black-box
uses of the code of the adverary). Such proof systems are rZK but also allow
a malicious prover to conduct at most t(n) resets against an honest verifier,
where t is any fixed polynomial and n is the security parameter. Such a security
setting has practical applications (indeed, in [12] it has been considered for the
case of e-passports) because real hardware that may be reset to break security,
such as smart cards or stateless devices, have certain wear costs; after enough
resets, the hardware may simply break, a simple counter may run out, or built-in
battery may become depleted. Our black-box construction is also of theoretical
interest, and moreover may lead to more efficient near-simultaneously rZK pro-
tocols. Indeed while all known non-black-box constructions based on standard
assumptions are inefficient, there are in several cases alternative efficient black-
box constructions [10,11]. Further, unlike [4], we obtain unconditional soundness,
a property that is hard to achieve when the simulator is non-black-box.

We remark that constructing t-resettably sound rZK proof systems for any
language L ∈ NP with black-box simulation is quickly accomplished if round
complexity is allowed to be t-dependent. For any t, take any rZK proof system
with black-box simulation and repeat it sequentially with independent random-
ness t + 1 times; a verifier then accepts only if he accepts for each of the t + 1
protocol runs. What we desire is to construct a t-resettably sound rZK proof
system where the round complexity is t-independent.

1.1 Overview of Our Contribution

For all NP and for any polynomial t, we construct a t-resettably sound rZK
proof system with black-box use only of the code of the adversary and round
complexityO(nε) for security parameter n and for any constant ε > 0. We require

1 We ignore controversial non-black-box extraction assumptions.

90 J. Baron, R. Ostrovsky, and I. Visconti

standard assumptions as the existence of enhanced trapdoor permutations and
collision-resistant hash functions.

We re-examinine the rZK protocol of [2]. Their protocol involves an adapta-
tion of the cZK construction of [6]. We first give a high-level description of the
protocol of [2]. V commits to a set of nε strings of length n. Then, in the next 2nε

rounds, P first commits to an n-bit string and V subsequently decommits to the
next string, eventually decommitting to the entire set. The protocol concludes
by P giving a rWI proof that either x ∈ L or that at least one of the strings
committed by P is identical to the subsequent decommitment of V . Clearly, such
a protocol is not t-resettably sound (for any t ≥ 1), as a resetting prover can
simply obtain one of V ’s committed strings, rewind a round and then commit to
that string. However, we use this protocol as a basis to construct our protocol.

We think of the initial commitment by V to nε strings of length n as a database.
The idea for our protocol is that V should commit to a database of poly(n, t)
strings of length n; then, in each of the next 2nε rounds, P asks for n entries
of V ’s database, which V then reveals. Finally, P provides a t-resettably sound,
rWI proof that either x ∈ L or that P can commit to a large constant fraction
of V ’s database. The idea is that even if P was able to successfully ask for tnε+1

indices of the database, P would still not know a large constant fraction of the
database; in this way, the protocol will be t-resettably sound.

We overcome several challenges to accomplish such a protocol. First, we re-
quire the simulator to discover significantly more indices of V ’s database than
a t-resetting P ∗ possibly could. We note that we can modify the (black-box)
simulator strategy given in [2]; there, at each prover commitment phase, the
simulator executes an independent look-ahead subprotocol call to t discover the
string that V would decommit to. In fact, these look-ahead subprotocol calls are
independent from one round to the next. We take advantage of this independence
by having our simulator execute polynomially many look-ahead subprotocol calls
for each round and proving that such a strategy produces more than half of V ’s
database. On the other hand, we will show that for suitable parameters, a t-
resetting P ∗ will only be able to discover at most 1/16 of V ’s database except
with negligible probability. Therefore, our protocol starts by V committing to
a large database followed by 2nε rounds where V decommits to the n (distinct)
random indices in each round that P asks for. Finally, P commits to a guess
of the entire database and proves that either x ∈ L or that a large constant
fraction of the guess correctly corresponds to V ’s database.

However to have a meaningful statement for the proof given by P , it seems
that V should reveal the entire database, but this exposes again V to reset
attacks. Therefore, a second challenge is that V will reveal a small fraction of
the database and P will prove that it committed to a large portion of this
fraction. The challenge of such a strategy is that a cheating V ∗ might skew the
distribution of what it reveals to be used for the rWI proof at the conclusion
of our protocol such that the simulator might not discover enough entries of
the database. Therefore, we require a special coin-flipping protocol by which V
reveals n uniformly random elements of its database, at which point P proves,

Nearly Simultaneously Resettable Black-Box Zero Knowledge 91

using a t-resettably sound rWI proof, that either x ∈ L or that P ’s database
guess, committed to before the final proof, contains a correct guess for at least
1/4 of the n indices that V last decommitted to. Since the n revealed indices
are uniformly distributed over V ’s database, only if P ’s initial database guess
matches at least 1/4 of V ’s database will P be able to give a correct WI proof
without using the witness for x ∈ L (except with negligible probability).

A first attempt for such a coin-flipping protocol between left player PL and
right player PR might be for PL to a apply pseudorandom function family, fPRF∗ ,
with a previously committed seed, s, on input a random string sent by PR. The
string sent by PR would be constructed by applying a (t+ 1)-wise independent
hash function on the transcript thus far (PR cannot use a pseudorandom function
because P ∗

L is unbounded and could distinguish the output). However, a cheating
P ∗
L might commit to a seed in such a way that even on random input, the output

of the pseudorandom function has skewed distribution. Once can also try to
modify the protocol by having PR hash and output the pair (R,R′) and send
it to PL, who then computes fPRF

s (R) ⊕ R′. However, cheating P ∗
R could then

simply rewind, keep R fixed and send whatever R′ he wished. Instead, we solve
our problem as follows: PR hashes to obtain the triple (R,R′, r′), computes a
(statistically hiding) commitment to R′, denoted c, using randomness r′, and
sends (R, c) to PL. Then, using previous committed seed s, PL applies fPRF

s to
the concatenation of R and c, which also binds the output of the pseudorandom
function to R′ before R′ has been revealed. Finally, PR opens the decommitment
of R′ to PL, and both set the random string τ to be the sum of the output of the
pseudorandom function and R′. We remark that an adversary (resetting or not)
may always guess O(log n) bits of the coin-flipping output; however, since the
output length is n, an adversary will have only a negligible chance of correctly
guessing a constant fraction of the coin-flipping output.

A final note is that while P ∗
R may construct R and R′ as he wishes, it is

very important that a cheating P ∗
L formats his pseudorandom function outputs

correctly; otherwise, upon discovering PR’s R and R′ , P ∗
L could simply rewind

and lie about the output of fPRF
s . Therefore, PL must send a rWI proof that

either x ∈ L or the function output was formatted correctly. In this way, only
in the case that P ∗

L is cheating with x /∈ L the correct formatting will need to
be assured; we can bootstrap the witness for x ∈ L to make the rWI proof of
consistency witness hiding.

A third challenge is that our coin-flipping protocol makes the larger protocol
not admissible. In particular, the simulator in [2] was given in the so-called hy-
brid model, where a cheating V ∗ is somewhat constrained. Therefore to prove
rZK for our protocol, we must demonstrate that our protocol is not meaningfully
different enough from the protocol of [2] even though their simulator no longer
applies to our setting. To accomplish this task, we prove a theorem based on
the observation that the only place where the simulators might differ are where
they play identically to the honest prover against the verifier but using a dif-
ferent witness. We therefore construct a variant of our own protocol that more
explicitly models the protocol of [2] but is only rZK (and not bounded resettably

92 J. Baron, R. Ostrovsky, and I. Visconti

sound). We then construct the simulator for the intermediate protocol. Finally,
we prove that the existence of a simulator for this intermediate protocol implies
the existence of a simulator for the protocol that we desire. We believe that such
a proof strategy is of independent interest.

We note that our protocol has communication complexity that is dependent of
t; finding a protocol using standard assumptions with communication complexity
independent of t is an interesting open question2, as is improving the round
complexity of our construction.

1.2 Other Related Work

The notion of rZK was first introduced by [2]; later constructions of black-box
rZK protocols have better round complexity. In [7] it is shown a rZK proof
system with black-box simulation and ω(log2 n) rounds. The protocol improved
the round complexity of [6], by examining a static simulator rewind schedule and
showing that such a schedule produced a successful single extraction, except with
negligible probability. It is not clear how to adapt such a scheduling strategy to
the polynomial many successful extractions that we require. The results of [9]
can also be used to construct a black-box rZK proof system. Their protocol
requires Õ(log n) rounds and also build upon the protocol of [6]. The simulator
strategy of [9] relies on a careful analysis of the random tapes used by the
simulator throughout its run together with the oblivious simulator strategy of [7]
to obtain a single successful extraction, while our approach relies on segmenting
the simulator of [2] and running various of its subprotocols in parallel to obtain
polynomially many successful look-aheads. Finding compatibility between the
two approaches is an interesting open question.

The first resettably sound (non-black-box) zero-knowledge argument was con-
structed by [4]. Deng and Lin [13] constructed a zero-knowledge argument se-
cure in a weakened notion of simultaneous resettability: both cheating prover
and verifier can reset the other polynomially many times, but can only reset
a particular party with a fixed random tape (e.g., an incarnation) a bounded
number of times. Their protocol requires only a constant number of rounds and
also required non-black-box simulation in the proof.

The construction of a simultaneously rZK argument was first provided by [1]
and requires polynomial round complexity. Their protocol relies on the prover
initially committing to his challenges for the extraction stage and using the
resettably sound zero-knowledge argument of [4] to prove that either x ∈ L or
that the decommitted challenges are correct. Because the protocol heavily relies
on the non-black-box zero-knowledge argument of [4], the simulator used for the
security proof is non-black-box. Recently, it has been shown in [19] how to obtain
a constant-round resettably sound resettable witness indistinguishable argument
of knowledge.

We note that all the protocols listed here are in the standard model. In par-
ticular, [2,4,13,14,15,16] also provide constructions in the bare public-key model.

2 Using less standard assumptions like complexity leveraging, constructing a protocol
t-independent communication complexity seems to be more easily to accomplish.

Nearly Simultaneously Resettable Black-Box Zero Knowledge 93

In addition, [17] give a resettable black-box statistical zero-knowledge proof for
several non-trivial languages, but they do not have a construction for all NP .
As such research is incomparable to our work, we do not consider it here.

2 Preliminaries, Definitions and Tools

We denote by n the security parameter throughout our discussion., by [m] the set
{1, ...,m}, by x|y the concatenation of x and y, by Un the uniform distribution
over {0, 1}n and by fPRF

∗ a pseudorandom function family, where fPRF
s (x) is

the evaluation of the function specified by seed s at x.
We will denote by C the PPT committer and by R the PPT receiver. We

use the standard notions of statistically (respectively, computationally) binding
and computationally (respectively, statistically) hiding. When statistical hiding
or binding is discussed for a commitment scheme, the not mentioned property
is assumed to hold with computational security.

We denote by (P1(x), P2(y)) the interactive protocol between party P1 with in-
put x and party P2 with input y; moreover, we denote the sequential composition
of protocols πi = (P i

1 , P
i
2) and πj = (P j

1 , P
j
2) by (πi, πj) = ((P i

1 , P
j
1), (P

i
2 , P

j
2)).

We refer the reader to [2] for the definition of rZK (and witness indistinguish-
able) proof systems, and the definition of admissible proof systems as well as the
hybrid model. Our definition of t-bounded resettable soundness follows from the
definition in [4] for resettable soundness, except that a malicious prover P ∗ has
a bound of t(n) many resets he can execute against a verifier V . We omit the
formal definition here due to lack of space.

We will utilize the following construction3 of Dwork and Naor [18].

Theorem 1 (zaps). If enhanced trapdoor permutations exist, then for every
language L there exists a two-round simultaneously resettable WI proof system.

3 Black-Box rZK with t-Resettable Soundness

Before giving the exact protocol specification for our candidate construction
Π = (P, V), we first outline its crucial steps. We consider our protocol as the
composition of three subprotocols, π0, π1, and π2, for two reasons. The first
reason is that the purpose of each of the subprotocols is distinct and so discussing
them separately is natural. The second reason is that in order to prove rZK of
Π , we will construct another protocol that will rely on the first two subprotocols
but will require a different third subprotocol, π′

2. In what follows, fix a language
L ∈ NP, let n be the security parameter, let ε > 0 be any constant, and let t
be the polynomial resetting bound of the prover.

3 In fact, zaps are not inherently resettable WI, though they are resettably sound, as
noted by [4]. However, when the prover’s zap message is computed using a random
tape that is a pseudorandom function applied to V ’s initial message and P ’s random
tape, as is done here, zaps are rWI. We will therefore refer to zaps here and implicitly
assume that their instantiation in our protocol constructions utilize the appropriate
PRF-random tape construction.

94 J. Baron, R. Ostrovsky, and I. Visconti

Table 1. Outline of protocol Π =
(π0, π1, π2). CHCom is statistically
binding, while SHCom is statistically
hiding.

π0 : Setup Phase

1) P sets up SHCom
2) V constructs DB, |DB| = 16tn(nε + 1)
3) V sets up zap, V sends SHCom(DB)

π1 : Extraction Phase
1) nε Iterations:

i) P asks V for n indices of DB
ii) V decommits to the n indices

π2 : rWI Proof Phase

1) P guesses DB as γ; P sends PBCom(γ)
2) P and V jointly generate n random

indices, τ , of DB (coin flipping)
3) V decommits to the indices τ of DB
4) P sends zap for “x ∈ L or γ

agrees with at least 1/4 of the n values
of DB in positions τ”

Table 2. Outline of nearly re-
settable coin-flipping subprotocol
with output τ . fPRF

∗ is a pseu-
dorandom function family. (P exe-
cutes PL and V executes PR.)

Coin Flipping Subprotocol

1) PL sends CHCom(s) to PR

2) a) PR applies (t+ 1)-wise
independent hash function h to
transcript to obtain (R,R′, r′)

b) PR computes c← SHCom(R′)
using randomness r′

c) PR sends R, c to PL

3) PL computes r ← fPRF
s (R|c),

and sends r to PR

4) PL sends zap for “x ∈ L or
r formatted correctly”

5) PR decommits R′

6) PL and PL output τ = r ⊕R′

For subprotocol π0, P and V instantiate the proof system. P sends the setup
message for a 2-round statistically hiding, computationally binding commitment
scheme. V then constructs an ordered database, DB, consisting of 16tn(nε + 1)
random distinct strings of length n, and sends a statistically hiding commitment
of DB to P . V also sends the setup message used by P to execute zap proofs.
At this point, P applies a pseudorandom function (fP,1

∗ with seed chosen using
P ’s initial random tape) to the current transcript and uses the output as his
random tape for the rest of the protocol.

For subprotocol π1, for each of the nε sequential iterations, P asks for a
random sequence of n entries of DB, which V then decommits to. Note that for
this subprotocol, a resetting P can discover at most tn1+ε entries of DB. We
note that this protocol is very similar to the protocol in [2]; where their protocol
requiresO(n)-length (random) P commitments, our protocol requiresO(n log n)-
length random index requests, where both protocols require corresponding V
decommitments.

For subprotocol π2, P guesses V ’s database and commits to the guess (which
we call γ) using a non-interactive perfectly binding commitment scheme. P and
V then attempt to jointly compute an (n log |DB|)-length random string as fol-
lows: P commits to a seed s using a non-interactive perfectly binding commit-
ment scheme. V uses a (t+ 1)-wise independent hash function h with input the
transcript (of π1 and π2 thus far) to output a random triple (R,R′, r′). V then
computes c, a statistically hiding commitment to R′ using randomness r′, and
sends R and c to P . P sends back, using the PRF family fP,2

∗ , r = fP,2
s (R|c).

P proves using a zap that either x ∈ L or that r is properly formed from R,

Nearly Simultaneously Resettable Black-Box Zero Knowledge 95

c and the commitment of s. Note that P ’s commitment to s earlier in π2 can
now be viewed as a partial commitment to a random string. V then decommits
to R′ and sets τ = R′ ⊕ r as the set of n indices of DB. V decommits to the
n indices of DB corresponding to τ . Therefore, a resetting P ∗ can discover at
most tn(nε + 1) entries, or 1/16 of DB, including protocol π1. P provides a zap
that either x ∈ L or that 1/4 of the entries of P ’s guess γ corresponds to the
final n decommitments from DB (that correspond to τ). We denote this lan-
guage by Λ2. We note that only in the case of x /∈ L we have that the property
that τ is distributed randomly is important; we use this fact to “bootstrap”
well-formedness of τ in the unbounded, cheating P ∗ case.

Theorem 2. Assuming the existence of enhanced trapdoor permutations and
collision-resistant hash functions, protocol Π is a t-bounded resettably sound
rZK proof system for L.

The proof that Π is rZK will follow from proofs that Π is t-resettably sound and
complete (Lemma 3), that (π0, π2) is rWI (Theorem 4) and that there exists a
specific, simpler protocol Π ′ that is also rZK (Theorem 6). We will then prove
that since Π ′ is both rZK and sufficiently similar to Π , in a manner we define
as near compatible, Π is also rZK (Lemma 5).

Lemma 3. Π is t-resettably sound and t-resettably complete for L.

Completeness follows from the completeness of the zap protocols. Resettable
soundness follows from the rWI of zap proofs and the security of the coin-tossing
protocol; since P ∗ cannot discover 1/4 of the databaseDB except with negligible
probability (due to the statistical hiding property of V ’s commitment scheme),
P ∗ cannot find a correct witness for language Λ2 except with negligible proba-
bility due to the distribution of the coin-tossing protocol output.

In what follows, we will need that the sequential composition (π0, π2) is rWI
for languages Λ2 and L.

Theorem 4. Assuming the existence of enhanced trapdoor permutations and
collision-resistant hash functions, protocol (π0, π2) is rWI for Λ2 and for L.

For lack of space, we omit the proof of Theorem 4. The intuition for the proof
is that rWI holds due to the rWI of zap proofs, the security of the respective
commitment schemes, and the security of the coin-flipping protocol.

3.1 From a rZK Proof System to a New rZK Proof System

We now outline how we prove rZK of protocol Π by constructing another pro-
tocol where rZK is easier to prove. We note that this definition may likely be
generalized, but we only detail properties that will apply in our case for simplic-
ity. It is important to note that the “simpler” rZK protocol does not need to
be t-resettably sound; since the purpose here is to prove rZK, resettable sound-
ness is not required. Due to lack of space, we omit here the precise definition of
near-compatible protocols.

96 J. Baron, R. Ostrovsky, and I. Visconti

The idea of our transformation stems from the idea of constructing a rZK proof
system for L from a rWI proof system; see the constructions of [2,7,9]. What
generally occurs is that first the setup of the rWI proof is executed; then a so-
called extraction protocol is executed, where a cheating prover learns nothing,
but a simulator learns some secret s. Finally, a rWI proof is completed for the
language “x ∈ L or the secret s has been learned”; in the specific case of [2],
the “secret” was that the prover had committed to a string before the verifier
had decommitted to that same string, while in our case, the prover commits to
a largely correct guess of the database previously committed to by the verifier.

At a high level, we say that a protocol Π = (π0, π1, π2), which is the protocol
that we wish to prove rZK, is near-compatible to a protocol Π ′ = (π0, π1, π

′
2)

if the following holds. Fix a language L ∈ NP . Then (π0, π1, π
′
2) is rZK for L.

(π0, π1, π2) is an interactive proof for L, and (π0, π2) must be rWI so that it
does not reveal to the verifier whether the transcript is generated by using the
genuine witness of a real prover or by fake witness belonging to a simulator4.
Finally, we wish that the extraction stage, π1, is essential for the simulator to
complete both (π0, π

′
2) and (π0, π2) but extraneous for the honest prover.

Lemma 5. (Informal) Fix a language L. Let (π0, π1, π2) be near-compatible to
(π0, π1, π

′
2). Let (π0, π1, π

′
2) be rZK with a simulator that plays honestly for π0

and π′
2 and such that any witness extracted by the simulator is, except with

negligible probability, a valid witness for (π0, π1, π2) (with the same messages
sent for π0 and π1). Then (π0, π1, π2) is rZK.

For lack of space, the formal version of Lemma 5 in omitted. The intuition for
the proof of Lemma 5 is that by definition of near-compatible protocols and
by the lemma statement, if simulator Sim′ for (π0, π1, π

′
2) is able to extract

a witness to complete the protocol, then so is simulator Sim for (π0, π1, π2)
that acts identically to Sim′ for π1 and honestly for π0 and π2. This is because
both simulators act identically for the rounds where extraction occurs. Further,
(π0, π2) being rWI implies that V ∗ cannot distinguish whether the transcript is
generated by a real prover using a witness for x ∈ L or by a simulator using an
extracted witness.

4 An Admissible, Near-Compatible rZK Proof System

Here we outline an admissible rZK proof system that has the same initialization
phase and extraction phase as protocolΠ but with a simplified end stage in order
to make the proof of rZK easier. In particular, (π0, π1, π

′
2) is not constructed to be

t-resettably sound, and therefore the verifier can eventually reveal the entireDB.

4 Some additional technical properties specified in the precise definition: it is enough
for our purposes that the setup phase, π0, consists of one round of messages sent
by P followed by a round of messages sent by V . In order to prove the lemma, we
will require security reductions that will need limited access to the prover’s random
tape; therefore, P ’s message for π0 must be public coin.

Nearly Simultaneously Resettable Black-Box Zero Knowledge 97

For lack of space, we will only sketch π′
2. π

′
2 has the same inputs as π2 above. π′

2

also begins like π2: first, prover commits his guess γ using a statistically binding
commitment scheme and sends it to V . Then, however, V decommits the entire
DB. P then executes a zap that either x ∈ L or that γ corresponds to 1/4 of
DB; we denote this new language by Λ3.

Note that by construction, (π0, π1, π
′
2) satisfies the respective properties of

near-compatibility. Further, (π0, π1, π
′
2) is admissible since the verifier, after its

initial message, only sends decommitments.
Since (π0, π1, π

′
2) and (π0, π1, π2) are near-compatible, the only remaining sub-

tlety is to note that the witness extraction property of Lemma 5 holds. But this
is indeed the case because the simulator, will extract a set of entries from V that
correspond to at least 1/2 of V ’s DB except with negligible probability. Since,
for π2, the entries chosen for Λ2 are selected uniformly at random from DB, if
the simulator knows 1/2 of DB, then the simulator will know 1/4 of the entries
selected for Λ2 except with negligible probability.

Theorem 6. Assuming the existence of enhanced trapdoor permutations and
collision-resistant hash functions, protocol (π0, π1, π

′
2) is zero knowledge in the

hybrid model (i.e, hZK) for L.

Since the protocol (π0, π1, π
′
2) is hZK and already in the form needed to trans-

form zero-knowledge proofs secure in the hybrid model to zero-knowledge proofs
secure in the resettably model, Theorem 6 implies the following5.

Corollary 7. (π0, π1, π
′
2) is rZK for L.

We would like to contrast the protocol (π0, π1, π
′
2) with that given in [2]. As

noted in the high-level outline of Π in Section 3, the extraction stage of [2] and
the subprotocol π1 are very similar. Indeed, π′

2 is a natural extension of the
protocol in [2] because in both their protocol and ours, DB is revealed and the
rWI proof incorporates the whole DB. In order to prove Theorem 6, we will
need the fact that (π0, π

′
2) is rWI for Λ3 and for L.

Lemma 8. Assuming the existence of enhanced trapdoor permutations and
collision-resistant hash functions, then protocol (π0, π

′
2) is rWI for Λ3 and

for L.

4.1 High-Level Simulator Strategy in the Proof of Theorem 6

In [2], the high level strategy of the simulator was that it would try to “look
ahead” to try to figure out the verifier’s commitment ahead of time, but otherwise

5 We note that the simulator does not change from Theorem 6 to Corollary 7. The
reason is that the proof in [2] that takes a hZK protocol and proves that it is rZK
does not change the simulator; rather, it proves that for every hybrid adversary there
exists a corresponding adversary that however is still simulatable. In particular, if
the simulator given here in the hybrid model only rewinds during π1 and otherwise
plays honestly, so does the simulator in the full rZK model.

98 J. Baron, R. Ostrovsky, and I. Visconti

play honestly for all other (non-extraction stage) rounds. This is also true for the
simulator here: the simulator would like to discover as manyDB decommitments
as possible and otherwise plays honestly. The most important difference between
the rZK simulator here and the simulator in [2] is that their protocol only requires
1 successful look-ahead to proceed, while our protocol requires polynomially
many successful look-aheads to proceed.

To construct our simulator, we will use a nearly identical strategy as the simu-
lator from [2] except that we will execute the individual (main-thread level) look-
aheads |DB| many times in parallel. Namely, the simulator Sim′ in the extraction
stage, π1, attempts to discover half of DB; if this has not occurred at the end
of the extraction stage, then the simulator simply aborts and fails to complete.
One of the main inefficiencies of the [2] simulator is that it computes a distinct
look-ahead subprotocol run (embedded in the subroutine NextProverMsg, which
then unfolds recursively, see details in [2]) at each of the nε round iterations of
the extraction stage. The idea of their simulator is that if the simulator makes
a distinct look-ahead subprotocol run at each round, which in turn consists of
polynomially many look-ahead attempts, then except with negligible probability,
the simulator will be able to extract one “secret”. Since the look-ahead subpro-
tocol success probability is independent from one round to the next, the strategy
of our simulator is that instead of making one independent look-ahead subpro-
tocol run at each round, we make poly(n, t) = |DB| independent calls at each
(main-thread) iteration of the extraction stage6. By a union bound, our simu-
lator will also fail to extract only with negligible probability. A subtlety is that
|DB| successful look-aheads might not reveal as much of |DB| as desired. How-
ever, because the prover messages in π1 consist of n randomly chosen indices,
V ∗ is unable to both complete the protocol with P/Sim′ and sufficiently control
the distribution of the prover messages that V ∗ chooses to proceed with.

We omit the full simulator specification and proof here due to lack of space.

Acknowledgments. The work of the second author is supported in part by NSF
grants 0830803, 09165174, 1065276, 1118126 and 1136174, US-Israel BSF grant
2008411, OKAWA Foundation Research Award, IBM Faculty Research Award,
Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata
Research Award, and Lockheed-Martin Corporation Research Award. This ma-
terial is based upon work supported by the Defense Advanced Research Projects
Agency through the U.S. Office of Naval Research under Contract N00014-11-1-
0392. The views expressed are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government. The
work of the third author has been done while visiting UCLA and is supported in
part by the European Commission through the FP7 programme under contract
216676 ECRYPT II.

6 We make these independent calls only at the main-thread level of the recursion; in
this manner, simulator run-time does not expand exponentially.

Nearly Simultaneously Resettable Black-Box Zero Knowledge 99

References

1. Deng, Y., Goyal, V., Sahai, A.: Resolving the simultaneous resettability conjecture
and a new non-black-box simulation strategy. In: FOCS 2009, pp. 251–260 (2009)

2. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: STOC 2000, pp. 235–244. ACM (2000)

3. Micali, S., Reyzin, L.: Soundness in the Public-Key Model. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg (2001)

4. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-
knowledge and its applications. In: FOCS 2001, pp. 116–125 (2001)

5. Dwork, C., Naor, M.,, S.: Concurrent zero-knowledge. In: STOC 1998, pp. 409–418.
ACM (1998)

6. Richardson, R., Kilian, J.: On the Concurrent Composition of Zero-Knowledge
Proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431.
Springer, Heidelberg (1999)

7. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
logarithmic rounds. In: STOC 2001, pp. 560–569. ACM (2001)

8. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-
knowledge requires Ω̃(log n) rounds. In: STOC 2001, pp. 570–579. ACM, USA
(2001)

9. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic
round-complexity. In: FOCS 2002, pp. 366–375. IEEE Computer Society (2002)

10. Micciancio, D., Petrank, E.: Simulatable Commitments and Efficient Concurrent
Zero-Knowledge. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
644–645. Springer, Heidelberg (2003)

11. Ostrovsky, R., Pandey, O., Visconti, I.: Efficiency Preserving Transformations for
Concurrent Non-Malleable Zero Knowledge. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 535–552. Springer, Heidelberg (2010)

12. Blundo, C., Persiano, G., Sadeghi, A.R., Visconti, I.: Improved Security Notions
and Protocols for Non-Transferable Identification. In: Jajodia, S., Lopez, J. (eds.)
ESORICS 2008. LNCS, vol. 5283, pp. 364–378. Springer, Heidelberg (2008)

13. Deng, Y., Lin, D.: Instance-Dependent Verifiable Random Functions and Their
Application to Simultaneous Resettability. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 148–168. Springer, Heidelberg (2007)

14. Crescenzo, G., Persiano, G., Visconti, I.: Constant-Round Resettable Zero Knowl-
edge with Concurrent Soundness in the Bare Public-Key Model. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 237–253. Springer, Heidelberg (2004)

15. Crescenzo, G., Persiano, G., Visconti, I.: Improved Setup Assumptions for 3-Round
Resettable Zero Knowledge. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 530–544. Springer, Heidelberg (2004)

16. Scafuro, A., Visconti, I.: On Round-Optimal Zero Knowledge in the Bare Public-
Key Model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 153–171. Springer, Heidelberg (2012)

17. Garg, S., Ostrovsky, R., Visconti, I., Wadia, A.: Resettable Statistical Zero Knowl-
edge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 494–511. Springer,
Heidelberg (2012)

18. Dwork, C., Naor, M.: Zaps and their applications. In: FOCS 2000, pp. 283–293.
IEEE Computer Society (2000)

19. Cho, C., Ostrovsky, R., Scafuro, A., Visconti, I.: Simultaneously Resettable Argu-
ments of Knowledge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 530–547.
Springer, Heidelberg (2012)

Complexity of Complexity and Maximal Plain versus
Prefix-Free Kolmogorov Complexity

Bruno Bauwens�

Instituto de Telecomunicações Faculdade de Ciência da Universidade do Porto

Abstract. Peter Gacs showed [2] that for every n there exists a bit string x of
length n whose plain complexity C (x) has almost maximal conditional complex-
ity relative to x, i.e., C (C (x)|x)≥ logn− log(2) n−O(1). Here log2(i) = log log i
etc. Following Elena Kalinina [4], we provide a game-theoretic proof of this re-
sult; modifying her argument, we get a better (and tight) bound logn−O(1). We
also show the same bound for prefix-free complexity.

Robert Solovay’s showed [11] that infinitely many strings x have maximal
plain complexity but not maximal prefix-free complexity (among the strings of
the same length); i.e. for some c: |x| − C (x) ≤ c and |x|+ K (|x|)−K (x) ≥
log(2) |x| − c log(3) |x|. Using the result above, we provide a short proof of Solo-
vay’s result. We also generalize it by showing that for some c and for all n there
are strings x of length n with n−C (x)≤ c, and n+K (n)−K (x)≥K (K (n)|n)−
3K (K (K (n)|n) |n)−c. This is very close to the upperbound K (K (n)|n)+O(1)
proved by Solovay.

Introduction

Plain Kolmogorov complexity C (x) of a binary string x was defined in [5] as the min-
imal length of a program that computes x. (See the preliminaries or [3,6,10] for the
details.) It was clear from the beginning (see, e.g., [13]) that complexity function is not
computable: no algorithm can compute C (x) given x. In [2,3,6] a stronger non-uniform
version of this result was proven: for every n there exists a string x of length n such
that conditional complexity C (C (x)|x), i.e., the minimal length of a program that maps
x to C (x), is at least logn−O(log(2) n). (If complexity function were computable, this
conditional complexity would be bounded.)

In Section 1 we revisit this classical result and improve it a bit by removing the
log(2) n term. No further improvement is possible because C (n) ≤ n+O(1), therefore
C (C (n)|x) ≤ logn+O(1) for all x. We use a game technique that was developed by
Andrej Muchnik (see [9,8,12]) and turned out to be useful in many cases. Recently

� Full version: www.bcomp.be/papers/compcompfull.pdf. Supported by the Portuguese sci-
ence foundation FCT (SFRH/BPD/75129/2010), and partially supported by the project CSI2

(PTDC/EIAC/099951/2008). The author is grateful to Elena Kalinina and (Nikolay) Kolia
Vereshchagin for giving the text [4]. The author is also grateful to (Alexander) Sasha Shen for
his very generous help: for reading earlier texts on these results, for discussion, for providing
a clear exposition of section 1 and some parts of section 2, and for his permission to publish it
(with small modifications).

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 100–108, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Complexity of Complexity and Maximal Plain 101

Elena Kalinina (in her master thesis [4]) used it to provide a proof of Gacs’ result. We
use a more detailed analysis of essentially the same game to get a better bound.

For some c, a bit string x is C -random if n−C (x) ≤ c. Note that n+O(1) is the
smallest upper bound for C (x). A variant of plain complexity is prefix-free or self-
delimiting complexity, which is defined as the shortest program that produces x on a
Turing machine with binary input tape, i.e. without blanc or terminating symbol. (See
the preliminaries or [3,6,10] for the details.) The smallest upper bound for K (x) for
strings of length n is n+K (n) +O(1). For some c, the string x is defined to be K -
random if n+K (n)−K (x)≤ c.

Robert Solovay [11,1] observed that K -random strings are also C -random strings
(for some c′ ≤O(c)), but not vice versa. Moreover, he showed that some c and infinitely
many x satisfy |x|−C(x)≤ c and

|x|+K (|x|)−K (x)≥ log(2) |x|− c log(3) |x| .

He also showed that for C -random x the left-hand side of the equation is upper-bounded
by K (K (n)|n)+O(1), which is bounded by log(2) n+O(1). Later Joseph Miller [7] and
Alexander Shen [9] generalized this, by showing that every co-enumerable set (i.e., the
complement is enumerable) containing strings of every length, also contains infinitely
many x such that the above equation holds. (Note that the set of C -random strings is
co-enumerable but the set of K -random strings not.)

In Section 2 we provide a short proof for Solovay’s result using the improved version
of Gacs’ theorem. Then we generalize it by showing that for some c and every n there
are strings x of length n with n−C(x)≤ c and

n+K (n)−K (x)≥ K (K (n)|n)− 3K (K (K (n)|n) |n)− c .

This is very close to the upperbound K (K (n)|n)−O(1), which was shown by Solo-
vay [11]. By the improved version of Gacs’ result, we can choose n such that
K (K (n)|n) = log(2) n + O(1). For such n we obtain Solovay’s theorem with the
c log(3) |x| term replaced by a O(1) constant.

Preliminaries: Let U be a Turing machine. The plain (Kolmogorov) complexity rela-
tive to U is defined by

CU(x|y) = min{|p| : U(p,y) = x} .

If the machine U is prefix-free (i.e., for every p,y such that U(p,y) halts, there is no pre-
fix q of p such that U(q,y) halts) then we write K U(x|y) rather than CU(x|y), and refer
to it as prefix-free (Kolmogorov) complexity relative to U . There exist plain and prefix-
free Turing machines U and V for which CU(x|y) and K V (x|y) are minimal within an
O(1) constant. We fix such machines and omit the indexes U ,V . If y is the empty string
we use the notation C (x) and K (x).

1 Complexity of Complexity Can Be High

Theorem 1. There exist some constant c such that for every n there exists a string x of
length n such that C (C (x)|x)≥ logn− c.

102 B. Bauwens

To prove this theorem, we first define some game and show a winning strategy for
the game. (The connection between the game and the statement that we want to prove
will be explained later.)

1.1 The Game

Game Gn has parameter n and is played on a rectangular board divided into cells. The
board has 2n columns and n rows numbered 0,1, . . . ,n−1 (the bottom row has number
0, the next one has number 1 and so on, the top row has number n− 1), see Fig. 1.

Initially the board is empty. Two players: White and Black, alternate their moves. At
each move, a player can pass or place a pawn (of his color) on the board. The pawn can
not be moved or removed afterwards. Also Black may blacken some cell instead. Let
us agree that White starts the game (though it does not matter).

The position of the game should satisfy some restrictions; the player who violates
these restrictions, loses the game immediately. Formally the game is infinite, but since
the number of (non-trivial) moves is a priori bounded, it can be considered as finite, and
the winner is determined by the last (limit) position on the board.

Restrictions: (1) each player may put at most 2i pawns in row i (thus the total number
of black and white pawns in a row can be at most 2i + 2i); (2) in each column Black
may blacken at most half of the cells.

We say that a white pawn is dead if either it is on a blackened cell or has a black
pawn in the same column strictly below it.

Winning rule: Black wins if he killed all white pawns, i.e., if each white pawn is dead
in the final position.

0

n− 1

2n

Fig. 1. Game board

For example, if the game ends in the position shown at Fig. 1, the restrictions are not
violated (there are 3≤ 22 white pawns in row 2 and 1≤ 21 white pawn in row 1, as well
as 1 ≤ 22 black pawn in row 2 and 1 ≤ 20 black pawn in row 0). Black loses because
the white pawn in the third column is not dead: it has no black pawn below and the cell
is not blackened. (There is also one living pawn in the fourth column.)

1.2 How White Can Win

The strategy is quite simple. White starts by placing a white pawn in an upper row
of some column and waits until Black kills it, i.e., blackens the cell or places a black
pawn below. In the first case White puts her pawn one row down and waits again. Since
Black has no right to make all cells in a column black (at most half may be blackened),

Complexity of Complexity and Maximal Plain 103

at some point he will be forced to place a black pawn below the white pawn in this
column. After that White switches to some other column. (The ordering of columns is
not important; we may assume that White moves from left to right.)

Note that when White switches to a next column, it may happen that there is a black
pawn in this column or some cells are already blackened. If there is already a black
pawn, White switches again to the next column; if some cell is blackened, White puts
her pawn in the topmost white (non-blackened) cell.

This strategy allows White to win. Indeed, Black cannot place his pawns in all the
columns due to the restrictions (the total number of his pawns is ∑n−1

i=0 2i = 2n − 1,
which is less than the number of columns). White also cannot violate the restriction for
the number of her pawns on some row i: all dead pawns have a black pawns strictly
below them, so the number of them on row i is ∑i−1

j=0 2 j = 2i − 1, hence White can put
an additional pawn.

In fact we may even allow Black to blacken all the cells except one in each column,
and White will still win, but this is not needed (and the n/2 restriction will be convenient
later).

1.3 Proof of Gacs’ Theorem

Let us show that for each n there exists a string x of length n such that C (C (x|n)|x) ≥
logn−O(1). Note that here C (x|n) is used instead of C (x); the difference between
these two numbers is O(logn) since n can be described by logn bits, so the difference
between the complexities of these two numbers is O(loglogn).

Consider the following strategy for Black (assuming that the columns of the table
are indexed by strings of length n):

– Black blackens the cell in column x and row i as soon as he discovers that C (i|x)<
logn− 1. (The constant 1 guarantees that less than half of the cells will be black-
ened.) Note that Kolmogorov complexity is an upper semicomputable function, and
Black approximates it from above, so more and more cells are blackened.

– Black puts a black pawn in a cell (x, i) when he finds a program of length i that
produces x with input n (this implies that C (x|n) ≤ i). Note that there are at most
2i programs of length i, so Black does not violate the restriction for the number of
pawns on any row i.

Let White play against this strategy (using the strategy described above). Since the
strategy is computable, the behavior of White is also computable. One can construct a
decompressor V for the strings of length n as follows: each time White puts a pawn in a
cell (x, i), a program of length i is assigned to x. By White’s restriction, no more than 2i

programs need to be assigned. By universality, a white pawn on cell (x, i) implies that
C (x|n)≤ i+O(1). If White’s pawn is alive in column x, there is no black pawn below,
so C (x|n)≥ i, and therefore C (x|n) = i+O(1). Moreover, for a winning pawn, the cell
(x, i) is not blackened, so C (i|x)≥ logn− 1. Therefore, C (C (x|n)|x)≥ logn−O(1).

Remark: the construction also guarantees that C (x|n)≥ n/2−O(1) for that x. (Here the
factor 1/2 can be replaced by any α < 1 if we change the rules of the game accordingly.)
Indeed, according to white’s strategy, he always plays in the highest non-black cell of

104 B. Bauwens

some column, and at most half of the cells in a column can be blackened, therefore no
white pawns appear in the lower half of the board.

1.4 Modified Game and the Proof of Theorem 1

Now we need to get rid of the condition n and show that for every n there is some x
such that C (C (x)|x)≥ logn−O(1). Imagine that White and Black play simultaneously
all the games Gn. Black blackens the cell (x, i) in game G|x| when he discovers that
C (i|x) < logn− 1, as he did before, and puts a black pawn in a cell (x, i) when he
discovers an unconditional program of length i for x. If Black uses this strategy, he
satisfies the stronger restriction: the total number of pawns in row i on all boards is
bounded by 2i.

Assume that White uses the described strategy on each board. What can be said about
the total number of white pawns in row i? The dead pawns have black pawns strictly
below them and hence the total number of them does not exceed 2i − 1. On the other
hand, there is at most one live white pawn on each board. We know also that in Gn

white pawns never appear below row n/2− 1, so the number of live white pawns does
not exceed 2i+O(1). Therefore we have O(2i) white pawns on the i-th row in total.

For each n there is a cell (x, i) in Gn where White wins in Gn. Hence, C (x) < i+
O(1) (because of property just mentioned and the computability of White’s behavior),
C (x) ≥ i and C (i|x) ≥ logn− 1 (by construction of Black’s strategies and the winning
condition). Theorem 1 is proven.

1.5 Version for Prefix Complexity

Theorem 2. There exist some constant c such that for every n there exists a string x
of length n such that C (K (x)|x) ≥ logn− c and K (x) ≥ n/2. This also implies that
K (K (x)|x) ≥ logn− c.

The proof of C (K (x)|x) ≥ logn− c goes in the same way. Black places a pawn in cell
(i,x) if some program of length i for a prefix-free (unconditional) machine computes
x (and hence K (x) ≤ i); White uses the same strategy as described above. The sum of
2−i for all black pawns is less than 1 (Kraft-inequality); some white pawns are dead,
i.e., strictly above black ones, and for each column the sum of 2− j where j is the row
number, does not exceed ∑n

j>i 2− j < 2−i. Hence the corresponding sum for all dead

white pawns is less than 1; for the rest the sum is bounded by ∑n 2−n/2+1, so the total
sum is bounded by a constant, and we conclude that for x in the winning column the
row number is K (x)+O(1), and this cell is not blackened.

2 Strings with Maximal Plain and Non-maximal Prefix-Free
Complexity

In this section we compare two measures of non-randomness. Let x be a string of length
n; we know that C (x)≤ n+O(1), and the difference n−C (n) measures how “nonran-
dom” x is. Let us call it C -deficiency of x. On the other hand, K (x)≤ n+K (n)+O(1),

Complexity of Complexity and Maximal Plain 105

so n+K (n)−K (x) also measures “nonrandomness” in some other way; we call this
quantity K -deficiency of x.

The following proposition means that K -random strings (for which K -deficiency is
small; they are also called “Chaitin random”) are always C -random (C -deficiency is
small; such strings are also called “Kolmogorov random”).

Proposition 1 (Solovay [11]). |x|+K(|x|)−K(x)≤ c implies |x|−C(x)≤ O(c).

Proof. We use a result of Levin: for every string u

K (u|C (u)) = C (u)+O(1),

and, on the other hand, for any positive or negative integer number c:

K (u|i) = i+ c,

implies C (u) = i+O(c)1.
Let n = |x|. Notice that

n+K(n)≤ K(x)− c = K(x,n)−O(c)≤ K(x|n)+K(n)−O(c) .

Hence, K(x|n)≥ n−O(c), thus K(x|n) = n+O(c) and thus: C(x) = n+O(c).

R. Solovay showed that the reverse statement is not always true: a C -random string may
be not K -random. However, as the following result shows, the K -deficiency still can be
bounded for C -random strings:

Proposition 2 (Solovay [11]). For any x of length n the inequality C (x)≥ n−c implies:

n+K (n)−K (x)≤ K (K (n)|n)+O(c) .

Note that K (K (n)|n)≤ log(2) n+O(1).

Proof. The proof uses another result of Levin [2,3,6]: for all u,v we have the additivity
property

K (u,v) = K (u)+K (v|u,K (u))+O(1) .

To prove Proposition 2, notice that n = C (x) = K (x|C (x)) = K (x|n) with O(c)-
precision. By additivity we have: K (x) =K (n,x) = K (n)+K (x|n,K (n)). Putting these
observations together, we get

n+K (n)−K (x) = K (x|n)+K (n)− (K (n)+K (x|n,K(n))) +O(c)

= K (x|n)−K (x|n,K (n)) +O(c) . (1)

Observe that K (x|n) ≤ K (x|n,K (n))+K (K (n)|n)+O(1), hence the K -deficiency is
bounded by K (K (n)|n)+O(c).

1 Textbooks like [6, Lemma 3.1.1] mention only the first statement. To show the second, note that
the function i !→K (x|i) maps numbers at distance c to numbers at distance O(logc), hence, the
fixed point C (x) must be unique within an O(1) constant. Furthermore, for any i, the fixed point
must be within distance O(|i−K (u|i)|) from i, hence |C (u)− i| ≤ O(|i−K (u|i)|) = O(c).

106 B. Bauwens

The following theorem shows that for all n the bound K (K (n)|n) for K -deficiency for
C -random strings can almost be achieved. The error is at most O(logK (K (n)|n)).

Theorem 3. For some c and all n there are strings x of length n such that n−C(x)≤ c,
and

n+K (n)−K (x)≥ K (K (n)|n)− 3K (K (K (n)|n) |n)− c .

By corollary, infinitely many C -random strings have K -deficiency log(2) |x|+O(1).
Indeed, for n such that K (K (n)|n) = log(2) n+O(1), we have K (K (K (n)|n) |n) ≤
O(1), and hence, a slightly stronger statement than proved by Solovay [11] is obtained.

Corollary 1. There exists a constant c and infinitely many x such that |x|−C (x) ≤ c
and |x|+K (|x|)−K (x)≥ log(2) |x|− c.

Before proving Theorem 3, we prove the corollary directly.

Proof. First we choose n, the length of string x. It is chosen in such a way that
K (K (n)|n) = log(2) n + O(1) and K (n) ≥ (logn)/2 (Theorem 2). (So the bound of
Proposition 2 is not an obstacle.) We know already (see equation 1) that for a string x
with C -deficiency c the value of K -deficiency is O(c)-close to K (x|n)−K (x|n,K (n)).
This means that adding K (n) in the condition should decrease the complexity, so let us
include K (n) in x somehow. We also have to guarantee maximal C -complexity of x.
This motivates the following choice:

– choose r of length n− log(2) n such that K (r|n,K (n)) ≥ |r|. Note that this implies
K (r|n,K (n)) = |r|+O(1), since the length of r is determined by the condition.

– Let x = 〈K(n)〉r, the concatenation of K(n) (in binary) with r. Note that 〈K(n)〉 has
at most log(2) n+O(1) bits for every n, and by choice of n has at least log(2) n− 1
bits, hence |x|= n+O(1).

As we have seen (looking at equation (1)), it is enough to show that K (x|K (n),n) ≤
n− log(2) n and K (x|n)≥ n (the latter equality implies C (x) = n); all the equalities here
and below are up to O(1) additive term.

– Knowing n, we can split x in two parts 〈K (n)〉 and r. Hence, K (x|K (n),n) =
K (K (n),r|n,K (n)), and this equals K (r|n,K (n)), i.e., n− log(2) n by choice of
r.

– To compute K (x|n), we use additivity:

K (x|n) = K (K (n),r|n) = K (K (n)|n)+K (r|K (n),K (K (n)|n),n) .

By choice of n, we have K (K (n)|n) = log(2) n, and the last term simplifies to
K (r|K (n), log(2) n,n), and this equals K (r|K (n),n) = n− log(2) n by choice of r.
Hence K (x|n) = log(2)n+(n− log(2) n) = n.

Remark 1: One can ask how many strings exist that satisfy the conditions of Corol-
lary 1. By Proposition 2, the length n of such a string must satisfy K (K (n)|n) ≥
log(2) n−O(1). By Theorem 2, there is at least one such an n for every length of n

Complexity of Complexity and Maximal Plain 107

in binary. Hence such n, can be found within exponential intervals. One can also ask
for such n, how many strings x of length n satisfy the conditions of Corollary 1. By a
theorem of Chaitin [6], there are at least O(2n−k) strings with K -deficiency k, hence we

can have at most O(2n−log(2) n) such strings. It turns out that indeed at least a fraction
1/O(1) of them satisfy the conditions of Corollary 1. To show this, note that in the proof
Theorem 3, every different r of length |n|− log(2) n+O(1) leads to the construction of
a different x. For such r we essentially need K (r|n,K (n))≥ |r|−O(1), and hence there

are O(2n−log(2) n) of them.
Proof of Theorem 3. In the proof above, in order to obtain a large value K (x|n)−
K (x|n,K (n)), we incorporated K (n) in a direct way (as 〈K (n)〉) in x. To show that
C(x) = K(x|n) +O(1) is large we essentially used that the length of 〈K (n)〉 equals
K (K (n)|n)+O(1). For general n, this trick does not work anymore, but we can use a
shortest program for K (n) given n (on a plain machine). For every n we can construct x
as follows:

– let q be a shortest program that computes K (n) from n on a plain machine (if
there are several shortest programs, we choose the one with shortest running time).
Note that |q|= C (K (n)|n)+O(1) = C (q|n)+O(1) (remind that by adding some
fixed instructions, a program can print itself, and that a shortest program is always
incompressible, thus up to O(1) constants: |q| ≥ C (K (n)|n) ≥ C (q|n) ≥ |q|), by
Levin’s result (conditional version), the last term also equals K (q|n, |q|)+O(1);

– let r have length n− |q|, such that K (r|n,K (n),q) ≥ |r|. Note that this implies
K (r|n,K (n),q) = |r|+O(1), (since the length of r is determined by the condition).

– We define x as the concatenation qr.

We show that C (x) = n+O(1) and that the K -deficiency is at least |q| −K (|q| |n)+
O(1). To show that this implies the theorem, we need that

K (K (n)|n)− 3K (K (K (n)|n) |n)≤ C (K (n)|n)−K (C (K (n)|n) |n)+O(1) ,

which is for a = K (n) the conditioned version of Lemma 1:

K (a|n)− 3K (K (a|n) |n)≤ C (a|n)−K (C (a|n) |n)+O(1) .

Following the same structure as the proof above, it remains to show that K (x|K (n),n)≤
n−|q|+K (|q| |n) and K (x|n)≥ n (the latter equality implies C (x) = n); all the equali-
ties here and below are up to O(1) additive term.

– Knowing |q|, we can split x in two parts q and r. Hence, K (x|K (n),n, |q|) =
K (q,r|n,K (n), |q|). Given n,K (n), |q| we can search for a program of length |q|
that on input n outputs K (n); the one with shortest computation time is q. Hence,
K (q,r|n,K (n), |q|) = K (r|n,K (n), |q|), i.e., n− |q| by choice of r, and therefore
K (x|K (n),n)≤ n−|q|+K(|q| |n).

– To compute K (x|n), we use additivity:

K (x|n)≥ K (x|n, |q|) = K (q,r|n, |q|) = K (q|n, |q|)+K (r|q,K (q|n, |q|),n) .

By choice of q we have K (q|n, |q|)= |q|. The last term is K (r|q, |q|,n) which equals
K (r|q,n) = n−|q| by choice of r. Hence, K (x|n)≥ |q|+(n−|q|)= n. ��

108 B. Bauwens

Lemma 1. K (a)− 3K (K (a))≤ C (a)−K (C (a))+O(1)

Proof. Note that K (a)−C (a)≤K (C (a)). Indeed, any program for a plain machine can
be considered as a program for a prefix-free machine conditional to it’s length. Hence,
we can transform a plain program p to a prefix-free program by adding a description
of |p| of length K (|p|) to p. Hence it remains to show 2K (C (a))≤ 3K (K (a))+O(1).
Solovay [11,1] showed that

K (a)−C(a) = K (K (a))+O(K (K (K (a)))) ,

hence,
|K (K (a))−K (C (a))| ≤ O(logK (K (a))) .

References

1. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Theory and
Applications of Computability. Springer (2010)

2. Gács, P.: On the symmetry of algorithmic information. Soviet Math. Dokl. 15(5), 1477–1480
(1974)

3. Gács, P.: Lecture notes on descriptional complexity and randomness (1988-2011),
http://www.cs.bu.edu/faculty/gacs/papers/ait-notes.pdf

4. Kalinina, E.: Some applications of the method of games in Kolmogorov complexity. Master
thesis, Moscow State University (2011)

5. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problemy
Peredachi Informatsii 1(1), 3–11 (1965)

6. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Applications.
Springer, New York (2008)

7. Miller, J.S.: Contrasting plain and prefix-free complexities, Preprint,
http://www.math.wisc.edu/~jmiller/downloads.html

8. Muchnik, A.: On the basic structures of the descriptive theory of algorithms. Soviet Math.
Dokl. 32, 671–674 (1985)

9. Muchnik, A.A., Mezhirov, I., Shen, A., Vereshchagin, N.: Game interpretation of Kol-
mogorov complexity (2010), arxiv:1003.4712v1

10. Shen, A.: Algorithmic Information theory and Kolmogorov complexity. Technical report
TR2000-034. Uppsala University (2000)

11. Solovay, R.: Draft of a paper (or series of papers) on Chaitin’s work, unpublished notes, 215
pages (1975)

12. Vereshchagin, N.: Kolmogorov complexity and Games. Bulletin of the European Association
for Theoretical Computer Science 94, 51–83 (2008)

13. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the development of the
concepts of information and randomness by means of the theory of algorithms. Russian Math.
Surveys 25(6(156)), 83–124 (1970)

http://www.cs.bu.edu/faculty/gacs/papers/ait-notes.pdf
http://www.math.wisc.edu/~jmiller/downloads.html

On Quadratic Programming with a Ratio

Objective�

Aditya Bhaskara, Moses Charikar,
Rajsekar Manokaran, and Aravindan Vijayaraghavan��

Department of Computer Science, Princeton University
Center for Computational Intractability

{bhaskara,moses,rajsekar,aravindv}@cs.princeton.edu

Abstract. Quadratic Programming (QP) is the well-studied problem
of maximizing over {−1, 1} values the quadratic form

∑
i�=j aijxixj .

QP captures many known combinatorial optimization problems, and as-
suming the Unique Games conjecture, Semidefinite Programming (SDP)
techniques give optimal approximation algorithms. We extend this body
of work by initiating the study of Quadratic Programming problems
where the variables take values in the domain {−1, 0, 1}. The specific
problem we study is

QP-Ratio : max
{−1,0,1}n

∑
i�=j aijxixj∑

x2
i

This is a natural relative of several well studied problems (in fact Tre-
visan introduced a normalized variant as a stepping stone towards a spec-
tral algorithm for Max Cut Gain). Quadratic ratio problems are good
testbeds for both algorithms and complexity because the techniques used
for quadratic problems for the {−1, 1} and {0, 1} domains do not seem to
carry over to the {−1, 0, 1} domain. We give approximation algorithms
and evidence for the hardness of approximating these problems.

We consider an SDP relaxation obtained by adding constraints to the
natural eigenvalue (or SDP) relaxation for this problem. Using this, we
obtain an Õ(n1/3) approximation algorithm for QP-ratio. We also give
a Õ(n1/4) approximation for bipartite graphs, and better algorithms for
special cases.

As with other problems with ratio objectives (e.g. uniform spars-
est cut), it seems difficult to obtain inapproximability results based on
P
= NP. We give two results that indicate that QP-Ratio is hard to
approximate to within any constant factor: one is based on the assump-
tion that random instances of Max k-AND are hard to approximate,
and the other makes a connection to a ratio version of Unique Games.
We also give a natural distribution on instances of QP-Ratio for which
an nε approximation (for ε roughly 1/10) seems out of reach of current
techniques.

� The full version of the paper [BCMV11] can be accessed at
http://arxiv.org/abs/1101.1710

�� The first, second and fourth authors are supported by NSF AF 0916218 and CCF
0832797. The third author is support by NSF CCF 0832797.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 109–120, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://arxiv.org/abs/1101.1710

110 A. Bhaskara et al.

1 Introduction

Semidefinite programming techniques have proved very useful for quadratic opti-
mization problems (i.e. problems with a quadratic objective) over {0, 1} variables
or {±1} variables. Such problems admit natural SDP relaxations and beginning
with the seminal work of Goemans and Williamson [GW95], sophisticated tech-
niques have been developed for exploiting these SDP relaxations to obtain ap-
proximation algorithms. For a large class of constraint satisfaction problems, a
sequence of exciting results [KKMO07, KV05, Aus07] culminating in the work
of Raghavendra [Rag08], shows that in fact, such SDP based algorithms are
optimal (assuming the Unique Games Conjecture).

In this paper, we initiate a study of a quadratic programming problem (QP-
Ratio) with variables in {0,±1}.

QP-Ratio : max
{−1,0,1}n

∑
i�=j aijxixj∑

x2i
(1)

An alternate phrasing of the ratio-quadratic programming problem is the follow-
ing: the goal is to select a subset of non-zero variables S and assign them values
in {±1} so as to maximize the ratio of the quadratic programming objective∑

i<j∈S ai,jxixj to the size of S. This can be viewed as an outlier version of
quadratic programming, where the variables corresponding to outliers must be
set to 0, and the goal is to maximize the solution quality on the rest. Note that
the numerator itself is the quadratic programming objective

∑
i<j ai,jxixj , and

can be maximized by setting all variables to be ±1. However, the denominator
term in the objective makes it worthwhile to set variables to 0.

Variants of this problem are well known: Restricting to {±1} variables results
in a problem with an O(log n) approximation [NRT99, CW04]. On the other
hand, restricting to non-negative variable values (when the ai,j are non-negative)
yields a polynomial time solvable problem. In fact, ratio objectives like this have
been studied in several contexts and algorithms to optimize them are often useful
subroutines in designing approximation algorithms.

Despite these connections, QP-Ratio seems to fall outside the realm of our
current understanding on both the algorithmic and inapproximability fronts.
One of the goals of our work is to enhance (and understand the limitations of)
the SDP toolkit for approximation algorithms by applying it to this natural
problem. On the hardness side, the issues that come up are akin to those arising
in other problems with a ratio/expansion flavor, where conventional techniques
in inapproximability have been ineffective.

A normalized version of the QP-Ratio objective arose in recent work of Tre-
visan [Tre09] on computing Max Cut Gain using eigenvalue techniques. The idea
here is to use the eigenvector to come up with a ‘good’ partial assignment, and
recurse. Crucial to this procedure is a quantity called the GainRatio defined for
a graph; this is a special case of Normalized QP-Ratio where aij = −1 for edges,
and 0 otherwise.

On Quadratic Programming with a Ratio Objective 111

1.1 Our Results

Algorithms. We first study mathematical programming relaxations for QP-
Ratio. The main difficulty in obtaining such relaxations is imposing the constraint
that the variables take values {−1, 0, 1}. Capturing this using convex constraints
is the main challenge in obtaining good algorithms for the problem.

We consider a semidefinite programming (SDP) relaxation obtained by adding
constraints to the natural eigenvalue relaxation, and round it to obtain an
Õ(n1/3) approximation algorithm. A natural, interesting special case is bipartite
instances of QP-Ratio, where the support of aij is the adjacency matrix of a bi-
partite graph (akin to bipartite instances of quadratic programming, also known
as the Grothendieck problem). For bipartite instances, we obtain an Õ(n1/4)
approximation and an almost matching SDP integrality gap of Ω(n1/4).

Techniques. The main challenge in semi-definite programming(SDP) based ap-
proaches for ratio quadratic programs is the situation that vectors in the SDP
solution could have very different lengths. To overcome this, we strengthen the
SDP by having additional constraints in the SDP, and come up with new round-
ing techniques to move to SDP solutions with a smaller range of lengths.

We can take further advantage of these additional inequalities in the case of
bipartite graphs to get an improved n1/4 approximation. Here, we combine the
previous SDP rounding with a different rounding scheme, which performs well
when the vector solution has equal contributions from many length scales.

Inapproximability. Complementing our algorithmic result for QP-Ratio, we
show hardness results for the problem. We first show that there is no PTAS for
the problem assuming P �= NP . We also provide evidences that it is hard to
approximate to within any constant factor.

In section 3.2 we rule out constant factor approximation algorithms for QP-
Ratio assuming Feige’s hypothesis [Fei02] that random instances of k-AND are
hard to distinguish from ‘well-satisfiable’ instances. Even the strongest known
SDP relaxations (Ω(n) rounds of the Lasserre hierarchy) cannot refute this con-
jecture [Tul09]. We also show in section 3.3 a reduction from a ratio version of
the well-known Unique Games problem to QP-Ratio. We think that ratio version
of Unique Games is an interesting problem worthy of study that could shed light
on the complexity of other ratio optimization questions. The technical challenge
in our reduction is to develop the required fourier-analytic machinery to tackle
PCP-based reductions to ratio problems.

As with other ratio problems like Sparsest Cut, there is a big gap in the
approximation guarantees and inapproximability results. We suspect that the
problem is in fact hard to approximate to an nε factor for some ε > 0. In
Section 3.1, we decribe a natural distribution over instances which we believe
are hard to approximate up to polynomial factors.

Normalized QP-Ratio. Our original motivation to study quadratic ratio prob-
lems was the related GainRatio problem studied in Trevisan [Tre09]. We give
a sharp contrast between the strengths of different relaxations and disprove
Trevisan’s conjecture that the eigenvalue approach towards Max Cutgain is as
powerful as the SDP-based approach[CW04]. See Section 4 for details.

112 A. Bhaskara et al.

2 Algorithms for QP-Ratio

We start with the most natural relaxation for QP-Ratio (1) :

max

∑
i,j Aijxixj∑

i x
2
i

subject to xi ∈ [−1, 1]

(instead of {0,±1}). The solution to this is precisely the largest eigenvector of A
(scaled such that entries are in [−1, 1]). However it is easy to construct instances
with a large integrality gap of Ω(

√
n) (for example, the instance given by the

adjancency matrix of a n-vertex star graph).
We show that SDP relaxations give more power in expressing the constraints

xi ∈ {0,±1}. Consider the following relaxation:

max
∑
i,j

Aij · 〈wi,wj〉 subject to
∑
i

‖wi‖2 = 1, and

|〈wi,wj〉| ≤ w2
i for all i, j (2)

It is easy to see that this is indeed a relaxation: start with an integer solution
{xi} with k non-zero xi, and set vi = (xi/

√
k) · v0 for a fixed unit vector v0.

Without constraint (2), the SDP relaxation is equivalent to the eigenvalue
relaxation given above. Roughly speaking, equation (2) tries to impose the con-
straint that non-zero vectors are of equal length. In the example of the n-vertex
star, this relaxation has value equal to the true optimum. In fact, for any instance
with Aij ≥ 0 for all i, j, this relaxation is exact [Cha00]. 1

In the remainder of the section, we describe a simple Õ(n1/3) rounding algo-
rithm, which shows that the additional constraints (2) indeed help.

2.1 An Õ(n1/3) Rounding Algorithm

Consider an instance of QP-Ratio defined by A(n×n). Let wi be an optimal
solution to the SDP, and let the objective value be denoted sdp.

Since the problem is the same up to scaling the Aij , let us assume that
maxi,j |Aij | = 1. There is a trivial solution which attains a value 1/2 (if i, j
are indices with |Aij | = 1, set xi, xj to be ±1 appropriately, and the rest of

the x’s to 0). Now, since we are aiming for an Õ(n1/3) approximation, we can
assume that sdp > n1/3.

As alluded to earlier (and as can be seen in the gap example), the difficulty is
when most of the contribution to sdp is from non-zero vectors with very different
lengths. The idea of the algorithm will be to move to a situation in which this
does not happen. First, we show that if the vectors indeed have roughly equal
length, we can round well. Roughly speaking, the algorithm uses the lengths ‖vi‖
to determine whether to pick i, and then uses the ideas of [CW04] or [NRT99]
applied to the vectors vi

‖vi‖ .

1 We consider other SDP relaxations that can be writing by viewing the {0,±1} as a 3-
alphabet CSP, and show a Ω(

√
n)-integrality gap in the full version. It is interesting

to see if lift and project methods starting with this relaxation can be useful.

On Quadratic Programming with a Ratio Objective 113

Lemma 1. Given a vector solution {vi}, with ‖vi‖2 ∈ [τ/Δ, τ] for some τ > 0
and Δ > 1, we can round it to obtain an integer solution with cost at least
sdp/(

√
Δ log n).

Proof. Starting with vi, we produce vectors wi each of which is either 0 or a
unit vector, such that

If

∑
i,j Aij〈vi,vj〉∑

i v
2
i

= sdp, then

∑
i,j Aij〈wi,wj〉∑

i w
2
i

≥ sdp√
Δ
.

Stated this way, we are free to re-scale the vi, thus we may assume τ = 1. Now
note that once we have such wi, we can throw away the zero vectors and apply
the rounding algorithm of [CW04] (with a loss of an O(log n) approximation
factor), to obtain a 0,±1 solution with value at least sdp/(

√
Δ logn).

So it suffices to show how to obtain the wi. Let us set (recall we assumed
τ = 1)

wi =

{
vi/‖vi‖, with prob. ‖vi‖
0 otherwise

(this is done independently for each i). Note that the probability of picking i is
proportional to the length of vi (as opposed to the typically used square lengths,
[CMM06] say). Since Aii = 0, we have

E
[∑

i,j Aij〈wi,wj〉
]

E
[∑

i w
2
i

] =

∑
i,j Aij〈vi,vj〉∑

i |vi|
≥
∑

i,j Aij〈vi,vj〉√
Δ
∑

i v
2
i

=
sdp√
Δ
. (3)

The above proof only shows the existence of vectors wi which satisfy the bound
on the ratio. The proof can be made constructive using the method of conditional
expectations, by setting the variables one by one, and use the fact that if c, d > 0
and a+b

c+d > θ, then either a
c > θ or b

d > θ.

Let us define the ‘value’ of a set of vectors {wi} to be val :=
∑

Aij〈wi,wj〉∑
i w

2
i

. The

vi we start will have val = sdp.

Lemma 2. We can move to a set of vectors such that (a) val is at least sdp/2,
(b) each non-zero vector vi satisfies v2

i ≥ 1/n, (c) vectors satisfy (2), and (d)∑
i v

2
i ≤ 2.

The proof is by showing that very small vectors can either be enlarged or thrown
away (proof in full version). The next lemma also gives an upper bound on the
lengths – this is where the constraints (2) are crucial. It uses equation 2 to upper
bound the contribution from each vector – hence large vectors can not contribute
much in total, since they are few in number (see the full version for details).

Lemma 3. Suppose we have a solution of value Bnρ and
∑

i v
2
i ≤ 2. We can

move to a solution with value at least Bnρ/2, and v2
i < 16/nρ for all i.

Theorem 1. Suppose A is an n × n matrix with zero’s on the diagonal. Then
there exists a polynomial time O(n1/3 logn) approximation algorithm for the
QP-Ratio problem defined by A.

114 A. Bhaskara et al.

Proof. As before, let us rescale and assume max i, j|Aij | = 1. Now if ρ > 1/3,
Lemmata 2 and 3 allow us to restrict to vectors satisfying 1/n ≤ v2

i ≤ 4/nρ,

and using Lemma 1 gives the desired Õ(n1/3) approximation; if ρ < 1/3, then

the trivial solution of 1/2 is an Õ(n1/3) approximation.

We now describe an integrality gap of roughly n1/4, as it highlights the issues
that arise in getting better approximations.

2.2 Integrality Gap Instance

Consider a complete bipartite graph on L,R, with |L| = n1/2, and |R| = n. The
edge weights are set to ±1 uniformly at random. Denote by B the n1/2×nmatrix
of edge weights (rows indexed by L and columns by R). A standard Chernoff
bound argument shows (see the full version for a proof):

Lemma 4. With high probability over the choice of B, opt ≤
√
logn · n1/4.

Let us now exhibit an SDP solution with value n1/2. Let v1,v2, . . . ,v√
n be

mutually orthogonal vectors, with each v2
i = 1/2n1/2. We assign these vectors

to vertices in L. Now to the jth vertex in R, assign the vector wj defined by
wj =

∑
iBij

vi√
n
.

It is easy to check that this assignment satisfies the SDP constraints , and
attains a value Ω(n1/2). This gives a gap of Ω(n1/4).

This gap instance can be seen as a collection of n1/2 stars (vertices in L are
the ‘centers’). O(

√
n) different coordinates allow us to satisfy the constraints (2).

This gap instance is bipartite. In such instances it turns out that there is a
better rounding algorithm with a ratio Õ(n1/4).

2.3 The Bipartite Case

In this section, we prove the following theorem:

Theorem 2. When A is bipartite (i.e. the adjacency matrix of a weighted bi-
partite graph), there is a (tight upto logarithmic factor) O(n1/4 log2 n) approxi-
mation algorithm for QP-Ratio .

Bipartite instances of QP-Ratio can be seen as the ratio analog of the Grothendieck
problem [AN06]. The algorithm works by rounding the semidefinite program re-
laxation from section 2. As before, let us assume maxi,j aij = 1 and consider
a solution to the SDP (2). To simplify the notation, let ui and vj denote the
vectors on the two sides of the bipartition. Suppose the solution satisfies:

(1)
∑

(i,j)∈E

aij〈ui, vj〉 ≥ nα, (2)
∑
i

u2i =
∑
j

v2j = 1.

If the second condition does not hold, we scale up the vectors on the smaller
side, losing at most a factor 2. Further, we can assume from Lemma 2 that the
squared lengths u2i , v

2
j are between 1

2n and 1. Let us divide the vectors {ui}
and {vj} into logn groups based on their squared length. There must exist two
levels (for the u and v’s respectively) whose contribution to the objective is at

On Quadratic Programming with a Ratio Objective 115

least nα/ log2 n.2 Let L denote the set of indices corresponding to these ui, and
R denote the same for vj . Thus we have

∑
i∈L,j∈R aij〈ui, vj〉 ≥ nα/ log2 n. We

may assume, by symmetry that |L| ≤ |R|. Now since
∑

j v
2
j ≤ 1, we have that

v2j ≤ 1/|R| for all j ∈ R. Also, let us denote by Aj the |L|-dimensional vector
consisting of the values aij , i ∈ L. Thus

nα

log2 n
≤
∑

i∈L,j∈R

aij〈ui, vj〉 ≤
∑

i∈L,j∈R

|aij | · v2j ≤
1

|R|
∑
j∈R

‖Aj‖1. (4)

We will construct an assignment xi ∈ {+1,−1} for i ∈ L such that 1
|R| ·∑

j∈R

∣∣∑
i∈L aijxi

∣∣ is ‘large’. This suffices, because we can set yj ∈ {+1,−1},
j ∈ R appropriately to obtain the value above for the objective (this is where it
is crucial that the instance is bipartite – there is no contribution due to other
yj ’s while setting one of them).

Lemma 5. There exists an assignment of {+1,−1} to the xi such that∑
j∈R

∣∣∑
i∈L

aijxi
∣∣ ≥ 1

24

∑
j∈R

‖Aj‖2

Furthermore, such an assignment can be found in polynomial time.

Proof. The intuition is the following: suppose Xi, i ∈ L are i.i.d. {+1,−1}
random variables. For each j, we would expect (by random walk style argu-
ment) that E

[∣∣∑
i∈L aijXi

∣∣] ≈ ‖Aj‖2, and thus by linearity of expectation,

E
[∑

j∈R

∣∣∑
i∈L aijXi

∣∣] ≈ ∑j∈R‖Aj‖2. Thus the existence of such xi follows.

This can in fact be formalized using the following lemma (please refer to full
version for the proof)

Lemma 6. Let b1, . . . , bn ∈ R with
∑

i b
2
i = 1, and let X1, . . . , Xn be i.i.d.

{+1,−1} r.v.s. Then

E[|
∑
i

biXi|] ≥ 1/12.

We also make this lemma constructive (please see the appended full version for
details).

Proof (Proof of Theorem 2.). By Lemma 5 and Eq (4), there exists an assignment
to xi, and a corresponding assignment of {+1,−1} to yj such that the value of
the solution is at least

1

|R| ·
∑
j∈R

‖Aj‖2 ≥
1

|R| |L|1/2
∑
j∈R

‖Aj‖1 ≥
nα

|L|1/2 log2 n
. [By Cauchy Schwarz]

2 Such a clean division into levels can only be done in the bipartite case – in general
there could be negative contribution from ‘within’ the level.

116 A. Bhaskara et al.

Now if |L| ≤ n1/2, we are done because we obtain an approximation ratio of
O(n1/4 log2 n). On the other hand if |L| > n1/2 then wemust have ‖ui‖22 ≤ 1/n1/2.
Since we started with u2i and v2i being at least 1/2n (Lemma 2) all the vector
squared lengths are within a factor O(n1/2) of each other. Thus by Lemma 1 we
obtain an approximation ratio of O(n1/4 logn). This completes the proof.

2.4 Algorithms for Special Cases

We obtain better approximation algorithms for QP-Ratio in restricted settings.
We defer the proofs to the full version of the paper.

– When A is positive semi-definite (A & 0), we can round the eigenvector to
get an O(log2 n) approximation for QP-Ratio. In independent work, [DKS11]
recently showed an O(

√
logn) approximation to QP-Ratio when A is psd.

– When OPT ≥ εDmax (where Dmax = maxi
∑

i |aij | is the maximum degree),
we can find a solution of value e−O(1/ε)Dmax using techniques from [Tre09].

3 Hardness of Approximating QP-Ratio

Given that our algorithmic techniques give only an n1/3 approximation in gen-
eral, and the natural relaxations do not seem to help, it is natural to ask how
hard we expect the problem to be. Our results in this direction are as follows: we
show that the problem is APX-hard i.e., there is no PTAS unless P = NP (see
Appendix B for details). Next, we show that there cannot be a constant factor
approximation assuming that Max k-AND is hard to approximate ‘on average’
(related assumptions are explored in [Fei02]). Our reduction therefore gives a
(fairly) natural hard distribution for the QP-Ratio problem.

3.1 Candidate Hard Instances

To reconcile the large gap between our upper bounds and lower bounds, we
describe a natural distribution on instances we do not know how to approximate
to a factor better than nδ (for some fixed δ > 0).

Let G denote a bipartite random graph with vertex sets VL of size n and VR
of size n2/3, left degree nδ for some small δ (say 1/10) [i.e., each edge between
VL and VR is picked i.i.d. with prob. n−(9/10)]. Next, we pick a random (planted)
subset PL of VL of size n2/3 and random assignments ρL : PL !→ {+1,−1} and
ρR : VR !→ {+1,−1}. For an edge between i ∈ PL and j ∈ VR, aij := ρL(i)ρR(j).
For all other edges we assign aij = ±1 independently at random.

The optimum value of such a planted instance is roughly nδ, because the
assignment of ρL, ρR (and assigning 0 to VL \ PL) gives a solution of value nδ.
However, for δ < 1/6, we do not know how to find such a planted assignment:
simple counting and spectral approaches do not seem to help.

Making progress on such instances appears to be crucial to improving the al-
gorithm or the hardness results. In fact, the instances produced by the reduction
from Random k-AND are similar in essence. We also note the similarity to other
problems which are beyond current techniques, such as the Planted Clique and
Planted Densest Subgraph problems [BCC+10].

On Quadratic Programming with a Ratio Objective 117

3.2 Reduction from Random k-AND

We start out by quoting the assumption we use.

Conjecture 1 (Hypothesis 3 in [Fei02]). For some constant c > 0, for every k,
∃Δ0, such that for every Δ > Δ0, there is no polynomial time algorithm that, on
most k-AND formulas with n-variables andm = Δn clauses, outputs ‘typical’,

but never outputs ‘typical’ on instances with m/2c
√
k satisfiable clauses.

The reduction to QP-Ratio is as follows: Given a k-AND instance on n vari-
ables X = {x1, x2, . . . xn} with m clauses C = {C1, C2, . . . Cm}, and a parameter
0 < α < 1, let A = {aij} denote the m×n matrix such that aij is 1/m if variable
xj appears in clause Ci as is, aij is −1/m if it appears negated and 0 otherwise.

Let f : X → {−1, 0, 1}, g : C → {−1, 0, 1} denote functions which correspond
to assignments. Let μf =

∑
i∈[n] |f(xi)|/n and μg =

∑
j∈m |g(Cj)|/m. Let

ϑ(f, g) =

∑
ij aijf(xi)g(Cj)

αμf + μg
. (5)

Observe that if we treat f(), g() as variables, we obtain an instance of QP-Ratio
(we describe how to get rid of the weighting in the denominator in the full

version) We pick α = 2−c
√
k and Δ a large enough constant so that Conjecture 1

and the rest of the proofs work. The completeness follows from the natural
assignment (proof in full version).

Lemma 7 (Completeness). If α fraction of the clauses in the k-AND instance
can be satisfied, then there exists function f , g such that θ is at least k/2.

Soundness: We will show that for a typical random k-AND instance (i.e., with
high probability), the maximum value ϑ(f, g) can take is at most o(k).

Let the maximum value of ϑ obtained be ϑmax. We first note that there exists
a solution f, g of value ϑmax/2 such that the equality αμf = μg holds3 – so we
only need consider such assignments.

Now, the soundness argument is two-fold: if only a few of the vertices (X) are
picked (μf < α

400) then the expansion of small sets guarantees that the value
is small . On the other hand, if many vertices (and hence clauses) are picked,
then we claim that for every assignment to the variables (every f), only a small

fraction (2−ω(
√
k)) of the clauses contribute more than k7/8 to the numerator.

These lemmas shows together show a gap of k vs k7/8 assuming Hypothesis 1.
The complete proof is included in the full version of the paper. Since we can pick
k to be arbitrarily large, we can conclude that QP-Ratio is hard to approximate
to any constant factor.

3.3 Reductions from Ratio versions of CSPs

Here we ask: is there a reduction from a ratio version of Label Cover to QP-
Ratio? For this to be useful we must also ask: is the (appropriately defined) ratio

3 if αμf > μg , we can pick more constraints such that the numerator does not decrease
(by setting g(Cj) = ±1 in a greedy way so as to not decrease the numerator) till
μg′ = αμf , while losing a factor 2. Similarly for αμf < μg, we pick more variables.

118 A. Bhaskara et al.

version of Label Cover hard to approximate? The answer to the latter question
is yes (see the full version for details and proof that Ratio-LabelCover is hard
to approximate to any constant factor). Unfortunately, we do not know how to
reduce from Ratio-LabelCover.

Here, we present a reduction starting from a ratio version of Unique Games
to QP-Ratio (inspired by [ABH+05], who give a reduction from Label Cover to
Quadratic Programming, without the ratio). However, we do not know whether
it is hard to approximate for the parameters we need. While it seems related to
Partial Unique Games introduced by [RS10], they have an added size constraint
that at least α fraction of vertices should be labeled, which enables a reduction
from Unique Games with Small-set Expansion. However, a key point to note is
that we do not need ‘near perfect’ completeness, as in typical UG reductions.

We hope the Fourier analytic tools we use to analyze the ratio objective could
find use in other PCP-based reductions to ratio problems. Informally, Ratio UG is
a Unique Label Cover problem U

(
G(V,E), [R], {πe|e ∈ E}

)
where we only ask

for a partial labeling (L : V → [R]∪{⊥}). The objective value is the ratio of the
number of satisfied constraints to the number of labeled variables (please see the
full version for details). We reduce Ratio UG to the following useful intermediate
problem:

QP-Intermediate. Given A(n×n) with Aii ≤ 0 , maximize xTAx∑
i |xi| s.t. xi ∈ [−1, 1].

Now given an instance Υ = (V,E,Π) of Ratio UG , with alphabet [R] and a
regular graph (V,E), we associate 2R variables to each vertex, which are denoted
fu(x), indexed by x ∈ {−1, 1}R. The intended solution to each vertex is either
the long code corresponding to the label, or fu = 0 (for each x). Now,

– Fourier coefficients (f̂u(S)) are linear forms in the variables fu(x).

– For (u, v) ∈ E, Tuv =def ∑
i f̂u({i})f̂v({πuv(i)}). [It is 1 if edge is satisfied]

– For u ∈ V , L(u) =def ∑
S:|S|�=1 f̂u(S)

2. [Penalizes fu that are not dictators]

The instance of QP-Intermediate we consider is (here ‖fu‖1 denotes Ex[|fu(x)|])

Q := max
E(u,v)∈ETuv − ηEuL(u)

Eu|fu|1
, where η will be picked large enough.

For a function f , we define the ‘linear’ and the ‘non-linear’ parts to be

f=1 :=
∑
i

f̂(i)χ({i}) and f �=1 := f − f=1 =
∑
|S|�=1

f̂(S)χ(S).

The choice of η will ensure that for each u, ‖f �=1
u ‖22 is tiny.

A key step in the analysis is the following: if a boolean function f is ‘nearly
linear’, then it must also be spread out [i.e. ‖f‖2 ≈ ‖f‖1]. This helps us deal
with the main issue in a reduction with a ratio objective – showing we cannot
have a large numerator along with a very small value of ‖f‖1 (the denominator).
Morally, this is similar to a statement that a boolean function with a small
support cannot have all its Fourier mass on the linear Fourier coefficients. Please
refer to the full version for the complete proof.

On Quadratic Programming with a Ratio Objective 119

4 Normalized QP-Ratio

Given any symmetric matrix A, the normalized QP-Ratio problem aims to find
the best {−1, 0, 1} assignment which maximizes the following:

max
{−1,0,1}n

∑
i�=j aijxixj∑

dix2i
. where di =

∑
j

|aij | are “the degrees” (6)

Note that when the degrees di are all equal (di = d ∀i), this is the same as QP-
Ratio upto a scaling. In the non-regular case, the normalized objective tends to
penalize picking vertices of high degree in the solution.

Let us consider the natural eigenvalue relaxation below. This is also the max-
imum eigenvalue of D−1/2AD1/2 where D is the diagonal matrix of degrees.

Eigenval λ(A) = max
x∈[−1,1]n

xtAx∑
i dix

2
i

=
2
∑

i�=j aijxixj∑
i�=j |aij |(x2i + x2j)

(7)

GainRatio and Trevisan[Tre09]’s Conjecture
The special case when A = −Adj(G) where Adj(G) is the matrix of edge weights
is called GainRatio of G. [Tre09] studied in the context of a purely spectral algo-
rithm for Max CutGain: he gave an algorithm for GainRatio based on the above
eigenvalue relaxation (7), and used this as a subroutine to obtain algorithms for
Max CutGain. His randomized rounding technique showed that if the eigenvalue
is ε, the GainRatio is at least e−O(1/ε). This also gives an algorithm for Normal-
ized QP-Ratio with a similar guarantee (we defer to the full version for details).
Trevisan[Tre09] also conjectures a better dependence:

GainRatio = Ω
(λ(A)

log(1/λ(A))

)
.

This would give an spectral algorithm which matches the SDP-based algorithm
of [CW04] (as for Max Cut [Tre09]). We show that this conjecture is false, and
describe an instance for which

GainRatio = O
(
exp
(
− 1/λ(A)1/4

))
.

This shows that the eigenvalue based approach is necessarily ‘exponentially’
weaker than an SDP-based one. Roughly speaking, SDPs are stronger because
they can enforce vectors to be all of equal length, while this cannot be done
in an eigenvalue relaxation. The description of the instance and proof of the
exponential integrality gap can be found in the full version.

References

[ABH+05] Arora, S., Berger, E., Hazan, E., Kindler, G., Safra, M.: On non-
approximability for quadratic programs. In: FOCS 2005: Proceedings of
the 46th Annual IEEE Symposium on Foundations of Computer Science,
pp. 206–215. IEEE Computer Society, Washington, DC (2005)

120 A. Bhaskara et al.

[AN06] Alon, N., Naor, A.: Approximating the cut-norm via grothendieck’s in-
equality. SIAM J. Comput. 35, 787–803 (2006)

[Aus07] Austrin, P.: Towards sharp inapproximability for any 2-csp. In: Proceed-
ings of the 48th Annual IEEE Symposium on Foundations of Computer
Science, pp. 307–317. IEEE Computer Society, Washington, DC (2007)

[BCC+10] Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan,
A.: Detecting high log-densities: an o(n1/4) approximation for densest
k-subgraph. In: STOC 2010: Proceedings of the 42nd ACM Symposium
on Theory of Computing, pp. 201–210. ACM, New York (2010)

[BCMV11] Bhaskara, A., Charikar, M., Manokaran, R., Vijayaraghavan, A.: On
quadratic programming with a ratio objective. CoRR, abs/1101.1710
(2011)

[Cha00] Charikar, M.: Greedy Approximation Algorithms for Finding Dense Com-
ponents in a Graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000.
LNCS, vol. 1913, pp. 84–95. Springer, Heidelberg (2000)

[CMM06] Charikar, M., Makarychev, K., Makarychev, Y.: Near-optimal algorithms
for unique games. In: Proceedings of the Thirty-Eighth Annual ACM Sym-
posium on Theory of Computing, STOC 2006, pp. 205–214. ACM, New
York (2006)

[CW04] Charikar, M., Wirth, A.: Maximizing quadratic programs: Extending
grothendieck’s inequality. In: FOCS 2004: Proceedings of the 45th An-
nual IEEE Symposium on Foundations of Computer Science, pp. 54–60.
IEEE Computer Society, Washington, DC (2004)

[DKS11] Deshpande, A., Kannan, R., Srivastava, N.: Zero-one rounding of singular
vectors. Manuscript (2011)

[Fei02] Feige, U.: Relations between average case complexity and approximation
complexity. In: Proceedings of the 34th annual ACM Symposium on The-
ory of Computing (STOC 2002), pp. 534–543. ACM Press (2002)

[GW95] Goemans, M.X., Williamson, D.P.: Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite program-
ming. J. ACM 42(6), 1115–1145 (1995)

[KKMO07] Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximabil-
ity results for max-cut and other 2-variable csps? SIAM J. Comput. 37(1),
319–357 (2007)

[KV05] Khot, S., Vishnoi, N.K.: The unique games conjecture, integrality gap
for cut problems and embeddability of negative type metrics into �1. In:
FOCS 2005, pp. 53–62 (2005)

[NRT99] Nemirovski, A., Roos, C., Terlaky, T.: On maximization of quadratic form
over intersection of ellipsoids with common center. Mathematical Pro-
gramming 86, 463–473 (1999), doi:10.1007/s101070050100

[Rag08] Raghavendra, P.: Optimal algorithms and inapproximability results for
every CSP? In: STOC 2008, pp. 245–254 (2008)

[RS10] Raghavendra, P., Steurer, D.: Graph expansion and the unique games
conjecture. In: STOC 2010: Proceedings of the 42nd ACM Symposium on
Theory of Computing, pp. 755–764. ACM, New York (2010)

[Tre09] Trevisan, L.: Max cut and the smallest eigenvalue. In: STOC 2009: Pro-
ceedings of the 41st annual ACM Symposium on Theory of Computing,
pp. 263–272. ACM, New York (2009)

[Tul09] Tulsiani, M.: Csp gaps and reductions in the lasserre hierarchy. In: Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, pp. 303–312. ACM, New York (2009)

De-amortizing Binary Search Trees�

Prosenjit Bose1,��, Sébastien Collette2,� � �,
Rolf Fagerberg3,†, and Stefan Langerman2,‡

1 School of Computer Science, Carleton University
2 Département d’Informatique, Université Libre de Bruxelles

3 Department of Mathematics and Computer Science, University of Southern Denmark
jit@scs.carleton.ca, {secollet,stefan.langerman}@ulb.ac.be,

rolf@imada.sdu.dk

Abstract. We present a general method for de-amortizing essentially any Bi-
nary Search Tree (BST) algorithm. In particular, by transforming Splay Trees,
our method produces a BST that has the same asymptotic cost as Splay Trees on
any access sequence while performing each search in O(log n) worst case time.
By transforming Multi-Splay Trees, we obtain a BST that is O(log log n) com-
petitive, satisfies the scanning theorem, the static optimality theorem, the static
finger theorem, the working set theorem, and performs each search in O(log n)
worst case time. Transforming OPT proves the existence of an O(1)-competitive
offline BST algorithm which performs at most O(log n) BST operations between
each access to the keys in the input sequence. Finally, we obtain that if there is
an O(1)-competitive online BST algorithm, then there is also one that performs
every search in O(log n) operations worst case.

1 Introduction

Over half a century since the discovery of rotation-based Binary Search Trees, their
exact performance is still not fully understood. The very first works on BST focused
on maintaining O(log n) height during insertions and deletions [1,18], or guaranteeing
better average case bounds for searches with known distributions [22].

By introducing splay trees [23], Sleator and Tarjan proposed an alternate view of the
problem, where instead of looking at the cost of individual searches, it is the entire cost
of a sequence of accesses which is bounded, using amortized analysis.

The purpose of this article is to show that the two approaches are not exclusive—i.e.,
that it is possible to combine the good amortized performances of self-adjusting and
other adaptive BST with strong worst case guarantees for individual searches.

The BST Model. Central to the line of work originating from the splay tree paper [23]
is the BST model. This is because competitive analysis (see below) of online BST algo-
rithms requires lower bounds on the optimal offline algorithm, which again requires a

� Full version available at http://arxiv.org/abs/1111.1665
�� Research supported in part by NSERC.

� � � Chargé de recherches du F.R.S.-FNRS.
† Partially supported by the Danish Council for Independent Research, Natural Sciences.
‡ Maı̂tre de recherches du F.R.S.-FNRS.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 121–132, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

122 P. Bose et al.

precise model of computation. All existing lower bounds [10,13,25] use one of several
existing, asymptotically equivalent, variants of this model. In order to describe accu-
rately our results, we choose one specific BST model, which we now describe. In line
with previous work, we do not consider insertions and deletions. Hence, our BST model
consists of a binary search tree T containing the n distinct keys, which wlog. may be
taken to be {1, 2, . . . , n} with their natural order. The position of a finger, initially at
the root of T , is maintained, and the following two BST operations, each of unit cost,
are allowed: 1) moving the finger from a node to its parent or to one of its children, and
2) performing a rotation between the node pointed to by the finger and its parent.

Given the current tree T and the current finger position, an access to a key x is a list
of BST operations (finger movements and rotations), during which the finger position
is at the node containing x at least once.

For an input sequence S = 〈s1, s2, . . . , sm〉 of keys to be accessed, a BST algorithm
A that realizes S returns a list A(S) of BST operations for accessing the keys s1, s2, . . .
in that order—that is, where S is a subsequence of the sequence of keys pointed to by
the finger during the execution of A(S). An offline algorithm A is given the entire
sequence S and the starting tree T as input and then outputs the sequence of operations
A(S), while an online algorithm is fed the keys from S one by one and must output the
BST operations for the access of one key before the next key is given. More formally,
A is online if A(S) is a prefix of A(S′) whenever S is a prefix of S′. The cost of A(S)
is the number of BST operations it contains.

Note that the model, as all the standard variants of the BST model used in com-
petitive analysis of online BST algorithms, only requires the algorithm to list the BST
operations A(S) to be performed (see, e.g, [25]). In particular, the model does not re-
strict how those operations are generated, what auxiliary memory is used in order to
generated them, or even how much time is used to generate them.

Of course, real-world implementations of practical BST algorithms have some sen-
sible limits on their time and space usage. In fact, almost all BST implementations in
the literature besides adhering to the standard BST model described above also have
the following additional features: they work in the pointer machine model, use no more
space than the tree itself plus O(1) words of balance information in each node of the
tree and O(1) extra working variables, and generate their access sequenceA(S) in time
proportional to the BST model cost of A(S). We in this version of the paper show how
to de-amortize BST algorithms with a method working in the standard BST model. In
the full version we show how to extend the method to maintain the additional features
just listed, should the BST algorithm being de-amortized have these.

Denote by OPT the best offline algorithm, that is, OPT (S) is a shortest possible
list of operations that realizes S. An algorithmA (online or offline) is f(n)-competitive
if we have A(S) = O(f(n) · OPT (S)) for all sequences S. It is dynamically optimal
if it is O(1)-competitive.

Prior Works. The study of self-adjusting BSTs to minimize the overall cost over a
sequence of accesses was initiated by Allen and Munro [2] with their analysis of the
move-to-root and the simple exchange heuristics, and then by Sleator and Tarjan with
the introduction of Splay Trees [23], which they conjectured to be dynamically optimal.
They show how the running time of Splay Trees can be upper bounded in several ways

De-amortizing Binary Search Trees 123

as a function of the access sequence. They prove the balance theorem (accesses run
in O(log n) amortized), the static optimality theorem (any sequence of accesses runs
within a constant factor of the time to run it on the best possible static tree for that
sequence; in particular it reaches the entropy bound), the static finger theorem (access
x runs in O(log d(x, f)), where d(x, f) is the number of keys between the query item
x and any fixed finger element f), the working set theorem (access x runs in time
O(logw(x)) wherew(x) is the number of distinct elements accessed since the previous
access to x), and the scanning theorem (accessing all nodes in symmetric order takes
time O(n)). They also conjectured the dynamic finger theorem (access to y runs in
amortized O(log d(x, y)) where x is the previous item in the access sequence), which
was subsequently proved by Cole [9,8]. All bounds above are amortized.

On another front, Wilber [25] gave a formal analysis of several variants of the BST
model, providing equivalence reductions between them, and provided two lower bounds
on the number of operations that any BST algorithm must perform for a given sequence.
In particular, he proved that the bit reversal sequence requiresΩ(log n) amortized oper-
ations per access. These lower bounds were recently generalized in [13,10]. Splay Trees
were also shown to be key independent optimal [20], that is, they are O(1)-competitive
if the order of the keys is arbitrary or random, and that they are O(1)-competitive with
respect to a wide class of balanced BST algorithms [15].

New bounds have been designed: the queueish bound (opposite of the working set
bound: the number of elements not accessed since the last access to x) was shown not to
be achievable by any BST algorithm [21]. Recent papers have attempted to engineer a
BST that satisfies the unified property, a bound that implies both the dynamic finger and
the working set bound [19,3]. The skip-splay trees [12] perform each access within a
multiplicative factorO(log log n) of the unified bound, amortized. The layered working
set trees [7] are BSTs that achieve the working set bound worst case. By combining
it with the skip-splay structure, the authors show how to achieve the unified bound,
amortized, with an additive cost of O(log logn).

The first significant breakthrough on the competitive analysis of BST algorithms
came with the invention of tango trees [11], the first provablyO(log logn)-competitive
BST. This result was subsequently improved independently by the multi-splay trees [24]
and the chain-splay trees [16] which both offer the additional guarantee of performing
each access in O(log n) amortized time. Further properties of multi-splay trees were
proved in [14], where they were shown to satisfy static optimality, the static finger
property, the working set property, and key-independent optimality. They further satisfy
the dequeue property which is not known to be satisfied by splay trees.

In recent years, the question was raised as to whether the good amortized properties
could be reconciled with theO(log n) worst case bounds satisfied by well balanced trees
such as AVL or red-black trees. Such results were known for static trees [5], however
recent works gave indication that strong balance constraints at every node forces the
working set bound to be an amortized lower bound, thus forbidding any such tree to
have stronger properties such as the dynamic finger property [4] (the proof was given for
self-adjusting skip-lists and B-trees, however the proofs can easily be adapted to BST
with balance constraints at every node). However, it remained open whether relaxing
the balance condition to just bounding the height of the tree would be compatible with

124 P. Bose et al.

obtaining better amortized performances. In [6], a BST based on Tango trees [11] is
engineered to be both O(log logn)-competitive and guarantees O(log n) worst case
access time for each access. However, this structure is unlikely to possess all the other
desirable properties of Splay Trees.

Our Results. In this paper we show that it is possible to automatically transform any
BST algorithm into one that provides worst case time guarantees per access while keep-
ing the same asymptotic amortized running times. Our core result shows how to keep a
BST balanced while losing only a constant factor in the running time:

– Any BST algorithm A on tree T can be transformed into a BST algorithm A′ on a
tree T ′ such that for any access sequence S, |A′(S)| = O(|A(S)|), while the depth
of T ′ is always O(log n). If A is online, so is A′.

Using this, we then show how to de-amortize the BST and answer each query inO(log n)
worst case cost:

– Any BST algorithm A on tree T can be transformed into a BST algorithm A′′ on
a tree T ′′ such that for any access sequence S, |A′′(S)| = O(|A(S)|) and each
access to a node is performed in O(log n) operations worst case. If A is online, so
is A′′.

Finally, we in the full version show that we can extend the method to maintain the
additional features of real-world online BST algorithms described above. In particular,
we have that if A works in the pointer machine model, with working space being O(1)
words of information in the nodes and O(1) global working variables, and computes
each access to a key in time proportional to the number of BST operation of the access,
then so does our final algorithm.

Applying this transformation to Splay Trees, we obtain a BST that executes every se-
quence within a constant factor of the Splay Tree and thus satisfies the scanning theorem,
the working set property, static optimality, the key-independent optimality, the static fin-
ger property, the dynamic finger property, and that performs each access in O(log n)
worst case. Applying it to Multi-Splay Trees, we obtain a BST that is O(log logn)
competitive, satisfies the scanning theorem, the working set property, static optimality,
the key-independent optimality, the static finger property, and performs each search in
O(log n)worst case time. Applying it to OPT proves the existence of anO(1)-competitive
offline BST algorithm which performs at most O(log n) BST operations between each
access to the keys in the input sequence. Furthermore, if there is an O(1)-competitive
online BST algorithm, then there is also one that performs every search in O(log n)
operations worst case.

Overview of Paper. On a high level, our construction works by performing a heavy-
path decomposition of the tree of the original algorithm A, and then during A’s BST
operations maintain each heavy-path as a constant number of structures accessed in a
stack-like fashion. The remaining and most technical ingredient is a method for main-
taining such stack structures as trees in the BST model, while fulfilling a weight-based
balance criterion that ensures the total composition of the stack representations of the
heavy-paths to be a balanced tree. In the paper, these ingredients are covered in the
reverse order of above.

De-amortizing Binary Search Trees 125

2 Pop-Tarts

We start by implementing a stack using a balanced BST. We differentiate internal nodes,
which always have two children, and leaves which have no children (leaves can also be
seen as empty pointers). In order to fit the stack data structure in the BST model, we
assume that nodes to be pushed onto the stack appear as the parent of the root of the
current stack, and that nodes are pushed onto the stack in decreasing key order (that is,
after the push operation the old stack is the right child of the newly inserted node, and its
left child is a leaf). Our later application of the stack structure fulfils these assumptions.
An empty stack is composed of one leaf. The structure will maintain the invariant that
the left child of the root is always a leaf, to allow for easy pop operations. After each
push or pop operation, the structure is allowed to perform a sequence of operations in
the BST model (finger movements and rotations), and at the end of the sequence, the
finger is back at the root. Leaves can have a weight associated to them, and we use the
convention that internal nodes all have weight 1 (it would not be difficult to generalize
these structures to support arbitrary internal weights, however this is not necessary for
our application).

A BST implementing a stack in this manner we call a Pop-tart1. A pop-tart is good
if push and pop operations are performed in O(1) amortized time and O(log n) worst-
case time. It is crazy good [17] if it is good and the depth of every leaf of weight w is
O(log(W/w)), where W is the total weight of all leaves in the pop-tart, or O(log n) for
an unweighted pop-tart with n leaves2.

In the remainder of this section, we will describe three pop-tart structures. The first
two lay down ground concepts that will be used to construct the third pop-tart (Choco-
late), which is always crazy good.

Vanilla Pop-Tart. Implementing a good pop-tart is easy. In fact, performing no BST
operations after each push or pop operation will produce a linear tree with exactly
O(1) time per operation. This elementary implementation is called Vanilla Pop-Tart.
A vanilla pop-tart will be crazy good if the weight of each pushed leaf is always larger
than the total weight of all other leaves in the pop-tart.

Lemma 1. The Vanilla Pop-Tart is crazy good if nodes are added in decreasing key
order and new leaves have weight larger or equal to the total weight of all other leaves
in the pop-tart. That is, it uses O(1) time per push and pop operation and the depth of
a leaf of weight w is at most 1 + logW/w where W is the total weight of all leaves in
the pop-tart.

Proof. The proof is by induction. If the pop-tart contains one leaf, then it is at depth
0, this covers the base case. Assume by induction that the lemma is true for the right
subtree of the root, which is of total weight W ′. Then the left child of the root is the last
added leaf and it has weight at least W ′, thus, W ≥ 2W ′. The left child of the root is

1 Pop-Tarts are a line of crazy good [17] breakfast products. that pop out of the toaster, which
reminds us of popping a stack. Pop-tart is a trademark of the Kellogg Company.

2 We slightly abuse the big-Oh notation and write O(log(W/w)) to mean a function which is
smaller than c log(W/w) + d for some constants c and d.

126 P. Bose et al.

at depth 1 ≤ 1 + logW/w. Any other leaf in the tree by induction is at depth at most
2 + logW ′/w ≤ 1 + logW/w.

Cherry Pop-Tart. We now describe the Cherry Pop-Tart, which is a crazy good pop-tart
if all leaves have weight 1. Although Cherry Pop-tarts are not used explicitly in this
paper, they serve as a warm up, introducing some key concepts needed to define the
Chocolate Pop-tart structure, which is used later.

The algorithm used is a variant of a 2-4 tree implemented as a BST. On a high level,
it may be viewed as reversing edges on the leftmost path in a red-black tree, and then
having a permanent finger at the leftmost internal node (effectively making it the root
of the BST).

In greater detail: The Cherry Pop-tart is a BST with the nodes on the right path of the
tree grouped into layers. A layer consists of consecutive nodes on the right path, and
the left subtrees of these nodes are called crumbs. The right child of the last node in the
layer is the top node of the next layer (except for the last layer, where it is the original
leaf of the initial empty stack). By definition of BSTs, the layers are linearly ordered,
that is, all keys in a layer are smaller than the keys in the next layer.

We number the layers as follows: the layer containing the root is layer 0, the next one
along the right path is layer 1, and so on. We maintain the invariants that each layer has
between 1 and 3 nodes on the right path (hence that many crumbs), and that the crumbs
pointed to by layer i (called i-crumbs) are perfectly balanced trees containing exactly
2i leaves.

The invariant is true for a pop-tart containing one node: that node is layer 0 and it
points to one 0-crumb (containing one leaf). When a new node is pushed as the parent
of the root, it is added to layer 0. Layer 0 therefore has one more node and one more 0-
crumb. Either the new layer 0 still has no more than 3 crumbs, maintaining the invariant,
or layer 0 now has 4 0-crumbs (each composed of exactly one leaf). In this case, we
perform a left rotation between the last two nodes of the layer. This replaces the last
two nodes of the layer with one node whose left pointer points to a 1-crumb. We now
move that node from layer 0 to layer 1. See Figure 1. Again, the reconfiguration could
either stop there or ripple down further. In general, as a node is added as the parent of
the first node in layer i, either layer i still has no more than 3 i-crumbs, or we preform a
rotation on the node between the last two crumbs, forming a (i + 1)-crumb with twice
as many leaves which is inserted into layer i+1. A pop operation works symmetrically.

i-c
ru
m
b

i-c
ru
m
b

i-c
ru
m
b

i-c
ru
m
b

i+
1-
cr
um
b

i-c
ru
m
b

i+
1-
cr
um
b

i-c
ru
m
b

i-c
ru
m
b

i-c
ru
m
b

= i+ 1-crumb

Fig. 1. Restoring the Cherry Pop-tart invariant at level i

i-crumb

i-crumb

i-crumb
next node

icing

...

...

Fig. 2. Level i in the Chocolate
Pop-tart

De-amortizing Binary Search Trees 127

Lemma 2. The Cherry Pop-Tart is crazy good if nodes are added in decreasing key
order and all leaves have weight 1. That is, it uses O(1) amortized time and O(log n)
worst case time per push and pop operation and its tree has height O(log n).

Proof. To show that a push or pop operation has amortized cost O(1), we assign a
potential of 0 to layers with 2 nodes, and a potential of 1 to layers with 1 or 3 nodes. A
push or pop operation has actual cost proportional to the number of layers that had to
be readjusted to restore the invariant. Each readjusted layer had a potential of 1 before
the operation (i.e., had 3 nodes before a push or 1 node before a pop) and of 0 after the
operation (i.e., has 2 nodes exactly). Therefore, the decrease of potential pays exactly
for the readjustments. The insertion or deletion in the last layer possibly increases its
potential by 1, which is the amortized cost of the operation. Therefore, this pop-tart is
good.

Since layer i has at least one i-crumb containing 2i leaves, a pop-tart with n leaves
has at most logn layers, each having crumbs of height O(log n), thus the total height
of the tree is O(log n). So in the unweighted case, this pop-tart is crazy good.

Chocolate Pop-Tart. Again, the structure will be decomposed into a sequence of layers
whose nodes form a right path and point to crumbs. This time, the right path of the ith

layer will be composed of 1 to 3 regular nodes whose left child is an i-crumb, then a
next node whose left child points to the next layer and whose right child points to a
subtree called the icing. This will be called the structural invariant. See Figure 2. The
icing is itself a stack, implemented using a Vanilla Pop-tart (that is, a simple linear tree),
whose leaves will be frozen3 subtrees of the chocolate pop-tart. In order for the icing
to be crazy good, we will ensure that the nodes (frosted subtrees) pushed onto it will
always be at least as heavy as the total weight of the icing. The subtrees to be frosted
and pushed into the icing of level i will always be the next node and the entire subtree
rooted at the top node of level i+ 1. Therefore, we maintain the invariant that the total
weight of layer i + 1 (that is, the the total weight of the subtree rooted at the topmost
node of that layer) is smaller than the total weight of the icing of layer i (thick icing
invariant). If violated, layer i+ 1 will be frosted and pushed into the icing, to maintain
the invariant.

The last layer, say, layer i, is incomplete: it is composed of 0 to 3 regular nodes, has
no pointer to the next layer, and always contains an icing as its rightmost subtree. It can
only have 0 regular nodes if the icing contains exactly one element (which is always an
i-crumb).

As before, when a new node is pushed onto the i-layer (starting with i = 0), either
the i-layer has at most 3 regular nodes, in which case we are done, or it contains 4
regular nodes and we need to restore the structural invariant. We start by performing a
left rotation between the two lowest regular nodes in the layer, creating an (i+1)-crumb.
We have two cases to consider. If the ith layer is not the last one, then we perform a left
rotation between the next node and the lowest regular node, to move the new (i + 1)-
crumb and its node to the (i + 1)th layer. On the other hand, if the ith layer is the last
one, then it has no next node. Then the lowest regular node becomes a next node which

3 or frosted.

128 P. Bose et al.

points to the new (i+ 1)th layer. That (i+ 1)th layer contains 0 regular nodes, no next
node and an icing which contains the (i+ 1)-crumb as its only leaf.

Having done this, there are again two cases to consider: if the total weight of the
subtree rooted at the (new) top node of the (i+1)th layer is smaller than the total weight
of the icing of the ith layer, then we proceed with the insertion of the (i + 1)-crumb,
by restoring the structural invariant if necessary, and so on. Otherwise, we restore the
thick icing invariant by frosting the (i + 1)th layer without modifying it further (even
if it contains now 4 regular nodes), and push it and its parent node (the next node of the
ith layer) into the icing of the ith layer. The ith layer then becomes the last layer. It has
no next node and two regular nodes.

The deletion operation is symmetric: when the first regular node of the ith layer is
deleted, either the layer still has at least one regular node left, in which case we are
done, or we have to restore the structural invariant. If i is not the last layer, we pull two
nodes and their associated i-crumbs from the (i + 1)th layer (by performing two right
rotations and possibly recursively restoring the invariant in the (i + 1)th layer). If the
(i + 1)th layer is only composed of an icing (which then contains one frosted (i + 1)-
crumb), we defrost the icing, perform a right rotation, transforming the next layer into
two regular nodes pointing to i-crumbs and the ith layer becomes the last one. On the
other hand, if i is the last layer, then we pop a frosted subtree from the icing (unless it
contains only one leaf), and perform a right rotation to turn the frosted subtree into one
regular node and a next node, the latter pointing to the new, unfrosted, (i + 1)th layer
and to the remaining icing.

Lemma 3. The Chocolate Pop-Tart is crazy good if nodes are added in decreasing key
order and new leaves are added with arbitrary weights. That is, it uses O(1) amortized
time per push and pop operation and the depth of a leaf of weight w is O(logW/w)
where W is the total weight of all leaves in the pop-tart.

Proof. We first show that the Chocolate Pop-tart is good, that is, it uses O(1) amortized
time per push and pop operation. For this, we assign a potential of 0 to layers with
2 regular nodes, and a potential of 1 to all other layers. A push operation will cause
a bunch of reconfigurations in successive layers, that end in either adding a crumb to
a layer that does not overflow, or pushing an element in the icing of a layer. Either
case costs O(1) amortized. As in the case of Cherry Pop-tarts, it is easily verified that
every layer that overflows had 3 regular nodes before, and thus a potential of 1, and two
regular nodes after, so a potential of 0 (except possibly for the last rearranged layer).
Likewise, during a pop operation, the potential of a rearranged layer (except the last one)
goes from 1 to 0 since the number of regular nodes it contains goes from 1 to 2. Thus,
the decrease of potential of a layer during a push or a pop pays for its rearrangement,
while the amortized cost of O(1) pays for the potential increase and the rearrangement
in the last node and the push in the icing if it occurs.

It now remains to prove that the depth of a node of weight w is O(logW/w). The
proof will be by induction on the layer number. Consider the subtree rooted at the first
node of the ith layer and let Wi be the total weight of that subtree. Assume by induction
that at any moment in the algorithm, any leaf of weight w has depth i+6+7 logWi/w
starting from the root of the ith layer. We want to show that in the subtree rooted at the
first node of the (i−1)th layer, any leaf of weightw has depth (i−1)+6+7 logWi−1/w.

De-amortizing Binary Search Trees 129

Obviously, the hypothesis is true for an ith layer that contains only an icing with one
frosted i-crumb, since all its leaves are at distance i; this covers the base case.

For a (i − 1)th layer, we consider the leaves located (i) in (i − 1)-crumbs pointed
by regular nodes, (ii) in the ith layer if it exists, and (iii) in the icing of the (i − 1)th

layer. Any leaf of type (i) is at distance ≤ 3+ i− 1which is small enough. For type (ii)
leaves, notice that as long as i-crumbs are being moved from the (i − 1)th layer to the
ith layer without being frosted and pushed to the icing, Wi ≤ Wi−1/2. Therefore, for
any leaf of weight w in the subtree of the ith layer, the depth of that leaf is at most

4 + i+ 6+ 7 logWi/w ≤ 10 + i+ 7 logWi−1/w− 7 ≤ (i− 1) + 4 + 7 logWi−1/w

which is below the desired bound.
Finally for case (iii), since the icing of the (i−1)th layer is implemented as a Vanilla

pop-tart and the frosted subtrees are pushed with (total) weights always larger than all
other leaves (frosted subtrees) in the icing, the icing is crazy good, that is, a frosted
subtree of total weight W will have its root at depth at most 5+ logWi−1/W . Let p be
the parent of the frosted subtree containing the node of weight w, let Wp be the weight
of the subtree rooted at p. The depth of p is at most 4 + logWi−1/Wp since the left
child of every node on the right path of the icing contains at least half of the weight of
that node. Every frosted subtree has its first node whose left pointer points to a possibly
heavy i-crumb, and whose right pointer points to what used to be the ith layer at some
point in time. Let W ′ be the weight of that ith layer. Then W ′ ≤ Wp/2 otherwise the
ith layer would have been frosted earlier. By induction, a leaf of weightw in this former
ith layer must have depth no more than 4 + logWi−1/Wp + 2 + i+ 6 + 7 logW ′/w

≤ 12 + i+ logWi−1/Wp + 7 logWp/w − 7 ≤ (i − 1) + 6 + 7 logWi−1/w

which is the desired bound. A leaf in the i-crumb pointed by the left pointer of the root
node of the frosted subtree has weight at most Wp, and its depth is

4 + logWi−1/Wp + 2 + i ≤ (i − 1) + 6 + 7 logWi−1/w.

This completes the induction proof. For i = 0, we have that any leaf of weight w
has depth at most 6 + 7 logW/w, so the chocolate pop-tart is crazy good for arbitrary
weights.

Note that all pop-tarts described in this section can also be flipped to maintain ele-
ments pushed in increasing order. If the cherry or chocolate pop-tarts need to be imple-
mented in a real-world BST, O(1) extra bits of information in each node is sufficient
for storing the function of that node (regular, next, icing, crumb).

3 Simulation

We now show how to efficiently simulate any BST algorithm while keeping the tree of
logarithmic height. The method will work for trees with weighted nodes as well. Let
wi be the weight of the node with key i and let W =

∑n
i=1 wi. For unweighted trees,

set wi = 1 and W = n. We represent the tree T of the original BST algorithm using a

130 P. Bose et al.

heavy path decomposition. To construct this decomposition, we denote every edge of T
as either solid or dotted. For each non-leaf node, the edge to its child with largest total
subtree weight (or the left child, in case of a tie) is a solid edge, and the edge to its other
child is dotted. The solid edges form heavy paths connected together by dotted edges.

We simulate the original BST algorithm as follows: When its finger is at the root
of T , each heavy path is implemented using a pair of weighted pop-tarts: a heavy path
from node y to node x (with y an ancestor of x) is a sequence of nodes that can be
decomposed into the subsequence L(y, x) of nodes smaller than x on the path, and the
subsequenceR(y, x) of nodes larger than x on the path. Note that L(y, x) is increasing,
and R(y, x) is decreasing. In our simulation, the end of the path x does not change, but
y can move up or down along the path to the root. As y moves up, the new nodes are
added to L(y, x) in decreasing order, or to R(y, x) in increasing order.

The sequences L(y, x) and R(y, x) will each be stored in the weighted chocolate
pop-tart structure described in the previous section, and these two pop-tarts will be left
and right children of x, respectively, see Fig. 3. Each node on the path is connected

y

x

L(y, x)

R(y, x)

x

L(y, x) R(y, x)

pop-tart pop-tart

Fig. 3. Representing a heavy path with Pop-tarts

via a dotted edge to a subtree which will be considered as a leaf in the pop-tart, whose
weight is exactly the total weight of all the nodes in that subtree. The subtrees contained
in those leaves will be structured in the same manner, recursively. The nodes in the tree
will contain two extra bits, one to determine if the edge to its parent node is solid or
dotted, and another to determine if the next node on its heavy path is in L(y, x) or
R(y, x).

When the finger f is not at the root r of the tree, the path from the finger to the the
root is also represented as a pair of pop-tarts in a similar way, but this time upside-down
(see Fig. 4). Thus, as f walks down, the elements of L(r, f) are added in increasing
order, and the elements of R(r, f) are added in decreasing order. Hence, finger move-
ments in the original BST algorithm can be implemented using one push and one pop
operation by transferring a node from one pop-tart to the other using O(1) rotations.
Likewise, rotations in the original BST algorithm only involve the first few nodes on
the pop-tarts linked from the finger, and thus can be implemented in O(1) rotations
and push/pop operations. Note that the finger in the tree maintained by our simulation
always stays at the root.

De-amortizing Binary Search Trees 131

r

u

L(f, u) R(f, u)

pop-tart pop-tart

f

u v

v

L(f, v) R(f, v)

pop-tart pop-tart

f

L(r, f)
pop-tart

R(r, f)

pop-tart

Fig. 4. Representing the finger in general position

Any path from the root to a node x of weight w uses at most logW/w dotted edges.
Further, let W1,W2, . . . ,Wk be the total weights of the successive heavy paths (along
with their descendants) on the path from the root to x. By Lemma 3, the ith heavy
path will be stored at depth O(log(Wi−1/Wi)) in the pop-tart of the (i − 1)th heavy
path, and node x will be at depth O(log(Wk/w)) in the pop-tart of the last heavy path.
Thus, the total depth of x in the tree is bounded by a telescoping sum that sums up to
O(log(W/w)). Clearly, if A is online, so is A′. We obtain:

Theorem 1. Given a BST algorithm A with a starting tree T , there is a BST algorithm
A′ with a starting tree T ′ such that |A′(S)| = O(|A(S)|), and such that the depth of a
node i in T ′ is always O(log(W/wi)) and the finger is always at the root of T ′. If A is
online, so is A′.

We note thatO(1) extra bits per node is sufficient for storing the structure of the original
tree and the function of each node in the simulation: each node needs to indicate whether
a child is part of the same heavy path or not, and for all nodes on the path from r to f , a
bit is needed to determine if the next node on the path is stored in L(r, f) or in R(r, f).

4 De-amortization

Theorem 2. For any BST algorithm A with a starting tree T there is a BST algorithm
A′′ with a starting tree T ′′ such that for any access sequence S, |A′′(S)| = O(|A(S)|)
and each access to a node is performed in O(log n) operations worst case. If A is
online, so is A′′.

Proof. Using Theorem 1, transform A and T into A′ and T ′ such that the depth of
node i in T ′ is always c logn for some constant c. Algorithm A′ is then modified as
follows: while running the sequence of operations in A′(S), every time c logn opera-
tions from the originalA′(S) sequence have been performed without accessing the next
unaccessed element of the input sequence, access this element by moving the finger to
it and back (thereby inserting ≤ 2c logn extra BST operations into the sequence at this
point). Thus every access is performed in worst case 3c logn, and the total cost of the
sequence is the same within a factor 3. If A is online, so is A′′.

132 P. Bose et al.

References

1. Adel’son-Vel’skii, G.M., Landis, E.M.: An algorithm for the organization of information.
Soviet. Math. 3, 1259–1262 (1962)

2. Allen, B., Munro, I.: Self-organizing binary search trees. JACM 25(4), 526–535 (1978)
3. Badoiu, M., Cole, R., Demaine, E.D., Iacono, J.: A unified access bound on comparison-

based dynamic dictionaries. Theor. Comput. Sci. 382(2), 86–96 (2007)
4. Bose, P., Douı̈eb, K., Langerman, S.: Dynamic optimality for skip lists and B-trees. In: Proc.

of the ACM-SIAM Symposium On Discrete Algorithms, pp. 1106–1114 (2008)
5. Bose, P., Douı̈eb, K.: Should Static Search Trees Ever Be Unbalanced? In: Cheong, O., Chwa,

K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 109–120. Springer, Heidelberg
(2010)

6. Bose, P., Douı̈eb, K., Dujmović, V., Fagerberg, R.: An O(log log n)-Competitive Binary
Search Tree with Optimal Worst-Case Access Times. In: Kaplan, H. (ed.) SWAT 2010.
LNCS, vol. 6139, pp. 38–49. Springer, Heidelberg (2010)

7. Bose, P., Douı̈eb, K., Dujmović, V., Howat, J.: Layered Working-Set Trees. In: López-Ortiz,
A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 686–696. Springer, Heidelberg (2010)

8. Cole, R.: On the dynamic finger conjecture for splay trees. Part II: the proof. SIAM J. Com-
puting 30(1), 44–85 (2000)

9. Cole, R., Mishra, B., Schmidt, J., Siegel, A.: On the dynamic finger conjecture for splay
trees. Part I: splay sorting log n-block sequences. SIAM J. Computing 30(1), 1–43 (2000)

10. Demaine, E.D., Harmon, D., Iacono, J., Kane, D., Pǎtraşcu, M.: The geometry of binary
search trees. In: Proc. of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms,
New York, January 4-6, pp. 496–505 (2009)

11. Demaine, E.D., Harmon, D., Iacono, J., Patrascu, M.: Dynamic optimality - almost. SIAM J.
Comput. 37(1), 240–251 (2007)

12. Derryberry, J., Sleator, D.D.: Skip-Splay: Toward Achieving the Unified Bound in the BST
Model. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS,
vol. 5664, pp. 194–205. Springer, Heidelberg (2009)

13. Derryberry, J., Sleator, D.D., Wang, C.C.: A lower bound framework for binary search trees
with rotations. Technical Report CMU-CS-05-187. Carnegie Mellon University (November
2005)

14. Derryberry, J., Sleator, D.D., Wang, C.C.: Properties of multi-splay trees. Technical Report
CMU-CS-09-180. Carnegie Mellon University (November 2009)

15. Georgakopoulos, G.F.: Splay trees: a reweighing lemma and a proof of competitiveness vs.
dynamic balanced trees. Journal of Algorithms 51(1), 64–76 (2004)

16. Georgakopoulos, G.F.: Chain-splay trees, or, how to achieve and prove log log n-
competitiveness by splaying. Inf. Process. Lett. 106, 37–43 (2008)

17. Gold Effie Award, http://www.effie.org/winners/showcase/2006/256
18. Guibas, L.J., Sedgewick, R.: A dichomatic framework for balanced trees. In: Proc. 19th Ann.

IEEE Symp. on Theory of Computing, pp. 8–21 (1978)
19. Iacono, J.: Alternatives to splay trees with O(log n) worst-case access times. In: Proc. 12th

ACM-SIAM Sympos. Discrete Algorithms, pp. 516–522 (2001)
20. Iacono, J.: Key-independent optimality. Algorithmica 42(1), 3–10 (2005)
21. Iacono, J., Langerman, S.: Queaps. Algorithmica 42(1), 49–56 (2005)
22. Knuth, D.E.: Optimum binary search trees. Acta Inf. 1, 14–25 (1971)
23. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary trees. JACM 32, 652–686 (1985)
24. Wang, C.C., Derryberry, J., Sleator, D.D.: O(log log n)-competitive dynamic binary search

trees. In: Proc. of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm,
pp. 374–383. ACM, New York (2006)

25. Wilber, R.: Lower bounds for accessing binary search trees with rotations. SIAM J. Comput-
ing 18(1), 56–67 (1989)

http://www.effie.org/winners/showcase/2006/256

Efficient Sampling Methods

for Discrete Distributions

Karl Bringmann1 and Konstantinos Panagiotou2

1 Max Planck Institute for Informatics
Campus E1.4, 66123 Saarbrücken, Germany

2 Department of Mathematics, University of Munich,
Theresienstraße 39, 80333 Munich, Germany

Abstract. We study the fundamental problem of the exact and efficient
generation of random values from a finite and discrete probability dis-
tribution. Suppose that we are given n distinct events with associated
probabilities p1, . . . , pn. We consider the problem of sampling a subset,
which includes the ith event independently with probability pi, and the
problem of sampling from the distribution, where the ith event has a
probability proportional to pi. For both problems, we present on two
different classes of inputs – sorted and general probabilities – efficient
preprocessing algorithms that allow for asymptotically optimal query-
ing, and prove almost matching lower bounds for their complexity.

1 Introduction

Generating random variables from finite and discrete distributions has long been
an important building block in many applications. For example, in computer
simulations usually a huge number of random decisions based on prespecified
or dynamically changing distributions is made. In this work we consider two
fundamental computational problems, namely sampling independent events and
sampling from a distribution, on two different classes of inputs, sorted and un-
sorted probabilities. As we will see, there is a rich interplay in designing efficient
algorithms that solve these different variants.

Our results are valid in the classical RealRAM model [1, 9] of computation.
In particular, we will assume that the following operations take constant time:

• Accessing the content of any memory cell.
• Generating a uniformly distributed real number in the interval [0, 1].
• Performing any basic arithmetical operation involving real numbers like ad-
dition, multiplication, division, comparison, truncation, and evaluating any
fundamental function like exp and log.

Whether our results can be generalized to more realistic machine models is an
interesting question for future work.

In the remainder, we will abbreviate [n] = {1, . . . , n} and we will write lnx
for the natural logarithm of x and log x for the binary logarithm of x. Finally,
we will write rand() for a uniform random number in [0, 1].

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 133–144, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

134 K. Bringmann and K. Panagiotou

1.1 Subset Sampling

We consider n independent events with indicator random variables X1, . . . , Xn,
and Pr[Xi = 1] = pi. For shortcut we write μ = μp =

∑n
i=1 pi = E[

∑n
i=1Xi] and

p = (p1, . . . , pn). Consider the random variable X = Xp = {i ∈ [n] | Xi = 1},
which is the set of all events that occurred.

We concern ourselves with the problem of sampling X . We study this problem
on two different classes of input sequences, sorted and general (i.e., not neces-
sarily sorted) sequences; dependent on the class under consideration we call the
problem SortedSubsetSampling or UnsortedSubsetSampling.

A single-sample algorithm for SortedSubsetSampling or UnsortedSub-

setSampling gets input p and outputs a set S ⊆ [n] that has the same dis-
tribution as X . When we speak of “input p” we mean that the algorithm gets
to know n and can access every pi in constant time. This can be achieved by
storing all pi’s in an array, but also, e.g., by a constant depth arithmetic circuit
computing pi given i. In particular, the algorithm does not know the number of
i’s with pi = 0 (i.e., the input format is not sparse).

Such an algorithm cannot run faster than O(1+μ), as its expected output size
is μ and any algorithm requires a running time of Ω(1). This runtime, however,
is in general not achievable, as our results below make more precise. Hence, we
consider a preprocessing-query variant of the problem, where we want to be able
to answer queries in the optimal expected runtime of O(1 + μ) after a certain
preprocessing.

In the preprocessing-query variant we consider the interplay of two algorithms.
First, the preprocessing algorithm P gets p as input and computes some auxiliary
dataD = D(p). Second, the query algorithm Q gets inputp andD, and samplesX ,
i.e., for anyS ⊆ [n] we havePr[Q(p, D) = S] = Pr[Xp = S]. HerePr goes only over
the random choices ofQ, so that, after running the preprocessing once, running the
query algorithmmultiple times generatesmultiple independent samples.Note that
if the preprocessing time is p and the query time is q, then we can generate a single
sample ofX in time p+ q, so the single-sample variant of the problem is also solved
by the preprocessing-query variant. In this paperwewill not consider single-sample
algorithms any further, because our constructed preprocessing-query algorithms
are already for a single query as efficient as the best single-sample algorithm we
can devise. This holds for all problem variants we consider.

The single-sample variant of UnsortedSubsetSampling can be solved triv-
ially in time O(n); we just toss a biased coin for every pi. A classic algorithm
solves this problem for p1 = . . . = pn = p in the optimal expected time O(1+μ),
see e.g. the monographs [2] by Devroye and [5] by Knuth, where also many other
cases are discussed. Indeed, observe that the index i1 of the first sampled element
is geometrically distributed, i.e., Pr[i1 = i] = (1 − p)i−1p. Such a random value

can be generated by setting i1 = (log rand()
log(1−p)). Moreover, after having sampled the

index of the first element, we iterate the process starting at i1 +1 to sample the
second element, and so on, until we arrive for the first time at an index ik > n. In
[13] the “orthogonal” problem is considered, where we want to uniformly sample
a fixed number of elements from a stream of objects.

Efficient Sampling Methods for Discrete Distributions 135

In this paper we generalize the algorithm for equal probabilities as far as
possible. More precisely, we ask whether the optimal query time O(1 + μ) is
achievable for larger classes of inputs and how much preprocessing is needed.
We obtain the following answers.

Theorem 1. SortedSubsetSampling can be solved in O(log n) preprocessing
time and O(1+μ) expected query time. Moreover, the bound on the preprocessing

time is nearly tight, as the sum of preprocessing and query time is Ω
(

log n
log logn

)
for any such algorithm, as n→∞ and μ = μ(n) � (logn)−O(1).

Note that all our lower bounds only hold for algorithms that work for all n
and all sorted sequences p1, . . . , pn. They are worst-case bounds over the input
sequence p and asymptotic in n. For particular instances p there can be faster
algorithms. Due to space limitations, the proof of the lower bound of Theorem 1
is not included in this extended abstract.

To avoid any confusion, note that we mean worst-case bounds whenever we
speak of (running) time and expected bounds whenever we speak of expected
(running) time. The next result addresses the case where the probabilities are
not necessarily sorted.

Theorem 2. UnsortedSubsetSampling can be solved in O(n) preprocessing
time and O(1 + μ) expected query time. Moreover, this is optimal, as even any
single-sample algorithm for UnsortedSubsetSampling needs time Ω(n).

Both positive results in the previous theorems depend highly on each other.
In particular, as it is demonstrated in Section 3, we prove them by repeatedly
reducing the instance size n and switching from the one problem variant to the
other.

The problem of UnsortedSubsetSampling was considered also recently in
the two papers [11, 12], where algorithms with linear preprocessing time and
suboptimal query time O(log n + μ) were designed. Thus, our results improve
upon these running times, and provide accompanying and (almost) matching
lower bounds.

1.2 Proportional Sampling

In the previous section we considered the problem of sampling subsets. Here
we will focus on a slightly different and more classical problem. Given p =
(p1, . . . , pn) ∈ Rn

�0, we define a random variable Y = Yp that takes values in [n]

such that Pr[Y = i] = pi/μ, where again μ =
∑n

i=1 pi. We call the problem of
sampling Y SortedProportionalSampling or UnsortedProportional-

Sampling, if we consider it on sorted or general input sequences, respectively.
As previously, we consider two variations of the problem. In the single-sample

variant we are given p and we want to compute an output that has the same
distribution as Y . Moreover, in the preprocessing-query variant we have a pre-
computation algorithm that, given p, computes some auxiliary data D, and a

136 K. Bringmann and K. Panagiotou

query algorithm that is given p and D and has an output with the same dis-
tribution as Y ; where the results of multiple calls to the query algorithm are
independent.

In this setting, we no longer output μ elements. So, it could be that the
optimal expected query time reduces to O(1). For sorted sequences, this optimal
query time can be indeed achieved after a relatively small preprocessing time,
as the next result shows.

Theorem 3. SortedProportionalSampling can be solved in O(log n) pre-
processing time and O(1) expected query time.

For general input sequences, this problem can be solved by the technique known
as pairing or aliasing [5, 14]. This result is not new, but will be used in the
proofs of Theorem 1 and Theorem 2, so we include it for completeness.

Theorem 4. UnsortedProportionalSampling can be solved in O(n) pre-
processing time and O(1) query time. Moreover, this is optimal, as any single-
sample algorithm for UnsortedProportionalSampling needs time Ω(n).

The fundamental problem of the exact and efficient generation of random values
from discrete and continuous distributions has been studied extensively in the
literature. Knuth and Yao investigated in their seminal work [6] the power of
several restricted devices, like finite-state machines; the articles [3, 15] provide
a further refined treatment of the topic. However, their results are not directly
comparable to ours, since they do not make any assumption on the sequence of
probabilities, and use unbiased coin flips as the only source of randomness, but
cannot guarantee efficient precomputation on general sequences. Furthermore,
Hagerup, Mehlhorn and Munro [4] and Matias, Vitter and Ni [7] provided algo-
rithms for a dynamic version of UnsortedProportionalSampling, where the
probabilities may change over time. In particular, under certain mild conditions
their results guarantee the same bounds as in Theorem 4.

The rest of the paper is structured as follows. In the following section we
will show Theorem 4. Section 3 contains the proofs of Theorems 1 and 2, while
Section 4 is devoted to the proof of Theorem 3. We discuss relaxations to our
input model and possible extensions in Section 5.

2 Proportional Sampling on Unsorted Probabilities

In this section we consider UnsortedProportionalSampling and prove The-
orem 4. The upper bound can be reached by the old technique known as pairing
or aliasing [14]; see also Mihai Pătraşcu’s blog [10] for a nice explanation. Ba-
sically, we use O(n) preprocessing to distribute the probabilities of all elements
over n urns such that any urn contains probability mass of at most two elements.
For querying we choose an urn uniformly at random and choose a random one of
the two included elements according to their probability mass in the urn, which
gives O(1) worst-case querying time.

The lower bound for Theorem 4 is provided by the following lemma, which re-
duces UnsortedProportionalSampling to searching in an unordered array.

Efficient Sampling Methods for Discrete Distributions 137

Moreover, the same proof yields the lower bound of Theorem 2 for Unsorted-

SubsetSampling.

Lemma 1. Any single-sample algorithm for UnsortedProportionalSam-

pling needs Ω(n) expected time. Moreover, any single-sample algorithm for Un-

sortedSubsetSampling needs Ω(n) expected time.

Proof. Consider the instances p(k) = (p
(k)
1 , . . . , p

(k)
n) with p

(k)
i = δik, where δik

is the Kronecker delta. Any sampling algorithm for UnsortedProportional-

Sampling returns k on instance p(k) with probability 1. This cannot be done
better than with linear search for k, and randomness does not help, either. With

varying μ, no better bound is possible, either: Simply set p
(k)
i = μδik.

Observe that on the same instance any sampling algorithm for Unsorted-

SubsetSampling returns {k} with probability 1. This needs runtime Ω(n) for
the same reasons. With varying μ, no better bound is possible, either: Set the

first s := �μ−1� probabilities pi to values that sum up to μ−1, and let p
(k)
i = δik

for s < i � n. Then we still need runtime Ω(n − μ) for searching k. As we also
need runtime Ω(μ) for outputting the result, the claim follows. ��

3 Subset Sampling

In this section we consider SortedSubsetSampling and UnsortedSubset-

Sampling and prove Theorems 1 and 2. An interesting interplay between both
of these problems will be revealed on the way.

We begin with a first algorithm for unsorted probabilities that has a quite
large preprocessing time, but will be used for a base case later. The algorithm
uses Theorem 4, which we proved in the preceding section.

Lemma 2. UnsortedSubsetSampling can be solved in O(n2) preprocessing
time and O(1 + μ) expected query time.

Proof. For i ∈ [n] let Xi be the smallest sampled element which is at least i,
or ∞, if no such element is sampled. Xi is a random variable with Pr[Xi =
j] = pj

∏
i�k<j(1 − pk) and Pr[Xi = ∞] =

∏
i�k�n(1− pk). These probabilities

can be computed in time O(n) for any i, i.e., in time O(n2) for all i. After
having computed the distribution of the Xi’s, we execute, for each i ∈ [n], the
preprocessing of Theorem 4, see the beginning of Section 2, which allows us to
quickly sample Xi later on. This preprocessing costs in total O(n2).

For querying, we start at i = 1 and iteratively sample the smallest element
j � i (i.e., sample Xi), output j, and start over with i = j+1. This is done until
j = ∞ or i = n+ 1. Note that any sample of Xi can be computed in O(1) time
with our preprocessing, so that sampling S ⊆ [n] will be done in time O(1+ |S|).
The expected runtime is, thus, O(1 + μ). ��

After having this base case, we turn towards reductions between SortedSub-

setSampling and UnsortedSubsetSampling. First, we give an algorithm

138 K. Bringmann and K. Panagiotou

for UnsortedSubsetSampling, that reduces the problem to SortedSubset-

Sampling. For this, we roughly sort the probabilities so that we get good upper
bounds for each probability. Then these upper bounds will be a sorted instance.
After querying from this sorted instance, we use rejection (see, e.g., [5]) to sample
with the original probabilities.

Lemma 3. Assume that SortedSubsetSampling can be solved in p(n, μ) pre-
processing time and q(n, μ) expected query time, where p and q are monotoni-
cally increasing in n and μ. Then UnsortedSubsetSampling can be solved
in O(n+ p(n, 2μ+ 1)) preprocessing time and O(1 + μ+ q(n, 2μ+ 1)) expected
query time.

Proof. Let p1, . . . , pn be an input sequence to UnsortedSubsetSampling. For
preprocessing, we permute the input p so that it is approximately sorted, by
putting it into buckets Bk := {i ∈ [n] | 2−k � pi � 2−k−1}, for k ∈ {0, 1, . . . , L},
and BL := {i ∈ [n] | 2−L � pi}, where L = �logn�. For each i ∈ Bk we set
pi := 2−k, which is an upper bound on pi. We sort the probabilities pi, i ∈ [n],
descendingly using bucket sort with the buckets Bk, yielding p′1 � . . . � p′n. In
this process we store the original index ind(i) corresponding to p′i, so that we can
find pind(i) corresponding to p′i in constant time. Then we run the preprocessing
of SortedSubsetSampling on p′1, . . . , p

′
n. Note that

μ :=

n∑
i=1

p′i =
n∑

i=1

pi �
n∑

i=1

max

{
2pi,

1

n

}
� 2μ+ 1.

For querying, we query p′1, . . . , p
′
n using SortedSubsetSampling, yielding S′ ⊆

[n]. We compute S := {ind(i) | i ∈ S′}. Each i ∈ S was sampled with probability
pi � pi. We use rejection to get this probability down to pi. For this, we generate
for each i ∈ S a random number rand() and check whether it is smaller than or
equal to pi

pi
. If this is not the case, we delete i from S. Note that we have thus

sampled i with probability pi, and all elements are sampled independently, so
that we can return S. ��

We also give a reduction in the other direction, solving SortedSubsetSam-

pling by UnsortedSubsetSampling.

Lemma 4. Assume that UnsortedSubsetSampling can be solved in p(n, μ)
preprocessing time and q(n, μ) expected query time, where p and q are mono-
tonically increasing in n and μ. Then SortedSubsetSampling can be solved
in O(logn + p(1+logn, 2μ)) preprocessing time and O(1 + μ + q(1+logn, 2μ))
expected query time.

Proof. Let p1, . . . , pn be an input sequence to SortedSubsetSampling. We
consider blocks Bk = {i ∈ [n] | 2k � i < 2k+1}, with k ∈ {0, . . . , L} and
L := (logn). For i ∈ Bk we let pi := p2k , which is an upper bound on pi. We
will first sample with respect to the probabilities pi - call the sampled elements
potential - and then use rejection. For this, let Xk be an indicator random

Efficient Sampling Methods for Discrete Distributions 139

variable for the event that we sample at least one potential element in Bk. Then
qk := Pr[Xk = 1] = 1 − (1 − p2k)

|Bk|. Moreover, let Yk be a random variable
for the first potential element in block Bk minus 2k. Let Yk = ∞, if no element
in Bk is sampled as a potential element. Then Pr[Yk = i] = p2k(1 − p2k)

i for
i ∈ {0, . . . , |Bk| − 1}, and Pr[Yk = ∞] = Pr[Xk = 0] = 1− qk. We calculate

Pr[Yk = i | Xk] =
Pr[Yk = i]

Pr[Xk]
=

p2k

qk
(1− p2k)

i.

Since this is a geometric distribution, we can sample from it in constant time as
sketched in the introduction; see also [5].

Now, for preprocessing, we compute the probabilities qk, which can be done
in time O(log n) (as ab = exp(b log a) can be computed in constant time on
a Real RAM), and run the preprocessing of UnsortedSubsetSampling on
them. Note that the qk are in general unsorted.

For querying, we query the blocks Bk that contain potential elements using
the query algorithm for UnsortedSubsetSampling. Then for each block Bk

that contains a potential element, we sample all potential elements in this block.
Note that the first of the potential elements in Bk is distributed as Pr[Yk =
i | Xk], which is geometric, so we can sample it in constant time, while all
further potential elements are distributed as Yk (but only on the remainder of
the block), which is still geometric. After thus sampling potential elements S,
we reject each potential element with the right probability: We keep each i ∈ S
only if rand() � pi

pi
. This yields a correctly distributed sample.

Let μ :=
∑n

i=1 pi. The overall query time is at most q(1+logn, μ)+O(1+ |S|)
when sampling potential elements S. As the expected value of |S| is μ, all we
need to show in order to finish the proof is μ � 2μ. For this, note that pi � p�i/2
.
This yields

μ =

n∑
i=1

pi �
n∑

i=1

p�i/2
 � 2

n∑
i=1

pi = 2μ.

��

Next, we put above three lemmas together to prove the upper bounds of Theo-
rems 1 and 2.

Proof (Theorem 2, upper bound). To solve UnsortedSubsetSampling, we use
the reduction Lemma 3 and then Lemma 4, followed by the base case Lemma 2.
This reduces the instance size from n to O(log n), so that preprocessing costs
O(n) for the invocation of the first lemma, O(log n) for the second, and O(log2 n)
for the third. Note that μ is increased by constant factors only, so that we indeed
get the optimal query time O(1 + μ). ��

Proof (Theorem 1, upper bound). To solve SortedSubsetSampling, we use
the reductions Lemma 4, Lemma 3, and Lemma 4 again, followed by the base
case Lemma 2. This reduces the instance size from n to O(log n) and further

140 K. Bringmann and K. Panagiotou

down to O(log logn), while μ is increased by constant factors only. For precom-
putation this yields a runtime of O(log n) from Lemmas 4 and 3, O(log logn)
from the second invocation of Lemma 4, and O(log2 logn) from the base case
Lemma 2, summing up to O(logn). The query time is the optimal expected time
O(1 + μ). ��

4 Proportional Sampling on Sorted Probabilities

We prove Theorem 3 in this section, i.e., we show how to solve SortedPro-

portionalSampling in O(log n) preprocessing time and O(1) expected query
time. We do this by first considering the special case of 1

2 � μ � 1, so that we
have a (nearly) proper probability distribution. Lemma 7 shows how to reduce
SortedProportionalSampling to SortedSubsetSampling in this special
case. Then we reduce the general case with arbitrary μ to the special case.

4.1 Special Case 1/2 � μ � 1

We first fix some notation for this section. Let p be an instance to SortedPro-

portionalSampling with μ = μp in the range [12 , 1]. Instead of p we consider
p′ = (p′1, . . . , p

′
n) with p′i :=

pi

1+pi
. Note that p′ ist still sorted and μ′ :=

∑n
i=1 p

′
i

is in the range [μ2 , μ], thus in the range [14 , 1].
Let Y = SortedProportionalSampling(p) be the random variable denot-

ing proportional sampling on input p, and X = SortedSubsetSampling(p′)
be the random variable denoting subset sampling on input p′. Then conditioned
on sampling exactly one element X = {i}, this element i is distributed exactly
as Y , as formulated by the following lemma.

Lemma 5. With the definitions and assumptions of this section we have for all
i ∈ [n]

Pr[X = {i} | |X | = 1] = Pr[Y = i].

Proof. Bayes’ rule and straightforward calculation give

Pr[X = {i} | |X | = 1] = Pr[X = {i}]/Pr[|X | = 1]

=

(
p′i

1− p′i

n∏
k=1

(1− p′k)

)
/

⎛⎝ n∑
j=1

p′j
1− p′j

n∏
k=1

(1− p′k)

⎞⎠
=

(
p′i

1− p′i

)
/

⎛⎝ n∑
j=1

p′j
1− p′j

⎞⎠
Plugging in the definition of p′i yields

Pr[X = {i} | |X | = 1] = pi/
n∑

j=1

pj = Pr[Y = i].

��

Efficient Sampling Methods for Discrete Distributions 141

Moreover, the probability of sampling exactly one element is large, as shown in
the following lemma. Note that this bound is not best possible but sufficient for
our purposes.

Lemma 6. With the definitions and assumptions of this section we have

Pr[|X | = 1] � 1/8.

Proof. Clearly,

Pr[|X | = 1] =

n∑
j=1

p′j
1− p′j

n∏
k=1

(1− p′k).

Assume there is no p′i greater than 1/2. Then we have 1 − p′i � 4−p′
i for all

i ∈ [n], so we get

Pr[|X | = 1] �
n∑

j=1

p′j ·
n∏

k=1

4−p′
k = μ′ · 4−

∑n
k=1 p′

k = μ′ · 4−μ′ � 1

8
.

Otherwise, there is exactly one p′i∗ > 1/2, as μ′ � 1. Then 1 − p′k � 4−p′
k holds

for all k ∈ [n], k �= i∗, which yields

Pr[|X | = 1] � Pr[X = {i∗}] = p′i∗
∏

1�k�n
k �=i∗

(1− p′k) �
1

2

∏
1�k�n
k �=i∗

4−p′
k

� 1

2
4−
∑n

k=1 p′
k =

1

2
4−μ′ � 1

8
.

��

We put these facts together to show the following result.

Lemma 7. Assume that SortedSubsetSampling can be solved in p(n, μ) pre-
processing time and q(n, μ) expected query time, where p and q are monotonically
increasing in n and μ. Then SortedProportionalSampling on instances
with 1

2 � μ � 1 can be solved in O(p(n, 1)) preprocessing time and O(q(n, 1))
expected query time.

Proof. For preprocessing, given input p, we run the preprocessing of Sorted-

SubsetSampling on input p′. This does not mean that we compute the vector
p′ beforehand, but if the preprocessing algorithm of SortedSubsetSampling
reads the i-th input value, we compute p′i =

pi

1+pi
on the fly, so that this needs

runtimeO(p(n, 1)). It allows to sampleX later on in expected runtime O(q(n, 1))
using the same trick of computing p′ on the fly.

For querying, we repeatedly sample X until we sample a set S of size one.
Returning the unique element of S results in a proper sample according to Sort-

edProportionalSampling by Lemma 5. Moreover, by Lemma 6 and the fact
that samplingX needs expected time O(q(n, 1)) after our preprocessing, we need
expected query time O(q(n, 1)). ��

142 K. Bringmann and K. Panagiotou

4.2 General Case

Lemma 8. Assume that SortedProportionalSampling on instances with
1
2 � μ � 1 can be solved in p(n) preprocessing time and q(n) expected query time.
Then SortedProportionalSampling (for general instances) can be solved in
O(log n+ p(n)) preprocessing time and O(q(n)) expected query time.

Proof. We need to compute a good upper bound μ � μ. For this we reuse an
idea of the proof of Lemma 4: For i ∈ [n] let 2k be the largest power of two less
than or equal to i, and set pi := p2k . Then μ :=

∑n
i=1 pi �

∑n
i=1 pi = μ, and we

have pi � p�i/2
, so that

μ =

n∑
i=1

pi �
n∑

i=1

p�i/2
 � 2

n∑
i=1

pi = 2μ.

Hence, μ is indeed a good upper bound on μ. Moreover, μ can be computed in
time O(log n), as

μ =

�log n�∑
k=0

p2k(min{2k+1 − 1, n} − 2k + 1).

Now, for preprocessing, we compute μ and consider p′ = (p′1, . . . , p′n) with p′i :=
pi

μ . Since μ � μ � μ
2 we have μ′ :=

∑n
i=1 p

′
i in the range [12 , 1]. Thus, we can

run the preprocessing of SortedProportionalSampling (on instances with
bounded μ) on p′. We do this without computing the whole vector p′. Instead,
if the preprocessing algorithm reads the i-th input value, we compute p′i =

pi

μ

on the fly. This way we need a runtime of O(log n+ p(n)).
For querying, we query according to p′ within expected runtime O(q(n)),

where we again compute values of p′ on the fly as needed. As we want to sample
proportional to the input probabilities, a sample with respect to p′ has the same
distribution as a sample with respect to p, so that we simply return the sample
we have. ��

Proof (Theorem 3). To solve SortedProportionalSampling we take Lem-
mas 8 and 7 and Theorem 1 together. ��

5 Relaxations

In this section we describe some natural relaxations for the input model studied
so far in this paper.

Large Deviations for the Running Times. The query runtimes in Theorems 1, 2
and 3 are, in fact, not only small in expectation, but they are also concentrated,
i.e., they satisfy large deviation estimates in the following sense. Let t be the
expected runtime bound and T the actual runtime. Then

Pr[T > kt] = e−Ω(k),

Efficient Sampling Methods for Discrete Distributions 143

where the asymptotics are with respect to k. This is shown rather straightfor-
wardly along the lines of our proofs of these theorems. The fundamental reason
for this is that the size of the random set X is concentrated. Indeed, let Xi be
an indicator random variable for the i-th element as above. Then for any a > 1
we obtain along the lines of the proof of the Chernoff bound

Pr[|S| > k(μ+ 1)] = Pr[a
∑n

i=1 Xi > ak(μ+1)] � E[a
∑n

i=1 Xi]

ak(μ+1)
.

Then, the independence of the Xi’s implies that

Pr[|S| > k(μ+ 1)] �
∏n

i=1 E[a
Xi]

ak(μ+1)

=

∏n
i=1(api + (1− pi))

ak(μ+1)
� exp((a− 1)μ− k(μ+ 1) ln a).

Setting a = k + 1 yields

Pr[|S| > k(μ+ 1)] � exp(kμ− k(μ+ 1) log(k + 1)) � (k + 1)−k,

for k � 2, as claimed.

Unimodular Input. Many natural distributions p are not sorted, but unimodular,
meaning that pi is monotonically increasing for 1 � i � m and monotonically
decreasing for m � i � n (or the other way round). Knowing m, we can run the
algorithms developed in this paper on both sorted halfs, and combine the return
values, which gives an optimal query algorithm for unimodular inputs. Alter-
natively, if we have strong monotonicity, we can search for m in time O(log n)
using ternary search, which does not increase our precomputation time.

This can be naturally generalized to k-modular inputs, where the monotonic-
ity changes k times.

Approximate Input In some applications it may be costly to compute the proba-
bilities pi exactly, but we are able to compute approximations pi(ε) � pi � p

i
(ε),

with relative error at most ε, where the cost of computing these approximations
depends on ε. We can still guarantee optimal query time, if the costs of comput-
ing these approximations are small enough, see e.g. [8].

Indeed, we can surely sample a superset S with respect to the probabilities
pi(1). Then we want to use rejection, i.e., for each element i ∈ S we want to
compute a random number r := rand() and delete i from S if r · pi(1) > pi,
to get a sample set S. This check can be performed as follows. We initialize
k := 1. If r · pi(1) > pi(2

−k) we delete i from S. If r · pi(1) � p
i
(2−k) we keep

i and are done. Otherwise, we increase k by 1. This method needs an expected
number of O(1) rounds of increasing k; the probability of needing k rounds is
O(2−k). Hence, if the cost of computing pi(ε) and p

i
(ε) is O(ε−c) with c < 1,

the expected overall cost is constant, and we get an optimal expected query time
of O(1 + μ).

144 K. Bringmann and K. Panagiotou

References

[1] Borodin, A., Munro, I.: The computational complexity of algebraic and
numeric problems. American Elsevier Publishing Co., Inc., New York (1975)

[2] Devroye, L.: Nonuniform random variate generation. Springer, New York
(1986)

[3] Flajolet, P., Saheb, N.: The complexity of generating an exponentially dis-
tributed variate. Journal of Algorithms 7(4), 463–488 (1986)

[4] Hagerup, T., Mehlhorn, K., Munro, J.I.: Maintaining Discrete Probability
Distributions Optimally. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.)
ICALP 1993. LNCS, vol. 700, pp. 253–264. Springer, Heidelberg (1993)

[5] Knuth, D.E.: The Art of Computer Programming. Seminumerical Algo-
rithms, 3rd edn., vol. 2. Addison-Wesley Publishing Co, Reading (2009)

[6] Knuth, D.E., Yao, A.C.: The complexity of nonuniform random number
generation. In: Algorithms and Complexity (Proc. Sympos.), pp. 357–428.
Carnegie-Mellon Univ., Pittsburgh (1976)

[7] Matias, Y., Vitter, J.S., Ni, W.C.: Dynamic generation of discrete random
variates. Theory of Computing Systems 36(4), 329–358 (2003)

[8] Nacu, Ş., Peres, Y.: Fast simulation of new coins from old. The Annals of
Applied Probability 15(1A), 93–115 (2005)

[9] Preparata, F.P., Shamos, M.I.: Computational Geometry. Texts and Mono-
graphs in Computer Science. Springer, New York (1985)

[10] Pătraşcu, M.: Webdiarios de motocicleta, sampling a discrete distri-
bution (2011), infoweekly.blogspot.com/2011/09/sampling-discrete-
distribution.html

[11] Tsai, M.-T., Wang, D.-W., Liau, C.-J., Hsu, T.-s.: Heterogeneous Subset
Sampling. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196,
pp. 500–509. Springer, Heidelberg (2010)

[12] Tsai, M.T., Wang, D.W., Liau, C.J., Hsu, T.S.: Heterogeneous subset sam-
pling (submitted for publication, 2012)

[13] Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math.
Softw. 11(1), 37–57 (1985)

[14] Walker, A.J.: New fast method for generating discrete random numbers
with arbitrary distributions. Electronic Letters 10, 127–128 (1974)

[15] Yao, A.C.: Context-free grammars and random number generation. In:
Combinatorial algorithms on words (Maratea, 1984), vol. 12, pp. 357–361.
Springer (1985)

infoweekly.blogspot.com/2011/09/sampling-discrete-distribution.html
infoweekly.blogspot.com/2011/09/sampling-discrete-distribution.html

Approximation Algorithms for Online Weighted

Rank Function Maximization under Matroid
Constraints

Niv Buchbinder1,�, Joseph (Seffi) Naor2,��, R. Ravi3,� � �, and Mohit Singh4

1 Computer Science Dept., Open University of Israel
niv.buchbinder@gmail.com

2 Computer Science Dept., Technion, Haifa, Israel
naor@cs.technion.ac.il

3 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA
ravi@cmu.edu

4 Microsoft Research, Redmond and School of Computer Science,
McGill University, Montreal, Quebec, Canada

mohitsinghr@gmail.com

Abstract. Consider the following online version of the submodular max-
imization problem under a matroid constraint. We are given a set of
elements over which a matroid is defined. The goal is to incrementally
choose a subset that remains independent in the matroid over time. At
each time, a new weighted rank function of a different matroid (one per
time) over the same elements is presented; the algorithm can add a few
elements to the incrementally constructed set, and reaps a reward equal
to the value of the new weighted rank function on the current set. The
goal of the algorithm as it builds this independent set online is to max-
imize the sum of these (weighted rank) rewards. As in regular online
analysis, we compare the rewards of our online algorithm to that of an
offline optimum, namely a single independent set of the matroid that
maximizes the sum of the weighted rank rewards that arrive over time.
This problem is a natural extension of two well-studied streams of ear-
lier work: the first is on online set cover algorithms (in particular for the
max coverage version) while the second is on approximately maximizing
submodular functions under a matroid constraint.

In this paper, we present the first randomized online algorithms for
this problem with poly-logarithmic competitive ratio. To do this, we em-
ploy the LP formulation of a scaled reward version of the problem. Then
we extend a weighted-majority type update rule along with uncrossing
properties of tight sets in the matroid polytope to find an approximately
optimal fractional LP solution. We use the fractional solution values as
probabilities for a online randomized rounding algorithm. To show that
our rounding produces a sufficiently large reward independent set, we
prove and use new covering properties for randomly rounded fractional
solutions in the matroid polytope that may be of independent interest.

� Supported in part by ISF grant 954/11 and by BSF grant 2010426.
�� Supported in part by the Google Inter-university center for Electronic Markets and

Auctions, by ISF grant 954/11, and by BSF grant 2010426.
� � � Supported in part by NSF award CCF-1143998.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 145–156, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

146 N. Buchbinder et al.

1 Introduction

Making decisions in the face of uncertainty is the fundamental problem addressed
by online computation [5]. In many planning scenarios, a planner must decide
on the evolution of features to a product without knowing the evolution of the
demand for these features from future users. Moreover, any features initially in-
cluded must be retained for backward compatibility, and hence leads to an online
optimization problem: given a set of features, the planner must phase the addi-
tion of the features, so as to maximize the value perceived by a user at the time
of arrival. Typically, users have diminishing returns for additional features, so it
is natural to represent their utility as a submodular function of the features that
are present (or added) when they arrive. Furthermore, the set of features that are
thus monotonically added, are typically required to obey some design constraints.
The simplest are of the form that partition the features into classes and there is a
restriction on the number of features that can be deployed in each class. A slight
extension specifies a hierarchy over these classes and there are individual bounds
over the number of features that can be chosen from each class. We capture these,
as well as other much more general restrictions on the set of deployed features,
via the constraint that the chosen features form an independent set of a matroid.
Thus, our problem is to monotonically construct an independent set of features
(from a matroid over the features) online, so as to maximize the sum of submodu-
lar function values (users) arriving over time and evaluated on the set of features
that have been constructed so far.

This class of online optimization problems generalizes some early work of
Awerbuch et al. [2]. They considered a set-cover instance, in which the restric-
tion is to choose at most k sets with the goal of maximizing the coverage of
the elements as they arrive over time. In this setting there is no gain from an
element which is covered later than its arrival time. This is precisely the online
maximization version of the well-studied maximum coverage problem. Even this
special case of our problem already abstracts problems in investment planning,
strategic planning, and video-on-demand scheduling.

1.1 Problem Setting, Main Result and Techniques

In our setting, we are given a universe of elements E, |E| = m, and a matroid
M = (E, I(M)) whose independent sets characterize the limitations on which
sets of elements can be chosen. At every time step i, 1 ≤ i ≤ n, a client arrives
with a non-negative monotone submodular function fi : 2

E → Z+ representing
her welfare function. The objective is to maintain a monotonically increasing
set F ∈ I(M) over time; that is, the set Fi−1 of elements (at time i − 1) can
only be augmented to Fi after seeing fi at time step i. The welfare of client i
is then fi(Fi), and our objective is to maximize

∑n
i=1 fi(Fi). We compare our

performance to the offline optimum maxO∈I(M)

∑n
i=1 fi(O).

We are concerned with the case that each of the submodular functions fi is a
weighted rank function of a matroid Ni

1, i.e., fi(S) = maxI⊆S,I∈I(Ni)

∑
e∈I wi,e

1 Matroid Ni is defined on the same set of elements asM.

Approximation Algorithms for Online Weighted Rank Function 147

where wi : E → R+ is an arbitrary weight function. This class of submodular
functions is very broad and includes all the examples discussed above; Further-
more, we believe it captures the difficulty of general submodular functions even
though we have not yet been able to extend our results to the general case. Nev-
ertheless, there are submodular functions which are not weighted rank functions
of a matroid, for example, multi-set coverage function [8].

Theorem 1. There exists a randomized polynomial time algorithm which is
O
(
log2 n logm log fratio

)
-competitive, for the online submodular function maxi-

mization problem under a matroid constraint over m elements, when each fi, 1 ≤
i ≤ n, is a weighted rank function of a matroid and fratio = 2

maxi,e fi({e})
mini,e|fi({e})�=0 fi({e}) .

In other words, the algorithm maintains monotonically increasing independent
sets Fi ∈ I(M) such that

E

[
n∑

i=1

fi(Fi)

]
≥ Ω

(
1

log2 n logm log fratio

)
· max
O∈I(M)

n∑
i=1

fi(O).

Our result should be contrasted with the lower bound proved in [2]2.

Lemma 1. Any randomized algorithm for the submodular maximization prob-
lem under a matroid constraint is Ω(logn log(m/r))-competitive, where r is the
rank of the matroid. This lower bound holds even for uniform matroids and when
all fi are unweighted rank functions.

We note that the O(logm) factor in our analysis can be slightly improved to an
O(log(m/r)) factor with a more careful analysis. A lower bound of Ω(log fratio)
also follows even when the functions fi are linear (see, for example, [6]).

Main Techniques. To prove our results, we combine techniques from online
computation and combinatorial optimization. The first step is to formulate an
integer linear programming formulation for the problem. Unfortunately, the nat-
ural linear program is not well-suited for the online version of the problem. Thus,
we formulate a different linear program in which we add an extra constraint that
each element e contributes roughly the same value to the objective of the optimal
solution. While this may not be true in general, we show that an approximate
optimal solution satisfies this requirement.

We note that the online setting we study is quite different from the online
packing framework studied by [6] and leads to new technical challenges. In par-
ticular, there are two obstacles in applying the primal-dual techniques in [6] to
our setting. First, the linear formulation we obtain (which is natural for our
problem) is not a strict packing LP and contains negative variables (see Sec-
tion 3). Second, the number of packing constraints is exponential, and hence the
techniques of [6] would give a linear competitive factor rather than a polylog-
arithmic one. Nevertheless, we present in Section 3 an online algorithm which

2 The lower bounds in [2] even apply to a special case of a uniform matroid and very
restricted submodular functions.

148 N. Buchbinder et al.

gives a fractional solution to the linear program having a large objective value.
One of the crucial ingredients is the uncrossing property of tight sets for any
feasible point in the matroid polytope.

To obtain an integral solution, we perform in Section 4 a natural randomized
rounding procedure to select fractionally chosen elements. But, we have to be
careful to maintain that the selected elements continue to form an independent
set. The main challenge in the analysis is to tie the performance of the random-
ized algorithm to the performance of the fractional algorithm. As a technical
tool in our proof, we show in Lemma 9 that randomly rounding a fractional
solution in the matroid polytope gives a set which can be covered by O(log n)
independent sets with high probability. This lemma may be of independent in-
terest and similar in flavor to the results of Karger [15] who proved a similar
result for packing bases in the randomly rounded solution.

Some of the proofs are excluded here due to space considerations and appear
in the full version of the paper [7].

1.2 Related Results

Maximizing monotone submodular function under matroid constraints has been
a well studied problem and even many special cases have been studied widely
(see survey by Goundan and Schulz [14]). Fisher, Nemhauser and Wolsey [13]
gave a (1− 1

e)-approximation for a uniform matroid and showed that the greedy
algorithm gives a 1

2 -approximation. This was improved by Calinescu at al [8] and
Vondrák [21] who gave a (1 − 1

e)-approximation for the general problem. They
also introduced the multi-linear extension of a submodular function and used
pipage rounding introduced by Ageev and Sviridenko [1]. The facility location
problem was introduced by Cornuejols et al. [10] and was the impetus behind
studying the general submodular function maximization problem subject to ma-
troid constraints. The submodular welfare problem can be cast as a submodular
maximization problem subject to a matroid constraint (the reduction appears in
Fisher et al. [13]), and the problem has been extensively studied [19,17,18,16].
The result of Vondrák [21] implies a (1 − 1

e)-approximation for the problem.
Despite the restricted setting of our benefit functions, we note that recent work
in welfare maximization in combinatorial auctions [11] has focused on precisely
the case when the valuations are matroid rank sums (MRS) that we consider in
our model.

A special case of our online problem was studied by Awerbuch et al. [2].
They studied an online variant of the max-coverage problem, where given n sets
coveringm elements, the elements arrive one at a time, and the goal is to pick up
to k sets online to maximize coverage. They obtained a randomized algorithm
which is O(log n log(m/k))-competitive for the problem and proved that this
is optimal in their setting. Our results generalize both the requirement on the
cardinality of the chosen sets to arbitrary matroid constraints, and the coverage
functions of the arriving elements to monotone submodular functions that are
weighted rank functions of matroids.

Approximation Algorithms for Online Weighted Rank Function 149

Another closely related problem with a different model of uncertainty was
studied by Babaioff et al. [3]. They studied a setting in which elements of a
matroid arrive in an online fashion and the goal is to construct an independent set
which is competitive with the maximumweight independent set. They considered
the random permutation model which is a non-adversarial setting, and obtained
an O(log k)-competitive algorithm for general matroids, where k is the rank of
the matroid, and constant competitive ratio for several interesting special cases.
Recently, Bateni et al. [4] studied the same model where the objective function
is a submodular function (rather than linear).

Chawla et al. [9] study Bayesian optimal mechanism design to maximize ex-
pected revenue for a seller while allocating items to agents who draw their val-
ues for the items from a known distribution. Their development of agent-specific
posted price mechanisms when the agents arrive in order, and the items allocated
must obey matroid feasibility constraints, is similar to our setting. In particu-
lar, we use the ideas about certain ordering of matroid elements (Lemma 7 in
their paper) in the proof that our randomized rounding algorithm give sufficient
profit.

2 Preliminaries

Given a set E, a function f : 2E → R+ is called submodular if for all sets
A,B ⊆ E, f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B). Given set E and a collection
I ⊆ 2E, M = (E, I(M)) is a matroid if (i) for all A ∈ I and B ⊂ A implies that
B ∈ I and (ii) for all A,B ∈ I and |A| > |B| then there exists a ∈ A \ B such
that B ∪ {a} ∈ I. Sets in I are called independent sets of the matroid M. The
rank function r : 2E → R+ of matroid M is defined as r(S) = maxT∈I:T⊆S |T |.
A basic property of matroids is the fact that the rank function of any matroid
is submodular.

We also work with weighted rank functions of a matroid, defined as f(S) =
maxI⊆S,I∈I(M)

∑
e∈I we for some weight function w : 2E → R+. Given any

matroidM, we define the matroid polytope to be the convex hull of independent
sets P (M) = conv{1I : I ∈ I} ⊆ R|E|. Edmonds [12] showed that P (M) = {x ≥
0 : x(S) ≤ r(S) ∀ S ⊆ E}. We also use the following fact about fractional points
in the matroid polytope (The proof follows from standard uncrossing arguments.
See, e.g., Schrijver [20], Chapter 40).

Fact 2. Given a matroid M = (E, I(M)) with rank function r and feasible
point x ∈ P (M), let τ = {S ⊆ E : x(S) = r(S)}. Then, τ is closed under
intersection and union and there is a single maximal set in τ .

3 Linear Program and the Fractional Algorithm

We now give a linear program for the online submodular function maximization
problem and show how to construct a feasible fractional solution online which is
O(logm logn log fratio)-competitive. Before we give the main theorem, we first

150 N. Buchbinder et al.

LP1 : max
∑n

i=1

∑
e∈E zi,e

s.t.

∀S ⊆ E
∑

e∈S xe ≤ r(S) (1)

∀1 ≤ i ≤ n, S ⊆ E
∑

e∈S zi,e ≤ ri(S) (2)

∀1 ≤ i ≤ n, e ∈ E zi,e ≤ xe (3)

∀1 ≤ i ≤ n, e ∈ E zi,e, xe ≥ 0

Fig. 1. LP for maximizing a sum of (unweighted) rank functions subject to matroid
constraint

formulate a natural LP. Let O ⊆ E denote the optimal solution having value∑n
i=1 fi(O). Since each fi is the weighted rank function of matroid Ni, we have

that fi(O) = wi(Oi) =
∑

e∈Oi
wi,e where O ⊇ Oi ∈ I(Ni). For the sake of

simplicity, we assume that wi,e = 1 (In the full version we show that this as-
sumption can be removed with an additional loss of an O(log fratio) factor in
the competitive ratio). Observe that in this case, fi(S) = ri(S), where ri is the
rank function of matroid Ni for any set S ⊆ E.

We next formulate a linear program where xe is the indicator variable for
whether e ∈ O and zi,e is the indicator variable for whether e ∈ Oi. Since
O ∈ I(M) and Oi ∈ I(Ni), we have that x ∈ P (M) and zi ∈ P (Ni) as
represented by constraints (1) and constraints (2), respectively in Figure 1.

We prove the following theorem.

Theorem 3. There exists a polynomial time algorithm A that constructs a fea-
sible fractional solution (x, z) online to LP1 which is O(log n logm)-competitive.
That is, algorithm A maintains a monotonically increasing solution (x, z) such

that
∑n

i=1

∑
e∈E zi,e = Ω(

∑n
i=1 fi(O)

logn logm) where O is an optimal integral solution.

To prove Theorem 3, instead of working with the natural linear program LP1,
we formulate a different linear program. The new linear program is indexed by
an integer α and places the constraints that each e ∈ O occurs in [α2 , α] different
Oi’s as represented by constraints (7) and (8). The parameter α will be defined
later.

The next lemma, whose proof is omitted, shows that if we pick O(log n) dif-
ferent values of α then the sum of the integer solutions to the linear programs
LP2(α) perform as well as the optimal solution.3

Lemma 2. Let OPT denote the value of an optimal integral solution to linear
program LP1 and let OPTα denote the value of an optimal integral solution
to the linear program LP2(α) for each α ∈ {1, 2, 4, . . . , 2�logn
}. Then OPT ≤∑

α∈{1,2,4,...,2�log n	}OPTα.

Using the above lemma, a simple averaging argument shows that for some
guess α, the optimal integral solution to LP2(α) is within a logn factor of the

3 We assume that the algorithm knows the value of n. In the full version of the paper
we show how to deal with an unknown n losing an additional small factor.

Approximation Algorithms for Online Weighted Rank Function 151

LP2(α) : max
∑n

i=1

∑
e∈E zi,e

s.t.

∀S ⊆ E
∑

e∈S xe ≤ r(S) (4)

∀1 ≤ i ≤ n, S ⊆ E
∑

e∈S zi,e ≤ ri(S) (5)

∀1 ≤ i ≤ n, e ∈ E zi,e ≤ xe (6)

∀e ∈ E
∑n

i=1 zi,e ≤ αxe (7)

∀e ∈ E
∑n

i=1 zi,e ≥
αxe
2

(8)

∀1 ≤ i ≤ n, e ∈ E zi,e, xe ≥ 0

Fig. 2. A restricted LP for the submodular function maximization subject to matroid
constraint

optimal integral solution to LP1. Hence, we construct an algorithm which first
guesses α and then constructs an approximate fractional solution to LP2(α).

3.1 Online Algorithm for a Fractional LP Solution

Given a fractional solution x, a set S ⊆ E tight is called tight if x(S) = r(S).

Guessing Algorithm:

– Guess a value α ∈R {1, 2, 4 . . . , n}.
– Run AlgG with value α.

AlgG:

– Initialize xe ← 1/m2 (where m = |E|), set zi,e = 0 for each i, e.

– When function fi arrives, order the elements arbitrarily.

– For each element e in order:

– If ∀S|e ∈ S, x(S) < r(S) and zi(S) < ri(S)− 1/2:

xe ← min

{
xe · exp

(
8 logm

α

)
, min
S|e∈S

{r(S)− x(S \ {e})}
}

(9)

zi,e ← xe/2 (10)

Using an independence oracle for each of the matroids Ni, the above condi-
tions can be checked in polynomial time by a reduction to submodular function
minimization (See Schrijver [20], Chapter 40) and therefore the running time
of the algorithm is polynomial. Note that the fractional algorithm is carefully
designed. For example, it is very reasonable to greedily update the value of zi,e
even when the value xe is not updated by the algorithm(of course, ensuring
that zi ∈ P (Ni)). While such an algorithm does give the required guarantee on
the performance of the fractional solution, it is not clear how to round such a

152 N. Buchbinder et al.

solution to an integral solution. In particular, our algorithm for finding a frac-
tional solution is tailored so as to allow us to use the values later on as rounding
probabilities in a randomized algorithm.

Before we continue, we define some helpful notation regarding the online al-
gorithm. Let xi,e(α) be the value of the variable xe after the arrival of user i for
some guess α. Let Δxi,e(α) be the change in the value of xe when user i arrives.
Let xe(α) be the value of xe at the end of the execution. Similarly, let zi,e(α) be
the value of zi,e at the end of the execution. We start with the following lemma
that follows from the update rule (9). The proof is omitted.

Lemma 3. For any element e ∈ E, and guess α,

n∑
i=1

zi,e(α) ≥
α

48 logm

(
xe(α) −

1

m2

)
, (11)

where xe(α) is the value at the end of the execution of AlgG.

Next we prove that the solution produced by AlgG is almost feasible with respect
to an optimal solution to LP2(α).

Lemma 4 (Feasibility Lemma). Let (x(α), z(α)) be the fractional solution
generated by AlgG at the end of the sequence. Then, it satisfies all constraints
of LP2(α) except constraints (8).

Proof. We prove that the solution is feasible.
Matroid constraints (4). Clearly, the algorithm never violates the matroid con-
straints by choosing the minimum of the two terms in (9).
Constraints (5) and constraints (6). zi,e ← xi,e(α)/2 ≤ xe(α)/2, thus con-
straints (6) hold. Finally, the algorithm only updates zi,e if for all S|e ∈ S,
zi(S) < ri(S) − 1/2. Since by the above observations zi,e ≤ xe(α)/2 ≤ 1/2, we
never violate constraints (5) after the update.
Constraints (7). This constraint follows since

n∑
i=1

zi,e =
∑

i:Δxi,e>0

xi,e(α)/2 ≤ xe(α)|{i : Δxi,e > 0}|

However, after α augmentations, xe(α) ≥ 1
m2 exp

(
8 logm

α · α
)
> 1. Thus, xe

must be in a tight set and so by design we never update xe and any zi,e.

In order to evaluate the performance of the algorithm we first show that the size
of the solution returned by the algorithm is large as compared to the optimal
integral solution. Later in Lemma 6, we relate the objective value of the solution
to its size. This lemma uses crucially the properties of the matroid. The proof is
omitted.

Lemma 5 (Large Fractional Size). Let (x∗(α), z∗(α)) be an optimal integral
solution to LP2(α). Let (x(α), z(α)) be the fractional solution generated by AlgG
at the end of the sequence. Then, we have

∑
e∈E xe(α) ≥ 1

16

∑
e∈E x∗e(α).

Approximation Algorithms for Online Weighted Rank Function 153

Finally, we prove a lemma bounding the performance of the algorithm.

Lemma 6. For any guess value α, the algorithm maintains a fractional solution
to LP2(α) such that:

∑
e∈E

n∑
i=1

zi,e(α) = Ω

(
OPTα

logm

)
,

where OPTα is objective of an optimal integral solution to LP2(α).

Proof. Let (x∗, z∗) denote the optimal integral solution to LP2(α). If x
∗
e = 0 for

each e, then the lemma follows immediately. We have the following∑
e∈E

∑n
i=1 zi,e(α) ≥ α

48 logm

∑
e∈E

(
xe(α) − 1

m2

)
(Lemma 3)

≥ α
48 logm

∑
e∈E

(
x∗
e(α)
16 − 1

m2

)
(Lemma 5)

= Ω
(

1
logm

∑
e∈E

∑n
i=1 z

∗
i,e(α)

)
where the last equality follows since in LP2(α) for each element

∑n
i=1 z

∗
i,e(α) ≤

αx∗e and
∑

e∈E x∗e ≥ 1. This completes the proof of Lemma.

Finally, we get our main theorem.

Theorem 4. The online algorithm for the fractional LP solution (of LP1) is
O(logm logn)-competitive.

Proof. The proof follows by combining Lemma (4), Lemma (6), Lemma (2) and
the observation that there areO(log n) possible values of α, where each is guessed
with probability Ω(1/ logn).

4 Randomized Rounding Algorithm

In this section we present a randomized algorithm for the unweighted problem
which is O(log2 n logm)-competitive when each submodular function fi is a rank
function of a matroid. The algorithm is based on the fractional solution designed
in Section 3. Although our rounding scheme is extremely simple, the proof of
its correctness involves carefully matching the performance of the rounding al-
gorithm with the performance of the fractional algorithm. Indeed, here the fact
that LP2(α) has extra constraints not present in LP1 is used very crucially.

Theorem 5. The expected profit of the randomized algorithm is Ω
(

OPT
logm log2 n

)
.

154 N. Buchbinder et al.

The randomized algorithm follows the following simple rounding procedure.

Matroid Randomized Rounding Algorithm:

– F ← ∅.
– Guess the value α ∈R {1, 2, 4 . . . , n}.
– Run AlgG with value α.

• Whenever xe increases by Δxe, if F ∪{e} ∈ I(M) then F ← F ∪{e}
with probability Δxe

4 .

In order to prove our main theorem, we prove several crucial lemmas. The
main idea is to tie the performance of the randomized algorithm to the perfor-
mance of the fractional solution that is generated. In the process we lose a factor
of O(log n). We first introduce some notation. All of the following notation is
with respect to the execution of the online algorithm for a fixed value of α and we
omit it from the notation. Let Fi denote the solution formed by the randomized
algorithm at the end of iteration i and let F denote the final solution returned
by the algorithm. Let Y i

e denote the indicator random variable of the event that
element e has been selected till iteration i. Let ΔY i

e denote the indicator ran-
dom variable that element e is selected in iteration i. Let yie = Pr[Y i

e = 1] and
Δyie = Pr[ΔY i

e = 1]. Finally, let ye denote the probability element e is in the
solution at the end of the execution. Recall that xi,e denotes the value of the
variable xe in the fractional solution after iteration i and let xe denote the frac-
tional value of element e at the end of the execution of the fractional algorithm,
and let Δxi,e be the change in the value of e in iteration i.

Since the algorithm tosses a coin for element e in iteration i with probability
Δxi,e/4, therefore the probability that an element e is included in the solution
till iteration i is at most xi,e/4. Our first lemma states that the expected number
of elements chosen by the algorithm is at least half that amount in expectation
and is comparable to the total size of the fractional solution. Thus, Lemma 7
plays the role of Lemma 5 in the analysis of the randomized algorithm. The
proof is omitted.

Lemma 7. Let F be the solution returned by the randomized rounding algo-

rithm, then E[|F |] =
∑

e∈E ye ≥
∑

e∈E xe

8 .

Our second lemma relates the change in the probability an element is chosen to
the change in the fractional solution. This lemma shows that a crucial property
of the exponential update rule for the fractional solution is also satisfied by the
integral solution. The proof is omitted.

Lemma 8. For each element e and iteration i,
Δyi

e

yi
e

≤ Δxi,e

xi,e
≤ 24 logm

α .

We next prove a general lemma regarding randomized rounding in any matroid
polytope. The proof of the lemma utilizes a lemma proved in Chawla et al. [9]
and it is omitted.

Lemma 9. Given a matroid N = (E, I) and a solution z such that for all
S ⊆ E, z(S) ≤ r(S)/2, construct a set F by including in e ∈ F with probability

Approximation Algorithms for Online Weighted Rank Function 155

ze for each e ∈ E independently. Then, with high probability (1− 1
m2n2), F can

be covered by O(logm+ logn) independent sets where m = |N |.

We now prove a relation between the profit accrued by the algorithm at iteration
i, denoted by the random variable ri(Fi), and the events that a particular set of
elements are chosen in the solution. For any i, Let Hi denote the set of elements
such that zi,e > 0. Note that zi,e > 0 if and only if Δxi,e > 0.

Lemma 10.
∑n

i=1E[ri(Fi)] ≥ 1
c logn

∑n
i=1

∑
e∈Hi

yie, where c is some constant.

Now we have all the ingredients for proving Theorem 5.
Proof of Theorem 5: We prove that the expected profit of the algorithm

with guess α is at least Ω
(

OPTα

logm logn

)
. Since each α is guessed with probability

1/ logn, and the value of OPT is the sum over all values α, we get the desired
value. The expected profit of the algorithm when we guess α is at least.∑n

i=1E[fi(Fi)] ≥ 1
c logn

∑n
i=1

∑
e∈Hi

yie (Lemma 10)

≥
∑n

i=1

∑
e∈Hi

α
c′ logm lognΔy

i
e (Lemma 8)

=
∑

e∈E
α

c′ logm log nye (
∑

i:e∈Hi
Δyie = ye)

≥
∑

e∈E
α

8c′ logm log nxe (Lemma 7)

= Ω
(

α·nα

logm logn

)
= Ω

(
OPTα

logm log n

)
. (Lemma 5)

�

References

1. Ageev, A.A., Sviridenko, M.: Pipage rounding: A new method of constructing algo-
rithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)

2. Awerbuch, B., Azar, Y., Fiat, A., Leighton, T.: Making commitments in the face of
uncertainty: how to pick a winner almost every time (extended abstract). In: STOC
1996: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, pp. 519–530 (1996)

3. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and on-
line mechanisms. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 434–443
(2007)

4. Bateni, M., Hajiaghayi, M., Zadimoghaddam, M.: Submodular Secretary Problem
and Extensions. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX
and RANDOM 2010. LNCS, vol. 6302, pp. 39–52. Springer, Heidelberg (2010)

5. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cam-
bridge University Press (1998)

6. Buchbinder, N., Naor, J.: The design of competitive online algorithms via a primal-
dual approach. Foundations and Trends in Theoretical Computer Science 3(2-3),
93–263 (2009)

7. Buchbinder, N., Naor, J. (Seffi)., Ravi, R., Singh, M.: Approximation Algorithms
for Online Weighted Rank Function Maximization under Matroid Constraints
(2012), http://arxiv.org/abs/1205.1477

http://arxiv.org/abs/1205.1477

156 N. Buchbinder et al.

8. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a Submodular Set
Function Subject to a Matroid Constraint (Extended Abstract). In: Fischetti, M.,
Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Hei-
delberg (2007)

9. Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism de-
sign and sequential posted pricing. In: ACM Symposium on Theory of Computing,
pp. 311–320 (2010)

10. Cornuejols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to op-
timize float: An analytic study of exact and approximate algorithms. Management
Science 23(8), 789–810 (1977)

11. Dughmi, S., Roughgarden, T., Yan, Q.: From convex optimization to randomized
mechanisms: toward optimal combinatorial auctions. In: ACM Symposium on The-
ory of Computing, pp. 149–158 (2011)

12. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Proceed-
ings of the Calgary International Conference on Combinatorial Structures and their
Application, pp. 69–87. Gordon and Breach, New York (1969)

13. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for
maximizing submodular set functions - part ii. Mathematical Programming 14,
265–294 (1978)

14. Goundan, P.R., Schulz, A.S.: Revisiting the greedy approach to submodular set
function maximization (January 2009) (preprint)

15. Karger, D.R.: Random sampling and greedy sparsification for matroid optimization
problems. Mathematical Programming 82, 99–116 (1998)

16. Khot, S., Lipton, R.J., Markakis, E., Mehta, A.: Inapproximability results for com-
binatorial auctions with submodular utility functions. Algorithmica 52(1), 3–18
(2008)

17. Lehmann, B., Lehmann, D.J., Nisan, N.: Combinatorial auctions with decreasing
marginal utilities. In: ACM Conference on Electronic Commerce, pp. 18–28 (2001)

18. Mirrokni, V.S., Schapira, M., Vondrák, J.: Tight information-theoretic lower
bounds for welfare maximization in combinatorial auctions. In: ACM Conference
on Electronic Commerce, pp. 70–77 (2008)

19. Nemhauser, G.L., Wolsey, L.A.: Best Algorithms for Approximating the Maximum
of a Submodular Set Function. Mathematics of Operations Research 3(3), 177–188
(1978)

20. Schrijver, A.: Combinatorial optimization - polyhedra and efficiency. Springer
(2005)

21. Vondrak, J.: Optimal approximation for the submodular welfare problem in the
value oracle model. In: STOC 2008: Proceedings of the 40th Annual ACM Sym-
posium on Theory of Computing, pp. 67–74 (2008)

Improved LP-Rounding Approximation

Algorithm for k-level Uncapacitated Facility
Location

Jaroslaw Byrka and Bartosz Rybicki

Institute of Computer Science, University of Wroclaw
Joliot-Curie 15, PL-50-383 Wroc�law

jby@ii.uni.wroc.pl, rybicki.bartek@gmail.com

Abstract. We study the k-level uncapacitated facility location problem,
where clients need to be connected with paths crossing open facilities of k
types (levels). In this paper we give an approximation algorithm that for
any constant k, in polynomial time, delivers solutions of cost at most αk

times OPT , where αk is an increasing function of k, with limk→∞ αk = 3.
Our algorithm rounds a fractional solution to an extended LP for-

mulation of the problem. The rounding builds upon the technique of
iteratively rounding fractional solutions on trees (Garg, Konjevod, and
Ravi SODA’98) originally used for the group Steiner tree problem.

We improve the approximation ratio for k-UFL for all k ≥ 3, in
particular we obtain the ratio equal 2.02, 2.14, and 2.24 for k = 3, 4,
and 5.

1 Introduction

In k-level facility location problem we have a set C of clients and a set F =⋃k
i=1 Fi of facilities (locations to potentially open a facility). Facilities are of k

different types (levels), e.g., for k = 3 one may think of these facilities as shops,
warehouses and factories. Each set Fi contains facilities on level i. Each facility
i has cost of opening it fi and for each i, j ∈ C ∪ F there is distance ci,j ≥ 0
which satisfies the triangle inequality. The task is to connect each client to an
open facility at each level, i.e., for each client j it needs to be connected with a
path pj = (j, i1, i2, · · · , ik−1, ik), where il is an open facility at level l. We aim
at minimizing the total cost of opening facilities (at all levels) plus the total
connection cost, i.e., the sum of the lengths of clients paths.

1.1 Related Work and Our Results

The studied k-level UFL, generalizes the standard 1-level UFL, for which Guha
and Khuller [8] showed a 1.463-hardness of approximation. This was recently
improved by Krishnaswamy and Sviridenko [9] who showed 1.539-hardness for
two levels (k = 2) and 1.61-hardness for general k, which demonstrates that
multilevel facility location is strictly harder to approximate than the single level
variant for which the current best known approximation ratio is 1.488 by Li [10].

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 157–169, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

158 J. Byrka and B. Rybicki

The first constant factor approximation algorithm for k = 2 is due to Shmoys,
Tardos, and Aardal [2], who gave a 3.16-apx. algorithm. For general k, the first
constant factor approximation algorithm was the 3-apx. algorithm by Aardal,
Chudak, and Shmoys [1].

As it was naturally expected that the problem is easier for smaller number of
levels, Ageev, Ye, and Zhang [3] gave an algorithm which reduces an instance
of the k-level problem into a pair of instances of the (k − 1)-level problem and
of the single level problem. By this reduction they obtained 2.43-apx. for k = 2
and 2.85-apx. for k = 3. This was later improved by Zhang [12], who got 1.77-apx
for k = 2, 2.53-apx 1 for k = 3, and 2.81-apx for k = 4. Byrka and Aardal [4]
have then improved the approximation ratio for k = 3 to 2.492.

Zhang [12] predicted the existence of an algorithm that for any fixed k has
approximation ratio strictly smaller than 3. In this paper we give such an al-
gorithm, which is a natural generalization of LP-rounding algorithms for single
level UFL. Our new LP-rounding algorithm improves the currently best known
approximation ratio for k-level UFL for any k > 2. The ratios we obtain for
k ≤ 10 are summarized in the following table.

k 1 2 3 4 5 6 7 8 9 10
previous best 1.49 1.77 2.50 2.81 3 3 3 3 3 3

our alg. (no scaling) 1.74 2.07 2.26 2.38 2.47 2.53 2.59 2.63 2.66 2.69
our alg. (with scaling) 1.58 1.85 2.02 2.14 2.24 2.31 2.37 2.42 2.46 2.50

In this paper we describe the simpler variant (with no scaling) in full detail.
The application of the scaling and filtering techniques from UFL is straightfor-
ward but technical. It turns out that the analysis analogous to the one in [5] gives
best approximation when applied to the version of our algorithm with scaling.
In Section 5, we briefly discuss the application of scaling to our algorithm.

1.2 The Main Idea behind Our Algorithm

The 3-approximation algorithm of Aardal, Chudak, and Shmoys, rounds a frac-
tional solution to the standard path LP-relaxation of the studied problem by
clustering clients around so-called cluster centers. Each cluster center gets a di-
rect connection, while all the other clients only get a 3-hop connection via their
centers. In the single level UFL problem, Chudak and Shmoys observed that
by randomly opening facilities one may obtain an improved algorithm using the
fact that for each client, with at least some fixed probability, he gets an open
facility within a 1-hop path distance. While in the single level problem inde-
pendently sampling facilities to open is sufficient, the multilevel variant requires
coordinating the process of opening facilities across levels.

The key idea behind our solution relies on an observation that the optimal
integral solution has a form of a forest, while the fractional solution to the
standard LP-relaxation may not have this structure. We start by modifying

1 This value of γ deviates slightly from the value 2.51 given in the paper. The original
argument contained a minor calculation error.

Improved LP-Rounding Approximation Algorithm 159

the instance and hence the LP, so that we enforce the forest structure also
for the fractional solution of the relaxation. Having the hierarchical structure
of the trees, we then use the technique of Garg, Konjevod, and Ravi [7], to
first round the top of the tree, and then only consider the descendant edges if
the parent edge is selected. This approach naturally leads to sampling trees (not
opening lower level facilities if their parent facilities are closed), but to eventually
apply the technique to a location problem, we need to make it compatible with
clustering. To this end we must ensure that all cluster centers get a direct 1-
hop path service. This we obtain by a specific modification of the rounding
algorithm, which ensures opening exactly one direct path for each cluster center,
while preserving the necessary randomness for all the other clients. It is only
possible because cluster centers do not share top level facilities, and in rounding
a single tree we only care about at most one cluster center. In Section 3.2 we
propose a token-passing based rounding procedure which has exactly the desired
properties.

2 Extended LP Formulation

To describe our new LP we first describe a process of splitting vertices of the
input graph into a number of (polynomially many for fixed k) copies of each
potential facility location.

Graph Modification. Our idea is to have a graph in which each facility f on
level j may only be connected to a single facility on level j + 1. Since we do not
know a priori to which facility on level j+1 facility f is connected in the optimal
solution, we will introduce multiple copies of f , one for each possible parent on
level j + 1.

To be more precise, we let F ′ denote the original set of facilities, and we
construct the new set of facilities denoted by F . Nothing will change for facilities
in set F ′

k, so Fk = F ′
k. For each facility f ∈ F ′

k−1 we have |Fk| facilities each
connected with different facility in set Fk. So the cardinality of the set Fk−1 is
equal to |Fk| · |F ′

k−1|. In general: for each i = 1, 2, . . . , k − 1 set Fi has |Fi+1|
copies of each element in set F ′

i and each copy is connected with a different
element in the set Fi+1, so |Fi| = |Fi+1| · |F ′

i |. Observe that so created copies of
facilities at level l are in one to one correspondence with paths (il, il+1, . . . , ik)
on original facilities on levels l, l+1, . . . , k. We will use such paths on the original
facilities as names for the facilities in the extended instance.

The distance between any two copies i1, i2 of element i is equal to zero and
the cost of opening facility i1 and i2 is the same and equal to fi. If i

′
1 is a copy

of i1 and i′2 is a copy of i2 then ci′1i′2 = ci1i2 . Distance between copy of facility i
and client c is equal to cci. Set C of clients will stay unchanged.

Connection and Service Cost. PC is the set of paths (in the above described
graph), which start in some client and end in a facility at level k. Pj is the set of
facilities at level j in the extended instance, or alternatively the set of paths on

160 J. Byrka and B. Rybicki

Fig. 1. Figure presets graph before (left part) and after (right part) modification. As
you can see vertices in the highest level do not change.

original facilities which start in a facility at level j and end in a facility at level
k. Now we define the cost of path p denoted by cp. For p = (c, i1, i2, · · · ik) ∈ PC

we have cp = cc,i1 + ci1,i2 + . . . + cik−1,ik and for p = (ij , ij+1, · · · ik) ∈ Pj we
have cp = fij . So if p ∈ PC then cp is a service cost (i.e., the length of path
p), and if p ∈ Pj then cp is the cost of opening the first facility on this path.

P = PC ∪
⋃k

j=1 Pj .

2.1 The LP

min
∑
p∈P

xpcp (1)

∑
p∈PC :j∈p

xp ≥ 1 ∀j∈C (2)

x(il+1,il+2,...ik) − x(il,il+1,...ik) ≥ 0 ∀p=(il,il+1,...ik)∈Pl,l<k (3)

xq −
∑

p=(j,...il,il+1...ik)∈PC

xp ≥ 0 ∀j∈C∀q=(il,il+1,...ik)∈P\PC
(4)

xp ≥ 0 ∀p∈P (5)

The natural interpretation of the above LP is as follows. Inequality (2) states
that each client is assigned to at least one path. Inequality (3) encodes that
opening of a lower level facility implies opening of its unique higher level facility.
The most complicated inequality (4) for a client j ∈ C and a facility il ∈ Fl,
imposes that the opening of il must be at least the total usage of it by client j.

Let p � q denote that p is suffix of q. The dual program to the above LP is:

max
∑
j∈C

vj (6)

vj −
∑

q∈P1:q�p

yp −
∑

q∈P\PC :q�p

wj,q ≤ cp ∀j∀p∈PC (7)

Improved LP-Rounding Approximation Algorithm 161

∑
q∈Pk−1:p�q

yq +
∑
j∈C

wj,p ≤ cp ∀p∈Pk
(8)

∑
q∈Pl−1:p�q

yp −
∑

q∈Pl+1:q�p

yp +
∑
j∈C

wj,p ≤ cp ∀l∈{1,...,k−1}∀p∈Pl
(9)

vj , yp, wj,q ≥ 0 ∀j,p,q (10)

Lemma 1. Let x and (v, y, w) be optimal solutions to the above primal and dual
linear programs, respectively. For any p ∈ PC , if xp > 0, then cp ≤ vj , where j
is the client connected by the path cp.

Proof. Using (8) we can write following complementary slackness condition:

xp (cp − vj +
∑

q∈P1:q�p

yp +
∑

q∈P\PC :q�p

wj,q) = 0 ∀j∈C ∀p∈PC :j∈p

We are interested in p for which xp > 0, so

cp +
∑

q∈P1:q�p

yp +
∑

q∈P\PC :q�p

wj,q = vj

From (10) we know that each variable in dual program is non-negative, so we
can write that xp > 0 implies cp ≤ vj . ��

Let P j denote the set of paths beginning in client j, which have positive chance
to open. Define dav(j) = C∗

j =
∑

p∈P j cpx
∗
p, d

max(j) = maxp∈P j :xp>0 cp ≤ vj ,
and F ∗

j = v∗j − C∗
j . Of course F ∗ =

∑
j∈C F ∗

j and C∗ =
∑

j∈C C∗
j .

3 Algorithm

The approximation algorithm that we propose has the following structure:

1: formulate and solve the extended LP (1)-(5);
2: scale up facility opening by γ ≥ 1

(optional, only to improve the approximation ratio)
3: cluster clients;
4: round facility opening (tree by tree);
5: connect each client j with a closest open connection path p ∈ P j .

It starts by solving the above described extended LP which, by contrast to the
LP used in [1], enforces the fractional solution to have a forest like structure. The
step 3. can be interpreted as an adaptation of (by now standard) LP-rounding
techniques used for (single level) facility location. Step 4. is an almost direct
application of a method from [7]. The final connection step 5. is straightforward,
the algorithm simply connects each client via a shortest path of open facilities.

For the clarity of presentation we first only describe the algorithm without
scaling which achieves a slightly weaker approximation ratio. We will now present
steps 3. and 4. in more detail.

162 J. Byrka and B. Rybicki

3.1 Clustering

Like in LP-rounding algorithms for UFL, we will partition clients into disjoint
clusters and for each cluster center select a single client which will be called the
center of this cluster.

Please recall that the solution x∗ we obtain by solving LP (1)-(5) gives us
(possibly fractional) weights on paths. Paths p ∈ Pc we interpret as connections
from clients to open facilities, while other (shorter) paths from P \ Pc encode
the (fractional) opening of facilities, which has a structure of a forest (i.e., every
facility from a lower level is assigned only to a single facility at a higher level).

Observe that if two client paths p1, p2 ∈ Pc share at least one facility, then
they must also end in the same facility at the highest k-th level. For a client j
and a k-th level facility i we will say j is fractionally connected to i in x∗ if and
only if there exists path p ∈ Pc of the form (j, . . . , i) with xp > 0. Two clients are
called neighbors if they are fractionally connected to the same k-th level facility.

The clustering is done as follows. Consider all clients to be initially unclus-
tered. While there remains at least one unclustered client do the following:

– select an unclustered client j that minimizes dav(j) + dmax(j),
– create cluster containing j and all its yet unclustered neighbors,
– call j the center of the new cluster;

The procedure is known (see e.g., [6]) to provide good clustering, i.e., no two
cluster centers are neighbors and the distance from each client to his cluster
center is not too big.

3.2 Randomized Facility Opening

We will now give details on how the algorithm decides which facilities to open.
Recall that the facility opening part of the fractional solution can be interpreted
as a set of trees rooted in top level facilities and having leaves in level-1 facilities.

We will start by describing how a single tree is rounded. For the clarity of
presentation we will change the notation and denote the set of vertices (facilities)
of such tree by V , and we will use xv to denote the fractional opening of v ∈ V
in the initial fractional solution x∗. We will also use yv to denote how much a
cluster center uses v. Please note, that for each of the trees of the fractional
solution there is at most one cluster center client j using this tree. If the tree
we are currently rounding is not used by any cluster center, then we set all
yv = 0. If cluster center j uses the tree, then for each facility v in the tree, we set
yv =

∑
p∈P j :v∈p xp, i.e., yv is the sum over the connection paths p of j crossing

v of the extent the fractional solution uses this path.
Let p(v) denote the parent node of v for all (not-root) nodes, and let C(v)

denote the set of children nodes of v for all nodes except on the lowest level.
Observe, that x and y satisfy:

Improved LP-Rounding Approximation Algorithm 163

1. if v is not a leaf, then yv =
∑

u∈C(v) yu;

2. if v is not the root node, then xv ≤ xp(v);

3. for all v ∈ V we have xv ≥ yv.

The following procedure will be used to round both the fractional x into an
integral x̂ and the fractional y into an integral ŷ. The procedure will visit each
node of the tree exactly once. For certain nodes it will be run in a ’with a token’
mode and for some others it will be run ’without a token’. It will be initiated in
the root node and will recursively execute itself on a subset of lower level nodes.
Initially x̂v and ŷv are set to 0 for all nodes v, and unless indicated otherwise a
node does not have a token.

Procedure ROUND(v)

1: if v has a token then
2: x̂v = 1 ŷv = 1
3: if v is not a leaf then
4: select a single node u ∈ C(v)

taking each i ∈ C(v) with probability equal yi

yv

5: give the token to the node u
6: for i ∈ C(v) do
7: ROUND(i)
8: end for
9: end if

10: else
11: if v is the root node then
12: xpred = 1
13: else
14: xpred = xp(v)
15: end if
16: toss a coin that comes up “heads” with probability xv−yv

xpred−yv

17: if it is “heads” then
18: x̂v = 1
19: if v is not a leaf then
20: for i ∈ C(v) do
21: ROUND(i)
22: end for
23: end if
24: end if
25: end if

Now we briefly describe what the algorithm does. Suppose that we are in node
v which is not a leaf. If v has a token then we set x̂v = ŷv = 1, choose one son
(each son i has probability yi

yu
) and give him a token. Make recursive call on

each son. If v doesn’t have a token then with probability xv−yv

xpred−yv
(xpred is 1 if

v is a root or xp(v) otherwise) set x̂v = 1 and make recursive call on each son. If
v is a leaf we don’t choose a son to give him a token and don’t make a recursive

164 J. Byrka and B. Rybicki

calls on sons. We execute the above procedure on the root of the tree, possibly
assigning the token to the root node just before the execution. Observe, that an
execution of the procedure ROUND(v) on a root of the tree brings the token to
a single leaf of the tree if and only if it starts with the token at the root node. In
case of the token, the ŷv variables will record the path of the token, and hence
will form a single path from the root to a leaf.

Consider a procedure that first with probability yr gives the token to the root
r of the tree and then executes ROUND(r). We will argue that this procedure
preserves marginals when used to round x into x̂ and y into ŷ.

Lemma 2. E[ŷv] = yv for all v ∈ V .

Proof. By induction on the distance of v from the root r. E[ŷr] is just the
probability that we started with a token in r, hence it is yr. For a non-root
node v, by inductive assumption, his parent node u = p(v) has E[ŷu] = yu. The
probability of ŷv = 1 can be written as:

Pr[ŷv = 1] = Pr[ŷv = 1|ŷu = 1] · Pr[ŷu = 1] + Pr[ŷv = 1|ŷu = 0] · Pr[ŷu = 0]

=
yv
yu

· yu + 0 = yv.

��

Lemma 3. E[x̂v] = xv for all v ∈ V .

Proof. By Lemma 2 is is now sufficient to show, that E[x̂v− ŷv] = xv−yv for all
v ∈ V . Observe that x̂v − ŷv is always either 0 or 1, hence E[x̂v − ŷv] = Pr[x̂v =
1, ŷv = 0].

The proof is again by induction on the distance of v from the root node r.
Clearly, E[x̂r − ŷr] = Pr[x̂r = 1, ŷr = 0] = Pr[x̂r = 1|ŷr = 0] · Pr[ŷr = 0] =
xr−yr

1−yr
· (1− yr) = xr − yr.

For a non-root node v, by inductive assumption, his parent node u = p(v)
has E[x̂u] = xu. Note that ŷv = 1 implies x̂u = 1. Hence, by Lemma 2, Pr[x̂u =
1, ŷv = 0] = xu − yv. The probability of x̂v = 1 and ŷv = 0 can be written as:

Pr[x̂v = 1, ŷv = 0] = Pr[x̂v = 1, x̂u = 1, ŷv = 0]

= Pr[x̂v = 1|x̂u = 1, ŷv = 0] · Pr[x̂u = 1, ŷv = 0]

=
xv − yv
xu − yv

· (xu − yv) = xv − yv.

��

To round the entire fractional solution we run the above described single tree
rounding procedure as follows:

1. For each cluster center j, put a single token on the root node of one of the
trees he is using in the fractional solution. Every single tree is selected with
probability equal the fractional connection of j to this tree.

2. Execute the ROUND(.) procedure on the root of each tree.

Improved LP-Rounding Approximation Algorithm 165

By the construction of the rounding procedure, every single cluster center, since
he had placed his token on a tree, will have one of his paths open so that he can
directly connect via this path. Moreover, by Lemma 2 the probability of opening
a particular connection path p ∈ P j for him (as indicated by variables ŷ) is
exactly equal the weight xp the fractional solution assigns to this path. Hence,
his expected connection cost is exactly his fractional cost.

To bound the expected connection cost of the other (non-center) clients is
slightly more involved and will be discussed in the following section.

4 Analysis

Let us first comment on the running time of the algorithm. The algorithm first
solves a linear program of size O(nk), where n is the maximal number of facilities
on a single level. For fixed k it is of polynomial size, hence may be directly solved
by the ellipsoid algorithm. The rounding of facility openings is by traversing trees
whose total size is again bounded by O(nk). Finally each client can try each of
his at most O(nk) possible connecting paths and see which of them is the closest
open one.

Every client j will find an open connecting path to connect with, since he is a
part of a cluster, and the client j′ who is the center of this cluster certainly has
a good open connecting path. Client j may simply use (the facility part of) the
path of cluster center j′, which by the triangle inequality will cost him at most
the distance cj,j′ more than it costs j′.

In fact a slightly stronger bound on the expected length of the connection
path of j is easy to derive. We use the following bound, which is analogous to
the Chudak ans Shmoys [6] argument for UFL.

Lemma 4. For a non central client j ∈ C, if all paths from P j are closed, then
the expected connection cost of client j is

E[Cj] ≤ 2dmax(j) + dav(j).

Again like in the work of Chudak ans Shmoys [6], the crux of our improvement
lies in the fact that with a certain probability the quite expensive 3-hop path
guaranteed by the above lemma will not be necessary, because j will happen to
have a shorter direct connection. The main part of the analysis which will now
follow is to evaluate the probability of this lucky event.

We will use the following technical lemma .

Lemma 5. For c, d > 0,
∑

i xi = c and ∀i xi ≥ 0 we have

n∏
i=1

(1− xi + xid) ≤ (1− c

n
+
cd

n
)n.

Suppose a (non-center) client is connected with a flow of value z to a tree in
the fractional solution. Suppose further that this flow saturates all the fractional

166 J. Byrka and B. Rybicki

openings on this tree, then the following function fk(z) gives a lower bound
on the probability that at least one path of this tree will be open as a result
of the rounding routine. Function fk(z) is defined recursively. For k = 1 it
is just equal to fractional opening, i.e., f1(z) = z. For k ≥ 2 it is fk(z) =
z ·minz(1−

∏n
i=1(1− fk−1(

zi
z)))

��. It is a product of the probability of opening
the root node, and the (recursively bounded) probability that at least one of the
subtrees has an open path, conditioned on the root being open.

The following lemma displays the structure of fk(.).

Lemma 6. Inequality fk(x) ≥ x · (1− c) implies fk+1(x) ≥ x · (1− ec−1).

Proof. Note that f1(x) ≥ x and f2(x) ≥ x(1 − 1
e), so base follows. Now we

show induction step. Suppose that fk(x) ≥ x · (1 − c) then fk+1(x) = x · (1 −
maxx

∏n
i=1(1 − fk(

xi

x))) ≥ x · (1 − maxx
∏n

i=1(1 − xi

x + xi

x · c)) = x(1 − (1 −
1
n + c

n)
n) !→ x(1 − ec−1). Last equality base on Lemma 5, but we have to put

xi =
xi

x . ��

Since a single client j may not use the full opening (capacity) of the tree he is
using, a more direct and accurate estimate of his probability of getting a path
would be the following function fk(x, z) which depends on both the opening of
the root node x and the fractional usage of the tree by j given as z.

fk(x, z) =

⎧⎪⎨⎪⎩
x when k = 1,

x ·minx,z(1− (
n∏

i=1

(1− fk−1(
xi
x
,
zi
x
)))) otherwise.

Fortunately enough, we may inductively prove the following lemma, which states
that the worst case for our analysis is when the tree capacity is saturated by the
connectivity flow of a client.

Lemma 7. If 1 ≥ x ≥ z ≥ 0 then fk(x, z) ≥ fk(z)

Consider now a single client j who is fractionally connected to a number of
trees with a total weight of his connection paths equal γ (you may think he
sends a total flow of value γ through these trees, from leaves to roots). Now,
to bound the probability of at least one of these paths getting opened by the
rounding procedure, we introduce function Fk(γ) defined as follows. Fk(γ) =
1−maxγ

∏n
i=1(1− fk(xi)). That function is one minus the biggest chance that

no tree gives route from root to leaf, using the previously defined fk(.) function
to express the success probability on a single tree.

Now we can give an analogue of Lemma 6 but for Fk(γ).

Lemma 8. Inequality Fk(γ) ≥ 1− e(c−1)γ implies Fk+1(γ) ≥ 1− e(e
c−1−1)γ.

�� For notational convenience we use maxx (minx) to denote maxx1+...+xn=x,xi>0

(minx1+...+xn=x,xi>0).

Improved LP-Rounding Approximation Algorithm 167

Proof. Suppose that fk(x) ≥ x(1 − c). Note that Fk(γ) = 1 −maxγ
∏n

i=1(1 −
fk(xi)) ≥ 1 − maxγ

∏n
i=1(1 − xi + xic)) = 1 − (1 − γ

n + γ
nc)

n !→ 1 − e(c−1)γ .
(Last equality base on Lemma 5). Leading observation is that in the last equality
there is no requirement for positive constant c - we can replace it with any other
positive constant and equality will be still true. Using Lemma 6 we know that
fk+1(x) ≥ x(1 − ec−1). The only difference in the way we evaluate Fk+1(γ) is
the replacement of constant c by other constant ec−1, so the equality for Fk(γ)
implies the equality for Fk+1(γ), and hence the lemma holds. ��

We are now ready to combine our arguments into a bound on the expected total
cost of the algorithm.

Theorem 1. Expected total cost of the algorithm is at most (3 − 2Fk(1))OPT .

Proof. Note first that by Lemma 3, the probability of opening of each single
facility equals its fractional opening, and hence the expected facility opening
cost is exactly the fractional opening cost F ∗.

Consider client j ∈ C which is a cluster center. He randomly chooses one of
the paths from set P j. Expected connection cost for client j is E[Cj] = dav(j) =∑

p∈P j cpxp = C∗
j . Suppose now j ∈ C is not a cluster center. As discussed above,

the chance that at least one path from P j is open is not less than Fk(1). Suppose
that at least one path from P j is open. Each path from that set has proportional
probability to open, so the expected length of the chosen path is equal to dav(j).
If there is no open paths in set P j, client j will use path p′ ∈ P j′ which was
chosen by his cluster center j′ ∈ C, but j has to pay extra for the distance to
the center. In this case, by Lemma 4 we have E[Cj] ≤ 2dmax(j) + dav(j).

The total cost of the algorithm can be bounded by the following expression:

F ∗ +
∑
j∈D

(Fk(1)C
∗
j + (1− Fk(1))(2d

max(j) + dav(j))) ≤

F ∗ +
∑
j∈D

(Fk(1)C
∗
j + (1− Fk(1))(2(C

∗
j + F ∗

j) + C∗
j)) =

(3− 2Fk(1))(F
∗ + C∗)

Note that Fk(1) > 0 for each k, so expected total cost of algorithm is strictly
less than three times the optimum cost. ��

5 How to Apply Scaling

By means of scaling up facility opening variables before rounding, just like in
the case of 1-level UFL, we gain on the connectivity cost in two ways. First of
all, the probability for j of connecting to one of his fractional facilities via a
shorter 1-hop path increases, decreasing the usage of the longer backup paths.
The second effect is that in clustering clients may ignore the furthest of their

168 J. Byrka and B. Rybicki

fractionally used facilities, hence filtering the solution and reducing the lengths
of the 3-hop connections. In fact, if the scaling factor is sufficient, which is the
case for our application, we eventually do not need the dual program to upper
bound the length of a fractional connection with a dual variable. All this is well
studied for UFL (see, e.g., [5]), but would require a few pages to present in detail.

All we need in order to use the techniques from UFL is to give bounds on the
probability of opening a connection to specific groups of facilities as a function
of the scaling parameter γ. So the probability of connecting j to one of his
close facilities (total opening equal 1 after scaling) will be at least Fk(1). The
probability of connecting j to either a close or a distant facility (total opening
equal γ after scaling) will be at least Fk(γ). The probability of using the backup
3-hop path via the cluster center will be at most 1 − Fk(γ). To obtain the
approximation ratios claimed in the table in Section 1.1, it remains to plug in
these numbers to the analysis in [5], and for each value of k find the optimal
value for the scaling parameter γ. A complete description of the algorithm with
scaling will appear in the full version of this paper.

Acknowledgements. We thank Karen Aardal for insightful discussions on the
k-UFL problem. We also thank Thomas Rothvoss for teaching us the “rounding
on trees” technique form [7]. Research supported by FNP HOMING PLUS/2010-
1/3 grant.

References

1. Aardal, K., Chudak, F., Shmoys, D.: A 3-Approximation Algorithm for the
k-Level Uncapacitated Facility Location Problem. Inf. Process. Lett. 72(5-6),
161–167 (1999)

2. Aardal, K., Tardos, E., Shmoys, D.: Approximation Algorithms for Facility Loca-
tion Problems (Extended Abstract). In: STOC 1997, pp. 265–274 (1997)

3. Ageev, A., Ye, Y., Zhang, J.: Improved Combinatorial Approximation Algorithms
for the k-Level Facility Location Problem. SIAM J. Discrete Math. 18(1), 207–217
(2004)

4. Byrka, J., Aardal, K.: An Optimal Bifactor Approximation Algorithm for the Met-
ric Uncapacitated Facility Location Problem. SIAM J. Comput. 39(6), 2212–2231
(2010)

5. Byrka, J., Ghodsi, M., Srinivasan, A.: LP-rounding algorithms for facility-location
problems CoRR, abs/1007.3611 (2010)

6. Chudak, F., Shmoys, D.: Improved Approximation Algorithms for the Uncapaci-
tated Facility Location Problem. SIAM J. Comput. 33(1), 1–25 (2003)

7. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for
the group Steiner tree problem. In: SODA 1998, pp. 253–259 (1998)

8. Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms

9. Krishnaswamy, R., Sviridenko, M.: Inapproximability of the multi-level uncapac-
itated facility location problem. SODA 2012 31(1), 718–734 (1999); Journal of
Algorithms 31(1), 228–248 (1999)

Improved LP-Rounding Approximation Algorithm 169

10. Li, S.: A 1.488 Approximation Algorithm for the Uncapacitated Facility Location
Problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 77–88. Springer, Heidelberg (2011)

11. Sviridenko, M.: An Improved Approximation Algorithm for the Metric Uncapaci-
tated Facility Location Problem. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002.
LNCS, vol. 2337, pp. 240–257. Springer, Heidelberg (2002)

12. Zhang, J.: Approximating the two-level facility location problem via a quasi-greedy
approach. In: SODA 2004, pp. 808–817 (2004)

Testing Coverage Functions

Deeparnab Chakrabarty1 and Zhiyi Huang2,�

1 Microsoft Research, Bangalore
dechakr@microsoft.com
2 University of Pennsylvania
hzhiyi@cis.upenn.edu

Abstract. A coverage function f over a ground set [m] is associated with a
universe U of weighted elements and m sets A1, . . . , Am ⊆ U , and for any
T ⊆ [m], f(T) is defined as the total weight of the elements in the union
∪j∈TAj . Coverage functions are an important special case of submodular func-
tions, and arise in many applications, for instance as a class of utility functions of
agents in combinatorial auctions.

Set functions such as coverage functions often lack succinct representations,
and in algorithmic applications, an access to a value oracle is assumed. In this
paper, we ask whether one can test if a given oracle is that of a coverage function
or not. We demonstrate an algorithm which makes O(m|U |) queries to an oracle
of a coverage function and completely reconstructs it. This gives a polytime tester
for succinct coverage functions for which |U | is polynomially bounded in m. In
contrast, we demonstrate a set function which is “far” from coverage, but requires
2Θ̃(m) queries to distinguish it from the class of coverage functions.

1 Introduction

Submodular set functions are set functions f : 2[m] !→ R defined over a ground set [m]
which satisfy the property: f(S∩T)+f(S∪T) ≤ f(S)+f(T). These are arguably the
most extensively studied set functions, and arise in various fields such as combinatorial
optimization, computer science, electrical engineering, economics, etc. In this paper,
we focus on a particular class of submodular functions, called coverage functions.

Coverage functions arise out of families of sets over a universe. Given a universe U
and sets A1, · · · , Am ⊆ U , the coverage of a collection of sets T ⊆ [m] is the number
of elements in the union

⋃
j∈T Aj . More generally, each element i ∈ U has a weight

wi ≥ 0, inducing the function f : 2[m] !→ R≥0:

∀T ⊆ [m] : f(T) = w
(⋃

i∈T Ai

)
with the usual notation of w(S) :=

∑
i∈S wi. A set function is called a coverage func-

tion iff f is induced by a set system as described above. In the definition above, the size
of the universe U of the inducing set system can be arbitrarily large. We call a coverage
function succinct if |U | is bounded by a fixed polynomial in m.

� The second author is supported in part by the ONR MURI Grant N000140710907.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 170–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Testing Coverage Functions 171

Coverage functions arise in many applications (plant location [5], machine learning
[10]); an important one being that in combinatorial auctions [11,3]. Utilities of agents
are often modeled as coverage functions – agents are thought to have certain require-
ments (the universe U) and the items being auctioned (the Ai’s) fulfill certain subsets
of these. Many auction mechanisms take advantage of the specific property of these
utility functions; a notable one is the recent work of Dughmi, Roughgarden and Yan [6]
who give O(1)-approximate truthful mechanisms when utilities of agents are coverage.
(Such a result is not expected for general submodular functions [7].)

In general, set functions have exponentially large (in m) description, and algorithmic
applications often assume access to a value oracle which returns f(T) on being queried
a subset T ⊆ [m]. Efficient algorithms making only polynomially many queries to this
oracle, exploit the coverage property of the underlying function to ensure correctness.
This raises the question we address in this paper:

Can one test, in polynomial time, whether the oracle at hand is indeed that of
a coverage (or a ‘close’ to coverage) function?

It is easy to see that the parenthesized qualification in the above question is necessary.
Using property testing parlance [9,8], we say a function is ε-far from coverage if it
needs to be modified in ε-fraction of the points to make it a coverage function.

Our first result (Theorem 2) is a reconstruction algorithm which makes O(m|U |)
queries to a value oracle of a true coverage function and reconstructs the coverage
function, that is, deduces the underlying set system (U ;A1, . . . , Am) and weights of the
elements in U . Such an algorithm can be used distinguish coverage functions with those
which are ε-far from being coverage (Corollary 1). In particular, for succinct coverage
functions, the answer to the above question is yes.

Our second result illustrates why the testing question may have a negative answer
for general coverage functions. We show that certifying ‘non-coverageness’ requires
exponentially many queries. To explain this, let us first consider a certificate of a non-
submodularity. By definition, for any non-submodular function f , there must exist sets
S, T, S ∪ T, and S ∩ T such that f(S) + f(T) < f(S ∪ T) + f(S ∩ T). Therefore,
four queries (albeit non-deterministic) to a value oracle of f certifies non-submodularity
of f . In contrast, we exhibit non-coverage functions for which any certificate needs to
query the function at exponentially many sets (Corollary 2).

In fact, from just the definition of coverage functions it is not a priori clear what a
certificate for coverageness should be. In Section 1.1, we show that a particular linear
transformation (the W -transform) of set functions can be used: we show a function
f is coverage iff all its W -coefficients are non-negative. This motivates a new notion
of distance to coverageness which we call W -distance: a set function has W -distance
ε if at least an ε-fraction of the W -coefficients are negative. This notion of distance
captures the density of certificates to non-coverageness. Our lower bound results show
that testing coverage functions against this notion of distance is infeasible: we construct
set functions with W -distance at least 1 − e−Θ(m) which require 2Θ(m) queries to
distinguish them from coverage functions (Corollary 3).

How is the usual notion of distance to coverage related to the W -distance? We show
in Section 4 that there are functions which are far in one notion but close in the other.
Nonetheless, we believe that the functions we construct for our lower bounds also have

172 D. Chakrabarty and Z. Huang

large (usual) distance to coverage functions. We prove this assuming a conjecture on
the number of roots of certain multilinear polynomials; we also provide some partial
evidence for this conjecture.

Related Work. The work most relevant to, and indeed which inspired this paper, is
that by Seshadhri and Vondrák [16], where the authors address the question of test-
ing general submodular set functions. The authors focus on a particular simple testing
algorithm, the “square tester”, which samples a random set R, i, j /∈ R and checks
whether or not f(R, i, j) + f(R) ≤ f(R, i) + f(R, j). [16] show that ε−Õ(

√
m) ran-

dom samples are sufficient to distinguish submodular functions from those ε-far from
submodularity, and furthermore, at least ε−4.8 samples are necessary. Apart from the
obvious problem of closing this rather large gap, the authors of [16] suggest tackling
special, well-motivated cases of submodularity. In fact, the question of testing coverage
functions was specifically raised by Seshadhri in [15] (attributed to N. Nisan).

It is instructive to compare our results with that of [16]. Firstly, although coverage
functions are a special case of submodular functions, the sub-exponential time tester of
[16] does not imply a tester for coverage functions. This is because a function might be
submodular but far from coverage; in fact, the function f∗ in our lower bound result is
submodular. Given our result that there are no small certificates of non-coverageness,
we believe testing coverageness is harder than testing submodularity.

A recent relevant paper is that of Badanidiyuru et. al. [1]. Among other results,
[1] shows that any coverage function f can be arbitrarily well approximated by a
succinct coverage function. More precisely, if f is defined via (U ;A1, . . . , Am) with
weights w, then for any ε > 0, there exists another coverage function f ′ defined via
(U ′;A′

1, . . . , A
′
m) with weights w′ such that f ′(T) is within (1 ± ε)f(T) such that

|U ′| = poly(m, 1/ε). This, in some sense shows that succinct coverage functions
capture the essence of coverage functions. Unfortunately, this ‘sketch’ is found using
random sampling on the universe U and it is open whether this can be obtained via
polynomially many queries to an oracle for f .

1.1 The W -Transform: Characterizing Coverage Functions

Given a set function f : 2[m] !→ R≥0, we define the W -transform w : 2[m] \ ∅ !→ R as

∀S ∈ 2[m] \ ∅, w(S) =
∑

T :S∪T=[m]

(−1)|S∩T |+1f(T) (1)

We call the resulting set {w(S) : S ⊆ [m]} theW -coefficients of f . TheW -coefficients
are unique; this follows since the (2m−1)× (2m−1) matrix M defined as M(S, T) =
(−1)|S∩T |+1 if S ∪ T = [m] and 0 otherwise, is full rank1. Inverting we get the unique
evaluation of f in terms of its W -coefficients.

∀T ⊆ [m], f(T) =
∑

S⊆[m]:S∩T �=∅
w(S) (2)

1 One can check M−1(S, T) = 1 if S ∩ T
= ∅ and 0 otherwise.

Testing Coverage Functions 173

If f is a coverage function induced by the set system (U ;A1, · · · , Am), then the func-
tion w(S) precisely is the size of

⋂
i∈S Ai and is hence non-negative. This follows from

the inclusion-exclusion principle. Indeed the non-negativity of the W -coefficients is a
characterization of coverage functions.

Theorem 1. A set function f : 2[m] !→ R≥0 is coverage iff all its W -coefficients are
non-negative.

Proof. Suppose that f is a function with all W -coefficients non-negative. Consider a
universe U consisting of {S : S ⊆ [m]} with weight of element S being w(S), the Sth
W -coefficient of f . Given U , for i = 1 . . .m, define Ai := {S ⊆ [m] : i ∈ S}. For any
T ⊆ [m],

⋃
i∈T Ai = {S ⊆ [m] : S ∩ T �= ∅}. From (2) we get f(T) = w

(⋃
i∈T Ai

)
proving that f is a coverage function.

Suppose f is a coverage function. By definition, there exists (U ;A1, . . . , Am) with
non-negative weights on elements in U such that f(T) = w

(⋃
i∈T Ai

)
. Each element

in S ∈ U corresponds to a subset of [m] defined as {i : S ∈ Ai}. We may assume
each element of U corresponds to a unique subset; if more than one elements have the
same incidence structure, we may merge them into one element with weight equalling
sum of both the weights. This transformation doesn’t change the function value and
keeps the weights non-negative. Furthermore, we may also assume every subset on [m]
is an element of U by giving weights equal to 0; this doesn’t change the function value
either. In particular, |U | may be assumed to be 2m. As before, one can check that for any
T ⊆ [m], f(T) =

∑
S:S∩T �=∅w(S). From (2) we get that these are the W -coefficients

of f , and are hence non-negative.

From the second part of the proof above, note that the positive W -coefficients of a
coverage function f correspond to the elements in the universe U . Let {S : w(S) >
0} be the support of a coverage function f . Note that succinct coverage functions are
precisely those with polynomial support size.

One can use Theorem 1 to certify non-coverageness of a function f : one of its W -
coefficients w(S) must be negative, and the function values in the summand of (1) cer-
tifies it. Observe, however, that this certificate can be exponentially large. In Section 3
we’ll show this is inherent in any certificate of coverageness. The W -transformation
also motivates the following notion of distance to coverage functions.

Definition 1. The W -distance of a function f from coverage functions is the fraction
of its negative W -coefficients.

Comparison with Fourier Transformation. Readers who are familiar with the analysis
of Boolean functions might find (1) similar to the Fourier transformation. Indeed, if we
sum over all T in the summation of (1) instead of only over the T s.t. S∪T = [m], then
it becomes the Fourier transformation. However, it is worth pointing out that due to this
subtle change, the W -transformation behaves quite differently to the representation by
Fourier basis. In particular, unlike the Fourier basis, the basis of the W -transform is not
orthonormal with respect to the usual notion of inner product.

174 D. Chakrabarty and Z. Huang

2 Reconstructing Succinct Coverage Functions

Given a coverage function f , suppose {S1, . . . , Sn} is the support of f . That is, these
are the sets in the W -transform of f with w(Si) > 0, and all the other sets have weight
0. We now give an algorithm to find these sets and weights using O(mn) queries. As
a corollary, we will obtain a polynomial time algorithm for testing succinct coverage
functions where n = poly(m).

The procedure is iterative. The algorithm maintains a partition of 2[m] at all times,
and for each part in the partition, stores the total weight of the all the sets contained
in the part. We start of with the trivial partition containing all sets whose weight is
given by f([m]). In each iteration, these partitions are refined; for instance, in the first
iteration we divide the partition into sets containing a given element i and those that
don’t contain the element i. The total weights of the first collection can be found by
querying f({i}). Any time the sum of a part evaluates to 0, we discard it and subdivide
it no more2. After m iterations, the remaining n parts give the support sets and their
weights. To describe formally, we introduce some notation.

Given a vector x ∈ {0, 1}k we associate a subset of [k] containing the elements i
iff x(i) = 1. At times, we abuse notation and use the vector to imply the subset. Let
F(x) := {S ⊆ [m] : S ∩ [k] = x}, that is, subsets of [m] which “match” with the
vector x on the first k elements. Note that |F(x)| = 2m−k, and {F(x) : x ∈ {0, 1}k}
is a partition of 2[m]; if k = 0, then F(x) is the trivial partition consisting of all subsets
of [m]. Given x ∈ {0, 1}k, we let x ⊕ 0 be the (k + 1) dimensional vector with x
appended with a 0. Similarly, define x⊕ 1. At the kth iteration, the algorithm maintains
the partition {F(x) : x ∈ {0, 1}k} and the total weight of subsets in each F(x). In the
subsequent iteration refines each partition F(x) into F(x⊕0) and F(x⊕1). However,
if a certain weight of a part of the partition evaluates to 0, then the algorithm does not
need to refine that part any further since all the weights of that subset must be zero.
The algorithm terminates in m iterations making O(mn) queries. We now give the
refinement procedure. In what follows, we say a vector y ≤ x if they are of the same
dimension and y(i) = 1 ⇒ x(i) = 1. We say y < x if y ≤ x and y �= x.

Claim. The procedure Refine returns the correct weights of the refinement.

Proof. It suffices to show that Δxi = w (F(xi ⊕ 1)) =
∑

S:S∩[k]=xi,k+1∈S w(S). The
RHS equals ∑

S:S∩[k]⊆xi, k+1∈S

w(S) −
∑
y<xi

∑
S∩[k]=y,k+1∈S

w(S). (3)

The first term above equates to∑
S:S∩[k]\xi=∅,

k+1∈S

w(S) =
∑

S:S∩([k]\xi∪k+1) �=∅
w(S) −

∑
S:S∩([k]\xi) �=∅

w(S) = F 1
i − F 0

i

2 Familiar readers will observe the similarity of our algorithm and the Goldreich-Levin algo-
rithm to compute ‘large’ Fourier coefficients (see, for instance, [13] for an exposition).

Testing Coverage Functions 175

Procedure Refine
1: Input: 0 ≤ k ≤ m, {w(F(x)) > 0 : x ∈ {0, 1}k}
2: Output: {w(F(x⊕ 0)), w(F(x⊕ 1)) : x ∈ {0, 1}k}
3: Order {x : w(F(x)) > 0} by increasing number of 1’s breaking ties arbitrarily.

Call the order {x1, . . . ,xN};
4: for i = 1→ N do
5: Query f([k] \ xi) = F 0

i and f(([k] \ xi) ∪ k + 1) = F 1
i .

6: Define Δxi := F 1
i − F 0

i −
∑

j<i Δxj .
7: w(F(xi ⊕ 1)) = Δxi ; w(F(x⊕ 0)) = w(F(xi))−Δxi

8: end for

Procedure Recover Coverage
1: Input: Value oracle to coverage function f ,
2: Output: {S1, . . . , Sn} with w(Si) > 0.
3: Initialize k = 0, x to be the empty vector, and list L to contain x.

Let w(F(x)) = f([m]).
4: for k = 1→ m do
5: Run Refine on each x in list L and remove it.
6: Add x⊕ 0 and x⊕ 1 to L only if the weights evaluate to positive.
7: end for
8: For each x ∈ {0, 1}m in L, return corresponding set and weight calculated by the

Refine procedure.

Note that the summation
∑

S∩[k]=y,k+1∈S w(S) equals 0 if w(F(y)) =∑
S∩[k]=y w(S) equals zero since w(S) ≥ 0 for all S. Therefore, the second term

in (3) is precisely
∑

j<i w(F(xj ⊕ 1)). If i = 1, then this is 0; for other i this equates
to
∑

j<iΔxj by induction.

Theorem 2. Given value oracle access to a coverage function f with positive weight
sets {S1, . . . , Sn}, the procedure Recover Coverage returns the correct weights with
O(mn) queries to the oracle.

Proof. Whenever a certain w(F(x)) evaluates to 0, we can infer that w(S) = 0 for all
S ∈ F(x) since f is a coverage function. It is also clear that the algorithm terminates
in m steps since the partition refines to singleton sets. The number of oracle accesses
is proportional (twice) to the number of calls to the Refine subroutine. The latter is at
most mn since in each iteration the number of parts remaining is at most the number of
parts remaining in the end.

Corollary 1. Given any n, there exists a O(mn + ε−1) time tester which will return
YES for coverage functions having W -support size at most n, and return NO with
Ω(1) probability for functions that are ε-far from the set of coverage functions with
W -support at most n.

Proof. Run the reconstruction algorithm described above. If we get a set with negative
weight, return NO. If we succeed, then if f is truly a coverage function, we have derived

176 D. Chakrabarty and Z. Huang

the unique weights. We sample O(ε−1) random sets and compare the value of our
computed function with that of the oracle; if the function is ε-far from coverage, then
we will catch it with probability O(1).

Theorem 3. Reconstructing coverage functions on m elements with W -support size n
requires at least Ω(mn/ logn) probes.

Proof. Consider the bipartite graphs with m and n vertices on the A and U side. Let the
weight be 1 on all vertices inU . Each non-isomorphic (on permutation of theU vertices)
maps to a different coverage function over the A side: the neighborhood of a vertex
Ai ∈ A is precisely the elements it contains. Note each such graph corresponds to a way
of allocating n identical balls (U -side vertices) into 2m different bins (different choice

of set of adjacent A-side vertices). This number is at least
(
2m+n−1

n−1

)
≥
(
2m

n

)n−1
.

Hence, we need at least Ω(mn) bits of information. Notice that each probe of func-
tion value only providesO(log n) bits of information since the function value is always
an integer between 0 and n, we get the lower bound in Theorem 3.

3 Testing Coverage Functions Is Hard?

In this section we demonstrate a set function whoseW -distance to coverage functions is
‘large’, but it takes exponentially many queries to distinguish from coverage functions.
In particular, the function has W -coefficients w(S) = −1 if |S| > k := k(m), and
w(S) = N if |S| ≤ k, where N is a positive integer and k(m) is a growing function of
m, which will be precisely determined later. Let this function be called f∗.

Firstly, observe that from (1) it follows that w(S) can be precisely determined by
querying the 2|S| sets in {T : T ∪ S = [m]} = {S ∪X : X ⊆ S}. It follows that f∗

can be distinguished from coverage using 2k+1 queries.
In this section we show an almost tight lower bound: Any tester which makes less

than 2k queries cannot distinguish f∗ from a coverage function. Our bound is infor-
mation theoretic and holds even if the tester has infinite computation power. More pre-
cisely, we show that given the value of f∗ on a collection of sets J with |J | < 2k,
there exists a coverage function f which has the same values on the sets in J .

Theorem 4. There exists a coverage function consistent with the queries of f∗ on J if
|J | < 2k.

Corollary 2. Any certificate of non-coverageness of f∗ must be of size at least 2k.

Setting k(m) = m/4, we get f∗ has W -distance at least (1− e−Θ(m)), giving us:

Corollary 3. Any tester distinguishing between coverage functions and functions of
W -distance as large as (1− e−Θ(m)) needs at least 2Θ(m) queries.

We give a sketch of the proof before diving into the details. Suppose a tester queries the
collection J . We first observe that the existence of a coverage function consistent with
the queries in J can be expressed as a set of linear inequalities. Using Farkas’ lemma,
we get a certificate of the non-existence of such a completion. This certificate, at a high

Testing Coverage Functions 177

level, corresponds to an assignment of values on the m-dimensional hypercube satis-
fying certain linear constraints. We show that if the parameter N is properly chosen,
most of these assignments can be assumed to be 0. In the next step we use this prop-
erty to show that unless the size of |J | ≥ 2k, all the assignments need to be 0 which
contradicts the Farkas linear constraints, thereby proving the existence of the coverage
function consistent with J .

3.1 Consistent Coverage Functions and Farkas Lemma

Recall, from Theorem 1, a function f : 2[m] !→ R≥0 is coverage iff it satisfies

∀S ⊆ [m] :
∑

T :S∪T=[m](−1)|S∩T |+1f(T) ≥ 0

∀T ⊆ [m] : f(T) ≥ 0

Let J be the collection of sets on which the function f∗ has been queried. Define

b(S) :=
∑

T∈J :S∪T=[m](−1)|S∩T |f∗(T)

Therefore, if we can find assignments f : 2[m] \ J !→ R≥0 satisfying:

∀S ⊆ [m] :
∑

T /∈J :S∪T=[m](−1)|S∩T |+1f(T) ≥ b(S) (4)

∀T /∈ J : f(T) ≥ 0 (5)

we can complete the queries on J to a coverage function. Applying Farkas’ lemma (see
for instance [2]), we see that there is no feasible solution to (4), (5) if and only if there
is a feasible solution α : 2[m] !→ R≥0 satisfying:∑

S⊆[m] α(S)b(S) > 0 (6)

∀T /∈ J :
∑

S:S∪T=[m](−1)|S∩T |+1α(S) ≤ 0 (7)

∀S ⊆ [m] : α(S) ≥ 0 (8)

Now we define the parameter N for the function f∗; let N be any integer larger than
(2m)!. Note that this makes the values doubly exponential, but we are interested in the
power of an all powerful tester. In the next lemma we show that one can assume there
is a feasible solution to (6), (7), and (8) with half of the α(S)’s set to 0.

Lemma 1. If there exists α satisfying (6), (7), and (8), then we may assume αS = 0 for
all S such that |S| ≤ k.

Intuitively, what this lemma says is that the constraint (4) for sets of size ≤ k should not
help in catching the function not being coverage. This is because the true function values
satisfies the constraints with huge ‘redundancy’:

∑
T :S∪T=[m](−1)|S∩T |+1f∗(T) =

N � 0. Formally, we can prove the lemma as follows.

Proof. Suppose there is an α satisfying (6), (7), and (8). Then, by scaling we may
assume that ∑

S⊆[m] α(S) = 1 (9)

178 D. Chakrabarty and Z. Huang

Equivalently, there is a positive valued solution to the LP {max
∑

S⊆[m] b(S)α(S) :

(7), (8), (9)}. Choose α to be a basic feasible optimal solution. Such a solution makes
2m of the inequalities in (7), (8), and (9) tight, and therefore by Cramer’s rule, each of
the non-zero α(S) ≥ 1

(2m)! since all coefficients are {−1, 0, 1}.
Now we show that if α is basic feasible and N > (2m)!, then we must have that

α(S) = 0 for all S such that |S| ≤ k. We first note that ∀S ⊆ [m]:

w(S) =
∑

T :S∪T=[m]

(−1)|S∩T |+1f∗(T) =
∑

T /∈J :S∪T=[m]

(−1)|S∩T |+1f∗(T)− b(S) .

Therefore,
∑

S⊆[m] α(S)b(S) > 0 and the above equality imply that∑
T /∈J

∑
S:S∪T=[m]

α(S)(−1)|S∩T |+1f∗(T)−
∑

S⊆[m]

α(S)wS =
∑

S⊆[m]

α(S)b(S) > 0 .

But by (7),
∑

S⊆[m] α(S)(−1)|S∩T |+1 ≤ 0 for all T /∈ J , and f∗(T) ≥ 0 for all
T ⊆ [m]. So we have that

∑
S⊆[m] α(S)w(S) < 0. Assume for contradiction that there

exists S0, |S0| ≤ k such that αS0 �= 0. From the earlier discussion we know that αS0 ≥
1

(2m)! . Therefore, we have
∑

S⊆[m] α(S)w(S) ≥ 1
(2m)!N −

∑
S⊆[m]:|S|≤k α(S) >

1 − 1 = 0, a contradiction. The latter inequality follows from (9) and our assumption
that N > (2m)!.

3.2 Nullity of Farkas Certificate

In the following discussion, we assume without loss of generality α(S) = 0 for all S,
|S| ≤ k. We will work with the following linear function of the α’s. For a set T , define

g(T) :=
∑

S:S∪T=[m](−1)|S∩T |+1α(S)

From (7), we get g(T) ≤ 0 for all T /∈ J . Inverting, we get

α(S) =
∑

T :T∩S �=∅ g(T) = G−
∑

T⊆S g(T), where G :=
∑

T⊆[m] g(T) (10)

We now show that if α(S) = 0 for all |S| ≤ k, then g(T) must be > 0 for at least 2k

sets T . This will imply |J | ≥ 2k.

Lemma 2. If α(S) = 0 for all |S| ≤ k, then g(T) > 0 for at least 2k subsets T ⊆ [m].

Proof. Let S∗ be any minimal set with α(S∗) > 0. Note that |S∗| ≥ k + 1. From (10),
we get Ĝ := α(S∗) = G −

∑
T⊆S∗ g(T) > 0. Consider any i ∈ S∗. By minimality,

we have α(S∗ \ i) = 0, giving us

0 = G−
∑

T⊆S∗\i g(T) = G−
∑

T⊆S∗ g(T)−
∑

T⊆S∗ g(T ∪ i)

Therefore for all i ∈ S∗,
∑

T⊆S∗ g(T ∪ i) = Ĝ > 0. By induction, we can extend the
above calculation to any subset X ⊆ S∗,∑

T⊆S∗ g(T ∪X) = (−1)|X|+1Ĝ (11)

Testing Coverage Functions 179

Note that the summands in (11) are disjoint for different sets X , and furthermore, when-
ever |X | is odd, the sum is > 0 implying at least one of the summands must be positive
for each odd subset X ⊆ S∗. This proves the lemma since |S∗| = k + 1.

Proof of (11): Let’s denote the sum
∑

T⊆S∗ g(T ∪X) as h(X). So Ĝ = G− h(∅), and

by induction, h(Y) = (−1)|Y |+1Ĝ for every proper subset of X . Now, α(S∗ \X) = 0
gives us

0 = G−
∑

T⊆S∗\X g(T) = G−
∑

Y ⊆X h(Y)

Rearranging, h(X) = G−
∑

Y �X h(Y) = Ĝ−
∑|X|−1

i=1

(|X|
i

)
(−1)i+1Ĝ = (−1)|X|+1Ĝ

Theorem 4. Suppose there is no consistent completion, implying α’s satisfying (6), (7)
and (8). By Lemma 1 and Lemma 2, we get that if (7) holds, then |J | ≥ 2k.

4 W -Distance and Usual Distance

We first note that the two notions are unrelated; in particular, we show two functions
each “far” in one notion, but “near” in the other. The proofs of the following two lemmas
can be found in the full version of the paper [4].

Lemma 3. There is a function with W -distance 1−e−Θ(m) whose distance to coverage
is e−Θ(m).

Lemma 4. There is a function with W -distance O(m2/2m) whose distance to cover-
age is Ω(1).

Despite the fact that the two notions are incomparable, we argue that the lower bound
example of Section 3 is in fact also far from coverage (with proper choice of k(m))
in the usual notion of distance, under a reasonable conjecture about the property of
multilinear polynomials. Unfortunately, we are unable to prove this conjecture and leave
it as an open question.

Conjecture 1. For anym-variate multilinear polynomials f(x) =
∑

S⊆[m] λS
∏

i∈S xS
with λS < 0 for all |S| > k, has at most O(k2m/

√
m) zeroes on the hypercube

{0, 1}m.

In fact, we conjecture that the maximum number of zeros is achieved when the k + 1
layers of function values in the “middle of the hypercube” are zero, that is, f(x) = 0
iff. (m − k)/2 ≤ ‖x‖1 ≤ (m + k)/2. At the end of this section, we present some
evidence for this conjecture by giving a proving it for symmetric functions, that is,
when f(x1, . . . , xm) = f(xσ(1), . . . , xσ(m)) for any permutation σ of [m]. We now
show that the conjecture implies f∗ is far from coverage in the usual notion of distance.

Lemma 5. Assuming Conjecture 1, with k(m) = o(
√
m), f∗ is 1 − o(1) far from

coverage.

Remark 1. Theorem 4 implies that f∗ requires superpolynomial queries to test as long
as we have k(m) = ω(logm).

180 D. Chakrabarty and Z. Huang

Proof. Consider the coverage function f ′ that is closest to f∗ in the usual notion of
distance. Letw′, w∗ be the W -coefficients of f ′, f∗. Define the functionΔf := f ′−f∗

and let Δw := w′ −w∗. By linearity of W -transformation, we get that Δw are the W -
coefficients for Δf . Therefore,

Δf(T) =
∑

S:T∩S �=∅Δw(S) =
∑

S⊆[m]Δw(S)(1 − 1T∩S=∅) .

Consider the following binary vector representation of S ⊆ [m]: x ∈ {0, 1}m such
that xi = 0 iff. i ∈ S. Using this, the function Δf can be interpreted as Δf(x) =
W −

∑
S⊆[m]w(S)

∏
i∈S xi. We are using here the fact that T ∩ S = ∅ is equivalent

to S ⊆ T . By our choice of w∗ and the assumption that w′(S) ≥ 0 for all S, we have
Δw(S) ≥ 1 for all |S| > k. From Conjecture 1, we get that at most O(k/

√
m)-fraction

of the function values of Δf are zeroes. So f ′ is at least 1 − O(k/
√
m) far from f∗.

The lemma follows since k = o(
√
m).

Support for Conjecture 1: Proof for Symmetric Functions. Since f is symmetric, each
λS is equal for sets of the same cardinality. Let λj denote the value of λS when |S| = j.
Then f is equivalent to the function g : [m] !→ R

g(i) = f(x : ‖x‖1 = i) =
∑m

j=0

∑
S:|S|=j λj

∏
i∈S xi =

∑m
j=0 λj

(
i
j

)
.

By our assumption, λj < 0 for all j > k. Hence, all the high order derivatives (at least
k + 1-th order) of f are negative. Intuitively, since the high order derivatives of g are
negative, there are at most k+1 sign-changes of g(i). Therefore, there are at most k+1
different i’s such that g(i) = 0. This implies the conjecture for symmetric functions.

Acknowledgements. The authors wish to thank C. Seshadhri, Jan Vondrák , Sam-
path Kannan, Jim Geelen and Mike Saks for very fruitful conversations. DC especially
thanks Sesh for illuminating conversations over the past few years, and Mike for asking
insightful questions.

References

1. Badanidiyuru, A., Dobzinski, S., Fu, H., Kleinberg, R., Nisan, N., Roughgarden, T.: Sketch-
ing valuation functions. In: SODA (2012)

2. Bertsimas, D., Tsitsiklis, J.: Introduction to linear optimization. Athena Scientific Belmont,
MA (1997)

3. Blumrosen, L., Nisan, N.: Combinatorial auctions. Algorithmic Game Theory (2007)
4. Chakrabarty, D., Huang, Z.: Testing coverage functions. Arxiv (2012)
5. Cornuejols, G., Fisher, M., Nemhauser, G.: Location of bank accounts to optimize float: An

analytic study of exact and approximate algorithms. Management Science, 789–810 (1977)
6. Dughmi, S., Roughgarden, T., Yan, Q.: From convex optimization to randomized mecha-

nisms: toward optimal combinatorial auctions. In: STOC, pp. 149–158. ACM (2011)
7. Dughmi, S., Vondrák, J.: Limitations of randomized mechanisms for combinatorial auctions.

In: FOCS (2011)
8. Goldreich, O.: Combinatorial property testing (a survey). Randomization Methods in Algo-

rithm Design 43, 45–59 (1999)

Testing Coverage Functions 181

9. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and
approximation. Journal of the ACM (JACM) 45(4), 653–750 (1998)

10. Krause, A., McMahan, H., Guestrin, C., Gupta, A.: Robust submodular observation selection.
Journal of Machine Learning Research 9, 2761–2801 (2008)

11. Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing marginal
utilities. Games and Economic Behavior 55(2), 270–296 (2006)

12. Mahler, K.: Introduction to p-adic numbers and their functions (1973)
13. O’Donnell, R.: Chapter 3.5 highlight: The Goldreich-Levin algorithm. In: Analysis of

Boolean Functions (2012), http://analysisofbooleanfunctions.org/
14. Robert, A.: A course in p-adic analysis, vol. 198. Springer (2000)
15. Seshadhri, C.: Open problems 2: Open problems in data streams, property testing, and related

topics (2011),
http://www.cs.umass.edu/˜mcgregor/papers/11-openproblems.pdf

16. Seshadhri, C., Vondrák, J.: Is submodularity testable? In: ICS (2011)

http://analysisofbooleanfunctions.org/
http://www.cs.umass.edu/~mcgregor/papers/11-openproblems.pdf

Sparse Fault-Tolerant Spanners for Doubling
Metrics with Bounded Hop-Diameter or Degree

T.-H. Hubert Chan, Mingfei Li, and Li Ning

The University of Hong Kong

Abstract. We study fault-tolerant spanners in doubling metrics. A sub-
graph H for a metric space X is called a k-vertex-fault-tolerant t-spanner
((k, t)-VFTS or simply k-VFTS), if for any subset S ⊆ X with |S| ≤ k,
it holds that dH\S(x, y) ≤ t · d(x, y), for any pair of x, y ∈ X \ S.

For any doubling metric, we give a basic construction of k-VFTS with
stretch arbitrarily close to 1 that has optimal O(kn) edges. In addition,
we also consider bounded hop-diameter, which is studied in the context of
fault-tolerance for the first time even for Euclidean spanners. We provide
a construction of k-VFTS with bounded hop-diameter: for m ≥ 2n, we
can reduce the hop-diameter of the above k-VFTS to O(α(m, n)) by
adding O(km) edges, where α is a functional inverse of the Ackermann’s
function.

Finally, we construct a fault-tolerant single-sink spanner with bounded
maximum degree, and use it to reduce the maximum degree of our basic
k-VFTS. As a result, we get a k-VFTS with O(k2n) edges and maximum
degree O(k2).

1 Introduction

A metric space (X, d) can be represented by a complete graph G = (X, E),
where the edge weight w(e) on an edge e = {x, y} is d(x, y). A t-spanner of X ,
is a weighted subgraph H = (X, E′) of G that preserves all pairwise distance
within a factor of t, i.e., dH(x, y) ≤ t · d(x, y) for all x, y ∈ X . Here, dH(x, y)
denotes the shortest-path distance between x and y in H . The factor t is called
the stretch of H . A path between x and y in H with length at most t · d(x, y) is
called a t-spanner path. Spanners have been studied extensively since the mid-
eighties (see [2,8,1,16,12,3,4,10] and the references therein; also refer to [15] for
an excellent survey).

Spanners are important structures, as they enable approximation of a metric
space in a much more economical form. One natural requirement is that spanners
should be sparse, ideally with the number of edges being linear in the number
of points in the metric space. In addition, for some applications, it might also
be required that a spanner should have small maximum degree, or a small hop-
diameter, i.e., every pair of points x and y should be connected by a t-spanner
path with small number of edges.

In many applications of spanners, we want our spanner to be robust to failures,
meaning that even when some of the points in the spanner fail, the remaining

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 182–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Sparse Fault-Tolerant Spanners for Doubling Metrics 183

part is still a t-spanner. Formally, given 1 ≤ k ≤ n − 2, a spanner H of X is
called a k-vertex-fault-tolerant t-spanner ((k, t)-VFTS or simply k-VFTS if the
stretch t is clear from context), if for any subset S ⊆ X with |S| ≤ k, H \ S is a
t-spanner for X \ S.

The notion of fault-tolerant spanners was introduced by Levcopoulos et al. [13]
in the context of Euclidean spanners (the special case when X is a finite subset
of low dimensional Euclidean space and d(x, y) = ||x− y||2). They presented an
algorithm that constructs Euclidean (k, 1 + ε)-VFTS with O(k2n) edges. This
result was later improved by Lukovszki in [14]. They provided two constructions
of (k, 1 + ε)-VFTS: one with optimal O(kn) edges, and the other with O(k2n)
edges and maximum degree O(k2). There has also been research on the trade-off
between maximum degree and weight in fault-tolerant Euclidean spanners [13,7],
and fault-tolerant spanners for general graphs [6,9].

In this paper, we study fault-tolerant spanners for doubling metrics. The dou-
bling dimension of a metric space (X, d), denoted by dim(X) (or dim when the
context is clear), is the smallest value ρ such that every ball in X can be covered
by 2ρ balls of half the radius [11]. A metric space is called doubling, if its doubling
dimension is bounded by some constant. Doubling dimension is a generalization
of Euclidean dimension to arbitrary metric spaces, as the space RT equipped
with �p-norm has doubling dimension Θ(T) [11]. Spanners for doubling metrics
have been studied in [12,3,4,10,16].

1.1 Our Results and Techniques

Basic spanner with small number of edges. Our first result is a construction of
(k, 1 + ε)-VFTS for doubling metrics with O(kn) edges. Note that the size is
optimal up to a constant factor [14].

Theorem 1 ((k, 1 + ε)-VFTS with O(kn) Edges). Let (X, d) be a doubling
metric with n points and let 0 < ε < 1

2 be a constant. Given 1 ≤ k ≤ n−2, there
exists a (k, 1 + ε)-VFTS of X with ε−O(dim) · kn edges.

Our technique of the basic k-VFTS construction is an extension of that in [3].
Specifically, we give a k-fault-tolerant version of the hierarchical nets and net-
trees used in [3], which guarantee that even under the failure of at most k points,
for any functioning point x and level i, there exists a net-tree in which there is
a path with length at most O(2i) between x and some level-i net point. We also
add cross edges between net points at the same level that are reasonably close.
Then, we show that under the failure of at most k points, a (1+ ε)-spanner path
between x and y can be formed by first climbing from x to some net point x′ at
an appropriate level i, then going along a cross edge {x′, y′}, and finally going
from y′ down to y.

The upper bound on the number of edges in the spanner is established in
a way similar to [3] by carefully assigning a direction to each edge, and then
showing that the out-degree of each point is bounded by O(k). However, we
simplify and improve the analysis because in our case cross edges can be added
between arbitrarily close points.

184 T.-H. Hubert Chan, M. Li, and L. Ning

Spanners with small hop-diameters. We also consider the hop-diameter, which
is studied in the context of fault-tolerance for the first time even for Euclidean
spanners. The k-vertex-fault-tolerant hop-diameter is defined as follows.

Definition 1 (k-Vertex-Fault-Tolerant Hop-Diameter). Let H be a (k, t)-
VFTS for the metric space (X, d). The k-vertex-fault-tolerant hop-diameter (or
simply hop-diameter) of H is at most D, if for any set of points S ⊆ X with
|S| ≤ k, there exists a t-spanner path in H \ S with at most D edges (hops)
between every pair of x, y ∈ X.

We show that by adding a few extra edges to our basic k-VFTS, we can signifi-
cantly reduce its hop-diameter.

Theorem 2 ((k, 1 + ε)-VFTS with Small Hop-Diameter). Let m ≥ 2n.
We can add O(km) extra edges to the spanner in Theorem 1 to get a (k, 1 + ε)-
VFTS with hop-diameter at most O(α(m, n)), where α is the functional inverse
of Ackermann’s function.

The technique of reducing the hop-diameter is similar to that in [4]. Let H be the
spanner in Theorem 1. Recall that when the points in S fail, the (1+ ε)-spanner
path in H \ S between any two points of x and y is the concatenation of a path
P1 in some net-tree T1, the cross edge {x′, y′} and a path P2 in some net-tree T2.
We add edges to net-trees to shortcut the paths P1 and P2, and hence obtain a
spanner with small hop-diameter.
Spanners with bounded degree. We also give a construction of (k, t)-VFTS with
bounded maximum degree. This is achieved with a sacrifice of increasing the
number of edges. The result matches the state-of-the-art result of the bounded-
degree Euclidean (k, 1 + ε)-VFTS in [14].

Theorem 3 ((k, 1 + ε)-VFTS with Bounded Degree). Let (X, d) be a dou-
bling metric with n points and let 0 < ε < 1 be a constant. Given 1 ≤ k ≤ n− 2,
there exists a (k, 1 + ε)-VFTS with ε−O(dim) · k2n edges and maximum degree
ε−O(dim) · k2.

In [3], it is shown how to reduce the maximum degree of net-tree based span-
ners for doubling metrics. This is achieved by replacing some cross edges with
inter-level edges. As a result, the end points of a replaced cross edge {u, v} are
connected by a path {u, w1, w2, . . . , wi, v}, with approximately the same length.
However, in the context of fault-tolerance, some of the wj ’s might fail, and it is
unclear how to make this procedure resilient to failures.

However, we note that the degree-reduction techniques similar to those in
[1,14] can be applied. Recall that the edges of the k-VFTS in Theorem 1 can be
directed such that the out-degree of each point is bounded by O(k). To reduce
the in-degrees, for each point x, we replace the star consisting of x and edges go-
ing into x with a k-vertex-fault-tolerant single-sink spanner that approximately
preserves the distances to x, and has maximum degree O(k).

We show how to construct k-vertex-fault-tolerant single-sink spanners with
bounded degree for doubling metrics. The construction for those in Euclidean

Sparse Fault-Tolerant Spanners for Doubling Metrics 185

space is based on Θ-graphs [1,14]. We provide a novel technique called ring-
partition, which can be seen as a replacement for the Θ-graph in doubling met-
rics. Given a specific root point from X , the metric space X is partitioned into
rings centered at the root with geometrically increasing radii, and each ring is
further partitioned into small clusters. From each cluster, we select some por-
tals, which are connected to the root by short paths. In addition, points in each
cluster are connected to the portals with short paths as well. As a result, every
point’s distance to the root is approximately preserved.

1.2 Preliminaries

For any positive integer m, we denote [m] := {1, 2, . . . , m}.
Throughout this paper, let (X, d) be a metric space with n points, 1 ≤ k ≤

n−2 be an integer representing the number of faults allowed, and let 0 < ε < 1
2 be

a constant. Without loss of generality, we also assume that the minimum inter-
point distance of X is strictly greater than 1. We denote Δ := maxx,y∈X d(x, y)
as the diameter of X .

Suppose r > 0. The ball of radius r centered at x is B(x, r) := {y ∈ X :
d(x, y) ≤ r}. We say that a cluster C ⊆ X has radius at most r, if there exists
x ∈ C such that C ⊆ B(x, r). Let r2 > r1 > 0. The ring of inner radius r1 and
outer radius r2 centered at x is R(x, r1, r2) := B(x, r2) \ B(x, r1).

A set Y ⊆ X is an r-cover for X if for any point x ∈ X there is a point y ∈ Y
such that d(x, y) ≤ r. A set Y is an r-packing if for any pair of distinct points
y, y′ ∈ Y , it holds that d(y, y′) > r. We say that a set Y ⊆ X is an r-net for X
if Y is both an r-cover for X and an r-packing. Note that if X is finite, an r-net
can be constructed greedily.

By recursively applying the definition of doubling dimension, we can get the
following key proposition [11].

Proposition 1 (Nets Have Small Size). Let R ≥ 2r > 0 and let Y ⊆ X be
an r-packing contained in a ball of radius R. Then, |Y | ≤ (R

r)2dim.

2 Basic Construction of Sparse Fault-Tolerant Spanners

In this section, we extend the O(n)-edge spanner construction in [4] and build
a k-VFTS with O(kn) edges. We construct k + 1 sequences of hierarchical nets
and assign each sequence with a distinct “color”. Then based on the hierarchy of
each color, we extract a net-tree. We show some properties similar to those in
[3], and in addition we show that the fault-tolerance property can be established.
Fault-Tolerant Hierarchical Nets. We color each point in X with one of k+1
colors and let Xc be the set of points with color c. For each color c ∈ [k + 1], we
build a sequence of hierarchical nets of � := �log2 Δ� levels, Xc = N c

0 ⊇ N c
1 ⊇

· · · ⊇ N c
� . We denote by Ni := ∪c∈[k+1]N

c
i the set of all level-i net points. Let

ri := 2i be the distance scale of level i. Fault-tolerant hierarchical nets should
satisfy the following properties:

186 T.-H. Hubert Chan, M. Li, and L. Ning

1. Packing. For each 0 ≤ i ≤ � and c ∈ [k + 1], N c
i is an ri-packing;

2. Covering. For any 1 ≤ i ≤ �, if x ∈ X is not a net point in Ni, then for each
color c ∈ [k + 1], there exists a net point yc ∈ N c

i such that d(yc, x) ≤ ri.

Construction. The hierarchical nets can be constructed in a top-down approach.
Initially, each N c

� consists of a distinct point in X . Note that k ≤ n − 2 and
hence the initialization is well defined. Also, the single point in N c

� is colored
with c and points not included in any cluster N c

� stay uncolored.
Suppose all nets on level i + 1 have been built and we construct the level-i

nets as follows. For c from 1 to k + 1, let Uc be the set of uncolored points when
we start to build N c

i , i.e., after finishing the construction of N1
i , N2

i , . . . , N c−1
i .

We initialize N c
i := N c

i+1, and extend N c
i+1 to get N c

i by greedily adding points
in Uc to N c

i such that the resulting N c
i is an ri-net for Uc; we color the points

in N c
i ∩ Uc with color c.

Note that the packing property and the covering property follow directly from
the net construction.

Fault-Tolerant Net-Trees. For each color c ∈ [k + 1], we define a net-tree
Tc, which spans all nodes in X except nodes in the highest level N� with colors
different from c. The construction is given in Algorithm 1. It follows from the
construction that all internal nodes of Tc have color c, and all points excluding
N� ∪ Xc are leaves of Tc.

1 Initialize Tc to be the only point in Nc
� , which is the root of Tc;

2 for i = �− 1 to 0 do
3 for each point x ∈ Ni \Ni+1 do
4 let yc ∈ Nc

i+1 be a point such that d(yc, x) ≤ ri+1 (such a point exists by
the covering property of fault-tolerant hierarchical nets);

5 add x to Tc and set yc as its parent in Tc by adding the edge {yc, x} to
Tc;

6 end
7 end
8 return Tc;

Algorithm 1. Construction of net-tree Tc for color c

For any c ∈ [k + 1], a path P = {x0, x1, . . . , xi} is called a c-path, if all edges
on P are contained in Tc. Note that for a c-path P = {x0, x1, . . . , xi}, any point
xj with 0 < j < i has degree at least 2 in Tc and hence is an internal node. Thus,
its color must be c. The length of P is defined as length(P) :=

∑i
j=1 d(xi−1, xi).

The following lemma shows that for any point x /∈ N�, any color c ∈ [k + 1] and
any 0 ≤ i ≤ �, there is a c-path from x to some node in Ni with length at most
2ri.

Lemma 1 (Climbing Path in Net-tree). Let Tc be a net-tree obtained above
and let x ∈ X \N� be a non-root point. For any 0 ≤ i ≤ �, there exists a c-path Pi

Sparse Fault-Tolerant Spanners for Doubling Metrics 187

starting from x and ending at some net point xi ∈ Ni, such that length(Pi) ≤ 2·ri.
In addition, xi also has color c if xi �= x.

Proof. Let i∗(x) be the largest i such that x ∈ Ni. For 0 ≤ i ≤ i∗(x), let Pi = {x}
and xi = x. The conclusion holds trivially for Pi.

Now suppose i∗(x) < i ≤ � and we use induction on i. The base case is for
i = i∗(x) + 1. We let xi be x’s parent in Tc and let Pi := {x, xi}. Note that Pi

is a c-path. By the construction of Tc, we know that xi ∈ N c
i and d(x, xi) ≤ ri.

Hence, xi has color c and length(Pi) = d(x, xi) ≤ ri ≤ 2 · ri.
Suppose i > i∗(x) + 1 and there exists an xi−1 with color c, and a c-path

Pi−1 = {x, . . . , xi−1} such that length(Pi−1) ≤ 2·ri−1. If xi−1 ∈ Ni, let xi = xi−1

and Pi = Pi−1. In this case, we have length(Pi) = length(Pi−1) ≤ 2 · ri−1 ≤ 2 · ri.
Other properties of Pi follow directly from the properties of Pi−1, and hence Pi

is a c-path.
Otherwise, xi−1 /∈ Ni and we know that xi−1 is not the root of Tc and let xi

be xi−1’s parent in Tc. By our construction of net-trees, xi ∈ N c
i and hence has

color c; in addition, d(xi−1, xi) ≤ ri. We let Pi = Pi−1 ⊕ xi, which is formed by
appending xi to the end of Pi−1. Note that the edge {xi−1, xi} ∈ Tc and hence
Pi ⊆ Tc is a c-path. Also, length(Pi) = length(Pi−1)+d(xi−1, xi) ≤ 2 ·ri−1 +ri =
2 · ri.
�

Fault-Tolerant Spanners. We have added inter-level edges in the net-trees.
Now we add edges connecting net points at the same level to achieve small
stretch. Define γ := 4 + 32

ε . For any 0 ≤ i ≤ �, we call {x, y} a cross edge at
level i, iff x and y are both in Ni, and d(x, y) ≤ γ · ri. (An edge can be a cross
edge at more than one level.) We construct a spanner H by taking the union of
all edges in the net-trees of all colors, and all cross edges at all levels, and claim
that H is a k-VFTS with stretch at most 1 + ε.

Lemma 2 (Fault-Tolerant Stretch). Let S ⊆ X be any set with |S| ≤ k. For
any x, y ∈ X \ S, dH\S(x, y) ≤ (1 + ε) · d(x, y).

Proof. Fix x �= y ∈ X \S and suppose ri < d(x, y) ≤ ri+1. Let q be some integer
such that 8

2q ≤ ε < 16
2q , say q :=

⌈
log 8

ε

⌉
.

If i ≤ q − 1, then d(x, y) < ri+1 ≤ 2q < 16
ε < γ · r0. Hence, {x, y} is a cross

edge at level 0 and dH\S(x, y) = d(x, y).
Now suppose i ≥ q and let j := i − q ≥ 0. Since |S| ≤ k, there exists some

c ∈ [k + 1] such that Xc ∩ S = ∅. We first show that there exist x′ and y′ such
that dH\S(x, x′) ≤ 2 ·rj and dH\S(y, y′) ≤ 2 ·rj . Note that either the node x is in
Nj , or i∗(x) < j and hence x /∈ N�. In the latter case, by Lemma 1, there exists
an xj ∈ Nj with color c and a c-path P connecting x and xj . We let x′ = x and
x′ = xj in respective cases. If x′ = x, then dH\S(x, x′) = d(x, x′) = 0 ≤ 2 · rj .
Otherwise, since P is a c-path and x′ has color c, no point on P is contained in
S and hence P ⊆ H \ S. Therefore, we have dH\S(x, x′) ≤ 2 · rj . Similarly, we
can choose some y′ ∈ Nj \ S such that dH\S(y, y′) ≤ 2 · rj .

Note that d(x, x′) ≤ dH\S(x, x′) ≤ 2rj and d(y, y′) ≤ dH\S(y, y′) ≤ 2rj .
Hence, we have d(x′, y′) ≤ d(x′, x) + d(x, y) + d(y, y′) ≤ 2rj + ri+1 + 2rj <

188 T.-H. Hubert Chan, M. Li, and L. Ning

(4 + 32
ε) · rj = γ · rj . It follows that {x′, y′} is a cross edge at level j and thus

dH\S(x′, y′) = d(x′, y′).
Note that d(x′, y′) ≤ d(x′, x)+d(x, y)+d(y, y′) ≤ 4rj+d(x, y), and dH\S(x, y) ≤

dH\S(x, x′) + dH\S(x′, y′) + dH\S(y′, y). Hence we conclude that dH\S(x, y) ≤
8 · rj + d(x, y) = 8

2q · ri + d(x, y) ≤ (1 + ε) · d(x, y).
�

Remark. Note that in the proof, there exists a color c such that no node in
S has color c. Also, the spanner path in H \ S is the concatenation of a path
P1 = {x, . . . , x′}, a cross edge {x′, y′}, and a path P2 = {y′, . . . , y}, such that
each of P1 and P2 is either a c-path or a trivial path with only one point. This
property is useful in our later construction of k-VFTS with small hop-diameter.
Bounding the Number of Edges. We show that the number of edges in H
is O(kn). We actually show a stronger result: we can direct the edges in H in a
way such that every point has out-degree O(k).

Lemma 3 (Bounding the Number of Edges). Let H be the (k, 1+ε)-VFTS
we construct above. Then, the number of edges in H is ε−O(dim) · kn. Moreover,
the edges of H can be directed such that the out-degree of each point is bounded
by ε−O(dim) · k.

Proof. Note that the edges of H come from two sources: the net-trees and cross
edges; we bound them separately.

In any net-tree Tc, we direct the edge {x, p(x)} from x to p(x), where p(x) is
the parent of x in Tc. Note that every point has out-degree at most 1 in each
tree, and hence the out-degree due to the net-tree edges is bounded by k + 1.

Now we bound the out-degree due to the cross edges. Recall that i∗(x) is the
maximum i such that x ∈ Ni. Given an edge {x, y}, we direct it from x to y if
i∗(x) < i∗(y), and direct it arbitrarily if i∗(x) = i∗(y).

Fix x ∈ X . We bound the number of edges coming out of x and going into
some point with a fixed color c. Let i := i∗(x). For any directed edge (x, y) such
that y has color c, we know that i∗(y) ≥ i∗(x) = i and hence y ∈ N c

i . Note
that the existence of a cross edge {x, y} implies that d(x, y) ≤ γ · ri. Also note
that N c

i is an ri-packing. Then, by Proposition 1, the number of such edges is
γO(dim) = (4 + 32

ε)O(dim). Since there are at most k + 1 colors, the number of
cross edges coming out of x is bounded by (k +1) · (4 + 32

ε)O(dim) = ε−O(dim) · k.
The upper bound on the number of edges follows directly from the analysis

of out-degree.
�

3 Achieving Small Hop-Diameter

In this section, we show that a technique similar to that in [4] can be used to
reduce the hop-diameter of our basic k-VFTS.

Let T be a tree metric with n nodes. It is shown in [5,4] that for m ≥ 2n, we
can add m edges to T to obtain a spanner R, such that for the unique tree path
P between x and y in T , there is a path P ′ in R that connects x and y via at
most O(α(m, n)) nodes on P (in the same order), where α(·, ·) is defined below.
By the triangle inequality, length(P ′) ≤ length(P).

Sparse Fault-Tolerant Spanners for Doubling Metrics 189

Definition 2 (Ackermann’s Function [17]). Let A(i, j) be a function defined
for integers i, j ≥ 0 as the following.

A(0, j) = 2j for j ≥ 0
A(i, 0) = 0, A(i, 1) = 2 for i ≥ 1
A(i, j) = A(i − 1, A(i, j − 1)) for i ≥ 1, j ≥ 2

Define the function α(m, n) := min{i|i ≥ 1, A(i, 4
⌈

m
n

⌉
) > log2 n}.

Adding Edges to Reduce Hop-diameter. Let H be the (k, 1 + ε)-VFTS
constructed in Section 2. Now we show how to add edges to H to reduce the
hop-diameter. For each net-tree Tc, we use the technique in [5] to add m edges
to Tc to get a spanner Rc such that between any two points in Tc, there is a
path between them in Rc with O(α(m, n)) hops which preserves their original
path distance in Tc. Let H ′ denote the spanner constructed by taking the union
of all edges in Rc’s for all colors, and all cross edges at all levels. Hence, H ′ has
k(m + ε−O(dim) · n) edges. We prove in the following lemma that H ′ has small
hop-diameter.

Lemma 4 (Bounded Hop-Diameter). For m ≥ 2n, the spanner H ′ con-
structed above has k(m + ε−O(dim) · n) edges. Let S ⊆ X be a set with |S| ≤ k.
For any pair x, y ∈ X \ S, there exists a path between x and y in H ′ \ S with
O(α(m, n)) hops, and the path has length at most (1 + ε) · d(x, y).

Proof. In Lemma 2, we have proved that there is a color c such that no point
in S has color c, and the (1 + ε)-spanner path in H \ S connecting x and y is a
concatenation of a path P1, a cross edge and a path P2, where each of P1 and
P2 is either a c-path or a trivial path consisting of only one point. Note that if
P1 is not a trivial path, it can be substituted by a path P ′

1 in Rc \ S ⊆ H ′ \ S
consisting of O(α(m, n)) hops. Similarly, P2 can also be substitued by a path P ′

2

with O(α(m, n)) hops. The new spanner path connecting x and y in H ′ \S after
the substitution has length at most (1 + ε) · d(x, y), as length(P ′

1) ≤ length(P1)
and length(P ′

2) ≤ length(P2).
�

4 Achieving Bounded Degree

4.1 Fault-Tolerant Single-Sink Spanners

Our technique of reducing degrees in fault-tolerant spanners is based on single-
sink spanners. Given a point v ∈ X , a spanner H for X is a k-vertex-fault-
tolerant v-single-sink t-spanner ((k, t, v)-VFTssS), if for any subset S ⊆ X \ {v}
with |S| ≤ k, and any point x ∈ X \ S, it holds that dH\S(v, x) ≤ t · d(v, x).
Here, t is called the root-stretch of H . In this section, we show a construction of
a (k, 1 + ε, v)-VFTssS with maximum degree O(k). Throughout this section, we
assume a point v ∈ X is given. Without loss of generality, we assume 0 < ε < 1

9
is a constant and build a (k, 1 + 9ε, v)-VFTssS. Our construction is based on a
technique called ring-partition.

190 T.-H. Hubert Chan, M. Li, and L. Ning

Ring-Partition. Let � =
⌈
log 1

ε
Δ
⌉

and ri = 1
εi with i ∈ [�]. For convenience, let

r0 = 1 (recall that we assume inter-point distances are larger than 1). Consider
the rings, denoted by R1, . . . , R�, where Ri := R(v, ri−1, ri). For convenience, let
R0 := {v}. The rings are pairwise disjoint and their union covers X . For each
i ∈ [�], we build an εri−1-net Ni for Ri. By Proposition 1, Ni contains at most
(ri

εri−1
)2dim = ε−4dim points. We denote this upper bound by Γ :=

⌈
ε−4dim

⌉
and

then we have |Ni| ≤ Γ . Let N := ∪i>0Ni be the set of net points. Then, for each
net point y ∈ Ni, we construct a net cluster Cy, such that a point x ∈ X is in
Cy iff x is in Ri, and among all points in Ni, y is the closest one to x (breaking
ties arbitrarily). For each y ∈ N , we arbitrarily choose k +1 portals Qy ⊆ Cy (if
|Cy| < k +1, we let Qy = Cy). Let Qi := ∪y∈NiQy be the portals in Ri, and and
Q := ∪y∈NQy be the set of all portals. Note that |Qi| ≤ (k+1)· |Ni| ≤ Γ ·(k+1).

We construct a (k, 1 + 9ε, v)-VFTssS in two stages. First, we add edges to
connect portals to the root and obtain a (k, 1 + ε, v)-VFTssS for Q∪ {v}. Then,
we add edges to connect the points in each cluster with their portals by short
paths.

Connecting Portals to the Root. Assign each point q ∈ Q a unique identifier
id(q) ∈ [|Q|], such that for any q ∈ Ri and q′ ∈ Rj with i < j, it holds that
id(q) < id(q′); also let id(v) = 0. In other words, points closer to the root v
have smaller identifiers. We divide the points in Q into groups of size k + 1.
Specifically, let Aj := {q ∈ Q|(j − 1) · (k + 1) + 1 ≤ id(q) ≤ j · (k + 1)} for j ≥ 1.
The edges to connect portals with the root are added as follows.

– For q ∈ Q with 1 ≤ id(q) ≤ (2Γ + 1) · (k + 1), add an edge {q, v}. Let E0

denote the set of such edges.
– For j > 2Γ + 1, we add an edge between every point in Aj and every point

in Aj−2Γ−1, and let Ej denote the set of such edges, i.e. Ej := {{x, y}|x ∈
Aj and y ∈ Aj−2Γ−1}.

Define Ẽ := E0 ∪ (∪j>2Γ+1Ej) and H̃ := (Q ∪ {v}, Ẽ). Note that the degree of
v in H̃ is at most (2Γ + 1) · (k + 1) = ε−O(dim) · k, and the degree of any point
q ∈ Q is at most 2(k + 1) = O(k).

Lemma 5 (Edges Connect Portals at least Two Levels Apart). Let q ∈
Q, and let {q, x} ∈ Ẽ be an edge with id(x) < id(q). Then, either x = v or there
exist i > 2 and 0 < i′ ≤ i − 2 such that q ∈ Qi and x ∈ Qi′ .

Proof. We first consider {q, x} with q ∈ Q1 ∪ Q2. Since |Q1| ≤ Γ · (k + 1) and
|Q2| ≤ Γ · (k + 1), it holds that id(q) ≤ 2Γ · (k + 1) ≤ (2Γ + 1) · (k + 1). Hence,
q is connected to the root and x = v.

Now consider the case that q ∈ Qi for some i > 2. If x = v, then we are
done. Now suppose x �= v. Then, we know that q ∈ Aj for some j > 2Γ + 1 and
x ∈ Aj−2Γ−1. Note that there are exactly 2Γ ·(k+1) points in Aj−2Γ ∪· · ·∪Aj−1,
and hence id(x) < id(q)−2Γ · (k+1). On the other hand, since there are at most
2Γ · (k + 1) points in Qi ∪ Qi−1, x cannot be in Qi ∪ Qi−1. Hence, x ∈ Qi′ for
some i′ ≤ i − 2.
�

Sparse Fault-Tolerant Spanners for Doubling Metrics 191

Lemma 6. Let S ⊆ X \ {v} be a set of at most k points. Then, for any point
q ∈ Q \ S, dH̃\S(v, q) ≤ (1 + 3ε) · d(v, q).

Proof. We use induction on id(q). For q ∈ Q\S with 1 ≤ id(q) ≤ (2Γ +1)·(k+1),
we know that q is connected to v in H̃ and hence dH̃(v, q) = d(v, q).

Now suppose id(q) > (2Γ + 1) · (k + 1) and for any point q′ ∈ Q \ S with
id(q′) < id(q), it holds that dH̃\S(v, q′) ≤ (1 + 3ε)d(v, q′). Let j > 2Γ + 1 be
such that q ∈ Aj . From the construction of H̃ , we know that for any point p ∈
Aj−2Γ−1, there exists an edge {p, q} ∈ H̃ . Since Aj−2Γ−1 contains k + 1 points,
there exists a functioning point p∗ /∈ S in Aj−2Γ−1. Note that id(p∗) < id(q).
Hence, we have

dH̃\S(v, p∗) ≤ (1 + 3ε)d(v, p∗) (1)

by induction hypothesis.
Note that id(q) > (2Γ +1)·(k+1) implies q ∈ Qi for some i > 2. By Lemma 5,

we have p∗ ∈ Qi′ ⊆ Ri′ for some 0 < i′ ≤ i − 2. Hence,

d(v, p∗) ≤ ri′ = εri′+1 ≤ εri−1 < εd(v, q) (2)

By the triangle inequality, dH̃\S(v, q) ≤ dH̃\S(v, p∗) + d(p∗, q) ≤ dH̃\S(v, p∗) +
d(p∗, v) + d(v, q), which by (1) and (2) is at most (1 + ε(2 + 3ε))d(v, q) ≤ (1 +
3ε)d(v, q), where the last inequality holds when ε ≤ 1

3 .
�

Connecting Points in Clusters to Portals. Fix i ∈ [�] and a point y ∈ Ni.
Recall that Cy denotes the net cluster centered at y, whose radius is at most
r := ε · ri−1, and Qy is the set of portals for Cy. We call the portals in Qy

r-portals since they are portals for clusters with radius at most r. We define a
procedure Add(Cy, Qy, r) which adds edges to connect points in Cy with portals
in Qy.

1. Sub-clustering. We return immediately if Cy = Qy. Suppose Cy �= Qy. We
build an r

2 -net N̂ for Cy \Qy. Recall that r is an upper bound on Cy’s radius.
By Proposition 1, |N̂ | ≤ 4dim. Then for each node z ∈ N̂ , we construct a
cluster Ĉz , such that a point x ∈ Cy is in Ĉz iff x is in Cy \Qy, and among
all points of N̂ , z is the closest one to x (breaking ties arbitrarily).

2. Connecting sub-portals. For each sub-cluster Ĉz , we arbitrarily select k + 1
sub-portals Q̂z (called r

2 -portals) in Ĉz (select all points if |Ĉz | < k + 1).
Then, for each sub-portal in Q̂z and each portal in Qy, we add an edge
between them. Note that since N̂ ≤ 4dim, and thus each portal q ∈ Qy is
connected with at most 4dim · (k + 1) = 2O(dim) · k sub-portals.

3. Recursion. For every z ∈ N̂ , recursively call Add(Ĉz , Q̂z,
r
2).

Let Ĥy be the resulting spanner returned by Add(Cy, Qy, r). We have the fol-
lowing lemma.

Lemma 7. Let S ⊆ X be a set of at most k points. For any x ∈ Cy \ (Qy ∪ S)
and any r-portal q ∈ Qy \ S, it holds that dĤy\S(x, q) ≤ 2r.

192 T.-H. Hubert Chan, M. Li, and L. Ning

Proof. Suppose that x is an r
2i -portal. Note that x is connected to k +1 distinct

r
2i−1 -portals, and at least one of them must be functioning (i.e., not in S). We
let xi−1 be such a r

2i−1 -portal. Using this argument, we can find a sequence of
portals x = xi, xi−1, xi−2, . . . , x0 = q, such that for all 0 ≤ j ≤ i, xj /∈ S is
an r

2j -portal. In addition, for j ∈ [i], {xj , xj−1} ∈ Ĥy and d(xj , xj−1) ≤ r
2j−1 .

Hence, dĤy\S(x, q) ≤
∑i

j=1
r

2j−1 ≤ 2r.
�

Obtaining the (k, 1 + 9ε, v)-VFTssS. Our final (k, 1 + 9ε, v)-VFTssS, denoted
by Hv, is the union of H̃ and Ĥy’s for all y ∈ N . Note that the degree of v is
bounded by ε−O(dim) · k and the degree of any other point in Hv is bounded by
2O(dim) ·k. It remains to show that Hv has root-stretch at most 1+9ε under the
failure of at most k points.

Lemma 8. Let S ⊆ X \ {v} be a set of at most k points. For any x ∈ X \ S,
dHv (v, x) ≤ (1 + 9ε) · d(v, x).

Proof. Suppose x �= v. Otherwise the conclusion holds trivially. Let y ∈ N be
the net point covering x, i.e., x ∈ Cy, and let Ri be the ring that contains Cy .

If x is a portal for Cy, then by Lemma 6, we know that dH̃\S(v, x) ≤ (1 +
3ε)d(v, x) and hence dHv\S(v, x) ≤ dH̃\S(v, x) ≤ (1 + 9ε)d(v, x).

Otherwise, Qy �= Cy and hence |Qy| = k + 1. Therefore, there must be some
q ∈ Qy which is functioning. Let r := εri−1 be an upper bound on the radius of
Cy. From the construction of the ring-partition, we know that d(q, x) ≤ r and
r ≤ ε ·d(v, x). By Lemma 7, it holds that dĤy\S(q, x) ≤ 2r. Hence, dHv\S(v, x) ≤
dHv\S(v, q) + dHv\S(q, x) ≤ dH̃\S(v, q) + dĤy\S(q, x) ≤ (1 + 3ε)d(v, q) + 2r ≤
(1 + 3ε)(d(v, x) + d(x, q)) + 2r ≤ (1 + 3ε)d(v, x) + 6r ≤ (1 + 9ε)d(v, x).
�

4.2 (k, 1 + ε)-VFTS with Bounded Degree

Now we construct a (k, 1 + ε)-VFTS with bounded degree as follows. We first
construct a basic (k, 1+ ε

3)-VFTS for X with O(kn) edges, and denote it by H0.
Recall that the edges of H0 can be directed such that the out-degree of each point
in H0 is ε−O(dim) · k. Denote an edge {x, y} by (x, y) if it is directed from x to y
in H0. For any point x ∈ X , we let Nin(x) := {y ∈ X |(y, x) ∈ H0}, and build a
(k, 1 + ε

3 , x)-VFTssS Hx for Nin(x) ∪ {x}. We take the spanner H := ∪x∈XHx,
and show that H is a (k, 1 + ε)-VFTS with maximum degree O(k2).

Lemma 9. For 0 < ε ≤ 1
2 , H is a (k, 1 + ε)-VFTS, in which the degree of any

point x ∈ X is ε−O(dim) · k2. Consequently, H has ε−O(dim) · k2n edges.

Proof. We first prove that H is a (k, 1 + ε)-VFTS. Let S ⊆ X be a set of at
most k points. Since H0 is a (k, 1 + ε

3)-VFTS, for any x, y ∈ X \ S, there exists
a (1 + ε

3)-spanner path P0 in H0 \ S between x and y.
For each edge {u, v} ∈ P0, suppose the edge is directed as (u, v). Then, since

Hv is a (k, 1 + ε
3 , v)-VFTssS and u, v are both funcitoning, there is a (1 + ε

3)-
spanner path Puv ⊆ Hv \S between u and v. Let P denote the concatenation of
Puv’s for all edges {u, v} ∈ P0. Then, P is contained in H \ S and is a spanner
path between x and y with stretch at most (1 + ε

3)2 ≤ 1 + ε.

Sparse Fault-Tolerant Spanners for Doubling Metrics 193

Next we bound the degree of an arbitrary point x ∈ X in H . The edges
incident to x in H are contained in Hx and Hy’s such that the edge {x, y} is
directed from x to y in H0. Note that the number of Hy’s involving x is bounded
by the out-degree of x in H0, which is ε−O(dim) · k. Also recall that the degree
of x in Hx is ε−O(dim) · k and the degree of x in each Hy is 2O(dim) · k. Hence,
we conclude that the degree of x in H is ε−O(dim) · k2.

The upper bound on the number of edges follows directly from the degree
analysis.
�

References

1. Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.H.M.: Euclidean spanners:
short, thin, and lanky. In: STOC 1995, pp. 489–498 (1995)

2. Callahan, P.B., Kosaraju, S.R.: Faster algorithms for some geometric graph prob-
lems in higher dimensions. In: SODA 1993, pp. 291–300 (1993)

3. Chan, H.T.-H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in dou-
bling metrics. In: SODA 2005, pp. 762–771 (2005)

4. Chan, T.-H.H., Gupta, A.: Small hop-diameter sparse spanners for doubling met-
rics. Discrete & Computational Geometry 41(1), 28–44 (2009)

5. Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Algo-
rithmica 2, 337–361 (1987)

6. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for gen-
eral graphs. In: STOC 2009, pp. 435–444 (2009)

7. Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. Discrete & Computa-
tional Geometry 32(2), 207–230 (2004)

8. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse euclidean span-
ners. In: Symposium on Computational Geometry, pp. 132–139 (1994)

9. Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: better and simpler. In:
PODC 2011, pp. 169–178 (2011)

10. Gottlieb, L.-A., Roditty, L.: An Optimal Dynamic Spanner for Doubling Metric
Spaces. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp.
478–489. Springer, Heidelberg (2008)

11. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-
distortion embeddings. In: FOCS 2003, pp. 534–543 (2003)

12. Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics,
and their applications. In: Symposium on Computational Geometry, pp. 150–158
(2005)

13. Levcopoulos, C., Narasimhan, G., Smid, M.H.M.: Efficient algorithms for con-
structing fault-tolerant geometric spanners. In: STOC 1998, pp. 186–195 (1998)

14. Lukovszki, T.: New Results on Fault Tolerant Geometric Spanners. In: Dehne, F.,
Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp.
193–204. Springer, Heidelberg (1999)

15. Narasimhan, G., Smid, M.H.M.: Geometric spanner networks. Cambridge Univer-
sity Press (2007)

16. Solomon, S., Elkin, M.: Balancing Degree, Diameter and Weight in Euclidean Span-
ners. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 48–59.
Springer, Heidelberg (2010)

17. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22(2),
215–225 (1975)

A Dependent LP-Rounding Approach

for the k-Median Problem�

Moses Charikar and Shi Li

Department of Computer Science, Princeton University, Princeton NJ 08540, USA

Abstract. In this paper, we revisit the classical k-median problem. Us-
ing the standard LP relaxation for k-median, we give an efficient algo-
rithm to construct a probability distribution on sets of k centers that
matches the marginals specified by the optimal LP solution. Analyzing
the approximation ratio of our algorithm presents significant technical
difficulties: we are able to show an upper bound of 3.25. While this is
worse than the current best known 3+ ε guarantee of [2], because: (1) it
leads to 3.25 approximation algorithms for some generalizations of the
k-median problem, including the k-facility location problem introduced
in [10], (2) our algorithm runs in Õ(k3n2/δ2) time to achieve 3.25(1+δ)-
approximation compared to the O(n8) time required by the local search
algorithm of [2] to guarantee a 3.25 approximation, and (3) our approach
has the potential to beat the decade old bound of 3 + ε for k-median.

We also give a 34-approximation for the knapsack median problem,
which greatly improves the approximation constant in [13]. Using the
same technique, we also give a 9-approximation for matroid median prob-
lem introduced in [11], improving on their 16-approximation.

Keywords: Approximation, k-Median Problem, Dependent Rounding.

1 Introduction

In this paper, we present a novel LP rounding algorithm for the metric k-median
problem which achieves approximation ratio 3.25. For the k-median problem, we
are given a finite metric space (F ∪ C, d) and an integer k ≥ 1, where F is a
set of facility locations and C is a set of clients. Our goal is to select k facilities
to open, such that the total connection cost for all clients in C is minimized,
where the connection cost of a client is its distance to its nearest open facility.
When F = C = X , the set of points with the same nearest open facility is
known as a cluster and thus the sum measures how well X can be partitioned
into k clusters. The k-median problem has numerous applications, starting from
clustering to data mining [3], to assigning efficient sources of supplies to minimize
the transportation cost([12,16]).

The problem is NP-hard and has received a lot of attention ([15], [6], [7], [10],
[1]). The best known approximation factor is 3 + ε approximation due to [2].

� A full version of this paper is available at the authors’ web pages.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 194–205, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Dependent Rounding for k-Median 195

Jain et al. [9] proved that the k-median problem is 1 + 2/e ≈ 1.736-hard to
approximate.

Our algorithm (like several previous ones) for the k-median problem is based
on the following natural LP relaxation:

LP(1) min
∑

i∈F ,j∈C d(i, j)xi,j s.t.∑
i∈F

xi,j = 1, ∀j ∈ C; xi,j ≤ yi, ∀i ∈ F , j ∈ C;∑
i∈F

yi ≤ k; xi,j , yi ∈ [0, 1], ∀i ∈ F , j ∈ C.

It is known that the LP has an integrality gap of 2. On the positive side, [1]
showed that the integrality gap is at most 3 by giving an exponential time
rounding algorithm.

Very recently, Kumar [13] gave a (large) constant-factor approximation algo-
rithm for a generalization of the k-median problem, which is called knapsack
median problem. In the problem, each facility i ∈ F has an opening cost fi and
we are given a budget M . The goal is to open a set of facilities such that their
total opening cost is at most M , and minimize the total connection cost. When
M = k and fi = 1 for every facility i ∈ F , the problem becomes k-median.

Krishnaswamy et al. [11] introduced another generalization of k-median, called
matroid-median problem. In the problem, the set of open facilities has to form
an independent set of some given matroid. [11] gave a 16-approximation for this
problem, assuming there is a separation oracle for the matroid polytope.

1.1 Our Results

We give a simple and efficient rounding procedure. Given an LP solution, we
open a set of k facilities from some distribution and connect each client j to
its closest open facility, such that the expected connection cost of j is at most
3.25 times its fractional connection cost. This leads to a 3.25 approximation for
k-median. Though the provable approximation ratio is worse than that of the
current best algorithm, we believe the algorithm (and particularly our approach)
is interesting for the following reasons:

Firstly, our algorithm is more efficient than the 3+ε-approximation algorithm
with the same approximation guarantee. The bottleneck of our algorithm is
solving the LP, for which we can apply Young’s fast algorithm for the k-median
LP [17].

Secondly, our approach has the potential to beat the decade old 3+ε-approxi-
mation algorithm for k-median. In spite of the simplicity of our algorithm, we are
unable to exploit its full potential due to technical difficulties in the analysis. Our
upper bound of 3.25 is not tight. The algorithm has some parameters which we
have instantiated for ease of analysis. It is possible that the algorithm with these
specific choices gives an approximation ratio strictly better than 3; further there
is additional room for improvement by making a judicious choice of algorithm
parameters.

196 M. Charikar and S. Li

The distribution of solutions produced by the algorithm satisfies marginal
conditions and negative correlation. Consequently, the algorithm can be easily
extended to solve the k-median problem with facility costs and the k-median
problem (called k-facility location problem) with multiple types of facilities, both
introduced in [10]. The techniques of this paper yield a factor 3.25 algorithm for
the two generalizations.

Based on our techniques for the k-median problem, we give a 34-approximation
algorithm for the knapsack median problem, which greatly improves the constant
approximation given by [13].(The constant was 2700.) Following the same line of
the algorithm, we can give a 9-approximation for the matroid-median problem,
improving on the 16-approximation in [11].

2 The Approximation Algorithm for the k-Median
Problem

Our algorithm is inspired by the 6 2
3 -approximation for k-median by [7] and

the clustered rounding approach of Chudak and Shmoys [8] for facility location
as well as the analysis of the 1.5-approximation for UFL problem by [4]. In
particular, we are able to save the additive factor of 4 that is lost at the beginning
of the 6 2

3 -approximation algorithm by [7], using some ideas from the rounding
approaches for facility location.

We first give with a high level overview of the algorithm. A simple way to
match the marginals given by the LP solution is to interpret the yi variables
as probabilities of opening facilities and sample independently for each i. This
has the problem that with constant probability, a client j could have no facility
opened close to j. In order to address this, we group fractional facilities into
bundles, each containing a total fractional of between 1/2 and 1. At most one
facility is opened in each bundle and the probability that some facility in a
bundle is picked is exactly the volume, i.e. the sum of yi values for the bundle.

Creating bundles reduces the uncertainty of the sampling process. E.g. if the
facilities in a bundle of volume 1/2 are sampled independently, with probability
e−1/2 in the worst case, no facility will be open; while sampling the bundle as a
single entity reduces the probability to 1/2. The idea of creating bundles alone
does not reduce the approximation ratio to a constant, since still with some
non-zero probability, no nearby facilities are open.

In order to ensure that clients always have an open facility within expected
distance comparable to their LP contribution, we pair the bundles. Each pair
now has at least a total fraction of 1 facility and we ensure that the rounding
procedure always picks one facility in each pair. The randomized rounding pro-
cedure makes independent choices for each pair of bundles and for fractional
facilities that are not in any bundle. This produces k facilities in expectation.
We get exactly k facilities by replacing the independent rounding by a depen-
dent rounding procedure with negative correlation properties so that our anal-
ysis need only consider the independent rounding procedure. (The technique of
dependent rounding was used in [5] to approximate the fault-tolerant facility
location problem.)

Dependent Rounding for k-Median 197

Now we proceed to give more details. We solve LP(1) to obtain a fractional so-
lution (x, y). By splitting one facility into many if necessary, we can assume xi,j ∈
{0, yi}. We remove all facilities i from C with yi = 0. Let Fj = {i ∈ F : xi,j > 0}.
So, instead of using x and y, we shall use (y, {Fj|j ∈ C}) to denote a solution.

For a subset of facilities F ′ ⊆ F , define vol(F ′) =
∑

i∈F ′ yi to be the vol-
ume of F ′. So, vol(Fj) = 1, ∀j ∈ C. W.L.O.G, we assume vol(F) = k. Denote
by d(j,F ′) the average distance from j to F ′ w.r.t weights y, i.e, d(j,F ′) =∑

i∈F ′ yid(j, i)/vol(F ′). Define dav(j) =
∑

i∈Fj
yid(i, j) to be the connection

cost of j in the fractional solution. For a client j, let B(j, r) denote the set of
facilities that have distance strictly smaller than r to j.

Our rounding algorithm consists of 4 phases, which we now describe.

2.1 Filtering Phase

We begin our algorithm with a filtering phase, where we select a subset C′ ⊆ C of
clients. C′ has two properties: (1) The clients in C′ are far away from each other.
With this property, we can guarantee that each client in C′ can be assigned an
exclusive set of facilities with large volume. (2) A client in C\C′ is close to some
client in C′, so that its connection cost is bounded in terms of the connection
cost of its neighbour in C′. So, C′ captures the connection requirements of C and
also has a nice structure. After this filtering phase, our algorithm is independent
of the clients in C\C′. Following is the filtering phase.

Initially, C′ = ∅, C′′ = C. At each step, we select the client j ∈ C′′ with the
minimum dav(j), breaking ties arbitrarily, add j to C′ and remove j and all j′s
that d(j, j′) ≤ 4dav(j

′) from C′′. This operation is repeated until C′′ = ∅.

Lemma 1. (1) For any j, j′ ∈ C′, j �= j′, d(j, j′) > 4max{dav(j), dav(j′)};
(2) For any j′ ∈ C\C′, there is a client j ∈ C′ such that dav(j) ≤ dav(j

′), d(j, j′) ≤
4dav(j

′).

We leave the proof of the lemma to the full version of the paper.

2.2 Bundling Phase

Since clients in C′ are far away from each other, each client j ∈ C′ can be assigned
a set of facilities with large volume. To be more specific, for a client j ∈ C′, we
define a set Uj as follows. Let Rj = 1

2 minj′∈C′,j′ �=j d(j, j
′) be half the distance

of j to its nearest neighbour in C′, and F ′
j = Fj ∩ B(j, 1.5Rj) to be the set of

facilities that serve j and are at most 1.5Rj away.1 A facility i which belongs to

1 It is worthwhile to mention the motivation behind the choice of the scalar 1.5 in the
definition of F ′

j . If we were only aiming at a constant approximation ratio smaller
than 4, we could replace 1.5 with 1, in which case the analysis is simpler. On the
other hand, we believe that changing 1.5 to ∞ would give the best approximation,
in which case the algorithm also seems cleaner (since F ′

j = Fj). However, if the
scalar were ∞, the algorithm is hard to analyze due to some technical reasons. So,
the scalar 1.5 is selected so that we don’t lose too much in the approximation ratio
and yet the analysis is still manageable.

198 M. Charikar and S. Li

at least one F ′
j is claimed by the nearest j ∈ C′ such that i ∈ F ′

j , breaking ties
arbitrarily. Then, Uj ⊆ Fj is the set of facilities claimed by j.

Lemma 2. The following two statements are true:
(1) 1/2 ≤ vol(Uj) ≤ 1, ∀j ∈ C′, and (2) Uj ∩ Uj′ = ∅, ∀j, j′ ∈ C′, j �= j′.

Proof. Statement 2 is trivial; we only consider the first one. Since Uj ⊆ F ′
j ⊆ Fj ,

we have vol(Uj) ≤ vol(Fj) = 1. For a client j ∈ C′, the closest client j′ ∈ C′\ {j}
to j has d(j, j′) > 4dav(j) by lemma 1. So, Rj > 2dav(j) and the facilities in Fj

that are at most 2dav(j) away must be claimed by j. The set of these facilities
has volume at least 1− dav(j)/(2dav(j)) = 1/2. Thus, vol(Uj) ≥ 1/2.

The sets Uj’s are called bundles. Each bundle Uj is treated as a single entity
in the sense that at most 1 facility from it is open, and the probability that 1
facility is open is exactly vol(Uj). From this point, a bundle Uj can be viewed as a
single facility with y = vol(Uj), except that it does not have a fixed position. We
will use the phrase “opening the bundle Uj” the operation that opens 1 facility
randomly from Uj , with probabilities yi/vol(Uj).

2.3 Matching Phase

Next, we construct a matching M over the bundles (or equivalently, over C′). If
two bundles Uj and Uj′ are matched, we sample them using a joint distribution.
Since each bundle has volume at least 1/2, we can choose a distribution such
that with probability 1, at least 1 bundle is open.

We construct the matching M using a greedy algorithm. While there are at
least 2 unmatched clients in C′, we choose the closest pair of unmatched clients
j, j′ ∈ C′ and match them.

2.4 Sampling Phase

Following is our sampling phase.

1: for each pair (j, j′) ∈M do
2: With probability 1− vol(Uj′), open Uj ; with probability 1− vol(Uj), open

Uj′ ; and with probability vol(Uj) + vol(Uj′)− 1, open both Uj and Uj′ ;
3: end for
4: If some j ∈ C′ is not matched in M, open Uj randomly and independently

with probability vol(Uj);
5: For each facility i not in any bundle Uj , open it independently with proba-

bility yi.

After we selected the open facilities, we connect each client to its nearest open
facility. Let Cj denote the connection cost of a client j ∈ C. Our sampling process
opens k facilities in expectation, since each facility i is open with probability yi.
It does not always open k facilities as we promised. In the full version of the
paper, we shall prove the following lemma:

Dependent Rounding for k-Median 199

Lemma 3. There is a rounding procedure in which we always open k facilities
and the probability that i is open is exactly yi. The E[Cj] in this procedure is at
most the E[Cj] in the rounding procedure we described. Moreover, the events that
facilities are open are negatively-correlated; that is, for every set S of facilities,

Pr[all facilities in S are open] ≤
∏
i∈S

yi.

By Lemma 3, it suffices to consider the rounding procedure we described. We
shall outline the proof of the 3.25 approximation ratio for the above algorithm
in section 3. As a warmup, we conclude this section with a much weaker result:

Lemma 4. The algorithm gives a constant approximation for k-median.

Proof. It is enough to show that the ratio between E[Cj] and dav(j) is bounded,
for any j ∈ C. Moreover, it suffices to consider a client j ∈ C′. Indeed, if j /∈ C′,
there is a client j1 ∈ C′ such that dav(j1) ≤ dav(j), d(j, j1) ≤ 4dav(j), by the
second property of lemma 1. So E[Cj] ≤ E[Cj1] + 4dav(j). Thus, the ratio for j
is bounded by the ratio for j1 plus 4. So, it suffices to consider j1.

W.L.O.G, assume dav(j1) = 1. Let j2 be the client in C′\ {j1} that is closest
to j1. Consider the case where j1 is not matched with j2 (this is worse than
the case where they are matched). Then, j2 must be matched with another
client, say j3 ∈ C′, before j1 is matched, and d(j2, j3) ≤ d(j1, j2). The sampling
process guarantees that there must be a open facility in Uj2 ∪ Uj3 . It is true
that j2 and j3 may be far away from j1. However, if d(j1, j2) = 2R (thus,
d(j1, j3) ≤ 4R, dav(j2), dav(j3) ≤ R/2), the volume of Uj1 is at least 1 − 1/R.
That means with probability at least 1− 1/R, j1 will be connected to a facility
that serves it in the fractional solution; only with probability 1/R, j1 will be
connected to a facility that is O(R) away. This finishes the proof.

3 Outline of the Proof of the 3.25-Approximation Ratio

If we analyze the algorithm as in the proof of lemma 4, an additive factor of 4 is
lost at the first step. This additive factor can be avoided,2 if we notice that there
is a set Fj of facilities of volume 1 around j. Hopefully with some probability,
some facility in Fj is open. It is not hard to show that this probability is at least
1 − 1/e. So, only with probability 1/e, we are going to pay the additive factor
of 4. Even if there are no open facilities in Fj , the facilities in Fj1 and Fj2 can
help to reduce the constant.

A natural style of analysis is: focus on a set of “potential facilities”, and
consider the expected distance between j and the closest open facility in this
set. An obvious candidate for the potential set is Fj ∪Fj1 ∪Fj2 ∪Fj3 . However,
we are unable to analyze this complicated system.

Instead, we will consider a different potential set. Observing that Uj1 ,Uj2 ,Uj3

are disjoint, the potential setFj∪Uj1∪Uj2∪Uj3 is much more tractable. Even with

2 This is inspired by the analysis for the facility location problem in [8,4,14].

200 M. Charikar and S. Li

this simplified potential set, we still have to consider the intersection between
Fj and each of Uj1 , Uj2 and Uj3 . Furthermore, we tried hard to reduce the
approximation ratio at the cost of complicating the analysis(recall the argument
about the choice of the scalar 1.5). With the potential set Fj ∪ Uj1 ∪ Uj2 ∪ Uj3 ,
we can only prove a worse approximation ratio. To reduce it to 3.25, different
potential sets are considered for different bottleneck cases.

W.L.O.G, we can assume j �∈ C′, since we can think of the case j ∈ C′ as j �∈ C′

and there is another client j1 ∈ C′ with d(j, j1) = 0. We also assume dav(j) = 1.
Let j1 ∈ C′ be the client such that dav(j1) ≤ dav(j) = 1, d(j, j1) ≤ 4dav(j) = 4.
Let j2 be the closest client in C′\ {j1} to j1, thus d(j1, j2) = 2Rj1 . Then, either
j1 is matched with j2, or j2 is matched with a different client j3 ∈ C′, in which
case we will have d(j2, j3) ≤ d(j1, j2) = 2Rj1 . We only consider the second case.
Readers can verify this is indeed the bottleneck case.

For the ease of notation, define 2R := d(j1, j2) = 2Rj1 , 2R
′ := d(j2, j3) ≤

2R, d1 := d(j, j1), d2 := d(j, j2) and d3 := d(j, j3).
At the top level, we divide the analysis into two cases : the case 2 ≤ d1 ≤ 4 and

the case 0 ≤ d1 ≤ 2. (Notice that we assumed dav(j) = 1 and thus 0 ≤ d1 ≤ 4.)
For some technical reason, we can not include the whole set Fj in the potential
set for the former case. Instead we only include a subset F ′

j (notice that j /∈ C′

and thus F ′
j was not defined before). F ′

j is defined as Fj ∩B(j, d1).
The case 2 ≤ d1 ≤ 4 is further divided into 2 sub-cases : F ′

j ∩ F ′
j1
⊆ Uj1 and

F ′
j ∩ F ′

j1 �⊆ Uj1 . Thus, we will have 3 cases, and the proof of the approximation
ratios appear in the full paper.

1. 2 ≤ d1 ≤ 4,F ′
j ∩ F ′

j1
⊆ Uj1 . In this case, we consider the potential set F ′′ =

F ′
j ∪F ′

j1 ∪Uj2 ∪Uj3 . Notice that F ′
j = Fj ∩B(j, d1), F ′

j1 = Fj1 ∩B(j1, 1.5R).
In this case, E[Cj] ≤ 3.243.

2. 2 ≤ d1 ≤ 4,F ′
j ∩ F ′

j1 �⊆ Uj1 . In this case, some facility i in F ′
j ∩ F ′

j1 must be
claimed by some client j′ �= j1. Since d(j, i) ≤ d1, d(j1, i) ≤ 1.5R, we have

d(j, j′) ≤ d(j, i) + d(j′, i) ≤ d(j, i) + d(j1, i) ≤ d1 + 1.5R.

If j′ /∈ {j2, j3}, we can include Uj′ in the potential set and thus the potential
set is F ′′ = F ′

j ∪ F ′
j1
∪ Uj2 ∪ Uj3 ∪ Uj′ . If j ∈ {j2, j3}, then we know j and

j2, j3 are close. So, we either have a “larger” potential set, or small distances
between j and j2, j3. Intuitively, this case is unlikely to be the bottleneck
case. In this case, we show E[Cj] ≤ 3.189.

3. 0 ≤ d1 ≤ 2. In this case, we consider the potential set F ′′ = Fj∪Uj1∪Uj2∪Uj3 .
In this case, E[Cj] ≤ 3.25.

3.1 Running Time of the Algorithm

We now analyze the running time of our algorithm in terms of n = |F ∪ C|. The
bottleneck of the algorithm is solving the LP. Indeed, the total running time for
rounding is O(n2).

To solve the LP, we use the (1+ ε) approximation algorithm for the fractional
k-median problem in [17]. The algorithm gives a fractional solution which opens

Dependent Rounding for k-Median 201

(1+ ε)k facilities with connection cost at most 1+ ε times the fractional optimal
in time O(kn2 ln(n/ε)/ε2). We set ε = δ/k for some small constant δ. Then, our
rounding procedure will open k facilities with probability 1−δ and k+1 facilities
with probability δ. The expected connection cost of the integral solution is at
most 3.25(1 + δ/k) times the fractional optimal. Conditioned on the rounding
procedure opening k facilities, the expected connection cost is at most 3.25(1 +
δ/k)/(1− δ) ≤ 3.25(1 +O(δ)) times the optimal fractional value.

Theorem 1. For any δ > 0, there is a 3.25(1+ δ)-approximation algorithm for
k-median problem that runs in Õ

(
(1/δ2)k3n2

)
time.

3.2 Generalization of the Algorithm to Variants of k-Median

The distribution of k open facilities produced by our algorithm satisfies marginal
conditions. That is, the probability that a facility i is open is exactly yi. This
allows our algorithm to be extended to some variants of the k-median problem.

The first variant is called k-facility location problem, which is a common
generalization of k-median and UFL introduced in [10]. In the problem, we are
given set F of facilities, set C of clients, metric (d,F ∪ C), opening cost fi for
each facility i ∈ F and an integer k. The goal is to open at most k facilities
and connect each client to its nearest open facility so as to minimize the sum of
the opening cost and the connection cost. The best known approximation ratio
for the k-facility location problem was 2 +

√
3 + ε, due to Zhang [18]. For this

problem, the LP is the same as LP(1), except that we add a term
∑

i∈F fiyi to
the objective function. After solving the LP, we use our rounding procedure to
obtain an integer solution. The expected opening cost of the solution is exactly
the fractional opening cost in the LP solution, while the expected connection
cost is at most 3.25 times the fractional connection cost. This gives a 3.25-
approximation for the problem, improving the 2 +

√
3 + ε-approximation.

Another generalization introduced in [10] is the k-median problem with t types
of facilities. The goal of the problem is to open at most k facilities and connect
each client to one facility of each type so as to minimize the total connection
cost. Our techniques yield a 3.25 approximation for this problem as well. We first
solve the natural LP for this problem. Then, we apply the rounding procedure
to each type of facilities. The only issue is that the number of open facilities of
some type in the LP solution might not be an integer. This can be handled using
the techniques in the proof of Lemma 3.

4 Approximation Algorithms for Knapsack-Median and
Matroid-Median

The LP for knapsack-median is the same as LP (1), except that we change the
constraint

∑
i∈F yi ≤ k to the knapsack constraint

∑
i∈F fiyi ≤M .

As shown in [13], the LP has unbounded integrality gap. To amend this, we
do the same trick as in [13]. Suppose we know the optimal cost OPT for the

202 M. Charikar and S. Li

instance. For a client j, let Lj be its connection cost. Then, for some other client
j′, its connection cost is at least max {0, Lj − d(j, j′)}. This suggests∑

j′∈C
max{0, Lj − d(j, j′)} ≤ OPT. (1)

Thus, knowing OPT, we can get an upper bound Lj on the connection cost of
j: Lj is the largest number such that the above inequality is true. We solve
the LP with the additional constraint that xi,j = 0 if d(i, j) > Lj . Then, the
LP solution, denoted by LP, must be at most OPT. By binary searching, we
find the minimum OPT so that LP ≤ OPT. Let

(
x(1), y(1)

)
be the fractional

solution given by the LP. We use LPj = dav(j) =
∑

i∈F d(i, j)x
(1)
i,j to denote the

contribution of the client j to LP.
Then we select a set of filtered clients C′ as we did in the algorithm for the

k-median problem. For a client j ∈ C, let π(j) be a client j′ ∈ C′ such that
dav(j

′) ≤ dav(j), d(j, j
′) ≤ 4dav(j). Notice that for a client j ∈ C′, we have

π(j) = j. This time, we can not save the additive factor of 4; instead, we move the
connection demand on each client j /∈ C′ to π(j). For a client j′ ∈ C′, let wj′ =∣∣π−1(j′)

∣∣ be its connection demand. Let LP(1) =
∑

j′∈C′,i∈F wj′xi,j′d(i, j
′) =∑

j′∈C′ wj′dav(j
′) be the cost of the solution

(
x(1), y(1)

)
to the new instance. For

a client j ∈ C, let LP
(1)
j = dav(π(j)) be the contribution of j to LP(1). (The

amount wj′dav(j
′) is evenly spread among the wj′ clients in π−1(j′).) Since

LPj = dav(j) ≤ dav(π(j)) ≤ LP
(1)
j , we have LP(1) ≤ LP.

For any client j ∈ C′, let 2Rj = minj′∈C′,j′ �=j d(j, j
′), if vol(B(j, Rj)) ≤ 1;

otherwise let Rj be the smallest number such that vol(B(j, Rj)) = 1. (vol(S) is

defined as
∑

i∈S y
(1)
i .) Let Bj = B(j, Rj) for the ease of notation. If vol(Bj) = 1,

we call Bj a full ball; otherwise, we call Bj a partial ball. Notice that we always

have vol(Bj) ≥ 1/2. Notice that Rj ≤ Lj since x
(1)
i,j = 0 for all facilities i with

di,j > Lj.
We find a matching M over the partial balls as in Section 2: while there are

at least 2 unmatched partial balls, match the two balls Bj and Bj′ with the
smallest d(j, j′). Consider the following LP.

LP(2) min
∑

j′∈C′ wj′
(∑

i∈Bj′
d(i, j′)yi +

(
1−
∑

i∈Bj
yi

)
Rj′
)

∑
i∈Bj′

yi = 1, ∀j′ ∈ C′, Bj′ full;
∑
i∈Bj′

yi ≤ 1, ∀j′ ∈ C′, Bj′ partial;

∑
i∈Bj

yi +
∑
i∈Bj′

yi ≥ 1, ∀(Bj , Bj′) ∈ M;
∑
i∈F

fiyi ≤M ;

yi ≥ 0, ∀i ∈ F

Let y(2) be an optimal basic solution of LP (2) and let LP(2) be the value

of LP(2). For a client j ∈ C with π(j) = j′, let LP
(2)
j =

∑
i∈Bj′

d(i, j′)yi +(
1−
∑

i∈Bj′
yi

)
Rj′ be the contribution of j to LP(2). Then we prove

Dependent Rounding for k-Median 203

Lemma 5. LP(2) ≤ LP(1).

Proof. It is easy to see that y(1) is a valid solution for LP(2). By slightly abusing

the notations, we can think of LP(2) is the cost of y(1) to LP(2). We compare

the contribution of each client j ∈ C with π(j) = j′ to LP(2) and to LP(1). If

Bj′ is a full ball, j′ contributes the same to LP(2) and as to LP(1). If Bj′ is a

partial ball, j′ contributes
∑

i∈Fj′
d(i, j′)y(1)i to LP(1) and

∑
i∈Bj′

d(i, j′)y(1)i +

(1−
∑

i∈Bj′
y
(1)
i)Rj′ to LP(2). Since Bj′ = B(j′, Rj′) ⊆ Fj′ and vol(Fj′) = 1, the

contribution of j′ to LP(2) is at most that to LP(1). So, LP(2) ≤ LP(1).

Notice that LP(2) only contains y-variables. We show that any basic solution y∗

of LP(2) is almost integral. In particular, we prove the following lemma in the
full version of the paper:

Lemma 6. Any basic solution y∗ of LP(2) contains at most 2 fractional values.
Moreover, if it contains 2 fractional values y∗i , y

∗
i′ , then y∗i + y∗i′ = 1 and either

there exists some j ∈ C′ such that i, i′ ∈ Bj or there exists a pair (Bj , Bj′) ∈M
such that i ∈ Bj , i

′ ∈ Bj′ .

Let y(3) be the integral solutin obtained from y(2) as follows. If y(2) contains
at most 1 fractional value, we zero-out the fractional value. If y(2) contains 2

fractional values y
(2)
i , y

(2)
i′ , let y

(3)
i = 1, y

(3)
i′ = 0 if fi ≤ fi′ and let y

(3)
i = 0, y

(3)
i′ =

1 otherwise. Notice that since y
(2)
i +y

(2)
i′ = 1, this modification does not increase

the budget. Let SOL be the cost of the solution y(3) to the original instance.
We leave the proof of the following lemma to the full version of the paper.

Lemma 7.
∑

i∈B(j′,5Rj′)
y
(2)
i ≥ 1 and

∑
i∈B(j′,5Rj′)

y
(3)
i ≥ 1. i.e, there is an

open facility (possibly two facilities whose opening fractions sum up to 1) inside
B(j′, 5Rj′) in both the solution y(2) and the solution y(3).

Lemma 8. SOL ≤ 34OPT.

Proof. Let ĩ be the facility that y
(2)

ĩ
> 0, y

(3)

ĩ
= 0, if it exists; let j̃ be the client

that ĩ ∈ Bj̃ .
Now, we focus on a client j ∈ C with π(j) = j′. Then, d(j, j′) ≤ 4dav(j) =

4LPj . Assume that j′ �= j̃. Then, to obtain y(3), we did not move or remove an

open facility from Bj′ . In other words, for every i ∈ Bj′ , y
(3)
i ≥ y

(2)
i . In this case,

we show

SOLj′ ≤
∑
i∈Bj′

d(i, j′)y(2)i + (1 −
∑
i∈Bj′

y
(2)
i)× 5Rj′ .

If there is no open facility in Bj′ in y(3), then there is also no open facility in
Bj′ in y(2). Then, by Lemma 7, SOLj′ = 5Rj′ = right-side. Otherwise, there is

exactly one open facility in Bj′ in y
(3). In this case, SOLj′ =

∑
i∈Bj′

d(j′, i)y(3)i ≤
right-side since y

(3)
i ≥ y

(2)
i and d(i, j′) ≤ 5Rj′ for every i ∈ Bj′ .

204 M. Charikar and S. Li

Observing that the right side of the inequality is at most 5LP
(2)
j , we have

SOLj ≤ 4LPj + SOLj′ ≤ 4LPj + 5LP
(2)
j .

Now assume that j′ = j̃. Since there is an open facility in B(j′, 5Rj′) by
Lemma 7, we have SOLj ≤ 4LPj+5Rj′ . Consider the set π

−1(j′) of clients. Notice

that we have Rj′ ≤ Lj′ since x
(1)
i,j′ = 0 for facilities i such that d(i, j′) > Lj′ .

Also by Inequality (1), we have
∑

j∈π−1(j′)(Rj′ − d(j, j′)) ≤
∑

j∈π−1(j′)(Lj′ −
d(j, j′)) ≤ OPT. Then, since d(j, j′) ≤ 4LPj for every j ∈ π−1(j′), we have∑

j∈π−1(j′)

SOLj ≤
∑
j

(4LPj + 5Rj′) ≤ 4
∑
j

LPj + 5
∑
j

Rj′

≤ 4
∑
j

LPj + 5
(
OPT+

∑
j

d(j, j′)
)
≤ 24

∑
j

LPj + 5OPT,

where the sums are all over clients j ∈ π−1(j′). Summing up all clients j ∈ C,
we have

SOL =
∑
j∈C

SOLj =
∑

j /∈π−1(j̃)

SOLj +
∑

j∈π−1(j̃)

SOLj

≤
∑

j /∈π−1(j̃)

(4LPj + 5LP
(2)
j) + 24

∑
j∈π−1(j̃)

LPj + 5OPT

≤ 24
∑
j∈C

LPj + 5
∑
j∈C

LP
(2)
j + 5OPT ≤ 24LP+ 5LP(2) + 5OPT ≤ 34OPT,

where the last inequality follows from the fact that LP(2) ≤ LP(1) ≤ LP ≤ SOL.
Thus, we proved

Theorem 2. There is an efficient 34-approximation algorithm for the knapsack-
median problem.

It is not hard to change our algorithm so that it works for the matroid median
problem. The analysis for the matroid median problem is simpler, since y(2) will
already be an integral solution. We leave the proof of the following theorem to
the full version of the paper.

Theorem 3. There is an efficient 9-approximation algorithm for the matroid
median problem, assuming there is an efficient oracle for the input matroid.

References

1. Archer, A., Rajagopalan, R., Shmoys, D.B.: Lagrangian Relaxation for the k-
Median Problem: New Insights and Continuity Properties. In: Di Battista, G.,
Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 31–42. Springer, Heidelberg (2003)

2. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristic for k-median and facility location problems. In: Proceedings of the
Thirty-Third Annual ACM Symposium on Theory of Computing, STOC 2001, pp.
21–29. ACM, New York (2001), http://doi.acm.org/10.1145/380752.380755

http://doi.acm.org/10.1145/380752.380755

Dependent Rounding for k-Median 205

3. Bradley, P.S., Fayyad, U.M., Mangasarian, O.L.: Mathematical programming for
data mining: Formulations and challenges. INFORMS Journal on Computing 11,
217–238 (1998)

4. Byrka, J.: An Optimal Bifactor Approximation Algorithm for the Metric Unca-
pacitated Facility Location Problem. In: Charikar, M., Jansen, K., Reingold, O.,
Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp.
29–43. Springer, Heidelberg (2007)

5. Byrka, J., Srinivasan, A., Swamy, C.: Fault-Tolerant Facility Location: A Random-
ized Dependent LP-Rounding Algorithm. In: Eisenbrand, F., Shepherd, F.B. (eds.)
IPCO 2010. LNCS, vol. 6080, pp. 244–257. Springer, Heidelberg (2010)

6. Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility location
and k-median problems. In: Proceedings of the 40th Annual IEEE Symposium on
Foundations of Computer Science, pp. 378–388 (1999)

7. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation
algorithm for the k-median problem (extended abstract). In: Proceedings of the
Thirty-First Annual ACM Symposium on Theory of Computing, STOC 1999, pp.
1–10. ACM, New York (1999), http://doi.acm.org/10.1145/301250.301257

8. Chudak, F.A., Shmoys, D.B.: Improved approximation algorithms for the unca-
pacitated facility location problem. SIAM J. Comput. 33(1), 1–25 (2004)

9. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility loca-
tion problems. In: Proceedings of the Thiry-Fourth Annual ACM Symposium
on Theory of Computing, STOC 2002, pp. 731–740. ACM, New York (2002),
http://doi.acm.org/10.1145/509907.510012

10. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and lagrangian relaxation. J.
ACM 48(2), 274–296 (2001)

11. Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The ma-
troid median problem. In: Proceedings of ACM-SIAM Symposium on Discrete
Algorithms, pp. 1117–1130 (2011)

12. Kuehn, A.A., Hamburger, M.J.: A heuristic program for locating warehouses, vol.
9(9), pp. 643–666 (July 1963)

13. Kumar, A.: Constant factor approximation algorithm for the knapsack me-
dian problem. In: Proceedings of the Twenty-Third Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2012, pp. 824–832. SIAM (2012),
http://dl.acm.org/citation.cfm?id=2095116.2095182

14. Li, S.: A 1.488 Approximation Algorithm for the Uncapacitated Facility Location
Problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 77–88. Springer, Heidelberg (2011)

15. Lin, J.H., Vitter, J.S.: Approximation algorithms for geometric median problems.
Inf. Process. Lett. 44, 245–249 (1992),
http://portal.acm.org/citation.cfm?id=152566.152569

16. Manne, A.: Plant location under economies-of-scale-decentralization and compu-
tation. Managment Science (1964)

17. Young, N.E.: K-medians, facility location, and the chernoff-wald bound. In: Pro-
ceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2000, pp. 86–95. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA (2000),
http://portal.acm.org/citation.cfm?id=338219.338239

18. Zhang, P.: A New Approximation Algorithm for the k-Facility Location Problem.
In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 217–
230. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11750321_21

http://doi.acm.org/10.1145/301250.301257
http://doi.acm.org/10.1145/509907.510012
http://dl.acm.org/citation.cfm?id=2095116.2095182
http://portal.acm.org/citation.cfm?id=152566.152569
http://portal.acm.org/citation.cfm?id=338219.338239
http://dx.doi.org/10.1007/11750321_21

Node-Weighted Network Design in Planar
and Minor-Closed Families of Graphs�

Chandra Chekuri, Alina Ene, and Ali Vakilian

Dept. of Computer Science, University of Illinois, Urbana, IL 61801, USA
{chekuri,ene1,vakilia2}@illinois.edu

Abstract. We consider node-weighted network design in planar and
minor-closed families of graphs. In particular we focus on the edge-connectivity
survivable network design problem (EC-SNDP). The input consists of a node-
weighted undirected graph G = (V,E) and integral connectivity requirements
r(uv) for each pair of nodes uv. The goal is to find a minimum node-weighted
subgraph H of G such that, for each pair uv, H contains r(uv) edge-disjoint
paths between u and v. Our main result is an O(k)-approximation algorithm for
EC-SNDP where k = maxuv r(uv) is the maximum requirement. This improves
the O(k log n)-approximation known for node-weighted EC-SNDP in general
graphs [15]. Our algorithm and analysis applies to the more general problem
of covering a proper function with maximum requirement k. Our result is in-
spired by, and generalizes, the work of Demaine, Hajiaghayi and Klein [5] who
gave constant factor approximation algorithms for node-weighted Steiner tree
and Steiner forest problems (and more generally covering 0-1 proper functions)
in planar and minor-closed families of graphs.

1 Introduction

Network design is an important area of discrete optimization with several practical ap-
plications. Moreover, the clean optimization problems that underpin the applications
have led to fundamental theoretical advances in combinatorial optimization, algorithms
and mathematical programming. In this paper we consider a class of problems that can
be modeled as follows. Given an undirected graph G = (V,E) find a subgraph H
of minimum weight/cost such that H satisfies certain desired connectivity properties.
A common cost model is to assign a non-negative weight w(e) to each e ∈ E and
the weight/cost of H is simply the total weight of edges in it. A number of well-studied
problems can be cast as special cases. Examples include polynomial-time solvable prob-
lems such as the minimum spanning tree (MST) problem whenH is required to connect
all the nodes ofG, and the NP-Hard Steiner tree problem whereH is required to connect
only a given subset S ⊆ V of terminals. A substantial generalization of these problems
is the survivable network design problem which is defined as follows. The input, in
addition to G, consists of an integer requirement function r(uv) for each (unordered)
pair of nodes uv in G; the goal is to find a minimum-weight subgraph H that contains
r(uv) edge-disjoint paths between u and v for each pair uv. This problem is called the

� The authors are partially supported by NSF grant CCF-1016684.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 206–217, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Node-Weighted Network Design in Planar 207

edge-connectivity SNDP (EC-SNDP) to distinguish from more general problems such
as Elem-SNDP and VC-SNDP that require the paths to be element and vertex disjoint
respectively. SNDP arises naturally in the design of fault-tolerant networks, and vari-
ous special cases have been extensively studied. Algorithmic approaches for SNDP and
related problems are based on solving a larger class of abstract network design prob-
lems such as covering proper and skew-supermodular cut-requirement functions that
we describe formally later.

Node Weights: The cost of a network is dependent on the application. In connectivity
problems, as we remarked, a common model is the edge-weight model. A more general
problem is obtained when each node v of G has a weight w(v) and the weight of H is
the total weight of the nodes in H1. Node weights are relevant in several applications,
in particular telecommunication networks, where they can model the cost of setting
up routing and switching infrastructure at a given node. There have also been several
recent applications in wireless network design [17,16] where the weight function is
closely related to that of node weights. We refer the reader to [5] for some additional
applications of node weights to network formation games.

The node-weighted versions of network design problems often turn out to be strictly
harder to approximate than their corresponding edge-weighted versions. For instance
the Steiner tree problem admits a 1.39-approximation for edge-weights [2], however,
Klein and Ravi [12] showed, via a simple reduction from the Set Cover problem, that
the node-weighted Steiner tree problem on n nodes is hard to approximate to within
an Ω(logn)-factor unless P = NP . They also described a (2 log k)-approximation
where k is the number of terminals. A more dramatic difference emerges if we consider
SNDP. Jain gave a 2-approximation for EC-SNDP with edge-weights [10]. The best
known approximation for EC-SNDP with node-weights is O(k logn) [15] where k =
maxuv r(uv) is the maximum connectivity requirement. Nutov [15] gives evidence, via
a reduction from the k-densest-subgraph problem, that for the node-weighted problem
a dependence on k in the approximation ratio is necessary.

Demaine, Hajiaghayi and Klein [5] considered the approximability of the node-
weighted Steiner tree problem in planar graphs. In an interesting result, they adapted
the well-known primal-dual algorithm for the edge-weighted problem [1,7] to the node-
weighted problem and showed that it gives a 6-approximation in planar graphs.
Demaine et al. also showed that their algorithm works for a more general class of 0-1-
valued proper functions (first considered by Goemans and Williamson [7]) that includes
several other problems such as the Steiner forest problem ([14] claims an improved 9/4
approximation for the Steiner forest problem). Their analysis also shows that one ob-
tains a constant factor approximation (the algorithm is the same) for any minor-closed
family of graphs where the constant depends on the family. In addition to their the-
oretical value, these results have the potential to be useful in practice since in many
real-world networks the underlying graph G is either planar or has very few crossings.

1 For many problems of interest, including Steiner tree and SNDP, the version with weights on
both edges and nodes can be reduced to the version with only node weights; sub-divide an
edge e by placing a new node ve and set the weight of ve to be that of e.

208 C. Chekuri, A. Ene, and A. Vakilian

Our Results: In this paper we consider node-weighted network design problems in
planar graphs for higher connectivity. In particular we consider EC-SNDP and show
that the insights in [5] can be used to develop improved approximation algorithms for
this more general problem as well. However, the results require non-trivial technical
work that we explain after we state the results. The algorithm works for any graph but
the ratio is constant for planar graphs and more generally graphs from any minor-closed
family; we articulate the precise dependence of the ratio on the family in later sections.

Our main result is the following.

Theorem 1. There is an O(k)-approximation for node-weighted EC-SNDP in planar
graphs where k is the maximum requirement.

The above theorem extends to a more general problem that we describe now. An integer
valued set function f : 2V → Z+ on the vertex set of G is said to be proper if it satisfies
the following conditions: (i) f is symmetric, that is, f(S) = f(V −S) for all S, and (ii)
f is maximal, that is, f(A ∪ B) ≤ max{f(A), f(B)} for any two disjoint sets A,B.
Given a proper function f on V (by a value oracle) and a graph G on V , the f -covering
problem is to find a subgraph H of minimum weight such that |δH(S)| ≥ f(S) for all
S2. EC-SNDP is a special case of this problem [18]. We obtain an O(k)-approximation
for the node-weighted version of this problem in planar graphs where k = maxS f(S).

Overview of Technical Ideas and Contribution: The two main algorithmic ap-
proaches for SNDP are the following. The first is the augmentation approach pioneered
by Williamson et al. [18] in which the required network is built in k phases. At the end
of the first (i − 1) phases the connectivity of a pair uv is at least min{r(uv), i − 1}.
Thus the i’th phase is required to increase the connectivity of some of the pairs by 1 by
adding additional edges; the advantage of this approach is that we now work with a 0-1
covering problem. On the other hand the covering problem is no longer so simple. The
function that we need to cover falls into the more general class of uncrossable func-
tions: A requirement function f : 2V → {0, 1} is uncrossable if for any sets A,B ⊆ V ,
f(A) = f(B) = 1 implies f(A∩B) = f(A∪B) = 1 or f(A−B) = f(B−A) = 1.
Williamson et al. [18] showed that a primal-dual algorithm achieves a 2-approximation
for the edge-weighted version of covering uncrossable functions. Nutov [15] gave
an O(log n)-approximation for the node-weighted case. These results for uncross-
able functions, when combined with the augmentation framework, give a 2k and an
O(k log n) approximation for the edge-weighted and node-weighted versions of EC-
SNDP in general graphs3. The second approach for SNDP is the powerful iterated
rounding technique pioneered by Jain which led to a 2-approximation for EC-SNDP
[10] and also for covering a certain class of skew-supermodular functions4. Iterated
rounding does not quite apply to node-weighted problems for various technical reasons.

2 We work with node-induced subgraphs H of G in which case H may not contain all the nodes
of a set S ⊂ V . In that case δH(S) denotes the edges of H with exactly one endpoint in S.

3 The approximation for the edge-weighted version can be improved to 2Hk by doing the aug-
mentation in the reverse [6].

4 A function f : 2V → Z is skew-supermodular if for all A,B ⊆ V , f(A) + f(B) ≤
max{f(A∩B)+ f(A∪B), f(A−B)+ f(B−A)}. A skew-supermodular function f with
f(A) ≤ 1 for all A gives rise to an uncrossable function.

Node-Weighted Network Design in Planar 209

We follow the augmentation approach. Demaine et al. adapted the primal-dual al-
gorithm for edge-weighted 0-1-proper functions to the node-weighted case. The novel
technical ingredient in their analysis is to understand properties of node-minimal fea-
sible solutions instead of edge-minimal feasible solutions. For the most part, problems
captured by 0-1-proper functions are very similar to the Steiner forest problem, a canon-
ical problem in this class. In this setting it is possible to visualize and understand node-
minimal solutions through connected components and basic reachability properties. In
the augmentation approach for higher-connectivity, as we remarked, the problem in
each phase is no longer that of covering a proper function but belongs to the richer class
of covering uncrossable functions. The primal-dual analysis for this class of functions
is more subtle and abstract [18] and proceeds via uncrossing arguments and laminar
witness families.

Our main technical contribution is understanding properties of node-minimal feasi-
ble solutions for uncrossable functions. We refer the reader to Theorem 3 in Section 3
for the precise statement; the theorem holds for general graphs (not just planar graphs)
and may have other applications. We remark on a crucial aspect of our algorithm and
analysis. Why do our results only apply for covering proper functions and not the more
general class of skew-supermodular functions? For the node-weighted problem of cov-
ering an arbitrary uncrossable function there is no natural covering LP relaxation. How-
ever, we observe that the particular uncrossable functions that arise in the augmentation
framework for a proper function (including EC-SNDP) have certain additional connec-
tivity properties that allow for an LP relaxation and the primal-dual approach. We obtain
a constant factor approximation in each phase and this results in anO(k)-approximation
overall where k is the maximum requirement.

As in [5] we use planarity only in one step of the analysis where we argue about the
average degree of a certain graph that is a minor of the original graph; this is the reason
that the algorithm and analysis generalize to any minor-closed family. In this paper, in
the interest of clarity and exposition, we have not attempted to optimize the constants
in the approximation.

Extensions: Our ideas for EC-SNDP can be extended to give an O(k) approximation
for node-weighted Elem-SNDP in planar graphs. We again use the augmentation ap-
proach but for Elem-SNDP we use a primal-dual algorithm and analysis with respect
to the setpair relaxation [11,3]. There are however some non-trivial differences and the
generalization is not immediate. An improved algorithm for node-weighted VC-SNDP
in planar graphs follows from a generic reduction of VC-SNDP to Elem-SNDP [4]. A
longer version of this paper will discuss these extensions.

Other Related Work: There is extensive literature on network design but due to space
limitations we are unable to discuss it in detail. We refer the reader to [8] for a survey
on primal-dual based algorithms for network design, and to recent surveys [13,9] for an
overview of the known approximation results and references to related work.

Organization: Section 2 describes our algorithm based on the augmentation approach
and the primal-dual algorithm for each phase of the augmentation. The analysis is done
by assuming the main technical theorem on a node-minimal augmentation of the un-
crossable requirement functions that arise in the augmentation framework. We state

210 C. Chekuri, A. Ene, and A. Vakilian

and prove this theorem in Section 3. Some of the proofs are omitted in this version.
A longer version with detailed proofs as well as the claimed extensions will be made
available on arXiv and the authors’ web pages in the near future.

2 Algorithm for Node-Weighted EC-SNDP and Proper Functions

We start by defining the node-weighted EC-SNDP problem formally. The input consists
of an undirected node-weighted graph G = (V,E) (weight of node v is denoted by
w(v)) and a requirement function r(uv) for each pair of nodes. The goal is to find a
minimum node-weighted subgraph H of G such that H contains r(uv) edge-disjoint
paths for each pair uv. We use k to denote the maximum requirement. A node u is called
a terminal if there is some node v such that r(uv) > 0. Since any feasible solution has to
contain all terminals, we can assume without loss of generality that the weight of every
terminal is zero. We define a function f : 2V → Z+ where f(S) = max{r(uv) | u ∈
S, v /∈ S}. It is well-known that f is a proper function. By Menger’s theorem, solving
node-weighted EC-SNDP is equivalent to finding a minimum node-weight subgraphH
such that |δH(S)| ≥ f(S) for all S ⊂ V . (Recall that δH(S) is the set of all edges of
H with exactly one endpoint in S.) Our algorithm and analysis extend to the problem
of finding a node-weighted subgraph to cover a given proper function. For an arbitrary
proper function f we call a node v a terminal if f({v}) > 0; maximality of f implies
that S contains a terminal if f(S) > 0. Again, we can assume without loss of generality
that terminals have zero weight, since they are included in any feasible solution.

We alert the reader that, in order to cover the function f , we need to pick a set
of edges. But since the weights are (only) on the nodes, we pay for a set of nodes
and we can use any of the edges in the graph induced by the nodes in order to cover
the function. More precisely, our goal is to select a minimum-weight node-induced
subgraph H = G[X] that covers f , where X is a subset of nodes of G. We will always
assume that X contains the terminals.

As we mentioned, our algorithm for covering f uses the augmentation framework
introduced in [18]. Let fp : 2V → Z be the function such that fp(S) = min{f(S), p}
for each set S. If f is a proper function then fp is also a proper function. The algorithm
performs k phases: for 1 ≤ p ≤ k, at the end of phase p, the algorithm has a subgraph
Hp that covers fp. In phase p the algorithm starts with Hp−1 that covers fp−1 and
adds some additional nodes to obtain Hp that covers fp. We can express the underlying
optimization problem in phase p as follows.

It is convenient to assume that all of the vertices of Hp−1 have zero weight; since
we have already paid for the nodes, we can set their weight to zero at the beginning
of phase p. Let G′

p = (V,E(G) − E(Hp−1)). (We emphasize that G′
p has all of the

nodes of G and that the terminals and vertices of V (Hp−1) have zero weight.) Our
goal is to select a minimum-weight subgraph H of G′

p that covers the following 0-1
function hp : 2V → {0, 1}. For each set S, we have hp(S) = 1 iff f(S) ≥ p and
|δHp−1(S)| = p− 1. The function hp is known to be an uncrossable function [18]; note
that it may no longer be a proper function. We use a primal-dual algorithm to cover hp in
the graphG′

p. A 2-approximation exists for this covering problem for the edge-weighted
problem and an O(log n)-approximation for the node-weighted case [15]. We show that

Node-Weighted Network Design in Planar 211

the primal-dual algorithm achieves an O(1)-approximation for the node-weighted case
in planar graphs, however, we emphasize that it only applies for the specific uncrossable
functions that arise from proper functions as above; in particular it is important that the
chosen subgraphs at the end of each phase are node-induced. We describe and analyze
the primal-dual algorithm below and point out the place where we need this restriction.

2.1 A Primal-Dual Algorithm for the Augmentation Problem

In the following, we fix a phase p of the augmentation framework. Let h = hp and G′ =
G′

p. Recall that all of the terminals and the vertices selected in the first p−1 phases have
zero weight. In the following, we use ΓG′(S) to denote the set of all vertices v such that
v /∈ S but there is an edge uv ∈ E(G′) such that u ∈ S. We use a primal-dual algorithm
in order to select a subgraphH of G′ that covers h. The primal and dual LPs that we use
are described below. We remark that the primal LP has unbounded integrality gap for
an arbitrary uncrossable function5. However, the function h that arises from a proper
function f in the augmentation framework has additional properties that allow us to
avoid such examples.

Primal:

min
∑
v∈V

x(v)w(v)

s.t.
∑

v∈ΓG′ (S)

x(v) ≥ h(S) ∀S ⊆ V

x(v) ≥ 0 ∀v ∈ V

Dual:

max
∑
S⊆V

y(S)h(S)

s.t.
∑

S:v∈ΓG′(S)

y(S) ≤ w(v) ∀v ∈ V

y(S) ≥ 0 ∀S ⊆ V

We omit the constraint x(v) ≤ 1 in the primal since h is a 0-1 function.
The primal-dual algorithm is a “standard” one in that it is the natural adaptation

to the node-weighted setting (as done in [5]) of the primal-dual algorithm for edge-
weighted network design formalized by Goemans and Williamson [7]. The algorithm
selects a set X ⊆ V (G′) of nodes such that the graph G′[X] covers h. Initially, X
consists of all vertices that have zero weight. We also maintain a feasible dual solution
y that is implicitly initialized to zero. We proceed in iterations. Consider iteration i and
let Xi−1 be the set of nodes selected in the first i − 1 iterations; the set X0 consists
of all zero-weight vertices. A set S is violated with respect to Xi−1 iff h(S) = 1
and δG′[Xi−1](S) = ∅. A set S is a minimal violated set with respect to Xi−1 iff S
is a violated set and no proper subset of S is violated. Let Ci denote the collection
of all minimal violated sets with respect to Xi−1. As shown in [18], no two minimal
violated sets of an uncrossable function can intersect; further the collection of minimal
violated sets for h arising from proper functions can be computed in polynomial time.
Moreover, Lemma 1 below shows that the sets in Ci are subsets of Xi−1. If Ci is empty,

5 A simple example is a function h such that there is a single set S such that h(S) = 1. Each
vertex in S has weight 1, and each vertex in V − S has weight 0. The optimum solution has
value 1 since at least one node in S has to be picked but the optimum LP value is 0; note that
the value is 0 even if we have integrality constraints.

212 C. Chekuri, A. Ene, and A. Vakilian

G′[Xi−1] covers h and we return G′[Xi−1]. Otherwise, we increase the dual variables
{y(S)}S∈Ci uniformly until a dual constraint for a vertex v becomes tight, i.e., we have∑

S:v∈ΓG′(S) y(S) = w(v); we add v to X . Note that, since the components of Ci are
contained in Xi−1, for each minimal violated component C ∈ Ci, none of the vertices
in ΓG′(C) are in Xi−1 and thus it is possible to increase the dual variables {y(S)}S∈Ci .

Finally we perform a reverse-delete step. Let X be the set of vertices selected by the
primal-dual algorithm. We select a subset Y of X as follows. We start with Y = X . We
order the vertices of Y in the reverse of the order in which they were selected by the
primal-dual algorithm. Let v be the current vertex. If G′[Y − v] is a feasible cover for
h, we remove v from Y .

The primal-dual algorithm described above is not well-defined for an arbitrary un-
crossable function h but the following property holds for those that arise from proper
functions. Using the following lemma, we can show that the algorithm is well-defined
and it outputs a cover of h in polynomial time.

Lemma 1. Every minimal violated component C ∈ Ci is a subset of Xi−1.
Proof: Consider C ∈ Ci and suppose C �⊆ Xi−1. Let C′ = C ∩ Xi−1. We observe
that fp(C \ C′) = 0 since all the terminals are in Xi−1. Since fp is maximal, we have
fp(C) ≤ max{fp(C′), fp(C \ C′)} = max{fp(C′), 0} = fp(C

′). Since C ∈ Ci,
we have fp(C) = p and |δG[Xi−1](C)| = p − 1. Therefore fp(C′) ≥ fp(C) = p.
Additionally, δG[Xi−1](C) = δG[Xi−1](C

′), since G[Xi−1] does not have any edges
incident to vertices in V \ Xi−1. It follows that C′ is violated with respect to Xi−1,
which contradicts the minimality of C. �
Now we turn our attention to the analysis of the primal-dual algorithm. In the following,
we show that the algorithm achieves an O(1) approximation for the augmentation prob-
lem when the graph G is from a minor-closed family of graphs G; the constant depends
on the family G.

Theorem 2. If G is a graph from a minor-closed family of graphs G, the weight of
the set Y is O(OPTh), where OPTh is the optimum solution to the LP relaxation for
covering h.

The dual variables are grown uniformly in each iteration and the standard primal-
dual analysis [7] gives a condition under which the approximation ratio can be upper
bounded. This is encapsulated in the lemma below.

Lemma 2. Let Bi = Y −Xi−1. Suppose there exists a γ such that, for each iteration
i of the primal-dual algorithm,

∑
C∈Ci

|Bi ∩ ΓG′(C)| ≤ γ|Ci|. Then the weight of Y is
at most γOPTh, where OPTh is the value of an optimal solution to the LP relaxation.

The content of the above lemma is the following. Consider the minimal violated sets in
Ci. The set Bi = Y −Xi−1 forms a node-minimal set that together with Xi−1 covers h
(minimality follows from the reverse delete step). We are interested in γ, the “average
degree”6 of the components in Ci, with respect to nodes in Bi. In general graphs γ can

6 Here we are abusing the term slightly and we refer to the ratio
∑

C∈Ci
|Bi ∩ ΓG′(C)|/|Ci| as

the average degree of the components in Ci. One can view the ratio as the average degree of
the components if we shrink each of the components in Ci to a single vertex and we remove
parallel edges.

Node-Weighted Network Design in Planar 213

be Ω(n) in the worst case which does not give a useful bound. However, planar graphs
are sparse. Thus one can bound the average degree if one can bound the number of
nodes in Bi that are adjacent to components in Ci. This was done in [5] for 0-1 proper
functions but the case of uncrossable functions is more involved and it is our main
technical contribution. Theorem 3 is stated in a general and useful form and proved
in Section 3. Assuming the theorem, we finish the analysis as follows. The following
lemma upper bounds the number of nodes in Bi that are adjacent to components in Ci.

Lemma 3. Let B′
i be the set of all vertices u ∈ Bi such that u ∈ ΓG′(C) for some

component C ∈ Ci. We have |B′
i| ≤ 4|Ci|.

In order to take advantage of the fact that planar and minor-closed graphs are sparse,
we need the following technical ingredient. The proof of Lemma 4 follows from the
maximality of fp and it is similar to the proof of Lemma 1.

Lemma 4. For each component C ∈ Ci, the graph G[C] is connected.

In order to finish the average degree argument, we shrink each component C ∈ Ci into
a single node and we use Lemma 3 and the fact that, for a graphK from a minor-closed
family G there is a constant c′ that depends only on the family such that |E(K)| ≤
c′|V (K)|.

Lemma 5. Let Bi = Y −Xi−1. If G is a graph from a minor-closed family of graphs
G, we have

∑
C∈Ci

|Bi ∩ ΓG′(C)| ≤ c|Ci|, where c is a constant that depends only on
the family G.

Theorem 2 follows from Lemma 2 and Lemma 5. Theorem 2 together with the augmen-
tation framework gives an O(k)-approximation for finding a minimum node-weighted
subgraph to cover a proper function with maximum requirement k. The result for EC-
SNDP is a special case of this result.

Remark 1. For planar graphs, we get a 10-approximation for the augmentation prob-
lem and a 10k-approximation for the EC-SNDP problem. Demaine et al. [5] get a 6-
approximation for planar graphs when k = 1, and thus our ratio is slightly weaker. Our
analysis in Lemma 5 could be tightened in several ways. We believe that the analysis in
Theorem 3 and consequently Lemma 3 can be improved to obtain a factor of 3 instead
of 4. The analysis uses the maximality of f but not symmetry and hence our results
hold for a larger class of functions than proper functions.

3 Proof of Theorem 3

Let G = (V,E) be a graph. Let h : 2V → {0, 1} be a requirement function. A set S is
violated if h(S) = 1. A set C is a minimal violated component of h if C is violated and
no proper subset of C is violated. Let H be a subgraph of G. The graph H is a feasible
cover for h if, for any set S ⊆ V such that h(S) = 1, there is at least one edge of H
leaving S; in other words, |δH(S)| ≥ h(S). We say that H is a node-minimal feasible
cover for h if, for any vertex v ∈ V (H), H − v is not a feasible cover for h.

Now we are ready to state our main theorem.

214 C. Chekuri, A. Ene, and A. Vakilian

Theorem 3. Let h : 2V → {0, 1} be an uncrossable function. Let C be the minimal
violated components of h. Let H be a node-minimal feasible cover for h. Let X be the
set of all vertices v ∈ V (H) such that v is not in the union of the components in C and
there is an edge of H connecting v to a component of C. Then |X | ≤ 4|C|.
We devote the rest of this section to the proof of Theorem 3. A basic property of un-
crossable functions [18] is stated below.

Lemma 6. Let h be an uncrossable function. The minimal violated components of h
are disjoint. Moreover, if S is a violated set and C is a minimal violated component, S
and C do not properly intersect.

We start with a high-level overview of the proof. The main idea is to pick a subset
M of the edges of H such that M is an edge-minimal feasible cover for h. Such a
minimal cover has nice properties that were pointed out and used in the analysis for
edge-weighted problems [18]. More precisely, for each edge e ∈ M , we can pick a
“witness set” that is a violated set such that e is the only edge of M that is leaving the
set. Moreover, we can pick a family of witness sets, one for each edge of M , such that
the family is laminar7. This laminar family can be used to upper bound the number of
edges of M that are incident to the components of C.

We are interested in analyzing a node-minimal cover H which is not necessarily
edge-minimal; there can be a node u that is adjacent to components in C but it is pos-
sible that an edge-minimal cover M does not contain any of the edges connecting u to
components of C. Thus we cannot use the witness family to count such vertices. We
address this issue by counting them separately using a witness family for a different set
of edges.

We now turn our attention to the formal proof of the theorem. We refer to the vertices
in X as critical vertices. We refer to edges connecting a critical vertex to a component
C ∈ C as red edges, and we refer to all other edges of H as blue edges.

We define two subsets of edges F1 and F2 as follows. We start with F1 = E(H)
and we remove some of the edges as follows. We order the blue edges arbitrarily. We
consider the blue edges in this order. Let e be the current edge. If F1 − e is a feasible
solution for h, we remove e from F1. At the end of this process, each red edge is in F1

and each blue edge in F1 is necessary to cover h. We refer to critical vertices that are
incident to at least one blue edge of F1 as regular vertices; critical vertices that are not
regular are referred to as special vertices. As we will see shortly, we can use the blue
edges in F1 to upper bound the number of regular vertices.

In order to count the special vertices, we pick a subset F2 of F1 as follows. We start
with F2 = F1. We consider the red edges of F2 in some order. Let e be the current
edge. If F2 − e is a feasible cover, we remove e from F2. We can use the red edges in
F2 to upper bound the number of special vertices. Since H is a node-minimal cover for
h, each special vertex is incident to at least one red edge of F2.

Note that F2 is an edge-minimal feasible cover for h while F1 is a feasible cover but
is not necessarily edge-minimal. The difficulty is in counting the regular vertices via
F1. We consider the regular and special vertices separately. Theorem 3 follows from
the following two lemmas.

7 A set family F is laminar iff no two sets in F properly intersect.

Node-Weighted Network Design in Planar 215

Lemma 7. The number of regular vertices is at most 2|C|.

Lemma 8. The number of special vertices is at most 2|C|.

Our counting arguments are based on the laminar witness family approach of Williamson
et al. More precisely, we define a witness set as follows.

Definition 1. Let F be a set of edges. A set Se ⊆ V is an F -witness set for an edge e
iff h(Se) = 1 and δF (Se) = {e}.

An F -witness set Se is a violated set; from Lemma 6 it follows that for each component
C ∈ C, C ⊆ Se or C ∩ Se = ∅.

Recall that a family of sets L is laminar if no two sets in L properly intersect; differ-
ently said, for any two sets A,B ∈ L, either A and B are disjoint or one is contained in
the other. The following lemma follows from [18].

Lemma 9 ([18]). Let F be a feasible cover for an uncrossable function h. Let M ⊆ F
be a subset of F such that, for each edge e ∈ M , F − e is not a feasible cover for h.
There is a laminar family L = {Se | e ∈M} such that Se is an F -witness set for e.

Our approach is to use laminar witness families for the blue edges of F1 and the red
edges of F2 in order to count the regular and special vertices. Before we turn our atten-
tion to the counting arguments, we describe some properties of laminar witness families
that we need.

We can associate a forest F with a laminar set family L as follows. The forest F has
a node νS for each set S ∈ L. We add an edge between νA and νB iff A is the smallest
set in L that contains B. Let L = {Se | e ∈ M} be a laminar F -witness family for a
set M ⊆ F of edges. Let T be the tree associated with L∪ {V }; we root T at the node
νV .

We define the following bijection between the edges of the tree T and the edges of
M . Let e be an edge of M and let Se be the witness set for e. The node νSe has a parent
νA in T , and we associate the edge e ∈ M with the edge (νA, νSe) of T . We say that
the edge e corresponds to the edge (νA, νSe). A node νS of T owns a vertex v ∈ V iff
S is the smallest set in L ∪ {V } that contains v.

Proposition 1. Let L = {Se | e ∈M} be a laminar F -witness family for a set M ⊆ F
of edges. Let T be the tree associated with L ∪ {V }. For each leaf νS of T there is a
distinct component C ∈ C such that C ⊆ S.

The following simple observation plays a crucial role in our counting argument.

Proposition 2. Let L = {Se | e ∈M} be a laminar F -witness family for a set M ⊆ F
of edges. Let T be the tree associated with L∪{V }. Let νS be a node of T and let e be
an edge of F \M . Either both endpoints of e are contained in S or neither endpoint of
e is contained in S. In particular, the endpoints of e are owned by the same node of T .

The following lemma was proved in [18].

216 C. Chekuri, A. Ene, and A. Vakilian

Lemma 10 ([18]). Let L = {Se | e ∈ M} be a laminar F -witness family for a set
M ⊆ F of edges. Let T be the tree associated with L ∪ {V }. Let e be an edge of M
and let (νA, νSe) be the edge of T corresponding to e, where Se is the witness set for
e and νA is the parent of νSe . Then νA owns one endpoint of e and νSe owns the other
endpoint of e.

Counting Argument for Regular Vertices. Let LF1 = {Se | e is a blue edge in F1}
be a laminar F1-witness family for the blue edges in F1 that is guaranteed by Lemma 9.
Let TF1 be the tree associated with the family LF1 ∪ {V }; we view TF1 as a rooted tree
whose root is the node corresponding to V .

Recall that each regular vertex u is incident to a red edge ur; the edge ur is in F1,
since F1 contains all the red edges. Additionally, u is incident to a blue edge ub ∈ F1.
Since r is contained in a minimal component of C, it follows from Proposition 2 that
the node of TF1 that owns u also owns a componentCu ∈ C. Our approach is to charge
each regular vertex u in its subtree; more precisely, we charge u to a componentC ∈ C
that is owned by a node in the subtree rooted at the node that owns u and Cu.

We charge each regular vertex u as follows. Recall that there is a blue edge ub ∈ F1

that is incident to u. Let νA and νB be the nodes of TF1 that own u and b, respectively.
By Lemma 10, one of νA, νB is the parent of the other.

Suppose that νA is the parent of νB . Since each leaf owns a component of C (from
Proposition 1), there is a descendant of νB (possibly νB itself) that owns a component
of C. Let νS be the closest such descendant, i.e., a descendant whose distance to νB
is minimized. (If there are several descendants whose distance to νB is minimum, we
pick one of them arbitrarily.) We charge u to one of the components of C that νS owns;
we refer to this charge as a subtree charge (since u is charged in a subtree rooted at a
child of the node νA that owns u). Since a regular vertex v and its component Cv are
owned by the same node of the tree, the components Cv serve as sentinels that ensure
that there is at most one subtree charge to each component of C.

Suppose that νA is a child of νB . We charge u to the component Cu; we refer to this
charge as a parent charge (since the charge corresponds to the tree edge connecting the
node νA that owns C to its parent). Since each node has at most one parent edge, there
is at most one parent charge to each component of C.

Proposition 3. There is at most one subtree charge to each component C ∈ C.

Proposition 4. There is at most one parent charge to each component C ∈ C.

Proof of Lemma 7: Each component of C is charged at most twice and thus the number
of regular vertices is at most 2|C|. �
Counting Argument for Special Vertices. Recall that F2 is an edge-minimal cover
of h. Moreover, a critical vertex v is special only if there is an edge e ∈ F2 (in fact a
red edge) such that e connects v to a minimal violated component C. Thus, the total
number of special vertices is upper bounded by

∑
C∈C |δF2(C)|. Williamson et al. [18]

show that for any edge-minimal cover of an uncrossable function this is upper bounded
by 2|C|. Thus we can upper bound the number of special vertices by 2|C| which proves
Lemma 8. We remark that some of the regular vertices are counted in this step as well,
but this can only help us.

Node-Weighted Network Design in Planar 217

References

1. Agrawal, A., Klein, P., Ravi, R.: When trees collide: An approximation algorithm for the gen-
eralized Steiner problem on networks. SIAM Journal on Computing 24(3), 440–456 (1995)

2. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved LP-based approximation for
Steiner tree. In: Proc. of ACM STOC 2010, pp. 583–592 (2010)

3. Cheriyan, J., Vempala, S., Vetta, A.: Network design via iterative rounding of setpair relax-
ations. Combinatorica 26(3), 255–275 (2006)

4. Chuzhoy, J., Khanna, S.: An O(k3 log n)-approximation algorithm for vertex-connectivity
survivable network design. In: Proc. of FOCS, pp. 437–441. IEEE (2009)

5. Demaine, E.D., Hajiaghayi, M., Klein, P.N.: Node-Weighted Steiner Tree and Group Steiner
Tree in Planar Graphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 328–340. Springer, Heidelberg (2009)

6. Goemans, M.X., Goldberg, A.V., Plotkin, S., Shmoys, D.B., Tardos, E., Williamson, D.P.:
Improved approximation algorithms for network design problems. In: Proc. of ACM-SIAM
SODA, pp. 223–232 (1994)

7. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest
problems. SIAM Journal on Computing 24, 296 (1995)

8. Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation algorithms
and its application to network design problems. In: Approximation Algorithms for NP-Hard
Problems, pp. 144–191. PWS Publishing Co. (1996)

9. Gupta, A., Könemann, J.: Approximation algorithms for network design: A survey. Surveys
in Operations Research and Management Science 16(1), 3–20 (2011)

10. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica 21(1), 39–60 (2001)

11. Jain, K., Mandoiu, I., Vazirani, V.V., Williamson, D.P.: A primal-dual schema based approx-
imation algorithm for the element connectivity problem. Journal of Algorithms 45(1), 1–15
(2002)

12. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted
Steiner trees. Journal of Algorithms 19(1), 104–115 (1995)

13. Kortsarz, G., Nutov, Z.: Approximating minimum cost connectivity problems. In: Gonza-
lez, T.F. (ed.) Handbook on Approximation Algorithms and Metaheuristics. Chapman and
Hall/CRC (2007)

14. Moldenhauer, C.: Primal-Dual Approximation Algorithms for Node-Weighted Steiner For-
est on Planar Graphs. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS,
vol. 6755, pp. 748–759. Springer, Heidelberg (2011)

15. Nutov, Z.: Approximating Steiner networks with node-weights. SIAM Journal of Comput-
ing 39(7), 3001–3022 (2010)

16. Nutov, Z.: Approximating Steiner network activation problems. In: Proc. of LATIN (2012)
17. Panigrahi, D.: Survivable network design problems in wireless networks. In: Proc. of ACM-

SIAM SODA (2011)
18. Williamson, D.P., Goemans, M.X., Mihail, M., Vazirani, V.V.: A primal-dual approximation

algorithm for generalized Steiner network problems. Combinatorica 15(3), 435–454 (1995)

Computing the Visibility Polygon

of an Island in a Polygonal Domain�

Danny Z. Chen and Haitao Wang��

Department of Computer Science and Engineering
University of Notre Dame, Notre Dame, IN 46556, USA

{dchen,hwang6}@nd.edu

Abstract. Given a set P of h pairwise-disjoint polygonal obstacles of
totally n vertices in the plane, we study the problem of computing the
(weakly) visibility polygon from a polygonal obstacle P ∗ (an island) in
P . We give an O(n2h2) time algorithm for it. Previously, the special case
where P ∗ is a line segment was solved in O(n4) time, which is worst-case
optimal. In addition, when all obstacles in P (including P ∗) are convex,
our algorithm runs in O(n+ h4) time.

1 Introduction

Given a set P of h pairwise-disjoint polygonal obstacles of totally n vertices in the
plane, the space minus the interior of all obstacles is called the free space. Two
points are visible to each other if the open line segment joining them lies in the
free space. Two objects are visible to each other if a point of one object is visible
to a point of the other object (this is often called weakly visible in the literature;
we use visible when there is no confusion from the context). Consider a polygonal
obstacle P ∗ ∈ P (an island). The (weak) visibility polygon/region of P ∗ (or from
P ∗), denoted by V is(P ∗), is the set of points in the plane visible to P ∗. In this
paper, we present an O(n2h2) time algorithm for computing V is(P ∗). When all
obstacles in P (including P ∗) are convex, referred to as the convex version, we
give an O(n+ h4) time solution for computing V is(P ∗).

Visibility problems have been studied extensively (e.g.,
[1,2,4,7,8,10,11,13,14,16,17,18]). Linear time algorithms were given for com-
puting the visibility polygon inside a simple polygon P from a single point
[7,13,14,16], from a line segment [10], and from another simple polygon [8]
contained in the polygon P . For the problem versions on a polygonal domain
P as defined above, if P ∗ is a single point, Suri and O’Rourke [18] and Asano
et al. [1] presented O(n log n) time algorithms for computing V is(P ∗); later,
Heffernan and Mitchell [11] gave an O(n + h log h) time algorithm. If P ∗ is a
line segment, Suri and O’Rourke [18] presented an O(n4) time algorithm and
showed that this is optimal in the worst case. To our best knowledge, no result
for the general problem of computing V is(P ∗) in P when P ∗ is an arbitrary
simple polygon was known before.

� This research was supported in part by NSF under Grant CCF-0916606.
�� Corresponding author.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 218–229, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Computing the Visibility Polygon of an Island in a Polygonal Domain 219

Fig. 1. [6]Illustrating a triangulation of
the free space among two obstacles and
the corridors (with red solid curves).
There are two junction triangles indi-
cated by the large dots inside them,
connected by three solid (red) curves.
Removing the two junction triangles re-
sults in three corridors.

x

e

f

a

y

b e

f

a

Pj

Pjc

d
z

d

bay(cd)

canal(x,y)

b

Pi

Pi

Fig. 2. [6]Illustrating an open hourglass (left)
and a closed hourglass (right) with a corridor
path connecting the apices x and y of the two
funnels. The dashed segments are diagonals.
The paths π(a, b) and π(e, f) are shown with
thick solid curves. A bay bay(cd) with gate
cd (left) and a canal canal(x, y) with gates
xd and yz (right) are also indicated.

Our O(n2h2) time algorithm for computing V is(P ∗) with P ∗ being a simple
polygon improves (for small h) the O(n4) time solution [18] for the special case
where P ∗ is a line segment, and actually solves a more general problem.

Our approach generalizes Suri and O’Rourke’s algorithm [18], which we call
the SO algorithm, by exploiting a corridor structure of the obstacles in P . Corri-
dor structures have been used in solving shortest path problems (e.g., [5,6,12,15]).
In Section 2, we review the corridor structure of P and introduce some concepts
and observations. In Section 3, we present our algorithm. The convex version is
discussed in Section 4. Due to the space limit, some details are omitted and can
be found in the full version of the paper.

2 Preliminaries

We review the corridor structure [15] and define some new concepts, e.g., the
ocean M, bays, and canals, etc. For simplicity, we assume all obstacles in P are
contained in a rectangle R (see Fig. 1). We also use R to denote the space inside
the rectangle, and use F to denote the free space in R.

Denote by Tri(F) a triangulation of F . Let G(F) denote the (planar) dual
graph of Tri(F). The degree of each node in G(F) is at most three. Based on
G(F), we compute a planar 3-regular graph, denoted by G3 (the degree of every
node in G3 is three), possibly with loops and multi-edges, as follows. First, we
remove every degree-one node from G(F) along with its incident edge; repeat
this process until no degree-one node remains in the graph. Second, remove every
degree-two node from G(F) and replace its two incident edges by a single edge;
repeat this process until no degree-two node remains. The resulting graph is G3

(see Fig. 1). The resulting graph G3 has h + 1 faces, 2h− 2 nodes, and 3h − 3
edges [15]. Every node of G3 corresponds to a triangle in Tri(F), which is called a

220 D.Z. Chen and H. Wang

junction triangle (see Fig. 1). The removal of the nodes for all junction triangles
from G3 results in O(h) corridors, each of which corresponds to one edge of G3.

The boundary of a corridor C consists of four parts (see Fig. 2): (1) A bound-
ary portion of an obstacle Pi ∈ P , from a point a to a point b; (2) a diagonal
of a junction triangle from b to a boundary point e on an obstacle Pj ∈ P
(Pi = Pj is possible); (3) a boundary portion of the obstacle Pj from e to a
point f ; (4) a diagonal of a junction triangle from f to a. The corridor C is
a simple polygon. Let π(a, b) (resp., π(e, f)) be the shortest path from a to b
(resp., e to f) inside C. The region HC bounded by π(a, b), π(e, f), and the two
diagonals be and fa is called an hourglass, which is open if π(a, b) ∩ π(e, f) = ∅
and closed otherwise (see Fig. 2). If HC is open, then both π(a, b) and π(e, f)
are convex chains and are called the sides of HC ; otherwise, HC consists of two
“funnels” and a path πC = π(a, b) ∩ π(e, f) joining the two apices of the two
funnels, called the corridor path of C. Each funnel side is also a convex chain.
We compute the hourglass for each corridor. After Tri(F) is produced, the total
time for computing all hourglasses is O(n).

Let M be the union of the O(h) junction triangles, open hourglasses, and
funnels. We call the space M the ocean, and M ⊆ F . Since the sides of open
hourglasses and funnels are convex, the boundary ∂M of M consists of O(h)
convex chains with totally O(n) vertices; further, there are O(h) reflex vertices
on ∂M. This implies that the complementary region R \M consists of a set
of polygons bounded by O(h) convex chains with O(h) reflex vertices. Thus,
R\M can be partitioned into a set P ′ of O(h) pairwise interior-disjoint convex
polygons of totally O(n) vertices [15]. If we view the convex polygons in P ′ as
obstacles, then the oceanM is the free space with respect to P ′. A point on ∂M
must be on the boundary of a convex obstacle in P ′. The set P ′ can be obtained
easily in O(n+ h logh) time. It should be pointed out that our algorithms given
later can be applied to M directly without having to explicitly partition R\M
into convex polygons in P ′. But for ease of exposition, we always discuss our
algorithms on P ′. Next, we examine the other free space of F than M, i.e.,
F \M, which consists of two types of regions: bays and canals, defined below.

Consider the hourglass HC of a corridor C. We first discuss the case when HC

is open (see Fig. 2). HC has two sides. Let S1(HC) be an arbitrary side of HC .
The obstacle vertices on S1(HC) all lie on the same obstacle, say P ∈ P . Let c
and d be any two consecutive vertices on S1(HC) such that the line segment cd
is not an edge of P (see the left figure in Fig. 2, with P = Pj). The free region
enclosed by cd and a boundary portion of P between c and d is called the bay
of cd and P , denoted by bay(cd), which is a simple polygon. We call cd the bay
gate of bay(cd), which is a common edge of bay(cd) and M.

If the hourglass HC is closed, let x and y be the two apices of its two funnels.
Consider two consecutive vertices c and d on a side of a funnel such that cd is
not an obstacle edge. If neither c nor d is a funnel apex, then c and d must lie
on the same obstacle and the segment cd also defines a bay with that obstacle.
However, if c or d is a funnel apex, say, c = x, then c and d may lie on different
obstacles. If they lie on the same obstacle, then they also define a bay; otherwise,

Computing the Visibility Polygon of an Island in a Polygonal Domain 221

we call xd the canal gate at x = c (see Fig. 2). Similarly, there is also a canal gate
at the other funnel apex y, say yz. Let Pi and Pj be the two obstacles bounding
the hourglass HC . The free region enclosed by Pi, Pj , and the two canal gates
xd and yz that contains the corridor path of HC is the canal of HC , denoted by
canal(x, y), which is also a simple polygon.

Note that the bays and canals together constitute the space F \M. While
the total number of all bays is O(n), the total number of all canals is O(h) since
each canal corresponds to a corridor and the number of corridors is O(h).

The fact that each bay has only one gate allows us to process a bay eas-
ily. Intuitively, an observer outside a bay cannot see any point outside the bay
“through” its gate. But, each canal has two gates, which could possibly cause
trouble. The next lemma discovers an important property that an observer out-
side a canal cannot see any point outside the canal through the canal (and its
two gates); we call it the opaque property of canals.

Lemma 1. (The Opaque Property) For any canal, suppose a line segment pq
is in F (i.e., p is visible to q) such that neither p nor q is in the canal. Then,
pq cannot contain any point of the canal that is not on its two gates.

Proof. A sketch. Assume to the contrary that pq contains a point t in a canal such
that t is not on either gate of the canal. Let canal(x, y) be the canal as shown in
Fig. 2. Since pq travels through the canal without intersecting any obstacle, the
shortest paths π(a, b) and π(e, f) do not intersect. Thus, the hourglass defined by
the corridor containing canal(x, y) is open. But this means the corridor cannot
contain a canal, incurring contradiction.

For a line segment pq in the free space F , consider extending pq along both
directions of the line containing pq until it first hits an obstacle (or goes to
infinity) in each direction; the two points on obstacles (or at infinity) first hit by
extending pq are called the extension ends of pq.

3 Our Algorithm

This section presents our algorithm for computing V is(P ∗). We first compute
the corridor structure of P and obtain the convex polygonal obstacle set P ′.
Denote by ∂P ∗ the boundary of P ∗. Clearly, a point p is in V is(P ∗) if and only
if p is visible to a point on ∂P ∗. With respect to P ′, we partition the edges of
∂P ∗ into three types. Some edges of ∂P ∗ may be in a bay (resp., canal), and we
call these edges of ∂P ∗ the Type-I edges (resp., Type-II edges). Other edges of
∂P ∗ lie on ∂M and thus on the boundaries of some convex obstacles in P ′, and
we call these edges of ∂P ∗ the Type-III edges. Clearly, V is(P ∗) is the union of
the visibility regions of the Type-I, Type-II, and Type-III edges. We first give
some observations on the three types of edges.

3.1 Observations

The Type-I Edges. We begin with the Type-I edges. Suppose a bay bay(cd)
contains some Type-I edges. Since the boundary of bay(cd) except its gate cd

222 D.Z. Chen and H. Wang

lies on the same obstacle of P , all edges on the boundary of bay(cd) except its
gate are Type-I edges. The following observation is self-evident.

Observation 1. If a bay B contains Type-I edges, then every point in B is
visible to the Type-I edges in B; further, a point outside B is visible to the Type-
I edges in B if and only if it is visible to the gate of B.

Let α denote the set of the Type-I edges in bay(cd). By Observation 1, the
visibility region of α in F is the union of bay(cd) and the visibility region of cd
in the space F\bay(cd). In other words, besides bay(cd), computing the visibility
region of α is reduced to computing the visibility region of cd in F \ bay(cd). If
a bay contains any Type-I edges, we call its gate an illumination gate.

The Type-II Edges. Consider a canal canal(x, y) with two gates xd and yz
(see Fig. 2) such that canal(x, y) contains some Type-II edges. Recall that the
boundary of canal(x, y) consists of xd, a boundary portion of an obstacle Pi ∈ P ,
yz, and a boundary portion of an obstacle Pj ∈ P . Then, one of Pi and Pj must
be P ∗. Denote by α the set of Type-II edges in canal(x, y).

Recall that Pi = Pj is possible. If Pi = Pj = P ∗, then α consists of all edges
of canal(x, y) except its two gates. Due to the opaque property in Lemma 1, we
have the next lemma, similarly to Observation 1.

Lemma 2. If Pi = Pj = P ∗, then every point in canal(x, y) is visible to α and
a point outside canal(x, y) is visible to α if and only if the point is visible to a
gate of canal(x, y).

Proof. A sketch. Since canal(x, y) is a simple polygon and α contains all edges
of canal(x, y) except xd and yz, every point in canal(x, y) is visible to α.

Consider any point p outside canal(x, y) that is visible to α, say, at a point
q ∈ α. Then pq ⊂ F . Since p is outside canal(x, y) and q is in canal(x, y), pq
must intersect a gate of canal(x, y). Therefore, p is visible to that gate.

Consider any point p outside canal(x, y) that is visible to a gate, say xd, of
canal(x, y). Then, there must be a point q ∈ xd such that pq ∈ F . By extending
pq along the direction from p to q, the first point on obstacles of P hit by this
extension of pq must be on α, which implies that p is visible to α.

By Lemma 2, when Pi = Pj = P ∗, the visibility region of α is the union
of canal(x, y) and the visibility region of the two gates of canal(x, y) in F \
canal(x, y). If Pi = Pj = P ∗, then the two gates of canal(x, y) are also called
illumination gates.

We then discuss the case of Pi �= Pj . In this case, only one of Pi and Pj is P
∗,

say Pi = P ∗, and the edge sequence of α has two endpoints at the two gates of
canal(x, y) respectively (e.g., they are x and y in Fig. 2). Each such endpoint of
α is on a side of a funnel and thus lies on ∂M. For simplicity of discussion, we
assume that each such endpoint of α is on ∂M but not on α. In other words,
α does not include these two endpoints. With this assumption, we mean that
these two endpoints of α are considered as part of the Type-III edges, and the

Computing the Visibility Polygon of an Island in a Polygonal Domain 223

visibility region of the two endpoints of α will be found when we compute the
visibility region of the Type-III edges.

Let V is(α,F) (resp., V is(α, canal(x, y))) denote the visibility region of α in
F (resp., canal(x, y)). We will show below that in this case, V is(α,F) is either
V is(α, canal(x, y)), or the union of V is(α, canal(x, y)) and the visibility region
of one or both gates of canal(x, y) in F (not in F \ canal(x, y)). For example,
in the situation of Fig. 2 (with Pi = P ∗), V is(α,F) = V is(α, canal(x, y)).

Recall that x and y are the two funnel apices of canal(x, y). For its gate dx, if
the vertex d ∈ P ∗, then we call dx an illumination gate, and we also assume that
dx does not include its two end vertices since they are on ∂M and are treated as
part of the Type-III edges. Similarly, if z ∈ P ∗, then yz is an (open) illumination
gate. Note that canal(x, y) may have zero, one, or two illumination gates (e.g.,
the example in Fig. 2 has zero illumination gates with Pi = P ∗). The following
lemma (with proof omitted) characterizes the visibility region V is(α,F).

Lemma 3. The visibility region V is(α,F) is the union of V is(α, canal(x, y))
and the visibility region of the (open) illumination gates (if any) of canal(x, y)
in F .

By Lemma 3, to find V is(α,F), it suffices to compute V is(α, canal(x, y)) and
the visibility region of the illumination gates of canal(x, y) (if any) in F and
then take their union. Note that we can compute V is(α, canal(x, y)) in linear
time in terms of the number of vertices of canal(x, y) [8].

The Type-III Edges and Illumination Gates. For the Type-III edges
(which lie on ∂M), since the illumination gates of all bays/canals also lie on
∂M, our algorithm computes the visibility region of the union of all Type-III
edges and illumination gates as a whole. Let Υ denote the union of all Type-III
edges and illumination gates. The following lemma (with proof omitted) is due
to the fact that the number of canals is O(h).

Lemma 4. Υ consists of O(h) convex chains on ∂M.

3.2 Computing Vis(P∗)

Let V is1(P
∗) denote the union of the visibility regions of the Type-I edges

inside their corresponding bays and the visibility regions of the Type-II edges
inside their corresponding canals which are characterized by Lemma 2 (i.e., each
point in V is1(P

∗) is either in a bay that contains Type-I edges or in a canal
with Pi = Pj = P ∗). Let V is2(P ∗) denote the union of the visibility regions of
the Type-II edges inside their corresponding canals which are characterized by
Lemma 3 (i.e., Pi = P ∗ or Pj = P ∗, but Pi �= Pj). Let V is3(P

∗) denote the
visibility region of Υ in F . Then by Observation 1 and Lemmas 2 and 3, we have
V is(P ∗) = V is1(P

∗) ∪ V is2(P
∗) ∪ V is3(P

∗).
We first compute V is1(P

∗) and V is2(P
∗). By Observation 1 and Lemma 2,

V is1(P
∗) is the union of all bays/canals each of which either (as a bay) contains

some Type-I edges or (as a canal) satisfies Lemma 2. V is2(P
∗) can be computed

224 D.Z. Chen and H. Wang

in totally O(n) time by using the algorithm in [8] since no two different canals
intersect in their interior. Henceforth, we focus on computing V is3(P

∗).
When computing V is3(P

∗) in F , we can ignore all bays/canals involved in
V is1(P

∗) since they are entirely in V is1(P
∗) (i.e., we treat these bays/canals as

being inside the obstacles defining them). But, the canals involved in V is2(P
∗)

cannot be ignored since some points in such a canal canal(x, y) that are not
visible to the Type-II edges in canal(x, y) can still be visible to other boundary
portions of P ∗. In the discussion below, we assume all bays/canals contained in
V is1(P

∗) have been ignored. In other words, each bay considered below contains
no Type-I edges, and if a canal contains some Type-II edges, then only one of
the two obstacles defining the canal is P ∗.

Consider an (open) illumination gate xd of a canal canal(x, y). We may
view xd as having two “sides”, one (called the canal side) facing the inside
of canal(x, y) and the other (called the ocean side) facing the ocean M. A point
in F visible to xd must be visible to a side of xd. In other words, the visibil-
ity region of xd in F is the union of the visibility regions of its two sides. By
Lemma 1, the visibility polygon of the canal side of xd is a subset of canal(x, y).
By the definition of illumination gates of the canal canal(x, y), the obstacle on
which the vertex d lies is P ∗. Let α be the set of the Type-II edges contained
in canal(x, y). We can show that the visibility polygon of the canal side of xd
is a subset of the visibility polygon of α in canal(x, y), which is contained in
V is2(P

∗). The details are omitted. Thus, when computing V is3(P
∗), we can ig-

nore the visibility polygon of the canal side of xd. For this purpose, we view xd
as two obstacle edges that are close infinitely to each other, and these two edges
connect the two obstacles that define canal(x, y) into one obstacle. Further, the
edge of xd that is adjacent to M is still viewed as an edge in Υ , i.e., it is used
to compute the visibility region of the ocean side of xd later; but, the other edge
of xd is not treated as an edge of Υ . For the other gate yz of canal(x, y), if
yz is not an illumination gate, then the canal canal(x, y) now becomes a bay
with yz as its gate. Otherwise, we do the same thing on yz, and the interior of
canal(x, y) can be ignored in computing V is3(P

∗). We process each illumination
gate of a canal in this way. Processing all illumination gates of the canals (which
satisfy Lemma 3) takes O(n) time. Then, we obtain a new obstacle set, and all
illumination gates of the canals satisfying Lemma 3 now become obstacle edges
in Υ .

Further, we view all illumination gates of the bays/canals contained in
V is1(P

∗) also as obstacle edges in Υ (since we ignore these bays/canals). Hence,
Υ now has only obstacle edges and no more illumination gates. WLOG, we still
use P , P ′, and M to denote such structures built on the new obstacle set. Note
that P ′ still consists of O(h) convex polygons of totally O(n) vertices and Υ still
consists of O(h) convex chains on ∂M. Below, we compute V is3(P

∗) of Υ .
In addition to the corridor structure, the efficiency of our algorithm is also

due to the property of Υ in Lemma 4. For this, we generalize the SO algorithm
[18] for a single line segment to convex chains.

Computing the Visibility Polygon of an Island in a Polygonal Domain 225

γ γ

Fig. 3. The segments in S(γ) are parti-
tioned in two sorted lists (left and right)

vi

ui

ui+1

vi+1

γ

Fig. 4. Illustrating the case when ui and
ui+1 are on the same obstacle edge

We first compute a set S′ of line segments in which each segment uv connects
two mutually visible obstacle vertices (u and v) and has an extension end on Υ .
The segments of S′ adjacent to each obstacle vertex are sorted by their slopes.
The set S′ can be computed in O(n2) time [9] and |S′| = O(n2). By applying the
SO algorithm, V is3(P

∗) may be computed in O(|S′|2) time. Since Υ may have
Ω(n) edges, |S′| = Ω(n2) is possible. Our idea is to extend the SO algorithm
and use a subset S of S′ with |S| = O(nh), as follows.

We compute the set S by removing some segments from S′. For each segment
uv ∈ S′, if one of u and v is on a convex chain γ ∈ Υ and uv is not tangent to
γ, then we remove uv from S′ (if one of u and v is an endpoint of γ, then uv is
considered to be tangent to γ). Further, if uv is an edge of Υ , we also remove
it from S′ (alternatively, we could keep such uv and modify the following algo-
rithm accordingly although the running time may be the same). The remaining
segments in S′ constitute the set S, which can be obtained in O(n2) time.

For each obstacle vertex v, denote by S(v) the set of segments in S that
are incident to v; the segments in S(v) are sorted by their slopes (this is done
when constructing S). For each obstacle vertex v �∈ Υ , we perform a rotational
sweeping on v using S(v); this is done exactly as in the SO algorithm, in O(|S(v)|)
time. The sweeping on all obstacle vertices not on Υ generates O(|S|) triangles
altogether, in O(n+ |S|) time. Below, we discuss the vertices on Υ .

For the vertices on Υ , we do not sweep each such vertex individually. Instead,
we perform, for each convex chain γ ∈ Υ , a rotational sweeping on γ as a whole.
For this, all segments of S adjacent to γ are maintained in two cyclically sorted
lists. Specifically, let S(γ) be the set of segments in S adjacent to γ. Thus, for
each segment uv ∈ S(γ), either u or v is on γ (say, v ∈ γ). According to our
construction of S, uv must be tangent to γ at v. If we view vu as a segment
directed from v to u, we say vu is a left segment (resp., right segment) of S(γ) if
γ is on the left (resp., right) of the directed vu. We partition S(γ) into two lists:
one list contains the left segments of S(γ) and the other list contains the right
segments of S(γ) (see Fig. 3); each list is sorted by the slopes of its segments.

Using each list of S(γ) (say, the left segment list), we perform a sweeping on
γ by rotating a ray that keeps its origin on γ and is tangent to γ at its origin,
as follows. Suppose the rotating ray currently contains a segment viui in the list
with vi ∈ γ (i.e., the origin of the ray is at vi and the direction of the ray is from
vi to ui), and vi+1ui+1 is the next segment in the list to be encountered with

226 D.Z. Chen and H. Wang

vi

vi+1 ui

ui+1

qi+1

qiγ

e

Fig. 5. Illustrating the case when ui and
ui+1 are not on the same obstacle edge and
e is incident to neither ui nor ui+1. Both
qi and qi+1 must be on e.

vi

vi+1 ui

qi

ui+1

γ

e

Fig. 6. Illustrating the case when ui and
ui+1 are not on the same obstacle edge and
e is incident to ui+1. The point qi must be
on e.

vi+1 ∈ γ (see Fig. 4). Note that vi = vi+1 is possible. Let γ(vi, vi+1) denote the
portion of γ from vi counterclockwise to vi+1. If ui and ui+1 are on the same
obstacle edge (see Fig. 4), then the sweeping generates a region that is bounded
by viui, uiui+1, vi+1ui+1, and γ(vi, vi+1). Further, if vi �= vi+1, then we extend
each edge of γ(vi, vi+1) into this region until it hits uiui+1, thus partitioning
the region into g triangles where g is the number of edges on γ(vi, vi+1). If ui
and ui+1 are not on the same obstacle edge, then let qi (resp., qi+1) be the
extension end of viui (resp., vi+1ui+1) from vi to ui (resp., vi+1 to ui+1). Note
that during the sweeping from viui to vi+1ui+1, the hitting end of the rotating
ray (i.e., the end of the ray that is not its origin and hits an obstacle) must be
moving on a single obstacle edge e (or at infinity). In other words, during the
above sweeping, the rotating ray must be hitting e continuously such that the
portion of the rotating ray between its origin on γ and its intersection with e lies
entirely in the free space. Note that the vertex ui (resp., ui+1) is incident to two
obstacle edges. Depending on whether e is one of the obstacle edges incident to
ui or ui+1, there are several cases. If e is incident to neither ui nor ui+1, then
the two extension ends qi and qi+1 must be on e (see Fig. 5). In this case, the
sweeping generates a region bounded by viqi, qiqi+1, vi+1qi+1, and γ(vi, vi+1),
and triangulates this region in a similar way if vi �= vi+1 (see Fig. 5). If e is
incident to ui+1 (see Fig. 6), then qi is on e, and the sweeping generates a region
bounded by viqi, qiui+1, ui+1vi+1, and γ(vi, vi+1) and triangulates this region
similarly if vi �= vi+1 (see Fig. 6). The case when e is incident to ui can be
handled similarly.

Since each edge of γ introduces at most two additional triangles (one for each
list of S(γ)) and Υ has O(n) edges, the entire sweeping algorithm on Υ generates
O(n+ |S|) triangles. In summary, the sweeping on all obstacle vertices generates
totally O(n+ |S|) triangles. The proof of Lemma 5 is omitted.

Lemma 5. V is3(P
∗) is the union of all triangles generated by the sweeping

algorithm.

Therefore, we have obtained V is3(P
∗) as the union of O(n + |S|) triangles;

computing the union takes O((n+ |S|)2) time [18]. Below, we prove |S| = O(nh).

Computing the Visibility Polygon of an Island in a Polygonal Domain 227

We define three subsets S1, S2, and S3 of S. A segment uv ∈ S is in S1 if and
only if uv is contained in a bay/canal and uv is not a gate of that bay/canal. A
segment uv ∈ S is in S2 if and only if uv is tangent to a convex obstacle of P ′ at u
or v, or uv is an edge of an obstacle in P ′. For S3, a segment uv ∈ S is in S3 if and
only if uv has an endpoint on Υ . By our construction of S, if uv has an endpoint
(say u) on Υ , then uv must be tangent to the convex chain of Υ that contains
u. Since Υ has O(h) convex chains, |S3| = O(nh) holds. Note that S2 ∩ S3 �= ∅
is possible. We can prove |S1| = O(n), |S2| = O(nh), and S = S1 ∪S2 ∪ S3. The
proofs are omitted. Hence, |S| = O(nh) follows. In summary, we can compute
V is3(P

∗) as the union of O(nh) triangles in O(n2h2) time.
It remains to compute V is(P ∗) = V is1(P

∗) ∪ V is2(P
∗) ∪ V is3(P

∗). Since
V is1(P

∗) and V is2(P
∗) consist of simple polygons of totally O(n) complexity,

we triangulate them into O(n) triangles in O(n) time [3]. Thus, we have V is(P ∗)
as the union of O(nh) triangles, which can be computed in O(n2h2) time [18].

Theorem 1. If P ∗ is a simple polygon, then the visibility polygon of P ∗ among
the obstacles in P can be computed in O(n2h2) time.

4 The Convex Version

We sketch our O(n + h4) time algorithm for the convex version. A complete
description is in our full paper. Our algorithm generalizes the SO algorithm [18].

We call a line segment tangent to two convex obstacles of P at the two end-
points of the segment a bitangent. A bitangent is free if it lies entirely in the
free space F . The total number of free bitangents of P is O(h2). In the following
discussion, unless otherwise specified, a bitangent always refers to a free one.

We first compute all bitangents of the obstacles in P as well as their extension
ends. We retain only those bitangents each of which either has an extension end
on P ∗ or has an endpoint on P ∗, and let B denote the resulting bitangent set.
For each obstacle A ∈ P , let B(A) be the set of bitangents in B each of which
has an endpoint on ∂A. We further partition B(A) into two subsets Bl(A) and
Br(A), as follows. Consider a bitangent uv ∈ B(A) and assume u is on A. If
A = P ∗, then uv is in Bl(P

∗) (resp., Br(P
∗)) if P ∗ is on the left (resp., right) of

uv directed from u to v. If A �= P ∗, uv has an extension, say a, on P ∗. Then, uv is
in Bl(A) (resp., Br(A)) if A is on the left (resp., right) of au directed from a to u.
Further, the bitangents in Bl(A) (resp., Br(A)) are sorted cyclically around A by
their slopes. In other words, when rotating a line tangent to A counterclockwise
around A, the rotating line encounters the bitangents of Bl(A) (resp., Br(A)) in
this sorted order. Clearly, |B| = O(h2).

For each obstacle A ∈ P , we perform a rotational sweeping on the vertices
along ∂A and the bitangents of Br(A) (resp., Bl(A)), as follows.

Let the bitangents of Br(A) be {t1, t2, . . . , tg} sorted counterclockwise around
A. For each 1 ≤ i ≤ g, let ti = viui with vi lying on A, and the two extension ends
of ti be pi and qi with pi lying on P ∗ (if ti has an endpoint on P ∗, then let pi be
that endpoint). Let l(ti) denote the line containing ti. We rotate a line l tangent
to A counterclockwise around A starting at the point v1. When l encounters a

228 D.Z. Chen and H. Wang

qi+1

i+1v
vi

ui+1

ui
qi

qi+1

pi

P* p

A

A’’

A’

Fig. 7. Illustrating the situation when vi ∈
piui and A′ is below the line l(ti) (ti =
viui)

i+1v
vi

ui+1

qi+1

ui

qi+1

P*

pi

qi+1

A

p

A’

A’’

Fig. 8. Illustrating the situation when ui ∈
pivi and A′ is above the line l(ti) (ti =
viui)

bitangent in Br(A), two regions, called pseudo-triangles will be generated, such
that each point in the two pseudo-triangles is visible to P∗. We will show later
that V is(P ∗) is the union of such pseudo-triangles for all obstacles in P .

Suppose the rotating line l currently overlaps with l(ti) for ti ∈ Br(A). Note
that either vi ∈ piui (see Fig. 7) or ui ∈ pivi (see Fig. 8) is possible. We only
discuss the former case and the other case is similar.

If vi ∈ piui, then let A′ be the convex obstacle in P on which ui lies. The
obstacle A′ can be either above or below the line l(ti). We only discuss the case
where A′ is below l(ti) (see Fig. 7) and the other case is similar.

At this moment, the rotating line l overlaps with l(ti). We continue rotating l
counterclockwise until encountering ti+1. Then, we produce two pseudo-triangles
(defined below). Let p be the intersection of l(ti) and l(ti+1) (p = vi = vi+1 is
possible). Let A′′ be the convex obstacle in P on which qi lies. It is possible that
ui+1 is also onA

′′, in which case ti+1 is tangent to A
′′ at ui+1. If ui+1 is not onA

′′,
then qi+1 must be on A′′ (see Fig. 7). Suppose ui+1 �∈ A′′. Then the first pseudo-
triangle (refer to Fig. 7) is bounded by pqi, pqi+1, and the boundary portion of
A′′ between qi and qi+1. The second pseudo-triangle is bounded by pvi, pvi+1,
and the boundary portion of A between vi and vi+1. (When p = vi = vi+1, the
second pseudo-triangle is degenerated to ∅.) If ui+1 ∈ A′′, then the first pseudo-
triangle is bounded by pqi, pui+1, and the boundary portion ofA′′ between qi and
ui+1, and the second pseudo-triangle is the same as above. Thus, each pseudo-
triangle is bounded by two line segments and a convex chain on the boundary of
an obstacle in P . Note that when a pseudo-triangle is found, only its two sides
need to be output explicitly (i.e., its base is represented implicitly). In this way,
each pseudo-triangle is output in O(1) time and is represented in O(1) space.

After we perform rotational sweeping on all obstacles in P as above, we can
obtain O(h2) pseudo-triangles. We can show that the visibility polygon V is(P ∗)
is the union of all generated pseudo-triangles and their union can be computed
in O(n+ h4) time. The details are omitted.

References

1. Asano, T., Asano, T., Guibas, L., Hershberger, J., Imai, H.: Visibility of disjoint
polygons. Algorithmica 1(1), 49–63 (1986)

Computing the Visibility Polygon of an Island in a Polygonal Domain 229

2. Atallah, M., Chen, D., Wagener, H.: An optimal parallel algorithm for the visibility
of a simple polygon from a point. Journal of the ACM 38(3), 516–533 (1991)

3. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete & Computa-
tional Geometry 6, 485–524 (1991)

4. Chazelle, B., Guibas, L.: Visibility and intersection problems in plane geometry.
Discrete Comput. Geom. 4, 551–589 (1989)

5. Chen, D., Wang, H.: Computing shortest paths among curved obstacles in the
plane (2011), arXiv:1103.3911

6. Chen, D.Z., Wang, H.: A Nearly Optimal Algorithm for Finding L1 Shortest Paths
Among Polygonal Obstacles in the Plane. In: Demetrescu, C., Halldórsson, M.M.
(eds.) ESA 2011. LNCS, vol. 6942, pp. 481–492. Springer, Heidelberg (2011)

7. ElGindy, H., Avis, D.: A linear algorithm for computing the visibility polygon from
a point. Journal of Algorithms 2(2), 186–197 (1981)

8. Ghosh, S.: Computing the visibility polygon from a convex set and related prob-
lems. Journal of Algorithms 12, 75–95 (1991)

9. Ghosh, S., Mount, D.: An output-sensitive algorithm for computing visibility
graphs. SIAM Journal on Computing 20(5), 888–910 (1991)

10. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear-time algo-
rithms for visibility and shortest path problems inside triangulated simple poly-
gons. Algorithmica 2(1-4), 209–233 (1987)

11. Heffernan, P., Mitchell, J.: An optimal algorithm for computing visibility in the
plane. SIAM Journal on Computing 24(1), 184–201 (1995)

12. Inkulu, R., Kapoor, S.: Planar rectilinear shortest path computation using corri-
dors. Computational Geometry: Theory and Applications 42(9), 873–884 (2009)

13. Joe, B.: On the correctness of a linear-time visibility polygon algorithm. Interna-
tional Journal of Computer Mathematics 32, 155–172 (1990)

14. Joe, B., Simpson, R.: Corrections to Lee’s visibility polygon algorithm. BIT 27,
458–473 (1987)

15. Kapoor, S., Maheshwari, S., Mitchell, J.: An efficient algorithm for Euclidean short-
est paths among polygonal obstacles in the plane. Discrete and Computational
Geometry 18(4), 377–383 (1997)

16. Lee, D.: Visibility of a simple polygon. Computer Vision, Graphics, and Image
Processing 22(2), 207–221 (1983)

17. Lee, D., Lin, A.: Computing the visibility polygon from an edge. Computer Vision,
Graphics, and Image Processing 34, 594–606 (1986)

18. Suri, S., O’Rourke, J.: Worst-case optimal algorithms for constructing visibility
polygons with holes. In: Proc. of the 2nd Annual Symposium on Computational
Geometry, pp. 14–23 (1986)

Directed Subset Feedback Vertex Set
Is Fixed-Parameter Tractable�

Rajesh Chitnis1,��, Marek Cygan2,� � �, Mohammadtaghi Hajiaghayi1,†,
and Dániel Marx3,‡

1 Department of Computer Science, University of Maryland at College Park, USA
{rchitnis,hajiagha}@cs.umd.edu

2 IDSIA, University of Lugano, Switzerland
marek@idsia.ch

3 Computer and Automation Research Institute, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary

dmarx@cs.bme.hu

Abstract. Given a graph G and an integer k, the FEEDBACK VERTEX SET (FVS)
problem asks if there is a vertex set T of size at most k that hits all cycles in the
graph. Bodlaender (WG ’91) gave the first fixed-parameter algorithm for FVS
in undirected graphs. The fixed-parameter tractability status of FVS in directed
graphs was a long-standing open problem until Chen et al. (STOC ’08) showed
that it is fixed-parameter tractable by giving an 4kk!nO(1) algorithm. In the subset
versions of this problems, we are given an additional subset S of vertices (resp.
edges) and we want to hit all cycles passing through a vertex of S (resp. an edge
of S). Indeed both the edge and vertex versions are known to be equivalent in the
parameterized sense. Recently the SUBSET FEEDBACK VERTEX SET in undi-
rected graphs was shown to be FPT by Cygan et al. (ICALP ’11) and Kakimura
et al. (SODA ’12). We generalize the result of Chen et al. (STOC ’08) by showing
that SUBSET FEEDBACK VERTEX SET in directed graphs can be solved in time
22O(k)

nO(1), i.e., FPT parameterized by size k of the solution. By our result, we
complete the picture for feedback vertex set problems and their subset versions
in undirected and directed graphs.

The technique of random sampling of important separators was used by Marx
and Razgon (STOC ’11) to show that UNDIRECTED MULTICUT is FPT and
was generalized by Chitnis et al. (SODA ’12) to directed graphs to show that
DIRECTED MULTIWAY CUT is FPT. In this paper we give a general family of
problems (which includes DIRECTED MULTIWAY CUT and DIRECTED SUBSET

FEEDBACK VERTEX SET among others) for which we can do random sampling

� A full version of the paper is available at http://arxiv.org/pdf/1205.1271v1.pdf
�� Supported in part by NSF CAREER award 1053605, ONR YIP award N000141110662,

DARPA/AFRL award FA8650-11-1-7162 and a University of Maryland Research and Schol-
arship Award (RASA).

��� Supported in part by ERC Starting Grant NEWNET 279352, NCN grant N206567140 and
Foundation for Polish Science.

† Supported in part by NSF CAREER award 1053605, ONR YIP award N000141110662,
DARPA/AFRL award FA8650-11-1-7162 and a University of Maryland Research and Schol-
arship Award (RASA). The author is also with AT&T Labs–Research.

‡ Supported by ERC Starting Grant PARAMTIGHT (No. 280152).

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 230–241, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable 231

of important separators and obtain a set which is disjoint from a minimum solu-
tion and covers its “shadow”. We believe this general approach will be useful for
showing the fixed-parameter tractability of other problems in directed graphs.

1 Introduction

The FEEDBACK VERTEX SET (FVS) problem has been one of the most extensively
studied problems in the parameterized complexity community. Given a graph G and
an integer k, it asks if there is a set T of size at most k which hits all cycles in G.
FVS in both undirected and directed graphs was shown to be NP-hard by Karp [18]. A
generalization of the FVS problem is the SUBSET FEEDBACK VERTEX SET (SFVS)
problem: given a subset S ⊆ V (resp. S ⊆ E), find a set T of size at most k such that T
hits all cycles passing through a vertex of S (resp. an edge of S). It is easy to see that
S =V (resp. S = E) gives the FVS problem.

As compared to undirected graphs, FVS behaves differently on digraphs. In particu-
lar the trick of replacing each edge of an undirected graph G by arcs in both directions
does not work: every feedback vertex set of the resulting digraph is a vertex cover of G
and vice versa. Any other simple transformation does not seem possible either and thus
the directed and undirected versions are very different problems. This is reflected in
the best known approximation ratio for the directed versions as compared to the undi-
rected problems: FVS in undirected graphs has an 2-approximation [1] while FVS in
directed graphs has an O(log |V | loglog |V |)-approximation [13,24]. For SFVS in undi-
rected graphs there is an 8-approximation [14] while the best-known approximation in
directed graphs is O(min{log |V | loglog |V |, log2 |S|}) [13].

Rather than finding approximate solutions in polynomial time, one can look for exact
solutions in time that is superpolynomial, but still better than the running time obtained
by brute force solutions. In both the directed and the undirected versions of the feed-
back vertex set problems, brute force can be used to check in time nO(k) if a solution
of size at most k exists: one can go through all sets of size at most k. Thus the prob-
lem can be solved in polynomial time if the optimum is assumed to be small. In the
undirected case, we can do significantly better: since the first FPT algorithm for FVS
in undirected graphs by Bodlaender [3] almost 21 years ago, there have been a num-
ber of papers [2,5,6,17] giving faster algorithms and the current fastest algorithm runs
in O∗(3k) time [10] (the O∗ notation hides all factors which are polynomial in size of
input). That is, undirected FVS is fixed-parameter tractable parameterized by the size
of the cutset we remove. Recall that a problem is fixed-parameter tractable (FPT) with
a particular parameter p if it can be solved in time f (p)nO(1), where f is an arbitrary
function depending only on p; see [12,15,22] for more background. For digraphs, the
fixed-parameter tractability status of FVS was a long-standing open problem (almost
16 years) until Chen et al. [7] resolved it by giving an O∗(4kk!) algorithm. This was
recently generalized by Bonsma and Lokshtanov [4] who gave a O∗(47.5kk!) algorithm
for FVS in mixed graphs, i.e., graphs having both directed and undirected edges.

In the more general SUBSET FEEDBACK VERTEX SET problem, given an additional
subset S of vertices and we want to find a set T of size at most k that hits all cycles pass-
ing through a vertex of S. In the edge version we are given a subset S ⊆ E(G) and we

232 R. Chitnis et al.

want to hit all cycles passing through an edge of S. The vertex and edge versions are in-
deed known to be equivalent in the parameterized sense in both undirected and directed
graphs. Recently Cygan et al. [11] and independently Kakimura et al. [16] have shown
that SUBSET FEEDBACK VERTEX SET in undirected graphs is FPT parameterized by
the size of the solution. Our main result is that SUBSET FEEDBACK VERTEX SET in
digraphs is also fixed-parameter tractable parameterized by the size of the solution:

Theorem 1. (main result) SUBSET FEEDBACK VERTEX SET (SUBSET-DFVS) in di-
rected graphs can be solved in O∗(22O(k)

) time.

Our Techniques. As a first step, we use the standard technique of iterative compression
[23] to argue that it is sufficient to solve the compression version of SUBSET-DFVS,
where we assume that a solution T of size k + 1 is given in the input and we have
to find a solution of size k. Our algorithm for the compression problem is inspired
by the algorithm of Marx and Razgon [21] for undirected MULTICUT and Chitnis et
al. [8] for DIRECTED MULTIWAY CUT. We define the “shadow” of a solution X as
those vertices that are disconnected from T (in either direction) after the removal of
X . Our goal is to ensure that there is a solution whose shadow is empty, as finding
such a shadowless solution can be a significantly easier task. For this purpose, we use
the technique of “random sampling of important separators,” which was introduced in
[21] for undirected graphs and was generalized to directed graphs in [8]. We present
this approach here in generic way that can be used for the following general family of
problems:

Finding an F -transversal for some T -connected F
Input : A directed graph G = (V,E), a positive integer k, a set T ⊆ V and a set
F = {F1,F2, . . . ,Fq} of subgraphs such that F is T -connected, i.e., ∀ i ∈ [q] each
vertex of Fi can reach some vertex of T by a walk completely contained in Fi and
is reachable from some vertex of T by a walk completely contained in Fi.
Parameter : k
Question : Does there exist an F -transversal W ⊆ V with |W | ≤ k, i.e., a set W
such that Fi∩W �= /0 for every i ∈ [q]?

It is easy to see that the above family includes DIRECTED MULTIWAY CUT (take
T as the set of terminals and F as the set of all walks between different terminals)
and the compression version of SUBSET-DFVS (take T as the solution that we want
to compress and F as set of all S-closed-walks). For this family of problems, we can
invoke the random sampling of important separators technique and obtain a set which is
disjoint from a minimum solution and covers its shadow. Given such a set, we can use
(some problem specific variant of) the “torso operation” to find an equivalent instance
that has a shadowless solution. Therefore, we can focus on the simpler task of finding a
shadowless solution. We believe this will be a useful opening step in the design of FPT
algorithms for other transversal and cut problems on digraphs.

In the case of undirected MULTICUT [21], if there was a shadowless solution, then
the problem could be reduced to an FPT problem called ALMOST 2SAT. In the case of
DIRECTED MULTIWAY CUT [8], if there was a solution whose shadow is empty, then
the problem could be reduced to the undirected version which was known to be FPT.

Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable 233

For SUBSET-DFVS, the situation is a bit more complicated. As mentioned above, we
first use the technique of iterative compression to reduce the problem to an instance
where we are given a solution T and we want to find a disjoint solution of size at most
k. We define the “shadows” with respect to the solution T that we want to compress
whereas in [8], the shadows were defined with respect to the terminal set T . The “torso”
operation we define in this paper is specific to the SUBSET-DFVS problem and differs
from the one defined in [8]. Even after ensuring that there is a solution T ′ whose shadow
is empty, we are not done unlike in [8]. We then analyze the structure of the graph G\T ′

and use “pushing” to branch on some important separators. Then for each branch, we
need to do the whole process of random sampling of important separators to find a
solution whose shadow is empty. This is followed again by branching on important
separators. We repeat this two-step process until the budget k becomes zero.

2 Preliminaries

Observe, that a directed graphs contains no cycles if and only if it contains no closed-
walks, for this reason throughout the article we use the term closed-walks, since it is
sometimes easier to show a closed walk and avoid discussion whether it is a simple
cycle or not. A feedback vertex set is a set of vertices that hits all the closed-walks of
the graph.

Definition 2. (feedback vertex set) Let G be a directed graph. A set T ⊆ V (G) is a
feedback vertex set of G if G\T does not contain any closed-walks.

This gives rise to the DIRECTED FEEDBACK VERTEX SET (DFVS) problem where we
are given a directed graph G and we want to find if G has a feedback vertex set of size
at most k. DFVS was shown to be FPT by Chen et al. [7], closing a long-standing open
problem in the parameterized complexity community.

In this paper we consider a generalization of the DFVS problem where given a set
S⊆V (G), we ask if there exists a vertex set of size ≤ k that hits all closed-walks passing
through S.

SUBSET DIRECTED FEEDBACK VERTEX SET (SUBSET-DFVS)
Input : A directed graph G = (V,E), a set S ⊆V (G) and a positive integer k.
Parameter : k
Question : Does there exist a set T ⊆ V (G) with |T | ≤ k such that G \T has no
closed walk containing a vertex of S?

It is easy to see that SUBSET-DFVS is a generalization of DFVS by setting S =
V (G). We also define an equivalent variant of SUBSET-DFVS where the set S is a
subset of edges. First we define a special type of closed-walks:

Definition 3. (S-closed-walk) Let G = (V,E) be a digraph and S ⊆ E(G). A closed
walk (starting and ending at same vertex) C in G is said to be a S-closed-walk if it
contains an edge from S.

234 R. Chitnis et al.

EDGE SUBSET DIRECTED FEEDBACK VERTEX SET (EDGE-SUBSET-
DFVS)
Input : A directed graph G = (V,E), a set S ⊆ E(G) and a positive integer k.
Parameter : k
Question : Does there exist a set T ⊆ V (G) with |T | ≤ k such that G \T has no
S-closed-walks?

2.1 Iterative Compression

We now use the technique of iterative compression introduced by Reed et al. [23]. It
has been used to obtain faster FPT algorithms for various problems [6,7,21]. In the first
step we transform the SUBSET-DFVS problem into the following problem:

SUBSET-DFVS REDUCTION

Input : A directed graph G = (V,E), a set S ⊆ E(G), a positive integer k and a set
T ⊆V such that G\T has no S-closed-walks .
Parameter : k+ |T |
Question : Does there exist a set T ′ ⊆V (G) with |T ′| ≤ k such that G\T ′ has no
S-closed-walks?

Lemma 4. [�]1 (power of iterative compression) SUBSET-DFVS can be solved by
O(n) calls to an algorithm for the SUBSET-DFVS REDUCTION problem.

Now we transform the SUBSET-DFVS REDUCTION problem into the following prob-
lem whose only difference is that the subset feedback vertex set in the output must be
disjoint from the one in the input:

DISJOINT SUBSET-DFVS REDUCTION

Input : A directed graph G = (V,E), a set S ⊆ E(G), a positive integer k and a set
T ⊆V such that G\T has no S-closed-walks.
Parameter : k+ |T |
Question : Does there exist a set T ′ ⊆V (G) with |T ′| ≤ k such that T ∩T ′ = /0 and
G\T ′ has no S-closed-walks?

Lemma 5. [�] (adding disjointness) SUBSET-DFVS REDUCTION can be solved by
O(2|T |) calls to an algorithm for the DISJOINT SUBSET-DFVS REDUCTION problem.

From Lemmas 4 and 5, an FPT algorithm for DISJOINT SUBSET-DFVS REDUCTION

translates into an FPT algorithm for SUBSET-DFVS with an additional blowup factor
of O(2|T |n).

3 Covering the Shadow of a Solution

The purpose of this section is to present the “random sampling of important separators”
technique used in [8] for DIRECTED MULTIWAY CUT in a generalized way that applies
to SUBSET-DFVS as well. The technique consists of two steps:

1 The proofs of the results labeled with � have been deferred to the full version of the paper.

Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable 235

1. First find a set Z small enough to be disjoint from a solution X (of size ≤ k) but
large enough to cover the “shadow” of X .

2. Then define a “torso” operation which uses the set Z to reduce the problem instance
in such a way that X becomes a shadowless solution.

In this section, we define a general family of problems for which Step 1 can be ef-
ficiently performed. The general technique to execute Step 1 is very similar to what
was done for DIRECTED MULTIWAY CUT [8] and so we defer most of the proofs to
the full version of the paper. In Section 4, we show how Step 2 can be done for the
specific problem of DISJOINT SUBSET-DFVS REDUCTION. First we start by defining
shadows:

Definition 6. (separator) Let G = (V,E) be a directed graph. Given two disjoint non-
empty sets X ,Y ⊆ V we call a set W of vertices as an X −Y separator if W is disjoint
from X ∪Y and there is no walk from X to Y in G \W. A set W is a minimal X −Y
separator if no proper subset of W is an X −Y separator.

Definition 7. (shadow) Let G be graph and W ⊆V (G). Then for v ∈V (G) we say that
v is in the “forward shadow” fG,T (W) of W (with respect to T), if W is a T −{v}
separator in G. Similarly, we say that v is in the “reverse shadow” rG,T (W) of W (with
respect to T), if W is a {v}−T separator in G.

That is, we can imagine T as a light source with light spreading on the directed edges.
The forward shadow of W is the set of vertices that remain dark if the set W blocks the
light. In the reverse shadow, we imagine that light is spreading on the edges backwards.
We abuse the notation slightly and write v−T separator instead of {v}−T separator.
We also drop G and T from the subscript if they are clear from the context. Note that W
itself is not in the shadow of W (as a T − v or v−T separator needs to be disjoint from
T and v), that is, W and fG,T (W)∪ rG,T (W) are disjoint.

Let G = (V,E) be a directed graph and T ⊆ V (G). Consider F = {F1,F2, . . . ,Fq}
which is a set of subgraphs of G. We define the following property:

Definition 8. (T-connected) Let F = {F1,F2, . . . ,Fq} be a set of subgraphs of G. Then
F is said to be T -connected if ∀ i ∈ [q] , each vertex of the subgraph Fi can reach some
vertex of T by a walk completely contained in Fi and is reachable from some vertex of
T by a walk completely contained in Fi.

For a set F of subgraphs of G, a transversal is a set of vertices which hits each subgraph
in F . We note that the subgraphs in F are given implicitly to us.

Definition 9. (F -transversal) Let F = {F1,F2, . . . ,Fq} be a set of subgraphs of G. Then
W is said to be an F -transversal if ∀ i ∈ [q] we have Fi∩W �= /0.

The main theorem of this section is the following:

Theorem 10. [�](randomized covering of the shadow) Let T ⊆V (G). In O∗(4k) time,
we can construct a set Z ⊆ V (G) such that for any set of subgraphs F which is T -
connected, if there exists an F -transversal of size ≤ k, then the following holds with

probability 2−2O(k)
: there is an F -transversal X of size ≤ k satisfying

236 R. Chitnis et al.

1. X ∩Z = /0.
2. Z covers the shadow of X.

We also prove the following derandomized version of Theorem 10:

Theorem 11. [�](deterministic covering of the shadow) Let T ⊆V (G). In O∗(22O(k)
)

time, we can construct a set {Z1,Z2, . . . ,Zt} where t = 22O(k)
log2 n such that for any set

of subgraphs F which is T -connected, if there exists an F -transversal of size ≤ k, then
there is an F -transversal X of size ≤ k such that for at least one i ∈ [t] we have

1. X ∩Zi = /0.
2. Zi covers the shadow of X.

In DIRECTED MULTIWAY CUT, T was the set of terminals and the set F was the set
of all walks from one vertex of T to another vertex of T . In SUBSET-DFVS , the set T
is the solution that we want to compress and F is the set of all closed S-walks passing
through some vertex of T .

We say that an F -transversal T ′ is shadowless if f (T ′)∪ r(T ′) = /0. Note that if T ′

is a shadowless solution, then in the graph G \T ′, each vertex is reachable from some
vertex of T and can reach some vertex of T . In Section 5 we will see how we can
make progress in DISJOINT SUBSET-DFVS REDUCTION if there exists a shadowless
solution. So we would like to transform the instance in such a way that ensures the
existence of a shadowless solution, by taking the torso (Section 4) and make progress
by using the BRANCH algorithm from Section 5.

4 Reducing the Instance by Torso

We use the algorithm of Theorem 11 to construct a set Z of vertices that we want to get
rid of. The second ingredient of our algorithm is an operation that removes a set of ver-
tices without making the problem any easier. This transformation can be conveniently
described using the operation of taking the torso of a graph. From this point onwards
in the paper, we do not follow [8]. In particular, the torso operation is problem-specific.
For DISJOINT SUBSET-DFVS REDUCTION, we define it as follows:

Definition 12. (torso) Let (G,S,T,k) be an instance of DISJOINT SUBSET-DFVS RE-
DUCTION and C ⊆V (G). The graph torso(G,C) has vertex set C and there is (directed)
edge (a,b) in torso(G,C) if there is an a → b walk in G whose internal vertices are not
in C. Furthermore, we add the edge (a,b) to S if there is an a → b walk in G which
contains an edge from S and whose internal vertices are not in C.

In particular, if a,b ∈ C and (a,b) is a directed edge of G, then torso(G,C) contains
(a,b) as well. Thus torso(G,C) is a supergraph of the subgraph of G induced by C. The
following lemma shows that the torso operation preserves S-closed-walks inside C.

Lemma 13. [�] (torso preserves S-closed-walks) Let G be a directed graph and C ⊆
V (G). Let G′ = torso(G,C),v∈C and W ⊆C. Then G\W has an S-closed-walk passing
through v if and only if G′ \W has an S-closed-walk passing through v.

Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable 237

If we want to remove a set Z of vertices, then we create a new instance by taking the
torso on the complement of Z:

Definition 14. Let I = (G,S,T,k) be an instance of DISJOINT SUBSET-DFVS RE-
DUCTION and Z ⊆V (G)\T. The reduced instance I/Z = (G′,S,T, p) is defined as

– G′ = torso(G,V (G)\Z)
– S is modified as specified in Definition 12.

The following lemma states that the operation of taking the torso does not make the
DISJOINT SUBSET-DFVS REDUCTION problem easier for any Z ⊆ V (G) \ T in the
sense that any solution of the reduced instance I/Z is a solution of the original instance
I. Moreover, if we perform the torso operation for a Z that is large enough to cover
the shadow of some solution T ∗ and also small enough to be disjoint from T ∗, then T ∗

becomes a shadowless solution for the reduced instance I/Z.

Lemma 15. [�] (creating a shadowless instance) Let I = (G,S,T,k) be an instance of
DISJOINT SUBSET-DFVS REDUCTION and Z ⊆V (G)\T.

1. If I is a no-instance, then the reduced instance I/Z is also a no-instance.
2. If I has solution T ′ with fG,T (T ′)∪ rG,T (T ′) ⊆ Z and T ′ ∩ Z = /0, then T ′ is a

shadowless solution of I/Z.

For every Zi in the output of Theorem 11, we use the torso operation to remove the
vertices in Zi. We prove that this procedure is safe by showing the following:

Lemma 16. [�] Let I = (G,S,T,k) be an instance of DISJOINT SUBSET-DFVS RE-
DUCTION. Let the sets in the output of Theorem 11 be Z1,Z2, . . . ,Zt . For every i ∈ [t],
let Gi be the reduced instance G/Zi.

1. If I is a no-instance, then Gi is also a no-instance for every i ∈ [t].
2. If I is a yes-instance, then there exists a solution T ∗ of I which is a shadowless

solution of some G j for some j ∈ [t].

5 Finding a Shadowless Solution

Consider an instance (G,S,T,k) of DISJOINT SUBSET-DFVS REDUCTION. First, let
us assume that from each vertex of T , we can reach an edge of S, since otherwise we
can clearly remove such a vertex from the set T , without violating the assumption that

G \ T has no S-closed walk. Next, we branch on all 22O(k)
log2 n choices for Z taken

from {Z1,Z2, . . . ,Zt} (given by Theorem 11) and build a reduced instance I/Z for each
choice of Z. By Lemma 15, if I is a no-instance then I/Zj is a no-instance for each
j ∈ [t]. If I is a yes-instance, then by Lemma 16, there is at least one i ∈ [t] such that I
has a solution T ′ which is a solution, and in fact a shadowless solution, for the reduced
instance I/Zi.

So for the reduced instance I/Zi we know that each vertex in G\T ′ can reach some
vertex of T and can be reached from a vertex of T . Since T ′ is a solution for the in-
stance (G,S,T,k) of DISJOINT SUBSET-DFVS REDUCTION, we know that G\T ′ does

238 R. Chitnis et al.

Fig. 1. We arrange the strong components of G\T ′ in topological order so that the only possible
direction of edges between the strong components is as shown by the blue arrow. We will claim
later that the last component C� must contain a non-empty subset T0 of T and further that no
edge of S can be present within C�. This allows us to make some progress as we shall see in
Theorem 21

not have any S-closed-walks. Consider a topological ordering say C1,C2, . . . ,C� of the
strong components of G\T ′, i.e., there can be an edge from Ci to Cj only if i < j. We
illustrate this in Figure 1.

Definition 17. (starting points of S) Let S− be the set of starting points of edges in S,
i.e., S− = {u | (u,v) ∈ S}.

Lemma 18. [�] (properties of C�) Let C� be the last strong component in the topological
ordering of G\T ′ (refer to Figure 1). Then

1. C� contains a non-empty subset T0 of T .
2. No edge of S is present within C�.
3. S− is disjoint from C�.

Since T0 is the subset of T present in C� and only edges between strong components can
be from left to right, we have that there are no T0− (T \T0) walks in G\T ′. Along with
the third claim of Lemma 18, this implies that the solution T ′ contains a T0− (S−∪ (T \
T0)) separator. We now define a special type of separators:

Definition 19. (important separator) Let G be a digraph and let X ,Y ⊆ V be two
disjoint non-empty sets. A minimal X −Y separator W is called an important X −Y
separator if there is no X −Y separator W ′ with |W ′| ≤ |W | and R+

G\W (X)⊂ R+
G\W ′(X),

where R+
A (X) is the set of vertices reachable from X in A.

For any X ,Y ⊆ V (G), the following lemma (proved in [8]) gives an upper bound the
number of important X −Y separators of size at most k:

Lemma 20. [�](number of important separators) Let X ,Y ⊆V (G) be disjoint sets in
a directed graph G. Then for every k≥ 0 there are at most 4k important X−Y separators
of size at most k. Furthermore, we can enumerate all these separators in time O∗(4k).

By “pushing”, we have the following theorem:

Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable 239

Algorithm 1. BRANCH

Input: An instance I = (G,S,T,k) of DISJOINT SUBSET-DFVS REDUCTION.
Output: A new set of 2O(k+|T |) instances of DISJOINT SUBSET-DFVS REDUCTION where the
budget k is reduced.

1: for every non-empty subset T0 of T : do
2: Use Lemma 20 to enumerate all the at most 4k important T0 − (S− ∪ (T \T0)) separators

of size at most k.
3: Let the important separators be B = {B1,B2, . . . ,Bm}.
4: for each i ∈ [m] do
5: Create a new instance IT0,i = (G \Bi,S,T,k− |Bi|) of DISJOINT SUBSET-DFVS RE-

DUCTION.

Theorem 21. [�] (pushing) Either T ′ contains an important T0 − (S−∪ (T \T0)) sep-
arator or there is another solution T ′′ of the instance (G,S,T,k) such that |T ′′| ≤ |T ′|
and T ′′ contains an important T0− (S−∪ (T \T0)) separator.

Theorem 21 tells us that there is always a minimum solution which contains an im-
portant T0 − (S−∪ (T \T0)) separator where T0 is a non-empty subset of T . This gives
2|T | − 1 choices for T0. For each guess of T0 we enumerate all the at most 4k important
T0− (S−∪ (T \T0)) separators of size at most k in time O∗(4k) as given by Lemma 20.
This gives the following natural branching algorithm:

6 FPT Algorithm for DISJOINT SUBSET-DFVS REDUCTION

Lemma 16 and the BRANCH algorithm together combine to give a bounded-search-tree
FPT algorithm for DISJOINT SUBSET-DFVS REDUCTION as follows:

FPT Algorithm for SUBSET-DFVS
Step 1: At the first step, for a given instance I = (G,S,T,k), use Theorem 11 to

obtain a set of instances {Z1,Z2, . . . ,Zt} where 22O(k)
log2 n and Lemma 16 implies

– If I is a no-instance, then all the reduced instances G j =G/Zj are no-instances
for all j ∈ [t]

– If I is a yes-instance, then there is at least one i∈ [t] such that there is a solution
T ∗ for I which is a shadowless solution for the reduced instance Gi = G/Zi.

So at this step we branch into 22O(k)
log2 n directions.

Step 2 : For each of the instances obtained from the above step, we run the

BRANCH algorithm to obtain a set of 2O(k+|T |) instances where in each case either
the answer is NO, or the budget k is reduced.

We then repeatedly perform Steps 1 and 2. Note that for every instance, one execution

of steps 1 and 2 gives rise to 22O(k)
log2 n instances such that for each instance, either we

240 R. Chitnis et al.

know that the answer is NO or the budget k has decreased, because we have assumed
that from each vertex of T one can reach the set S−, and hence each important separator
is non-empty. Therefore, considering a level as an execution of Step 1 followed by Step

2, the height of the search tree is at most k. Each time we branch into at most 22O(k)
log2 n

directions (as |T | is at most k+ 1). Hence the total number of nodes in the search tree

is
(

22O(k)
log2 n

)k
.

Lemma 22. [�] For every n and k ≤ n, we have (logn)k ≤ (2k logk)k + n
2k

So the total number of nodes in the search tree is
(

22O(k)
log2 n

)k
=
(

22O(k)
)k
(log2 n)k =

(22O(k)
)(log2 n)k ≤ (22O(k)

)
(
(2k logk)k + n

2k

)2
≤ 22O(k)

n2. We then check the leaf nodes

and see if there are any S-closed-walks left even after the budget k has become zero. If
the graph at least one of the leaf nodes is S-closed-walk free, then the given instance is a

yes-instance. Otherwise it is a no-instance. This gives an O∗(22O(k)
) algorithm for DIS-

JOINT SUBSET-DFVS REDUCTION. By Lemma 4, we have an O∗(22O(k)
) algorithm

for the SUBSET-DFVS problem.

7 Conclusion and Open Problems

In this paper we gave the first fixed-parameter algorithm for DIRECTED SUBSET FEED-
BACK VERTEX SET parameterized by the size of the solution. Our algorithm used var-
ious tools from the FPT world such as iterative compression, bounded-depth search
trees, random sampling of important separators, etc. We also gave a general family of
problems for which we can do random sampling of important separators and obtain a set
which is disjoint from a minimum solution and covers its shadow. We believe this gen-
eral approach will be useful for deciding the fixed-parameter tractability status of other
problems in digraphs where we do not know that much techniques unlike undirected
graphs.

The next natural question is whether SUBSET-DFVS has a polynomial kernel or
can we rule out such a possibility under some standard assumptions? The recent devel-
opments [9,19,20] in the field of kernelization may be useful in answering this ques-
tion. Another question is to try and reduce the complexity of our algorithm to single
exponential. In the field of exact exponential algorithms, Razgon gave a O(1.9977n)
algorithm for DFVS. It would be interesting to break the trivial 2nnO(1) barrier for
SUBSET-DFVS.

References

1. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback
vertex set problem. SIAM J. Discrete Math. 12(3), 289–297 (1999)

2. Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop cutset problem.
J. Artif. Intell. Res. (JAIR) 12, 219–234 (2000)

3. Bodlaender, H.L.: On disjoint cycles. In: WG, pp. 230–238 (1991)

Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable 241

4. Bonsma, P., Lokshtanov, D.: Feedback Vertex Set in Mixed Graphs. In: Dehne, F., Iacono, J.,
Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 122–133. Springer, Heidelberg (2011)

5. Cao, Y., Chen, J., Liu, Y.: On Feedback Vertex Set New Measure and New Structures. In:
Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg (2010)

6. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex
set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)

7. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the
directed feedback vertex set problem. In: STOC 2008, pp. 177–186 (2008)

8. Chitnis, R.H., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed multiway
cut parameterized by the size of the cutset. In: SODA 2012, pp. 1713–1725 (2012)

9. Cygan, M., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Clique cover and graph
separation: New incompressibility results. CoRR abs/1111.0570 (2011)

10. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.:
Solving connectivity problems parameterized by treewidth in single exponential time. In:
FOCS 2011, pp. 150–159 (2011)

11. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset Feedback Vertex Set is
Fixed-Parameter Tractable. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS,
vol. 6755, pp. 449–461. Springer, Heidelberg (2011)

12. Downey, R.G., Fellows, M.R.: Parameterized Complexity, 530 p. Springer (1999)
13. Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating Minimum Feedback Sets and

Multi-Cuts in Directed Graphs (Extended Summary). In: IPCO 1995. LNCS, vol. 920, pp.
14–28. Springer, Heidelberg (1995)

14. Even, G., Naor, J., Zosin, L.: An 8-approximation algorithm for the subset feedback vertex
set problem. SIAM J. Comput. 30(4), 1231–1252 (2000)

15. Flum, J., Grohe, M.: Parameterized Complexity Theory, 493 p. Springer (2006)
16. Kakimura, N., Kawarabayashi, K., Kobayashi, Y.: Erdös-pósa property and its algorithmic

applications: parity constraints, subset feedback set, and subset packing. In: SODA 2012, pp.
1726–1736 (2012)

17. Kanj, I.A., Pelsmajer, M.J., Schaefer, M.: Parameterized Algorithms for Feedback Vertex
Set. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp.
235–247. Springer, Heidelberg (2004)

18. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Com-
putations, pp. 85–103 (1972)

19. Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: New tools for ker-
nelization. CoRR abs/1111.2195 (2011)

20. Kratsch, S., Wahlström, M.: Compression via matroids: a randomized polynomial kernel for
odd cycle transversal. In: SODA 2012, pp. 94–103 (2012)

21. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of
the cutset. In: STOC 2011, pp. 469–478 (2011)

22. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)
23. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. (2004)
24. Seymour, P.D.: Packing directed circuits fractionally. Combinatorica 15(2), 281–288 (1995)

Max-Cut Parameterized above

the Edwards-Erdős Bound�

Robert Crowston1, Mark Jones1, and Matthias Mnich2

1 Royal Holloway, University of London, UK
{robert,markj}@cs.rhul.ac.uk

2 Cluster of Excellence, Saarbrücken, Germany
m.mnich@mmci.uni-saarland.de

Abstract. We study the boundary of tractability for the Max-Cut

problem in graphs. Our main result shows that Max-Cut above the
Edwards-Erdős bound is fixed-parameter tractable: we give an algorithm
that for any connected graph with n vertices and m edges finds a cut of
size

m

2
+

n− 1

4
+ k

in time 2O(k) · n4, or decides that no such cut exists.
This answers a long-standing open question from parameterized com-

plexity that has been posed a number of times over the past 15 years.
Our algorithm is asymptotically optimal, under the Exponential Time

Hypothesis, and is strengthened by a polynomial-time computable kernel
of polynomial size.

Keywords: Algorithms and data structures, maximum cuts, combina-
torial bounds, fixed-parameter tractability.

1 Introduction

The study of cuts in graphs is a fundamental area in theoretical computer science,
graph theory, and polyhedral combinatorics, dating back to the 1960s. A cut
of a graph is an edge-induced bipartite subgraph, and its size is the number
of edges it contains. Finding cuts of maximum size in a given graph was one of
Karp’s famous 21 NP-complete problems [18]. Since then, theMax-Cut problem
has received considerable attention in the areas of approximation algorithms,
random graph theory, combinatorics, parameterized complexity, and others; see
the survey [26].

As a fundamental NP-complete problem, the computational complexity of
Max-Cut has been intensively scrutinized. We continue this line of research and
explore the boundary between tractability and hardness, guided by the question:
Is there a dichotomy of computational complexity of Max-Cut that depends on
the size of the maximum cut?

� Due to space constraints, several proofs and details were omitted. A full version of
the paper can be found at http://arxiv.org/abs/1112.3506.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 242–253, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://arxiv.org/abs/1112.3506

Max-Cut above Edwards-Erdős Bound 243

This question was already studied by Erdős [11] in the 1960s, who gave a
randomized polynomial-time algorithm that in any n-vertex graph with m edges
finds a cut of size at least m/2. Erdős [11, 12] also (erroneously) conjectured
that the value m/2 can be raised to m/2 + εm for some ε > 0; only much
later it was shown [15, 24] that finding cuts of size m/2 + εm is NP-hard for
every ε > 0. Furthermore, the Max-Cut Gain problem—maximize the gain
compared to a random solution that cuts m/2 edges—does not allow constant
approximation [19] under the Unique Games Conjecture, and the best one can
hope for is to cut a 1/2+Ω(ε/ log(1/ε)) fraction of edges in graphs in which the
optimum is 1/2 + ε [6].

However, the lower bound m/2 can be increased, by a sublinear function:
Edwards [9, 10] in 1973 proved that a cut of size

m/2 +
1

8

(√
8m+ 1− 1

)
(1)

always exists, and for connected graphs this can be further increased to

m/2 + (n− 1)/4, (2)

which is always at least as large as (1). Thus, any graph with n vertices, m edges
and t connected components has a cut of size at least m/2+(n− t)/4. The lower
bound (2) is famously known as the Edwards-Erdős bound, and it is tight for
cliques of every odd order n.

The bound has been proved several times ([4, 7, 13, 24, 25]), with some proofs
yielding polynomial-time algorithms to attain it. As (2) is tight for infinitely
many non-isomorphic graphs, and finding maximum cuts is NP-hard, finding
cuts beyond (2) requires a new approach: a fixed-parameter algorithm, that for
any connected graph with n vertices and m edges, and integer k ∈ N, finds a cut
of size at least m/2 + (n − 1)/4 + k (if such exists) in time f(k) · nc, where f
is an arbitrary function dependent only on k and c is an absolute constant
independent of k. The point here is to confine the combinatorial explosion to the
(small) parameter k. But at first sight, it is not even clear how to find a cut of
size m/2 + (n− 1)/4 + k in time nf(k), for an arbitrary function f .

In 1997, Mahajan and Raman [22] gave a fixed-parameter algorithm for the
variant of this problem with Erdős’ lower bound m/2, and showed how to decide
existence of a cut of size m/2+k in time 2O(k) ·nO(1). Their result was strength-
ened by Bollobás and Scott [4] who replaced m/2 by the stronger bound (1).
It remained an open question ([7, 14, 22, 23, 27]) whether this result could be
strengthened further by replacing (1) with the stronger bound (2).

Main Results

We settle the computational complexity of Max-Cut above the Edwards-Erdős
bound (2).

Theorem 1. There is an algorithm that computes, for any connected graph G
with n vertices and m edges and any integer k ∈ N, in time 2O(k) · n4 a cut of
G with size at least m/2 + (n− 1)/4 + k, or decides that no such cut exists.

244 R. Crowston, M. Jones, and M. Mnich

Theorem 1 answers a question posed several times over the past 15 years ([22,
23] [7, 14, 27]). In particular, instances with k = O(logm) can be solved in
polynomial time, thereby enlarging the realm of tractability.

The running time of our algorithm is likely to be optimal, as the following
theorem shows.

Theorem 2. No algorithm can find cuts of size m/2 + (n − 1)/4 + k in time
2o(k) · nO(1) given a connected graph with n vertices and m edges, and integer
k ∈ N, unless the Exponential Time Hypothesis fails.

The Exponential Time Hypothesis was introduced by Impagliazzo and Pa-
turi [17], and states that n-variable SAT formulas cannot be solved in subexpo-
nential time.

Fixed-parameter tractability of Max-Cut above Edwards-Erdős bound
m/2 + (n − 1)/4 implies the existence of a so-called kernelization, which effi-
ciently transforms any instance (G, k) into an equivalent instance (G′, k′), the
kernel, whose size g(k) = |G′| + k′ itself depends on k only. Alas, the size g(k)
of the kernel for many fixed-parameter tractable problems is enormous, and in
particular many fixed-parameter tractable problems do not admit kernels of size
polynomial in k unless coNP ⊆ NP/poly [3]. We prove the following.

Theorem 3. There is a polynomial-time algorithm that transforms any con-
nected graph G = (V,E) with integer k ∈ N to a connected graph G′ = (V ′, E′)
of order O(k5), such that G has a cut of size |E|/2+ (|V | − 1)/4+ k if and only
if G′ has a cut of size |E′|/2 + (|V ′| − 1)/4 + k′, for some k′ ≤ k.

Bollobás and Scott [4] proved fixed parameter tractability for the weighted ver-

sion of Max Cut parameterized above (1). They give a 2O(k4) + n+ w(G) time
algorithm to find a cut of weight w(G)/2 + 1

8 (
√
8w(G) + 1 − 1) + k if such a

cut exists, or else an optimal cut, where w is an edge-weighting on the graph G.
The proof in [4] can easily be seen to give a kernel of size O(k4) (although it is
not described as such in [4], as kernelization has only recently begun to attract
significant attention). We improve this to a kernel of size O(k3).

Theorem 4. There is a linear-time algorithm that, for any integer k ∈ N, trans-
forms any connected graph G = (V,E) with edge-weighting w to a connected
graph G′ = (V ′, E′) of size O(k3) with edge-weighting w′, such that G has a
cut of size w(G)/2 + 1

8 (
√
8w(G) + 1− 1) + k if and only if G′ has a cut of size

w′(G′)/2 + 1
8 (
√

8w′(G′) + 1− 1) + k′, for some k′ ≤ k.

The proof is a slight modification of the proof of Theorem 22 in Bollobás and
Scott [4]. Note that Theorems 1 and 3 only hold for unweighted graphs; the
weighted versions remain open. Due to space contraints, the proofs of Theorems 2
and 4 are omitted.

Our Techniques and Related Work

Our results are based on algorithmic as well as combinatorial arguments. To
prove Theorem 1, we design a Turing reduction to a generalization of the problem

Max-Cut above Edwards-Erdős Bound 245

on block graphs, for which we show how to to solve the problem efficiently.
Theorem 2 is established by a combinatorial reduction. Theorem 3 is proven by
a careful analysis of random cuts via the probabilistic method, whereas the proof
of Theorem 4 is through a characterization of graphs for which the lower bound
is nearly tight, and weighted graph decompositions as “edge-sums”.

A number of the standard approaches that have been developed for “above-
guarantee” parameterizations of other problems are unavailable for this problem.
The most common approach is to use probabilistic analysis of a random vari-
able whose expected value corresponds to a solution matching the guarantee.
However, there is no simple randomized procedure known giving a cut of size
m/2+ (n− 1)/4. Another approach is to make use of approximation algorithms
that give a factor-c approximation, when the problem is parameterized above
the bound c · n; here, n is the maximum value of the objective function. But
there is no such approximation algorithm for this problem.

Our paper also differs in its use of reduction rules. Most reduction rules for
above-guarantee problems remove certain subgraphs of constant size, on which
the bound is tight. But for our problem the bound is tight on cliques. Thus our
reduction rules remove maximal cliques from the graph, which may contain a
large fraction of the vertices in G. Moreover, rather than using reduction rules to
reduce to an equivalent instance, which is then solved quickly, our reduction rules
do not produce an equivalent instance. Instead, they either reduce to a ‘yes”-
instance or we can determine useful restrictions on the structure of the original
instance, which can then be used to solve the original instance in fixed-parameter
tractable time.

2 Preliminaries

We use standard graph theory terminology and notation. Given a graph G, let
V (G) be the vertices of G and let E(G) be the edges of G. For disjoint sets
S, T ⊆ V (G), let E(S, T) denote the set of edges in G with one vertex in S and
one vertex in T . For S ⊆ V (G), let G[S] denote the subgraph induced by the
vertices of S, and let G − S denote the graph G[V (G) \ S]. We say that G has
a cut of size t if there exists an S ⊆ V (G) such that |E(S, V (G) \ S)| = t. The
graph G is connected if any two of its vertices are connected by a path, and it
is 2-connected if G− v is connected for every v ∈ V (G). A connected component
of G is a connected subgraph G′ of G that is maximal with respect to vertex
inclusion, and we often identify G′ with its vertex set V (G′).

We study the following formulation of Max-Cut parameterized above
Edwards-Erdős bound:

Max-Cut above Edwards-Erdős (Max-Cut-AEE)
Instance: A connected graphG with n = |V (G)| vertices andm = |E(G)|
edges, and an integer k ∈ N.

Parameter : k.

Question: Does G have a cut of size at least m
2 + n−1

4 + k
4?

246 R. Crowston, M. Jones, and M. Mnich

We ask for a cut of size m
2 + n−1

4 + k
4 , rather than the more usual m

2 + n−1
4 +k,

so that we may treat k as an integer at all times. Note that this does not affect
the existence of a fixed-parameter algorithm or polynomial-size kernel. A pair
(G, k) is called a “yes”-instance if G has a cut of size at least m

2 + n−1
4 + k

4 , and
a “no”-instance otherwise.

An assignment or coloring on G is a function α : V (G) → {red, blue}, and an
edge is cut or satisfied by α if one of its vertices is colored red and the other
vertex is colored blue. Note that a graph has a cut of size t if and only if it
has an assignment that satisfies at least t edges. A partial assignment on G is a
function α : X → {red, blue}, where X is a subset of V (G).

A clique in G is a set of verticesX ⊆ V (G) any two of which are adjacent in G.
A block in G is a maximal subgraph of G which is 2-connected. A block graph
is a connected graph in which every block is a clique. Observe that a complete
graph is a block graph, and a graph formed by identifying together one vertex
each from two disjoint block graphs is also a block graph. (For the purposes of
this paper we count an isolated vertex as a block graph.)

3 Fixed-Parameter Algorithm for Max-Cut above the
Edwards-Erdős Bound

In this section, we prove Theorem 1. To this end, we prove the following lemma,
which also forms the basis of our kernel in Theorem 3.

Lemma 1. Given a connected graph G with n vertices and m edges and an
integer k, we can in polynomial time decide that either G has a cut of size at
least m

2 + n−1
4 + k

4 , or find a set S of at most 3k vertices in G such that each
component of G− S is a block graph.

The algorithm starts by applying the following rules to the given connected
graph G. These rules are such that if an instance (G′, k′) is reduced from (G, k)
and (G′, k′) is a “yes”-instance, then (G, k) is also a “yes”-instance. The converse
does not necessarily hold – a “yes”-instance may be reduced to a “no”-instance.
In some rules, we mark certain vertices, that will be collected in the set S of
Lemma 1.

Rule 1. Let G be a connected graph with v ∈ V (G), X ⊆ V (G) such that X is a
connected component of G− v and X ∪{v} is a clique. Then remove all vertices
in X and incident edges. Reduce k by 1 if |X | is odd, otherwise leave k the same.
Do not mark any vertices.

Rule 2. Let G be a connected graph reduced by Rule 1 with v ∈ V (G) such that
for all connected components X of G − v, except possibly one, X is a clique.
Then remove v and all incident edges, and all vertices in X and incident edges,
for every connected component X of G−v which is a clique. Mark v, and reduce
k by 2t− 1, where t is the number of connected components of G − v removed.
(Only apply this rule if t ≥ 1.)

Max-Cut above Edwards-Erdős Bound 247

Rule 3. Let G be a connected graph with x, y ∈ V (G) such that {x, y} /∈ E(G),
and for all connected components X of G−{x, y}, except possibly one, X ∪ {x}
and X ∪ {y} are cliques. Then remove {x, y} ∪ X for any clique X satisfying
these conditions. Mark x and y, and reduce k by 3t − 2, where t is the number
of connected components of G− {x, y} removed. (Only apply this rule if t ≥ 1.)

Rule 4. Let G be a connected graph with a, b, c ∈ V (G) such that {a, b}, {b, c} ∈
E(G), {a, c} /∈ E(G), and G−{a, b, c} is connected. Then mark a,b,c, and remove
a,b,c and incident edges, and reduce k by 1.

These rules can be applied exhaustively in polynomial time, as each rule reduces
the number of vertices in G, and for each rule we can check for any applications
of that rule by trying every set of at most three vertices in V (G), and examining
the connected components of the graph when those vertices are removed.

Lemma 2. Let (G, k) and (G′, k′) be instances of Max-Cut-AEE such that
(G′, k′) is reduced from (G, k) by an application of Rules 1, 2, 3 and 4. Then G′

is connected, and if (G′, k′) is a “yes”-instance of Max-Cut-AEE then so is
(G, k).

Proof. First, we show that G′ is connected. For Rule 1, observe that for s, t ∈
V (G) \ X , no path between s and t passes through X , so G−X is connected.
For Rules 2 and 3, observe that we remove some vertices together with all but
at most one of the connected components in the resulting graph, so we are left
with a single component. For Rule 4, the conditions explicitly state that we only
apply the rule if the resulting graph is connected.

Second, we prove separately for each rule the following claim, in which n′

denotes the number of vertices and m′ the number of edges removed by the rule.

Any assignment to the vertices of G′ can be extended to an

assignment on G that cuts an additional m′
2 + n′

4 + k−k′
4 edges.

(�)

The proofs for Rules 2 and 3 are omitted due to length; their proofs are similar
to Rule 1 but more complicated.

Rule 1: Since v is the only vertex connecting X to the rest of the graph, any
assignment to G′ can be extended to one which is optimal on X ∪ {v}. (Indeed,
let α be an optimal coloring of G[X ∪ {v}], and let α′ be the α with all colors
reversed. Both α and α′ are optimal colorings of G[X∪{v}], and one of these will
agree with the coloring we are given on G′ since the only overlap is v.) Observe

that n′ = |X | and m′ = |X|(|X|+1)
2 , since the edges we remove form a clique

including v, and all vertices in the clique except v are removed.

If |X | is even then the maximum cut of the clique X ∪ {v} has size |X|
2 (|X|

2 +

1) = |X|(|X|+2)
4 = |X|(|X|+1)

4 + |X|
4 = m′

2 + n′
4 , which is what we require as k is

unchanged in this case.
If |X | is odd then the maximum cut of the clique X ∪ {v} has size

(|X|+1)
2

(|X|+1)
2 = |X|(|X|+2)

4 + 1
4 = m′

2 + n′
4 + 1

4 , which is what we require as
we reduce k by 1 in this case.

248 R. Crowston, M. Jones, and M. Mnich

Rule 4: Observe that n′ = 3 and m′ = 2 + |E(G′, {a, b, c})|. Consider two
colorings α, α′ of {a, b, c}: α(a) = α(c) = red, α(b) = blue, and α′(a) = α′(c) =
blue, α′(b) = red. Both these colorings satisfy edges {a, b} and {b, c}, and at least
one of them will satisfy at least half the edges between {a, b, c} and G′. Therefore,
the number of satisfied edges incident with {a, b, c} is at least 2+ |E(G′,{a,b,c})|

2 =
m′
2 + n′

4 + 1
4 .

This concludes the proof of the claim (�).
We now know that any assignment on G′ can be extended to an assignment

on G that cuts an additional m′
2 + n′

4 + k−k′
4 edges. Hence, if G′ has a cut of size

|E(G′)|
2 + |V (G′)|−1

4 + k′
4 , then G has a cut of size m−m′

2 + n−n′−1
4 + k′

4 + m′
2 +

n′
4 + k−k′

4 = m
2 + n−1

4 + k
4 . Therefore, if (G

′, k′) is a “yes”-instance then so is
(G, k). ��

Lemma 3. To any connected graph G with at least one edge, at least one of
Rules 1–4 applies.

Proof. The full proof is omitted due to length; we give an outline.
Suppose that G is reduced by Rules 1, 2, and 3. We show that there exist

a, b, c ∈ V (G) such that {a, b}, {b, c} ∈ E(G) but {a, c} /∈ E(G) and G−{a, b, c}
is connected, that is, Rule 4 applies.

Observe that if G does not contain a set of vertices a, b, c such that
{a, b}, {b, c} ∈ E(G) and {a, c} /∈ E(G), then G is a clique and so Rule 1 applies.
So such a set a, b, c must exist, and our only problem is if every such set a, b, c
disconnects the graph. Assuming G is not a clique, it is possible to find a set of
vertices a, b, c such that {a, b}, {b, c} ∈ E(G), {a, c} /∈ E(G), and at most one
component of G\{a, b, c} is not a clique. Reduction Rules 1, 2, and 3 impose
restrictions on the edges between a, b, c and the clique components of G\{a, b, c}
(for example, every clique component in G\{a, b, c} must be adjacent to at least
two vertices of a, b, c), and we can use these restrictions to find a set of vertices
satisfying Reduction Rule 4. ��

Lemma 4. Let G be a connected graph and let S ⊆ V (G) be the set of vertices
that are marked after applying Rules 1–4 exhaustively to G; then every component
of G− S is a block graph.

Proof. The complete proof is omitted due to length; we give an outline.
We proceed by induction on the number of applications of a reduction rule.

By Lemma 3, a graph to which Rules 1, 2, 3 and 4 do not apply contains no
edges, and is therefore a block graph. (In fact by Lemma 2, such a graph is also
connected, and therefore consists of a single vertex.) This handles the base case.
For the inductive step, it can be shown that for each reduction rule, if G′ is
reduced by an application of that rule from G, and G′−S is a block graph, then
so is G− S. ��

Putting Lemmas 2 and 4 together, we can now prove Lemma 1.

Proof (Proof of Lemma 1). Apply Rules 1, 2, 3 and 4 exhaustively, and let S
be the set of vertices which are marked after doing this. By Lemma 4, every

Max-Cut above Edwards-Erdős Bound 249

connected component in G − S is a block graph. Therefore, if |S| < 3k we are
done. It remains to show that if |S| ≥ 3k then G has an assignment that satisfies
at least m

2 + n−1
4 + k

4 edges.
So suppose that |S| ≥ 3k. Let (G′, k′) be the instance obtained from (G, k)

by exhaustively applying Rules 1, 2, 3 and 4. Observe that every time k is
reduced, at most three vertices are marked. Therefore since at least 3k vertices
are marked, we have k′ ≤ 0. But since the Edwards-Erdős bound holds for all
connected graphs, (G′, k′) is a “yes”-instance. Therefore, by Lemma 2, (G, k) is
a “yes”-instance, as required. ��

We now show that, for a given assignment to S, we can efficiently find an optimal
extension to G − S. For this, we consider the following generalisation of Max-

Cut where each vertex has an associated weight for each part of the partition.
These weights may be taken as an indication of how much we would like the
vertex to appear in each part.

Max-Cut-with-Weighted-Vertices

Instance: A graph G with weight functions w0 : V (G) → N0

and w1 : V (G) → N0, and an integer t ∈ N.

Question: Does there exist an assignment f : V → {0, 1} such
that

∑
xy∈E |f(x)−f(y)|+

∑
f(x)=0w0(x)+

∑
f(x)=1w1(x) ≥ t?

Now Max-Cut is the special case of Max-Cut-with-Weighted-Vertices

in which G is connected and w0(x) = w1(x) = 0 for all x ∈ V (G).

Lemma 5. Max-Cut-with-Weighted-Vertices is solvable in polynomial
time when G is a block graph.

Proof. The full proof is omitted due to length; we give an outline.
For each vertex x let ε(x) = w1(x) − w0(x). If G is a clique, we can solve

the problem in polynomial time by numbering the vertices x1, . . . xn such that
if i < j then ε(xi) ≥ ε(xj). Then there is an optimal assignment in which xi is
assigned 1 for every i ≤ t, and xi is assigned 0 for every i > t, for some 0 ≤ t ≤ n.
We therefore find the optimal assignment by trying each value of t.

We may use this approach to reduce the problem when G is not a clique.
Find a block C for which only one vertex r ∈ V (C) is adjacent to any vertex
in V (G)\V (C). Then we may reduce the problem by removing V (C)\r, and
changing wi(r) to the value of the optimal solution on C for which f(r) = i. ��

We are ready to prove Theorem 1, and show that Max-Cut-AEE is fixed-
parameter tractable.

Proof (of Theorem 1). By Lemma 1, we can in polynomial time either decide
that G has an assignment that satisfies at least m

2 + n−1
4 + k

4 edges, or find a
set S of at most 3k vertices in G such that G − S is a block graph. So assume
we have found such an S. Then we transform our instance into at most 23k

instances of Max-Cut-with-Weighted-Vertices, such that the answer to

250 R. Crowston, M. Jones, and M. Mnich

our original instance is “yes” if and only if the answer to at least one of the
instances of Max-Cut-with-Weighted-Vertices is “yes”, and in eachMax-

Cut-with-Weighted-Vertices instance the graph is a block graph. As each
of these instances can be solved in polynomial time by Lemma 5, we have a
fixed-parameter tractable algorithm.

For every possible coloring of the vertices in S, we construct one of the in-
stances of Max-Cut-with-Weighted-Vertices as follows. For every vertex
x ∈ G − S, let w0(x) equal the number of vertices in S adjacent to x which
are colored blue, and let w1(x) equal the number of vertices in S adjacent to x
which are colored red. Then remove the vertices of S from G. By Lemma 1, each
component of the resulting graph G′ is a block graph. Let m′ be the number
of edges in G − S, let n′ be the number of vertices in G − S, and let p be the
number of edges within S satisfied by the assignment to S. Then for an assign-
ment to the vertices of G−S, the total number of satisfied edges in G would be
exactly

∑
xy∈E(G−S) |f(x)− f(y)|+ p+

∑
f(x)=0w0(x) +

∑
f(x)=1w1(x), where

f : V (G) \ S → {0, 1} is such that f(x) = 0 if x is colored red, and f(x) = 1 if
x is colored blue. Thus, the assignment to S can be extended to one that cuts
at least m

2 + n−1
4 + k

4 edges in G if and only if the instance of Max-Cut-with-

Weighted-Vertices is a “yes”-instance with t = m
2 + n−1

4 + k
4 − p. ��

4 Polynomial Kernel for Max-Cut above Edwards-Erdős

In this section, we prove Theorem 3. By Lemma 1, in polynomial time we can
either decide that (G, k) is a “yes”-instance, or find a set S of vertices in G such
that |S| < 3k and G − S is a block graph. In what follows we assume we have
found such a set S.

Observe that we can find all blocks in G−S in polynomial time. Indeed, if X
is a clique on at least 2 vertices then any vertex not in X which is adjacent to
two or more members of X is part of a block containing X , and there is only
one such block. Therefore, we can find all the blocks by expanding greedily from
each edge in G− S.

Let C1, . . . , Cn∗ be the blocks in G− S. Let J be the set of vertices in G− S
which occur in two or more blocks. For each i ∈ {1, . . . , n∗} let Ai = Ci − J .

We first apply the following reduction rules.

Rule 5. Let G be a connected graph with v ∈ V (G), X ⊆ V (G) such that X is a
connected component of G− v and X ∪{v} is a clique. Then remove all vertices
in X and incident edges. Reduce k by 1 if |X | is odd, otherwise leave k the same.

Note that Reduction Rule 5 is the same as Reduction Rule 1, which we used to
find the set S.

Rule 6. Suppose there exists a vertex x ∈ G − S and a set of vertices X ⊆
V (G) \ S such that X ∪ {x} is a clique and X is a connected component of
G− (S ∪{x}), and there is exactly one vertex s ∈ S which is adjacent to X, and
X ∪{s} is a clique. Then remove all but one vertex from X, and incident edges.
Reduce k by 1 if |X | is even, otherwise leave k the same.

Max-Cut above Edwards-Erdős Bound 251

Rule 7. Suppose there exist vertex sets X,Y ⊆ G − S such that X and Y are
maximal odd cliques, with vertices x ∈ X, y ∈ Y, {z} = X ∩ Y , such that x, z are
the only vertices in X adjacent to a vertex in G−X, and y, z are the only vertices
in Y adjacent to a vertex in G−Y . Then remove all vertices in (X∪Y)−{x, y, z}
and incident edges, and add new vertices u, v, and edges such that {x, y, z, u, v}
is a clique. Do not change k.

Rule 8. Suppose for some block Ci in G − S, there exists X ⊆ Ai such that

|X | > |Ai|+|J|+|S|
2 and for all x, y ∈ X, x and y have exactly the same neighbors

in S. Then remove any two vertices from X and incident edges. Do not change k.

The complete proof of Theorem 3 is omitted due to length; instead we give a
brief outline.

We first show that Reduction Rules 5, 6, 7 and 8 are valid; we then assume
G is reduced by these rules. We show that for any “no”-instance, the number of
blocks in G\S is O(k2), and for each block, the number of vertices in that block
is O(k3).

We show the bound on the number of blocks by a probabilistic argument.
Suppose a block Ci contains at most one vertex in J . For such a graph, given
a random coloring on S, we can expect to achieve at least an extra 1

4 above
the Edwards-Erdős bound in the graph consisting of edges between vertices in
Ai and between Ai and S. So if the number of blocks is big enough we have a
“yes”-instance. Otherwise, we have a bound on the number of blocks with one
vertex in J , and using this we can limit the total number of blocks in G\S.

To limit the number of vertices in a block Ci, we show that if there there exist
X1, X2 ⊆ Ci such that X1, X2 are large enough and some s ∈ S is adjacent to all
vertices in X1 and no vertices in X2, then by coloring S to exploit this distinction
we can satisfy enough edges in E(S,Ci) to ensure that we have a “yes”-instance.
It then follows that if Ci is large enough but G is a “no”-instance then a large
number of vertices in Ci have exactly the same neighbourhood in S, and we
would have an application of Rule 8.

Putting the limits on the number of vertices in a block together with the
number of block in G\S gives us a bound of O(k5) on the number of vertices
in G.

5 Discussion and Open Problems

We showed fixed-parameter tractability of Max-Cut parameterized above the
Edwards-Erdős bound m/2 + (n− 1)/4, and thereby resolved an open question
from [7, 14, 22, 23, 27]. Furthermore, we showed that the problem has a kernel
with O(k5) vertices and the “edge version” of the bound admits a kernel of
size O(k3). We have not attempted to optimize running time or kernel size, and
indeed we conjecture that Max-Cut has a kernel with O(k3) vertices and the
edge version admits a linear kernel.

It remains an open problem whether the weighted version of Max-Cut above
the Edwards-Erdős bound is fixed-parameter tractable; our conjecture is that
this problem is also fixed-parameter tractable with a polynomial kernel.

252 R. Crowston, M. Jones, and M. Mnich

The problem Max-Bisection is a variant of Max-Cut in which we seek
a cut such that the number of vertices in both sides of the bipartition is as
equal as possible. The the tight lower bound on the bisection size in terms of m
is m/2. Fixed-parameter tractability of Max-Bisection above m/2 was shown
by Gutin and Yeo [14]. An improved bound lower bound in terms of m and n
is mn/2(n− 1). It is an open question whether Max-Bisection parameterized
above mn/2(n− 1) is fixed-parameter tractable.

Acknowledgment. We thank Tobias Friedrich and Gregory Gutin for help
with the presentation of the results. Part of this research has been supported by
an International Joint Grant from the Royal Society.

References

[1] Alon, N.: Bipartite subgraphs. Combinatorica 16(3), 301–311 (1996)
[2] Andersen, L.D., Grant, D.D., Linial, N.: Extremal k-colourable subgraphs. Ars

Combin. 16, 259–270 (1983)
[3] Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-

out polynomial kernels. J. Comput. System Sci. 75(8), 423–434 (2009)
[4] Bollobás, B., Scott, A.: Better bounds for Max Cut. In: Bollobás, B. (ed.) Contem-

porary Combinatorics. Bolyai Society Mathematical Studies, vol. 10, pp. 185–246
(2002)

[5] Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms.
J. Comput. System Sci. 67(4), 789–807 (2003)

[6] Charikar, M., Wirth, A.: Maximizing quadratic programs: Extending
Grothendieck’s inequality. In: Proc. FOCS 2004, pp. 54–60 (2004)

[7] Crowston, R., Fellows, M.R., Gutin, G., Jones, M., Rosamond, F., Thomassé, S.,
Yeo, A.: Simultaneously satisfying linear equations over F2: MaxLin2 and Max-r-
Lin2 parameterized above average. In: Proc. FSTTCS 2011. LIPICS, vol. 13, pp.
229–240 (2011)

[8] Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Com-
puter Science (1999)

[9] Edwards, C.S.: Some extremal properties of bipartite subgraphs. Canad. J.
Math. 25, 475–485 (1973)

[10] Edwards, C.S.: An improved lower bound for the number of edges in a largest
bipartite subgraph. In: Recent Advances in Graph Theory, pp. 167–181 (1975)

[11] Erdős, P.: On some extremal problems in graph theory. Israel J. Math. 3, 113–116
(1965)

[12] Erdős, P.: On even subgraphs of graphs. Mat. Lapok 18, 283–288 (1967)
[13] Erdős, P., Gyárfás, A., Kohayakawa, Y.: The size of the largest bipartite sub-

graphs. Discrete Maths 177, 267–271 (1997)
[14] Gutin, G., Yeo, A.: Note on maximal bisection above tight lower bound. Inform.

Process. Lett. 110(21), 966–969 (2010)
[15] Haglin, D.J., Venkatesan, S.M.: Approximation and intractability results for the

maximum cut problem and its variants. IEEE Trans. Comput. 40(1), 110–113
(1991)

[16] Hofmeister, T., Lefmann, H.: A combinatorial design approach to Max Cut. Ran-
dom Structures and Algorithms 9, 163–175 (1996)

Max-Cut above Edwards-Erdős Bound 253

[17] Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. System
Sci. 62(2), 367–375 (2001)

[18] Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, York-
town Heights, N.Y., 1972), pp. 85–103 (1972)

[19] Khot, S., O’Donnell, R.: SDP gaps and UGC-hardness for Max-Cut-Gain. Theory
Comput. 5, 83–117 (2009)

[20] Lehel, J., Tuza, Z.: Triangle-free partial graphs and edge covering theorems. Dis-
crete Math. 39(1), 59–65 (1982)

[21] Locke, S.C.: Maximum k-colorable subgraphs. J. Graph Theory 6(2), 123–132
(1982)

[22] Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and
MaxCut. Technical Report TR97-033. Electronic Colloquium on Computational
Complexity (1997), http://eccc.hpi-web.de/report/1997/033/

[23] Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed
values. J. Comput. System Sci. 75(2), 137–153 (2009)

[24] Ngo.c, N.V., Tuza, Z.: Linear-time approximation algorithms for the max cut prob-
lem. Combin. Probab. Comput. 2(2), 201–210 (1993)

[25] Poljak, S., Turźık, D.: A polynomial algorithm for constructing a large bipartite
subgraph, with an application to a satisfiability problem. Canad. J. Math. 34(3),
519–524 (1982)

[26] Poljak, S., Tuza, Z.: Maximum cuts and large bipartite subgraphs. In: Combinato-
rial Optimization, New Brunswick, NJ, 1992-1993. DIMACS Ser. Discrete Math.
Theoret. Comput. Sci., vol. 20, pp. 181–244 (1995)

[27] Sikdar, S.: Parameterizing from the Extremes: Feasible Parameterizations of some
NP-optimization problems. PhD thesis, The Institute of Mathematical Sciences,
Chennai, India (2010)

http://eccc.hpi-web.de/report/1997/033/

Clique Cover and Graph Separation:

New Incompressibility Results�

Marek Cygan1,��, Stefan Kratsch2,���, Marcin Pilipczuk3,†,
Micha�l Pilipczuk4,‡, and Magnus Wahlström5

1 IDSIA, University of Lugano, Switzerland
marek@idsia.ch

2 Utrecht University, Utrecht, the Netherlands
s.kratsch@uu.nl

3 Institute of Informatics, University of Warsaw, Poland
malcin@mimuw.edu.pl

4 Department of Informatics, University of Bergen, Norway
michal.pilipczuk@ii.uib.no

5 Max-Planck-Institute for Informatics, Saarbrücken, Germany
wahl@mpi-inf.mpg.de

Abstract. The field of kernelization studies polynomial-time prepro-
cessing routines for hard problems in the framework of parameterized
complexity. In this paper we show that, unless NP ⊆ coNP/poly and
the polynomial hierarchy collapses up to its third level, the following
parameterized problems do not admit a polynomial-time preprocessing
algorithm that reduces the size of an instance to polynomial in the pa-
rameter:

– Edge Clique Cover, parameterized by the number of cliques,

– Directed Edge/Vertex Multiway Cut, parameterized by the
size of the cutset, even in the case of two terminals,

– Edge/Vertex Multicut, parameterized by the size of the cutset,

– and k-Way Cut, parameterized by the size of the cutset.

The existence of a polynomial kernelization for Edge Clique Cover

was a seasoned veteran in open problem sessions. Furthermore, our re-
sults complement very recent developments in designing parameterized
algorithms for cut problems by Marx and Razgon [STOC’11], Bousquet
et al. [STOC’11], Kawarabayashi and Thorup [FOCS’11] and Chitnis
et al. [SODA’12].

� The full version of this paper is available online [1].
�� Partially supported by ERC Starting Grant NEWNET 279352 and Foundation for

Polish Science.
��� Supported by the Netherlands Organization for Scientific Research (N.W.O.),

project “KERNELS: Combinatorial Analysis of Data Reduction”.
† Partially supported by NCN grant N206567140 and Foundation for Polish Science.
‡ Partially supported by European Research Council (ERC) grant “Rigorous Theory
of Preprocessing”, reference 267959.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 254–265, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Clique Cover and Graph Separation 255

1 Introduction

In order to cope with the NP-hardness of many natural combinatorial problems,
various algorithmic paradigms such as brute-force, approximation, or heuristics
are applied. However, while the paradigms are quite different, there is a com-
monly used opening move of first applying polynomial-time preprocessing rou-
tines, before making sacrifices in either exactness or runtime. The aim of the field
of kernelization is to provide a rigorous mathematical framework for analyzing
such preprocessing algorithms. One of its core features is to provide quantitative
performance guarantees for preprocessing via the framework of parameterized
complexity, a feature easily seen to be infeasible in classical complexity (cf. [2]).

In the framework of parameterized complexity an instance x of a parame-
terized problem comes with an integer parameter k, formally, a parameterized
problem Q ⊆ Σ∗×N for some finite alphabet Σ. We say that a problem is fixed
parameter tractable (FPT) if there exists an algorithm solving any instance (x, k)
in time f(k)poly(|x|) for some (usually exponential) computable function f . It
is known that a problem is FPT iff it is kernelizable. A kernelization algorithm
(kernel for short) for a problem Q is a polynomial time preprocessing routine
that takes an instance (x, k) and in time polynomial in |x|+k produces an equiv-
alent instance (x′, k′) (i.e., (x, k) ∈ Q iff (x′, k′) ∈ Q) such that |x′|+ k′ ≤ g(k)
for some computable function g. The function g is the size of the kernel, and if
it is polynomial, we say that Q admits a polynomial kernel. If g is small, after
preprocessing even an exponential-time brute-force algorithm might be feasible.
Therefore small kernels, with g being linear or polynomial, are of big interest.

Although polynomial kernels for a wide range of problems have been devel-
oped for the last few decades (see the surveys of Guo and Niedermeier [3] and
Bodlaender [4]), a framework for proving kernelization lower bounds was discov-
ered only three years ago by Bodlaender et al. [5], with the backbone theorem
proven by Fortnow and Santhanam [6]. The crux of the framework is the follow-
ing idea of a composition. Assume we are able to combine in polynomial time an
arbitrary number of instances x1, x2, . . . , xt of an NP-complete problem L into a
single instance (x, k) of a parameterized problem Q ∈ NP such that (x, k) ∈ Q
if and only if one of the instances xi is in L, while k is bounded polynomially
in maxi |xi|. If such a composition algorithm was pipelined with a polynomial ker-
nel for the problem Q, we would obtain an OR-distillation of the NP-complete
language L: the resulting instance is of size polynomial in maxi |xi|, possibly
significantly smaller than t, but encodes a disjunction of all input instances xi
(i.e., an OR-distillation is a compression of the logical OR of the instances). As
proven by Fortnow and Santhanam [6], existence of such an algorithm would
imply NP ⊆ coNP/poly, which is known to cause a collapse of the polynomial
hierarchy to its third level [7,8].

The astute reader may have noticed that the above description of a composi-
tion is actually using the slightly newer notion of a cross-composition [9]. This
generalization of the original lower bound framework will be the main ingredient
of our proofs. The framework of kernelization lower bounds was also extended by
Dell and van Melkebeek [10] to allow excluding kernels of particular exponent in

256 M. Cygan et al.

the polynomial. Recently, Dell and Marx [11] and, independently, Hermelin and
Wu [12] simplified this approach and applied it to various packing problems.

The aforementioned (cross-)composition algorithm is sometimes called anOR-
composition, as opposed to an AND-composition, where we require that the
output instance (x, k) is in Q if and only if all input instances belong to L.
Various problems have been shown to be AND-compositional, with the most
important example being the problem of determining whether an input graph
has treewidth no larger than the parameter [5]. It is conjectured [5] that no
NP-complete problem admits an AND-distillation, which would be the result of
pipelining an AND-composition with a polynomial kernel. However, it is now a
major open problem in the field of kernelization to support this claim with a
proof based on a plausible complexity assumption.

Although the framework of kernelization lower bounds has been applied suc-
cessfully multiple times over the last three years, there are still many important
problems where the existence of a polynomial kernel is widely open. The reason
for this situation is that an application of the idea of a composition (or appro-
priate reductions, see [13]) is far from being automatic. To obtain a composition
algorithm, usually one needs to carefully choose the starting language L (for
example, the choice of the starting language is crucial for compositions of Dell
and Marx [11], and the core idea of the composition algorithms for connectiv-
ity problems in degenerate graphs [14] is to use Graph Motif as a starting
point) or invent sophisticated gadgets to merge the instances (for example, the
colors and IDs technique introduced by Dom et al. [15] or the idea of an instance
selector, used mainly for structural parameters [9,16]).

Our results. The main contribution of this paper is a proof of non-existence of
polynomial kernels for four important problems.

Theorem 1. Unless NP ⊆ coNP/poly, Edge Clique Cover, parameterized by
the number of cliques, as well as Directed Multiway Cut, Multicut and
k-Way Cut, parameterized by the size of the cutset, do not admit polynomial
kernelizations.

The common theme of our compositions is a very careful choice of starting prob-
lems. Not only do we select particular NP-complete problems, but we also restrict
instances given as the input, to make them satisfy certain conditions that allow
designing cross-compositions. Each time we constrain the set of input instances
of an NP-complete problem we need to prove that the problem remains NP-
complete. Even though this paper is about negative results, in our constructions
we use intuition derived from the design of parameterized algorithms techniques,
including iterative compression (in case of Edge Clique Cover) introduced
by Reed et al. [17] and important separators (in case of Multicut) defined by
Marx [18].

For the three cut problems listed in Theorem 1 our kernelization hardness
results complement very recent developments in the design of algorithm param-
eterized by the size of the cutset [19,20,21,22]. In this extended abstract we give
some motivation and related work for each of the four problems, and informally

Clique Cover and Graph Separation 257

describe the compositions algorithms. For detailed proofs, as well as a more
thorough description of motivation and related work, see the full version [1].

Edge clique cover. In the Edge Clique Cover problem the goal is to cover the
edges of an input graph G with at most k cliques all of which are subgraphs of G.
This problem, NP-complete even in very restricted graph classes, is also known
as Covering by Cliques (GT17), Intersection Graph Basis (GT59) [23]
and Keyword Conflict [24]. It has multiple applications in various areas in
practice, such as computational geometry [25], applied statistics [26,27], and
compiler optimization [28].

From the point of view of parameterized complexity, Edge Clique Cover

was extensively studied by Gramm et al. [29]. A simple kernelization algorithm
is known that reduces the size of the graph to at most 2k vertices; the best
known fixed-parameter algorithm is a brute-force search on the 2k-vertex ker-
nel. The question of a polynomial kernel for Edge Clique Cover, probably
first verbalized by Gramm et al. [29], was repeatedly asked in the parameterized
complexity community, for example on the last Workshop on Kernels (WorKer,
Vienna, 2011). We show that Edge Clique Cover is both AND- and OR-
compositional (i.e., both an AND- and an OR-composition algorithm exist for
some NP-complete input language L), thus the existence of a polynomial kernel
would both cause a collapse of the polynomial hierarchy as well as violate the
AND-conjecture. To the best of our knowledge, this is the first natural parame-
terized problem that is known to admit both an AND- and an OR-composition.

Multicut and directed multiway cut. With Multicut and Directed Multi-

way Cut we move on to the family of graph separation problems. The central
problems of this area are two natural generalizations of the s − t cut problem,
namely Multiway Cut and Multicut. In the first problem we are given a
graph G with designated terminals and we are to delete at most p edges (or
vertices, depending on the variant) so that the terminals remain in different
connected components. In the Multicut problem we consider a more general
setting where the input graph contains terminal pairs and we need to separate
all pairs of terminals. The graph separation problems became one of the most
important subareas in parameterized complexity after Marx introduced the con-
cept of important separators [18]. This technique turns out to be very robust,
and is now a key ingredient in fixed-parameter algorithms for several problems.

Although the picture of the fixed-parameter tractability of the graph sepa-
ration problems becomes more and more complete, very little is known about
polynomial kernelization. Very recently, Kratsch and Wahlström came up with
a genuine application of matroid theory to graph separation problems. They
were able to obtain randomized polynomial kernels for Odd Cycle Transver-

sal [30], Almost 2-SAT, and Multiway Cut and Multicut restricted to a
bounded number of terminals, among others [31]. We are not aware of any other
results on kernelization of the graph separation problems.

258 M. Cygan et al.

We prove that Directed Multiway Cut, even in the case of two termi-
nals, as well as Multicut, parameterized by the size of the cutset, are OR-
compositional, thus a polynomial kernel for any of these two problems would
cause a collapse of the polynomial hierarchy. In fact, in the full version [1] we
give two OR-compositions for Multicut: the constructions are very different
and the presented gadgets may inspire lower bounds for similar problems.

The k-way cut problem. The last part of this work is devoted to another gener-
alization of the s-t cut problem, but of a bit different flavor. The k-Way Cut

problem is defined as follows: given an undirected graph G and integers k and s,
remove at most s edges fromG to obtain a graph with at least k connected compo-
nents. This problem has applications in numerous areas of computer science, such
as finding cutting planes for the traveling salesman problem, clustering-related
settings (e.g., VLSI design) or network reliability [32]. In general, k-Way Cut is
NP-complete [33] but solvable in polynomial time for fixed k: a long line of research
led to a deterministic algorithm running in timeO(mn2k−2) [34]. The dependency
on k in the exponent is probably unavoidable: from the parameterized perspec-
tive, the k-WayCut problem parameterized by k isW [1]-hard [35]. Moreover, the
node-deletion variant is alsoW [1]-hard when parameterized by s [18]. Somewhat
surprisingly, in 2011 Kawarabayashi and Thorup presented a fixed-parameter al-
gorithm for (edge-deletion) k-Way Cut parameterized by s [22]. In this paper
we complete the parameterized picture of the edge-deletion k-Way Cut problem
parameterized by s by showing that it is OR-compositional and, therefore, a poly-
nomial kernel is unlikely to exist.

2 Preliminaries

We here informally summarize the kernelization lower bounds framework; see
the full version [1] for formal definitions.

We use the cross-composition technique due to Bodlaender et al. [9]. Let L be
a (classical) language, and Q be a parameterized one. We first split instances of L
into equivalence classes of a polynomially-computable relation (called polynomial
equivalence relation) that partitions all instances of size n into nO(1) equivalence
classes (e.g., we may partition the input graphs according to the number of their
vertices and edges). Within each equivalence class, we exhibit a polynomial-time
cross-composition algorithm that, given t instances x1, x2, . . . , xt of L, produces
one instance (x∗, k∗) of Q such that k∗ is bounded polynomially in maxi |xi|
and (x∗, k∗) ∈ Q iff at least one instance xi belongs to L. If such a composition
is pipelined with a polynomial kernelization algorithm for Q, we obtain a very
efficient distillation algorithm for the language L: by the result of Fortnow and
Santhanam [6], L belongs to coNP/poly. Thus, if L is NP-complete, we obtain
NP ⊆ coNP/poly and a collapse of the polynomial hierarchy.

If we assume that the output instance (x∗, k∗) ∈ Q iff all input instances xi
belong to L, we obtain an AND-cross-composition. It is conjectured (the so-called
AND-conjecture [5]) that no NP-complete problem admits an AND-distillation,
obtained by pipelining such an AND-cross-composition and a polynomial kernel.

Clique Cover and Graph Separation 259

3 Clique Cover

Edge Clique Cover

Input: An undirected graph G and an integer k.
Task: Does there exist a set of k subgraphs of G, such that each subgraph is
a clique and each edge of G is contained in at least one of these subgraphs?

In this section we present both a cross-composition and an AND-cross-
composition of Edge Clique Cover parameterized by k. We start with the
AND-cross-composition since the construction we present is also used in the
cross-composition.

3.1 AND-Cross-Composition

Theorem 2. Edge Clique Cover AND-cross-composes to Edge Clique

Cover parameterized by k.

Proof (sketch). For the equivalence relation we take a relation that puts two
instances (G1, k1), (G2, k2) of Edge Clique Cover into the same equivalence
class iff k1 = k2 and the number of vertices in G1 is equal to the number of
vertices in G2. Therefore, in the rest of the proof we assume that we are given
a sequence (Gi, k)

t−1
i=0 of Edge Clique Cover instances that are in the same

equivalence class (to avoid confusion we number everything starting from zero in
this proof). Let n be the number of vertices in each of the instances. By adding
isolated vertices in the instances and duplicating some instances we may ensure
that n = 2hn and t = 2ht for some integers hn and ht.

Now we construct an instance (G∗, k∗), where k∗ is polynomial in n+ k+ ht.
Initially as G∗ we take a disjoint union of graphs Gi for i = 0, . . . , t − 1 with
added edges between every pair of vertices from Ga and Gb for a �= b. Next,
in order to cover all the edges between different instances with few cliques we
introduce the following construction. Let us assume that the vertex set of Gi

is Vi = {vi0, . . . , vin−1}. For each 0 ≤ a < n, for each 0 ≤ b < n and for each 0 ≤
r < ht we add to G∗ a vertex w(a, b, r) which is adjacent to exactly one vertex
in each Vi, that is v

i
j where j = (a+b(i

2r)) mod n. By W we denote the set of all

added vertices w(a, b, r). As the new parameter k∗ we set k∗ = |W |+k = n2ht+k.
Note that W is an independent set of non-isolated vertices in G∗. As for

each w ∈ W the set NG∗ [w] induces a clique, we may assume that an optimal
clique cover of G∗ contains |W | cliques NG∗ [w] for w ∈ W . We observe that
these cliques cover no edges of Gi for any 0 ≤ i < t while covering all other
edges of G∗. Thus the remaining k cliques need to induce solutions for all input
instances. ��

As a consequence we obtain the following result.

Corollary 1. There is no polynomial kernel for the Edge Clique Cover prob-
lem parameterized by k unless the AND-conjecture fails.

260 M. Cygan et al.

3.2 Cross-Composition

In this section we show a cross-composition to Edge Clique Cover, which
we obtain by extending the AND-cross-composition gadgets from the previous
section. We cross-compose from a strengthened variant of the Edge Clique

Cover problem, proven to be NP-complete in the full version.

Compression Clique Cover

Input: An undirected graph G, an integer k and a set C of k + 1 cliques
in G covering all edges of G.
Task: Does there exist a set of k subgraphs of G, such that each subgraph
is a clique and each edge of G is contained in at least one of the subgraphs?

Theorem 3. Compression Clique Cover cross-composes to Edge Clique

Cover parameterized by k.

Proof (sketch). Similarly as in the proof of Theorem 2, we assume that we are
given a sequence (Gi, k, Ci)t−1

i=0 of Compression Clique Cover instances with
|V (Gi)| = n for each 0 ≤ i < t, and n = 2hn , t = 2ht .

We extend the construction from Theorem 2 by adding ht gadgets Dj , for 0 ≤
j < ht. Each gadget Dj is a 6-vertex clique with a perfect matching removed
and a vertex set partitioned into two halves Lj and Rj such that in each of the
three non-edges of Dj one endpoint is in Lj and the second in Rj . For each
instance (Gi, k, Ci) we connect the vertices of Gi to Lj if the j-th bit of the
index i equals zero and to Rj otherwise. Moreover, we add simplicial vertices
similar to the vertices w(a, b, r) to cover the edges connecting the gadgets Dj

with the graphs Gi. The requested number of cliques is: one for each simplicial
vertex, four for each gadget Dj , and additional k cliques.

The key observation is that there are only

Lj Rj

Fig. 1. One of the two optimal
ways to cover the edges of a gad-
get Dj with four cliques

two reasonable ways to cover the edges of the
gadget Dj (see Figure 1). We first choose three
triangles to cover the edges between the halves L
and R. These three triangles contain vertices
both from L and R and, therefore, cannot con-
tain any other vertex outside Dj . The fourth
clique contains the entire set L or the entire
set R and may contain other vertices in the in-
stances Gi connected to the chosen set (L or R).
Thus, each gadgets Dj grants an extra clique to all instances with j-th bit set to
zero or one. We infer that there is exactly one instance Gi left where the edges
need to be covered by the remaining k cliques. ��

Corollary 2. There is no polynomial kernel for the Edge Clique Cover prob-
lem parameterized by k unless NP ⊆ coNP/poly.

Clique Cover and Graph Separation 261

4 Directed Multiway Cut

Directed Edge (Vertex) Multiway Cut

Input: A digraph G = (V,A), a set of terminals T ⊆ V and an integer p.
Task: Does there exist a set S of at most p arcs in A (p vertices in V \ T),
such that in G \ S there is no path between any pair of terminals in T ?

It is well known that the edge- and vertex-deletion variants are equivalent
(cf. [20]). Further, in the node-deletion variant we may assume that a set V∞ ⊇ T
is given, and the solution cutset needs to be disjoint with V∞: for any v ∈ V∞\T ,
we can replace v with a clique on p + 1 vertices. Hence we show a cross-
composition to Directed Vertex Multiway Cut with a set of undeletable
vertices V∞. We start from the following restricted variant of Directed Ver-

tex Multiway Cut, proven to be NP-complete in the full version.

Promised Directed Vertex Multiway Cut

Input: A digraph G = (V,A), two terminals T = {s1, s2}, a set of forbidden
vertices V∞ ⊇ T and an integer p. Moreover, after removing any set of at
most p/2 vertices of V \ V∞, both an s1s2-path and an s2s1-path remain.
Task: Does there exist a set S of at most p vertices in V \V∞, such that in
G \ S there is no s1s2-path nor s2s1-path?

Theorem 4. Promised Directed Vertex Multiway Cut cross-composes
into Directed Vertex Multiway Cut with two terminals, parameterized by
the size of the cutset p.

Proof (sketch). By choosing an appropriate equivalence relation, we assume
that we are given a sequence Ii = (Gi, Ti = {si1, si2}, V∞

i , p)ti=1 of Promised

Directed Vertex Multiway Cut instances. As the graph G′ we take the
disjoint union of all the graphs Gi and for each i = 1, . . . , t − 1, in G′ we iden-
tify the vertices si2 and si+1

1 . Let I ′ = (G′, {s11, st2},
⋃t

i=1 V
∞
i , p) be an instance

of Directed Vertex Multiway Cut. To see the correctness of this cross-
composition, observe that the crucial assumption that in the input instances
a p/2-cut cannot separate s1 from s2 in any direction ensures that a p-cut in
G′ can make any significant separation only in one input instance, and in this
instance it needs to separate both s11 from st2 and st2 from s11. ��
Corollary 3. Both Directed Vertex Multiway Cut and Directed Edge

Multiway Cut do not admit a polynomial kernel when parameterized by p
unless NP ⊆ coNP/poly, even in the case of two terminals.

5 Multicut

Edge (Vertex) Multicut

Input: An undirected graph G = (V,E), a set of pairs of terminals T =
{(s1, t1), . . . , (sk, tk)} and an integer p.
Task: Does there exist a set S ⊆ E (S ⊆ V) such that no connected com-
ponent of G \ S contains both vertices si and ti, for some 1 ≤ i ≤ k?

262 M. Cygan et al.

It is easy to see that the vertex version of the Multicut problem is at least
as hard as the edge version. In order to show a cross-composition into the Mul-

ticut problem parameterized by p we consider the following restricted variant
of the Multiway Cut problem with three terminals, which we prove to be
NP-complete in the full version.

Promised Multiway Cut

Input: An undirected graph G = (V,E), a set of three terminals T =
{s1, s2, s3} ⊆ V and an integer p. An instance satisfies: (i) deg(s1) =
deg(s2) = deg(s3) = d > 0, (ii) for each j = 1, 2, 3 and any non-empty
set X ⊆ V \ T we have |δ(X ∪ {sj})| > d, and (iii) d ≤ p < 2d.
Task: Does there exist a set S of at most p edges in E, such that in G \ S
there is no path between any pair of terminals in T ?

Condition (i) ensures that degrees of all the terminals are equal, whereas
condition (ii) guarantees that the set of edges incident to a terminal sj is the
only minimum size sj–(T \ {sj}) cut. Having both (i) and (ii), condition (iii)
verifies whether an instance is not a trivially YES- or NO-instance, because by
(i) and (ii) there is no solution of size less than d and removing all the edges
incident to two terminals always gives a solution of size at most 2d.

Theorem 5. Promised Multiway Cut cross-composes into Edge Multi-

cut parameterized by the size of the cutset p.

Proof (sketch). By choosing an appropriate relation and duplicating some input
instances, we assume that we are given a sequence of an odd number of Promised

Multiway Cut instances with equal cutset size p and terminal degree d.
We arrange the instances as

Fig. 2. Cross-composition for Multicut

on Figure 2: the empty and full
circles are the terminals of the
input instances, and the multi-
ple edges are of multiplicity d.
The empty circles are the ter-
minals of the constructed Edge

Multicut instance: we request
to separate a terminal from the
two terminals that lie on the
opposite side of the circle (de-
noted by dashed lines on Figure
2). The properties of Promised Multiway Cut ensures that the only way to
obtain a solution of size p′ = d + p is to solve one input instance and to cut an
opposite edge of multiplicity d. ��

Corollary 4. Multicut does not admit a polynomial kernel when parameter-
ized by p unless NP ⊆ coNP/poly.

A second (significantly different) cross-composition for Multicut is presented
in the full version [1].

Clique Cover and Graph Separation 263

6 k-Way Cut

k-Way Cut

Input: An undirected connected graph G and integers k and s.
Task: Does there exist a set X of at most s edges in G such that G \X has
at least k connected components?

Note that in the problem definition we assume that the input graph is con-
nected and, therefore, for k > s + 1 the input instances are trivial. However,
if we are given an instance (G, k, s) where G has c > 1 connected components,
we can easily reduce it to the connected version: we add to G a complete graph
on s+2 vertices (so that no two vertices of the complete graph can be separated
by a cut of size s), connect one vertex from each connected component of G to
all vertices of the complete graph, and decrease k by c− 1. Thus, by restricting
ourselves to connected graphs G we do not make the problem easier.

The main result of this section is that k-Way Cut, parameterized by s, does
not admit a polynomial kernel (unless NP ⊆ coNP/poly). We show a cross-
composition from the Clique problem, well-known to be NP-complete.

Clique

Input: An undirected graph G and an integer �.
Task: Does G contain a clique on � vertices as a subgraph?

Theorem 6. Clique cross-composes to k-Way Cut parameterized by s.

Proof (sketch). By defining the polynomial equivalence relation appropriately,
in the designed cross-composition we may assume that we are given t instances
(Gi, �) for 1 ≤ i ≤ t of the Clique problem with |V (Gi)| = n and |E(Gi)| = m
for all 1 ≤ i ≤ t.

We consider aweighted version of the k-WayCut problemwhere each edgemay
have a positive integer weight and the cutsetX needs to be of total weight atmost s.
We use three weights: light, medium and heavy; all weights in our construction are
polynomial inn andm. The weighted version can be reduced to the unweighted one
by replacing each vertex v by a huge cliqueHv and connecting cliquesHu andHv

with the number of edges equal to the weight of the edge uv.
The construction is as follows. The input instances have light edges. In each

input instance, between every two vertices we add an additional edge of medium
weight. Moreover, we introduce a root vertex r and connect it to each vertex
of the input instances with a heavy edge. We ask for k = n − � + 1 connected
components created by cutting n−� heavy edges,

(
n
2

)
−
(

2

)
medium edges andm−(

2

)
light edges.

The heavy edges ensure that in any solution, after removal of the cutset we
have one large connected component and n− � isolated vertices. The only way
to cut only

(
n
2

)
−
(

2

)
medium edges is to cut n − � isolated vertices from one

input instance. The budget for light edges forces us to leave from this particular
input instance a clique of size � in the large connected component. ��

264 M. Cygan et al.

Corollary 5. k-Way Cut parameterized by s does not admit a polynomial ker-
nel unless NP ⊆ coNP/poly.

7 Conclusion and Open Problems

We have shown that four important parameterized problems do not admit a
kernelization algorithm with a polynomial guarantee on the output size unless
NP ⊆ coNP/poly and the polynomial hierarchy collapses. We would like to
mention here some open problems very closely related to our work.

– The OR-composition for Directed Multiway Cut in the case of two ter-
minals excludes the existence of a polynomial kernel for most graph separa-
tion problems in directed graphs. There are two important cases not covered
by this result: one is the Multicut problem in directed acyclic graphs, and
the second is Directed Multiway Cut with deletable terminals.

– Both our OR-compositions for Multicut use a number of terminal pairs
that is linear in the number of input instances. Is Multicut parameterized
by both the size of the cutset and the number of terminal pairs similarly
hard to kernelize?

Acknowledgements. We would like to thank Jakub Onufry Wojtaszczyk for
some early discussions on the kernelization of the graph separation problems.

References

1. Cygan, M., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Clique cover
and graph separation: New incompressibility results. CoRR abs/1111.0570 (2011)

2. Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic
applications. SIAM J. Comput. 39(5), 1667–1713 (2010)

3. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
SIGACT News 38(1), 31–45 (2007)

4. Bodlaender, H.L.: Kernelization: New Upper and Lower Bound Techniques. In:
Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer,
Heidelberg (2009)

5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

6. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)

7. Cai, J., Chakaravarthy, V.T., Hemaspaandra, L.A., Ogihara, M.: Competing provers
yield improved Karp-Lipton collapse results. Inf. Comput. 198(1), 1–23 (2005)

8. Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. Theor.
Comput. Sci. 26, 287–300 (1983)

9. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique
for kernelization lower bounds. In: STACS 2011, pp. 165–176 (2011)

10. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. In: STOC 2010, pp. 251–260 (2010)

11. Dell, H., Marx, D.: Kernelization of packing problems. In: SODA 2012, pp. 68–81
(2012)

12. Hermelin, D., Wu, X.: Weak compositions and their applications to polynomial
lower bounds for kernelization. In: SODA 2012, pp. 104–113 (2012)

Clique Cover and Graph Separation 265

13. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and
disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)

14. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Kernelization Hard-
ness of Connectivity Problems in d-Degenerate Graphs. In: Thilikos, D.M. (ed.)
WG 2010. LNCS, vol. 6410, pp. 147–158. Springer, Heidelberg (2010)

15. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through Colors and iDs.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)

16. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for Treewidth: A
Combinatorial Analysis Through Kernelization. In: Aceto, L., Henzinger, M., Sgall,
J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg (2011)

17. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res.
Lett. 32, 299–301 (2004)

18. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3),
394–406 (2006)

19. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: STOC 2011, pp.
459–468 (2011)

20. Chitnis, R., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed
multiway cut parameterized by the size of the cutset. In: SODA 2012, pp. 1713–
1725 (2012)

21. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by
the size of the cutset. In: STOC 2011, pp. 469–478 (2011)

22. Kawarabayashi, K., Thorup, M.: The minimum k-way cut of bounded size is fixed-
parameter tractable. In: FOCS 2011, pp. 160–169 (2011)

23. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

24. Kellerman, E.: Determination of keyword conflict. IBM Technical Disclosure Bul-
letin 16(2), 544–546 (1973)

25. Agarwal, P.K., Alon, N., Aronov, B., Suri, S.: Can visibility graphs be represented
compactly? Discrete & Computational Geometry 12, 347–365 (1994)

26. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R., Piepho, H.P., Schmid, R.: Al-
gorithms for compact letter displays: Comparison and evaluation. Computational
Statistics & Data Analysis 52(2), 725–736 (2007)

27. Piepho, H.P.: An algorithm for a letter-based representation of all-pairwise com-
parisons. Journal of Computational and Graphical Statistics 13(2), 456–466 (2004)

28. Rajagopalan, S., Vachharajani, M., Malik, S.: Handling irregular ILP within con-
ventional VLIW schedulers using artificial resource constraints. In: CASES 2000,
pp. 157–164 (2000)

29. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Data reduction and exact algo-
rithms for clique cover. ACM Journal of Experimental Algorithmics 13 (2008)

30. Kratsch, S., Wahlström, M.: Compression via matroids: a randomized polynomial
kernel for odd cycle transversal. In: SODA 2012, pp. 94–103 (2012)

31. Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: New tools
for kernelization. In: CoRR abs/1111.2195 (2011)

32. Burlet, M., Goldschmidt, O.: A new and improved algorithm for the 3-cut problem.
Oper. Res. Lett. 21(5), 225–227 (1997)

33. Goldschmidt, O., Hochbaum, D.S.: A polynomial algorithm for the k-cut problem
for fixed k. Math. Oper. Res. 19(1), 24–37 (1994)

34. Thorup, M.: Minimum k-way cuts via deterministic greedy tree packing. In: STOC
2008, pp. 159–166 (2008)

35. Downey, R.G., Estivill-Castro, V., Fellows, M.R., Prieto, E., Rosamond, F.A.: Cut-
ting up is hard to do: the parameterized complexity of k-cut and related problems.
Electr. Notes Theor. Comput. Sci. 78, 209–222 (2003)

The Inverse Shapley Value Problem

Anindya De1,�, Ilias Diakonikolas1,��, and Rocco Servedio2,���

1 UC Berkeley
{anindya,ilias}@cs.berkeley.edu

2 Columbia University
rocco@cs.columbia.edu

Abstract. For f a weighted voting scheme used by n voters to choose between
two candidates, the n Shapley-Shubik Indices (or Shapley values) of f provide a
measure of how much control each voter can exert over the overall outcome of
the vote. Shapley-Shubik indices were introduced by Lloyd Shapley and Martin
Shubik in 1954 [SS54] and are widely studied in social choice theory as a measure
of the “influence” of voters. The Inverse Shapley Value Problem is the problem
of designing a weighted voting scheme which (approximately) achieves a desired
input vector of values for the Shapley-Shubik indices. Despite much interest in
this problem no provably correct and efficient algorithm was known prior to our
work.

We give the first efficient algorithm with provable performance guarantees for
the Inverse Shapley Value Problem. For any constant ε > 0 our algorithm runs
in fixed poly(n) time (the degree of the polynomial is independent of ε) and has
the following performance guarantee: given as input a vector of desired Shapley
values, if any “reasonable” weighted voting scheme (roughly, one in which the
threshold is not too skewed) approximately matches the desired vector of values
to within some small error, then our algorithm explicitly outputs a weighted vot-
ing scheme that achieves this vector of Shapley values to within error ε. If there
is a “reasonable” voting scheme in which all voting weights are integers at most
poly(n) that approximately achieves the desired Shapley values, then our algo-
rithm runs in time poly(n) and outputs a weighted voting scheme that achieves
the target vector of Shapley values to within error ε = n−1/8.

1 Introduction

In this paper we consider the common scenario in which each of n voters must cast a
binary vote for or against some proposal. What is the best way to design such a voting
scheme? 1 If it is desired that each of the n voters should have the same “amount of

� Research supported by NSF award CCF-1118083.
�� Research supported by a Simons Postdoctoral Fellowship.

��� Research supported in part by NSF awards CCF-0915929 and CCF-1115703.
1 Throughout the paper we consider only weighted voting schemes, in which the proposal

passes if a weighted sum of yes-votes exceeds a predetermined threshold. Weighted vot-
ing schemes are predominant in voting theory and have been extensively studied for many
years, see [EGGW07, ZFBE08] and references therein. In computer science language, we
are dealing with linear threshold functions (henceforth abbreviated as LTFs) over n Boolean
variables.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 266–277, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Inverse Shapley Value Problem 267

power” over the outcome, then a simple majority vote is the obvious solution. However,
in many scenarios it may be the case that we would like to assign different levels of
voting power to the n voters – perhaps they are shareholders who own different amounts
of stock in a corporation, or representatives of differently sized populations. In such a
setting it is much less obvious how to design the right voting scheme; indeed, it is far
from obvious how to correctly quantify the notion of the “amount of power” that a
voter has under a given fixed voting scheme. As a simple example, consider an election
with three voters who have voting weights 49, 49 and 2, in which a total of 51 votes
are required for the proposition to pass. While the disparity between voting weights
may at first suggest that the two voters with 49 votes each have most of the “power,”
any coalition of two voters is sufficient to pass the proposition and any single voter is
insufficient, so the voting power of all three voters is in fact equal.

Many different power indices (methods of measuring the voting power of individuals
under a given weighted voting scheme) have been proposed over the course of decades.
These include the Banzhaf index [Ban65], the Deegan-Packel index [DP78], the Holler
index [Hol82], and others (see the extensive survey of de Keijzer [dK08]). Perhaps
the best known, and certainly the oldest, of these indices is the Shapley-Shubik index
[SS54], which is also known as the index of Shapley values (we shall henceforth refer to
it as such). Informally, the Shapley value of a voter i among the n voters is the fraction
of all n! orderings of the voters in which she “casts the pivotal vote” (see [Rot88] for
much more on Shapley values). We shall work with the Shapley values throughout this
paper.

Given a particular weighted voting scheme (i.e. an n-variable linear threshold func-
tion), standard sampling-based approaches can be used to efficiently obtain highly ac-
curate estimates of the n Shapley values (see also the works of [Lee03, BMR+10]).
However, the inverse problem is much more challenging: given a vector of n desired
values for the Shapley values, how can one design a weighted voting scheme that
(approximately) achieves these Shapley values? This problem, which we refer to as
the Inverse Shapley Value Problem, is quite natural and has received considerable at-
tention; various heuristics and exponential-time algorithms have been proposed, e.g.
[APL07, FWJ08, dKKZ10, Kur11], but prior to our work no provably correct and effi-
cient algorithms were known.

Our Results. We give the first efficient algorithm with provable performance guaran-
tees for the Inverse Shapley Value Problem. Our results apply to “reasonable” voting
schemes; roughly, we say that a weighted voting scheme is “reasonable” if fixing a
tiny fraction of the voting weight does not already determine the outcome, i.e. if the
threshold of the linear threshold function is not too extreme. This seems to be a plau-
sible property for natural voting schemes. Roughly speaking, we show that if there is
any reasonable weighted voting scheme that approximately achieves the desired input
vector of Shapley values, then our algorithm finds such a weighted voting scheme. Our
algorithm runs in fixed polynomial time in n, the number of voters, for any constant
error parameter ε > 0. In a bit more detail, our first main theorem, stated informally, is
as follows (see Section 5 for Theorem 3 which gives a precise theorem statement):

Main Theorem (Arbitrary Weights, Informal Statement). There is a poly(n)-time
algorithm with the following properties: The algorithm is given any constant accuracy

268 A. De, I. Diakonikolas, and R. Servedio

parameter ε > 0 and any vector of n real values ã(1), . . . , ã(n). The algorithm has
the following performance guarantee: if there is any monotone increasing reasonable
LTF f(x) whose Shapley values are very close to the given values ã(1), . . . , ã(n), then
with very high probability the algorithm outputs v ∈ Rn, θ ∈ R such that the linear
threshold function h(x) = sign(v · x− θ) has Shapley values ε-close to those of f .

Our second main theorem gives an even stronger guarantee if there is a weighted
voting scheme with small weights (at most poly(n)) whose Shapley values are close to
the desired values. For this problem we give an algorithm which achieves 1/poly(n)
accuracy in poly(n) time. An informal statement of this result is (see Section 5 for
Theorem 4 which gives a precise theorem statement):

Main Theorem (Bounded Weights, Informal Statement). There is a poly(n,W)-
time algorithm with the following properties: The algorithm is given a weight bound
W and any vector of n real values ã(1), . . . , ã(n). The algorithm has the following
performance guarantee: if there is any monotone increasing reasonable LTF f(x) =
sign(w · x− θ) whose Shapley values are very close to the given values ã(1), . . . , ã(n)
and where eachwi is an integer of magnitude at mostW , then with very high probability
the algorithm outputs v ∈ Rn, θ ∈ R such that the linear threshold function h(x) =
sign(v · x− θ) has Shapley values n−1/8-close to those of f .

Discussion and Our Approach. At a high level, the Inverse Shapley Value Problem
that we consider is similar to the “Chow Parameters Problem” that has been the sub-
ject of several recent papers [Gol06, OS08, DDFS12]. The Chow parameters are an-
other name for the n Banzhaf indices; the Chow Parameters Problem is to output a
linear threshold function which approximately matches a given input vector of Chow
parameters. (To align with the terminology of the current paper, the “Chow Parameters
Problem” might perhaps better be described as the “Inverse Banzhaf Problem.”)

Let us briefly describe the approaches in [OS08] and [DDFS12] at a high level
for the purpose of establishing a clear comparison with this paper. Each of the pa-
pers [OS08, DDFS12] combines structural results on linear threshold functions with an
algorithmic component. The structural results in [OS08] deal with anti-concentration
of affine forms w · x − θ where x ∈ {−1, 1}n is uniformly distributed over the
Boolean hypercube, while the algorithmic ingredient of [OS08] is a rather straight-
forward brute-force search. In contrast, the key structural results of [DDFS12] are ge-
ometric statements about how n-dimensional hyperplanes interact with the Boolean
hypercube, which are combined with linear-algebraic (rather than anti-concentration)
arguments. The algorithmic ingredient of [DDFS12] is more sophisticated, employing
a boosting-based approach inspired by the work of [TTV08, Imp95].

Our approach combines aspects of both the [OS08] and [DDFS12] approaches. Very
roughly speaking, we establish new structural results which show that linear threshold
functions have good anti-concentration (similar to [OS08]), and use a boosting-based
approach derived from [TTV08] as the algorithmic component (similar to [DDFS12]).
However, this high-level description glosses over many “Shapley-specific” issues and
complications that do not arise in these earlier works; below we describe two of the
main challenges that arise, and sketch how we meet them in this paper.

The Inverse Shapley Value Problem 269

First Challenge: Establishing Anti-concentration with Respect to Non-Standard
Distributions. The Chow parameters (i.e. Banzhaf indices) have a natural definition in
terms of the uniform distribution over the Boolean hypercube {−1, 1}n. Being able to
use the uniform distribution with its many nice properties (such as complete indepen-
dence among all coordinates) is very useful in proving the required anti-concentration
results that are at the heart of [OS08]. In contrast, it is not a priori clear what is (or
even whether there exists) the “right” distribution over {−1, 1}n corresponding to the
Shapley values. In this paper we derive such a distribution μ over {−1, 1}n, but it is
much less well-behaved than the uniform distribution (it is supported on a proper sub-
set of {−1, 1}n, and it is not even pairwise independent). Nevertheless, we are able to
establish anti-concentration results for affine forms w · x − θ corresponding to linear
threshold functions under the distribution μ as required for our results. This is done
by showing that any linear threshold function can be expressed with “nice” weights,
and establishing anti-concentration for any “nice” weight vector by carefully combin-
ing anti-concentration bounds for p-biased distributions across a continuous family of
different choices of p (see Section 3 for details).

Second Challenge: Using Anti-concentration to Solve the Inverse Shapley
Problem. The main algorithmic ingredient that we use is a procedure from [TTV08].
Given a vector of values (E[f(x)xi])i=1,...,n (correlations between the unknown lin-
ear threshold function f and the individual input variables), it efficiently constructs a
bounded function g : {−1, 1}n → [−1, 1] which closely matches these correlations,
i.e. E[f(x)xi] ≈ E[g(x)xi] for all i. Such a procedure is very useful for the Chow
parameters problem, because the Chow parameters correspond precisely to the values
E[f(x)xi] – i.e. the degree-1 Fourier coefficients of f – with respect to the uniform dis-
tribution. (This correspondence is at the heart of Chow’s original proof [Cho61] show-
ing that the exact values of the Chow parameters suffice to information-theoretically
specify any linear threshold function; anti-concentration is used in [OS08] to extend
Chow’s original arguments about degree-1 Fourier coefficients to the setting of approx-
imate reconstruction.)

For the inverse Shapley problem, there is no obvious correspondence between the
correlations of individual input variables and the Shapley values. Moreover, without a
notion of “degree-1 Fourier coefficients” for the Shapley setting, it is not clear why
anti-concentration statements with respect to μ should be useful for approximate recon-
struction. We deal with both these issues by developing a notion of the degree-1 Fourier
coefficients of f with respect to distribution μ and relating these coefficients to the Shap-
ley values; see Section 2. 2 Armed with this notion, we prove a key result (Lemma 6)
saying that if the LTF f is anti-concentrated under distribution μ, then any bounded

2 We actually require two related notions: one is the “coordinate correlation coefficient”
Ex∼μ[f(x)xi], which is necessary for the algorithmic [TTV08] ingredient, and one is the
“Fourier coefficient” f̂(i) = Ex∼μ[f(x)Li], which is necessary for Lemma 6. We define both
notions and establish the necessary relations between them in Section 2.

We note that Owen [Owe72] has given a characterization of the Shapley values as a weighted
average of p-biased influences (see also [KS06]). However, this is not as useful for us as our
characterization in terms of “μ-distribution” Fourier coefficients, because we need to ultimately
relate the Shapley values to anti-concentration with respect to μ.

270 A. De, I. Diakonikolas, and R. Servedio

function g which closely matches the degree-1 Fourier coefficients of f must be close
to f in �1-measure with respect to μ. (This is why anti-concentration with respect to μ
is useful for us.) From this point, exploiting properties of the [TTV08] algorithm, we
can pass from g to an LTF whose Shapley values closely match those of f .

Organization. Because of space constraints most proofs are deferred to the full version.
In Section 2 we define the distribution μ and the notions of Fourier coefficients and
“coordinate correlation coefficients,” and the relations between them, that we will need.
At the end of that section we prove a crucial lemma, Lemma 6, which says that anti-
concentration of affine forms and closeness in Fourier coefficients together suffice to
establish closeness in �1 distance. Section 3 proves that “nice” affine forms have the
required anti-concentration, and Section 4 describes the algorithmic tool from [TTV08]
that lets us establish closeness of coordinate correlation coefficients. Section 5 puts the
pieces together to prove our main theorems.

2 Reformulation of Shapley-Shubik Indices

Given f : {−1, 1}n → {−1, 1}, we will denote by f̃(i) the i-th Shapley value of f .
The original definition of Shapley values is somewhat cumbersome to work with. In
this section we derive alternate characterizations of Shapley values in terms of “Fourier
coefficients” and “coordinate correlation coefficients” and establish various technical
results relating Shapley values and these coefficients; these technical results will be
crucially used in the proof of our main theorems.

There is a particular distribution μ that plays a central role in our reformulations. We
start by defining this distribution μ and introducing some relevant notation, and then
give our results. Because of space constraints all proofs are deferred to the full version.

The Distribution μ. Let us defineΛ(n) :=
∑

0<k<n
1
k +

1
n−k ; clearly we haveΛ(n) =

Θ(log n), and more precisely we have Λ(n) ≤ 2 logn. We also define Q(n, k) as
Q(n, k) := 1

k + 1
n−k for 0 < k < n, so we have Λ(n) = Q(n, 1) + · · ·+Q(n, n− 1).

For x ∈ {−1, 1}n we write wt(x) to denote the number of 1s in x. We define the set
Bn to be Bn := {x ∈ {−1, 1}n : 0 < wt(x) < n}, i.e. Bn = {−1, 1}n \ {1,−1}.

The distribution μ is supported on Bn and is defined as follows: to make a draw from
μ, sample k ∈ {1, . . . , n − 1} with probability Q(n, k)/Λ(n). Choose x ∈ {−1, 1}n
uniformly at random from the kth “weight level” of {−1, 1}n, i.e. from {−1, 1}n=k :=
{x ∈ {−1, 1}n : wt(x) = k}.

Useful Notation. For i = 0, . . . , n we define the “coordinate correlation coefficients”
of a function f : {−1, 1}n → R (with respect to μ) as:

f∗(i) := Ex∼μ[f(x) · xi] (1)

(here and throughout the paper x0 denotes the constant 1).
Later in this section we will define an orthonormal set of linear functions L0,

L1, . . . , Ln : {−1, 1}n → R. We define the “Fourier coefficients” of f (with respect to
μ) as:

f̂(i) := Ex∼μ[f(x) · Li(x)]. (2)

The Inverse Shapley Value Problem 271

An Alternative Expression for the Shapley Values. We start by expressing the Shap-
ley values in terms of the coordinate correlation coefficients:

Lemma 1. Given f : {−1, 1}n → [−1, 1], for each i = 1, . . . , n we have f̃(i) =
f(1)−f(−1)

n + Λ(n)
2 ·
(
f∗(i)− 1

n

∑n
j=1 f

∗(j)
)
.

Construction of a Fourier Basis for Distribution μ. For all x ∈ Bn we have that
μ(x) > 0, and consequently we know that the functions 1, x1, . . . , xn+1 form a basis for
the subspace of linear functions from Bn → R. By Gram-Schmidt orthogonalization,
we can obtain an orthonormal basis L0, . . . , Ln for this subspace, i.e. one that satisfies
〈Li, Li〉μ = 1 for all i and 〈Li, Lj〉μ = 0 for all i �= j.

We now give explicit expressions for these basis functions. We start by defining
L0 : Bn → R as L0 : x !→ 1. Next, by symmetry, we can express each Li as

Li(x) = α(x1 + . . .+ xn) + βxi.

Using the orthonormality properties it is straightforward to solve for α and β. The
following Lemma gives the values of α and β:

Lemma 2. For the choices α = 1
n ·
(√

Λ(n)
nΛ(n)−4(n−1) −

√
Λ(n)

2

)
, β =

√
Λ(n)

2 , the set

{Li}ni=0 is an orthonormal set of linear functions under the distribution μ.

We note for later reference that α = −Θ
(√

logn
n

)
and β = Θ(

√
logn).

Relating the Shapley Values to the Fourier Coefficients. The next lemma gives a
useful expression for f̂(i) in terms of f̃(i):

Lemma 3. Let f : {−1, 1}n → [−1, 1] be any function. Then for each i = 1, . . . , n we

have f̂(i) = 2β
Λ(n) ·

(
f̃(i)− f(1)−f(−1)

n

)
+ 1

n ·
∑n

j=1 f̂(j).

Bounding Shapley Distance in Terms of Fourier Distance. Recall that the Shapley
distance dShapley(f, g) between f, g : {−1, 1}n → [−1, 1] is defined as dShapley(f, g) :

=
√∑n

i=1(f̃(i)− g̃(i))2. We define the Fourier distance between f and g as

dFourier(f, g) :=
√∑n

i=0(f̂(i)− ĝ(i))2.

Our next lemma shows that if the Fourier distance between f and g is small then so
is the Shapley distance.

Lemma 4. Let f, g : {−1, 1}n → [−1, 1]. Then, dShapley(f, g) ≤ 4√
n
+ Λ(n)

2β ·
dFourier(f, g).

Bounding Fourier Distance by “Correlation Distance.” The following lemma will
be useful for us since it lets us upper bound Fourier distance in terms of the distance
between vectors of correlations with individual variables:

Lemma 5. Let f, g : {−1, 1}n → R. Then we have dFourier(f, g) ≤ O(
√
logn) ·√∑n

i=0(f
∗(i)− g∗(i))2.

272 A. De, I. Diakonikolas, and R. Servedio

From Fourier Closeness to �1-Closeness. An important technical ingredient in our
work is the notion of an affine form �(x) having “good anti-concentration” under dis-
tribution μ; we now give a precise definition to capture this.

Definition 1 (Anti-concentration). Fix w ∈ Rn and θ ∈ R, and let the affine form
�(x) be �(x) := w · x − θ. We say that �(x) is (δ, κ)-anti-concentrated under μ if
Prx∼μ[|�(x)| ≤ δ] ≤ κ.

The next lemma plays a crucial role in our results. It essentially shows that for f =
sign(w · x − θ), if the affine form �(x) = w · x − θ is anti-concentrated, then any
bounded function g : {−1, 1}n → [−1, 1] that has dFourier(f, g) small must in fact be
close to f in �1 distance under μ.

Lemma 6. Let f : {−1, 1}n → {−1, 1}, f = sign(w · x − θ) be such that w · x − θ
is (δ, κ)-anti-concentrated under μ (for some κ ≤ 1/2), where |θ| ≤ ‖w‖1. Let g :
{−1, 1}n → [−1, 1] be such that dFourier(f, g) ≤ ρ. Then we have

Ex∼μ[|f(x)− g(x)|] ≤ (4‖w‖1
√
ρ)/δ + 4κ.

3 A Useful Anti-concentration Result

In this section we prove an anti-concentration result for monotone increasing η-reason-
able affine forms under the distribution μ. Note that even if k is a constant the result
gives an anti-concentration probability of O(1/ logn); this will be crucial in the proof
of our first main result in Section 5.

Theorem 1. Let L(x) = w0 +
∑n

i=1 wixi be a monotone increasing η-reasonable
affine form, so wi ≥ 0 for i ∈ [n] and |w0| ≤ (1 − η)

∑n
i=1 |wi|. Let k ∈ [n], 0 < ζ <

1/2, k ≥ 2/η and r ∈ R+ be such that |S| ≥ k, where S := {i ∈ [n] : |wi| ≥ r}. Then

Prx∼μ [|L(x)| < r] = O

(
1

logn
· 1

k1/3−ζ
·
(
1

ζ
+

1

η

))
.

This theorem essentially says that under the distribution μ, the random variable L(x)
falls in the interval [−r, r] with only a very small probability. Such theorems are known
in the literature as “anti-concentration” results, but almost all such results are for the
uniform distribution or for other product distributions, and indeed the proofs of such
results typically crucially use the fact that the distributions are product distributions.

In our setting, the distribution μ is not even a pairwise independent distribution, so
standard approaches for proving anti-concentration cannot be directly applied. Instead,
we exploit the fact that μ is a symmetric distribution; a distribution is symmetric if the
probability mass it assigns to an n-bit string x ∈ {−1, 1}n depends only on the number
of 1’s of x (and not on their location within the string). This enables us to perform
a somewhat delicate reduction to known anti-concentration results for biased product
distributions. Our proof adopts a point of view which is inspired by the combinatorial
proof of the basic Littlewood-Offord theorem (under the uniform distribution on the
hypercube) due to Benjamini et. al. [BKS99]. The proof is given in the full version.

The Inverse Shapley Value Problem 273

4 A Useful Algorithmic Tool

In this section we describe a useful algorithmic tool arising from recent work in com-
putational complexity theory. The main result we will need is the following theorem of
[TTV08] (the ideas go back to [Imp95] and were used in a different form in [DDFS12]):

Theorem 2. [TTV08] Let X be a finite domain, μ be a samplable probability distri-
bution over X , f : X → [−1, 1] be a bounded function, and L be a finite family of
Boolean functions � : X → {−1, 1}. There is an algorithm Boosting-TTV with the
following properties: Suppose Boosting-TTV is given as input a list (a
)
∈L of real
values and a parameter ξ > 0 such that |Ex∼μ[f(x)�(x)] − a
| ≤ ξ/16 for every
� ∈ L. Then Boosting-TTV outputs a function h : X → [−1, 1] with the following
properties:

(i) |Ex∼μ[�(x)h(x) − �(x)f(x)]| ≤ ξ for every � ∈ L;
(ii) h(x) is of the form h(x) = P1(

ξ
2 ·
∑

∈Lw
�(x)) where the w
’s are integers whose
absolute values sum to O(1/ξ2).

The algorithm runs for O(1/ξ2) iterations, where in each iteration it estimates
Ex∼μ[h

′(x)�(x)] to within additive accuracy ±ξ/16. Here each h′ is a function of the
form h′(x) = P1(

ξ
2 ·
∑

∈L v
�(x)), where the v
’s are integers whose absolute values
sum to O(1/ξ2).

We note that Theorem 2 is not explicitly stated in the above form in [TTV08]; in par-
ticular, neither the time complexity of the algorithm nor the fact that it suffices for the
algorithm to be given “noisy” estimates a
 of the values Ex∼μ[f(x)�(x)] is explicitly
stated in [TTV08]. So for the sake of completeness, in the full version we state the al-
gorithm in full and sketch a proof of correctness of this algorithm using results that are
explicitly proved in [TTV08].

5 Our Main Results

In this section we combine ingredients from the previous subsections and prove our
main results, Theorems 3 and 4.

Our first main result gives an algorithm that works if any monotone increasing η-
reasonable LTF has approximately the right Shapley values:

Theorem 3. There is an algorithm IS (for Inverse-Shapley) with the following prop-
erties. IS is given as input an accuracy parameter ε > 0, a confidence parameter δ > 0,
and n real values ã(1), . . . , ã(n); its output is a pair v ∈ Rn, θ ∈ R. Its running time
is poly(n, 2poly(1/ε), log(1/δ)). The performance guarantees of IS are the following:

1. Suppose there is a monotone increasing η-reasonable LTF f(x) such that
dShapley(a, f) ≤ 1/poly(n, 2poly(1/ε)). Then with probability 1 − δ algorithm IS
outputs v ∈ Rn, θ ∈ R which are such that the LTF h(x) = sign(v · x − θ) has
dShapley(f, h) ≤ ε.

274 A. De, I. Diakonikolas, and R. Servedio

2. For any input vector (ã(1), . . . , ã(n)), the probability that IS outputs v ∈ Rn, θ ∈
R such that the LTF h(x) = sign(v · x− θ) has dShapley(f, h) > ε is at most δ.

Proof. We first note that we may assume ε > n−c for a constant c > 0 of our choos-
ing, for if ε ≤ n−c then the claimed running time is 2Ω(n2 logn). In this much time we
can easily enumerate all LTFs over n variables (by trying all weight vectors with inte-
ger weights at most nn; this suffices by [MTT61]) and compute their Shapley values
exactly, and thus solve the problem. So for the rest of the proof we assume that ε > n−c.

It will be obvious from the description of IS that property (2) above is satisfied, so
the main job is to establish (1). Before giving the formal proof we first describe an
algorithm and analysis achieving (1) for an idealized version of the problem. We then
describe the actual algorithm and its analysis (which build on the idealized version).

Recall that the algorithm is given as input ε, δ and ã(1), . . . , ã(n) that satisfy
dShapley(a, f) ≤ 1/poly(n, 2poly(1/ε)) for some monotone increasing η-reasonable
LTF f . The idealized version of the problem is the following: we assume that the al-
gorithm is also given the two real values f∗(0), (f∗(1) + . . . + f∗(n))/n. It is also
helpful to note that since f is monotone and η-reasonable (and hence is not a constant
function), it must be the case that f(1) = 1 and f(−1) = −1.

The algorithm for this idealized version is as follows: first, using Lemma 1, the val-
ues f̃(i), i = 1, . . . , n are converted into values a∗(i) which are approximations for the
values f∗(i). Each a∗(i) satisfies |a∗(i)−f∗(i)| ≤ 1/poly(n, 2O(poly(1/ε))). The algo-
rithm sets a∗(0) to f∗(0). Next, the algorithm runs Boosting-TTV with the following
input: the familyL of Boolean functions is {1, x1, . . . , xn}; the values a∗(0), . . . , a∗(n)
comprise the list of real values; μ is the distribution; and the parameter ξ is set to
1/poly(n, 2poly(1/ε)). (We note that each execution of Step 3 of Boosting-TTV, namely
finding values that closely estimate Ex∼μ[ht(x)xi] as required, is easily achieved us-
ing a standard sampling scheme; details in the full version.) Boosting-TTV outputs an
LBF h(x) = P1(v · x − θ); the output of our overall algorithm is the LTF h′(x) =
sign(v · x− θ).

Let us analyze this algorithm for the idealized scenario. By Theorem 2, the output
function h that is produced by Boosting-TTV is an LBF h(x) = P1(v · x− θ) that sat-

isfies
√∑n

j=0(h
∗(j)− f∗(j))2 = 1/poly(n, 2poly(1/ε)). Given this, Lemma 5 implies

that dFourier(f, h) ≤ ρ := 1/poly(n, 2poly(1/ε)).
At this point, we have established that h is a bounded function that has dFourier(f, h)

≤ 1/poly(n, 2poly(1/ε)). We would like to apply Lemma 6 and thereby assert that the
�1 distance between f and h (with respect to μ) is small. To see that we can do this,
we first claim (see full version for details) that since f is a monotone increasing η-
reasonable LTF, it has a representation as f(x) = sign(w · x + w0) whose weights
satisfy the following property: for any choice of ζ > 0, after rescaling all the weights,
the largest-magnitude weight has magnitude 1, and the k := Θζ,η(1/ε

6+2ζ) largest-
magnitude weights each have magnitude at least r := 1/(n · kO(k)). (Note that since
ε ≥ n−c we indeed have k ≤ n as required.) Given this, Theorem 1 implies that the
affine form L(x) = w · x+ w0 satisfies

Prx∼μ[|L(x)| < r] ≤ κ := ε2/(1024 log(n)), (3)

The Inverse Shapley Value Problem 275

i.e. it is (r, κ)-anticoncentrated with κ = ε2/(1024 log(n)). Thus we may indeed apply
Lemma 6, and it gives us that

Ex∼μ[|f(x)− h(x)|] ≤
4‖w‖1

√
ρ

r
+ 4κ ≤ ε2/(128 logn). (4)

Now let h′ : {−1, 1}n → {−1, 1} be the LTF defined as h′(x) = sign(v ·x− θ) (recall
that h is the LBF P1(v ·x− θ)). Since f is a {−1, 1}-valued function, it is clear that for
every input x in the support of μ, the contribution of x to Prx∼μ[f(x) �= h′(x)] is at
most twice its contribution to Ex∼μ[|f(x) − h(x)|]. Thus we have that Prx∼μ[f(x) �=
h′(x)] ≤ ε2/(64 logn). By a standard argument, we obtain that dFourier(f, h′) ≤
ε/(4

√
logn). Finally, Lemma 4 gives that dShapley(f, h

′) ≤ 4/
√
n +

√
Λ(n) ·

ε/(4
√
logn) < ε/2. So indeed the LTF h′(x) = sign(v·x−θ) satisfies dShapley(f, h′) ≤

ε/2 as desired.

Now we turn from the idealized scenario to actually prove Theorem 3, where we
are not given the values of f∗(0) and (f∗(1) + . . . + f∗(n))/n. To get around this,
we note that f∗(0), (f∗(1) + . . . + f∗(n))/n ∈ [−1, 1]. So the idea is that we will
run the idealized algorithm repeatedly, trying “all” possibilities (up to some prescribed
granularity) for f∗(0) and for (f∗(1) + . . . + f∗(n))/n. At the end of each such run
we have a “candidate” LTF h′; we use a simple procedure Shapley-Estimate to esti-
mate dShapley(f, h′) to within additive accuracy ±ε/10, and we output any h′ whose
estimated value of dShapley(f, h′) is at most 8ε/10.

We may run the idealized algorithm poly(n, 2poly(1/ε)) times without changing its
overall running time (up to polynomial factors). Thus we can try a net of possible
guesses for f∗(0) and (f∗(1) + . . . + f∗(n))/n which is such that one guess will
be within ±1/poly(n, 2poly(1/ε)) of the the correct values for both parameters. It is
straightforward to verify that the analysis of the idealized scenario given above is suffi-
ciently robust that when these “good” guesses are encountered, the algorithm will with
high probability generate an LTF h′ that has dShapley(f, h′) ≤ 6ε/10. A straightfor-
ward analysis of running time and failure probability shows that properties (1) and (2)
are achieved as desired, and Theorem 3 is proved. ��

For any monotone η-reasonable target LTF f , Theorem 3 constructs an output LTF
whose Shapley distance from f is at most ε, but the running time is exponential in
poly(1/ε). We now show that if the target monotone η-reasonable LTF f has integer
weights that are at mostW , then we can construct an output LTF hwith dShapley(f, h) ≤
n−1/8 running in time poly(n,W); this is a far faster running time than provided by
Theorem 3 for such small ε. (The “1/8” is chosen for convenience; it will be clear from
the proof that any constant strictly less than 1/6 would suffice.)

Theorem 4. There is an algorithm ISBW (for Inverse-Shapley with Bounded
Weights) with the following properties. ISBW is given as input a weight bound W ∈
N, a confidence parameter δ > 0, and n real values ã(1), . . . , ã(n); its output is a pair
v ∈ Rn, θ ∈ R. Its running time is poly(n,W, log(1/δ)). The performance guarantees
of ISBW are the following:

1. Suppose there is a monotone increasing η-reasonable LTF f(x) = sign(u · x− θ),
where each ui is an integer with |ui| ≤W , such that dShapley(a, f) ≤ 1/poly(n,W).

276 A. De, I. Diakonikolas, and R. Servedio

Then with probability 1 − δ algorithm ISBW outputs v ∈ Rn, θ ∈ R which are
such that the LTF h(x) = sign(v · x− θ) has dShapley(f, h) ≤ n−1/8.

2. For any input vector (ã(1), . . . , ã(n)), the probability that IS outputs v, θ such that
the LTF h(x) = sign(v · x− θ) has dShapley(f, h) > n−1/8 is at most δ.

Proof. Let f(x) = sign(u · x − θ) be as described in the theorem statement. We may
assume that each |ui| ≥ 1 (by scaling all the ui’s and θ by 2n and then replacing any
zero-weightui with 1). Next we observe that for such an affine form u·x−θ, Theorem 1
immediately yields the following corollary:

Corollary 1. Let L(x) =
∑n

i=1 uixi−θ be a monotone increasing η-reasonable affine
form. Suppose that ui ≥ r for all i = 1, . . . , n. Then for any ζ > 0, we have

Prx∼μ [|L(x)| < r] = O

(
1

logn
· 1

n1/3−ζ
·
(
1

ζ
+

1

η

))
.

With this anti-concentration statement in hand, the proof of Theorem 4 closely follows
the proof of Theorem 3. The algorithm runs Boosting-TTV with L, a∗(i) and μ as
before but now with ξ set to 1/poly(n,W). The LBF h that Boosting-TTV outputs
satisfies dFourier(f, h) ≤ ρ := 1/poly(n,W). We apply Corollary 1 to the affine form
L(x) := u

‖u‖1
· x− θ

‖u‖1
and get that for r = 1/poly(n,W), we have

Prx∼μ[|L(x)| < r] ≤ κ := ε2/(1024 logn) (5)

where now ε := n−1/8, in place of Equation (3). Applying Lemma 6 we get that

Ex∼μ[|f(x)− h(x)|] ≤
4‖w‖1

√
ρ

r
+ 4κ ≤ ε2/(128 logn)

analogous to (4). The rest of the analysis goes through exactly as before, and we get
that the LTF h′(x) = sign(v ·x− θ) satisfies dShapley(f, h′) ≤ ε/2 as desired. The rest
of the argument is unchanged so we do not repeat it. ��

Acknowledgement. We thank Christos Papadimitriou for helpful conversations.

References

[APL07] Aziz, H., Paterson, M., Leech, D.: Efficient algorithm for designing weighted voting
games. In: IEEE Intl. Multitopic Conf., pp. 1–6 (2007)

[Ban65] Banzhaf, J.: Weighted voting doesn’t work: A mathematical analysis. Rutgers Law
Review 19, 317–343 (1965)

[BKS99] Benjamini, I., Kalai, G., Schramm, O.: Noise sensitivity of Boolean functions and
applications to percolation. Inst. Hautes Études Sci. Publ. Math. 90, 5–43 (1999)

[BMR+10] Bachrach, Y., Markakis, E., Resnick, E., Procaccia, A., Rosenschein, J., Saberi,
A.: Approximating power indices: theoretical and empirical analysis. Autonomous
Agents and Multi-Agent Systems 20(2), 105–122 (2010)

[Cho61] Chow, C.K.: On the characterization of threshold functions. In: Proc. 2nd FOCS
1961, pp. 34–38 (1961)

The Inverse Shapley Value Problem 277

[DDFS12] De, A., Diakonikolas, I., Feldman, V., Servedio, R.: Near-optimal solutions for the
Chow Parameters Problem and low-weight approximation of halfspaces. To appear
in STOC (2012)

[dK08] de Keijzer, B.: A survey on the computation of power indices (2008),
http://www.st.ewi.tudelft.nl/˜tomas/
theses/DeKeijzerSurvey.pdf

[dKKZ10] de Keijzer, B., Klos, T., Zhang, Y.: Enumeration and exact design of weighted voting
games. In: AAMAS 2010, pp. 391–398 (2010)

[DP78] Deegan, J., Packel, E.: A new index of power for simple n-person games. Interna-
tional Journal of Game Theory 7, 113–123 (1978)

[EGGW07] Elkind, E., Goldberg, L.A., Goldberg, P.W., Wooldridge, M.: Computational com-
plexity of weighted voting games. In: AAAI 2007, pp. 718–723 (2007)

[FWJ08] Fatima, S., Wooldridge, M., Jennings, N.: An Anytime Approximation Method for
the Inverse Shapley Value Problem. In: AAMAS 2008, pp. 935–942 (2008)

[Gol06] Goldberg, P.: A Bound on the Precision Required to Estimate a Boolean Perceptron
from its Average Satisfying Assignment. SIDMA 20, 328–343 (2006)

[Hol82] Holler, M.J.: Forming coalitions and measuring voting power. Political Studies 30,
262–271 (1982)

[Imp95] Impagliazzo, R.: Hard-core distributions for somewhat hard problems. In: Proc. 36th
FOCS 1995, pp. 538–545 (1995)

[KS06] Kalai, G., Safra, S.: Threshold phenomena and influence. In: Computational Com-
plexity and Statistical Physics, pp. 25–60. Oxford University Press (2006)

[Kur11] Kurz, S.: On the inverse power index problem. Optimization (2011),
doi:10.1080/02331934.2011.587008

[Lee03] Leech, D.: Computing power indices for large voting games. Management Sci-
ence 49(6) (2003)

[MTT61] Muroga, S., Toda, I., Takasu, S.: Theory of majority switching elements. J. Franklin
Institute 271, 376–418 (1961)

[OS08] O’Donnell, R., Servedio, R.: The Chow Parameters Problem. In: Proc. 40th STOC
2008, pp. 517–526 (2008)

[Owe72] Owen, G.: Multilinear extensions of games. Management Science 18(5), 64–79
(1972); Part 2, Game theory and Gaming

[Rot88] Roth, A.E. (ed.): The Shapley value. University of Cambridge Press (1988)
[SS54] Shapley, L., Shubik, M.: A Method for Evaluating the Distribution of Power in a

Committee System. American Political Science Review 48, 787–792 (1954)
[TTV08] Trevisan, L., Tulsiani, M., Vadhan, S.: Regularity, Boosting and Efficiently Simulat-

ing every High Entropy Distribution. Technical Report 103, ECCC, 2008. Confer-
ence version in Proc. CCC (2009)

[ZFBE08] Zuckerman, M., Faliszewski, P., Bachrach, Y., Elkind, E.: Manipulating the quota in
weighted voting games. In: AAAI, pp. 215–220 (2008)

http://www.st.ewi.tudelft.nl/~tomas/theses/DeKeijzerSurvey.pdf
http://www.st.ewi.tudelft.nl/~tomas/theses/DeKeijzerSurvey.pdf

Zero-One Rounding of Singular Vectors

Amit Deshpande1, Ravindran Kannan1, and Nikhil Srivastava2

1 Microsoft Research India
{amitdesh,kannan}@microsoft.com

2 Center for Computational Intractability, Princeton
ns@cs.princeton.edu

Abstract. We propose a generic and simple technique called dyadic
rounding for rounding real vectors to zero-one vectors, and show its
several applications in approximating singular vectors of matrices by
zero-one vectors, cut decompositions of matrices, and norm optimization
problems. Our rounding technique leads to the following consequences.

1. Given any A ∈ Rm×n, there exists z ∈ {0, 1}n such that

‖Az‖q
‖z‖p

≥ Ω
(
p1−

1
p (log n)

1
p
−1
)
‖A‖p 	→q ,

where ‖A‖p 	→q = maxx �=0 ‖Ax‖q / ‖x‖p. Moreover, given any vector
v ∈ Rn we can round it to a vector z ∈ {0, 1}n with the same
approximation guarantee as above, but now the guarantee is with
respect to ‖Av‖q / ‖Av‖p instead of ‖A‖p 	→q. Although stated for
p �→ q norm, this generalizes to the case when ‖Az‖q is replaced by
any norm of z.

2. Given any A ∈ Rm×n, we can efficiently find z ∈ {0, 1}n such that

‖Az‖
‖z‖ ≥

σ1(A)

2
√
2 log n

,

where σ1(A) is the top singular value of A. Extending this, we can
efficiently find orthogonal z1, z2, . . . , zk ∈ {0, 1}n such that

‖Azi‖
‖zi‖

≥ Ω

(
σk(A)√
k log n

)
, for all i ∈ [k].

We complement these results by showing that they are almost tight.
3. Given any A ∈ Rm×n of rank r, we can approximate it (under the

Frobenius norm) by a sum of O(r log2 m log2 n) cut-matrices, within
an error of at most ‖A‖F /poly(m,n). In comparison, the Singu-
lar Value Decomposition uses r rank-1 terms in the sum (but not
necessarily cut matrices) and has zero error, whereas the cut decom-
position lemma by Frieze and Kannan in their algorithmic version
of Szemerédi’s regularity partition [9,10] uses only O(1/ε2) cut ma-
trices but has a large ε

√
mn ‖A‖F error (under the cut norm). Our

algorithm is deterministic and more efficient for the corresponding
error range.

Keywords: rounding, matrix norms, singular value decomposition, cut
decomposition.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 278–289, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Zero-One Rounding of Singular Vectors 279

1 Introduction

In most combinatorial optimization problems, once we come up with the right
relaxation, solving the relaxation is often routine compared to the final rounding.
Several sophisticated and clever rounding techniques are known that round real
solutions to integer or zero-one solutions [19]. These rounding techniques often
exploit the structure of the problem at hand (e.g., graph problems) as well as its
corresponding relaxation (e.g., linear and semidefinite programs). In this paper,
however, we propose a generic and simple rounding scheme that rounds any unit
vector to a normalized vector in {0, 1}n, works for a wide range of problems,
and has applications in cut decompositions of matrices and norm optimization
problems.

The Singular Value Decomposition (SVD) decomposes any given matrix into
a sum of rank-1 matrices, where the number of terms used in the decomposition
is equal to the rank of the given matrix [11]. Often in practice, when the data
is given as a matrix (e.g., document-term matrix, DNA microarray data), its
rows and columns have special meanings as objects or attributes or features.
When we use the singular value decomposition and its several analogs such as
Principal Component Analysis (PCA) in practice, our actual intent is to find out
the most important objects, attributes or features rather than just reducing the
dimensionality by picking out a small number of important directions. The usual
SVD or PCA fail to do this because the singular vectors are often real vectors
and they correspond to linear combinations of objects, attributes or features,
which are meaningless in practice [14]. Thus, it is desirable to have analogs of
singular value decomposition that round the singular vectors to zero-one vectors.

One particular matrix decomposition that fits the above requirement is the
cut decomposition of matrices. In cut decomposition, we decompose a given ma-
trix into a sum of rank-1 matrices of a special type, known as cut-matrices. A
cut-matrix is a rank-1 matrix obtained by taking an outer product of two zero-
one vectors. Among the notable theoretical applications of cut decompositions
are the algorithmic version of Szemerédi’s regularity lemma [18] as well as the
approximation schemes for dense constraint satisfaction problems due to Frieze
and Kannan [9,10] and Alon et al. [1]. The cut decomposition lemma of Frieze
and Kannan that lies at the heart of these results is a randomized algorithm to
decomposes any given matrix (approximately) into a constant number of cut-
matrices. While the approximation error in the Frieze-Kannan cut decomposi-
tion is large, it is still negligible for their applications, may it be the regularity
lemma or dense constraint satisfaction problems. In this paper, we come up with
a different deterministic cut decomposition algorithm that is based on the sin-
gular value decomposition and dyadic rounding of the singular vectors, and uses
only polylogarithmically more number of terms in the sum than the SVD while
keeping the error polynomially small.

The top singular value of a matrix is the same as its spectral or ‖·‖2�→2 norm
[11]. This can be generalized to p-to-q norm of a matrix, which is defined as
max‖x‖p=1 ‖Ax‖q, where ‖·‖p and ‖·‖q denote the �p and �q-norms, respectively.
Several natural problems and their relaxations can be expressed using matrix

280 A. Deshpande, R. Kannan, and N. Srivastava

p-to-q norms (see [6] for a survey), e.g., �p-Grothendieck problem [2], subspace
approximation problem [7], condition number estimation [12], robust optimiza-
tion [17], and spectral relaxations of graph cuts. Our rounding technique for the
singular vectors generalizes to p-to-q norm optimization and even beyond to a
larger class of norm optimization problems. To illustrate this, we give tensor
norm optimization as an example of its generality.

2 Our Results

Our dyadic rounding technique leads to the following consequences.

1. Given any A ∈ Rm×n, there exists z ∈ {0, 1}n such that

‖Az‖q
‖z‖p

≥ Ω
(
p1−

1
p (log n)

1
p−1
)
‖A‖p�→q ,

where ‖A‖p�→q = maxx �=0 ‖Ax‖q / ‖x‖p. Moreover, given any vector v ∈ Rn

we can round it to a vector z ∈ {0, 1}n with the same approximation guar-
antee as above, but now with respect to ‖Av‖q / ‖Av‖p instead of ‖A‖p�→q.
Thus, our rounding can be combined with the known algorithms [6,16,18,5]
for computing or approximating p-to-q norms of matrices to finally get a
zero-one solution while losing only a small (logn)1/q factor.

2. A special case of the above: Given any A ∈ Rm×n, we can efficiently find
z ∈ {0, 1}n such that

‖Az‖
‖z‖ ≥ σ1(A)

2
√
2 logn

,

where σ1(A) is the top singular value of A. Extending this, we can efficiently
find orthogonal z1, z2, . . . , zk ∈ {0, 1}n such that

‖Azi‖
‖zi‖

≥ Ω

(
σk(A)√
k logn

)
, for all i ∈ [k].

We complement these results by showing that they are almost tight.
3. Given any A ∈ Rm×n of rank r, we can approximate it (under the Frobenius

norm) by a sum of O(r log2m log2 n) cut-matrices, within an error of at most
‖A‖F /poly(m,n). Our algorithm runs in time O(Tsvd), where Tsvd be the
running time of the Singular Value Decomposition (SVD). In comparison,
the singular value decomposition uses r rank-1 terms in the sum (but not
necessarily cut matrices) and has zero error, whereas the cut decomposition
lemma by Frieze and Kannan in their algorithmic version of Szemerédi’s
regularity partition [9,10] uses only O(1/ε2) cut matrices but has a large

ε
√
mn ‖A‖F error (under the cut norm), and runs in time 2O(1/ε2). Notice

that the cut norm of any m by n matrix is at most
√
mn times its Frobenius

norm (which can be shown by Cauchy-Schwarz inequality), so our upper
bound for the approximation error under the Frobenius norm also applies to
the cut norm.

Zero-One Rounding of Singular Vectors 281

4. Given any k-dimensional tensor A ∈ (Rn)⊗k, there exist x1, x2, . . . , xk ∈
{0, 1}n such that

|A(x1, . . . , xk)|
‖x1‖ · · · ‖xk‖

≥ Ω
(
(log n)−k/2

)
max

‖x1‖=...=‖xk‖=1
|A(x1, . . . , xk)| .

3 Related Work

The problem of rounding the top singular vector to zero-one vector was con-
sidered by Bollobas and Nikiforov [4] in the context of ‘discrepency of graphs’.
They considered the slightly different formulation

σ1(A) = max
x,y∈Rn

xTAy

‖x‖‖y‖

and showed that for Hermitian A there are always x′, y′ ∈ {0, 1}n which come
within a factor of O(log n) of achieving this optimum. By applying their theorem
to adjacency matrices of graphs (minus the trivial top singular vector) they
disproved a conjecture of Fan Chung which asserted that the rounding could
be done to within a constant factor, thus providing a strong converse to the
expander mixing lemma. This was refined by Bilu and Linial [3] to show that

max
x,y∈Rn

xT (A− (d/n)J)y

‖x′‖‖y′‖ ≤ O(log d) max
x′,y′∈{0,1}n

xT (A− (d/n)J)y

‖x′‖‖y′‖

where A is the adjacency matrix of a d-regular graph and J is the all 1’s matrix.
This is indeed a converse to the expander mixing lemma, since

|xT (A− (d/n)J)y|
‖x′‖‖y′‖ = |E(S, T)− (d/n)|S||T ||

for x′, y′ indicator vectors of sets S, T . They used a randomized bucketing tech-
nique for the coordinates based on powers of 2 but their results apply only to
matrices whose row and column sums are bounded by d.

Another special case appears in a recent manuscript of Matoušek [15] (see
Lemma 7), where the given matrix is a vector of all 1’s and the rounding gives a
vector whose non-zero coordinates are almost equal, i.e., within a factor 2 of each
other. Brubaker and Vempala [6] also used indicator decomposition for tensor
norms to get Ω

(
(logn)−k

)
guarantee, which we improve to Ω

(
(log n)−k/2

)
.

Recently, it was pointed out to us that the dyadic rounding of only the top
singular vector also appeared in [13] in a different context. Our dyadic rounding
is also different from the binary expansion method of Beck and Spencer [8] – our
method is deterministic and we do not round digit-by-digit.

4 Preliminaries and Notation

For a vector v ∈ Rn its �p-norm is defined as ‖v‖p = (
∑n

i=1 |vi|
p
)
1/p

. When we
use ‖v‖ without any subscript, it should be considered as ‖v‖2. For a matrix

282 A. Deshpande, R. Kannan, and N. Srivastava

A ∈ Rm×n, its p-to-q norm is defined as

‖A‖p�→q = max
‖x‖p=1

‖Ax‖q .

In particular, ‖A‖2�→2 is known as the spectral norm or the operator norm of A,
and the vector x that achieves this maximum is called the top (right) singular
vector of A.

Given any matrix A ∈ Rm×n of rank r, there exist non-negative real numbers
σ1 ≥ σ2 ≥ . . . σr ≥ 0, an orthonormal system of vectors u1, . . . , ur ∈ Rm and
another orthonormal system of vectors v1, v2, . . . , vr ∈ Rn such that

A =

r∑
i=1

σiuiv
T
i .

This is also known as the Singular Value Decomposition (SVD) of A. In other
words, the Singular Value Decomposition decomposes A into a sum of r rank-1
matrices.

The Frobenius norm of a matrix A ∈ Rm×n is defined as the �2-norm of it
when thought of as a vector of length mn, i.e.,

‖A‖F =

⎛⎝∑
ij

A2
ij

⎞⎠1/2

.

Using the Singular Value Decomposition, one can show that ‖A‖2F =
∑r

i=1 σ
2
i .

The cut-norm of a matrix A ∈ Rm×n is defined as

‖A‖C = max
I⊆[m],J⊆[n]

∣∣∣∣∣∣
∑

i∈I,j∈J

Aij

∣∣∣∣∣∣ .
By Cauchy-Schwarz inequality, we have ‖A‖C ≤

√
|I| |J | ‖A‖F ≤

√
mn ‖A‖F .

5 Dyadic Rounding of Vectors

Here we state the dyadic rounding lemma that is at the core of our results.

Lemma 1. (Dyadic rounding lemma) Given any A ∈ Rm×n, there exists a vec-
tor z ∈ {0, 1}n such that

‖Az‖q
‖z‖p

≥ Ω
(
p1−

1
p (logn)

1
p−1
)
‖A‖p�→q , where ‖A‖p�→q = max

z �=0̄

‖Az‖q
‖z‖p

.

Proof. Let v = argmaxz �=0̄ ‖Az‖q / ‖z‖p and ‖v‖p = 1, without loss of generality.
In the first step, we find a constant factor approximation x to v using a small grid
of size n−1/p. In the second step, we divide this vector into two vectors, call them

Zero-One Rounding of Singular Vectors 283

xpos and xneg, containing the positive and negative coordinates of x, respectively.
We show that one of xpos and xneg gives a constant factor approximation to x,
and therefore, to v. Finally in the third step, using the fact that the coordinates
of our new vector are bounded integer multiples of the grid size, we divide them
into O(log n) parts based on powers of 2 (which gives the name dyadic rounding),
and write our vector as a linear combination of O(log n) vectors from {0, 1}n.
One of these (up to scaling) is the vector z that we are looking for.

Here is a formal proof. Let v = argmaxz �=0̄ and ‖v‖p = 1, without loss of
generality. We can write v as a convex combination v =

∑
t αtxt, where xt ∈(

n−1/pZ
)n

, ‖xt‖p ≤ 2 and αt ≥ 0 for all t, and
∑

t αt = 1. By triangle inequality,
‖Av‖q ≤

∑
t αt ‖Axt‖q, so there must exist some t such that ‖Axt‖q ≥ ‖Av‖q.

We proceed with this particular xt ∈
(
n−1/pZ

)n
. Let xt = xpos + xneg, where

(xpos)i =

{
(xt)i if (xt)i > 0

0 otherwise
(xneg)i =

{
(xt)i if (xt)i < 0

0 otherwise

By triangle inequality, ‖Axt‖q ≤ ‖Axpos‖q + ‖Axneg‖q and ‖xpos‖pp + ‖xneg‖pp =

‖xt‖pp ≤ 2p. Define

y = argmaxx∈{xpos,xneg} ‖Ax‖q .

Then ‖Ay‖q ≥ ‖Axt‖q /2 ≥ ‖Av‖q /2 and ‖y‖p ≤ 2, and all the non-zero coordi-

nates of y are integer multiples of n−1/p upper bounded by 2 and have the same

sign. Now we can write y =
∑O(p−1 logn)

j=0 zj , where

(zj)i =

{
0 if binary expansion of |yi|n1/p does not contain 2j

sign(yi)2
jn−1/p if |yi|n1/p > 0 and its binary expansion contains 2j

Therefore,

‖Ay‖q ≤
O(p−1 logn)∑

j=0

‖Azj‖q

=

O(p−1 logn)∑
j=0

‖Azj‖q
‖zj‖p

‖zj‖p

≤

⎛⎝O(p−1 logn)∑
j=0

(
‖Azj‖q
‖zj‖p

)p/(p−1)
⎞⎠(p−1)/p⎛⎝O(p−1 log n)∑

j=0

‖zj‖pp

⎞⎠1/p

by Hölder’s inequality

≤

⎛⎝O(p−1 logn)∑
j=0

(
‖Azj‖q
‖zj‖p

)p/(p−1)
⎞⎠(p−1)/p

‖y‖p ,

284 A. Deshpande, R. Kannan, and N. Srivastava

where the last inequality works because
∑O(p−1 logn)

j=0 (zj)
p
i is subsumed by ypi ,

for each i. Thus, by averaging, there must exist some j such that

‖Azj‖q
‖zj‖p

≥ Ω
(
p1−

1
p (logn)

1
p−1
) ‖Ay‖q

‖y‖p
≥ Ω

(
p1−

1
p (log n)

1
p−1
) ‖Av‖q

‖v‖p
.

Remark: Observe that the above proof works even when ‖Az‖q is replaced
by any norm of z. Moreover, this proof can can be made algorithmic using the
following simple idea.

Proposition 1. Given any v ∈ [0, 1]n, we can efficiently find x1, x2, . . . , xn+1 ∈
{0, 1}n such that v =

∑n+1
t=1 αtxt, with

∑n+1
t=1 αt = 1 and αt ≥ 0 for all t.

Proof. We prove this by induction on the number of coordinates. Let vi be the
maximum coordinate of v. Then w = (1/vi)v is still in [0, 1]n and v is a convex
combination of 0̄ and w. Now w has its i-th coordinates as 1, so by induction
hypothesis w can be written as a convex combination w =

∑n
t=1 βtxt, where

xt ∈ {0, 1}n and all xt have their i-coordinate as 1. Putting these two together,
v can be written as a convex combination of 0̄ and x1, . . . , xn.

5.1 Rounding Singular Vectors

Here are some immediate corollaries of Lemma 1. We skip the proofs as they
are essentially identical to that of Lemma 1. For spectral or ‖·‖2�→2 norm we get
slightly better constants as follows.

Corollary 2. Given any A ∈ Rm×n, there exists a vector z ∈ {0, 1}n such that

‖Az‖
‖z‖ ≥ σ1(A)

2
√
2 logn

,

and such a vector z can be found in polynomial time.

Using a vector instead of matrix, we get the next corollary, which says that the
set of normalized zero-one vectors is a weak ε-net for Sn−1 with ε = 2− 1√

2 log n
.

Corollary 3. Given any a ∈ Rn, there exists a vector z ∈ {0, 1}n such that

〈a, z〉 ≥ ‖a‖ ‖z‖
2
√
2 logn

.

This special case is actually equivalent to corollary 2 for matrices: given any
matrix A with top singular vector u satisfying ‖Au‖ = σ1(A)u, we simply round
u to z ∈ {0, 1}n and observe that

‖Az‖2 = zTATAz ≥ zT (σ1(A)uu
T)z ≥ σ1(A)

‖z‖
2
√
2 logn

, as in Corollary 2.

We prove an almost matching tightness result, and our rounding also generalizes
to give Ω

(
(log n)−k/2

)
guarantee for tensor norm optimization, which improves

an earlier Ω
(
(logn)−k

)
guarantee by Brubaker and Vempala [6]. We defer the

proofs of both these to the full version.

Zero-One Rounding of Singular Vectors 285

6 Rounding Multiple Singular Vectors Simultaneously

Our dyadic rounding does not preserve orthogonality property when applied to
the top k singular vectors simultaneously. But surprisingly, we can get around
it to show that there exist k orthogonal zero-one vectors such that all of them
are at least as good as the k-th singular vector.

Theorem 4. (Multiple rounding with orthogonality constraint) Given any A ∈
Rm×n, there exist vectors x1, x2, . . . , xk ∈ {0, 1}n such that

‖Axi‖ ≥
σk(A)

2
√
2(2k − 1) logn

‖xi‖ , for all i ∈ [k], and 〈xi, xj〉 = 0 for i �= j.

This proof is also constructive and these vectors can be found efficiently.

Proof. Let ATA =
∑n

j=1 σ
2
j vjv

T
j be the singular value decomposition of ATA ∈

Rn×n, with σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0, and let B = σ2
k

∑k
j=1 vjv

T
j . Since A

TA �
B � 0, we have ‖Ax‖2 = xTATAx ≥ xTBx, and it suffices to find orthogonal
vectors x1, x2, . . . , xk ∈ Rn such that

xTi Bxi = Ω

(
σ2
k

k logn

)
‖xi‖2 , for all i ∈ [k].

However,

xTi Bxi = σ2
k

k∑
j=1

xTi vjv
T
j xi = σ2

k

k∑
j=1

〈vj , xi〉2 = σ2
k ‖V xi‖

2
,

where V ∈ Rk×n be a matrix with v1, v2, . . . , vk as its rows. Thus, it suffices to
find orthogonal vectors x1, x2, . . . , xk ∈ Rn such that

‖V xi‖ = Ω

(
1√

k logn

)
‖xi‖ , for all i ∈ [k].

To prove this, we first divide the columns of V into k disjoint parts to get
column submatrices C1, C2, . . . , Ck such that ‖Cj‖2F = Ω(1), for all j ∈ [k].
Let a1, a2, . . . , an be the squared lengths of the columns of V . Then

∑n
i=1 ai =

‖V ‖2F = k and moreover, ai ∈ [0, 1], for all i ∈ [n], since the columns of V are in
isotropic position. Therefore, using Lemma 2 we can partition the columns into
k disjoint sets P1, P2, . . . , Pk such that∑

i∈Pj

ai ≥
1

2− 1/k
, for all j ∈ [k].

Now we can define matrices C1, C2, . . . , Ck ∈ Rk×n as

(Cj)pq =

{
Vpq for q ∈ Pj

0 otherwise

286 A. Deshpande, R. Kannan, and N. Srivastava

i.e., Cj is a matrix that keeps all the columns of V that are in Pj and makes all
the others zero. Thus,

σ1 (Cj)
2 ≥ 1

k
‖Cj‖2F ≥ 1

2k − 1
, for all j ∈ [k].

Now by Corollary 2, for each Cj we can find a vector xj ∈ {0, 1}n such that

‖V xj‖ = ‖Cjxj‖ ≥
σ1 (Cj)

2
√
2 logn

‖xj‖ ≥
1

2
√
2(2k − 1) logn

, for all j ∈ [k],

and since Cj use disjoint subsets of columns from V , we also have 〈xi, xj〉 = 0,
for i �= j. This completes the proof.

Lemma 2. (Claim B.1 in [7] restated) Let a1, a2, . . . , an ∈ [0, 1] be such that∑n
i=1 ai = k. Then we can partition [n] into k parts as P1 + P2 + . . . + Pk that

satisfy ∑
i∈Pj

ai ≥
1

2− 1/k
, for all j ∈ [k].

Moreover, this can be done by a greedy algorithm that considers ai’s in their
decreasing order and then puts them into k bins one by one, where each time the
bin chosen is the one with the least sum of ai’s thrown in it so far.

We show that the dependence on k in Theorem 4 cannot be improved by more
than a logarithmic factor. The tight example is a random matrix, and the lower
bound is essentially a consequence of the fact that orthogonal zero-one vectors
must have disjoint supports. The proof is deferred to full version.

Proposition 5. Suppose k ≤ n/2 and A = 1√
n
G where Gk×n = (gij) has i.i.d.

standard Gaussian entries. Then with high probability, σk(A) = Ω(1), but for
every mutually orthogonal z1, . . . , zk ∈ {0, 1}n, there is some i with

‖Azi‖
‖zi‖

≤ O
(√ log k

k

)
.

7 Rounding SVD to Cut Decompositio

Singular Value Decomposition (SVD) decomposes any matrix of rank r into a
sum of r rank-1 matrices. Often these rank-1 matrices are not very meaningful
for specific applications in practice related to real world data as well as in theory
when the matrix has some underlying graph structure.

Frieze and Kannan came up with a notion of cut decomposition of matrices
where any matrix can be written as a sum of a small number of cut-matrices, up
to a small error of approximation (under the cut norm). Cut-matrices are rank-1
matrices obtained by taking outer product of zero-one vectors, i.e., xyT with
x ∈ {0, 1}m and y ∈ {0, 1}n. This has found applications in their algorithmic

Zero-One Rounding of Singular Vectors 287

version of the famous Szemerédi’s regularity lemma in graph theory [18,9,10].
Cut decompositions have also been useful in efficient approximation schemes for
dense constraint satisfaction problems [10,1]. The cut decomposition lemma of
Frieze and Kannan says,

Theorem 6. (Frieze-Kannan cut decomposition) Given any A ∈ Rm×n and
ε, δ ∈ (0, 1), we can find t = O(1/ε2) matrices M1,M2, . . . ,Mt such that each
Mi = γixiy

T
i , for some xi ∈ {0, 1}m, yi ∈ {0, 1}n, with

∑
i

γ2i ≤ 27 ‖A‖2F
mn

and ‖A− (M1 + · · ·+Mt)‖C ≤ ε
√
mn ‖A‖F .

Moreover, M1, . . . ,Mt can be found by a randomized algorithm that runs in time

2Õ(1/ε2)/δ2 and succeeds with probability at least 1− δ.

Compare this with our new cut decomposition based on the singular value de-
composition and dyadic rounding of singular vectors. This can be thought of
as a cut decomposition that uses only polylogarithmically more terms in the
decomposition that the SVD while keeping the error polynomially small. (The
error can be made an arbitrarily small as an inverse polynomial in m and n).

Theorem 7. Given any A ∈ Rm×n with rank(A) = r, we can find cut-matrices
M1,M2, . . . ,Mt, that is, each Mi = γixiy

T
i , for some xi ∈ {0, 1}m, yi ∈ {0, 1}n

and γi ∈ R, such that t = O(r log2m log2 n) and

‖A− (M1 + · · ·+Mt)‖F ≤ ‖A‖F
poly(m,n)

.

The coefficient length for this cut decomposition
(∑

i γ
2
i

)1/2
is O(‖A‖F logm

logn), and there is a deterministic O(Tsvd) time algorithm to find such cut ma-
trices M1,M2, . . . ,Mt. (Remark: We can improve the log2 bounds to log for a
weaker error guarantee of ε ‖A‖F , for any constant ε > 0.)

The core of the proof is the following simple discretization argument that allows
us to write an arbitrary vector as a sum of a few zero-one vectors.

Corollary 8. Given any a ∈ Rn, and ε > 0, there exist vectors z1, z2, . . . , zt ∈
{0, 1}n and constants α1, α2, . . . , αt ∈ R such that t = O(log n + log(1/ε)) and∥∥∥a−∑t

j=1 αjzj

∥∥∥ ≤ ε ‖a‖. Note that we can take ε to be as small as 1/poly(n)

and t will still be O(log n).

Proof. Assume ‖a‖ = 1 and as in the proof of Lemma 1 consider a fine grid(
ε√
n
Z
)n

. Round a to the nearest grid point, which is at distance at most ε.

Since the largest integer involved is of size
√
n/ε, this grid point can be written

as a weighted sum of at most log(
√
n/ε) binary vectors.

We are now ready to finish the proof of the cut decomposition, Theorem 7.

288 A. Deshpande, R. Kannan, and N. Srivastava

Proof. Let A =
∑r

i=1 σiuiv
T
i be the singular value decomposition of A, where

σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0 with rank(A) = r, and {ui ∈ Rm}i, {vi ∈ Rn}i form
orthonormal systems of vectors. By Corollary 8, we know that there exist vectors
xj(ui) ∈ {0, 1}m and yj(vi) ∈ Rn, and constants αj(ui), βj(vi) ∈ R such that∥∥∥∥∥∥ui −

O(log2 m)∑
j=1

αj(ui)xj(ui)

∥∥∥∥∥∥ ≤ 1

poly(m)
, and

∥∥∥∥∥∥vi −
O(log2 n)∑

j=1

βj(vi)yj(vi)

∥∥∥∥∥∥ ≤ 1

poly(n)
,

for all i. Therefore,∥∥∥∥∥∥σiuivTi − σi

O(log2 m)∑
j1=1

O(log2 n)∑
j2=1

αj1(ui)βj2(vi)xj1 (ui)yj2(vi)
T

∥∥∥∥∥∥
2

F

≤ σ2
i

poly(m,n)
,

for all i. Hence,∥∥∥∥∥∥A−
r∑

i=1

O(log2 m)∑
j1=1

O(log2 n)∑
j2=1

σiαj1(ui)βj2(vi)xj1 (ui)yj2 (vi)
T

∥∥∥∥∥∥
2

F

≤
∑

i σ
2
i

poly(m,n)

≤ ‖A‖2F
poly(m,n)

.

Notice that all the rank-1 matrices used in the sum are cut matrices, and there-
fore we have actually obtained a collection of t = O(r log2m log2 n) cut matrices
M1,M2, . . . ,Mt such that

‖A− (M1 + . . .+Mt)‖F ≤ ‖A‖F
poly(m,n)

.

Using the relation between the cut norm and the Frobenius norm described in
4 we get

‖A− (M1 + . . .+Mt)‖C ≤
√
mn ‖A− (M1 + . . .+Mt)‖F ≤ ‖A‖F

poly(m,n)
.

The coefficient length for this cut decomposition can be bounded by

r∑
i=1

O(log2 m)∑
j1=1

O(log2 n)∑
j2=1

σ2
i αj1(ui)

2βj2(vi)
2 ≤ ‖A‖2F log2m log2 n.

8 Open Problems

Spectral algorithms are used for finding good cuts in graphs or finding important
features via Principal Component Analysis (PCA). The sparsest cut problem

Zero-One Rounding of Singular Vectors 289

can be rewritten in the form of maxx∈{−1,1}n,x⊥1̄ x
TKx/xTLx, where K and L

are the Laplacians of the complete graph and the given graph, respectively. It
would be interesting to extend our techniques to relative singular value problems
involving objective functions ‖Ax‖ / ‖Bx‖ instead of ‖Ax‖ / ‖x‖, with potential
applications in designing faster algorithms for graph cuts or feature selection.

References

1. Alon, N., de la Vega, F., Kannan, R., Karpinski, M.: Random sampling and ap-
proximation of Max-CSPs. Journal of Computer and System Sciences 67, 212–243
(2003)

2. Alon, N., Naor, A.: Approximating the cut-norm via Grothendieck’s inequality.
SIAM Journal on Computing (SICOMP) 35(4), 787–803 (2006)

3. Bilu, Y., Linial, N.: Lifts, discrepancy and nearly optimal spectral gaps. Combina-
torica 26, 495–519 (2006)

4. Bollobas, B., Nikiforov, V.: Graphs and hermitian matrices: discrepancy and sin-
gular values. Discrete Mathematics 285 (2004)

5. Boyd, D.W.: The power method for p-norms. Linear Algebra and Its Applications 9,
95–101 (1974)

6. Charles Brubaker, S., Vempala, S.S.: Random Tensors and Planted Cliques. In:
Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687,
pp. 406–419. Springer, Heidelberg (2009)

7. Deshpande, A., Tulsiani, M., Vishnoi, N.: Algorithms and hardness for subspace
approximation. In: ACM-SIAM Symposium on Discrete Algorithms, SODA 2011
(2011)

8. Doerr, B.: Roundings Respecting Hard Constraints. In: Diekert, V., Durand, B.
(eds.) STACS 2005. LNCS, vol. 3404, pp. 617–628. Springer, Heidelberg (2005)

9. Frieze, A., Kannan, R.: The regularity lemma and approximation schemes for dense
problems. In: IEEE Symposium on Foundations of Computing (FOCS 1996), pp.
12–20 (1996)

10. Frieze, A., Kannan, R.: Quick approximation to matrices and applications. Com-
binatorica 19(2), 175–220 (1999)

11. Golub, G., van Loan, C.: Matrix Computations. Johns Hopkins University Press
(1996)

12. Nicholas, J.: Higham. Estimating the matrix p-norm. Numerische Mathematik 62,
511–538 (1992)

13. Kasiviswanathan, S.P., Rudelson, M., Smith, A., Ullman, J.: The price of privately
releasing contingency tables and the spectra of random matrices with correlated
rows. In: STOC 2010, pp. 775–784 (2010)

14. Mahoney, M., Drineas, P.: CUR matrix decompositions for improved data analysis.
Proceedings of the National Academy of Sciences USA 106, 697–702 (2009)

15. Matoušek, J.: The determinant bound for discrepancy is almost tight (2011),
http://arxiv.org/PS_cache/arxiv/pdf/1101/1101.0767v2.pdf

16. Nesterov, Y.: Semidefinite relaxation and nonconvex quadratic optimization. Op-
timization Methods and Software 9, 141–160 (1998)

17. Steinberg, D.: Computation of matrix norms with applications to robust optimiza-
tion. Research thesis. Technion – Israel University of Technology (2005)

18. Szemerédi, E.: Regular partitions of graphs. Problèmes combinatoires et théorie
des graphes (Colloq. Internat. CNRS), Paris 260, 399–401 (1976)

19. Vazirani, V.: Approximation Algorithms. Springer (2001)

http://arxiv.org/PS_cache/arxiv/pdf/1101/1101.0767v2.pdf

Label Cover Instances with Large Girth and the

Hardness of Approximating Basic k-Spanner�

Michael Dinitz1,��, Guy Kortsarz2,���, and Ran Raz3,†

1 Weizmann Institute of Science
mdinitz@cs.cmu.edu

2 Department of Computer Science, Rutgers, Camden
guyk@camden.rutgers.edu

3 Weizmann Institute of Science
ran.raz@weizmann.ac.il

Abstract. We study the well-known Label Cover problem under the ad-
ditional requirement that problem instances have large girth. We show

that if the girth is some k, the problem is roughly 2(log
1−ε n)/k hard to

approximate for all constant ε > 0. A similar theorem was claimed by
Elkin and Peleg [ICALP 2000] as part of an attempt to prove hard-
ness for the basic k-spanner problem, but their proof was later found
to have a fundamental error. Thus we give both the first non-trivial
lower bound for the problem of Label Cover with large girth as well
as the first full proof of strong hardness for the basic k-spanner prob-
lem, which is both the simplest problem in graph spanners and one of
the few for which super-logarithmic hardness was not known. Assuming
NP
⊆ BPTIME(2polylog(n)), we show (roughly) that for every k ≥ 3
and every constant ε > 0 it is hard to approximate the basic k-spanner

problem within a factor better than 2(log
1−ε n)/k. This improves over

the previous best lower bound of only Ω(logn)/k from [17]. Our main
technique is subsampling the edges of 2-query PCPs, which allows us
to reduce the degree of a PCP to be essentially equal to the soundness
desired. This turns out to be enough to basically guarantee large girth.

1 Introduction

In this paper we deal with 2-query probabilistically checkable proofs (PCPs)
and variants of the Label Cover problem. Label Cover was originally defined by
Arora and Lund in their early survey on hardness of approximation [2]. Since
then, Label Cover has been widely used as a starting point when proving hard-
ness of approximation, as it corresponds naturally to 2-query probabilistically

� Full version available at http://arxiv.org/abs/1203.0224
�� Research supported in part by an Israel Science Foundation grant #452/08, a

US-Israel BSF grant #2010418, and by a Minerva grant.
��� Research supported in part by NSF award number 0829959.

† Research supported by an Israel Science Foundation grant and by the I-CORE
Program of the Planning and Budgeting Committee and the Israel Science Foun-
dation.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 290–301, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://arxiv.org/abs/1203.0224

Label Cover Instances with Large Girth 291

checkable proofs and one-round two-prover interactive proof systems. Certain re-
ductions from Label Cover, though, require special properties of the Label Cover
instances. So then the question becomes: is Label Cover still hard even when re-
stricted to these instances? For example, the famous Unique Games Conjecture
of Khot [16] can be thought of as a conjecture that Label Cover is still difficult
to approximate when the relation on each edge is required to be a bijection.
A different type of requirement is on the structure of the Label Cover graph
rather than on the allowed relations; Elkin and Peleg [11] showed that if Label
Cover (actually, a slight variant known as Min-Rep) is hard even on graphs with
large girth then the basic k-spanner problem is also hard to approximate. They
then gave a proof that Label Cover is indeed hard to approximate on large-girth
graphs, but unfortunately this proof was later found to have a flaw (as Elkin and
Peleg point out in [13, Section 1.3]). In this paper we give a completely new proof
that Label Cover and Min-Rep are hard to approximate on large-girth graphs,
and thus prove strong hardness for basic k-spanner. Our argument is based on
subsampling edges of a 2-query PCP/Label Cover instance. Subsampling of 2-
query PCPs and Label Cover instances has been done before for other reasons
(see e.g. [15]), but we show that the sampling probability can be set low enough
to destroy most small cycles while still preserving hardness, and this technique
was not previously used in this context. Remaining cycles can then be removed
deterministically.

1.1 Label Cover and Probabilistically Checkable Proofs

A probabilistically checkable proof (PCP) is a string (proof) together with a
verifier algorithm that checks the proof (probabilistically). There are several
important parameters of a PCP, including the following:

1. Completeness (c): the minimum probability that the verifier accepts a correct
proof. All of the PCPs in this paper have completeness 1.

2. Soundness (or error) (s): the maximum probability that the verifier accepts
a proof of an incorrect claim.

3. Queries: the number of queries that the verifier makes to the proof. In this
paper we will study the case when the verifier only makes 2 queries.

4. Size: the number of positions in the proof (i.e. the length).
5. Alphabet (Σ): the set of symbols that the proof is written in. We will only

be concerned with PCPs for which |Σ| is at most polynomial in the size of
the PCP, so we will assume this throughout.

For this paper we will be concerned with 2-query PCPs, which are the special
case when the verifier is only allowed to query two positions of the proof. We will
also assume (without loss of generality) that these two queries are to different
parts of the proof, i.e. there is some set of positions A that can be read by the
first query and some other set of positions B that can be read by the second
query with A ∩B = ∅.

For this type of PCP, there are two natural graphs that represent it. The first
(and simpler), which is sometimes called the supergraph, is a bipartite graph

292 M. Dinitz, G. Kortsarz, and R. Raz

(A,B,E) in which there is a vertex for every position of the proof and an edge
between two positions if there is a possibility that the verifier might query those
two positions. By our assumption, this graph is bipartite. We also assume that
the verifier chooses its query uniformly at random from these edges, which is in
fact the case in the PCPs that we will use (in particular in the PCP for Max-
3SAT(5) obtained by parallel repetition). Vertices of this graph will sometimes
be called supervertices, and edges will be superedges.

The second graph can be thought of as an expansion of the supergraph in
which the test the verifier does is explicitly contained in the graph. This graph
is also bipartite, with vertex set (A × ΣA, B × ΣB), where ΣA is the alphabet
used in A positions of the proof and similarly for ΣB. There is an edge between
vertices (a, α) and (b, β) if the verifier might query a and b together (i.e. (a, b)
is an edge in the supergraph) and if, upon such queries, the verifier will accept
the proof if it sees values α in position a and β in position b. We call this graph
the Min-Rep graph. This is related to the work in [17].

There is a natural correspondence between these types of PCPs and the opti-
mization problem of Label Cover. In Label Cover we are given a bipartite graph
G = (A,B,E), alphabets ΣA and ΣB, and for every edge e ∈ E a nonempty
relation πe ⊆ ΣA × ΣB. The goal is to find assignments γA : A → ΣA and
γB : B → ΣB in order to maximize the number of edges e = (a, b) for which
(γA(a), γB(b)) ∈ πe (in which case we say that the edge is satisfied or covered).
It is easy to see that the existence of PCPs for NP-hard problems implies that
Label Cover is hard to approximate: in particular, if we use the supergraph and
set the relation to be answers on which the verifier accepts, then it is hard to
distinguish instances in which at least a c fraction of the edges are satisfiable (a
valid proof) from instances in which at most an s fraction of the edges are satis-
fiable (an invalid proof). The exact nature of the hardness assumption is based
on the size of the PCP: if it has size m(n) (where n is the size of the original
problem instance) then the hardness assumption is that NP is not contained in
DTIME(poly(m(n))) (for deterministic PCP constructions and approximation
algorithms) or BPTIME(poly(m(n))) (for randomized PCP constructions or ap-
proximation algorithms). We let Label Coverk be the Label Cover problem with
the additional restriction that the girth of G is larger than k.

We now describe a slight variant of Label Cover known as Min-Rep (originally
defined by Kortsarz [17]) that has been useful for proving hardness of approx-
imation for network design problems such as spanners. It can be thought of as
a minimization version of Label Cover with the additional property that the al-
phabets are represented explicitly as vertices in a graph. Consider the Min-Rep
graph G′ = (A×ΣA, B×ΣB, E

′). For every i ∈ A let Ai = {(i, α) ∈ A×ΣA} be
the set of vertices in the Min-Rep graph corresponding to vertex i in the Label
Cover graph, and similarly for i ∈ B let Bi = {(i, β) ∈ B × ΣB}. Our goal is
to choose a set S of vertices of G′ of minimum size so that for every (i, j) ∈ E
there are vertices (i, α) and (j, β) in S that are joined by an edge in E′. Such a
set is called a REP-cover, and the vertices in it are called representatives. Less
formally, we can think of Min-Rep as being the problem of assigning to every

Label Cover Instances with Large Girth 293

vertex in the supergraph a set of labels/representatives (unlike Label Cover, in
which only a single label is assigned) so that for every superedge (a, b) there is
at least one label assigned to a and at least one label assigned to b that satisfy
the relation π(a,b). Note that in the Min-Rep graph the number of vertices is
|A| · |ΣA|+ |B| · |ΣB |, which means that the size of a Min-Rep instance might be
larger than the size of the associated Label Cover instance. The supergirth of a
Min-Rep graph is just the girth of the supergraph, i.e. the girth of the associated
Label Cover instance. As with Label Cover, we let Min-Repk be the Min-Rep
problem with the additional restriction that the supergirth is larger than k.

Two parameters of PCPs/Label Cover that will be important for us are the
degree and the girth. The degree of a PCP is the maximum degree of a vertex in
the supergraph / associated Label Cover instance. Similarly, the girth of a PCP
is the girth in the supergraph / associated Label Cover instance (recall that the
girth of a graph is the length of the smallest cycle).

1.2 The Basic k-Spanner Problem and Previous Work

The basic k-spanner problem, also called the minimum size k-spanner problem, is
the second main subject in this paper. In this problem we are given an undirected,
unweighted graph G and are asked to find the subgraph G′ = (V,E′) with the
minimum number of edges with the property that

distG′(u, v)

distG(u, v)
≤ k, for every two vertices u, v ∈ V. (1)

In the above, the distance between two vertices is just the number of edges in
the shortest path between the two vertices, and distH is the distance function on
a graph H . Any subgraph G′ satisfying (1) is called a k-spanner of G, and our
goal is to find the k-spanner with the fewest edges. Elkin and Peleg [11] proved
that if Min-Repk+1 is hard to approximate, then the basic k-spanner problem is
also hard to approximate.

The concept of graph spanners was first invented by [19] in a geometric con-
text. To the best of our knowledge the spanner problem on general graphs was
first invented indirectly by Peleg and Upfal [22] in their work on small routing
tables. This problem was first explicitly defined in [21,20].

Spanners appear in remarkably many applications; the following examples are
certainly not exhaustive. Peleg and Upfal [22] showed an application of span-
ners to maintaining small routing tables. For further applications toward this
subject see [24]. In [21] a relation between sparse spanners and synchronizers for
distributed networks was found. In [8,14] applications of spanners to parallel,
distributed, and streaming algorithms for shortest paths are described. For ap-
plications of spanners to distance oracles see [5,25]. For applications of spanners
in property testing and related subjects see [7].

There is also quite a bit known about approximating spanners. For the basic
k-spanner problem, a seminal paper of Althöfer et al. [1] shows that every undi-
rected graph on n vertices has a (2k−1)-spanner with at most n1+1/k edges (for

294 M. Dinitz, G. Kortsarz, and R. Raz

any integer k ≥ 1), which immediately implies an n1/�(k+1)/2� approximation
to basic k-spanner when k ≥ 3. For k = 2 no nontrivial absolute bounds are
possible, but in terms of approximation there is an O(log n) approximation [18],
which is known to be the best possible [17]. There are also many spanner vari-
ants that have been studied, such as the directed k-spanner problem [9,6] and
the client-server k-spanner problem [12]. Essentially all variants are known to be

hard to approximate to better than 2log
1−ε n (see [17,13]), leaving the hardness

of the basic version a tantalizing question.

1.3 Our Results

All of our results hold for large n, so throughout this paper we will assume that
n is sufficiently large. Our first result is on the hardness of approximating Label
Cover with large girth:

Theorem 1. Assuming NP �⊆ BPTIME(2polylog(n)), for any constant ε > 0
and for 3 ≤ k ≤ log1−2ε n there is no polynomial-time algorithm that approxi-
mates Label Coverk to a factor better than 2(log

1−ε n)/k.

We also show how to adapt this hardness from Label Cover to Min-Rep, which
then gives us the strong hardness for basic k-spanner that was originally claimed
by [11].

Theorem 2. Assuming NP �⊆ BPTIME(2polylog(n)), for any constant ε > 0
and for 3 ≤ k ≤ log1−2ε n there is no polynomial-time algorithm that approxi-
mates Min-Repk to a factor better than 2(log

1−ε n)/k.

Theorem 3. Assuming NP �⊆ BPTIME(2polylog(n)), for any constant ε > 0
and for 3 ≤ k ≤ log1−2ε n there is no polynomial-time algorithm that approxi-
mates the basic k-spanner problem to a factor better than 2(log

1−ε n)/k.

1.4 The Error in [11] and Our Techniques

To the best of our knowledge the question answered in Theorem 2 regarding the
hardness of Min-Rep with large supergirth was first presented in ICALP 2000
by Elkin and Peleg [11]. In [11] the authors tried to create Min-Rep instances
with large supergirth that are also hard to approximate as follows. They started
with a 3-Sat(5) instance and associated supergraph, where the supergraph has
clauses and variables as vertices, with an edge between a clause and a variable
if the variable is in the clause. They then showed how to change the instance to
force this graph to have large girth, without losing much in the gap. They then
applied the parallel repetition theorem [23] and claimed to boost the hardness
while maintaining large supergirth. This reduction is incorrect (as Elkin and
Peleg acknowledge in [13]), as non-cycles such as paths in the original graph
become simple cycles after parallel repetition is applied. In fact the supergirth in
the construction of [11] is 4, no matter what the initial supergirth before parallel
repetition is, and thus [11] does not imply any hardness whatsoever for the large

Label Cover Instances with Large Girth 295

supergirth Min-Rep problem. For the interested reader, in the conference version
of [11] it is Lemma 13 which is incorrect.

Our main idea is to apply parallel repetition first, boosting the gap, and then
randomly sample superedges to sparsify the supergraph. It turns out, perhaps
surprisingly, that to a certain extent these random choices do not decrease the
gap. This may seem non-intuitive at first as usually the gap is closely related
to superdegree and a smaller superdegree would imply a smaller gap. This may
have been one of the obstacles in finding a lower bound for Min-Rep with large
supergirth. However, it turns out that it is possible to keep the gap despite the
smaller superdegree.

The hardness that we derive this way is actually for Label Coverk and not
for Min-Repk. The standard reduction from Label Cover to Min-Rep [17] entails
duplications of many super vertices. This is needed in order to ensure regularity
in the Min-Rep graph, which is used to ensure that removing a μ fraction of
the supervertices will imply a removal of at most a μ fraction of the superedges.
In [17] this duplication is done after the parallel repetition step, as the supergirth
was not an important quantity. However, such duplications add many cycles of
length 4 in the supergraph. We handle this difficulty by performing duplication
before we apply parallel repetition.

Regarding the hardness of basic k-spanner, in [11] a reduction is given from
Min-Repk+1 to the basic k-spanner problem for k ≥ 3. While this reduction is
correct, since the hardness proof for large supergirth Min-Rep in [11] is incorrect
the reduction does not actually imply any hardness for basic k-spanner.

The actual situation before our paper is as follows. No hardness whatsoever
was known for the Min-Repk problem; our hardness result comes 12 years after
this question was first posed. Regarding lower bounds for the basic k-spanner
problem, this question was first raised in [17] in APPROX 1998. The best lower
bound known (before our paper) was Ω(log n)/k. The improved hardness we
give comes 14 years after this question was first posed.

2 Sampling Lemma for 2-Query PCPs

We begin with our general 2-query PCP sampling lemma. We remark that sim-
ilar subsampling techniques have been used before (notably by Goldreich and
Sudan [15] to give almost-linear size PCPs), but we specialize the technique with
an eye towards giving a tradeoff between the soundness and the girth. Since we
will only be concerned with regular PCPs, we will phrase it for the special case
when the supergraph has |A| = |B| = n/2 and is regular with degree d. We will
assume without loss of generality that |ΣA| ≥ |ΣB|. Given such a PCP verifier
(i.e. Label Cover instance) G = (A,B,E), let Gα be the verifier/instance that

we get by sub-sampling the edges with probability pα = α log |ΣA|
d , i.e. every edge

e ∈ E is included in Gα independently with probability pα.

Lemma 1. Let G = (A,B,E) be a 2-query PCP verifier/Label Cover instance
with completeness 1 and soundness s in which |A| = |B| = n/2, every vertex has

296 M. Dinitz, G. Kortsarz, and R. Raz

degree d, and |ΣA| ≥ |ΣB|. Let 1 ≤ α ≤ 1/s. Then with high probability Gα is a
PCP verifier with completeness 1 and soundness at most 4e/α.

Proof. It is obvious that Gα has completeness 1 with probability 1, since any
valid labeling/proof of G is also valid for Gα. To bound the soundness, first fix
a proof / labeling. We know that in the original verifier, at most an s fraction of
the edges are satisfied. After sampling, the expected number of satisfied edges
is at most

pαs|E| ≤
|E| log |ΣA|

d
=

n

2
log |ΣA|.

Since the sampling decisions are independent we can apply a Chernoff bound
(see e.g. [10, Theorem 1.1]), giving us that the probability that more than
en log |ΣA| edges are satisfied is at most 2−en log |ΣA| = |ΣA|−en. But the to-
tal number of possible proofs is at most |ΣA|n/2|ΣB|n/2 ≤ |ΣA|n. So by a union
bound, the probability that any labeling satisfies more than en log |ΣA| edges is
at most |ΣA|−(e−1)n ≤ 2−n, which is negligible. But the expected total number
of edges after sampling is pα|E| = n

2α log |ΣA|, and so another Chernoff bound
implies that with high probability the number of edges after sampling is at least
(n/4)α log |ΣA|. Thus with high probability no proof is accepted with probabil-
ity more than (en log |ΣA|)/((n/4)α log |ΣA|) = 4e/α. ��

Lemma 1 shows that we can sample edges so that the average degree is about
α log |Σ| without hurting the soundness too much (in particular, the soundness
becomes basically 1/α). Note that if we set α = 1/s this allows us to reduce
the average degree to basically (1/s) log |ΣA| (a possibly significantly reduction)
without affecting the soundness by more than a constant. We would like to claim
that this lets us increase the girth, but at this point we will merely prove that
any edge is unlikely to be in short cycles. Later we will deterministically remove
edges that take part in short cycles, but since that might destroy approximate-
regularity (which is necessary for our reduction to Min-Rep) we put it off until
later.

Lemma 2. Fix an edge (u, v) ∈ G. Conditioned on (u, v) ∈ Gα, the probability

that (u, v) is in a cycle in Gα of length at most k is at most 2(α log |ΣA|)k−1

d .

Proof. Let 4 ≤ k′ ≤ k (note that no edge is in a cycle of length less than 4 in any
bipartite graph, including G). Fix a cycle of length k′ in G that contains (u, v).
After conditioning on (u, v) surviving the sampling, the probability that all of

the other edges in the cycle are also in Gα is pk
′−1

α =
(

α log |ΣA|
d

)k′−1

. On the

other hand, we know from the degree bound in G that the number of k′-cycles
containing (u, v) is at most dk

′−2. So a union bound implies that the probability

that (u, v) is in a k′-cycle in Gα is at most (α log |ΣA|)k′−1

d . Now we take a union
bound over all 4 ≤ k′ ≤ k to get that the total probability that (u, v) is in a

cycle of length at most k is at most
∑k

k′=4
(α log |ΣA|)k′−1

d ≤ 2(α log |ΣA|)k−1

d as
claimed (assuming without loss of generality that α log |ΣA| ≥ 2). ��

Label Cover Instances with Large Girth 297

It is easy to see that subsampling preserves approximate regularity. This is made
formal in the next lemma.

Lemma 3. If α ≥ 16 logn then with probability at least 1 − 2/n the degree of
every vertex in Gα is between 1

2α log |ΣA| and 2α log |ΣA|.

3 Label Cover and Min-Rep with Large (Super)Girth

In this section we show that Label Cover and Min-Rep are both hard to ap-
proximate, even when restricted to instances with large (super)girth. We start
with a PCP verifier with supergraph G and Min-Rep graph H , and then use the
previously described random sampling technique to get a new supergraph Gα

and Min-Rep graph Hα. We now remove from Gα any edge that is in a cycle of
length at most k, giving us a new supergraph G′

α and Min-Rep graph H ′
α (where

an edge ((a, δ), (b, β)) from H is in H ′
α if (a, b) remains as an edge in G′

α). These
instances will form our reduction.

We say that an edge (i, j) ∈ Gα is bad if it is not in G′
α, i.e. it is part of a

cycle of length of at most k in Gα.

Lemma 4. Let 16 logn ≤ α ≤ min{1/s, d1/k/ log |ΣA|}. Then with probability

larger than 2/3 the number of bad edges is at most O
(

n(α log |ΣA|)k
d

)
≤ O(n)

Proof. Lemma 2 and Markov’s inequality imply that with probability at least

3/4, at most a 8(α log |ΣA|)k−1

d fraction of the edges are bad. With high probability
the total number of edges in Gα is Θ(nα log |ΣA|), so this means that the number

of bad edges is at most O
(

n(α log |ΣA|)k
d

)
. By our choice of α, this is at most

O(n). ��

Theorem 4. If there is no (randomized) polynomial time algorithm that can
distinguish between instances of Label Cover in which |A| = |B| = n/2 and
all vertices have degree d where all edges are satisfiable and instances where
at most an s ≤ 1/(16 logn) fraction of the edges are satisfiable, then there is
some constant c so that for 16 logn ≤ α ≤ min{1/s, d1/k/ log |ΣA|} there is no
(randomized) polynomial time algorithm that can distinguish between instances
of Label Coverk in which all edges are satisfiable and instances in which at most
a c/α fraction of the edges are satisfiable.

Proof. If there is a labeling that satisfies all edges of G, then clearly the same
labeling satisfies all edges of G′

α. On the other hand, suppose that only an s
fraction of the edges of G can be satisfied. By Lemma 4, the number of bad
edges is at most O(n), so the total number of edges in G′

α is still Θ(nα log |ΣA|).
Fix any labeling of G′

α, and suppose that it satisfies a β fraction of the edges
of G′

α. Then even if it would have satisfied all of the bad edges, the number of
edges of Gα that it satisfies is at most β · Θ(nα log |ΣA|) + O(n). By Lemma 1
this must be at most (4e/α) · Θ(nα log |ΣA|), and thus for some constant c we
have that β ≤ c/α.

298 M. Dinitz, G. Kortsarz, and R. Raz

Thus if we could distinguish between the case when every edge of G′
α can be

satisfied and the case when at most a c/α fraction can be satisfied, we could
distinguish between the case when every edge of G can be satisfied and the case
when at most an s fraction can be satisfied. ��

We now reduce to Min-Repk. We first show how the size of the minimum REP-
cover of Hα depends on G. We will then show that, similar to Label Cover,
we can deterministically remove small cycles to get the instance H ′

α with large
supergirth that preserves this gap.

Lemma 5. Let 16 logn ≤ α ≤ 1/s. If there is a valid labeling of G then the Min-
Rep instance Hα has a REP-cover of size n (where n is the number of vertices
in the supergraph). Otherwise, with high probability the smallest REP-cover has
size at least Ω(n

√
α).

Proof. If there is a valid labeling of G then by Lemma 1 there is a valid labeling
of Gα (since the completeness remains 1), and thus there is a REP-cover of Hα

of size n as claimed. On the other hand, suppose that at most an s fraction of
the edges of G can be satisfied. Then since the soundness of Gα is at most 4e/α
by Lemma 1, any labeling of Gα satisfies at most a 4e/α fraction of the edges.
Suppose that there is a REP-cover of Hα of size less than n

√
α/(36

√
3e). We

will show that this implies that there is a labeling of Gα that satisfies more than
a 4e/α fraction of the edges, giving a contradiction and proving the lemma.

Suppose that the smallest REP-cover for Hα has size βn. This means that
the average number of representatives/labels assigned to each vertex in Gα by
this cover is β. To analyze the labeling that covers the most edges, we analyze
the random labeling obtained by choosing for each vertex a label uniformly at
random from the set of labels it is assigned by the REP-cover. Let A′ ⊆ A be the
set of vertices in A that receive at most 18β labels in this REP-cover, and define
B′ ⊆ B analogously. Note that |A′| ≥ (8/9)|A| and similarly |B′| ≥ (8/9)|B|,
since otherwise the total number of representatives in the REP-cover is larger
than (1/9) · (n/2) · (18β) = βn, contradicting our assumption on the size of the
REP-cover. With high probability the fraction of edges of Gα that touch a vertex

of A \ A′ is at most (1/9)·(2α log |ΣA|)
(1/9)·(2α log |ΣA|)+(8/9)((α log |ΣA|)/2) = 1/3, and similarly for

the fraction of edges that touch B\B′ (where we used the approximate regularity
from Lemma 3). So if we consider the subgraph of Gα induced by A′ ∪ B′ we
still have at least 1/3 of the edges of Gα.

Now let (a, b) ∈ A′ ×B′ be such an edge. Since we started with a REP-cover,
there is at least one representative assigned to a and one representatives assigned
to b that satisfy the relation π(a,b). Since both endpoints have at most 18β
representatives in the REP-cover, the probability that these two representatives
are the assigned labels is at least 1/(18β)2. Thus by linearity of expectations we
expect that at least 1/(3(18β)2) = 1/(972β2) fraction of the edges are covered
by our random labeling, so there exists some labeling that covers at least that

many. If β ≤
√
α

36
√
3e

then this is at least 4e/α, giving a contradiction. Thus the

smallest REP-cover has size at least (n
√
α)/(36

√
3e), proving the lemma. ��

Label Cover Instances with Large Girth 299

We will now get rid of small cycles by using the instance H ′
α.

Theorem 5. If there is no (randomized) polynomial time algorithm that can
distinguish between instances of Label Cover in which |A| = |B| = n/2 and
all vertices have degree d where all edges are satisfiable and instances where
at most an s ≤ 1/(16 logn) fraction of the edges are satisfiable, then there is
some constant c so that for 16 logn ≤ α ≤ min{1/s, d1/k/ log |ΣA|} there is no
(randomized) polynomial time algorithm that can distinguish between instances
of Min-Repk where the smallest REP-cover has size at most n and instances
where the smallest REP-cover has size at least n

√
α/c (here n is the size of the

supergraph).

Proof. If there is a labeling that satisfies all edges of G, then clearly choosing
that labeling gives a valid REP-cover of H ′

α of size at most n. For the other case,
suppose that any labeling of G satisfies at most an s fraction of the edges. Then
by Lemma 5, with high probability the smallest REP-cover of Hα has size at
least Ω(n

√
α). By Lemma 4, the number of bad edges is at most O(n). Removing

any particular edge (in particular a bad edge) can only decrease the size of the
optimal REP-cover by at most 2, so if we remove all bad edges (getting H ′

α)
we are left with an instance with supergirth larger than k in which the smallest
REP-cover has size at least Ω(n

√
α) − O(n) = Ω(n

√
α). By construction the

supergirth is greater than k, so this proves the theorem. ��

Now we define and analyze the PCP / Label Cover instances to which we will
apply Theorems 4 and 5. Recall that Max-3SAT(5) is the problem of finding
an assignment to variables of a 3-CNF formula that maximizes the number
of satisfied clauses, with the additional property that every variable appears
in exactly 5 clauses of the formula. We begin with the standard Label Cover
instance for Max-3SAT(5) (see for example [2]). The graph (A,B,E) has |B| = n′

and |A| = 5n′/3 (where n′ is the number of variables in the instance), and every
vertex in A has degree 3 and every vertex in B has degree 5. Vertices in A
correspond to clauses and vertices in B correspond to variables. The alphabet
sizes are |ΣA| = 7 and |ΣB| = 2. The PCP Theorem [3,4] implies that the gap
for these instances is constant, i.e. it is hard to distinguish the case when all
edges are satisfiable from the case in which 1/(1 + ε) fraction of the edges are
satisfiable, for some constant ε.

Now we take three copies of A, call them A1, A2, A3, and let A′ be their union
(so |A′| = 5n′). Similarly we take five copies of B to get Bi for i ∈ [5], and
take their union to be B′. Now between each Ai and each Bj we put a copy
of the original edge set E (which we will call Eij), giving us edge set E′. Note
that |B′| = |A′| = 5n′ and every vertex has degree 15. Obviously if the original
instance has all edges satisfiable then that is still true of this instance. On the
other hand, suppose in the original instance at most 1/(1 + ε) of the edges are
satisfiable. Then fix any labeling of A′ and B′. For any i, j this induces some
labeling of Ai and Bj , which we know can only satisfy 1/(1 + ε) of the edges in
Eij . Since this is true for all i, j, the total fraction of satisfied edges is at most
1/(1 + ε).

300 M. Dinitz, G. Kortsarz, and R. Raz

We now apply parallel repetition � times. Now each side has size (5n′)
, the
degree is d = 15
, and the alphabet sizes are |ΣA| = 7
 and |ΣB| = 2
. By the
parallel repetition theorem [23], unless NP ⊆ BPTIME(nO(
)) it is hard to
distinguish between the case when all edges are satisfiable and when at most a
2−
/c fraction are satisfiable for some constant c. We can apply Theorem 4 to
this construction to get the following hardness result.

Theorem 6. Assuming NP �⊆ BPTIME(2polylog(n)), for any constant ε > 0
and 3 ≤ k ≤ log1−2ε n there is no polynomial time algorithm that can approxi-
mate Label Coverk to a factor better than 2(log

1−ε n)/k.

Proof. Set � = log1/ε n′, so the size of the Label Cover instance is n = (5n′)log
1/ε n′

and �ε = logn′. Note that logn = Θ(� log n′) = Θ(�1+ε), so � = Θ((log n)1/(1+ε)).

Let α = min{2
/c, 15
/k/� log 7}. Assuming that k is at most log(1/(1+ε))−γ n for
some constant γ > 0 implies that α ≥ 16 logn, so applying Theorem 4 to this
construction implies that, assuming NP �⊆ BPTIME(nO(
)), there is no poly-
nomial time algorithm that can distinguish between instances of Label Coverk
in which all edges are satisfiable and instances in which at most a c/α fraction
are satisfiable (for some constant c). Using a smaller ε to change 1/(1 + ε) to
1− ε, as well as to get rid of lower order terms, gives the theorem. ��

On the other hand, if we apply Theorem 5 to this construction then we get the
following theorem:

Theorem 7. Assuming NP �⊆ BPTIME(2polylog(n)), for any constant ε > 0
and 3 ≤ k ≤ log1−2ε n there is no polynomial time algorithm that can distinguish
between instances of Min-Repk that have a REP-cover of size at most ñ and
instances in which the smallest REP-cover has size at least 2(log

1−ε n)/k · ñ, where
n is the size of the Min-Rep graph and ñ is the size of the supergraph. Thus there
is no polynomial time algorithm that can approximate Min-Repk to a factor better
than 2(log

1−ε n)/k.

Proof. Analogous to Theorem 6. ��

Elkin and Peleg [11, Section 6] showed how to reduce Min-Repk+1 to basic k-
spanner while losing only a factor of k. When combined with Theorem 7 it yields
the following theorem (the loss of k can be fixed by choosing a smaller constant
ε).

Theorem 8. Assuming NP �⊆ BPTIME(2polylog(n)), for any constant ε > 0
and 3 ≤ k ≤ log1−2ε n there is no polynomial time approximation algorithm for
the basic k-spanner problem with ratio less than 2(log

1−ε n)/k.

Label Cover Instances with Large Girth 301

References

1. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993)

2. Arora, S., Lund, C.: Hardness on Approximation. In: Hochbaum, D. (ed.) Approx-
imation Algorithms for NP-Hard Problems, ch. 10. PWS Publishing (1996)

3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

4. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of np.
J. ACM 45(1), 70–122 (1998)

5. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in ex-

pected o(n2) time. ACM Transactions on Algorithms 2(4), 557–577 (2006)
6. Berman, P., Bhattacharyya, A., Makarychev, K., Raskhodnikova, S., Yaroslavtsev,

G.: Improved Approximation for the Directed Spanner Problem. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 1–12. Springer,
Heidelberg (2011)

7. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.P.:
Transitive-closure spanners. In: SODA 2009, pp. 932–941 (2009)

8. Cohen, E.: Polylog-time and near-linear work approximation scheme for undirected
shortest paths. J. ACM 47(1), 132–166 (2000)

9. Dinitz, M., Krauthgamer, R.: Directed spanners via flow-based linear programs.
In: STOC 2011, pp. 323–332 (2011)

10. Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press, New York (2009)

11. Elkin, M., Peleg, D.: Strong Inapproximability of the Basic k-Spanner Problem.
In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853,
pp. 636–647. Springer, Heidelberg (2000)

12. Elkin, M., Peleg, D.: Approximating k-spanner problems for k > 2. Theor. Comput.
Sci. 337(1-3), 249–277 (2005)

13. Elkin, M., Peleg, D.: The hardness of approximating spanner problems. Theory
Comput. Syst. 41(4), 691–729 (2007)

14. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in
the data-stream model. SIAM J. Comput. 38(5), 1709–1727 (2008)

15. Goldreich, O., Sudan, M.: Locally testable codes and pcps of almost-linear length.
J. ACM 53, 558–655 (2006)

16. Khot, S.: On the unique games conjecture. In: FOCS 2005, p. 3 (2005)
17. Kortsarz, G.: On the hardness of approximating spanners. Algorithmica 1444

(1998)
18. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. Journal of Algorithms 17(2),

222–236 (1994)
19. Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the com-

plete graphs and almost as cheap as minimum spanning trees. Algorithmica 8(3),
251–256 (1992)

20. Peleg, D., Schaffer, A.: Graph spanners. J. Graph Theory 13, 99–116 (1989)
21. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J.

Comput. 18(4), 740–747 (1989)
22. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J.

ACM 36(3), 510–530 (1989)
23. Raz, R.: A parallel repetition theorem. SIAM Journal on Computing 27(3), 763–803

(1998)
24. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA 2001, pp. 1–10 (2001)
25. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005)

Space-Constrained Interval Selection�

Yuval Emek1, Magnús M. Halldórsson2,��, and Adi Rosén3,���

1 ETH Zurich, Zurich, Switzerland
emek@tik.ee.ethz.ch

2 ICE-TCS, School of Computer Science, Reykjavik University, Iceland
mmh@ru.is

3 CNRS and Université Paris Diderot, France
adiro@lri.fr

Abstract. We study streaming algorithms for the interval selection
problem: finding a maximum cardinality subset of disjoint intervals on
the line. A deterministic 2-approximation streaming algorithm for this
problem is developed, together with an algorithm for the special case
of proper intervals, achieving improved approximation ratio of 3/2. We
complement these upper bounds by proving that they are essentially
best possible in the streaming setting: it is shown that an approxima-
tion ratio of 2 − ε (or 3/2 − ε for proper intervals) cannot be achieved
unless the space is linear in the input size. In passing, we also answer an
open question of Adler and Azar [1] regarding the space complexity of
constant-competitive randomized preemptive online algorithms for the
same problem.

1 Introduction

In this paper we consider the interval selection problem, namely, finding a max-
imum cardinality subset of disjoint intervals from a given collection of intervals
on the real line. It is well known that this problem has a simple optimal algo-
rithm in the classical setting when the complete set of intervals is given to the
algorithm [15]. Here we study this problem in the streaming model [17,23], where
the input is given to the algorithm as a stream of items (intervals in our case),
one at a time, and the algorithm has a limited memory that precludes storing
the whole input. Yet, the algorithm is still required to output a feasible solution,
with a good approximation ratio.

The motivation for the streaming model stems from applications of manag-
ing very large data sets, such as biological data (DNA sequencing), network
traffic data, and more. Although some function of the whole data set is to be
computed, it is impossible to store the whole input. Depending on the setting,
different variants of the streaming model have been considered in the literature,
such as the classical streaming model [17] or the so-called semi-streaming model

� Refer to [9] for a full version of this extended abstract.
�� Research partially supported by grant 90032021 from the Icelandic Research Fund.

��� Research partially supported by ANR projects QRAC and ALADDIN.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 302–313, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Space-Constrained Interval Selection 303

[12]. Common to all of them is the fact that the space used by the streaming
algorithm is linear in some natural upper bound on the size of the output it
returns (sometimes, a multiplicative polylogarithmic overhead is allowed).

In many problems considered in the streaming literature, the size of the output
is fully determined by some parameter of the input, and thus, one would typically
express the space complexity as a function of this parameter (cf. [4,13]). However,
in other problems, the size of the output cannot be a priori expressed that way as
it depends on the given instance; in such settings it is natural to seek a streaming
algorithm whose space complexity is not much larger than the output size of the
given instance (cf. [16]). Clearly, as long as the computational model of the
streaming algorithm is based on a Turing machine with no distinction between
the working tape and the output tape, the size of the output is an inherent lower
bound on the required space.

In this paper, we consider a setting where the algorithm is given a stream of real-
line intervals, each one defined by its two endpoints, and the goal is to compute a
maximum cardinality subset of disjoint intervals (or an approximation thereof).
This problem finds many applications, e.g., in resource allocation problems, and
it has been extensively studied in the online and offline settings in many variants.
We seek algorithms with a good upper bound on the space they use for a given
instance, expressed in terms of the size of the output for that specific instance.
Typically, we seek algorithms that use space which is at most linear in the size of
the output and yet guarantee a good approximation ratio.

Related Work. The offline interval selection problem corresponds to finding a
maximum independent set in an interval graph. An optimal greedy algorithm
was discovered early [15] and has since been a staple of algorithms textbooks
[8,18]. It should be noted that the input can be given in (at least) two different
ways: as an intersection graph with the nodes corresponding to the intervals, or as
a set of intervals given by their endpoints. This distinction makes little difference
in the traditional offline setting, where switching between these representations
can be done efficiently. However, it can be important in access- or resource-
constrained settings. We choose to study the interval selection problem assuming
the latter representation — that is, the input is given as a set of intervals —
since we believe that it makes more sense in applications related to the online
and streaming settings (most previous works on online interval selection make
the same assumption).

The study of space-constrained algorithms goes back at least to the 1980 work
of Munro and Paterson on selection and sorting [22]. More recently, the streaming
model was developed to capture the processing of massive data-sets that arise in
practice [23]. Most streaming algorithms deal with the approximate computation
of various statistics, or “heavy hitters”, as exemplified by the celebrated paper
of Alon, Matias, and Szegedy [4].

A number of classic graph theoretic problems have been treated in the stream-
ing setting, for example, matching problems [20,11], diameter and shortest paths
[12,13], min-cut [3], and graph spanners [13]. These were mostly studied under
the semi-streaming model, introduced by Feigenbaum et al. [12]; in this model,

304 Y. Emek, M.M. Halldórsson, and A. Rosén

the algorithm is allowed to use n logO(1)(n) space on an n-vertex graph (i.e.,

logO(1)(n) bits per vertex). Closest to our problem, the independent set problem
in general sparse graphs (and hypergraphs) was studied in the streaming set-
ting by Halldórsson et al. [16]. Geometric streaming algorithms have also been
appearing in recent years, especially dealing with extent and ranges, such as [2].

There is a plethora of literature on interval selection in the online setting. Some
papers capture the problem as a call admission problem on a linear network, with
the objective of maximizing the number (or weight) of accepted calls. Awerbuch
et al. [5] present a strongly �logN�-competitive algorithm for the problem, where
N is the number of nodes on the line (corresponding to the number of possi-
ble interval endpoints). This yields an O(logΔ)-competitive algorithm for the
weighted case, where Δ is the ratio between the longest to the shortest interval.
On the negative side, Awerbuch et al. [5] establish a lower bound of Ω(logN)
on the competitive ratio of randomized non-preemptive online interval selection
algorithms. In the context of the real line, this immediately implies that such
algorithms cannot have competitive ratio that does not depend on the length of
the input. In fact, Bachmann et al. [6] recently showed that the competitive ratio
of randomized non-preemptive online algorithms for interval selection on the real
line must be linear in the number of intervals in the input. Preemptive online
scheduling has a lower bound of Ω(logΔ/ log logΔ) in the weighted case [7]. In
comparison, much better results are possible for preemptive online algorithms
in the unweighted setting: Adler and Azar [1] devise a 16-competitive algorithm.
One way of easing the task of the algorithm is to assume arrival by time, i.e.,
the intervals arrive in order of left endpoints. This has been treated for different
weighted problems [19,24,21,14,10].

Our Results. We give tight results for the interval selection problem in the
streaming setting. Our main positive result is a deterministic 2-approximation
streaming algorithm that uses space linear in the size of the output (Sect. 3).
This is complemented by a matching lower bound (Sect. 4), stating that an
approximation ratio of 2 − ε cannot be obtained by any randomized streaming
algorithm with space significantly smaller than the size of the input (which is
much larger than the size of the output). The special case of proper interval
collections (i.e., collections of intervals with no proper containments) is also
considered, for which a deterministic 3/2-approximation streaming algorithm
that uses space linear in the output size is presented (deferred to [9]); a matching
lower bound on the approximation ratio is established (Sect. 4) for streams of
unit intervals (a special case of proper intervals). The upper bounds are extended
to multiple-pass streaming algorithms: we show that an approximation ratio
1 + 1/(2p− 1) can be obtained in p passes over the input (deferred to [9]).

In passing, we also answer an open question posed by Adler and Azar [1] in
the context of randomized preemptive online algorithms for the interval selection
problem. Adler and Azar point out that the decisions made by their online
algorithm depend on the whole history (i.e., the input seen so far) and that
natural attempts to remove this dependency seem to fail. Consequently, they
write (using the term “active call” for an interval in the solution maintained by

Space-Constrained Interval Selection 305

the online algorithm) that “it seems very interesting to find out whether there
exist constant-competitive algorithms where each decision depends only on the
currently active calls and maybe on additional bounded information”. We answer
this question affirmatively by slightly modifying our main algorithm to achieve a
randomized preemptive online algorithm that admits constant competitive ratio
(slightly improving on that of [1]) and uses space linear in the size of the optimal
solution, rather than the size of the input, as the algorithm of Adler and Azar
does (deferred to [9]).

2 Preliminaries

We think of the real line R as stretching from left to right so that an interval
I contains all points between its left endpoint left(I) and its right endpoint
right(I), where left(I) < right(I). Each endpoint can be either open (exclusive)
or closed (inclusive). A half-open interval has a closed left endpoint and an open
right endpoint. (This is, perhaps, the natural interval type to use in most resource
allocation applications.) Observe that the assumption that left(I) < right(I)
implies that every interval contains an open set (in the topological sense) and
that half-open intervals are always well defined.

The interval related notions of intersection, disjointness, and containment fol-
low the standard view of an interval as a set of points. Two intervals I, J properly
intersect if they intersect without containment; I properly contains J if I contains
J and J does not contain I. An interval collection I is said to be proper (and the
intervals in the collection, proper intervals) if no two intervals in I exhibit proper
containment. The load of I is defined to be maxp∈R |{I ∈ I | p ∈ I}|.

The interval selection problem asks for a maximum cardinality subset of pair-
wise disjoint intervals out of a given set S of intervals. In the streaming model,
the input interval set S is considered to be an ordered set (a.k.a. a stream) and
the intervals arrive one by one according to that order. The intervals are spec-
ified by their endpoints, where each endpoint is represented by a bit string of
length b (the same b for all endpoints). This may potentially provide a streaming
algorithm with the edge of knowing in advance some bounds on the number of
intervals that will arrive and on the number of intervals that can be placed be-
tween two existing intervals. However, our algorithms do not take advantage of
this extra information and our lower bounds show that it is essentially useless.
An optimal solution to a given instance S of the interval selection problem is
denoted by Opt(S).

We may sometimes talk about segments, rather than intervals, when we want
to emphasize that the entities under consideration are not part of the input.
Given a set I of intervals, a component (or connected component) of I is a
maximal continuous segment in

⋃
I∈I I.

3 The Main Algorithm

Overview. Given a stream S of intervals, our algorithm maintains a collection
A ⊆ S, referred to as the actual intervals, from which the output Alg(S) =

306 Y. Emek, M.M. Halldórsson, and A. Rosén

Opt(A) is taken. It also maintains a collection V of virtual intervals, where each
virtual interval is the intersection of two actual intervals that existed in A at
some point. The role of the virtual intervals is to filter out undesired intervals
from joining A: an arriving interval I ∈ S joins A if and only if it does not
contain any currently maintained virtual or actual interval.

Our algorithm is designed to guarantee that each interval I ∈ S leaves a trace
in either A or V , namely, there exists some J ∈ A∪V such that J ⊆ I. Moreover,
if I, I ′ ∈ A properly intersect, then I ∩ I ′ ∈ V . This essentially means that an
arriving interval is rejected if and only if it contains some previous interval of S
or the intersection of two properly intersecting previous intervals in S that have
belonged to A.

Following that, it is not difficult to show that the load of the interval collection
A is at most 2. Based on a careful analysis of the structure of the (connected)
components in A and the locations of the virtual intervals within these compo-
nents and between them, we can argue that |V | ≤ |A|. This immediately yields
the desired upper bound on the space of our algorithm as |A| ≤ 2 · |Opt(A)|. The
bound on the approximation ratio essentially stems from the observation that
|Opt(S)| ≤ |Opt(A ∪ V)| (a direct corollary of the fact that each interval in S
leaves a trace in A∪V) and from the invariant that each actual interval contains
at most 2 virtual intervals.

It is interesting to point out that our algorithm is in fact a deterministic
preemptive online algorithm that maintains a load-2 interval collection (the col-
lection A). Since the main result of Adler and Azar [1] also relies on such an
algorithm, one may wonder if the two algorithms can be compared. Actually, the
algorithm of Adler and Azar bases its rejection (and preemption) decisions on
similar conditions: an arriving interval is rejected if and only if it contains some
previous interval of S or the intersection of two properly intersecting intervals
in A. (Adler and Azar use a different terminology, but the essence is very sim-
ilar.) The difference lies in the latter condition: whereas the algorithm of Adler
and Azar considers only the properly intersecting intervals that are currently in
A, our algorithm also (implicitly) considers properly intersecting intervals that
belonged to A in the past and were preempted since. This seemingly small dif-
ference turns out to be crucial as it facilitates our algorithm to use much less
memory, thus giving rise to an interesting phenomena: by remembering extra
information (i.e., intersecting intervals that belonged to A in the past and are
not in A anymore), we actually end up using less memory.

The Algorithm. Consider a stream S = (I1, . . . , In) of intervals on the real
line. It will be convenient to assume that all endpoints are distinct, i.e.,
{left(I), right(I)} ∩ {left(J), right(J)} = ∅ for every two intervals I, J ∈ S. Un-
less stated otherwise, we will also assume that the intervals mentioned in this
section are closed on both endpoints. These two assumptions are lifted in [9].

Our algorithm, denoted Alg, maintains a collection A ⊆ S of actual intervals
and a collection V of virtual intervals, where each virtual interval is realized
by endpoints of intervals in S. That is, the virtual interval I ∈ V satisfies
{left(I), right(I)} ⊆ {left(J), right(J) | J ∈ S}. The algorithm initially sets

Space-Constrained Interval Selection 307

A, V ← ∅. Then, upon arrival of a new interval I ∈ S, Alg proceeds according
to the policy presented in Algorithm 1.

Algorithm 1. The policy of Alg upon arrival of an interval I ∈ S

1: if ∃J ∈ A ∪ V s.t. J ⊆ I then
2: reject I and halt
3: A← A ∪ {I}
4: for all J ∈ A s.t. J ⊇ I do
5: A← A− {J}
6: for all J ∈ V s.t. J ⊇ I do
7: V ← V − {J}
8: for p ∈ {left(I), right(I)} do
9: if ∃J ∈ V s.t. p ∈ J then
10: V ← V − {J} ∪ {I ∩ J}
11: else if ∃J ∈ A s.t. p ∈ J then
12: V ← V ∪ {I ∩ J}
13: for all J ∈ A and K ∈ V do
14: if left(J) < left(K) < right(K) < right(J) then
15: A← A− {J}

Analysis (sketch). We provide here a sketch of the analysis; the detailed version
is deferred to [9]. Throughout, we let 1 ≤ t ≤ n denote the time at which Alg

completed processing interval It ∈ S; time t = 0 denotes the beginning of the
execution. We refer to the period between time t− 1 and time t as round t. The
stream prefix (S1, . . . , St) is denoted by St. The collections A and V at time t are
denoted by At and Vt, respectively, although, when t is clear from the context,
we may omit the subscript.

Lemma 1 lies at the core of our analysis: it states that each interval in S leaves
some trace in either A or V . This will be employed later on to argue that Alg(S)
is not much smaller than Opt(S).

Lemma 1. For every interval It ∈ S and for every time t′ ≥ t, there exists
some interval ρ ∈ At′ ∪ Vt′ such that ρ ⊆ It.

Lemma 2 — the main lemma regarding the updating phase in lines 8–12 and the
resulting structure of the interval collections A and V — states seven invariants
maintained by our algorithm; these invariants are proved simultaneously by in-
duction on t, essentially by straightforward analysis of the policy presented in
Algorithm 1.

Lemma 2. For any round 1 ≤ t ≤ n, the updating phase satisfies the following
two properties:
(P1) If ρ is added to V in round t, then ρ ∈ Vt.
(P2) If ρ and σ are added to V in round t, then ρ ∩ σ = ∅.
Moreover, for any time 0 ≤ t ≤ n, the interval collections A and V satisfy the
following five properties:

308 Y. Emek, M.M. Halldórsson, and A. Rosén

(P3) For every ρ ∈ A and σ ∈ V , if ρ ∩ σ �= ∅, then σ ⊂ ρ with a common
endpoint.
(P4) For every ρ, σ ∈ A, if ρ ∩ σ �= ∅, then ρ ∩ σ ∈ V .
(P5) Every point p ∈ R is contained in at most 1 virtual interval.
(P6) Every point p ∈ R is contained in at most 2 actual intervals.
(P7) There do not exist two actual intervals ρ, σ ∈ A such that ρ ⊆ σ.

We employ Lemma 2 in order to understand the structure of the components of
A and their relations with the intervals in V . To that end, fix some time t and
consider an arbitrary component C formed as the union of the actual intervals
ρ1, . . . , ρk ∈ At. We denote the leftmost and rightmost points in (the segment)
C by left(C) and right(C), respectively. Assume without loss of generality that
left(ρi) < left(ρi+1) for every 1 ≤ i ≤ k − 1. Lemma 2(P6) and (P7) then
guarantees that

left(ρi−1) < left(ρi) < right(ρi−1) < left(ρi+1) < right(ρi) < right(ρi+1)

for every 2 ≤ i ≤ k−1. By Lemma 2(P4), we conclude that ρi∩ρi+1 ∈ Vt for every
1 ≤ i ≤ k−1, while Lemma 2(P3) implies that the segment [left(ρ2), right(ρk−1)]
does not intersect with any other virtual interval in Vt. The segment C possibly
contains two more virtual intervals at time t: an interval σ
 ⊆ [left(ρ1), left(ρ2))
and an interval σr ⊆ (right(ρk−1), right(ρk)], but then Lemma 2(P3) guarantees
that left(σ
) = left(ρ1) = left(C) and right(σr) = right(ρk) = right(C). An
illustration of a component is provided in Fig. 1. There may also exist virtual
intervals in between the components of A, but Lemma 3, to be stated soon,
essentially shows that their number and structure are fairly limited.

ρ1 ρ3 ρ5

ρ2 ρ4

Fig. 1. A component C of A. The solid lines depict the actual interval ρi, i = 1, . . . , 5;
the dashed lines depict the virtual intervals contained in C.

Let Ψt denote the collection of the components of At and consider two adjacent
components C
, Cr ∈ Ψt, where C
 is to the left of Cr . We say that the pair
(C
, Cr) is solid at time t if at most one virtual interval in Vt intersects with
the segment [right(C
), left(Cr)]. Lemma 3 states that the pair (C
, Cr) is always
solid.

Lemma 3. At every time 0 ≤ t ≤ n, all pairs of adjacent components in Ψt are
solid. Moreover, no virtual interval intersects with the segment (−∞, left(C
)]
nor with the segment [right(Cr),+∞), where C
 and Cr are the leftmost and
rightmost components in Ψt, respectively.

Space-Constrained Interval Selection 309

Lemma 4 is established by combining Lemma 1 and Lemma 3 with a careful
accounting of the virtual intervals.

Lemma 4. |Alg(St)| ≥ |Opt(St)|/2 at every time 0 ≤ t ≤ n.

Corollary 1. |Alg(S)| ≥ |Opt(S)|/2.
It remains to bound the space of our algorithm, showing that it is linear in the
length of the bit string representing Alg(S). At each time t, the space of Alg is
linear in the length of the bit strings representing At and Vt. As Opt(St)/2 ≤
Alg(St) ≤ Opt(St) for every 0 ≤ t ≤ n, and since Opt(St) is non-decreasing
with t, it is sufficient to show that |At| + |Vt| = O(|Alg(St)|) = O(|Opt(At)|).
By Lemma 2(P6), we know that the actual intervals in At can be 2-colored such
that if two intervals belong to the same color class, then they do not intersect.
Thus, |At| ≤ 2 · |Opt(At)| at every time t. On the other hand, Lemma 3 implies
that if we count the actual and virtual intervals by scanning the real line from
left to right, then the number of virtual intervals never exceeds that of the actual
intervals. Therefore, |Vt| ≤ |At| which concludes our analysis.

4 Lower Bound(s)

In this section we establish lower bounds on the approximation ratio of random-
ized streaming algorithms for the interval selection problem, establishing the
following two theorems.

Theorem 1 (Lower bound for general intervals). For every real ε > 0,
integers k0, n0 > 0, and subexponential (respectively, sublinear) function s :
N → N, there exist k0 ≤ k ≤ c · k0, where c is a universal constant, n > n0,
and an interval stream S such that (1) |S| = n; (2) |Opt(S)| = k; and (3)
Alg(S) < k(1/2 + ε) for any randomized interval selection streaming algorithm
Alg with space s(kb) (resp., space s(nb)), where b is the length of the bit strings
representing the endpoints of S.

Theorem 2 (Lower bound for unit intervals). For every real ε > 0, integers
k, n0 > 0, and subexponential (respectively, sublinear) function s : N → N,
there exist n > n0, and a unit interval stream S such that (1) |S| = n; (2)
|Opt(S)| = k; and (3) Alg(S) < k(2/3 + ε) for any randomized proper interval
selection streaming algorithm Alg with space s(kb) (resp., space s(nb)), where b
is the length of the bit strings representing the endpoints of S.

Our lower bounds are proved by designing a random interval stream S for which
every deterministic algorithm performs badly on expectation; the assertion then
follows by Yao’s principle. (Our construction uses half-open intervals, but this
can be easily altered.) Note that under the setting used by our lower bounds,
the algorithm is required to output a collection C of disjoint intervals, and the
quality of the solution is then determined to be the cardinality of C ∩ S. In
other words, the algorithm is allowed to output non-existing intervals (that is,
intervals that never arrived in the input), but it will not be credited for them.
This, obviously, can only increase the power of the algorithm.

310 Y. Emek, M.M. Halldórsson, and A. Rosén

The (k, n)-Gadget. Fix some positive integer m whose role is to bound the space
of the algorithm. Our lower bounds rely on the following framework, character-
ized by the parameters k, n ∈ Z>0, denoted a (k, n)-gadget. Consider an extensive
form two-player zero-sum game played between the algorithm (MAX) and the
adversary (MIN), depicted by a sequence of k phases. Informally, in each phase
t, the adversary chooses a permutation πt ∈ Pn, where Pn is the collection of
all permutations on n elements, and an index it ∈ [n]. The algorithm observes
πt (but not it) and produces a memory image Mt, i.e., a bit string of length m.
The index it is handed to the algorithm after the memory image is produced.
At the end of the last phase the algorithm tries to recover πt(it) for t = 1, . . . , k:
it outputs some i∗t ∈ [n] based on the memory image Mt, index it, and all other
memory images and indices. For each t such that i∗t = πt(it), the algorithm
scores a (positive) point.

More formally, the adversarial strategy is depicted by the choices of the per-
mutations πt and the indices it for t = 1, . . . , k. We commit the adversary to
make those choices uniformly at random (so, the adversary reveals its mixed
strategy), namely, πt ∈r Pn and it ∈r [n] for every t, where all the random
choices are independent. The strategy of the algorithm is depicted by the func-
tion sequences {ft}kt=1 and {gt}kt=1, where ft : Pn×({0, 1}m × [n])

t−1 → {0, 1}m
and gt : {0, 1}m × [n] × ({0, 1}m × [n])

k−1 → [n]. Let Γ0 be the empty string
and recursively define1Γt = Γt−1 ◦ ft (πt, Γt−1) ◦ it. The payoff of the algorithm
is the number of indices t, 1 ≤ t ≤ k, such that

gt

(
ft (πt, Γt−1) , it, {ft′ (πt′ , Γt′−1) , it′}t′ �=t

)
= πt(it) .

In the language of the aforementioned informal description, the role of the func-
tion ft is to produce the memory image Mt based on the permutation πt and
all previous memory images and indices (whose concatenation is given by Γt−1).
The role of the function gt is to recover πt(it) based on the memory image Mt,
index it, and all other memory images and indices.

Note that the memory images Mt′ and indices it′ , t
′ �= t, do not contain any

information on the permutation πt on top of that contained in Mt. In particular,
the entropy in πt(it) given Mt, it, and {Mt′ , it′}t′ �=t is equal to the entropy in
πt(it) givenMt and it. Therefore, it will be convenient to decompose the domain
of the function gt : {0, 1}m× [n]×({0, 1}m× [n])k−1 → [n] so that the ({0, 1}m×
[n])k−1-part determines which function ĝt : {0, 1}m × [n] → [n] is chosen, and
then this function ĝt is used to produce i∗t based on Mt and it. Similarly, we
decompose the domain of the function ft : Pn × ({0, 1}m× [n])t−1 → {0, 1}m so

that the ({0, 1}m × [n])
t−1

-part determines which function f̂t : Pn → {0, 1}m is

chosen, and then this function f̂t is used to produce Mt based on πt.
We now turn to bound the expected payoff of the algorithm as a function of

k, m, and n. The key ingredient in this context is the following lemma, which is
essentially a well known fact in slightly different settings; a proof is provided in
[9] for completeness.

1 We use the notation u ◦ v to denote the concatenation of the string u to string v.

Space-Constrained Interval Selection 311

Lemma 5. For every real α > 0 and integer n0 > 0, there exists an integer n >
n0 such that for every two functions f̂ : Pn → {0, 1}m and ĝ : {0, 1}m×[n] → [n],

where m = αn logn, we have Pπ∈rPn,i∈r[n](ĝ(f̂(π), i) = π(i)) < 2α.

Corollary 2. For every real α > 0 and integers k, n0 > 0, there exists an integer
n > n0 such that if m ≤ αn logn, then the expected payoff of the algorithm
(MAX) player in a (k, n)-gadget is smaller than 2αk.

The (n, π)-Stack. We now turn to implement a (k, n)-gadget via a carefully
designed interval stream. As a first step, we introduce the (n, π)-stack con-
struction. Given an integer n > 0 and a permutation π ∈ Pn, an (n, π)-stack
deployed in the segment [x, y), x < y, is a collection of n intervals J1, . . . , Jn sat-
isfying: (1) all intervals Ji are half open; (2) all intervals Ji have the same length
right(Ji)− left(Ji) = λn, where λ = y−x

2n−1/2 ; and (3) left(Ji) = x+λ(i−1)+επ(i)

for every i ∈ [n], where ε = λ/(2n). Note that this deployment ensures that
left(Jn) < right(J1), hence the half open segment [left(Jn), right(J1)) is con-
tained in Ji for every i ∈ [n]. Moreover, the union of the intervals in the stack
does not necessarily cover the whole segment [x, y); it is always contained in
[x, y), though. The structure of an (n, π)-stack is illustrated in Fig. 2.

Fig. 2. The relative locations of the intervals in an (n, π)-stack for n = 4. The left and
right endpoints of interval Ji are located in the segments depicted by the bidirectional
arrows whose length is λ/2. The exact location within this segment is determined by
π(i). In the construction of the 2-lower bound for general intervals, the bold rectangles
correspond to the segments in which the stacks (or auxiliary intervals) identified with
the left and right children of the current node are deployed assuming that the good
interval is interval J2 (these segments do not intersect with the segments corresponding
to the bidirectional arrows).

The (k, n)-gadget is implemented by introducing k stacks, each corresponding
to one phase, and some auxiliary intervals; the stack corresponding to phase t
is referred to as stack t. The permutation π used in the construction of stack
t is πt. The index it will dictate the choice of one good interval out of the n
intervals in that stack. What exactly makes this interval good will be clarified
soon; informally, the algorithm has no incentive to output an interval in a stack
unless this interval is good.

The k stacks are used both by the construction of the 2-lower bound for
general interval streams and by that of the (3/2)-lower bound for unit intervals.
The difference between the two constructions lies in the manner in which these
stacks are deployed in the real line, and in the addition of the auxiliary intervals.
The details of the 2-lower bound are provided here; those of the (3/2)-lower
bound are deferred to [9].

312 Y. Emek, M.M. Halldórsson, and A. Rosén

A 2-Lower Bound for General Intervals. The interval stream that realizes the
(k, n)-gadget for the 2-lower bound for general intervals is constructed as follows.
Assume that k = 2κ−1 for some positive integer κ and consider a perfect binary
tree T of depth κ. The k stacks are identified with the internal nodes of T so
that stack t precedes stack t + 1 in a pre-order traversal of T . (In other words,
if stack t is identified with node u and stack t′ is identified with a child of
u, then t < t′.) In addition to the intervals in the stacks, we also introduce
2κ = k + 1 auxiliary intervals which are identified with the leaves of T ; these
auxiliary intervals arrive last in the stream. We say that an interval J is assigned
to node u ∈ T if J belongs to the stack identified with u or if u is a leaf and J
is the auxiliary interval identified with it.

The deployment of the stacks and the auxiliary intervals in R is performed as
follows. Stack 1 (identified with T ’s root) is deployed in [0, 1). Given the deploy-
ment of stack t identified with internal node u ∈ T in the segment [x, y), we de-
ploy the stacks identified with the left and right children of u in the segments σ
 =
[x+ λ(it − 3/2), x+ λ(it − 1)) and σr = [x+ λ(it + n− 1/2), x+ λ(it + n)), re-
spectively, where recall that λ = y−x

2n−1/2 . If the children of u are leaves in T ,

then we deploy auxiliary intervals in those two segments instead of stacks, that
is, one auxiliary interval in σ
 and one in σr. Refer to Fig. 2 for an illustration.

The key observation regarding the choice of σ
 and σr is that

left(Jit−1) ≤ left(σ
) < right(σ
) ≤ left(Jit) and

right(Jit) ≤ left(σr) < right(σr) ≤ right(Jit+1) .

This implies that: (1) the good interval in the stack identified with node u ∈ T
does not intersect with any interval assigned to a descendant of u in T ; and (2) a
non-good interval in the stack identified with node u ∈ T contains every interval
assigned to a descendant of either the left child of u or the right child of u in T .

The best response of the algorithm would clearly include all the auxiliary
intervals in the output, hence it can include an interval Ji of stack t in the
output only if it is the good interval of that stack, namely, i = it. For that
purpose, the algorithm has to recover the exact locations of the endpoints of Jit
that implicitly encode πt(it). Observing that the endpoints in this construction
can be represented by bit strings of length log(n) · log(k), Theorem 1 follows by
Corollary 2.

References

1. Adler, R., Azar, Y.: Beating the logarithmic lower bound: Randomized preemptive
disjoint paths and call control algorithms. J. Scheduling 6(2), 113–129 (2003)

2. Agarwal, P.K., Sharathkumar, R.: Streaming algorithms for extent problems in
high dimensions. In: SODA 2010, pp. 1481–1489 (2010)

3. Ahn, K.J., Guha, S.: Graph Sparsification in the Semi-Streaming Model. In: Al-
bers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009. LNCS, vol. 5556, pp. 328–338. Springer, Heidelberg (2009)

4. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)

Space-Constrained Interval Selection 313

5. Awerbuch, B., Bartal, Y., Fiat, A., Rosén, A.: Competitive non-preemptive call
control. In: SODA 1994, pp. 312–320 (1994)

6. Bachmann, U.T., Halldórsson, M.M., Shachnai, H.: Online Selection of Intervals
and t-Intervals. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 383–394.
Springer, Heidelberg (2010)

7. Canetti, R., Irani, S.: Bounding the power of preemption in randomized scheduling.
SIAM J. Comput. 27(4), 993–1015 (1998)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press and McGraw-Hill (2009)

9. Emek, Y., Halldórsson, M., Rosén, A.: Space-constrained interval selection (2012),
http://arxiv.org/abs/1202.4326

10. Epstein, L., Levin, A.: Improved randomized results for the interval selection prob-
lem. Theor. Comput. Sci. 411(34-36), 3129–3135 (2010)

11. Epstein, L., Levin, A., Mestre, J., Segev, D.: Improved approximation guarantees
for weighted matching in the semi-streaming model. In: STACS 2010, pp. 347–358
(2010)

12. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theor. Comput. Sci. 348, 207–216 (2005)

13. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in
the data-stream model. SIAM J. Comput. 38(5), 1709–1727 (2008)

14. Fung, S.P.Y., Poon, C.K., Zheng, F.: Improved Randomized Online Scheduling of
Unit Length Intervals and Jobs. In: Bampis, E., Skutella, M. (eds.) WAOA 2008.
LNCS, vol. 5426, pp. 53–66. Springer, Heidelberg (2009)

15. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM J. Com-
put. 1(2), 180–187 (1972)

16. Halldórsson, B.V., Halldórsson, M.M., Losievskaja, E., Szegedy, M.: Streaming
Algorithms for Independent Sets. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
641–652. Springer, Heidelberg (2010)

17. Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams. In:
AMS-DIMACS Series. Special Issue on Computing on Very Large Datasets (1998)

18. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley (2005)
19. Lipton, R.J., Tomkins, A.: Online interval scheduling. In: SODA 1994, pp. 302–311

(1994)
20. McGregor, A.: Finding Graph Matchings in Data Streams. In: Chekuri, C., Jansen,

K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS,
vol. 3624, pp. 170–181. Springer, Heidelberg (2005)

21. Miyazawa, H., Erlebach, T.: An improved randomized on-line algorithm for a
weighted interval selection problem. J. of Scheduling 7(4), 293–311 (2004)

22. Munro, J.I., Paterson, M.: Selection and sorting with limited storage. Theor. Com-
put. Sci. 12, 315–323 (1980)

23. Muthukrishnan, S.: Data streams: Algorithms and applications. Foundations and
Trends in Theoretical Computer Science 1(2) (2005)

24. Woeginger, G.J.: On-line scheduling of jobs with fixed start and end times. Theor.
Comput. Sci. 130(1), 5–16 (1994)

http://arxiv.org/abs/1202.4326

Polynomial Time Algorithms
for Branching Markov Decision Processes
and Probabilistic Min(Max) Polynomial

Bellman Equations

Kousha Etessami1, Alistair Stewart1, and Mihalis Yannakakis2

1 School of Informatics, University of Edinburgh
kousha@inf.ed.ac.uk, stewart.al@gmail.com

2 Department of Computer Science, Columbia University
mihalis@cs.columbia.edu

Abstract. We show that one can approximate the least fixed point so-
lution for a multivariate system of monotone probabilistic max (min)
polynomial equations, in time polynomial in both the encoding size of
the system of equations and in log(1/ε), where ε > 0 is the desired ad-
ditive error bound of the solution. (The model of computation is the
standard Turing machine model.)

These equations form the Bellman optimality equations for several
important classes of infinite-state Markov Decision Processes (MDPs).
Thus, as a corollary, we obtain the first polynomial time algorithms for
computing to within arbitrary desired precision the optimal value vector
for several classes of infinite-state MDPs which arise as extensions of
classic, and heavily studied, purely stochastic processes. These include
both the problem of maximizing and minimizing the termination (extinc-
tion) probability of multi-type branching MDPs, stochastic context-free
MDPs, and 1-exit Recursive MDPs. We also show that we can compute
in P-time an ε-optimal policy for any given desired ε > 0.

1 Introduction
1 Markov Decision Processes (MDPs) are a fundamental model for stochastic
dynamic optimization and optimal control, with applications in many fields.
They extend purely stochastic processes (Markov chains) with a controller (an
agent) who can partially affect the evolution of the process, and seeks to optimize
some objective. For many important classes of MDPs, the task of computing the
optimal value of the objective, starting at any state of the MDP, can be rephrased
as the problem of solving the associated Bellman optimality equations for that
MDP model. In particular, for finite-state MDPs where, e.g., the objective is to
maximize (or minimize) the probability of eventually reaching some target state,
the associated Bellman equations are max-(min-)linear equations, and we know
1 A full version of this paper is available at arxiv.org/abs/1202.4798. Research par-

tially supported by NSF Grant CCF-1017955.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 314–326, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Polynomial Time Algorithms for Branching Markov Decision Processes 315

how to solve such equations in P-time using linear programming (see, e.g., [15]).
The same holds for a number of other classes of finite-state MDPs.

In many important settings however, the state space of the processes of inter-
est, both for purely stochastic processes, as well as for controlled ones (MDPs),
is not finite, even though the processes can be specified in a finite way. For ex-
ample, consider multi-type branching processes (BPs) [13], a classic probabilistic
model with applications in many areas (biology, physics, etc.). A BP models the
stochastic evolution of a population of entities of distinct types. In each gener-
ation, every entity of each type T produces a set of entities of various types in
the next generation according to a given probability distribution on offsprings
for the type T . In a Branching Markov Decision Process (BMDP) [14, 16], there
is a controller who can take actions that affect the probability distribution for
the sets of offsprings for each entity of each type. For both BPs and BMDPs,
the state space consists of all possible populations, given by the number of en-
tities of the various types, so there are an infinite number of states. From the
computational point of view, the usefulness of such infinite-state models hinges
on whether their analysis remains tractable.

In recent years there has been a body of research aimed at studying the com-
putational complexity of key analysis problems associated with MDP extensions
(and, more general stochastic game extensions) of important classes of finitely-
presented but countably infinite-state stochastic processes, including controlled
extensions of classic multi-type branching processes (i.e., BMDPs), stochastic
context-free grammars, and discrete-time quasi-birth-death processes. In [11] a
model called recursive Markov decision processes (RMDP) was studied that is
in a precise sense more general than all of these; it forms the MDP extension of
recursive Markov chains [12] (equivalently, probabilistic pushdown systems [7]),
and can be viewed as the extension of finite-state MDPs with recursion.

A central analysis problem for all of these models, which forms the key to a
number of other analyses, is the problem of computing their optimal termina-
tion (extinction) probability. For example, in the setting of multi-type Branching
MDPs (BMDPs), these key quantities are the maximum (minimum) probabili-
ties, over all control strategies (or policies), that starting from a single entity of
a given type, the process will eventually reach extinction (i.e., the state where
no entities have survived). From these quantities, one can compute the optimum
probability for any initial population, as well as other quantities of interest.

One can indeed form Bellman optimality equations for the optimal extinction
probabilities of BMDPs, and for a number of related important infinite-state
MDP models. However, it turns out that these optimality equations are no longer
max/min linear but rather are max/min polynomial equations ([11]). Specifically,
the Bellman equations for BMDPs with the objective of maximizing (or mini-
mizing) extinction probability are multivariate systems of monotone probabilistic
max (or min) polynomial equations, which we call max/minPPSs, of the form
xi = Pi(x1, . . . , xn), i = 1, . . . , n, where each Pi(x) ≡ maxj qi,j(x) (respectively
Pi(x) ≡ minj qi,j(x)) is the max (min) over a finite number of probabilistic poly-
nomials, qi,j(x). A probabilistic polynomial, q(x), is a multi-variate polynomial

316 K. Etessami, A. Stewart, and M. Yannakakis

where the monomial coefficients and constant term of q(x) are all non-negative
and sum to ≤ 1. We write these equations in vector form as x = P (x). Then
P (x) defines a mapping P : [0, 1]n → [0, 1]n that is monotone, and thus (by
Tarski’s theorem) has a least fixed point in [0, 1]n. The equations x = P (x), can
have more than one solution, but it turns out that the optimal value vector for
the corresponding BMDP is precisely the least fixed point (LFP) solution vector
q∗ ∈ [0, 1]n, i.e., the (coordinate-wise) least non-negative solution ([11]).

Already for pure stochastic multi-type branching processes (BPs), the extinc-
tion probabilities may be irrational values. The problem of deciding whether the
extinction probability of a BP is ≥ p, for a given probability p is in PSPACE
([12]), and likewise, deciding whether the optimal extinction probability of a
BMDP is ≥ p is in PSPACE ([11]). These PSPACE upper bounds appeal to
decision procedures for the existential theory of reals for solving the associated
(max/min)PPS equations. However, already for BPs, it was shown in [12] that
this quantitative decision problem is already at least as hard as the square-root
sum problem, as well as a (much) harder and more fundamental problem called
PosSLP, which captures the power of unit-cost exact rational arithmetic. It is a
long-standing open problem whether either of these decision problems is in NP,
or even in the polynomial time hierarchy (see [1, 12] for more information on
these problems). Thus, such quantitative decision problems are unlikely to have
P-time algorithms, even in the purely stochastic setting, so we can certainly not
expect to find P-time algorithms for the extension of these models to the MDP
setting. On the other hand, it was shown in [12] and [11], that for both BPs
and BMDPs the qualitative decision problem of deciding whether the optimal
extinction probability q∗i = 0 or whether q∗i = 1, can be solved in P-time.

Despite decades of theoretical and practical work on computational problems
like extinction for multi-type branching processes, and equivalent termination
problems stochastic context-free grammars, until recently it was not even known
whether one could obtain any non-trivial approximation of the extinction proba-
bility of a purely stochastic multi-type branching processes (BP) in P-time. The
extinction probabilities of pure BPs are the LFP of a system of probabilistic
polynomial equations (PPS), without max or min. In recent work [9], we pro-
vided the first polynomial time algorithm for computing (i.e., approximating) to
within any desired additive error ε > 0 the LFP of a given PPS, and hence the
extinction probabilities of a purely stochastic BP, in time polynomial in both the
encoding size of the PPS (or the BP) and in log(1/ε). The algorithm works in
the standard Turing model of computation. Our algorithm was based on an ap-
proach using Newton’s method that was first introduced and studied in [12]. In
[12] the approach was studied for more general systems of monotone polynomial
equations (MPSs), and it was subsequently further studied in [6].

Note that unlike PPSs and MPSs, min/maxPPSs which define Bellman equa-
tions for BMDPs are not differentiable functions (only piecewise differentiable).
So it is not even clear how to apply a Newton-type method toward solving them.

In this paper we provide the first polynomial time algorithms for approxi-
mating the LFP of both maxPPSs and minPPSs, and thus the first polynomial

Polynomial Time Algorithms for Branching Markov Decision Processes 317

time algorithm for computing (to within any desired additive error) the opti-
mal value vector for BMDPs with the objective of maximizing or minimizing
their extinction probability. Our approach is based on a generalized Newton’s
method (GNM), that extends Newton’s method in a natural way to the setting
of max/minPPSs, where each iteration requires the computation of the least
(greatest) solution of a max- (min-) linear system of equations, both of which we
show can be solved using linear programming. Our approach also makes crucial
use of the P-time algorithms in [11] for qualitative analysis of max/min BMDPs,
which allow us to remove variables xi where the LFP is q∗i = 1 or where q∗i = 0.
Our algorithms have the nice feature that they are relatively simple, although
the analysis of their correctness and time complexity is rather involved.

We furthermore show that we can compute ε-optimal (pure) strategies (poli-
cies) for both maxPPSs and minPPSs, for any given desired ε > 0, in time
polynomial in both the encoding size of the max/minPPS and in log(1/ε). This
result is at first glance rather surprising, because there are only a bounded num-
ber of distinct pure policies for a max/minPPS, and computing an optimal policy
is PosSLP-hard. The proof of this result involves an intricate analysis of bounds
on the norms of certain matrices associated with (max/min)PPSs.

Finally, we consider Branching simple stochastic games (BSSGs), which are
two-player turn-based stochastic games, where one player wants to maximize
and the other to minimize the extinction probability. The value of these games
(which are determined) is characterized by the LFP solution of associated min-
maxPPSs which combine both min and max operators (see [11]). We observe
that our results easily imply a FNP upper bound for ε-approximating the value
of BSSGs and computing ε-optimal strategies for them.

Related Work: We have already mentioned some related results. BMDPs and
related processes have been studied previously in both operations research (e.g.
[14, 16, 4]) and computer science (e.g. [11, 5, 2]), but no efficient algorithms were
known for (approximate) computation of the relevant optimal probabilities and
policies; the best known upper bound was PSPACE [11]. In [11] we introduced
RMDPs, a recursive extension of MDPs. We showed that for general RMDPs,
the problem of computing the optimal termination probabilities, even within
any nontrivial approximation, is undecidable. However, for the important class
of 1-exit RMDPs (1-RMDP), the optimal probabilities can be expressed by min
(or max) PPSs, and in fact the problems of computing (approximately) the LFP
of a min/maxPPS and the termination probabilities of a max/min 1-RMDP,
or BMDP, are all polynomially equivalent. We furthermore showed in [11] that
there are always pure, memoryless optimal policies for both maximizing and
minimizing 1-RMDPs (and for the more general turn-based stochastic games).

In [10], 1-RMDPs with different objectives were studied, namely optimizing
the total expected reward in a setting with positive rewards. In that setting,
things are much simpler: Bellman equations turn out to be max/min-linear,
optimal values are rational, and can be computed exactly in P-time, using LP.

A work more closely related to this paper is [5] by Esparza, Gawlitza, Kiefer,
and Seidl. They studied more general monotone min-maxMPSs, i.e., systems of

318 K. Etessami, A. Stewart, and M. Yannakakis

monotone polynomial equations that include both min and max operators, and
they presented two different iterative analogs of Newton’s methods for approxi-
mating the LFP of a min-maxMPS, x = P (x). Their methods are related to ours,
but differ in key respects. Both of their methods use certain piece-wise linear
functions to approximate the min-maxMPS in each iteration, which is also what
we do to solve each iteration of our generalized Newton’s method. However, the
precise nature of their piece-wise linearizations, as well as how they solve them,
differ in important ways from ours, even when they are applied in the context
of maxPPSs or minPPSs. They show, working in the unit-cost exact arithmetic
model, that using their methods one can compute j “valid bits” of the LFP (i.e.,
compute the LFP within relative error at most 2−j) in kP +cP ·j iterations, where
kP and cP are terms that depend in some way on the input system, x = P (x).
However, they give no constructive upper bound on kP , and their upper bounds
on cP are exponential in the number n of variables of x = P (x). Note that MPSs
are more difficult: even without min/max operators, it is PosSLP-hard to ap-
proximate their LFP within any nontrivial constant additive error c < 1/2, even
for MPSs arising from Recursive Markov Chains [12]. We note that for MPSs and
maxMPSs, computing their LFP can be formulated as a geometric programming
problem, but this does not yield a P-time algorithm for approximating the LFP.

Proofs and details omitted due to space. See the full version of this paper [8].

2 Definitions and Background

For an n-vector of variables x = (x1, . . . , xn), and a vector v ∈ Nn, we use the
shorthand notation xv to denote the monomial xv1

1 . . . xvn
n . Let 〈αr ∈ Nn | r ∈ R〉

be a multi-set of n-vectors of natural numbers, indexed by the set R. We say
that a multi-variate polynomial Pi(x) =

∑
r∈R prx

αr , is monotone if pr ≥ 0
for all r ∈ R. If in addition,

∑
r∈R pr ≤ 1, then we call Pi(x) a probabilistic

polynomial. A probabilistic (respectively, monotone) polynomial system
of equations, x = P (x), which we call a PPS (resp., a MPS), is a system
of n equations, xi = Pi(x), in n variables x = (x1, x2, ..., xn), where Pi(x) is a
probabilistic (resp., monotone) polynomial for all i.

A maximum-minimum probabilistic polynomial system of equations,
x = P (x), called a max-minPPS, is a system of n equations in n variables
x = (x1, x2, . . . , xn), where for all i ∈ {1, 2, . . . , n}, either:

– Max-polynomial: Pi(x) = max{qi,j(x) : j ∈ {1, ..., mi}}, Or:
– Min-polynomial: Pi(x) = min{qi,j(x) : j ∈ {1, ..., mi}}

where each qi,j(x) is a probabilistic polynomial. We call such a system a maxPPS
(respectively, a minPPS) if for every i, i ∈ {1, . . . , n}, Pi(x) is a Max-polynomial
(respectively, a Min-polynomial). Note that we can view a PPS in n variables
as a maxPPS, or as a minPPS, where mi = 1 for every i. For computational pur-
poses we assume that all the coefficients are rational and that the polynomials
are given in sparse form, i.e., by listing only the nonzero terms, with the coeffi-
cient and the nonzero exponents of each term given in binary. We let |P | denote
the total bit encoding length of a system x = P (x) under this representation.

Polynomial Time Algorithms for Branching Markov Decision Processes 319

We use max/minPPS to refer to a system of equations that is either a
maxPPS or a minPPS. While [11] also considered max-minPPSs which contain
both max and min equations, our primary focus will be on systems that contain
just one or the other. (But we get results about max-minPPSs as a corollary.)

As shown in [11], any max-minPPS, x = P (x), has a least fixed point
(LFP) solution, q∗ ∈ [0, 1]n, i.e., q∗ = P (q∗) and if q = P (q) for some q ∈
[0, 1]n then q∗ ≤ q (coordinate-wise inequality). As observed in [12, 11], q∗ may
contain irrational values, even for PPSs. This paper gives P-time algorithms for
computing q∗ to within arbitrary precision for both maxPPSs and minPPSs.

We define a policy for a max/minPPS, x = P (x), to be a function σ :
{1, ...n} → N such that 1 ≤ σ(i) ≤ mi. A policy σ induces a PPS x = Pσ(x)
where (Pσ)i(x) = qi,σ(i). We use q∗σ to denote the LFP solution vector for the
PPS x = Pσ(x). For a maxPPS, x = P (x), a policy σ∗ is called optimal if for
all other policies σ, q∗σ∗ ≥ q∗σ. For a minPPS x = P (x) a policy σ∗ is optimal if
for all other policies σ, q∗σ∗ ≤ q∗σ. For a max/minPPS with LFP q∗, a policy σ is
ε-optimal for ε > 0 if ||q∗σ − q∗||∞ ≤ ε. A non-trivial fact is that optimal policies
always exist and that they actually attain the LFP q∗ of the max/minPPS:

Theorem 1 ([11]). For any max/minPPS, x = P (x), there always exists an
optimal policy σ∗, and furthermore q∗ = q∗σ∗ .2

As discussed in the introduction, PPSs can be used to capture central probabili-
ties of interest for several basic stochastic models, including Multi-type Branch-
ing Processes (BPs), while maxPPSs and minPPSs can be similarly used to
capture the central optimum probabilities for corresponding stochastic optimiza-
tion (MDP) models. In particular, a Branching Markov Decision Process
(BMDP) consists of a finite set V = {T1, . . . , Tn} of types, a finite set Ai of
actions for each type, and a finite set R(Ti, a) of probabilistic rules for each type
Ti and action ai ∈ Ai. Each rule r ∈ R(Ti, a) has the form Ti

pr→ αr, where αr

is a finite multi-set whose elements are in V , pr ∈ (0, 1] is the probability of the
rule, and the sum of probabilities of rules in R(Ti, a) is 1:

∑
r∈R(Ti,a) pr = 1.

Intuitively, a BMDP describes the stochastic evolution of entities of given types
in the presence of a controller that can influence the evolution. Starting from an
initial population (i.e. set of entities of given types) X0 at time (generation) 0, a
sequence of populations X1, X2, . . . is generated, where Xk is obtained from Xk−1

as follows. First the controller selects for each entity of Xk−1 an available action
for that type of entity; then a rule is chosen independently and simultaneously for
every entity of Xk−1, probabilistically according to the probabilities of the rules
for the type of the entity and the selected action, and the entity is replaced by
a new set of entities with the types specified by the right-hand side of the rule.
The process is repeated as long as the current population Xk is nonempty, and
terminates if and when Xk becomes empty. The objective of the controller is either
to minimize the probability of termination (i.e., extinction of the population), in
2 The theorem in [11] is more general, applying to 1-exit Recursive Simple Stochastic

Games, and shows that also for max-minPPSs, both the max and the min player
have optimal policies that attain the LFP q∗.

320 K. Etessami, A. Stewart, and M. Yannakakis

which case the process is a minBMDP, or to maximize it, in which case it is a
maxBMDP. At each stage, k, the controller is allowed in principle to select the
actions for the entities of Xk based on the entire history, may use randomization
(a mixed strategy), and may make distinct choices for entities of the same type.
However, it turns out that none of these flexibilities increase the controller’s power:
there is always an optimal pure, memoryless, strategy that always uses the same
action for all entities of the same type ([11]).

For each type Ti of a minBMDP (respectively, maxBMDP), let q∗i be the
minimum (resp. maximum) probability of termination if the initial population
consists of a single entity of type Ti. From the given minBMDP (maxBMDP) we
can construct a minPPS (resp. maxPPS) x = P (x) whose LFP is precisely the
vector q∗ of optimal termination (extinction) probabilities (see Theorem 20 in
the full version of [11]): The min/max polynomial Pi(x) for each type Ti contains
one polynomial qi,j(x) for each action j ∈ Ai, with qi,j(x) =

∑
r∈R(Ti,j)

prx
αr .

It is convenient to put max/minPPSs in the following simple form. A maxPPS
in simple normal form (SNF), x = P (x), is a system of n equations in n
variables x1, x2, ...xn where each Pi(x) for i = 1, 2, ...n is in one of three forms:

– Form L: Pi(x) = ai,0+
∑n

j=1 ai,jxj , where ai,j ≥ 0 for all j, and
∑n

j=0 ai,j ≤ 1
– Form Q: Pi(x) = xjxk for some j, k
– Form M: Pi(x) = max{xj , xk} for some j, k

SNF form for minPPSs is analogous: just replace max with min in “Form M”.
For a max/minPPS in SNF form, for simplicity in notation, when we refer

to a policy, σ, if Pi(x) has form M , say Pi(x) ≡ max{xj , xk}, we will often use
σ(i) = k to mean σ chooses xk among the two choices xj and xk.

Proposition 1. Every max/minPPS, x = P (x), can be transformed in P-time
to an “equivalent” max/minPPS , y = Q(y) in SNF form, such that |Q| ∈
O(|P |). More precisely, the variables x are a subset of the variables y, the LFP
of x = P (x) is the projection of the LFP of y = Q(y), and an optimal policy
(respectively, ε-optimal policy) for x = P (x) can be obtained in P-time from an
optimal (resp., ε-optimal) policy of y = Q(y).

Thus from now on, and for the rest of this paper we assume, without loss of
generality, that all max/minPPSs are in SNF normal form. We now summarize
some of the key prior results on PPSs and max/minPPSs.

Proposition 2 ([11]). There is a P-time algorithm that, given a minPPS or
maxPPS, x = P (x), over n variables, with LFP q∗ ∈ Rn

≥0, determines for every
i = 1, . . . , n whether q∗i = 0 or q∗i = 1 or 0 < q∗i < 1.

Thus, given a max/minPPS we can find in P-time all the variables xi such that
q∗i = 0 or q∗i = 1, remove them and their corresponding equations xi = Pi(x),
and substitute their values on the RHS of the remaining equations. This yields
a new max/minPPS, x′ = P ′(x′), where its LFP solution, q′∗, is 0 < q′∗ < 1,
which corresponds to the remaining coordinates of q∗. Thus, it suffices to focus
our attention to systems whose LFP is strictly between 0 and 1.

Polynomial Time Algorithms for Branching Markov Decision Processes 321

The problem of deciding whether a coordinate q∗i of the LFP is ≥ 1/2 (or
whether q∗i ≥ r for any other given bound r ∈ (0, 1)) is at least as hard as
the square-root-sum and the PosSLP problems, even for PPS (without the min
and max operator) [12], and hence it is highly unlikely that it is in P-time. The
problem of approximating the LFP of a PPS in P-time was solved recently in [9],
by using Newton’s method, after elimination of the variables with 0/1 values.

Definition 1. For a PPS x = P (x) we use P ′(x) to denote the Jacobian matrix
of partial derivatives of P (x), i.e., P ′(x)i,j := ∂Pi(x)

∂xj
. For a point x ∈ Rn,

if (I − P ′(x)) is non-singular, then we define one Newton iteration at x via
the operator: N (x) = x + (I − P ′(x))−1(P (x) − x). Given a max/minPPS,
x=P(x), and a policy σ, we use Nσ(x) to denote the Newton operator of the
PPS x = Pσ(x); i.e., if (I − P ′

σ(x)) is non-singular at a point x ∈ Rn, then
Nσ(x) = x + (I − P ′

σ(x))−1(Pσ(x) − x).

Theorem 2 ([9]). Let x = P (x) be a PPS with rational coefficients in SNF
form which has LFP 0 < q∗ < 1. If we conduct iterations of Newton’s method as
follows: x(0) := 0, and for k ≥ 0: x(k+1) := N (x(k)), then the Newton operator
is defined at all steps, and for any j > 0, ‖q∗ − x(j+4|P |)‖∞ ≤ 2−j where |P | is
the bit encoding length of the system x = P (x).

Furthermore, there is an algorithm (based on suitable rounding of Newton it-
erations) which, given a PPS, x = P (x), and given a positive integer j, computes
a rational vector v ∈ [0, 1]n, such that ||q∗− v||∞ ≤ 2−j, and which runs in time
polynomial in |P | and j in the standard Turing model of computation.

The proof of this theorem involved various technical lemmas on PPSs and New-
ton’s method, several of which we need to strengthen for this paper. To prove
the P-time upper bounds in [9], an inductive step of the following form was used:

Lemma 1 ([9]). Let x = P (x) be a PPS in SNF with 0 < q∗ < 1. For any
0 ≤ x ≤ q∗ and λ > 0, the operator N (x) is defined, N (x) ≤ q∗, and if q∗ − x ≤
λ(1 − q∗) then q∗ −N (x) ≤ λ

2 (1 − q∗).

Our goal is to define an iteration I(x) for max/minPPSs that has similar prop-
erties to the Newton operator for PPS, i.e., that can be computed efficiently for
a given x and for which we can prove properties similar to Lemma 1.

3 Generalizing Newton’s Method Using Linear
Programming

If a max/minPPS, x = P (x), has no equations of form Q, it amounts to precisely
the Bellman equations for a finite-state MDP with the objective of maximiz-
ing/minimizing reachability probabilities. It is well known that we can compute
the exact (rational) optimal values for such MDPs, and thus the exact LFP, q∗,
for such a max(min)-linear systems, using linear programming (see, e.g., [15, 3]).

Computing the LFP of max/minPPSs is clearly a generalization of this prob-
lem to the infinite-state setting of branching and recursive MDPs. If we have no

322 K. Etessami, A. Stewart, and M. Yannakakis

equations of form M, we have a PPS, which we can solve in P-time using New-
ton’s method, as shown recently in [9]. An iteration of Newton’s method works
by approximating the system of equations by a linear system. For a maxPPS(or
minPPS), we will define an analogous “approximate” system of equations that we
have to solve in each iteration of “Generalized Newton’s Method” (GNM)
which has both linear equations and equations involving the max (or min) func-
tion. We will show that we can solve the equations that arise from each iteration
of GNM using linear programming. We will then show that a polynomial (in fact,
linear) number of iterations are enough to approximate the desired LFP solution,
and that it suffices to carry out the computations with polynomial precision.

We begin by expressing the max/min linear equations that should be solved
by one iteration of what will become GNM, applied at a point y. Recall that we
assume w.l.o.g. throughout that max/minPPSs and PPSs are in SNF.

Definition 2. For a max/minPPS, x = P (x), with n variables, the lineariza-
tion of P (x) at a point y ∈ Rn, is a system of max/min linear functions
denoted by P y(x), which has the following form: if Pi(x) has form L or M, then
P y

i (x) = Pi(x), and if Pi(x) has form Q, i.e., Pi(x) = xjxk for some j,k, then
P y

i (x) = yjxk + xjyk − yjyk .

Consider a PPS, x = Pσ(x), obtained by fixing policy σ for a max/minPPS,
x = P (x), and define P y

σ (x) := (Pσ)y(x). Note than the linearization P y(x) only
changes equations of form Q, and fixing policy σ only changes equations of form
M, so these operations commute and P y

σ (x) ≡ (Pσ)y(x) = (P y)σ(x).

Lemma 2. Let x = P (x) be a PPS. For y ∈ Rn, let (P y)′(x) be the Jacobian of
P y(x). Then for any x ∈ Rn, (P y)′(x) = P ′(y) and P y(x) = P (y)+P ′(y)(x−y).

An iteration of Newton’s method on x = Pσ(x) at a point y solves a system
of linear equations that can be expressed in terms of P y

σ (x). The next lemma
establishes this fact in part (i). Part (ii) provides conditions under which we are
guaranteed to be doing “at least as well” as one such Newton iteration.

Lemma 3. Suppose that the matrix inverse (I − P ′
σ(y))−1 exists and is non-

negative, for some policy σ, and some y ∈ Rn. Then

(i) Nσ(y) is defined, and it is the unique point a ∈ Rn such that P y
σ (a) = a.

(ii) For all x ∈ Rn: if P y
σ (x) ≥ x then x ≤ Nσ(y); if P y

σ (x) ≤ x, then x ≥ Nσ(y).

We shall now define distinct iteration operators for a maxPPS and a minPPS,
both of which we shall refer to with the overloaded notation I(x). These operators
will serve as the basis for GNM applied to maxPPSs and minPPSs, respectively.

Definition 3. For a maxPPS, x = P (x), with LFP q∗, such that 0 < q∗ < 1,
and for a real vector y such that 0 ≤ y ≤ q∗, we define the operator I(y) to
be the unique optimal solution, a ∈ Rn, to the following mathematical program:
Minimize:

∑
i ai ; Subject to: P y(a) ≤ a.

For a minPPS, x = P (x), with LFP q∗, such that 0 < q∗ < 1, and for a
real vector y such that 0 ≤ y ≤ q∗, we define the operator I(y) to be the unique

Polynomial Time Algorithms for Branching Markov Decision Processes 323

optimal solution a ∈ Rn to the following mathematical program:
Maximize:

∑
i ai ; Subject to: P y(a) ≥ a.

A priori, it is not even clear if these “definitions” of I(y) are well-defined. We
shall prove the following central claim separately for maxPPSs and minPPSs:

Theorem 3. Let x = P (x) be a max/minPPS, with LFP q∗, with 0 < q∗ < 1.
For any 0 ≤ y ≤ q∗:

1. I(y) is well-defined, and I(y) ≤ q∗, and:
2. For any λ > 0, if q∗ − y ≤ λ(1 − q∗) then q∗ − I(y) ≤ λ

2 (1 − q∗).

The next proposition observes that linear programming can be used to compute
an iteration of the operator, I(y), for both maxPPSs and minPPSs.

Proposition 3. Given a max/minPPS, x = P (x), with LFP q∗, and given
a rational vector y, 0 ≤ y ≤ q∗, the constrained optimization problem (i.e.,
mathematical program) “defining” I(y) can be described by a LP whose encoding
size is polynomial (in fact, linear) in both |P | and the encoding size of the rational
vector y. Thus, we can compute the (unique) optimal solution I(y) to such an
LP (assuming it exists, and is unique) in P-time.

GNM for maxPPSs: For a maxPPS, x = P (x), we know by Theorem 1 that
there exists an optimal policy, τ , such that q∗ = q∗τ ≥ q∗σ for any policy σ.

Lemma 4. If x = P (x) is a maxPPS, with LFP solution 0 < q∗ < 1, and y is
a real vector with 0 ≤ y ≤ q∗, then x = P y(x) has a least fixed point solution,
denoted μP y, with μP y ≤ q∗. Furthermore, the operator I(y) is well-defined,
I(y) = μP y ≤ q∗, and for any optimal policy τ , I(y) = μP y ≥ Nτ (y).

To prove this lemma, we argue that the LP defining I(y) is: (1) feasible, because
q∗ is a feasible point, and (2) is bounded from below, in particular by Nτ (y)
(which we show is defined), where τ is any optimal policy. Hence the LP has an
optimal solution. We then argue that any optimal solution a must satisfy all the
constraints with equality, P y(a) = a, and that the coordinate-wise minimum of
two optimal solution vectors is also optimal. This implies that there is a unique
optimal solution, I(y), satisfying Nτ (y) ≤ I(y) = μP y ≤ q∗. We then show,
using Lemma 1 for Pτ , that part (ii) of Theorem 3 also holds for maxPPSs.

GNM for minPPSs: Our proof for minPPSs is different, because it turns out
we can not use the same argument based on LPs to prove that I(y) is well-
defined. Fortunately, for minPPSs we can show that (I − Pσ(y))−1 exists and is
non-negative for any policy σ, at those points y of interest, and thus Nσ(y) is
defined. And we can use this to show that there is some policy, σ, such that I(y)
is equivalent to an iteration of Newton’s method at y after fixing that policy σ:

Lemma 5. Given a minPPS, x = P (x), with LFP 0 < q∗ < 1, and a vector y
with 0 ≤ y ≤ q∗, there is some policy σ such that P y(Nσ(y)) = Nσ(y).

324 K. Etessami, A. Stewart, and M. Yannakakis

We establish the existence of such a policy using a policy improvement argument.
Note that policy improvement may not run in P-time, and we do not claim it
does. We only use policy improvement to prove the existence of such a policy σ.

After identifying the policy σ of Lemma 5, we show that its Newton iterate
Nσ(y): (1) is coordinate-wise minimum over all policies, (2) is the unique fixed
point of x = P y(x), and (3) is ≤ q∗. Using these properties then we argue that
the LP that defines I(y) has a unique solution, which is precisely this Nσ(y).

In the maxPPS case, we had an iteration at least as good as iterating with an
optimal policy. Here we have an iteration that is at least as bad! Nevertheless, we
show it is good enough. For maxPPSs, Theorem 3 (ii) followed by using Lemma
1. For minPPSs, we crucially need a stronger result than Lemma 1.

Lemma 6. If x = P (x) is a PPS and we are given x, y ∈ Rn with 0 ≤ x ≤ y ≤
P (y) ≤ 1, and if the following conditions hold: λ > 0 and y − x ≤ λ(1− y), and
(I − P ′(x))−1 exists and is non-negative, then y −N (x) ≤ λ

2 (1− y).

Applying this to x = Pσ(x), x, and y := q∗, yields Theorem 3 for minPPSs.

A P-time Algorithm (in the Turing Model) for Max/minPPSs: In [9]
we gave a P-time algorithm, in the standard Turing model of computation, for
approximating the LFP of a PPS, x = P (x), using Newton’s method. The proof
in [9] uses induction based on the “halving lemma”, Lemma 1. For the base case
of the induction, the key property shown in [9] is that if the LFP q∗ of a PPS is
< 1 then 1 − q∗i ≥ 2−4|P | for all i. From this, we easily derive:

Lemma 7. If 0 < q∗ < 1 is the LFP of a max/minPPS, x = P (x), then
1 − q∗i ≥ 2−4|P | for all i.

Theorem 3 (ii) provides suitable “halving lemmas” for max/minPPSs. Using it,
we can now give a P-time algorithm, in the Turing model, for approximating
the LFP, q∗, for a max/minPPS, by carrying out iterations of our Generalized
Newton’s Method using the same rounding technique as in [9]. Specifically, first
find and remove the variables xi with value q∗i = 0 or 1, and then use the
following algorithm with rounding parameter h:
Start with x(0) := 0; For each k ≥ 0 compute x(k+1) from x(k) as follows:
1. Calculate I(x(k)) by solving the following LP:

Minimize:
∑

i xi ; Subject to: P x(k)
(x) ≤ x, if x = P (x) is a maxPPS, or:

Maximize:
∑

i xi ; Subject to: P x(k)
(x) ≥ x, if x = P (x) is a minPPS.

2. For each coordinate i = 1, 2, ...n, set x
(k+1)
i to be the maximum (non-

negative) multiple of 2−h which is ≤ max{0, I(x(k))i}. (In other words, we
round I(x(k)) down to the nearest 2−h and ensure it is non-negative.)

Theorem 4. Given any max/minPPS, x = P (x), with LFP 0 < q∗ < 1, if
we use the above algorithm with rounding parameter h = j + 2 + 4|P |, then
the iterations are all defined, and for every k ≥ 0 we have 0 ≤ x(k) ≤ q∗, and
furthermore after h = j+2+4|P | iterations we have: ‖q∗−x(j+2+4|P |)‖∞ ≤ 2−j.

Polynomial Time Algorithms for Branching Markov Decision Processes 325

Corollary 1. Given any max/minPPS, x = P (x), with LFP q∗, and given any
integer j > 0, there is an algorithm that computes a rational vector v with
‖q∗ − v‖∞ ≤ 2−j, in time polynomial in |P | and j.

Computing an ε-Optimal Policy in P-time: In the full paper ([8]) we show
that for max/minPPSs we can compute a ε-optimal (pure, memoryless) pol-
icy in time polynomial in |P | and log(1/ε). The proof requires, among other
things, an intricate analysis of norm bounds for key matrices associated with
max/minPPSs. We again must deal separately with minPPSs and maxPPSs (the
latter is harder). We also observe in the full paper that computing an optimal
policy is PosSLP-hard, and hence likely not in P-time.

Approximating the Value of BSSGs in FNP: In the full paper ([8]), we
observe that an easy corollary of our results is an FNP upper bound on approx-
imating the value of 2-player Branching simple stochastic games (BSSG), whose
values correspond to the LFP of max-minPPSs. See the full version [8].

References

[1] Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the com-
plexity of numerical analysis. SIAM J. Comput. 38(5), 1987–2006 (2009)

[2] Brázdil, T., Brozek, V., Forejt, V., Kucera, A.: Reachability in recursive markov
decision processes. Inf. Comput. 206(5), 520–537 (2008)

[3] Courcoubetis, C., Yannakakis, M.: Markov decision processes and regular events.
IEEE Trans. on Automatic Control 43(10), 1399–1418 (1998)

[4] Denardo, E., Rothblum, U.: Totally expanding multiplicative systems. Linear Al-
gebra Appl. 406, 142–158 (2005)

[5] Esparza, J., Gawlitza, T., Kiefer, S., Seidl, H.: Approximative Methods for Mono-
tone Systems of Min-Max-Polynomial Equations. In: Aceto, L., et al. (eds.) ICALP
2008, Part I. LNCS, vol. 5125, pp. 698–710. Springer, Heidelberg (2008)

[6] Esparza, J., Kiefer, S., Luttenberger, M.: Computing the least fixed point of pos-
itive polynomial systems. SIAM J. on Computing 39(6), 2282–2355 (2010)

[7] Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown au-
tomata. Logical Methods in Computer Science 2(1), 1–31 (2006)

[8] Etessami, K., Stewart, A., Yannakakis, M.: Polynomial Time Algorithms for
Branching Markov Decision Processes and Probabilistic Min(Max) Polynomial
Bellman Equations. Preprint of the full version of this paper on ArXiv: 1202.4798

[9] Etessami, K., Stewart, A., Yannakakis, M.: Polynomial-time algorithms for multi-
type branching processes and stochastic context-free grammars. In: Proc. 44th
ACM STOC 2012 (2012), full preprint on ArXiv:1201.2374

[10] Etessami, K., Wojtczak, D., Yannakakis, M.: Recursive Stochastic Games with
Positive Rewards. In: Aceto, L., et al. (eds.) ICALP 2008, Part I. LNCS, vol. 5125,
pp. 711–723. Springer, Heidelberg (2008)

326 K. Etessami, A. Stewart, and M. Yannakakis

[11] Etessami, K., Yannakakis, M.: Recursive Markov Decision Processes and Recursive
Stochastic Games. In: Caires, L., et al. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
891–903. Springer, Heidelberg (2005), see full version at,
http://homepages.inf.ed.ac.uk/kousha/j_sub_rmdp_rssg.pdf; which includes
also the results of our paper: Etessami, K., Yannakakis, M.: Efficient Qualitative
Analysis of Classes of Recursive Markov Decision Processes and Simple Stochastic
Games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
634–645. Springer, Heidelberg (2006)

[12] Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and
monotone systems of nonlinear equations. Journal of the ACM 56(1) (2009)

[13] Harris, T.E.: The Theory of Branching Processes. Springer (1963)
[14] Pliska, S.: Optimization of multitype branching processes. Management Sci. 23(2),

117–124 (1976/1977)
[15] Puterman, M.L.: Markov Decision Processes. Wiley (1994)
[16] Rothblum, U., Whittle, P.: Growth optimality for branching Markov decision

chains. Math. Oper. Res. 7(4), 582–601 (1982)

http://homepages.inf.ed.ac.uk/kousha/j_sub_rmdp_rssg.pdf

Succinct Indices for Range Queries

with Applications to Orthogonal Range Maxima�

Arash Farzan1, J. Ian Munro2, and Rajeev Raman3

1 Max-Planck-Institut für Informatik, Saarbücken, Germany
2 University of Waterloo, Canada

3 University of Leicester, UK

Abstract. We consider the problem of preprocessing N points in 2D,
each endowed with a priority, to answer the following queries: given
a axis-parallel rectangle, determine the point with the largest prior-
ity in the rectangle. Using the ideas of the effective entropy of range
maxima queries and succinct indices for range maxima queries, we ob-
tain a structure that uses O(N) words and answers the above query in
O(lgN lg lgN) time. This a direct improvement of Chazelle’s result from
1985 [10] for this problem – Chazelle required O(N/ε) words to answer
queries in O((lgN)1+ε) time for any constant ε > 0.

1 Introduction

Range searching is one of the most fundamental problems in computer science
with important applications in areas such as computational geometry, databases
and string processing. The input is a set of N points in general position in Rd

(we focus on the case d = 2), where each point is associated with satellite data,
and an aggregation function defined on the satellite data. We wish to prepro-
cess the input to answer queries of the following form efficiently: given any 2D
axis-aligned rectangle R, return the value of the aggregation function on the
satellite data of all points in R. Researchers have considered range searching
with respect to diverse aggregation functions such as emptiness checking, count-
ing, reporting, minimum/maximum, etc. [10,12,17]. In this paper, we consider
the problem of range maximum searching (the minimum variant is symmetric),
where the satellite data associated with each point is a numerical priority, and
the aggregation function is “arg max”, i.e., we want to report the point with the
maximum priority in the given query rectangle. This aggregation function is the
canonical one to study, among those that do not admit inverses [10].

Our primary concern is to obtain linear-space data structures, namely those
that occupyO(N) words, and we seek to minimize query time subject to this con-
straint. The space usage is a fundamental concern in geometric data structures
due to very large data volumes; indeed, space usage is a main reason why range
searching data structures like quadtrees, which have poor worst-case query per-
formance, are preferred in many practical applications over data structures such

� Work done while Farzan was employed by, and Raman was visiting, MPI.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 327–338, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

328 A. Farzan, J.I. Munro, and R. Raman

Table 1. Space/time tradeoffs for 2D range maximum searching in the word RAM

Citation Size (in words) Query time

Chazelle’88 [10] O(N lgε N) O(lgN)

Chan et al.’10 [8] O(N lgε N) O(lg lgN)

Karpinski et al.’09 [15] O
(
N(lg lgN)O(1)

)
O
(
(lg lgN)2

)
Chazelle’88 [10] O(N lg lgN) O(lgN lg lgN)

Chazelle’88 [10] O
(
1
ε
N
)

O
(
lg1+ε N

)
NEW O(N) O(lgN lg lgN)

as range trees, which have asymptotically optimal query performance. Space effi-
cient solutions to range searching date to the work of Chazelle [10] over a quarter
century ago, and Nekrich [18] gives a nice survey of much of this work. Recently
there has been a flurry of activity on various aspects of space-efficient range re-
porting, and for some aggregation functions there has even been attention given
to the constant term within the space usage [5,18].

We now formalize the problem studied by our paper, as well as those of
[10,8,15]. We assume input points are in rank space: the x-coordinates of the
n points are {0, . . . , N − 1} = [N], and the y-coordinates are given by a permu-
tation υ : [N] → [N], such that the points are (i, υ(i)) for i = 0, . . . , N − 1. The
priorities of the points are given by another permutation π such that π(i) is the
priority of the point (i, υ(i)). The reduction to rank space can be performed in
O(lgN) time with a linear space structure even if the original and query points
are points in R2 [12,10]. The query rectangle is specifed by two points from
[N] × [N] and includes the boundaries (see Fig. 1(R)). Analogous to previous
work, we also assume the word-RAM model with word size Θ(lgN) bits1.

Range maximum searching is a well-studied problem (Table 1). Chazelle [10]
gave a few space/time tradeoffs covering a broad spectrum. To the best of our
knowledge, the solution with the lowest query time that uses only O(N) words is
that of Chazelle [10], who gave a data structure of size O(1εN) words with query

time O(lg1+εN) for any fixed ε > 0. More recent results on the range maximum
problem are as follows. Karpinski et al. [15] studied the problem of 3D five-sided
range emptiness queries which is closely related to range maximum searching in
2D. As observed in [8], their solution yields a query time of (lg lgN)O(1) with an
index of size N(lg lgN)O(1) words. Chan et al. [8] currently give the best query
time of O(lg lgN), but this is at the expense of using O(N lgεN) words, for any
fixed ε > 0. However, there has been no improvement in the running time for
linear-space data structures. In this paper, we improve Chazelle’s long-standing
result by giving a data structure of O(N) words and reducing the query time
from polylogarithmic to “almost” logarithmic, namely, O(lgN lg lgN).

Although our primary focus is on 4-sided queries, which specify a rectangle
that is bounded from all sides, we also need to consider 2-sided and 3-sided
queries, which are “open” on two and one side respectively (thus a 2-sided query

1 lg x = log2x.

Succinct Indices for Range Queries with Applications 329

8

9

4

6

1

3

2

7

5

8

9

4

6

1

3

2

7

5

Fig. 1. 2-sided and 4-sided range maximum queries. The numbers with the points
represent their priorities, and the unshaded points are the answers.

is specified by a single point (i, j)—see Fig. 1(L)—and a 3-sided query by two
points (i, j) and (k, l) where either i = k or j = l). Our solution recursively
divides the points into horizontal and vertical slabs, and a query rectangle is
decomposed into smaller 2-sided, 3-sided, and 4-sided queries. A key intermediate
result is the data structure for 2-sided queries. The 2-sided sub-problems are
partitioned into smaller sub-problems, which are stored in a “compressed” format
that is “decompressed” at query time. The “compression” uses the idea that to
answer 2-sided range maxima queries on a problem of size m, one need not store
the entire total order of priorities using Θ(m lgm) bits: O(m) bits suffice, i.e., the
effective entropy [13] of 2-sided queries is low. This does not help immediately,
since Θ(m lgm) bits are needed to store the coordinates of the points comprising
these sub-problems. To overcome this bottleneck, the data structures for these
sub-problems are succinct indices [2]: they do not store the coordinates, and
instead obtain them from a global data structure during “decompression”. We
solve 3-sided and 4-sided subqueries by recursion, or by using succinct indices
for range maximum queries on matrices [20,6]. When recursing, we cannot afford
the space required to store the structures for rank space reduction for each such
subproblem: a further key idea is to use a single global structure to achieve this.

By reusing ideas from this 2-sided result, we obtain two stand-alone results on
succinct indices for 2-sided range maxima queries. We show that given N points
in rank space, together with priorities, it is possible to answer 2-sided range
maxima queries in just O(N) additional bits (i.e excluding point coordinate in-
formation) in (lgN)O(1) time, assuming the index can access point coordinates
via an orthogonal range reporting [12,8] queries. This result has been recently
used in a context where the input is a low-discrepancy point set whose coordi-
nates need not be stored at all, and can be generated “on the fly”. A different
index for the permuted-point model of Bose et al. [4] uses O(N) additional bits
and answers 2-sided range maxima queries in only O(lg lgN) time.

The paper is organized as follows. We first describe some building blocks used
in Section 2. Section 3 is devoted to our main result, and Section 4 describes
the succinct index results. Many proofs have been omitted from this extended
abstract and may be found in [11].

330 A. Farzan, J.I. Munro, and R. Raman

2 Preliminaries

In order to support mapping between recursive sub-problems, we use the fol-
lowing primitives on a set S of N points in rank space. A range counting query
reports the number of points within a query rectangle:

Lemma 1 ([14]). Given a set of N points in rank space in two dimensions,
there is a data structure with O(N) words of space that supports range counting
queries in O(lgN/ lg lgN) time.

A range reporting structure supports the operation of listing the coordinates of
all points within a query rectangle. We use the following consequence of a result
of Chan et al. [8]:

Lemma 2 ([8]). Given a set of N points in rank space in two dimensions,
there is a data structure with O(N) words of space that supports range reporting

queries in O
(
(1 + k) lg1/3N

)
time where k is the number of points reported.

The range selection problem is as follows: given an input array A of size N , to
preprocess it so that given a query (i, j, k), with 1 ≤ i ≤ j ≤ N , we return
an index i1 such that A[i1] is the k-th smallest of the elements in the subarray
A[i], A[i+ 1], . . . , A[j].

Lemma 3 ([7]). Given an array of size N , there is a data structure with O(N)
words of space that supports range selection queries in O(lgN/ lg lgN) time.

3 The Data Structure

In this section we show our main result:

Theorem 1. Given N points in two-dimensional rank space, and their prior-
ities, there is a data structure that occupies O(N) words of space and answers
range maximum queries in O(lgN lg lgN) time.

We first give an overview of the data structure. We begin by storing all the
points (using their input coordinates) once each in the structures of Lemmas 1
and 2. We also store an instance of the data structure of Lemma 3 once each
for the arrays X and Y , where X [i] = ν(i) and Y [i] = ν−1(i) for i ∈ N (X
stores the y-coordinates of the points in order of increasing x-coordinate, and Y
the x-coordinates in order of increasing y-coordinate). These four “global” data
structures use O(N) words of space in all.

We recursively decompose the problem à la Afshani et al. [1]. Let n be the
recursive problem size (initially n = N). Given a problem of size n, we divide
the problem into n/k mutually disjoint horizontal slabs of size n by k, and n/k
mutually disjoint vertical slabs of size k by n. A horizontal and vertical slab
intersect in a square of size k×k. We recurse on each horizontal or vertical slab:
observe that each horizontal or vertical slab has exactly k points in it, and is
treated as a problem of size k—i.e. it is logically comprised of two permutations

Succinct Indices for Range Queries with Applications 331

υ and π on [k] (Fig. 2(L); Sec. 3.1). Given a slab in a problem of size n containing
k points, we need to map coordinates in the slab (which in one dimension will
be from [n]) down to [k]× [k] in order to view the slab as a problem of size k—
and back again. This mapping is not explicitly stored, and is achieved through
slab-rank and slab-select operations (Sec. 3.2).

The given query rectangle is decomposed into a number of disjoint recursive
2-sided, 3-sided and 4-sided queries. In addition to queries that reach slabs at the
bottom of the recursion, many other queries do not generate further recursive
problems. Such queries are called terminal, and the problems (or data struc-
tures) that involve answering terminal queries are also called terminal. Each
terminal query produces some candidate points: the set of all candidate points
must contain the final answer. To achieve the space bound, we require that all
terminal problems of size n—except those at the bottom of the recursion—use
space O(n

√
lg n) bits (Sec. 3.1). Terminal 3- and 4-sided problems are handled

by the results of [20,6]. Terminal 2-sided problems reduce the range maximum
query to planar point location, but the space bound precludes an explicit rep-
resentation. Instead, the data structures are succinct indices—the points that
comprise them are accessed by means of queries to a single global data structure.
Using the key insight that O(n) bits suffice to encode the priority information
needed to answer 2-sided queries in a problem of size n (Sec. 3.3), we store
parts of the planar sub-division in the recursive problems in a compressed form,
relevant parts of which are recomputed at query time (Sec. 3.4).

3.1 A Recursive Formulation and Its Space Usage

The recursive structure is as follows. Let L = lgN , and consider a recursive
problem of size n (at the top level n = N). We assume wlog that N and n are
powers of 2, as are a number of expressions which represent the size of recursive
problems (if not, replace real-valued parameters x ≥ 1 by 2�lg x� or 2�lg x
 without
affecting the asymptotic complexity). Unless we have reached the bottom of the
recursion, we partition the input range [n] × [n] into mutually disjoint vertical
slabs of width k =

√
nL and also into mutually disjoint horizontal slabs of height

k =
√
nL, which intersect in O(n/L) k × k squares. We need to answer 2-sided,

3-sided or 4-sided queries on this problem, which we do as follows (see Fig. 2(R)):

– A 2-sided query is terminal and generates one candidate.
– A 3-sided query results in at most one recursive 3-sided query on a slab,

plus up to three terminal problems, each generating one candidate: at most
two 2-sided queries on slabs, and at most one square-aligned 3-sided query
(a square-aligned query exactly covers a rectangular sub-array of squares).

– A 4-sided query either results in a recursive 4-sided query on a slab or results
at most one square-aligned 4-sided query (generating one candidate), plus
up to four recursive 3-sided queries in slabs.

Since each 3-sided query only generates one recursive 3-sided query, O(r) =
O(lg lgN) recursive problems are solved generating O(r) candidates.

332 A. Farzan, J.I. Munro, and R. Raman

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��
��
��

��
��
��
��
��
��

Fig. 2. The recursive decomposition of the input (L) and queries (R). In (R) shaded
problems are terminal problems.

The data structures associated with the current recursive problem are:

– for problems at the bottom of the recursion, we store an instance of Chazelle’s
data structure which uses O(n lgn) bits of space and has query time
O
(
(lg n)2

)
.

– For 2-sided queries (which are terminal) in non-terminal problems we use
the data structure with space usage O(n

√
lgn) bits described in Sec. 3.4.

– For 3- and 4-sided square-aligned queries, we store an n/k×n/k matrix that
contains the (top-level) coordinates and priority of the maximum point (if
any) in each square. This matrix uses O(n/L · L) = O(n) bits. We then use
the data structure of [20,6] for answering 2D range maximum queries on the
elements in the above matrix; this also uses O(n) bits.

Finally, each recursive problem has O(lgN) = O(L) bits of “header” informa-
tion, containing, e.g., the bounding box of the problem in the top-level coordinate
system. Ignoring the header information, the space usage is given by:

S(n) = 2
√
n/LS(

√
nL) +O(n

√
lg n),

which after r levels of recursion becomes:

S(N) = 2r
N1−1/2r

L1−1/2r
S(N1/2rL1−1/2r) +O

(
2rN
√
lg(N1/2rL1−1/2r)

)
.

The recursion is terminated for the first level r where 2r ≥ lgN/ lg lgN . At this
level, the problems are of size O

(
(lgN)2

)
and Ω

(
(lgN)1.5

)
and the second term

in the space usage becomes O(N lgN) bits. Applying S(n) = O(n lg n) for the
base case, we see that the first term is O((lgN/ lg lgN) ·N · lg lgN) = O(N lgN)
bits, and the space used by the header information is indeed negligible.

3.2 The Slab-Rank and Slab-Select Problems

The input to each recursive problem of size n is given in local coordinates (i.e.
from [n]× [n]). Upon decomposing the query to this problem, we need to solve
the following slab-rank problem (with a symmetric variant for vertical slabs):

Succinct Indices for Range Queries with Applications 333

Given a point p = (i∗, j∗) in top-level coordinates, which is mapped
to (i, j) in a recursive problem of size n, such that (i, j) that lies in a
horizontal slab of size n×k, map (i, j) to the appropriate position (i′, j′)
in the size k problem represented by this slab.

We formalize the “inverse” slab-select problem as follows:

Given a rectangle R in the coordinate system of a recursive problem,
return the top-level coordinates of all points that lie within R.

The following lemma assumes and builds upon the four “global” data structures
mentioned after the statement to Theorem 1 (proof omitted):

Lemma 4. The slab-rank problem can be solved in O(lgN/ lg lgN) time, and
the slab-select problem in O(lgN/ lg lgN) time as well, provided that R contains
at most O

(√
lgN
)
points.

3.3 Encoding 2-Sided Queries

We now show that to answer 2-sided range maxima queries at point q (RMQ(q)
hereafter), a linear number of bits suffice to encode priority information:

Lemma 5. Given a set S of n points from R2 and relative priorities given as
a permutation π on [n], the query RMQ(q) can be reduced to point location of
q in a collection of at most n horizontal semi-open line segments, whose left
endpoints are points from S, and whose right endpoints have x-coordinate equal
to the x-coordinate of some point from S. Further, given at most 3n bits of extra
information, the collection of line segments can be reconstructed from S.

Proof. Assume the points are in general position and that the 2-sided query is
open to the top and left. Associate each point p = (x(p), y(p)) ∈ S with a hor-
izontal semi-open line of influence, possibly of length zero, whose left endpoint
(included in the line) is p itself, and is denoted by Inf (p), and contains all points
q such that y(q) = y(p), x(q) ≥ x(p) and RMQ(q) = p. It can be seen that (see
e.g. [16]) the answer to RMQ(q) for any q ∈ R2 can be obtained by shooting a
vertical ray upward from q until the first line Inf (p) is encountered; the answer
to RMQ(q) is then p (if no line is encountered then there is no point in the
2-sided region specified by q). See Fig. 3 for an example.

The set Inf (S) = {Inf (p)|p ∈ S} can be computed by sweeping a vertical line
from left to right. At any given position x = t of the sweep line, the sweep line will
intersect Inf (S′) for some set S′ (initially S′ = ∅). If S′ = pi1 , . . . , pir such that
y(pi1) > . . . > y(pir) then it follows that π(i1) < . . . < π(ir) (the current lines of
influence taken from top to bottom represent points with increasing priorities).
Upon reaching the next point ps such that y(pij) < y(ps) < y(pij+1), either (i)
π(s) < π(ij)—in this case Inf (ps) is empty—or (ii) π(k) > π(ij). In the latter
case, it may be that π(k) > π(ij+1), . . . π(ij+k) for some k ≥ 0, which would
mean that Inf (pij+1), . . . , Inf (pij+k

) are terminated, with their right endpoints
being x(ps). To construct Inf (S), therefore, only O(n) bits of information are

334 A. Farzan, J.I. Munro, and R. Raman

8

4

6

1

3

2

7

5

9
q

Fig. 3. (Left) Example for Lemma 5. The horizontal lines are the lines of influence.
Vertical dotted lines show where a point has terminated the line of influence of another
point. The arrow shows how point location in the lines of influence answers the 2-sided
query with lower right hand corner at q, returning the point with priority 7. (Right)
We select the thick lines of influence, and create a vertical decomposition of all lines
of influence shown by vertical dashed lines. One of the regions obtained is highlighted.

needed: for each point, one bit is needed to indicate whether case (i) or (ii) holds,
and in the latter case, the value of k needs to be stored. However, k can be stored
in unary using k + 1 bits, and the total value of k, over the course of the entire
sweep, is at most n, giving a total of at most 3n bits2. ��

3.4 Data Structures for 2-Sided Queries

In this section we show the following lemma. The given 2-sided problem of size
n is viewed as a point location problem among O(n) horizontal line segments as
in Lemma 5. As the space available is only O(n

√
lgn) bits, we use an implicit

representation of the problem, using and building upon the four “global” data
structures mentioned after the statement to Theorem 1.

Lemma 6. Given a recursive sub-problem of size n, we can answer 2-sided
queries on this problem in O(lgN) time using O(n

√
lg n) bits of space.

We begin with an overview. We first create Inf (T), and choose a parameter
λ =

√
lg n. We then select a set of points T ′ ⊆ T with the following properties:

(a) |T ′| = O(n/λ); (b) the vertical decomposition, whereby we shoot vertical
rays upward and downward from each endpoint of each segment in Inf (T ′) until
they hit another segment, of the plane induced by Inf (T ′)3 decomposes the
plane into O(n/λ) rectangular regions each of which has at most O(λ) points
from T and parts of line segments from Inf (T) in it (see Fig. 3(R)). T ′ always

2 A tight bound of n lg 5 + o(n) ∼ 2.33n bits can be shown [11].
3 Note that the extent of a line segment in Inf (T ′) is defined, as originally, wrt points
in T , and not wrt the points in T ′.

Succinct Indices for Range Queries with Applications 335

exists and can be found by plane sweep [3, Section 3],[9, Section 4.3]. We store a
standard point location data structure, called the skeleton, on T ′: this requires
O((n/λ) lg n) = O

(
n
√
lg n
)
bits. We also store O(λ) bits of information with each

region (including the O(λ)-bit encoding of priority information from Lemma 5).
Given a query point q, we first perform a point location query on the skeleton

to determine the region R in which q lies. We now need to solve the original point
location problem within R, and perform a slab-select to determine the points
of T that lie within this region. This, together with the priority information,
allows us to partially—but not fully, since lines of influence may originate from
outside R—reconstruct the point location problem within R. To handle lines of
influence starting outside R, we do a binary search with O(lg λ) steps, each step
including a a slab-select, giving the claimed bound. The details are as follows.

Preprocessing. Let R be any region, and let Left(R) (Right(R)) be the set of
line segments from Inf (T) that intersect the left (right) boundaries of R, and
let P (R) be the set of points from T in R. We store the following data for R:

1. For each line segment � ∈ Left(R), ordered top-to down by y-axis, a bit
that indicates whether the right endpoint of � is in R or not; similarly for
� ∈ Right(R), a bit indicating whether � begins in R or not.

2. If the left boundary of R is adjacent to other regions R1, R2, . . . (taken
from top to bottom) and li ≥ 0 represents the number of line segments
from Left(R) that also intersect Ri, then we store a bit-string 0l110l21 A
similar bit-string is stored for the right boundary of R.

3. For each point in P (R) and each line segment in Left(R), a bit-string of
length |P (R)| + |Left(R)| whose i-th bit indicates whether the i-th largest
y-coordinate in P (R) ∪ Left(R) is from P (R) or L(R).

4. Suppose that a line segment � = Inf (p) for some p ∈ T crosses m ≥ λ
regions. Then, in every λth region that � crosses, we explicitly store the
region containing p, and p’s local coordinates.

5. Finally, for each point p ∈ P (R), we store the sequence of bits from Lemma 5,
which indicates whether p has a non-empty Inf (p) and if so, for how many
lines from Left(R) ∪ Inf (P (R)), p is a right endpoint (p cannot be a right
endpoint of any other line in Inf (T), by the construction of the skeleton).

The purpose of (1) and (2) is to trace a line segment � as it crosses multiple
regions: if � crosses from a region R′ to a region R′′ on its right, then given its
position in Right(R′), we can deduce its position in Left(R′′). Using (4), after
tracing � = Inf (p) through ≤ λ regions, we will discover (at least) the region
containing p. The skeleton takes O(n

√
lg n) bits, so we now add up the space

used by (1)-(5). By construction, |Left(R)|, |Right(R)| and |P (R)|, summed over
all regions R, is O(n). The space bound for (1) and (3) is therefore O(n) bits.
The number of 1s in the bit string of (3), summed over all regions, is O(n/λ), as
there are O(n/λ) regions and the graph which indicates adjacency of regions is
planar; the number of 0s is O(n) as before. The space used by (4) is O(n

√
lg n)

bits again, as for every O(
√
lg n) portions of line segments in the regions we store

O(lg n) bits. Finally, the space used for (5) is O(n) bits by Lemma 5.

336 A. Farzan, J.I. Munro, and R. Raman

Query algorithm. Given a query point q in a sub-problem of size n (assume that
we have q’s local and top-level coordinates), we answer RMQ(q) as follows:

(a) Do a planar point location in the skeleton, and find a region R in which the
point q lies. Perform slab-select on R to get P (R).

(b) As we know how many segments from Left(R) lie vertically between any pair
of points in P (R), when we are given the data in (5) above, we are able to
determine whether the x-coordinate of a given point p in P (R) is the right
endpoint of a line from either Left(R) or Inf (P (R)). Thus, we have enough
information to determine Inf (p) for all p ∈ P (R) (at least until the right
boundary of R). Furthermore, for each line in Left(R) that terminates in R,
we also know (the top-level coordinates of) its right endpoint.

(c) Using the top-level coordinates of q, we determine the nearest segment from
Inf (P (R)) that is above q.

(d) Using the top-level coordinates of q we also find the set of segments from
Left(R) whose right endpoints are not to the left of q. Let this set be Left∗(R).
We now determine the nearest segment from Left∗(R) that is above q. Un-
fortunately, although |Left∗(R)| = O(λ), since the segments in Left∗(R)
originate in points outside R, we do not have their y-coordinates. Hence, we
need to perform the following binary search on Left∗(R):

(d1) Take the line segment � ∈ Left∗(R) with median y-coordinate, and sup-
pose that � = Inf (p). The first task is to find the region Rp containing
p, as follows. Use (2) to determine which of the adjacent regions of R �
intersects, say this is R′. If � ends in R′, or R′ = Rp and we are done.
Otherwise, use (1) to locate � in Left(R′) and continue.

(d2) Once we have found Rp, we perform a slab-select on R′ to determine
P (Rp), and sort P (Rp) by y-axis. Then we perform (c) above on P (Rp),
thus determining which points of P (Rp) have lines of influence that reach
the right boundary of Rp. Using this we can now determine the (top-
level) coordinates of p.

(d3) We compare the top-level y-coordinates of p and q and recurse.
(e) We take the lower of the lines found in (d) and (e) and use it to return a

candidate. Observe that we have the top-level coordinates of this candidate.

We now derive the time complexity of a 2-sided query. Step (a) takes O(lg n) for
the point location, and O(lgN/ lg lgN) for the slab-select. Step (b) can be done
in O(lg n) = O(lgN) time by running the plane sweep algorithm of Lemma 5
(recall that |P (R)| = O(

√
lgn)—a quadratic algorithm will suffice). Step (c)

likewise can be done by a simple plane sweep in O(lg n) time. Step (d1) is iterated
at mostO(

√
lg n) times before Rp is found since every λ-th region intersected by �

contains information about p. Each iteration of (d1) takes O(1) time: operations
on the bit-strings are done either by table lookup if the bit-string is short (O(λ)
bits), or else using rank and select operations [19], if the bit string is long (as e.g.
the bit-string in (2) may be) – these entirely standard tricks are not described
in detail. Step (d2) takes O(lgN/ lg lgN) time as before. Steps (d1)-(d3) are
performed O(lg λ) = O(lg lgN) times, so this takes O(lgN) time overall. Step
(e) is trivial. We have thus shown Lemma 6.

Succinct Indices for Range Queries with Applications 337

3.5 Putting Things Together

Section 3.1 shows that our data structure occupies O(N) words. The domi-
nant term in the running time is due to solving O(lg lgN) 2-sided queries using
Lemma 6, taking O(lgN lg lgN) time. The O(lg lgN) square-aligned queries are
solved in O(1) time each. The O(1) problems at the bottom of the recursion are
solved in O((lg lgN)2) time. We scan all O(lg lgN) candidates to find the answer
(any candidates given in local coordinates are converted to top-level coordinates
in O(lgN/ lg lgN) time each, or O(lgN) time overall). This proves Theorem 1.

4 Succinct Indices for 2-Sided Queries

We now consider succinct indices for 2-sided range maxima queries overN points
in rank space. Our results are stand-alone variants of Lemma 6 and reuse its
structure (proofs can be found in [11]). The indices encode the priority informa-
tion, but not the point coordinates, which are assumed to be accessible in one of
two ways. First, we consider the case where points are reported through an or-
thogonal range reporting query, such that a query that results in k points being
reported takes T (N, k) time (assume that T (N,O(k)) = O(T (N, k))). Then:

Lemma 7. Let λ ≥ 2 be some parameter. There is a succinct index of size
O(N+(N lgN)/λ)) bits such that 2-sided range maxima queries can be answered
in O(lgN + lg λ(λ + T (N, λ)) time.

In the permuted-point model of [4], the point coordinates are stored in read-
only memory, and the i-th point (according to an ordering specified by the data
structure) can be accessed in O(1) time. We can show:

Lemma 8. There is a succinct index of N lg 5+o(N) = 2.33N+o(N) bits such
that 2-sided range maxima queries can be answered in O(lg lgN) time in the
permuted-point model.

5 Conclusions

We have introduced a new approach to producing space-efficient data structures
for orthogonal range queries, and have applied our approach to give the first
linear-space data structure for 2D range maxima that improves upon Chazelle’s
1985 linear-space data structure. It would be interesting to try to obtain (say)
O(lg lgN) running time as in [8] in linear space, or to apply these ideas to related
problems such as top-k queries.

References

1. Afshani, P., Arge, L., Larsen, K.D.: Orthogonal range reporting: query lower
bounds, optimal structures in 3-D, and higher-dimensional improvements. In:
Snoeyink, J., de Berg, M., Mitchell, J.S.B., Rote, G., Teillaud, M. (eds.) Sym-
posium on Computational Geometry, pp. 240–246. ACM (2010)

2. Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings, binary
relations and multi-labeled trees. In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA,
pp. 680–689. SIAM, Philadelphia (2007)

338 A. Farzan, J.I. Munro, and R. Raman

3. Bender, M.A., Cole, R., Raman, R.: Exponential Structures for Efficient Cache-
Oblivious Algorithms. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M.,
Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 195–207.
Springer, Heidelberg (2002)

4. Bose, P., Chen, E.Y., He, M., Maheshwari, A., Morin, P.: Succinct geometric in-
dexes supporting point location queries. In: Mathieu, C. (ed.) SODA, pp. 635–644.
SIAM, Philadelphia (2009)

5. Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct Orthogonal Range Search
Structures on a Grid with Applications to Text Indexing. In: Dehne, F., Gavrilova,
M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109.
Springer, Heidelberg (2009)

6. Brodal, G.S., Davoodi, P., Rao, S.S.: On Space Efficient Two Dimensional Range
Minimum Data Structures. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II.
LNCS, vol. 6347, pp. 171–182. Springer, Heidelberg (2010)

7. Brodal, G.S., Jørgensen, A.G.: Data Structures for Range Median Queries. In:
Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 822–831.
Springer, Heidelberg (2009)

8. Chan, T.M., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the RAM,
revisited. In: Proceedings of the 27th Annual ACM Symposium on Computational
Geometry, SoCG 2011, pp. 1–10. ACM, New York (2011),
http://doi.acm.org/10.1145/1998196.1998198

9. Chan, T.M., Patrascu, M.: Transdichotomous results in computational geometry,
I: Point location in sublogarithmic time. SIAM J. Comput. 39(2), 703–729 (2009)

10. Chazelle,B.:A functional approach todata structures and its use inmultidimensional
searching. SIAM J. Comput. 17(3), 427–462 (1988), prel. vers. FOCS 1985 (1985)

11. Farzan, A., Munro, J.I., Raman, R.: Succinct indices for range queries with appli-
cations to orthogonal range maxima. Tech. Rep. CS-TR-12-001, U. Leicester (April
2012), http://arxiv.org/abs/1204.4835

12. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geom-
etry problems. In: Proc. 16th Annual ACM Symposium on Theory of Computing,
pp. 135–143. ACM (1984)

13. Golin, M.J., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2D Range
Maximum Queries. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.)
ISAAC 2011. LNCS, vol. 7074, pp. 180–189. Springer, Heidelberg (2011)

14. JáJá, J., Mortensen, C.W., Shi, Q.: Space-Efficient and Fast Algorithms for Mul-
tidimensional Dominance Reporting and Counting. In: Fleischer, R., Trippen, G.
(eds.) ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)

15. Karpinski, M., Nekrich, Y.: Space Efficient Multi-Dimensional Range Reporting.
In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 215–224. Springer, Hei-
delberg (2009)

16. Makris, C., Tsakalidis, A.K.: Algorithms for three-dimensional dominance search-
ing in linear space. Inf. Process. Lett. 66(6), 277–283 (1998)

17. Mehta, D.P., Sahni, S. (eds.): Handbook of Data Structures and Applications.
Chapman & Hall/CRC (2009)

18. Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. Comput.
Geom. 42(4), 342–351 (2009)

19. Rahman, N., Raman, R.: Rank and select operations on binary strings. In: Kao,
M.Y. (ed.) Encyclopedia of Algorithms, Springer (2008)

20. Yuan, H., Atallah, M.J.: Data structures for range minimum queries in multidimen-
sional arrays. In: Charikar, M. (ed.) SODA 2010, pp. 150–160. SIAM, Philadelphia
(2010)

http://doi.acm.org/10.1145/1998196.1998198
http://arxiv.org/abs/1204.4835

Universal Factor Graphs�

Uriel Feige and Shlomo Jozeph

Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Rehovot, Israel
{uriel.feige,shlomo.jozeph}@weizmann.ac.il

Abstract. The factor graph of an instance of a symmetric constraint
satisfaction problem on n Boolean variables and m constraints (CSPs
such as k-SAT, k-AND, k-LIN) is a bipartite graph describing which
variables appear in which constraints. The factor graph describes the
instance up to the polarity of the variables, and hence there are up to
2km instances of the CSP that share the same factor graph. It is well
known that factor graphs with certain structural properties make the
underlying CSP easier to either solve exactly (e.g., for tree structures)
or approximately (e.g., for planar structures). We are interested in the
following question: is there a factor graph for which if one can solve every
instance of the CSP with this particular factor graph, then one can solve
every instance of the CSP regardless of the factor graph (and similarly,
for approximation)? We call such a factor graph universal. As one needs
different factor graphs for different values of n and m, this gives rise to
the notion of a family of universal factor graphs.

We initiate a systematic study of universal factor graphs, and present
some results for max-kSAT. Our work has connections with the notion
of preprocessing as previously studied for closest codeword and closest
lattice-vector problems, with proofs for the PCP theorem, and with tests
for the long code. Many questions remain open.

1 Introduction

A constraint satisfaction problem (CSP) has a set of n variables and a set of
m constraints (also referred to as clauses, or factors). Every constraint involves
a subset of the variables, and is satisfied by some assignments to the variables
and not satisfied by others. An instance of a CSP is satisfiable if there is an
assignment to the variables that satisfies all constraints. When variables are
Boolean and constraints are symmetric a constraint is fully specified by the set
of literals that it contains (where a literal is either a variable or its negation),
and is satisfied if and only if the appropriate number of literals is set to true
(e.g., at least one for SAT, an odd number for XOR, all for AND, the majority
for MAJ, and at least one but not all for NAE). To simplify the presentation,
we shall consider in this paper CSPs that are Boolean and symmetric, though
we remark that much of what we discuss can be extended to non-Boolean and
non-symmetric CSPs.

� An extended version of the paper appears at http://arxiv.org/abs/1204.6484

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 339–350, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

340 U. Feige and S. Jozeph

The factor graph of an instance of a CSP is a bipartite graph. Vertices on one
side represent the variables, vertices on the other side represent the constraints
(also known as factors), and edges connect constraints to the variables that they
contain. For Boolean symmetric CSPs, a factor graph together with a labeling
of the edges with ±1 (indicating whether the corresponding variable has positive
or negative polarity in the underlying clause) completely specifies an instance
of the CSP. Without the edge labels, there are many instances of the CSP that
share the same factor graph and differ only in the polarity of the variables.

As is well known, deciding satisfiability for CSPs is NP-hard for a large class
of predicates (including, SAT, MAJ and NAE). See [21] for a complete classifica-
tion. Here we shall consider NP-hard CSPs. The research question that motivates
our current paper is to understand what are the obstacles for obtaining efficient
algorithms for solving CSPs. Specifically, are algorithms having trouble in “un-
derstanding” the structure of the factor graph, and this translates to difficulties
in solving the underlying CSP? Alternatively, are the computational difficulties
a result of the combinatorial richness of the polarities?

The structure of the factor graph may cause the underlying CSP instance to
be easy. For example, if the factor graph is a tree (or more generally, of bounded
treewidth), then the underlying CSP instance can be solved in polynomial time
(by dynamic programming). Our research question (once properly formalized)
can be viewed as asking whether in other cases, the structure of the factor graph
might be the major contributing factor to making a CSP hard.

The playing field of our research agenda is greatly enriched once optimiza-
tion versions of CSPs are considered, namely max-CSP: find an assignment to
the variables that satisfies as many constraints as possible. As is well known,
even some polynomial time solvable CSPs (such as XOR, or 2SAT) become NP-
hard when their optimization version is considered. See [7] for a classification. A
standard way of dealing with NP-hard max-CSP instances is via approximation
algorithms that in polynomial time find an assignment that is guaranteed to
satisfy a number of constraints that is at least ρ times the maximum number
of constraints that can be satisfied, for some 0 < ρ < 1. For many CSPs, the
best possible ρ is known, in the sense that the approximation ratios provided
by known approximation algorithms are matched by hardness of approximation
results that show that better approximation ratios would imply that P=NP. For
example, ρ = 7/8 is a tight approximation threshold for max-3SAT [12]. More-
over, for all CSPs, an algorithm (based on semidefinite programming) with the
optimal approximation ratio is given by Raghavendra [20], assuming the Unique
Games Conjecture of Khot [14]. However, despite the optimality of this algo-
rithm, it is difficult to figure out which approximation ratio it guarantees, and
consequently there are CSPs for which the value of this threshold is not known.
(And of course, if the Unique Games Conjecture is false then the approximation
ratio implied by this algorithm need not be tight.)

Our research agenda naturally extends to max-CSP. One may ask whether ap-
proximation algorithms are having trouble in “understanding” the structure of
the factor graph, and whether this translates to difficulties in approximating the

Universal Factor Graphs 341

underlying CSP. Moreover, now the question acquires also a quantitative aspect,
and one may ask to what extent does the factor graph contribute to the approxi-
mation difficulty. For example, if algorithms had no difficulty in “understanding”
factor graphs, could the approximation ratio for max-3SAT be improved from
7/8 to 8/9?

As in the case of tree factor graphs for decision versions, there are known fam-
ilies of factor graphs (such as planar graphs, or more generally, families of graphs
excluding a fixed minor) on which the underlying CSP instance has improved
approximation ratios, or even a PTAS (ρ > 1− ε for every ε > 0). On the other
hand, it appears that for some CSPs, almost every factor graph is difficult. For
example, there is no known approximation algorithm that runs in polynomial
time on random 3CNF formulas (with say m = n logn constraints) and approx-
imates max-3SAT within a ratio better than 7/8. This suggests (though does
not prove) that there is no need for clever design of the factor graph in order to
make the underlying CSP instance difficult – almost any factor graph would do.

In contrast, for unique games (which is a special family of CSPs with two
non-Boolean variables per constraint), the approximation ratios achievable on
random factor graphs [4] are much better than those currently known to be
achievable on arbitrary factor graphs. (Technically, the graphs considered by
Arora et al. [4] have variables as vertices and constraints as edges, but there is
a one-to-one correspondence between such graphs and factor graphs.) The same
holds for some other classes of graphs [22,16]. Can we (and should we) identify
more factor graphs on which unique games are easy? Is there a “universal” graph
(e.g., a generalized Kneser constraint graph?) such that if unique games are easy
on it, then the Unique Games Conjecture is false? Such questions lead naturally
to the notion that we call here universal factor graphs.

1.1 Preprocessing

How can we provide evidence that algorithms for max-3SAT should be spend-
ing substantial time in analyzing the factor graph? Here is a possible formal
approach. Reveal the input instance in two stages. In the first stage, only the
factor graph is revealed. At this point the algorithm is allowed to run for ar-
bitrary time and record (in polynomial space) whatever information about the
factor graph that it may hope to find useful (e.g., an optimal tree decomposition
of the factor graph, or a minimum dominating set in the factor graph, both of
which are pieces of information that take exponential time to compute). There-
after the polarities of the variables are revealed. At this stage the algorithm has
only polynomial time, and it needs to find an optimal solution to the max-3SAT
instance. If there is a combination of algorithms (unbounded time for stage 1,
polynomial time for stage 2) that can do this on every instance, this establishes
that a good understanding of the factor graph suffices for solving 3SAT instances.
If this cannot be done, this establishes that at least some substantial portion of
the running time is a result of the combinatorial richness of space of possibilities
for polarities of the variables. Refined versions of the preprocessing approach ei-
ther require less of the stage 2 algorithm (finding nearly optimal solutions rather

342 U. Feige and S. Jozeph

than optimal ones) or give it extra power (allow subexponential time), and may
lead to a more quantitative understanding of the value of preprocessing.

To derive positive results in this model, it suffices to provide the respective
algorithms and their analysis. But how does one provide negative results? This
is where the notion of universal factor graphs comes in. Informally, these are
factor graphs on which preprocessing is unlikely to help, because if it does,
then all instances (regardless of their factor graph) can be solved even without
preprocessing.

1.2 Universal Factor Graphs

We consider infinite families of factor graphs. Basically, for every value ofN,M >
0, a family includes at most one factor graph with N variables andM constraints.
However, for convenience in intended future uses, members of the family are
indexed by two auxiliary indices that are called n and m. Definition 1 does not
exclude the possibility that several factor graphs in the family share the same
values of N and M , but their number is upper bounded by some polynomial in
N +M .

Definition 1. Consider an arbitrary CSP with k variables per-constraint. For
integers n > 0 and 0 < m ≤ 2k

(
n
k

)
, let N(n,m) and M(n,m) be two functions,

each lower bounded by n and upper bounded by a polynomial in n+m. A family
of factor graphs associates with each pair of values of n and m a factor graph
with N(n,m) variables and M(n,m) constraints. The family is uniform if there
is an algorithm running in time polynomial in n +m that given n,m produces
the associated factor graph.

Every member of a family of factor graphs for a k-CSP can give rise to 2kM

instances of the CSP, depending on how one sets the polarities of the variables
in the constraints. Given any such instance as input, we shall consider compu-
tational tasks such as satisfiability (find a satisfying assignment if one exists),
optimization (find an assignment satisfying as many clauses as possible) and
approximation (get close to optimal).

The algorithms that perform the above tasks will be limited in their running
times. In this work, we shall be interested in two classes of running times. One is
the standard polynomial time (P) notion, which in our case will mean polynomial
in (N +M). The other is subexponential time, (SUBEXP) which in this paper

is taken to mean time time 2O(N1−ε) for some ε > 0.
Recall that in computational complexity theory, one distinguishes between

uniformmodels of computation (such as Turing machines) and non-uniformmod-
els (such as families of circuits). This distinction is relevant in our context. The
notion of preprocessing the factor graph can be captured by allowing for nonuni-
form algorithms. Hence we shall be dealing with the complexity classes P/poly,
SUBEXP/poly and SUBEXP/subexp (the parameters /poly and /subexp corre-
spond to the length of advice that the preprocessing stage is allowed to record).
For simplicity in our presentation, in each of our definitions below we shall specify

Universal Factor Graphs 343

one particular complexity class (either P/poly or SUBEXP/poly), but we note
that our results extend to other complexity classes as well (such as P instead of
P/poly, or SUBEXP/subexp instead of SUBEXP/poly).

In this work we will show that for some uniform families of factor graphs solv-
ing satisfiability or approximation tasks are hard. These families of factor graphs
will be referred to as universal, and with slight abuse of terminology, individual
factor graphs within these families will be referred to as universal factor graphs.
The hardness results will be proved under some complexity assumption. If the
complexity assumption is widely believed, such as that NP is not contained in
P/poly, then the universal factor graphs support the view that the complexity
of the underlying CSP cannot be attributed entirely to the factor graph and is
at least partly due to the polarities of the variables, because the nonuniform
algorithms could preprocess the factor graph for arbitrary time prior to receiv-
ing the polarities of the variables. If the complexity assumption is not as widely
believed (such as the Unique Games Conjecture), the interpretation of these
hardness result can be that if one wishes to refute the complexity assumption,
it would suffice to design algorithms that are specifically tailored to work on
instances with factor graphs as in the universal family.

We now present formal definitions that are tailored to match those results
that we can prove in this paper. It is straightforward to adapt these definitions
to other variations as well.

Definition 2. For a given CSP, a uniform family of factor graphs is P-universal
if there is no P/poly algorithm for instances of the CSP with factor graphs from
this family, unless NP is contained in P/poly.

Definition 3. For a given CSP, a uniform family of factor graphs is subexp-
universal if there is no SUBEXP/poly algorithm for instances of the CSP with
factor graphs from this family, unless there is a SUBEXP/poly algorithm for all
instances of the CSP.

Definition 4. For a given CSP and 0 < ρ < 1, a uniform family of factor
graphs is ρ-universal if there is no P/poly approximation algorithm with ap-
proximation ratio better than ρ on the instances of the CSP with factor graphs
from this family, unless NP is contained in P/poly. This notion is referred to as
threshold-universal. If ρ is equal to the best approximation ratio known for the
underlying CSP, we will refer to this as a tight threshold. When we do not wish
to specify a particular value for ρ, we call the family APX-universal. A variation
on ρ-universality is (c, s)-universality with 0 < s < c ≤ 1, where instead of ap-
proximation within a ratio of ρ, one considers distinguishing between instances
with at least a c-fraction of the clauses being satisfiable, and instances with at
most s-fraction being satisfiable. For a CSP for which the decision variant is
NP-hard (e.g. 3SAT), ρ-universality will be taken to mean (1, ρ)-universal.

More generally, for optimization versions we shall allow vertices (representing
constraints) of universal factor graphs to have nonnegative weights, thus rep-
resenting instances in which one wishes to find an assignment that maximizes

344 U. Feige and S. Jozeph

the weight (rather than the number) of satisfied constraints. As the weights will
be fixed (independently of the subsequent polarities given to variables), this is
in essence a condensed representation of an unweighted universal factor graph
(which can be obtained by duplicating each vertex a number of times propor-
tional to its weight, rounded to the nearest integer – details omitted).

1.3 Some Research Goals

The notion of universal factor graphs opens up many research directions that
we find interesting. In our current work we attempt to answer questions such
as: Does 3SAT have P-universal factor graphs? Subexp-universal factor graphs?
Does max-3SAT have APX-universal factor graphs? Does max-3SAT have 7/8-
universal factor graphs? These questions are part of a wider research agenda
that concerns questions such as: Do all CSPs have tight threshold-universal
factor graphs? Which CSPs do not have tight threshold-universal factor graphs?
Other questions of interest include: How do universal factor graphs look like?
Can knowledge of their structure help us either in designing new algorithms, or
in reductions that prove new hardness results?

1.4 Related Work

There has been work showing that CSPs on particular factor graphs are NP-hard,
and using such results to help in reductions establishing further NP-hardness
results. For example, it is known that 3SAT is NP-hard even when the factor
graph is planar [17], and this was used (for example) in showing that minimum-
length rectangular partitioning of a rectilinear polygon (with holes) is NP-hard
[18]. Our notion of universal factor graphs is stronger as it requires at most
one particular factor graph for each instance size, rather than a whole family of
factor graphs (e.g., the n by n grid, rather than all planar graphs).

A line of work that closely relates to our research agenda is that of prepro-
cessing for NP-hard problems. As the universal factor graph is fixed, one may
consider preprocessing it for arbitrary (exponential) time in order to produce a
polynomial size “advice”, prior to getting the polarities of the variables. Pre-
processing was extensively studied for some NP-hard problems, and hardness
results in the context of preprocessing amount to designing instances that are
universal (in our terminology). Naor and Bruck [6] show that the nearest code
word problem remains NP-hard even when the code can be preprocessed. Near-
est lattice vector (CVP) when the lattice can be preprocessed was shown to
be NP-hard and APX-hard by Feige and Micciancio [10]. The tightest hardness
results for lattice problems with preprocessing currently known are by Khot et
al. [15]. An earlier work by Alekhnovich et al. [2] has some partial overlap with
our current work, because it uses PCP theory and in the process gives hardness
of approximation results with preprocessing for additional problems. See more
details in Section 2.2.

The above results on coding and lattice problems with preprocessing are mo-
tivated by the fact that in these problems, it is indeed often the case that part of

Universal Factor Graphs 345

the input is fixed in advance (the code, or a basis for the lattice), and part of the
input (a noisy word that one wishes to decode, or a vector for which one wishes
to find the closest lattice point) is a query that is received only later. Moreover,
multiple queries are expected to be received on the same fixed input. In these
cases it really makes sense to invest much time in preprocessing the fixed part
of the input, if this later helps answering the multiple queries more quickly. In
contrast, our notion of universal factor graphs is independent of such practical
concerns. Our motivation is to understand the source of difficulties in solving
NP-hard problems. In particular, it is irrelevant to us whether there really is
any real life situation in which one receives the factor graph of a 3CNF formula
in advance, and then is asked a sequence of queries about it, each time with
different polarities of the variables.

Is it at all plausible that preprocessing can help? For lattice problems, this in-
deed appears to be the case. There are no known approximation algorithms with
subexponential ratios for CVP, but if preprocessing is allowed, than polynomial
approximation ratios are known (by using an exponential time preprocessing
procedure that derives a so called reduced basis of the lattice). For CSPs, the au-
thors are aware of only much weaker evidence that preprocessing may help. This
relates to the case that polarities of variables are random rather than arbitrary.

There is a refutation algorithm that is poly-time on random 3CNF formulas
with more than n1.5 clauses. The obstacle to extending this to lower density of
n1.4 is graph-theoretic: if one knew how to efficiently find certain substructures in
the factor graphs (that almost surely exist), this would suffice [11]. Preprocessing
the factor graph would allow finding these structures. Hence at these densities,
random factor graphs are not expected to be universal (with respect to random
polarities).

In the current paper we consider arbitrary polarities for the variables rather
than random polarities. Nevertheless, we remark that the case of random polar-
ities is also well motivated, and related to possible cryptographic application.
See [3] as an example showing how results from [11] can be used in a proposal
of new public key cryptographic primitives.

More generally, cryptography offers many examples where preprocessing is
believed to help (it will lead to the discovery of a so called trapdoor that would
make solving future instances easy), but as this typically relates to computa-
tional problems that are believed not to be NP-hard, further discussion of this
is omitted from the current manuscript.

1.5 Our Results

The first theorem is based on a straightforward reduction and we have no doubt
that it was previously known (perhaps using different terminology).

Theorem 1. There are P-universal factor graphs for 3SAT.

For the P-universal factor graphs constructed by our proof for Theorem 1, an
algorithm running in time 2N

1−ε

on instances of the universal family would

346 U. Feige and S. Jozeph

correspond to time 2n
3−3ε

on general instances. Hence they are not subexp-
universal. The next theorem addresses this issue.

Theorem 2. There are subexp-universal factor graphs for 3SAT.

We would have liked to prove that there are 7/8-universal factor graphs for max-
3SAT, matching the tight threshold of approximability for max-3SAT. However,
we only managed to prove weaker bounds.

Theorem 3. There are 77/80-universal factor graphs for max-3SAT.

Is there any CSP for which we can obtain tight threshold-universal families? We
do not know, but we do have almost tight results.

Theorem 4. For every ε > 0 there is an integer k for which there is a family
of factor graphs that are

(
1− (1− ε) 2−k

)
-universal for max-EkSAT.

Theorem 4 in nearly tight because every instance of max-EkSAT is (1 − 2−k)-
satisfiable, and consequently there are several algorithms with a (1 − 2−k) ap-
proximation ratio. To actually get tight results we would need to switch the order
of quantifiers in Theorem 4 (show that for some k the result holds for every ε),
but doing so remains an open question.

Using the techniques developed in our work and known reductions among
CSPs one can obtain APX-universal factor graphs for additional CSPs. In par-
ticular, we derive APX-universal factor graphs for max-2LIN, thus illustrating
that for approximating unique games (max-2LIN is a unique game) at least
part of the difficulty comes from the polarities of variables rather than from the
structure of the factor graph.

2 Overview of Proofs

Because of space limitations, most of our proofs are omitted from this manuscript.
They can be found in [9].

At a high level, to show that a factor graph is universal, one shows that any
other factor graph (of the appropriate size) can be reduced to it. The details of
how this is done depend on the context.

The proof of Theorem 1 is elementary and is only sketched here. Consider the
3CNF formula on n variables that contains all possible 23

(
n
3

)
clauses. Add one

auxiliary variable x0 to every clause, giving a 4CNF formula F , and add to F a
few extra clauses that force x0 to be set to true in every satisfying assignment.
Every 3CNF formula f can be embedded in this 4CNF formula by negating x0
only in these clauses of F that appear in f . To change F into a 3CNF formula,
break every 4-clause into two 3-clauses using a fresh auxiliary variable and its
negation. The factor graph of the resulting 3CNF formula is P-universal for
3SAT. For more details, see [9].

Universal Factor Graphs 347

2.1 Subexp-Universal Families

Our proof of Theorem 2 combines two ingredients. One is a variation on a result
of Impagliazzo et al. [13]. It can be leveraged to show that for the purpose of con-
structing subexp-universal factor graphs it suffices to consider 3CNF instances
with a linear number of clauses.

The other ingredient is a reduction with a tighter connection between n+m
and N compared to the one used in our proof of Theorem 1.

Lemma 1. There is a factor graph with N = O(m logm logn) variables that is
P-universal with respect to 3SAT instances with n variables and m clauses.

Our proof of Lemma 1 makes use of oblivious sorting networks (specifically, the
one of Ajtai et al. [1]).

More details on those two ingredients and how they are combined to prove
Theorem 2 appear in [9].

2.2 Threshold-Universal Families

For our proof of Theorem 3 we use a notion that we call a factor graph preserving
reduction (FGPR). It is an algorithm that transforms a source 3CNF instance fs
to a target 3CNF instance ft. The transformation has the following properties:

1. Polynomiality. The transformation algorithm runs in polynomial time (in
the size of fs). Consequently, the size of ft is polynomial in the size of fs.

2. Faithfulness. If fs is satisfiable, so is ft, and vice versa.

3. Factor graph preserving. Any two instances fs and f ′
s with the same factor

graph are reduced to two instances ft and f
′
t that have the same factor graph.

To be useful for our purposes, we would like the FGPR to also have a gap
amplification aspect. Namely, if fs is not satisfiable, then the fraction of clauses
satisfiable in ft is smaller than the fraction of clauses satisfiable in fs.

Theorem 3 will be broken into two sub-theorems, each of which is proved
using FGPRs.

Theorem 5. There are APX-universal factor graphs for max-3SAT.

Theorem 6. There is a reduction from APX-universal factor graphs for max-
3SAT to 77/80-universal ones.

The proof of Theorem 5 strongly relates to the work of Alekhnovich et al. [2].
As explained in Section 1.4, in that work various APX-hardness results with
preprocessing were obtained. Among them, there were APX-hardness results
with preprocessing for certain CSPs (satisfying quadratic equations). It is not
difficult to use these results in order to obtain APX-universal factor graphs
for max-3SAT. However, we present an alternative proof because [2] claims the

348 U. Feige and S. Jozeph

relevant theorem without providing a proof1. Our proof is patterned after a proof
of the PCP theorem due to Dinur [8].

Recall that Dinur’s proof is based on a sequence of gap amplification steps.
However, some of these transformations are not factor graph preserving. Our
proof performs a sequence of gap amplifying FGPRs, starting with the outcome
of Theorem 1, and eventually proving Theorem 5. Every FGPR is based on
modifying Dinur’s proof (or more exactly, on modifying a variation on Dinur’s
proof that is given in [19]). The modifications are related to those discussed
below for the long code (though our proof for Theorem 5 uses a quadratic code
rather than the long code).

The proof of Theorem 6 involves an FGPR from APX-universal factor graphs
for max-3SAT to 77/80-universal ones. Our proof is based on a modification of
the proof of Bellare et al. [5], and consequently obtains the same hardness ratio
of 77/80. The main difficulty we encounter is the following. Tight or nearly tight
hardness of approximation results use the so called long code. A major reason
why it is used is that its high redundancy allows one to replace explicit queries
that check whether an underlying predicate is satisfied by an implicit operation
(referred to as folding) that allows one to avoid making these queries. The only
queries that need to be made are those that check whether the encoding is really
(close to) a long code. The saving in queries translates to stronger hardness of
approximation results. The problem with folding is that it is sensitive to the
predicate that needs to be checked, and a change in the predicate (e.g., changing
the polarity of a single variable in a 3SAT clause) changes the folding. As a
result, query locations change, and the resulting reduction is not an FGPR. To
overcome this problem we introduce a notion of oblivious folding of the long code,
which does allow us to eventually obtain an FGPR. We remark that it was not
a-priori obvious that a construct such as oblivious folding should exist at all. In
particular, tight hardness of approximation results for 3SAT by Hastad [12] use
a notion related to folding but somewhat stronger, that is called conditioning
of the long code. We were unable to find an “oblivious” version of conditioning
that can replace the conditioning used by Hastad, and consequently we do not
know if 7/8-universal factor graphs for 3SAT exist.

For the full proofs of Theorems 5 and 6, see [9].

2.3 Threshold-Universal Families with Nearly Tight Bounds

Recall that the prefix E (for exact) in EkSAT indicates that every clause in the
CNF formula contains exactly k literals (rather than at most) and no two literals
in a clause correspond to the same variable. It is not difficult to see that the proof
of Theorem 3 in fact gives E3CNF formulas, and not just 3CNF formulas (and
even if not, there are simple FPGRs from max-3SAT to max-E3SAT, with only

1 Quoting from [2]: “The proof of this theorem, which is a laborious and an almost
exact mimic of the proof of the PCP Theorem, is beyond the scope of this version
of the paper.” A subsequent paper [15] that extends [2] no longer uses this theorem,
and hence does not contain the proof either.

Universal Factor Graphs 349

a bounded loss in the approximation ratio). Our proof of Theorem 4 is based
on a direct reduction from instances of max-E3SAT to instances of max-EkSAT.
This reduction has the property that mere APX-hardness of max-E3SAT suffices
in order to get nearly tight hardness of approximation ratios for the resulting
max-EkSAT instances, if k is sufficiently large.

Proof. Theorem 3 implies that there is a (1− γ)-universal family of factor graphs
for E3-CNF formulas, for some 0 < γ < 1

8 . We shall use this in an FGPR to prove
Theorem 4. For simplicity of the presentation we shall describe our reduction as
a reduction from a single E3-CNF formula φ3 to a single Ek-CNF formula φk.
As the factor graph resulting for φk will be independent of polarities of variables
in φ3, this will be an FGPR.

Let φ3 be an E3-CNF formula with n variables and m clauses for which one
wants to distinguish between the case that it is satisfiable and the case that it is
at most (1− γ)-satisfiable. Formula φk will be obtained from a combination of 2q

auxiliary Ek-CNF formulas called ψi, for 0 ≤ i ≤ 2q−1. Let q = k−3. Introduce q
fresh variables y1, . . . , yq, and 3 fresh variables z1, z2, z3. Formula ψ0 is obtained
from φ3 by adding the y variables (all in negative polarity) to each clause of
φ3. As to the other formulas indexed by i ≥ 1, each such formula ψi has eight
clauses, where each clause contains the variables y1, . . . yq, z1, z2, z3. Excluding
the all negative polarity combination, there are 2q − 1 remaining combinations
of polarities for the q variables of type y. Each such combination of polarities
will be associated with the clauses of one ψi for i ≥ 1. One may think of the
binary representation of i as specifying the polarity of the y variables in clauses
of ψi, where if the j’th bit of i is 0 then yj is negative, and if the j’th bit of i
is 1 then yj is positive. As to the z variables, there are 8 possible combinations
of polarities. Within a formula ψi there are 8 clauses, and each of them has a
different combination of polarities for the z variables.

The formula φk will be a weighted mixture of the ψi (see [9] regarding an
unweighted version). Formula ψ0 is taken with weight 1

8γ (which is larger than

1 because γ < 1
8), spreading this weight equally among its m clauses. Each of

the other ψi is taken with weight 1, spreading the weight equally among its 8
clauses. The total weight of φk is 2q − 1 + 1

8γ .
If φ3 is satisfiable, so is φk: an assignment to the original variables of φ3 that

satisfies φ3 also satisfies ψ0, and assigning true to all y variables satisfies all ψi

for i ≥ 1. If φ3 is only 1− γ satisfiable then the weight of unsatisfied clauses in
φk is at least 1

8 : if all variables y are assigned true, this results from ψ0, and in
all other cases, this results from one of the other ψi.

The total weight of φk isW = 2q−1+ 1
8γ , and for q satisfying 2q ≥ 1−ε

ε (1
8γ−1)

we have that W ≤ 2q

(1−ε) which implies that 1
8 ≥ W (1−ε)

2k
. Hence φk is at most(

1− (1−ε)
2k

)
-satisfiable, as desired. ��

Acknowledgments. Work supported in part by The Israel Science Foundation
(grant No. 873/08).

350 U. Feige and S. Jozeph

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: An O(n log n) sorting network. In: STOC
1983, pp. 1–9. ACM (1983)

2. Alekhnovich, M., Khot, S.A., Kindler, G., Vishnoi, N.K.: Hardness of approximat-
ing the closest vector problem with pre-processing. In: FOCS 2005, pp. 216–225
(2005)

3. Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from different
assumptions. In: STOC 2010, pp. 171–180 (2010)

4. Arora, S., Khot, S.A., Kolla, A., Steurer, D., Tulsiani, M., Vishnoi, N.K.: Unique
games on expanding constraint graphs are easy. In: STOC 2008, pp. 21–28 (2008)

5. Bellare, M., Goldreich, O., Sudan, M.: Free bits, pcps, and nonapproximability—
towards tight results. SIAM Journal on Computing 27(3), 804–915 (1998)

6. Bruck, J., Naor, M.: The hardness of decoding linear codes with preprocessing.
IEEE Transactions on Information Theory 36(2), 381–385 (1990)

7. Creignou, N., Khanna, S., Sudan, M.: Complexity classifications of boolean con-
straint satisfaction problems. Society for Industrial and Applied Mathematics
(2001)

8. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)
9. Feige, U., Jozeph, S.: Universal Factor Graphs (2012),

http://arxiv.org/abs/1204.6484

10. Feige, U., Micciancio, D.: The inapproximability of lattice and coding problems
with preprocessing. In: CCC 2002, pp. 32–40 (2002)

11. Feige, U., Kim, J.H., Ofek, E.: Witnesses for non-satisfiability of dense random
3CNF formulas. In: FOCS 2006, pp. 497–508 (2006)

12. H̊astad, J.: Some optimal inapproximability results. J. ACM 48, 798–859 (2001)
13. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential

complexity? J. Comput. Syst. Sci. 63, 512–530 (2001)
14. Khot, S.: On the power of unique 2-prover 1-round games. In: STOC 2002, pp.

767–775 (2002)

15. Khot, S., Popat, P., Vishnoi, N.: 2log
1−ε n Hardness for Closest Vector Problem

with Preprocessing. ECCC Report, 119 (2011), (To appear in STOC 2012)
16. Kolla, A.: Spectral algorithms for unique games. In: CCC 2010, pp. 122–130 (2010)
17. Lichtenstein, D.: Planar formulae and their uses. SIAM Journal on Comput-

ing 11(2), 329–343 (1982)
18. Lingas, A., Pinter, R., Rivest, R., Shamir, A.: Minimum edge length decomposi-

tions of rectilinear figure. In: Proceedings of 12th Annual Allerton Conference on
Communication, Control, and Computing (1982)

19. Radhakrishnan, J., Sudan, M.: On Dinur’s proof of the PCP theorem. B.
AMS 44(1), 19–61 (2007)

20. Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP?
In: STOC 2008, pp. 245–254 (2008)

21. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC 1978, pp. 216–
226 (1978)

22. Trevisan, L.: Approximation algorithms for unique games. In: FOCS 2005, pp.
197–205 (2005)

http://arxiv.org/abs/1204.6484

Parameterized Approximation via Fidelity

Preserving Transformations

Michael R. Fellows1, Ariel Kulik2, Frances Rosamond1, and Hadas Shachnai3,�

1 School of Engineering and IT, Charles Darwin Univ., Darwin, NT Australia 0909
{michael.fellows,frances.rosamond}@cdu.edu.au

2 Computer Science Department, Technion, Haifa 32000, Israel
ariel.kulik@gmail.com

3 Computer Science Department, Technion, Haifa 32000, Israel
hadas@cs.technion.ac.il

Abstract. We motivate and describe a new parameterized approxima-
tion paradigm which studies the interaction between performance ratio
and running time for any parametrization of a given optimization prob-
lem. As a key tool, we introduce the concept of α-shrinking transfor-
mation, for α ≥ 1. Applying such transformation to a parameterized
problem instance decreases the parameter value, while preserving ap-
proximation ratio of α (or α-fidelity).

For example, it is well-known that Vertex Cover cannot be approx-
imated within any constant factor better than 2 [24] (under usual as-
sumptions). Our parameterized α-approximation algorithm for k-Vertex
Cover, parameterized by the solution size, has a running time of
1.273(2−α)k , where the running time of the best FPT algorithm is 1.273k

[10]. Our algorithms define a continuous tradeoff between running times
and approximation ratios, allowing practitioners to appropriately allo-
cate computational resources.

Moving even beyond the performance ratio, we call for a new type of
approximative kernelization race. Our α-shrinking transformations can
be used to obtain kernels which are smaller than the best known for a
given problem. For the Vertex Cover problem we obtain a kernel size of
2(2−α)k. The smaller “α-fidelity” kernels allow us to solve exactly prob-
lem instances more efficiently, while obtaining an approximate solution
for the original instance.

We show that such transformations exist for several fundamental prob-
lems, including Vertex Cover, d-Hitting Set, Connected Vertex Cover and
Steiner Tree. We note that most of our algorithms are easy to implement
and are therefore practical in use.

1 Introduction

Given the common belief that most NP-hard problems cannot be solved, or
even well-approximated, in polynomial time, it is natural for us to turn to a

� Work partially supported by the Technion V.P.R. Fund, by Smoler Research Fund,
and by the Ministry of Trade and Industry MAGNET program through the NEGEV
Consortium (www.negev-initiative.org).

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 351–362, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

352 M.R. Fellows et al.

generalization of polynomial time, fixed-parameter tractability, to develop a
paradigm of parameterized approximation.

Parameterized complexity approaches hard computational problems through a
multivariate analysis of the running time. Instead of expressing the running time
as a function of the input size n only, the running time is expressed as a function
of n and k, where k is a well-defined parameter of the input instance. We say that
a problem (with a particular parameter k) is fixed-parameter tractable (FPT) if it
can be solved in time f(k)·p(n), where f is an arbitrary function depending only
on k. Thus we relax polynomial time by committing the exponential explosion to
the parameter k. For further background on parameterized complexity we refer
the reader to the textbooks [13,21,27], and the recent surveys in [14,16].

Extensive research since the beginning of the 70’s has led to results exhibiting
limits to the approximability of NP-hard problems. Comprehensive surveys of
works on classical approximation algorithms can be found, e.g., in [23,31,33].
Formally, given a maximization (minimization) problem Π , we say that A is an
r-approximation algorithm for some r ≥ 1, if for any instance I of Π A yields a
solution that satisfies OPT (I)/A(I) ≤ r (A(I)/OPT (I) ≤ r), where OPT (I) is
the value of an optimal solution for I. Thus, for instance, Maximum Independent
Set on a graph G = (V, E), with |V | = n, is inapproximable within ratio better
than n1−ε, for some ε > 0, unless P = NP [34]. Assuming the Unique Games
Conjecture (UGC), the Vertex Cover problem cannot be approximated within
any constant factor better than 2, and the best constant-factor approximation
for d-Hitting Set is d [24]. These results lead to the question that is at the heart
of our study.

“Given an optimization problem, Π , that is hard to approximate within
factor ρ, for some ρ > 1: can we devise a family of α-approximation
algorithms, Aα, such that Aρ is polynomial, A1 has the running time
of the best FPT algorithm for Π , and Aα defines a continuous tradeoff
between approximation ratios and running times”?

We will see later that our parameterized approximation algorithms have per-
formance ratios better than the best possible polynomial-time approximation
algorithms (under the common assumption that P �= NP , and assuming that
UGC holds). Our technique enables us to obtain any ratio α ∈ [1, ρ(Π)] for a
given problem Π , where ρ(Π) is the best known polynomial-time approxima-
tion ratio for the problem, and α is the approximation ratio achieved, depending
on the desired running-time of the algorithm. In developing a general paradigm
for parameterized approximation, we combine tools used in approximation al-
gorithms with the framework of parameterized complexity. We move now to
an overview of our results, after which will follow an in-depth presentation of
α-shrinking transformations.

1.1 Our Results

In this paper, we describe a new parameterized approximation paradigm which
relates parameterized complexity and polynomial-time approximation. While

Parameterized Approximation via Fidelity Preserving Transformations 353

many earlier studies refer to parametrization by solution size, or, more gen-
erally, by the value of the objective function, our approximation approach can
be applied for any parametrization of a given problem. We demonstrate our tech-
niques with several fundamental problems, including Vertex Cover, d-Hitting Set,
Connected Vertex Cover, and Steiner Tree.

We summarize our results in Table 1. For each of the studied problems, we
specify the kernel size obtained by our algorithms (when applicable), as well as
the running time of the algorithm as function of the approximation ratio, α ≥ 1,
and the best known running time of an exact FPT algorithm for the problem.

Table 1. Approximations via α-fidelity Shrinking: Four Examples

Problem Parameter Kernel size Running time Best FPT
algorithm

Vertex cover solution size 2(2− α)k 1.273(2−α)k 1.273k

[9]

Connected vertex solution size No kO(1) 2k(2−α) 2k

cover [12]

3-Hitting solution size 5(3−α)2

4
k2 + 3−α

2
k 2.076k(3−α)/2 2.076k

set [32]

Steiner tree size of terminal set No kO(1) 2(3−α)k/2 2k

[4]

One of the most important practical techniques in parameterized complexity
is kernelization. Here one takes a problem specified by (x, k) ∈ Σ∗ × N and
produces, typically in polynomial time, a small version of the problem: (x′, k′)
such that (x, k) is a yes instance iff (x′, k′) is a yes instance, and moreover
|x′| ≤ g(k) and usually k′ ≤ k. This technique is widely used in practice as it
usually relies on a number of easily implementable reduction rules.

There are two types of races in parameterized complexity research: the race
for the smallest possible function f(k) in the running time of an exact algorithm,
and the race for the smallest possible function g(k) to bound the size of a kernel.
These races are well-established, and the current leader boards are exhibited on
the FPT community wiki [28]. Our parameterized approximation paradigm gives
rise to a new kind of race, approximative kernelization.

As a key tool in our study, we introduce (in Section 2) the concept of α-
shrinking transformation, for α ≥ 1. We shall see that applying such trans-
formation to a parameterized problem instance decreases the parameter value,
while preserving α-fidelity in the approximation ratio. We show that α-shrinking
transformations can be used also as a tool for approximative kernelization, to
obtain kernels which are smaller than the best known for a given problem. Thus,
we define the notion of α-fidelity kernel, for α ≥ 1, where the special case of
α = 1 is a standard kernel. Such smaller α-fidelity kernels will allow us to solve
exactly problem instances more efficiently, while obtaining an α-approximate
solution for the original instance.

354 M.R. Fellows et al.

Our technique yields a continuous tradeoff between the approximation ratios
achieved by an algorithm and the running times. This positive feature will allow
practitioners to obtain as much accuracy as they can computationally afford.
We note that most of our algorithms are easy to implement and are therefore
practical in use.

As shown in [18], our approximation technique utilizes α-shrinking transfor-
mations to their full power in solving Vertex Cover, Connected Vertex Cover, and
d-Hitting Set, as long as the transformations are linear. Specifically, the running
times of our α-approximation algorithms (as well as the sizes of the α-fidelity
kernels), are in fact the smallest possible.

In developing our approximation algorithm for Steiner Tree (in Section 4), we
make non-standard use of a result of Björklund et al. [4] for solving efficiently
the Steiner Tree problem for a subset of the terminals in a given instance.

1.2 Related Work

Recently, it has been proposed that the notion of approximability can be in-
vestigated in the framework of fixed-parameter tractability, and various models
have been suggested (see, e.g., [8,10,15]. These models seek, for example, an
FPT-algorithm which on input k either delivers “a no size k dominating set”
or produces one of size 2k. Marx and Razgon [26] follow this approach and
present an algorithm with running time f(k)nO(1) that, given an instance of the
Edge Multicut problem and an integer k ≥ 1, either finds a solution of size 2k
or correctly concludes that no solution of size k exists. The general subject of
parameterized complexity and approximation is well-surveyed by Marx in [25].

A different but very interesting kind of trade-off between exact computation
and polynomial approximation has been studied by [30], which proposes to cope
with hardness through the usage of hybrid algorithms.

Other research has studied the FPT approximability of W -hard problems.
The algorithms developed for such problems yield a solution of value g(k) for a
problem parameterized by k, where k is the solution size (see, e.g., [22,15,17]).

Parameterized approximations for NP-hard problems by “moderately expo-
nential time” algorithms has been studied with the goal of devising algorithms
with exponential running time O(2n/r) and r large enough. For Vertex Coloring
the first O∗(2n/0.77)-time algorithm by Lawler was then improved in a series
of papers culminating in a breakthrough O∗(2n) bound by Björklund et al. [3].
Bourgeois et al. [5] used such algorithms to improve the best known approxi-
mation ratios for subgraph maximization and minimum covering problems. The
paper [5] also gives results similar to ours for Vertex Cover, however, the tech-
nique used seems to be specialized for Vertex Cover and cannot be applied to
other problems. A similar approach was developed by Cygan et al. [11]. Fernau
[20] applied a related approach in deriving parameterized approximation schemes
for a class of graph minimization problems. Moderately exponential approxima-
tion has been investigated by [8,10,15], though with objectives oriented towards
development of fixed-parameter algorithms.

Recent works by Brankovic and Fernau [6] and by Fernau [7] present pa-
rameterized β-approximation algorithms for Vertex Cover and 3-Hitting Set,

Parameterized Approximation via Fidelity Preserving Transformations 355

for certain values of β, through accelerated branching. The technique was used
also in [19], to obtain parameterized approximation algorithms for Total Vertex
Cover. The algorithms in [6,7] outperform our algorithms for Vertex Cover and
3-Hitting Set in terms of running times, however, they can be used to obtain
only a restricted set of approximation ratios and are significantly more compli-
cated. We note that our approach for obtaining parameterized α-approximations
for these problems can be combined with the techniques used in [6] and [7] to
obtain improved running times for some values of α > 1.

To our knowledge, there have been few studies that link approximation and
kernelization. However, in a method for kernelizing vertex deletion problems
whose goal graphs can be characterized by forbidden induced subgraphs, van
Bevern et al. [29] show how polynomial time approximation results can be ex-
ploited in kernelization.

Due to space constraints, some of the proofs are omitted. The detailed results
appear in [18].

2 Main Technique: Fidelity Preserving Transformations

We consider languages that consist of words in U = {0, 1}∗×N. Define a language
to be L ⊆ U , such that (x, k) ∈ L implies that (x, k + 1) ∈ L. Such a language
can represent any minimization problem in which k ≥ 0 is the objective value.

For some α ≥ 1, we say that an algorithmA is α-approximation for a language
L if the following conditions hold. For any (x, k) ∈ U : (i) if (x, k) ∈ L then
A(x, k) returns true, and (ii) if A(x, k) returns true then (x, αk) ∈ L.

Note that this is the standard definition of an approximation algorithm, with
the problem described as a language. We consider problems which also have a
parametrization, that is a function κ : U → N . Often, the parametrization of
the problem is κ(x, k) = k. For α > 1, our objective is to find α-approximation
algorithm (or, a family of algorithms with varying α values) for a given problem
L, whose running time is of the form f(κ(x, k)) · |x|O(1). Such an algorithm is
called fixed parameter α-approximation.1 When α = 1, we get a fixed-parameter
algorithm for the problem. If there exists such an algorithm for a language L,
we say that L is fixed-parameter tractable (L ∈ FPT).

To obtain such an algorithm, we first define the notion of fidelity preserving
transformations.

Definition 1. Given a language L, a transformation t : U → U is α-fidelity
preserving, for a given α ≥ 1, if the following hold: For any (x, k) ∈ U , (i) if
(x, k) ∈ L then t(x, k) ∈ L, and (ii) if t(x, k) ∈ L then (x, αk) ∈ L.

Indeed, a kernelization of a problem is a 1-fidelity preserving transformation
which guarantees that, for any (x′, k′) = t(x, k), |x′| ≤ f(κ(x, k)) for some
function f and κ(x′, k′) ≤ κ(x, k).

1 We may view a family of such algorithms, which yield α-approximation for any
α > 1, as the parameterized analog of an efficient polynomial time approximation
scheme (EPTAS), since the running times are polynomial in |x|, but may depend
arbitrarily on κ(x, k).

356 M.R. Fellows et al.

We now introduce the notion of α-shrinking transformation, an α-fidelity
transformation which reduces the magnitude of the parameter κ.

Definition 2. Given a language L with parametrization κ, a transformation
t : U → U is α-shrinking of order f if

(i) t is α-fidelity preserving transformation with respect to L.
(ii) For any (x, k) ∈ U and (x′, k′) = t(x, k) it holds that κ(x′, k′) ≤ f(κ(x, k)).

If the transformation t can also be evaluated in polynomial time in |(x, k)|, we
refer to t as a polynomial α-shrinking of order f .

2.1 Approximation via Shrinking

We now show that with α-shrinking transformations, we can significantly im-
prove the running time, if we are wiling to settle for an approximation. Given
an α-shrinking transformation t of order f , and a parameterized algorithm A
for a problem L, a parameterized approximation algorithm for L can be ob-
tained as follows. For any (x, k) ∈ U we simply run A(t(x, k)). If the output
of the algorithm is true then t(x, k) ∈ L, and since t is α-fidelity preserving,
we have that (x, αk) ∈ L. Also, if (x, k) ∈ L we get that t(x, k) ∈ L, therefore
A(t(x, k)) returns true. It follows, that A is an α-approximation algorithm for L.
The running time of A is of the form g(κ(x, k)) ·poly(|x|), and therefore the run-
ning time of A(t(x, k)) is g(f(κ(x, k))) · poly(|x|) plus the time for applying the
transformation. When the transformation is polynomial, we get a parameterized
α-approximation algorithm. We note that the function g is often exponential in
κ, thus any reduction of the value of f(κ(x, k)) yields a significant improvement
in the running time of the algorithm.

For example, in Section 3.2, we present an α-shrinking transformation for
Vertex Cover (VC) of order (2−α)k, for any 1 ≤ α ≤ 2. The best known running
time of an FPT algorithm for VC is 1.273k (ignoring polynomial factors), due
to [9]. By combining the two, we obtain a parameterized α-approximation for
VC, whose running time is 1.273(2−α)k. For k = 160, if we are willing to settle
for a 1.25-approximation, we get running time of about 241 as contrasted with
255 for an exact algorithm.

2.2 α-Fidelity Kernels

We can also use α-shrinking to generate α-fidelity kernels, defined as follows.

Definition 3. Given a language L with parametrization κ, a transformation
t : U → U is an α-fidelity kernel of size f if

(i) t is an α-fidelity preserving transformation with respect to L.
(ii) There is a function f such that, for any (x, k) ∈ U and (x′, k′) = t(x, k),

it holds that κ(x′, k′) ≤ κ(x, k), and |(x′, k′)| ≤ f(κ(x, k)).

(iii) t can be evaluated in polynomial time in |(x, k)|.

Parameterized Approximation via Fidelity Preserving Transformations 357

We see that α-fidelity kernels generalize the standard notion of kernels. As of-
ten enumeration over a kernel turns out to be faster than branch and bound
algorithms (either in running time, or the time required to implement them), it
makes sense to find an α-fidelity kernel for a problem (whose size is smaller than
the 1-fidelity kernel) and then use enumeration to find an approximate solution.

Given a kernelization algorithm, which yields a kernel of size g(k) for a prob-
lem L, and a polynomial α-shrinking t of order f for the problem, we can generate
an α-fidelity kernel similar to the way we used shrinking to obtain approximation
algorithm. For any (x, k) ∈ U , we run the kernelization algorithm over t(x, k).
We see that the resulting transformation is an α-fidelity kernel of size g(f(k)).
For Vertex Cover, using the α-shrinking of Section 3.2, this leads to an α-fidelity
kernel of size 2(2− α)k, for any 1 ≤ α ≤ 2.

3 Parametrization by Problem Objective

The reduction steps we use to obtain the α-shrinking are quite simple. We
describe them here, and in the following section show how they are applied.
Throughout this section, we consider problems for which the parametrization is
κ(x, k) = k. For simplicity, we ignore the κ notation and simply use k.

3.1 Obtaining α-Shrinking by Simple Reduction Steps

To efficiently obtain polynomial α-shrinking, we use as a key building block the
following reduction step.

Definition 4. Given a language L, a transformation r : U → U is an (a, b)-
reduction step if, for any (x, k) ∈ U and (x′, k′) = r(x, k),

(i) k′ = k − a
(ii) If (x, k) ∈ L then (x′, k′) ∈ L.
(iii) For any integer n ≥ 0, if (x′, k′ + n) ∈ L then (x, k + b+ n) ∈ L.
This reduction step is useful due to the next lemma.

Lemma 1. Given a language L, an (a, b)-reduction step r and α ≤ a+b
a such

that r can be evaluated in polynomial time, there is polynomial α-shrinking of
order

(
k · b+a−αa

b

)
for L.2

Proof. We note that if r is an (a, b)-reduction step, then r
 is (a�, b�)-reduction

step. We use this property as follows. Given (x, k) ∈ U , we select � = k · (α−1)
b

and apply r
 on (x, k). Let t denote the resulting transformation. Now notice, if
t(x, k) ∈ L then (x, k + b�) = (x, αk) ∈ L. Also, if (x, k) ∈ L then t(x, k) ∈ L,
and as r can be evaluated in polynomial time, t can be evaluated in polynomial
time as well. This means that t is α-shrinking, and its order is k′ = k − a� =(
k · b+a−αa

b

)
.

For many problems, finding such a reduction step is easy, as described in Section
3.2. In all cases, we rely heavily on ideas used in local-ratio algorithms for the
problems. For more details on the local ratio technique, see, e.g., [2] .
2 For α = a+b

b
an α-approximation for the problem can be obtained by iteratively

applying the reduction step.

358 M.R. Fellows et al.

3.2 Applications of the Technique

In this section we apply our α-shrinking technique to obtain parameterized ap-
proximations for Vertex Cover and d-Hitting Set. In [18] we apply the technique
to Connected Vertex Cover and Steiner Tree, parameterized by solution size.

Vertex Cover: The Vertex Cover (VC) problem is defined as follows. Given
a graph G = (V,E), a subset of vertices S ⊆ V is a cover of G if, for any edge
(v, u) ∈ E, either v ∈ S or u ∈ S. The VC problem is to find a cover of G of
minimum cardinality. As a language, Vertex Cover can be defined by

V C = {(G, k) | there is a cover of G of size at most k} .

Given an instance (G, k), we use the following reduction step. For an arbitrarily
selected edge (u, v), let G′ = G \ {u, v}. We take r(G, k) = (G′, k − 1). Let
(G, k) ∈ U , denote (G′, k′) = r(G, k), and let (u, v) be the edge selected by the
transformation r. Then, if (G, k) ∈ L, there is a vertex cover C of G with |C| ≤ k;
either u ∈ C or v ∈ C. Therefore, C′ = C \ {v, u} is of size at most k− 1, and C′

is a cover of G′. Hence, (G′, k′) ∈ L. We also note that if (G′, k′ + n) ∈ L, then
there is a cover C′ of G′ of size at most k′ + n = k− 1+ n. Let C = C′ ∪ {u, v},
then we see that C is a vertex cover of G of size at most k′ + n+ 2 ≤ k+ 1+ n.

This implies that r is a (1, 1)-reduction for VC. The reduction r can be eval-
uated in polynomial time and therefore, by Lemma 1, there is a polynomial
α-shrinking for VC of order k · (2− α), for any 1 ≤ α ≤ 2. As mentioned above,
such shrinking can be used to obtain a parameterized α-approximation algo-
rithm for VC, with running time 1.273(2−α)k (ignoring polynomial factors) and
an α-fidelity kernel of size 2(2− α)k, for any 1 ≤ α ≤ 2.

d-Hitting Set: The d-Hitting Set (d-HS) problem is the following extension of
Vertex Cover to hypergraphs. Given a hypergraph G = (V,E) with edge sizes
bounded by d, a set S ⊆ V is a cover of G if, for any e ∈ E, it holds that e∩S �= ∅.
The d-HS problem is to find a cover of G of minimum cardinality. As a language,
d-hitting-set can be defined by d-HS = {(G, k) | there is a cover of G of size k} .

For any fixed d ≥ 2, we show a (1, d−1)-reduction step for d-HS, which extends
the reduction used for VC. Given an instance (G, k), arbitrarily select an edge
e ∈ E and let G′ = (V,E′), where E′ = E \ {e}. Consider r(G, k) = (G′, k − 1).
It can be easily shown that r is indeed a (1, d − 1)-reduction step for d-HS,
which can be evaluated in polynomial time. By Lemma 1, there is a polynomial
α-shrinking for d-HS of order k · d−α

d−1 , for any 1 ≤ α ≤ d.
The best known parameterized algorithm for 3-HS, due to Wahlström [32],

has running time 2.076k. Combining α-shrinking with this algorithm, we obtain a

parameterized α-approximation algorithm with running time 2.076k·
3−α

2 , for any
1 ≤ α ≤ 3. Abu-Khzam showed a kernelization for d-HS of size (2d− 1)kd−1 + k
[1]. Combining this kernelization with our α-shrinking, we have an α-fidelity

kernel for d-HS of size (2d− 1)
(
k · d−α

d−1

)d−1

+ k · d−α
d−1 , for any 1 ≤ α ≤ d.

4 The Parametrized Steiner Tree Problem

The Steiner Tree (ST) problem is defined as follows. Given are an undirected
graph G = (V,E), a set of terminals T ⊆ V , and a value k ≥ 1. We say that a

Parameterized Approximation via Fidelity Preserving Transformations 359

subset of edges E′ is a Steiner tree, if E′ forms a tree, and for any v ∈ T there
is (u, v) ∈ E′. Our objective is to determine if T has a Steiner tree in G of size
k or less. Formally, denote by STG(T) a Steiner tree of T of minimum size in G,
and let ST = {(G, T, k) | |STG(T)| ≤ k}.

We consider ST with its standard parametrization, by the number of termi-
nals, that is, κ(G, T, k) = |T |. We define below an α-shrinking transformation.
While the running time of our shrinking procedure is non-polynomial, it still
yields a significant improvement over the running time of the exact algorithm.

4.1 The Shrinking Technique for Parameterized Steiner Tree

Overview: Our shrinking technique is based on the following observations.

(1) Given a subset S ⊆ T , the graph G and the set of terminals T can be
reduced to G′ and T ′, respectively, such that (i) |T ′| = |T | − |S|+ 1, (ii) if
(G′, T ′, k) ∈ ST then (G, T, k + |STG(S)|) ∈ ST, and (iii) if (G, T, k) ∈ ST
then (G′, T ′, k) ∈ ST.

(2) For any � ≥ 1, there is S ⊆ T of size �, such that STG(S) ≤ STG(T) · 2·

|T | .

(3) For any � ≥ 1, a subset S ⊆ T of size � for which |STG(S)| is minimal can be
found in time h(|T |, �) (ignoring polynomial factors), where h(|T |, �) is the
number of subsets of T of size at most �.

Using the above observations, we define our shrinking procedure as follows. We

select � = (α−1)
2 |T | and find a subset S ⊆ T of size � for which |STG(S)| is

minimal. By (2), we have that |STG(S)| ≤ (α−1)|STG(T)|; therefore, by (1), the
graph G′ and the set T ′ are α-shrinking of (G, T, k) of order f(|T |) = 3−α

2 |T |+1.

Reducing the Graph: For any S ⊆ T , we define GS = (VS , ES), TS , which is
basically the graph G after merging all vertices in S to a single vertex, as follows.
The set of vertices is VS = V ∪{s}\S, where s is a new vertex. The set of edges is
ES = (E ∩ (VS ×VS))∪ {(v, s)|there is u ∈ S such that (v, u) ∈ E} , and the set
of terminals is TS = T ∪{s}\S. Notice that |TS | = |T |− |S|+1. Given a Steiner
tree H of T in G, let its projection on GS be HS = (H ∩ ES) ∪ {(u, s)|(u, v) ∈
H, v ∈ S}. We note that HS is a connected component in GS , which spans the
vertices in TS . Thus, |STGS(TS)| ≤ |HS | ≤ |H |.

Now, given a Steiner tree HS of TS in G, let H consist of all edges of HS which
are in G, an edge (u, v) for each (u, s) ∈ H , where v ∈ S is arbitrarily chosen,
and also STG(S). It is not difficult to see that H is a connected component in G
which spans T ; therefore, we have that |STG(T)| ≤ |HS |+ |STG(S)|. The next
lemma shows the existence of a good subset of size �.

Lemma 2. For any � ≥ 1 satisfying |T | mod � = 0, there is S ⊆ T of size �,
such that STG(S) ≤ STG(T) · 2

|T | .

Finding a Good Subset: To find a subset S ⊆ T of size �, such that
|STG(S)| is minimal, we use a slight adaptation of the algorithm of [4] for the
(parametrized) Steiner Tree problem. The algorithm uses the following recursive
formula. For any q ∈ V and X ⊆ T \ {q},

360 M.R. Fellows et al.

|STG({q} ∪X)| = min
p∈V

{|STG({p, q})|+ gp(X)} ,

where
gp(X) = min

∅⊂D⊂X
{|STG({p} ∪D)|+ |STG({p} ∪ (X \D))} .

While a simple bottom up evaluation of the formula has running time 3|T |, the
algorithm of [4] is based on evaluating gp(X), |STG({q} ∪X)| for sets X ⊆ T of
increasing size, by using a subset convolution algorithm, with running time 2|T |.
This results in a total running time of 2|T | (ignoring polynomial factors).

To find the desired set S, we need to evaluate gp(X), |STG({q} ∪X)| for all
sets X ⊆ T satisfying that |X | ≤ �. While not explicitly mentioned in [4], we
note that, given the values of |STG({q} ∪X)| for any X ⊆ T of size at most r,
we can evaluate gp(X), for any X ⊆ T of size at most r+1, in time h(|T |, r+1)
(ignoring polynomial factor). This is done by using the convolution algorithm
only over sets of size at most r + 1. Therefore, we can evaluate |STG({q} ∪X)|,
for all sets X ⊆ T such that |X | ≤ �, in time h(|T |, �) (ignoring polynomial
factors). Now, we can find the set S for which |STG(S)| is minimal, by going
over all the subsets. Thus, we have

Lemma 3. For any given �, a subset S ⊆ T of size � for which |STG(S)| is min-
imal can be found in time h(|T |, �) (ignoring polynomial factors), where h(|T |, �)
is the number of subsets of T of size at most �.

Combining the previous results, and using Stirling’s approximation to evaluate
the running time, we summarize in the following theorem.

Theorem 1. For any 1 ≤ α ≤ 3/2, there is an α-shrinking of order fα(|T |) =
3−α
2 |T |+1 for parameterized Steiner Tree. The shrinking can be evaluated in time((

1
β

)β
·
(

1
1−β

)(1−β)
)n

, where β = (1− α)/2 (ignoring polynomial factors).

4.2 Applicability

Define g(β) =
(

1
β

)(β
1−β) · 1

1−β , and note that the running time of the shrinking

procedure can be written as g(β)fα(|T |) = g
(
3−α
2

)fα(|T |)
(fα and β are defined as

in Thm 1). Apply the α-shrinking for the given input, and run the algorithm of [4]
on the reduced instance. We obtain an α-approximation algorithm for the Steiner

Tree problem. The running time of the algorithm is g
(
3−α
2

)fα(|T |)
+ 2fα(|T |)

(ignoring polynomial factors). For any 1 ≤ α ≤ 1.4, we have g
(
3−α
2

)
≤ 2;

therefore, the running time of the algorithm is 2fα(|T |) = 2(
3−α

2 |T |).

Theorem 2. There is a parametrized α approximation algorithm for the Steiner
Tree problem, parametrized by the number of terminals, whose running time is

2(
3−α
2 κ) (ignoring polynomial factors), for any 1 ≤ α ≤ 1.4.

Parameterized Approximation via Fidelity Preserving Transformations 361

5 Discussion

We introduced a new parameterized approximation paradigm with important
and general features. Our algorithms, which obtain any approximation ratio be-
tween 1 and the best known P-time ratio for a given problem, yield a continuous
trade-off between approximation and running times.

We showed how our key tool of α-shrinking transformations can be applied to
obtain parameterized approximation algorithms for several fundamental prob-
lems. We further showed that, even when the running time of our shrinking
procedure is non-polynomial (as in the Steiner Tree problem), it can still yield
significant improvement over the running time of an exact algorithm. Finally,
we note that in applying our technique, problem parameter is not restricted to
be the solution size.

We point to a few of the many avenues for future work.

– Further explore the generic approach of approximations based on α-fidelity
shrinking and seek efficient application for other problems, such as Feedback
Vertex Set, Edge Dominating Set, and others.

– Further explore approximative kernelization. For example, can non-linear
reduction (kernelization) rules be used to obtain decreased running time?

– Extend the approach to problems with no FPT algorithm.

References

1. Abu-Khzam, F.N.: Kernelization Algorithms for D-Hitting Set Problems. In:
Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 434–445.
Springer, Heidelberg (2007)

2. Bar-Yehuda, R.: One for the price of two: a unified approach for approximating
covering problems. Algorithmica 27(2), 131–144 (2000)

3. Björklund, A., Husfeldt, T.: Inclusion–exclusion algorithms for counting set parti-
tions. In: FOCS, pp. 575–582 (2006)

4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast
subset convolution. In: STOC, pp. 67–74 (2007)

5. Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient Approximation of Combina-
torial Problems by Moderately Exponential Algorithms. In: Dehne, F., Gavrilova,
M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 507–518.
Springer, Heidelberg (2009)

6. Brankovic, L., Fernau, H.: Combining Two Worlds: Parameterised Approximation
for Vertex Cover. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS,
vol. 6506, pp. 390–402. Springer, Heidelberg (2010)

7. Brankovic, L., Fernau, H.: Parameterized Approximation Algorithms for Hitting

Set. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp.
63–76. Springer, Heidelberg (2012)

8. Cai, L., Huang, X.: Fixed-parameter approximation: Conceptual framework and
approximability results. Algorithmica 57(2), 398–412 (2010)

9. Chen, J., Kanj, I.A., Xia, G.: Improved Parameterized Upper Bounds for Vertex
Cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
238–249. Springer, Heidelberg (2006)

10. Chen, Y.-J., Grohe, M., Grüber, M.: On Parameterized Approximability. In: Bod-
laender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 109–120.
Springer, Heidelberg (2006)

362 M.R. Fellows et al.

11. Cygan, M., Kowalik, L., Pilipczuk, M., Wykurz, M.: Exponential-time approxima-
tion of hard problems. CoRR abs/0810.4934 (2008)

12. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. In: FOCS 2011 (2011)

13. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
14. Downey, R.G., Fellows, M.R., Langston, M.A.: The computer journal special issue

on parameterized complexity: Foreword by the guest editors. Comput. J. 51(1),
1–6 (2008)

15. Downey, R.G., Fellows, M.R., McCartin, C., Rosamond, F.A.: Parameterized ap-
proximation of dominating set problems. Inf. Process. Lett. 109(1), 68–70 (2008)

16. Downey, R.G., Thilikos, D.M.: Confronting intractability via parameters. Com-
puter Science Review 5(4), 279–317 (2011)

17. Drescher, M., Vetta, A.: An approximation algorithm for the maximum leaf span-
ning arborescence problem. ACM Transactions on Algorithms 6(3) (2010)

18. Fellows, M.R., Kulik, A., Rosamond, F., Shachnai, H.: Parameterized approxima-
tion via fidelity preserving transformations. full version,
http://www.cs.technion.ac.il/~hadas/PUB/FKRS_approx_param.pdf/

19. Fernau, H.: Saving on phases: Parametrized approximation for total vertex cover.
In: IWOCA 2012 (2012)

20. Fernau, H.: A systematic approach to moderately exponential-time approximation
schemes. Manusctript (2012)

21. Flum, J., Grohe, M.: Parameterized Complexity Theory. An EATCS Series: Texts
in Theoretical computer Science. Springer (1998)

22. Grohe, M., Grüber, M.: Parameterized Approximability of the Disjoint Cycle Prob-
lem. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 363–374. Springer, Heidelberg (2007)

23. Hochbaum, D.S.: Approximation Algorithms for NP-Hard Problems. PWS Pub-
lishing Company (1997)

24. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon.
J. Comput. Syst. Sci. 74(3), 335–349 (2008)

25. Marx, D.: Parameterized complexity and approximation algorithms. Comput.
J. 51(1), 60–78 (2008)

26. Marx, D., Razgon, I.: Constant ratio fixed-parameter approximation of the edge
multicut problem. Information Processing Letters 109(20), 1161–1166 (2009)

27. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications. Oxford Univerity Press (2006)

28. Parameterized Complexity community Wiki., http://fpt.wikidot.com/
29. van Bevern, R., Moser, H., Niedermeier, R.: Kernelization Through Tidying. In:

López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 527–538. Springer, Hei-
delberg (2010)

30. Vassilevska, V., Williams, R., Woo, S.L.M.: Confronting hardness using a hybrid
approach. In: SODA 2006, pp. 1–10 (2006)

31. Vazirani, V.V.: Approximation Algorithms. Springer (2001)
32. Wahlström, M.: Algorithms, Measures and Upper Bounds for Satisfiability and

Related Problems. PhD thesis, Department of Computer and Information Science.
Linkopings University, Sweden (2007)

33. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-
bridge University Press (2011)

34. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In: STOC 2006, pp. 681–690 (2006)

http://www.cs.technion.ac.il/~hadas/PUB/FKRS_approx_param.pdf/
http://fpt.wikidot.com/

Backdoors to Acyclic SAT�

Serge Gaspers1,2 and Stefan Szeider2

1 School of Computer Science and Engineering, The University of New South Wales,
Sydney, Australia

gaspers@kr.tuwien.ac.at
2 Institute of Information Systems, Vienna University of Technology,

Vienna, Austria
stefan@szeider.net

Abstract. Backdoor sets contain certain key variables of a CNF for-
mula F that make it easy to solve the formula. More specifically, a weak
backdoor set of F is a set X of variables such that there exits a truth
assignment τ to X that reduces F to a satisfiable formula F [τ] that be-
longs to a polynomial-time decidable base class C. A strong backdoor set
is a set X of variables such that for all assignments τ to X, the reduced
formula F [τ] belongs to C.

We study the problem of finding backdoor sets of size at most k with
respect to the base class of CNF formulas with acyclic incidence graphs,
taking k as the parameter. We show that

1. the detection of weak backdoor sets is W[2]-hard in general but fixed-
parameter tractable for r-CNF formulas, for any fixed r ≥ 3, and

2. the detection of strong backdoor sets is fixed-parameter approximable.

Result 1 is the the first positive one for a base class that does not have a
characterization with obstructions of bounded size. Result 2 is the first
positive one for a base class for which strong backdoor sets are more
powerful than deletion backdoor sets.

Not only SAT, but also #SAT can be solved in polynomial time for
CNF formulas with acyclic incidence graphs. Hence Result 2 establishes
a new structural parameter that makes #SAT fixed-parameter tractable
and that is incomparable with known parameters such as treewidth and
clique-width. We obtain the algorithms by a combination of an algo-
rithmic version of the Erdős-Pósa Theorem, Courcelle’s model checking
for monadic second order logic, and new combinatorial results on how
disjoint cycles can interact with the backdoor set.

1 Introduction

Since the advent of computational complexity in the 1970s it quickly became
apparent that a large number of important problems are intractable [16]. This
predicament motivated significant efforts to identify tractable special cases. For
the propositional satisfiability problem (SAT), dozens of such “islands of tracta-
bility” have been identified [14]. Whereas it may seem unlikely that a real-world

� The full version of the paper is available on arXiv [17].

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 363–374, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

364 S. Gaspers and S. Szeider

instance belongs to a known island of tractability, it may be “close” to one. In
this paper we study the question of whether we can exploit the proximity of a
SAT instance to the island of acyclic formulas algorithmically.

For SAT, the distance to an island of tractability (or base class) C is most nat-
urally measured in terms of the number of variables that need to be instantiated
to put the formula into C. Williams et al. [32] introduced the term “backdoor
set” for sets of such variables, and distinguished between weak and strong back-
door sets. A set B of variables is a weak C-backdoor set of a CNF formula F
if for at least one partial truth assignment τ : B → {0, 1}, the restriction F [τ]
is satisfiable and belongs to C. The set B is a strong C-backdoor set of F if for
every partial truth assignment τ : B → {0, 1} the restriction F [τ] belongs to C.

1.1 Weak Backdoor Sets

If we are given a weak C-backdoor set of F of size k, we know that F is satisfiable,
and we can verify the satisfiability of F by checking whether at least one of the 2k

assignments to the backdoor variables leads to a satisfiable formula that belongs
to C. If the base class allows to find an actual satisfying assignment in polynomial
time, as is usually the case, we can find a satisfying assignment of F in 2knO(1)

time. Can we find such a backdoor set quickly if it exists? For all reasonable
base classes C it is NP-hard to decide, given a CNF formula F and an integer k,
whether F has a strong or weak C-backdoor set of size at most k. On the other
hand, the problem is clearly solvable in time nk+O(1). The question is whether
we can get k out of the exponent, and find a backdoor set in time f(k)nO(1),
i.e., is weak backdoor set detection fixed-parameter tractable (FPT) in k? Over
the last couple of years, this question has been answered for various base classes
C; Table 1 gives an overview of some of the known results. See [18] for a survey.

For general CNF, the detection of weak C-backdoor sets is W[2]-hard for all
reasonable base classes C. For some base classes the problem becomes FPT if
clause lengths are bounded. All FPT results for weak backdoor set detection
in Table 1 are due to the fact that for r-CNF formulas, where r ≥ 3 is a fixed
constant, membership in the considered base class can be characterized by cer-
tain obstructions of bounded size. Formally, say that a base class C has the
small obstruction property if there is a family F of CNF formulas, each with a
finite number of clauses, such that for every CNF formula F , F ∈ C if and only
if F contains no subset of clauses isomorphic to a formula in F . Hence, if a
base class C has this property, fixed-parameter tractability for weak C-backdoor
set detection for r-CNF formulas can be established by a bounded search tree
algorithm.

The base class Forest is another class for which the detection of weak back-
door sets is W[2]-hard for general CNF formulas (Theorem 3). For r-CNF for-
mulas the above argument does not apply because Forest does not have the
small obstruction property. Nevertheless, we can still show that the weak Fo-

rest backdoor set detection problem is FPT for r-CNF formulas, for every fixed
r ≥ 3 (Theorem 4). This is our first main result.

Backdoors to Acyclic SAT 365

Table 1. The parameterized complexity of finding weak and strong backdoor sets of
CNF formulas and r-CNF formulas, where r ≥ 3 is a fixed integer

Weak Strong
Base Class CNF r-CNF CNF r-CNF

Horn W[2]-h [22] FPT FPT [22] FPT [22]

2-CNF W[2]-h [22] FPT FPT [22] FPT [22]

UP W[P]-c [30] W[P]-c [30] W[P]-c [30] W[P]-c [30]

RHorn W[2]-h [18] W[2]-h [18] W[2]-h [18] open

Clu W[2]-h [23] FPT W[2]-h [23] FPT [23]

1.2 Strong Backdoor Sets

Given a strong C-backdoor set of size k of a formula F , one can decide whether
F is satisfiable by 2k polynomial checks. In Table 1, Horn and 2-CNF are the
only base classes for which strong backdoor set detection is FPT in general. A
possible reason for the special status of these two classes is the fact that they
have the deletion property: for C ∈ {Horn, 2-CNF} a set X of variables is a
strong C-backdoor set of F if and only if X is a deletion C-backdoor set of F , i.e.,
the formula obtained from F by deleting all positive and negative occurrences
of the variables in X , is in C. The advantage of the deletion property is that
it simplifies the search for a strong backdoor set. Its disadvantage is that the
backdoor set cannot “repair” a formula differently for different truth assignments
of the backdoor variables, and thus it does not use the full power of all the partial
assignments. Indeed, for other base classes one can construct formulas with small
strong backdoor sets whose smallest deletion backdoor sets are arbitrarily large.
In view of these results, one wonders whether a small strong backdoor set can
be found efficiently for a base class that does not have the deletion property.
Our second main result provides a positive answer. Namely we exhibit an FPT
algorithm, which, for a CNF formula F and a positive integer parameter k, either
concludes that F has no strong Forest-backdoor set of size k or concludes that
F has a strong Forest-backdoor set of size at most 2k (Theorem 5).

This FPT-approximation result is interesting for several reasons. First, it
implies that SAT and #SAT are FPT, parameterized by the size of a small-
est strong Forest-backdoor set. Second, (unlike the size of a smallest deletion
Forest-backdoor set) the size of a smallest strong Forest-backdoor set is in-
comparable to the treewidth of the incidence graph. Hence the result applies
to formulas that cannot be solved efficiently by other known methods. Finally,
it exemplifies a base class that does not satisfy the deletion property, for which
strong backdoor sets are FPT-approximable.

1.3 #SAT and Implied Cycle Cutsets

Our second main result, Theorem 5, has applications to the model counting
problem #SAT, a problem that occurs, for instance, in the context of Bayesian

366 S. Gaspers and S. Szeider

Reasoning [2,26]. #SAT is #P-complete [31] and remains #P-hard even for
monotone 2-CNF formulas and Horn 2-CNF formulas, and it is NP-hard to
approximate the number of models of a formula with n variables within 2n

1−ε

for ε > 0, even for monotone 2-CNF formulas and Horn 2-CNF formulas [26].
A common approach to solve #SAT is to find a small cycle cutset (or feedback
vertex set) of variables of the given CNF formula, and by summing up the
number of satisfying assignments of all the acyclic instances one gets by setting
the cutset variables in all possible ways [7]. Such a cycle cutset is nothing but
a deletion Forest-backdoor set. By considering strong Forest-backdoor sets
instead, one can get super-exponentially smaller sets of variables, and hence a
more powerful method. A strong Forest-backdoor set can be considered as a
an implied cycle cutset as it can cut cycles by removing clauses that are satisfied
by certain truth assignments to the backdoor variables. Theorem 5 states that
we can find a small implied cycle cutset efficiently if one exists.

2 Preliminaries

We refer to standard textbooks for background in parameterized complexity
[9,12] and graph theory [8].

Backdoors. A literal is a propositional variable x or its negation ¬x. A clause
is a disjunction of literals that does not contain a complementary pair x and
¬x. A propositional formula in conjunctive normal form (CNF formula) is a
conjunction of clauses. An r-CNF formula is a CNF formula where each clause
contains at most r literals. For a clause c, we write lit(c) and var(c) for the sets
of literals and variables occurring in c, respectively. For a CNF formula F we
write cla(F) for its set of clauses, lit(F) =

⋃
c∈cla(F) lit(c) for its set of literals,

and var(F) =
⋃

c∈cla(F) var(c) for its set of variables.

Let F be a CNF formula and X ⊆ var(F). We denote by 2X the set of all
mappings τ : X → {0, 1}, the truth assignments on X . A truth assignment on
X can be extended to the literals over X by setting τ(¬x) = 1 − τ(x) for all
x ∈ X . Given a τ ∈ 2X , F [τ] denotes the formula obtained from F by removing
all clauses c such that τ sets a literal of c to 1, and removing the literals set
to 0 from all remaining clauses. F is satisfiable if there is some τ ∈ 2var(F)

with cla(F [τ]) = ∅. SAT is the NP-complete problem of deciding whether a
given CNF formula is satisfiable [5,21]. #SAT is the #P-complete problem of
determining the number of distinct τ ∈ 2var(F) with cla(F [τ]) = ∅ [31].

Backdoor Sets (BDSs) are defined with respect to a fixed class C of CNF
formulas, the base class. Let B ⊆ var(F). B is a strong C-BDS of F if F [τ] ∈ C
for each τ ∈ 2B. B is a weak C-BDS of F if there is an assignment τ ∈ 2B such
that F [τ] is satisfiable and F [τ] ∈ C. B is a deletion C-BDS of F if F −B ∈ C,
where cla(F −B) = {c \ {x,¬x : x ∈ B} : c ∈ cla(F)}.

The challenging problem is to find a strong, weak, or deletion C-BDS of size
at most k if it exists. This leads to the following backdoor detection problems
for any base class C.

Backdoors to Acyclic SAT 367

Strong C-BDS Detection

Input: A CNF formula F and an integer k ≥ 0.
Parameter: The integer k.
Question: Does F have a strong C-backdoor set of size at most k?

The problems Weak C-BDS Detection and Deletion C-BDS Detection

are defined similarly.

Acyclic Formulas. The incidence graph of a CNF formula F is the bipartite
graph inc(F) = (V,E) with V = var(F) ∪ cla(F) and for a variable x ∈ var(F)
and a clause c ∈ cla(F) we have xc ∈ E if x ∈ var(c). The edges of G may be
annotated by a function sign : E → {+,−}. The sign of an edge xc is

sign(xc) =

{
+ if x ∈ lit(c), and

− if ¬x ∈ lit(c) .

A cycle in F is a cycle in inc(F). The formula F is acyclic if inc(F) is acyclic.
We denote by Forest the set of all acyclic CNF formulas.

The satisfiability of formulas from Forest can be decided in polynomial time,
and even the number of satisfying assignments of formulas from Forest can be
determined in polynomial time [11,28].

The strong clause-literal graph of F is the graph slit(F) = (V,E) with V =
lit(F) ∪ cla(F). There is an edge uc ∈ E with u ∈ lit(F) and c ∈ cla(F) if
u ∈ lit(c), and there is an edge uv ∈ E with u, v ∈ lit(F) if u = ¬v or ¬u = v.

Lemma 1. Let F be a CNF formula, τ be an assignment to B ⊆ var(F). The
formula F [τ] is acyclic if and only if slit(F)−N [true(τ)] is acyclic.

It follows that there is a bijection between assignments τ such that F [τ] is acyclic
and independent sets Y ⊆ lit(F) in slit(F) such that slit(F)−N [Y] is acyclic.

3 Background and Methods

The simplest type of Forest-BDSs are deletion Forest-BDSs. In the inci-
dence graph, they correspond to feedback vertex sets that are subsets of var(F).
Therefore, algorithms solving slight generalizations of Feedback Vertex Set

can be used to solve the Deletion Forest-BDS Detection problem. By re-
sults from [4] and [13], Deletion Forest-BDS Detection is FPT and can be
solved in time 5k · ‖F‖O(1) and in time 1.7548n · ‖F‖O(1), where n is the number
of variables of F and ‖F‖ =

∑
c∈cla(F) |lit(c)| denotes the formula length.

Any deletion Forest-BDS B of a CNF formula F is also a strong Fo-

rest-BDS of F , and if F is satisfiable, then B is also a weak Forest-BDS.
In recent years SAT has been studied with respect to several width parameters
of graphs and hypergraphs associated with formulas [1,11,15,24,28,29]. Several
parameters, such as the treewidth of incidence graphs and the clique-width of
signed incidence graphs, are more general than the size of a smallest deletion
Forest-BDS.

368 S. Gaspers and S. Szeider

The size of a smallest weak or strong Forest-BDS is incomparable to
treewidth and clique-width. On one hand, one can construct formulas with arbi-
trary large Forest-BDSs by taking the disjoint union of formulas with bounded
width. On the other hand, consider an r×r grid of variables and subdivide each
edge by a clause. Now, add a variable x that is contained positively in all clauses
subdividing horizontal edges and negatively in all other clauses. The set {x} is
a weak and strong Forest-BDS of this formula, but the treewidth and clique-
width of the formula depend on r. Therefore, weak and strong Forest-BDSs
have the potential of augmenting the tractable fragments of SAT formulas.

In the remainder of this section we outline our algorithms. To find a weak
or strong Forest-BDS, consider the incidence graph G = inc(F) of the input
formula F . By Robertson and Seymour’s Grid Minor Theorem [25] there is a
function f : N → N such that for every integer r, either tw(G) ≤ f(r) or G has
an r× r grid minor. Here, tw(G) denotes the treewidth of G. Choosing r to be a
function of the parameter k, it suffices to solve the problems for incidence graphs
whose treewidth is upper bounded by a function of k, and for incidence graphs
that contain an r × r grid minor, where r is lower bounded by a function of k.
The former case can be solved by invoking Courcelle’s theorem [6], as the Fo-

rest-BDS Detection problems can be defined in Monadic Second Order Logic.
In the latter case we can make use of the fact that G contains many vertex-dis-
joint cycles and we consider several cases how these cycles might disappear from
inc(F) by assigning values to variables.

In order to obtain slightly better bounds, instead of relying on the Grid Mi-
nor Theorem, we use the Erdős-Pósa Theorem [10] and an algorithmization by
Bodlaender [3] to distinguish between the cases where G has small treewidth (in
fact, a small feedback vertex set) or many vertex-disjoint cycles.

Theorem 1 ([10]). Let k ≥ 0 be an integer. There exists a function f(k) =
O(k log k) such that every graph either contains k vertex-disjoint cycles or has
a feedback vertex set of size f(k).

Theorem 2 ([3]). Let k ≥ 2 be an integer. There exists an O(n) time algo-
rithm, taking as input a graph G on n vertices, that either finds k vertex-disjoint
cycles in G or finds a feedback vertex set of G of size at most 12k2 − 27k + 15.

We will use Theorem 2 to distinguish between the case where G has a feedback
vertex set of size fvs(k) and the case where G has cycles(k) vertex-disjoint cycles,
for some function cycles : N → N, where fvs(k) = 12(cycles(k))2−27cycles(k)+15.

Suppose G has a feedback vertex set W of size fvs(k). By adding W to every
bag of an optimal tree decomposition of G−W , we obtain a tree decomposition
of G of width at most fvs(k) + 1. We then define the Weak and Strong Fo-

rest-BDS Detection problems in Monadic Second Order Logic (MSO) and
use Courcelle’s theorem [6] to conclude.

Our main arguments come into play when Bodlaender’s algorithm returns a
set C of cycles(k) vertex-disjoint cycles of G. The algorithms will then compute
a set S∗ ⊆ var(F) whose size is upper bounded by a function of k such that
every weak/strong Forest-BDS of size at most k contains a variable from S∗.

Backdoors to Acyclic SAT 369

A standard branching argument will then be used to recurse. In the case of
Weak Forest-BDS Detection, F has a weak Forest-BDS of size at most
k if and only if there is a variable x ∈ S∗, such that F [x = 0] or F [x = 1] has a
weak Forest-BDS of size at most k− 1. In the case of Strong Forest-BDS

Detection, F has no strong Forest-BDS of size at most k if for every variable
x ∈ S∗, F [x = 0] or F [x = 1] has no strong Forest-BDS of size at most k − 1;
and if F [x = 0] and F [x = 1] have strong Forest-BDSs B and B′ of size at
most 2k−1 − 1, then B ∪B′ ∪ {x} is a strong Forest-BDS of F of size at most
2k − 1. This leads to a factor 2k/k approximation.

In order to compute the set S∗, the algorithms consider how the cycles in C
can interact with a BDS. Let x be a variable and C a cycle in G. In the
case of weak Forest-BDSs, we say that x kills1 C if either inc(F [x = 1]) or
inc(F [x = 0]) does not contain C. In the case of strong Forest-BDSs, we say
that x kills C if neither inc(F [x = 1]) nor inc(F [x = 0]) contain C. We say that
x kills C internally if x ∈ C, and that x kills C externally if x kills C but does
not kill it internally. In any Forest-BDS of size at most k, at most k cycles
from C can be killed internally, since all cycles from C are vertex-disjoint. The
algorithms go over all possible choices of selecting k cycles from C that may be
killed internally. All other cycles C′ need to be killed externally. The algorithms
now aim at computing a set S such that every weak/strong Forest-BDS of size
at most k which is a subset of var(F) \

⋃
C∈C′ var(C) contains a variable from S.

Computing the set S is the most challenging part of this work. In the al-
gorithm for weak Forest-BDSs there is an intricate interplay between several
cases, making use of bounded clause lengths. In the algorithm for strong Fo-

rest-BDSs a further argument is needed to obtain a more structured interaction
between the considered cycles and their external killers.

4 Weak Forest-BDSs

By a parameterized reduction from Hitting Set, Weak Forest-BDS De-

tection is easily shown to be W[2]-hard.

Theorem 3. Weak Forest-BDS Detection is W[2]-hard.

In the remainder of this section, we consider the Weak Forest-BDS De-

tection problem for r-CNF formulas, for any fixed integer r ≥ 3. Let F be an
r-CNF formula, and consider its incidence graph G = inc(F). We use Theorem 2
to distinguish between the case where G has many vertex-disjoint cycles and the
case where G has a small feedback vertex set. In the latter case the problem is
expressed in MSO and solved by Courcelle’s theorem.

Lemma 2. Given a feedback vertex set of inc(F) of size fvs(k), Weak Fo-

rest-BDS Detection is fixed-parameter tractable.

1 We apologize for the violent language.

370 S. Gaspers and S. Szeider

Let C =
{
C1, . . . , Ccycles(k)

}
denote vertex-disjoint cycles in G, with cycles(k) =

2k+1. We describe an algorithm that finds a set S∗ of O(r4kk6) variables from
var(F) such that every weak Forest-BDS of F of size at most k contains a
variable from S∗. We will use several functions of k in our arguments. Let

ext-cycles(k) := cycles(k)− k, supp(k) := (r − 3) · (k3 + 9) + 4k2 + k,

multi(k) := 4k, and overlap(k) := (r − 2) · (k ·multi(k))2 + k.

Let C be a cycle in G and x ∈ var(F). Recall that x kills C internally if x ∈ C.
In this case, x is an internal killer for C. We say that x kills C externally if
x /∈ C and there is a clause u ∈ cla(F)∩C such that xu ∈ E. In this case, x is an
external killer for C. We first dispense with cycles that are killed internally. Our
algorithm goes through all

(
cycles(k)

k

)
ways to choose k cycles from C that may be

killed internally. W.l.o.g., let Cext-cycles(k)+1, . . . , Ccycles(k) denote the cycles that

may be killed internally. All other cycles C′ =
{
C1, . . . , Cext-cycles(k)

}
need to be

killed externally. Let var′(F) = var(F) \
⋃ext-cycles(k)

i=1 var(Ci) denote the variables
that may be selected in a weak Forest-BDS killing no cycle from C′ internally.
From now on, consider only external killers from var′(F). The algorithm will
find a set S of O(rk6) variables such that S contains a variable from every weak
Forest-BDS B ⊆ var′(F) of F with |B| ≤ k. The algorithm first computes the
set of external killers (from var′(F)) for each of these cycles. Then the algorithm
applies the first applicable from the following rules.

Rule 1 (No External Killer). If there is a Ci ∈ C′ that has no external
killer, then set S := ∅.

For each i ∈ {1, . . . , ext-cycles(k)}, let xi be an external killer of Ci that has a
maximum number of neighbors in Ci.

Rule 2 (Multi-Killer Unsupported). If there is a Ci ∈ C′ such that xi has
� ≥ multi(k) neighbors in Ci and at most supp(k) external killers of Ci have at
least �/(2k) neighbors in Ci, then include all these external killers in S.

Rule 3 (Multi-Killer Supported). If there is a Ci ∈ C′ such that xi has
� ≥ multi(k) neighbors in Ci and more than supp(k) external killers of Ci have
at least �/(2k) neighbors in Ci, then set S := {xi}.

Rule 4 (Large Overlap). If there are two cycles Ci, Cj ∈ C′, with at least
overlap(k) common external killers, then set S := ∅.

Rule 5 (Small Overlap). Include in S all vertices that are common external
killers of at least two cycles from C′.

Lemma 3. Rules 1–5 are sound.

Lemma 4. There is an FPT algorithm that, given an r-CNF formula F , a
positive integer parameter k, and cycles(k) vertex-disjoint cycles in inc(F), finds
a set S∗ of O(r4kk6) variables in F such that every weak Forest-BDS of F of
size at most k contains a variable from S∗.

Backdoors to Acyclic SAT 371

Our FPT algorithm for Weak Forest-BDS Detection, restricted to r-CNF
formulas, r ≥ 3, is now easily obtained.

Theorem 4. For every fixed r ≥ 3, Weak Forest-BDS Detection is fixed-
parameter tractable for r-CNF formulas.

5 Strong Forest-BDSs

In this section we design an algorithm that, given a CNF formula F and an
integer k, either concludes that F has no strong Forest-BDS of size at most k
or concludes that F has a strong Forest-BDS of size at most 2k.

Let G = (V,E) = inc(F). Again, we consider the cases where G has a small
feedback vertex set or a large number of vertex-disjoint cycles separately. Let

cycles(k) = k22k−1 + k + 1,

ext-cycles(k) = cycles(k)− k, and

fvs(k) = 12(cycles(k))2 − 27cycles(k) + 15.

The case where G has a small feedback vertex set is again solved by formulating
the problem in MSO and using Courcelle’s theorem.

Lemma 5. Given a feedback vertex set of inc(F) of size fvs(k), Strong Fo-

rest-BDS Detection is fixed-parameter tractable.

Let C =
{
C1, . . . , Ccycles(k)

}
denote vertex-disjoint cycles in G. We refer to these

cycles as C-cycles. The aim is to compute a set S∗ ⊆ var(F) of size O(k2k2k
2−k)

such that no strong Forest-BDS of F of size at most k is disjoint from S∗.
Let C be a cycle in G and x ∈ var(F). Recall that x kills C internally

if x ∈ C. In this case, x is an internal killer for C. We say that x kills
C externally if x /∈ C and there are two clauses u, v ∈ cla(F) ∩ C such that
x ∈ lit(u) and ¬x ∈ lit(v). In this case, x is an external killer for C and x kills
C externally in u and v. As described earlier, our algorithm goes through all(
cycles(k)

k

)
ways to choose k C-cycles that may be killed internally. W.l.o.g., let

Cext-cycles(k)+1, . . . , Ccycles(k) denote the cycles that may be killed internally. All

other cycles C′ =
{
C1, . . . , Cext-cycles(k)

}
need to be killed externally. We refer

to these cycles as C′-cycles. Let var′(F) = var(F) \
⋃ext-cycles(k)

i=1 var(Ci) denote
the set of variables that may be selected in a strong Forest-BDS killing no C′-
cycle internally. From now on, consider only external killers from var′(F). The
algorithm will find a set S of at most 2 variables such that S contains a variable
from every strong Forest-BDS B ⊆ var′(F) of F with |B| ≤ k. External
killers and C′-cycles might be adjacent in many different ways. The following
procedure defines Cx-cycles that have a much more structured interaction with
their external killers.

For each cycle Ci ∈ C′ consider vertices xi, ui, vi such that (i) xi ∈ var′(F)
kills Ci externally in ui and vi, and (ii) there is a path Pi from ui to vi along the
cycle Ci such that if any variable from var′(F) kills Ci externally in two clauses
u′i and v

′
i such that u′i, v

′
i ∈ Pi, then {ui, vi} = {u′i, v′i}. Let Cxi denote the cycle

Pi ∪ xi. We refer to the cycles in Cx =
{
Cx1, . . . , Cxext-cycles(k)

}
as Cx-cycles.

372 S. Gaspers and S. Szeider

Observation 1. Every external killer y of a Cx-cycle Cxi is incident to ui and
vi and sign(yui) �= sign(yvi).

Indeed, an external killer of Ci that is adjacent to two vertices from Pi with
distinct signs is adjacent to ui and vi. Moreover, any external killer of Cxi is a
killer of Ci that is adjacent to two vertices from Pi with different signs. Thus,
any external killer of Cxi is adjacent to ui and vi.

We will be interested in external killers of C′-cycles that also kill the corre-
sponding Cx-cycles. That is, we are going to restrict our attention to vertices in
var′(F) that kill Cxi. An external killer of a C′-cycle Ci is interesting if it is in
var′(F) and it kills Cxi. As each variable that kills a Cx-cycle Cxi also kills Ci,
and each Cx cycle needs to be killed by a variable from any strong Forest-BDS,
we may indeed restrict our attention to interesting external killers of C′-cycles.

We are now ready to formulate the rules to construct the set S containing
at least one variable from any strong Forest-BDS B ⊆ var′(F) of F of size at
most k. These rules are applied in the order of their appearance.

Rule 6 (No External Killer). If there is a Cxi ∈ Cx such that Cxi has no
external killer, then set S := {xi}.

Rule 7 (Killing Same Cycles). If there are vertices y and z and at least
2k−1 + 1 C′-cycles such that both y and z are interesting external killers of each
of these C′-cycles, then set S := {y, z}.

Rule 8 (Killing Many Cycles). If there is a y ∈ var′(F) such that y is an
interesting external killer of at least k · 2k−1 + 1 C′-cycles, then set S := {y}.

Rule 9 (Too Many Cycles). Set S := ∅.

Lemma 6. Rules 6–9 are sound.

Lemma 7. There is an FPT algorithm that, given a CNF formula F , a positive
integer parameter k, and cycles(k) vertex-disjoint cycles of inc(G), computes a

set S∗ of O(k2k2k
2−k) variables from var(F) such that every strong Forest-BDS

of F of size at most k includes a variable from S∗.

This can now be used in an FPT-approximation algorithm for Strong Fo-

rest-BDS Detection. From this algorithm, it follows that SAT and #SAT,
parameterized by the size of a smallest strong Forest-BDS, are FPT.

Theorem 5. There is an FPT algorithm that, given a CNF formula F and a
positive integer parameter k, either concludes that F has no strong Forest-BDS
of size at most k or computes a strong Forest-BDS of F of size at most 2k.

Backdoors to Acyclic SAT 373

6 Conclusion

Our methods offer various ways of generalization. For instance, instead of strong
backdoor sets of smallest size one could consider backdoor trees with minimum
height or a minimum number of leaves [27]. Another possibility is to consider
base classes that properly entail Forest. Indeed, a similar approach has very
recently been used to design FPT-approximation algorithms for the detection of
strong backdoor sets to the base classes of nested CNF formulas [20] and CNF
formulas with incidence graphs of bounded treewidth [19]. Finally, it might be
possible to use elements from our algorithms and proofs for other problems that
are tractable for instances with small feedback vertex sets, and where instanti-
ations of a smaller number of variables could already lead to acyclic instances.

Acknowledgments. The authors acknowledge support from the European Re-
search Council (COMPLEX REASON, 239962). Serge Gaspers acknowledges
partial support from the Australian Research Council (DE120101761).

References

1. Alekhnovich, M., Razborov, A.A.: Satisfiability, branch-width and Tseitin tautolo-
gies. In: FOCS 2002, pp. 593–603 (2002)

2. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for #SAT
and Bayesian inference. In: FOCS 2003, pp. 340–351 (2003)

3. Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Comput. Sci. 5(1), 59–68
(1994)

4. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for
feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)

5. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC 1971, pp.
151–158 (1971)

6. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of
Theoretical Computer Science, vol. B, pp. 193–242. Elsevier (1990)

7. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)
8. Diestel, R.: Graph Theory, 4th edn. Graduate Texts in Mathematics. Springer

(2010)
9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-

puter Science. Springer, New York (1999)
10. Erdős, P., Pósa, L.: On independent circuits contained in a graph. Canadian Jour-

nal of Mathematics 17, 347–352 (1965)
11. Fischer, E., Makowsky, J.A., Ravve, E.R.: Counting truth assignments of formulas

of bounded tree-width or clique-width. Discr. Appl. Math. 156(4), 511–529 (2008)
12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical

Computer Science. An EATCS Series, vol. XIV. Springer, Berlin (2006)
13. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback

vertex set problem: exact and enumeration algorithms. Algorithmica 52(2), 293–
307 (2008)

14. Franco, J., Martin, J.: A history of satisfiabilty. In: Biere, A., Heule, M., van
Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, ch. 1, pp. 3–97. IOS Press
(2009)

374 S. Gaspers and S. Szeider

15. Ganian, R., Hlinený, P., Obdrzálek, J.: Better algorithms for satisfiability problems
for formulas of bounded rank-width. In: FSTTCS 2010. LIPIcs, vol. 8, pp. 73–83.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

16. Garey, M.R., Johnson, D.R.: Computers and Intractability. W. H. Freeman and
Company, New York (1979)

17. Gaspers, S., Szeider, S.: Backdoors to acyclic SAT. Technical Report 1110.6384,
arXiv (2011)

18. Gaspers, S., Szeider, S.: Backdoors to Satisfaction. In: Bodlaender, H.L., Downey,
R.G., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 287–
317. Springer, Heidelberg (2012)

19. Gaspers, S., Szeider, S.: Strong backdoors to bounded treewidth SAT. Technical
Report 1204.6233, arXiv (2012)

20. Gaspers, S., Szeider, S.: Strong backdoors to nested satisfiability. In: SAT 2012.
LNCS, vol. 7317. Springer (to appear, 2012)

21. Levin, L.: Universal sequential search problems. Problems of Information Trans-
mission 9(3), 265–266 (1973)

22. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to
Horn and binary clauses. In: SAT 2004, pp. 96–103 (2004)

23. Nishimura, N., Ragde, P., Szeider, S.: Solving #SAT using vertex covers. Acta
Informatica 44(7-8), 509–523 (2007)

24. Ordyniak, S., Paulusma, D., Szeider, S.: Satisfiability of acyclic and almost acyclic
CNF formulas. In: FSTTCS 2010. LIPIcs, vol. 8, pp. 84–95. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2010)

25. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J.
Combin. Theory Ser. B 41(1), 92–114 (1986)

26. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1-2), 273–302
(1996)

27. Samer, M., Szeider, S.: Backdoor trees. In: AAAI 2008, pp. 363–368. AAAI Press
(2008)

28. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete
Algorithms 8(1), 50–64 (2010)

29. Szeider, S.: On Fixed-Parameter Tractable Parameterizations of SAT. In:
Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202.
Springer, Heidelberg (2004)

30. Szeider, S.: Backdoor sets for DLL subsolvers. Journal of Automated Reason-
ing 35(1-3), 73–88 (2005)

31. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer
Science 8(2), 189–201 (1979)

32. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In:
IJCAI 2003, pp. 1173–1178. Morgan Kaufmann (2003)

Dominators, Directed Bipolar Orders,

and Independent Spanning Trees�

Loukas Georgiadis1 and Robert E. Tarjan2

1 Department of Computer Science, University of Ioannina, Greece
loukas@cs.uoi.gr

2 Department of Computer Science, Princeton University,
Princeton, NJ, 08540, and Hewlett-Packard Laboratories

ret@cs.princeton.edu

Abstract. We consider problems related to dominators and indepen-
dent spanning trees in flowgraphs and provide linear-time algorithms for
their solutions. We introduce the notion of a directed bipolar order, gen-
eralizing a previous notion of Plein and Cheriyan and Reif. We show how
to construct such an order from information computed by several known
algorithms for finding dominators. We show how to concurrently verify
the correctness of a dominator tree D and a directed bipolar order O very
simply, and how to construct from D and O two spanning trees whose
paths are disjoint except for common dominators. Finally, we describe
alternative ways to verify dominators without using a directed bipolar
order.

1 Introduction

A flowgraph is a directed graph with a distinguished root vertex r such that every
vertex is reachable from r. Throughout this paper G = (V,A, r) is a flowgraph
with vertex set V , arc set A, distinguished vertex r, and no arc entering r: arcs
entering r can be deleted without affecting any of the concepts we study. We
denote the number of vertices by n and the number of arcs by m. To simplify
bounds we assume n > 1. Since m ≥ n− 1, this implies m = Ω(n).

A fundamental concept in flowgraphs is that of dominators. A vertex u is
a dominator of a vertex v (u dominates v) if every path from r to v contains
u; u is a proper dominator of v if u dominates v and u �= v. The dominator
relation is reflexive and transitive. Its transitive reduction is a rooted tree, the
dominator tree D: u dominates v if and only if u is an ancestor of v in D. Tree
D has root r and vertex set V ; it is not in general a spanning tree of G since

� Research at the University of Ioannina partially funded by the John S. Latsis Public
Benefit Foundation. The sole responsibility for the content of this paper lies with its
authors. Research at Princeton University partially supported by NSF grants CCF-
0830676 and CCF-0832797. Research while visiting Stanford University partially
supported by an AFOSR MURI grant. The information contained herein does not
necessarily reflect the opinion or policy of the federal government and no official
endorsement should be inferred.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 375–386, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

376 L. Georgiadis and R.E. Tarjan

its arcs need not be in A. If v �= r, the parent of v in D, denoted by d(v), is the
immediate dominator of v: it is the unique proper dominator of v that is dom-
inated by all proper dominators of v. Dominators have applications in diverse
areas including program optimization and code generation [6], constraint pro-
gramming [19], circuit testing [3], theoretical biology [1], memory profiling [15],
and connectivity and path-determination problems [7,8,13]. Lengauer and Tar-
jan [14] gave two quasi-linear-time algorithms for computing D that run fast in
practice and have been used in many of these applications. The simpler of these
runs in O(m log(m/n+2) n) time, the other runs in O(mα(m,n)) time, where α
is a functional inverse of Ackermann’s function [22]. Subsequently, even more-
complicated but truly linear-time algorithms were discovered [2,4,9].

The genesis of the work we report here was a question asked to the second
author by Steve Weeks in 1999: how does one know that the output produced by
these fast but complicated algorithms for finding dominators is correct? That is,
is there a simple way to verify that a given tree is the dominator tree of a given
graph? Here what “simple” means is subjective: since linear time is necessary
and sufficient for verification, running time cannot be the measure of simplicity.
Nevertheless, one might hope for a verification method that avoids at least some
of the technical complications of the fast algorithms for finding dominators.

In 2005 [10] we gave one answer to this question by proposing a linear-time
verification algorithm that avoids some but not all of the complications of finding
dominators. Here we give what we think is a much more satisfying answer. As
a beneficial side effect, we develop new theory about dominators and related
concepts, theory that has other applications. The key to verifying dominators
is that verification becomes easy, indeed entirely straightforward, given some
additional information that serves as a certificate of correctness [16]. We want
the certificate C to have the property that the correctness of D and C can be
verified in linear time by a simple computation. We obtain a suitable certificate
by generalizing some results of Whitty [24], Plein [18], and Cheriyan and Reif [5]
on disjoint spanning trees. The key notion is that of a directed bipolar order O.
Given a spanning tree T rooted at r, a directed bipolar order O of T is a preorder
of T such that for all v �= r, pT (v) <O v, where pT (v) is the parent of v in T ,
and if (pT (v), v) �∈ A, then there are arcs (u, v) and (w, v) with u <O v <O w
and w is not a descendant of v. Such an order need not be unique. We prove (1)
D has a directed bipolar order O; (2) D and O can be verified very simply in
linear time, (3) a directed bipolar order O of D can be constructed in linear time
from D and additional information computed by several of the fast dominators
algorithms; and (4) given D and O, two spanning trees of G can be constructed
in linear time whose paths meet only at common dominators. The constructions
in (3) and (4) are of independent interest as they have applications to other
graph problems. They were previously considered only for the special case of
flowgraphs where d(v) = r for all v �= r. (See Section 2.) We also give two other
algorithms for verifying D that are simpler than the one in our previous paper,
although not as simple as the algorithm that verifies D and O together.

Dominators, Directed Bipolar Orders, and Independent Spanning Trees 377

The remainder of our paper consists of three sections. Section 2 contains ad-
ditional terminology and discusses the results of Whitty, Plein, and Cheriyan
and Reif and how our results generalize and improve theirs. Section 3 gives our
algorithms for (2), (3), and (4); our algorithm for (3) proves (1) by construc-
tion. Section 4 presents alternative algorithms to verify D, which simplify the
verification algorithm from [10].

2 Terminology and Related Work

Let T be a rooted tree whose vertices are in V . If v is an ancestor of w, T [v, w]
is the path in T from v to w. Tree T is flat if the root is the parent of every
other vertex. The dominator tree D of G is flat if and only if r is the only proper
dominator. Tree T is valid if v an ancestor of w implies v dominates w, and
co-valid if v and w in T and v not an ancestor of w implies v does not dominate
w. The dominator tree is the unique tree on vertex set V that is both valid and
co-valid. Thus to verify T = D it suffices to verify that T is a tree (easy in linear
time), that the vertex set of T is V (also easy in linear time), and that T is both
valid and co-valid. The following two lemmas show that validity and co-validity
need only hold for certain pairs of vertices.

Lemma 1. Tree T is valid if and only if for each w �= r, pT (w) dominates w.

Proof. If there are vertices w and v = pT (w) such that v does not dominate
w, then T is not valid by definition. Suppose the condition in the lemma holds.
Let v be an ancestor of w. The path T [v, w] consists of a sequence of vertices
v = v1, v2, . . . , vk = w such that vi = pT (vi+1). By the condition in the lemma,
vi dominates vi+1; by induction and the transitivity of domination, v dominates
w. Thus T is valid. �

Lemma 2. If T is valid, T is co-valid if and only if T has the sibling property:
if v and w are siblings, then v does not dominate w.

Proof. If T does not have the sibling property, there are siblings v and w such
that v dominates w, which means that T is not co-valid. Suppose T is valid and
has the sibling property. Let v and w be unrelated vertices in T . Let x and y
be the siblings that are ancestors of v and w in T , respectively. Since T is valid,
x dominates v and y dominates w. If v dominates w, then both x and y must
be on D[r, w], which implies that x dominates y or y dominates x, but neither
can be the case since T has the sibling property. Thus v does not dominate w.
It follows that T is co-valid. �

In Section 3 we give an easy-to-test sufficient condition for validity; the hard part
of dominator verification is verifying co-validity; that is, verifying the sibling
property. As we shall see, a directed bipolar order makes this task much easier.

378 L. Georgiadis and R.E. Tarjan

Suppose D is flat; that is, each vertex v �= r has only one proper dominator,
r. Then for any vertex v �= r, there is no vertex other than r and v common to
all paths from r to v. By Menger’s Theorem [17], there are two paths from r
to v containing no common vertex other than r and v. Whitty [24] proved that
such paths can be realized for all v by a pair of trees: there are spanning trees B
and R rooted at r such that for any vertex v, B[r, v] and R[r, v] contain only r
and v in common. We call such a pair of trees disjoint. Whitty actually proved
something stronger: there are disjoint spanning trees B and R rooted at r such
that, for any pair of distinct vertices v and w, either B[r, v] and R[r, w] contain
only r in common, or B[r, w] and R[r, v] do. We call such a pair of trees strongly
disjoint. Plehn [18] and independently Cheriyan and Reif [5] gave simpler proofs
of Whitty’s result using what Cheriyan and Reif called a directed st-numbering
as an intermediary. This is a numbering of the vertices from 1 to n such that r
is numbered 1 and each vertex v �= r has an entering arc (r, v) or two entering
arcs (u, v) and (w, v) such that u is numbered less than v and w is numbered
greater than v. The proofs of Whitty, of Plehn, and of Cheriyan and Reif give
polynomial-time constructions of pairs of strongly disjoint spanning trees and
of directed st-numberings, but their constructions seem to require Ω(nm) time
in the worst case. Huck [12] later gave an O(nm)-time algorithm to find two
disjoint spanning trees.

We generalize these definitions and results to arbitrary flowgraphs and give
linear-time algorithms. The definition of a directed bipolar order given in Section
1 generalizes the notion of a directed st -numbering to a non-flat dominator tree.
A pair of spanning trees B and R rooted at r is independent if for all v, B[r, v] and
R[r, v] contain only dominators of v in common; an independent pair of trees B
and R is strongly independent if for every pair of distinct vertices v and w, either
B[r, v] and R[r, w] contain only common dominators of v and w in common, or
B[r, w] and R[r, v] do. In the special case of a flat dominator tree, these two
definitions specialize exactly to those of a disjoint pair of trees or a strongly
disjoint pair of trees, respectively. In our previous paper [10] we showed by a
linear-time construction that every flowgraph has a pair of independent spanning
trees. In Section 3 we extend this result to show by linear-time constructions that
every flowgraph has a directed bipolar order of its dominator tree as well as a
pair of strongly independent spanning trees.

3 Linear-Time Verification and Construction Algorithms

Our verification algorithm uses sufficient conditions for validity and co-validity,
conditions that hold for D. The sufficient condition for validity is simple to test;
the sufficient condition for co-validity is the existence of a directed bipolar order.

Lemma 3. If T is a tree with vertices in V , T is valid if it has the parent
property: for all arcs (u, v), pT (v) is an ancestor of u.

Proof. Suppose T is not valid. By Lemma 1 there is a vertex y with parent x
such that x does not dominate y. Thus there is a path from r to y that avoids

Dominators, Directed Bipolar Orders, and Independent Spanning Trees 379

x. Let (u, v) be the first arc on this path such that v is a descendant of x. Then
v �= x, so the parent of v is a descendant of x. But u is not a descendant of x,
so the parent of v is not an ancestor of u, violating the condition in the lemma. �

Lemma 4. The dominator tree D has the parent property.

Proof. Let (u, v) be an arc, and let x be the parent of v. (By assumption, no arc
enters r, so v has a parent.) Suppose x is not an ancestor of u. Then x does not
dominate u, so there is a path from r to u that avoids x, and hence a path to
v that avoids x. But x dominates v, a contradiction. Thus x is an ancestor of u. �

Lemma 5. Let T be a valid tree rooted at r whose vertex set is V . If T has a
directed bipolar order, then T is co-valid.

Proof. Let T be a valid tree with a directed bipolar order O. Construct two
subgraphs B and R as follows: for every vertex w �= r, add to B some arc (x,w)
such that x <O w; add to R either (pT (w), w) if this is an arc or if not some
arc (y, w) such that w <O y. Each vertex in B is reachable from r by a path of
vertices in increasing directed bipolar order, so B is a spanning tree; we show
that R is also a spanning tree. To that end, we first note that for each v �= r, R
contains a path from pT (v) to v containing only pT (v), v, and vertices ordered
higher than v. This fact implies (by induction on v in increasing depth in T)
that there is a path from r to v in R, thus R is also a spanning tree.

Now we show that B and R are strongly independent. Let v �= r. By Lemma
1, pT (v) dominates v. By construction B[pT (v), v] and R[pT (v), v] contain only
pT (v) and v in common. By Lemma 3, both of these paths contain only descen-
dants of pT (v) in T that are not proper descendants of v in T . By induction on v
in increasing directed bipolar order, B[r, v] and R[r, v] contain only ancestors of
v in T in common, each of which dominates v. Thus B and R are independent.
Let v �= w, and let u be their nearest common ancestor in T . Without loss of gen-
erality, suppose v <O w. If v is an ancestor of w in T then u = v. Suppose now
that v is not an ancestor of w in T . Path B[u, v] contains only vertices ordered no
greater than v. Suppose B[u, v] and R[u,w] contain a vertex z �= u in common.
Choose v so that it has minimum depth in T . Then z ≤O v <O w, which implies
that z dominates w and u dominates z. If z dominates v then z = u, a contra-
diction. Otherwise, B[u, pT (v)] and R[u,w] have z in common. This violates the
choice of v, a contradiction. Thus B[u, v] and R[u,w] have only u in common.
Furthermore by Lemma 3 both of these paths contain only descendants of u.
Since B and R are independent, B[r, u] and R[r, u] contain only dominators of
u in common, and contain only vertices that are not proper descendants of u. It
follows that B[r, v] and R[r, w] contain only common dominators of v and w in
common.

Let v and w be siblings in T such that v <O w. Then B[r, v] avoids w and
R[r, w] avoids v. Hence neither v nor w dominates the other. Therefore T satis-
fies the sibling property, so it is co-valid. �

380 L. Georgiadis and R.E. Tarjan

Note that the proof of Lemma 5 shows not only how to construct a pair of
strongly independent trees but also how to choose, for a given pair of vertices v
and w, a pair of paths that meet only at the common dominators of v and w.

Lemma 6. The dominator tree D has a directed bipolar order.

Proof. We provide a simple construction which simplifies and generalizes the con-
struction of a directed st -numbering given by Cheriyan and Reif [5]. Let B and R
be two independent spanning trees of G. We substitute each tree arc (x, y) with
(z, y) where z is the sibling of y that is an ancestor of x. (See Section 4.1). The con-
struction runs in two phases, each consisting of n−1 rounds. To avoid special cases
we consider that pB(v) = pR(v) for all vertices v such that (d(v), v) is an arc ofG.
It is straightforward to modify any pair of independent spanning trees so that they
satisfy this requirement.We beginwith the graphGn formed by the arcs inBn = B
and Rn = R. (Gn contains a duplicate arc (x, y) when x = pB(y) = pR(y).)

Phase 1. During the i-th round of the first phase we may remove or replace some
arcs in Gn−i+1 to form a graph Gn−i with n − i vertices. We also perform the
corresponding changes to Bn−i+1 and Rn−i+1, forming Bn−i and Rn−i. This
process stops when we reach G1 = ({r}, ∅, r), for which a valid directed bipolar
order O1 is immediately obtained by setting r =O1 1. At each round of the first
phase we maintain the following invariants: (1a) Gn−i has n − i vertices and
2(n− i) − 2 arcs. (1b) Gn−i has at least one vertex w with out-degree at most
one such that pBn−1(w) �= pRn−1(w), or at least one vertex with out-degree zero.
(1c) Bn−i and Rn−i are independent spanning trees of Gn−i. (1d) For all vertices
v such that (d(v), v) is an arc of Gn−i, pBn−i(v) = pRn−i(v). Consider the i-th
round of this phase. At the beginning of this round we have a graph Gn−i+1

and two independent spanning trees Bn−i+1 and Rn−i+1. Let w be a vertex
that satisfies (1b). Then w must be a leaf in at least one of the two spanning
trees. Assume that w is a leaf in Bn−i+1. (If w is a leaf in Rn−i+1 we apply the
symmetric steps.) First we remove w and its adjacent arcs (entering or leaving
w). If w is also a leaf in Rn−i+1 then we are done. Otherwise, let y be the child
of w in Rn−i+1. Also, let v be the parent of y in Rn−i+1. We form Gn−i by
inserting the arc (v, y). We form Rn−i by making v the new parent of y. This
completes the description of the i-th round.

Phase 2. During the second phase we perform the reverse sequence of operations
and extend a directed bipolar order Oi of Gi to a directed bipolar order Oi+1 of
Gi+1. That is, we maintain the following invariant: (2a) Oi is a directed bipolar
order of Gi. Consider the i-th round. At the beginning of this round we have
a graph Gi, two independent spanning trees Bi and Ri of Gi, and a directed
bipolar order Oi of Gi. Let w be the vertex we removed during the (n − i)-th
round of the first phase. Our goal is to assign an appropriate number for w.
Suppose w was a leaf in Bi+1. (We apply the symmetric steps if y was a leaf
in Ri+1.) Let u be the parent of w in Bi+1 and v be the parent of w in Ri+1.
If v = u then it suffices to set w >Oi+1 v. Now suppose v �= u. If w is also a

Dominators, Directed Bipolar Orders, and Independent Spanning Trees 381

leaf in Ri+1 then we can assign w any number between u and v. Otherwise, w
has a child y in Ri+1. Let x = pBi+1(y). Suppose v <Oi+1 u. If y >Oi+1 x then
we can assign w any number between u and v. Otherwise, if y <Oi+1 x then we
can assign w a number immediately larger than v. Finally suppose v >Oi+1 u. If
y >Oi+1 x we can assign w a number immediately smaller than v. Otherwise, if
y <Oi+1 x then we can assign w any number between u and v.

We prove by induction on i that the invariants are maintained. Consider the
first phase. For i = 1 we have the graph Gn and its spanning trees Bn = B and
Rn = R. Since B and R are independent, (1a) and (1c) hold. Also, (1d) holds
by the construction of B and R. It remains to show (1b). To that end let X =
{x ∈ V | pB(x) = pR(x)} ∪ {r}. Then, for any x ∈ X − r, d(x) = pB(x) =
pR(x). If X = V then the definition of X implies that there is at least one vertex
with out-degree zero. If X ⊂ V then |X | ≥ 2 and there are at least 2|X | − 1
arcs (v, w) with v ∈ X . Then, the number of arcs (v, w) with v �∈ X is at most
2(n−|X |)−1. Therefore, there is at least one vertex in V \X with out-degree less
than or equal to one. For the induction step, suppose that the invariants hold for
Gn−i+1, Bn−i+1 and Rn−i+1. Consider the graph Gn−i and the trees Bn−i and
Rn−i obtained by removing vertex w, as described above. Then Bn−i and Rn−i

are independent spanning trees of Gn−i, which implies (1a), (1b) and (1c) as in
the base case. It remains to show that (1d) also holds. Suppose to the contrary
that (1d) is violated after removing w. Then w must have a child y in one of the
two trees, since y is the only vertex that is assigned a new parent v in one of the
two trees. Without loss of generality, assume that (u,w) is in Bn−i+1 and (v, w)
and (w, y) are in Rn−i+1. Since (1d) is violated forGn−i,Bn−i andRn−i, we must
have d(y) = v in Gn−i. But then d(y) = v also in Gn−i+1. Then v dominates w in
Gn−i+1. Since (v, w) is an arc in Gn−i+1, the induction hypothesis implies u = v.
But then w must have out-degree zero, a contradiction.

Now consider the second phase. Invariant (2a) trivially holds for i = 1. For
the induction step assume that Oi is a valid numbering for Gi. For Oi+1 we
only need to consider w and y (if it exists), since these are the only vertices that
change parents. First we consider the case where w is a leaf in both Bi+1 and
Ri+1. If v = u then (v, w) is the only arc entering w in Gi+1, so Oi+1 is valid if we
assign w any number greater than v. If v �= u, then Oi+1 is valid if we assign w
any number between v and w. Now suppose that y exists. By the choice of w and
invariant (1d), u �= v and v �= x. Suppose v <Oi+1 u. If y >Oi+1 x then y <Oi+1 v.
Then x <Oi+1 y <Oi+1 v <Oi+1 u, so we can assign w any number between u and
v. Otherwise, if y <Oi+1 x then y >Oi+1 v. We have v <Oi+1 y <Oi+1 x <Oi+1 u,
or v <Oi+1 y <Oi+1 u <Oi+1 x, or v <Oi+1 u <Oi+1 y <Oi+1 x. In all cases, we
can assign w a number immediately larger than v. Finally suppose v >Oi+1 u.
If y >Oi+1 x then y <Oi+1 v. We have x <Oi+1 y <Oi+1 u <Oi+1 v, or
x <Oi+1 u <Oi+1 y <Oi+1 v, or u <Oi+1 x <Oi+1 y <Oi+1 v. In all cases, we
can assign w a number immediately smaller than v. Otherwise, if y <Oi+1 x
then y >Oi+1 v. Then u <Oi+1 v <Oi+1 y <Oi+1 x, so we can assign w any
number between u and v. �

382 L. Georgiadis and R.E. Tarjan

Lemma 5 and Lemma 6 imply the following result.

Theorem 1. A valid tree is co-valid if and only if it has a directed bipolar order.

Given a tree T and a directed bipolar order O of T , we verify that T = D and
O is indeed a directed bipolar order of T as follows. Assume that O is given by
a numbering of the vertices from 1 to n such that v <O w if and only if v is
numbered less than w. We execute the following steps:

1. Verify that T is a tree rooted at r with vertex set V . This is straightforward
in O(m) time.

2. Do a depth-first traversal of T to number the vertices from 1 to n in both
preorder and postorder. This gives an O(1)-time ancestor test: v is an ances-
tor of w if and only if v precedes w in preorder and follows w in postorder
[20]. This is straightforward in O(n) time.

3. Verify that T has the parent property. This takes O(1) time per arc, given
an O(1)-time ancestor test, for a total of O(m) time.

4. Verify that O is a directed bipolar order of T . This requires an examination
of the arcs entering each vertex to verify that the one or two needed arcs are
present, and takes O(1) time per arc given an O(1)-time ancestor-descendant
test, for a total of O(m) time.

Our algorithm for finding a directed bipolar order is an efficient implementation
of the construction given in the proof of Lemma 6. We present an extended
version of the algorithm, which during the vertex-deletion process of the first
phase verifies that the B and R are indeed trees. During this process, we can
also verify that the alleged dominator tree T corresponds to the tree implied
by B and R, and compute the number of descendants of every vertex in T .
In the second phase, as above, we reinsert the vertices, computing a directed
bipolar order. If nothing has gone wrong so far, the alleged tree is co-valid. We
then use the computed preorder numbers and numbers of descendants to test
validity. Therefore, we can construct the directed bipolar order and at the same
time verify the dominator tree. Now we provide the details of our algorithm.
During the first phase every vertex z has a size size(z), initially one, a number
of descendants numdes(z), initially one, and a list of vertices list(z), initially
containing just z. The list contains vertices whose parent in T the alleged dom-
inator tree needs checking. While there is more than one vertex, find a vertex
w �= r with out-degree at most one and pB(w) �= pR(w) or with out-degree zero,
and do the following. Let (u,w) and (v, w) be the arcs into w, (w, y) the arc
out of w if there is one, (x, y) is the other arc into y if y exists. Choose v so
that (v, w) and (w, y) are in the same tree (R or B). Arcs (u,w) and (x, y) are
in the other tree. If y exists and equals v, stop with failure: one of the “trees”
contains a cycle. Otherwise, continue. Add size(w) to size(v). If u = v, verify
that each vertex z on list(w) has u = v as its parent in T , and add numdes(z)
to numdes(u). If u �= v, add the vertices in list(w) to list(v) (or equivalently to
list(u)). We can do this by list catenation, so it only takes O(1) time. Delete
w and its incident arcs. If y exists, add arc (v, y) to the tree that previously
contained (v, w) and (w, y). If the vertex deletion process finishes, r will have

Dominators, Directed Bipolar Orders, and Independent Spanning Trees 383

size n. Now process the vertices in the opposite order to their deletion. Each
vertex z will get assigned an interval in [1, n] such that, if any integer in the
interval is the number of z, the numbering is directed bipolar. The interval for
z is [num(z), num(z) + size(z)− 1]. Initially num(r) = 1. From the first phase,
size(r) = n. To process the next vertex w, let u and v be the corresponding
vertices as defined above. Set size(v) = size(v) − size(w). If num(v) ≤ num(u),
set num(w) = num(v) + size(v); otherwise, set num(w) = num(v) and then set
num(v) = num(w) + size(w). Once the second phase is complete, the size of
every vertex is back to one, the num function is a directed bipolar order, and
the numdes function gives the number of descendants of each vertex in T , which
can be used to test validity. Note that if we are only interested in computing a
directed bipolar order then we only need to maintain the size and num functions
in this algorithm.

The running time of the above algorithm is O(n) if two independent spanning
trees of G are given. In [10] we showed that such two independent spanning trees
can be computed in O(n) time if for all v �= r we store the following information:
the semidominator s(v) of v, the parent of v in the corresponding depth-first
search tree, and a vertex w such that (w, v) is an arc of a high path from s(v) to
v. (See Section 4.2.) Since, by [2,4], semidominators can be computed in O(m)
time, our algorithm gives the following generalization of Plehn’s and Cheriyan
and Reif’s construction:

Theorem 2. Any flowgraph has a directed bipolar order, constructible in linear
time.

The construction combined with the proof of Lemma 5 gives the following gen-
eralization of Whitty’s theorem:

Theorem 3. Any flowgraph has a pair of strongly independent spanning trees,
constructible in linear time.

4 Alternative Verification Algorithms

Here we present alternative linear-time algorithms to verify a dominator tree.
The algorithm of Section 4.1 uses the concept of headers which are computed in
[4], while the algorithm of Section 4.2 uses the concept of semidominators which
are computed in [2,4,14]. Due to limited space we omit the proofs of the results
stated in this section. The proofs will appear in the full version of the paper.

4.1 Using Headers

To motivate this algorithm we first consider the simple case where G is acyclic
and T is flat.

Lemma 7. Suppose G is acyclic. The root vertex r is the only proper dominator
in G if and only if each vertex other than r has an entering arc from r or at
least two entering arcs.

384 L. Georgiadis and R.E. Tarjan

To extend Lemma 7 to general acyclic graphs, we introduce the notion of the
support sp(v, w) of an arc (v, w) with respect to a valid tree T , defined as follows:
if v = pT (w), sp(v, w) = v; otherwise, sp(v, w) is the child of pT (w) that is an
ancestor of v.

Theorem 4. Suppose G is acyclic and T is valid. Then T is co-valid if and only
if, for every vertex w �= r, there is an arc (v, w) with sp(v, w) = pT (w), or two
arcs (x,w) and (y, w) with sp(x,w) �= w, sp(y, w) �= w, and sp(x,w) �= sp(y, w).

Theorem 4 allows us to test if T is co-valid when G is acyclic by computing the
supports of all the arcs. This we can do by a radix sort. Number the vertices
from 1 to n in preorder with respect to a fixed sibling order on T . For each
i, 2 ≤ i ≤ n, initialize a set B(i) to empty. Process the arcs (v, w) one at a
time. To process (v, w), if v = pT (w), set sp(v, w) = v; otherwise, add (v, w) to
B(pre(v)). Once all the arcs are processed, empty the sets B(i) into a collection
of stacks C(u), one for each vertex u, as follows: Initialize each stack C(u) to
empty. Empty the sets B(i) in decreasing order on i. To empty B(i), remove
each arc (v, w) and push it onto the front of C(pT (w)). Now each C(u) contains
the arcs (v, w) such that u = pT (w) and v �= u, in non-decreasing order on
pre(v). The final step is to empty each stack C(u), computing the support of
each arc it contains. This amounts to a merge of the children of u with the arcs
on C(u). Begin with the first two children x and y of u. Pop arcs (v, w) from
C(u), setting sp(v, w) = x, up to but not including the first arc (v, w) such that
pre(v) ≤ pre(y). Then replace x by y and y by the sibling after y, and continue.
Once x is the last sibling, set sp(v, w) = x for all arcs (v, w) remaining on C(u).
Computing the supports in this way takes O(m) time. Once all the supports are
computed, applying the test in Theorem 4 takes O(m) time.

To extend the above test to general graphs, we need to deal with cycles, which
we do using headers [23]. Headers are defined with respect to a depth-first span-
ning tree. Let F be a spanning tree generated by a depth-first search ofG starting
from r, with vertices numbered in reverse postorder with respect to the search.
The header h(v) of a vertex v is the maximum-numbered proper ancestor u of v
such that there is a path from v to u containing only descendants of u; if there is
no such u, h(v) = null . The headers define the header forest H by pH(v) = h(v).
GraphG is acyclic if and only if all headers are null. Tarjan [23] gave an algorithm
that computes headers in O(mα(m,n)) time using disjoint set union and graph
search; Buchsbaum et al. [4] gave an O(m)-time algorithm. Computing headers
requires less machinery than computing dominators (see [4]). We define the sup-
port set S(w) of a vertex w by S(w) =

{
sp(x, y) | y is a descendant of w in H

}
.

Theorem 5. A valid tree T is co-valid if and only if, for every vertex w �= r,
S(w) contains either pT (w) or at least two vertices numbered less than w.

To implement the test of Theorem 5 do a depth-first search of G, generating
a depth-first spanning tree F and number the vertices in reverse postorder.
Compute the corresponding headers and the support of every arc. Then compute,
for each vertex w �= r, the set S2(w) containing the two smallest-numbered

Dominators, Directed Bipolar Orders, and Independent Spanning Trees 385

vertices in S(w) that are numbered less than w. (If there is only one such vertex,
S(w) contains this single vertex.) To do this, start from the leaves of H and
proceed bottom-up, setting S2(w) to contain the two smallest-numbered vertices
numbered less than w in

{
sp(x,w)

}
∪
{
S2(z) | h(z) = w

}
. Computing the headers

is the most complicated part of the algorithm, but it can be done in almost-
linear [23] or even linear [4] time, and it is simpler than computing dominators
from scratch. Computing the arc supports and the sets S2(w) takes O(m) time.
Once the sets S2(w) are computed, the test in Theorem 5 takes O(n) time.

For an important special case, the Theorem 5 test reduces to the Theorem 4
test. A graph is reducible if every strongly connected subgraph G′ (which does
not contain r) contains a single vertex v that dominates all vertices in G′ [21].
Structured programs have reducible control flow graphs; reducibility simplifies
various global code optimizations [11]. Reducibility has a characterization in
terms of headers: a graph is reducible if and only if, for every vertex w �= r and
every arc (x, y) such that y is a descendant of w in H , either y = w or x is a
descendant of w in H [21]. It follows that if G is reducible, each vertex in S2(w)
is the support of an arc entering w.

4.2 Using Semidominators

Let F be a depth-first spanning tree of G. Number the vertices in preorder with
respect to F . A path from v to w is high if every vertex on the path except v is
numbered no less than w. The semidominator s(w) of a vertex w is the smallest
numbered vertex v such that there is a high path from v to w.

Theorem 6. A valid tree T is co-valid if and only if, for every arc (x,w) of F ,
either x = pT (w) or s(w) is numbered less than sp(x,w).

We use Theorem 6 to verify T = D in O(m) time as follows: As well as T , store
F and the corresponding vertex preorder numbering, and the semidominators
computed by the dominator algorithm. Verify that T is valid. Then compute the
supports of the arcs in F as in Section 4.1, and apply the test in Theorem 6.

References

1. Allesina, S., Bodini, A.: Who dominates whom in the ecosystem? Energy flow
bottlenecks and cascading extinctions. Journal of Theoretical Biology 230(3), 351–
358 (2004)

2. Alstrup, S., Harel, D., Lauridsen, P.W., Thorup, M.: Dominators in linear time.
SIAM Journal on Computing 28(6), 2117–2132 (1999)

3. Amyeen, M.E., Fuchs, W.K., Pomeranz, I., Boppana, V.: Fault equivalence iden-
tification using redundancy information and static and dynamic extraction. In:
Proceedings of the 19th IEEE VLSI Test Symposium (March 2001)

4. Buchsbaum, A.L., Georgiadis, L., Kaplan, H., Rogers, A., Tarjan, R.E., Westbrook,
J.R.: Linear-time algorithms for dominators and other path-evaluation problems.
SIAM Journal on Computing 38(4), 1533–1573 (2008)

386 L. Georgiadis and R.E. Tarjan

5. Cheriyan, J., Reif, J.H.: Directed s-t numberings, rubber bands, and testing digraph
k-vertex connectivity. Combinatorica, 435–451 (1994); also in SODA 1992

6. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems 13(4), 451–490 (1991)

7. Georgiadis, L.: Testing 2-Vertex Connectivity and Computing Pairs of Vertex-
Disjoint s-t Paths in Digraphs. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 738–749.
Springer, Heidelberg (2010)

8. Georgiadis, L.: Approximating the Smallest 2-Vertex Connected Spanning Sub-
graph of a Directed Graph. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA
2011. LNCS, vol. 6942, pp. 13–24. Springer, Heidelberg (2011)

9. Georgiadis, L., Tarjan, R.E.: Finding dominators revisited. In: Proc. 15th ACM-
SIAM Symp. on Discrete Algorithms, pp. 862–871 (2004)

10. Georgiadis, L., Tarjan, R.E.: Dominator tree verification and vertex-disjoint paths.
In: Proc. 16th ACM-SIAM Symp. on Discrete Algorithms, pp. 433–442 (2005)

11. Hecht, M.S., Ullman, J.D.: Flow graph reducibility. In: Proceedings of the Fourth
Annual ACM Symposium on Theory of Computing, STOC 1972, pp. 238–250
(1972)

12. Huck, A.: Independent trees in graphs. Graphs and Combinatorics 10, 29–45 (1994)
13. Italiano, G.F., Laura, L., Santaroni, F.: Finding strong bridges and strong articu-

lation points in linear time. Theoretical Computer Science (in press, 2012)
14. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.

ACM Transactions on Programming Languages and Systems 1(1), 121–141 (1979)
15. Maxwell, E.K., Back, G., Ramakrishnan, N.: Diagnosing memory leaks using graph

mining on heap dumps. In: Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2010, pp. 115–124
(2010)

16. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.
Computer Science Review 5(2), 119–161 (2011)

17. Menger, K.: Zur allgemeinen kurventheorie. Fund. Math. 10, 96–115 (1927)
18. Plehn, J.: Über die Existenz und das Finden von Subgraphen. PhD thesis. Univer-

sity of Bonn, Germany (May 1991)
19. Quesada, L., Van Roy, P., Deville, Y., Collet, R.: Using Dominators for Solving

Constrained Path Problems. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS,
vol. 3819, pp. 73–87. Springer, Heidelberg (2005)

20. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal on
Computing 1(2), 146–159 (1972)

21. Tarjan, R.E.: Testing flow graph reducibility. In: Proceedings of the Fifth Annual
ACM Symposium on Theory of Computing, pp. 96–107 (1973)

22. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of
the ACM 22(2), 215–225 (1975)

23. Tarjan, R.E.: Edge-disjoint spanning trees and depth-first search. Acta Informat-
ica 6(2), 171–185 (1976)

24. Whitty, R.W.: Vertex-disjoint paths and edge-disjoint branchings in directed
graphs. Journal of Graph Theory 11, 349–358 (1987)

Hardness of Approximation for Quantum Problems

Sevag Gharibian1 and Julia Kempe2,3

1 David R. Cheriton School of Computer Science and Institute for Quantum Computing,
University of Waterloo, Waterloo, Canada

2 CNRS & LIAFA, University Paris Diderot - Paris 7, Paris, France
3 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel

Abstract. The polynomial hierarchy plays a central role in classical complexity
theory. Here, we define a quantum generalization of the polynomial hierarchy,
and initiate its study. We show that not only are there natural complete problems
for the second level of this quantum hierarchy, but that these problems are in fact
hard to approximate. Our work thus yields the first known hardness of approxi-
mation results for a quantum complexity class. Using these techniques, we also
obtain hardness of approximation for the class QCMA. Our approach is based on
the use of dispersers, and is inspired by the classical results of Umans regarding
hardness of approximation for the second level of the classical polynomial hier-
archy (Umans 1999). We close by showing that a variant of the local Hamiltonian
problem with hybrid classical-quantum ground states is complete for the second
level of our quantum hierarchy.

1 Introduction and Results

Over the last decades, the Polynomial Hierarchy (PH), a natural generalization of the
class NP, has been the focus of much study in classical computational complexity. Of
particular interest is the second level of PH, denoted Σp

2 . Here, we say a problem is in
Σp

2 if it has an efficient verifier with the property that for any YES instance x ∈ {0, 1}n

of the problem, there exists a polynomial length proof y such that for all polynomial
length proofs z, the verifier accepts x, y and z. Note that the alternation from an exis-
tential quantifier over y to a for-all quantifier over z is crucial here — keeping only the
existential quantifier reduces us to NP.

It turns out that introducing such alternating quantifiers makes Σp
2 a powerful class

believed to be beyond NP. For example, there exist natural and important problems
known to be in Σp

2 but not in NP. Such problems range from “does the optimal as-
signment to a 3SAT instance satisfy exactly k clauses?” to practically relevant prob-
lems related to circuit minimization, such as “given a boolean formula C in Disjunctive
Normal Form (DNF), what is the smallest DNF formula C′ equivalent to C?” (see,
e.g. [Uma99]). The study of Σp

2 has also led to a host of other fundamental theoretical
results, such as the Karp-Lipton theorem, which states that NP �⊆ P/poly unless PH

collapses to Σp
2 . Σp

2 has even been used to prove that SAT cannot be solved simulta-
neously in linear time and logarithmic space [For00,FLvMV05]. For these reasons, Σp

2
and more generally PH have occupied a central role in complexity theoretic research.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 387–398, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

388 S. Gharibian and J. Kempe

Moving to the quantum setting, the study of quantum proof systems and a natural
quantum generalization of NP, the class Quantum Merlin Arthur (QMA) [KSV02], has
been a very active area of research over the last decade. Roughly, a problem is in QMA
if for any YES instance of the problem, there exists a polynomial size quantum proof
convincing a quantum verifier of this fact with high probability. With the notion of quan-
tum proofs in mind, we thus ask the natural question: Can a quantum generalization of
Σp

2 be defined, and what types of problems might it contain and characterize? Perhaps
surprisingly, to date there are almost no known results in this direction.

Our results: In this work, we introduce a quantum generalization of Σp
2 , which we

call cq-Σ2, and initiate its study. Our results include cq-Σ2-completeness and cq-Σ2-
hardness of approximation for a number of new problems we define. Our techniques
also yield hardness of approximation for the complexity class known as QCMA. We
now describe these results in further detail.

1. Hardness of approximation for cq-Σ2. To begin, we informally define cq-Σ2 (see
Section 2 for formal definitions).

Definition 1 (cq-Σ2 (informal)). A problem Π is in cq-Σ2 if there exists an efficient
quantum verifier V satisfying the following property for any input x ∈ {0, 1}∗:

– If x is a YES instance of Π, then there exists a poly-size classical proof y such that
for all poly-size quantum proofs |z〉, V accepts (x, y, |z〉) with high probability.

– If x is a NO instance of Π, then for all poly-size classical proofs y, there exists a
poly-size quantum proof |z〉 such that V rejects (x, y, |z〉) with high probability.

We believe this is a natural quantum generalization of Σp
2 . Here, the prefix cq in cq-Σ2

follows since the existential proof is classical, while the for-all proof is quantum. One
can also consider variations of this scheme such as qq-Σ2, qc-Σ2, or cc-Σ2 (with a quan-
tum verifier), defined analogously. In this paper, however, our focus is on cq-Σ2, as it is
the natural setting for the computational problems for which we wish to prove hardness
of approximation. Note also that unlike for Σp

2 , the definition of cq-Σ2 is bounded error
— this is due to the use of a quantum verifier for cq-Σ2. This implies, for instance, that
the quantum analogue of the classically non-trivial result BPP ⊆ Σp

2 [Sip83,Lau83],
i.e. BQP ⊆ cq-Σ2, holds trivially. Finally, one can extend the definition of cq-Σ2 to
an entire hierarchy of quantum classes analogous to PH by adding further levels of al-
ternating quantifiers, attaining presumably different classes depending on whether the
quantifier at any particular level runs over classical or quantum proofs.

To next discuss hardness of approximation for cq-Σ2, we recall two classical prob-
lems crucial to our work here. First, in the NP-complete problem SET COVER, one
is given a set of subsets {Si} whose union covers a ground set U, and we are asked
for the smallest number of the Si whose union still covers U. If, however, the Si are
represented succinctly as the on-set1 of a 3-DNF formula φi, we obtain a more difficult
problem known as SUCCINCT SET COVER (SSC). SSC, along with a related problem
IRREDUNDANT (IRR), are not just NP-hard, but are Σp

2 -complete (indeed, they are
even Σp

2 -hard to approximate [Uma99]). SSC and IRR are defined as:

1 By on-set, we mean the set of assignments which cause φi to be true.

Hardness of Approximation for Quantum Problems 389

Definition 2 (SUCCINCT SET COVER (SSC) [Uma99]). Given a set S = {φi} of 3-
DNF formulae such that

∨
i∈S φi is a tautology, what is the size of the smallest S′ ⊆ S

such that
∨

i∈S′ φi a tautology?

Definition 3 (IRREDUNDANT (IRR) [Uma99]). Given a DNF formula φ = t1 ∨ t2 ∨
· · · ∨ tn, what is the size of the smallest S ⊆ {ti}n

i=1 such that φ =
∨

i∈S ti?

Our work introduces and studies quantum generalizations of SSC and IRR. In par-
ticular, analogous to the classically important task of circuit minimization, the quan-
tum generalizations we define are arguably natural and related to what one might call
“Hamiltonian minimization” — given a sum of Hermitian operators H = ∑i Hi, what
is the smallest subset of terms {Hi} whose sum approximately preserves certain spec-
tral properties of H? We hope that such questions may be useful to physicists in a
lab who wish to simulate the simplest Hamiltonian possible while retaining the de-
sired characteristics of a complex Hamiltonian involving many interactions. We remark
that at a high level, the connection to cq-Σ2 for the task of Hamiltonian minimization
is as follows: The classical existential proof encodes the subset of terms {Hi}, while
the quantum for-all proof encodes complex unit vectors which achieve certain energies
against H. We now define the problem QUANTUM SUCCINCT SET COVER.

Definition 4. QUANTUM SUCCINCT SET COVER (QSSC) (informal) Given a set
of local Hamiltonians {Hi} such that ∑i Hi has smallest eigenvalue at least α, what is
the size of the smallest subset S of the Hi such that ∑Hi∈S Hi has smallest eigenvalue
at least α? Any subset satisfying this property is called a cover.

Here, a local Hamiltonian is a sum of Hermitian operators, each of which acts non-
trivially on at most k ∈ Θ(1) qubits (hence the name k-local Hamiltonian). Intuitively,
the goal in QSSC is to cover the entire Hilbert space using as few interaction terms Hi as
possible. Hence, we associate the notion of a “cover” with obtaining large eigenvalues,
as opposed to small ones, making QSSC a direct quantum analogue of SSC. We remark
that since SSC is a classical constraint satisfaction problem, we believe the language
of quantum constraint satisfaction, i.e. Hamiltonian constraints, is a natural avenue for
defining QSSC. Our first result concerns QSSC, and is as follows.

Theorem 1. QSSC is cq-Σ2-complete, and moreover is cq-Σ2-hard to approximate
within N1−ε for all ε > 0, where N is the encoding size of the QSSC instance.

By hard to approximate, we mean that any problem in cq-Σ2 can be reduced to an
instance of QSSC via a polynomial time mapping or Karp reduction such that the gap
between the sizes of the optimal cover in the YES and NO cases scales as N1−ε. In
other words, it is cq-Σ2-hard to determine whether the smallest cover size of an arbitrary
instance of QSSC is at most g or at least g′ for g′/g ∈ Ω(N1−ε) (where g′ ≥ g). We
next define the problem QUANTUM IRREDUNDANT (QIRR).

Definition 5. QUANTUM IRREDUNDANT (QIRR) (informal) Given a set of suc-
cinctly described orthogonal projection operators {Hi} acting on N qubits, and a set
{ci ≥ 0} ⊆ R, define H := ∑i ciHi. Then, what is the size of the smallest subset
S ⊆ {Hi} such that for H′ = ∑Hi∈S ciHi, vectors achieving high and low energies
against H continue to obtain high and low energies against H′, respectively?

390 S. Gharibian and J. Kempe

Here, by a succinctly described projector, we mean a possibly non-local operator which
is the tensor product of k-local projectors for some k ∈ Θ(1). This non-local structure
naturally generalizes IRR, where the DNF formula is allowed to be non-local. Our next
result is the following.

Theorem 2. QIRR is cq-Σ2-hard to approximate within N
1
2−ε for all ε > 0, where N

is the encoding size of the QIRR instance.

2. Hardness of Approximation for QCMA. The techniques from above can also be
used to show hardness of approximation for QCMA. Here, the class QCMA [AN02] is
defined as cq-Σ2 with the second (quantum) proof omitted, and can hence be thought of
as the first level of our “cq-hierarchy”. By defining the problem QUANTUM MONO-
TONE MINIMUM SATISFYING ASSIGNMENT (QMSA) (see Section 3), we show:

Theorem 3. QMSA is QCMA-complete, and moreover is QCMA-hard to approximate
within N1−ε for all ε > 0, where N is the encoding size of the QMSA instance.

3. A Canonical cq-Σ2-Complete Problem. Our last result concerns a canonical Σp
2 -

complete problem, ΣiSAT, and its generalization to the quantum setting. Specifically,
given a boolean formula φ, ΣiSAT asks whether:

∃x1∀x2∃x3 · · · ∀xi such that φ(x1, x2, x3, . . . , xi) = 1 . (1)

Here, we assumed i is even; for odd i, the last quantifier is a ∃. The terms xj are vectors
of boolean variables. For i = 2, one can define a natural quantum generalization of this
problem, denoted cq-Σ2LH and defined in Section 4, using local Hamiltonians whose
ground states are tensor products of a classical string and a quantum state. We show:

Theorem 4. cq-Σ2LH is cq-Σ2-complete.

Proof ideas: Our proofs are inspired by the classical work of Umans [Uma99,Hem02],
and are achieved in a few steps. First, we show a gap-introducing reduction from
an arbitrary cq-Σ2 problem to a problem we call QUANTUM MONOTONE MINI-
MUM WEIGHT WORD (QMW) using dispersers (see e.g., [SZ94,TSUZ07]). We then
show the following gap-preserving reductions, where ≤K denotes a mapping or Karp
reduction:

QMW ≤K QSSC ≤K QIRR . (2)

This yields hardness ratios of Nε for some ε > 0. To obtain the stronger results claimed
in Section 1, we finally apply the gap amplification of Umans [Uma99] and improved
disperser construction of Ta-Shma, Umans, and Zuckerman [TSUZ07].

In the classical setting, Umans [Uma99,Hem02] used dispersers to attain hardness of
approximation results relative to Σp

2 for the classical problems MMWW (the classical
version of QMW), SSC and IRR. To extend his techniques to the quantum setting,
the most involved aspects of our work are the gap-preserving reductions from QMW
to QSSC to QIRR. Here, an intricate balancing act involving carefully defined local
Hamiltonian terms is needed to construct operators with the spectral properties required
for our reductions. To analyze the resulting sums of non-commuting Hamiltonians, we

Hardness of Approximation for Quantum Problems 391

require heavier machinery, such as the specific structure of Kitaev’s local Hamiltonian
construction [KSV02], the Projection Lemma of Kempe, Kitaev, and Regev [KKR06],
and the Geometric Lemma of Kitaev [KSV02].

Finally, to show cq-Σ2-completeness of cq-Σ2LH, we study the interplay between
classical-quantum proofs and Kempe and Regev’s [KR03] 3-local Hamiltonian con-
struction. A careful analysis reveals that any cq-Σ2 verification circuit can be modified
in such a way that fixing the value c of its classical proof register leads to an effective
Hamiltonian Hc. We then study the spectrum of Hc to achieve the desired result.

Previous and related work: To the best of our knowledge, our work is the first to obtain
hardness of approximation results for a quantum complexity class. The related ques-
tion of whether a quantum PCP theorem holds is currently one of the biggest open
problems in quantum complexity theory (see, e.g., [Aar06,AALV09,Ara10,Has12]).
Regarding quantum generalizations of PH, we remark that Yamakami has proposed
an approach [Yam02] differing from ours as follows: It is based on quantum Turing ma-
chines (we work with quantum circuits), allows quantum inputs (our inputs are classical
strings, as in QMA), and considers quantum quantifiers at each level of the hierarchy
(our scheme allows alternating classical and quantum quantifiers between levels).

Significance and open questions: The classical polynomial hierarchy plays an impor-
tant role in classical complexity theory, both as a generalization of NP and as a proof
tool in itself. It is hoped that the scheme we propose here for generalizing PH to the
quantum setting will find similar applications in quantum complexity theory. Second,
the problems we show to be cq-Σ2-complete here are arguably natural, and in embody-
ing a generalization of classical circuit minimization or optimization, may hopefully be
related to practical scenarios in a lab. Further, although the alternation between classi-
cal and quantum quantifiers in cq-Σ2 may a priori seem odd, the notion of relating a
classical proof to, say, subsets of local Hamiltonian terms, and the quantum proof to
quantum states achieving certain energies is in itself quite natural, and in our opinion
justifies the study of such a combination of quantifiers. Third, with respect to hardness
of approximation, since whether a quantum PCP theorem holds remains a challenging
open question, it is all the more interesting that one is able to prove hardness of ap-
proximation in a quantum setting here using an entirely different tool, namely that of
dispersers. We remark that dispersers and their two-sided analogues, extractors, have
been used classically to amplify existing PCP inapproximability results [SZ94,Zuc96].
However, as far as we are aware, neither are known to directly yield PCP constructions.

We leave a number of questions open: How do the different classes cq-Σ2, qc-Σ2,
qq-Σ2, and cc-Σ2 relate to each other? What results about Σp

2 carry over to cq-Σ2? Where
do the different variants of our quantum hierarchy sit with respect to known complex-
ity classes? Can an appropriately defined approximation version of cq-Σ2LH be shown
cq-Σ2-hard to approximate? We hope the answers to such questions will help estab-
lish classes like cq-Σ2 as fundamental concepts in the study of quantum computational
complexity.

Organization of this paper: Section 2 introduces formal definitions and states useful
lemmas. In Section 3, we prove that QSSC and QIRR are hard to approximate for cq-Σ2,
and similarly for QMSA relative to QCMA. Section 4 shows cq-Σ2-completeness of
cq-Σ2LH.

392 S. Gharibian and J. Kempe

2 Definitions

We now set our notation, define relevant classes and problems, and state lemmas which
prove useful in our analysis.

Beginning with notation, the term A & B means operator A− B is positive semidef-
inite. The spectral norm of A is ‖ A ‖∞ := max{‖ A|v〉 ‖2 : ‖ |v〉 ‖2 = 1}. The pro-
jector onto space S is ΠS . The set of natural numbers is N. For convenience, we define
B := C2, and for a set S of matrices over C, let HS := ∑Hi∈S Hi.

We next give a formal definition of cq-Σ2. Here, a promise problem is a pair A =
(Ayes, Ano) such that Ayes, Ano ⊆ {0, 1}∗ and Ayes ∩ Ano = ∅.

Definition 6 (cq-Σ2). Let A = (Ayes, Ano) be a promise problem. We say that A ∈
cq-Σ2 if there exist polynomially bounded functions t, c, q : N !→ N, and a determin-
istic Turing machine M acting as follows. For every n-bit input x, M outputs in time
t(n) a description of a quantum circuit Vx such that Vx takes in a c(n)-bit proof |c〉, a
q(n)-qubit proof |q〉, and outputs a single qubit. We say Vx accepts |c〉|q〉 if measuring
its output qubit in the computational basis yields 1. Then:

– Completeness: If x ∈ Ayes, then ∃ |c〉 such that ∀ |q〉, Vx accepts |c〉|q〉 with
probability ≥ 2/3.

– Soundness: If x ∈ Ano, then ∀ |c〉, ∃ |q〉 such that Vx rejects |c〉|q〉 with probability
≥ 2/3.

Using the standard approach of repeating Vx polynomially many times in parallel (see,
e.g. [AN02]), the completeness and soundness parameters can be amplified to values
exponentially close to 1. Throughout this paper, we refer to this as error reduction.

We next define the terms cQMA circuit, monotone set, QMW, and QSSC.

Definition 7 (cQMA circuit). Let n, m ∈ N+. A cQMA circuit V is a quantum cir-
cuit receiving n bits in an INPUT register and m qubits in a CHOICE register, and
outputting a single qubit |a〉. We say that:

– V accepts x ∈ {0, 1}n in INPUT if for all |y〉 ∈ B⊗m in CHOICE, measuring |a〉
in the computational basis yields 1 with probability at least 2/3.

– V rejects x ∈ {0, 1}n in INPUT if there exists a |y〉 ∈ B⊗m in CHOICE such that
measuring |a〉 in the computational basis yields 0 with probability at least 2/3.

Definition 8 (Monotone set). A set S ⊆ {0, 1}n is called monotone if for any x ∈ S,
any string obtained from x by flipping one or more zeroes in x to one is also in S.

Definition 9 (QUANTUM MONOTONE MINIMUM WEIGHT WORD (QMW)).
Given a cQMA circuit V accepting exactly a non-empty monotone set S ⊆ {0, 1}n,
and integer thresholds 0 ≤ g ≤ g′ ≤ n, output:

– YES if there exists an x ∈ {0, 1}n of Hamming weight at most g accepted by V.
– NO if all x ∈ {0, 1}n of Hamming weight at most g′ are rejected by V.

Note that clearly QMW ∈ cq-Σ2.

Hardness of Approximation for Quantum Problems 393

Definition 10 (QUANTUM SUCCINCT SET COVER (QSSC)). Let S := {Hi} be a
set of 5-local Hamiltonians Hi acting on N qubits such that ∑Hi∈S Hi & αI for α > 0.
Then, given β ∈ R such that α − β ≥ 1 and integer thresholds 0 ≤ g ≤ g′, output:

– YES if there exists S′ ⊆ S of cardinality at most g such that ∑Hi∈S′ Hi & αI.
– NO if for all S′ ⊆ S of size at most g′, ∑Hi∈S′ Hi has an eigenvalue at most β.

Any S′ satisfying the YES case is called a cover.

Roughly, QSSC asks how many local interaction terms in a local Hamiltonian one can
discard while maintaining the value of the worst assignment. This is intended to mimic
the idea of maintaining a tautology for a 3-DNF formula in SSC classically. Note also
that requiring α − β ∈ Ω(1) above is without loss of generality, as any instance of
QSSC with gap 1/p(N) for p a polynomially bounded function can be modified to ob-
tain an equivalent instance with constant gap by multiplying each Hi by p(N) [Wat09].

Next, the key tool enabling the creation of a gap in our reductions is a disperser.

Definition 11 (Disperser). Let G = (L, R, E) be a bipartite graph with |L| = 2n,
|R| = 2m and left-degree 2d. Then, G is called a (k, ε)-disperser if, for any subset
L′ ⊆ L of size |L′| ≥ 2k, L′ has at least (1 − ε) |R| neighbors in R. Moreover, if for
any pair (v ∈ L, i), one can compute the ith neighbor of v in time polynomial in n, then
the disperser is called explicit.

Finally, we recall useful known facts from Hamiltonian complexity theory. We first state
a lemma used to bound the eigenvalues of a pair of non-commuting operators.

Lemma 1 (Kempe, Kitaev, Regev [KKR06], Projection Lemma). Let Y = Y1 +
Y2 act on Hilbert space H = S + S⊥ for Hamiltonians Y1 and Y2. Denote the zero
eigenspace of Y2 as S , and assume the Y2 eigenvectors in S⊥ have eigenvalue at least
J > 2 ‖Y1 ‖∞. Then, for λ(Y) the smallest eigenvalue of Y and Y|S := ΠSYΠS ,

λ(Y1|S)−
‖Y1 ‖2

∞
J − 2 ‖Y1 ‖∞

≤ λ(Y) ≤ λ(Y1|S) . (3)

We next define Kitaev’s 5-local circuit-to-Hamiltonian construction [KSV02]. Given a
cq-Σ2 verification circuit V = VL · · ·V1 (where without loss of generality, each Vi is a
one- or two-qubit unitary) acting on n proof bits (register A), m proof qubits (register
B), and p ancilla qubits (register C), this construction outputs a 5-local Hamiltonian H
acting on A ⊗ B ⊗ C ⊗ D, where D is a clock register of dimension L. We then have
H := Hin + Hout + Hprop + Hstab, for penalty terms as defined below:

Hin := IA,B ⊗
(

p

∑
i=1

|1〉〈1|Ci

)
⊗ |0〉〈0|D , (4)

Hout := IA ⊗ |0〉〈0|B1
⊗ IC ⊗ |L〉〈L|D , (5)

Hprop :=
L

∑
j=1

Hj, where Hj is defined as (6)

394 S. Gharibian and J. Kempe

−1
2

Vj ⊗ |j〉〈j− 1|D − 1
2

V†
j ⊗ |j − 1〉〈j|D +

1
2

I ⊗ (|j〉〈j|+ |j − 1〉〈j− 1|)D ,

Hstab := IA,B,C ⊗
L−1

∑
i=1

|01〉〈01|D . (7)

Note that time t in clock register D is implicitly encoded in unary as |1t0L−t〉. We use
two important properties of this construction. First, the null space of Hin + Hprop +
Hstab is the space of history states, which for arbitrary |ψ〉A,B are defined as

|ψ〉hist :=
1√

L + 1

L

∑
i=0

Vi · · ·V1|ψ〉A,B ⊗ |0〉C ⊗ |i〉D . (8)

For cq-Σ2 circuits V, it is further convenient to define for c ∈ {0, 1}n and |q〉 ∈ Bm

the shorthand |c, q〉hist := |ψ〉hist for |ψ〉 = |c〉|q〉. The second important property of
H we use is that its spectrum is related to V as follows.

Lemma 2 ([KSV02]). The construction above maps V to (H, a, b) satisfying:

– If there exists a proof |ψ〉 accepted by V with probability at least 1− ε, then |ψ〉hist
achieves Tr(H|ψ〉〈ψ|hist) ≤ a for a := ε/(L + 1).

– If V rejects all proofs |ψ〉, then H & bI for b := Θ
(

1−ε
L3

)
.

3 Hardness of Approximation

We now show hardness of approximation for the problems QMW, QSSC, QIRR, and
QMSA. We begin with a gap-introducing reduction to QMW.

Theorem 5. There exists a poly-time reduction which, given an instance of an arbitrary
cq-Σ2 problem, outputs an instance of QMW with thresholds g and g′ satisfying g′/g ∈
Θ(Nε) for some ε > 0, where N is the encoding size of the QMW instance.

Proof (Sketch). The reduction follows the proof of Theorem 1 of Umans [Uma99]
closely; we explicitly note the main differences in the quantum setting. To map an in-
stance Π of an arbitrary cq-Σ2 problem with verifier V to a cQMA circuit W for QMW,
we first construct an explicit disperser G = (L, R, E), which W uses as follows. The
vertices in L and R roughly correspond to possible assignments to V’s and W’s classi-
cal registers, respectively. Given Ry ⊆ R and quantum proof |z〉, if

∣∣Ry
∣∣ is “small”, W

decodes Ry to obtain a set of assignments Ly ⊆ L for V, where the encoding scheme
is carefully constructed so that by the disperser’s expansion property, the decoding can
be done in polynomial time. W then calls V as a subroutine to check if there exists an
x ∈ Ly causing V to accept on proof |z〉. If so, W accepts. With this approach, if Π
is a YES instance, one need only choose a “small” subset Ry to encode an accepting
x ∈ L for V. Note that in the quantum setting, we must be careful in constructing a
different “bootstrapping” procedure for V above than that of Umans to accommodate
for multiple copies of (possibly entangled) proofs |z〉.

Hardness of Approximation for Quantum Problems 395

If, however, Π is a NO instance, then no encoded x ∈ L causes W to accept (with
high probability in the quantum case) as above. Thus, we design W to have a “default”
option for acceptance — if

∣∣Ry
∣∣ is “large”, W accepts immediately. A close analysis

thus yields that
∣∣Ry
∣∣ differs by a large gap for YES and NO instances Π, as desired. ��

We next show a gap-preserving reduction from QMW to QSSC. Its proof requires
Lemmas 3 and 4, which are stated subsequently.

Theorem 6. QSSC is in cq-Σ2. Further, there exists a poly-time reduction which, given
an instance of QMW with thresholds f and f ′, outputs an instance of QSSC with thresh-
olds g = f + 2 and g′ = f ′ + 2, respectively.

Proof. That QSSC is in cq-Σ2 follows using Kitaev’s verifier [KSV02] for putting k-
local Hamiltonian in QMA. As for cq-Σ2-hardness of QSSC, suppose we are given
a cQMA circuit V = VL · · ·V1 accepting exactly a non-empty monotone set T ⊆
{0, 1}n with soundness and completeness error ε := 1 − 2−4(n+m), and threshold
parameters f and f ′. By applying Kitaev’s circuit-to-Hamiltonian construction from
Section 2 to V, we obtain 3-tuple (H = Hin + Hout + Hprop + Hstab, a, b). Now,

set α := 1 − (ζ + 1)ε for ζ := 2(1 + 22(n+m))/(L + 1), β := 1 − b, g := f + 2,
g′ := f ′ + 2, and let S consist of the elements (intuition to follow)

G1 := (L + 1)|0〉〈0|A1
⊗ IB,C ⊗ |0〉〈0|D , (9)

... (10)

Gn := (L + 1)|0〉〈0|An
⊗ IB,C ⊗ |0〉〈0|D , (11)

Gn+1 := (Δ + 1)(Hin + Hprop + Hstab) , (12)

Gn+2 := I − (Hin + Hprop + Hstab + Hout) , (13)

for Δ ∈ Ω(n2L5/ε). Intuitively, the terms in S play the following roles: Gn+1 penal-
izes assignments which are not valid history states. Gn+2 penalizes valid history states
accepted by V. Finally, the Gi for i ∈ [n] penalize valid history states rejected by V
(recall that V accepts a monotone set, and so flipping a one to a zero in register A may
lead V to reject). Thus, we cover the entire space. We now make this rigorous.

As required by Definition 10, we begin by showing that S itself is a cover, i.e. that
GS & αIA,B,C,D. To attain this, it suffices to prove that

Δ(Hin + Hprop + Hstab) +

(
n

∑
i=1

Gi

)
− Hout & −(ζ + 1)εI . (14)

We show this using Lemma 1, the Projection Lemma, by setting Y1 := (∑n
i=1 Gi)−

Hout and Y2 := Δ(Hin + Hprop + Hstab). The Projection Lemma yields that we
can focus our attention on the smallest eigenvalue of Y1 restricted to the space of all
valid history states, Shist, i.e. states of the form of (8). By calling Lemma 4 to bound
−Y1|Shist

- ζεI and Lemma 3 to bound the smallest non-zero eigenvalue of Y2 as
Ω(Δ/L3), the claim that S is a cover follows.

396 S. Gharibian and J. Kempe

We now show the desired reduction. The forward direction, i.e. if V accepts a string
x of Hamming weight k, follows similarly to above. As for the converse, suppose V
rejects any string x of Hamming weight at most k. For any S′ ⊆ S with |S′| ≤ k+ 2, we
claim that GS′ has an eigenvalue at most β. To see this, we first argue that Gn+1, Gn+2 ∈
S′, as otherwise the state |1n, y〉hist, for example, attains Tr(GS′ |1n, y〉〈1n, y|hist) = 0.
This implies that S′ contains at most k terms Gi for i ∈ [n]. Then, consider the string x
which has ones precisely at these at most k positions i ∈ [n] corresponding to Gi ∈ S′.
Since V rejects all strings of Hamming weight at most k, a |y〉 ∈ B⊗m such that

Tr (Gn+2|x, y〉〈x, y|hist) = 1 − Tr (H|x, y〉〈x, y|hist) ≤ 1 − b = β (15)

exists by the definition of a cQMA circuit and Lemma 2. ��

As mentioned earlier, we now state two lemmas which were used in the proof of The-
orem 6. Their statements assume the notation of Theorem 6, and their proofs require,
among other tools, the Geometric Lemma of Reference [KSV02].

Lemma 3. The smallest non-zero eigenvalue of Y2 = Δ(Hin + Hprop + Hstab) scales
as Ω(Δ/L3).

Lemma 4. Let Πhist project onto Shist, ζ := 2(1 + 22(n+m))/(L + 1), and consider
T ⊆ [n]. Then, if V outputs one with probability at least 1 − ε for inputs (x, |y〉)
with x ∈ {0, 1}n such that xi = 1 for all i ∈ T and for all m-qubit |y〉, one has
Πhist [Hout − ∑i∈T Gi] Πhist - ζεI.

We next show that QIRR is cq-Σ2-hard to approximate. The intuition behind the proof
is as follows. QIRR is stated in terms of projectors Fj (up to scalar multiplication),
whereas QSSC is stated in terms of Hermitian operators Gi. Hence, beginning with the
reduction of Theorem 6, a natural idea is to treat each local Hamiltonian term in the
sums comprising Gn+1 and Gn+2 as distinct terms Fj. However, in order to rigorously
argue that the gap between thresholds g and g′ for QSSC is preserved when defining
thresholds h and h′ for QIRR, we would like, for example, that all terms Fj making
up Gn+1 are chosen together. This is attained by introducing chaperone qubits, which
force all Fj coming from Gn+1 and Gn+2 to be chosen in any candidate cover.

Theorem 7. There exists a poly-time reduction which, given an instance of an arbitrary
cq-Σ2 problem, outputs an instance of QIRR with thresholds h and h′ satisfying h′/h ∈
Θ(Nε) for some ε > 0, where N is the encoding size of the QIRR instance.

Finally, the hardness gaps of Theorems 5, 6, and 7 can be improved to those claimed
in Section 1 as follows. Specifically, the gap in Theorem 5 can be amplified by first
following a classical idea of Umans to compose the cQMA circuit W with itself. Note
that this composition W ′ must be defined more carefully in the quantum setting due to
bounded-error quantum circuits and possible entanglement between copies of proofs.
Using W ′ and the improved disperser construction of Reference [TSUZ07] (see Theo-
rem 7.2 therein) in the proof of Theorem 5 then yields the result below. This, in turn,
yields the improved hardness ratios for QSSC and QIRR via our previous reductions.

Hardness of Approximation for Quantum Problems 397

Theorem 8. QMW is cq-Σ2-hard to approximate with gap N1−ε for any ε > 0, for N
the encoding size of the QMW instance.

Finally, by straightforwardly extending Umans’ classical result [Uma99] showing NP-
hardness of approximation for the problem MONOTONE MINIMUM SATISFYING
ASSIGNMENT, one can show hardness of approximation for QCMA. Specifically, de-
fine QUANTUM MONOTONE MINIMUM SATISFYING ASSIGNMENT (QMSA)
analogously to QMW, except with the definition of a cQMA circuit V modified to drop
the second (quantum) proof, i.e. V now only takes one input register comprised of n
classical bits. Then, it is straightforward to re-run the proofs of Theorems 5 and 8 with-
out the existence of a second quantum proof register, leading to Theorem 3.

4 A Canonical cq-Σ2-Complete Problem

We now show the following quantum generalization of the canonical Σp
2 -complete prob-

lem Σ2SAT is cq-Σ2-complete.

Definition 12 (cq-Σ2LH). Given a 3-local Hamiltonian H acting on N = n + m
qubits, and a, b ∈ R such that a ≤ b for b − a ≥ 1, output:

– YES if ∃ x ∈ {0, 1}n such that ∀ |y〉 ∈ B⊗m, Tr(H|x〉〈x| ⊗ |y〉〈y|) ≥ b.
– NO if ∀ x ∈ {0, 1}n, ∃ |y〉 ∈ B⊗m such that Tr(H|x〉〈x| ⊗ |y〉〈y|) ≤ a.

Proof (Sketch of Theorem 4). That cq-Σ2LH ∈ cq-Σ2 follows from Kitaev’s verifier
for placing k-local Hamiltonian in QMA [KSV02]. To reduce an instance of a problem
in cq-Σ2 with verification circuit V′′ to cq-Σ2LH, we first modify V′′ to ensure the
contents of its classical proof register remain unchanged throughout the verification
(this ensures history states have a tensor product structure across the classical-quantum
cut), and we negate the output of V′′ (in the YES case we wish to have large energy
for all proofs |y〉, including proofs normally accepted by the verification circuit); call
the new circuit V. We then apply Kitaev’s construction from Section 2 on V to obtain a
5-local Hamiltonian H. (We can also use the 3-local construction of [KR03]).

Now suppose we have a YES instance of Π, i.e. there exists |c〉 such that for all |q〉,
the circuit V′′ accepts proof |c〉 ⊗ |q〉 with probability at least 1 − ε. Letting Πc :=
(|c〉〈c|A ⊗ IB,C,D) for the accepted |c〉 above, we must show that for all |ψ〉B,C,D,

〈c| ⊗ 〈ψ|H|c〉 ⊗ |ψ〉 = 〈c| ⊗ 〈ψ|ΠcHΠc|c〉 ⊗ |ψ〉 ≥ b . (16)

By carefully analyzing the terms Πc HinΠc, ΠcHoutΠc, ΠcHpropΠc, and Πc HstabΠc,
we find that 〈c| ⊗ 〈ψ|H|c〉 ⊗ |ψ〉 = 〈ψ|Hc|ψ〉 for some effective Hamiltonian Hc
dependant on c. We are thus reduced to showing Hc & bI. If we now think of c not as
an input to V, but rather as indexing a set of circuits Vc, where Vc is V with c hardwired
into its classical register, it turns out that Kitaev’s construction applied to Vc yields Hc.
By Lemma 2, the claim thus follows. The converse direction is similar. ��

Acknowledgements. We thank Richard Cleve, Ashwin Nayak, Sarvagya Upadhyay,
and John Watrous for interesting discussions, and especially Oded Regev for many

398 S. Gharibian and J. Kempe

helpful insights, including the suggestion to think about a quantum version of PH. SG
is supported by the NSERC CGS, NSERC CGS-MSFSS, and EU-Canada Transatlantic
Exchange Partnership programs, and the David R. Cheriton School of Computer Sci-
ence. JK is supported by an Individual Research Grant of the Israeli Science Founda-
tion, by European Research Council (ERC) Starting Grant QUCO and by the Wolfson
Family Charitable Trust.

References

AALV09. Aharonov, D., Arad, I., Landau, Z., Vazirani, U.: The detectibility lemma and quantum
gap amplification. In: 41st ACM Syposium on Theory of Computing, vol. 287, pp.
417–426 (2009)

Aar06. Aaronson, S.: The quantum PCP manifesto (2006),
http://scottaaronson.com/blog/?p=139

AN02. Aharonov, D., Naveh, T.: Quantum NP - A survey. Preprint at arXiv:quant-
ph/0210077v1 (2002)

Ara10. Arad, I.: A note about a partial no-go theorem for quantum PCP. Preprint at
arXiv:quant-ph/1012.3319 (2010)

FLvMV05. Fortnow, L., Lipton, R., van Melkebeek, D., Viglas, A.: Time-space lower bounds
for satisfiability. Journal of the ACM 52, 835–865 (2005)

For00. Fortnow, L.: Time-space tradeoffs for satisfiability. Journal of Computer and System
Sciences 60(2), 337–353 (2000)

Has12. Hastings, M.B.: Trivial low energy states for commuting hamiltonians, and the quan-
tum PCP conjecture. Preprint at arXiv:quant-ph/1201.3387 (2012)

Hem02. Hemaspaandra, L.: SIGACT news complexity theory column 38. ACM SIGACT
News 33(4) (2002); Guest column by Schaefer, M., Umans, C.

KKR06. Kempe, J., Kitaev, A., Regev, O.: The complexity of the local Hamiltonian problem.
SIAM Journal on Computing 35(5), 1070–1097 (2006)

KR03. Kempe, J., Regev, O.: 3-local Hamiltonian is QMA-complete. Quantum Information
& Computation 3(3), 258–264 (2003)

KSV02. Kitaev, A., Shen, A., Vyalyi, M.: Classical and Quantum Computation. American
Mathematical Society (2002)

Lau83. Lautemann, C.: BPP and the polynomial time hierarchy. Information Processing Let-
ters 17, 215–218 (1983)

Sip83. Sipser, M.: A complexity theoretic approach to randomness. In: 15th Symposium on
Theory of Computing, pp. 330–335. ACM Press (1983)

SZ94. Srinivasan, A., Zuckerman, D.: Computing with very weak random sources. In: 35th
Symposium on Foundations of Computer Science, pp. 264–275 (1994)

TSUZ07. Ta-Shma, A., Umans, C., Zuckerman, D.: Lossless condensers, unbalanced expanders,
and extractors. Combinatorica 27(2), 213–240 (2007)

Uma99. Umans, C.: Hardness of approximating Σp
2 minimization problems. In: 40th Sympo-

sium on Foundations of Computer Science, pp. 465–474 (1999)
Wat09. Watrous, J.: Quantum computational complexity. In: Meyers, R. (ed.) Encyclopedia of

Complexity and Systems Science, ch. 17, pp. 7174–7201. Springer (2009)
Yam02. Yamakami, T.: Quantum NP and a quantum hierarchy. In: 2nd IFIP International Con-

ference on Theoretical Computer Science, pp. 323–336. Kluwer Academic Publishers
(2002)

Zuc96. Zuckerman, D.: On unapproximable versions of NP-complete problems. SIAM Jour-
nal on Computing 25(6), 1293–1304 (1996)

http://scottaaronson.com/blog/?p=139

The Complexity of Computing the Sign

of the Tutte Polynomial (and Consequent
#P-hardness of Approximation)�

Leslie Ann Goldberg1 and Mark Jerrum2

1 Department of Computer Science, University of Liverpool, Ashton Building,
Liverpool L69 3BX, United Kingdom

2 School of Mathematical Sciences Queen Mary, University of London, Mile End
Road, London E1 4NS, United Kingdom

Abstract. We study the complexity of computing the sign of the Tutte
polynomial of a graph. As there are only three possible outcomes (pos-
itive, negative, and zero), this seems at first sight more like a decision
problem than a counting problem. Surprisingly, however, there are large
regions of the parameter space for which computing the sign of the Tutte
polynomial is actually #P-hard. As a trivial consequence, approximating
the polynomial is also #P-hard in this case. Thus, approximately evalu-
ating the Tutte polynomial in these regions is as hard as exactly counting
the satisfying assignments to a CNF Boolean formula. For most other
points in the parameter space, we show that computing the sign of the
polynomial is in FP, whereas approximating the polynomial can be done
in polynomial time with an NP oracle. As a special case, we completely
resolve the complexity of computing the sign of the chromatic polyno-
mial — this is easily computable at q = 2 and when q ≤ 32/27, and is
NP-hard to compute for all other values of the parameter q.

1 Introduction

The Tutte polynomial of a graph is two-variable polynomial that captures many
interesting properties of the graph such as (by making appropriate choices of the
two variables) the number of q-colourings, the number of nowhere-zero q-flows,
the number of acyclic orientations, and the probability that the graph remains
connected when edges are deleted at random.

Much work [1,2,3,4,9,12], has studied the difficulty of evaluating the polyno-
mial (exactly or approximately) when the values of the variables are fixed, and
a graph is given as input.

Our early paper [3] identified a large region of points where the approximate
evaluation of the polynomial is NP-hard and a short hyperbola segment along
which approximate evaluation is even #P-hard. Thus, an approximation of the
polynomial at a point on this short hyperbola segment would enable one to

� This work was partially supported by the EPSRC grant Computational Counting.
A full version of this paper is available at http://arxiv.org/abs/1202.0313.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 399–410, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://arxiv.org/abs/1202.0313

400 L.A. Goldberg and M. Jerrum

exactly solve a problem in #P. In this paper, we show that, in fact, for most
of these NP-hard points (and more), approximation is #P-hard. Moreover, it is
#P-hard for a very simple reason: determining the sign of the polynomial —
i.e., whether the evaluation of the polynomial is positive, negative or zero —
is #P-hard. This seems surprising since determining the sign of the polynomial
is nearly a decision problem (there are only three possible outcomes) but it is
#P-hard nearly everwhere (at all of the red points in the plane in Figure 1).

Past work [7] has studied the sign of the Tutte polynomial — in particular,
Jackson and Sokal sought to determine for which choices of the two variables
the sign is “trivial” in the sense that it does not depend on the input graph (or
it depends only very weakly on the input graph, for example when it depends
only on the number of vertices in the graph).

To illustrate how our work fits in with the work of Jackson and Sokal, we start
with an important univariate case. The chromatic polynomial P (G; q) of an n-
vertex graph G is the unique degree-n polynomial in the variable q such that
P (G; q) is the number of proper q-colourings ofG. Jackson [6, Theorem 5] showed
that for q ∈ (1, 32/27] the sign of P (G; q) depends upon G in an essentially trivial
way. In particular, for every connected simple graph with n ≥ 2 vertices and b
blocks, P (G; q) is non-zero with sign (−1)

n+b−1
. The sign of P (G; q) is also

known to be a trivial function of G for q ≤ 1. (See, for example, [7, Theorem
1.1].) Jackson [6, Theorem 12] demonstrated the significance of the value 32/27
by constructing an infinite family of graphs such that P (G; q) = 0 at a value
of q which is arbitrarily close to 32/27. In fact, Jackson and Sokal conjectured
[7, Conjecture 10.3(e)] that the value 32/27 is a phase transition in the sense
that, for every q above this critical value, the sign of P (G; q) is a non-trivial
function of G. In particular, they conjectured that for any fixed q > 32/27, and
all sufficiently large n and m, there are 2-connected graphs G with n vertices
and m edges that make P (G; q) non-zero with either sign.

It turns out that this intuition is correct (see Corollary 1) and that q = 32/27
is, in some sense, a phase transition for the complexity of computing the sign of
P (G; q):

– As was known, for q ≤ 32/27, the sign of P (G; q) is a trivial function of G,
which is easily computed.

– At q = 2, P (G; q) is the number of 2-colourings of G. The sign of P (G; q) is
positive if G is bipartite, and is 0 otherwise. Thus, the sign of P (G; q) is not
a trivial function of G, but P (G; q) is still easily computed in polynomial
time.

– However, for every other fixed q > 32/27, computing the sign of P (G; q) is
NP-hard.

However the full version of Jackson and Sokal’s conjecture turns out to be in-
correct. See Observations 38 and 40 of our full paper for counter-examples.

While computing the sign of P (G; q) is NP-hard for every q �= 2 which is
greater than 32/27, the precise complexity of compufting the sign does actually
depend upon q. We show (see Corollary 1) that for each fixed non-integer q >
32/27, the complexity of computing the sign of P (G; q) is #P-hard. This means

The Complexity of Computing the Sign of the Tutte Polynomial 401

that a polynomial-time algorithm for computing the sign of P (G; q), given G,
would give a polynomial-time algorithm for exactly solving every problem in
#P.

On the other hand, for integers q > 2, the problem of computing the sign of
P (G; q) is merely NP-complete.

As one would expect, both of these results have ramifications for the com-
plexity of approximating P (G; q). A fully polynomial approximation scheme
(FPRAS) for evaluating P (G; q), given G, can be used as a polynomial-time
randomised algorithm for computing the sign of P (G; q). Thus, we can deduce
that if q is a non-integer which is greater than 32/27, then there is no FPRAS
for P (G; q) unless there is a randomised polynomial-time algorithm for exactly
solving every problem in #P. See the full version for a more thorough discussion
of this claim.

On the other hand, for integer values q > 32/27, we show that the problem of
evaluating P (G; q) is in the complexity class #PQ, which is defined as follows.

Definition 1. FP is the class of functions computable by polynomial-time al-
gorithms. We say that a function f : Σ∗ → Q is in the class #PQ if f(x) =
a(x)/b(x), where a, b : Σ∗ → N, and a ∈ #P and b ∈ FP.

If f is in #PQ then there is an approximation scheme for f that runs in polyno-
mial time, using an oracle for an NP predicate (for a more detailed discussion,
see [3, Section 2.2]). Thus, it is presumably much easier to approximate P (G; q)
when q is an integer greater than 32/27, as compared to a non-integer.

All of these considerations generalise smoothly to the Tutte polynomial, which
we now define. Since we will later need the multivariate generalisation [11] of the
polynomial, we use the “random cluster” formulation of the Tutte polynomial,
which for a graph G = (V,E), is defined as a polynomial in inderminates q and γ
as follows,

Z(G; q, γ) =
∑
A⊆E

qκ(V,A)γ|A|, (1)

where κ(V,A) denotes the number of connected components in the graph (V,A).
The chromatic polynomial studied earlier is related to the Tutte polynomial via
the identity [7, (2.15)] P (G; q) = Z(G; q,−1).

In fact, Tutte defined the Tutte polynomial using a different, two-variable
parameterisation, in terms of variables x and y. This polynomial is defined for
a graph G = (V,E) by

T (G;x, y) =
∑
A⊆E

(x− 1)
κ(V,A)−κ(V,E)

(y − 1)
|A|−|V |+κ(V,A)

. (2)

It is well known (see, for example, [11, (2.26)]) that when q = (x− 1)(y− 1) and
γ = y − 1 we have

T (G;x, y) = (y − 1)
−|V |

(x− 1)
−κ(V,E)

Z(G; q, γ). (3)

402 L.A. Goldberg and M. Jerrum

y (= γ + 1)

x

A

K

D

C

B

E

F

H

I

G

J

L

M

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 1 2 3 4 5

Fig. 1. The regions. Computing the sign of the Tutte polynomial is #P-hard at red
points, and is in FP at green points. It is NP-complete at blue points. We have not
resolved the complexity at white points. At red points, approximating the Tutte poly-
nomial is also #P-hard. At blue and green points, it can be done in polynomial time
with an NP oracle. Guide for the greyscale version: The red points appear as a darker
grey in regions B, C, D, E, F, G, H and I. The green points appear as a lighter grey
in regions A, J, K, L and M and also as dashed hyperbola segments and at the points
(−1, 0), (−1,−1), (0,−1) and (0,−5). The blue points are (−2, 0), (−3, 0), (−4, 0),
(−5, 0) and (0,−2).

This paper studies the complexity of computing the sign of the (random clus-
ter) Tutte polynomial. Figure 1 gives a map of the (x, y) plane, illustrating our
results.1 The colours depict the complexity of computing the sign of the polyno-
mial for a fixed point (x, y). If the point (x, y) is coloured red, then the problem

1 For convenience, our proofs use the random cluster formulation of the Tutte polyno-
mial (1). However, in order to make our results easily comparable to other results in
the literature such as [3] and [9], we classify points using the (x, y)-coordinatisation
of (2). This is without loss of generality, since it is easy to go from one coordinate
system to the other using (3). However, the reader should note that if y = 1 then
γ = 0 and q = (x − 1)(y − 1) = 0 so computing Z(G; q, γ) is trivial, whereas the
complexity of computing T (G;x, y) is unclear. In general, any two-parameter version
of the Tutte polynomial will omit some points. This issue is discussed further in [5,
Section 1].

The Complexity of Computing the Sign of the Tutte Polynomial 403

of computing the sign is #P-hard. If the point (x, y) is coloured green, then the
problem of computing the sign is in FP. Finally, if the point (x, y) is coloured
blue, the the problem of computing the sign is NP-complete. (There are still
some points for which we have not resolved the complexity — these are coloured
white.)

Once again, there are ramifications for the complexity of approximating the
Tutte polynomial. Since an FPRAS for Z(G; q, γ) gives a randomised algorithm
for computing its sign, we can again deduce that there is no FPRAS for points
that are coloured red (unless there is a randomised polynomial-time algorithm for
exactly solving every problem in #P). By contrast, for all of the points that are
coloured green or blue, we also show that the problem of computing Z(G; q, γ)
is in the complexity class #PQ. Thus, the polynomial can be approximated in
polynomial-time using an NP oracle.

In order to reach into some of the regions, for example F, it has been necessary
to use gadgets that go beyond the series-parallel graphs that have so-far proved
adequate in this area. For example, in exploring region F has necessitated the
use of a gadget based on the Petersen graph.

Before giving a few details, and briefly describing proof techniques, we sum-
marise our conclusions and contributions.

– Figure 1 gives a nearly-complete classification of the complexity of computing
the sign of the Tutte polynomial — there are not too many unresolved points
(coloured white in the figure).

– It is interesting that the hardness results are actually #P-hardness, even
though the results apply to the problem of computing the sign, which has
only three possible outcomes (so it feels more like a decision problem than
a counting problem).

– It is interesting that whether q is an integer or not makes an actual difference
to the complexity in Regions E and F (contrary to the conjecture of Jackson
and Sokal) but it makes no difference in other regions (such as regions B
and G).

– Though it is not apparent from the figure, we have completely resolved the
complexity of computing the sign of the chromatic polynomial, which corre-
sponds to the x axis (see Corollary 1).

– Even though the results are much stronger than previous work (#P-hardness,
rather than NP-hardness), the proofs do not become technically overwhelm-
ing. Somehow, it helps technically to know that the hardness actually comes
from the difficulty of computing the sign, rather than from issues of numer-
ical approximation.

– Resolving the unresolved points on the y-axis (region F) would require
progress on a long-standing open problem related to nowhere-zero q-flows
(see Section 5.4 of the full version and the comments below).

The proofs of the theorems described in Figure 1 are given in the full version
of the paper. Here, in Section 3, we give a brief glimpse of the hardness results
— proving hardness for some of the points in Region B, and briefly discussing
the other hardness proofs (without presenting details). In Section 4, we briefly

404 L.A. Goldberg and M. Jerrum

discuss the tractability results. Details are given in the full paper. Finally, Sec-
tion 5 contains a corollary which collects the relevant results for q ≥ 32/27 and
|y| < 1. The proof is given in the full version.

2 Preliminaries

2.1 The Tutte Polynomial

It will be helpful to define the multivariate version of the random cluster for-
mulation of the Tutte polynomial. Let γ be a function that assigns a (rational)
weight γe to every edge e ∈ E. We refer to γ as a “weight function”. We define

Z(G; q,γ) =
∑
A⊆E

qκ(V,A)
∏
e∈A

γe.

Given a graph G = (V,E) with distinguished nodes s and t, Zst(G; q,γ) denotes
the contribution to Z(G; q,γ) arising from edge-sets A in which s and t are in
the same component of (V,A). That is,

Zst(G; q,γ) =
∑

A⊆E:s and t in same component

qκ(V,A)
∏
e∈A

γe.

Similarly, Zs|t denotes the contribution arising from edge-sets A in which s and
t are in different components, so Z(G; q,γ) = Zst(G; q,γ) + Zs|t(G; q,γ).

2.2 Implementing New Edge Weights, Series Compositions and
Parallel Compositions

Implementations and compositions are described in detail in [4, Section 2.1] and
in the full version. We give a very brief account here. LetW be a set of (rational)
edge weights and fix a value q. Let w∗ be a weight (which may not be inW) which
we want to “implement”. Suppose that there is a graph Υ , with distinguished
vertices s and t and a weight function γ̂ : E(Υ) →W such that

w∗ = qZst(Υ ; q, γ̂)/Zs|t(Υ ; q, γ̂). (4)

In this case, we say that Υ and γ̂ implement w∗ (or even thatW implements w∗).
Let G be a graph with weight function γ. Let f be some edge of G with weight

γf = w∗. Suppose that W implements w∗. Let Υ be a graph with distinguished
vertices s and t with a weight function γ̂ satisfying (4). Construct the weighted
graph G′ by replacing edge f with a copy of Υ as follows: Identify s with either
endpoint of f (it doesn’t matter which one) and identify t with the other endpoint
of f and remove edge f . Define the weight function γ′ of G′ as follows: γ′e = γ̂e
if e ∈ E(Υ) and γ′e = γe otherwise. Then the definition of the multivariate Tutte
polynomial gives

Z(G′; q,γ′) =
Zs|t(Υ ; q, γ̂)

q2
Z(G; q,γ). (5)

The Complexity of Computing the Sign of the Tutte Polynomial 405

Two especially useful implementations are series and parallel compositions (see
[7, Section 2.3]). Parallel composition is the case in which Υ consists of two
parallel edges with endpoints s and t. Series composition is the case in which Υ
is a length-2 path from s to t. The k-thickening of [9] is the parallel composition
of k edges of weight α. It implements α′ = (1 + α)k − 1 Similarly, the k-stretch
is the series composition of k edges of weight α. It implements an α′ satisfying

1 +
q

α′ =
(
1 +

q

α

)k
.

Since it is useful to switch freely between (q, α) coordinates and (x, y) coordinates
we also refer to the implementation in Equation (4) as an implementation of the
point (x, y) = (q/w∗ + 1, w∗ + 1) using the points

{(x, y) = (q/w + 1, w + 1) | w ∈W}.

2.3 Computational Problems

For fixed rational numbers q, γ and γ1, . . . , γk, we consider the following com-
putational problems in which the goal is to compute the sign of the Tutte poly-
nomial.

Name: SignTutte(q, γ).
Instance: A graph G = (V,E).
Output: Determine whether the sign of Z(G; q, γ) is positive, negative, or 0.

Name: SignTutte(q; γ1, . . . , γk).
Instance: A graph G = (V,E) and a weight function γ : E → {γ1, . . . , γk}.
Output: Determine whether the sign of Z(G; q,γ) is positive, negative, or 0.

We say that a point (x, y) is #P-hard, NP-complete, or in FP, if, for γ = y − 1
and q = (x − 1)(y − 1), the corresponding problem SignTutte(q; γ) is #P-
hard, NP-complete, or in FP, respectively. #P-hardness is defined with respect
to randomised polynomial-time Turing reductions. NP-hardness is defined by a
many-one reduction from an NP-complete decision problem, whose instance is a
“yes instance” if the corresponding instance of SignTutte(q; γ) has a positive
sign, and a “no instance” otherwise.

3 A Glimpse at the Hardness Result

The main lemma used in the #P-hardness proofs is Lemma 1 below. Informally,
it shows the following. Suppose that we can implement an edge weight γ1 ∈
(−2,−1) and that we can also implement an edge weight γ2 /∈ [−2, 0]. then
we can use an oracle for SignTutte(q; γ1, γ2) to exactly count the minimum-
cardinality (s, t)-cuts of a graph (which was shown to be #P-complete by Provan
and Ball [10]).

406 L.A. Goldberg and M. Jerrum

Lemma 1. Suppose q > 1 and that γ1 ∈ (−2,−1) and γ2 /∈ [−2, 0]. Then
SignTutte(q; γ1, γ2) is #P-hard.

Proof. A complete proof is given in the full version — we just give a sketch here.
We will give a polynomial-time Turing reduction from #Minimum Cardinal-

ity (s, t)-Cut to SignTutte(q; γ1, γ2).
Let G be a graph (an instance of #Minimum Cardinality (s, t)-Cut) with

distinguished vertices s and t. Let n = |V (G)| and m = |E(G)|. Assume without
loss of generality that G has no edge from s to t and that it is connected and that
m ≥ n is sufficiently large. Let k be the size of a minimum cardinality (s, t)-cut
in G and let C be the number of size-k (s, t)-cuts.

We start by letting h be a sufficiently large polynomial in m (details are
given in the full version). By an h-thickening using γ2, we can implement the
(exponentially large) quantity M = (γ2 + 1)h − 1. Let δ be the small quantity
δ = (2q)

m
/M . Let M be the constant weight function which gives every edge

weight M . We will use the following facts.

(1− δ)Mmq ≤ Zst(G; q,M) ≤ (1 + δ)Mmq. (6)

CMm−kq2(1− δ) ≤ Zs|t(G; q,M) ≤ CMm−kq2(1 + δ). (7)

Fact (6) follows from the fact that each of the (at most 2m) terms in Zst(G; q,M)
other than the term with all edges in A has value at most Mm−1qn and
2mMm−1qn ≤ δMmq. (We don’t actually need the 1− δ in the lower bound, but
it is easier, in the full version, to have symmetric bounds on the error.) Fact (7)
follows from the fact that all terms in Zs|t(G; q,M) are (s, t)-cuts. Each term

that is not a size-k (s, t)-cut has value at most Mm−k−1qn+2 and

2mMm−k−1qn+2 ≤ δCMm−kq2.

For a parameter ε in the open interval (0, 1) which we will tune below, let
γ′ = −1 − ε ∈ (−2,−1). We will discuss the implementation of γ′ below. Let
G′ be the graph formed from G by adding an edge from s to t. Let γ be the
edge-weight function for G′ that assigns weightM to every edge of G and assigns
weight γ′ to the new edge. Then, using the definition of the Tutte polynomial,

Z(G′; q,γ) = Zst(G; q,M)(1 + γ′) + Zs|t(G; q,M)

(
1 +

γ′

q

)
= −εZst(G; q,M) + Zs|t(G; q,M)

(
1− 1 + ε

q

)
. (8)

Now suppose ε = 0. Then Z(G′; q,γ) = Zs|t(G; q,M)
(
1− 1

q

)
, which is positive.

On the other hand, using the definition of M and Facts (6) and (7) above, we
can confirm that, when ε = 1, Z(G′; q,γ) is negative. The idea is to perform
binary search on the range (0, 1) to find an ε where Z(G′; q,γ) = 0. For this
value of ε, we have εZst(G; q,M) = Zs|t(G; q,M)

(
1 − 1+ε

q

)
. It turns out that

the approximations (6) and (7) above will give us enough information that we’ll
be able to calculate C exactly from this equality.

The Complexity of Computing the Sign of the Tutte Polynomial 407

As one would expect, there are small technical complications. Since we are
somewhat constrained in what values ε we can implement, we won’t be able to
discover the exact value of ε that we need, but we will be able to approximate it
sufficiently closely to compute C exactly from this equality. For technical reasons
to do with this approximation, it helps to note when ε = M−2m, Z(G′; q,γ)
is still positive (this is proved in the full version) — thus, we can start the
binary search at value around M−2m, which is bounded away from 0. Also,
when ε = q − 1 we have Z(G′; q,γ) = −(q − 1)Zst(G; q,M) < 0.

Thus we have a range from ε = M−2m to ε = min(1, q − 1) of length at
most 1 which contains some value ε for which Z(G′; q,γ) = 0. We’ll perform
binary search on this interval. Suppose for a moment that we are able, for a
given ε ∈ (M−2m,min(1, q − 1)), to compute the sign of Z(G′; q,γ). Our basic
strategy will be binary search, sub-dividing the initial interval �m2 lgM� times,

so eventually we’ll get an interval of width at most M−m2

which contains an ε
where Z(G′; q,γ) = 0.

To do this, we need to address the issue of computing the sign of Z(G′; q,γ)
using an oracle for SignTutte(q; γ1, γ2). We have already seen above that is
easy to implement the weight M using γ2 (and that the implementation has
polynomial size) — we now need to consider the implementation of γ′ = −1− ε
(where ε ∈ (M−2m,min(1, q − 1)) is the particular value that is being queried).
In the full version we show that, while we may not be able to query the exact
value of ε that we want to (because we can’t quite implement the corresponding
γ′) we can query a value that is between ε − π and ε, where π is any given
positive quantity. The size of the graph used in the implementation is at most a
polynomial in log(π−1).

In the full version, we set π = M−m2

/3 and we tune the binary search ap-
propriately. The overall result is that we can find a subinterval of width at most
M−m2

which contains an ε where Z(G′; q,γ) = 0. Now let ε be an endpoint of

this subinterval. Let ρ = 2mqmMmM−m2

. In the full version, we use (6), (7),
and (8) to show

(1− 2 · 4−m)εMmq(
1− 1+ε

q

)
Mm−kq2(1 + 4−m)

≤ C ≤ εMmq(1 + 2 · 4−m)(
1− 1+ε

q

)
Mm−kq2(1 − 4−m)

. (9)

Now the point is that C is an integer between 1 and 2m. Even though the value
of k is not known, the fact that M > 4m means that there can only be one
integer k such that the above interval contains an integer between 1 and 2m

(so k can easily be deduced). All of the other quantities in the lower and upper

bounds in (9) are known. Now let R = εMk

(1− 1+ε
q)q

, so (9) becomes

(
1− 2 · 4−m

1 + 4−m

)
R ≤ C ≤ R

(
1 + 2 · 4−m

1− 4−m

)
. (10)

Now, R < 2m+1, since otherwise the left-hand-side of (10) is greater than 2n.
Also, multiplying through by (1 + 4−m)(1 − 4−m), the width of the interval is

408 L.A. Goldberg and M. Jerrum

at most 6 · 4−mR < 1 so the width of the interval in (10) is less than 1, so the
(integral) value of C can be calculated exactly.

Many of the hardness results in the paper follow directly from Lemma 1 by
implementing the relevant points γ1 and γ2. Here is an easy example which
shows hardness for some of the points in Region B.

Lemma 2. Suppose (x, y) is a point with x < −1 and y < −1. Then (x, y) is
#P-hard.

Proof. Let q = (x − 1)(y − 1). First, we will show that we can use (x, y) to
implement a point (x1, y1) with y1 ∈ (−1, 0) so γ1 = y − 1 ∈ (−2,−1), as
required by Lemma 1. Let j be an odd positive integer which is sufficiently large
that |x|j + 1 > q. Implement (x′, y′) = (xj , q/(xj − 1) + 1) from (x, y) with a
j-stretch. Note that y′ ∈ (0, 1). Now, for a sufficiently large positive integer k,
implement (x1, y1) using the parallel composition of (x, y) with k copies of (x′, y′)
so y1 = y′ky ∈ (−1, 0). The point (x2, y2) = (x, y) satisfies y2 /∈ [−1, 1]. Since
q > 1, the result follows from Lemma 1.

Of course, many of the hardness proofs in the paper require more difficult im-
plementations than Lemma 2. Some of this is essentially “technical work” (for
example, in Region G). More interesting issues arise in Regions E and F. In these
regions, we only have hardness when q is a non-integer (unless all problems in
#P can be exactly solved by randomised polynomial-time algorithms!). In Re-
gion E, the most significant challenge is implementing a point (x′, y′) with y′ < 0
when q > 2. We implement the desired point using the graph Kn minus an edge,
where n = (q) + 2 with edge weights that are very close to −1. The analysis
of the implementation (Lemma 17 in the full version) proceeds by studying the
chromatic polynomial of Kn and Kn minus an edge.

Dually, in Region F, the most significant challenge is implementing a point
(x′, y′) with x′ < 0 when q > 2 is not an integer. Our implementations use
edge weights that are very close to −q. When the edge weights are all −q, the
Tutte polynomial specialises to the so-called flow polynomial. A q-flow of an
undirected graph G = (V,E) is defined as follows [11, Section 2.4]. Choose an
arbitrary direction for each edge. Let H be any Abelian group of order q. A
q-flow is a mapping ψ : E → H such that the flow into each vertex is equal to
the flow out (doing arithmetic in H). A q-flow ψ of a graph G = (V,E) is said
to be nowhere-zero if, for every e ∈ E, ψ(e) �= 0. If q is a positive integer and all
edge weights are −q, then the Tutte polynomial counts the nowhere-zero q-flows
of a graph. (It is a non-trivial fact that the number of nowhere-zero q-flows only
depends upon q, the size of H , and not on H itself.)

Our construction for q ∈ (3, 4) proceeds by analysing the flow polynomial of
the Petersen graph. This is zero at q = 3 and q = 4, since this graph has no
nowhere-zero 3-flow or 4-flow but it is positive for q > 4 (hence negative between
3 and 4). On the other hand, the graph obtained by removing an edge has a pos-
itive flow polynomial for q > 3. The fact that the signs of these polynomials are
different is key to the construction (see the proof of Lemma 22 in the full version

The Complexity of Computing the Sign of the Tutte Polynomial 409

for details). A similar construction works for q between 2 and 3. The construc-
tion breaks down for q > 4 because both graphs have positive flow polynomial.
It is conceivable that the lemma could be proved for non-integer q in the range
4 < q < 6 by using a generalised Petersen graph rather than a Petersen graph
in the construction. Indeed, Jacobsen and Salas have shown [8] that there are
generalised Petersen graphs whose flow polynomials have roots between 5 and 6.
Given the current state of knowledge, we are pessimistic about the prospects of
proving the lemma for all q > 4. Currently, it is an open question [8] whether
there is a some uniform upper bound Q for real zeros of arbitrary bridgeless
graphs (so that every bridgeless graph G would have a positive flow polynomial
for all q > Q). If so, then computing the sign of the flow polynomial will be triv-
ial for q > Q, so computing the sign of the Tutte polynomial will also be trivial
for y < −Q + 1 along the y-axis. If not, then it seems likely that the hardness
construction can be extended. (Thus, it doesn’t seem to be possible to resolve
all of the unresolved points in Region F without solving the open problem about
flow polynomials.)

4 A Very Brief Glimpse at the Tractability Results

For the green points in Figure 1, the sign of the Tutte polynomial can be com-
puted in polynomial time and the evaluation of the polynomial is in #PQ. This
is most interesting in regions J, K, L and M. It is easier to prove these positive
results for binary matroids, rather than for graphs. A graph can be viewed as a
special case of a binary matroid. The advantage of working more generally is that
the results in regions K and M follow by duality from the results in Regions J
and L. The algorithms are recursive. For example, in Lemma 45 of the full paper
we show that if q < 0 and M is a loopless matroid in which all edge weights are
between −2 and 0 then the sign of the Tutte polynomial of M is positive, and
the polynomial can be evaluted in #PQ. The algorithm and its correctness proof
are recursive. If M has full rank then the result is easy. Otherwise, we apply
contraction and deletion, and recurse on the minors of M. See the full version
for details.

5 Putting Things Together for Points with |y| < 1

In this section we state a corollary of our work which collects the results depicted
in Figure 1 for regions with q ≥ 32/27 and |y| < 1. This is Corollary 55 in the
full version. Together with the work of Jackson [6], it completely resolves the
complexity of computing the sign of the chromatic polynomial of a graph.

Corollary 1. Suppose (x, y) is a point satisfying |y| < 1 such that q = (x −
1)(y − 1) ≥ 32/27. Let γ = y − 1.

– If (x, y) = (−1, 0) then SignTutte(q, γ) and Tutte(q, γ) are in FP.
– If (x, y) = (x, 0) for any integer x < −1 then SignTutte(q, γ) is NP-

complete. Tutte(q, γ) is in #PQ.

410 L.A. Goldberg and M. Jerrum

– If x ≤ −1 and 0 < y < 1 and q is an integer then Z(G; q, γ) > 0 so
SignTutte(q, γ) is in FP. Also, Tutte(q, γ) is in #PQ.

– Otherwise, SignTutte(q, γ) is #P-hard.

References

1. Dell, H., Husfeldt, T., Wahlén, M.: Exponential Time Complexity of the Permanent
and the Tutte Polynomial. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 426–437.
Springer, Heidelberg (2010)

2. Goldberg, L.A., Jerrum, M.: Approximating the Partition Function of the Ferro-
magnetic Potts Model. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 396–407.
Springer, Heidelberg (2010)

3. Goldberg, L.A., Jerrum, M.: Inapproximability of the Tutte polynomial. Inform.
and Comput. 206(7), 908–929 (2008)

4. Goldberg, L.A., Jerrum, M.: Inapproximability of the Tutte polynomial of a planar
graph. CoRR, abs/0907.1724 (2009); To appear ”Computational Complexity”

5. Goldberg, L.A., Jerrum, M.: Approximating the Tutte polynomial of a binary
matroid and other related combinatorial polynomials. CoRR, abs/1006.5234 (2010)

6. Jackson, B.: A zero-free interval for chromatic polynomials of graphs. Combina-
torics, Probability & Computing 2, 325–336 (1993)

7. Jackson, B., Sokal, A.D.: Zero-free regions for multivariate Tutte polynomials (alias
potts-model partition functions) of graphs and matroids. J. Comb. Theory, Ser.
B 99(6), 869–903 (2009)

8. Jacobsen, J.L., Salas, J.: Is the five-flow conjecture almost false? ArXiv e-prints
(September 2010)

9. Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the
Jones and Tutte polynomials. Math. Proc. Cambridge Philos. Soc. 108(1), 35–53
(1990)

10. Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM J. Comput. 12(4), 777–788 (1983)

11. Sokal, A.: The multivariate Tutte polynomial. In: Surveys in Combinatorics, Cam-
bridge University Press (2005)

12. Vertigan, D.: The computational complexity of Tutte invariants for planar graphs.
SIAM J. Comput. 35(3), 690–712 (electronic) (2005)

Stochastic Vehicle Routing with Recourse�

Inge Li Gørtz1,��, Viswanath Nagarajan2, and Rishi Saket2

1 Technical University of Denmark, DTU Informatics
2 IBM T.J. Watson Research Center

Abstract. We study the classic Vehicle Routing Problem in the setting
of stochastic optimization with recourse. StochVRP is a two-stage prob-
lem, where demand is satisfied using two routes: fixed and recourse. The
fixed route is computed using only a demand distribution. Then after
observing the demand instantiations, a recourse route is computed – but
costs here become more expensive by a factor λ.

We present an O(log2 n · log(nλ))-approximation algorithm for this
stochastic routing problem, under arbitrary distributions. The main idea
in this result is relating StochVRP to a special case of submodular orien-
teering, called knapsack rank-function orienteering. We also give a better
approximation ratio for knapsack rank-function orienteering than what
follows from prior work. Finally, we provide a Unique Games Conjecture
based ω(1) hardness of approximation for StochVRP, even on star-like
metrics on which our algorithm achieves a logarithmic approximation.

1 Introduction

Consider a distribution problem involving a depot location and a set of customer
locations. There is a vehicle of capacity Q that is used to distribute items. The
demand at customer locations is random with a known (joint) distribution D.
The distributor wants to plan a fixed route for this capacitated vehicle, that
will be employed on a daily basis. However due to the stochastic nature of
demands, the fixed route might be insufficient to meet all demands. Therefore
the distributor also plans a secondary recourse strategy, that satisfies all unmet
demands after the fixed route. Each morning the distributor receives the precise
demand quantities from all customers (drawn from D). Based on this he/she
decides which subset of customers will be satisfied along the fixed route, and
then plans a recourse route to satisfy the remaining customers. The goal is
to minimize the cost of the fixed route plus the expected cost of the recourse
route. Examples of real-world applications are local deposit collection from bank
branches, garbage collection, home heating oil delivery, and forklift routing [1,4].

A solution based on fixed routes is desirable for several reasons, and is com-
monly used in practice; see [28,15] for more detailed discussions on this. In our
context, there are at least two advantages. First, the driver can get familiar with
the road/traffic conditions which results in time savings. Moreover, having fixed

� A full version of this extended abstract appears as [17].
�� Supported by the Danish Council for Independent Research | Natural Sciences.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 411–423, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

412 I.L. Gørtz, V. Nagarajan, and R. Saket

routes simplifies the everyday route planning process: the incremental recourse
step will typically contain fewer demands.

Fixed-route problems are often modeled in the framework of two-stage stochas-
tic optimization. A priori optimization handles some natural but simple recourse
strategies: eg., short-cutting over customers without demand in TSP [5,30], and
refill-visits from the depot in the Vehicle Routing Problem (VRP) [4,19]. Re-
cently, more complex recourse actions have been considered: adding penalty
terms in deadline TSP [8], and using backup vehicles in VRP [1].

In this paper, we penalize the cost of the recourse route by an inflation factor
λ ≥ 1. This is also a common approach for two-stage stochastic optimization with
recourse. Furthermore, in the stochastic VRP we consider, recourse strategies
are non-trivial since it also involves choosing the subset of realized demands
served by the fixed route. In this respect it is unlike most previously studied
2-stage stochastic problems (eg. [27,32,20]) where the recourse step is just a
deterministic instance of the same problem. Before describing the results of this
paper, we define the deterministic and two-stage stochastic VRP below.

Vehicle Routing Problem (VRP). There is a vehicle of capacity Q, metric
(V, d) with root/depot r ∈ V and demands {qv ≤ Q}v∈V . The goal is to find
a minimum cost tour of the vehicle that delivers qv units to each v ∈ V . The
demands are “unsplittable”, i.e. the demand at any vertex must be satisfied in
a single visit. Any VRP solution corresponds to a sequence of round-trips from
the depot, where at most Q units of demands are served during each round-trip.
It is well-known [2] that an α-approximation ratio for TSP implies an (α + 2)-
approximation algorithm for VRP.

Two-Stage Stochastic VRP (StochVRP). The setting is same as above, with
a capacity Q vehicle, metric (V, d) and depot r ∈ V . Here the demands {qv}v∈V

are random variables given by a joint demand distribution D on {0, 1, . . . , Q}V ,
available as a black-box that can be sampled from. We are also given an inflation
parameter λ ≥ 1. The goal is to compute a fixed route solution with a recourse
strategy.

• In the first stage the algorithm computes a fixed tour τ , without knowledge
of the actual demand. The tour τ consists of several round-trips from the
depot: each round-trip is a cycle containing r (henceforth called r-tour). We
represent τ as a concatenation {τ1, . . . , τF } of r-tours. It is important to
note that τ only represents the vehicle route, and does not specify demand
deliveries (this will be decided after demand instantiations). In particular, a
vertex v may appear in multiple r-tours of τ ; and even if v appears in τ the
instantiated demand at v may not eventually be satisfied by τ .

• In the second stage, the demands q are instantiated from D. Knowing this,
an algorithm chooses to satisfy subset qA ⊆ q of demands using the fixed tour
τ , subject to the vehicle capacity of Q. That is, for each r-tour {τi}Fi=1 the
algorithm chooses a subset Si ⊆ τi of vertices to serve, where

∑
v∈Si

qv ≤ Q;

and sets qA ≡ {qv : v ∈ ∪F
i=1Si}. Then the algorithm computes a recourse

Stochastic Vehicle Routing with Recourse 413

tour σ meeting all residual demands qB = q \ qA. That is, σ is a solution to
the deterministic VRP instance with demands {qv : v ∈ V \ ∪F

i=1Si}.
Note that the demands qA satisfied by the fixed tour τ differs based on the
instantiation q; however the route taken by the vehicle stays fixed. So the first
stage cost is just the length d(τ) of the fixed tour. The recourse tour σ clearly
depends on the demand instantiation. The second stage cost under demand q
is λ · d(σ(q)), the length of the recourse tour inflated by a parameter λ. The
objective in StochVRP is to minimize the expected total cost:

d(τ) + λ · Eq←D [d(σ(q))]

For any integer I ≥ 0, we let [I] := {1, . . . , I}. For a given StochVRP instance,
opt will denote its optimal value. We let n = |V | denote the number of vertices
in the metric and D = maxu,v d(u, v) the diameter of the metric.

Our Results, Techniques and Outline. In this paper we show:

Theorem 1. There is a randomized O(log2 n·log(nλ))-approximation algorithm
for StochVRP under arbitrary distributions.

Using a sampling-based reduction [10] we show that the objective value under
any black-box distribution can be well-approximated by another demand dis-
tribution having support size m = poly(n, λ). Then, in Section 2 we present
an O(log2 n · log(nm))-approximation algorithm for StochVRP where m is the
support size of the distribution. This is a set-cover type algorithm that uses
the submodular orienteering problem [12,7] as a subroutine. In the submodular
orienteering problem there is a metric (V, d) with root r, length bound B and
monotone submodular function f : 2V → R+; and the goal is to find an r-tour
of length at most B visiting some subset S ⊆ V of vertices so as to maximize
f(S). Direct use of algorithms from [11,7] yields an approximation ratio worse
than Theorem 1 by a factor of logε n. Instead we give a better result for submod-
ular orienteering on objective functions of the type encountered in StochVRP,
called knapsack rank-function orienteering (KnapRankOrient). In particular, we
consider the ratio KnapRankOrient problem where instead of the length-bound,
the objective is to maximize the ratio of function value to the length.

Theorem 2. There is a deterministic O(log2 n)-approximation algorithm for
ratio knapsack rank-function orienteering.

The main idea here is to use LP rounding techniques for the related group Steiner
problem [16,25], augmented with an alteration step (for the analysis). While
alteration has been widely used with LP-rounding, eg. [33], we are not aware
of an application in context of the group Steiner tree problem. This step only
bounds the function-value and length in expectation (separately). In order to
bound their ratio, we adapt the group Steiner derandomization from Charikar et
al. [9] to our context. We defer further discussion and details on KnapRankOrient
to the full version [17].

Combined with the sampling-based reduction this suffices to approximate the
objective value of StochVRP under black-box distributions. However, more work

414 I.L. Gørtz, V. Nagarajan, and R. Saket

is required in order to provide an approximate solution. This is because the
recourse step in StochVRP is quite non-trivial, and a solution must specify an
algorithm to construct the recourse tour for any possible demand (not merely the
m sampled points). It turns out that the recourse step corresponds to solving
an “outlier” version of VRP. Although this problem does not admit any true
approximation ratio (by a relation to generalized assignment [26]), in Section 3
we give an LP-based O(1) bicriteria approximation: this suffices for Theorem 1.

Our second main result is a UGC-based hardness of approximation:

Theorem 3. Assuming the Unique Games Conjecture, it is NP-hard to approx-
imate StochVRP to within a constant factor, even on star-like metrics.

This is proved in Section 4 and involves a reduction from the vertex cover prob-
lem on k-uniform hypergraphs: we use a result by Bansal and Khot [3] which
says that it is UGC-hard to distinguish between the (yes) case when the hyper-
graph is almost k-partite and the (no) case when any vertex cover is almost the
entire vertex-set. We remark that this super-constant hardness holds in star-like
metrics, where our algorithm achieves an O(log(nλ))-approximation. Our algo-
rithm loses additional log-factors in going from (i) stars to trees, and then (ii)
trees to general metrics: these overheads are similar to the best known results
for the related group Steiner tree problem [16].

Finally, we consider the special case when demands are independent across
vertices. Using a different algorithm we obtain a better ratio (see full version).

Theorem 4. There is a randomized O(log(nλ)
log log(nλ))-approximation algorithm for

StochVRP under independent demand distributions.

Related Work. The VRP [35] is an extensively studied routing problem that
combines aspects of both TSP and bin-packing. Several stochastic variants of
the basic problem have received attention, eg. [34,4,14,1,15]. Approximation al-
gorithms for VRP with independent stochastic demands (in the a priori model)
were given in [4,19]. This paper takes a different approach, that of two-stage
stochastic optimization with recourse (along the lines of [22,27,32,20] etc). To
the best of our knowledge no prior approximation results are known for vehicle
routing problems in this model.

Stochastic optimization [6] is a broad area dealing with probabilistic input.
Approximation algorithms for two-stage stochastic problems were introduced by
Immorlica et al. [22] and Ravi and Sinha [27]. Gupta et al. [20] and Shmoys and
Swamy [32] gave general frameworks for approximating a number of stochastic
optimization problems; the former result is combinatorial using certain cost-
sharing properties, whereas the latter is LP-based. However, these approaches
do not seem directly applicable to StochVRP. The results in [20,32] hold in the
most general distribution model, where an algorithm only receives independent
samples from a black-box. Charikar et al. [10] showed that any arbitrary distri-
bution can be reduced to one having polynomial support (under certain condi-
tions). We also make use of this result in proving Theorem 1. For most other
combinatorial optimization problems that have been considered in the two-stage

Stochastic Vehicle Routing with Recourse 415

stochastic model (with proportional cost inflation), it has been observed that
approximation ratios are the same order of magnitude as the underlying deter-
ministic problem [22,27,20,32,31]. A notable exception is minimum cost max-
matching [23], for which an Ω(log n)-hardness of approximation was shown. In
the case of VRP Theorem 3 shows (under UGC) that the stochastic approxima-
tion ratio is necessarily worse than its deterministic counterpart, even in very
special metrics.

2 Algorithm for Polynomial Scenarios

Here we consider the case when the demand distribution D is specified as a list
of possible outcomes. Later on we show how the general case of a black-box
distribution can be reduced to this case. Formally D is a multiset {q1, . . . , qm}
where the actual demand q = qi (for some i ∈ [m]) with probability 1/m.

The main idea of our algorithm is to recast the problem as an instance of
set-cover with an exponential number of sets. Then we show that the greedy
subproblem is an instance of submodular orienteering (SOP) for which a poly-
logarithmic approximation is known [7,12]. In fact, for the type of SOP instances
obtained from StochVRP we give a better approximation ratio in the full version.
Altogether, this implies Theorem 1 for polynomial scenarios.

Set Cover Instance I. The groundset U consists of tuples 〈i, v〉 for all scenarios
i ∈ [m] and vertices v ∈ V , which denotes qi(v) demand units at v under scenario
i. For any 〈i, v〉 ∈ U we use q(〈i, v〉) := qi(v), and for any subset S ⊆ U ,
q(S) :=

∑
t∈S q(t). Instance I has the following two types of sets:

1. S := ∪m
i=1Si is a first-stage set iff Si ⊆ {〈i, v〉 : v ∈ V } and q(Si) ≤ Q for

all i ∈ [m]. The cost of this set S is the minimum length of an r-tour that
contains all the vertices represented in S.

2. For any scenario i ∈ [m], T ⊆ {〈i, v〉 : v ∈ V } is a second-stage set iff
q(T) ≤ Q. The cost of set T is λ/m times the minimum length of an r-tour
containing all vertices of T .

Lemma 1. The set cover instance I is equivalent to StochVRP.

Proof. Recall that any feasible StochVRP solution is specified by:

• The fixed tour τ . It will be convenient to view this as a collection {τ1, . . . , τF }
of r-tours, each of which is a round-trip from the depot.
• For each scenario i ∈ [m], the demands qiA ⊆ qi satisfied by the fixed tour.
Again this is viewed as follows: for each r-tour {τj}Fj=1, Si,j ⊆ {〈i, v〉 : v ∈ V }
denotes the demands satisfied in τj . Note that by definition,

⋃
j∈[F] Si,j ≡ qiA.

Also due to the capacity constraint, q(Si,j) ≤ Q for each j ∈ [F].
• For each scenario i ∈ [m], the recourse tour σi which satisfies residual
demands qi \ qiA. Again we view this as a collection {σi,1, . . . , σi,Li} of r-
tours. For k ∈ [Li] let Ti,k ⊆ {〈i, v〉 : v ∈ V } denote the demands satisfied in
σi,k. Clearly,

⋃
k∈[Li]

Ti,k ≡ qi \ qiA. Again q(Ti,k) ≤ Q for all k ∈ [Li].

416 I.L. Gørtz, V. Nagarajan, and R. Saket

Note that corresponding to each first-stage r-tour τj , the set
⋃m

i=1 Si,j is a valid
first-stage set in I since for all i ∈ [m] (a) Si,j ⊆ {〈i, v〉 : v ∈ V } and (b)
q(Si,j) ≤ Q. Moreover the cost of this set in I is at most d(τj).

Similarly, for each scenario i ∈ [m] and second-stage r-tour σi,k (k ∈ [Li]), set
Ti,k is a valid second-stage set. The cost of this set in I is at most λ

m · d(σi,k).
Finally, these sets cover U in I since for each scenario i ∈ [m], we have:(

∪F
j=1Si,j

) ⋃ (
∪k∈[Li]Ti,k

)
= {〈i, v〉 : v ∈ V }

The total cost of this solution to I is at most:

F∑
j=1

d(τj) +
λ

m
·

m∑
i=1

Li∑
k=1

d(σi,k) = d(τ) + λ · Eq←D [d(σ(q))] ,

which is just the StochVRP objective value. The reverse relation (from I to
StochVRP) can be shown in a similar manner, and the lemma follows. ��

Thus it suffices to solve the set cover instance I. We use the greedy algorithm
for set cover which requires solving the following max-coverage subproblem: given
U ′ ⊆ U find a set (of either first/second type) that maximizes the ratio of the
number of U ′-elements it covers to its cost. We give separate algorithms for this
problem, under the two types of sets.

Max-Coverage for Second-Stage Sets. We give a constant approximation
in this case. Assume that the algorithm knows by enumeration (i) the cost B of
the best ratio set (up to a factor two), and (ii) the scenario i ∈ [m] corresponding
to it. Then it suffices to find a set T ⊆ U ′⋂{〈i, v〉 : v ∈ V } maximizing |T | such
that q(T) ≤ Q and cost(T) ≤ B. By the definition of second-stage sets, this
reduces to finding an r-tour visiting the maximum vertices W ⊆ {u ∈ V :
〈i, u〉 ∈ U ′}, having length at most m

λ ·B and with
∑

u∈W qi(u) ≤ Q. This is just
an instance of the knapsack-orienteering problem, for which a constant-factor
approximation is known [18].

Max-Coverage for First-Stage Sets. In this case, we obtain a poly-
logarithmic approximation. Again, we assume that the algorithm knows the cost
B of the best ratio set (up to a factor two). Recall that unlike the previous
case, one first-stage set can cover elements from several scenarios. By definition,
each first-stage set S corresponds to an r-tour visiting vertices W ⊆ V and
subsets Si ⊆ {〈i, v〉 : v ∈ W} for each i ∈ [m] such that {q(Si) ≤ Q}mi=1 and
S =

⋃m
i=1 Si. Among all first-stage sets visiting a fixed vertex-set W ⊆ V , the

maximum coverage of U ′ equals:

f(W) :=
m∑
i=1

max

⎧⎨⎩|Si| : Si ⊆ {u ∈W : 〈i, u〉 ∈ U ′},
∑
v∈Si

qiv ≤ Q

⎫⎬⎭
For each i ∈ [m] let fi(W) denote the term inside the above summation. Recall
that the cost of all first-stage sets visiting vertices W is the same, namely the
minimum TSP on {r} ∪W . Thus the subproblem we wish to solve is:

max f(W) : there is an r-tour visiting W ⊆ V of length ≤ B. (1)

Stochastic Vehicle Routing with Recourse 417

Recall the submodular orienteering problem (SOP) where given metric (V, d)
with root r, bound B and submodular function g : 2V → R+, the goal is to find
an r-tour visiting some subset W ⊆ V of vertices, having length at most B that
maximizes g(W). If f were submodular then we can use the algorithm [7,12] to
solve this. But f is not submodular: eg. if f(W) = max{|S| : S ⊆W,

∑
v∈S qv ≤

Q} on groundset U = {a, b, c} with qa = qb = 1, qc = 3 and Q = 3, then
f({a, c}) + f({b, c}) = 2 < 3 = f({a, b, c}) + f({c}). Still, we show below that f
can be well approximated by a submodular function g.

We approximate each fi (point-wise) by a submodular function gi. Let Vi :=
{u ∈ V : 〈i, u〉 ∈ U ′} denote the vertices appearing with scenario i in U ′. Define:

gi(W) := max

⎧⎨⎩ ∑
v∈Vi∩W

xv :
∑
v∈W

qiv · xv ≤ Q, 0 ≤ xv ≤ 1, ∀ v ∈W

⎫⎬⎭
Observe that gi(W) is just an LP relaxation for a maximization {0, 1}-knapsack
problem. So its value is given by the greedy algorithm that increases xv (up to 1)
in increasing order of {qiv : v ∈ Vi ∩W}. On the other hand, fi(W) is the value
of the same integral knapsack problem. Now, function gi can be rewritten as the
rank function of a polymatroid [29] which is submodular; see eg. [13]. Moreover,
the integrality gap of the natural LP for max-knapsack is two. Thus,

Claim 1. gi is monotone submodular and gi(W)
2 ≤ fi(W) ≤ gi(W), ∀W ⊆ V .

So if we define g(W) :=
∑m

i=1 gi(W) then it is submodular and maximizing
g in (1) is equivalent to maximizing f (up to factor two). Hence, assuming a
ρ-approximation algorithm for SOP, we obtain a 2ρ-approximation algorithm
for (1). This suffices to give an O(ρ)-approximation for the max-coverage sub-
problem. We have ρ = O(log2+ε n) in polynomial time using the bicriteria ap-
proximation in Calinescu-Zelikovsky [7], and ρ = O(log n) in quasi-polynomial
time using the true approximation in Chekuri-Pal [12]. In the full version [17] we
directly consider the ratio objective corresponding to (1), called ratio knapsack
rank-function orienteering, i.e.

max

{
f(V (τ))

d(τ)
: τ is an r-tour visiting vertices V (τ)

}
,

and obtain an improved polynomial time O(log2 n)-approximation algorithm.

Finally, we lose an additional log |U | = O(log(mn)) factor to solve the set
cover instance I (which is equivalent to StochVRP). Thus we obtain:

Theorem 5. There is a polynomial time O(log2 n · log(nm))-approximation al-
gorithm for StochVRP for a polynomial number m of scenarios and n vertices.
This ratio improves to O(log n · log(nm)) in quasi-polynomial time.

3 Algorithm for General Distributions

In this section we prove Theorem 1 under an arbitrary distribution D that is
accessed by sampling. We denote the input StochVRP instance by J . In the

418 I.L. Gørtz, V. Nagarajan, and R. Saket

full version [17] we apply a sampling-based reduction from [10] to obtain an
equivalent StochVRP instance J ′ withm = poly(n, λ) scenarios. This allows us to
apply the algorithm from the previous section to approximate the optimal value
of instance J . However a solution to J must also specify a valid recourse strategy
for every outcome q ∈ D, and not just for them outcomes in instance J ′. It turns
out that the recourse step is captured by an “outlier” version of VRP (defined
below), and we give an LP-based constant-factor bicriteria approximation for it.

The recourse strategy involves the outlier VRP problem: given a fixed tour τ
(as collection {τ1, . . . , τF } of r-tours) and outcome q ∈ {0, . . . , Q}V , find
• a subset of vertices whose demands qA ⊆ q can be served by the existing
route τ , subject to the capacity constraint of Q on its r-tours; and

• a minimum cost VRP solution to the residual demands q − qA.

A special case of outlier VRP is the restricted assignment problem [26]; see [17]
for details. So it is NP-hard to obtain any true approximation ratio for outlier
VRP. Instead we give an (O(1), O(1)) bicriteria approximation algorithm, which
suffices to obtain an approximation algorithm for StochVRP, proving Theorem 1.

The algorithm is based on a natural LP relaxation to outlier VRP. Consider
a solution with S ⊆ V as the vertices chosen to be served by τ . Then:

– There is an assignment φ : S → [F] such that (1) v ∈ τφ(v) for all v ∈ S; and
(2) for each r-tour j ∈ [F], the total demand assigned to it

∑
v∈φ−1(j) qv ≤ Q.

– The objective value is the optimum VRP on metric (V, d), depot r, capacity
Q and demands {qv : v ∈ V \S}. Using known lower-bounds for VRP [21,2],
at the loss of a constant factor, this is just MST(V \S) + Flow(V \ S) where
for any T ⊆ V , MST(T) = length of minimum spanning tree on {r}

⋃
T ,

and Flow(T) := 1
Q

∑
v∈T qv · d(r, v).

Thus we can write the following integer programming formulation for outlier
VRP, at the loss of an O(1)-factor.

min
∑
e∈E

de · ze +
1

Q

∑
v∈V

d(r, v) · qv · (1− xv) (2)

s.t.
∑
v∈τj

qv · yv,j ≤ Q ∀j ∈ [F], (3)

∑
j∈[F]:v∈τj

yv,j = xv ∀v ∈ V, (4)

∑
e∈δ(U)

ze ≥ 1− xv ∀U
� r, ∀v ∈ U, (5)

xv, yv,j ∈ {0, 1} ∀v ∈ V, ∀j ∈ [F],

ze ≥ 0 ∀e ∈ E.

Above xv is one iff v ∈ S, i.e. served by τ . Variables yv,j denote the assignment
φ : S → [F]. Constraint (4) ensures that each v ∈ S is assigned to some φ(v)
such that v ∈ τφ(v). Constraint (3) enforces the total assignment to each r-tour

is at most Q. Also E =
(
V
2

)
denotes the edge-set of the metric, and for any

Stochastic Vehicle Routing with Recourse 419

U ⊆ V , δ(U) denotes the edges with exactly one vertex in U . Constraint (5)
says that {ze : e ∈ E} is a fractional spanning tree connecting the vertices
{v : xv = 0} = V \ S to r. In the objective (2), the first term is the length
of the fractional spanning tree (corresponding to MST(V \ S)), and the second
term is Flow(V \ S). Dropping the integrality gives us an LP relaxation LP(τ, q)
which can be solved in polynomial time. Then we round the resulting fractional
solution (details in [17]) to obtain:

Theorem 6. There is an (O(1), 5)-bicriteria approximation algorithm for out-
lier VRP, that uses the fixed tour at most five times.

4 UGC Hardness of Approximation

In this section we prove a ω(1) UGC-hardness of approximation for StochVRP
even for a very simple star-like metric with a setting of λ that renders the re-
course tour trivial. Our hardness result is based on the Unique Games Conjecture
(UGC) of Khot [24]. Based on UGC, Bansal and Khot [3] proved the following
hardness of approximation result for minimum vertex cover on almost k-partite
k-uniform hypergraphs, which shall be the starting point of our reduction.

Theorem 7. [3] Assuming the Unique Games Conjecture, for any ε > 0 and
positive integer k ≥ 2, given a k-uniform hypergraph G with vertex set U and
hyperedge set E, it is NP-hard to distinguish between the following two cases:
YES CASE: There is a partition of U into k + 1 disjoint subsets X,U1, . . . , Uk

such that |X | ≤ ε|U | and the hypergraph induced by U \ X is k-partite with
U1, . . . , Uk as the k-partition. That is, any hyperedge e has at most one vertex
from any Ui. This implies that X∪Ui is a vertex cover in G for each i = 1, . . . , k,
and that the minimum vertex cover in G has size at most (1/k + ε)|U |.
NO CASE: The size of the maximum independent set in G is at most ε|U |, and
therefore the size of the minimum vertex cover in G is at least (1− ε)|U |.

In the rest of this section we shall give a hardness reduction from the problem
of distinguishing between k-uniform hypergraphs which are almost k-partite (as
in the YES case of Theorem 7) from those that have a very small maximum
independent set (as in the NO case of Theorem 7).

Hardness Reduction. Fix any positive integer k ≥ 2. Suppose we are given a
k-uniform hypergraph G on vertex set U and with hyperedge set E as a hard
instance from Theorem 7, where we shall fix the parameter ε in Theorem 7 later.
We transform G(U,E) into an instance of StochVRP as follows. For clarity, in
this section the nomenclature of “vertices” shall be in context of the hypergraph,
while “points” shall be used for corresponding elements in the metric.
Metric (V, d). The set of points V in the metric is U ∪ {r}, where r is the root.
The distances d are defined as follows. Let d(r, u) = L, where L = (|U |/2k+1/2),
for all u ∈ U . Further, for each pair u, u′ ∈ U , u �= u′, let d(u, u′) = 1. It is easy
to see that d is a metric. This simple metric can be realized by the shortest paths
in a star-like tree of distances as illustrated in Figure 1.

420 I.L. Gørtz, V. Nagarajan, and R. Saket

Capacity and Demands. The capacity Q = 1 and demands will be {0, 1}.
Demand Distribution D. There are polynomially many scenarios m = |E|, each
having uniform probability. Every hyperedge e ∈ E is a scenario having demand
of one at all points in e, and zero demand elsewhere.

Parameter λ. We set λ = 2m|U |(k + 1).
Before we proceed to the analysis of this reduction, we note that the cost of

the minimum cost r-tour covering points S ⊆ V \ {r}, is simply |U |/k + |S|.
Also, the optimal value is at most λ/m. Consider the fixed tour consisting of k
identical r-tours each covering U : since each scenario has at most k demands,
this solution never uses a recourse tour, and has cost k · (|U |/k+ |U |) < λ/m. So
we may assume that the optimal solution has no recourse tour: if the recourse
tour is non-empty in any scenario then its cost is at least λ/m.
YES Case. Suppose that G(U,E) is

r

|U |
2k

1
2

1
2

1
2

x

u1

u2

un

Fig. 1. Tree of distances realizing metric
d, with intermediate point x and V =
{r, u1, . . . , un}

a YES instance of Theorem 7 with
X,U1, . . . , Uk as the partition of U
with the properties as stated in the
theorem. Consider the r-tours τ1, . . . ,
τk, where τi is an r-tour that cov-
ers points X ∪ Ui (in addition to r).
Since every scenario in our instance
of StochVRP corresponds to a hyper-
edge in G, using the property in the
YES case that each hyperedge has at
most one vertex from each Ui, we see
that the r-tours τ1, . . . , τk satisfy all
the scenarios. As noted earlier the cost
of each r-tour that covers S ⊆ V \{r}
is |U |/k+|S|. Therefore the total cost
of the k r-tours τ1, . . . , τk is,

k · (|U |/k) +
k∑

i=1

|X ∪ Ui| ≤ |U |+ (1 + kε)|U | = (2 + kε)|U |,

by the properties of the partition X,U1, . . . , Uk of U .

NO Case. Suppose that G(U,E) is a NO instance of Theorem 7, so that the
maximum independent set in G is of size at most ε|U |. In this case we shall
prove that the total cost of any set of r-tours that satisfy all scenarios is at least
k(1 − fk(ε))|U |, where fk(ε) → 0 as ε → 0 for any fixed positive integer k ≥ 2.
We may assume that the number of r-tours in the optimal solution is at most
k2, otherwise the total cost will be at least k2(|U |/k) = k|U | and we shall be
done. Therefore, let γ1, . . . , γT be the r-tours in an optimal fixed tour, where
T ≤ k2. We shall estimate the number of points in U which occur in at most
k− 1 of these r-tours. For any subset I ⊆ [T], let U(I) ⊆ U be the points which
do not occur in {γi : i ∈ [T] \ I}. We have the following simple lemma.

Lemma 2. For any I ⊆ [T] with |I| = k − 1, U(I) is an independent set in G.

Stochastic Vehicle Routing with Recourse 421

Proof. For a contradiction, suppose that e is a hyperedge induced by U(I). Since
|e| = k, the scenario corresponding to e will not be satisfied by our solution as
the k vertices of e appear (as points) in at most k − 1 of the r-tours, namely
those given by I ⊆ [T]. Recall that each r-tour can serve only one demand. ��

The total number of points in U that appear in at most k − 1 of the r-tours is
upper bounded by, ∑

I⊆[T],|I|=k−1

|U(I)|.

There are
(

T
k−1

)
≤ 2T ≤ 2k

2

choices for the subsets I in the above expression.
Using the fact that any independent set in G has size at most ε|U |, the fraction

of points in U that occur in at most k−1 of the r-tours is at most ε2k
2

=: fk(ε).
Each of the remaining (1− fk(ε))|U | points appears in at least k of the r-tours;
so the total cost of the fixed tour is k(1− fk(ε))|U |.
Hardness Factor. In the YES case there is a solution of cost at most (2+kε)|U |,
whereas in the NO case any solution has cost at least k(1 − fk(ε))|U |. For any
positive integer k ≥ 2 and arbitrarily small δ > 0, choosing ε > 0 to be small
enough in Theorem 7, we obtain a hardness factor of k/2− δ.

References

1. Ak, A., Erera, A.L.: A paired-vehicle recourse strategy for the vehicle-routing prob-
lem with stochastic demands. Transportation Science 41(2), 222–237 (2007)

2. Altinkemer, K., Gavish, B.: Heuristics for unequal weight delivery problems with
a fixed error guarantee. Operations Research Letters 6, 149–158 (1987)

3. Bansal, N., Khot, S.: Inapproximability of Hypergraph Vertex Cover and Applica-
tions to Scheduling Problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp.
250–261. Springer, Heidelberg (2010)

4. Bertsimas, D.J.: A vehicle routing problem with stochastic demand. Operations
Research 40(3), 574–585 (1992)

5. Bertsimas, D.J., Jaillet, P., Odoni, A.R.: A priori optimization. Operations Re-
search 38(6), 1019–1033 (1990)

6. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New
York (1997)

7. Calinescu, G., Zelikovsky, A.: The polymatroid steiner problems. Journal of Com-
binatorial Optimization 9(3), 281–294 (2005)

8. Campbell, A.M., Thomas, B.W.: Probabilistic traveling salesman problem with
deadlines. Transportation Science 42(1), 1–21 (2008)

9. Charikar, M., Chekuri, C., Goel, A., Guha, S.: Rounding via trees: Deterministic
approximation algorithms for group steiner trees and k-median. In: Proc. STOC
1988, pp. 114–123 (1998)

10. Charikar, M., Chekuri, C., Pál, M.: Sampling Bounds for Stochastic Optimization.
In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and
RANDOM 2005. LNCS, vol. 3624, pp. 257–269. Springer, Heidelberg (2005)

422 I.L. Gørtz, V. Nagarajan, and R. Saket

11. Chekuri, C., Even, G., Kortsarz, G.: A greedy approximation algorithm for the
group steiner problem. Discrete Applied Mathematics 154(1), 15–34 (2006)

12. Chekuri, C., Pál, M.: A recursive greedy algorithm for walks in directed graphs.
In: Proc. FOCS, pp. 245–253 (2005)

13. Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack
problem: The benefit of adaptivity. Math. Oper. Res. 33(4), 945–964 (2008)

14. Dror, M.: Vehicle Routing with Stochastic Demands: Models & Computational
Methods. In: Modeling Uncertainty. International Series In Operations Research
& Management Science, vol. 46(8), pp. 625–649. Springer, Heidelberg (2005)

15. Erera, A.L., Savelsbergh, M.W.P., Uyar, E.: Fixed routes with backup vehicles for
stochastic vehicle routing problems with time constraints. Networks 54(4), 270–283
(2009)

16. Garg, N., Konjevod, G., Ravi, R.: A Polylogarithmic Approximation Algorithm for
the Group Steiner Tree Problem. Journal of Algorithms 37(1), 66–84 (2000)

17. Gørtz, I.L., Nagarajan, V., Saket, R.: Stochastic vehicle routing with recourse.
CoRR, abs/1202.5797 (2012)

18. Gupta, A., Krishnaswamy, R., Nagarajan, V., Ravi, R.: Approximation Algorithms
for Stochastic Orienteering. In: Proc. SODA 2012, pp. 245–253 (2012)

19. Gupta, A., Nagarajan, V., Ravi, R.: Approximation Algorithms for VRP with
Stochastic Demands. Operations Research 60(1), 123–127 (2012)

20. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Sampling and cost-sharing: Approximation
algorithms for stochastic optimization problems. SIAM J. Comput. 40(5), 1361–
1401 (2011)

21. Haimovich, M., Rinnooy Kan, A.H.G.: Bounds and heuristics for capacitated rout-
ing problems. Mathematics of Operations Research 10(4), 527–542 (1985)

22. Immorlica, N., Karger, D.R., Minkoff, M., Mirrokni, V.S.: On the costs and bene-
fits of procrastination: approximation algorithms for stochastic combinatorial op-
timization problems. In: Proc. SODA 2004, pp. 691–700 (2004)

23. Katriel, I., Mathieu, C.K., Upfal, E.: Commitment under uncertainty: Two-stage
stochastic matching problems. Theor. Comput. Sci. 408(2-3), 213–223 (2008)

24. Khot, S.: On the power of unique 2-prover 1-round games. In: Proc. STOC 2002,
pp. 767–775 (2002)

25. Konjevod, G., Ravi, R., Srinivasan, A.: Approximation algorithms for the covering
steiner problem. Random Struct. Algorithms 20(3), 465–482 (2002)

26. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming 46, 259–271 (1990)

27. Ravi, R., Sinha, A.: Hedging uncertainty: Approximation algorithms for stochastic
optimization problems. Math. Program. 108(1), 97–114 (2006)

28. Savelsbergh, M.W.P., Goetschalkx, M.: A comparison of the efficiency of fixed
versus variable vehicle routes. J. Business Logistics 16, 163–187 (1995)

29. Schrijver, A.: Combinatorial optimization: polyhedra and efficiency. Springer,
Berlin (2003)

30. Shmoys, D.B., Talwar, K.: A Constant Approximation Algorithm for the a priori
Traveling Salesman Problem. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO
2008. LNCS, vol. 5035, pp. 331–343. Springer, Heidelberg (2008)

31. Shmoys, D.B., Sozio, M.: Approximation Algorithms for 2-Stage Stochastic
Scheduling Problems. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS,
vol. 4513, pp. 145–157. Springer, Heidelberg (2007)

Stochastic Vehicle Routing with Recourse 423

32. Shmoys, D.B., Swamy, C.: An approximation scheme for stochastic linear program-
ming and its application to stochastic integer programs. J. ACM 53(6), 978–1012
(2006)

33. Srinivasan, A.: New approaches to covering and packing problems. In: Proc. SODA
2001, pp. 567–576 (2001)

34. Stewart, W., Golden, B.: Stochastic vehicle routing: A comprehensive approach.
Eur. Jour. Oper. Res. 14, 371–385 (1983)

35. Toth, P., Vigo, D.: The vehicle routing problem. Society for Industrial and Applied
Mathematics (2001)

The Online Metric Matching Problem

for Doubling Metrics

Anupam Gupta1,� and Kevin Lewi2,��

1 Computer Science Department, Carnegie Mellon University
2 Computer Science Department, Stanford University

Abstract. In the online minimum-cost metric matching problem, we
are given an instance of a metric space with k servers, and must match
arriving requests to as-yet-unmatched servers to minimize the total dis-
tance from the requests to their assigned servers. We study this problem
for the line metric and for doubling metrics in general. We give O(log k)-
competitive randomized algorithms, which reduces the gap between the
current O(log2 k)-competitive randomized algorithms and the constant-
competitive lower bounds known for these settings.

We first analyze the “harmonic” algorithm for the line, that for each
request chooses one of its two closest servers with probability inversely
proportional to the distance to that server; this is O(log k)-competitive,
with suitable guess-and-double steps to ensure that the metric has aspect
ratio polynomial in k. The second algorithm embeds the metric into a
random HST, and picks a server randomly from among the closest avail-
able servers in the HST, with the selection based upon how the servers
are distributed within the tree. This algorithm is O(1)-competitive for
HSTs obtained from embedding doubling metrics, and hence gives a ran-
domized O(log k)-competitive algorithm for doubling metrics.

1 Introduction

In the online minimum-cost metric matching problem, the input is a metric
space (V, d) with k pre-specified servers S ⊆ V . The requests R = r1, r2, . . . , rk
(with each ri ∈ V) arrive online one-by-one; upon arrival each request must be
immediately and irrevocably matched to an as-yet-unmatched server. The cost of
matching request r to server f(r) ∈ S is the distance d(r, f(r)) in the underlying
metric space. The goal is to find a matching f that approximately minimizes the
total cost

∑
i d(ri, f(ri)). We study the problem in the framework of competitive

analysis, comparing the cost of our algorithm’s matching to the cost of the best
offline matching from R to S. (This minimum cost bipartite perfect matching
problem can be easily solved offline.)

The online problem was introduced in the early 1990’s by Kalyanasundaram
and Pruhs [4], and by Khuller, Mitchell, and Vazirani [6]. Both papers gave

� Supported in part by NSF awards CCF-0964474 and CCF-1016799.
�� Work done when at the Computer Science Department, Carnegie Mellon University,

Pittsburgh PA 15217.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 424–435, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Online Metric Matching Problem for Doubling Metrics 425

deterministic 2k − 1-competitive algorithms, which is the best possible even
when the metric is a star with k leaves with the servers at the leaves. For the star
example, any randomized algorithmmust be Ω(Hk)-competitive, and the natural
randomized greedy algorithm is indeed O(Hk)-competitive, where Hk is the kth

harmonic number. In 2006, Meyerson et al. [9] showed that the randomized
greedy algorithm, which assigns to a uniformly random closest server, is O(log k)-
competitive when the metric is a α-hierarchically well-separated tree (α-HST)
with suitably large separation α between levels, namely with α = Ω(log k).
This implies an O(log3 k)-competitive randomized algorithm for general metrics
using randomized embeddings into HSTs [2]. Bansal et al. [1] gave a different
algorithm which is O(log k)-competitive on 2-HSTs, resulting in an O(log2 k)
competitive algorithm on general metrics. It remains an open problem to close
the gap between O(log2 k) and Ω(log k) for general metrics.

The gap is even worse when we consider natural special classes of metrics such
as the line, or grids, or doubling metrics. For points on the line, the best deter-
ministic lower bound is only 9.001 [3] (with the randomized lower bound being
even weaker), and no algorithms better than those that apply to general metrics
are known for neither the line nor doubling metrics, both in the deterministic
and randomized settings.

Results and Techniques. In this paper, we give randomized algorithms for re-
stricted classes of metrics. In particular, we show O(log k)-competitive random-
ized algorithms for the online metric matching problem on the line metric and
on doubling metrics. (For the rest of this section, we assume that the aspect ratio
of the metric, namely the maximum-to-minimum distance ratio, is O(k3)—this
can be achieved with only a constant factor loss using the guess-and-double
framework, details in the full version.)

Our first algorithm is the natural randomized Harmonic algorithm: letting sL
and sR be the closest available left and right servers to the current request r, we
assign r to sL with probability

1/d(r,sL)
1/d(r,sL)+1/d(r,sR) =

d(r,sR)
d(sL,sR) ,

and to sR with the remaining probability. If dmax and dmin are the largest and
smallest distances between any two servers, we show:

Theorem 1. The Harmonic algorithm is O(log dmax

dmin
)-competitive for the line.

Hence, with using guess-and-double to ensure dmax/dmin = O(k3), we get an
O(log k)-competitive algorithm for the line.

Our proof uses a coupling argument: we consider two runs of the Harmonic
algorithm, the first starting with some set S of servers and the second with
the set (S ∪ {s1} \ {s2})—i.e., differing from S in exactly one server. We show
that the expected difference in cost between these two runs of Harmonic is
O(log dmax

dmin
) · d(s1, s2). Now, if we construct a sequence of hybrid algorithms

(each of which first follows the optimal algorithm, and at some point switches
to the Harmonic algorithm), we can use the coupling argument to compare the

426 A. Gupta and K. Lewi

runs of adjacent pairs on these sequences to bound the difference between our
algorithm and Opt. This idea is similar to the path-coupling idea of Bubley and
Dyer, used to show mixing of Markov chains.

Our second algorithm Random-Subtree generalizes to the broader class of dou-
bling metrics. It first embeds the metric into a random distance-preserving Δ-
degree α-HST, and then runs a certain randomized greedy algorithm on this
new instance, where Δ and α are constants that depend on the doubling di-
mension. At first glance, using a O(1)-HST seems bad, since Meyerson et al.
showed that their randomized greedy algorithm requires a large separation α
in the HST. However, we avoid the lower bound (a) by using the fact that the
bad examples require large degrees, whereas HSTs obtained from the line and
doubling metrics have small degree, and (b) by altering the randomized greedy
algorithm slightly (in a way we will soon describe). At a high level, we show
that if a metric can be embedded into an α-HST where each vertex has at most
Δ children, our randomized algorithm is O(HΔ/ε)-competitive on such an HST,
so long as α ≥ (1 + ε)HΔ. (See Theorem 5 for a precise statement.) Since all
doubling metrics admit such embeddings (for values of Δ,α depending only on
the doubling dimension) with O(log k) expected stretch, we get:

Theorem 2. The randomized algorithm Random-Subtree is O(log k)-
competitive for online metric matching on doubling metrics, and hence also for
the line.

The improvement from O(log3 k) in [9] (for general metrics) to O(log k) (for
doubling metrics) is due to both the nature of doubling metrics and the HSTs
arising from them, and also due to our algorithm Random-Subtree differing from
that of [9]. Instead of picking a uniformly random available server closest to
the request in the HST, we use the following procedure: starting off at the
lowest ancestor of the request that contains an available server, our algorithm
repeatedly moves us to a uniformly random subtree of this node that has an
available server until we reach a leaf/server. Note that our process does not pick
a random closest server, but biases towards available servers in subtrees with
few available servers. This results in such subtrees being empty earlier, which
in turn results in fewer choices higher up in the tree for future requests. Our
potential function-based analysis refines the one from [9] by using this property.

The rest of the paper is as follows. We present some notation and prelimi-
naries in Section 2. The Harmonic algorithm is analyzed in Section 3, and the
Random-Subtree algorithm presented and analyzed in Section 4. Due to lack
of space, many proofs are deferred to the full version. Also in the full version,
we present a third algorithm that is O(log k) competitive for matching on the
line. This algorithm also embeds the line into a random HST, but then runs
deterministically on the resulting HST to give this guarantee.

Other Related Work. The paper [5, Section 2.2] gave a lower bound of 9 for
deterministic algorithms on the line via a reduction from the so-called cow-
path problem; they conjectured this lower bound was tight for the line, which
was disproved in [3]. [5] also conjectured that the work function algorithm (see,

The Online Metric Matching Problem for Doubling Metrics 427

e.g., [8]) obtains an O(1)-competitive ratio on the line; this was disproved by
Koutsoupias and Nanavati [7], who showed an Ω(log k) lower bound (and an
O(k) upper bound) for the work function algorithm. There is no algorithm, either
randomized or deterministic, currently conjectured to be O(1)-competitive.

2 Notation and Preliminaries

An instance of the problem is given by a metric (V, d) with servers at S ⊆ V ,
where |S| = k. As mentioned in [9], we can assume without loss of generality
that all requests also arrive at vertices in S (with only a constant factor loss in
the competitive ratio). Hence, in the rest of the paper, we assume that S = V ,
and hence |V | = |S| = k. Moreover, we assume there is only one server at each
node, as this is only for ease of exposition and the algorithms easily extend to
multiple servers at nodes.

An α-HST (Hierarchically well-Separated Tree) is defined as a rooted tree
where all edges at depth i have weight c/αi for some fixed constant c. Here, the
edges at depth 0 are those incident to the root, etc. An HST is Δ-ary if each
node has at most Δ children. For the case of the line metric, we assume that
the aspect ratio of the points containing the servers (which, recall, is defined

as
maxx,y∈S d(x,y)
minx,y∈S d(x,y)) is O(k3); in the full version, we show that this loses only a

constant factor in the competitiveness. This allows us to embed these points
into distributions of dominating binary 2-HSTs with expected stretch O(log k).
Furthermore, for HSTs that are constructed from the line, we refer to the width of
a tree as the maximum line-distance between any two points within the tree. For
doubling metrics we cannot make such a general assumption on the aspect ratio;
however, by suitably guessing the value of Opt and running the HST construction
algorithms only for the top O(log k) levels, one can still give a reduction to the
problem on bounded-degree HSTs with only an O(log k)-expected loss. (Details
in the full version.)

For a node a of a tree, let T (a) represent the subtree rooted at a. Also, define
the level of a to be the maximum number of edges on a path from a to a leaf
of T (a). When referring to servers to be assigned by requests, we will refer to
servers that have not yet been assigned to as “available”, “free”, or “unassigned”.
We will use Opt to denote both the optimum matching as well as its cost.

3 The Harmonic Algorithm for the Line

To prove the performance guarantee for the Harmonic algorithm given by
Theorem 1, we first give a lemma which analyzes the expected difference in cost
between running Harmonic on all the requests and running the optimal algo-
rithm for just the first step, and Harmonic thenceforth. Then, we show that using
this bound in a “hybrid argument” proves Theorem 1. (This is essentially the
path-coupling idea of Bubley and Dyer.) For a request sequence σ = r1, . . . , rk,
let gσ be the matching obtained by assigning r1, . . . , rk using Harmonic. Let

428 A. Gupta and K. Lewi

N(rt) be the set of available neighboring servers to rt—those which are closest
to rt on the left or right and available at time t−. Define hσ to be a matching
obtained by first matching r1 to an given server s1 ∈ N(r1), and then using
Harmonic to assign r2, . . . , rk. We will use G for the algorithm producing gσ
and H for hσ.

Lemma 3 (Hybrid Lemma). If distances between servers are in Z ∩ [0, Γ],

EG

[k∑
i=1

d(ri, gσ(ri))

]
− EH

[k∑
i=1

d(ri, hσ(ri)

]
≤ O(log Γ) · d(r1, s1).

In other words, the expected cost of G for any request sequence is at most the
expected cost of H on the same request sequence plus O(log Γ) · d(r1, s1)—
the difference is proportional to the length of this forced initial assignment.
This immediately gives us Theorem 1—let us show this fact before we prove
Lemma 3.

Proof of Theorem 1. Given any request sequence σ and an optimal matching
fσ for this sequence such that fσ(r1) ∈ N(r1), we can define a sequence of
hybrid matchings {htσ}kt=0, where h

t
σ is obtained by matching the first t requests

r1, . . . , rt in σ to fσ(r1), . . . , fσ(rt) and the remaining requests rt+1, . . . , rk to
gσ(rt+1), . . . , gσ(rk). Note that h0σ is just the Harmonic matching gσ, and hkσ
produces the optimal matching fσ. Moreover, by ignoring the servers in {fσ(ri) |
i ≤ t} and just considering rt+1, . . . , rk as the request sequence, Lemma 3 implies

E[
∑k

i=t+1 d(ri, h
t
σ(ri))] ≤ E[

∑k
i=t+1 d(ri, h

t+1
σ (ri))]+O(log Γ)·d(rt+1, fσ(rt+1)),

since we can regard the assignment rt+1 → fσ(rt+1) ∈ N(rt+1) as the assignment
r1 → s1 used in Lemma 3. (It can be checked that the optimal assignment indeed
assigns r1 to a server in N(r1).) Now, by adding

∑t
i=1 d(ri, fσ(ri)) to both sides,

E[
∑k

i=1 d(ri, h
t
σ(ri))] ≤ E[

∑k
i=1 d(ri, h

t+1
σ (ri))] +O(log Γ) · d(rt+1, fσ(rt+1)).

Summing this over all values of t ≤ k − 1, and using that h0σ = gσ and hkσ = fσ,

E[
∑k

i=1 d(ri, gσ(ri))] ≤ E[
∑k

i=1 d(ri, fσ(ri))] +O(log Γ) ·
∑k

i=1 d(ri, fσ(ri)).

The left side is the expected cost of Harmonic, and the right side is the cost of
the optimal matching, which proves Theorem 1. �

3.1 Proof of the Hybrid Lemma: A Coupling Argument

We now prove Lemma 3. Here is the high-level idea: recall that G is just a run
of Harmonic, whereas H first forces r1 → s1 (a server adjacent to r1 on the line)
and then runs Harmonic. So, just after r1 has been assigned, either both G and
H have the same set of free servers, or their symmetric difference is a pair of
servers with no other free servers between them. (Think of the location of the

The Online Metric Matching Problem for Doubling Metrics 429

free servers in one run as being obtainable from the free servers in the other run
by moving a single server without jumping over any free servers, and let δ1 be
this random distance.) Now we will couple the random runs of G and H so that
this property will continue to hold (or the set of servers will become the same,
after which they will proceed in lock-step). We prove that the expected difference
in the costs of the two algorithms will be O(log Γ) ·E[δ1]. Since E[δ1] = d(r1, s1)
by the probabilities in the Harmonic algorithm, Lemma 3 follows.

For convenience, we will say that the request rt is assigned at time t, and we
refer to the situation just before this assignment as being at time t−, and the
situation just after as time t+; note that (t−1)+ = t−. Let AG(t) be the set of free
servers at time t+ when running algorithm G, and AH(t) be similarly defined
for algorithm H . Note that if at time t+, AG(t) = AH(t), then the expected
difference in costs between algorithms G and H on requests rt+1, . . . , rk is 0.
Thus, we can without loss of generality only consider the time instants where
AG(t) �= AH(t).

Let g1 be the only element of AG(1) \ AH(1) and h1 the only element of
AH(1) \ AG(1). Let δt = d(gt, ht) be the distance between these two servers.
We now give a coupling π between the executions of G and H—equivalently a
coupling between the evolutions of sets AG(t) and AH(t)—from the two different
starting configurations. For a valid coupling, the marginals should give us a
faithful execution of Harmonic on AG(1) and AH(1) respectively. We define a
coupling π maintaining the invariant that |AG(t) \AH(t)| = 1 = |AH(t) \AG(t)|,
so we need to also define the coupling only on such pairs of states. By symmetry,
assume that g1 is to the left of h1; we will maintain the invariant that gt lies
to the left of ht. Also, when we start, there are no available servers between
g1 and h1, and we will also maintain the invariant that there are no available
servers between gt and ht, so we need only define the coupling over such pairs
of states.

For the coupling π, we will write Prπ[E] to denote the probability of an event
E . This coupling also induces marginals on G and H , which we indicate by
PrG[E]. We write r →G s if G assigns r to s, and NG(rt) will be the (at most
two) neighboring free servers to the request rt in G. (Analogous definitions hold
for H .) If r →G sg and r →H sh, then Δc(r) := d(r, sg) − d(r, sh). Note that
Δc(r) can be negative.

Now, for the coupling π, there are four cases to consider when the request rt
arrives:

• Case 0: rt’s neighboring servers are identical in both G and H ,
• Case 1: rt lies to the left of both gt and ht but gt ∈ NG(rt),
• Case 2: rt lies between gt and ht (so gt ∈ NG(rt) and ht ∈ NH(rt)), and
• Case 3: rt lies to the right of both gt and ht but ht ∈ NH(rt).

The fact that these are the only four cases follows from the invaraints we maintain
in the coupling. Let us now define the coupling for these cases. (For lack of space,
we defer the first and last cases to the full version.)

– For Case 1, we have the following situation:

430 A. Gupta and K. Lewi

w

x

z

s1 rt gt ht

Set p = w−z
w and q = w−z

w+x . We define the coupling π for this case:

Event Assignments Prπ δt+1 − δt Δc(rt)
1 rt →G s1, rt →H s1 1− p 0 0
2 rt →G gt, rt →H s1 p− q w 2z − w
3 rt →G gt, rt →H ht q −x −x

Note that rt goes to s1 with probability 1− p and to gt with probability p,
hence the coupling is faithful run of G. And rt goes to s1 with probability
1− q and to ht with probability q, as it should in H .

– In Case 2, we have the following situation:

x

z

gt htrt s2s1

w y

Set p = x+y−z
x+y and q = w+z

w+x , and define the coupling as follows:

Event Assignments Prπ δt+1 − δt Δc(rt)
1 rt →G s2, rt →H h 1− p y y
2 rt →G g, rt →H h p+ q − 1 −x 2z − x
3 rt →G g, rt →H s1 1− q w −w

Note that rt goes to gt with probability p and to s2 with probability p, hence
the coupling is faithful run of G. And rt goes to s1 with probability 1 − q
and to ht with probability q, as it should in H .

Define Qi,n to be the worst-case probability of the distance between gt′ and ht′
eventually going above n (for some future time t′), conditioned on d(gt, ht) = i
at time t—here the worst-case is taken over all possible future request sequences,
and all feasible arrangements of any number of common servers in AG(t)∩AH(t),
subject to the constraint that the distance between gt and ht is equal to i (and
where gt is to the left of ht and no free servers between them).

Lemma 4. The coupling maintains the following properties:
(i) At each step t, if δt+1 �= 0, then Δc(rt) ≤ δt+1 − δt. If δt+1 = 0, then
Δc(rt) ≤ δt.

(ii) Qi,n ≤ i/n.

Proof. Property (i) follows by inspection of the above tables. For the proof of
Property (ii), clearly Qn,n = 1 for all n. Now, fix some n, and suppose we know

The Online Metric Matching Problem for Doubling Metrics 431

that for all j > δt, we have Qj,n ≤ j/n. Note that for the above four cases,
each of these requests at time t either makes δt+1 = 0 (after which it can never
reach n), keeps δt+1 = δt, or makes distance δt+1 more than δt (upon which we
can apply induction to get a bound on Qδt,n). We thus enumerate over all four
possibilities:

– For case 0, the distance does not change, and so there is nothing to show.
– For case 1, we get Qx,n = (p− q)Qx+w,n+(1− p)Qx,n. This gives us Qx,n =

p−q
p Qx+w,n, and using the inductive hypothesis for Qx+q,n, we get Qx,n ≤

(1− q/p)(x+ w)/n = x/n.
– For case 2, we have Qx,n = (1−p)Qx+y,n+(1− q)Qx+w,n ≤ z

x+y (x+ y)/n+
x−z
x+w (x+ w)/n = x/n.

– For case 3, we get Qx,n = (p− q)Qx+w,n+(1− p)Qx,n. This gives us Qx,n =
p−q
p Qx+w,n, and so Qx,n ≤ (1 − q/p)(x+ w)/n = x/n.

In all cases, assuming that Qj,n ≤ j/n for all j > x, we see that Qx,n ≤ x/n.
This completes the proof of the lemma.

We can now prove Lemma 3. We want to bound EG[
∑k

i=1 d(ri, gσ(ri))] −
EH [
∑k

i=1 d(ri, hσ(ri)], but since π’s marginals are faithfully running G and H ,
we can use linearity of expectatitions to bound

Eπ

[k∑
i=1

d(ri, gσ(ri))−
k∑

i=1

d(ri, hσ(ri)

]
= Eπ

[k∑
i=1

Δc(rk)

]
.

But by Lemma 4(i), we know that Δc(rk) ≤ (δ2 − δ1) + (δ3 − δ2) + · · · + (δq −
δq−1) + δq, where δq+1 = 0 for the first time. This is at most 2δq = 2δmax. So it
remains to bound Eπ[δmax]. We see that

Eπ[δmax | δ1] =
Γ∑
l=1

Pr
π
[δmax ≥ l|δ1] ≤

∑
l

Qδ1,l ≤
Γ∑
l=1

δ1/l = O(log Γ) · δ1

by Lemma 4(ii) and the definition of Qj,n. So Eπ[δmax] = O(log k) ·Eπ[δ1]. Now

if the two servers adjacent to r1 were s1 and h1, then we have E[δ1] =
d(r1,h1)
d(h1,s1)

·
0 + d(r1,s1)

d(h1,s1)
· d(h1, s1) = d(r1, s1). This proves the hybrid lemma (Lemma 3).

4 The Random-Subtree Algorithm

We now turn to showing that a different randomized algorithm gives an O(log k)
competitive ratio for the line; the proof generalizes to doubling metrics too. To
start off, we use the fact that binary 2-HSTs approximate the line metric with
O(log k) expected stretch. It is not difficult to show that the (deterministic)
greedy algorithm on a binary 2-HST is O(log k)-competitive compared to the
optimal solution on the tree, which implies an O(log2 k)-competitive ratio in
all. In this section, we show that randomization helps: a certain randomized
greedy algorithm is O(1)-competitive on the binary 2-HST, giving us a different
O(log k)-competitive algorithm for the line. In fact, the proof extends to HSTs
obtained from doubling metrics, and hence proves Theorem 2.

432 A. Gupta and K. Lewi

The Algorithm. Let us define the algorithm Random-Subtree for online metric
matching on an arbitrary HST as follows: when a request r comes in, consider
its lowest ancestor node a whose subtree T (a) also contains a free server. Now
we choose a random free server in the subtree rooted at a as follows: from among
those of a’s children whose subtrees contain a free server under them, we choose
such a child of a uniformly at random, and repeat this process until we reach
a leaf/server s—we then map r to server s. Observe that ours is a different
randomized greedy algorithm from that in [9], which would have chosen a server
uniformly at random from among all of the servers in T (a). Our main theorem
is the following.

Theorem 5. The algorithm Random-Subtree is 2(1 + 1/ε)HΔ-competitive on
Δ-ary α-HSTs, as long as α ≥ max((1 + ε)HΔ, 2).

Since the line embeds into binary 2-HSTs with expected stretch O(log k), we
get an O(log k)-competitive randomized algorithm for the line. Moreover, in
the full version, we show that an algorithm for Δ-ary α-HSTs satisfying the
property above (with Δ = O(1)) implies an algorithm for doubling metrics with
an additional loss of O(log k); this proves Theorem 2.

The proof of the theorem goes thus: we first just consider the edges incident to
the root (which we call root-edges) of an Δ-ary α-HST, and count the number
of times these edges are used. Specifically, we show that for any sequence of
requests, the number of requests that use the root-edges in our algorithm is
at most HΔ times the minimum number of requests that must use these root-
edges. This “root-edges lemma” is the technical heart of our analysis; getting
HΔ instead of Hk (obtained in [9]) requires defining the right potential function,
and carefully accounting for the gain we get from using the Random-Subtree
algorithm rather than the randomized greedy algorithm of [9].

Having proved the root-edges lemma, notice that for any fixed vertex v in an
HST, the subtree rooted at v is another HST on which we can apply the root-
edges lemma to bound the cost incurred on the edges incident to v. Consequently,
applying this for every internal vertex in the HST and summing up the results
shows that the total cost remains at most O(HΔ) ·Opt, as long as the parameter
α for the HST is larger than HΔ.

The Analysis. Consider a Δ-ary α-HST T with a set of requests R ∪ R′ such
that the requests in R originate at the leaves of T , and those in R′ originate at
the root. We assume that the number of servers in T is at least |R ∪ R′|. Let
T1, T2, . . . , TΔ denote the Δ child subtrees of T . Without loss of generality, we
assume that T has exactly Δ child subtrees. We will use R(Ti) to denote the set
of requests that originate in subtree Ti. Let ni be the number of servers in Ti,
and let M∗ =

∑Δ
i=1 max(|R ∩ R(Ti)| − ni, 0). The following fact gives a lower

bound for Opt.

Fact 6. In any assignment of requests in R ∪ R′ to servers, at least M∗ + |R′|
requests use root-edges.

The Online Metric Matching Problem for Doubling Metrics 433

The following crucial lemma upper-bounds the expected cost incurred by the
algorithm on just the root edges.

Lemma 7 (Root-Edges Lemma). Let the random variable M count the num-
ber of requests in R ∪ R′ that use a root-edge when assigned by the algorithm
Random-Subtree.

E[M] ≤ HΔ · (M∗ + |R′|).

Proof. Let the k requests R∪R′ be labeled r1, r2, . . . , rk, where r1 is the earliest
request and rk is the latest request. The request rt is assigned at time t, and
we refer to the situation just before this assignment as being at time t−, and
the situation just after as time t+. Note that t− for t = 1 (denoted as 1−)
represents the time before any request assignments have been made, and t+ for
t = k (denoted as k+) represents the time after all request assignments have
been made. Let Rt = {rt, rt+1, . . . , rk}, the set of requests at time t− that have
yet to arrive. At time t−, let ni,t be the number of available servers in tree Ti.
A subtree Ti is said to be open at time t− if ni,t > 0 (there are available servers
at time t− in Ti). Let ηt be the number of open subtrees of T at time t−.

Define the first min(ni,t, |Rt ∩ R(Ti)|) requests of Ti to be the local requests
of Ti at time t− (these are the ones in R(Ti) that have the lowest numbered
indices), and the remaining requests in Ti to be the global requests of Ti at time
t−.1 Let Li,t and Gi,t be the set of local and global requests in Ti at time t−,
and let Lt := ∪iLi,t and Gt := ∪iGi,t. For convenience, we say that a request rj
becomes global at time t if rj is local at time t−, but rj is global at time t+. Let
requests in Rt := Rt ∩R′ be called root requests of T at time t−.

As a sanity check, note that at the beginning (at time 1−), the set of pending
requests R1 = R∪R′, the number of pending requests in subtree Ti is ni,1 = ni,
the number of global requests in Ti is |Gi,1| = max(|R ∩ R(Ti)| − ni, 0) (so the
total number of global requests at time 1− is M∗), and the number of root
requests is |R1| = |R′|.

Recall that global requests of Ti must assign to servers outside of Ti: while an
optimal offline algorithm can identify where to assign these global requests, an
online algorithm may assign a global request from Ti to some subtree Tj that
only has as many servers as future requests, which causes some local request
in Tj to become global. Hence we want to upper-bound the number of future
requests in Rt+1 that become global due to our assignment for rt. We associate
with each request in Rt a “cost” at time t− which represents this upper bound.
Later, we will use the cost function to define the potential function. The cost
function at time t− is Ft : Rt → Z≥0; we say it is well-formed if it satisfies two
properties:

– Ft(rj) = 0 if and only if rj ∈ Lt (i.e., it is a local request at time t−), and
1 The idea behind calling requests local/global is this: assuming no servers in Ti are
used up by requests from other subtrees, the local servers will be assigned within Ti

by our algorithm, whereas the global ones will be assigned to other subtrees (and
hence use a root-edge). Of course, as servers within Ti are used by requests in other
subtrees, some local requests become global.

434 A. Gupta and K. Lewi

– for all global and root requests rj ∈ Gt ∪ Rt, Ft(rj) is an upper bound on
the random variable ηj , the number of open subtrees at time j−.

Constructing the Well-Formed Cost Functions. We set F1(rj) = Δ (the degree
of the tree) for all rj ∈ G1 ∪ R1 (global and root requests at time 1−), and
F1(rj) = 0 for all rj ∈ L1 (local requests at time 1−). It is immediate that the
map F1 is well-formed.

Now at each time t+, we will define the next function Ft+1 using Ft. For
this, first consider time t−, and suppose that the map Ft is well-formed. The
easy case first: If rt ∈ Lt, then define Ft+1(r) = Ft(r) for all r ∈ Rt. In this
case if a request in Rt is a local/global/root request at time t−, it remains a
local/global/root request at time t+, so Ft+1 is still well-formed.

On the other hand, suppose rt ∈ Gt ∪ Rt, i.e., it is a global or root request.
Recall there are ηt open subtrees at time t−. Each open subtree Ti contains
|Rt∩R(Ti)| requests and ni,t free servers, so if |Rt∩R(Ti)| ≥ ni,t then assigning
rt to a server in this subtree would cause some request rj in Rt ∩ R(Ti) to
become global at time t (because ni,t+1 would become ni,t − 1). In this case,
define at(Ti) := j, the index of the request rj that turns global in subtree
Ti. Else, if no request in Rt ∩ R(Ti) would become global, set at(Ti) := k + i
(which cannot be the index of any request, since there are only k requests).
Let At = {at(Ti) | Ti open at time t−}; note that |At| = ηt. Now denote the
elements of At by {pj}ηt

j=1 such that p1 < p2 < · · · < pηt .
(Another sanity check: we claim that the last entry pηt > k; indeed, if rt is

a global or root request, there must be some open subtree Ti which has more
available servers than requests.) Now, let Ti be the subtree that rt assigns to,
chosen by picking out of the open subtrees uniformly at random. We now define
the map Ft+1 at time t+. There are two cases to consider:

– If at(Ti) > k (i.e., none of the requests in R(Ti) ∩ Rt+1 become global due
to assigning rt), then we set Ft+1(r) = Ft(r) for all requests r ∈ Rt+1.

– If at(Ti) ≤ k, then say at(Ti) = pηt−q+1 in the ordering given above (i.e.,
at(Ti) was the qth largest value in At). Now assign Ft+1(r) = Ft(r) for all
r ∈ Rt+1 \ {rat(Ti)}, and Ft+1(rat(Ti)) = q − 1.

Showing that this map Ft+1 is well-formed is deferred to the full version. Note
that maps Ft and Ft+1 are either the same or differ on at most one request rj that
becomes global at time t, in which case Ft+1(rj) becomes positive. Moreover,
Ft′(rj) = Ft+1(rj) for all times t′ ∈ [t+ 1, j].

The Potential Function Analysis. We are now in a position to define the potential
function,

Φt =
∑
r∈Rt

HFt(r), (4.1)

where we consider H0 = 0. Also, define ρt to be the number of requests that
our algorithm has already matched outside of their subtrees at time t−. The
root-edges lemma follows immediately from the following claim, proved using
induction.

The Online Metric Matching Problem for Doubling Metrics 435

Lemma 8. For all t ∈ [1, k + 1], E[Φt + ρt] ≤ HΔ · (M∗ + |R′|).

(Proof given in the full version.) Since ρk+1 = M and Φk+1 = 0, using Lemma 8
with t = k + 1 finishes the proof of the root-edges lemma.

The next lemma bounds the total cost, not just the cost on the root edges, by
considering every subtree in the HST and applying the root-edges lemma to each
subtree.

Lemma 9. Consider a Δ-ary α-HST T , any set R of requests at the leaves of
T , and requests R′ at the root of T , such that |R ∪R′| is at most the number of
servers in T . If Alg(R ∪R′, T) denotes the cost of Random-Subtree on requests
R ∪R′ on tree T , and Opt(R ∪R′, T) the cost of the optimal solution, we have

E[Alg(R ∪R′, T)] ≤ c ·HΔ ·Opt(R ∪R′, T)

for c = 2(1 + 1/ε) as long as α ≥ max{2, (1 + ε)HΔ}.

The lemma above directly proves Theorem 5. As an aside, note that 2-HSTs that
have large degree, or binary HST’s that have α ≈ 1 (say α = 1 + 1/ log k), can
both simulate star metrics, on which we have an Ω(log k) lower bound—hence
we do need some relationship between α and Δ.

References

1. Bansal, N., Buchbinder, N., Gupta, A., Naor, J.S.: An o(log2 k)-competitive algo-
rithm for metric bipartite matching. In: Proceedings of the 15th Annual European
Symposium on Algorithms, pp. 522–533 (2007)

2. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. In: STOC 2003: Proceedings of the Thirty-Fifth Annual
ACM Symposium on Theory of Computing, pp. 448–455 (2003)

3. Fuchs, B., Hochstattler, W., Kern, W.: Online matching on a line. Theoretical Com-
puter Science 332, 251–264 (2005)

4. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3),
478–488 (1993)

5. Kalyanasundaram, B., Pruhs, K.: Online Network Optimization Problems. In: Fiat,
A. (ed.) Online Algorithms 1996. LNCS, vol. 1442, pp. 268–280. Springer, Heidelberg
(1998)

6. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipartite
matching and stable marriages. Theor. Comput. Sci. 127(2), 255–267 (1994)

7. Koutsoupias, E., Nanavati, A.: The Online Matching Problem on a Line. In: Solis-
Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 179–191. Springer,
Heidelberg (2004)

8. Koutsoupias, E., Papadimitriou, C.H.: On the k-server conjecture. J. ACM 42, 971–
983 (1995)

9. Meyerson, A., Nanavati, A., Poplawski, L.: SODA 2006: Proceedings of the Sev-
enteenth Annual ACM-SIAM Symposium on Discrete Algorithm. In: SODA 2006:
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algo-
rithm, pp. 954–959 (2006)

Approximating Sparse Covering Integer

Programs Online�

Anupam Gupta1,�� and Viswanath Nagarajan2

1 Computer Science Department, Carnegie Mellon University
2 IBM T.J. Watson Research Center

Abstract. A covering integer program (CIP) is a mathematical program
of the form:

min{c�x | Ax ≥ 1, 0 ≤ x ≤ u, x ∈ Zn},

where A ∈ Rm×n
≥0 , c, u ∈ Rn

≥0. In the online setting, the constraints (i.e.,
the rows of the constraint matrix A) arrive over time, and the algorithm
can only increase the coordinates of x to maintain feasibility. As an
intermediate step, we consider solving the covering linear program (CLP)
online, where the requirement x ∈ Zn is replaced by x ∈ Rn.

Our main results are (a) an O(log k)-competitive online algorithm for
solving the CLP, and (b) an O(log k·log �)-competitive randomized online
algorithm for solving the CIP. Here k ≤ n and � ≤ m respectively denote
the maximum number of non-zero entries in any row and column of the
constraint matrix A. By a result of Feige and Korman, this is the best
possible for polynomial-time online algorithms, even in the special case
of set cover (where A ∈ {0, 1}m×n and c, u ∈ {0, 1}n).

The novel ingredient of our approach is to allow the dual variables to
increase and decrease throughout the course of the algorithm. We show
that the previous approaches, which either only raise dual variables, or
lower duals only within a guess-and-double framework, cannot give a
performance better than O(log n), even when each constraint only has a
single variable (i.e., k = 1).

1 Introduction

Covering Integer Programs (CIPs) have long been studied, giving a very gen-
eral framework which captures a wide variety of natural problems. CIPs are
mathematical programs of the following form:

min
∑n

i=1 cixi (IP1)

subject to:
∑n

i=1 aijxi ≥ 1 ∀j ∈ [m], (1.1)

0 ≤ xi ≤ ui ∀i ∈ [n], (1.2)

x ∈ Zn. (1.3)

� A full version of this extended abstract appears as [11].
�� Supported in part by NSF awards CCF-0964474 and CCF-1016799.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 436–448, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Approximating Sparse Covering Integer Programs Online 437

Above, all the entries aij , ci, and ui are non-negative. The constraint matrix is
denoted A = (aij)i∈[n],j∈[m]. We define k to be the row sparsity of A, i.e., the
maximum number of non-zeroes in any constraint j ∈ [m]. For each row j ∈ [m]
let Tj ⊆ [n] denote its non-zero columns; we say that the variables indexed by
Tj “appear in” constraint j. Let � denote the column sparsity of A, i.e., the
maximum number of constraints that any variable i ∈ [n] appears in. Dropping
the integrality constraint (1.3) gives us a covering linear program (CLP).

In this paper we study the online version of these problems, where the con-
straints j ∈ [m] arrive over time, and we are required to maintain a monotone
(i.e., non-decreasing) feasible solution x at each point in time. Our main results
are (a) an O(log k)-competitive algorithm for solving CLPs online, and (b) an
O(log k · log �)-competitive randomized online algorithm for CIPs. In settings
where k . n or �. m our results give a significant improvement over the previ-
ous best bounds of O(log n) for CLPs [8] and O(log n · logm) for CIPs that can
be inferred from rounding of these fractional solutions. Analyzing performance
guarantees for covering/packing integer programs in terms of row (k) and column
(�) sparsity has received much attention in the offline setting, e.g. [16,18,12,15,6].
This paper obtains tight bounds in terms of these parameters for online covering
integer programs.

Our Techniques. Our algorithms use online primal-dual framework of Buch-
binder and Naor [7]. To solve the covering LP, we give an algorithm that mono-
tonically raises the primal. However, we both raise and lower the dual variables
over the course of the algorithm; this is unlike typical applications of the online
primal-dual approach, where both primal and dual variables are only increased
(except possibly within a “guess and double” framework—see the discussion in
the related work section). This approach of lowering duals is crucial for our
bound of O(log k), since we show a primal-dual gap of Ω(logn) for algorithms
that lower duals only within the guess-and-double framework, even when k = 1.

The algorithm for covering IP solves the LP relaxation and then rounds it. It
is well-known that the natural LP relaxation is too weak: so we extend our online
CLP algorithm to also handle Knapsack Cover (KC) inequalities from [9]. This
step has an O(log k)-competitive ratio. Then, to obtain an integer solution, we
adapt the method of randomized rounding with alterations to the online setting.
Direct randomized rounding as in [1] results in a worse O(logm) overhead, so to
get the O(log �) loss we use this different approach.

Related Work. The powerful online primal-dual framework has been used
to give algorithms for set cover [1], graph connectivity and cut problems [2],
caching [19,4,5], packing/covering IPs [8], and many more problems. This frame-
work usually consists of two steps: obtaining a fractional solution (to an LP
relaxation) online, and rounding the fractional solution online to an integral
solution. (See the monograph of Buchbinder and Naor [7] for a lucid survey.)

In most applications of this framework, the fractional online algorithm raises
both primal and dual variables monotonically, and the competitive ratio is given
by the primal to dual ratio. For CLPs, Buchbinder and Naor [8] showed that if we

438 A. Gupta and V. Nagarajan

increase dual variables monotonically, the primal-dual gap can be Ω(log amax

amin
).

In order to obtain an O(log n)-competitive ratio, they used a guess-and-double
framework [8, Theorem 4.1] that changes duals in a partly non-monotone manner
as follows: The algorithm proceeds in phases, where each phase r corresponds to
the primal value being roughly 2r. Within a phase the primal and dual are raised
monotonically. But the algorithm resets duals to zero at the beginning of each
phase—this is the only form of dual reduction.

For the special case of fractional set cover (where A ∈ {0, 1}m×n), they get an
improved O(log k)-competitive ratio using this guess-and-double framework [8,
Section 5.1]. However, we show in the full version [11] that such dual update
processes do not extend to obtain an o(log n) ratio for general CLPs. So our al-
gorithm reduces the dual variables more continuously throughout the algorithm,
giving an O(log k)-competitive ratio for general CLPs.

Other online algorithms: Koufogiannakis and Young [14] gave a k-competitive
deterministic online algorithm for CIPs based on a greedy approach; their re-
sult holds for a more general class of constraints and for submodular objec-
tives. Our O(log k log �) approximation is incomparable to this result. Feige and
Korman [13] show that no randomized polynomial-time online algorithm can
achieve a competitive ratio better than O(log k log �).

Offline algorithms. CLPs can be solved optimally offline in polynomial time. For
CIPs in the absence of variable upper bounds, randomized rounding gives an
O(logm)-approximation ratio. Srinivasan [16] gave an improved algorithm using
the FKG inequality (where the approximation ratio depends on the optimal
LP value). Srinivasan [17] also used the method of alterations in context of
CIPs and gave an RNC algorithm achieving the bounds of [16]. An O(log �)-
approximation algorithm for CIPs (no upper bounds) was obtained in [18] using
the Lovász Local Lemma. Using KC-inequalities and the algorithm from [18],
Kolliopoulos and Young [12] gave an O(log �)-approximation algorithm for CIPs
with variable upper bounds. Our algorithm matches this O(log �) loss in the
online setting. Finally, the knapsack-cover (KC) inequalities were introduced by
Carr et al. [9] to reduce the integrality gap for CIPs. These were used in [12,10],
and also in an online context by [5] for the generalized caching problem.

2 An Algorithm for a Special Class for Covering LPs

In this section, we consider CLPs without upper bounds on the variables:

min {
∑n

i=1 cixi |
∑

i aijxi ≥ 1 ∀j ∈ [m], x ≥ 0} (2.4)

and give an O(log k)-competitive deterministic online algorithm for solving such
LPs, where k is an (upper bound) on the row-sparsity of A = (aij). The dual is
the packing linear program:

max
{∑m

j=1 yj |
∑

j:i∈Tj
aijyj ≤ ci ∀i ∈ [n], y ≥ 0

}
(2.5)

Approximating Sparse Covering Integer Programs Online 439

We assume that ci’s are strictly positive for all i, else we can drop all constraints
containing variable i.

Algorithm I. In the online algorithm, we want a solution pair (x, y), where
we monotonically increase the value of x, but the dual variables can move up or
down as needed. We want a feasible primal, and an approximately feasible dual.
The primal update step is the following:

When constraint h (i.e.,
∑

i aihxi ≥ 1) arrives,
(a) define dih = ci

aih
for all i ∈ [n], and dm(h) = mini dih = mini∈Th

dih.

(b) while
∑

i aihxi < 1, update the x’s by

xnewi ←
(
1 +

dm(h)

dih

)
xoldi +

1

k · aih
dm(h)

dih
, ∀i ∈ Th.

Let th be the number of times this update step is performed for
constraint h.

As stated, the algorithm assumes we know k, but this is not required. We can
start with the estimate k = 2 and increase it any time we see a constraint with
more variables than our current estimate. Since this estimate for k only increases
over time, the analysis below will go through unchanged. (We can assume that
k is a power of 2—which makes log k an integer; we will need that k ≥ 2.)

Lemma 1. For any constraint h, the number of primal updates th ≤ 2 log k.

Proof. Fix some h, and consider the value i∗ for which di∗h = dm(h). In each
round the variable xi∗ ← 2xi∗ + 1/(k · ai∗h); hence after t rounds its value will
be at least (2t− 1)/(k · ai∗h). So if we do 2 log k updates, this variable alone will
satisfy the hth constraint.

Lemma 2. The total increase in the value of the primal is at most 2 th dm(h).

Proof. Consider a single update step that modifies primal variables from xold to

xnew . In this step, the increase in each variable i ∈ Th is
dm(h)

dih
·xoldi + 1

k·aih

dm(h)

dih
.

So the increase in the primal objective is:∑
i∈Th

ci ·
[
dm(h)

dih
· xold

i +
1

k · aih

dm(h)

dih

]
= dm(h)

∑
i∈Th

aih · xold
i + dm(h) ·

|Th|
k
≤ 2 · dm(h)

The inequality uses |Th| ≤ k and
∑

i∈Th
aih · xoldi ≤ 1 which is the reason an

update was performed. The lemma now follows since th is the number of update
steps.

To show approximate optimality, we want to change the dual variables so that
the dual increase is (approximately) the primal increase, and so that the dual
remains (approximately) feasible. To achieve the first goal, we raise the newly
arriving dual variable, and to achieve the second we also decrease the “first few”
dual variables in each dual constraint where the new dual variable appears.

440 A. Gupta and V. Nagarajan

For the hth primal constraint, let dih, dm(h), th be given by the primal
update process.

(a) Set yh ← dm(h) · th.
(b) For each i ∈ Th, do the following for dual constraint

∑
j aijyj ≤ ci:

(i) If
∑

j<h aijyj ≤ (10 log k) ci, do nothing; else
(ii) Let ki < h be the largest index such that

∑
j≤ki

aijyj ≤ (5 log k) ci;
let Pi = {j ≤ ki | i ∈ Tj} be the indices of these first few dual
variables that are active in the ith dual constraint. For all j ∈ Pi,

ynewj ←
(
1−

dm(h)

dih

)
· yoldj .

Observe that the dual update process starts each dual variable yj off at some
value dm(j)tj and subsequently only decreases this dual variable, and that the
dual variables remain non-negative.

Lemma 3. When primal constraint h arrives, the left-hand-side of each dual
constraint i increases due to the variable yh by aih · dm(h) · th ≤ (2 log k) ci.

Proof. We set the initial value of the dual variable yh to dm(h) ·th. By Lemma 1,
th ≤ 2 log k. By definition, dm(h) ≤ ci/aih. Hence, for any i ∈ Th, the increase
in the left-hand-side of dual constraint i is at most aih · (2 log k) (ci/aih) =
(2 log k) ci. This proves the lemma.

Lemma 4. When primal constraint h arrives, if the dual update reaches step b
(ii) for some i ∈ Th, then ki is well-defined and the set Pi is non-empty; more-

over,
∑

j∈Pi
aijyj

ci log k ∈ [3, 5].

Proof. For each j < h we have yj ≤ 2 log k · dm(j), since dual variable yj was
initialized to tjdm(j) ≤ 2 log k · dm(j) (by Lemma 1) and subsequently never
increased—so aij ·yj ≤ 2 log k ·dm(j) ·aij ≤ 2 log k ·ci, using dm(j) ≤ dij = ci/aij .
If the dual update reaches step b(ii) then we have

∑
j<h aijyj > (10 log k) ci,

but each j < h contributes at most 2 log k · ci, so ki is well-defined, and Pi is
non-empty. Moreover, by the choice of ki, we have

∑
j≤ki+1 aijyj > (5 log k) ci,

so
∑

j≤ki
aijyj > (5 log k) ci − ai,ki+1 · yki+1 ≥ (3 log k) · ci, as claimed.

Lemma 5. After each dual update step, each dual constraint i satisfies∑
j aijyj ≤ (12 log k) ci. Hence the dual is (12 log k)-feasible.

Proof. Consider the dual update process when the primal constraint h arrives,
and look at any dual constraint i ∈ Th (the other dual constraints are unaffected).
If case b(i) happens, then by Lemma 3 the left-hand-side of the constraint will
be at most (12 log k) ci. Else, case b(ii) happens. Each yj for j ∈ Pi decreases
by yj · dm(h)/dih, and so the decrease in

∑
j∈Pi

aijyj is at least
∑

j∈Pi
aijyj ·

(dm(h)/dih). Using Lemma 4, this is at least

dm(h)

dih
· ci (3 log k) =

dm(h)

ci/aih
· ci (3 log k) = dm(h) · aih · (3 log k).

Approximating Sparse Covering Integer Programs Online 441

But since the increase due to yh is at most aih · dm(h) th ≤ aih · dm(h) · (2 log k),
there is no net increase in the LHS, so it remains at most (12 log k) ci.

Lemma 6. The net increase in the dual value due to handling primal constraint
h is at least 1

2 dm(h) · th.

Proof. The increase in the dual value due to yh itself is dm(h) · th. What about
the decrease in the other yj ’s? These decreases could happen due to any of the
k dual constraints i ∈ Th, so let us focus on one such dual constraint i, which
reads

∑
j:i∈Tj

aijyj ≤ ci. Now for j < h, define γij :=
yj

tj dij
. Since yj was initially

set to tj dm(j) ≤ tj dij and subsequently never increased, we know that at this
point in time,

γij ≤
dm(j)

dij
≤ 1. (2.6)

The following claim, whose proof appears after this lemma, helps us bound the
total dual decrease.

Claim 1. If we are in case b(ii) of the dual update, then
∑

j∈Pi

γijtj
aij

≤ 1
2k ·

1
aih

.

Using this claim, we bound the loss in dual value caused by dual constraint i:

∑
j∈Pi

dm(h)

dih
· yj =

dm(h)

dih
·
∑
j∈Pi

γij · tj dij =
dm(h)

ci/aih
·
∑
j∈Pi

γij · tj (ci/aij)

= dm(h) aih ·
∑
j∈Pi

γij ·
tj
aij
≤(Claim 1) dm(h) aih ·

1

2k
· 1

aih
=

dm(h)

2k
.

Summing over the |Tj| ≤ k dual constraints affected, the total decrease is at
most 1

2dm(h) ≤ 1
2dm(h)th (since there is no decrease when th = 0). Subtracting

from the increase of dm(h) · th gives the lemma.

Proof of Claim 1. Consider the primal constraints j such that i ∈ Tj: when
they arrived, the value of primal variable xi may have increased. (In fact, if some
primal constraint j does not cause the primal variables to increase, yj is set to
0 and never plays a role in the subsequent algorithm, so we will assume that for
each primal constraint j there is some increase and hence tj > 0.)

The first few among the constraints j such that i ∈ Tj lie in the set Pi:

when j ∈ Pi arrived, we added at least 1
k·aij

dm(j)

dij
to xi’s value1, and did so

tj times. Hence the value of xi after seeing the constraints in Pi is at least∑
j∈Pi

dm(j)tj
k·aij ·dij

≥
∑

j∈Pi

γijtj
k·aij

, using (2.6).

1 More precisely, xi increased by at least 1
kj·aij

dm(j)

dij
where kj ≤ k was the estimate

of the row-sparsity at the arrival of constraint j, and k is the current row-sparsity
estimate.

442 A. Gupta and V. Nagarajan

If χi is the value of xi after seeing the constraints in Pi, and χ′
i is its value

after seeing the rest of the constraints in Qi := ({j < h | i ∈ Tj} \ Pi). Then

χ′
i

χi
≥

∏
j∈Qi

(
1 +

dm(j)

dij

)tj

≥(2.6)

∏
j∈Qi

(1 + γij)
tj ≥(γij≤1) e

1
2

∑
j∈Qi

γij tj ≥ 2k2.

(2.7)

The last inequality uses the fact that k ≥ 2, and that:

∑
j∈Qi

γijtj =
∑
j∈Qi

yj/dij =
∑
j∈Qi

yj · aij

ci
=

1

ci

⎛⎝∑
j<h

aijyj −
∑
j∈Pi

aijyj

⎞⎠ > 5 log k,

where the inequality is because we are in case b(ii) and
∑

j∈Pi
aijyj ≤ (5 log k)·ci

by Lemma 4.
Finally, when doing the primal/dual update steps for constraint h, the value

of xi just before this must have been χ′
i < 1/aih (otherwise constraint h would

have already been satisfied just by variable xi). And χi is at least
∑

j∈Pi

γijtj
k·aij

,

by the first calculations. And χ′
i/χi ≥ 2k2 by (2.7). Putting these together gives∑

j∈Pi

γijtj
k · aij

≤ 1

2k2
· 1

aih
,

and hence the claim. �
Lemma 6 and Lemma 2 imply that the dual increase is at least 1/4 the primal
increase, and Lemma 5 implies we have an O(log k)-feasible dual, implying the
following theorem:

Theorem 1. Algorithm I is an O(log k)-competitive online algorithm for cover-
ing linear programs without upper-bound constraints, where k is the row-sparsity
of the constraint matrix.

3 The Online Algorithm for CIPs

We now want to solve CLPs with variable upper bounds, en route to solving gen-
eral CIPs of the form (IP1). However, it is well-known that when we have variable
upper-bounds, the natural relaxation has a large integrality gap even with a sin-
gle constraint.2 Hence, Carr et al. [9] suggested adding the knapsack cover (KC)
inequalities—defined below—to reduce the integrality gap significantly. In this
section, we first show how to extend Algorithm I to get an O(log k)-competitive
algorithm for the natural CLP relaxation (with upper bounds) where we also

2 The trivial CIP min{x1 |Mx1 ≥ 1} has integrality gap M , no upper bounds needed.
However, if we truncate the aijs to be at most 1 (which is the right-hand-side value),
and we have no upper bound constraints, this gap disappears. Introducing upper
bounds brings back large integrality gaps, as the example min{x1|x1 + (1− ε)x2 ≥
1, x2 ≤ 1} shows, which has an integrality gap of 1/ε.

Approximating Sparse Covering Integer Programs Online 443

satisfy some suitable KC inequalities. Next, we round (in an online fashion)
such a fractional solution to get a randomized O(log � · log k)-competitive online
algorithm for general k-row-sparse and �-column-sparse CIPs.

Knapsack Cover Inequalities. Given a CIP of the form (IP1), the KC-
inequalities for a particular covering constraint

∑
i∈[n] aijxi ≥ 1 are defined

as follows: for any subset H ⊆ [n] of variables, the maximum possible contri-
bution of the variables in H to the constraint is aj(H) :=

∑
i∈H aijui, and if

aj(H) < 1 then at least a contribution of 1 − aj(H) must come from variables
[n] \H . Moreover, in any integral solution x, since each positive variable xi is at
least one, we get the inequality:∑

i∈[n]\H min{aij, 1− aj(H)} · xi ≥ 1− aj(H) (3.8)

Since (3.8) is not be true for an arbitrary fractional solution satisfying∑
i∈[n] aijxi ≥ 1, we add this additional constraint to the LP, for each origi-

nal constraint j and H ⊆ [n] where aj(H) < 1. There are exponentially many
such KC-inequalities, and it is not known how to separate exactly over these
in poly-time3. But as in previous works [9,12,5], the randomized rounding al-
gorithm just needs us to enforce one specific KC-inequality for each constraint
j—namely for the set Hj := {i ∈ [n] | xi ≥ τ · ui} with some suitable threshold
τ > 0. We call this the “special” KC-inequality for constraint j.

3.1 Fractional Solution with Upper Bounds and KC-inequalities

In extending Algorithm I from the previous section to also handle “box con-
straints” (those of the form 0 ≤ xi ≤ ui), and the associated KC-inequalities,
the high-level idea is to create a “wrapper” procedure around Algorithm I which
ensures these new inequalities: when a constraint

∑
i∈Tj

aijxi ≥ 1 arrives, we
start to apply the primal update step from Algorithm I. Now if some variable
xp gets “close” to its upper bound up, we could then consider setting xp = up,
and feeding the new inequality

∑
i∈Tj\p aijxi ≥ 1− apjup (or rather, a knapsack

cover version of it) to Algorithm I, and continuing. Implementing this idea needs
a little more work. For the rest of the discussion, τ ∈ (0, 12) is a threshold fixed
later.

Suppose we want a solution to:

(IP) min
{∑

i cixi |
∑

i∈Sj
aijxi ≥ 1 ∀j ∈ [m], 0 ≤ xi ≤ ui, xi ∈ Z ∀i ∈ [n],

}
where constraint j has |Sj | ≤ k non-zero entries. The natural LP relaxation is:

(P) min
{∑

i cixi |
∑

i∈Sj
aijxi ≥ 1 ∀j ∈ [m], 0 ≤ xi ≤ ui ∀i ∈ [n]

}
3 KC-inequalities can be separated in pseudo-polynomial time via a dynamic program
for the knapsack problem.

444 A. Gupta and V. Nagarajan

We obtain an online algorithm to find a feasible fractional solution to this LP re-
laxation (P), along with some additional KC-inequalities. This algorithm main-
tains a vector x ∈ Rn that need not be feasible for the covering constraints in
(P). However x implicitly defines the “real solution” x ∈ Rn as follows:

xi =

{
xi if xi < τui
ui otherwise

, ∀i ∈ [n]

Let x(j) and x(j) denote the vectors immediately after the jth constraint to (IP)
has been satisfied. Due to lack of space, the following theorem is proved in [11].

Theorem 2. Given the constraints of the CIP (IP) online, there is an algorithm
that produces x (and hence x) satisfying the following:

(i) The solution x is feasible for (P).
(ii) The cost

∑n
i=1 ci · xi = O(log k) · optIP .

(iii) For each j ∈ [m] let Hj = {i ∈ [n] | x(j)i ≥ τ · ui} and aj(Hj) =∑
r∈Hj

arjur. Then the solution x(j) satisfies the KC-inequality correspond-

ing to constraint j with the set Hj, i.e., if aj(Hj) < 1 then:∑
i∈Sj\Hj

min {aij , 1− aj(Hj)} · x(j)i ≥ 1− aj(Hj).

Furthermore, the vectors x and x are non-decreasing over time.

Again, the value of row-sparsity k is not required in advance—the algorithm just
uses the current estimate as before.

3.2 Online Rounding

We now complete the algorithm for CIPs by showing how to round the on-
line fractional solution generated by Theorem 2 also in an online fashion. This
rounding algorithm also does randomized rounding on the incremental change
like in [1], but to get a loss of O(log �) instead O(logm), we use the method of
randomized rounding with alterations [3,17]. Recall � ≤ m is the column-sparsity
of the constraint matrix A—the maximum number of constraints any variable
xi participates in. (The O(log �) bound for offline CIPs given by [18,12] uses a
derandomization of the Lovász Local Lemma via pessimistic estimators, and is
not applicable in the online setting.)

Given that the constraints of a CIP arrive online, we run the algorithm from
Theorem 2 to maintain vectors x and x. For this section, we set the threshold τ
to 1

8 ·
1

log
 . Before any constraints arrive, pick a uniformly random value ρi ∈ [0, 1]

for each variable i ∈ [n]—this is the only randomness used by the algorithm. We

will maintain an integer solution X ∈ Zn
≥0; again let X(j) denote this solution

right after primal constraint j has been satisfied. We start off with X(0) = 0.
When the jth constraint arrives and the (fractional) xi values have been increased
in response to this constraint, we do the following.

Approximating Sparse Covering Integer Programs Online 445

1. Define the “rounded unaltered” solution:

Zi =

⎧⎨⎩
0 if xi < τρi
�xi/τ� if τρi ≤ xi < τui
ui if xi ≥ τui

, ∀i ∈ [n].

2. Maintain monotonicity. Define:

Xnew
i = max{X(j−1)

i , Zi}, ∀i ∈ [n].

Observe that this rounding ensures that Xi ∈ {0, 1, . . . , ui} for all i ∈ [n].
3. Perform potential alterations. If we are unlucky and the arriving constraint

j is not satisfied by Xnew, we increase Xnew to cover this constraint j as

follows. Let Hj := {i ∈ [n] | x(j)i ≥ τ · ui} be the frozen variables in the
fractional solution; note that Zi = ui for all i ∈ Hj , so these variables cannot
be increased. Recall that aj(Hj) :=

∑
r∈Hj

arj · ur. Since constraint j is not

satisfied, aj(Hj) < 1 and the algorithm performs the following alteration
for constraint j. Consider the residual constraint on variables [n] \Hj after
applying the KC-inequality on Hj , i.e.∑

i∈[n]\Hj

min{aij , 1− aj(Hj)} · wi ≥ 1− aj(Hj).

Set aij = min
{
1,

aij

1−aj(Hj)

}
for all i ∈ [n] \ Hj . Consider the following

covering knapsack problem:

min
∑

i∈[n]\Hj
ci · wi (IPK)

subject to:
∑

i∈[n]\Hj
aij · wi ≥ 1

0 ≤ wi ≤ ui, ∀i ∈ [n] \Hj

wi ∈ Z, ∀i ∈ [n] \Hj

Note that there is only one covering constraint in this problem. LetW denote
an approximately optimal integral solution obtained by the natural greedy
algorithm. It is clear that W satisfies the residual constraint j on variables
[n] \Hj . Define X(j) as follows.

X
(j)
i =

{
Xnew

i for i ∈ Hi

max {Xnew
i , Wi} for i ∈ [n] \Hj

This completes the description of the algorithm. By construction, it outputs a
feasible integral solution to the constraints so far, so it remains to bound its
expected cost.

Remark: This algorithm does not require knowledge of the final column-sparsity
� in advance. At each step, we use the current value of �. Notice that this only
affects τ and the definition of Z. However, for fixed values of xi and ρi (any

446 A. Gupta and V. Nagarajan

i ∈ [n]) the value of Zi is non-decreasing with �: so vector Z is monotone over
time (since � is non-decreasing). We also require a slightly more general version of
Theorem 2 where we have multiple thresholds τ1 ≤ τ2 ≤ · · · ≤ τm and replace τ
by τj in condition (iii). This extension is straightforward and details are omitted.

Cost of Z. Consider the rounding algorithm immediately after allm constraints
have been satisfied. If xi/τ ∈ [0, 1], then E[Zi] = Pr[ρi ≤ xi/τ] = xi/τ ; if
xi/τ ≥ 1, then Zi ≤ �xi/τ� ≤ 2xi/τ with probability 1. Hence:

E [
∑n

i=1 ci · Zi] ≤ (2/τ)
∑

cixi = O(log k · log �) · optIP ,

where we use 1/τ = O(log �), and Theorem 2(ii) to bound
∑

i cixi.

Cost of X − Z. To account for X − Z, we need to bound the expected cost of
any alterations. In the sequel, let �j, kj and τj denote the respective values of �,
k and τ at the arrival of constraint j. When j is clear from context we will drop
the subscript.

Recall that Hj := {i ∈ [n] | x(j)i ≥ τj · ui} are the frozen variables in the
fractional solution after handling constraint j, and note Zi = ui for i ∈ Hj .

Define Aj := {i ∈ [n] | x(j)i < τj}. Note that the randomness only plays a role
in the values of {Zi | i ∈ Aj}, since all variables in [n] \ Aj deterministically

are set to Zi = min
{
�x(j)i /τj�, ui

}
. Let Ej denote the event that an alteration

was performed for constraint j. The event Ej occurs exactly when
∑

i∈[n] aij ·
Xnew

i < 1. Since variables r ∈ Hj have Xnew
r = Zr = ur with probability 1,

event Ej is the same as aj(Hj) < 1 (which is a deterministic condition) and∑
i∈[n]\Hj

aij ·Xnew
i < 1− aj(Hj).

Lemma 7. The probability of an alteration for constraint j is Pr[Ej] ≤ 1

2j
.

Proof. Let b = 1−aj(Hj), for Ej to occur we have b > 0. Set aij = min{aij/b, 1}
for i ∈ [n] \Hj . Now since Z ≤ X and both are integer-valued, Pr[Ej]

= Pr

⎡⎣ ∑
i∈[n]\Hj

aij ·Xnew
i < b

⎤⎦ ≤ Pr

⎡⎣ ∑
i∈[n]\Hj

aij · Zi < b

⎤⎦= Pr

⎡⎣ ∑
i∈[n]\Hj

aij · Zi < 1

⎤⎦ .

Theorem 2(iii) guarantees that
∑

i∈[n]\Hj
aij · x(j)i ≥ 1. Among i ∈ [n] \Hj ,

• Zi = �x(j)i /τ� deterministically for i ∈ [n] \ (Hj ∪ Aj), and

• Zi ∈ {0, 1} with E[Zi] = x
(j)
i /τ independently for i ∈ Aj .

So E
[∑

i∈[n]\Hj
aij · Zi

]
≥ 1

τ . Now Chernoff bound implies for a collection of

[0, 1]-valued independent random variables, that the probability of their sum
being less than τ = 1/(8 log �j) times their expectation is at most 1/�2j .

Lemma 8. Conditioned on Ej, the cost of incrementing Xnew to X(j) is at most

36
∑

i∈Sj
ci · x(j)i ; here Sj ⊆ [n] are the non-zero columns in constraint j.

Approximating Sparse Covering Integer Programs Online 447

Proof. The fractional solution x(j) satisfies the KC inequality for set Hj , by

Theorem 2(iv). In particular, setting w′
i = x

(j)
i for i ∈ Sj \ Hj (and zero oth-

erwise) gives a feasible fractional solution to the LP relaxation of the covering
knapsack subproblem (IPK). It suffices to show that the greedy integral solution
W to (IPK) costs 36

∑
i∈Sj

ci · w′
i. It is crucial that w′

i ≤ τ · ui < ui/2 for all

i ∈ [n]\Hj , as in general the integrality gap due to relaxing (IPK) is unbounded.
The greedy algorithm orders columns i ∈ [n] \ Hj in non-decreasing ci/aij

order, and increasesWi variables integrally (up to their uis) until
∑

i aij ·Wi ≥ 1.
Since all aij ≤ 1, it is easy to show that this algorithm achieves a 2-approximation
for covering knapsack (IPK).

To complete the proof, we show the optimal integral solution to (IPK) costs at
most 18

∑
i∈Sj

ci ·w′
i: we give a rounding algorithm to obtain an integral solution

W ′ from w′ with only a factor 18 increase in cost. Set W ′
i ∼ Binom(ui, 2w

′
i/ui)

for all i ∈ [n] \Hj—this definition is valid since w′
i ≤ ui/2. Clearly W ′ always

satisfies the upper bounds ui and has expected cost 2 c · w’. Moreover, each
W ′

i is a binomial r.v. and aij ≤ 1, so
∑

i aij ·W ′
i can be viewed as a sum of

independent [0, 1]-valued random variables. The expectation E [
∑

i aij ·W ′
i] ≥ 2,

so a Chernoff bound gives Pr [
∑

i aij ·W ′
i < 1] ≤ 8/9. Using Markov’s inequality,

Pr [c ·W’ > 18 c ·w’] < 1/9. So with positive probability,W ′ satisfies (IPK) and
costs at most 18 c ·w’, showing that Opt(IPK) is at most this cost.

Thus the total expected cost of alterations after m constraints is:

m∑
j=1

Pr[Ej] · 36
∑
i∈Sj

ci · x(j)
i ≤ 36

m∑
j=1

1

�2j
·
∑
i∈Sj

ci · x(j)
i ≤ 36

n∑
i=1

ci · x(m)
i

⎛⎝ ∑
j:i∈Sj

1

�2j

⎞⎠
≤ 36

n∑
i=1

ci · x(m)
i

(
1

12
+

1

22
+ · · ·+ 1

�2j

)
≤ 9π2

n∑
i=1

ci · x(m)
i .

The second inequality uses the monotonicity of the fractional solution x, and the
third inequality uses that for any i ∈ [n], the value �j is at least q upon arrival
of the qth constraint containing variable i.

Combining the expected cost of O(c ·x) for the alterations with the expected
cost of O(log �) · (c · x) for the initial rounding, and Theorem 2(ii), we get the
main result for this section:

Theorem 3. There is an O(log k · log �)-competitive randomized online algo-
rithm for covering integer programs with row-sparsity k and column-sparsity �.

Again, we note that the algorithm does not assume knowledge of the eventual k
or � values; it works with the current values after each constraint. Furthermore,
the algorithm clearly does not need the entire cost function in advance: it suffices
to know the cost coefficient ci of each variable i at the arrival time of the first
constraint that contains i.

448 A. Gupta and V. Nagarajan

References

1. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor(Seffi), J.: The online set
cover problem. In: STOC 2003, pp. 100–105 (2003)

2. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor(Seffi), J.: A general ap-
proach to online network optimization problems. ACM Trans. Algorithms 2(4),
640–660 (2006)

3. Alon, N., Spencer, J.: The Probabilistic Method. Wiley-Interscience, New York
(2008)

4. Bansal, N., Buchbinder, N., Naor(Seffi), J.: A primal-dual randomized algorithm
for weighted paging. In: FOCS 2007, pp. 507–517 (2007)

5. Bansal, N., Buchbinder, N., Naor(Seffi)., J.: Randomized competitive algorithms
for generalized caching. In: STOC 2008, pp. 235–244. ACM, New York (2008)

6. Bansal, N., Korula, N., Nagarajan, V., Srinivasan, A.: On k-Column Sparse Packing
Programs. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080,
pp. 369–382. Springer, Heidelberg (2010)

7. Buchbinder, N., Naor(Seffi)., J.: The design of competitive online algorithms via a
primal-dual approach. Found. Trends Theor. Comput. Sci. 3(2-3), 93–263 (2007)

8. Buchbinder, N., Naor(Seffi)., J.: Online primal-dual algorithms for covering and
packing. Math. Oper. Res. 34(2), 270–286 (2009)

9. Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality
gaps for capacitated network design and covering problems. In: SODA 2000, pp.
106–115 (2000)

10. Chakrabarty, D., Grant, E., Könemann, J.: On Column-Restricted and Priority
Covering Integer Programs. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010.
LNCS, vol. 6080, pp. 355–368. Springer, Heidelberg (2010)

11. Gupta, A., Nagarajan, V.: Approximating sparse covering integer programs online.
CoRR, abs/1205.0175 (2012)

12. Kolliopoulos, S.G., Young, N.E.: Approximation algorithms for covering/packing
integer programs. J. Comput. Syst. Sci. 71(4), 495–505 (2005)

13. Korman, S.: On the use of randomness in the online set cover problem. M.Sc. thesis,
Weizmann Institute of Science (2005)

14. Koufogiannakis, C., Young, N.E.: Greedy Δ-Approximation Algorithm for Cover-
ing with Arbitrary Constraints and Submodular Cost. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
I. LNCS, vol. 5555, pp. 634–652. Springer, Heidelberg (2009)

15. Pritchard, D., Chakrabarty, D.: Approximability of sparse integer programs. Algo-
rithmica 61(1), 75–93 (2011)

16. Srinivasan, A.: Improved approximation guarantees for packing and covering inte-
ger programs. SIAM J. Comput. 29(2), 648–670 (1999)

17. Srinivasan, A.: New approaches to covering and packing problems. In: SODA 2001,
pp. 567–576 (2001)

18. Srinivasan, A.: An extension of the Lovász Local Lemma, and its applications to
integer programming. SIAM J. Comput. 36(3), 609–634 (2006)

19. Young, N.E.: The k-server dual and loose competitiveness for paging. Algorith-
mica 11(6), 525–541 (1994)

Streaming and Communication Complexity

of Clique Approximation

Magnús M. Halldórsson1,�, Xiaoming Sun2,��,
Mario Szegedy3,� � �, and Chengu Wang4,†

1 ICE-TCS, School of Computer Science, Reykjavik University, Iceland
2 Institute of Computing Technology, Chinese Academy of Sciences
3 Department of Computer Science, Rutgers University, New Jersey

4 Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing

Abstract. We consider the classic clique (or, equivalently, the indepen-
dent set) problem in two settings. In the streaming model, edges are given
one by one in an adversarial order, and the algorithm aims to output a
good approximation under space restrictions. In the communication com-
plexity setting, two players, each holds a graph on n vertices, and they
wish to use a limited amount of communication to distinguish between
the cases when the union of the two graphs has a low or a high clique
number. The settings are related in that the communication complexity
gives a lower bound on the space complexity of streaming algorithms.

We give several results that illustrate different tradeoffs between clique
separability and the required communication/space complexity under

randomization. The main result is a lower bound of Ω(n2

r2 log2 n
)-space

for any r-approximate randomized streaming algorithm for maximum
clique. A simple random sampling argument shows that this is tight
up to a logarithmic factor. For the case when r = o(log n), we present

another lower bound of Ω(n
2

r4
). In particular, it implies that any constant

approximation randomized streaming algorithm requires Ω(n2) space,
even if the algorithm runs in exponential time. Finally, we give a third
lower bound that holds for the extremal case of s − 1 vs. R(s) − 1,
where R(s) is the s-th Ramsey number. This is the extremal setting of
clique numbers that can be separated. The proofs involve some novel
combinatorial structures and sophisticated combinatorial constructions.

1 Introduction

Streaming for cliques. In the streaming model for graph problems, edges are
presented sequentially in the form of a data stream, and the objective is to

� Research partially supported by Icelandic Research Fund grant 90032021.
�� Research partially supported by the National Natural Science Foundation of China

Grant 61170062, 61061130540, and the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301.

� � � Research partially supported by NSF grant CCF-0832787.
† Research partially supported by the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation
of China Grant 61033001, 61061130540, 61073174.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 449–460, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

450 M.M. Halldórsson et al.

compute a good near-optimal solution using working space significantly less than
the size of the data stream. The motivation for streaming comes from practical
applications of managing massive data sets such as, e.g., real-time network traffic,
on-line auctions, and telephone call records. These data sets are huge and arrive
at a very high rate, making it impossible to store more than a small part of the
input.

We consider the space requirements of finding or approximating the maximum
clique in a graph, or equivalently the maximum independent set. We assume that
the graph is given as a stream of edges, where the algorithm can view the stream
several times. In this paper, we assume the algorithm only views the stream a
constant number of times. More generally, we treat the following gap problem:
given a graph G and numbers U and L with L ≤ U , decide whether G contains a
U -clique, or contains no (L+1)-clique. When the clique number is greater than
L or less than U , the algorithm can answer arbitrarily. Here, U and L can be
functions of the order n of the input graph.

Several graph problems have been considered in the streaming setting, in-
cluding bipartite matching (weighted and unweighted cases) [14], diameter and
shortest paths [14,15], min-cut [1], and graph spanners [15]. Except for cer-
tain counting problems, such as counting triangles [5], cycles [24], K3,3 bipartite
cliques [9] and small graph minors [8], these use n · polylog(n) space.

Limited attention has been given to streaming algorithms for NP-hard prob-
lems; exceptions include Max-Cut [1,27] and certain clustering problems (e.g.,
[19]). In [17], the independent set problem in graphs and hypergraphs was con-
sidered, but with the primary focus on the fine-grained space requirements of
matching the Turán bound on sparse (hyper)graphs. Some additional upper
bounds are given in [23], but with a focus on general hypergraphs. We are not
aware of any lower bounds for the space complexity of computing any classical
NP-hard graph parameter like clique number (except for max-cut [27]).

The Max-Clique problem, and its sister the independent set problem, is
one of the central problems in optimization, and graph theory. For instance, the
algorithm textbook of Kleinberg and Tardos uses variations of the independent
set problem as a common theme for the whole book. It has long been one of the
cornerstones of complexity theory, including monotone circuit complexity [3],
decision tree complexity [7], fixed-parameter intractability [10], and interactive
proofs and approximation hardness [18]. The current best intractability bound

for Max-Clique is n/2(logn)3/4+ε [21], and the best approximation result is
O(n(log logn)2/ log3 n) [13].

Communication Complexity. Communication complexity, introduced by Yao
[26], is a powerful tool to solve a variety of problems in areas as disparate as
VLSI design, decision trees, data structures, and circuit complexity [22]. It is a
game between two parties, Alice and Bob, with unlimited computing power, that
want to compute the value of a function f : X × Y !→ {0, 1}. Alice only knows
x ∈ X , while Bob only knows y ∈ Y . To perform the computation, they are
allowed to send messages to each other in order to converge on a shared output
P (x, y). In a randomized protocol, Alice and Bob toss coins, and the messages

Streaming and Communication Complexity of Clique Approximation 451

can depend on the coin flips. We say a randomized (deterministic) protocol P
computes f if Pr[P (x, y) = f(x, y)] ≥ 2/3 (P (x, y) = f(x, y)) for any input x, y,
and define the randomized (deterministic) communication complexity R1/3(f)
(D(f)) to be the number of bits communicated for the worst input under the
best randomized (deterministic) protocol computing f , respectively. Here, 1/3
refers to the error rate. Since a deterministic protocol is a randomized protocol,
D(f) ≥ R1/3(f).

Our Results. We give several constructions that imply communication lower
bounds for clique separation, resulting in equivalent lower bounds for the space
complexity of streaming algorithms. The constructions differ in their range of
parameters U and L, as well as the strengths of the lower bounds.

The results are summarized in the table. R1/3(Clique-Gap(U,L)) denotes
the randomized communication complexity to determine whether the clique
number of the union of two graphs is at least U or at most L, and R(s) refers
the s-th diagonal Ramsey number (see Sec. 2 for formal definitions).

Table 1. A summary of our results

U L R1/3(Clique-Gap(U,L))

r 10 · 21/ε log n Ω(n2/r2)

r s O(n2/(r/s)2)

r 2
√
r − 1 Ω(n2/r2)

r = R(s)− 1 s− 1 Ω

(
max

(
n/r, n2

r3 exp(10
√

log r log n
2r2

)

))
r = R(s) s− 1 O(1)

The first two results in the table match up to a logarithmic factor. Thus,
except for the case of very small or very large cliques, this gives a fairly pre-
cise characterization of what cliques can be separated. For smaller cliques, the
bounds are still open to a large extent. The third result shows that any constant
approximation requires quadratic space, which is a supplement to the first result
when the clique number is a constant. Finally, the last two bounds give a sharp
threshold within which we can separate cliques: constant space suffices below
the threshold, while non-trivial and even superlinear space is necessary above
the threshold.

We note that our results hold equally for the Max Independent Set problem.
While the optimization and approximation of cliques and independent sets are
equivalent in general graphs, the streaming problems are not identical since the
stream is formed by edges and not non-edges. This distinction disappears in the
communication problem, as well as in the sampling-based upper bounds.

The clique problem appears at first to be strongly related to the previously
studied problem of counting triangles [5,6], and in fact, the known hardness
of detecting triangles and short cycles in stream [5,15] yields a starting point
for proving hardness of clique computation. Nevertheless, while a large clique

452 M.M. Halldórsson et al.

implies many triangles, the converse is not true (viz. complete 3-partite graphs).
Indeed, different arguments are needed for the clique problem.

While our hardness results involve reductions to the prototypical problem
of set disjointness, our proofs involve some novel connections between Ramsey
theory and additive combinatorics. Obtaining superlinear constant-pass lower
bounds on graph problems via disjointness is often hampered by dependencies
between edges. The use of designs and random partitition to get around this
here may be useful for proving such lower bounds for other graph problems in
the semi-streaming model.

Outline of the Paper. We define the problems and notation formally in Section 2,
and introduce our methodology in Section 3. The bulk of the paper is in Section
4, where we give several different space-approximation tradeoffs for the clique
problem. Some upper bounds are given in Section 5. Some proofs of lemmas have
been deferred to the full version.

2 Problem Definitions

A clique in a graph is a subset of mutually adjacent vertices. The Max-Clique

problem is that of finding a clique of approximately maximum size. Let ω(G)
denote the clique number of graph G. Let n denote the number of vertices of
the graph input to Max-Clique. A t-subgraph refers to a subgraph induced by
t vertices. The Ramsey number R(r) is the smallest n so that for any graph G
of size n, either G or its complement, G, has a r-clique. By the classic results of
[11,12], R(r) = 2θ(r), and in particular

√
2
r
< R(r) < 4r.

Let [n] = {1, 2, . . . , n}. An edge stream is formally defined to be a sequence

〈a1, a2, ..., am〉, where aj ∈
(
[n]
2

)
, inducing the undirected graph G = (V,E) on

n vertices with V = [n] and E = {aj : j ∈ [m]}. Each edge may appear more
than once. Only in Sec. 4.1 do we need to allow edges to appear more than once
(specifically, twice), and only when r >

√
n.

Set disjointness, denoted Disj, is a communication complexity problem where
Alice and Bob hold two subsets, x and y, of [N], respectively, and they want to
determine whether the intersection of their subsets is empty. Improving a result
in [4], Kalyanasundaram and Schnitger [20] proved that R1/3(Disj) = Ω(N).

The clique gap problem is the communication complexity problem for clique
approximation, where Alice and Bob hold two subgraphs GA = 〈Vn, EA〉 and
GB = 〈Vn, EB〉 and they want to approximately determine the clique number
of the combined graph GA ∪ GB = 〈Vn, EA ∪ EB〉. We define the value of the
function Clique-Gap(U,L) to be 1 if ω(G) ≥ U , 0 if ω(G) ≤ L, and arbitrary
(0 or 1) otherwise.

The communication complexity of a decision problem is closely related to the
space complexity of the problem, in that the former gives a lower bound for
the latter. Namely, for any decision problem Π , it holds that space1/3(Π) ≥
R1/3(Π), where space1/3(Π) denotes the space complexity of a randomized
streaming algorithm that answers correctly with at least 2/3-probability on any

Streaming and Communication Complexity of Clique Approximation 453

instance of Π . This holds, up to constant factors, even if we allow the streaming
algorithm passes through the input constant times.

3 Our Methodology

Reduction from the set disjointness problem is generally the method of choice
for proving communication complexity lower bounds for graph problems. Yet, to
come up with reductions with near-optimal parameters to Clique-Gap(U,L)
involves a number of combinatorial challenges.

Our starting point was the following reduction from the set disjointness prob-
lem with parameter N = (n/4)2 to Clique-Gap(4, 2):

For any input of set disjointness problem, where Alice holds x ∈ {0, 1}(n/4)2

and Bob holds y ∈ {0, 1}(n/4)2, we construct an input for the clique problem as
follows. We denote the vertices by {vi,j |i = 1, 2, 3, 4; j = 1, 2, 3, · · · , n/4}. Alice
has edges (v1,j , v3,j′) and (v2,j , v4,j′) if x[j, j

′] = 1. Bob has edges (v1,j , v4,j′) and
(v2,j , v3,j′) if y[j, j′] = 1. Finally, both of them have the edges (v1,j , v2,j) and
(v3,j , v4,j), for j = 1, 2, ..., n/4. In this construction, the graph has a 4-clique if x
intersects with y, and the clique number is only 2 if x doesn’t intersect with y.

The above construction can be viewed as an extension of constructions from
[5,15] on detecting triangles in streams. This argument can, however, not be ex-
tended further: proving an Ω(n2) lower bound for Clique-Gap(5, 2) is impos-
sible because of the counting version of the Szemerédi’s Regularity Lemma [25].
We will detail the reason and give a weaker lower bound for Clique-Gap(5, 2)
in Sec. 4.2. This obstacle shows that some non-trivial combinatorics lies beneath
our problem. We overcome this and other obstacles for different U,L pairs by
applying different arguments, and by exploiting properties of the worst case
distribution for the set disjointness problem. Along the way, we create some in-
teresting combinatorial structures, such as the one in Lemma 1, which we could
not find elsewhere in the literature.

4 Lower Bounds

We reduce the set disjointness problem to the approximate clique determina-
tion problem, thereby obtaining lower bounds on space for streaming algorithms
approximating cliques. We give several constructions that apply to different com-
binations of the parameters U and L.

The structure of the arguments is as follows. Given an instance (x, y) of Disj,
we form a graph G̃ that is a packing of “gadgets”, or clique subgraphs, each
corresponding to a single bitpair of the vectors x and y. Some of the edges of
each gadget are reserved for Alice, and the remaining edges for Bob. The actual
graphs GA and GB handed to Alice and Bob are subgraphs of G̃, where Alice
(Bob) receives her (his) edges of gadget i only if the corresponding bit xi (yi)
is set, respectively. This ensures that if xi = yi = 1 – the case of a positive
set intersection instance – then the corresponding gadget is a clique, yielding a

454 M.M. Halldórsson et al.

positive answer to the clique separation problem. The main issue is to ensure
that for negative instances, the clique size of the whole graph GA ∪GB remains
small.

We present three constructions. The first gives optimal space lower bounds,
up to logarithmic factor, for all but very large clique numbers. The second yields
weaker lower bounds, but holds for sub-logarithmic values of L. The third one
gives optimal Ω(n2)-space lower bound for the case of constant clique sizes.

4.1 r vs. logn

Theorem 1. For 0 < ε < 1, r = n1−ε and s = 100 · 22/ε log n, it holds that
R1/3(Clique-Gap(r, s)) = Ω(n2ε). Thus, for some constant c, any randomized
streaming algorithm for Max-Clique with approximation ratio c·r

logn requires

Ω(n2/r2) space (when r = O(n1−ε)).

We reduce Disj to Clique-Gap(r, s) in such a way that positive instances will
have clique-size r, while negative instances will be like the Erdös-Renyi random
graphs Gn,p, and thus have clique-size s = O(log1/p n) (we shall specify p later).

We construct optimal reductions (up to a factor of logn) from the set-
disjointness when r = O(n1−ε). At the heart of the reduction, there is a combi-
natorial lemma:

Lemma 1. For every n > 22/ε and every r < n/2, there is a set system C on
[n] with n2/r2 sets of size r each, such that each pair of distinct points is covered
by at most d sets from C, where d = �2/ε� − 2.

Proof. Let P be the largest prime with the property that rP ≤ n. Then, rP >
n/2, by Bertrand’s postulate. We identify [P] withGFP performing all arithmetic
modulo P . We also identify [r] with an arbitrary subset of GF d

P , and assume
that there is an injective mapping f : [r] !→ GF d

P because P d ≥ (n
2r)

d > r. For
(x, y) ∈ GF 2

P we define the set

Cx,y = {(a1, a2, . . . , ad, a) | a = adx
d+. . .+a1x−y and (a1, a2, . . . , ad) ∈ f([r])}.

Notice that Cx,y has size exactly r, since given x and y the values of a1, a2, . . . , ad
determine the value of a. In particular, this implies that for two distinct points
that Cx,y covers, the first d coordinates are always different. Consider now two
distinct points (a1, a2, . . . , ad, a) and (b1, b2, . . . , bd, b). If they are covered by the
same Cx,y, we get that adx

d + . . . + a1x − y = a and bdx
d + . . . + b1x − y = b,

implying that
(ad − bd)x

d + . . .+ (a1 − b1)x = a− b. (1)

Notice that Cx,y and Cx,y′ are disjoint whenever y �= y′. Thus, if Cx,y and
Cx′,y′ intersect in a point, and (x, y) �= (x′, y′), then it is necessary that x �= x′.
Thus, in particular, if there are (x1, y1), . . . , (xd+1, yd+1) such that Cxi,yi cover
the same two points, then x1, . . . , xd+1 are all distinct, and Eqn. 1 holds for all
x1, . . . , xd+1. Since by our earlier remark (a1, a2, . . . , ad) �= (b1, b2, . . . , bd), we
get a contradiction by discovering that a degree d polynomial (namely (ad −
bd)x

d + . . .+ (a1 − b1)x− a+ b) has d+ 1 roots.

Streaming and Communication Complexity of Clique Approximation 455

Our reduction from the set disjointness problem of size N = n2/r2 will be the
following. First, we define N cliques (gadgets) of size r on n nodes, as shown
in the above lemma. Let us denote the ith clique by Ci (1 ≤ i ≤ N). We then
associate each edge of Ci to Alice or Bob with probability 1/2 independently.
We call the set of edges associated this way to Alice and Bob CA

i and CB
i ,

respectively. Note that it is possible that the same edge of the graph is associated
to both Alice and Bob, since an edge may occur in up to d different Cis.

The graph GA given to Alice consists of the edges in the union of those CA
i s,

for which the bit xi in the set disjointness problem is set to 1. Similarly, we give
to Bob the graph GB, which is the union of those CB

i s, for which the bit yi is
set to 1. Clearly, if xi = yi = 1 then the combined graph GA ∪ GB will contain
all of Ci, and thus have clique size at least r.

We argue now that in the negative case, we can embed the resulting graph in
an Erdös-Renyi random graph Gn,p with edge probability p = 1− 1/2d.

Lemma 2. For any negative instance (x, y) of Disj on s bits (x ∩ y = ∅), let
q1 be the probability that the graph GA ∪ GB, generated by the above described
randomized map of (x, y), contains an s-clique. Let q2 be the probability that an
Erdös-Renyi random graph, where each edge is drawn with probability 1− 1/2d,
contains an s-clique. Then q1 < q2.

Proof. For an edge e in the graph GA ∪ GB generated by (x, y), we consider
the set of cliques Ce = {Ci|e ∈ Ci and i ∈ x ∪ y}. In the method we described
above, we choose e in each clique in Ce with probability 1/2 independently, and e
appears in GA ∪GB if e is chosen in any clique in Ce. Thus, the probability that
GA ∪GB contains e is 1 − 1/2|Ce| ≤ 1 − 1/2d, because |Ce| ≤ |{Ci|e ∈ Ci}| ≤ d
by Lemma 1. However, in the Erdös-Renyi random graph, each edge is chosen
with probability 1− 1/2d. Therefore, GA ∪GB has sparser edges, and it has an
s-clique with less probability.

Proof (Proof of Theorem 1). Given instance x, y to Disj, we form and hand
the graphs GA and GB to Alice and Bob, as expressed above. On positive in-
stance, when xi = yi = 1, for some bit i, the corresponding subgraph in GA∪GB

is an r-clique. On negative instances, GA ∪GB is sparser than the Erdös-Renyi
random graph Gn,p, with p = 1 − 1/2d. As shown by Grimmett and McDi-
armid [16], ω(Gn,p) ≤ 2 logn/ log(1/p) + o(log n) ≤ 2d+1 logn + o(logn), with
high probability. The theorem now follows.

4.2 R(s) − 1 vs. s − 1

When proving an Ω(n2) lower bound for Clique-Gap(5, 2), the s = 3 case of
Clique-Gap(R(s) − 1, s− 1), we run into obstacles if we use the approach for
Clique-Gap(4, 2). To do so, we must pack Θ(n2) 5-clique gadgets in a graph on
n vertices. We then need to partition the

(
5
2

)
edges into two parts, one for Alice

and the other for Bob, such that each part has no triangles. In fact, the partition
is unique up to a permutation, and it does not contain “hard-wired” edges like
the gadget in the proof of Clique-Gap(4, 2) does. Furthermore, we require more

456 M.M. Halldórsson et al.

properties of the packing: all the gadgets are edge-disjoint and each triangle must
lie fully within one gadget. The Triangle Removal Lemma, which can be proven
from Szemerédi’s Regularity Lemma [25], states that we can remove o(n2) edges
from a graph containing o(n3) triangles to make it triangle-free. If we take one
triangle from each gadget, these Θ(n2) triangles are edge-disjoint and o(n2) edges
do not suffice to destroy them all. Therefore, we cannot pack Θ(n2) gadgets in
a graph of size n.

Instead, we can prove the following result, using a different packing
requirement.

Theorem 2. For any r, R1/3(Clique-Gap(r, s − 1)) = Ω

(
n2

r3 exp(10
√

log r log n
2r2

)

)
,

where r = R(s)− 1.

For instance, this gives a n2/ exp(O(
√
logn)) = n2−o(1) lower bound for

Clique-Gap(5, 2). That is the best we can hope for in the sense that
Clique-Gap(6, 2) has a trivial upper bound, as we shall see in Section 5.

We shall use the following combinatorial structure and theorem of Alon and
Shapira.

Definition 1 (h-Sum-Free). [2] A set X ⊆ [n] is called h-sum-free if for
every three positive integers a, b, c ≤ h such that a+ b = c, if x, y, z ∈ X satisfy
the equation ax + by = cz, then x = y = z. That is, whenever a + b = c, and
a, b, c ≤ h, the only solution to the equation that uses values from X, is one of
the |X | trivial solutions.

Theorem 3. [2] For every positive integer n, there exists an h-sum-free subset
X ⊆ [n] of size at least |X | ≥ n

e10
√

log h log n

.
= g(n, h).

We say that a set system C = {Ci}i is edge-disjoint if any pair of points is
contained in at most a single set, and that it is triangle-free if whenever u, v ∈ Ci,
v, w ∈ Cj and w, u ∈ Ck, for some Ci, Cj , Ck ∈ C, then Ci = Cj = Ck.

Lemma 3. For any n, there is an edge-disjoint triangle-free set system on [n]
with g(n/(2r2), r) · n/r = Ω(n2/(r3 exp(10

√
log r logn/(2r2)))) sets of size r

each.

Proof. We first pick an r-sum-free set Z ⊆ [n
2r2] such that

|Z| = m ≥ g(n/(2r2), r) =
n/(2r2)

exp(10
√
log r log n

2r2)
.

Suppose Z = {z1, . . . , zm}. For i ∈ [m], let Si = (zir+1) · [r] = {(zir+1)a : a ∈
[r]}. We denote the set shift j from Si by S

(j)
i , namely we define S

(j)
i = Si + jr,

for i ∈ [m], j ∈ [n/(2r)]. Finally, we define the set family C = {S(j)
i |i ∈ [m], j ∈

[n/(2r)]}, and let G̃ = ([n], E), where E = {(u, v)|∃S ∈ C, u, v ∈ S}. It is clear
that for each S ∈ C, the subgraph on S induces an r-clique in G̃.

Streaming and Communication Complexity of Clique Approximation 457

The lemma follows from the following two claims.

Claim. C is edge-disjoint, i.e., any S
(j1)
i1

and S
(j2)
i2

intersect in at most one element
if (i1, j1) �= (i2, j2).

Proof. Suppose they have two common elements u and v. From u, v ∈ S
(j1)
i1

, by
definition we have u = (zi1r + 1)b1 + j1r and v = (zi1r + 1)c1 + j1r, for some
b1, c1 ∈ [r]. Similarly, there are b2, c2 ∈ [r], such that u = (zi2r+1)b2+ j2r, and
v = (zi2r + 1)c2 + j2r. So we have

u = (zi1r+1)b1+j1r = (zi2r+1)b2+j2r , and v = (zi1r+1)c1+j1r = (zi2r+1)c2+j2r.
(2)

Modulo r, we have b1 = b2 and c1 = c2 (because |bi|, |ci| < r). We denote b =
b1 = b2 and c = c1 = c2. By computing u−v, (zi1r+1)(b−c) = (zi2r+1)(b−c).
Now, b �= c because u �= v. So, zi1 = zi2 , then we have i1 = i2. By (2) then,
j1 = j2. Therefore, (i1, j1) = (i2, j2), which is a contradiction.

Claim. C is triangle-free, i.e., for any distinct u, v, w, if v, w ∈ S
(j1)
i1

, w, u ∈ S
(j2)
i2

,

and u, v ∈ S
(j3)
i3

, then (i1, j1) = (i2, j2) = (i3, j3).

Proof (Proof of Theorem 2). We reduce the set disjointness problem with
N = t · q bits to

Clique-Gap(r, s − 1), where t = n/(2r2)

exp(10
√

log r log(n/(2r2)))
= g(n/(2r2), r) and

q = n/(2r).

By the definition of Ramsey number, for each S
(j)
i , there exists a subgraph

Q
(j)
i of the clique on S

(j)
i , such that neither Q

(j)
i nor Q

(j)
i has a clique of size s.

Given a Disj instance x, y ⊆ [t]× [q], we consider each S
(j)
i as a gadget and

construct a clique separation instance, in which we give Alice GA =
⋃

(i,j)∈xQ
(j)
i ,

and give Bob GB =
⋃

(i,j)∈y Q
(j)
i . We are going to prove that GA ∪ GB has an

r-clique if x ∩ y �= ∅, and has no s-clique if x ∩ y = ∅.
On positive Disj instances, when xi,j = yi,j = 1, the corresponding gadget

S
(j)
i induces an r-clique in GA ∪GB. On negative Disj instance, for each (i, j),

each subgraph induced by S
(j)
i in GA∪GB is one of three possibilities: Q

(j)
i , Q

(j)
i

or empty. By construction, none of these contain a (2 log r)-clique, so if GA∪GB

contains one, there exists a triangle (u, v, w) which is not in any S ∈ C. This
contradicts the triangle-freeness property of C.

Therefore, if we have a protocol of the Clique-Gap(r, s−1) problem, we have
a protocol of set disjointness problem with the same communication complexity.
Hence, Clique-Gap(r, s − 1) problem has communication complexity lower of
Ω(N) = Ω(t · q).

For larger values of r (e.g., r = n/polylog(n)), a naive packing gives better
bounds: Simply combine (n/r) vertex -disjoint r-cliques. This yields an edge-
disjoint triangle-free set system with n/r sets of size r each.

458 M.M. Halldórsson et al.

Theorem 4. For any n and any s, R1/3(Clique-Gap(r, s − 1)) = Ω(n/r),
where r = R(s)− 1.

4.3 r2 vs. 2r − 1

We now focus on graphs of constant clique number, for which we obtain optimal
quadratic space lower bounds.

Theorem 5. For any number r ≥ 18, R1/3(Clique-Gap(r2, 2r − 1)) =
Ω(n2/r4). Thus, any randomized ρ-approximation streaming algorithm for
Max-Clique requires Ω(n2/ρ4) space.

We construct a gadgetH = 〈VH , EH〉 on r2 vertices corresponding to a single bit
in Disj. We shall ensure that H is clique if the corresponding bits of both Alice
and Bob are both 1, and that H contains no 2r-clique otherwise. The vertex set
VH consists of r groups, r vertices each: VH = {ui,j|i, j ∈ [r]}. We color all the(
r2

2

)
edges with three colors: A (Alice), B (Bob), and C (Common).

We say that a triplet u, v, w ∈ VH is a colorful triangle if all three mutual
edges are differently colored. The proof of the following lemma is based on the
probabilistic method.

Lemma 4. For large r, there exists a coloring of EH satisfying

1. Edge {ui,j, ui′,j′} is with color C if and only if i = i′ and j �= j′.
2. Any 2r-subgraph of H contains a colorful triangle.

Let P be a prime in the range [n/(2r2), n/r2]. We reduce the Clique-Gap prob-
lem of size n from Disj problem of size N = P 2 by packing P 2 gadgets in a
graph of size n, where each gadget is of size r2. We isolate the remaining n−r2P
vertices, and focus on the r2P vertices {vi,j,k|i, j ∈ [r], k ∈ [P]}. On these ver-
tices, the edges are given by EC

G = {{vi,j,k, vi,j′,k}| i, j, j′ ∈ [r], k ∈ [P], j �= j′},
EA

G = {{vi,j,(s+ti) mod P , vi′,j′,(s+ti′) mod P }|i, i′, j, j′ ∈ [r], i �= i′ and {ui,j , ui′,j′}
is with color A and xs,t = 1}, and EB

G = {{vi,j,(s+ti) mod P , vi′,j′,(s+ti′) mod P }|
i, i′, j, j′ ∈ [r], i �= i′ and {ui,j, ui′,j′} is with color B and ys,t = 1}.

Alice is given the edges in EA
G ∪ EC

G , and Bob given the edges in EB
G ∪ EC

G .

Lemma 5. If Disj(x, y) = 1, then ω(G) = r2.

Lemma 6. If Disj(x, y) = 0, then ω(G) < 2r.

Proof (Proof of Theorem 5). We reduce Disj problem of size N = P 2 to the
Clique-Gap(r2, 2r − 1) problem. Since R(Disj) = Ω(P 2), any randomized
protocol to separate graphs with r2-cliques from those with only (2r−1)-cliques
requires Ω(n2/r4) communication.

Streaming and Communication Complexity of Clique Approximation 459

5 Upper Bounds

The following simple random sampling argument shows that the lower bound of
Thm. 1 is within a logarithmic factor of optimal.

Theorem 6. There is a randomized streaming algorithm for
Clique-Gap(r, r/ρ) that uses O((n/ρ)2) space (for ρ = O(n/

√
logn)).

Thus,
R1/3(Clique-Gap(r, r/ρ)) ≤ space1/3(Clique-Gap(r, r/ρ) = O((n/ρ)2).

Proof. Assuming that the vertices are numbered 0, 1, . . . , n−1, we initially choose
a random number h from [n]. This specifies a set S consisting of the n/ρ vertices
numbered h through h+n/ρ−1 (mod n). In processing the stream, we only store
edges between pairs of vertices in S and afterwards output the maximum clique
within S. The probability that any given vertex falls within S is (n/ρ)/n = 1/ρ.
Thus, by linearity of expectation, the expected number of vertices within any
r-clique that fall inside S is r/ρ.

Finally, we cannot expect to get a non-trivial lower bound on the separation of
(s−1)-cliques vs. R(s)-cliques using communication complexity. Namely, by the
definition of Ramsey numbers, any 2-coloring of anR(s)-clique – or a splitting of
the clique edges between Alice and Bob – leaves a monochromatic s-clique. Thus,
at least one of Alice and Bob can detect a s-clique, without any communication.
The gap in Thm. 2 is therefore best possible, even though the space lower bound
is not optimal. In fact, we get a sharp transition for Clique-Gap(U,L) in terms
of the values of U and L for which non-trivial communication is needed.

Theorem 7. There is a deterministic communication protocol for
Clique-Gap(R(s), s−1) that uses O(1)-bits. That is, D(Clique-Gap(R(s), s−
1)) = O(1).

References

1. Ahn, K.J., Guha, S.: Graph Sparsification in the Semi-streaming Model. In: Al-
bers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009. LNCS, vol. 5556, pp. 328–338. Springer, Heidelberg (2009)

2. Alon, N., Shapira, A.: A characterization of easily testable induced subgraphs. In:
SODA 2004, pp. 942–951. SIAM (2004)

3. Alon, N., Boppana, R.B.: The monotone circuit complexity of boolean functions.
Combinatorica 7(1), 1–22 (1987)

4. Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity
theory. In: FOCS 1986, pp. 337–347. IEEE Computer Society (1986)

5. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms,
with an application to counting triangles in graphs. In: SODA 2002, pp. 623–632
(2002)

6. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-streaming algorithms
for local triangle counting in massive graphs. In: KDD 2008, pp. 16–24 (2008)

460 M.M. Halldórsson et al.

7. Bollobás, B.: Complete subgraphs are elusive. Journal of Combinatorial Theory,
Series B 21(1), 1–7 (1976)

8. Bordino, I., Donato, D., Gionis, A., Leonardi, S.: Mining Large Networks with
Subgraph Counting. In: 8th IEEE International Conference on Data Mining, pp.
737–742. IEEE Computer Society (2008)

9. Buriol, L.S., Frahling, G., Leonardi, S., Sohler, C.: Estimating Clustering Indexes
in Data Streams. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 618–632. Springer, Heidelberg (2007)

10. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness. II.
On completeness for W[1]. Theoretical Computer Science 141(1-2), 109–131 (1995)

11. Erdős, P.: Some remarks on the theory of graphs. Bull. Amer. Math. Soc. 53,
292–294 (1947)

12. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio. Math. 2,
463–470 (1935)

13. Feige, U.: Approximating maximum clique by removing subgraphs. SIAM J. Dis-
crete Math. 18(2), 219–225 (2004)

14. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theoretical Computer Science 348(2), 207–216 (2005)

15. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in
the data-stream model. SIAM J. Comput. 38(5), 1709–1727 (2008)

16. Grimmett, G.R., McDiarmid, C.J.H.: On colouring random graphs. Mathematical
Proceedings of the Cambridge Philosophical Society 77, 313–324 (1975)

17. Halldórsson, B.V., Halldórsson, M.M., Losievskaja, E., Szegedy, M.: Streaming
Algorithms for Independent Sets. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
641–652. Springer, Heidelberg (2010)

18. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182,
105–142 (1999)

19. Indyk, P., Price, E.: K-median clustering, model-based compressive sensing, and
sparse recovery for earth mover distance. In: STOC 2011, pp. 627–636 (2011)

20. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity
of set intersection. SIAM J. Discrete Math. 5(4), 545–557 (1992)

21. Khot, S., Ponnuswami, A.K.: Better Inapproximability Results for maxClique,
Chromatic Number and Min-3Lin-Deletion. In: Bugliesi, M., Preneel, B., Sassone,
V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 226–237. Springer, Hei-
delberg (2006)

22. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge Univ. Pr.
(1997)

23. Losievskaja, E.: Approximation Algorithms for Independent Set Problems on Hy-
pergraphs. PhD thesis. Reykjavik University (January 2010)

24. Manjunath, M., Mehlhorn, K., Panagiotou, K., Sun, H.: Approximate Counting of
Cycles in Streams. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS,
vol. 6942, pp. 677–688. Springer, Heidelberg (2011)

25. Ruzsa, I., Szemerédi, E.: Triple systems with no six points carrying three triangles.
Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai 18, 939–945 (1976)

26. Yao, A.C.C.: Some complexity questions related to distributive computing (pre-
liminary report). In: STOC 1979, pp. 209–213. ACM (1979)

27. Zelke, M.: Intractability of min- and max-cut in streaming graphs. Inf. Process.
Lett. 111(3), 145–150 (2011)

Distributed Private Heavy Hitters

Justin Hsu, Sanjeev Khanna�, and Aaron Roth��

University of Pennsylvania, Philadelphia PA 19104, USA
{justhsu,sanjeev,aaroth}@cis.upenn.edu

Abstract. In this paper, we give efficient algorithms and lower bounds
for solving the heavy hitters problem while preserving differential privacy
in the fully distributed local model. In this model, there are n parties,
each of which possesses a single element from a universe of size N . The
heavy hitters problem is to find the identity of the most common element
shared amongst the n parties. In the local model, there is no trusted
database administrator, and so the algorithm must interact with each of
the n parties separately, using a differentially private protocol. We give
tight information-theoretic upper and lower bounds on the accuracy to
which this problem can be solved in the local model (giving a separation
between the local model and the more common centralized model of
privacy), as well as computationally efficient algorithms even in the case
where the data universe N may be exponentially large.

1 Introduction

Consider the problem of a website administrator who wishes to know what his
most common traffic sources are. Each of n visitors arrives with a single refer-
ring site: the name of the last website that she visited, which is drawn from a
vast universe N of possible referring sites (N here is the set of all websites on
the internet). There is value in identifying the most popular referring site (the
heavy hitter): the site administrator may be able to better tailor the content of
his webpage, or better focus his marketing resources. On the other hand, the
identity of each individual’s referring site might be embarrassing or otherwise
revealing, and is therefore private information. We can therefore imagine a world
in which this information must be treated “privately.” In this situation, visitors
are communicating directly with the servers of the websites that they visit: i.e.
there is no third party who might be trusted to aggregate all of the referring
website data and provide privacy preserving statistics to the website administra-
tor. In this setting, how well can the website administrator estimate the heavy
hitter while being able to provide formal privacy guarantees to his visitors?

This situation can more generally be modeled as the heavy hitters problem
under the constraint of differential privacy. There are n individuals i ∈ [n] each
of whom is associated with an element vi ∈ N of some large data universe N .
The heavy hitter is the most frequently occurring element x ∈ N among the

� Supported in part by NSF Awards CCF-0635084 and IIS-0904314.
�� Supported in part by NSF Awards CCF-1101389 and CNS-1065060.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 461–472, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

462 J. Hsu, S. Khanna, and A. Roth

set {v1, . . . , vn}, and we would like to be able to identify that element, or one
that occurs almost as frequently as the heavy hitter. Moreover, we wish to solve
this problem while preserving differential privacy in the fully distributed (local)
model. We define this formally in section 2, but roughly speaking, an algorithm
is differentially private if changes to the data of single individuals only result in
small changes in the output distribution of the algorithm. Moreover, in the fully
distributed setting, each individual (who can be viewed as a database of size 1)
must interact with the algorithm independently of all of the other individuals,
using a differentially private algorithm. This is in contrast to the more commonly
studied centralized model, in which a trusted database administrator may have
(exact) access to all of the data, and coordinate a private computation.

We study this problem both from an information theoretic point of view, and
from the point of view of efficient algorithms. We say that an algorithm for the
private heavy hitters problem is efficient if it runs in time poly(n, logN): i.e.
polynomial in the database size, but only polylogarithmic in the universe size (i.e.
in what we view as the most interesting range of parameters, the universe may
be exponentially larger than the size of the database). We give tight information
theoretic upper and lower bounds on the accuracy to which the heavy hitter
can be found in the private distributed setting (separating this model from the
private centralized setting), and give several efficient algorithms which achieve
good, although information-theoretically sub-optimal accuracy. We leave open
the question of whether efficient algorithms can match the information theoretic
bounds we prove for the private heavy hitters problem in the this setting.

1.1 Our Results

In this section, we summarize our results. The bounds we discuss here are infor-
mal and hide many of the parameters which we have not yet defined. The formal
bounds are given in the main body of the paper.

First, we provide an information theoretic characterization of the accuracy to
which any algorithm (independent of computational constraints) can solve the
heavy hitters problem in the private distributed setting. We say that an algo-
rithm is α-accurate if it returns a universe element which occurs with frequency
at most an additive α smaller than the true heavy hitter. In the centralized
setting, an application of the exponential mechanism [1] gives an α-accurate
mechanism for the heavy-hitters problem where α = O(log |N |), which is inde-
pendent of the number of individuals n. In contrast, we show that in the fully
distributed setting, no algorithm can be α-accurate for α = Ω(

√
n) even in the

case of |N | = 2. Conversely, we give an almost matching upper bound (and an
algorithm with run-time linear in N) which is α-accurate for α = O(

√
n logN).

Next, we consider efficient algorithms which run in time only polylogarithmic
in the universe size |N |. Here, we give two algorithms. One is an application
of a compressed sensing algorithm of Gilbert et al. [2], which is α-accurate for
α = Õ(n5/6 log logN). Then, we give an algorithm based on group-testing using
pairwise independent hash functions, which has an incomparable bound. Roughly
speaking, it guarantees to return the exact heavy hitter (i.e. α = 0) whenever

Distributed Private Heavy Hitters 463

the frequency of the heavy hitter is larger than the �2-norm of the frequencies
of the remaining elements. Depending on how these frequencies are distributed,
this can correspond to a bound of α-accuracy for α ranging anywhere between
the optimal α = O(

√
n) to α = O(n).

1.2 Our Techniques

Our upper bounds, both information theoretic, and those with efficient algo-
rithms, are based on the general technique of random projection and concentra-
tion of measure. To prove our information theoretic upper bound, we observe
that to find the heavy hitter, we may view the private database as a histogram
v in N dimensional space. Then, it is enough to find the index i ∈ [N] of the
universe element which maximizes 〈v, ei〉, where ei is the i’th standard basis vec-
tor. Both v and each ei have small �1-norm, and so each of these inner products
can be approximately preserved by taking a random projection into Õ(logN) di-
mensional space. Moreover, we can project each individual’s data into this space
independently in the fully distributed setting, incurring a loss of only O(

√
n) in

accuracy. This mechanism, however, is not efficient, because to find the heavy
hitter, we must enumerate through all |N | basis vectors ei in order to find the
one that maximizes the inner product with the projected database. Similar ideas
lead to our efficient algorithms, albeit with worse accuracy guarantees. For ex-
ample, in our first algorithm, we apply techniques from compressed sensing to
the projected database to recover (approximately) the heavy hitter, rather than
checking basis vectors directly. In our second algorithm, we take a projection us-
ing a particular family of pairwise-independent hash functions, which are linear
functions of the data universe elements. Because of this linearity, we are able to
efficiently “invert” the projection matrix in order to find the heavy hitter.

Our lower bound separates the distributed setting from the centralized set-
ting by applying an anti-concentration argument. Roughly speaking, we observe
that in the fully distributed setting, if individual data elements were selected
uniformly i.i.d. from the data universe N , then even after conditioning on the
messages exchanged with any differentially private algorithm, they remain inde-
pendently distributed, and approximately uniform. Thus, by the Berry-Esseen
theorem, after any algorithm computes its estimate of the heavy hitter, the true
distribution over counts remains approximately normally distributed. Since the
Gaussian distribution exhibits strong anti-concentration properties, we arrive at
an Ω(

√
n) lower bound for any algorithm in the fully distributed setting.

1.3 Related Work

Differential privacy was introduced in a sequence of papers culminating in [3],
and has since become the standard “solution concept” for privacy in the theo-
retical computer science literature. There is by now a very large literature on
this topic, which is too large to summarize here. Instead, we focus only on the
most closely related work, and refer the curious reader to a survey of Dwork [4].

464 J. Hsu, S. Khanna, and A. Roth

Most of the literature on differential privacy focuses on the centralized model,
in which there is a trusted database administrator. In this paper, we focus on the
local or fully distributed model, introduced by [5] and studied also by [6], in which
each individual holds their own data (i.e. there are n databases, each of size 1),
and the algorithm must interact with each one in a differentially private manner.
There has been little work in this more restrictive model–the problems of learning
[5] and query release [7] in the local model are well understood 1 , but only up to
polynomial factors that do not imply tight bounds for the heavy hitters problem.
The two-party setting (which is intermediate between the centralized and fully
distributed setting), in which the data is divided between two databases without
a trusted central administrator, was considered by [8]. They proved a separation
between the two-party setting and the centralized setting for the problem of
computing the Hamming distance between two strings. In this work, we prove a
separation between the fully distributed setting and the centralized setting for
the problem of estimating the heavy hitter.

A variant of the private heavy hitters problem has been considered in the
setting of pan-private streaming algorithms [9,10]. This work considers a differ-
ent (although related) problem in a different (although related) setting. [9,10]
consider a setting in which a stream of elements is presented to the algorithm,
and the algorithm must estimate the approximate count of frequently occurring
elements (i.e. the number of “heavy hitters”). In this setting, the universe ele-
ments themselves are the individuals appearing in the stream, and so it is not
possible to reveal the identity of the heavy hitter. In contrast, in our work, indi-
viduals are distinct from universe elements, which merely label the individuals.
Moreover, our goal here is to actually identify a specific universe element which
is the heavy hitter, or which occurs almost as frequently. Also, [9,10] work in the
centralized setting, but demand pan-privacy, which roughly requires that the
internal state of the algorithm itself remain differentially private. In contrast,
we work in the local privacy setting which gives a guarantee which is strictly
stronger than pan-privacy. Because algorithms in the local privacy setting only
interact with individuals in a differentially private way, and never have any other
access to the private data, any algorithm in the local privacy model can never
have its state depend on data in a non-private way, and such algorithms therefore
also preserve pan-privacy. Therefore, our upper bounds hold also in the setting
of pan-privacy, whereas our lower bounds do not necessarily apply to algorithms
which only satisfy the weaker guarantee of pan-privacy.

Finally, we note that many of the upper bound techniques we employ have
been previously put to use in the centralized model of data privacy i.e. ran-
dom projections [11,12] and compressed sensing (both for lower bounds [13] and

1 Roughly, the set of concepts that can be learned in the local model given polynomial
sample complexity is equal to the set of concepts that can be learned in the SQ
model given polynomial query complexity [5], and the set of queries that can be
released in the local model given polynomial sample complexity is equal to the set of
concepts that can be agnostically learned in the SQ model given polynomial query
complexity [7], but the polynomials are not equal.

Distributed Private Heavy Hitters 465

algorithms [14]). As algorithmic techniques, these are rarely optimal in the cen-
tralized privacy setting. We remark that they are particularly well suited to
the fully distributed setting which we study here, because in a formal sense,
algorithms in the local model of privacy are constrained to only access the pri-
vate data using noisy linear queries, which is exactly the form of access used by
random linear projections and compressed sensing measurements.

2 Preliminaries

A database v consists of n records from a data universe N , one corresponding
to each of n individuals: for i ∈ [n], vi ∈ N and v = {v1, . . . , vn} which may
be a multiset. Without loss of generality, we will index the elements of the data
universe from 1 to |N |. It will be convenient for us to represent databases as
histograms. In this representation, v ∈ N|N |, where vi represents the number
of occurrences of the i’th universe element in the database. Further, we write
vi ∈ N|N | for each individual i ∈ [n], where vij = 1 if individual i is associated

with the j’th universe element, and vij′ = 0 for all other j′ �= j. Note that in this

histogram notation, we have: v =
∑n

i=1 v
i. In the following, we will usually use

the histogram notation for mathematical convenience, with the understanding
that we can in fact more concisely represent the database as a multiset.

Given a database v, the heavy hitter is the universe element that occurs most
frequently in the database: hh(v) = argmaxi∈N vi. We refer to the frequency
with which the heavy hitter occurs as fhh(v) = vhh(v). We want to design
algorithms which return universe elements that occur almost as frequently as
the heavy hitter.

Definition 1. An algorithm A is (α, β)-accurate for the heavy hitters problem
if for every database v ∈ N|N |, with probability at least 1 − β: A(v) = i∗ such
that vi∗ ≥ fhh(v)− α.

2.1 Differential Privacy

Differential privacy constrains the sensitivity of a randomized algorithm to in-
dividual changes in its input.

Definition 2. An algorithm A : N|N | → R is (ε, δ)-differentially private if for
all v, v′ ∈ N|N | such that ||v − v′||1 ≤ 1, and for all events S ⊆ R: Pr[A(v) ∈
S] ≤ exp(ε) Pr[A(v′) ∈ S] + δ

Typically, we will want δ to be negligibly small, whereas we think of ε as being
a small constant (and never smaller than ε = O(1/n)).

Additional preliminaries (including the formal definition of the local privacy
model) can be found in the full version [15]. Informally speaking, an algorithm A
operates in the local privacy model if for each individual i, the only access that A
has to vi is through the output of Ai(v

i), where Ai is itself an (ε, δ)-differentially
private algorithm that operates on a database of size ‖vi‖1 = 1.

466 J. Hsu, S. Khanna, and A. Roth

2.2 Probabilistic Tools

We will make use of several useful probabilistic tools which can be found in
the full version. In particular, we use the well-known Johnson-Lindenstrauss
lemma. Informally, it says that any set of q points in a high dimensional space
can be obliviously embedded into a space of dimension m = O(log q) such that
w.h.p. this embedding essentially preserves pairwise distances. Moreover, the
embedding is linear and can be accomplished with a random projection matrix
with entries taken to be independently uniformly drawn from {−1/

√
m, 1/

√
m}.

3 Information Theoretic Upper and Lower Bounds.

In this section we present upper and lower bounds on the accuracy to which
any algorithm in the fully distributed model can privately approximate heavy
hitters. Our upper bound can be viewed as an algorithm, albeit one that runs
in time linear in |N | and so is not what we consider to be efficient.

3.1 An Upper Bound via Johnson-Lindenstrauss Projections

We present here our first algorithm, referred to as JL-HH, that solves the heavy
hitters problem in the local model using the Johnson-Lindenstrauss lemma. The
algorithm JL-HH is outlined in Algorithm 1. We write ei to refer to the i’th
standard basis vector in RN , and write RandomProjection(m,N + 1) for a sub-
routine which returns a linear embedding of N + 1 points into m dimensions
using a random ±1/

√
m valued projection matrix, as specified by the Johnson-

Lindenstrauss lemma. By this lemma, for any set of N + 1 elements, this map
approximately preserves pairwise distances with high probability.

JL-HH is based on the following straightforward idea: if v is a private his-
togram, we will estimate the count of the i’th element (〈v, ei〉), by estimating
〈Av,Aei〉, and return the largest count. By the Johnson-Lindenstrauss lemma,
since we are using the random projections matrix, we have that with high prob-
ability, inner products between points in the set V = {e1 · · · eN , v} are approx-
imately preserved under A. However, we cannot access Av directly since v is
private data. To preserve differential privacy, our mechanism must add noise z
to Av, and work only with the noisy samples. Our analysis will thus focus on
bounding the error introduced by this noise term. First, though, we show that
JL-HH is differentially private; the proof is simple and can be found in the full
version.

Lemma 1. JL-HH operates in the local privacy model and is (ε, δ)-differentially
private.

We next prove an accuracy bound for the mechanism:

Theorem 1. For any β > 0, JL-HH mechanism is (α, β)-accurate for the heavy

hitters problem, with α = O

(√
n log(N/β) log(1/δ)

ε

)
.

Distributed Private Heavy Hitters 467

Algorithm 1. JL-HH Mechanism

Input: Private histograms vi ∈ NN , i ∈ [n]. Privacy parameters ε, δ > 0. Failure
probability β > 0.

Output: p∗, index of the heavy hitter.
γ ← 1/n2

m← log(N+1) log(2/β)

γ2

A← RandomProjection(m,N + 1)
for p = 1 to N indices do

for i = 1 to n users do

zi ∼
{
Lap

(√
8 log(1/δ)

ε

)}m

qi = Avi + zi

rip = 〈Aep, q
i〉

end for
cp ←

∑n
i=1 rip

end for
p∗ ← argmaxp cp
return p∗

The proof, which proceeds by bounding two sources of error (one from the ran-
dom projection, and one from the added noise), can be found in the full version.

It is worthwhile to compare JL-HH with a more naive approaches. A simpler
differentially private algorithm to solve the distributed heavy hitters problem is
to have each user simply add noise Lap(1/ε) to each entry in the user’s private
histogram, and report this vector to the central party, which sums the noisy
vectors and estimates the most frequently occurring item. This is differentially
private, as any neighboring histogram will change exactly one entry in a user’s
histogram. However, this method requires having each user transmit O(N) bits
of information to the central party. JL-HH achieves similar accuracy compared
to this naive approach, but since the clients compress the histogram first, only
O(logN) information must be communicated. Even though JL-HH runs in time
linear in N , there are natural situations where long running time can be tol-
erated, but large communication complexity cannot, for instance, if the central
party is a server farm with considerable computational resources, but the com-
munication with users must happen over standard network links.

3.2 A Lower Bound via Anti-concentration

We next show that our upper bound is essentially optimal: for any ε < 1/2 and
any δ bounded away from 1 by a constant, no (ε, δ)-private mechanism in the
fully distributed setting can be α-accurate for the heavy hitters problem for α =
Ω(

√
n), even in the case in which |N | = 2. We remark that our technique (while

specific to the local privacy model) holds for (ε, δ)-differential privacy, even when
δ > 0. This is similar to lower bounds based on reconstruction arguments [16],
and in contrast to other techniques for proving lower bounds in the centralized
model, such as the elegant packing arguments used in [17,18], which are specific

468 J. Hsu, S. Khanna, and A. Roth

to (ε, 0)-differential privacy. We use an independence argument also used by [8]
to prove a lower bound in the two-party setting, and by [6] to prove a lower
bound in the fully distributed setting.

Theorem 2. For any ε ≤ 1/2 and δ < 1 bounded away from 1, there exists an
α = Ω(

√
n) and a β = Ω(1) such that no (ε, δ)-private mechanism in the local

model is (α, β)-accurate for the heavy hitters problem.

Proof (Sketch). The proof can be found in the full version – here we include
just a sketch. We construct a lower bound instance over a universe of size 2:
N = {0, 1}, in which the universe element si for each individual i is selected in-
dependently and uniformly at random. We observe that even after conditioning
on the private interaction with the mechanism, because we are in the local model,
the random variables si remain independent. Moreover, because our mechanism
is (ε, δ)-differentially private, for each i with probability 1 − δ (over the choices
of the mechanism) the conditional probability that si is 1 remains in the range
[exp(−ε)/2, exp(ε/2)] and in particular, bounded away from 0 and 1 by a con-
stant. Therefore, by the Berry-Esseen theorem, conditioned on the outcome of
the mechanism, the distribution over the number of individuals with si = 1 con-
verges to a Gaussian distribution with standard deviation σ = Ω(

√
n). But the

Gaussian distribution exhibits strong anti-concentration properties: with con-
stant probability it deviates from its expectation by an additive Ω(

√
n). There-

fore, no private local mechanism can be accurate to within this factor.

4 Efficient Algorithms

In the last section, we saw the Johnson-Lindenstrauss algorithm which gave
almost optimal accuracy guarantees, but had running time linear in |N |. In this
section, we consider efficient algorithms with running time poly(n, log |N |). The
first is an application of a sublinear time algorithm from the compressed sensing
literature, and the second is a group-testing approach made efficient by the use
of a particular family of pairwise-independent hash functions.

4.1 GLPS Sparse Recovery

In this section we adapt a sophisticated algorithm from compressed sensing.
Gilbert, et al. [2] present a sparse recovery algorithm (we refer to it as the GLPS
algorithm) that takes linear measurements from a sparse vector, and reconstructs
the original vector to high accuracy. Importantly, the algorithm runs in time
polylogarithmic in |N |, and polynomial in the sparsity parameter of the vector.
We remark that our database v is n-sparse: it has at most n non-zero components.
In the rest of this section, we will write vs to denote the vector v truncated to
contain only its s largest components.

Let s be a sparsity parameter, and let γ be a tunable approximation level. The
GLPS algorithm runs in time O((s/γ) logcN), and makesm = O(s log(N/s)/γ))

Distributed Private Heavy Hitters 469

measurements from a specially constructed (randomized) {−1, 0, 1} valued ma-
trix, which we will denote Φ. Given measurements u = Φv + z (where z is
arbitrary noise), the algorithm returns an approximation v̂, with error

‖v − v̂‖2 ≤ (1 + γ)‖v − vs‖2 + γ log(s)
‖z‖2
κ

(1)

with probability at least 3/4, where κ = O(log2(s) log(N/s)).
Though the GLPS bound only occurs with probability 3/4, the success proba-

bility can be made arbitrarily close to 1 by running this algorithm several times.
In particular, using the amplification lemma from [19], the failure probability
can be driven down to β at a cost of only a factor of log(1/β) in the accuracy.
In what follows, we analyze a single run of the algorithm, with γ = 1.

Algorithm 2. GLPS-HH Mechanism

Input: Private histograms vi ∈ NN , i ∈ [n]. GLPS matrix Φ. Privacy parameters
ε, δ > 0.

Output: p∗, estimated index of heavy hitter.
m← s log(N/s)
b←

√
8m log(1/δ)/ε

for i = 1 to n users do
zi ∼ {Lap(b)}m
qi ← Φvi + zi

end for
c←

∑n
i=1 q

i

v̂ ← GLPS(c, Φ)
p∗ ← argmaxp v̂p
return p∗

First, we will show that GLPS-HH is (ε, δ)-differentially private (proof in the
full version).

Theorem 3. GLPS-HH operates in the local privacy model and is (ε, δ)-
differentially private.

Next, we will bound the error that we introduce by adding noise for differential
privacy.

Theorem 4. Let β > 0 be given. GLPS-HH is (α, 3/4 − β)-accurate for the

heavy hitters problem, with α = O
(

n5/6 log1/3(1/β) log logN log1/6(1/δ)

ε1/3

)
The proof, which proceeds by bounding the total error added and applying the
GLPS bound, can be found in the full version.

470 J. Hsu, S. Khanna, and A. Roth

Algorithm 3. The Bucket Mechanism

Input: Private labels vi ∈ [N], i ∈ [n]. Failure probability β > 0. Privacy parameters
ε, δ > 0.

Output: p∗, the index of the heavy hitter.
F ← {0, 1}logN \ 0
for i = 1 to 8 log(1/β) trials do

H ∈ {0, 1}log(12N)×log N ← Draw log(12N) rows from F , uniformly at random.
u ∈ Rlog(12N) ← 0
for j = 1 to n users do

b ∈ {0, 1}log N ← binary expansion of vj .
s← Hb (mod 2)

z ∼
{
Lap

(
8
√

log(12N) log(1/β) log(1/δ)

ε

)}log(12N)

u← u+ s+ z
end for
for k = 1 to log(12N) hash functions do

bk ←
{
1 : uk > n/2
0 : otherwise

end for

wi ←
{
x0 : Hx0 = b (mod 2)
⊥ : Hx = b (mod 2) infeasible

end for
w∗ ← most frequent wi, ignoring ⊥
return p∗ ← w∗ converted from binary

4.2 The Bucket Mechanism

In this section we present a second computationally efficient algorithm, based
on group-testing and a specific family of pairwise independent hash functions.

At a high level, our algorithm, referred to as the Bucket mechanism, runs
O(log(1/β)) trials consisting of O(logN) 0/1 valued hash functions in each trial.
For a given trial, the mechanism hashes each universe element into one of two
buckets for each hash function. Then, the mechanism tries to find an element
that hashes into the bucket with more weight (the majority bucket) for all the
hash functions. If there is such an element, it is a candidate for the heavy hitter
for that trial. Finally, the mechanism takes a majority vote over the candidates
from each trial to output a final heavy hitter.

For efficiency purposes we do not use truly random hash functions, but instead
rely on a particular family of pairwise-independent hash functions which can be
expressed as linear functions on the bits of a universe element. Specifically, each
function h in the family maps [N] to {0, 1}, and is parameterized by a bit-string
r ∈ {0, 1}log |N |. In particular, given any bit-string r ∈ {0, 1}log |N |, we define
hr(x) = 〈r, b(x)〉, where b(x) denotes the binary representation of x. r is chosen
uniformly at random from the set of all strings r ∈ {0, 1}log |N | \ 0log |N |. Given
hash functions of this form, and a list of target buckets, the problem of finding
an element that hashing to all of the target buckets is equivalent to solving a
linear system mod 2, which can be done efficiently. Our family of hash functions

Distributed Private Heavy Hitters 471

operates on the element label in binary, hence the conversions to and from binary
in the algorithm.

We will now show that the bucket mechanism is (ε, δ)-differentially private,
runs in time poly(n, log |N |), and assuming a certain condition on the distribu-
tion over universe elements, returns the exact heavy hitter. The accuracy analysis
proceeds in two steps: first, we argue that with constant probability > 1/2, the
heavy hitter is the unique element hashed into the larger bucket by every hash
function in a given trial. Then, we argue that with high probability, the pro-
ceeding event indeed occurs in the majority of trials, and so the majority vote
among all trials returns the true heavy hitter.

Theorem 5. The Bucket mechanism operates in the local model and is (ε, δ)-
differentially private.

We now consider the accuracy of the mechanism. The analysis proceeds by a
series of lemmas, and can be found in the full version.

Theorem 6. Without loss of generality, suppose that the elements are labeled
in decreasing order of count, with counts v1 ≥ v2 ≥ · · · ≥ vN . The Bucket mech-

anism is (0, β)-accurate whenever v1 ≥ Ω̃

(√
log |N |

(√∑
N
i=2 v2

i +
√

n log 1
β log 1

δ

)
ε

)
.

We note that the accuracy guarantee of the bucket mechanism is incomparable to
those of our other mechanisms. While the other mechanisms guarantee (without
conditions) to return an element which occurs within some additive factor α as
frequently as the true heavy hitter, the bucket mechanism always returns the
true heavy hitter, so long as a certain condition on v is satisfied. We remark
that this condition is not unreasonable: if universe elements follow a power law
distribution, such as a Zipf distribution, the condition will be satisfied with
overwhelming probability.

5 Discussion and Open Questions

We have initiated the study of the private heavy hitters problem in the fully
distributed (local) privacy model. Our information theoretic understanding of
this problem is almost tight, but we leave open the question of whether there
exist efficient algorithms in the local model which can match this information
theoretically optimal bound.

Acknowledgments. We would like to thank Martin Strauss for providing valu-
able insights about [2], and the anonymous reviewers for their helpful sugges-
tions. We would also like to thank Andreas Haeberlen for suggesting that we
study the heavy hitters problem in the fully distributed setting, and Andreas,
Marco Gaboardi, Benjamin Pierce, and Arjun Narayan for valuable discussions.

References

1. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: Proceed-
ings of the 48th Annual Symposium on Foundations of Computer Science (2007)

472 J. Hsu, S. Khanna, and A. Roth

2. Gilbert, A., Li, Y., Porat, E., Strauss, M.: Approximate sparse recovery: optimizing
time and measurements. In: Proceedings of the 42nd ACM Symposium on Theory
of Computing, pp. 475–484. ACM (2010)

3. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in
Private Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006)

4. Dwork, C.: Differential Privacy: A Survey of Results. In: Agrawal, M., Du, D.-Z.,
Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008)

5. Kasiviswanathan, S., Lee, H., Nissim, K., Raskhodnikova, S., Smith, A.: What Can
We Learn Privately? In: IEEE 49th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2008, pp. 531–540 (2008)

6. Beimel, A., Nissim, K., Omri, E.: Distributed Private Data Analysis: Simulta-
neously Solving How and What. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 451–468. Springer, Heidelberg (2008)

7. Gupta, A., Hardt, M., Roth, A., Ullman, J.: Privately Releasing Conjunctions and
the Statistical Query Barrier. In: Proceedings of the 43rd annual ACM Symposium
on the Theory of Computing. ACM, New York (2011)

8. McGregor, A., Mironov, I., Pitassi, T., Reingold, O., Talwar, K., Vadhan, S.: The
limits of two-party differential privacy. In: Proceedings of the 51st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 81–90. IEEE (2010)

9. Dwork, C., Naor, M., Pitassi, T., Rothblum, G., Yekhanin, S.: Pan-private stream-
ing algorithms. In: Proceedings of ICS (2010)

10. Mir, D., Muthukrishnan, S., Nikolov, A., Wright, R.: Pan-private algorithms via
statistics on sketches. In: Proceedings of the 30th Symposium on Principles of
Database Systems of Data, pp. 37–48. ACM (2011)

11. Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive
database privacy. In: Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, pp. 609–618. ACM (2008)

12. Blum, A., Roth, A.: Fast private data release algorithms for sparse queries. CoRR,
abs/1111.6842 (2011)

13. Dwork, C., McSherry, F., Talwar, K.: The price of privacy and the limits of LP
decoding. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory
of Computing, p. 94. ACM (2007)

14. Li, Y., Zhang, Z., Winslett, M., Yang, Y.: Compressive mechanism: Utilizing sparse
representation in differential privacy. In: Proceedings of the 10th Annual ACM
Workshop on Privacy in the Electronic Society, pp. 177–182. ACM (2011)

15. Hsu, J., Khanna, S., Roth, A.: Distributed private heavy hitters. Arxiv preprint
arXiv:1202.4910 (2012)

16. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: 22nd
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS 2003), pp. 202–210 (2003)

17. Beimel, A., Kasiviswanathan, S., Nissim, K.: Bounds on the sample complexity for
private learning and private data release. Theory of Cryptography, 437–454 (2010)

18. Hardt, M., Talwar, K.: On the Geometry of Differential Privacy. In: The 42nd ACM
Symposium on the Theory of Computing, STOC 2010 (2010)

19. Gupta, A., Ligett, K., McSherry, F., Roth, A., Talwar, K.: Differentially Private
Combinatorial Optimization. In: Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms (2010)

A Thirty Year Old Conjecture

about Promise Problems

Andrew Hughes1, A. Pavan2,�, Nathan Russell1, and Alan Selman1

1 Department of Computer Science and Engineering, University at Buffalo
{ahughes6,nrussell,selman}@buffalo.edu

2 Department of Computer Science. Iowa State University
pavan@cs.iastate.edu

Abstract. Even, Selman, and Yacobi [ESY84, SY82] formulated a con-
jecture that in current terminology asserts that there do not exist disjoint
NP-pairs all of whose separators are NP-hard viaTuring reductions. In
this paper we consider a variant of this conjecture—there do not exist
disjoint NP-pairs all of whose separators are NP-hard via bounded-truth-
table reductions. We provide evidence for this conjecture. We also observe
that if the original conjecture holds, then some of the known probabilistic
public-key cryptosystems are not NP-hard to crack.

1 Introduction

Even, Selman and Yacobi [ESY84, SY82] conjectured that there do not exist cer-
tain promise problems all of whose solutions are NP-hard. Specifically, there do
not exist disjoint NP-pairs all of whose separators are NP-hard. This conjecture
has fascinating (and largely believable) consequences, including that NP differs
from co-NP and NP is not equal to UP. Even though this conjecture is 30 years
old, we do not know of concrete evidence in support of the conjecture. (We don’t
know hypotheses that imply all of its consequences.) In this paper, we report some
exciting progress on this conjecture. We consider variants of the conjecture and
show that under some reasonable hypotheses these variants of the conjecture hold.

A promise problem can be thought of as a disjoint pair—a pair of disjoint
sets (Πy , Πn), Πy is called the set of “yes” instances and Πn is the set of “no”
instances. Their union Πy ∪Πn is called the promise. The motivation to study
disjoint pairs/promise problems stems from their connections to a wide range of
question from disperate areas such as public-key cryptosystems, propositional
proof systems, study of complete problems for semantic classes, and approxima-
tion algorithms. For a recent survey on promise problems, we refer the reader to
a survey by Goldreich [Gol06].

For a promise problem (Πy, Πn), one is interested in the following computa-
tional question: Is there an efficient algorithm that tells whether an instance x
lies in Πy or not, under the promise that x is in Πy ∪ Πn. The algorithm may
give an arbitrary answer if the promise does not hold, i.e., x /∈ Πy ∪ Πn. More

� Research supported in part by CCF: 0916797.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 473–484, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

474 A. Hughes et al.

formally a solution/separator of a promise problem is any set S that includes
Πy and is disjoint from Πn. A promise problem is considered easy if it admits a
solution in P and is hard if every solution is computationally difficult. The ESY
conjecture concerns the computational difficulty of disjoint NP-pairs.

The ESY conjecture has some interesting implication regarding the hardness
of public key cryptosystems. Even, Selman, and Yacobi [ESY84] observed that
the problem of cracking a PKCS may not formalize as a straightforward decision
problem, and it is more natural to formulate it as a promise problem. They
associated a promise problem (Πy, Πn) to a model of public-key cryptosystems
such that both Πy and Πn are in NP. A PKCS that fits the model cannot be
deemed secure, if the underlying promise problem admits at least one efficient
solution. On the other hand if every solution is NP-hard then the system is NP-
hard to crack. Thus the ESY conjecture implies that PKCS that fit the model
are not NP-hard to crack. We will discuss this further in a later section.

The ESY conjecture is also related to the study of propositional proof sys-
tems [Raz94, Pud01]. Razborov observed that every propositional proof system
f can be identified with a canonical disjoint NP-pair (SAT∗,REFf) where REFf

is the set of all formulas that have short proofs of unsatisfiability with respect
to f , and SAT∗ is a padded version of SAT. Conversely, Glaßer, Selman, and
Zhang [GSZ07] showed that for every disjoint NP-pair (A,B) there is a proof
system f such that (A,B) is many-one equivalent to (SAT∗,REFf). Because
of this equivalence between propositional proof systems and disjoint NP-pairs,
several interesting questions regarding propositional proof systems are related
to the structure of disjoint NP-pairs. One of the open questions on propositional
proof systems is whether optimal proof systems exist and the belief is that they
do not exist. This question is related to the ESY conjecture. It is known that
if optimal proof systems do not exist, then a variant of the ESY conjecture
holds [GSSZ04].

In addition to connections with PKCS and propositional proof systems, the
ESY conjecture has several believable consequences in complexity theory. It is
known that this conjecture implies NP differs from co-NP, NP differs from UP,
and satisfying assignments of boolean formulas cannot be computed by single-
valued NP-machines [ESY84, GS88].

Given its relation to public-key cryptosystems, propositional proof systems,
and complexity theory, it is important to understand the power of the ESY
conjecture. Is there a reasonable hypothesis that implies the conjecture? To date
we do not know reasonable hypotheses that imply ESY, although the analogue
of ESY to the c.e. sets is a known theorem [Sch60]. It seems to be difficult
to formulate reasonable hypotheses that imply the ESY conjecture, because of
its wide range of consequences. Any hypothesis that implies the ESY conjecture
immediately implies that NP �= co-NP, NP �= UP, and SAT is not in NPSV. None
of the standard hypotheses used in complexity theory, such as PH is infinite, E
has high circuit complexity, the measure of NP is not zero, and so on, are known
to imply all of the above mentioned consequences. This seems to be the root
difficulty.

A Thirty Year Old Conjecture about Promise Problems 475

In this paper we make progress toward this question. We consider variants
of the ESY conjecture and show that under some reasonable hypotheses these
variants follow. Note that ESY states that every disjoint NP-pair has a solu-
tion that is not NP-hard via adaptive reductions. We can obtain variants of the
conjecture by replacing adaptive reductions with more restrictive reductions.
Given a reduction type r, the ESY-r conjecture states that every disjoint NP-
pair has a solution that is not NP-hard via r-reductions. We know already that
if we take r to be many-one reductions, then the ESY-m conjecture is equivalent
to NP �= co-NP [GSSZ04]. What if we take r to be truth-table reductions or
bounded truth table reductions?

We first observe that the ESY conjecture for truth-table reductions also has
the same set of complexity-theoretic consequences such as NP �= co-NP, NP �=
UP and SAT is not in NPSV. This suggests that obtaining evidence for the ESY-
tt conjecture could be as hard as obtaining evidence for the original conjecture.
In this paper we consider bounded-truth-table reductions, these are nonadaptive
reductions that make a fixed number of queries,

The first main result of the paper is that if NP �= co-NP, then every disjoint
NP-pair has a solution that is not NP-hard via length-increasing bounded-truth-
table reductions (i.e., the ESY conjecture for btt length-increasing reductions
hold). By using a stronger hypothesis, we remove the length-increasing restric-
tion. We show that if NP contains certain type of generic sets, then every disjoint
NP-pair has a solution that is not NP-hard via bounded-truth-table reductions.

As noted earlier, one of the motivations for introducing the ESY conjecture
was its relation to NP-hardness of public key cryptosystems. The analysis of
Even, Selman, and Yacobi pertained to the deterministic public-key cryptosys-
tems of that time. In the final section we observe that the ESY conjecture remains
relevant to some of the current probabilistic PKCS. If the cracking problem of
a current public-key cryptosystem also can be formulated as a disjoint NP pair,
and the ESY conjecture holds, then these cryptosystems are not NP-hard to
crack.

2 Preliminaries

We assume the standard lexicographic order on strings. We use x−1 to denote the
immediate predecessor of x in this order. Given a language L and a string x, L(x)
is 1 if x ∈ L otherwise L(x) = 0, and L|x is defined as L(λ)L(0)L(1) · · ·L(x−1).

A language A is k-truth table reducible to a language B (A ≤P
ktt B) if there

exist two polynomial-time computable functions f and t such that for every
x, f(x) = 〈q1, · · · , qk〉 and t(x,B(q1), · · · , B(qk)) = A(x). We say that A is
bounded truth-table reducible to B if there is exists a constant k > 0 such that
A ≤P

ktt B.

Definition 2.1. A function f : Σ∗ → Σ∗ is SNP computable if there is a
nondeterministic polynomial-time bounded Turing machine M that for every x
at least one path of M(x) outputs f(x) and no path outputs a wrong answer.
Some paths may output ⊥.

476 A. Hughes et al.

We will also consider strong nondeterministic reductions. These reductions are
originally defined by Adleman and Manders [AM77]. We slightly modify their
definition to suit our purposes.

Definition 2.2. Let A and B be two languages. We say that A is strong non-
deterministic k-truth table reducible to B (denoted A ≤SNP

ktt B), if there is a
polynomial-time computable function f and a SNP computable function t such
that every f(x) = 〈q1, · · · qk〉, and t(x,B(q1), · · · , B(qk)) = A(x).

Remark. Note that in this definition, the reduction does not use nondeter-
minism to produce the queries. The original definition of Adleman and Manders
allows the query generator f also to be SNP computable.

We say that A is strong nondeterministic bounded truth table reducible to B
(A ≤SNP

btt B) if there exists a k > 0 such that A ≤SNP
ktt B.

Definition 2.3. We say that A is reducible to B via length-increasing, strong
nondeteministic, k-truth table reductions (denoted ≤SNP

ktt,li) if A ≤SNP
ktt B and the

length of every query is larger than the length of the input.

Notions of length-increasing are defined similarly for ≤P
ktt, ≤P

btt, and ≤SNP
btt

reductions.

2.1 ESY Conjecture

Let (A,B) be a disjoint pair of sets. We say that a set S is a separator for (A,B)
if B ⊆ S and A ⊆ S. We now state the original conjecture of Even, Selman, and
Yacobi [ESY84].

ESY Conjecture. For every pair of disjoint sets in NP, there is a separator
that is not Turing hard for NP.

Although the original conjecture talks about Turing hardness, we can gener-
alize it to arbitrary reductions. Let r be a reduction.

ESY-r Conjecture. For every pair of disjoint sets in NP, there is a separator
that is not r-hard for NP.

Although the ESY conjecture stipulates a condition about arbitrary pairs of
sets in NP, we can always take one of the sets to be SAT. We state the following
observation whose proof appears in the full paper.

Observation 1. The ESY-r conjecture is equivalent to the following statement:
For every set B in NP that is disjoint from SAT, there is a separator that is not
r-hard for NP.

We observe that the ESY -tt conjecture also has the same set of consequences
as the original conjecture.

Observation 2. The ESY-tt conjecture implies that NP �= UP, NP �= co-NP,
and satisfying assignments of boolean formulas cannot be computed by single-
valued NP-machines.

A Thirty Year Old Conjecture about Promise Problems 477

This observations suggest that providing evidence for the ESY-tt conjecture
could be as difficult as providing evidence for the original conjecture. Thus we
consider the ESY-btt conjecture.

2.2 Unpredictability

Our results make use of the notion of unpredictability, which is similar to the
notion of genericity.

Definition 2.4. We say that a nondeterministic machine M is strong if for
every input x, exactly one of the following conditions hold: 1) at least one path
of M accepts x and no path rejects, 2) at least one path of M rejects x and no
path accepts. Some paths of the machine may output ⊥.

Definition 2.5. Let M be strong nondeterministic machine and L be a lan-
guage. We say that M is a predictor for L, if for every x ∈ L, M accepts
〈x, L|x〉 and for every x /∈ L, M rejects 〈x, L|x〉.

Definition 2.6. Let t(n) be any time bound. We say that a language L is
SNTIME(t(n))-unpredictable if for every strong nondeterministic machine M
that predicts L, M runs for more than t(n) time for all but finitely many inputs
of form 〈x, L|x〉.

Remark. The running time t(n) of the predictor is in terms of the length
of the input which is 〈x, L|x〉. Measured in terms of the length of x, this time
is roughly t(|x| + 2|x|). The notion of unpredictability is very similar to the
notion of genericity [ASFH87, ASNT96]. In fact it is known that for deterministic
computations, these two notions are equivalent [BM95].

Definition 2.7. Let A and L be two languages. We say that L is SNTIME(t(n))-
unpredictable within A if L ⊆ A and for every strong nondeterministic machine
M that predicts L, for all but finitely many x in A, M runs for more than t(n)
time on inputs of form 〈x, L|x〉.

The following theorem can be shown using strong diagonalization techniques.
We omit the proof in the conference version.

Theorem 2.8. For every k > 0, there is a set R such that R is SNTIME(2log
k n)-

unpredictable within SAT.

3 ESY Conjecture for Bounded Truth-Table Reductions

In this section we provide evidence for the ESY-≤P
btt conjecture. Before we

present our results, we describe the ideas and intuition behind our proofs. Let
(SAT, B) be a disjoint NP-pair. Our goal is to exhibit a separator S that is not
NP-hard. One trivial way to achieve this is by chosing S to be an easy set—a set
in P. However, this approach is not feasible because if NP differs from UP, or

478 A. Hughes et al.

P does not equal NP∩ co-NP, then (SAT, B) does not have separators in P (for
some B ∈ NP) [GS88]. Our first observation is that there exist “computationally
difficult” sets that are not NP-hard, thus we can achieve our goal by taking S
to be a difficult set.

Results that concern separating NP-completeness notions [LM96, ASB00,
PS04] show that if H is an unpredictable set, then H does not reduce to H ∪B.
This suggests that we can take H ∪B as our separator and claim that it is not
NP-hard. However, we run into at least two major problems. The set H ∪B may
not be disjoint from SAT and thus cannot be a separator. In fact, one can show
that an unpredictable set H must have an infinite intersection with SAT. We
get around this problem by taking H as an unpredictable set within SAT. This
ensures that S is a separator.

The second and the more serious problem is that showing H does not reduce
to H ∪B does not imply that H ∪B is not NP-hard as the set H may not be in
NP. Instead of working with H , we will argue that SAT does not reduce to S.
We will show that if it does, then either we get a predictor for H or making use
of nondeterminism, we can reduce the number of queries.

Our first observation is that any reduction from SAT to S must infinitely often
produce relevant queries—these are queries whose answers, given answers to all
other queries, uniquely determine the output of the reduction. We then show
that these relevant queries must lie outside of SAT ∪ B, if not we can reduce
the number of queries by making use of strong nondeterminsim. Next we argue
that if a query q is relevant, then knowing answers to all other queries help us
to determine the membership of q ∈ S, and if q lies outside of SAT ∪ B, then
this contradicts the unpredictability of the set H .

3.1 Length-Increasing Reductions

In this section we prove that the if NP does not equal co-NP, then the ESY
conjecture holds for length-increasing bounded-truth table reductions. In fact, we
will show that the conjecture even holds for reductions that use nondeterminism.

Theorem 3.1. If NP �= co-NP, then the ESY-≤SNP
btt,li conjecture is true.

Proof. Let (SAT, B) be a disjoint NP-pair. Let Q1 and Q2 be two polynomial-
time computable relations for SAT and B respectively. Assume that the length
of witnesses (for positive instances in SAT and in B) is bounded by nr, r > 0.

By Theorem 2.8, there is a set R that is SNTIME(2log
2r n)-unpredictable with

in SAT. Consider the separator S = R ∪ B. Suppose that S is ≤SNP
ktt,li hard for

some k ≥ 0. We achieve a contradiction to our hypothesis NP �= co-NP.
We prove this by induction. The base case is when the number of queries is

zero. This means that there is an SNP computable function t such that t(x) =
SAT(x). This implies that NP = co-NP, a contradiction.

As inductive hypothesis, assume that S is not ≤SNP
(
−1)tt,li-hard. Now assume

that SAT ≤SNP

tt,li-reduces to S via 〈f, t〉. Given x, let f(x) = 〈q1, · · · , q
〉. We

A Thirty Year Old Conjecture about Promise Problems 479

assume that q
 is the largest query and denote it with bx. We say that a query
qi is relevant if the following holds

t(x, S(q1), · · ·S(qi), · · ·S(q
)) �= t(x, S(q1), · · ·S(qi), · · ·S(q
)).

In other words, if qi is relevant then knowing answers to the all other queries
still does not help us determine SAT(x).

Observation 3. There exist infinitely many x such that bx is relevant.

Proof. Suppose not. Then we have a ≤SNP
(
−1)tt,li reduction from SAT to S and

this contradicts the induction hypothesis.

Let
T = {x | bx is relevant}.

Lemma 3.2. There exist infinitely many x ∈ T such that bx /∈ SAT ∪B.

Proof. Suppose not. For all but finitely many x ∈ T , the query bx is relevant
and belongs to SAT∪B. Now consider the following reduction 〈f ′, t′〉 from SAT
to S: On input x, f ′ will first compute f(x) = 〈q1, q2, · · · , q
−1, bx〉 and outputs
the queries 〈q1, · · · , q
−1〉. We now describe t′:

1. Let c1 = S(q1), · · · , c
−1 = S(q
−1).
2. Determine whether bx is relevant or not by comparing t(x, c1, · · · , c
−1, 0)

with t(x, c1, · · · , c
−1, 1). If bx is not relevant, then output t(x, c1, · · · , c
−1, 0).

3. Guess a witness w ∈ Σnr

. IfQ1(bx, w) holds, then output t(x, c1, · · · , c
−1, 0).
4. If Q1(bx, w) does not hold, then guess a witness u ∈ Σnr

. If Q2(bx, u) holds
then output t(x, c1, · · · , c
−1, 1), else output ⊥.

We claim that the above is a ≤SNP
(
−1)tt,li reduction from SAT to S. Clearly f ′

produces only � − 1 queries. If bx is not relevant, then the reduction is correct.
Suppose that bx is relevant. By our assumption bx ∈ SAT ∪ B. If bx ∈ SAT,
then bx /∈ S. Thus t(x, c1, · · · , ck−1, 0) = SAT(x). If bx ∈ B, then bx ∈ S. Thus
t(x, c1, · · · , ck−1, 1) = SAT(x). Thus the reduction is always correct.

It remains to show that this is an SNP reduction. Clearly all queries are pro-
duced by a deterministic polynomial-time process. Step 2 computes the function
t. However t is SNP-computable. So this step can be done via an SNP-machine.
Suppose bx ∈ SAT. Then there is a w ∈ Σnr

such that Q1(bx, w) holds, and thus
this path outputs the correct answer. Since SAT is disjoint from B, for every
u ∈ Σnr

Q2(bx, u) does not hold. Thus no path outputs the wrong answer. A
similar argument shows that when bx ∈ B, at least one path outputs the correct
answer and no path outputs the wrong answer.

Thus SAT ≤SNP
(
−1)tt,li reduces to S. This contradicts our induction hypothesis.

This complete the proof of the lemma.

Now, we return to the proof of the theorem. Lemma 3.2 gives the following
corollary.

480 A. Hughes et al.

Corollary 3.3. There exist infinitely many y /∈ SAT ∪ B with the following
property: There exists an x, |x| < |y| such that y = bx and y is relevant.

This enables us to build the following predictor for R. Let M be a strong non-
deterministic algorithm that decides R.

1. Input 〈y,R|y〉.
2. If y ∈ SAT ∪B, then run M(y) and stop.
3. Search for an x such that |x| < |y| and bx = y. If no such x is found run

M(y) and stop.
4. Let f(x) = 〈q1, · · · , q
−1, y〉. Compute ci = S(qi), 1 ≤ i ≤ �− 1 by

(a) Decide the membership of qi ∈ B, by running a brute force algorithm
for B

(b) Decide the membership of qi ∈ R, by looking at R|y.
5. Check if y is relevant or not by comparing t(x, c1, · · · , c
−1, 0) and

t(x, c1, · · · , c
−1, 1). If y is not relevant, then run M(y) and stop.
6. Now we know that y is relevant. Compute SAT(x). Find the unique bit b

such that SAT(x) = t(x, c1, · · · , c
−1, b).
7. Accept if and only if b equals 1.

Claim. The above predictor correctly decides R and for infinitely many strings
from SAT runs in time 2log

2r n .

Proof. Let I be the set of all y for which the conditions of Corollary 3.3 holds.
The above predictor runs M(y) on any y that is not in I and thus is correct on
all such y. Let y ∈ I. We know that SAT(x) = t(x, c1, · · · , c
−1, S(y)). Since y is
relevant SAT(x) �= t(x, c1, · · · , c
−1, S(y)). Thus b = S(y). Since y /∈ SAT ∪ B,
y ∈ S if and only if y ∈ R. Thus the above predictor correctly decides every y
in I.

Now we will show that for every y ∈ I, the above predictor halts in quasi-
polynomial time. Let |y| = m, note that the length of x found in step 3 is at most
m. Checking for membership of y in SAT ∪B takes O(2m

r

) time. Since y = bx
is the largest query produced, |qi| ≤ m, 1 ≤ i ≤ � − 1. Since B can be decided
in time 2n

r

, Step 4a takes O(2m
r

) time. Since y > qi, 1 ≤ i ≤ � − 1, Step 4b
takes polynomial time. Computing SAT(x) takes O(2m) time. The predictor
computes the function t. However t is SNP computable. Thus the total time
taken is O(2m

r+1

). Note that the run time of the predictor is measured in terms
of length of 〈y,R|y〉 which is at least 2m. Thus for every y ∈ I, the predictor

runs in time 2log
2r n time. Since I is an infinite set and by definition is a subset

of SAT, the claim follows.

We have shown that S is not ≤SNP

tt,li hard for NP. This completes the induction

step. Thus S is not ≤SNP
btt,li hard for NP. This completes the proof of the Theorem.

Since every length increasing bounded truth-table reduction is trivially a ≤SNP
btt,li

reduction, our main result of this section is a corollary of the above theorem.

Theorem 3.4. If NP �= co-NP, then the ESY-≤P
btt,li conjecture holds.

A Thirty Year Old Conjecture about Promise Problems 481

3.2 General Reductions

In this section we show that if NP contains unpredictable sets, then the ESY-≤P
btt

conjecture holds without the length increasing restriction.

Theorem 3.5. If NP has an SNTIME(n2) unpredictable set, then the ESY-≤P
btt

conjecture holds.

Due to lack of space we present the proof of this theorem in the full paper.

Power of the Hypothesis. We will now make a few remarks about the hy-
pothesis in the above theorem and connect it to earlier used hypotheses. We will
first make a few informal observations. The notion of unpredictability attempts
to capture the difficulty of a language given some auxiliary information: For a
language L how easy/difficult is to determine membership of x ∈ L given L|x as
auxiliary information? Many natural problems (for example SAT) turn out to be
very easy in this model. Do there exist languages that are difficult to compute
even when the partial characteristic sequence is given as auxiliary input? It turns
out that EXP, somewhat surprisingly, contains such languages. Our hypothesis
asserts that NP also contains such languages.

We now connect our hypothesis to a few hypotheses regarding bi-immunity
and genericity . Say that a language is NP ∩ co-NP bi-immune if every strong
nondeterministic machine that decides L takes more than polynomial-time on
all but finitely many inputs. It is easy to see that if our hypothesis holds, then
NP contains NP ∩ co-NP bi-immune sets.

Our hypothesis is similar to, but stronger than, the genericity hypothesis of
Ambos-Spies et al. The genericity hypothesis asserts that NP contains n2-generic
languages. This hypothesis is shown to have several interesting and believable
consequences [ASFH87] [ASNT96]. In the definition of unpredictability, if we
replace strong nondeterministic machines by deterministic machines, then it
coincides with genericity [BM95]. That is, the statements “L is DTIME(t(n))
unpredictable” and “L is t(n)-generic” are equivalent. Since our hypothesis con-
cerns with strong nondeterministic predictors, our hypothesis can be taken as
“NP contains SNTIME(n2) (or simply NP ∩ co-NP) generic sets”.

4 Application to Probabilistic Encryption

Although the ESY conjecture was originally formulated to capture the difficulty
of cracking deterministic PKCS, we observe that if it holds, then certain “prob-
abilistic” encryption schemes including the Goldwasser-Micali [GM84], Gentry
[Gen09] and Ajtai-Dwork [AD97] systems also cannot be NP-hard to crack.

A probabilistic public-key cryptosystem consists of three publicly known,
polynomial-time computable functions, encryption function E, decryption func-
tion D and a key generator G. For a randomly generated string X , G(X) gen-
erates the pair (k1, k2), where k1 is the public key and k2 is the private private
key. Given a plain text m, the encryption function randomly picks a string r,

482 A. Hughes et al.

and generates cipher text E(m, r, k1) = c. The decryption function D has the
property that D(c, k2) = m, if c is a valid cipher text for m. We say that the
cryptosystem is error-free if whenever m and m′ are two distinct messages, then
for every r and public key k1, E(m, r, k1) �= E(m′, r, k1).

We will now observe that the cracking problem of every error-free public-key
cryptosystem can be formulated as a disjoint NP pair. Given such a cryptosys-
tem, let Πn = {〈c, k1,m′〉 | ∃m, r,X and k2 such that E(m, r, k1) = c and
G(X) = 〈k1, k2〉 and m < m′}, and let Πy = {〈c, k1,m′〉 | ∃m, r,X and k2 such
that E(m, r, k1) = c and G(X) = 〈k1, k2〉 and m ≥ m′}. Since the cryptosystem
is error free we have that Πy ∩ Πn = ∅ and both Πy and Πn are in NP. Thus
(Πy, Πn) is a disjoint NP pair. Clearly a separator for this pair can be used to
crack the cryptosystem. Thus if the ESY conjecture holds, then this problem has
a separator that is not NP-hard. Since the cryptosystem of Goldwasser-Micali
and Gentry’s [Gen09] homomorphism cryptosystem are error free, we have the
following result.

Theorem 4.1. If the ESY conjecture holds, then the Goldwasser-Micali cryp-
tosystem, as well as Gentry’s homomorphic cryptosystem, cannot be NP-hard to
crack.

Now we consider the Ajtai-Dwork [AD97] cryptosystem. This cryptosystem has
the property that 0 is encrypted as a lattice point near one of the hidden hyper-
planes that constitute the private key. The bit 1 is encrypted as a random lattice
point so that, with low probability, 1 might be encrypted as a cyphertext that
is also a valid encryption of 0, and thus the system is not error-free. We now
formulate the cracking problem in terms of detecting encryptions of 0. We let
Πy = {〈k1, c〉 | ∃X such that G(X) = 〈k1, k2〉 for some k2 and D(c, k2) = 0} and
Πn = {〈k1, c〉 | ∃X such that G(X) = 〈k1, k2〉 for some k2 and D(c, k2) = 1}.
Clearly, both Πy and Πn are in NP. The pair is disjoint since no message de-
crypts to boith 0 and 1. Thus we have the following result.

Theorem 4.2. If the ESY conjecture holds, then in the Ajtai-Dwork cryptosys-
tem, it is not NP-hard to determine whether a given cypher text is a valid en-
cryption of 0.

We note that Nguyen and Stern [NS98] showed that if the polynomial-time
hierarchy is infinite, then the Ajtai-Dwork cryptosystem is not NP-hard to crack.

5 Discussion

In this paper we provide evidence that the ESY conjecture holds when we restrict
the reduction types. We note that we can relax the length-increasing restriction
in Theorem 3.1 to “all queries are lexicographically larger than the input”. The-
orem 3.5 removes the restriction but requires a much stronger hypothesis. Can
we weaken this hypothesis? One way to proceed is to show that every ≤P

btt-hard
set for NP is hard via length-increasing ≤P

btt reductions. We note that there are

A Thirty Year Old Conjecture about Promise Problems 483

several results that indicate that all many-one complete sets for NP are complete
via length-increasing reductions [Agr02, HP07, BHHT10, GHP10]. Perhaps one
can use similar ideas to show that ≤P

btt-hard sets are hard via length-increasing
reductions. Another question is whether we can replace btt reductions with re-
ductions that make O(log n) (or nε) nonadaptive queries.

As noted in the preliminaries, the ESY conjecture and ESY-tt conjecture both
imply that NP differs from UP, and we believe that the ESY-btt conjecture does
not imply NP �= UP. Is there an oracle relative to which the ESY-≤P

btt conjec-
ture holds and NP = UP? As noted in the introduction, the ESY-m conjecture
is equivalent to NP �= co-NP, and there is an oracle relative to which the ESY-m
conjecture holds and NP = UP [For]. Can we show that the ESY-btt conjecture
is also equivalent to NP �= co-NP or is there an oracle against it? We men-
tion that there exists an oracle relative to which the original ESY conjecture
holds [GSSZ04].

References

[AD97] Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-
case equivalence. In: Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on Theory of Computing, STOC 1997, pp. 284–293. ACM, New
York (1997)

[Agr02] Agrawal, M.: Pseudo-random generators and structure of complete degrees.
In: 17th Annual IEEE Conference on Computational Complexity, pp. 139–
145 (2002)

[AM77] Adleman, L., Manders, K.: Reducibility, randomness, and intractability. In:
Proc. 9th ACM Symp. Theory of Computing, pp. 151–163 (1977)

[ASB00] Ambos-Spies, K., Bentzien, L.: Separating NP-completeness under strong
hypotheses. Journal of Computer and System Sciences 61(3), 335–361
(2000)

[ASFH87] Ambos-Spies, K., Fleischhack, H., Huwig, H.: Diagonalizations over poly-
nomial time computable sets. Theoretical Computer Science 51, 177–204
(1987)

[ASNT96] Ambos-Spies, K., Neis, H., Terwijn, A.: Genericity and measure for expo-
nential time. Theoretical Computer Science 168(1), 3–19 (1996)

[ASTZ97] Ambos-Spies, K., Terwijn, A., Zheng, X.: Resource bounded randomness
and weakly complete problems. Theoretical Computer Science 172(1), 195–
207 (1997)

[BHHT10] Buhrman, H., Hescott, B., Homer, S., Torenvliet, L.: Non-uniform reduc-
tions. Theory of Computing Systems 47(2), 317–241 (2010)

[BM95] Balcazar, J., Mayordomo, E.: A note on genericty and bi-immunity. In:
Proceedings of the Tenth Annual IEEE Conference on Computational Com-
plexity, pp. 193–196 (1995)

[ESY84] Even, S., Selman, A., Yacobi, Y.: The complexity of promise problems with
applications to public-key cryptography. Information and Control 61(2),
159–173 (1984)

[For] Fortnow, L.: Personal Communication
[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC

2009, pp. 169–178 (2009)

484 A. Hughes et al.

[GHP10] Gu, X., Hitchcock, J., Pavan, A.: Collapsing and separating completeness
notions under average-case and worst-case hypotheses. In: STACS 2010.
LIPIcs, vol. 5, pp. 429–440. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2010)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comp. System
Sci. 28, 270–299 (1984)

[Gol06] Goldreich, O.: On Promise Problems: A Survey. In: Goldreich, O., Rosen-
berg, A.L., Selman, A.L. (eds.) Shimon Even Festchrift. LNCS, vol. 3895,
pp. 254–290. Springer, Heidelberg (2006)

[GS88] Grollmann, J., Selman, A.: Complexity measures for public-key cryptosys-
tems. SIAM Journal on Computing 17(2), 309–355 (1988)

[GSSZ04] Glaßer, C., Selman, A., Sengupta, S., Zhang, L.: Disjoint NP-pairs. SIAM
J. Comput. 33(6), 1369–1416 (2004)

[GSZ07] Glaßer, C., Selman, A., Zhang, L.: Canonical disjoint NP-pairs of proposi-
tional proof systems. Theoretical Computer Science 370(1), 60–73 (2007)

[HP07] Hitchcock, J., Pavan, A.: Comparing reductions to NP-complete sets. Infor-
mation and Computation 205(5), 694–706 (2007); In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 465–
476. Springer, Heidelberg (2006)

[LM96] Lutz, J.H., Mayordomo, E.: Cook versus Karp-Levin: Separating complete-
ness notions if NP is not small. Theoretical Computer Science 164, 141–163
(1996)

[NS98] Nguyên, P.Q., Stern, J.: Cryptanalysis of the Ajtai-Dwork Cryptosystem.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 223–242.
Springer, Heidelberg (1998)

[PS02] Pavan, A., Selman, A.: Separation of NP-completeness notions. SIAM Jour-
nal on Computing 31(3), 906–918 (2002)

[PS04] Pavan, A., Selman, A.: Bi-immunity separates strong NP-completeness no-
tions. Information and Computation 188, 116–126 (2004)

[Pud01] Pudlak, P.: On reducibility and symmetry of disjoint NP-pairs. In: Elec-
tronic Colloquium on Computational Complexity, technical reports (2001)

[Raz94] Razborov, A.: On provably disjoint NP pairs. Technical Report 94-006,
ECCC (1994)

[Sch60] Schoenfield, J.: Degrees of models. Journal of Symbolic Logic 25, 233–237
(1960)

[SY82] Selman, A., Yacobi, Y.: The Complexity of Promise Problems. In: Nielsen,
M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 502–509.
Springer, Heidelberg (1982)

Minimum Latency Submodular Cover�

Sungjin Im1,��, Viswanath Nagarajan2, and Ruben van der Zwaan3

1 Department of Computer Science, University of Illinois, USA
im3@illinois.edu

2 IBM T. J. Watson Research Center, USA
viswanath@us.ibm.com

3 Maastricht University, The Netherlands
r.vanderzwaan@maastrichtuniversity.nl

Abstract. We study the submodular ranking problem in the presence
of metric costs. The input to the minimum latency submodular cover
(MLSC) problem consists of a metric (V, d) with source r ∈ V and m
monotone submodular functions f1, f2, ..., fm : 2V → [0, 1]. The goal is
to find a path originating at r that minimizes the total cover time of
all functions; the cover time of function fi is the smallest value t such
that fi has value one for the vertices visited within distance t along
the path. This generalizes many previously studied problems, such as
submodular ranking [1] when the metric is uniform, and group Steiner
tree [14] when m = 1 and f1 is a coverage function. We give a polynomial
time O(log 1

ε
·log2+δ |V |)-approximation algorithm for MLSC, where ε > 0

is the smallest non-zero marginal increase of any {fi}mi=1 and δ > 0 is any
constant. This result is enabled by a simpler analysis of the submodular
ranking algorithm from [1].

We also consider the stochastic submodular ranking problem where el-
ements V have random instantiations, and obtain an adaptive algorithm
with an O(log 1/ε) approximation ratio, which is best possible. This re-
sult also generalizes several previously studied stochastic problems, eg.
adaptive set cover [15] and shared filter evaluation [24,23].

1 Introduction

Ordering a set of elements so as to be simultaneously good for several valuations
is an important issue in web-search ranking and broadcast scheduling. A formal
model for this was introduced by Azar et al. [2] where they studied the multi-
ple intents re-ranking problem (a.k.a.generalized min-sum set cover [3]). Subse-
quently, Azar and Gamzu [1] studied the submodular ranking problem where the
valuations can be arbitrary monotone submodular functions.

In this paper, we extend these models to the setting of general metric switching
costs. This allows us to handle additional issues such as: Data locality: the time
taken to read/transmit data j after data i is d(i, j); and Context switching: it
takes d(i, j) time for a user to parse data j when scheduled after data i.

� A full version of this extended abstract appears as [21].
�� This work was partially supported by NSF grant CCF-1016684.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 485–497, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

486 S. Im, V. Nagarajan, and R. van der Zwaan

We study the minimum latency submodular cover problem (MLSC), which is
the metric version of submodular ranking [1], and its interesting special case,
the latency covering Steiner tree problem (LCST), which extends generalized
min-sum set cover [2,3]. The formal definitions follow shortly. We obtain poly-
logarithmic approximation guarantees for both problems. We remark that due to
a relation to the well-known group Steiner tree [14] problem, any significant im-
provement on our results would lead to a similar improvement for group Steiner
tree. TheMLSC problem is a common generalization of several previously studied
problems [14,22,13,18,8,2,1]; see also Figure 1.

In a somewhat different direction, we also study the stochastic submodular
ranking problem, where the goal is to adaptively schedule stochastic elements so
as to minimize the expected total cover time. This problem models situations
where web pages can be adaptively presented using user feedback. We obtain an
O(log 1

ε)-approximation algorithm for this problem, which is known to be best
possible even in the deterministic setting [1]. Moreover, this result generalizes
and gives a unified analysis of many previous results [15,24,23,1].

Problem Definition. We let V denote the ground set of elements/vertices,
and d :

(
V
2

)
→ R+ a distance function that is symmetric and satisfies triangle

inequality. Recall that a function f : 2V → R+ is submodular if, for any A,B ⊆
V , f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B); and it is monotone if for any A ⊆ B,
f(A) ≤ f(B). We assume some familiarity with submodular functions [26].

The input to the minimum latency submodular cover problem (MLSC) consists
of a metric (V, d) with a specified root vertex r ∈ V , andmmonotone submodular
functions f1, . . . , fm : 2V → R+ representing the valuations of different users. We
assume, without loss of generality by truncation, that fi(V) = 1 for all i ∈ [m].
Function fi is said to be covered (or satisfied) by set S ⊆ V if fi(S) = 1 = fi(V).
The cover time of function fi in a path π is the length of the shortest prefix of
π that has fi value one, i.e.

min t : fi ({v ∈ V : v appears within distance t on π}) = 1.

The objective in MLSC is to compute a path originating at r and visiting all
vertices that minimizes the sum of cover times of all functions. We recover the
submodular ranking problem [1] as the special case when metric d is uniform
(i.e. all pairwise distances are one). A technical parameter defined in [1] (also
implicit in [27]) that we use to measure performance is ε which is the smallest
non-zero marginal increase of any function {fi}mi=1.

As shown in [1], the submodular ranking (SR) problem contains set-cover as a
special case (even when m = 1). Similarly, MLSC generalizes the group Steiner
tree problem [14], where given a metric (V, d) and N groups of vertices {gi ⊆
V }Ni=1, the goal is to find a minimum length tree that contains at least one vertex
from each group {gi}Ni=1.

The latency covering Steiner tree problem (LCST) is a natural special case of
MLSC, where each function fi is associated with a group gi ⊆ V and requirement
ki ≤ |gi| where fi(S) = min {|gi ∩ S|/ki, 1}. Here ε = 1/maxmi=1 ki. The uniform
metric special case of LCST reduces to generalized min-sum set cover [2,3]. When
maxmi=1 ki = 1 in LCST, we obtain latency group Steiner tree [18,8].

Minimum Latency Submodular Cover 487

Figure 1 shows the relationship between previously studied special cases of
MLSC. Due to lack of space we defer further discussion to the full version [21].

In stochastic submodular ranking we are given a set V of stochastic elements,
each having an independent distribution over certain domain Δ. The submod-
ular functions are also defined on ground set Δ, i.e. f1, ..., fm : 2Δ → [0, 1]. In
addition, each element i ∈ V has a deterministic cost/time �i to be scheduled.
The realization (from Δ) of any element is known immediately after scheduling
it. The goal is to find an adaptive ordering of V that minimizes the total ex-
pected cover time. Since elements are stochastic, it is possible that a function is
never covered: in such cases we just fix the cover time to be

∑
i∈V �i (which is

the total duration of any schedule). We are concerned with adaptive algorithms.
Such an algorithm is allowed to decide the next element to schedule based on
the instantiations of the previously scheduled elements.

Remark: Our approach does not seem to extend directly to the stochastic MLSC
(i.e. on general metrics). We leave this as an open question.

SR GST

MLSC

SC

MLSC: minimum latency submodular cover

LCST : latency covering Steiner tree

GST : group Steiner tree

SR : submodular ranking

LGST : latency group Steiner tree

GMSSC : generalized min-sum set cover

SC : set cover

MSSC : min sum set cover

(multiple intents re-ranking)

MSSC

LCST

GMSSC LGST

CST
CST : covering Steiner tree

Fig. 1. An arrow from X to Y means X is a special case of Y

Results, Techniques and Outline. We start with the minimum latency sub-
modular cover problem (MLSC) problem, for which we obtain:

Theorem 1. For any constant δ > 0, there is an O(log 1
ε · log2+δ |V |)-

approximation algorithm for the minimum latency submodular cover problem.

Note that in the special case of group Steiner tree, this result is larger
only by a factor of O(logδ |V |) than its best known approximation ratio of
O(logN log2 |V |), due to Garg et al. [14]. Our algorithm uses the framework
of [1] and the submodular orienteering problem (SOP) [11] as a sub-routine. The
input to SOP consists of metric (V, d), root r, monotone submodular function
f : 2V → R+ and length bound B. The goal is to find a path originating at r hav-
ing length at most B that maximizes f(S), where S ⊆ V is the set of vertices
visited in the path. Specifically, we show that an (ρ, σ)-bicriteria approxima-
tion algorithm for SOP can be used to obtain an O(ρ σ · log 1

ε)-approximation
algorithm for MLSC; here the algorithm is allowed to return a path of length

488 S. Im, V. Nagarajan, and R. van der Zwaan

at most σB. To obtain Theorem 1 we use an
(
O(1), O(log2+δ |V |)

)
-bicriteria

approximation for SOP that follows from [6,10].
Our algorithm for MLSC is an extension of the elegant “adaptive residual

updates scheme” of Azar and Gamzu [1] for submodular ranking (i.e. uniform
metric MLSC). As shown in [1], an interesting aspect of this problem is that the
natural greedy algorithm, based on absolute contribution of elements, performs
very poorly. Instead they used a modified greedy algorithm that selects one
element at a time according to residual coverage. In the MLSC setting of general
metrics, our algorithm uses a similar residual coverage function to repeatedly
augment the solution. However our augmentations are paths of geometrically
increasing lengths, instead of just one element. A crucial point in our algorithm
is that the residual coverage functions are always submodular, and hence we can
use submodular orienteering (SOP) in the augmentation step.

We remark that the approach of covering the maximum number of functions
within geometrically increasing lengths fails because the residual coverage func-
tion here is non-submodular; in fact as noted in [3] this subproblem contains the
difficult dense-k-subgraph problem (even for generalized min-sum set cover with
requirement two). We also note that the choice of our (submodular) residual
coverage function ultimately draws on the submodular ranking algorithm [1].

The analysis in [1] was based on viewing the optimal and approximate solu-
tions as histograms. This approach was first used in this line of work by Feige
et al. [13] for the min-sum set cover problem (see also [4]). This was also the
main framework of analysis in [2] for generalized min-sum set cover and then
for submodular ranking [1]. However, these proofs have been increasingly diffi-
cult as the problem in consideration adds more generality. Instead we follow a
different and more direct approach that is similar to the analysis of minimum
latency TSP, see eg. [9,12]. In fact, the results in this paper are enabled by our
simpler analysis of submodular ranking [1]. We present our algorithm for MLSC
in Section 2, which yields Theorem 1.

Our second main result is for the latency covering Steiner tree (LCST)
problem. Note that Theorem 1 implies directly an O(log kmax · log2+δ |V |)-
approximation algorithm for LCST. In the full version [21] we show:

Theorem 2. There is a polynomial-time O(log2 |V |)-approximation algorithm
for latency covering Steiner tree.

The main idea in this result is a new LP relaxation for covering Steiner tree (using
Knapsack Cover type inequalities [7]) having a poly-logarithmic integrality gap.
All previous algorithms [22,19] for covering Steiner tree were based on iteratively
solving an LP with large integrality gap– this approach does not seem suitable
to the latency version we consider. As shown in [25], any improvement over
Theorem 2 even in the kmax = 1 special case (i.e. latency group Steiner tree)
would yield an improved approximation ratio for group Steiner tree, which is a
long-standing open question.

Our final result is for the stochastic submodular ranking problem. As
shown in [15,16], even special cases of this problem have polynomially large
adaptivity gap (ratio between the optimal non-adaptive and adaptive solutions).

Minimum Latency Submodular Cover 489

This motivates adaptive algorithms, and we obtain the following result in Sec-
tion 3.

Theorem 3. There is an adaptive O(log 1
ε)-approximation algorithm for the

stochastic submodular ranking problem.

In particular, we show that the most natural stochastic extension of the algo-
rithm from [1] achieves this approximation factor. We remark that the analysis
in [1] of deterministic submodular ranking assumed unit costs, whereas Theo-
rem 3 holds for the stochastic setting even with non-uniform costs {�i}.

As mentioned before, our results generalize the results in [15,24,23] which
study (some variants of) stochastic set cover. Our analysis is arguably simpler
and more transparent than [23], which gave the first tight analysis of these
problems. We note that [23] used an intricate charging scheme with “dual prices”
and it does not seem directly applicable to general submodular functions.

Previous Work. The submodular ranking problem was introduced by Azar
and Gamzu [1] where they obtained a tight O(log 1

ε)-approximation algorithm.
The first poly-logarithmic approximation for group Steiner tree was

O(logN log2 |V |) due to Garg et al. [14] which is still the best known bound.
Calinescu and Zelikovsky [6] building on [10], gave an algorithm for covering any
submodular function in a metric. We use this algorithm in the submodular ori-
enteering (SOP) subroutine for our MLSC result. We note that an Ω(log2−δ |V |)
hardness of approximation is known for group Steiner tree (even on tree metrics)
due to Halperin and Krauthgamer [20].

The adaptive set cover problem introduced in [15] is clearly a special case of
stochastic SR that we consider; the authors showed a large adaptivity gap for
set cover, and a logarithmic approximation for a variant with multiplicities. A
related problem in context of fast query evaluation was studied in [24], where the
authors gave a triple logarithmic approximation. This bound was improved to
the optimal logarithmic ratio by [23]; this result was also applicable to adaptive
set cover. Another related paper is [16], where they defined a general property
“adaptive submodularity” and showed nearly optimal approximation guarantees
for several objectives. The result in [16] most relevant to stochastic SR problem
is the 4-approximation for stochastic min sum set cover. This required a fixed

submodular function f such that the objective is E
[∑

t≥0 f(V)− f(πt)
]
where

πt is the instantiation of elements scheduled within time t and V denotes the
instantiation of all elements. However, as mentioned earlier this is not the case
even for generalized min-sum set cover with requirements two. Recently [17]
studied the submodular ranking problem in an online regret setting, which is
different from the adaptive model we consider.

Preliminaries. When dealing with a submodular function f : 2V → R+, we
use the standard convention that a value oracle for f is available. The oracle
takes as input a subset S ⊆ V and returns the function value f(S) in constant
time. We use the following claim from [1].

490 S. Im, V. Nagarajan, and R. van der Zwaan

Claim 1 (Claim 2.3 in [1]). Given a monotone function f : 2[n] → [0, 1] and
sets ∅ = S0 ⊆ S1 ⊆ · · · ⊆ S
 ⊆ [n], we have (using the convention 0/0 = 0)

�∑
k=1

f(Sk)− f(Sk−1)

1− f(Sk−1)
≤ 1 + ln

1

ε
.

Here ε > 0 is such that for any A ⊆ B, if f(B)−f(A) > 0 then f(B)−f(A) ≥ ε.

We use ALG to denote the cost of the algorithm we consider. For notational
simplicity, we let OPT denote the optimal solution itself or the optimal cost
depending on the context. For any integer k ≥ 1 we let [k] := {1, 2, . . . , k}.

2 Algorithm for Minimum Latency Submodular Cover

As mentioned earlier, our algorithm for MLSC uses as sub-routine an algorithm
for submodular orienteering (SOP). We assume a (ρ, σ)-bicriteria approximation
algorithm, i.e., on any SOP instance with objective function f and length bound
B, it returns a path P of length at most σ ·B and f(V (P)) ≥ OPT/ρ. We recall
the following known result on SOP.

Theorem 4 ([6]). For any constant δ > 0 there is a polynomial time
(O(1), O(log2+δ |V |)) bicriteria approximation algorithm for SOP.

Algorithm ALG-MLSC below uses the (ρ, σ) bicriteria approximation algorithm
ALG-SOP. Here α = 1 + ln 1

ε . Note the difference from the submodular rank-
ing algorithm [1]: here each augmentation is a path possibly covering several
vertices. Despite the similarity of ALG-MLSC to the min-latency TSP type algo-
rithms [9,12] an important difference is that we do not try to directly maximize
the number of covered functions in each augmentation: as noted before this
subproblem is at least as hard as dense-k-subgraph, for which the best approx-
imation ratio known is only polynomial [5]. Instead we maximize in each step
some proxy residual coverage function fS that suffices to eventually cover all
functions quickly. This function is a natural extension of the single-element cov-
erage values used in ALG-AG [1]. It is important to note that in Line (4), fS(·) is
defined based on the current set S of visited vertices in each iteration. Moreover,
since each function fi is monotone submodular, so is fS for any S ⊆ V . In Line
(6), π · P implies the concatenation of π and P .

We prove the following theorem, which implies Theorem 1.

Theorem 5. ALG-MLSC is an O(αρσ)-approximation algorithm for MLSC.

We now analyze ALG-MLSC. We say that the algorithm is in the j-th phase,
when the variable k of the for loop in Line (2) has value j. Observe that the final
solution visits all vertices that are added in the j-th phase within time 16αρ2j.
This can be easily shown as follows: the final solution is a concatenation of the
paths that were found in Line (5). Since all these paths are stitched at the root

r, the length of π at the end of phase j is at most
∑j

k=1 2 ·4αρ ·σ2k ≤ 16αρσ ·2j .
The following proposition easily follows.

Minimum Latency Submodular Cover 491

Algorithm 1. ALG-MLSC

INPUT: (V, d), r ∈ V ; {fi : 2V → [0, 1]}mi=1.

1: S ← ∅, π ← ∅.
2: for k = 0, 1, 2, ... do
3: Repeat the following 4αρ times.
4: Define submodular function fS(T) :=

∑
i∈[m],fi(S)<1

fi(S∪T)−fi(S)
1−fi(S)

,∀T ⊆ V .

5: Use ALG-SOP to find a path P of length at most σ · 2k starting from r that
maximizes fS(V (P)) (up to factor ρ); V (P) is the set of vertices visited by P .

6: S ← S ∪ V (P) and π ← π · P .
7: end for

OUTPUT: Output solution π.

Proposition 1. Any vertex v added to S in the j-th phase is visited by π within
distance 16αρσ · 2j.

Let R(t) ⊆ [m] denote the set of (indices of) functions that are not covered
by ALG-MLSC earlier than time t; R(t) includes the functions that are covered
exactly at time t as well. We interchangeably use i ∈ R(t) and fi ∈ R(t) for
notational simplicity. Let Rj := R(16αρσ 2j). Similarly, we let R∗(t) denote
the set of functions that are not covered by OPT earlier than time t and let
R∗

j = R∗(2j). Note that Rj and R∗
j refer to different times. For notational

convenience, we let R−1 := ∅.
We show the following key lemma. It shows that the number of uncovered

functions by ALG-MLSC must decrease fast as j grows, unless the corresponding
number by the optimal solution is comparable.

Lemma 1. Consider any j ≥ 0. Then we have |Rj | ≤ 1
4 |Rj−1|+ |R∗

j |.

Proof. The lemma trivially holds when j = 0, hence consider any fixed phase
j ≥ 1. Let S0 denote the set of vertices that were added to S up to the end of
phase j − 1. Let H = 4αρ and T1, T2, ..., TH be the sets of vertices that were
added in Line (6) in the j-th phase. Let Sh = S0∪T1∪T2∪ . . .∪Th, ∀1 ≤ h ≤ H .
We prove Lemma 1 by lower and upper bounding the quantity

Δj :=
H∑

h=1

fSh−1(Th) =
H∑

h=1

∑
i∈[m]:fi(Sh−1)<1

fi(Sh)− fi(Sh−1)

1− fi(Sh−1)

We first lower bound Δj . Let T
∗ denote the set of vertices that OPT visited

within time 2j . Observe that in Line (5), ALG-MLSC could have visited all nodes
in T ∗ by choosing P as the prefix of length 2j of OPT. Via the approximation
guarantee of ALG-SOP, we obtain

Proposition 2. For any h ∈ [H] we have fSh−1(Th) ≥ 1
ρ · fSh−1(T ∗).

492 S. Im, V. Nagarajan, and R. van der Zwaan

Observe that by definition of sets Rjs, for any h ∈ [H] and i ∈ Rj , fi(Sh−1) < 1.
Moreover, by definition of R∗

j s, for each i /∈ R∗
j , fi(T

∗) = 1. So

fSh−1(T ∗) ≥
∑

i∈Rj\R∗
j

fi(Sh−1 ∪ T ∗)− fi(Sh−1)

1− fi(Sh−1)
≥ |Rj \R∗

j |, ∀h ∈ [H].

Using this in the above proposition and summing over h ∈ [H],

Δj ≥
1

ρ

H∑
h=1

fSh−1(T ∗) ≥ H

ρ
(|Rj | − |R∗

j |) = 4α(|Rj | − |R∗
j |) (1)

We now upper bound Δj . Note that for any i /∈ Rj−1, fi(S0) = 1 (it is already
covered before phase j) and therefore fi does not contribute to Δj . So,

Δj =
∑

i∈Rj−1

∑
h∈[H],fi(Sh−1)<1

fi(Sh)− fi(Sh−1)

1− fi(Sh−1)
≤ α|Rj−1|.

The inequality is by Claim 1, which implies that each function fi ∈ Rj−1 con-
tributes at most α. Combining this with (1) completes the proof of Lemma 1.

Proof (Theorem 5). Given Lemma 1, we proceed as follows:

ALG =
∑
j≥0

∑
16αρσ2j≤t<16αρσ2j+1

|R(t)| +
∑

0≤t<16αρσ

|R(t)|

≤
∑
j≥0

16αρσ(2j+1 − 2j)|Rj | + 16αρσOPT

[Since |R(t)| is non-increasing, and for any t ≥ 0, |R(t)| ≤ m ≤ OPT]

= 16αρσ
∑
j≥0

2j+1

(
|Rj | −

1

4
|Rj−1|

)
+ 16αρσOPT [Using R−1 = ∅]

≤ 16αρσ
∑
j≥0

2j+1|R∗
j | + 16αρσOPT [By Lemma 1]

≤ 64αρσ
∑
j≥1

(∑
2j−1≤t<2j

|R∗(t)|
)
+ 32αρσ|R∗

0 |+ 16αρσOPT ≤ 112αρσOPT.

3 Stochastic Submodular Ranking

In this section, we study the stochastic submodular ranking problem. Here we
are given a set A = {X1, ..., Xn} of n independent random variables (called
elements), each of which takes values from some domain Δ. The distribution of
each {Xi}ni=1 is known to the algorithm, but the realization xi ∈ Δ of Xi is only
known after scheduling Xi. Each element Xi (for i ∈ [n]) also has a deterministic
integer length �i, which denotes the amount of time taken to schedule Xi. We
are also given a set of m monotone submodular functions f1, ..., fm : 2Δ → [0, 1]
on groundset Δ.

Minimum Latency Submodular Cover 493

A feasible solution (or policy) is an adaptive ordering of A, represented nat-
urally by a decision tree with nodes corresponding to scheduled elements and
branches corresponding to their realizations. We use 〈π(1), . . . , π(n)〉 to denote
this ordering, where each π(l) is a random variable denoting the index of the l-th
scheduled element. The element Xπ(l) ∈ A\{Xπ(1), Xπ(2), . . . , Xπ(l−1)} is chosen
at time �π(1)+�π(2)+...+�π(l−1), after observing the realizations xπ(1), ..., xπ(k−1).

Given any policy as above, the cover time cov(fi) of function fi is defined as
the earliest time t such that fi has value one on the realization of elements that
are completely scheduled within time t. More formally, cov(fi) is the earliest
time t such that fi({xπ(1), ..., xπ(kt)}) = 1 where kt is the maximum integer such
that �π(1) + �π(2) + ... + �π(kt) ≤ t. If the function value never reaches one (due
to the stochastic nature of elements) then cov(fi) = �1 + �2 + ... + �n the total
length of any ordering. Note that the cover time is a random value. The goal in

stochastic submodular ranking is to find a policy minimizing E
[∑

i∈[m] cov(fi)
]
.

We prove Theorem 3, by obtaining an O(log 1
ε)-approximate adaptive policy.

This result has many applications, that are described in the full version [21].

To formally describe our algorithm, we first define the probability spaces we
are concerned with. We use Ω = Δn to denote the outcome space of A. We use
the same notation Ω to denote the probability space induced by the outcomes.
For any S ⊆ A and its realization s, let Ω(s) denote the outcome subspace that
conforms to s. We can naturally define the probability space Ω(s) as follows:
the probability that w ∈ Ω(s) occurs is PrΩ[w]/PrΩ[Ω(s)]. We also use Ω(s) to
denote this probability space. The algorithm ALG-AG-STO is a natural extension
of the deterministic case [1]. At any point with S ⊆ A being the previously
scheduled elements and s their instantiations, choose:

Xe = arg max
Xe∈A\S

1

�e
· E Ω(s)

[∑
i∈[m],fi(s)<1

fi(s ∪ {Xe})− fi(s)

1− fi(s)

]
(2)

Observe that taking expectation over Ω(s) is the same as expectation over the
distribution of Xe since Xe �∈ S and the elements are independent. Also note
that this algorithm implicitly defines a decision tree.
We now show that this algorithm implies Theorem 3. Let α = 1 + ln 1

ε . Let
R(t) denote the (random) set of functions that are not satisfied by ALG-AG-STO
before time t. Note that the set R(t) includes the functions that are satisfied
exactly at time t. Analogously, the set R∗(t) is defined for the optimal policy.
We use i ∈ R(t) interchangeably with fi ∈ R(t). Let C(t) := {f1, ..., fm} \ R(t)
and C∗(t) := {f1, ..., fm} \ R∗(t). Note that all the sets C(·), C∗(·), R(·), R∗(·)
are stochastic. We set ALG :=

∑
t∈[n] |R(t)| and OPT :=

∑
t∈[n] |R∗(t)| that are

also stochastic quantities.
We will be interested in the number of unsatisfied functions at times {8α2j :

j ∈ Z+} by ALG-AG-STO and the number of unsatisfied functions at times
{2j : j ∈ Z+} by the optimal policy. Let Rj := R(8α2j) and R∗

j = R∗(2j). It is
important to note that Rj and R∗

j are concerned with different times, and they
are stochastic. For notational simplicity, we let R−1 := ∅.

494 S. Im, V. Nagarajan, and R. van der Zwaan

We show the following key lemma. Using this lemma we can show that EALG =
O(α)·EOPT (as in the proof of Theorem 5 from Lemma 1). This suffices to prove
Theorem 3.

Lemma 2. For any j ≥ 0, we have E[|Rj |] ≤ 1
4E[|Rj−1|] + E[|R∗

j |].

Proof. The lemma trivially holds for j = 0, so we consider any j ≥ 1. For
any t ≥ 1, we use st−1 to denote the set of elements completely scheduled by
ALG-AG-STO by time t − 1 along with their instantiations. Also, for t ≥ 1 let
σ(t) ∈ [n] denote the (random) index of the element being scheduled during time
slot (t− 1, t]. Note that st−1 determines σ(t) precisely, but not the instantiation
of Xσ(t).

Let E∗
j ⊆ A be the (stochastic) set of elements that is completely scheduled

by the optimal policy within time 2j. For a stochastic set (or element) S, we
denote its realization under an outcome w ∈ Ω as S(w). For example,Xi(w) ∈ Δ
is the realization of Xi under w; and E∗

j (w) is the set of elements completely

scheduled by OPT by time 2j (under w) along with their realizations.
For any time t and corresponding outcome st−1 ⊆ Δ, define a set function:

fst−1(D) :=
∑

i∈[m],fi(st−1)<1

fi(st−1 ∪D) − fi(st−1)

1− fi(st−1)
, ∀D ⊆ Δ.

We also use f
st−1

i (D) to denote the term inside the above summation. It is easy
to see that the function fst−1 : 2Δ → R+ is submodular. Also define:

F st−1(Xe) := E w←Ω(st−1) [f
st−1(Xe(w))] , ∀Xe ∈ A. (3)

Observe that this is zero for elements Xe ∈ st−1. By the choice (2),

Proposition 3. Consider any time t ∈ [n] and outcome st−1. Note that st−1

determines σ(t). Then 1

σ(t)

· F st−1(Xσ(t)) ≥ 1

i
· F st−1 (Xi), for all Xi ∈ A.

Define expected gain in step t: Gt := Est−1

[
1

�σ(t)

F st−1(Xσ(t))

]
. (4)

Define expected total gain: Δj :=
∑8α2j

t=8α2j−1+1 Gt . (5)

We complete the proof of Lemma 2 by upper and lower bounding Δj .
Lower bound for Δj. Consider any 8α2j−1 < t ≤ 8α2j. We lower bound Gt.

Condition on st−1; this determines σ(t) (but not xσ(t)). Note that
∑n

i=1 �i ·
Pr[Xi ∈ E∗

j |st−1] ≤ 2j by definition of E∗
j being the elements that are com-

pletely scheduled by time 2j in OPT. So
∑

Xi∈A

i
2j · Pr[Xi ∈ E∗

j |st−1] ≤ 1.

Minimum Latency Submodular Cover 495

Applying Proposition 3 with the convex multipliers (over i) given above,

1

�σ(t)

F st−1(Xσ(t)) ≥
∑

Xi∈A

�i
2j

Pr[Xi ∈ E∗
j |st−1] ·

1

�i
F st−1(Xi)

=
1

2j

∑
Xi∈A

Pr[Xi ∈ E∗
j |st−1]

∑
xi∈Δ

Pr[Xi = xi|st−1] · fst−1 (xi)

=
1

2j

∑
Xi∈A

∑
xi∈Δ

Pr[Xi ∈ E∗
j ∧Xi = xi|st−1] · fst−1 (xi)

=
1

2j

∑
w∈Ω(st−1)

Pr[w|st−1]
∑

Xi∈E∗
j (w)

fst−1(Xi(w)) (6)

The first equality is by definition of F st−1(·) from (3). The second equality holds
since the optimal policy must decide whether to scheduleXi (by time 2j) without
knowing the realization of Xi: i.e. events Xi = xi and Xi ∈ E∗

j are independent

(even conditioned on st−1). Now for each w ∈ Ω(st−1), due to submodularity of
the function fst−1(·), we get

∑
Xi∈E∗

j
(w)

fst−1 (Xi(w)) ≥ fst−1 (E∗
j (w)) =

∑
i∈[m],fi(st−1)<1

fi(E
∗
j (w))− fi(st−1)

1− fi(st−1)

≥ |C∗
j (w)| − |C(t, w)| (7)

Recall that E∗
j (w) denotes the set of elements scheduled by time 2j in

OPT(conditional on w), as well as the realizations of these elements. The equality
comes from the definition of fst−1 . The last inequality holds because C(t, w) =
{i ∈ [m] : fi(st−1) = 1} and set E∗

j (w) covers functions C∗
j (w). Combining (6)

and (7) gives: 1

σ(t)

F st−1(Xσ(t)) ≥ 1
2j

(
E
[
|C∗

j | | st−1

]
−E [|C(t)| | st−1]

)
.

Deconditioning this inequality (taking expectation over st−1) and by (4),

Gt ≥
1

2j
·
(
E[|C∗

j |]− E[|C(t)|]
)
≥ 1

2j
·
(
E[|C∗

j |]− E[|Cj |]
)
,

where the last inequality uses E[C(t)] is non-decreasing and t ≤ 8α2j .
Now summing over all t ∈ (8α2j−1, 8α2j] yields:

Δj =
8α2j∑

t=8α2j−1

Gt ≥ 4α
(
E[|C∗

j |]− E[|Cj |]
)

= 4α
(
E[|Rj |]− E[|R∗

j |]
)

(8)

The following upper bound for Δj (which uses Claim 1) is proved in [21].

Δj ≤ αE[|Rj−1|] (9)

Combining (8) and (9), we obtain Lemma 2. ��

496 S. Im, V. Nagarajan, and R. van der Zwaan

References

1. Azar, Y., Gamzu, I.: Ranking with submodular valuations. In: SODA 2011, pp.
1070–1079 (2011)

2. Azar, Y., Gamzu, I., Yin, X.: Multiple intents re-ranking. In: STOC 2009, pp.
669–678 (2009)

3. Bansal, N., Gupta, A., Krishnaswamy, R.: A constant factor approximation algo-
rithm for generalized min-sum set cover. In: SODA 2010, pp. 1539–1545 (2010)

4. Bar-Noy, A., Bellare, M., Halldórsson, M.M., Shachnai, H., Tamir, T.: On chro-
matic sums and distributed resource allocation. Inf. Comput. 140(2), 183–202
(1998)

5. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting
high log-densities: an n1/4 approximation for densest k-subgraph. In: STOC 2010,
pp. 201–210 (2010)

6. Calinescu, G., Zelikovsky, A.: The polymatroid steiner problems. Journal of Com-
binatorial Optimization 9(3), 281–294 (2005)

7. Carr, R.D., Fleischer, L., Leung, V.J., Phillips, C.A.: Strengthening integrality
gaps for capacitated network design and covering problems. In: SODA 2000, pp.
106–115 (2000)

8. Chakrabarty, D., Swamy, C.: Facility Location with Client Latencies: Linear Pro-
gramming Based Techniques for Minimum Latency Problems. In: Günlük, O.,
Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 92–103. Springer, Heidel-
berg (2011)

9. Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K.: Paths, trees, and minimum latency
tours. In: FOCS 2003, pp. 36–45 (2003)

10. Chekuri, C., Even, G., Kortsarz, G.: A greedy approximation algorithm for the
group steiner problem. Discrete Applied Mathematics 154(1), 15–34 (2006)

11. Chekuri, C., Pál, M.: A recursive greedy algorithm for walks in directed graphs.
In: FOCS 2005, pp. 245–253 (2005)

12. Fakcharoenphol, J., Harrelson, C., Rao, S.: The k-traveling repairmen problem.
ACM Transactions on Algorithms 3(4) (2007)

13. Feige, U., Lovász, L., Tetali, P.: Approximating min sum set cover. Algorith-
mica 40(4), 219–234 (2004)

14. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for
the group steiner tree problem. J. Algorithms 37(1), 66–84 (2000)

15. Goemans, M.X., Vondrák, J.: Stochastic Covering and Adaptivity. In: Correa, J.R.,
Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 532–543. Springer,
Heidelberg (2006)

16. Golovin, D., Krause, A.: Adaptive submodularity: A new approach to active learn-
ing and stochastic optimization. In: COLT 2010, pp. 333–345 (2010)

17. Guillory, A., Bilmes, J.A.: Online submodular set cover, ranking, and repeated
active learning. In: NIPS 2011 (2011)

18. Gupta, A., Nagarajan, V., Ravi, R.: Approximation Algorithms for Optimal Deci-
sion Trees and Adaptive TSP Problems. In: Abramsky, S., Gavoille, C., Kirchner,
C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS,
vol. 6198, pp. 690–701. Springer, Heidelberg (2010)

19. Gupta, A., Srinivasan, A.: An improved approximation ratio for the covering steiner
problem. Theory of Computing 2(1), 53–64 (2006)

20. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: STOC 2003,
pp. 585–594 (2003)

Minimum Latency Submodular Cover 497

21. Im, S., Nagarajan, V., van der Zwaan, R.: Minimum latency submodular cover.
CoRR, abs/1110.2207 (2011)

22. Konjevod, G., Ravi, R., Srinivasan, A.: Approximation algorithms for the covering
steiner problem. Random Struct. Algorithms 20(3), 465–482 (2002)

23. Liu, Z., Parthasarathy, S., Ranganathan, A., Yang, H.: Near-optimal algorithms
for shared filter evaluation in data stream systems. In: SIGMOD 2008, pp. 133–146
(2008)

24. Munagala, K., Srivastava, U., Widom, J.: Optimization of continuous queries with
shared expensive filters. In: PODS 2007, pp. 215–224 (2007)

25. Nagarajan, V.: Approximation Algorithms for Sequencing Problems. PhD thesis.
Tepper School of Business, Carnegie Mellon University (2009)

26. Schrijver, A.: Combinatorial optimization: polyhedra and efficiency. Springer,
Berlin (2003)

27. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica 2(4), 385–393 (1982)

Constant-Time Algorithms for Sparsity Matroids

Hiro Ito1, Shin-Ichi Tanigawa2, and Yuichi Yoshida3

1 School of Informatics, Kyoto University
itohiro@kuis.kyoto-u.ac.jp

2 Research Institute for Mathematical Sciences, Kyoto University
tanigawa@kurims.kyoto-u.ac.jp

3 School of Informatics, Kyoto University, and Preferred Infrastructure, Inc.
yyoshida@kuis.kyoto-u.ac.jp

Abstract. A graph G = (V,E) is called (k, �)-sparse if |F | ≤ k|V (F)|−�
for any F ⊆ E with F
= ∅. Here, V (F) denotes the set of vertices
incident to F . A graph G = (V,E) is called (k, �)-full if G contains a
(k, �)-sparse subgraph with |V | vertices and k|V | − � edges. The family
of edge sets of (k, �)-sparse subgraphs forms a family of independent sets
of a matroid on E, known as the sparsity matroid of G. In this paper,
we give a constant-time algorithm that approximates the rank of the
sparsity matroid associated with a degree-bounded undirected graph.
This algorithm leads to a constant-time tester for (k, �)-fullness in the
bounded-degree model, (i.e., we can decide with high probability whether
the input graph satisfies a property or far from it). Depending on the
values of k and �, our algorithm can test various properties of graphs such
as connectivity, rigidity, and how many spanning trees can be packed in
a unified manner.

Based on this result, we also propose a constant-time tester for (k, �)-
edge-connected-orientability in the bounded-degree model, where an
undirected graph G is called (k, �)-edge-connected-orientable if there ex-
ists an orientation G of G with a vertex r ∈ V such that G contains
k arc-disjoint dipaths from r to each vertex v ∈ V and � arc-disjoint
dipaths from each vertex v ∈ V to r.

A tester is called a one-sided error tester for P if it always accepts
a graph satisfying P . We show, for any k ≥ 2 and (proper) � ≥ 0,
every one-sided error tester for (k, �)-fullness and (k, �)-edge-connected-
orientability requires Ω(n) queries.

1 Introduction

In property testing, given an instance I, we are supposed to distinguish the case
that I satisfies a predetermined property P from the case that I is “far” from
satisfying P . The definition of farness varies depending on model. The main
objective of property testing is designing efficient algorithms that run even in
constant time, independent of the input size.

In this paper, we study about testing algorithms for two strongly related prop-
erties of undirected graphs, (k, �)-sparsity and (k, �)-edge-connected-orientability.
A graph G = (V,E) is called (k, �)-sparse if |F | ≤ k|V (F)| − � for any F ⊆ E

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 498–509, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Constant-Time Algorithms for Sparsity Matroids 499

with F �= ∅, where V (F) denotes the set of vertices incident to edges in F . We
note that (k, �)-sparsity becomes meaningful only when 2k− � ≥ 1. If otherwise,
any non-empty graph cannot be (k, �)-sparse since just an edge violates the con-
dition. Hence, we assume k ≥ 1, � ≥ 0 and 2k − � ≥ 1 throughout the paper.
A graph G is called (k, �)-tight if G is (k, �)-sparse and |E| = kn − �, where n
is the number of vertices in G. A graph G is called (k, �)-full if G contains a
(k, �)-tight subgraph with n vertices. Checking (k, �)-fullness of a graph is one
of main topics in this paper.

Another topic studied in this paper is orientability of undirected graphs. A
(di)graph is called k-edge-connected (resp., k-vertex-connected) if deletion of any
k−1 edges (resp., vertices) leaves the graph connected. By Menger’s theorem, this
is equivalent to asking k edge-disjoint (resp., k internally-disjoint) paths between
any pair of vertices. A digraph D = (V,A) is called (k, �)-edge-connected with
a root r ∈ V if, for each v ∈ V \ {r}, D has k arc-disjoint dipaths from r to v
and � arc-disjoint dipaths from v to r. An undirected graph G = (V,E) is called
(k, �)-edge-connected-orientable ((k, �)-ec-orientable, in short) if one can assign
an orientation to each edge so that the resulting digraph is (k, �)-edge-connected
with some root r ∈ V . We note that the choice of r is actually not important,
and we may specify any vertex as r.

Nash-Williams’ graph-orientation theorem [15] implies that a graph G admits
an orientation such that the resulting digraph is k-edge-connected if and only
if G is 2k-edge-connected. This implies that (k, k)-ec-orientability of a graph is
equivalent to 2k-edge-connectivity. Another famous result of Nash-Williams [17]
for the forest-partition problem shows that an undirected graph G contains k
edge-disjoint spanning trees if and only if G is (k, k)-full. This theorem, combined
with Edmonds’ arc-disjoint branching theorem [3], implies that G is (k, 0)-ec-
orientable if and only if G is (k, k)-full. In this sense, (k, �)-ec-orientability can
be considered as a unified concept of the sparsity and the conventional edge-
connectivity.

In this paper, we give constant-time testers for (k, �)-fullness and (k, �)-ec-
orientability in the bounded-degree model.

Definition 1 (Bounded-degree model [9]). In the bounded-degree model
with a degree bound d, we consider graphs with maximum degree at most d.
A graph G = (V,E) of n vertices is represented by an oracle OG satisfying the
followings:

– For each vertex v ∈ V , there exists an injection πv : EG(v) → [d] where
EG(v) is a set of edges incident to v.

– The oracle OG, on two values u ∈ V, i ∈ N, returns v such that uv ∈ E and
πu(uv) = i. If no such vertex v exists, it returns a special character ⊥.

Algorithms are given V , n, d, and the access to OG. For an error parameter
ε > 0, a graph is called ε-far from a property P , if we must add or remove at
least εdn

2 edges to make G satisfy P .1

1 Sometimes it is required that the resulting graph must satisfy the degree bound. We
use the present model in order not to make the argument unnecessarily involved.

500 H. Itoh, S.-I. Tanigawa, and Y. Yoshida

An edge e = uv is called the i-th edge of u if πu(e) = i. The query complexity
of an algorithm is the number of accesses to OG. An algorithm is called a tester
for a property P if it accepts graphs satisfying P with probability at least 2

3 and
rejects graphs ε-far from P with probability at least 2

3 .
Our main results are summarized as follows.

Theorem 1. In the bounded-degree model with a degree bound d, there is a
tester for (k, �)-fullness with query complexity (k + d)O(1/ε′2)(1

ε′)
O(1/ε′), where

ε′ = ε
k+d
 .

Theorem 2. In the bounded-degree model with a degree bound d, there is a tester
for (k, �)-ec-orientability with query complexity (k + d)O(1/ε′2)(1

ε′)
O(1/ε′), where

ε′ = max(ε
dk ,

dε

).

The second result resolves an open problem raised by Orenstein [20], which asks
the existence of a constant-time tester for (k, �)-ec-orientability. As mentioned
later, the first result has numerous applications to both theoretical and practical
problems.

An algorithm is called a (1, β)-approximation algorithm for a value x∗ if, with
probability 2

3 , it outputs x such that x∗ − β ≤ x ≤ x∗. For a graph G = (V,E),
it is known that the family of edge sets of (k, �)-sparse subgraphs forms a family
of independent sets of a matroid on E. This matroid is called the (k, �)-sparsity
matroid of G, denoted by Mk,
(G), and the rank function by ρk,
 : 2E → Z.
Although detailed properties will be discussed in the next section, we should
note that G is (k, �)-full if and only if ρk,
(E) = kn− �. To test (k, �)-fullness, we
actually develop a constant-time (1, εn)-approximation algorithm for ρk,
(E).

Theorem 3. Let G = (V,E) be a graph with n vertices. In the bounded-degree
model with a degree bound d, there exists a (1, εn)-approximation algorithm for

the rank of Mk,
(G) with query complexity (k + d)O(1/ε′2)(1
ε′)

O(1/ε′) where ε′ =
ε

k+d
 .

A tester is called a one-sided error tester for a property P if it always accepts
graphs satisfying P . A general tester is sometimes called a two-sided error tester
for comparison. Our testers for (k, �)-fullness and (k, �)-ec-orientability are two-
sided error testers. On the contrary, we give the following lower bounds for
one-sided error testers.

Theorem 4. Let k ≥ 2. In the bounded-degree model, any one-sided error tester
for (k, �)-fullness requires Ω(n) queries where n is the number of vertices in the
input graph.

The corresponding linear lower bound also holds for testing (k, �)-ec-orientability
for k ≥ 2 and k > � in the bounded-degree model. It is not hard to show that
there are one-sided error testers for (1, �)-fullness and (1, �)-ec-orientability. Also,
we have one-sided error testers for (k, �)-ec-orientability when k ≤ �.

We briefly mention why we use the bounded-degree model. Another famous
model for graphs is the adjacency matrix model, in which a graph is represented

Constant-Time Algorithms for Sparsity Matroids 501

by an oracle OG such that, given two vertices u and v, OG answers whether
there is an edge between u and v. A graph G is called ε-far from P in this

model if we must modify εn2

2 edges to make G satisfy P . We see that testing
(k, �)-fullness is trivial in this model. Note that we can make any graph (k, �)-
full by adding kn− � edges. Thus, any graph is at most O(1

n)-far. Thus, for any
ε > 0, when n = Ω(1ε), we can safely accept graphs without any computation.
When n = O(1ε), we can test (k, �)-fullness using a standard polynomial-time
algorithm. We have the same issue also for (k, �)-ec-orientability.

It may be interesting to consider our theorems can be generalized to the
general graph model [12], in which ε-farness is measured with respect to the
number of edges in the original graph.

Related Works. In the bounded-degree model, many testers are known for several
fundamental graph properties (see e.g., [8]). The most relevant works are testers
for connectivity. For undirected graphs, k-edge-connectivity [9] and k-vertex-
connectivity [24] are known to be testable in constant time for any k ≥ 1. Those
results are extended to digraphs and simplified [20,25]. We stress that the idea
behind all the algorithms above is to detect a small evidence that a graph does
not satisfy the property we are concerned with. However, as we discuss later,
for (k, �)-sparsity and (k, �)-ec-orientability, there may not be any such small
evidence. This fact makes our testers more involved.

One of final goals in property testing is arguably characterizing testable prop-
erties. Planarity, or more generally H-minor-freeness, are known to be testable
in the bounded-degree model, and testability of them can be described from
their hyperfiniteness. Roughly speaking, a property is called hyperfinite if any
graph with the property can be decomposed into constant-size components by
removing small fraction of edges. In contrast, as noted in [19], we do not know
any “general” reason so far why k-edge-connectivity is testable. Our result sug-
gests that the matroid theory and the edge-augmentation theory might be a key
tool to characterize non-hyperfinite testable properties.

As for exact and deterministic algorithms for checking (k, �)-fullness of graphs,
Imai [11] proposed an algorithm for computing the rank of Mk,k(G) in O(n2)
time and that of Mk,
(G) in O(nm) time for general �, where n is the number
of vertices and m is the number of edges. Improved algorithms were proposed
by Gabow and Westermann [7], which run in O(n

√
m+ n logn) time for k = �

and in O(n2) time for k = 2 and � = 3. An efficient algorithm for computing
the rank of Mk,
(G) for general k and � is the so-called pebble algorithm by Lee
and Streinu [14], which runs in O(n2) time.

As (k, �)-sparsity has a wide range of applications in rigidity theory and scene
analysis (see e.g., [23]), it is recognized as an important open problem to im-
prove the O(n2) upper-bound for computing ranks of (k, �)-sparsity matroids
(see e.g., [2, Open Problem 4.1]). To the best of our knowledge, our result is the
first sub-quadratic algorithm that approximates ranks of (k, �)-sparsity matroids.

Applications. It is elementary to see that a graph is a forest if and only if it is
(1, 1)-sparse, and the concept of (1, 1)-fullness coincides with the connectivity of

502 H. Itoh, S.-I. Tanigawa, and Y. Yoshida

graphs. As a variant of forests, a graph is called a pseudoforest if each connected
component contains at most one cycle [7]. It is known that a graph is a pseudo-
forest if and only if it is (1, 0)-sparse. As we mentioned above, Nash-Williams [17]
proved that a graph contains k edge-disjoint spanning trees if and only if it is
(k, k)-full. Motivated by an application to rigidity theory, Whiteley [23] and
Haas [10] proved a generalization of Nash-Williams’ theorem to (k, �)-sparse
graphs by mixing trees and pseudoforests. Our result leads to constant-time
testers for these properties.

Another important application of (k, �)-sparse graphs is the rigidity of graphs.
A classical theorem by Laman [13] implies that a (2, 3)-full graph has a special
property of being a generically rigid bar-joint framework on the plane, by re-
garding each vertex as a joint and each edge as a bar. Whiteley [22] further
showed that some other (k, �)-sparsity matroid characterize generic rigidity of
graphs embedded on surfaces.

We note that the (k, k)-fullness of a graph can be decided by checking the
rank of the union of k graphic matroids. This problem is usually solved via
a matroid intersection problem. This leaves us several unsolved questions: for
which matroids can we approximate the rank of their union, and for which ma-
troids M1,M2 can we approximate the size of the largest common independent
set in M1 and M2 with a constant number of queries?

Organization and Proof Overview. In Section 2, we review properties ofMk,
(G).
Then, in Sections 3.1 and 3.2, we give a tester for (k, �)-fullness. We first develop
a (1, εn)-approximation algorithm for ρk,
(E) running in constant time (Theo-
rem 3). Then, we can test (k, �)-fullness since a (k, �)-full graph has rank k|V |−�,
and a graph ε-far from (k, �)-fullness has rank at most k|V | − �− εn.

A natural way to estimate the rank of Mk,
(G) is locally simulating the
greedy algorithm, i.e., we add edges one by one, and if a newly added edge
forms a circuit w.r.t. Mk,
(G), we discard it. The main obstacle to simulate this
algorithm is that, in general, we cannot detect any circuit in constant time. For
example, a circuit in M1,1(G) corresponds to a cycle in G. However, there is
a d-regular graph in which any cycle has length Ω(logd n). Thus, we need to
estimate the rank without seeing any circuit. We note that ρ1,1(E) = n−c holds
for the matroidM1,1(G), where c is the number of connected components. Using
this fact, constant-time approximation algorithms for ρ1,1(E) are given in [1].
However, there is no such formula for general k and �.

Our strategy to overcome this issue is as follows: First, we remove constant-
size circuits w.r.t. Mk,
(G), and let G′ = (V,E′) be the resulting graph. We can
show that ρk,
(E) = ρk,
(E

′). A crucial fact is that ρk,
(E
′) is close to ρk,0(E

′).
Thus, it amount to estimate ρk,0(E

′) efficiently. It is known that ρk,0(E
′) equals

the size of the maximum matching of an auxiliary graph, and we can compute
it using a constant-time approximation algorithm for the maximum matching
given by [18,26].

In Section 4, we provide a constant-time tester for (k, �)-ec-orientability. Our
algorithm is based on the characterization of the number of edges we need to
add to make a graph (k, �)-ec-orientable by Frank and Király [6]. Although this

Constant-Time Algorithms for Sparsity Matroids 503

characterization is not so simple as the case of the edge-connectivity augmen-
tation problem, we are able to show that, if G is ε-far, either there are many
small evidences or G is globally sparse which can be measured by (k, k)-fullness
(Theorem 8). As mentioned before, the (k, �)-ec-orientability has strong relations
to sparsity as well as to edge-connectivity. Indeed, our algorithm can be seen as
a combination of the idea used to test k-edge-connectivity [9,24,20] and the idea
used here to test (k, k)-sparsity in Section 3.2.

Due to space limit, linear lower bounds of one-sided error testers are defer to
the full version. In [20], Orenstein proved linear lower bounds of one-sided er-
ror testers for (k, 0)-ec-orientability (or equivalently, (k, k)-fullness). Orenstein’s
proof made use of Tutte-and-Nash-Williams’ tree packing theorem, which is a
special property of (k, k)-fullness. However, we show that Orenstein’s approach
can be applied to the case for general � with some graph operation that preserves
(k, �)-fullness.

Due to space limit, proofs of most claims are omitted. Instead, we attach the
full paper in appendix for completeness.

2 Preliminaries

For an integer n, we denote by [n] the set {1, . . . , n}. Let G = (V,E) be a graph.
For a vertex set S ⊆ V , G[S] denotes the subgraph of G induced by S. For an
edge set F ⊆ E, we define VG(F) as the set of vertices incident to F .

For a graph G = (V,E) and integers k ≥ 1, � ≥ 0, we define a function
fk,
 : 2

E → Z by fk,
(F) = k|V (F)| − � for F ⊆ E. In the (k, �)-sparsity matroid
Mk,
(G), F ⊆ E is independent if and only if |I| ≤ fk,
(I) holds for any non-
empty I ⊆ F . This matroid is also called the (k, �)-count matroid of G and is
known as the matroid induced by the non-decreasing submodular function fk,

(see e.g.,[5]). The rank function and the closure operator are denoted by ρk,

and clk,
, respectively. We note that ρk,
(F) equals the size of the largest (k, �)-
sparse edge set contained in F . This implies that G is (k, �)-tight iff the rank of
Mk,
(G) is kn− �.

A set F ⊆ E is called a (k, �)-connected set if, for any pair e, e′ ∈ F , F
has a circuit of Mk,
(G) that contains e and e′. For simplicity of exposition,
a singleton {e} is also considered as a (k, �)-connected set. A maximal (k, �)-
connected set w.r.t. edge inclusion is called a (k, �)-connected component. The
following property of (k, �)-connected sets is just a restatement of a general fact
on matroid-connectivity for our purpose.

Proposition 1. Mk,
(G) has the following properties: (i) For two (k, �)-
connected sets F1 and F2 with F1 ∩ F2 �= ∅, F1 ∪ F2 is (k, �)-connected. (ii)
We can uniquely partition E into (k, �)-connected components {C1, . . . , Ct}, and
ρk,
(E) =

∑t
i=1 ρk,
(Ci).

A (k, �)-connected set (or component) is called trivial if it is singleton, otherwise
non-trivial. We remark that {e} is a trivial (k, �)-connected component if and
only if e is a coloop in Mk,
(G) (i.e., every base contains e) since Mk,
(G) has

504 H. Itoh, S.-I. Tanigawa, and Y. Yoshida

no loop (in the matroid sense) if 2k − � ≥ 1. Hence, if we denote the family
of non-trivial (k, �)-connected components in Mk,
(G) by {C1, . . . , Cs}, then
Proposition 1(ii) implies

ρk,
(E) = |E \
⋃s

i=1 Ci|+
∑s

i=1 ρk,
(Ci). (1)

We need the following known properties of Mk,
(G).

Lemma 1. Mk,
(G) has the following properties: (i) For any circuit C of
Mk,
(G), ρk,
(C) = fk,
(C). (ii) For any non-trivial (k, �)-connected set F ⊆ E,
ρk,
(F) = fk,
(F). Namely, F is (k, �)-full.

We also note the following relation between Mk,
(G) and Mk,
′(G) for distinct
� and �′, which trivially follows from |F | ≤ k|V (F)| − � ≤ k|V (F)| − �′.

Lemma 2. Any (k, �)-sparse set F ⊆ E is (k, �′)-sparse for every �′ ≤ �.

3 Testing (k, �)-Fullness

3.1 Approximating the Rank of Mk,0(G)

In this section, we present a constant-time approximation algorithm for the rank
ρk,0(E) of Mk,0(G) for a graph G = (V,E). A crucial fact is that computing
ρk,0(E) can be reduced to computing the size of the maximum matching in an
auxiliary bipartite graphGk obtained fromG. The vertex set ofGk is E∪(V ×[k])
where E and V × [k] form the partition, and Gk has an edge between e ∈ E and
(v, i) ∈ V × [k] iff e is incident to v in the original graph G. From the celebrated
Hall’s marriage theorem, the following result easily follows (see e.g., [11] for more
details):

Proposition 2. Let G = (V,E) be a graph and k be an integer. Then, Gk

contains a matching covering F ⊆ E if and only if F is (k, 0)-sparse.

Proposition 2 implies that the rank of Mk,0(G) is equal to the size of the maxi-
mum matching in Gk. We use the following algorithm.

Lemma 3 ([26]). In the bounded-degree model with a degree bound d, there
exists a (1, εn)-approximation algorithm for the size of the maximum matching

of a graph with query complexity dO(1/ε2)(1ε)
O(1/ε).

To run the algorithm given in Lemma 3 on Gk, we want to make an oracle access
OGk

to Gk using the oracle access OG to G. However, since we do not have a
method to access E directly, the vertex set E∪(V × [k]) is inconvenient to design
OGk

.
Although the detailed description is omitted in this extended abstract, we

invent a slightly different auxiliary graph G′
k, which is nearly identical to Gk,

to deal with this issue. Then, we show that an oracle access OG′
k
to G′

k can be
realized by asking the original oracle OG at most d times. We thus obtain a
constant-time approximation algorithm for ρk,0. (The detail is deferred to the
full version.)

Constant-Time Algorithms for Sparsity Matroids 505

Lemma 4. In the bounded-degree model with a degree bound d, there exists a
(1, εn)-approximation algorithm for the rank of Mk,0(G) with query complexity

(k + d)O(1/ε′2)(1
ε′)

O(1/ε′) where ε′ = ε
k+d .

3.2 Approximating the Rank of Mk,�(G)

In this section, we describe a constant-time approximation algorithm for the
rank of Mk,
(G) for a graph G = (V,E). Let t be a parameter determined later
by using the error parameter ε. We say that a subset S ⊆ E is large if |S| ≥ t;
otherwise called small.

For an edge e = uv and an integer r > 0, let Gr(e) be the graph induced
by the set of vertices whose distance to u or v is at most r. Also, let Er(e)
be the set of edges in Gr(e). The core of our approximation algorithm is an
efficient implementation of an algorithm Component(e), which (approximately)
decides whether a given edge e ∈ E is in a large (k, �)-connected set or not. As a
subroutine, we first prepare an algorithm called SmallCircuits(e) in Algorithm 1
and then show Component(e) in Algorithm 2.

Algorithm 1. SmallCircuits(e): returns the union of small circuits containing an
edge e

1: Set t = �d
ε

and S = {e}.
2: while there is an unchecked small circuit C ⊆ Et(e) containing e do
3: Check C.
4: S = S ∪ C.
5: if |S| ≥ t then
6: return Large (a special symbol).
7: return S.

Algorithm 2. Component(e): decides whether e is contained in a large (k, �)-
connected set
1: Set t = �d

ε
and S = {e}.

2: while there is an unchecked element f in S do
3: Check f .
4: if SmallCircuits(f) = Large then
5: return Large.
6: S = S ∪ SmallCircuits(f)
7: if |S| ≥ t then
8: return Large.
9: return S.

The following lemma shows structural properties of outputs of Component(e).
(The detail is deferred to the full version.)

Lemma 5. For any e ∈ E, Component(e) is a small (k, �)-connected set unless
it returns Large. Moreover, if Component(e) is not Large, then Component(e) =
Component(f) for any f ∈ Component(e).

506 H. Itoh, S.-I. Tanigawa, and Y. Yoshida

Let L = {e ∈ E | Component(e) = Large}, and let {S1, S2, . . . , Sm} be the set of
subsets of E such that Si = Component(e) for some e ∈ E. Then, by Lemma 5,
{L, S1, . . . , Sm} forms a partition of E. The following lemma states that ρk,

is well approximated by ρk,0 after replacing each connected component (w.r.t.
Mk,
(G)) by its base.

Theorem 5. Let {L, S1, . . . , Sm} be the partition of E defined as above. For
each i with 1 ≤ i ≤ m, let Bi be a base of Si in Mk,
(G), and let E′ = L ∪⋃m

i=1 Bi. Then, ρk,0(E
′)−
dn

t ≤ ρk,
(E) ≤ ρk,0(E
′).

Proof. Since Bi is a base of Si in Mk,
(G), we have Si ⊆ clk,
(Bi) ⊆ clk,
(E
′) for

each i. This implies ρk,
(E
′) = ρk,
(E). Also, by Lemma 2, we have ρk,
(E

′) ≤
ρk,0(E

′).
To see ρk,0(E

′) −
dn
t ≤ ρk,
(E

′), recall that (k, �)-connected components
of Mk,
(G)|E′ partitions E′ by Proposition 1(ii) (where Mk,
(G)|E′ denotes
the restriction of Mk,
(G) to E′). We have the following properties of these
connected sets. (The detail is deferred to the full version.)

Claim. Any e ∈ L is contained in a large (k, �)-connected component in
Mk,
(G)|E′.

Claim. Every non-trivial (k, �)-connected component in Mk,
(G)|E′ is large.

Let {C1, C2, . . . , Cs} be the family of non-trivial (k, �)-connected components in
Mk,
(G)|E′. Note that s ≤ dn

t holds by the second Claim given above. Therefore,
ρk,
(E

′) = |E′ \
⋃s

i=1 Ci| +
∑s

i=1 ρk,
(Ci) = |E′ \
⋃s

i=1 Ci| +
∑s

i=1(k|V (Ci)| −
�) ≥ |E′ \

⋃s
i=1 Ci|+

∑s
i=1 k|V (Ci)| −
dn

t , where the first equality follows from
Equation (1), the second follows from Lemma 1(ii), and the third inequality
follows from s ≤ dn

t . On the other hand, from submodularity of ρk,0, we also
have ρk,0(E

′) ≤ |E′ \
⋃s

i=1 Ci|+
∑s

i=1 ρk,0(Ci) ≤ |E′ \
⋃s

i=1 Ci|+
∑s

i=1 k|V (Ci)|.
Comparing these two inequalities we obtain the desired result.

Proof (of Theorem 3). Let G′ = (V,E′) where E′ is as in Theorem 5. Set t =
d
ε .

Our algorithm computes ρk,0(E
′) based on the algorithm given in Lemma 4 for

the error threshold ε and just returns this value. By Lemma 4 and Theorem 5,
this value approximates ρk,
(E) with additive error εn. Therefore, if we can make
an oracle access OG′ to the graph G′, we are done.

For a query OG′(v, i), we decide the output as follows. If OG(v, i) = ⊥, we
return ⊥. Suppose that OG(v, i) = e. Then, we invoke Component(e). If Com-
ponent(e) returns Large, we return e. Otherwise, we take any base B of the
returned set of Component(e) by an existing algorithm. We return e if e ∈ B
and return ⊥ if otherwise. Note that for other edges f ∈ S, we use the same
base B.

To analyze the query complexity, note that, during Component(e), we perform
queries OG(v, i) only for vertices v in G3t(e). So, to perform Component(e), we

need d3t = d3
d/ε queries toOG. In total, we need d3
d/ε(k+d)O(1/ε′2)(1
ε′)

O(1/ε′) =

(k + d)O(1/ε′2)(1
ε′)

O(1/ε′), where ε′ = ε
k+d
 .

Theorem 1 directly follows from Theorem 3.

Constant-Time Algorithms for Sparsity Matroids 507

4 Testing (k, �)-Edge-Connected-Orientability

In this section, we present a tester for the (k, �)-edge-connected-orientability of
a graph G = (V,E).

A multiset F = {V1, . . . , Vs} of subsets of V is said to be regular if each
element of V belongs to the same number of subsets in F . For a regular multiset

F = {V1, . . . , Vs} of subsets of V , let dG(F) =
∑s

i=1
dG(Vi)

2 . If F is a partition
of V , dG(F) amounts to the number of edges connecting distinct subsets of F .

In [4], Frank gave a characterization of orientability of graphs, called the
supermodular covering condition. This theorem includes the following charac-
terization of (k, �)-ec-orientability as a special case (see e.g., [6]).

Theorem 6 (Frank [4]). Let G = (V,E) be a graph. Then, G admits a (k, �)-
edge-connected-orientation if and only if dG(F) ≥ k(|F|−1)+� for any partition
F of V into non-empty subsets with |F| ≥ 2.

This theorem motivates us to look at the following deficiency function: for � > 0

ηk,�(G) = max{0,max{k(|F| − 1) + �− dG(F) | a partition F of V with |F| ≥ 2}},

and for � = 0

ηk,0(G) = max{k(|F| − 1)− dG(F) | a partition F of V }.

Notice ηk,0(G) ≥ 0 (consider F = {V }). Notice also ηk,
(G) ≤ ηk,0(G)+�, where
the equality holds if ηk,0(G) > 0. Hence, we also have ηk,0(G) ≤ ηk,
(G). Namely,

ηk,0(G) ≤ ηk,
(G) ≤ ηk,0(G) + �. (2)

The celebrated Tutte-and-Nash-Williams tree packing theorem [21,16] asserts
ρk,k(E) = k(n− 1)− ηk,0(G), and hence ηk,0(G) can be computed from ρk,k(G).
Therefore, the approximation algorithm for ρk,k(G) proposed in Theorem 3 can
be modified to compute ηk,
(G).

Corollary 1. Let G be a graph with n vertices, and k ≥ 1, � ≥ 0 be integers
with 2k− � ≥ 1. In the bounded-degree model with a degree bound d, there exists
a (1, � + εn)-approximation algorithm for ηk,
(G) with query complexity (k +

d)O(1/ε′2)(1
ε′)

O(1/ε′) where ε′ = ε
dk .

For testing (k, �)-ec-orientability, we need a certificate to decide whether G is
ε-far from (k, �)-ec-orientable. This part relies on a structural property of the
connectivity argumentation problem proved by Frank and Király [6]. A family
{X1, . . . , Xs} of subsets of X ⊆ V is called a co-partition of X if {V \X1, . . . , V \
Xs} forms a partition of V \X . Also, for two multisets F1 and F2, F1+F2 denotes
their union as a multiset.

Theorem 7 (Frank and Király [6]). A graph G can be made (k, �)-ec-
orientable by adding γ edges iff the following two conditions hold:

(A) γ ≥ k(|F| − 1) + �− dG(F) for every partition F of V with |F| ≥ 2.

508 H. Itoh, S.-I. Tanigawa, and Y. Yoshida

(B) 2γ ≥ |F1|k+ |F2|�− dG(F) for every multiset F = F1+F2 such that F1 is
a partition of some X ⊂ V , F2 is a co-partition of V \X, and every member
of F2 is the complement of the union of some members of F1.

By Corollary 1, the condition (A) is efficiently checkable. The non-trivial part is
an algorithm for checking the second condition. Let

ξk,
(G) = max
F=F1+F2

{|F1|k + |F2|�− dG(F)} (3)

where the maximum is taken over all multisets F = F1 + F2 satisfying the
property specified in Theorem 7(B). By carefully counting the number of edges
appeared in the right hand side, ξk,
 can be simplified as follows. (See Theo-
rem 5.4 for the proof.)

Lemma 6. Let gk,
(X) = k + �− d(X) + ηk,0(G[X]) for X ⊆ V . Then,

ξk,
(G) = max
{∑s

i=1 gk,
(Xi) | a sub-partition P = {X1, . . . , Xs} of V
}
. (4)

We say thatX ⊆ V is deficient if gk,
(X) > 0. By Theorem 7 and (4), gk,
(X) ≤ 0
holds for every X with ∅ �= X � V if G is (k, �)-ec-orientable. The following
theorem is a key result to develop a constant-time tester. (The detail is deferred
to the full version.)

Theorem 8. For a given ε, let c = ε2d2

16k
 and t = 4

εd . Suppose that ξk,
(G) ≥ εdn.

Then, at least one of the followings holds:

(i) There are at least cn disjoint small deficient sets, where a set is called small
if the cardinality is less than t;

(ii) ηk,0(G) ≥ 1
4εdn. Namely, G is ε

2 -far from (k, k)-fullness.

A tester for the (k, �)-ec-orientability of a graph G = (V,E) is given in Algo-
rithm 3. In Line 7, Vt(v) denotes the set of vertices whose distances to v ∈ V
are at most t.

Algorithm 3. Testing the (k, �)-ec-orientability of a bounded-degree graph G

1: Take any ε′′ such that ε′′ < ε.
2: Run a (1, ε′′dn

4
)-approximation algorithm for ηk,0(G).

3: if the obtained value x∗ satisfies x∗ > 0 then
4: reject G.
5: Choose a set S of 8k�

ε2d2
vertices uniformly at random from G.

6: for v ∈ S do
7: Compute Xv = argmax{gk,�(X) : X ⊆ Vt(v), X
= ∅} with t = 4�

εd
.

8: if gk,�(Xv) > 0 then
9: reject G.
10: accept G.

The query complexity of Algorithm 3 can be easily bounded as claimed in
Theorem 2. The correctness follows from Corollary 1 and Theorem 8 (the detailed
description is omitted in this extended abstract), and thus we obtain Theorem 2.

Constant-Time Algorithms for Sparsity Matroids 509

References

1. Chazelle, B., Rubinfeld, R., Trevisan, L.: Approximating the Minimum Spanning
Tree Weight in Sublinear Time. SIAM Comp. 34(6), 1370–1379 (2005)

2. Demaine, E., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami,
Polyhedra, Reprint edition. Cambridge University Press, New York (2008)

3. Edmonds, J.: Edge disjoint branchings. In: Rustin, B. (ed.) Combinatorial Algo-
rithms, pp. 91–96. Algorithmics Press (1973)

4. Frank, A.: On the orientation of graphs. J. Comb. Theory, B 28(3), 251–261 (1980)
5. Frank, A.: Connections in Combinatorial Optimization. Oxford University Press

(2011)
6. Frank, A., Király, T.: Combined connectivity augmentation and orientation prob-

lems. Discrete Appl. Math. 131, 401–419 (2003)
7. Gabow, H., Westermann, H.: Forests, frames, and games: algorithms for matroid

sums and applications. Algorithmica 7(1), 465–497 (1992)
8. Goldreich, O.: Intriduction to testing graph properties. Technical report. Electronic

Colloquium on Computational Complexity, ECCC (2010)
9. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorith-

mica 32(2), 302–343 (2002)
10. Haas, R.: Characterizations of arboricity of graphs. Ars Comb. 63, 129–138 (2002)
11. Imai, H.: Network flow algorithms for lower truncated transversal polymatroids.

Journal of the Operations Research Society of Japan 26(3), 186–210 (1983)
12. Kaufman, T., Krivelevich, M., Ron, D.: Tight bounds for testing bipartiteness in

general graphs. SIAM Journal on Computing 33(6), 1441–1483 (2004)
13. Laman, G.: On graphs and rigidity of plane skeletal structures. Journal of Engi-

neering Mathematics 4(4), 331–340 (1970)
14. Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. Discrete Mathe-

matics 308(8), 1425–1437 (2008)
15. Nash-Williams, C.: On orientations, connectivity and odd vertex pairings in finite

graphs. Canad. J. Math. 12, 555–567 (1960)
16. Nash-Williams, C.: Edge-disjoint spanning trees of finite graphs. Journal of the

London Mathematical Society 1(1), 445–450 (1961)
17. Nash-Williams, C.: Decomposition of finite graphs into forests. Journal of the Lon-

don Mathematical Society 1(1), 12 (1964)
18. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local im-

provements. In: Proc. of FOCS 2008, pp. 327–336 (2008)
19. Newman, I., Sohler, C.: Every property of hyperfinite graphs is testable. In: Proc.

of STOC 2011, pp. 675–684 (2011)
20. Orenstein, Y.: Property testing in directed graphs. Master’s thesis, Tel-Aviv Uni-

versity (2010)
21. Tutte, W.T.: On the problem of decomposing a graph into n connected factors.

Journal of the London Mathematical Society 36, 221–230 (1961)
22. Whiteley, W.: The union of matroids and the rigidity of frameworks. SIAM Journal

on Discrete Mathematics 1(2), 237–255 (1988)
23. Whiteley, W.: Some matroids from discrete applied geometry. Contemporary Math-

ematics 197, 171–312 (1996)
24. Yoshida, Y., Ito, H.: Property testing on k-vertex-connectivity of graphs. Algorith-

mica 62(3), 701–712 (2012)
25. Yoshida, Y., Ito, H.: Testing k-edge-connectivity of digraphs. Journal of System

Science and Complexity 23(1), 91–101 (2010)
26. Yoshida, Y., Yamamoto, M., Ito, H.: An improved constant-time approximation

algorithm for maximum matchings. In: Proc. of STOC 2009, pp. 225–234 (2009)

CRAM: Compressed Random Access Memory

Jesper Jansson1, Kunihiko Sadakane2, and Wing-Kin Sung3

1 Laboratory of Mathematical Bioinformatics, Institute for Chemical Research,
Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

jj@kuicr.kyoto-u.ac.jp
2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,

Tokyo 101-8430, Japan
sada@nii.ac.jp

3 National University of Singapore, 13 Computing Drive, Singapore 117417
ksung@comp.nus.edu.sg

Abstract. We present a new data structure called the Compressed Ran-
dom Access Memory (CRAM) that can store a dynamic string T of char-
acters, e.g., representing the memory of a computer, in compressed form
while achieving asymptotically almost-optimal bounds (in terms of em-
pirical entropy) on the compression ratio. It allows short substrings of T
to be decompressed and retrieved efficiently and, significantly, characters
at arbitrary positions of T to be modified quickly during execution with-
out decompressing the entire string. This can be regarded as a new type
of data compression that can update a compressed file directly. More-
over, at the cost of slightly increasing the time spent per operation, the
CRAM can be extended to also support insertions and deletions. Our
key observation that the empirical entropy of a string does not change
much after a small change to the string, as well as our simple yet efficient
method for maintaining an array of variable-length blocks under length
modifications, may be useful for many other applications as well.

1 Introduction

Certain modern-day information technology-based applications require random
access to very large data structures. For example, to do genome assembly in
bioinformatics, one needs to maintain a huge graph [18]. Other examples include
dynamic programming-based problems, such as optimal sequence alignment or
finding maximum bipartite matchings, which need to create large tables (often
containing a lot of redundancy). Yet another example is in image processing,
where one sometimes needs to edit a high-resolution image which is too big to
load into the main memory of a computer all at once. Additionally, a current
trend in the mass consumer electronics market is cheap mobile devices with
limited processing power and relatively small memories; although these are not
designed to process massive amounts of data, it could be economical to store
non-permanent data and software on them more compactly, if possible.

The standard solution to the above problem is to employ secondary memory
(disk storage, etc.) as an extension of the main memory of a computer. This

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 510–521, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

CRAM: Compressed Random Access Memory 511

technique is called virtual memory. The drawback of virtual memory is that the
processing time will be slowed down since accessing the secondary memory is
an order of magnitude slower than accessing the main memory. An alternative
approach is to compress the data T and store it in the main memory. By using
existing data compression methods, T can be stored in nHk + o(n log σ)-bits
space [2,8] for every 0 ≤ k < logσ n, where n is the length of T , σ is the size of
the alphabet, andHk(T) denotes the k-th order empirical entropy of T . Although
greatly reducing the amount of storage needed, it does not work well because it
becomes computationally expensive to access and update T .

Motivated by applications that would benefit from having a large virtual mem-
ory that supports fast access- and update-operations, we consider the following
task: Given a memory/text T [1..n] over an alphabet of size σ, maintain a data
structure that stores T compactly while supporting the following operations.
(We assume that � = Θ(logσ n) is the length of one machine word.)

• access(T, i): Return the substring T [i..(i+ �− 1)].
• replace(T, i, c): Replace T [i] by a character c ∈ [σ]. 1

• delete(T, i): Delete T [i], i.e., make T one character shorter.
• insert(T, i, c): Insert a character c into T between positions i−1 and i, i.e.,
make T one character longer.

Compressed Read Only Memory: When only the access operation is sup-
ported, we call the data structure Compressed Read Only Memory. Sadakane
and Grossi [17], González and Navarro [6], and Ferragina and Venturini [4] de-
veloped storage schemes for storing a text succinctly that allow constant-time
access to any word in the text. More precisely, these schemes store T [1..n] in

nHk +O
(
n log σ

(
k log σ+log log n

log n

))
bits2 and access(T, i) takes O(1) time, and

both the space and access time are optimal for this task. Note, however, that
none of these schemes allow T to be modified.

Compressed Random Access Memory (CRAM): When the operations
access and replace are supported, we call the data structure Compressed Ran-
dom Access Memory (CRAM). As far as we know, it has not been considered
previously in the literature, even though it appears to be a fundamental and
important data structure.

Extended CRAM: When all four operations are supported, we call the data
structure extended CRAM. It is equivalent to the dynamic array [16] and also
solves the list representation problem [5]. Fredman and Saks [5] proved a cell
probe lower bound of Ω(logn/ log log n) time for the latter, and also showed
that nΩ(1) update time is needed to support constant-time access. Raman et
al. [16] presented an n log σ+o(n log σ)-bit data structure which supports access,
replace, delete, and insert in O(log n/ log logn) time. Navarro and Sadakane
[15] recently gave a data structure using nH0(T) +O(n log σ/ logε n+ σ logε n)
bits that supports access, delete, and insert in O(logn

log logn (1+
log σ

log logn)) time.

1 The notation [σ] stands for the set {1, 2, . . . , σ}.
2 Reference [17] has a slightly worse space complexity.

512 J. Jansson, K. Sadakane, and W.-K. Sung

1.1 Our Contributions

This paper studies the complexity of maintaining the CRAM and extended
CRAM data structures. We assume the uniform-cost word RAM model with
word size w = Θ(log n) bits, i.e., standard arithmetic and bitwise boolean oper-
ations on w-bit word-sized operands can be performed in constant time [9]. Also,
we assume the memory consists of a sequence of bits, and each bit is identified
with an address in 0, . . . , 2w − 1. Furthermore, any consecutive w bits can be
accessed in constant time. (Note that this memory model is equivalent under the
word RAM model to a standard memory model consisting of a sequence of words
of some fixed length.) At any time, if the highest address of the memory used by
the algorithm is s, the space used by the algorithm is said to be s+ 1 bits [10].

Our main results for the CRAM are summarized in:

Theorem 1. Given a text T [1..n] over an alphabet of size σ and any ε > 0,
after O(n log σ/ logn) time preprocessing, the CRAM data structure for T [1..n]

can be stored in nHk(T) +O
(
n log σ

(
(k + 1)ε+ k log σ+log logn

logn

))
bits for every

0 ≤ k < logσ n simultaneously, where Hk(T) denotes the k-th order empirical
entropy of T , while supporting access(T, i) in O(1) time and replace(T, i, c)
for any character c in O(1/ε) time.

Theorem 1 is proved in Section 5 below.
Next, by setting ε = max{ log σ

logn ,
log log n

(k+1) logn}, we obtain:

Corollary 1. Given a text T [1..n] over an alphabet of size σ and any k =
o(logσ n), after O(n log σ/ logn) time preprocessing, the CRAM data structure

for T [1..n] can be stored in nHk(T) +O
(
n logσ · k log σ+log logn

logn

)
bits while sup-

porting access(T, i) in O(1) time and replace(T, i, c) for any character c in
O(min{logσ n, (k + 1) logn/ log logn}) time.

For the extended CRAM, we have:

Theorem 2. Given a text T [1..n] over an alphabet of size σ, after spending
O(n log σ/ logn) time on preprocessing, the extended CRAM data structure for

T [1..n] can be stored in nHk(T)+O
(
n log σ · k log σ+(k+1) log logn

logn

)
bits for every

0 ≤ k < logσ n simultaneously, where Hk(T) denotes the k-th order empirical
entropy of T , while supporting all four operations in O(logn/ log logn) time.

(Due to space limitations, the proof of Theorem 2 has been omitted from the
conference version of our paper.)

Table 1 shows a comparison with existing data structures. Many existing
dynamic data structures for storing compressed strings [7,11,13,15] use the fact
nH0(S) = log

(
n

n1,...,nσ

)
where nc is the number of occurrences of character c in

the string S. However, this approach is helpful for small alphabets only because
of the size of the auxiliary data. For large alphabets, generalized wavelet trees [3]
can be used to decompose a large alphabet into smaller ones, but this slows down

CRAM: Compressed Random Access Memory 513

Table 1. Comparison between previously existing data structures and the new ones
in this paper. For simplicity, we assume σ = o(n). The upper table lists results for the
Compressed Read Only Memory (the first line) and the CRAM (the second and third
lines), and the lower table lists results for the extended CRAM.

access replace Space (bits) Ref.

O(1) — nHk(T) +O
(
n log σ · k log σ+log logn

log n

)
[4,6]

O(1) O(min{logσ n, (k+1) log n
log logn

}) nHk(T) +O
(
n log σ · k log σ+log logn

log n

)
New

O(1) O(1
ε
) nHk(T) +

O
(
n log σ

(
k log σ+log log n

log n
+ (k + 1)ε

))
New

access/replace/insert/delete Space (bits) Ref.

O(log
2 n

log σ
) nHk(T) + o(n log σ) [15]

O(logσ logn
(log log n)2

) nH0(T) +O
(
n log σ · 1

logε n

)
[15]

O(logn
log log n

) nH0(T) +O
(
n log σ · log log n

log n

)
New

O(logn
log log n

) nHk(T) +O
(
n log σ · k log σ+(k+1) log log n

log n

)
New

the access and update times. For example, if σ =
√
n, the time complexity of

those data structures is O((log n/ log logn)2), while ours is O(log n/ log logn), or
even constant. Also, a technical issue when using large alphabets is how to update
the code tables for encoding characters to achieve the entropy bound. Code
tables that achieve the entropy bound will change when the string changes, and
updating the entire data structure with the new code table is time-consuming.

Our results depend on a new analysis of the empirical entropies of similar
strings in Section 3. We prove that the empirical entropy of a string does not
change a lot after a small change to the string (Theorem 4). By using this fact,
we can delay updating the entire code table. Thus, after each update operation
to the string, we just change a part of the data structure according to the new
code table. In Section 5, we show that the redundancy in space usage by this
method is negligible, and we obtain Theorem 1.

Looking at Table 1, we observe that Theorem 1 can be interpreted as saying
that for arbitrarily small, fixed ε > 0, by spending O(n log σ · ε(k+1)) bits space
more than the best existing data structures for Compressed Read Only Memory,
we can also get O(1/ε) (i.e., constant) time replace operations.

1.2 Organization of the Paper

Section 2 reviews the definition of the empirical entropy of a string and the data
structure of Ferragina and Venturini [4]. In Section 3, we prove an important
result on the empirical entropies of similar strings. In Section 4, we describe a
technique for maintaining an array of variable-length blocks. Section 5 explains
how to implement the CRAM to achieve the bounds stated in Theorems 1 above.
Finally, Section 6 gives some concluding remarks.

514 J. Jansson, K. Sadakane, and W.-K. Sung

2 Preliminaries

2.1 Empirical Entropy

The compression ratio of a data compression method is often expressed in terms
of the empirical entropy of the input strings [12]. We first recall the definition of
this concept. Let T be a string of length n over an alphabet A = [σ]. Let nc be
the number of occurrences of c ∈ A in T . Let {Pc = nc/n}σc=1 be the empirical
probability distribution for the string T . The 0-th order empirical entropy of T
is defined as H0(T) = −

∑σ
c=1 Pc logPc. We also use H0(p) to denote the 0-th

order empirical entropy of a string whose empirical probability distribution is p.
Next, let k be any non-negative integer. If a string s ∈ Ak precedes a symbol

c in T , s is called the context of c. We denote by T (s) the string that is the
concatenation of all symbols, each of whose context in T is s. The k-th order
empirical entropy of T is defined as Hk(T) = 1

n

∑
s∈Ak |T (s)|H0(T

(s)). It was
shown in [14] that for any k ≥ 0, Hk(T) ≥ Hk+1(T) holds, and nHk(T) is a
lower bound for the output size of any compressor that encodes each symbol
of T with a code that only depends on the symbol and its context of length k.

To prove our new results, we shall use the following theorem in Section 3:

Theorem 3 ([1, Theorem 16.3.2]). Let p and q be two probability mass func-
tions on A such that ||p−q||1 ≡

∑
c∈A |p(c)−q(c)| ≤ 1

2 . Then |H0(p)−H0(q)| ≤
−||p− q||1 log ||p−q||1

|A| .

The technique of blocking, i.e., to conceptually merge consecutive symbols to
form new symbols over a larger alphabet, is used to reduce the redundancy of
Huffman encoding for compressing a string. A string T of length n is partitioned
into n

 blocks of length � each, then Huffman or other entropy codings are applied
to compress a new string T
 of those blocks. We call this operation blocking of
length �.

2.2 Review of Ferragina and Venturini’s Data Structure

Here, we briefly review the data structure of Ferragina and Venturini from [4].
It uses the same basic idea as Huffman coding: replace every fixed-length block
of symbols by a variable-length code in such a way that frequently occurring
blocks get shorter codes than rarely occurring blocks.

To be more precise, consider a text T [1..n] over an alphabet A where |A| = σ
and σ < n. Let � = 1

2 logσ n and τ = log n. Partition T [1..n] into n
τ
 super-blocks,

each contains τ� characters. Each super-block is further partitioned into τ blocks,
each contains � characters. Denote the n

 blocks by Ti = T [(i − 1)� + 1..i�] for
i = 1, 2, . . . , n/�.

Since each block is of length �, there are at most σ
 =
√
n distinct blocks.

For each block P ∈ A
, let f(P) be the frequency of P in {T1, . . . , Tn/
}. Let
r(P) be the rank of P according to the decreasing frequency, i.e., the number of
distinct blocks P ′ such that f(P ′) ≥ f(P), and r−1(j) be its inverse function.
Let enc(j) be the rank j-th binary string in [ε, 0, 1, 00, 01, 10, 11, 000, . . .].

CRAM: Compressed Random Access Memory 515

The data structure of Ferragina and Venturini consists of four arrays:

• V = enc(r(T1)) . . . enc(r(Tn/
)).
• r−1(j) for j = 1, . . . ,

√
n.

• Table TSblk[1..
n

τ] stores the starting position in V of the encoding of every

super-block.
• Table Tblk[1..

n

] stores the starting position in V of the encoding of every

block relative to the beginning of its enclosing super-block.

The algorithm for access(T, i) is simple: Given i, compute the address where
the block for T [i] is encoded by using TSblk and Tblk and obtain the code which
encodes the rank of the block. Then, from r−1, obtain the substring. In total,
this takes O(1) time. This yields:

Lemma 1 ([4]). Any substring T [i..j] can be retrieved in O(1+(j−i+1)/ logσ n)
time.

Using the data structure of Ferragina and Venturini, T [1..n] can be encoded
using nHk +O(n

logσ n (k log σ + log logn)) bits according to the next lemma.

Lemma 2 ([4]). The space needed by V, r−1, TSblk, and Tblk is as follows:

• V is of length nHk + 2+O(k logn) +O(nk log σ/�) bits, simultaneously for
all 0 ≤ k < logσ n.

• r−1(j) for j = 1, . . . ,
√
n can be stored in

√
n logn bits.

• TSblk[1..
n

τ] can be stored in O(n
) bits.

• Tblk[1..
n

] can be stored in O(n
 log logn) bits.

3 Entropies of Similar Strings

In this section, we prove that the empirical entropy of a string does not change
much after a small change to it. This result will be used to bound the space
complexity of our main data structure in Section 5.4. Consider two strings T
and T ′ of length n and n′, respectively, such that the edit distance between T
and T ′ is one. That is, T ′ can be obtained from T by replacement, insertion,
or deletion of one character. We show that the empirical entropies of the two
strings do not differ so much.

Theorem 4. For two strings T and T ′ of length n and n′, respectively, over an
alphabet A such that the edit distance between T and T ′ is one, it holds for any
integer k ≥ 0 that |nHk(T)− n′Hk(T

′)| = O((k + 1)(logn+ log |A|)).
To prove Theorem 4, we first prove the following:

Lemma 3. Let T be a string of length n over an alphabet A, T− be a string
made by deleting a character from T at any position, T+ be a string made by
inserting a character into T at any position, and T ′ be a string by replacing a
character of T into another one at any position. Then the following holds:

|nH0(T)− (n− 1)H0(T
−)| ≤ 4 logn+ 3 log |A| (if n ≥ 1) (1)

|nH0(T)− (n+ 1)H0(T
+)| ≤ 4 log(n+ 1) + 4 log |A| (if n ≥ 0) (2)

|nH0(T)− nH0(T
′)| ≤ 4 log(n+ 1) + 3 log |A| (if n ≥ 0) (3)

516 J. Jansson, K. Sadakane, and W.-K. Sung

Proof. Let P (x), P−(x), P+(x), and P ′(x) denote the empirical probability of
a character x ∈ A in T , T−, T+, and T ′, respectively, and let nx denote the
number of occurrences of x ∈ A in T . It holds that P (x) = nx

n for any x ∈ A.

If a character c is removed from T , then P−(c) = nc−1
n−1 , and P−(x) = nx

n−1

for any other x ∈ A. Then ||P − P−||1 = n−nc

n(n−1) +
∑

x∈A,x �=c
nx

n(n−1) = 2(n−nc)
n(n−1) .

If n = 1, it holds H0(T) = 0, and therefore nH0(T) − (n − 1)H0(T
−) = 0

and the claim holds. If n = nc, which means that all characters in T are c, it
holds H0(T) = H0(T

−) = 0 and the claim holds. Otherwise, 2
n(n−1) ≤ ||P −

P−||1 ≤ 2
n holds. If ||P − P−||1 ≤ 1

2 , from Theorem 3, |H0(P) − H0(P
−)| ≤

−||P −P−||1 log ||P−P−||1
|A| ≤ 2

n log |A|n(n−1)
2 . Then |nH0(T)− (n− 1)H0(T

−)| ≤
n|H0(P) −H0(P

−)| + H0(P
−) ≤ 4 logn + 3 log |A|. If ||P − P−||1 > 1

2 , which
implies n < 4, |nH0(T)− (n− 1)H0(T

−)| ≤ 3 log |A|. This proves the claim for
T−.

If a character c is inserted into T , then P+(c) = nc+1
n+1 , and P+(x) = nx

n+1 for

any other x ∈ A. Then ||P − P+||1 = 2(n−nc)
n(n+1) . If n = 0, H0(T) = H0(T

+) = 0

and the claim holds. If n = nc, which means that T+ consists of only the
character c, H0(T) = H0(T

+) = 0 and the claim holds. Otherwise, 2
n(n−1) ≤

||P−P+||1 ≤ 2
n holds. If ||P−P+||1 ≤ 1

2 , |nH0(T)−(n+1)H0(T
+)| ≤ n|H0(P)−

H0(P
+)|+H0(P

−) ≤ 4 logn+3 log |A|. If ||P −P+||1 > 1
2 , which implies n < 4,

|nH0(T)− (n+ 1)H0(T
+)| ≤ 4 log |A|. This proves the claim for T+.

If a character c of T is replaced with another character c′ ∈ A (c′ �= c),
then ||P − P ′||1 =

∑
α∈A |P (α) − P ′(α)| = |nc

n − nc−1
n | + |nc′

n − nc′+1
n | = 2

n . If
||P − P ′||1 ≤ 1

2 , |nH0(T)− nH0(T
′)| ≤ n|H0(P)−H0(P

′)| ≤ 4 logn+ 2 log |A|.
If ||P −P ′||1 > 1

2 , which implies n < 4, |nH0(T)−nH0(T
′)| ≤ 3 log |A|. If c′ = c,

T ′ = T and |nH0(T)− nH0(T
′)| = 0. This completes the proof. ��

Proof. (of Theorem 4) From the definition of the empirical entropy, nHk(T) =∑
s∈Ak |T (s)|H0(T

(s)). Therefore, for each context s ∈ Ak, we estimate the
change of 0-th order entropy. Because the edit distance between T and T ′ is
one, we can write T = T1cT2 and T ′ = T1c

′T2 using two (possibly empty) strings
T1, T2 and two (possibly empty) characters c, c′. For the context T1[n1−k+1..n1]
(n1 = |T1|), denoted by s0, the character c in the string T (s0) will change
to c′. The character T2[i] (i = 1, 2, . . . , k) has the context T1[n1 − k + 1 +
i..n1]cT2[1..i − 1], denoted by si, in T , but the context will change to s′i =
T1[n1 − k+1+ i..n1]c

′T2[1..i− 1] in T ′. Thus, a character T2[i] is removed from
the string T (si) and inserted into T ′(si). Therefore, the entropies will change in
at most 2k + 1 strings (T (s0), T (s1), . . . , T (sk), T ′(s1), . . . , T ′(sk)). By Lemma 3,
each one will change only O(log n+ log |A|). This proves the claim. ��

4 Memory Management

This section presents a data structure for storing a set B of m variable-length
strings over the alphabet {0, 1}, which is an extension of the one in [15]. The

CRAM: Compressed Random Access Memory 517

data structure allows the contents of the strings and their lengths to change,
but the value of m must remain constant. We assume a unit-cost word RAM
model with word size w bits. The memory consists of consecutively ordered bits,
and any consecutive w bits can be accessed in constant time, as stated above. A
string over {0, 1} of length at most b is called a (≤ b)-block. Our data structure
stores a set B of m such (≤ b)-blocks, while supporting the following operations:

• address(i): Return a pointer to where in the memory the i-th (≤ b)-block
is stored (1 ≤ i ≤ m).

• realloc(i, b′): Change the length of the i-th (≤ b)-block to b′ bits (0 ≤ i ≤
m). The physical address for storing the block (address(i)) may change.

Theorem 5. Given that b ≤ m and logm ≤ w, consider the unit-cost word
RAM model with word size w. Let B = {B[1], B[2], . . . , B[m]} be a set of (≤ b)-
blocks and let s be the total number of bits of all (≤ b)-blocks in B. We can
store B in s+O(m logm+ b2) bits while supporting address in O(1) time and
realloc in O(b/w) time.

Theorem 6. Given a parameter b = O(w), consider the unit-cost word RAM
model with word size w. Let B = {B[1], B[2], . . . , B[m]} be a set of (≤ b)-blocks,
and let s be the total number of bits of all (≤ b)-blocks in B. We can store B in
s+O(w4 +m logw) bits while supporting address and realloc in O(1) time.

(Due to lack of space, the proofs of Theorems 5 and 6 have been omitted from
the conference version of our paper.)

From here on, we say that the data structure has parameters (b,m).

5 A Data Structure for Maintaining the CRAM

This section is devoted to proving Theorem 1. Our aim is to dynamize Ferragina
and Venturini’s data structure [4] by allowing replace operations. Ferragina and
Venturini’s data structure uses a code table for encoding the string, while our
data structure uses two code tables, which will change during update operations.

Given a string T [1..n] defined over an alphabet A (|A| = σ), we support
two operations. (1) access(T, i): which returns T [i..i + 1

2 logσ n − 1]; and (2)
replace(T, i, c): which replaces T [i] with a character c ∈ A.

We use blocking of length � = 1
2 logσ n of T . Let T ′[1..n′] be a string of length

n′ = n

 on an alphabet A
 made by blocking of T . The alphabet size is σ
 =

√
n.

Each character T ′[i] corresponds to the string T [((i−1)�+1)..i�]. A super-block
consists of 1/ε consecutive blocks in T ′ (�/ε consecutive characters in T), where
ε is a predefined constant.

Our algorithm runs in phases. Let n′′ = εn′. For every j ≥ 1, we refer to
the sequence of the (n′′(j − 1) + 1)-th to (n′′j)-th replacements as phase j. The
preprocessing stage corresponds to phase 0. Let T (j) denote the string just before
phase j. (Hence, T (1) is the input string T .) Let F (j) denote the frequency table of
blocks b ∈ A
 in T (j), and C(j) and D(j) a code table and a decode table defined

518 J. Jansson, K. Sadakane, and W.-K. Sung

below. The algorithm also uses a bit-vector R(j−1)[1..n′′], where R(j−1)[i] = 1
means that the i-th super-block in T is encoded by code table C(j−1); otherwise,
it is encoded by code table C(j−2).

During the execution of the algorithm, we maintain the following invariant:

• At the beginning of phase j, the string T (j) is encoded with code table C(j−2)

(we assume C(−1) = C(0) = C(1)), and the table F (j) stores the frequencies
of blocks in T (j).

• During phase j, the i-th super-block is encoded with code table C(j−2) if
R(j−1)[i] = 0, or C(j−1) if R(j−1)[i] = 1. The code tables C(j−2) and C(j−1)

do not change.
• During phase j, F (j+1) stores the correct frequency of blocks of the current T .

5.1 Phase 0: Preprocessing

First, for each block b ∈ A
, we count the numbers of its occurrences in T ′ and
store it in an array F (1)[b]. Then we sort the blocks b ∈ A
 in decreasing order
of the frequencies F (1)[b], and assign a code C(1)[b] to encode them. The code
for a block b is defined as follows. If the length of the code enc(b), defined in
Section 2.2, is at most 1

2 logn bits, then C(1)[b] consists of a bit ‘0’, followed by
enc(b). Otherwise, it consists of a bit ‘1’, followed by the binary encoding of b,
that is, the block is stored without compression. The code length for any block b
is upper bounded by 1+ 1

2 logn bits. Then we construct a table D(1) for decoding

a block. The table has 21+
1
2 logn = O(

√
n) entries and D(1)[x] = b for all binary

patterns x of length 1 + 1
2 logn such that a prefix of x is equal to C(1)[b]. Note

that this decode table is similar to r−1 defined in Section 2.2.
Next, for each block T ′[i] (i = 1, . . . , n′), compute its length using C(1)[T ′[i]],

allocate space for storing it using the data structure of Theorem 6 with param-
eters (1 + � logσ, n
) = (1 + 1

2 log n,
2n log σ
logn), and w = logn. From Lemma 2 and

Theorem 6, if follows that the size of the initial data structure is nHk(T) +

O
(

n log σ
logn (k log σ + log logn)

)
bits. Finally, for later use, copy the contents of

F (1) to F (2), and initialize R(0) by 0. By sorting the blocks by a radix sort, the
preprocessing time becomes O(n log σ/ logn).

5.2 Algorithm for Access

The algorithm for access(T, i) is: Given the index i, compute the block number
x = ((i − 1)/�) + 1 and the super-block number y containing T [i]. Obtain the
pointer to the block and the length of the code by address(x). Decode the block
using the decode table D(j−2) if R(j−1)[x] = 0, or D(j−1) if R(j−1)[x] = 1. This
takes constant time.

5.3 Algorithm for Replace

We first explain a naive, inefficient algorithm. If b = T ′[i] is replaced with b′,
we change the frequency table F (1) so that F (1)[b] is decremented by one and

CRAM: Compressed Random Access Memory 519

F (1)[b′] is incremented by one. Then new code table C(1) and decode table D(1)

are computed from updated F (1), and all blocks T ′[j] (j = 1, . . . , n′) are re-
encoded by using the new code table. Obviously, this algorithm is too slow.

To get a faster algorithm, we can delay updating code tables for the blocks
and re-writing the blocks using new code tables because of Theorem 4. Because
the amount of change in entropy is small after a small change in the string, we
can show that the redundancy of using code tables defined according to an old
string can be negligible. For each single character change in T , we re-encode a
super-block (�/ε characters in T). After εn′ changes, the whole string will be
re-encoded. To specify which super-block to be re-encoded, we use an integer
array G(j−1)[1..n′′]. It stores a permutation of (1, . . . , n′′) and indicates that at
the x-th replace operation in phase j we rewrite the G(j−1)[x]-th super-block.
The bit R(j−1)[x] indicates if the super-block has been already rewritten or not.
The array G(j−1) is defined by sorting super-blocks in increasing order of lengths
of codes for encoding super-blocks.

We implement replace(T, i, S) as follows. In the x-th update in phase j,

1. If R(j−1)[G(j−1)[x]] = 0, i.e., if the G(j−1)[x]-th super-block is encoded with
C(j−2), decode it and re-encode it with C(j−1), and set R(j−1)[G(j−1)[x]] = 1.

2. Let y be the super-block number containing T [i], that is, y = (ε(i− 1)/�).
3. Decode the y-th super-block, which is encoded with C(j−2) or C(j−1) de-

pending on R(j−1)[y]. Let S′ denote the block containing T [i]. Make a new
block S from S′ by applying the replace operation.

4. Decrement the frequency F (j+1)[S′] and increment the frequency F (j+1)[S].

5. Compute the code for encoding S using C(j−1) if the y-th super-block is
already re-encoded (R(j−1)[y] = 1), or C(j−2) otherwise (R(j−1)[y] = 0).

6. Compute the lengths of the blocks in y-th super-block and apply realloc

for those blocks.

7. Rewrite the blocks in the y-th super-block.

8. Construct a part of tables C(j), D(j), G(j), and R(j) (see below).

To prove that the algorithm above maintains the invariant, we need only to prove
that the tables C(j−1), F (j), and G(j−1) are ready at the beginning of phase j.
In phase j, we create C(j) based on F (j). This is done by just radix-sorting the
frequencies of blocks, and therefore the total time complexity is O(σl) = O(

√
n).

Because phase j consists of n′′ replace operations, the work for creating C(j)

can be distributed in the phase. We represent the array G(j−1) implicitly by
(1/ε)(1 + 1

2 logn) doubly-linked lists Ld; Ld stores super-blocks of length d. By

retrieving the lists in decreasing order of d we can enumerate the elements ofG(j).
If all the elements of a list have been retrieved, we move to the next non-empty
list. This can be done in O(1/ε) time if we use a bit-vector of (1/ε)(1 + 1

2 logn)

bits indicating which lists are non-empty. We copy F (j) to F (j+1) in constant
time by changing pointers to F (j) and F (j+1). For each replace in phase j, we
re-encode a super-block, which consists of 1/ε blocks. This takes O(1/ε) time.
Therefore the time complexity for replace is O(1/ε) time.

520 J. Jansson, K. Sadakane, and W.-K. Sung

Note that during phase j, only the tables F (j), F (j+1), C(j−2), C(j−1), C(j),
D(j−2), D(j−1), D(j), G(j−1), G(j), R(j−1), and R(j) are stored. The other tables
are discarded.

5.4 Space Analysis

Let s(T) denote the size of the encoding of T by our dynamic data structure. At
the beginning of phase j, the string T (j) is encoded with code table C(j−2), which
is based on the string T (j−2). Let L(j) = nHk(T

(j)) and L(j−2) = nHk(T
(j−2)).

After the preprocessing, s(T (1)) ≤ L(1) + O
(

n log σ
logn (k log σ + log logn)

)
. If

we do not re-encode the string, for each replace operation we write at most
1+ 1

2 logn bits. Therefore s(T (j)) ≤ s(T (j−2))+O(n′′ logn) holds. Because T (j)

is made by 2(n′′ +
√
n) character changes to T (j−2), from Theorem 4, we have

|L(j)−L(j−2)| = O(n′′(k+1)(logn+logσ)). Therefore we obtain s(T (j)) ≤ L(j)+
O(ε(k + 1)n log σ). The space for storing the tables F (j), C(j), D(j), G(j), H(j),
and R(j) is O(

√
n logn), O(

√
n logn), O(

√
n logn), O(n′′ logn) = O(εn log σ),

O(n′′ logn), O(n′′) bits, respectively.
Next we analyze the space redundancy caused by the re-encoding of super-

blocks. We re-encode the super-blocks with the new code table in increasing order
of their lengths, that is, the shortest one is re-encoded first. This guarantees that
at any time, the space does not exceed max{s(T (j)), s(T (j−2))}. This completes
the proof of Theorem 1.

6 Concluding Remarks

We have presented a data structure called Compressed Random Access Mem-
ory (CRAM), which compresses a string T of length n into its k-th order
empirical entropy in such a way that any consecutive logσ n bits can be ob-
tained in constant time (the access operation), and replacing a character (the
replace operation) takes O(min{logσ n, (k+1) logn/ log logn}) time. The time
for replace can be reduced to constant (O(1/ε)) time by allowing an additional
O(ε(k+1)n log σ) bits redundancy. The extended CRAM data structure also sup-
ports the insert and delete operations, at the cost of increasing the time for
access to O(log n/ log logn) time, which is optimal under this stronger require-
ment, and the time for each update operation also becomes O(log n/ log logn).

Preliminary experimental results indicate that our CRAM data structure sup-
ports faster reads/writes of short segments (from 16 to 256 bytes) than when
using gzip. These experimental results will be reported in another paper.

An open problem is how to improve the running time of replace for the
CRAM data structure to O(1) without using the O(ε(k + 1)n log σ) extra bits.

Acknowledgments. JJ was funded by The Hakubi Project at Kyoto Univer-
sity. KS was supported in part by Funding Program for World-Leading Innova-
tive R&D on Science and Technology (FIRST Program). WKS was supported
in part by the MOE’s AcRF Tier 2 funding R-252-000-444-112.

CRAM: Compressed Random Access Memory 521

References

1. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Interscience
(1991)

2. Ferragina, P., Manzini, G.: Indexing compressed text. Journal of the ACM 52(4),
552–581 (2005)

3. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms 3(2), article
No. 20 (2007)

4. Ferragina, P., Venturini, R.: A simple storage scheme for strings achieving entropy
bounds. Theoretical Computer Science 372(1), 115–121 (2007)

5. Fredman, M.L., Saks, M.E.: The cell probe complexity of dynamic data structures.
In: Proceedings of ACM STOC, pp. 345–354 (1989)

6. González, R., Navarro, G.: Statistical Encoding of Succinct Data Structures. In:
Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 294–305.
Springer, Heidelberg (2006)

7. González, R., Navarro, G.: Rank/select on dynamic compressed sequences and
applications. Theoretical Computer Science 410(43), 4414–4422 (2009)

8. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proceedings of ACM-SIAM SODA, pp. 841–850 (2003)

9. Hagerup, T.: Sorting and searching on the word RAM. In: Proceedings of Sympo-
sium on Theory Aspects of Computer Science (STACS 1998), pp. 366–398 (1998)

10. Hagerup, T., Raman, R.: An Efficient Quasidictionary. In: Penttonen, M., Schmidt,
E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 1–18. Springer, Heidelberg (2002)

11. He, M., Munro, J.I.: Succinct Representations of Dynamic Strings. In: Chavez, E.,
Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 334–346. Springer, Heidelberg
(2010)

12. Kosaraju, S.R., Manzini, G.: Compression of low entropy strings with Lempel-Ziv
algorithms. SIAM Journal on Computing 29(3), 893–911 (1999)

13. Mäkinen, V., Navarro, G.: Dynamic entropy-compressed sequences and full-text
indexes. ACM Transactions on Algorithms 4(3), article No. 32 (2008)

14. Manzini, G.: An analysis of the Burrows-Wheeler transform. Journal of the
ACM 48(3), 407–430 (2001)

15. Navarro, G., Sadakane, K.: Fully-functional static and dynamic succinct trees. Sub-
mitted for Journal Publication (2010), http://arxiv.org/abs/0905.0768 ; A pre-
liminary version appeared in Proc. ACM-SIAM SODA, pp. 134–149 (2010)

16. Raman, R., Raman, V., Rao, S.S.: Succinct Dynamic Data Structures. In: Dehne,
F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 426–437.
Springer, Heidelberg (2001)

17. Sadakane, K., Grossi, R.: Squeezing succinct data structures into entropy bounds.
In: Proceedings of ACM-SIAM SODA, pp. 1230–1239 (2006)

18. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J.M., Birol, İ.:
ABySS: A parallel assembler for short read sequence data. Genome Research 19(6),
1117–1123 (2009), http://dx.doi.org/10.1101/gr.089532.108

http://arxiv.org/abs/0905.0768
http://dx.doi.org/10.1101/gr.089532.108

Improving Quantum Query Complexity

of Boolean Matrix Multiplication
Using Graph Collision

Stacey Jeffery1,2, Robin Kothari1,2, and Frédéric Magniez3

1 David R. Cheriton School of Computer Science, University of Waterloo, Canada
2 Institute for Quantum Computing, University of Waterloo, Canada

3 LIAFA, Univ. Paris Diderot, CNRS; Paris, France

Abstract. The quantum query complexity of Boolean matrix multipli-
cation is typically studied as a function of the matrix dimension, n, as
well as the number of 1s in the output, �. We prove an upper bound
of Õ(n

√
�) for all values of �. This is an improvement over previous al-

gorithms for all values of �. On the other hand, we show that for any
ε < 1 and any � ≤ εn2, there is an Ω(n

√
�) lower bound for this problem,

showing that our algorithm is essentially tight.
We first reduce Boolean matrix multiplication to several instances of

graph collision. We then provide an algorithm that takes advantage of
the fact that the underlying graph in all of our instances is very dense
to find all graph collisions efficiently.

1 Introduction

Quantum query complexity has been of fundamental interest since the inception
of the field of quantum algorithms [BBBV97, Gro96, Sho97]. The quantum query
complexity of Boolean matrix multiplication was first studied by Buhrman and
Špalek [BŠ06]. In the Boolean matrix multiplication problem, we want to mul-
tiply two n× n matrices A and B over the Boolean semiring, which consists of
the set {0, 1} with logical or (∨) as the addition operation and logical and (∧)
as the multiplication operation.

For this problem it is standard to consider an additional parameter in the
complexity: the number of 1s in the product C := AB, which we denote by
�. We study the query complexity as a function of both n and �, and obtain
improvements for all values of �.

The problem of Boolean matrix multiplication is of fundamental interest, in
part due to its relationship to a variety of graph problems, such as the triangle
finding problem and the all-pairs shortest path problem.

Classically, it was shown by Vassilevska Williams and Williams that “practical
advances in triangle detection would imply practical [Boolean matrix multipli-
cation] algorithms” [VW10]. The previous best quantum algorithm for Boolean
matrix multiplication, by Le Gall, is based on a subroutine for finding triangles
in graphs with a known tripartition [Gal12a], already suggesting that the rela-
tionship between Boolean matrix multiplication and triangle finding might be

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 522–532, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Improving Quantum Query Complexity of Boolean Matrix Multiplication 523

more complex for quantum query complexity. We give further evidence for this
by bypassing the triangle finding subroutine entirely.

Despite its fundamental importance, much has remained unknown about the
quantum query complexity of Boolean matrix multiplication and its relationship
with other query problems in the quantum regime. Even for the simpler decision
problem of Boolean matrix product verification, where we are given oracle access
to three n× n Boolean matrices, A, B and C, and must decide whether or not
AB = C, the quantum query complexity is unknown. The best upper bound is
O(n3/2) [BŠ06], whereas the lower bound was recently improved from the trivial
Ω(n) to Ω(n1.055) by Childs, Kimmel, and Kothari [CKK11].

A better understanding of these problems may lead to an improved under-
standing of quantum query complexity in general. We contribute to this by
closing the gap (up to logarithmic factors) between the best known upper and
lower bounds for Boolean matrix multiplication for all � ≤ εn2 for any constant
ε < 1.

Previous Work. We are interested in the query complexity of Boolean matrix
multiplication, where we count the number of accesses (or queries) to the in-
put matrices A and B. Buhrman and Špalek [BŠ06, Section 6.2] describe how

to perform Boolean matrix multiplication using Õ(n3/2
√
�) queries, by simply

quantum searching for a pair (i, j) ∈ [n]× [n] such that there is some k ∈ [n] for
which A[i, k] = B[k, j] = 1, where [n] = {1, . . . , n}. By means of a classical re-
duction relating Boolean matrix multiplication and triangle finding, Vassilevska
Williams and Williams [VW10] were able to combine the quantum triangle find-
ing algorithm of Magniez, Santha and Szegedy [MSS07] with a classical strategy
of Lingas [Lin09] to get a quantum algorithm for Boolean matrix multiplication

with query complexity Õ(min{n1.3�17/30, n2 + n13/15�47/60}).
Recently, Le Gall [Gal12a] improved on their work by noticing that the trian-

gle finding needed for Boolean matrix multiplication involves a tripartite graph
with a known tripartition. He then recast the known quantum triangle finding
algorithm of [MSS07] for this special case and improved the query complexity
of Boolean matrix multiplication. He then further improved the algorithm for
large � by adapting the strategy of Lingas to the quantum setting.

Our Contributions. Since previous quantum algorithms for Boolean matrix mul-
tiplication are based on a triangle finding subroutine, a natural question to ask
is whether triangle finding is a bottleneck for this problem. We show that this
is not the case by bypassing the triangle finding problem completely to obtain a
nearly tight result for Boolean matrix multiplication.

A key ingredient of the best known quantum algorithm for triangle finding
is an efficient algorithm for the graph collision problem. Our main contribution
is to build an algorithm directly on graph collision instead, bypassing the use
of a triangle finding algorithm. Surprisingly, we do not use the graph collision
algorithm that is used as a subroutine in the best known quantum algorithm
for triangle finding. That algorithm is based on Ambainis’ quantum walk for the

524 S. Jeffery, R. Kothari, and F. Magniez

element distinctness problem [Amb04]. Our algorithm, on the other hand, does
not have any quantum walks.

We would like to emphasize two main ideas. First, we can reduce the Boolean
matrix multiplication problem to several instances of the graph collision problem.
Second, the instances of graph collision that arise depend on �; in particular, they
have at most � non-edges. Moreover, we need to find all graph collisions, not
just one. We present an algorithm to find a graph collision in query complexity
Õ(

√
�+

√
n), or to find all graph collisions in time Õ(

√
�+

√
nλ), where λ ≥ 1 is

the number of graph collisions. Combining these ideas yields the aforementioned
Õ(n

√
�) upper bound. In addition, Le Gall [Gal12b] notes that these ideas yield

an algorithm with time complexity Õ(n
√
�+ �

√
n).

A lower bound of Ω(n
√
�) for all values of � ≤ εn2 for any constant ε < 1

follows from a simple reduction to �-Threshold, which we state in Theorem 5.
This paper is organized as follows. After presenting some preliminaries in

Section 2, we describe in Section 3, the graph collision problem, its relationship
to Boolean matrix multiplication, and a subroutine for finding all graph collisions
when there are at most � non-edges. In Section 4, we apply our graph collision
subroutine to get the stated upper bound for Boolean matrix multiplication, and
then describe a tight lower bound that applies to all values of � ≤ εn2 for ε < 1.

2 Preliminaries

2.1 Quantum Query Framework

For a more thorough introduction to the quantum query model, see [BBC+01].
For Boolean matrix multiplication, we assume access to two query operators that
act as follows on a Hilbert space spanned by {|i, j, b〉 : i, j ∈ [n], b ∈ {0, 1}}:

OA : |i, j, b〉 !→ |i, j, b⊕A[i, j]〉 OB : |i, j, b〉 !→ |i, j, b⊕B[i, j]〉

In the quantum query model, we count the uses of OA and OB, and ignore the
cost of implementing other unitaries that are independent of A and B. We call
OA and OB the oracles, and each access a query. The query complexity of an
algorithm is the maximum number of oracle accesses used by the algorithm,
taken over all inputs.

A search problem P is a map X → 2Y , where P(x) ⊆ Y denotes the set of valid
outputs on input x. We say a quantum algorithm A solves a problem P: X → 2Y

with bounded error δ(|x|) if for all x ∈ X , Pr[A(x) ∈ P(x)] ≥ 1 − δ(|x|), where
|x| is the size of the input. The quantum query complexity of P is the minimum
query complexity of any quantum algorithm that solves P with bounded error
δ(|x|) ≤ 1/3.

We will use the phrase with high probability to mean probability at least
1− 1

poly for some super-linear polynomial. We ensure that all of our subroutines
succeed with high probability, to finally achieve a bounded-error algorithm. Con-
sequently, we will necessarily incur polylog factors in the query complexity. We
will use the notation Õ to indicate that we are suppressing polylog factors. More
precisely, f(n) ∈ Õ(g(n)) means f(n) ∈ O(g(n) logk n) for some constant k.

Improving Quantum Query Complexity of Boolean Matrix Multiplication 525

Boolean Matrices. We let B denote the Boolean semiring, which is the set {0, 1}
under the operations ∨,∧. The problem we will be considering is formally defined
as the following:

Boolean Matrix Multiplication

Oracle Input: Two Boolean matrices A,B ∈ Bn×n.
Output: C ∈ Bn×n such that C = AB.

In Bn×n, we say that C = AB if for all i, j ∈ [n], C[i, j] =
∨n

k=1 A[i, k]∧B[k, j].
We will use the notation A + B to denote the entry-wise ∨ of two Boolean
matrices.

2.2 Quantum Search Algorithms

In this section we examine some well-known variations of the search problem
that we require. The reader familiar with quantum search algorithms may skip
to Section 3.

Any search problem can be recast as searching for a marked element among
a given collection, U . In order to formalize this, let f : U → {0, 1} be a function
whose purpose is to identify marked elements. An element is marked if and only
if f(x) = 1. Define tf = |f−1(1)|. In Grover’s search algorithm, the algorithm
can directly access f , and the overall complexity can be stated as the number of
queries to f . In the following t ≥ 1 is an integer parameter.

Theorem 1 ([Gro96]). There is a quantum algorithm, GroverSearch(t), with

query complexity Õ(
√
|U |/t) to f , such that, if t/2 ≤ tf ≤ t, then GroverSearch(t)

finds a marked element with probability at least 1− 1/poly(|U |).
Moreover, if tf = 0, then GroverSearch(t) declares with probability 1 that there
is no marked element.

There are several ways to generalize the above statement when no approximation
of t is known. Most of the generalizations in the literature are stated in terms
of expected query complexity, such as in [BBHT98]. Nonetheless, one can derive
from [BBHT98, Lemma 2] an algorithm in terms of worst case complexity, when
only a lower bound t on tf is known. The algorithm consists of T iterations
of one step of the original Grover algorithm where T is chosen uniformly at
random from [0,

√
|U |/t]. This procedure is iterated O(log |U |) times in order to

get bounded error 1/poly(|U |).

Corollary 1. There is a quantum algorithm Search(t) with query complexity

Õ(
√
|U |/t) to f , such that, if tf ≥ t, then Search(t) finds a marked element with

probability at least 1− 1/poly(|U |).
Moreover, if tf = 0, then Search(t) declares with probability 1 that there is no
marked element.

One consequence of Corollary 1 is that we can always apply Search(t) with t = 1,
when no lower bound on tf is given. In that case, we simply refer to the resulting

algorithm as Search. Its query complexity to f is then Õ(
√
|U |).

526 S. Jeffery, R. Kothari, and F. Magniez

Another simple generalization is for finding all marked elements. This gener-
alization is stated in the literature in various ways for expected and worst case
complexity. For the sake of clarity we explicitly describe one version of this pro-
cedure using GroverSearch as a subroutine. This version is robust in the sense
that it works even when the number of marked elements may decrease arbitrar-
ily. This may occur, for example, when the finding of one marked element may
cause several others to become unmarked. This situation will naturally occur
in the context of Boolean matrix multiplication. Then the complexity will only
depend on the number of elements that are actually in the output, as opposed
to the number of elements that were marked at the beginning of the algorithm.

SearchAll

1. Let t = |U |, and V = U
2. While t ≥ 1

(a) Apply GroverSearch(t) to V
(b) If a marked element x is found: Output x; Set V ← V −{x} and t← t−1

Else: t← t/2
3. If no marked element has been found, declare ‘no marked element’

Corollary 2. SearchAll has query complexity Õ(
√
|U |(tf + 1)) to f , and finds

all marked elements with probability at least 1− 1/poly(|U |).
Moreover, if tf = 0, then SearchAll declares with probability 1 that there is no
marked element.

We end this section with an improvement of GroverSearch when we are looking
for an optimal solution for some notion of maximization.

Theorem 2 ([DH96, DHHM06]). Given a function g : U → R, there is

a quantum algorithm, FindMax(g), with query complexity Õ(
√
|U |) to f , such

that FindMax(g) returns x ∈ f−1(1) such that g(x) = maxx′∈f−1(1) g(x
′) with

probability at least 1−1/poly(|U |). Moreover, if tf = 0, then FindMax(g) declares
with probability 1 that there is no marked element.

3 Graph Collision

In this section we describe the graph collision problem, and its relation to
Boolean matrix multiplication. We then describe a method for solving the special
case of graph collision in which we are interested.

3.1 Problem Description

Graph collision is the following problem. Let G = (A,B, E) be a balanced bi-
partite graph on 2n vertices. We will suppose A = [n] and B = [n], though we
note that in the bipartite graph, the vertex labelled by i in A is distinct from
the vertex labelled by i in B.

Improving Quantum Query Complexity of Boolean Matrix Multiplication 527

Graph Collision(G)
Oracle Input: A pair of Boolean functions fA : A → {0, 1} and fB : B →
{0, 1}.
Output: (i, j) ∈ A × B such that fA(i) = fB(j) = 1 and (i, j) ∈ E, if
such a pair exists, otherwise reject.

The graph collision problem was introduced by Magniez, Santha and Szegedy as a
subproblem in triangle finding [MSS07]. The subroutine used to solve an instance
of graph collision is based on Ambainis’ quantum walk algorithm for element
distinctness [Amb04], and has query complexity O(n2/3). The same subroutine
is used in the current best triangle finding algorithm of Belovs [Bel11]. However,
the best known lower bound for this problem is Ω(

√
n). It is an important open

problem to close this gap.
To obtain our upper bound, we do not use the quantum walk algorithm for

graph collision, but rather, a new algorithm that takes advantage of two special
features of our problem. The first is that we always know an upper bound, �, on
the number of non-edges. When � ≤ n, we can find a graph collision in O(

√
n)

queries. The second salient feature of our problem is that we need to find all
graph collisions.

3.2 Relation to Boolean Matrix Multiplication

Recall that the Boolean matrix product of A and B, can be viewed as the sum
(entry-wise ∨) of n outer products: C =

∑n
k=1A[·, k]B[k, ·], where A[·, k] denotes

the kth column of A and B[k, ·] denotes the kth row of B.
For a fixed k, if there exists some i ∈ [n] and some j ∈ [n] such that A[i, k] = 1

and B[k, j] = 1, then we know that C[i, j] = 1, and we say that k is a witness for
(i, j). We are interested in finding all such pairs (i, j). For each index k, we could
search for all pairs (i, j) with A[i, k] = B[k, j] = 1; however, this could be very
inefficient, since a pair (i, j) may have up to n witnesses. Instead, we will keep a

matrix C̃ such that C̃[i, j] = 1 if we have already found a one at position (i, j).

Thus, we want to find a pair (i, j) such that A[i, k] = B[k, j] = 1 and C̃[i, j] = 0.
That is, we want to find a graph collision in the graph with bi-adjacency matrix

C̃, the entry-wise complement of C̃, and fA = A[·, k], fB = B[k, ·].
This gives the following natural algorithm for Boolean matrix multiplication,

whose details and full analysis can be found in Section 4.1:

First, let C̃ = 0.

Search for an index k such that the graph collision problem on k with C̃
as the underlying graph has a collision.
If no such k is found then we are done, and C̃ is the product of A and
B.
Otherwise, find all the graph collisions on the graph defined by C̃ with
oracles A[·, k] and B[k, ·] and record them in C̃.
Eliminate this k from future searches and search for another index k
again.

528 S. Jeffery, R. Kothari, and F. Magniez

3.3 Algorithm for Graph Collision

When G is a complete bipartite graph, then the relation betweenA and B defined
by G is trivial. In that case, there is a very simple algorithm to find a graph
collision: Search for some i ∈ [n] such that fA(i) = 1. Then search for some
j ∈ [n] such that fB(j) = 1. Then (i, j) is a graph collision pair. The query
complexity of this is O(

√
n+

√
n). However, when G is not a complete bipartite

graph, there is a nontrivial relation between A and B. The best known algorithm
solves this problem using a quantum walk.

In our case, we can take advantage of the fact that the graph we are working
with always has at most � non-edges — it is never more than distance � from the
complete bipartite graph, which we know is easy to deal with. We are therefore
interested in the query complexity of finding a graph collision in some graph
with m non-edges, which we denote GC(n,m). In our case, � will always be an
upper bound on m.

For larger values of �, we will also make use of the fact that for some k, we
will have multiple graph collisions to find. We let GCall(n,m, λ) denote the query
complexity of finding all graph collisions in a graph with m non-edges, where λ
is the number of graph collisions. It is not necessary to know λ a priori.

Again we note that if G is a complete bipartite graph, then we can accomplish
the task of finding all graph collisions using SearchAll to search for all marked
elements on each of fA and fB, and output f−1

A (1) × f−1
B (1). Letting tA =∣∣f−1

A (1)
∣∣ and tB =

∣∣f−1
B (1)

∣∣, so the total number of graph collision pairs is

λ = tAtB , the query complexity of this method is O(
√
ntA +

√
ntB) ∈ O(

√
nλ).

So if G is close to being a complete bipartite graph, we would like to argue that
we can do nearly as well. This motivates the following algorithm.

AllGCG(fA, fB)

Let di be the degree of the ith vertex in A, and let ci := n− di. Let the vertices
in A be arranged in decreasing order of degree, so that d1 ≥ d2 ≥ . . . ≥ dn.

1. Find the highest degree marked vertex in A using FindMax. Let r denote
the index of this vertex. Õ(

√
n)

2. Case 1: If cr ≤
√
m

(a) Find all marked neighbors of r by SearchAll. Output any graph collisions

found. Õ(
√
nλ)

(b) Delete all unmarked neighbors of r. Read the values of all non-neighbors
of r. O(

√
m)

(c) Let A′ denote the subset of A consisting of all i ∈ A with a marked

neighbour in B. Find all marked vertices in A′ by SearchAll. Õ(
√
nλ)

3. Case 2: If cr ≥
√
m

(a) Delete the first r − 1 vertices in A since they are unmarked.
(b) Read the values of all remaining vertices in A. O(

√
m)

(c) Let B′ denote the subset of B consisting of all j ∈ B with a marked

neighbour in A. Find all marked vertices in B′ by SearchAll. Õ(
√
nλ)

Improving Quantum Query Complexity of Boolean Matrix Multiplication 529

Theorem 3. For all λ ≥ 1, GCall(n,m, λ) ∈ Õ(
√
nλ +

√
m) and GC(n,m) ∈

Õ(
√
n+

√
m).

Proof. We will analyze the complexity of AllGCG(fA, fB) step by step.

Step 1 has query complexity Õ(
√
n) by Theorem 2. Steps 2a, 2c and 3c have

query complexity Õ(
√
nλ) by Corollary 2. In Case 1, r has cr ≤ √

m non-
neighbours, so we can certainly query them all in step 2b with O(

√
cr) ∈ O(

√
m)

queries.
Consider Case 2, when cr ≥

√
m. We can ignore the first r − 1 vertices, since

they are unmarked. Since the remaining n−r+1 vertices all have ci ≥ cr ≥
√
m,

and the total number of non-edges is m, we have (n − r + 1) ×
√
m ≤ m ⇒

(n− r+1) ≤
√
m. Thus, there are at most

√
m remaining vertices and querying

them all costs at most O(
√
m) queries.

The query complexity of this algorithm is therefore Õ(
√
nλ +

√
m), and it

outputs all graph collisions. To check if there is at least one graph collision,
instead of finding them all, we can replace finding all marked vertices using
SearchAll in steps 2a, 2c and 3c, with a procedure to check if there is any marked
vertex, Search, and this only requires Õ(

√
n) queries by Corollary 1, rather than

Õ(
√
nλ).

4 Boolean Matrix Multiplication

In this section we show how the graph collision algorithm from the previous
section can be used to obtain an efficient algorithm for Boolean matrix multi-
plication, and then prove a lower bound.

4.1 Algorithm

What follows is a more precise statement of the high level procedure described
in Section 3.2.
BMM(A,B)

1. Let C̃ = 0, t = n, and V = [n].
2. While t ≥ 1:

(a) GroverSearch(t) for an index k ∈ V such that the graph collision problem

on k with C̃ as the underlying graph has a collision.
(b) If such a k is found:

Compute AllGC on the graph defined by C̃ with oracles A[·, k] and
B[k, ·] and record all output graph collisions in C̃.
Set V ← V − {k} and t← t− 1.

(c) Else: t← t/2.

3. Output C̃.

530 S. Jeffery, R. Kothari, and F. Magniez

Theorem 4. The query complexity of Boolean Matrix Multiplication is
Õ(n

√
�).

Proof. We will analyze the complexity of the algorithm BMM(A,B). We begin
by analyzing the cost of all the iterations in which we don’t find a marked k. We
have by Theorem 1 that GroverSearch(t) costs Õ(

√
n/t) queries to a procedure

that checks if there is a collision in the graph defined by C̃ with respect to A[·, k]
and B[k, ·], each of which costs GC(n,mi), where mi ≤ � is the number of 1s in

C̃ at the beginning of the ith iteration. The cost of these steps is at most the
following:

Õ

(
logn∑
i=0

√
n

2i
GC(n,mi)

)
∈ Õ

(
logn∑
i=0

√
n

2i
(
√
n+

√
mi)

)

∈ Õ

(
(n+

√
n�)

log n∑
i=0

(
1√
2

)i
)
∈ Õ
(
n+

√
n�
)

We now analyze the cost of all the iterations in which we do find a marked
witness k. Let T be the number of witnesses found by BMM, that is, the number
of times we execute step 2(b). Of course, T is a random variable that depends on
which witnesses k are found, and in which order. We always have T ≤ min{n, �}.

Let i1, . . . , iT be the indices of rounds where we find a witness. Let tj be
the value of t in round j. Since there must be at least 1 marked element in
the last round in which we find a marked element, we have tiT ≥ 1. Since
we find and eliminate at least 1 marked element in each round, we also have
ti(T−j−1)

≥ ti(T−j)
+ 1, which yields ti(T−j)

≥ j + 1 ⇒ tij ≥ T − j + 1.

Let λj be the number of graph collisions found on the jth successful iteration,
that is, the number of pairs witnessed by the jth witness, kj , that have not

been recorded in C̃ at the time we find kj . Then λj is also a random variable
depending on which other witnesses k have been found already, but we always
have

∑T
j=1 λj = �.

Then we can upper bound the cost of all the iterations in which we do find a
witness by the following:

Õ

⎛⎝ T∑
j=1

(√
n

tij
GC(n,mij) +GCall(n,mij , λj)

)⎞⎠ (1)

∈ Õ

⎛⎝ T∑
j=1

(√
n

T − j + 1
GC(n,mij) +GCall(n,mij , λj)

)⎞⎠ (2)

Improving Quantum Query Complexity of Boolean Matrix Multiplication 531

∈ Õ

⎛⎝√nTGC(n, �) +

T∑
j=1

GCall(n,mij , λj)

⎞⎠ (3)

∈ Õ

⎛⎝√nT (√�+√
n
)
+

T∑
j=1

(√
nλj +

√
�
)⎞⎠ (4)

∈ Õ
(√

nT�+ n
√
T +

√
n�T + T

√
�
)

(5)

∈ Õ
(√

nmin{n, �}�+ n
√
min{n, �}+

√
min{n, �}n�+min{n, �}

√
�
)

(6)

∈ Õ
(
n
√
�
)

(7)

In (3), we use the fact that mij ≤ �, and in (5), we use
∑T

j=1

√
λj ≤

√
T
√∑

j λj =
√
�T , which follows from the Cauchy–Schwarz inequality.

4.2 Lower Bound

Theorem 5. The query complexity of Boolean Matrix Multiplication is
Ω(n
√
min{�, n2 − �}).

Proof. We will reduce the problem of �-Threshold, in which we must determine
whether an input oracle f has ≥ � or < �marked elements, to Boolean Matrix

Multiplication.
Consider an instance of �-Threshold of size n2, f : [n2] → {0, 1}. We can

construct an instance of Boolean Matrix Multiplication as follows. Set A
to the identity, and let B encode f . Finding AB then gives the solution to the
�-Threshold instance. By [BBC+01], �-Threshold (with inputs of size n2)
requires Ω(

√
n2 min{�, n2 − �}) queries to solve with bounded error.

This lower bound implies that our algorithm is tight for any � ≤ εn2 for any
constant ε < 1. However, it is not tight for � = n2 − o(n). We can search for
pairs (i, j) such that there is no k ∈ [n] that witnesses (i, j) in cost n3/2. If

there are m 0s, we can find them all in Õ(n3/2
√
m), which is o(n

√
�) when

m ∈ o(n). It remains open to close the gap between Õ(n3/2
√
m) and Ω(n

√
m)

when m ∈ o(n2).

Acknowledgements. This work was partially supported by NSERC, MITACS,
QuantumWorks, the French ANR Defis project ANR-08-EMER-012 (QRAC),
and the European Commission IST STREP project 25596 (QCS).

References

[Amb04] Ambainis, A.: Quantum walk algorithm for element distinctness. In: Pro-
ceedings of the 45th IEEE Symposium on Foundations of Computer Science,
pp. 22–31 (2004)

532 S. Jeffery, R. Kothari, and F. Magniez

[BBBV97] Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and
weaknesses of quantum computing. SIAM Journal on Computing (Spe-
cial Issue on Quantum Computing) 26, 1510–1523 (1997), arXiv:quant-
ph/9701001v1

[BBC+01] Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower
bounds by polynomials. Journal of the ACM 48 (2001)

[BBHT98] Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum
searching. Fortschritte der Physik 46(4-5), 493–505 (1998)

[Bel11] Belovs, A.: Span programs for functions with constant-sized 1-certificates.
Technical Report arXiv:1105.4024, arXiv (2011)

[BŠ06] Buhrman, H., Špalek, R.: Quantum verification of matrix products. In:
Proceedings of the 17th ACM-SIAM Symposium On Discrete Algorithms,
pp. 880–889 (2006)

[CKK11] Childs, A., Kimmel, S., Kothari, R.: The quantum query complexity of
read-many formulas. Technical Report arXiv:1112.0548v1, arXiv (2011)

[DH96] Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum. Tech-
nical Report arXiv:quant-ph/9607014v2, arXiv (1996)

[DHHM06] Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query complexity
of some graph problems. SIAM Journal on Computing 35(6), 1310–1328
(2006)

[Gal12a] Le Gall, F.: Improved output-sensitive quantum algorithms for Boolean
matrix multiplication. In: Proceedings of the 23rd ACM-SIAM Symposium
on Discrete Algorithms, pp. 1464–1476 (2012)

[Gal12b] Le Gall, F.: Improved time-efficient output-sensitive quantum algorithms
for Boolean matrix multiplication, arXiv:1201.6174 (2012)

[Gro96] Grover, L.K.: A fast quantum mechanical algorithm for database search.
In: Proceedings of the 28th ACM Symposium on Theory of Computing,
pp. 212–219 (1996)

[Lin09] Lingas, A.: A Fast Output-Sensitive Algorithm for Boolean Matrix Multi-
plication. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp.
408–419. Springer, Heidelberg (2009)

[MSS07] Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle
problem. SIAM Journal on Computing 37(2), 413–424 (2007)

[Sho97] Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing 26, 1484–
1509 (1997)

[VW10] Vassilevska Williams, V., Williams, R.: Sub-cubic equivalences between
path, matrix and triangle problems. In: Proceedings of the 51st IEEE Sym-
posium on Foundations of Computer Science, pp. 645–654 (2010)

Faster Fully Compressed Pattern Matching
by Recompression�

Artur Jeż��

Institute of Computer Science, University of Wrocław, Poland
aje@cs.uni.wroc.pl

Abstract. In this paper, a fully compressed pattern matching prob-
lem is studied. The compression is represented by straight-line programs
(SLPs), i.e. a context-free grammar generating exactly one string; the
term fully means that both the pattern and the text are given in the
compressed form. The problem is approached using a recently developed
technique of local recompression: the SLPs are refactored, so that sub-
strings of the pattern and text are encoded in both SLPs in the same way.
To this end, the SLPs are locally decompressed and then recompressed in
a uniform way.

This technique yields an O((n + m) log M log(n + m)) algorithm for
compressed pattern matching, where n (m) is the size of the compressed
representation of the text (pattern, respectively), while M is the size of
the decompressed pattern. Since M ≤ 2m, this substantially improves
the previously best O(m2n) algorithm.

Since LZ compression standard reduces to SLP with log(N/n) over-
head and in O(n log(N/n)) time, the presented algorithm can be applied
also to the fully LZ-compressed pattern matching problem, yielding an
O(s log s log M) running time, where s = n log(N/n) + m log(M/m).

Keywords: Pattern matching, Compressed pattern matching, Straight-
line programms, Lempel-Ziv compression, Algorithms for compressed
data.

1 Introduction

Compression and Straight-Line Programms. Due to ever-increasing amo-
unt of data, compression methods are widely applied in order to decrease the
data’s size. Still, the stored data is accessed and processed. Decompressing it on
each such an occasion basically wastes the gain of reduced storage size; especially
that we do not even know in advance, which data is relevant to our queries and
we decompress many completely irrelevant files. Thus there is a large demand
for algorithms dealing directly with the compressed data, without the explicit
decompression. The commonly investigated problem is the compressed pattern
� The full version of this paper is available at http://arxiv.org/abs/1111.3244

�� Supported by NCN grant number DEC-2011/01/D/ST6/07164, 2011–2014.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 533–544, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

534 A. Jeż

matching i.e. a pattern matching in which the text is supplied in a compressed
form.

Processing compressed data is not as hopeless, as it may seem: it is a popular
outlook, that compression basically extracts the hidden structure of the text
and if the compression rate is high, the data has a lot of internal structure.
And it is natural to assume, that such a structure will help devising methods
dealing directly with the compressed representation. Indeed, efficient algorithms
for fundamental text operations (pattern matching, equality testing, etc.) are
known for various practically used compression methods (LZ, LZW, their vari-
ants, etc.) [3,4,5,6,7,18].

The compression standards differ in the main idea as well as in details. Thus
when devising algorithms for compressed data, quite early one needs to focus
on the exact compression method, to which the algorithm is applied. The most
practical (and challenging) choice is one of the widely used standards, like LZW
or LZ. However, a different approach is also pursued: for some applications (and
most of theory-oriented considerations) it would be useful to model one of the
practical compression standard by a more mathematically well-founded method.
This idea, among other, lays at the foundations of the notion of Straight-Line
Programms (SLP), which are simply context-free grammars generating exactly
one string.

SLPs are the most popular theoretical model of compression. This is on one
hand motivated by a simple, ‘clean’ and appealing definition, on the other hand,
they model the LZ compression standard: each LZ compressed text can be con-
verted into an equivalent SLP with only log(N/n) overhead and in O(n log(N/n))
time (where N is the size of the decompressed text [19]), while each SLP can
be converted to an equivalent LZ with just a constant overhead (and in linear
time).

The approach of modelling LZ by SLPs in order to develop efficient algo-
rithms turned out to be fruitful: the recent state-of-the-art (and is some sense
optimal) algorithm for pattern matching in LZ-compressed texts changes the
LZ-compression into the SLP-one as its first step [4]. To author’s best knowl-
edge, there are no algorithms for FCPM specific for LZ, instead, the translation
to SLP is used in such a case. On the other hand, algorithmic problems for SLP-
compressed input strings were considered and successfully solved [13,14,18].

Problem Statement. The problem considered in this paper is the fully com-
pressed membership problem (FCPM), i.e. we are given a text of length N and
pattern of length M , represented by SLPs of size n and m, respectively. We are
to answer, whether the pattern appears in the text and give a compact repre-
sentation of all such appearances in the text.

Previous and Related Results. The first algorithmic result dealing with the
SLPs is for the compressed equality testing, i.e. the question whether two SLPs
represent the same text. This was solved by Plandowski in 1994 [18], with O(n4)
running time. The first solution for FCPM by Karpiński et al. followed a year

Faster Fully Compressed Pattern Matching by Recompression 535

later [12], its main drawback was that the proposed algorithm did not return
positions of all pattern appearances in the text. Next, a polynomial algorithm for
computing various combinatorial properties of SLP-generated texts, in particular
pattern matching, was given by Gąsieniec et al. [7], the same authors presented
also a faster randomised algorithm for FCPM [8]; both these algorithms returned
compact representation of all pattern appearances. In 1997 Miyazaki et al. [17]
constructed new O(n2m2) algorithm for FCPM. A faster O(mn) algorithm for
a special sub-case (restricting the form of SLPs) was given in 2000 by Hirao
et al. [9]. Finally, in 2007, a state of the art O(nm2) algorithm was given by
Lifshits [13].

Concerning related problems, pattern matching in which the text is com-
pressed using LZW method and the pattern is supplied uncompressed was pro-
posed and recently a linear-time algorithm was given [3]. A variant in which
the pattern is also compressed using LZW was also considered and a linear-time
algorithm was recently developed [6]. Pattern matching for multiple patterns in
LZW compressed text was also studied [5].

Similar work was carried also for the LZ-compressed text, for which the prob-
lem becomes substantially harder than in LZW case. In 2011, an O(n log(N/n)+
m) algorithm, which is in some sense optimal, was proposed [4].

The paradigm employed in all mentioned work and constructed algorithms,
was to consider the combinatorial properties of strings described by appropriate
compression methods; our method uses a new paradigm.

Our Results and Techniques. We give an O((n + m) log M log(n + m)) al-
gorithm for FCPM, i.e. pattern matching problem in which both the text and
the pattern are supplied as SLPs. This outperforms the previously-best O(m2n)
algorithm [13].

Theorem 1. Algorithm FCPM returns an O((n+m) log(n+m)) representation
of all pattern appearances, where n (m) is the size of the SLP-compressed text
(pattern, respectively) and M is the size of the decompressed pattern. It runs in
O((n + m) log M log(n + m)) time. The space consumption is O((n + m) log(n +
m)).

This representation allows calculation of the number of pattern appearances,
and if N fits in O(1) codewords, also the position of the first, last etc. pattern; in
other case the space consumption increases to O((n+m) log(N +M) log(n+m)).

Our approach to the problem is essentially different than all previously applied
for compressed pattern matching. We do not consider any combinatorial prop-
erties of the encoded strings. Instead, we analyse and change the way strings
are described by the SLPs in the instance. That is, we focus on the SLPs alone,
ignoring any properties of the encoded strings. Roughly speaking, our algorithm
aims at having all the strings in the instance compressed ‘in the same way’.
To achieve this goal, we decompress the SLPs. Since the compressed text can
be exponentially long, we do this locally: we introduce explicit strings into the
right-hand sides of the productions. Then, we recompress these explicit strings

536 A. Jeż

uniformly: roughly, a fixed pair of letters ab is replaced by a new letter c in both
the string and the pattern; such a procedure is applied for every possible pair of
letters. Since such pieces of text are compressed in the same way, we can ‘forget’
about the original substrings of the input and treat the introduced nonterminals
as atomic letters. Such recompression shortens the pattern (and the text) signif-
icantly: roughly one ‘round’ of recompression in which every pair of letters that
was present at the beginning of the ‘round’ is compressed shortens the encoded
strings by a constant factor. Thus, there are O(log M) rounds.

Although it is not so hard to believe that this high level idea can work, it
is much less believable that this can be turned into a fast, efficient and simple
algorithm. However, by choosing wisely the parts of the text to be recompressed
and keeping the overall size of the instance low, we manage to achieve the goal.

Similar techniques. While application the idea of recompression to pattern match-
ing is new, related approaches were previously employed: most notably the idea
of replacing short strings by a fresh letter and iterating this procedure was used
by Mehlhorn et al. [16], in their work on data structure for equality testing for
dynamic strings (cf. also an improved implementation of a similar data structure
by Brodal et al. [1]). They viewed this process as ‘hashing’. In particular their
method can be straightforwardly applied to equality testing for SLPs, yielding
a nearly quadratic algorithm (as observed by Gawrychowski [2]). However, the
inside technical details of the construction makes extension to FCPM problem-
atic: while this method can be used to build ‘canonical’ SLPs for the text and
the pattern, there is no apparent way to control how these SLPs actually look
like and how do they encode the strings.

In the area of compressed membership problems, from which the presented
method emerge, recent work of Mathissen and Lohrey [15] already implemented
the idea of replacing strings with fresh letters as well as modifications of the
instance so that such replacement is possible. However, the replacement was not
iterated, and the newly introduced letters could not be further compressed.

Other applications of the technique. A more crude variant of recompression
technique has been used in order to solve an old open problem regarding fully
compressed membership problem for NFAs [10]. Furthermore, a variant of this
method can also be applied in the area of word equations. While not claiming
any essentially new results, the recompression approach yielded much simpler
proofs and faster algorithms of many classical results in the area, like PSPACE
algorithm for solving word equations, double exponential bound on the size of
the solution, exponential bound on the exponent of periodicity, etc. [11].

Computational Model and Positions in Text. Our algorithm uses Radix-
Sort and we assume that the codeword is of size Ω(log(n + m)). However, we
do not make such assumptions on N and M . Changing the model into pointer
machine introduces a log(n + m) factor to the running time.

The position of the first appearance of the pattern in the text might be expo-
nential in n, and so it is infeasible to output it within the given bounds. However,

Faster Fully Compressed Pattern Matching by Recompression 537

if we assume that N fits in a constant amount of codewords, our algorithm can
also output the position of the first, last etc. position of the pattern.

2 Basic Notions, Outline of the Algorithm

Straight Line Programmes. Formally, a Straight-Line Programme (SLP) is
a context free grammar G over the alphabet Σ with a set of nonterminals X ,
generating a one-word language. For normalisation reasons, it is assumed that G
is in a Chomsky normal form, i.e. each production is either of the form X → Y Z
or X → a. We denote the string defined by nonterminal A by val(A), like value;
this notion extends to val(α) for α ∈ (X ∪ Σ)∗ in the usual way. We also use
first[Xi] (last[Xi]) to denote the first (last, respectively) letter of val(Xi). The
tables first[] and last[] are stored by the algorithm FCPM .

Without loss of generality we may assume that Σ consists of consecutive
natural numbers (starting from 1): it is enough to sort the input letters and
number them 1, . . . , |Σ|. During our algorithm, the alphabet Σ is increased
many times and whenever this happens, the new letter is assigned number |Σ|+1
(and Σ’s size increases by 1 as well). The |Σ| does not become large in this way:
it remains of size O((n + m) log(n + m) log M), see Lemma 8.

For our purposes it is more convenient to treat the two SLPs as a single
context free grammar G with a set of nonterminals X = {X1, . . . , Xn+m}, the
text being given by Xn+m and the pattern by Xm. We assume, however, that Xm

is not referenced by any other nonterminal. Furthermore, in our constructions, it
is essential to relax the usual assumption that G is in a Chomsky normal form,
instead we only require that G satisfies the conditions:

each Xi has exactly one production, which has at most 2 noterminals, (1a)
if Xj appears in the rule for Xi then j < i, (1b)
if val(Xi) = ε then Xi is not on the right-hand side of any production,. (1c)

We refer to these conditions collectively as (1). Let Xi → αi, then a substring u ∈
Σ+ of αi appears explicitly in the rule; this notion is introduced to distinguish
them from the substrings of val(Xi). Note that (1) does not exclude the case,
when Xi → ε and allowing such a possibility streamlines the analysis.

The size |G| is the sum of length of the right-hand sides of G’s rules. The size
of G kept by the algorithm will be small: O((n + m) log(n + m)), see Lemma 8.

There may be exponentially many appearances of the pattern in the text
(consider text a2n and pattern a2m), and so naive outputting all of them is
infeasible. Instead, our algorithm provides an O((n + m) log(m + n)) SLP, in
which appearances of a designated letter correspond to the pattern appearance
in the original instance.

(Non) Crossing Appearance. The main part of the presented FCPM consists
of recompression, i.e. replacing strings appearing in val(Xm) by shorter ones
throughout val(X1), . . . , val(Xn+m). In some cases, such replacing is harder, in

538 A. Jeż

other easier. It is intuitively clear, that this depends on the position of the pair
with regard to the nonterminals: suppose that we are to compress a pair ab. If b is
a first letter of some val(Xi) and aXi appears explicitly in the grammar, then the
compression seems hard, as it requires modification of G. On the other hand, if
none such, nor symmetrical, situation appears then replacing all explicit abs in G
should do the job. Thus, before stating the algorithm, we introduce classification
of pairs into ‘easy’ and ‘hard’.

We first formalise the notion, that a nonterminal generates some substring of
val(Xi). We say that Xi generates val(Xi) starting at position 1; furthermore, if
Xj generates val(Xi) starting at position p and Xj → αXkα′, then Xk generates
val(Xi) starting at position p + | val(α)|. Symmetrically, Xj generates val(Xi)
ending at some position. We use this notions only to say that Xi generates
pattern (val(Xm)) or text (val(Xn+m)) at some position.

We say that a letter a ∈ Σ is to the left of Xi, if, for some position p, a is
p-th letter of val(Xn+m) (or val(Xm)) and Xi generates the text (or pattern,
respectively) from position p + 1; in such a case we say that Xi is to the right of
a. In the symmetric situation, we say that a is to the right of Xi.

A pair of letters ab is a crossing pair if there is a nonterminal Xi such that a
is to the left of Xi and first[Xi] = b or, symmetrically, b is to the right of Xi and
last[Xi] = a; otherwise ab is non-crossing. Intuitively ab ‘crosses’ the symbols
in some production u val(Xj)v val(Xk)w. Unless explicitly written, we use this
notion only to pairs of different letters.

The notions of (non-) crossing pairs is usually not applied to pairs of the form
aa, instead, for a letter a ∈ Σ we say that a� is a a’s maximal block of length �,
if there exist two letters x, y ∈ Σ, where x �= a �= y such that xa�y is a substring
of val(Xn+m) (or val(Xm)). We say that a letter a ∈ Σ has a crossing block, if
the pair aa is crossing. The crossing pairs and letters with crossing blocks are
intuitively hard to compress.

The definition of the crossing pairs (and letters with crossing blocks) is very
‘global’ in the sense that is uses val(Xn+m) and val(Xm). However, it turns
out that the set of crossing (non-crossing) pairs, letter with (without) crossing
blocks can be easily established by reading G. The number of such pairs (blocks)
is linear.

Lemma 1. There are at most 2(n+m) different letters with crossing blocks and
at most 4(n + m) different crossing-pairs and at most |G| noncrossing pairs. For
a letter a there are at most |G|+4(n+m) different lengths of a’s maximal blocks
in val(X1), . . . , val(Xn+m).

The set of crossing (non-crossing) pairs can be calculated in O(|G|) time.

Outline of the Algorithm. The main operations of our algorithm are two
types of compressions performed on strings encoded by G:

Pair Compression of ab. For two different letters ab appearing in val(Xm)
replace each of ab in val(X1), . . . , val(Xn+m) by a fresh letter c.

Faster Fully Compressed Pattern Matching by Recompression 539

a’s Block Compression. For each maximal block a�, with � > 1, that appears
in val(Xm), replace all a�s in val(X1), . . . , val(Xn+m) by a fresh letter a�.

We adopt the following notational convention throughout rest of the paper:
whenever we refer to a letter a�, it means that the last blocks compression was
done for a and a� is the letter that replaced a�.

We call the �th iteration of the main loop, i.e. the one in line 1, the �th phase.
Ideally, each phase of FCPM compresses each consecutive letters into one letter,
this gives log M iterations of this loop. This is true, up to a constant factor.

Lemma 2. There are O(log M) executions of the main loop of FCPM .

Algorithm 1. FCPM : outline
1: while | val(Xm)| > 1 do
2: P ← list of non-crossing pairs
3: P ′ ← list of crossing pairs
4: L ← list of letters
5: fix the beginning and end
6: for each ab ∈ P do
7: compress pair ab

8: for ab ∈ P ′ do
9: compress pair ab

10: for each a ∈ L do
11: compress blocks of a

12: Output the answer.

Remark. Notice, that pair compression of
ab to c is in fact introducing a new nonter-
minal with a production c → ab, similarly,
block compression for a introduces new
nonterminals with rules a� → a�. Hence,
FCPM creates new SLPs for text and pat-
tern. This justifies the name ‘recompres-
sion’ used for the whole process.

Still, these new nonterminals are never
expanded by FCPM and are always
treated as individual symbols; thus it is
better to think of them as letters. In
particular, the running time analysis of
FCPM use the fact that no new nonter-
minals are ever introduced to G.

Major Challenges. Before we proceed to describing the details of FCPM , we
would like to point out, what are the main problems we are dealing with. The
non-crossing pair (and blocks) compression are easy to implement and are not an
issue: it is enough to read G and replace the appropriate explicit strings. When
it comes to a crossing pair compression, a simple transformation of the instance
changes the crossing pair ab into a non-crossing one: whenever a is to the left
of Xi and val(Xi) = bw we modify the productions for Xi, so that val(Xi) = w
and replace Xi by bXi in every rule; similar transformation are applied to the
nonterminals Xj to the left of b such that val(Xj) = w′a. This makes ab a
noncrossing pair.

Similar approach works for crossing blocks compression, this time though
we need to remove a-prefix (a-suffix) from each nonterminal to the right (left,
respectively) of a. This removes all crossing blocks of a so that it blocks can
be compressed. Notice, that this is all easy to perform, except that we may
introduce explicit blocks of a that have exponential length to G. These can be
conveniently represented: a� is simply denoted as (a, �), with � encoded in binary.

The ends of val(Xm) have to be treated somehow special: consider pattern
abc and text aabccb. When aa is replaced by a2, and cc by c2 the obtained text

540 A. Jeż

a2bc2b no longer contains the pattern, which is still abc. This is fixed by enforcing
that the leading pair of the pattern (ab in this case) is compressed as first. The
situation complicates, when the val(Xm) begins with an �-block of a, in this case
we tune the block compression a little.

Simplifications. There are some simplifications and additional assumptions
made in the extended abstract, done in order to increase the readability; the
full version of this paper has no such simplifications nor additional assumptions.
Simplified statements: The lemmas are stated in a simplified way, omitting some
of the technical details, but highlighting the intuitively important properties.
Size of code-word: We assume that N and M fit in O(1) code words. This allows
the explicit calculations of the lengths of val(Xm) and val(Xn+m). In the full
version of this paper the same results are shown under the weaker assumption
that n and m fit in O(1) code words.

3 Details

Grammar. The grammar kept by FCPM is closely related to the input one:

SLP The set of used nonterminals is a subset of X = {X1, . . . , Xn+m} and the
productions are of the form described in (1).

FCPM preserves (SLP), in particular, we always assume, that the input of the
subroutines satisfies (SLP). We assume more for the input instance: we want it
to obey the Chomsky normal form, instead of the relaxed conditions (1).

Compression of Non-crossing Pair. We start by describing the compression
of a non-crossing pair ab, as it is the easiest to explain. Intuitively, whenever
ab appears in string encoded by G, the letters a and b cannot be split between
nonterminals. Thus, it should be enough to replace their explicit appearances.

Lemma 3. The non-crossing pairs compression can be performed in O(|G|)
time.

We read G and list all pairs’ appearances and flag them, depending on whether
these appearances are crossing or not. We then group these appearances by the
pair, i.e. for a fixed pair we have a list of all appearances of this pair. For a fixed
non-crossing pair ab, we go through the corresponding list of appearances and
replace each explicit ab in G by a fresh letter c.

Algorithm 2. LeftPop (Xi)
1: let Xi → α and b the α’s first symbol
2: remove leading b from α
3: replace each Xi in the rules by bXi

Compression of Crossing Pairs.
Let ab be a crossing pair because a is
to the left of nonterminal Xi such that
first[Xi] = b. To remedy this we ‘pop’
the leading b from Xi: if val(Xi) = bw

Faster Fully Compressed Pattern Matching by Recompression 541

we modify G so that val(Xi) = w. This is implemented in LeftPop . Such a
procedure is applied to each non-terminal that is to the right of a. Symmetric
procedure is applied for a letter b and nonterminals Xi such that b is to the right
of Xi and last[Xi] = a.

When the pair ab is no longer crossing, it can be compressed in the way
described above.

Lemma 4. The PairComp properly compresses a crossing pair ab.

Algorithm 3. PairComp (ab)
1: for i ← 1 . . m + n do
2: if a is to the left of Xi and first[Xi] = b then
3: LeftPop (Xi)
4: if b is to the right of Xi and last[Xi] = a then
5: RightPop (Xi)
6: compress the pair ab

Changing all crossing pairs
to noncrossing ones can
be done in parallel, sim-
ilarly as in the case of
the compression of the
noncrossing pairs. How-
ever, this can be done un-
der the assumption that
these pairs do not over-
lap, where ab and a′b′ overlap if a = b′ or b = a′. The general case is obtained
by partitioning all crossing pairs into 2 log(n + m) groups, such that within each
of the groups the pairs are not overlapping. The partition is found by a simple
greedy method, similar to approximation of a vertex cover.

Lemma 5. Pairs from P ′ can be partitioned into 2 log(n+m) groups, such that
performing the PairComp (with appropriate implementation) for pairs in one
group takes O(|G|) time.

Blocks Compression. Now, we turn our attention to the block compression.
Suppose first that G has no letters with a crossing block. Then a procedure sim-
ilar to the one compressing non-crossing pairs can be performed: when reading
G, we establish all maximal blocks of letters. We group these appearances ac-
cording to the letter, i.e. for each letter a we create a list of a’s maximal blocks
in G and we sort this list according to the lengths of the blocks. We go through
such list and we replace each appearance of a� by a fresh letter a�.

However, usually there are letters with crossing blocks. We deal with this
similarly as in the case of crossing pairs: a letter a has a crossing block if and
only if aa is a crossing pair. So suppose that a is to the left of Xi and first[Xi] = a,
in such a case we left-pop a letter from Xi. In general, this does not solve the
problem as it may happen that still first[Xi] = a. So we keep on left-popping
until first[Xi] �= a. In other words, we remove the a-prefix of val(Xi). Symmetric
procedure is applied to Xj such last[Xj] = a and Xj is to the left of a.

It turns out that even a simplified approach works: for each nonterminal Xi,
where first[Xi] = a and last[Xi] = b, it is enough to ‘pop’ its a-prefix and b-suffix,
see RemCrBlocks .

Observe that during the procedure, long blocks of a (up to 2n+m) may be
explicitly written in the rules. This is conveniently represented: a� is simply

542 A. Jeż

denoted as (a, �), with � encoded in binary. When � fits in one code word, the a�

representation is still of constant size and everything works smoothly.

Algorithm 4. RemCrBlocks :
1: for i ← 1 . . m + n, except n and n + m do
2: let Xi → αi be the production for Xi

3: let a = first[Xi]
4: calculate and remove the a-prefix a�i of αi

5: let b = last[Xi]
6: calculate and remove the b-suffix bri of αi

7: replace each Xi in rule’s bodies by a�1 Xib
ri

8: if val(Xi) = ε then
9: remove Xi from the rules’ bodies

After RemCrBlocks , ev-
ery letter a has no crossing
blocks and we may compress
maximal blocks using the al-
ready described method.

Lemma 6. After applica-
tion of RemCrBlocks there
are no crossing blocks.
The time consumption of
RemCrBlocks and following
block compression is O(|G|).

First and Last Letter of Pattern. We have to treat the ‘ends’ of the pattern
in a careful way: consider a text ababa and a pattern bab. Then compression of
ab into c results in a text cca and pattern bc, which no longer appears in the
text. The other problem appears during the block compression: consider pattern
aab and text aaab. Then after the block compression the pattern is replaced with
a2b and text with a3b.

In general, the problems arise because the compression applied by FCPM is
done partially on the pattern appearance and partially outside it, so it cannot be
reflected in the compression of the pattern. We say, that the compression spoils
pattern’s beginning (end) when such partial compression appears on pattern
appearance beginning (end, respectively). In the working example, spoiling of
the pattern beginning can be circumvented by enforcing a compression of the
pair ab in the first place: when two first letters of the pattern are replaced by
a fresh letter c, then the beginning of the pattern no longer can be spoiled in
this phase (as c will not be compressed in this phase). We say, that pattern’s
beginning (end) is fixed by a pair or block compression, if after this compression
a first (last, respectively) letter of the pattern is a fresh letter. Notice, that the
same compression can at the same time fix the beginning and spoil the end: for
instance, compressing ba into c does so in the working example. Our goal is to
fix both the beginning and the end, without spoiling any of them.

If the first two letters of the pattern are ab for a �= b, then we can fix the
beginning by compressing the pair ab, before any other pairs (or blocks) are
compressed. This cannot be applied if val(Xm) has a leading �-block of letters a,
for � > 1. The problem is that each m-block for m ≥ � can begin an appearance
of the pattern in the text. This is circumvented by applying a tuned version of
block compression: each m-block of length m ≤ � is replaced by a fresh letter
am and each m-block of length m > � is replaced by a pair of letters ama�. For
instance, in the example of aaaba and aaba above we obtain a3a2ba1 as new text
and a2ba1 as a new pattern; clearly the pattern has an appearance in the text.
In this way we fix the pattern beginning.

Faster Fully Compressed Pattern Matching by Recompression 543

When first[Xm] �= last[Xm] then fixing the beginning does not spoil the end
and afterwards we simply fix the end in a symmetrical way. When first[Xm] =
last[Xm] we need to apply a mixture of these two techniques, but still both the
beginning and the end can be fixed, without prior spoiling. Roughly, when a�

and ar are the a-prefix and a-suffix (where, without loss of generality, � ≥ r ≥ 1)
we first make the block compression of a, in which m-blocks are replaced with:
am for m < r; aram for r ≤ m < �; ara� for m = �; arama� for m > �.
Unfortunately, for some values of �, r (for instance, take � = r = 1), this might
actually enlarge the text (in the example, a is replaced by ara�). However, by
enforcing compression of pairs of the form a�b and bar for b ∈ Σ and some simple
tricks, the compression can be achieved.

Lemma 7. In O(|G|) time we can fix both the beginning and end without prior
spoiling them.

Grammar and Alphabet Sizes. The subroutines of FCPM run in time de-
pendant on |G| and |Σ|, we bound these sizes.

Lemma 8. During FCPM , |G| = O((n + m) log(n + m)) and |Σ| = O((n +
m) log(n + m) log |M |).
The proof is straightforward: using an argument similar to Lemma 2 we show
that the size of each rule shortens by a constant factor in each phase. On the
other hand, only LeftPop , RightPop and RemCrBlocks introduce new letters to
the rules and it can be estimated, that in total they introduces O(log(n + m))
letters to a rule in each phase. Thus, bound O(log(n + m)) on each rules’ length
holds. Concerning |Σ|, new letters appear as a result of a compression. Since
each compression decreases the size of |G| by at least 1, there are no more than
|G| of them in a phase, which yields the bound.

Memory Consumption. FCPM uses O((n + m) log(n + m)) space, the same
holds if we want to retrieve first/last positions etc. of the pattern, under the
assumption that N and M fit in O(1) codewords. If only n and m fit in O(1)
codewords, the space consumption increases by a factor representing the length
of text and pattern, i.e. log(N + M).

Sketch of the Main Proof. The cost of one phase of FCPM is O(|G| +
(n + m) + (m + n) log(n + m)), by Lemmas 3, 5–7 while Lemma 8 shows that
|G| = O((n+m) log(n+m)) and Lemma 2 shows that there are O(log M) phases.
So the total running time is O((n + m) log M log(n + m)).

Acknowledgements. I would like to thank Paweł Gawrychowski for intro-
ducing me to the topic, for pointing out the relevant literature [13,15,16] and
discussions [2].

544 A. Jeż

References
1. Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic texts. In: Proc.

11th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 819–828 (2000)
2. Gawrychowski, P.: personal communication (2011)
3. Gawrychowski, P.: Optimal pattern matching in LZW compressed strings. In: Ran-

dall, D. (ed.) SODA, pp. 362–372. SIAM (2011)
4. Gawrychowski, P.: Pattern Matching in Lempel-Ziv Compressed Strings: Fast, Sim-

ple, and Deterministic. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011.
LNCS, vol. 6942, pp. 421–432. Springer, Heidelberg (2011)

5. Gawrychowski, P.: Simple and Efficient LZW-Compressed Multiple Pattern Match-
ing. In: Kärkkäinen, J. (ed.) CPM 2012. LNCS, vol. 7354, pp. 232–242. Springer,
Heidelberg (2012)

6. Gawrychowski, P.: Tying up the loose ends in fully LZW-compressed pattern
matching. In: Dürr, C., Wilke, T. (eds.) STACS 2012. LIPIcs, vol. 14, pp. 624–
635. Schloss Dagstuhl — Leibniz-Zentrum fuer Informatik (2012)

7. Gąsieniec, L., Karpiński, M., Plandowski, W., Rytter, W.: Efficient Algorithms
for Lempel-Ziv Encoding. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS,
vol. 1097, pp. 392–403. Springer, Heidelberg (1996)

8. Gąsieniec, L., Karpiński, M., Plandowski, W., Rytter, W.: Randomized Efficient
Algorithms for Compressed Strings: The Finger-Print Approach (Extended Ab-
stract). In: Hirschberg, D.S., Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp.
39–49. Springer, Heidelberg (1996)

9. Hirao, M., Shinohara, A., Takeda, M., Arikawa, S.: Fully compressed pattern
matching algorithm for balanced straight-line programs. In: SPIRE 2000, pp. 132–
138 (2000)

10. Jeż, A.: Compressed membership for NFA (DFA) with compressed labels is in
NP (P). In: Dürr, C., Wilke, T. (eds.) STACS 2012. LIPIcs, vol. 14, pp. 136–147.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

11. Jeż, A.: Recompression: a simple and powerful technique for word equations. In:
CoRR 1203.3705 (submitted, 2012)

12. Shibata, Y., Takeda, M., Shinohara, A., Arikawa, S.: Pattern Matching in Text
Compressed by Using Antidictionaries. In: Crochemore, M., Paterson, M. (eds.)
CPM 1999. LNCS, vol. 1645, pp. 37–49. Springer, Heidelberg (1999)

13. Lifshits, Y.: Processing Compressed Texts: A Tractability Border. In: Ma, B., Zhang,
K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)

14. Lifshits, Y., Lohrey, M.: Querying and Embedding Compressed Texts. In: Královič,
R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 681–692. Springer, Hei-
delberg (2006)

15. Lohrey, M., Mathissen, C.: Compressed Membership in Automata with Compressed
Labels. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp.
275–288. Springer, Heidelberg (2011)

16. Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equal-
ity tests in polylogarithmic time. Algorithmica 17(2), 183–198 (1997)

17. Miyazaki, M., Shinohara, A., Takeda, M.: An Improved Pattern Matching Algo-
rithm for Strings in Terms of Straight-Line Programs. In: Hein, J., Apostolico, A.
(eds.) CPM 1997. LNCS, vol. 1264, pp. 1–11. Springer, Heidelberg (1997)

18. Plandowski, W.: Testing Equivalence of Morphisms on Context-Free Languages. In:
van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg
(1994)

19. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1-3), 211–222 (2003)

NNS Lower Bounds via Metric Expansion
for l∞ and EMD

Michael Kapralov1,� and Rina Panigrahy2

1 Stanford iCME, Stanford, CA
kapralov@stanford.edu

2 MSR Silicon Valley, Mountain View, CA
rina@microsoft.com

Abstract. We give new lower bounds for randomized NNS data structures in the
cell probe model based on robust metric expansion for two metric spaces: l∞ and
Earth Mover Distance (EMD) in high dimensions. In particular, our results imply
stronger non-embedability for these metric spaces into l1. The main components
of our approach are a strengthening of the isoperimetric inequality for the distri-
bution on l∞ introduced by Andoni et al [FOCS’08] and a robust isoperimetric
inequality for EMD on quotients of the boolean hypercube.

1 Introduction

In the Nearest Neighbor Problem we are given a data set of n points x1, ..., xn lying
in a metric space V . The goal is to preprocess the data set into a data structure such
that when given a query point y ∈ V , it is possible to recover the data set point which
is closest to y by querying the data structure at most t times. The goal is to keep both
the querying time t and the data structure space m as small as possible. Nearest Neigh-
bor Search is a fundamental problem in data structures with numerous applications to
web algorithms, computational biology, information retrieval, machine learning, etc. As
such it has been researched extensively.

Natural metric spaces include the spaces /d equipped with the �1 or �2 distance
that have been extensively studied in terms of upper and lower bounds. But other met-
rics such as �∞, edit distance and earth mover distance may be more appropriate in
some settings [3,9]. Naturally, the time space tradeoff of known solutions crucially de-
pend upon the underlying metric space. The known upper bounds exhibit the ‘curse of
dimensionality’: for d dimensional spaces either the space or time complexity is expo-
nential in d – thus encouraging research on approximate solutions. In the c-approximate
nearest neighbor version, one returns a neighbor that is at most distance c times that to
the nearest neighbor [10], [12], [9], [2] –for example there is an algorithm to obtain a
c-approximate near neighbor in time Õ(1) and space n1+O(1/c) using locality sensi-
tive hashing in the l1 metric; for the l2 metric the space drops to n1+O(1/c2) [2]. For
the �∞ metric Indyk [9] shows how to compute a O(log1/ε log d)-approximate NNS

using space nΩ(1/ε); most of these algorithms are randomized, while the algorithm of

� Research supported by NSF grant 0904325. Part of the work was done while the author was
an intern at Microsoft Research Silicon Valley.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 545–556, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

546 M. Kapralov and R. Panigrahy

Indyk [9] is deterministic. Our lower bounds for �∞ show that the space/approximation
tradeoff in [9] is essentially optimal even if randomization is allowed.

There is a substantial body of work on lower bounds covering various metric spaces
and parameter settings many of which assume the algorithm to be deterministic. Most
previous papers are concerned with the Hamming distance over the d-dimensional hy-
percube. The cases of exact or deterministic algorithms were handled in a series of
papers[7], [6],[13], [5]. These lower bounds hold for any polynomial space. In contrast
the known upper bounds are both approximate and randomized, and with polynomial
space can retrieve the output with one query. Chakrabarti and Regev [8] allow for both
randomization and approximation, with polynomial space and show a tight bound for
the nearest neighbor problem. Patrascu and Thorup[18] showed lower bounds on the
query time of near neighbor problems with a stronger space restriction (near linear
space), although their bound holds for deterministic or exact algorithms. Traditionally,
cell probe lower bounds for data structures have been shown using communication com-
plexity arguments [15]. Patrascu and Thorup [18] use a direct sum theorem along with
the richness technique to obtain lower bounds for deterministic algorithms. Andoni,
Indyk and Patrascu [4] showed randomized lower bounds using communication com-
plexity lower bounds for Lopsided Set Disjointness. In [16,17], a more direct geometric
argument was used to show lower bounds for randomized algorithms based on different
variants of expansion of the underlying metric space.

The metric �∞ is considered in an intriguing paper by Andoni et al.[1] who prove
a lower bound for deterministic algorithms. The paper uses the richness lemma though
the crux of the proof is an interesting isoperimetric bound on �∞ for a carefully chosen
measure. The lower bound they provide is tight for constant query time and matches
the upper bound from [9]. In this work we obtain lower bounds for randomized algo-
rithms for two new metric spaces: �∞ and Earth Movers Distance (EMD). For the �∞
metric we extend the tight lower bounds of [1] from deterministic to randomized algo-
rithms by computing the notion of ‘robust expansion’ introduced in [17]. Our’s is the
first work that looks at the hardness of NNS in EMD metric. Inspired from the Fourier
based techniques in the non-embeddability results from [11] we show hardness of NNS
in the EMD metric over point sets in the d-dimensional hamming cube. We prove the
following hardness guarantees for the case when cell size is no(1), where n is the num-
ber of points in the database. For a given distribution of points and query, a randomized
algorithm for (approximate) NNS is one that produces an (approximate) near neighbor
with probability at least 2/3.

Theorem 1. 1. For a O(log1/ε log d) approximate NNS in �∞, any (randomized) t-

probe data structure needs space at least nΩ(1/(εt))

2. There is distribution of sets from the Hamming cube {0, 1}d so that any (random-
ized) t-probe data structure for an α approximate NNS the EMD metric on this
set needs space at least eΩ(d/(αt)) (each set in the distribution can be specified
explicitly using O(d) bits).

It is interesting to note that approximate NNS for EMD under this distribution takes
exponential space for approximation O(d1−ε) for all constant ε > 0. Note that lower
bounds on NNS on a metric space are stronger than non-embeddability results as once

NNS Lower Bounds via Metric Expansion for l∞ and EMD 547

a metric space can be embedded into a well-studied metric space, the algorithms for
NNS from the latter will carry over with the appropriate distortion. Thus our results
automatically imply robust non-embeddibility results for these metric spaces. While it
was known that these metric spaces do not embed into l1 or l2 with constant distortion,
we now know that they are also not gap embeddable. In particular for the EMD metric
on point sets from a d-dimensional hypercube Khot et al[11] showed that it doesn’t
embed into the �1 metric with distortion less than d . Our bound generalizes this to
gap-inembeddibility:

Theorem 2. There is no embedding M from the EMD metric space induced by the
hamming metric on point sets over {0, 1}d to the l1 metric that satisfies the following
gap distortion guarantees.

EMD(u, v) ≤ ω(1) =⇒ |M(u)−M(v)|1 ≤ 1

EMD(u, v) = Ω(d) =⇒ |M(u)−M(v)|1 ≥ 2

We will now review the different notions of metric-expansion from [17] that produce
lower bounds for different classes of algorithms, deterministic and randomized. The
bounds hold even for even in the average case when the points are chosen uniformly
from a certain distribution.

1.1 Expansion and Its Relation to Complexity of NNS

The results in [17] show a relation between the expansion of the metric space and the
complexity of NNS. It works with the version of the Near Neighbor version of the
problem that is parameterized by a search radius r. As in the Nearest Neighbor Search
Problem given a query point y the goal is to determine whether the data set contains a
point of distance at most r from y. Expansion can be used to consider the case when
points are chosen randomly from a distrubution and the query point is a random point
from a ball of radius r around one of the database points. Intuitively expansion is the
amount by which a set of points expands when we include points in their r neigh-
borhood. If distribution of points is such that the distance between any pair of database
points is at least cr then this lower bound also implies hardness for c-approximate NNS.

To compute the expansion we construct an undirected bipartite graph G = (U, V,E)
where U and V are all the points in the metric space and and edge is placed between
a pair of nodes from U and V if they are at most distance r apart. The data set comes
by choosing n points randomly from U and query is a random neighbor from V of
a random database point from U (these distrubutions may be non-uniform which we
specify in detail later).

Definition 1 (Vertex expansion). The δ−vertex expansion of the graph is defined as

Φv(δ) := min
A⊂V,|A|≤δ|U|

|N(A)|
|A| .

Here N(A) denotes the neighborhood of the set A in G. For A ⊂ V , B ⊂ U , let
E(A,B) denote the set of edges between A and B in the bipartite graph G. Assume

548 M. Kapralov and R. Panigrahy

that |A| = δ|U |. Observe that if E(A,B) = E(A,U) then |B| ≥ Φv(δ)|A|. In other
words Φv(δ) bounds the measure of the sets that cover all the edges incident on a set of
measure δ. The notion of robust expansion relaxes this by requiring B to cover at least
a γ-fraction of the edges incident on A. This idea is captured in the definition below.
For simplicity we assume that V = U and that G is regular. A more subtle definition
which takes into account other non-regular graphs is presented later.

Definition 2 (Robust expansion). G has robust-expansion Φr(δ, γ) if ∀A,B ⊆ V sat-
isfying |A| ≤ δ|V |, |B| ≤ Φ(δ, γ)|A|, it is the case that |E(A,B|

|E(A,V)| ≤ γ. Note that
Φr(δ, 1) = Φv(δ).

Lower bounds for NNS based on the above notions of expansion were proven in [17];
the deterministic lower bounds use expansion and the randomized lower bounds make
use of robust-expansion We now state the bounds for randomized algorithms. For tech-
nical reasons, it also assumes that the metric space satisfies a property called weak-
independence which simply means that two balls of radius r centered at randomly cho-
sen points are sufficiently disjoint with high probability 1 − o(1/n2). Here m denotes
the number of cells used by the algorithm where each cell can hold a word of size w
bits.

Theorem 3. [17] There exists an absolute constant γ such that the following holds. Any
randomized algorithm for a weakly-independent instance of Near Neighbor problem
which is correct with probability at least half (where the probability is taken over the
sampling of the input and the algorithm), satisfies the following inequalities:

mtw

n
≥ Φr

(
1

mt
,
γ

t

)
(1)

These theorems, combined with known isoperimetric inequalities yield most known cell
probe lower bounds for near neighbor problems. There is also some evidence that the
connection between expansion and hardness of NNS is tight for constant t – this has
been shown to hold for cases when the graph G is symmetric [17].

The bipartite graph G = (U, V,E) may be weighted by a a probability distribution
e over the edges E. Let μ(u) = e(u, V) =

∑
v∈V e(u, v) be the induced distribu-

tion on U , and let ν(v) = e(U, v) be the induced distribution on V . For x ∈ U ,
we denote by νx the conditional distribution of the endpoints in V of edges incident
on u, i.e. νx(y) = e(x, y)/e(x, V). Thus νy is a distribution over (or concentrated
over) the r-neighborhood of y. In this case we select n points x1, . . . , xn indepen-
dently from the distribution μ uniformly at random. This defines the database distri-
bution. To generate the query, we pick an i ∈ [n] uniformly at random, and sam-
ple y independently from νxi . The tuple (G, e) satisfies γ-weak independence (WI) if
Prx,z∼μ,y∼νx [(y, z) ∈ E] ≤ γ

n . Thus, weak independence ensures that with probability
(1− γ), for the instance generated as above, x is indeed the unique neighbor in G of y
in {x1, . . . , xn}. The following definition generalizes the notion of robust-expansion to
weighted bipartite graphs.

Definition 3. [17] [Robust Expansion] The γ-robust expansion of a set A ⊆ V is

φr(A, γ)
def
= min

B⊆U :e(B,A)≥γe(U,A)
μ(B)/ν(A).

NNS Lower Bounds via Metric Expansion for l∞ and EMD 549

2 Robust Expansion of l∞

In this section we prove a bound on the robust expansion of l∞ under a variant of the
distribution introduced in [1]. Let Gd = (U, V,E) be the l∞ graph on U = V =
[1, . . . ,m]d, i.e. u ∈ U is connected to v ∈ V iff ||u − v||∞ ≤ 1. We now define a
distribution τ on the edges of Gd.

We start by defining the distribution forG1, the one-dimensional l1 graph (see Fig. 1).
The distribution on Gd for general d will be the product of distributions on G1. We let

τ1i,j = 2−(1/ε)i if j = i+ 1 and i is odd

τ1i,j = 2−(1/ε)j if j = i− 1 and i is odd

τ11,0 = 1−
∑
i≥1

2−(1/ε)i, and τ1i,j = 0 o.w.

We denote the induced one-dimensional distributions by

μ1
u =

∑
v∈N1(u)

τ1(u,v), ν
1
v =

∑
u∈N1(v)

τ1(u,v).

1− (2−(1/ε) + . . .) 0 2−(1/ε) + 2−(1/ε)2 0 2−(1/ε)3 + 2−(1/ε)4

0 1− (2−(1/ε)2 + . . .) 0 2−(1/ε)2 + 2−(1/ε)3 0

Measure ν

Measure μ

1− (2−(1/ε) + . . .) 2−(1/ε)

2−(1/ε)2

2−(1/ε)3

Fig. 1. Distribution on G1

The d-dimensional distribution τd over edges is defined by τd(u,v) =
∏d

i=1 τ
1
ui,vi . We

fist note that this induces a product distribution on the vertices u ∈ U , where μd(u) =∏d
i=1 μ1(ui). In what follows we will use the notation ed(A,B) =

∑
e∈E∩(A×B) τ

d
e .

We also omit superscripts in μd, νd, ed and τde whenever this does not cause confusion.
The main component of our lower bound is a strengthened isoperimetric inequality

for l∞ under the distribution that we just defined. The main technical lemma will be

Lemma 1. Let Gd = (U, V,E) denote the l∞ graph. For any A ⊆ U,B ⊆ V one has
e(A,B) ≤ (μ(A)ν(B))1/(1+δ) for some δ = Θ(ε) and all sufficiently small ε.

A bound on robust expansion follows from Lemma 1 (details are deferred to the full
version):

550 M. Kapralov and R. Panigrahy

Lemma 2. Let Gd = (U, V,E) denote the l∞ graph. For any A ⊆ U,B ⊆ V such that
e(B,A) ≥ γe(A, V) one has ν(B) ≥ γ1+δ(μ(A))δ for some δ = Θ(ε) and sufficiently
small ε.

The proof Lemma 1 is by induction on the dimension, and we start by outlining the
proof strategy for the base case, i.e. d = 1. For d = 1, Lemma 1 turns into

Lemma 3. Let G1 denote the l∞ graph in dimension 1 with the measure τ defined as
above. There exist constants γ, ε∗ > 0 such that for every x, y ∈ RV

+ for ε < ε∗ and
δ = γε one has

∑
(i,j)∈E(G1)

xiτi,jyj ≤
(∑

i

μix
1+δ
i

)1/(1+δ)(∑
i

νiy
1+δ
i

)1/(1+δ)

(2)

It will be convenient to make a substitution to ensure that the rhs is the product of
unweighted (1 + δ)-norms. Set ui = μ

1/(1+δ)
i xi, vi = ν

1/(1+δ)
i yi, so that (2) becomes∑

(i,j)∈E

uiμ
−1/(1+δ)
i τijν

−1/(1+δ)
j vj ≤ ||u||1+δ||v||1+δ. (3)

We prove the bound (3) in two steps. In particular, we break the graph G1 into two
pieces that overlap by one vertex, prove stronger versions of (3) for both subproblems,
and then piece them together to obtain (3).

In the first step we concentrate on the subgraph induced by vertices on both sides
with indices in [0 : 2]. This amounts to only considering distributions that are zero
outside of [0 : 2]. We prove in Lemma 4 that a strengthened version of (3) holds under
these restrictions. In particular, we show in the full version that

Lemma 4. There exist constants ε∗, γ > 0 such that for all v0, v2 ≥ 0 one has for all
ε < ε∗, δ = γε

τ10v0 + τ12v2 ≤
(
ν0v

1+δ
0 + (1−Ω(δ5))ν1v

1+δ
1

)1/(1+δ)
(4)

It should be noted that while (3) depends on both u and v, the inequality in (4) only
depends on u. This is because only the single vertex v1 has a nonzero weight among
vertices in [0 : 2], and hence can be cancelled from both sides. The 1+O(δ5) term mul-
tiplying u2 on the lhs represents the main strengthening, and will be crucially important
for combining the inequalities for different parts of the graph later.

In the second step we consider the subgraph of G1 induced by vertices with indices
in [2 : +∞]. This amounts to considering distributions that are zero on the the first two
vertices on each side of the graph. For this case we prove

Lemma 5. Let G1 denote the l∞ graph in dimension 1 with the measure τ defined as
above. There exist constants γ, ε∗ > 0 such that for every x, y ∈ RV

+ for ε < ε∗ and
δ = γε one has

∑
(i,j)∈E(G1),i>1

xiτi,jyj ≤ 2−1/ε

(∑
i

μix
1+δ
i

)1/(1+δ)(∑
i

νiy
1+δ
i

)1/(1+δ)

(5)

NNS Lower Bounds via Metric Expansion for l∞ and EMD 551

The 2−1/ε term represents the strengthening with respect to (3) and will be crucial for
combining (4) and (5). Combining (4) and (5), we then get the result (essentially) by an
application of Cauchy-Schwarz and norm inequalities. One complication will be the fact
that (4) and (5) overlap by v2, but we will be able to handle this since the strengthened
inequalities ensure that v2 appears in (4) and (5) with weights that sum up to at most 1.
We now give

Proof of Lemma 5: We need to bound
∑

(i,j)∈E,i≥2 uiμ
−1/(1+δ)
i τijν

−1/(1+δ)
j vj . In

order to do that, we decompose the edges of G1 restricted to [2 : +∞] into two edge
disjoint matchings M1 and M2: M1 = {(i, j) ∈ E(G1) : j = i − 1, i, j ≥ 2},
M2 = {(i, j) ∈ E(G1) : j = i+ 1, i, j ≥ 2}.

First, suppose that (i, j) ∈M1, i.e. j = i − 1 andi = 2k + 1, where k ≥ 1 since we
are considering distributions restricted to [2 : +∞]. We have

μ
−1/(1+δ)
i τijν

−1/(1+δ)
j ≤ 2(1/ε)

(k+1)/(1+δ) · 2−(1/ε)k+1

· 2(1/ε)
k/(1+δ) = 2(1/ε)

k(1−δ/ε)/(1+δ).

For δ ≥ 4ε and sufficiently small constant ε μ−1/(1+δ)
i τijν

−(1−2ε)
j ≤ 2−2(1/ε)k ≤

2−2/ε, where we used the fact that k ≥ 1. A similar argument shows that the same
holds for all (i, j) ∈M2. Thus, for r = 1, 2∑

(i,j)∈Mr

uiμ
−1/(1+δ)
i τijν

−1/(1+δ)
j vj ≤ 2−2/ε

∑
(i,j)∈E,i≥2

uivj ≤ 2−2/ε

√∑
i≥2

u2
i

√∑
j≥2

v2j

by Cauchy-Schwarz. Since for all x one has ||x||p ≥ ||x||q when p ≤ q, we conclude
that for r = 1, 2

∑
(i,j)∈Mr

uiμ
−1/(1+δ)
i τijν

−1/(1+δ)
j vj ≤ 2−2/ε

⎛⎝∑
i≥2

u1+δ
i

⎞⎠1/(1+δ)⎛⎝∑
j≥2

v1+δ
j

⎞⎠1/(1+δ)

,

as required. Putting the estimates for M1 and M2 together, we get

∑
(i,j)∈E(G1),i≥2

xiτi,jyj ≤ 2−1/ε

(∑
i

μix
1+δ
i

)1/(1+δ)(∑
i

νiy
1+δ
i

)1/(1+δ)

.

��
We now prove Lemma 3, and then use it as the base case for induction on dimension.

Proof of Lemma 3: By Lemma 4 we have∑
(i,j)∈E(G1),i,j≤2

xiτi,jyj ≤
(
μ1x

1+δ
1

)1/(1+δ) (
ν0y

1+δ
0 + (1 −Ω(δ5))ν2y

1+δ
2

)1/(1+δ)
,

(6)

For convenience, let A :=
(
μ1x

1+δ
1

)1/(1+δ)
, B :=

(
ν1y

1+δ
1 + (1−Ω(δ5))ν2y

1+δ
2

)
1/(1+δ). Furthermore, by Lemma 5

∑
(i,j)∈E(G1),i≥2,j≥2

xiτi,jyj ≤ 2−1/ε

(∑
i

μix
1+δ
i

)1/(1+δ)(∑
i

νiy
1+δ
i

)1/(1+δ)

,

(7)

552 M. Kapralov and R. Panigrahy

and we define for convenienceC :=
(∑

i μix
1+δ
i

)1/(1+δ)
andD := 2−1/ε

(∑
i νiy

1+δ
i

)
1/(1+δ).

First, we get by combining (6) and (7) that∑
(i,j)∈E(G1)

xiτi,jyj ≤ A · B + C ·D (8)

Applying Cauchy-Schwarz and norm inequalities to the rhs of (8), we get

A ·B+C ·D ≤
√

A2 +C2
√

B2 +D2 ≤
(
A1+δ + C1+δ

)1/(1+δ) (
B1+δ +D1+δ

)1/(1+δ)

.

(9)
Combining (8) and (9), we obtain

∑
(i,j)∈E(G1)

xiτi,jyj ≤
(
ν0y

1+δ
0 + ν2(1−Ω(δ5) + 2−(1+δ)/ε)y1+δ

2 +
∑
j>2

νjy
1+δ
j

)1/(1+δ)

·
(
μ1x

1+δ
1 +

∑
i>1

μix
1+δ
i

)1/(1+δ)

≤

⎛⎝∑
i≥0

μix
1+δ
i

⎞⎠ 1
1+δ
⎛⎝∑

j≥0

νjy
1+δ
j

⎞⎠ 1
1+δ

��
Proof of Lemma 1: We use induction on d. The base case d = 1 is given by Lemma 3.
We now describe the inductive step d− 1 → d.

Let A ⊆ U,B ⊆ V . For each i let Ai = {u ∈ A : ui = i}, Bi = {u ∈ A : ui = i}.
Then by our definition of edge weights ed(A,B) =

∑
(i,j)∈E(G1)

τijed−1(Ai, Bj). By

the inductive hypothesis we have ed−1(Ai, Bj) ≤ (μd−1(Ai)μd−1(Bj))
1/(1+δ), and

hence

ed(A,B) ≤
∑

(i,j)∈E(G1)

τij(μd−1(Ai)μd−1(Bj))
1/(1+δ).

Now by Lemma 3 we have

∑
(i,j)∈E(G1)

τij(μd−1(Ai)μd−1(Bj))
1/(1+δ) ≤

(∑
i

μ1
iμd−1(Ai)

∑
j

μ1
jμd−1(Bj)

)1/(1+δ)

= (μd(A)μd(B))1/(1+δ).

��

Theorem 4. O(log1/ε log d)-approximate NNS for l∞ requires space nΩ(1/(εt)) even
with randomization.

Proof. The proof follows by first showing that the distance between a pair of points
drawn from our distribution is Ω(log1/ε log d) and applying Theorem 3 together with
Lemma 2. The details are deferred to the full version.

NNS Lower Bounds via Metric Expansion for l∞ and EMD 553

3 Earth Mover Distance

In this section we derive lower bounds on the cell probe complexity of nearest neighbor
search for Earth mover distance (also known, as transportation cost metric) over Fd

2.
Our approach is based on lower bounding the robust expansion of EMD over quotients
of Fd

2 with respect to the dual of a random linear code. Quotients of Fd
2 with respect

to random linear codes have been used in [11] to derive non-embeddability results for
EMD over Fd

2 into l1. Here we extend these non-embeddability results to hardness of
nearest neighbor search. As a by-product of our approach, we also prove that EMD over
Fd
2 is not gap-embeddable into l1 with distortion less than Ω(d).

Let (X, d) be a metric space. The earth mover distance between two sets A,B ⊆ X ,
such that |A| = |B| is defined by

EMD(A,B) = min
π:A→B

∑
x∈A

d(x, π(x)), (10)

where the minimum is taken over all bijective mappings π from A to B. For the
purposes of our lower bounds, the metric space (X, d) will be the binary hypercube
(Fd

2, || · ||1) with Hamming distance as the metric, and A,B will be subsets of Fd
2 of a

special form. In particular, A and B will be cosets of Fd
2 with respect to the action of a

carefully chosen group (in fact, a linear code with large minimum distance).
Let C denote a linear code, i.e. a linear subspace of Fd

2 of dimension Ω(d) and
minimum distance Ω(d). Such codes are known to exist [14]. In particular, it can be
seen that a random linear code of dimension Ω(d) satisfies this conditions with high
probability. We will use the notation for the dual code

C⊥ = {y ∈ Fd
2 : (y, x) ≡ 0 mod 2, ∀x ∈ C},

where (x, y) =
∑d

i=1 xiyi. For a vector u ∈ Fd
2 we denote the coset of u with respect

to the dual code C⊥ by u = {w ∈ Fd
2 : w − u ∈ C⊥}. Thus, u is the set of vectors in

Fd
2 that can be obtained from u by translating it by an element of C⊥. In what follows

we consider EMD on such subsets u of the hypercube. The following simple property
of EMD restricted to cosets of Fd

2 with respect to C⊥ will be very useful. Recall that
by (10) EMD(u,v) is the cost of the bijective mapping π from A to B that minimizes
total movement

∑
x∈A ||x − π(x)||1. We now show that when EMD is restricted to

cosets of C⊥, i.e. A = u, B = v for some u, v ∈ Fd
2, the minimum over mappings π

is achieved for a mapping that simply translates each element of a coset u by a fixed
vector w to get v (the proof is deferred to the full version.):

Fact 5. For u,v ∈ Fd
2/C

⊥ one has EMD(u,v) = |C⊥| ·mina∈u,b∈v ||a− b||1.

Our estimates of robust expansion of EMD on Fd
2/C

⊥ will use Fourier analysis on
the hypercube, so we give the necessary definitions now. The Fourier basis is given by
Walsh functions WA : Fd

2 → R, A ⊆ {1, . . . , d} is denoted by

WA(x) = (−1)
∑

j∈A xj , x = (x1, . . . , xd) ∈ Fd
2.

Thus, {WA : A ⊆ {1, . . . , d}} is an orthonormal basis of L2(Fd
2, σ), where σ(x) =

2−d, x ∈ Fd
2 is the uniform measure on Fd

2. For each f : Fd
2 → R one has f =

554 M. Kapralov and R. Panigrahy∑
A⊆{1,...,d} f̂(A)WA, where f̂(A) =

∫
Fd
2
f(x)WA(x)dσ(x). Parseval’s indentity

states that ∫
Fd
2

f(x)g(x)dσ(x) =
∑

A⊆{1,...,d}
f̂(A)ĝ(A)

for all f, g ∈ L2(Fd
2, σ). We will often use the notation (f, g) =

∫
Fd
2
f(x)g(x)dσ(x).

We will also use the non-uniform measure σε(x) = ε
∑d

i=1 xi(1− ε)d−
∑d

i=1 xi .
We now define the distribution on inputs that we will use for our lower bounds. For

r ∈ (0, d) let G = (U, V,E), where U = V = Fd
2/C

⊥ denote the complete bipartite
graph. We now define distributions on U, V and the edges of G. Let μ and ν denote the
uniform distribution on U and V respectively. The distribution on pairs is given first
sampling u ∈ U uniformly, and then letting

v = u+ Z, (11)

where Pr[Z = z] = σr/d(z), i.e. Z is a point in Fd
2 obtained by setting each coordinate

independently to 1 with probability r/d and 0 with probability 1−r/d. Here for a coset
u and a point z ∈ Fd

2 we write u + z to denote the coset obtained from u by adding z
to each u ∈ u. We note that this is equivalent to sampling a uniformly random u, then
sampling a uniformly random point u ∈ u, letting v = u+Z and declaring v to be the
resulting coset. In particular, this yield the following distribution on edges;

τu,v =
1

2d

∑
u∈u,v∈τ

σr/d(u − v). (12)

The distance between u and v sampled according to this distribution is O(r) with high
probability: Pr(u,v)∈E[EMD(u,v) > γr] ≤ e−Ω((γ−1)r), i.e. pairs sampled from our
distribution are nearby with high probability. On the other hand, two uniformly random
cosets are at distance Ω(d) with high probability:

Lemma 6. Let u,v denote uniformly random points in Fd
2/C

⊥. Then Pr[EMD(u,v) >
c′d] ≥ 1− 2−Ω(d) for a constant c′ > 0.

We now turn to lower bounding the robust expansion. It will be convenient to use the
following notation. For A ∈ Fd

2/C
⊥ we will write 1A to denote the indicator function

of A lifted to Fd
2, i.e. 1A(x) equals 1 if x mod C⊥ = A and 0 otherwise. Our main

lemma relies on the following crucial property of functions that are constant on cosets
of C⊥, proved in [11]. In particular, any such function necessarily has zero Fourier
coefficients corresponding to non-empty sets of small size:

Lemma 7. [11] Assume that f : Fd
2 → R satisfies for every x ∈ Fd

2 and for all y ∈ C⊥,
f(x + y) = f(x). Suppose that the minimum distance of C is d0. Then f̂(S) = 0 for
all |S| < d0, S �= ∅.

The function 1A(x) satisfies the preconditions of Lemma 7 for A ∈ Fd
2/C

⊥, and hence
we have 1̂A(S) = 0 for |S| ≤ c′d, S �= ∅.

We now bound the robust expansion of EMD under our distribution. Similarly to
section 2, we first bound the weight of edges going between a pair of sets A,B. As

NNS Lower Bounds via Metric Expansion for l∞ and EMD 555

before, we use the notation e(A,B) =
∑

u∈A,v∈B τu,v. It will be convenient to express
e(A,B) in terms of the Bonami-Beckner operator Tρ : L2(Fd

2, σ) → L2(Fd
2, σ). For

a function f ∈ L2(Fd
2, σ) one has Tρf(x) = Ez∼σ1−2ρ [f(x + z)], where we will use

ρ = 1− 2r/d. The proof of the following claim is given in the full version:

Claim 6. For any A,B ∈ Fd
2/C

⊥ one has e(A,B) = (Tρ1A,1B), where (f, g) =∫
Fd
2
f(x)g(x)σ(x).

Our main lemma, which bounds the weight of edges going between a pair A,B ∈ V is

Lemma 8. Let C be a linear code of dimension Ω(d) and minimum distanceΩ(d). Let
Fd
2/C

⊥ denote the quotient of Fd
2 with respect to the dual code C⊥, and consider the

distribution over edges given by the noise operator with parameter ρ = 1− 2r/d as in
(11). Then for any r < d/4 one has e(A,B) ≤ μ(A)μ(B) + e−Ω(r)

√
μ(A)μ(B).

Proof. Consider any two sets A,B ⊆ Fd
2/C

⊥. By Claim 6, we have e(A,B) =
(Tρ1A,1B). We now use the fact that 1A is constant on quotients of C⊥, and hence
by Lemma 7 one has 1̂A(S) = 0 for all S ⊆ {0, 1}n, S �= ∅, with |S| ≤ cd. Since

Tρ1A =
∑

S⊆{0,1}d

(1 − 2ρ)|S|1̂A(S)WS , (13)

we have ||Tρf || ≤ e−cr||f || for all f ∈ L2(Fd
2, σ), such that (f,11) = 0. Here we

denote the constant function equal to 1 by 1. We also use the fact that if (f,1) = 0,
then (Tρf,1) = 0, as can be seen directly from (13). For A ⊂ Fd

2/C
⊥ we will write

|1A| to denote l1-norm of 1A (in particular, |1A| = |C⊥| · |A|), where |A| is the number
of elements in A. We now have

(Tρ1A,1B) =

(
|1A|
2d

1+ Tρ(1A − |1A|
2d

1),
|1B|
2d

1+ (1B − |1B|
2d

1)

)
=

(
|1A|
2d

1,
|1B|
2d

1

)
+

(
Tρ(1A − |1A|

2d
1),1B − |1B|

2d
1

)
since the cross terms cancel due to orthogonality. Thus,

(Tρ1A,1B) ≤ 2−2d|1A||1B|+ e−2ρcd||1A − |1A|
2d

1||||1B − |1B|
2d

1||,

and since ρd = r, we get

e(A,B) ≤ |1A|
2d

· |1B|
2d

+ e−2ρcd

√
|1A|
2d

· |1B|
2d

≤ μ(A)μ(B) + e−Ω(r)
√
μ(A)μ(B).

Using Lemma 8 we can now bound the robust expansion of EMD over Fd
2/C

⊥:

Lemma 9. Let C be a linear code of dimension d/4 such that the distance of C⊥ is at
least c′d for some constant c > 0. Then the γ-robust expansion of EMD over Fd

2/C
⊥ at

distance r is at least (γ/2)2eΩ(r).

556 M. Kapralov and R. Panigrahy

Theorem 7. α-approximate NNS with t probes for d-dimensional EMD requires
eΩ(d/(αt)) space, even with randomization.

Proof. Set r = Θ(d/α). By Lemma 6 the distance between points is Ω(d) whenever
d ≥ c logn for a sufficiently large c > 0, which gives the weak independence property.
The distance to the near point isΘ(r) with probability 1−n−Ω(1). The robust expansion
is at least (γ/2)2eΩ(r) by Lemma 9, so the result follows by Theorem 3.

Proof of Theorem 2: Suppose that such an embedding exists. Then one can build a
NNS data structure of size nO(1) to solve 3/2-approximate NNS in l1, implying a o(d)-
approximate NNS for EMD. However, this would contradict Theorem 7 when d =
Ω(log n). ��

References

1. Andoni, A., Croitoru, D., Patrascu, M.: Hardness of nearest neighbor under l-infinity. In:
FOCS 2008 (2008)

2. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in
high dimensions. Commun. ACM 51, 117–122 (2008)

3. Andoni, A., Indyk, P., Krauthgamer, R.: Earth mover distance over high-dimensional spaces.
In: SODA 2008, pp. 343–352 (2008)

4. Andoni, A., Indyk, P., Patrascu, M.: On the optimality of the dimensionality reduction
method. In: FOCS 2006, pp. 449–458 (2006)

5. Barkol, O., Rabani, Y.: Tighter bounds for nearest neighbor search and related problems in
the cell probe model. In: STOC 2000, pp. 388–396 (2000)

6. Borodin, A., Ostrovsky, R., Rabani, Y.: Lower bounds for high dimensional nearest neighbor
search and related problems. In: STOC 1999, pp. 312–321 (1999)

7. Chakrabarti, A., Chazelle, B., Gum, B., Lvov, A.: A lower bound on the complexity of ap-
proximate nearest-neighbor searching on the hamming cube. In: STOC 1999, pp. 305–311
(1999)

8. Chakrabarti, A., Regev, O.: An optimal randomised cell probe lower bound for approximate
nearest neighbour searching. In: FOCS 2004, pp. 473–482 (2004)

9. Indyk, P.: On approximate nearest neighbors under l∞ norm. J. Comput. Syst. Sci. 63 (2001)
10. Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the curse of di-

mensionality. In: STOC 1998, pp. 604–613 (1998)
11. Khot, S., Naor, A.: Nonembeddability theorems via fourier analysis. In: FOCS 2005 (2005)
12. Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient search for approximate nearest neighbor

in high dimensional spaces. In: STOC 1998, pp. 614–623 (1998)
13. Liu, D.: A strong lower bound for approximate nearest neighbor searching. Inf. Process.

Lett. 92(1), 23–29 (2004)
14. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland,

New York (1977)
15. Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data structures and asymmetric com-

munication complexity. J. Comput. Syst. Sci. 57(1), 37–49 (1998)
16. Panigrahy, R., Talwar, K., Wieder, U.: A geometric approach to lower bounds for approxi-

mate near-neighbor search and partial match. In: FOCS 2008, pp. 414–423 (2008)
17. Panigrahy, R., Talwar, K., Wieder, U.: Lower bounds on near neighbor search via metric

expansion. In: FOCS 2010 (2010)
18. Patrascu, M., Thorup, M.: Higher lower bounds for near-neighbor and further rich problems.

In: FOCS 2006, pp. 646–654 (2006)

Quantum Adversary (Upper) Bound�

Shelby Kimmel

Center for Theoretical Physics, Massachusetts Institute of Technology,
Cambridge, USA
skimmel@mit.edu

Abstract. We describe a method for upper bounding the quantum
query complexity of certain boolean formula evaluation problems, using
fundamental theorems about the general adversary bound. This non-
constructive method gives an upper bound on query complexity without
producing an algorithm. For example, we describe an oracle problem that
we prove (non-constructively) can be solved in O(1) queries, where the
previous best quantum algorithm uses a polynomial number of queries.
We then give an explicit O(1) query algorithm based on span programs,
and show that for a special case of this problem, there exists a O(1) query
algorithm that uses the quantum Haar transform. This special case is a
potentially interesting problem in its own right, which we call the Haar
Problem.

1 Introduction

The general adversary bound has proven to be a powerful concept in quantum
computing. Originally formulated as a lower bound on quantum query com-
plexity [1], it has been shown to be tight with respect to the quantum query
complexity of evaluating any function, and in fact is tight with respect to the
more general problem of state conversion [2]. The general adversary bound is
in some sense the culmination of a series of adversary methods [3,4]. While the
adversary method in its various forms has been useful in finding lower bounds
on quantum query complexity [5,6,7], the general adversary bound itself can be
difficult to apply, as the quantity for even simple, few-bit functions must usually
be calculated numerically [1,7].

One of the nicest properties of the general adversary bound is that it behaves
well under composition [2]. This fact has been used to lower bound the query
complexity of composed total functions, and to create optimal algorithms for
composed total functions [7]. In this work we extend one of the composition
results to partial boolean functions, and use it to obtain an upper bound on
query complexity by upper bounding the general adversary bound.

Generally, finding an upper bound on the general adversary bound is just as
difficult as finding an algorithm, as they are dual problems [2]. However, using
the composition property of the general adversary bound, given an algorithm for

� Full version can be found at http://arxiv.org/abs/1101.0797

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 557–568, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

558 S. Kimmel

a boolean function f composed d times, we upper bound the general adversary
bound of f . Due to the tightness of the general adversary bound and query
complexity, this procedure gives an upper bound on the query complexity of
f , but because it is nonconstructive, it doesn’t give any hint as to what the
corresponding algorithm for f might look like. The procedure a bit counter-
intuitive: we obtain information about an algorithm for a simpler function by
creating an algorithm for a more complicated function. This is similar in spirit
to the tensor-product trick, where an inequality between two terms is proved by
considering tensor powers of those terms1.

We describe a class of oracle problems called Constant-FaultDirect Trees

(introduced by Zhan et al. [8]), for which this method proves the existence of a
O(1) query algorithm, where the previous best known query complexity is poly-
nomial in the size of the problem. While this method does not give an explicit
algorithm, we show that a span program algorithm achieves this bound.

We show that a special case of Constant-Fault Direct Trees can be
solved in a single query using an algorithm based on the quantum Haar trans-
form. The quantum Haar transform has appeared as a subroutine in other al-
gorithms [9,10], and a 3-dimensional wavelet transform is the workhorse of an
algorithm due to Liu [11]. We describe a new problem, the Haar Problem,
that also can be solved with the quantum Haar transform. While the Haar

Problem requires only 1 quantum query, it requires Ω(log n) classical queries
(where the oracle is an n-bit function). The Haar Problem is somewhat like
period finding and may have interesting applications.

2 A Nonconstructive Upper Bound on Query Complexity

Our theorem for creating a nonconstructive upper bound on query complexity
relies on the tightness of the general adversary bound with respect to query com-
plexity, and the properties of the general adversary bound under composition.
The actual definition of the general adversary bound is not necessary for our
purposes, but can be found in [6].

Our theorem applies to boolean functions. f is boolean if f : S → {0, 1} with
S ⊆ {0, 1}n. Given a boolean function f and a natural number d, we define fd,
“f composed d times," recursively as fd = f ◦ (fd−1, . . . , fd−1), where f1 = f .

Now we can state the main theorem:

Theorem 1. Suppose we have a (possibly partial) boolean function f that is
composed d times, fd, and a quantum algorithm for fd that requires O(Jd)
queries. Then Q(f) = O(J), where Q(f) is the bounded-error quantum query
complexity of f .

(For background on bounded-error quantum query complexity and quantum al-
gorithms, see [3].) There are seemingly similar results in the literature; for exam-
ple, Reichardt proves in [12] that the query complexity of a function composed
1 See Terence Tao’s blog, What’s New “Tricks Wiki article: The tensor power trick,"

http://terrytao.wordpress.com/2008/08/25/tricks-wiki-article-the-tensor-product-
trick/

Quantum Adversary (Upper) Bound 559

d times, when raised to the 1/dth power, is equal to the adversary bound of the
function, in the limit that d goes to infinity. This result is meant to give under-
standing of the exact query complexity of a function, whereas our result is a tool
for upper bounding query complexity, possibly without gaining any knowledge
of the exact query complexity of the function.

One might think that Theorem 1 is useless because an algorithm for fd usually
comes from composing an algorithm for f , and one expects the query complexity
of the algorithm for fd to be at least Jd if J is the query complexity of the
algorithm for f .

Luckily for us, this is not always correct. If there is a quantum algorithm for f
that uses J queries, where J is not optimal (i.e. is larger than the true bounded
error quantum query complexity of f), then the number of queries used when
the algorithm is composed d times can be much less than Jd. If this is the case,
and if the non-optimal algorithm for f is the best known, Theorem 1 promises
the existence of an algorithm for f that uses fewer queries than the best known
algorithm, but, as Theorem 1 is nonconstructive, it gives no hint as to what the
algorithm looks like.

We need two lemmas to prove Theorem 1:

Lemma 1. (Based on Lee et al. [2]) For any boolean function f : S → {0, 1}
with S ⊆ {0, 1}n and natural number d,

ADV±(fd) ≥ (ADV±(f))d. (1)

The proof of this lemma can be found in the full version. Høyer et al. [1] prove
Lemma 1 for total boolean functions2, and the result is extended to more general
total functions in [2]. Our contribution is to extend the result to partial boolean
functions. While Theorem 1 still holds for total functions, the example we will
describe later in the paper requires it to hold for partial functions.

Lemma 2. (Lee, et al. [2]) For any function f : S → E, with S ∈ Dn, and E, D
finite sets, the bounded-error quantum query complexity of f , Q(f), satisfies

Q(f) = Θ(ADV±(f)). (2)

We now prove Theorem 1:

Proof. Given an algorithm for fd that requires O(Jd) queries, by Lemma 2,

ADV±(fd) = O(Jd). (3)

Combining Eq. (3) and Lemma 1, we have

(ADV±(f))d = O(Jd). (4)
2 While the statement of Theorem 11 in [1] seems to apply to partial functions, it is

mis-stated; their proof actually assumes total functions.

560 S. Kimmel

Raising both sides to the 1/dth power, we obtain

ADV±(f) = O(J). (5)

At this point, we have the critical upper bound on the general adversary bound
of f . Finally, using Lemma 2 again, we have

Q(f) = O(J). (6)

3 Example Where the General Adversary Upper Bound
Is Useful

In this section we will describe a function, called the 1-Fault Nand Tree,
for which Theorem 1 gives a better upper bound on query complexity than any
known quantum algorithm. The 1-Fault Nand Tree was proposed by Zhan et
al. [8] to obtain a superpolynomial speed-up for a boolean formula with a promise
on the inputs, and is a specific type of Constant-Fault Direct Tree, which
is mentioned in Section 1. We will first define a Nand Tree, and then explain
the promise of the 1-Fault Nand Tree.

The Nand Tree is a complete, binary tree of depth n, where each node is
assigned a bit value. The leaves are assigned arbitrary values, and any internal
node v is given the value nand(val(v1), val(v2)), where v1 and v2 are v’s children,
and val(vi) denotes the value of that node.

To evaluate the Nand Tree, one must find the value of the root given an ora-
cle for the values of the leaves. (The Nand Tree is equivalent to solving nand

n,
although the composition we will use for Theorem 1 is not the composition of the
nand function, but of the Nand Tree as a whole.) For arbitrary inputs, Farhi
et al. showed that there exists an optimal algorithm in the Hamiltonian model
to solve the Nand Tree in O(20.5n) time [13], and this was subsequently ex-
tended to a standard discrete algorithm with quantum query complexity O(20.5n)
[14,15]. Classically, the best algorithm requires O(20.753n) queries [16]. Here, we
will consider the 1-Fault Nand Tree, for which there is a promise on the
values of the inputs.

Definition 1. (1-Fault Nand Tree [8]) Consider a Nand Tree of depth n,
(as described above). Then to each node v, with child nodes v1 and v2, we assign
an integer κ(v) such that:

– κ(v) = 0 for leaf nodes.
– κ(v) = maxi κ(vi), if val(v1) = val(v2)
– Otherwise val(v1) �= val(v2). Let vi be the node such that val(vi) = 0. Then

κ(v) = 1 + κ(vi).

A tree satisfies the 1-fault condition if κ(v) ≤ 1 for any node v in the tree.

Notation: When val(v1) �= val(v2) we call the node v a fault. (Since nand(0, 1)
= 1, fault nodes must have value 1, although not all 1-valued nodes are faults.)

Quantum Adversary (Upper) Bound 561

The 1-fault condition is a limit on the amount and location of faults within
the tree. In a 1-Fault Nand Tree, if a path moving from a root to a leaf
encounters any fault node and then passes through the 0-valued child of the
fault node, there can be no further fault nodes on the path. An example of a
1-Fault Nand Tree is given in Figure 1.

v

v1 v2

Fig. 1. An example of a 1-Fault Nand Tree of depth 4. Fault nodes are highlighted
by a double circle. The node v is a fault since one of its children (v1) has value 0, and
one (v2) has value 1. Among v1 and its children, there are no further faults, as required
by the 1-fault condition. At v2, we can have faults below the 1-valued child of v2, but
there can be no faults below the 0-valued child.

Zhan et al. [8] propose a quantum algorithm for an n level 1-Fault Nand

Tree that requires O(n2) queries to an oracle for the leaves. However, when the
1-Fault Nand Tree is composed log n times, they apply their algorithm and
find it only requires O(n3) queries. (Here we see an example where the number of
queries required by an algorithm composed d times does not scale exponentially
in d, which is critical for applying Theorem 1.) By applying Theorem 1 to the
algorithm for the 1-Fault Nand Tree composed log n times, we find that an
upper bound on the query complexity of the 1-Fault Nand Tree is O(1). This
is a large improvement over O(n2) queries. Zhan et al. prove Ω(poly log n) is a
lower bound on the classical query complexity of 1-Fault Nand Trees. An
identical argument can be used to show that Constant-Fault Nand Trees

(from Definition 1, trees satisfying κ(v) ≤ c with c a constant) have query com-
plexity O(1).

In fact, Zhan et al. find algorithms for a broad range of trees, where instead
of nand, the evaluation tree is made up of a type of boolean function they call
a direct function. A direct function is a generalization of a monotonic boolean
function, and includes functions like majority, threshold, and their negations. For
the exact definition, which involves span programs, see [8]. Applying Theorem 1
to their algorithm for trees made of direct functions proves the existence of

562 S. Kimmel

O(1) query algorithms for Constant-Fault Direct Trees (a generalization
of Constant-Fault Nand Trees to trees composed of direct functions rather
than nand). The best quantum algorithm of Zhan et. al requires O(n2) queries,
and again they prove Ω(poly log n) is a lower bound on the classical query com-
plexity of Constant-Fault Direct Trees.

The structure of Constant-Fault Direct Trees can be quite complex,
and it is not obvious that there should be a O(1) query algorithm. Inspired
by the knowledge of the algorithm’s existence, thanks to Theorem 1, we found
a span program algorithm for Constant-Fault Direct Trees that requires
O(1) queries. In the next section we will briefly describe this algorithm. However,
as with many span program algorithms, it is hard to gain intuition about the
algorithm. Thus in later sections we will describe a quantum algorithm based
on the Haar transform that solves the 1-Fault Nand Tree in 1 query in the
special case that there is exactly one fault on every path from the root to a leaf,
and those faults all occur at the same level.

4 Quantum Algorithms for Constant-Fault Direct
Trees

4.1 Span Program Algorithm

Span programs are linear algebraic representations of boolean functions, which
have an intimate relationship with quantum algorithms. In particular, Reichardt
proves [12] that given a span program P for a function f , there is a function of
the span program, called the witness size, such that one can create a quantum
algorithm for f with query complexity Q(f) such that

Q(f) = O(witness size(P)) (7)

Thus, creating a span program for a function is equivalent to creating a quantum
query algorithm.

There have been many iterations of span program quantum algorithms, due
to Reichardt and others [2,12,7]. In [8], Zhan et al. create span programs for
direct boolean functions [8] using the span program formulation described in
Definition 2.1 in [12], one of the earliest versions (we will not go into the details
of span programs in this paper). Using the more recent advancements in span
program technology, we show here:

Theorem 2. Given an evaluation tree composed of the direct boolean function
f , with the promise that the tree satisfies the k-fault condition, (k a natural num-
ber), there is a quantum algorithm that evaluates the tree using O(wk) queries,
where w is a constant that depends on f . In particular, for a Constant-Fault

Direct Tree, (k a constant), the algorithm requires O(1) queries.

Properties of direct boolean functions and precise definitions for the k-fault
condition can be found in the full version, as well as the proof of Theorem 2.
The proof combines the properties of the witness size of direct boolean functions

Quantum Adversary (Upper) Bound 563

with a more current version of span program algorithms, due to Reichardt [12].
(For more details on direct boolean functions, see [8].)

Thus, while Theorem 1 promises the existence of O(1) query quantum algo-
rithms for Constant-Fault Direct Trees, Theorem 2 gives an explicit O(1)
query quantum algorithm for these problems.

4.2 Quantum Haar Transform Algorithm

In this section we will describe a quantum algorithm for solving the 1-Fault

Nand Tree in a single query when there is exactly one fault node in each
path from the root to a leaf, and all those faults occur at the same level, as in
Figure 2b. We call this problem the Haar Tree.

Let’s consider the values of the leaves on a Haar Tree. When there are no
faults in a Nand Tree, as in Figure 2a, then all even depth nodes have the
same value as the root, and all odd depth nodes have the opposite value. Since
faults can only occur at nodes with value 1 (since nand(0, 1) = 1), the level of
the tree containing faults must occur at even depth if the root has value 1 or at
odd depth if the root has value 0. Thus if all the faults are at height h (so their
depth is n − h), then the value of the root is parity(n − h + 1).

(a) Nand Tree with no faults (b) Nand Tree with one fault per
path

Fig. 2. Figure (a) shows a Nand Tree with no faults, and Figure (b) shows a Haar
Tree. In Figure (a), at each depth, all nodes have the same value, depending on the
parity of the level. In Figure (b), since the root is 0, the level of faults occurs at odd
depth. (Faults are double circled.) The first half of the leaves descending from a fault
node have one value, and the next half have the opposite value.

Now consider the leaves descending from a fault node v when there are no
further faults at any nodes descending from v (as in Figure 2b). If v is at height
h, then it has 2h leaves descending from it. Because one of v′s children has value
0, and one has value 1, the 2h−1 leaves descending from one child will all have
the same value, b, and the 2h−1 leaves descending from the other child will have

564 S. Kimmel

the value ¬b. For a Haar Tree, since we are promised all faults are at the same
height h, the values of the leaves will come in blocks of 2h, where within each
block, the first 2h−1 leaves will have one value, and the next 2h−1 leaves will
have the negation of the value in the first set of leaves.

We can now reformulate the Haar Tree outside of the context of boolean
evaluation trees. We define a new problem, the Haar Problem, to which the
Haar Tree reduces. For the Haar Problem, one is given access to an oracle
for a function x : {0, . . . , 2n − 1} → {0, 1}. We call the ith output of the oracle
xi. The function x is promised to have a certain form: there exists an integer
h∗ ∈ {1, . . . , n} and boolean variables bl for l ∈ {1, . . . , 2n−h∗} such that

xi =

{
bl, if 2h∗

(l − 1) ≤ i < 2h∗
(l − 1

2)
¬bl, if 2h∗

(l − 1
2) ≤ i < 2h∗

l.
(8)

See Figure 3 for an example of a Haar Problem oracle.

5 10 15 20 25 30
x

0.5

1

f�x�xi

i

Fig. 3. An example of an oracle function for the Haar Problem with n = 5 (so i
is an integer, 0 ≤ i < 32) and h = 2 (so the function is divided into blocks of length
22 = 4). We have emphasized the blocks by separating them using vertical lines. In
each block the first two outputs have value 1 and the next two have value 0, or vice
versa.

The Haar Problem is almost like period finding. We are promised that the
function is divided into blocks of length 2h∗

, and we need to find the length of
these blocks. But instead of the output being the same in each block, each block
has one degree of freedom: within the lth block, there is a choice of bl = 0 or
bl = 1, where the first half of the outputs have value bl, and second half have
value ¬bl.

Note that any oracle for the Haar Problem is also an oracle for the Haar

Tree; to solve the Haar Tree, simply solve the Haar Problem, and then
calculate parity(n − h∗ + 1).

The quantum algorithm for solving the Haar Problem requires making a
measurement in the Haar wavelet basis [17,18]. The Haar basis is based on the
following step-like function:

Quantum Adversary (Upper) Bound 565

ψ(t) =

⎧⎨⎩
1 if 0 ≤ t < 1/2
−1 if 1/2 ≤ t < 1
0 otherwise.

(9)

On the 2n dimensional Hilbert space, with standard basis states {|i〉}, i ∈
{0, . . . , 2n−1}, the (un-normalized) Haar basis consists of the states {|φ0〉, |ψh,l〉}:

|φ0〉 =
2n−1∑
j=0

|i〉, |ψh,l〉 =
2n−1∑
i=0

ψ(2−hi − (l − 1))|i〉 (10)

where h ∈ {1, . . . , n} and l ∈ {1, . . . , 2n−h}. Several Haar basis states for n = 3
are shown in Figure 4a.

0 1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0
�Φ0�

0 1 2 3 4 5 6 7
�1.0

�0.5

0.0

0.5

1.0
�Ψ30�

0 1 2 3 4 5 6 7
�1.0

�0.5

0.0

0.5

1.0
�Ψ21�

0 1 2 3 4 5 6 7
�1.0

�0.5

0.0

0.5

1.0
�Ψ11�

1

2 2

(a) Haar States

Standard basis states

A
m

p
lit

u
d
e

0 1 2 3 4 5 6 7
�1.0

�0.5

0.0

0.5

1.0
�Ξ f �x

(b) Example of |ξx〉

Fig. 4. Figure (a) shows four of the eight un-normalized Haar basis states for n = 3.
The x-axis depicts the standard basis states {|0〉, |1〉, . . . , |7〉}, while the y-axis shows the
un-normalized amplitude corresponding to each basis state. The line graphs represent
the underlying functions ψ(2−hi − (l − 1)) that give the states their form, while the
amplitudes themselves are represented by dots. Figure (b) shows |ξx〉 for x with n = 3,
h∗ = 2, b0 = 1, and b1 = 0, plotted as a function of the non-normalized amplitude of
each standard basis state.

We suppose that we have access to a phase-flip oracle Ox such that Ox|i〉 =
(−1)xi |i〉 where {xi} satisfy the promise of the Haar Problem oracle. Then
the following algorithm solves the Haar Problem in one query:

566 S. Kimmel

(1) Create an equal superposition of standard basis states: |ξ〉 =
1√
2n

2n−1∑
j=0

|i〉

(2) Apply the phase flip oracle, giving |ξx〉 =
1√
2n

2n−1∑
j=0

(−1)xi |i〉

(3) Measure |ξx〉 in the Haar basis. If the state |ψh,l〉 is measured, return h.

It is especially easy to see why the algorithm works graphically. Suppose we are
given an oracle x with n = 3 and h∗ = 2. Then |ξx〉 (the state in step (2) of
the algorithm) is a superposition of all standard basis states, with amplitudes
as shown, for example, in Figure 4b. One can see by comparing the graphs in
Figure 4a and Figure 4b that the amplitudes completely destructively interfere
for the inner product of |ξx〉 and any Haar basis states except {|ψ2,l〉} (since
here h∗ = 2).

Classically, the Haar Problem can be solved in Θ̃(log n) queries, where Θ̃
indicates tightness up to log log factors. The proof of this fact, as well as a
description of a subset of inputs on which the 1-Fault Nand Tree becomes
classically easy, can be found in the full version.

4.3 Extensions and Related Problems

There are other oracle problems whose algorithms naturally involve the quantum
Haar transform. In the Haar Problem, the oracle has the property that when
the phase flip oracle operation is applied to an equal superposition of standard
basis states, the outcome is a superposition of non-overlapping Haar basis states.
All Haar basis states in this superposition have the form |ψh∗,l〉. One can design
a new oracle such that when the the phase flip operation is applied, the outcome
is still a superposition of non-overlapping Haar basis states, but now all Haar
basis states in the superposition share a new common feature. For example, they
could all have the form |ψhj ,l〉 where hj is promised to either be even or odd. In
this case, the goal would be to determine whether {hj} are even or odd, and a
single quantum query in the Haar basis will give the answer.

This new promise problem (determining whether {hj} are even or odd) is
equivalent to solving a 1-Fault Nand Tree where each path from the root
to the leaves contains exactly one fault, but those faults are now not all on the
same level.

The Haar Problem is closely related to the Parity Problem introduced
by Bernstein and Vazirani [19]. Let x : {0, 1}n → {0, 1} such that xi = i · k
where k ∈ {0, 1}n. Then the Parity Problem is: given an oracle for x, find k.
The Parity Problem can also be solved in a single quantum query.

Notice that any oracle that satisfies the promise required by the Parity

Problem also satisfies the promise required by the Haar Problem (although
the converse is not true). The algorithm for the Parity Problem is similar
to the quantum Haar transform algorithm described in Section 4.2, except in

Quantum Adversary (Upper) Bound 567

step (3), one measures in the Hadamard basis rather than the Haar basis, and
obtains the output k. It is not hard to show that the Bernstein and Vazirani
algorithm can also be used to solve the Haar Problem; the value of h∗ is
the location of the first non-zero bit of the outcome of the Parity Problem,
counting from least significant to most significant bits. While both the Haar

and Parity Problems are similar, the Haar Problem has a less stringent
promise, and is slightly more natural, when viewed as finding the period of a
function with some freedom within each period.

5 Conclusions and Future Work

We describe a method to upper bound the quantum query complexity of boolean
functions using the general adversary bound. Using this method, we show that
Constant-Fault Direct Trees can always be solved in O(1) queries. Fur-
thermore, we create an algorithm with a matching upper bound using improved
span program technology. For the more restricted case of the Haar Tree we
give a single query algorithm using a reduction to the Haar Problem. The
Haar Problem is a new oracle problem that can be solved in a single quantum
query using the quantum Haar transform, but which requires Ω(log n) classical
queries to solve. This problem seems to fall somewhere in between the Parity

Problem of Bernstein and Vazirani [19] and period finding. Period finding has
been shown to have useful applications, most notably in factoring [20]. Thus
we hope that a new application for the Haar Problem or the quantum Haar
transform can be found. In particular, the fact that the quantum Haar transform
can be used find the length of blocks in the Haar Problem, while ignoring the
extra degree of freedom in each block, seems like a useful property.

We would like to find other examples where Theorem 1 is useful, although
we suspect that Constant-Fault Direct Trees are a somewhat unique case.
Our span program algorithm suggests that Theorem 1 will not be useful for
composed functions where the base function is created using span programs.
However, there could be other types of quantum walk algorithms, for example,
to which Theorem 1 might be applied. In any case, this work suggests that new
ways of upper bounding the general adversary bound could give us a second
window into quantum query complexity beyond algorithms.

Acknowledgements. Thanks to Rajat Mittal for generously explaining the de-
tails of the composition theorem for the general adversary bound. Thanks to the
anonymous FOCS reviewer for pointing out problems with the previous version,
and also for encouraging me to find a constant query span program algorithm.
Thanks to Bohua Zhan, Avinatan Hassidim, Eddie Farhi, Andy Lutomirski, Paul
Hess, and Scott Aaronson for helpful discussions. This work was supported by
NSF Grant No. DGE-0801525, IGERT: Interdisciplinary Quantum Information
Science and Engineering and by the U.S. Department of Energy under cooper-
ative research agreement Contract Number DE-FG02-05ER41360.

568 S. Kimmel

References

1. Hoyer, P., Lee, T., Spalek, R.: Negative weights make adversaries stronger. In:
Proc. 39th ACM STOC 2007, pp. 526–535 (2007)

2. Lee, T., Mittal, R., Reichardt, B., Spalek, R., Szegedy, M.: Quantum query com-
plexity of state conversion. In: Proc. 52nd IEEE FOCS 2011, pp. 344–353 (2011)

3. Ambainis, A.: Quantum lower bounds by quantum arguments. In: Proc. 32nd ACM
STOC 2000, pp. 636–643 (2000)

4. Ambainis, A.: Polynomial degree vs. quantum query complexity. J. Comput. Syst.
Sci. 72(2), 220–238 (2006)

5. Ambainis, A., Magnin, L., Roetteler, M., Roland, J.: Symmetry-assisted adversaries
for quantum state generation. In: Proc. 24th IEEE CCC 2011, pp. 167–177 (2011)

6. Hoyer, Neerbek, Shi: Quantum complexities of ordered searching, sorting, and el-
ement distinctness. Algorithmica 34, 429–448 (2008)

7. Reichardt, B.W., Spalek, R.: Span-program-based quantum algorithm for evaluat-
ing formulas. In: Proc. 40th ACM STOC 2008, pp. 103–112 (2008)

8. Zhan, B., Kimmel, S., Hassidim, A.: Super-polynomial quantum speed-ups for
boolean evaluation trees with hidden structure. In: Proc. 3rd ACM ITCS 2012,
pp. 249–265 (2012)

9. Park, S., Bae, J., Kwon, Y.: Wavelet quantum search algorithm with partial infor-
mation. Chaos, Solitons and Fractals 32(4), 1371–1374 (2007)

10. Hoyer, P.: Quantum ordered searching. Abstract from Talk at QIP (2001) (unpub-
lished)

11. Liu, Y.K.: Quantum algorithms using the curvelet transform. In: Proc. 41st ACM
STOC 2009, pp. 391–400 (2009)

12. Reichardt, B.W.: Span programs and quantum query complexity: The general ad-
versary bound is nearly tight for every boolean function. In: Proc. 50th IEEE FOCS
2009, pp. 544–551 (2009)

13. Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the hamiltonian
nand tree. Theory of Computing 4(1), 169–190 (2008)

14. Childs, A.M., Cleve, R., Jordan, S.P., Yeung, D.: Discrete-query quantum algo-
rithm for NAND trees. Theory of Computing 5(1), 119–123 (2009)

15. Reichardt, B.W.: Reflections for quantum query algorithms. In: Proc. 22nd ACM-
SIAM SODA 2011, pp. 560–569 (2011)

16. Saks, M., Wigderson, A.: Probabilistic boolean decision trees and the complexity
of evaluating game trees. In: Proc. 27th IEEE FOCS 1986, pp. 29–38 (1986)

17. Haar, A.: On the Theory of Orthogonal Function Systems. Mathematische An-
nalen 69(3), 331–371 (1910)

18. Nievergelt, Y.: Wavelets Made Easy. Birkhäuser, Washington (1999)
19. Bernstein, E., Vazirani, U.: Quantum complexity theory. In: Proc. 25th ACM

STOC 1993, pp. 11–20 (1993)
20. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-

toring. In: Proc. 35th IEEE FOCS 1994, pp. 124–134. IEEE Computer Society
(1994)

Solving PLANAR k-TERMINAL CUT in O(nc
√

k) Time

Philip N. Klein1,� and Dániel Marx2,��

1 Computer Science Department,Brown University,Providence, RI
klein@brown.edu

2 Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA
SZTAKI), Budapest, Hungary

dmarx@cs.bme.hu

Abstract. The problem PLANAR k-TERMINAL CUT is as follows: given an undi-
rected planar graph with edge-costs and with k vertices designated as terminals,
find a minimum-cost set of edges whose removal pairwise separates the terminals.
It was known that the complexity of this problem is O(n2k−4 logn). We show that

there is a constant c such that the complexity is O(nc
√

k). This matches a recent
lower bound of Marx showing that the c

√
k term in the exponent is best possible

up to the constant c (assuming the Exponential Time Hypothesis).

1 Introduction

MULTIWAY CUT (also called MULTITERMINAL CUT) is a generalization of the clas-
sical minimum s− t cut problem: given a undirected graph G with edge-costs and
given a subset T of k vertices specified as terminals, the task is to find a minimum-
cost set of edges whose deletion pairwise separates the k terminal vertices from each
other. The study of the computational complexity of this problem was initiated almost
thirty years ago in a widely circulated paper by Dahlhaus, Johnson, Papadimitriou, Sey-
mour, and Yannakakis (eventually published [4,5]). They showed the problem is NP-
hard even for k = 3, and they gave a 2-approximation algorithm, which has since been
improved [1,3,8].

They showed that if k can be arbitrarily large, even the restriction to planar graphs
is NP-hard. Therefore, for each positive integer k, they consider the problem PLANAR

k-TERMINAL CUT and give an algorithm with a running time of O((4k)kn2k−1 logn).
This bound was since improved by roughly a factor of n3, to O(k4kn2k−4 logn), by
Hartvigsen [6].1

We show that the dependence on k of the exponent of n can be improved from 2k−4
to c

√
k for a constant c. In particular, we give an algorithm with running time dk ·nc

√
k

for constants c,d. This shows that the complexity of PLANAR k-TERMINAL CUT is
O(nc

√
k). A companion paper [9] shows that this is best possible (up to the particular

constant c), assuming the Exponential Time Hypothesis [7].

� Supported in part by National Science Foundation Grant CCF-0964037.
�� Research supported by the European Research Council (ERC) grant “PARAMTIGHT: Param-

eterized complexity and the search for tight complexity results,” reference 280152.
1 The much simpler algorithm of [10] is incorrect; see [2].

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 569–580, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

570 P.N. Klein and D. Marx

Dahlhaus et al. observed that a solution of PLANAR MULTIWAY CUT in the dual
graph is a planar graph with O(k) branch vertices connected by paths. Thus an algorithm
can guess the branch vertices of this planar graph in the dual in time nO(k) and then
find min-cost paths between them, subject to constraints about enclosing terminals–
constraints that are not readily incorporated into shortest-path computation. Dahlhaus
et al. achieve their result by exploiting some structural properties of these paths. Our
approach is very different: Our algorithm computes a min Steiner tree on the terminals
in the dual graph and cuts the plane open along this tree, thereby forming a cycle on
which all the terminals lie, and adds zero-cost edges inside the cycle We prove that there
is an optimum solution that uses O(k) zero-cost edges; thus the solution after cutting
the tree open can still be described by a planar graph having O(k) vertices and therefore
treewidth O(

√
k). Since all the terminals lie on a cycle, the topological constraint that

certain paths enclose certain terminals can be completely expressed by requiring that
the paths cross the cycle in a certain order. Therefore dynamic programming on a tree
decomposition suffices to find the solution in the cut-open graph.

2 Preliminaries

Let G be an undirected graph. For a set X of vertices, δG(X) denotes the set of edges uv
such that u∈ X ,v �∈ X . Such a set is called a cut. A cut is simple if both X and V (G)−X
induce connected components. For nodes u,v in G, a set S of edges separates u and v in
G if every u-to-v path includes an edge of S.

Fact 2.1 S separates u,v iff there is a cut δG(X) such that u ∈ X ,v �∈ X and δG(X)⊆ S;
moreover, the cut can be chosen to be simple.

We assume basic knowledge of the definitions of planar embedded graph, faces, and
the planar dual. Let G be a connected planar embedded graph, and let G∗ be its dual.

Fact 2.2 Edge-set S forms a simple cut in G iff S forms a simple cycle in G∗.

Definition 2.3. For nodes v1,v2 of G, edge-set S dual-separates v1 and v2 in G if S does
not include any edge incident to v1 or v2, and, for a face f1 incident to v1 and a face f2

incident to v2, S separates f1 and f2 in the planar dual G∗.

Lemma 2.4. If S dual-separates v1 and v2 in G then G contains a simple cycle of edges
in S that dual-separates v1 and v2.

Proof. For i = 1,2, let fi be a face of G incident to vi. By Fact 2.1, S contains the edges
of a simple cut in the planar dual G∗ that separates f1 and f2 in G∗. By Fact 2.2, the
edges of this simple cut form a simple cycle in G. ��

Definition 2.5. For edge-set S, let H∗ be the subgraph of G∗ consisting of S. Each face
f of H∗ corresponds to a collection Xf of faces of G∗ (those embedded in f). We say f
encloses the faces in Xf . For x a vertex or edge of H∗, we say f encloses x if f encloses
all the faces that have x on their boundary. If f is not the infinite face, we consider the
faces and vertices enclosed by f to be also enclosed by H∗.

Solving PLANAR k-TERMINAL CUT in O(nc
√

k) Time 571

3 Reducing the Problem to the Biconnected Case

For a pair (G,T) where G is an undirected graph and T is a subset of vertices (the
terminals), an T -mcut (a multiway cut with respect to terminal set T) is a set S of
edges such that G− S contains no path between distinct terminals. For disjoint subsets
X ,Y ⊂ T , we define an (X ,Y)-mcut to be a set S of edges such that G− S contains no
path between vertices of X and no path from X to Y .

For a planar embedded graph G, we say a pair (X ,Y) of sets of vertices is
biconnectivity-inducing in G if every minimum-cost (X ,Y)-mcut forms a biconnected
subgraph of G∗.

Fix a planar embedded graph Gin with positive edge-costs and n vertices. We define
two problems:
• Problem A: given a set T of k vertices, find a minimum-cost T -mcut.
• Problem B: given a pair (X ,Y) of vertex-sets where k = |X |+ |Y |, find an (X ,Y)-
mcut S such that if (X ,Y) is a biconnectivity-inducing pair, then S is guaranteed to be a
minimum-cost (X ,Y)-mcut.
We show that Problem A can be solved by 2k calls to an algorithm for Problem B, plus
additional O(3k) time. Let a(T) be the minimum cost of a multiway cut for terminal set
T . Let b(X ,Y) be a function such that

• if (X ,Y) is 2-connectivity-inducing, then b(X ,Y) is the minimum cost of an (X ,Y)-
mcut, and

• otherwise, b(X ,Y) is the cost of some (X ,Y)-mcut.
We use a dynamic program based on the recurrence relation

Lemma 3.1. a(T) = min/0 �=X⊆T b(X ,T −X)+ a(T −X)

Proof. It is trivial that the left-hand side is at most the right hand side: the (X ,T −X)-
mcut and the multiway cut of T −X together gives a multiway cut for T . Our goal is to
show that the left-hand side is at least the right-hand side.

We generalize the notion of a multiway cut as follows. Let X1, . . . ,Xp be a partition
of T (p is arbitrary). An (X1, . . . ,Xp)-mcut is a tuple (S1, . . . ,Sp−1) of mutually disjoint
edge-sets of G such that, for i = 1, . . . ,k− 1, G− Si contains no path between distinct
nodes of Xi and no path from a node in Xi to a node in Xi+1 ∪Xi+2 ∪ ·· · ∪Xp. If Xp is
singleton then S1∪·· ·∪Sp−1 is a multiway cut separating all terminals in T .

The cost of a tuple (S1, . . . ,Sp) is the sum of costs of the edges. We say a partition
X1, . . . ,Xp is perfect if |Xp| = 1 and the minimum-cost of an (X1, . . . ,Xp)-mcut equals
a(T). Observe that a perfect partition always exist: in particular, (T −{t},{t}) is a
perfect partition for every t ∈ T .

Among all perfect partitions of T , let X̂1, . . . , X̂p be the finest, and let (Ŝ1, . . . , Ŝp−1)
be a minimum (X̂1, . . . , X̂p)-mcut. We claim that (X̂1, X̂2 ∪ ·· · ∪ X̂p) is 2-connectivity-
inducing. Indeed, if (X̂1, X̂2∪·· ·∪ X̂p) were not 2-connectivity-inducing—if there were
a minimum-cost solution S that was not 2-connected in the dual—the partition X̂1, . . . , X̂p

could be refined by breaking X̂i into two parts according to the 2-connected components
of S in the dual.

As (Ŝ1, . . . , Ŝp−1) has cost a(T), we have that a(T) is at least the sum of the cost of
an (X̂1, X̂2∪·· ·∪ X̂p)-mcut and the cost of a multiway cut for X̂2∪·· ·∪ X̂p. By the claim

572 P.N. Klein and D. Marx

Fig. 1. Illustrates the reduction. The lines are the edges in the planar dual of
a minimum-cost (X̂ ,Ŷ)-mcut. The disks represent terminals. The thin lines
represent Ŝ, and the small disks are the terminals enclosed by Ŝ.

Fig. 2. Each terminal is replaced by a cycle. The size of the cycle is
the original degree of the terminal, and the the edges forming the cycle
all have cost M.

in the previous paragraph, (X̂1, X̂2 ∪ ·· · ∪ X̂p) is 2-connectivity-inducing, thus the first
term is at least b(X̂1, X̂2 ∪ ·· · ∪ X̂p). The second term is at least a(X̂2 ∪ ·· · ∪ X̂p). Thus
with the choice X = X̂1 shows that the left-hand side is at least the right-hand side. ��

4 Algorithm for Problem B

Here is pseudocode for the algorithm for Problem B.

Procedure BSOLVE(Gin,X ,Y):
input: planar graph Gin, pair of disjoint terminal sets (X ,Y)
output: (X ,Y)-mcut that is min-cost if (X ,Y) is biconnectivity-inducing.

Let M be a number greater than the sum of all costs
0 For each terminal t,
1 replace t by a size-degree(t) cycle of edges of cost M

let t∗ (called the rep of t) denote the face thus formed
Let Ĝin be the resulting graph and let Ĝ∗

in denote its planar dual
2 In Ĝ∗

in, find min-cost Steiner tree T ∗ connecting all terminal reps
3 Replace each edge of T ∗ with two copies, and replace each node v on T ∗

with degree(v) copies connected by a star of d− 1 zero-cost edges
4 Let G1 denote the planar embedded graph derived in this way from Ĝ∗

in
5 Let C(G1) be the cycle in G1 formed by copies of edges of T ∗

Label terminal reps by 1,2, . . . ,k in clockwise order about C(G1)
6 return the minimum-cost set in
{RE(H,M,G1) : (H,M) an X-valid representative topology, |M| ≤ β k}

Line 1 is illustrated in Fig. 2. Line 3 is illustrated in Figures 3 and 4. In Line 6, β is a
constant to be determined.

Line 6 uses the notion of topology and the procedure RE(H,M,G1). We will presently
define this notion. The basic idea underlying the procedure BSOLVE is to enumerate
topologies and, for each, find the minimum-cost solution “consistent” with that topol-
ogy.
• Of course, the procedure cannot enumerate all topologies. We will define what it
means for topologies to be isomorphic; the procedure will enumerate representatives of
distinct isomorphism classes.

Solving PLANAR k-TERMINAL CUT in O(nc
√

k) Time 573

Fig. 3. Figure shows part of graph before and after duplicating
tree edges (thick edges). Node v on tree is replaced by degree(v)
copies connected by a zero-cost star. Graph edges not in tree
remain incident to copies of v so as to preserve the embedding.

*

Fig. 4. Cutting along T ∗ and adding new (dotted) zero-cost edges between copies of the vertices

• Furthermore, we will show it suffices that the procedure consider only representative
topologies of small size, and that there are not too many such topologies.
• We describe a property, X-validity, that captures what a topology must do in order to
correspond to an (X ,Y)-mcut. The procedure considers only valid representative topolo-
gies.
• In Line 6, the procedure RE is invoked on each valid small representative topology.
We would like to say that RE finds a minimum-cost topology in G1 that is isomorphic
to the valid representative topology. This is not necessarily true; instead, the procedure
finds a valid solution in G1 whose cost is no greater than the minimum cost of a topology
in G1 isomorphic to the representative.

Definition 4.1. A label structure is a planar embedded graph H containing
• a simple cycle C(H) that strictly encloses no nodes, and
• a subset of nodes of C(H) labeled 1,2, . . . ,k in clockwise order along the cycle

(the terminal reps, short for representatives).
Note: The graph G1 with the cycle C(G1) in Lines 4-5 is a label structure.
Let H be a label structure and let M be a subset of edges. We say M is a feasible solution
for H if no edges of M are incident to labeled nodes. For a subset X ⊂ {1, . . . ,k}, we
say M is X-valid for H if M dual-separates every element of X from every other labeled
node in H.
Let M1=edges strictly enclosed by C(H) and M2 =M−M1. We say (H,M) is a topology
in H if, for i= 1,2, the edges of Mi form a forest with leaves on C(H). The size of (H,M)
is |V (H)|.

Definition 4.2. For a topology (G1,M1), where G1 is the graph obtained in Line 4, the
solution induced in Gin is the set of edges of M1 that are in Gin (including edges of T ∗

with copies in M1).

The definition of dual-separates implies the following lemma.

Lemma 4.3. An X-valid topology induces an (X ,{1, . . . ,k}−X)-mcut.

574 P.N. Klein and D. Marx

Definition 4.4. Suppose that, for i = 1,2, (Gi,Mi) is a topology. An isomorphism be-
tween (H1,M1) and (H2,M2) is a homeomorphism between the subgraph M1 of H1 and
the subgraph M2 of H2 that maps interior edges to interior edges and that preserves the
order on the cycle of {endpoints of interior edges}∪{labeled nodes}.

Lemma 4.5. Isomorphism between topologies preserves X-validity.

We can bound the number of representative topologies considered in Line 6 by using
Catalan numbers:

Lemma 4.6. The number of isomorphism classes of topologies of size at most s is at
most αs, and representatives of these classes can be enumerated in O(αs) time, where
α is a universal constant.

This bound depends on the size of the topologies considered; the following theorem,
proved in Section 5, states that only small ones need be considered.

Theorem 4.7. If (X ,Y) is biconnectivity-inducing then there is an X-valid topology
(G,M) of size at most β k that is isomorphic to a topology in G1 whose cost is at most
that of an optimal (X ,Y)-mcut in Gin, where β is a universal constant.

The following theorem is proved in Section 6.

Theorem 4.8. There is a procedure RE(H,M,G1) that returns a feasible solution M1

with the following properties:
1) If M is X-valid for H then M1 is X-valid for G1.
2) If there is a topology (G1,M′

1) isomorphic to (H,M) then M1 is no more costly than
M′

1.

3) The time required is at most nγ
√

|V (H)| for a constants γ .

Finally, putting these results together, we obtain

Theorem 4.9. BSOLVE(Gin,X ,Y) finds an (X ,Y)-mcut in Gin that is optimal if (X ,Y)

is biconnectivity-inducing, and the procedure takes at most αβ knc
√

β k time.

Proof. By Property 1 of Theorem 4.8, BSOLVE returns an X-valid topology of G1,
which by Lemma 4.3 induces an (X ,Y)-mcut. We choose the constant β in Line 6 ac-
cording to Theorem 4.7. Therefore, there exists some small X-valid topology (G,M),
among those considered in Line 6, that is isomorphic to a topology (G1,M′

1) in G1 that
induces an optimal (X ,Y)-mcut. Therefore, by Property 2 of Theorem 4.8, RE(G,M,G1)
returns a feasible solution M1 for G1 whose cost is at most that of M′

1 and therefore at
most the optimal cost of an (X ,Y)-mcut. The running time is dominated by having to

call RE at most αβ k times (Lemma 4.6), each taking time nγ
√

β k. ��

This theorem plus the reduction to the biconnected case yields our main result, an algo-
rithm for planar k-terminal cut that requires O(dknc

√
k) time.

Solving PLANAR k-TERMINAL CUT in O(nc
√

k) Time 575

5 Proof of Theorem 4.7

Suppose (X ,Y) is biconnectivity-inducing in Gin, and let S⊂E(Gin) be a minimum-cost
(X ,Y)-cut in Gin, breaking ties by minimizing the number of edges not in T ∗. Because
of the transformation of Line 3 of BSOLVE, the edges of S alone do not dual-separate
terminals in G1, so S is not X-valid for G1: some zero-cost edges are needed. For a
set A of external edges of G1, define cr(A) as follows: if A contains edges incident to
different copies of the same node of G∗

in, include in cr(A) the internal edges forming a
simple path between the different copies. We refer to the edges in cr(A) as crossings.

Lemma 5.1. For any set A of external edges of G1, if A induces the solution S in Gin

then A∪ cr(A) is X-valid for G1.

Among all sets A that induce S, let AS be one that minimizes |cr(A)|. Without loss of
generality, we assume that AS does not include more than one copy of an edge of S. If G1

contained a cycle consisting of edges of AS then G∗
in would contain a cycle C consisting

of edges of S such that C did not enclose any terminal, so S would not be minimum. Thus
AS is a forest in G1. A similar argument shows that all the leaves of AS are endpoints
of cr(AS). Thus (G1,AS ∪ cr(AS)) is a topology in G1, and it is X-valid by Lemma 5.1.
Moreover, since the number of leaves is ≤ 2|cr(AS)|, at most 2|cr(AS)| nodes have three
or more incident edges in AS. This implies that there is a topology (H,M) isomorphic to
(G1,AS∪cr(AS)) of size at most 3|cr(AS)|. We next show |cr(AS)| ≤ 24k, which implies
Theorem 4.7.

Define a branchpoint of a graph to be a node of degree three or greater. We refer
to the edges of S as red edges, and to the subgraph of Ĝ∗

in they form as the red graph.
We refer to its faces as red faces. The red degree of a node of Ĝ∗

in is the number of
incident red edges. We use spliced red graph to refer to the graph obtained from the
red graph by splicing out degree-two vertices. By minimality of S, each face of the red
graph encloses at least one terminal. Euler’s formula then implies e ≤ 3(k− 2), so the
sum of degrees of branchpoints of the red graph is at most 6(k− 2).

Recall that T ∗ is a minimum Steiner tree in Ĝ∗
in, which we call the blue graph. (The

red and the blue graphs can share edges.) Each leaf is a terminal rep, so there are k
leaves, so the spliced blue graph has at most 2k− 3 edges, so the sum of degrees of
branchpoints in the unspliced blue graph is at most 2(2k− 3).

For a singular red face R, define a blue ear of R to be a path B of blue edges such that
B connects two nodes on the boundary of a singular red face and each internal node of
B is strictly enclosed by R and has blue degree two.

We prove the bound on the number of crossings by a charging scheme, where we
charge the crossings to the red branch nodes, blue branch nodes, terminals, and blue
ears. We already have a bound of O(k) on the total degree of the branch nodes. The
following lemma gives a similar bound on the blue ears.

Lemma 5.2. The number of blue ears of singular red faces is at most 14k.

The proof is illustrated in Figure 5. Let R be a red face, and let R′ be the graph obtained
from R by including the blue ears of R. Let R′′ be the graph obtained from R′ by splicing
out nodes of blue degree two that are strictly enclosed by R. Consider the planar dual

576 P.N. Klein and D. Marx

Fig. 5. Proof of Theorem 5.2. On the left is a singular red face (the box) enclosing some blue
edges. In the middle is the subgraph of the dual induced by the enclosed faces; it is a tree. As
illustrated by the figure on the right, every tree node of degree zero or two is a face that either
encloses a terminal or has a red branchpoint on its boundary.

of R′′, and let GR denote the subgraph of the planar dual consisting of the edges of blue
ears. Because every edge of GR is a cut-edge, we infer that GR is a tree.

A face of R′′ is a red-blue face if its boundary consists of a red path and a blue path,
and is a red-blue-red-blue face if it consists of two red and two blue paths (alternating).
The leaves of GR are red-blue faces in R′′, and the degree-two nodes of GR are red-blue-
red-blue faces.

Proposition 5.3. Every red-blue face either encloses a terminal or has a red branch-
point on its boundary.

Proof. Suppose PQ is the boundary of a red-blue face, where P is red and Q is blue. If
len(P)< len(Q) then Q could be replaced in the Steiner tree by P, reducing the length,
a contradiction. Therefore len(Q) ≤ len(P). If PQ does not enclose a terminal and P
does not have a branchpoint, replacing P by Q in the optimal solution yields an optimal
solution with fewer non-blue edges, a contradiction. ��

Proposition 5.4. The only red-blue-red-blue faces are those that enclose terminals and
those that have red branchpoints on their boundary.

Fig. 6. Illustrates the proof of Lemma 5.4. The horizontal line segments are
red, as is the dashed curve, and the vertical line segments are blue. The solid
circle represents a terminal in the same red face as the red-blue-red-blue face.

p

s

r

q

Proof. Suppose F is a red-blue-red-blue face of R′′ that does not enclose a terminal and
does not have a red branchpoint on its boundary. See Figure 6. The boundary of F is
pqrs where p and r are blue and q and s are red, and p divides R′′ into a part enclosing
F and a part enclosing a terminal.

If len(p) ≤ len(q), then replacing q with p in the red path yields a solution that
is no more expensive but has fewer non-blue edges, a contradiction. Thus len(p) >
len(q). Similarly len(p)> len(s). Removing the path p from the blue graph yields two
disconnected components. If the one not containing r contains the intersection of p with
s, the graph obtained from the blue graph by replacing p with s is a cheaper solution, a
contradiction. The other case is similar. ��

Solving PLANAR k-TERMINAL CUT in O(nc
√

k) Time 577

P1

P2
u1u2

e

Fig. 7. There are two crossings, u1u2 and e. P1 includes no nodes of multiplicity
greater than two and no nodes of red degree greater than two. Therefore the path P1
can be replaced by the dotted line and the two crossings eliminated.

The proof of Lemma 5.2 now follows from the fact that GR is a tree and from
Prop. 5.4 and Prop. 5.3, which bound the number of leaves and degree-two nodes in
terms of terminals and red branchpoints.

To complete the proof of the theorem, we now bound the crossings by charging to
branchnodes, blue ears, and terminals.

Recall that G∗
1 is obtained from Ĝ∗

in by cutting along the edges of T ∗, so every edge
of T ∗ is represented in G∗

1 by two copies, and every node u of T ∗ is represented by a
number of copies equal to the degree of u in T ∗. The multiplicity of one such copy is the
number of copies, i.e. the degree of u in T ∗. If a copy has multiplicity greater than two
then u is a branchpoint of the blue graph. The red degree of one such copy is defined
to be u’s red degree in Ĝ∗

in (so here we may count red edges incident to u that are no
longer incident to a given copy of u). Let u1u2 ∈ cr(AS). In the following, for each case,
we assume the previous cases do not hold. By definition of cr(AS), there are red edges
incident to u1 and u2. For i = 1,2, let Pi be a maximal path, starting with ui, of edges in
G∗

1 that are both red and blue, such that every node of Pi except possibly the last has red
degree two and multiplicity two.

Case 1: P1 or P2 ends at a branchpoint of the red graph. In this case we charge the
crossing to the red branchpoint. The number of crossings charged to such a branchpoint
is at most the degree of the branchpoint, so at most 6k crossings are charged in this way.

Case 2: P1 or P2 ends at a node of multiplicity greater than two. In this case, we
charge the crossing to the branchpoint of the blue graph. The number of crossings
charged to a branchpoint w by this rule is at most the degree of w in the blue graph.
Thus the total number of such crossings is at most 4k.

Case 3: P1 or P2 ends at a node with no incident red edge in G∗
1. Since the red edges

form a two-connected subgraph of Ĝ∗
in, the last node of Pi has red degree two or more.

It follows that in G∗
1 some e ∈ cr(AS) is incident to the last node of Pi. However, since

every node in P1 and in P2 has multiplicity at most two, the configuration is as shown in
in Figure 7, and the two crossings can be eliminated, a contradiction.

Case 4: For i = 1 and i = 2, Pi ends at a node v of red degree two and multiplicity
two, but the second red edge incident to v and the second blue edge incident to v differ.
Let u be the node of Ĝ∗

in whose copies are u1 and u2. Since the red edges form a two-
connected subgraph of Ĝ∗

in, the neighbors of u in this subgraph are connected in the
subgraph by a path Q that avoids u. Let Q′ be the cycle obtained from Q by adding the
red edges incident to u. (See Figure 8.) For i = 1,2, let P′

i be the path obtained from Pi

by appending the second red edge incident to the end of Pi.
Because all the nodes of P1 ∪P2 have red degree two, Q′ includes all the edges cor-

responding to those in P′
1 ∪P′

2. Let bi be the blue edge of G∗
1 incident to the end of

Pi, and let b′i be the corresponding edge of Ĝ∗
in. The cycle Q′ shows that b′1 and b′2 are

in different faces f1 and f2 of the red graph. Because the nodes of P1 ∪P2 have red

578 P.N. Klein and D. Marx

Fig. 8. Case 4. On left, at end of Pi, red path and
blue path diverge. Red edge incident to the end
of Pi differs from blue edge bi incident to the end
of Pi. Right figure shows Ĝ∗

in: a path Q joining
the red neighbors of u, forming a cycle Q′. Edges
b′1 and b′2 are in different but neighboring red
faces.

P1

P2
u1u2

b1

b2

b1'

b2'

Q'

degree two, the edges of P′
1∪P′

2 belong to the boundaries of f1 and f2. The faces f1 and
f2 cannot both be plural faces, else the edges between them could be removed while
maintaining feasibility. Assume without loss of generality that f2 is a singular face. Let
B be a maximal path of blue edges starting with b′2 such that every node except the last
has blue degree two and is strictly internal to f2.

Subcase a: The last node of B has blue degree one. That last node is a terminal. We
charge the crossing to the terminal. There are at most k crossings thus charged.

Subcase b: The last node of B has blue degree greater than two. We charge the
crossing to this blue branchpoint. The number of crossings charged to this branchpoint
is at most its degree, so the total number of crossings thus charged is at most 4k.

Subcase c: B forms a path between two nodes on the boundary of f2. In this case, we
charge the crossing to the blue ear. The number of such ears is bounded by Lemma 5.2.

6 Realization

In this section, we prove Theorem 4.8. Given a topology, we try to find a realization of
minimum cost in a label structure:

Definition 6.1. Let (H,M) be a topology of some label structure H, and let G be an-
other label structure. A realization of (H,M) in G consists of a mapping φv : V (M)→
V (G) and a mapping φe : E(M)→ 2E(G) such that

• φv preserves the order among {endpoints of interior edges}∪{labeled nodes} on
the cycles C(H) and C(G).

• For every interior edge xy ∈ E(M), φe(xy) is an interior edge between φv(x) and
φv(y).

• For every exterior edge xy∈ E(M), φe(xy) is a path of exterior edges between φv(x)
and φv(y).
The cost of a realization is ∑xy∈E(M) cost(φe(xy)).

Lemma 6.2. If (H1,M1) and (H2,M2) are isomorphic topologies and (H1,M1) has a
realization of cost R in label structure G, then so does (H2,M2).

The following lemma shows that a realization of a valid topology is indeed a solution:

Lemma 6.3. Let (H,M) be an X-valid topology. Let (φv,φe) be a realization of (H,M)
in a label structure G having cost R. Then there is an X-valid set S ⊆ E(G) of weight at
most R that is X-valid in G.

Solving PLANAR k-TERMINAL CUT in O(nc
√

k) Time 579

Proof. Let S be the union of the edge sets of the path φe(uv) for every edge uv ∈ M. It
is clear that the total cost of the edge set S is at most R, the cost of the realization. We
claim that S is X-valid in G. Let i ∈ X be a labeled node and let j �= i be some other
labeled node. By the definition of valid topology and Lemma 2.4, there is a cycle C1 in
M dual-separating i and j. Replacing each interior edge uv ∈ C1 with the edge φe(uv)
and each exterior edge uv ∈C1 with the path φe(uv), we can obtain a closed walk C2 of
G. We claim that C2 dual-separates i and j in G∗.

Let R1
i j and R2

i j be the segment of C(H) (resp., C(G)) between labeled nodes i and
j in clockwise direction. Let I1 be the interior edges I1 with exactly one endpoint on
R1

i j. We claim that |I1| is odd. As C1 is a simple cycle that dual-separates i and j, there
is a dual path Q1 (i.e., a sequence of faces and edges) in the exterior of H from a face
of i to a face of j such that Q1 contains exactly one edge of C1. Let R1 be the set of
vertices that can be reached from R1

i j −{i, j} on exterior edges without using an edge
of Q1 or going through i or j. By planarity, R1 does not contain any vertex of the cycle
of H outside R1

i j. A simple parity argument shows that the number of edges in the cycle
C1 with exactly one endpoint in R1 is even. As C1 does not go through i and j (by the
definition of topology), every such edge is either in Q1 (there is exactly one such edge)
or it is an interior edge with exactly one endpoint in R1

i j. Thus there are exactly |I1|+ 1
such edges and hence |I1| is odd.

Let I2 ⊆ E(G) contain those edges of S used by C2 that have exactly one endpoint
in R2

i j. Observe that |I1|= |I2|: by the definition of realization, the order on the cycle is
preserved and hence each edge of I1 is mapped to a distinct edge of I2. It also follows
that C2 uses each edge of I2 only once. Suppose that C2 does not dual-separate i and j:
there is a dual path Q2 in the exterior of G from a face of i to a face of j. Let R2 be the
set of vertices that can be reached from R2

i j−{i, j} on exterior edges of G without using
an edge of Q2 or going through i or j. As C2 does not go through i and j (by definition
of dual-separate) and disjoint from Q2, only the edges in I2 have exactly one endpoint
in R2. We have observed that C2 uses each such edge exactly once and |I2|= |I1| is odd,
a contradiction. ��

In light of Lemma 6.3, all we need is to find minimum-cost realizations of valid topolo-
gies. We will use the following embedding result, whose proof uses standard dynamic
programming techniques on tree decompositions.

Theorem 6.4. Let D be a directed graph, U a set of elements, and functions cv : V (D)×
U → Z+ ∪{∞}, ce : V (D)×V(D)×U ×U → Z+ ∪{∞}. In time |U |O(tw(D)), we can
find a mapping φ : V (D)→U that minimizes

∑
v∈V (D)

cv(v,φ(v))+ ∑
(u,v)∈E(D)

ce(u,v,φ(u),φ(v)).

Lemma 6.5. Given a topology (H,M) and another label structure G, a minimum-cost

realization of (H,M) in G can be found in time |V (G)|O(
√

|V (M)|).

Proof. Let D be the directed graph obtained as an arbitrary orientation of the subgraph
of H spanned by M. For every edge −→xy of D arising from an interior edge of H, we
define ce(x,y,x′,y′) to be 0 if x′y′ is an interior edge of G and ∞ otherwise. If −→xy arises

580 P.N. Klein and D. Marx

from an exterior edge, then ce(x,y,x′,y′) is the cost of the shortest path from x′ to y′ in
G containing only exterior edges. We introduce some further directed edges as follows.
If x,y are two vertices that are endpoints of interior edges of H such that x is between
terminal vertices i and i+1 on the cycle and y is the next vertex (in clockwise direction)
with this property, then we introduce a directed edge −→xy and define ce(x,y,x′,y′) to be
0 if terminal i, vertex x′, vertex y′, terminal i+ 1 follow each other in this order (in
clockwise direction) and ∞ otherwise.

If x ∈V (H) (resp., x′ ∈ V (G)) is an endpoint of an interior edge of H (resp., G) and
it is between i and i+1 (resp., i′ and i′+1) on the cycle in clockwise direction, then we
define cv(x,x′) = 0 if i = i′ and cv(x,x′) = ∞ otherwise. If x ∈ V (H) is not an endpoint
of an interior vertex, then we set cv(x,x′) = 0 for every x′ ∈V (G).

Let us use the algorithm of Theorem 6.4 to find a mapping φv. As D is planar, its

treewidth is O(
√
|V (M)|). Therefore, the running time of this step is |V (G)|O(

√
|V (M)|).

For every interior edge xy ∈ E(M), we define φe(xy) to be the interior edge φv(x)φv(y),
while if xy ∈ E(M) is exterior, then we define it to be a shortest path between φv(x) and
φv(y) using only the exterior edges of G. It is easy to verify that (φv,φe) is a realization
of (H,M) in G and its cost is the cost of the mapping φ . Furthermore, every realization
can be transformed into a mapping with the same cost. Thus the realization obtained
this way is indeed a minimum-cost realization. ��
To prove Theorem 4.8, the procedure RE(G,M,G1) uses the algorithm of Lemma 6.5
to find a minimum-cost realization of (G,M) in G1. By Lemma 6.3, the result is X-
valid. The second statement of Theorem 4.8 follows from Lemma 6.2. The running
time follows from the statement of Lemma 6.5.

References
1. Calinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for multiway

cut. In: STOC 1998, pp. 48–52 (1998)
2. Cheung, K.K., Harvey, K.: Revisiting a simple algorithm for the planar multiterminal cut

problem. Operations Research Letters 38(4), 334–336 (2010)
3. Cunningham, W., Tang, L.: Optimal 3-Terminal Cuts and Linear Programming. In:

Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp.
114–125. Springer, Heidelberg (1999)

4. Dahlhaus, E., Johnson, D., Papadimitriou, C., Seymour, P., Yannakakis, M.: The complexity
of multiway cuts. In: STOC 1992, pp. 241–251. ACM (1992)

5. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The com-
plexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

6. Hartvigsen, D.: The planar multiterminal cut problem. Discrete Applied Mathematics 85(3),
203–222 (1998)

7. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity?
J. Comput. System Sci. 63(4), 512–530 (2001)

8. Karger, D.R., Klein, P.N., Stein, C., Thorup, M., Young, N.E.: Rounding algorithms for a
geometric embedding of minimum multiway cut. In: STOC 1999, pp. 668–678 (1999)

9. Marx, D.: A tight lower bound for planar multiway cut with fixed number of terminals.
In: Czumaj, A., et al. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 677–688. Springer,
Heidelberg (2012)

10. Yeh, W.-C.: A simple algorithm for the planar multiway cut problem. J. Algorithms 39(1),
68–77 (2001)

Fixed-Parameter Tractability of Multicut

in Directed Acyclic Graphs�

Stefan Kratsch1,��, Marcin Pilipczuk2,� � �, Micha�l Pilipczuk3,†,
and Magnus Wahlström4

1 Utrecht University, Utrecht, the Netherlands
s.kratsch@uu.nl

2 University of Warsaw, Warsaw, Poland
malcin@mimuw.edu.pl

3 University of Bergen, Bergen, Norway
michal.pilipczuk@ii.uib.no

4 Max-Planck-Institute for Informatics, Saarbrücken, Germany
wahl@mpi-inf.mpg.de

Abstract. The Multicut problem, given a graph G, a set of terminal
pairs T = {(si, ti) | 1 ≤ i ≤ r} and an integer p, asks whether one can find
a cutset consisting of at most p non-terminal vertices that separates all
the terminal pairs, i.e., after removing the cutset, ti is not reachable from
si for each 1 ≤ i ≤ r. The fixed-parameter tractability of Multicut in
undirected graphs, parameterized by the size of the cutset only, has been
recently proven by Marx and Razgon [2] and, independently, by Bousquet
et al. [3], after resisting attacks as a long-standing open problem. In this
paper we prove that Multicut is fixed-parameter tractable on directed
acyclic graphs, when parameterized both by the size of the cutset and the
number of terminal pairs. We complement this result by showing that
this is implausible for parameterization by the size of the cutset only, as
this version of the problem remains W [1]-hard.

1 Introduction

Parameterized complexity is an approach for tackling hard problems by design-
ing algorithms that perform robustly, when the input instance is in some sense
simple; its difficulty is measured by an integer that is additionally appended
to the input, called the parameter . Formally, we say that a problem is fixed-
parameter tractable (FPT), if it can be solved by an algorithm that runs in time
f(k)nc for n being the length of the input and k being the parameter, where f
is some computable function and c is a constant independent of the parameter.

� The full version of this paper is available online [1].
�� Supported by the Netherlands Organization for Scientific Research (N.W.O.),

project “KERNELS: Combinatorial Analysis of Data Reduction”.
� � � Partially supported by NCN grant N206567140 and Foundation for Polish Science.

† Partially supported by European Research Council (ERC) grant “Rigorous Theory
of Preprocessing”, reference 267959.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 581–593, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

582 S. Kratsch et al.

The search for fixed-parameter algorithms resulted in the introduction of a
number of new algorithmic techniques, and gave fresh insight into the structure
of many classes of problems. One family that received a lot of attention recently
is the so-called graph cut problems, where the goal is to make the graph satisfy a
global separation requirement by deleting as few edges or vertices as possible (de-
pending on the variant). Graph cut problems in the context of fixed-parameter
tractability were to our knowledge first introduced explicitly in the seminal work
of Marx [4], where it was proved that (i) Multiway Cut (separate all terminals
from each other by a cutset of size at most p) in undirected graphs is FPT when
parameterized by the size of the cutset; (ii) Multicut in undirected graphs
is FPT when parameterized by both the size of the cutset and the number of
terminal pairs. Fixed-parameter tractability of Multicut parameterized by the
size of the cutset only was left open by Marx [4]; resolved much later (see below).

The probably most fruitful contribution of the work of Marx [4] is the con-
cept of important separators , which proved to be a tool almost perfectly suited to
capturing the bounded-in-parameter character of sensible cutsets. The technique
proved to be extremely robust and serves as the key ingredient in a number of
FPT algorithms [2,4,5,6,7,8,9,10,11]. In particular, the fixed-parameter tractabil-
ity of Skew Multicut in directed acyclic graphs, obtained via a simple appli-
cation of important separators, enabled the first FPT algorithm for Directed

Feedback Vertex Set [5], resolving another long-standing open problem.
However, important separators have a drawback in that not all graph cut

problems admit solutions with “sensible” cutsets in the required sense. This is
particularly true in directed graphs, where, with the exception of the aforemen-
tioned Skew Multicut problem in DAGs, for a long time few fixed-parameter
tractable graph cut problems were known; in fact, up until very recently it was
open whether Multiway Cut in directed graphs admits an FPT algorithm
even in the restricted case of two terminals. The same complication arises in the
undirected Multicut problem parameterized by the size of the cutset.

After a long struggle, Multicut was shown to be FPT by Marx and
Razgon [2] and, independently, by Bousquet et al. [3]. The key component in the
algorithm of Marx and Razgon [2] is the technique of shadow removal, which, in
some sense, serves to make the solutions to cut problems more well-behaved. This
was adapted to the directed case by Chitnis et al. [11], who proved that Multi-

way Cut, parameterized by the size of the cutset, is fixed-parameter tractable
for an arbitrary number of terminals, by a simple and elegant application of
the shadow removal technique. This gives hope that, in general, shadow removal
may be helpful for the application of important separators to the directed world.

As for the directed Multicut problem, it was shown by Marx and Razgon [2]
to beW [1]-hard when parameterized only by the size of the cutset, but otherwise
had unknown status, even for a constant number of terminals in a DAG. We
note that this case is known to be NP-hard and APX-hard [12].

Our Results. The main result of this paper is the proof of fixed-parameter
tractability of the Multicut in DAGs problem, formally defined as follows:

Fixed-Parameter tractability of multicut in DAGs 583

Multicut in DAGs Parameter: p+ r
Input: Directed acyclic graph G, set of terminal pairs T = {(si, ti) | 1 ≤
i ≤ r}, si, ti ∈ V (G) for 1 ≤ i ≤ r, and an integer p.
Question: Does there exist a set Z of at most p non-terminal vertices of G,
such that for any 1 ≤ i ≤ r the terminal ti is not reachable from si in G\Z?

Theorem 1. Multicut in DAGs can be solved in O∗(2O(r2p+r2O(p))) time.

Note, that throughout the paper we use O∗-notation to suppress polynomial fac-
tors. Note also that we focus on vertex cuts; it is well known that in the directed
acyclic setting the arc- and vertex-deletion variants are equivalent (cf. [11]).

Our algorithm makes use of the shadow removal technique introduced by
Marx and Razgon [2], adjusted to the directed setting by Chitnis et al. [11], as
well as the basic important separators toolbox that can be found in [11]. We
remark that the shadow removal is but one of a number of ingredients of our
approach: in essence, the algorithm combines the shadow removal technique with
a degree reduction for the sources in order to carefully prepare the structure of
the instance for a simplifying branching step.

We complement the main result with two lower bounds. First, we show that
the dependency on r in the exponent is probably unavoidable.1

Theorem 2 (♣). Multicut in DAGs, parameterized by the size of the cutset
only, is W [1]-hard.

Thus, we complete the picture of parameterized complexity of Multicut in

DAGs. We hope that it is a step towards fully understanding the parameterized
complexity of Multicut in general directed graphs.

Second, we establish NP-completeness of Skew Multicut, a special case of
Multicut in DAGs where we are given d sources (si)

d
i=1 and d sinks (ti)

d
i=1,

and the set of terminal pairs is defined as T = {(si, tj) : 1 ≤ i ≤ j ≤ d}.
Recall that the FPT algorithm for Skew Multicut is the core subroutine of
the algorithm for Directed Feedback Vertex Set of Chen et al. [5].

Theorem 3 (♣). Skew Multicut is NP-complete even in the restricted case
of two sinks and two sources.

2 Preliminaries

For a directed graph G, by V (G) and E(G) we denote its vertex- and arc-set,
respectively. For a vertex v ∈ V (G), we define its in-neighbourhood N−

G (v) =
{u : (u, v) ∈ E(G)} and out-neighbourhood N+

G (v) = {u : (v, u) ∈ E(G)}; these
definitions are extended to sets X ⊆ V (G) by N−

G (X) = (
⋃

v∈X N−
G (v)) \ X

and N+
G (X) = (

⋃
v∈X N+

G (v)) \X . The in-degree and out-degree of v are defined

as |N−
G (v)| and |N+

G (v)|, respectively. In this paper we consider simple directed

1 Proofs of statements marked with ♣ are deferred to the full version of the paper [1].

584 S. Kratsch et al.

graphs only; if at any point a modification of the graph results in a multiple arc,
we delete all copies of the arc except for one. By Grev we denote the graph G
with all the arcs reversed, i.e., Grev = (V (G), {(v, u) : (u, v) ∈ E(G)}).

A path in G is a sequence of pairwise different vertices P = (v1, v2, . . . , vd)
such that (vi, vi+1) ∈ E(G) for any 1 ≤ i < d. If v1 is the first vertex of the path
P and vd is the last vertex, we say that P is a v1vd-path. We extend this notion
to sets of vertices: if v1 ∈ X and vd ∈ Y for some X,Y ⊆ V (G), then P is a XY -
path as well. For a path P = (v1, v2, v3, . . . , vd) the vertices v2, v3, . . . , vd−1 are
the internal vertices of P . The set of internal vertices of a path P is the interior
of P . We say that a vertex v is reachable from a vertex u in G if there exists a uv-
path in G. As the considered digraphs are simple, each path P = (v1, v2, . . . , vd)
has a unique first arc (v1, v2) and a unique last arc (vd−1, vd).

Let (G, T , p) be a Multicut in DAGs instance with a set of r terminal pairs
T = {(si, ti) : 1 ≤ i ≤ r}. We call the terminals si source terminals and the
terminals ti sink terminals. We let T s = {si : 1 ≤ i ≤ r}, T t = {ti : 1 ≤ i ≤ r}
and T = T s ∪ T t. By an easy reduction, we may assume that all terminals
are pairwise distinct and that N−

G (si) = N+
G (ti) = ∅ for all 1 ≤ i ≤ r. In our

algorithm, the set of terminal pairs T is never modified, and neither in-neighbors
of a source nor out-neighbors of a sink are added.

Fix a topological order ≤τ of G. For any sets X,Y ⊆ V (G), we may order the
vertices of X and Y with respect to ≤τ , and compareX and Y lexicographically;
we refer to this order on subsets of V (G) as the lexicographical order.

A set Z ⊆ V (G) is called a multicut in (G, T , p), if Z contains no terminals,
but for each 1 ≤ i ≤ r, ti is not reachable from si in G \ Z. Given a Multicut

in DAGs instance I = (G, T , p) a multicut Z is called a solution if |Z| ≤ p. A
solution Z is called a lex-min solution if Z is lexicographically minimum solution
in I among solutions of minimum possible size.

For v ∈ V (G), by S(G, v) we denote set of source terminals si for which
there exists a siv-path in G. For a set S ⊆ T s by V (G,S) we denote the set of
nonterminal vertices v for which S(G, v) = S.

2.1 Important Separators and Shadows

In the rest of this section we recall the notion of important separators by Marx [4],
adjusted to the directed case by Chitnis et al. [11], as well as the shadow removal
technique of Marx and Razgon [2] and Chitnis et al. [11].

Definition 4 (separator, [11], Definition 2.2). Let G be a directed graph
with terminals T ⊆ V (G). Given two disjoint non-empty sets X,Y ⊆ V (G), we
call a set Z ⊆ V (G) an X − Y separator if (i) Z ∩ T = ∅, (ii) Z ∩ (X ∪ Y) = ∅,
(iii) there is no path from X to Y in G \ Z. An X − Y separator Z is called
minimal if no proper subset of Z is a X − Y separator.

By cutG(X,Y) we denote the size of a minimum X − Y separator in G;
cutG(X,Y) = ∞ if G contains an arc going directly from X to Y . By Menger’s
theorem, cutG(X,Y) equals the maximum possible size of a family of XY -paths
with pairwise disjoint interiors.

Fixed-Parameter tractability of multicut in DAGs 585

Definition 5 (important separator, [11], Definition 4.1). Let G be a di-
rected graph with terminals T ⊆ V (G) and let X,Y ⊆ V (G) be two disjoint
non-empty sets. Let Z and Z ′ be two X − Y separators. We say that Z ′ is be-
hind Z if any vertex reachable from X in G \ Z is also reachable from X in
G\Z ′. A minimal X−Y separator is an important separator if no other X−Y
separator Z ′ satisfies |Z ′| ≤ |Z| while being also behind Z.

Lemma 6 ([11], Lemma B.4). Let G be a directed graph with terminals T ⊆
V (G). For two disjoint non-empty sets X,Y ⊆ V (G), there exists exactly one
minimum size important X − Y separator.

Definition 7 (closest mincut). Let G be a directed graph with terminals T ⊆
V (G). For two disjoint non-empty sets X,Y ⊆ V (G), the unique minimum size
important X − Y separator is called the X − Y mincut closest to Y . The X − Y
mincut closest to X is the Y −X mincut closest to X in Grev.

Lemma 8 (♣). Let G be a directed graph with terminals T ⊆ V (G) and let
X,Y ⊆ V (G) be two disjoint non-empty sets. Let B be the unique minimum size
important X−Y separator, that is, the X−Y mincut closest to Y , and let v ∈ B
be an arbitrary vertex. Construct a graph G′ from G as follows: delete v from G
and add an arc (x,w) for each x ∈ X and w ∈ N+

G (v) \X ′, where X ′ is the set
of vertices reachable from X in G \B. Then the size of any X − Y separator in
G′ is strictly larger than |B|.

We use the technique of shadows [2,11] to identify vertices separated from all
sources in a given Multicut in DAGs instance. We note that we do not use the
full power of the shadow removal technique in directed graphs: the delicate part
of the result of Chitnis et al. [11] is to remove forward and backward shadows
at once; in our work we need to remove only one type of the shadows.

Definition 9 (source shadow). Let (G, T , p) be a Multicut in DAGs in-
stance and Z ⊆ V (G) be a subset of nonterminals in G. We say that v ∈ V (G)
is in source shadow of Z if Z is a T s − v separator.

Lemma 10 (derandomized random sampling for source shadows, ♣).
There is an algorithm that, given a Multicut in DAGs instance (G, T , p),
produces in time O∗(22

O(p)

) a family A of size 22
O(p)

log |V (G)| of subsets of
nonterminals of G such that if (G, T , p) is a YES instance and Z is the lex-min
solution to (G, T , p), then there exists A ∈ A such that A∩Z = ∅ and all vertices
of source shadows of Z in G are contained in A.

3 The Algorithm

3.1 Potential Function and Simple Operations

Our algorithm consists of a number of branching steps. To measure the progress
of the algorithm, we introduce the following potential function.

586 S. Kratsch et al.

Definition 11 (potential). Given a Multicut in DAGs instance I =
(G, T , p), we define its potential φ(I) as φ(I) = (r + 1)p−

∑r
i=1 cutG(si, ti).

Observe, that if I = (G, T , p) is a Multicut in DAGs instance, in which
cut(si, ti) > p for some (si, ti) ∈ T , then we can immediately conclude that I is
a NO instance. Therefore, w.l.o.g. we can henceforth assume that cut(si, ti) ≤ p
for all (si, ti) ∈ T in all the appearing instances of Multicut in DAGs.

In many places we perform the following simple operations on Multicut in

DAGs instances (G, T , p). We formalize their properties in subsequent lemmata.

Definition 12 (killing a vertex). For a Multicut in DAGs instance
(G, T , p) and a nonterminal vertex v of G, by killing the vertex v we mean
the following operation: we delete the vertex v and decrease p by one.

Definition 13 (bypassing a vertex). For a Multicut in DAGs instance
(G, T , p) and a nonterminal vertex v of G, by bypassing the vertex v we mean
the following operation: we delete the vertex v and for each in-neighbour v− of
v and each out-neighbour v+ of v we add an arc (v−, v+).

Lemma 14 (♣). Let I ′ = (G′, T , p− 1) be obtained from Multicut in DAGs

instance I = (G, T , p) by killing a vertex v. Then I ′ is a YES instance if and
only if I is a YES instance that admits a solution that contains v. Moreover,
φ(I ′) < φ(I).

Lemma 15 (♣). Let I ′ = (G′, T , p) be obtained from Multicut in DAGs

instance I = (G, T , p) by bypassing a vertex v. Then:

1. any multicut in I ′ is a multicut in I as well;
2. any multicut in I that does not contain v is a multicut in I ′ as well;
3. S(G, u) = S(G′, u) for any u ∈ V (G′) = V (G) \ {v};
4. φ(I ′) ≤ φ(I).

We note that bypassing a vertex corresponds to the torso operation of Chitnis
et al. [11] and, if we perform a series of bypass operations, the result does not
depend on their order.

3.2 Degree Reduction

In this section we introduce the second — apart from the source shadow reduc-
tion in Lemma 10 — main tool used in the algorithm. In an instance (G, T , p),
let Bi be the si− ti mincut closest to si and let Z be a solution. If we know that
a vti-path survives in G \Z for some v ∈ Bi, we may add an arc (v, ti) and then
bypass the vertex v, strictly increasing the value cutG(si, ti) (and thus decreas-
ing the potential) by Lemma 8. Therefore, we can branch: we either guess the
pair (i, v), or guess that none such exist; in the latter branch we do not decrease
potential but instead we may modify the set of arcs incident to the sources to
get some structure, as formalized in the following definition.

Fixed-Parameter tractability of multicut in DAGs 587

Definition 16 (degree-reduced graph). For a Multicut in DAGs instance
(G, T , p) the degree-reduced graph G∗ is a graph constructed as follows. For
1 ≤ i ≤ r, let Bi be the si−ti mincut closest to si. We start with V (G∗) = V (G),
E(G∗) = E(G \ T s) and then, for each 1 ≤ i ≤ r, we add an arc (si, v) for all
v ∈ Bi and for all v ∈

⋃
1≤i′≤r Bi′ for which si ∈ S(G, v) but v is not reachable

from Bi in G.

The following two lemmata formalize the properties of the degree-reduced graph
and the aforementioned branching step. Recall that we assume that each vertex
si (ti) has in- (out-) degree zero.

Lemma 17 (properties of the degree-reduced graph,♣). For any Mul-

ticut in DAGs instance I = (G, T , p) and the degree-reduced graph G∗ of I,
the following holds:

1. |N+
G∗(T s)| ≤ rp.

2. for each 1 ≤ i ≤ r, Bi is the si − ti mincut closest to si in G∗.
3. φ(I ′) = φ(I), where I ′ = (G∗, T , p).
4. Z ⊆ V (G) is a multicut in (G∗, T) if and only if Z is a multicut in (G, T)

satisfying the following property: for each 1 ≤ i ≤ r, for each v ∈ Bi, the
vertex v is either in Z or Z is an v− ti separator; in particular, I ′ is a YES
instance if and only if I is a YES instance that admits a solution satisfying
the above property.

5. for each v ∈ V (G) we have S(G∗, v) ⊆ S(G, v); moreover, if (si, v) is an arc
in G∗ for some 1 ≤ i ≤ r then S(G∗, v) = S(G, v).

Lemma 18 (♣). There exists an algorithm that, given a Multicut in DAGs

instance I = (G, T , p), in polynomial time generates a sequence of instances
(Ij = (Gj , Tj , pj))dj=1 satisfying the following properties. Let I0 = (G∗, T , p);

1. if Z is a multicut Z in Ij for some 0 ≤ j ≤ d, then Z ⊆ V (G) and Z is a
multicut in I too;

2. for any multicut Z in I, there exists 0 ≤ j ≤ d such that Z is a multicut in
Ij too;

3. for each 1 ≤ j ≤ d, pj = p, Tj = T and φ(Ij) < φ(I);
4. d ≤ rp.

3.3 Overview on the Branching Step

In order to prove Theorem 1, we show the following lemma that encapsulates a
single branching step of the algorithm.

Lemma 19. There exists an algorithm that, given a Multicut in DAGs in-

stance I = (G, T , p) with |T | = r, in time O∗(2r+2O(p)

) either correctly con-
cludes that I is a NO instance, or computes a sequence of instances (Ij =
(Gj , Tj , pj))dj=1 such that:

1. I is a YES instance if and only if at least one instance Ij is a YES instance;

588 S. Kratsch et al.

2. for each 1 ≤ j ≤ d, V (Gj) ⊆ V (G), pj ≤ p, Tj = T and φ(Ij) < φ(I);
3. d ≤ 4 · 2r+2O(p)

rp log |V (G)|.

The algorithm of Theorem 1 applies Lemma 19 and solves the output instances

recursively; the time bound follows from inequality logk n ≤ 2k
3/2

no(1).
In rough overview of the proof of Lemma 19, we describe a sequence of steps

where in each step, either the potential of the instance is decreased or more
structure is forced onto the instance. For example, consider Lemma 18. The
result is a branching into polynomially many branches, where in every branch
but one the potential strictly decreases, and in the remaining branch, the degrees
of the source terminals are bounded. Thus we may treat this step as “creating”
a degree-reduced instance.

In somewhat more detail, let Z be the lex-min solution to I. We guess a
set S ⊆ T s such that there is some v ∈ Z with S(G, v) = S, but no v′ ∈ Z
with S(G, v′) � S; bypass any vertex u with S(G, u) � S. By appropriately
combining degree reduction with shadow removal, we may further assume that no
vertex in V (G,S) is in source-shadow of Z, and that the sources S have bounded
degree. Consider now the first vertex v ∈ V (G,S) under ≤τ (if any) which has
its set of seen sources modified by Z, i.e., v ∈ V (G,S) \ Z, S(G \ Z, v) � S,
and v is ≤τ -minimal among all such vertices. Let w be an in-neighbour of v.
The important observation is that since S(G,w) is by assumption not modified
by Z, every such vertex w must be either a source or deleted. Since v is not
in source shadow of Z, there is an arc (s, v) in G for some s ∈ S, and by the
degree reduction, there is only a bounded number of such vertices. Thus, if any
vertex is modified by Z in this sense, then we may find one by branching on the
out-neighbours of S, decreasing the potential.

Otherwise, we know that if v ∈ V (G,S), then either v ∈ Z or S(G\Z, v) = S.
Thus, we may “flatten” the graph, by making every v ∈ V (G,S) a direct out-
neighbour of every s ∈ S. By further degree reduction, we can now identify a
polynomially sized set out of which at least one vertex must be deleted.

3.4 Branchings and Reductions

We now proceed with the formal proof of Lemma 19. The proof contains a
sequence of branching rules (when we generate a number of subcases, some of
them already ready to output as one instance Ij), or reduction rules (when we
reduce the graph without changing the answer).

If the input instance I is YES instance, by Z we denote its lex-min solution.
Whenever we perform a branching or reduction step, in the new instance we
consider the topological order that is induced by the old one; all the reductions
and branchings add arcs only directed from vertices smaller in ≤τ to bigger.
This also ensures that during the course of the algorithm all the directed graphs
in the instances are acyclic.

We start with the obvious rule that was already mentioned in Section 3. Then,
we roughly localize one vertex of Z.

Fixed-Parameter tractability of multicut in DAGs 589

Reduction rule 1. If cutG(si, ti) > p (in particular, if (si, ti) ∈ E(G)) for
some 1 ≤ i ≤ r, conclude that I is a NO instance.

Branching rule 2. Branch into 2r − 1 subcases, labeled by nonempty sets S ⊆
T s. In the case labeled S we assume that Z contains a vertex v with S(G, v) = S,
but no vertex v′ with S(G, v′) being a proper subset of S.

As Z is a lex-min solution (in case of I being a YES instance), Z cannot contain
any vertex v with S(G, v) = ∅. In each branch we can bypass some vertices.

Reduction rule 3. In each subcase, as long as there exists a nonterminal vertex
u ∈ V (G) with S(G, u) � S bypass u. Let (G1, T , p) be the reduced instance.

By Lemma 15, an application of the above rule cannot turn a NO instance into a
YES instance. Moreover, in the branch where S is guessed correctly, Z remains
the lex-min solution to (G1, T , p). By Lemma 15, φ((G1, T , p)) ≤ φ(I).

We now apply the reduction of source degrees.

Branching rule 4. In each subcase, let S be its label and (G1, T , p) be the in-
stance. Invoke Lemma 18 on the instance (G1, T , p). Output all instances Ij
for 1 ≤ j ≤ d as part of the output instances in Lemma 19. Keep the instance
I0 for further analysis in this subcase and denote I0 = (G2, T , p); G2 is the
degree-reduced graph of G1.

Let us summarize what Lemma 18 implies on the outcome of Branching 4.
We output at most 2rrp instances, and keep one instance for further analy-
sis in each branch. Each output instance has strictly decreased potential, while
φ((G2, T , p)) ≤ φ(G1, T , p)). If I is a NO instance, all the generated instances —
both the output and kept ones — are NO instances. If I is a YES instance, then
it is possible that all the output instances are NO instances only if in the branch
where the set S is guessed correctly, the solution Z is a solution to (G2, T , p) as
well. Moreover, as any solution to (G2, T , p) is a solution to I as well by Lemma
17, in this case Z is the lex-min solution to (G2, T , p).

Let us now investigate more deeply the structure of the kept instances.

Lemma 20 (♣). In a branch, let S be its label, (G1, T , p) the instance on which
Lemma 18 is invoked and (G2, T , p) the kept instance. For any v ∈ V (G1) =
V (G2) with S(G, v) = S, we have S(G1, v) = S and S(G2, v) ∈ {∅, S}.

Recall that if I is a YES instance and all instances output so far are NO in-
stances, then in some subcase S the set Z is the lex-min solution to (G2, T , p).
In this case Z does not contain any vertex from V (G2, ∅) and we can remove
these vertices, as they are not contained in any siti-path for any 1 ≤ i ≤ r.

Reduction rule 5. In each branch, let S be its label and (G2, T , p) the kept
instance. As long as there exists a nonterminal vertex v ∈ V (G2) with S(G2, v) =
∅, delete v. Denote the output instance by (G3, T , p).

Reduction 5 does not interfere with any siti-paths, thus φ((G
3, T , p)) = φ((G2, T , p)).

Again, if I is a NO instance, all instances (G3, T , p) are NO instances as well, and

590 S. Kratsch et al.

if I is a YES instance, but all output instances produced so far are NO instances,
Z is the lex-min solution to (G3, T , p) in some branch S. Moreover, in G3 each
source has out-degree at most rp and there is no vertex v with S(G3, v) � S
(note that Reduction 5 does not change reachability of a vertex from a fixed
source). We apply the source shadow reduction to (G3, T , p).
Branching rule 6. In each branch, let S be its label, and (G3, T , p) be the
remaining instance. Invoke Lemma 10 on (G3, T , p), obtaining a family AS.
Branch into |AS | subcases, labeled by pairs (S,A) for A ∈ AS . In each sub-
case, obtain a graph (G4, T , p) by bypassing (in arbitrary order) all vertices of
A \N+

G3(T
s).

Note that the graphG4 does not depend on the order in which we bypass vertices
ofA\N+

G3(T s). By Lemma 15, bypassing some vertices cannot turn a NO instance
into a YES instance. Moreover, by Lemma 10, if (G3, T , p) is a YES instance and
Z is the lex-min solution to (G3, T , p), then there exists A ∈ AS that contains all
vertices of source shadows of Z, but no vertex of Z. Note that no out-neighbour
of a source may be contained in a source shadow; therefore, A\N+

G3(T
s) contains

all vertices of source shadows of Z as well. We infer that in the branch (S,A),
(G4, T , p) is a YES instance and, as bypassing a vertex only shrinks the set of
solutions, Z is still the lex-min solution to (G4, T , p). Moreover, there are no
source shadows of Z in (G4, T , p).

At this point we have at most 2r+2O(p)

log |V (G)| subcases and at most 2rrp
already output instances. In each subcase, we have φ((G4, T , p)) ≤ φ((G3, T , p))
by Lemma 15. The following observation is crucial for further branching.

Lemma 21 (♣). Take an instance (G4, T , p) obtained in a branch labeled with
(S,A). Assume that (G4, T , p) is a YES instance and let Z be its lex-min so-
lution. Moreover, assume that there are no source shadows of Z in (G4, T , p).
Then the following holds: if there exists a vertex v′ ∈ (V (G,S)∩V (G4))\Z with
S(G4 \Z, v′) �= S, then the first such vertex in the topological order ≤τ (denoted
v) belongs to N+

G4(T s). Moreover, v has at least one in-neighbour in G4 that is
not in T s, and all such in-neighbours belong to Z.

Branching rule 7. In each branch, let (S,A) be its label and (G4, T , p) the
remaining instance. Output at most rp instances Iv, labeled by vertices v ∈
N+

G4(T
s) ∩ V (G,S) for which N−

G4(v) �⊆ T s: the instance Iv is created from
(G4, T , p) by killing all non-terminal in-neighbours of v and bypassing v. More-
over, create one remaining instance (G5, T , p) as follows: delete from G4 all arcs
that have their ending vertices in V (G,S) ∩ V (G4) and for each v ∈ V (G,S) ∩
V (G4) and si ∈ S add an arc (si, v).

By Lemmata 14 and 15, the output instances have strictly smaller potential
than (G4, T , p) and are NO instances if (G4, T , p) is a NO instance. On the
other hand, assume that (G4, T , p) is a YES instance with lex-min solution Z
such that there are no source shadows of Z. If there exist vertices v′ and v as in
the statement of Lemma 21, then the instance Iv is computed and Z \N−

G4(v)
(i.e., Z without the killed vertices) is a solution to Iv. Otherwise, we claim that
(G5, T , p) represents the remaining case:

Fixed-Parameter tractability of multicut in DAGs 591

Lemma 22 (♣). Let (G4, T , p) be an instance obtained in the branch (S,A).

1. φ((G5, T , p)) ≤ φ((G4, T , p)).
2. Any multicut Z in (G5, T , p) is a multicut in (G4, T , p) as well.
3. Assume additionally that (G4, T , p) is a YES instance whose lex-min solution

Z satisfies the following properties: there are no source shadows of Z and for
each v ∈ V (G,S)∩V (G4), either v ∈ Z or S(G4 \Z, v) = S. Then (G5, T , p)
is a YES instance and Z is its lex-min solution.

The structure of V (G,S) ∩ V (G5) is quite simple in (G5, T , p). Recall that, if I
is a YES instance, but no instance output so far is a YES instance, then in at
least one branch (S,A) we have that the lex-min solution Z to I is the lex-min
solution to (G5, T , p) and Z ∩ V (G,S)∩ V (G5) �= ∅. We would like to guess one
vertex of Z ∩ V (G,S) ∩ V (G5). Although, V (G,S) ∩ V (G5) may still be large,
each vertex v ∈ V (G,S) ∩ V (G5) has N−

G5(v) = S. Therefore we may limit the
size of V (G,S)∩ V (G5) by applying once again the degree reduction branching.

Branching rule 8. In each branch, let (S,A) be its label and (G5, T , p) the
remaining instance. Apply Lemma 18 on (G5, T , p), obtaining a sequence of in-
stances (Ij)dj=1 and the remaining instance (G6, T , p), where G6 is the degree-

reduced graph G5. Output all instances Ij for 1 ≤ j ≤ d and keep (G6, T , p) for
further analysis.

By Lemma 18, if (G5, T , p) is a NO instance, all the output instances as well
as (G6, T , p) are NO instances. Otherwise, if (G5, T , p) is a YES instance with
the lex-min solution Z, but the instances Ij are all NO instances, then Z is the
lex-min solution to (G6, T , p).

Note that, by Lemma 18, all output instances have potential strictly smaller
than φ((G5, T , p)), whereas φ((G6, T , p)) = φ((G5, T , p)). Moreover, applica-

tions of Branching 8 in all subcases output at most 2r+2O(p)

rp log |V (G)| in-
stances in total.

We are left with the final observation.

Lemma 23. In each subcase, let (S,A) be its label and (G6, T , p) the remaining
instance. Then at most rp vertices v ∈ V (G,S) ∩ V (G6) have S(G6, v) �= ∅.

Proof. Note that V (G4) = V (G5) = V (G6). Take v ∈ V (G,S) ∩ V (G6). Recall
that N−

G5(v) = S and G6 differs from G5 only on the set of arcs incident to the
sources, so S(G6, v) = N−

G6(v). The lemma follows from Lemma 17, Claim 1. ��

Reduction rule 9. In each branch, let (S,A) be its label and (G6, T , p) be the
remaining instance. As long as there exists a nonterminal vertex v ∈ V (G6) with
S(G6, v) = ∅, delete v. Denote the output instance by (G7, T , p).

As in the case of Reduction 5, Z is the lex-min solution to (G6, T , p) if and only if
Z is the lex-min solution to (G7, T , p). Moreover, φ((G6, T , p)) = φ((G7, T , p)).

By Lemma 23, |V (G,S)∩ V (G7)| ≤ rp. Now we can perform final branching.

592 S. Kratsch et al.

Branching rule 10. In each subcase, let (S,A) be its label and (G7, T , p) the
remaining instance. For each v ∈ V (G,S)∩V (G7) output an instance Iv created
from (G7, T , p) by killing the vertex v.

Note that if V (G,S) ∩ V (G7) = ∅, then this rule results in no branches created.
By Lemma 14, if (G7, T , p) is a NO instance, so are the output instances Iv.

On the other hand, assume that I is a YES instance with the lex-min solution
Z. Then in at least one subcase (S,A), if no previously output instance is a
YES instance, then the instance (G7, T , p) is a YES instance, Z is its lex-min
solution, and Z ∩ V (G,S) ∩ V (G7) �= ∅. Then the instance Iv for any v ∈ Z ∩
V (G,S)∩V (G7) is a YES instance; in particular, V (G,S)∩V (G7) is nonempty.
To conclude the proof of Lemma 19 note that φ(Iv) < φ((G7, T , p)) for each
output instance Iv.

4 Conclusions

The results of this paper unravel the full picture of the parameterized com-
plexity of Multicut in DAGs. A natural follow-up question is the complexity
of Multicut in general directed graphs, where we so far know only that the
case of two terminal pairs is FPT [11] and the cutset parameterization is W[1]-
hard [2]. The assumption of acyclicity seems to be crucial for our approach in
Lemma 21 and subsequent Branching 7. We also note that, although an existence
of a polynomial kernelization algorithm for most graph separation problems in
directed graphs was recently refuted [13], the question of a polynomial kernel for
Multicut in DAGs remains open.

References

1. Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Fixed-parameter
tractability of multicut in directed acyclic graphs. CoRR, abs/1202.5749 (2012)

2. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by
the size of the cutset. In: Proc. of STOC 2011, pp. 469–478 (2011)

3. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Proc. of STOC
2011, pp. 459–468 (2011)

4. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3),
394–406 (2006)

5. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM 55(5) (2008)

6. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset Feedback Ver-
tex Set is Fixed-Parameter Tractable. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
ICALP 2011. LNCS, vol. 6755, pp. 449–461. Springer, Heidelberg (2011)

7. Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed-parameter tractable. J. Comput.
Syst. Sci. 75(8), 435–450 (2009)

8. Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum
node multiway cut problem. Algorithmica 55(1), 1–13 (2009)

9. Guillemot, S.: FPT algorithms for path-transversal and cycle-transversal problems.
Discrete Optimization 8(1), 61–71 (2011)

Fixed-Parameter tractability of multicut in DAGs 593

10. Lokshtanov, D., Marx, D.: Clustering with Local Restrictions. In: Aceto, L., Hen-
zinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 785–797. Springer,
Heidelberg (2011)

11. Chitnis, R.H., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed
multiway cut parameterized by the size of the cutset. In: Proc. of SODA 2012, pp.
1713–1725 (2012)

12. Bentz, C.: On the hardness of finding near-optimal multicuts in directed acyclic
graphs. Theor. Comput. Sci. 412(39), 5325–5332 (2011)

13. Cygan, M., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Clique cover
and graph separation: New incompressibility results. CoRR abs/1111.0570 (2011)

Preserving Terminal Distances Using Minors�

Robert Krauthgamer and Tamar Zondiner

Weizmann Institute of Science, Rehovot, Israel
{robert.krauthgamer,tamar.zondiner}@weizmann.ac.il

Abstract. We introduce the following notion of compressing an undi-
rected graph G with (nonnegative) edge-lengths and terminal vertices
R ⊆ V (G). A distance-preserving minor is a minor G′ (of G) with pos-
sibly different edge-lengths, such that R ⊆ V (G′) and the shortest-path
distance between every pair of terminals is exactly the same in G and
in G′. We ask: what is the smallest f∗(k) such that every graph G with
k = |R| terminals admits a distance-preserving minor G′ with at most
f∗(k) vertices?

Simple analysis shows that f∗(k) ≤ O(k4). Our main result proves
that f∗(k) ≥ Ω(k2), significantly improving over the trivial f∗(k) ≥ k.
Our lower bound holds even for planar graphs G, in contrast to graphs
G of constant treewidth, for which we prove that O(k) vertices suffice.

1 Introduction

A graph compression of a graph G is a small graph G∗ that preserves certain
features (quantities) of G, such as distances or cut values. This basic concept was
introduced by Feder and Motwani [FM95], although their definition was slightly
different technically. (They require that G∗ has fewer edges than G, and that
each graph can be quickly computed from the other one.) Our paper is concerned
with preserving the selected features of G exactly (i.e., lossless compression), but
in general we may also allow the features to be preserved approximately.

The algorithmic utility of graph compression is readily apparent – the com-
pressed graph G∗ may be computed as a preprocessing step, and then further
processing is performed on it (instead of on G) with lower runtime and/or mem-
ory requirement. This approach is clearly beneficial when the compression can be
computed very efficiently, say in linear time, in which case it may be performed
on the fly, but it is useful also when some computations are to be performed
(repeatedly) on a machine with limited resources such as a smartphone, while
the preprocessing can be executed in advance on much more powerful machines.

For many features, graph compression was already studied and many results
are known. For instance, a k-spanner of G is a subgraph G∗ in which all pairwise
distances approximate those in G within a factor of k [PS89]. Another example,
closer in spirit to our own, is a sourcewise distance preserver of G with respect

� A full version appears at http://arxiv.org/abs/1202.5675. This work was sup-
ported in part by The Israel Science Foundation (grant #452/08), by a US-Israel
BSF grant #2010418, and by the Citi Foundation.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 594–605, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://arxiv.org/abs/1202.5675

Preserving Terminal Distances Using Minors 595

to a set of vertices R ⊆ V (G); this is a subgraph G∗ of G that preserves (exactly)
the distances in G for all pairs of vertices in R [CE06]. We defer the discussion
of further examples and related notions to Section 1.2, and here point out only
two phenomena: First, it is common to require G∗ to be structurally similar to
G (e.g., a spanner is a subgraph of G), and second, sometimes only the features
of a subset R need to be preserved (e.g., distances between vertices of R).

We consider the problem of compressing a graph so as to maintain the shortest-
path distances among a set R of required vertices. From now on, the required
vertices will be called terminals.

Definition 1. Let G be a graph with edge lengths � : E(G) → R+ and a set of
terminals R ⊆ V (G). A distance-preserving minor (of G with respect to R) is
a graph G′ with edge lengths �′ : E(G′) → R+ satisfying:

1. G′ is a minor of G; and
2. dG′(u, v) = dG(u, v) for all u, v ∈ R.

Here and throughout, dH denotes the shortest-path distance in a graph H . It
also goes without saying that the terminals R must survive the minor operations
(they are not removed, but might be merged with non-terminals, due to edge
contractions), and thus dG′(u, v) is well-defined; in particular, R ⊆ V (G′). For
illustration, suppose G is a path of n unit-length edges and the terminals are
the path’s endpoints; then by contracting all the edges, we can obtain G′ that
is a single edge of length n.

The above definition basically asks for a minor G′ that preserves all terminal
distances exactly. The minor requirement is a common method to induce struc-
tural similarity between G′ and G, and in general excludes the trivial solution
of a complete graph on the vertex set R (with appropriate edge lengths).

This definition may be viewed as a conceptual contribution of our paper.
Indeed, our main motivation is its mathematical elegance, but let us mention
one potential algorithmic application. Suppose we need to solve multiple TSP
instances involving altogether relatively few vertices in a large (perhaps planar)
graph; then it makes sense to reduce the graph (to a minor of it).

We raise the following question, which to the best of our knowledge was not
studied before. Its main point is to bound the size of G′ independently of the
size of G.

Question 1. What is the smallest f∗(k), such that for every graph G with k
terminals, there is a distance-preserving minor G′ with at most f∗(k) vertices?

Before describing our results, let us provide a few initial observations, which may
well be folklore or appear implicitly in literature. Consider the naive method
depicted in Algorithm 1. It is straightforward to see that these steps reduce
the number of non-terminals without affecting terminal distances, and a simple
analysis proves that this algorithm always produces a minor with O(k4) vertices
and edges and runs in polynomial time (details omitted from this version). It
follows that f∗(k) exists, and furthermore

f∗(k) ≤ O(k4).

596 R. Krauthgamer and T. Zondiner

Algorithm 1. ReduceGraphNaive (graph G, required vertices R)

(1) Remove all vertices and edges in G that do not participate in any shortest-path
between terminals.

(2) Repeat while the graph contains a non-terminal v of degree two: merge v with
one of its neighbors (by contracting the appropriate edge), thereby replacing the
2-path w1 − v − w2 with a single edge (w1, w2) of the same length as the 2-path.

Moreover, if G is a tree then G′ has at most 2k− 2 vertices, and this last bound
is in fact tight (attained by a complete binary tree) whenever k is a power of 2.

1.1 Our Results

Our first and main result directly addresses Question 1, by providing the lower
bound f∗(k) ≥ Ω(k2). The proof uses only simple planar graphs, leading us to
study the restriction of f∗(k) to specific graph families, defined as follows.1

Definition 2. For a family F of graphs, define f∗(k,F) as the minimum value
such that every graph G = (V,E, �) ∈ F with k terminals admits a distance-
preserving minor G′ with at most f∗(k,F) vertices.

Theorem 1. Let Planar be the family of all planar graphs. Then

f∗(k) ≥ f∗(k,Planar) ≥ Ω(k2).

Our proof of this lower bound uses a two-dimensional grid graph, which has
super-constant treewidth. This stands in contrast to graphs of treewidth 1, be-
cause we already mentioned that

f∗(k,Trees) ≤ 2k − 2,

where Trees is the family of a all tree graphs. It is thus natural to ask whether
bounded-treewidth graphs behave like trees, for which f∗ ≤ O(k), or like planar
graphs, for which f∗ ≥ Ω(k2). We answer this question as follows.

Theorem 2. Let Treewidth(p) be the family of all graphs with treewidth at most
p. Then for all k ≥ p,

Ω(pk) ≤ f∗(k,Treewidth(p)) ≤ O(p3k).

We summarize our results together with some initial observations in the table
below.

1 We use (V,E, �) to denote a graph with vertex set V , edge set E, and edge lengths
� : E → R+. As usual, the definition of a family F of graphs refers only to the
vertices and edges, and is irrespective of the edge lengths.

Preserving Terminal Distances Using Minors 597

Graph Family F Bounds on f∗(k,F)
Trees = 2k − 2 omitted
Treewidth p Ω(pk) O(p3k) Theorem 2
Planar Graphs Ω(k2) O(k4) Theorem 1
All Graphs Ω(k2) O(k4) Theorem 1

All our upper bounds are algorithmic and run in polynomial time. In fact,
they can be achieved using the naive algorithm described above.

1.2 Related Work

Coppersmith and Elkin [CE06] studied a problem similar to ours, except that
they seek subgraphs with few edges (rather than minors). Among other things,
they prove that for every weighted graph G = (V,E) and every set of k =

O(|V | 14) terminals, there exists a weighted subgraph G′ = (V,E′) with |E′| ≤
O(|V |), that preserves terminal distances exactly. They also show a nearly-
matching lower bound on |E′|.

Some compressions preserve cuts and flows in a given graph G rather than
distances. A Gomory-Hu tree [GH61] is a weighted tree that preserves all st-cuts
in G (or just between terminal pairs). A so-called mimicking network preserves
all flows and cuts between subsets of the terminals in G [HKNR98].

Terminal distances can also be approximated instead of preserved exactly.
In fact, allowing a constant factor approximation may be sufficient to obtain
a compression G∗ without any non-terminals. Gupta [Gup01] introduced this
problem and proved that for every weighted tree T and set of terminals, there
exists a weighted tree T ′ without the non-terminals that approximates all ter-
minal distances within a factor of 8. It was later observed that this T ′ is in fact
a minor of T [CGN+06], and that the factor 8 is tight [CXKR06]. Basu and
Gupta [BG08] claimed that a constant approximation factor exists for weighted
outerplanar graphs as well. It remains an open problem whether the constant
factor approximation extends also to planar graphs (or excluded-minor graphs in
general). Englert et al. [EGK+10] proved a randomized version of this problem
for all excluded-minor graph families, with an expected approximation factor
depending only on the size of the excluded minor.

The relevant information (features) in a graph can also be maintained by a
data structure that is not necessarily graphs. A notable example is Distance
Oracles – low-space data structures that can answer distance queries (often ap-
proximately) in constant time [TZ05]. These structures adhere to our main re-
quirement of “compression” and are designed to answer queries very quickly.
However, they might lose properties that are natural in graphs, such as the tri-
angle inequality or the similarity of a minor to the given graph, which may be
useful for further processing of the graph.

2 A Lower Bound of Ω(k2)

In this section we prove Theorem 1 using an even stronger assertion: there exist
planar graphs G such that every distance-preserving planar graph H (a planar

598 R. Krauthgamer and T. Zondiner

graph with R ⊆ V (H) that preserves terminal distances) has |V (H)| ≥ Ω(k2).
Since any minor G′ of G is planar, Theorem 1 follows.

Our proof uses a k × k grid graph with k terminals, whose edge-lengths are
chosen so that terminal distances are essentially “linearly independent” of one
another. We use this independence to prove that no distance-preserving minor
G′ can have a small vertex-separator. Since G′ is planar, we can apply the planar
separator theorem [LT79], and obtain the desired lower bound.

Theorem 3. For every k ∈ N there exists a planar graph G = (V,E, �) (in
particular, the k × k grid) and k terminals R ⊆ V , such that every distance-
preserving planar graph G′ = (V ′, E′, �′) has Ω(k2) vertices. In particular,
f∗(k,Planar) ≥ Ω(k2).

Proof. For simplicity we shall assume that k is even. Consider a grid graph G of
size k×k with vertices (x, y) for x, y ∈ [0, k−1]. Let the length function � be such
that the length of all horizontal edges ((x, y), (x + 1, y)) is 1, and the length of
each vertical edge ((x, y), (x, y+1)) is 1+ 1

2x2 ·k . Let R1 = {(0, y) : y ∈ [0, k2 −1]},
and R2 = {(x, x) : x ∈ [k2 , k−1]}. Let the terminals in the graph be R = R1∪R2,
so |R| = k. See Figure 1 for illustration.

(0; 0)

(k¡1; k¡1)

(x; y)

(x; y+1)

(x+1; y)

`(e) = 1`(e) = 1+ 1

2x
2 ¢k

(0; 12k¡1)

(12k;
1
2k)

Fig. 1. A grid graph G and terminals R
Fig. 2. Terminals on different sides con-
nected by paths going through v ∈ S

It is easy to see that the shortest-path between a vertex (0, y) ∈ R1 and a
vertex (x, x) ∈ R2 includes exactly x horizontal edges and x− y vertical edges.
Indeed, such paths have length smaller than x + (x − y)(1 + 1

k) ≤ 2x − y + 1.
Any other path between these vertices will have length greater than 2x− y+ 2.
Furthermore, the shortest path with x horizontal edges and x− y vertical edges
starting at vertex (0, y) makes horizontal steps before vertical steps, since the
vertical edge-lengths decrease as x increases, hence

dG((0, y), (x, x)) = 2x− y +
x− y

2x2 · k . (1)

Preserving Terminal Distances Using Minors 599

Assume towards contradiction that there exists a planar graph G′ with less

than k2

1600 vertices that preserves terminal distances exactly. Since G′ is planar,
by the weighted version of the planar separator theorem by Lipton and Tarjan
[LT79] with vertex-weight 1 on terminals and 0 on non-terminals, there exists
a partitioning of V ′ into three sets A1, S, and A2 such that w(S) ≤ |S| ≤
2.5 ·

√
k2

1600 < 3k
40 , each of A1 and A2 has at most 2k

3 terminals, and there

are no edges going between A1 and A2. Hence, for i ∈ {1, 2} it holds that
w(Ai ∪ S) ≥ k/3 and w(Ai) ≥ k

3 −
3k
40 >

k
4 .

Without loss of generality, we claim that A1∩R1 and A2∩R2 each have Θ(k)
terminals. To see this, suppose without loss of generality that A1 is the heavier
of the two sets (i.e. w(A1) ≥ k

2 − 3k
40 and k

4 ≤ w(A2) ≤ k
2). Suppose also that

w(A2∩R2) ≥ w(A2∩R1). Then w(A2∩R2) ≥ k
8 , and w(A2∩R1) ≤ 1

2 ·w(A2) ≤ k
4 ,

implying that w(A1∩R1) ≥ w(R1)−(w(R1∩A2)+w(R1∩S)) ≥ k
2−(k4+

3k
40) =

k
5 .

In conclusion, without loss of generality it holds that w(A1 ∩ R1) ≥ k
5 and

w(A2 ∩ R2) ≥ k
8 . Let Q1 ⊆ A1 ∩ R1 and Q2 ⊆ A2 ∩ R2 be two sets with the

exact sizes k
5 and k

8 .
Every path between a terminal in Q1 and a terminal in Q2 goes through

at least one vertex of the separator S. Overall, the vertices in the separator
participate in k

8 ×
k
5 paths between Q1 and Q2. See Figure 2 for illustration.

We will need the following lemma, which is proved below.

Lemma 1. Let G′, S, Q1 and Q2 be as described above. Then every vertex v ∈ S
participates in at most |Q1|+ |Q2| = k

5 + k
8 shortest paths between Q1 and Q2.

Applying Lemma 1 to every vertex in S, at most 3k
40 ·

13k
40 = 39k2

1600 < k2

40 shortest
paths between Q1 and Q2 go through S, which contradicts the fact that all
k
8 · k

5 = k2

40 shortest-paths between Q1 and Q2 in G′ go through the separator,
and proves Theorem 3. ��

Proof (of Lemma 1). Define a bipartite graph H on the sets Q1 and Q2, with an
edge between (0, y) ∈ Q1 and (x, x) ∈ Q2 whenever a shortest path in G′ between
(0, y) and (x, x) uses the vertex v. We shall show that H does not contain an
even-length cycle. Since H is bipartite, it contains no odd-length cycles either,
making H a forest with |E(H)| < |Q1| + |Q2| = k

5 + k
8 , thereby proving the

lemma.
Let us consider a potential 2s-length (simple) cycle inH on the vertices (0, y1),

(x1, x1), (0, y2), (x2, x2), ..., (0, ys), (xs, xs) (in that order), for particular (0, yi) ∈
Q1 and (xi, xi) ∈ Q2. Every edge ((0, y), (x, x)) ∈ E(H) represents a shortest
path in G′ that uses v, thus

dG((0, y), (x, x)) = dG′((0, y), v) + dG′(v, (x, x)). (2)

If the above cycle exists in H , then the following equalities hold (by convention,
let ys+1 = y1). Essentially, we get that the sum of distances corresponding to

600 R. Krauthgamer and T. Zondiner

“odd-numbered” edges in the cycle equals the one corresponding to “even-
numbered” edges in the cycle.

s∑
i=1

dG((0, yi), (xi, xi))
(2)
=

s∑
i=1

dG′((0, yi), v) +

s∑
i=1

dG′(v, (xi, xi))

=

s∑
i=1

dG′(v, (0, yi+1)) +

s∑
i=1

dG′((xi, xi), v)

(2)
=

s∑
i=1

dG((xi, xi), (0, yi+1)).

Plugging in the distances as described in (1) and simplifying, we obtain

s∑
i=1

(2xi − yi + (xi − yi) ·
1

2x
2
i · k

) =

s∑
i=1

(2xi − yi+1 + (xi − yi+1) ·
1

2x
2
i · k

),

or equivalently,
s∑

i=1

yi

2x
2
i

=

s∑
i=1

yi+1

2x
2
i

Suppose without loss of generality that x1 = min{xi : i ∈ [1, s]} (otherwise we
can rotate the notations along the cycle), and that y1 > y2 (otherwise we can
change the orientation of the cycle). Then we obtain

y1 − y2

2x
2
1

=

s∑
i=2

yi+1 − yi

2x
2
i

.

However, since y1 > y2, the lefthand side is at least 1

2x
2
1
, whereas the righthand

side is
∑s

i=2
yi+1−yi

2x
2
i

≤ (s − 1) · k

2(x1+1)2
≤ k2

2(x1+1)2
. Therefore it must hold that

22x1+1 ≤ k2. Since x1 ≥ k
2 , this inequality does not hold. Hence, for all s, no

cycle of size 2s exists in H , completing the proof of Lemma 1. ��

3 Θ(k) Bounds for Constant Treewidth Graphs

In this section we prove Theorem 2, which bounds f∗(k,Treewidth(p)). The upper
and the lower bound are proved separately in Theorems 4 and 5 below.

3.1 An Upper Bound of O(p3k)

Theorem 4. Every graph G = (V,E, �) with treewidth p and a set R ⊆ V of
k terminals admits a distance-preserving minor G′ = (V ′, E′, �′) with |V ′| ≤
O(p3k). In other words, f∗(k,Treewidth(p)) ≤ O(p3k).

Preserving Terminal Distances Using Minors 601

The graph G′ can in fact be computed in time polynomial in |V | (see Remark 1).
Without loss of generality, we may assume that k ≥ p, since otherwise the

O(k4) bound mentioned in the introduction applies. To prove Theorem 4 we
introduce the algorithm ReduceGraphTW (depicted in Algorithm 2 below),
which follows a divide-and-conquer approach. We use the small separators guar-
anteed by the treewidth p, to break the graph recursively until we have small,
almost-disjoint subgraphs. We execute ReduceGraphNaive (Algorithm 1) on
each of these subgraphs with an altered set of terminals — the original termi-
nals in the subgraph, plus the separator (boundary) vertices which disconnect
these terminals from the rest of the graph — and we get many small distance-
preserving minors; these are then combined into a distance-preserving minor G′

of the original graph G.

Proof (of Theorem 4). The divide-and-conquer technique works as follows. Given
a partitioning of V into the sets A1, S and A2, such that removing S disconnects
A1 from A2, the graph G is divided into the two subgraphs G[Ai ∪ S] (the
subgraph of G induced on Ai∪S) for i ∈ {1, 2}. For each G[Ai∪S], we compute
a distance-preserving minor with respect to terminals set (R∩Ai)∪S, and denote

it Ĝi = (V̂i, Êi, �̂i). The two minors are then combined into a distance-preserving
minor of G with respect to R, according to the following definition.

We define the union H1 ∪ H2 of two (not necessarily disjoint) graphs H1 =
(V1, E1, �1) and H2 = (V2, E2, �2) to be the graph H = (V1 ∪ V2, E1 ∪ E2, �)
where the edge lengths are �(e) = min{�1(e), �2(e)} (assuming infinite length
when �i(e) is undefined). A crucial point here is that H1, H2 need not be disjoint
– overlapping vertices are merged into one vertex in H , and overlapping edges
are merged into a single edge in H .

Lemma 2. The graph Ĝ = Ĝ1 ∪ Ĝ2 is a distance-preserving minor of G with
respect to R.

Proof (of Lemma 2). Note that since the boundary vertices in S exist in both Ĝ1

and Ĝ2, they are never contracted into other vertices. In fact, the only minor-
operation allowed on vertices in S is the removal of edges (s1, s2) for two vertices
s1, s2 ∈ S, when shorter paths in G[A1 ∪ S] or G[A2 ∪ S] are found. It is thus
possible to perform both sequences of minor-operations independently, making
Ĝ a minor of G.

A path between two vertices t1, t2 ∈ R can be split into subpaths at every visit
to a vertex in R∪S, so that each subpath between v, u ∈ R∪S does not contain
any other vertices in R∪S. Since there are no edges between A1 and A2, each of
these subpaths exists completely inside G[A1 ∪S] or G[A2 ∪S]. Hence, for every
subpath between v, u ∈ R∪S it holds that dG(v, u) = dG[Ai∪S](v, u) = dĜi

(v, u)

for some i ∈ {1, 2}. Altogether, the shortest path in G is preserved in Ĝ. It is
easy to see that shorter paths will never be created, as these too can be split
into subpaths such that the length of each subpath is preserved. Hence, Ĝ is a
distance-preserving minor of G. ��
The graph G has bounded treewidth p, hence for every nonnegative vertex-
weights w(·), there exists a set S ⊆ V of at most p+ 1 vertices (to simplify the

602 R. Krauthgamer and T. Zondiner

analysis, we assume this number is p) whose removal separates the graph into
two parts A1 and A2, each with w(Ai) ≤ 2

3w(V). It is then natural to compute
a distance-preserving minor for each part Ai by recursion, and then combine the
two solutions using Lemma 2. We can use the weights w(·) to obtain a balanced
split of the terminals, and thus |R ∩ Ai| is a constant factor smaller than |R|.
However, when solving each part Ai, the boundary vertices S must be counted
as “additional” terminals, and to prevent those from accumulating too rapidly,
we compute (à la [Bod89]) a second separator Si with different weights w(·) to
obtain a balanced split of the boundary vertices accumulated so far.

Algorithm ReduceGraphTW receives, in addition to a graph H and a set
of terminals R ⊆ V (H), a set of boundary vertices B ⊆ V (H). Note that a
terminal that is also on the boundary is counted only in B and not in R, so that
R ∩B = ∅.

The procedure Separator(H,U) returns the triple 〈A1, S, A2〉 of a separator
S and two sets A1 and A2 such that |S| ≤ p, no edges between A1 and A2 exist
in G, and |A1 ∩U |, |A2 ∩U | ≤ 2

3 |U |, i.e., using w(·) that is unit-weight inside U
and 0 otherwise.

Algorithm 2. ReduceGraphTW (graph H , required vertices R, boundary
vertices B)

1: if |R ∪B| ≤ 18p then
2: return ReduceGraphNaive(H,R ∪B) (see Algorithm 1)
3: 〈A1, S,A2〉 ← Separator(H,R)
4: for i = 1, 2 do
5: 〈A1

i , S
i, A2

i 〉 ← Separator(H [Ai ∪ S], (B ∩ Ai) ∪ S)
6: Ri ← R \ (S ∪ Si)
7: Bi ← B ∪ S ∪ Si

8: for j = 1, 2 do
9: Ĝj

i ← ReduceGraphTW(H [Aj
i ∪ Si], Ri ∩Aj

i , B
i ∩ (Aj

i ∪ Si))
10: return (Ĝ1

1 ∪ Ĝ2
1) ∪ (Ĝ1

2 ∪ Ĝ2
2).

See Figure 3 for an illustration of a single execution. Consider
the recursion tree T on this process, starting with the invocation of
ReduceGraphTW(G,R, ∅). A node a ∈ V (T) corresponds to an invocation
ReduceGraphTW(Ha, Ra, Ba). The execution either terminates at line 2 (the
stop condition), or performs 4 additional invocations bi for i ∈ [1, 4], each with
|Rbi | ≤ 2

3 |Ra|. As the process continues, the number of terminals in Ra decreases,
whereas the number of boundary vertices may increase. We show the following
upper bound on the number of boundary vertices Ba.

Lemma 3. For every a ∈ V (T), the number of boundary vertices |Ba| < 6p.

Proof (of Lemma 3). Proceed by induction on the depth of the node in the
recursion tree. The lemma clearly holds for the root of the recursion-tree, since
initially B = ∅. Suppose it holds for an execution with values Ha, Ra, Ba. When

Preserving Terminal Distances Using Minors 603

Fig. 3. The separators S (from line 3) and S1 (from line 7), and the subgraphH [A1
1∪S1]

to be processed recursively (in line 11)

partitioning V (Ha) into A1, S, and A2, the separator S has at most p vertices.
From the induction hypothesis, |Ba| < 6p, making |Ba ∪ S| < 7p.

The algorithm constructs another separator, this time separating the bound-
ary vertices Ba ∪ S. For i = 1, 2 and j = 1, 2 it holds that, |Si| ≤ p, |Aj

i | ≤
2
3 · |Ba ∪ S| ≤ 2

3 · 7p = 14
3 p, and so |Aj

i ∪ Si| ≤ 14
3 p + p < 6p. The execution

corresponding to the node a either terminates in line 2, or invokes executions
with the values Aj

i ∪ Si for i, j = 1, 2, hence all new invocations have less than
6p boundary vertices. ��

We also prove the following lower bound on the number of terminals Ra.

Lemma 4. Every a ∈ V (T) is either a leaf of the tree T , or it has at least two
children, denoted b1, b2, such that |Rb1 |, |Rb2 | ≥ p.

Proof (of Lemma 4). Consider a node a ∈ V (T). If this execution terminates at
line 2, a is a leaf and the lemma is true. Otherwise it holds that |Ra∪Ba| ≥ 18p.
Since Lemma 3 states that |Ba| ≤ 6p it must holds that |Ra| ≥ 12p.

When performing the separation of V (Ha) into A1, S, and A2, the vertices Ra

are distributed between A1, S, and A2, such that |Ra∩(Ai∪S)| ≥ 1
3 |Ra| = 4p for

i = 1, 2. Since |S| ≤ p it must holds that |(Ra \S)∩Ai| = |(Ra∩ (Ai ∪S))\S| ≥
3p. When the next separation is performed, at most p of these 3p terminals
belong to Si, while the remaining terminals belong to Ri and are distributed
between A1

i and A2
i . At least one of these sets, without loss of generality A1

i ,
gets |Ri ∩A1

i | ≥ 1
22p = p. This is a value of Rb for a child b of a in the recursion

tree. Since this holds for both A1 and A2, at least two invocations b1, b2 with
|Rbi | ≥ p are made. ��

The following observation is immediate from Lemma 3.

Observation 1. Every node a ∈ V (T) such that |Ra| < p has |Ra ∪ Ba| ≤ 7p,
thus is a leaf in T .

To bound the size of the overall combined graph G′ returned by the first call
to ReduceGraphTW, we must bound the number of leaves in T . To do that,
we first consider the recursion tree T ′ created by removing those nodes a with
|Ra| < p; these are leaves from Observation 1. From Lemma 4 every node in

604 R. Krauthgamer and T. Zondiner

this tree (except the root) is either a leaf (with degree 1) or has at least two
children (with degree at least 3). Since the average degree in a tree is less than 2,
the number of nodes with degree at least 3 is bounded by the number of leaves.
Every leaf b in the tree T ′ has |Rb| ≥ p. These terminals do not belong to any
boundary, so for every other leaf b′ in T ′ it holds that Rb ∩ (Rb′ ∪Bb′) = ∅ and
these p terminals are unique. There are k terminals in G, so there are O(k/p)
such leaves, and O(k/p) internal nodes.

From Lemma 4, invocations are performed only by internal vertices in T ′.
Each internal vertex has 4 children, hence there are O(k/p) invocations over-
all. Each leaf in T has |Ra ∪ Ba| ≤ O(p), hence the graph returned from
ReduceGraphNaive(Ha) is a distance-preserving minor with O(p4) vertices.
Using Lemma 2, the combination of these graphs is a distance-preserving minor
Ĝ of G with respect to R. The minor Ĝ has O(k/p · p4) = O(k · p3) vertices,
proving Theorem 4. ��
Remark 1. Every action (edge or vertex removals, as well as edge contractions)
taken by ReduceGraphTW, is actually performed during a call to Reduce-

GraphNaive, and an equivalent action to it would have been taken in executing
the naive algorithm directly on G with respect to terminals R. Therefore, the
naive algorithm returns distance-preserving minors of size O(k ·p3) to any graph
with treewidth p. (When p > k this statement holds by the O(k4) bound.)

3.2 A Lower Bound of Ω(pk)

Theorem 5. For every p and k ≥ p there is a graph G = (V,E, �) with treewidth
p and k terminals R ⊆ V , such that every distance-preserving minor G′ of G with
respect to R has |V ′| ≥ Ω(k · p). In other words, f∗(k,Treewidth(p)) ≥ Ω(pk).

Proof. Consider the bound shown in Theorem 3. The graph used to obtain this
bound is a k × k grid, and has treewidth k. The following corollary holds.

Corollary 1. For every p ∈ N there exists a graph G with treewidth p and p
terminals R ⊆ V , such that every distance-preserving minor G′ of G with respect
to R has |V ′| ≥ Ω(p2).

Let the graphG consist of k
p disjoint graphsGi with p terminals, treewidth p, and

distance-preserving minors with |V ′| ≥ Ω(p2) as guaranteed by Corollary 1. Any
distance-preserving minor of the graph G must preserve (in disjoint components)
the distances between the terminals in each Gi. The graph G has k terminals,
treewidth p, and any distance-preserving minor of it has |V ′| ≥ Ω(k · p), thus
proving Theorem 5. ��

4 Concluding Remarks

The algorithms mentioned in this paper (including the naive one) actually sat-
isfy a stronger property: They output a minor G′ = (V ′, E′, �′) where V ′ ⊂ V
(meaning that every vertex in G′ can be mapped back to a vertex in G) and

dG′(u, v) ≥ dG(u, v) ∀u, v ∈ V ′. (3)

Preserving Terminal Distances Using Minors 605

However, it is not hard to construct instances G (say, using Euclidean distances
between random points in the plane, which yields in particular a planar graph),
for which every distance-preserving minor G′ satisfying the stronger property
(3) must have Ω(k4) vertices. Therefore, narrowing the gap between the current
bounds Ω(k2) ≤ f∗(k) ≤ O(k4), might require, even for planar graphs, breaking
away from the above paradigm.

References

[BG08] Basu, A., Gupta, A.: Steiner point removal in graph metrics (2008),
http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf

(unpublished manuscript)
[Bod89] Bodlaender, H.L.: NC-algorithms for graphs with small treewidth. In: 14th

International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence, pp. 1–10. Springer (1989)

[CE06] Coppersmith, D., Elkin, M.: Sparse sourcewise and pairwise distance pre-
servers. SIAM J. Discrete Math. 20, 463–501 (2006)

[CGN+06] Chekuri, C., Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Embed-
ding k-outerplanar graphs into �1. SIAM J. Discret. Math. 20(1), 119–136
(2006)

[CXKR06] Chan, T.-H.H., Xia, D., Konjevod, G., Richa, A.W.: A Tight Lower Bound
for the Steiner Point Removal Problem on Trees. In: Dı́az, J., Jansen, K.,
Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS,
vol. 4110, pp. 70–81. Springer, Heidelberg (2006)

[EGK+10] Englert, M., Gupta, A., Krauthgamer, R., Räcke, H., Talgam-Cohen, I.,
Talwar, K.: Vertex Sparsifiers: New Results from old Techniques. In: Serna,
M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM 2010,
LNCS, vol. 6302, pp. 152–165. Springer, Heidelberg (2010)

[FM95] Feder, T., Motwani, R.: Clique partitions, graph compression and speeding-
up algorithms. J. Comput. Syst. Sci. 51(2), 261–272 (1995)

[GH61] Gomory, R.E., Hu, T.C.: Multi-terminal network flows. Journal of the So-
ciety for Industrial and Applied Mathematics 9, 551–570 (1961)

[Gup01] Gupta, A.: Steiner points in tree metrics don’t (really) help. In: 12th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 220–227. SIAM (2001)

[HKNR98] Hagerup, T., Katajainen, J., Nishimura, N., Ragde, P.: Characterizing
multiterminal flow networks and computing flows in networks of small
treewidth. J. Comput. Syst. Sci. 57, 366–375 (1998)

[LT79] Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM
J. Appl. Math. 36(2), 177–189 (1979)

[PS89] Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13(1), 99–116
(1989)

[TZ05] Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24
(2005)

http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf

A Rounding by Sampling Approach

to the Minimum Size k-Arc Connected
Subgraph Problem

Bundit Laekhanukit1, Shayan Oveis Gharan2, and Mohit Singh3

1 School of Computer Science, McGill University
2 Department of Management Science and Engineering, Stanford University

3 McGill University and Microsoft Research, Redmond

Abstract. In the k-arc connected subgraph problem, we are given a
directed graph G and an integer k and the goal is the find a subgraph of
minimum cost such that there are at least k-arc disjoint paths between
any pair of vertices. We give a simple (1 + 1/k)-approximation to the
unweighted variant of the problem, where all arcs ofG have the same cost.
This improves on the 1+2/k approximation of Gabow et al. [GGTW09].

Similar to the 2-approximation algorithm for this problem [FJ81],
our algorithm simply takes the union of a k in-arborescence and a k
out-arborescence. The main difference is in the selection of the two ar-
borescences. Here, inspired by the recent applications of the rounding
by sampling method (see e.g. [AGM+10, MOS11, OSS11, AKS12]), we
select the arborescences randomly by sampling from a distribution on
unions of k arborescences that is defined based on an extreme point solu-
tion of the linear programming relaxation of the problem. In the analysis,
we crucially utilize the sparsity property of the extreme point solution
to upper-bound the size of the union of the sampled arborescences.

To complement the algorithm, we also show that the integrality gap
of the minimum cost strongly connected subgraph problem (i.e., when
k = 1) is at least 3/2 − ε, for any ε > 0. Our integrality gap instance is
inspired by the integrality gap example of the asymmetric traveling sales-
man problem [CGK06], hence providing further evidence of connections
between the approximability of the two problems.

1 Introduction

In the minimum cost k-arc connected spanning subgraph (min-cost k-ACSS)
problem, we are given a directed graph G = (V,A) with cost c : A → R on
the arcs and a connectivity requirement k. The goal is to find a spanning sub-
graph G′ = (V,A′) of G of minimum total cost which is k-arc connected, i.e.,
every pair of vertices have at least k-arc disjoint paths between them. The special
case of k = 1, 1-ACSS problem, is called the minimum cost strongly connected
subgraph problem. In the unweighted variant of k-ACSS, the minimum size k-
arc connected spanning subgraph (min-size k-ACSS) problem, where all arcs of
G have the same cost, we want to minimize the number of arcs that we choose.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 606–616, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Rounding by Sampling Approach 607

The min-cost k-ACSS problem has a 2-approximation algorithm [FJ81], and
it has been a long standing open problem to improve this bound. Significant
attention has been given to the unweighted variant of the problem. In par-
ticular, the minimum size strongly connected subgraph problem is very well
studied [FJ81, KRY94, KRY96, Vet01, ZNI03], and the current best approxi-
mation ratio is 3/2, which is due to Vetta [Vet01]. The min-size k-ACSS prob-
lem has been shown to be easier as k increases [CT00, Gab04, GGTW09], and
the best approximation ratio is 1 + 2/k that is given in the work of Gabow
et al. [GGTW09]. This approximation ratio is almost tight as the min-size k-
ACSS problem does not admit (1 + ε/k)-approximation, for some fixed ε > 0,
unless P=NP [GGTW09]. Similar to the directed case, the minimum size k-edge
connected subgraph spanning problem, an undirected variant of the min-size k-
ACSS problem, is known to be easier as k increases, and the best known ap-
proximation ratio for this problem is 1 + 1/(2k) + O(1/k2) due to Gabow and
Gallagher [GG08].

1.1 Our Results

In this paper, we give improved upper and lower bounds for the k-ACSS prob-
lem. We first show the following improved algorithms for the min-size k-ACSS
problem.

Theorem 1. For any k ≥ 1, there is a min{7/4, 1 + 1/k}-approximation algo-
rithm for the min-size k-ACSS problem.

Similar to the simple 2-approximation algorithm for the minimum-cost k-ACSS
problem, our algorithm takes the union of a k in-arborescence and a k out-
arborescence. The main difference is in the selection of the two arborescences.
Here, we select the arborescences randomly by sampling from a distribution on
unions of k arborescences that is defined by the linear programming relaxation
of the problem. In particular, we write a convex combination of the unions of
k-arborescences such that the marginal probability of each arc is bounded above
by its fraction in the solution of LP relaxation.

The algorithm essentially employs the rounding by sampling method that
recently has been applied to various problems in the algorithm design and on-
line optimization literature (c.f. [AGM+10, MOS11, OSS11, AKS12]), while the
analysis is much simpler in our setting. Here, the main technical difference is a
crucial use of the extreme point solutions of LP relaxation. In particular, because
of the sparsity of the extreme point solutions, we can argue that the union of k
in-arborescences and k out-arborescences is not much larger than the size of the
support of the LP extreme point solution and thus the size of the optimum.

Our result improves on the (1+ 2
k)-approximation of Gabow et al. [GGTW09]

for the min-size k-ACSS problem, for any k > 0. Furthermore, for the minimum
size strongly connected subgraph problem, while we do not improve the approx-
imation factor of 3

2 [Vet01], our algorithm is much simpler and gives a possible
direction for weighted version of the problem.

608 B. Laekhanukit, S.O. Gharan, and M. Singh

To complement the positive results, we prove that the integrality gap of the
natural linear programming relaxation of the strongly connected subgraph prob-
lem is bounded below by 3/2− ε for any ε > 0.

Theorem 2. For any ε > 0, the integrality gap of the standard linear program-
ming relaxation for the minimum cost strongly connected subgraph problem is at
least 3

2 − ε.

To the best of our knowledge, there is no explicit construction that gives a lower
bound on the integrality gap of the minimum cost strongly connected subgraph
problem. Our integrality gap example builds on a similar construction for the
asymmetric traveling salesman problem [CGK06] and shows stronger connections
between the two problems.

1.2 Notations

Let δ+G(U) := {(u, v) ∈ E : u ∈ U, v ∈ V \U} denote the set of arcs leaving U in
a graph G; if G is clear in the context, we will skip the subscript.

A graph G is k-arc connected if and only if every (proper) subset of vertices
U ⊂ V have at least k leaving arcs, i.e., |δ+G(U)| ≥ k, and G is strongly connected
if it is 1-arc connected. We may drop the subscript if G is clear in the context.
We use the following Linear Programming relaxation for k-ACSS.

(LP-ACSS) minimize
∑
a∈A

caxa

subject to x(δ+(U)) ≥ k ∀U �= ∅, U � V

0 ≤ xa ≤ 1 ∀e ∈ E,

where x(δ+(U)) =
∑

a∈δ+(U) xa. Throughout the paper x will always be an

optimum solution of the (LP-ACSS).
For any vector y : A → R, and a set F ⊂ A of arcs, y(F) :=

∑
a∈F ya, is the

sum of the values of the arcs in F , and c(F) :=
∑

a∈F ca is the sum of the cost
of the arcs in F . Also, χ(F) denotes the characteristic vector of the set F , i.e.,
χ(F)a = 1 if a ∈ F and χ(F)a = 0 otherwise.

2 An Approximation Algorithm for Min-Size k-ACSS

In this section, we prove Theorem 1: given a graph G, we give a polynomial time
algorithm that finds a k-arc connected subgraph of G such that it has no more
than min{1+1/k, 7/4} of the arcs of the optimum solution. Before describing the
algorithm, we need to recall some of the properties of arborescences in directed
graphs.

Given a directed graph G and a (root) vertex r ∈ V , an r-out arborescence
T of G is a directed tree rooted at r that contains a path from r to every other

A Rounding by Sampling Approach 609

vertex of G. An r-out k-arborescence is a subgraph T of G that is the union of k
arc-disjoint r-out arborescences. An r-in arborescence and an r-in k-arborescence
are defined analogously. The following polyhedron plays an important role in the
design and analysis of our algorithm.

P out =
{
y : y(δ+(U)) ≥ k, ∀∅ �= U � V \ {r}, 0 ≤ y ≤ 1

}
Frank [Fra79] showed that P out is the up hull of the convex hull of r-out k-
arborescences (see Corollary 53.6a [Sch03]), and it can be seen that every fea-
sible solution of (LP-ACSS) is a point in P out. Vempala and Carr [CV02] gave
a polynomial-time algorithm that allows us to write a point x ∈ P out as a
convex combination of k arc-disjoint arborescences. Their algorithm requires a
polynomial-time algorithm for finding an r-out k-arborescences [Edm73, Gab91].

Lemma 1. [Fra79, CV02, Edm73, Gab91] P out is the convex hull of subsets
of A containing r-out k-arborescences. Moreover, given any fractional solution
y ∈ P out, there is a polynomial time algorithm that finds a convex combination
of r-out k-arborescences, T1, . . . , Tl, such that

y ≥
l∑

i=1

λiχ(Ti).

The above lemma holds analogously for the r-in arborescences. Now, since x ∈
P out, we can write a distribution of r-out(in) k-arborescences such that proba-
bility of each arc a ∈ A chosen in a random k-arborescence is bounded above by
xa:

Corollary 1. There are distributions Din(r) and Dout(r) of r-in k-arborescences
and r-out k-arborescences, such that the marginal value of each arc a ∈ A is
bounded above by xa, i.e., for all arcs a ∈ A,

PT∼Din(r) [a ∈ T] ≤ xa,

PT∼Dout(r) [a ∈ T] ≤ xa.

Moreover, these distributions can be computed in polynomial time.

Now, we are ready to describe our algorithm. We sample k-arborescences Tin

and Tout independently from Din and Dout, respectively, and we then return
Tin ∪ Tout as an output. The details are described in Algorithm 1.

Next, we show that the approximation ratio of the above algorithm is no more
than 1 + 1/k.

Theorem 3. For any directed graph G, Algorithm 1 always produces a k-arc
connected subgraph of G such that the expected size of the solution is no more
than min{7/4, 1 + 1/k} of the optimum.

Proof. First, we show that the union of any pair of r-in and r-out k-arborescences
is k-arc connected. Let Tin(Tout) be a r-in (r-out) k-arborescence, and H =

610 B. Laekhanukit, S.O. Gharan, and M. Singh

Algorithm 1. Approximation Algorithm for Min-Size k-ACSS

1: Solve (LP-ACSS) to get an optimum extreme point solution x.
2: Find distributions Din(r) and Dout(r) on r-in and r-out k-arborescences, respec-

tively, such that the marginal value of each arc a ∈ A is bounded above by xa.
3: Sample an r-in k-arborescence Tin from Din(r) and an r-out k-arborescence Tout,

independently, from Dout(r).
4: return Tin ∪ Tout.

Tin ∪ Tout. Since both Tin and Tout are unions of k arc-disjoint arborescences,
there are k arc-disjoint paths from each of the vertices to r and k arc-disjoint
paths from r to each of the vertices. Therefore, H remains strongly connected
after removing any set of k − 1 arcs. Hence, H is k-arc connected.

It remains to show that the expected size of the solution is no more than
min{1 + 1/k, 7/4} of the optimum, i.e.,

ETin∼Din(r),Tout∼Dout(r) [|Tin ∪ Tout|]
|OPT| ≤ min

{
7

4
, 1 +

1

k

}
.

To simplify the notation, we will skip the subscript and write E [|Tin ∪ Tout|] to
mean ETin∼Din(r),Tout∼Dout(r) [|Tin ∪ Tout|]. Similarly, we will skip the subscripts
for PTin∼Din(r) [a ∈ Tin] and PTout∼Dout(r) [a ∈ Tout].

Since Tin and Tout are chosen independently,

E [|Tin ∪ Tout|] =
∑
a∈A

{P [a ∈ Tin] +P [a ∈ Tout]−P [a ∈ Tin] ·P [a ∈ Tout]}

≤
∑
a∈A

2xa −
∑
a∈A

x2a.

The last inequality follows from Corollary 1 and the fact that xa ≤ 1 for all
a ∈ A. Let F := {a : 0 < xa < 1} be the set of the fractional arcs (i.e., set of
arcs with non-integer values in the solution of (LP-ACSS)). Since x is an optimal
solution of (LP-ACSS), |OPT| ≥

∑
a∈A xa. Therefore,

E [|Tin ∪ Tout|]
|OPT| ≤ 1 +

∑
a∈A xa −

∑
a∈A x2a∑

a∈A xa

= 1 +
x(F) −

∑
a∈F x2a

x(A)

≤ 1 +
x(F) − x(F)2/|F |

x(A)
, (1)

where the last inequality follows from Jenson’s inequality and the fact that
f(t) = −t2 is a concave function.

Since x is an extreme point solution of (LP-ACSS), x is a sparse vector. It
follows from the work of Melkonian and Tardos [MT04] (see also [GGTW09]),
that the number of fractional arcs, |F |, is no more than 4n. Hence,

x(F)− x(F)2/|F |
x(A)

≤ x(F)− x(F)2/4n

x(A)
≤ n

x(A)
≤ 1

k
, (2)

A Rounding by Sampling Approach 611

where the second inequality follows since x(F) − x(F)2/4n attains its maxi-
mum at x(F) = 2n, and the last inequality follows from the fact that x(A) =∑

v∈V x(δ+(v)) ≥ nk. On the other hand, since x(F) ≤ x(A), we get

x(F) − x(F)2/|F |
x(A)

≤ 1

2
+
x(F)− x(F)2/2n

2x(A)
≤ 1

2
+

n

4x(A)
≤ 3

4
. (3)

The theorem simply follows by putting equations (1),(2),(3) together. ��

Remark 1. Since the distributions Din(r) and Dout(r) can be constructed such
that the support of each distribution has size only polynomially large in n, the
algorithm can be derandomized simply by choosing a pair of k-arborescences
that have the minimum number of arcs in their union.

3 A Lower Bound on the Integrality Gap

In this section, we prove Theorem 2: we show a lower-bound of 1.5− ε, for any
arbitrary small ε > 0, on the integrality gap of (LP-ACSS) for k = 1. Our
construction is based on the LP-gap construction of the asymmetric traveling
saleman problem by Charikar, Goemans and Karloff [CGK06].

3.1 Construction

Let r > 0 be an integral parameter that will be defined later. We start by
defining the integrality gap example, G(d, s, t), by a recursive construction of
depth d. In any graph G(d, s, t), d is the depth, r is the number of columns, s, t
are the source, sink vertices, respectively. We allow s and t to be the same vertex.
We will construct G(d, s, t) inductively such that it contains exactly r copies of
G(d− 1, ., .).

We start by describing G(1, s, t). The graph consists of s, t and r distinct
vertices v1, . . . , vr. Let v0 = s and vr+1 = t; note that v0 and vr+1 may be the
same depending on the given parameters s and t. For any 1 ≤ i ≤ r + 1, we
include arcs (vi, vi−1) and (vi−1, vi) in G(1, s, t). Therefore,

A(G(1, s, t)) := {(vi−1, vi), (vi, vi−1), 1 ≤ i ≤ r + 1}.

Next, we define G(d, s, t). The graph consists of s, t and r distinct copies of
G(d − 1, ., .). In particular, let v1, . . . , vr, u1, . . . , ur be 2r distinct vertices, and
v0 = ur+1 = s and vr+1 = u0 = t. For any 1 ≤ i ≤ r, include a distinct copy of
G(d− 1, ., .) with source ui and sink vi. Also, for any 1 ≤ i ≤ r + 1, include the
arcs (vi, vi−1) and (ui−1, ui). Therefore,

A(G(d, s, t)) := {(ui−1, ui), (vi, vi−1), 1 ≤ i ≤ r+1}∪
{

r⋃
i=1

A(G(d − 1, ui, vi))

}
.

Figure 3.1 illustrates the graph G(3, s, s) for r = 3.

612 B. Laekhanukit, S.O. Gharan, and M. Singh

Our integrality gap example is Gd := G(d, s, s), where the source and the sink
are unified. The ith column of Gd is defined to be the ith copy of the G(d−1, ., .),

i.e., G
(i)
d := G(d − 1, ui, vi). The set of arcs that connect the r columns with s

and t, i.e., A(Gd) \
⋃r

i=1A(G
(i)
d), are denoted by dth level arcs. Similarly, the lth

level arcs of Gd are defined to be set of arcs included at the lth level of induction.

For example, the (d− 1)th level arcs of Gd are
⋃r

i=1

(
A(G

(i)
d) \

⋃r
j=1 A(G

(i;j)
d)
)
,

where G
(i;j)
d is the jth column of G

(i)
d .

We define the costs of the arcs of Gd such that, for any 1 ≤ l ≤ d, the total
cost of the arcs at level l is equal to 1. In other words, the cost of each arc at level
l, cd(l), is the reciprocal of the number of arcs at level l. By the construction of
Gd, we have

cd(l) :=
1

2(r + 1)rd−l
. (4)

Fig. 1. An illustration of the graph G(3, s, s), for r = 3. Note that the vertices labeled
“s” on the left and on the right are the same.

3.2 Lower Bounding the Integrality Gap

We show that for any d > 0, and for a sufficiently large r, the integrality gap of
the instance G(d, s, s) is at least 3/2−O(1/d).

Theorem 4. For any d > 0 and r ≥ d, the integrality gap of the instance
G(d, s, s) is at least 3/2− 8/d.

First, we show that the optimal value of the LP is at most d/2. Define x∗a := 1/2
for all arcs a ∈ A(Gd). Charikar et al. [CGK06] show that x∗ belongs to the Held-
Karp relaxation polytope [HK70]. Since any solution of the Held-Karp relaxation
polytope is a feasible solution to (LP-ACSS) for k = 1, x∗ is also a feasible
solution to (LP-ACSS). Furthermore, since the sum of the cost of the arcs of Gd

is d, i.e., c(A(Gd)) = d, we have
∑

a c(a)x
∗
a = d/2. Hence, the optimal value of

LP is at most d/2.

A Rounding by Sampling Approach 613

Lemma 2 (Charikar et al. [CGK06]). For k = 1, the optimum value of
(LP-ACSS) for the graph Gd is at most d/2.

For any d > 0, let Hd be the minimum cost strongly connected subgraph of Gd,
and T (d) := c(A(Hd)) be the cost of Hd. In the rest of the section, we prove the
following lemma:

Lemma 3. For all d > 0,

T (d) ≥ 3d− 1

4
− 3d

r
. (5)

Let H
(i)
d := Hd∩G(i)

d be the ith column of Hd. Observe that H
(i)
d can be incident

to (at most) four arcs of the dth level arcs of Hd. Let

Ad(i) := {(vi, vi−1), (vi+1, vi), (ui−1, ui), (ui, ui+1)} ∩ A(Hd),

be the set of those arcs. We can lower-bound c(A(H
(i)
d)) based on the number of

arcs that is incident to H
(i)
d (note that since Hd is strongly connected, |Ad(i)| ≥

2):

Case 1: |Ad(i)| ≥ 3
In this case, we must have

c(A(H
(i)
d)) ≥ T (d− 1)/r. (6)

The inequality essentially follows from the fact that H
(i)
d is a strongly con-

nected subgraph of Gd−1. This is because the remaining arcs of the graph,

Hd \ H(i)
d , can only connect (or unify) the source and sink of H

(i)
d , i.e., ui

and vi. The 1/r factor follows from the fact that the cost of each arc of Gd−1

is r times the corresponding arc in G
(i)
d .

Case 2: |Ad(i)| = 2, and each of ui and vi is incident to exactly one arc of Ad(i)
Similar to the previous case, here we have

c(A(H
(i)
d)) ≥ T (d− 1)/r. (7)

As we will see in Lemma 4, at most two columns of Hd may satisfy this case.

Therefore, although we have the worse lower-bound on c(H
(i)
d) in this case,

it has an insignificant effect on the final lower-bound.

Case 3: |Ad(i)| = 2, and one of ui or vi is incident to none of the arcs of Ad(i)

Here we obtain a better lower-bound. For 1 ≤ j ≤ r, let H
(i;j)
d be the jth col-

umn of H
(i)
d with source ui,j and sink vi,j . It follows that the only ui, vi (or

vi, ui) path in Hd is the one that is made by the d−1 level arcs connecting the

columns ofH
(i)
d , i.e., ui, ui,1, ui,2, . . . , ui,r, vi (resp. vi, vi,r, vi,r−1, . . . , vi,1, ui).

Therefore, H
(i)
d must contain all of the (d−1)th level arcs of G

(i)
d . Since each

614 B. Laekhanukit, S.O. Gharan, and M. Singh

column of H
(i)
d is incident to 4 arcs of level (d−1)th, by repeated application

of case 1, we obtain

c(A(H
(i)
d)) ≥ 2(r + 1)cd(d− 1) +

r∑
j=1

c(A(H
(i;j)
d))

= 2(r + 1)cd(d− 1) +
T (d− 2)

r
. (8)

Next, we show that there are at most 2 columns satisfying the second case.

Fig. 2. An illustration of Hd where the second column satisfies Case 2. The black arcs
represent the arcs of Hd, and grey arcs represent the removed arcs. Observe that every
arc at level d is a min-cut of Hd.

Lemma 4. At most two columns of Hd satisfy the second case.

Proof. The proof is a simple case analysis argument. First, observe that there ex-
ists a column satisfying the second case in Hd if and only if (vi, vi−1), (ui−1, ui) /∈
Hd for some 1 ≤ i ≤ r+1. Now, suppose this is the case. It then follows that Hd

must contain all arcs at level d except these two arcs because each of the other
arcs is a min-cut of Hd. See Figure 3.2. Therefore, all except (at most) two of
the columns of Hd are adjacent to exactly 4 arcs at level d. ��
Now we are ready to prove Lemma 3.

Proof of Lemma 3. We prove by induction. First observe that T (0) = 0 and
T (1) = 1/2 satisfying (5). Let N1, N2, (r −N1 −N2) be the number of columns
satisfying case 1, 2, 3, respectively. We divide the cost of each arc at level d
equally between the columns incident to it. This incurs a cost of 3cd(d)/2 to the
columns satisfying case 1, cd(d) to the rest of the columns and at least cd(d) to
the source vertex s (note that s is adjacent to at least two arcs at level d). Using
equations (6), (7), (8) we get:

A Rounding by Sampling Approach 615

T (d) ≥ cd(d) + min
0≤N1,N2≤r

{
N1

(
3cd(d)

2
+
T (d− 1)

r

)
+N2

(
cd(d) +

T (d− 1)

r

)
+ (r −N1 −N2)

(
cd(d) + 2(r + 1)cd(d− 1) +

T (d− 2)

r

)}
≥ min

0≤N≤r

{
N

(
3cd(d)

2
+
T (d− 1)

r

)
+ (r −N)

(
cd(d) + 2(r + 1)cd(d− 1) +

T (d− 2)

r

)}
≥ min

0≤α≤1

{
α

(
3r

4(r + 1)
+ T (d− 1)

)
+ (1− α)

(
3r

2(r + 1)
+ T (d− 2)

)}
≥ min {3/4 + T (d− 1), 3/2 + T (d− 2)} − 3/r.

The second inequality follows from the fact that N2 ≤ 2. The third inequality
follows from equation (4), and the last one follows from a simple algebra.

Now, we may apply the induction hypothesis to T (d − 1) and T (d − 2). We
get

T (d) ≥ min

{
3

4
+

3(d− 1)− 1

4
− 3(d− 1)

r
,
3

2
+

3(d− 2)− 1

4
− 3(d− 2)

r

}
− 3

r

≥ 3d− 1

4
− 3d

r
,

which completes the proof. ��
This completes the proof of Theorem 4.

4 Conclusion

We presented a simple (1 + 1/k)-approximation algorithm based on the round-
ing by sampling method for the minimum size k-arc connected subgraph prob-
lem. Unlike recent applications of the rounding by sampling method [AGM+10,
OSS11], our algorithm has a flavor of the iterated rounding method [Jai01] in its
particular use of the extreme point solutions. The main open problem is to find
a better than factor 2-approximation for the minimum cost strongly connected
subgraph problem.

We also showed that the integrality gap of the minimum cost strongly con-
nected subgraph problem is at least 1.5 − ε, for any ε > 0. This leaves an
interesting open question whether the lower bound of 1 + Ω(1/k) is achievable
for the minimum size k-arc connected subgraph problem as well.

Acknowledgments. We thank Joseph Cheriyan for useful discussions on the
preliminary construction of the integrality-gap instance.

References

[AGM+10] Asadpour, A., Goemans, M.X., Madry, A., Gharan, S.O., Saberi, A.: An
O(log n/ log log n)-approximation algorithm for the asymmetric traveling
salesman problem. In: SODA, pp. 379–389 (2010)

616 B. Laekhanukit, S.O. Gharan, and M. Singh

[AKS12] An, H.-C., Kleinberg, R., Shmoys, D.B.: Improving Christofides’ algorithm
for the s-t path tsp. In: STOC (to appear, 2012)

[CGK06] Charikar, M., Goemans, M.X., Karloff, H.J.: On the integrality ratio for
the asymmetric traveling salesman problem. Math. Oper. Res. 31(2), 245–
252 (2006); Preliminary version in FOCS 2004

[CT00] Cheriyan, J., Thurimella, R.: Approximating minimum-size k-connected
spanning subgraphs via matching. SIAM J. Comput. 30(2), 528–560
(2000); Preliminary version in FOCS 1996

[CV02] Carr, R.D., Vempala, S.: Randomized metarounding. Random Struct. Al-
gorithms 20(3), 343–352 (2002)

[Edm73] Edmonds, J.: Edge-disjoint branchings. In: Combinatorial algorithms
(Courant Comput. Sci. Sympos. 9, New York Univ., New York, 1972),
pp. 91–96. (1973)

[FJ81] Frederickson, G.N., JáJá, J.: Approximation algorithms for several graph
augmentation problems. SIAM J. Comput. 10(2), 270–283 (1981)

[Fra79] Frank, A.: Covering branchings. Acta Scientiarum Mathematicarum
(Szeged) 41, 77–81 (1979)

[Gab91] Gabow, H.N.: A matroid approach to finding edge connectivity and pack-
ing arborescences. In: STOC, pp. 112–122 (1991)

[Gab04] Gabow, H.N.: Special edges, and approximating the smallest directed k-
edge connected spanning subgraph. In: SODA, pp. 234–243 (2004)

[GG08] Gabow, H.N., Gallagher, S.: Iterated rounding algorithms for the smallest
k-edge connected spanning subgraph. In: SODA, pp. 550–559 (2008)

[GGTW09] Gabow, H.N., Goemans, M.X., Tardos, É., Williamson, D.P.: Approxi-
mating the smallest k-edge connected spanning subgraph by LP-rounding.
Networks 53(4), 345–357 (2009); Preliminary version in SODA 2005

[HK70] Held, M., Karp, R.: The traveling salesman problem and minimum span-
ning trees. Operations Research 18, 1138–1162 (1970)

[Jai01] Jain, K.: A factor 2 approximation algorithm for the generalized steiner
network problem. Combinatorica 21(1), 39–60 (2001); Preliminary version
in FOCS 1998

[KRY94] Khuller, S., Raghavachari, B., Young, N.E.: Approximating the minimum
equivalent digraph. In: Proceedings of the Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 1994, pp. 177–186. Society for In-
dustrial and Applied Mathematics, Philadelphia (1994)

[KRY96] Khuller, S., Raghavachari, B., Young, N.E.: On strongly connected di-
graphs with bounded cycle length. Discrete Applied Mathematics 69(3),
281–289 (1996)

[MOS11] Manshadi, V.H., Gharan, S.O., Saberi, A.: Online stochastic matching:
Online actions based on offline statistics. In: SODA, pp. 1285–1294 (2011)

[MT04] Melkonian, V., Tardos, E.: Algorithms for a network design problem with
crossing supermodular demands. Networks 43(4), 256–265 (2004)

[OSS11] Gharan, S.O., Saberi, A., Singh, M.: A randomized rounding approach to
the traveling salesman problem. In: FOCS, pp. 550–559 (2011)

[Sch03] Schrijver, A.: Combinatorial Optimization. Springer (2003)
[Vet01] Vetta, A.: Approximating the minimum strongly connected subgraph via

a matching lower bound. In: SODA, pp. 417–426 (2001)
[ZNI03] Zhao, L., Nagamochi, H., Ibaraki, T.: A linear time 5/3-approximation for

the minimum strongly-connected spanning subgraph problem. Inf. Process.
Lett. 86, 63–70 (2003)

Classical and Quantum Partition Bound

and Detector Inefficiency�

Sophie Laplante1, Virginie Lerays1, and Jérémie Roland2

1 LRI, Université Paris-Sud 11
2 ULB, QuIC, Ecole Polytechnique de Bruxelles

Abstract. We study randomized and quantum efficiency lower bounds
in communication complexity. These arise from the study of zero-commu-
nication protocols in which players are allowed to abort. Our scenario is
inspired by the physics setup of Bell experiments, where two players share
a predefined entangled state but are not allowed to communicate. Each is
given a measurement as input, which they perform on their share of the
system. The outcomes of the measurements should follow a distribution
predicted by quantum mechanics; however, in practice, the detectors
may fail to produce an output in some of the runs. The efficiency of the
experiment is the probability that neither of the detectors fails.

When the players share a quantum state, this leads to a new bound on
quantum communication complexity (eff∗) that subsumes the factoriza-
tion norm. When players share randomness instead of a quantum state,
the efficiency bound (eff), coincides with the partition bound of Jain and
Klauck. This is one of the strongest lower bounds known for randomized
communication complexity, which subsumes all the known combinatorial
and algebraic methods including the rectangle (corruption) bound, the
factorization norm, and discrepancy. The lower bound is formulated as
a convex optimization problem. In practice, the dual form is more feasi-
ble to use, and we show that it amounts to constructing an explicit Bell
inequality (for eff) or Tsirelson inequality (for eff∗). For one-way com-
munication, we show that the quantum one-way partition bound is tight
for classical communication with shared entanglement up to arbitrarily
small error.

1 Introduction

1.1 Communication Complexity and the Partition Bound

Recently, Jain and Klauck [1] proposed a new lower bound on randomized com-
munication complexity which subsumes two families of methods: the algebraic
methods, including the nuclear norm and factorization norm, and combinatorial
methods, including discrepancy and the rectangle or corruption bound.

A longstanding open problem is whether there are total functions for which
there is an exponential gap between classical and quantum communication com-
plexities. Many partial results have been given [2,3,4,5], most recently [6]. These

� Full version available as arXiv:1203.4155 and ECCC TR12-023.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 617–628, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

618 S. Laplante, V. Lerays, and J. Roland

strong randomized lower bounds all use the distributional model, in which the
randomness of the protocol is replaced by randomness in the choice of inputs,
which are sampled according to some hard distribution. The equivalence of the
randomized and distributional models, due to Yao’s minmax theorem [7], comes
from strong duality of linear programming. This appears to be non-applicable
to quantum communication complexity (see for instance [8] which considers a
similar question in the setting of query complexity), and the rectangle bound,
as a result, is understood to be an inherently classical method for lower bounds.

1.2 Bell Experiments

Quantum nonlocality gives us a different viewpoint from which to consider lower
bounds for communication complexity. A fundamental question of quantum me-
chanics is to establish experimentally whether nature is truly nonlocal, as pre-
dicted by quantum mechanics, or whether there is a purely classical (i.e., local)
explanation to the phenomena that have been observed in the lab. In an exper-
imental setting, two players share an entangled state and each player is given a
measurement to perform. The outcomes of the measurements are predicted by
quantum mechanics and follow some probability distribution p(a, b|x, y), where
a is the outcome of Alice’s measurement x, and b is the outcome of Bob’s mea-
surement y. (We write p for the distribution, and p(a, b|x, y) for the individual
probabilities.) A Bell test [9] consists of estimating all the probabilities p(a, b|x, y)
and computing a Bell functional, or linear function, on these values. The Bell
functional B(p) is chosen together with a threshold τ so that any local classical
distribution p′ verifies B(p′) ≤ τ , but the chosen distribution p violates this
inequality: B(p) > τ .

Although there have been numerous experiments that have validated the pre-
dictions of quantum mechanics, none so far has been totally “loophole-free”. A
loophole can be introduced, for instance, when the state preparation and the
measurements are imperfect, or when the detectors are partially inefficient so
that no measurement is registered in some runs of the experiment, or if the en-
tangled particles are so close that communication may have taken place in the
course of a run of the experiment. In such cases, there are classical explanations
for the results of the experiment. For instance, if the detectors were somehow
coordinating their behavior, they may choose to discard a run, and though the
conditional probability (conditioned on the run not having been discarded) may
look quantum, the unconditional probability may very well be classical. This is
called the detection loophole. When an experiment aborts with probability at
most 1− η, we say that the efficiency is η. (Here we assume that individual runs
are independent of one another.) To close the detection loophole, the efficiency
has to be high enough so that the classical explanations are ruled out.

What can Bell tests tell us about communication complexity? Both are mea-
sures of how far a distribution is from the set of local distributions (those re-
quiring no communication), and one would expect that if a Bell test shows a
large violation for a distribution, simulating this distribution should require a
lot of communication, and vice versa. Degorre et al. showed that the factorization

Classical and Quantum Partition Bound and Detector Inefficiency 619

norm amounted to finding large Bell inequality violations for a particular class
of Bell inequalities [10]. Here, we show that the partition bound also corresponds
to a class of Bell inequalities.

1.3 Summary of Results

If we assume there is a c-bit classical communication protocol where Alice and
Bob output a, b with distribution p(a, b|x, y) when Alice’s input is x and Bob’s in-
put is y, then there is a protocol without communication that outputs according
to p (conditioned on the run not being discarded) that uses shared randomness
and whose efficiency is 2−c: both players guess a transcript, and if they disagree
with the transcript, they abort. Otherwise they follow the protocol using the
transcript. As others have noticed [11,12], one can immediately derive a lower
bound: let η be the maximum efficiency of a protocol without communication
that successfully simulates p with shared randomness. We define eff(p) = 1/η,
and log(eff(p)) is a lower bound on the communication complexity of simulat-
ing p. Though this may sound näıve, this gives a surprisingly strong bound which
coincides with the partition bound (in the special case of computing functions).

When we turn to the dual formulation, we get a natural physical interpreta-
tion, that of Bell inequalities. To prove a lower bound amounts to finding a good
Bell inequality and proving a large violation. This is similar to finding a hard
distribution and proving a lower bound in the distributional model of communi-
cation; but it is much stronger since the Bell functional is not required to have
positive coefficients that sum to one.

Our approach leads naturally to a “quantum partition bound” which gives a
lower bound on quantum communication complexity. Let eff∗(p) = 1/η∗, where
η∗ is the maximum efficiency of a protocol without communication that success-
fully simulates p with shared entanglement. In the one-way setting, our quantum
partition bound is tight up to arbitrarily small error.

Simulating distributions while allowing for runs to be discarded with some
probability is a stronger requirement than allowing a probability of error since the
errors are flagged. Lee and Shraibman give a proof of the factorization norm (γ2)
lower bound on (quantum) communication complexity based on the best bias one
can achieve with no communication [13, Theorem 60] (attributed to Buhrman;
see also Degorre et al. [10]). In light of our formulation of the (quantum) partition
bound, it is an easy consequence that the (quantum) partition bound is an upper
bound on γ2 (see e.g. [14] for definitions of the factorization norm γ2 and the
related nuclear norm ν, as well as [10] for their extensions to the communication
complexity of distributions).

The following gives a summary of our results. Full definitions and statements
are given in the main text. Let prt(p) be the partition bound for a distribution p
(defined in Sect. 3.1). R0(p) denotes the communication complexity of simulat-
ing p exactly using shared randomness and classical communication, and Q∗

0(p)
denote the communication complexity of simulating p exactly using shared en-
tanglement and quantum communication. One-way communication, where only
Alice sends a message to Bob, is denoted→. In the simultaneous messages model,

620 S. Laplante, V. Lerays, and J. Roland

denoted ‖, each player sends a message to the referee, who does not know the
inputs of either player, and has to produce the output. Shared entanglement is
indicated by the superscript ∗. For any distribution p,

– Theorem 2: prt(p) = eff(p),
– Theorem 3: Q∗

0(p) ≥ 1
2 log(eff

∗(p)),
– Theorem 4: γ2(p) ≤ 2 eff∗(p) and ν(p) ≤ 2 eff(p) (for nonsignaling p),

– Theorem 5: R
∗,‖
ε (p) ≤ O(eff∗(p)) and R∗

ε(p) ≤ O(
√

eff∗(p)).

In the case of one-way communication, the upper bounds are much tighter. The
one-sided efficiency measure, which we denote eff→ is given in Definition 5.

– Theorem 6: 1
2 log(eff

∗,→(p)) ≤ Q∗,→
0 (p) ; Q∗,→

ε (p) ≤ log(eff∗,→(p)) +O(1).

We can use smoothing to handle ε error, and demonstrate in the full paper how
this is done in practice for some specific examples. For simplicity we have omitted
these details in this summary. In the case of boolean functions, this is equivalent
to relaxing the exactness constraints in the linear programs.

1.4 Related Work

The question of simulating quantum distributions in the presence of inefficient
detectors has long been the object of study, since the reality of the experimen-
tal setups is that whenever the detectors can be placed far apart enough to
prevent the communication loophole (typically in optics setups), the efficiency
is extremely small (on the order of 10%). Gisin and Gisin show that the EPR
correlations can be reproduced classically using only 75% detector efficiency [15].

Massar exhibits a Bell inequality that is more robust against detector inef-
ficiency based on the distributed Deutsch Josza game [11]. The Bell inequality
is derived from the lower bound on communication complexity for this promise
problem [16,17]. Massar shows an upper bound of eff(p) on expected communi-
cation complexity of simulating p. He also states, but does not claim to prove,
that a lower bound can be obtained as the logarithm of the efficiency. Buhrman
et al. [12,18] show how to get Bell inequalities with better resistance to detec-
tor inefficiency by considering multipartite scenarios where players share GHZ
type entangled states. Their technique is based on the rectangle bound and they
derive a general tradeoff between monochromatic rectangle size, efficiency, and
communication. They show a general lower bound on multiparty communication
complexity which is exactly as we describe above.

Buhrman et al. [19] show gaps between quantum and classical winning prob-
ability for games where the players are each given inputs and attempt, without
communication, to produce outputs that satisfy some predicate. In the classical
case they use shared randomness and entanglement in the quantum case. Win-
ning probabilities are linear so these translate to large Bell inequality violations.

Lower bounds for communication complexity of simulating distributions were
first studied in a systematic way by Degorre et al. [10]. These bounds are shown
to be closely related to the nuclear norm and factorization norm [14], and the
dual expressions are interpreted as Bell inequality violations. Jain and Klauck
define a Las Vegas partition bound where protocols are allowed to abort [1].

Classical and Quantum Partition Bound and Detector Inefficiency 621

2 Preliminaries

2.1 Classical Partition Bound

The partition bound of Jain and Klauck [1] is given as a linear program, following
the approach of Lovász [20] and studied in more depth by Karchmer et al. [21].

Definition 1 (Partition bound [1]). Let f : X × Y → Z be any partial
function whose domain we write f−1. Then prtε(f) is defined to be the optimal
value of the following linear program, where R ranges over the rectangles from
X × Y and z ranges over the set Z:

prtε(f) = min
wR,z≥0

∑
R,z

wR,z subject to
∑

R:(x,y)∈R

wR,f(x,y) ≥ 1− ε ∀x, y ∈ f−1

∑
z

∑
R:(x,y)∈R

wR,z = 1 ∀x, y ∈ X × Y .

Jain and Klauck [1] show that Rε(f) ≥ log(prtε(f)). The partition bound sub-
sumes almost all previously known techniques [1], in particular the factorization
norm [14], rectangle or corruption bound [7], and discrepancy [22,23].

2.2 Local and Quantum Distributions

Given a distribution p, how much communication is required if Alice is given
x ∈ X , Bob is given y ∈ Y, and their goal is to output a, b ∈ A × B with
probability p(a, b|x, y)?

Some classes of distributions are of interest and have been widely studied in
quantum information theory since the seminal paper of Bell [9]. The local de-
terministic distributions, denoted � ∈ Ldet, are the ones where Alice outputs
according to a deterministic strategy, i.e., a (deterministic) function of x, and
Bob independently outputs as a function of y. The local distributions L are any
distribution over the local deterministic strategies. Mathematically this corre-
sponds to taking convex combinations of the local deterministic distributions,
and operationally to zero-communication protocols with shared randomness.

We will also consider local strategies that are allowed to output ⊥ when the
players abort the protocol. We will use the notation L⊥

det and L⊥ to denote
these strategies, where ⊥ is added to the possible outputs for both players, and
⊥ �∈ A ∪ B. Therefore, when � ∈ L⊥

det or L⊥, l(a, b|x, y) is not conditioned on
a, b �= ⊥ since ⊥ is a valid output for such distributions.

The quantum distributions, denoted q ∈ Q, result from applying measure-
ments to a shared quantum state. Each player outputs the measurement out-
come. In communication complexity, these are zero-communication protocols
with shared entanglement. When players are allowed to abort, the correspond-
ing set of distributions is denoted Q⊥.

Consider a boolean function f : X × Y → {0, 1} whose communication com-
plexity we wish to study. First, we split the output so that if f(x, y) = 0, Alice

622 S. Laplante, V. Lerays, and J. Roland

and Bob are required to output the same bit, and if f(x, y) = 1, they out-
put different bits. Let us further require Alice’s marginal distribution to be
uniform, likewise for Bob. Call the resulting distribution pf . Computing f re-
duces to computing pf and Alice sending her outcome to Bob. For any f , pf is
nonsignaling, that is, the marginals p(a|x, y) = p(a|xy′) for any a, x, y, y′, and
p(b|x, y) = p(b|x′, y) for any b, x, x′, y.

2.3 Communication Complexity Measures

Rε(p) is the minimum amount of communication necessary to reproduce the dis-
tribution p in the worst case, up to ε in total variation distance for all x, y. We
write |p−p′|1 ≤ ε to mean that for any x, y,

∑
a,b |p(a, b|x, y)−p′(a, b|x, y)| ≤ ε.

We use Q to denote quantum communication, and the superscript ∗ denotes the
presence of shared entanglement. We use superscripts → for one-way communi-
cation (i.e, when only Alice can send a message to Bob), and ‖ for simultaneous
messages (i.e., when Alice and Bob cannot communicate to each other, but are
only allowed to send a message to a third party who should produce the final
output of the protocol). The usual relation Q∗

ε (p) ≤ Rε(p) holds for any ε,p.
For all the models of randomized communication, we assume shared random-

ness between the players. Except in the case of simultaneous messages, this is
the same as private randomness up to a logarithmic additive term [24]. (Ref. [10]
sketches how to adapt Newman’s theorem to the case of distributions.)

3 Partition Bound and Detector Inefficiency

3.1 The Partition Bound for Distributions

We extend the partition bound to the more general setting of simulating a dis-
tribution p(a, b|x, y) instead of computing a function.

Definition 2. For any distribution p = p(a, b|x, y), over inputs x ∈ X , y ∈ Y
and outputs a ∈ A, b ∈ B, define prt(p) to be the optimal value of the following
linear program. The variables of the program are wR,
, where R ranges over the
rectangles from X ×Y and � ranges over the local deterministic distributions with
outputs in A× B.

prt(p) = min
wR,�≥0

∑
R,

wR,

subject to
∑

R,
:x,y∈R

wR,
 · l(a, b|x, y) = p(a, b|x, y) ∀x, y, a, b ∈ X×Y×A×B .

For randomized communication with error, prtε(p) = min|p′−p|1≤ε prt(p
′).

In the special case of a distribution pf arising from a function f , we have as
expected prtε(pf) = prtε(f). For the general case of a distribution p, we can
show that Rε(p) ≥ log prtε(p). Rather than proving this directly, we will first
show that this partition bound is equivalent to another bound based on the
notion of efficiency.

Classical and Quantum Partition Bound and Detector Inefficiency 623

3.2 The Efficiency Bound

For any distribution p, eff(p) is the inverse of the maximum efficiency sufficient
to simulate it classically with shared randomness, without communication.

Definition 3. For any distribution p with inputs X ×Y and outputs in A×B,
eff(p) = 1/ζopt, where ζopt is the optimal value of the following linear program.
The variables are ζ and q
, where � ranges over local deterministic protocols with
inputs taken from X × Y and outputs in A ∪ {⊥} × B ∪ {⊥}.

ζopt = max
ζ,q�≥0

ζ

subject to
∑

∈L⊥
det

q
l(a, b|x, y) = ζp(a, b|x, y) ∀x, y, a, b ∈ X×Y×A×B

∑

∈L⊥

det

q
 = 1 .

For randomized communication with error, define effε(p) = min|p′−p|1≤ε eff(p
′).

The first constraint says that the local distribution, conditioned on both outputs
differing from ⊥, equals p, and the second is a normalization constraint. Note
that the efficiency ζ is the same for every input x, y. This is surprisingly impor-
tant and the relaxation ζx,y ≥ ζ does not appear to coincide with the partition
bound. Other more realistic variants (for the Bell setting), such as players abort-
ing independently of one another, could be considered as well. We note that this
would not result in a linear program.

Theorem 1 ([11,12]). Rε(p) ≥ log effε(p).

Proof (sketch). Let P be a randomized protocol for a distribution p′ with |p−
p′|1 ≤ ε, using t bits of communication. We assume that the total number of bits
exchanged is independent of the execution of the protocol, introducing dummy
bits at the end of the protocol if necessary. Let ql be the following distribution
over local deterministic protocols �: Alice and Bob pick a transcript T ∈ {0, 1}t
using shared randomness. If T is consistent with P , Alice outputs according to
P , otherwise she outputs ⊥; similarly for Bob. Only one transcript is valid for
Alice and Bob simultaneously, so the probability that neither player outputs ⊥
is exactly 2−t. This satisfies the constraints of eff(p′) with ζ = 2−t. ��

Theorem 2. For any distribution p, eff(p) = prt(p).

Proof. In the partition bound, a pair (�, R), where � is a local distribution with
outputs in A × B and R is a rectangle, defines a local distribution �R with
outputs in (A ∪ {⊥}) × (B ∪ {⊥}), where Alice outputs as in � if x ∈ R, and
outputs ⊥ otherwise (similarly for Bob). Let (a0, b0) ∈ A × B be an arbitrary
pair of outputs. In the efficiency bound, a distribution � ∈ L⊥

det defines both a
rectangle being the set of inputs where neither Alice nor Bob abort, and a local
distribution �′ ∈ Ldet where Alice outputs as � if the output is different from

624 S. Laplante, V. Lerays, and J. Roland

⊥ and a0 otherwise (similarly for Bob with b0). We can transform the linear
program for prt(p) into the linear program for eff(p) by making the change of

variables: ζ =
(∑

R,
wR,

)−1

and q
R = ζ wR,
. ��

3.3 Lower Bound for Quantum Communication Complexity

By replacing local distributions by quantum distributions we get a strong new
lower bound on quantum communication that subsumes the factorization norm.

Definition 4. For any distribution p with inputs X × Y and outputs A × B,
eff∗(p) = 1/η∗, with η∗ the optimal value of the following (non-linear) program.

max
ζ,q∈Q⊥

ζ subject to q(a, b|x, y) = ζp(a, b|x, y) ∀x, y, a, b ∈ X×Y×A×B .

As before, we let eff∗
ε (p) = min|p′−p|1≤ε eff

∗(p′).

Theorem 3. Q∗
ε (p) ≥ 1

2 log eff
∗
ε (p).

The proof follows the lines of the proof for eff, except that we first use tele-
portation to replace quantum communication by entanglement-assisted classical
communication.

Since the local distributions form a subset of the quantum distributions,
eff∗(p) ≤ eff(p) for any p. We can show that the efficiency is bounded be-
low by the factorization norm.

Theorem 4. For any nonsignaling p, ν(p) ≤ 2 eff(p) and γ2(p) ≤ 2 eff∗(p).

The proof is provided in the long version of the article, and is based on the fact
that a reject outcome can be replaced by a random outcome.

3.4 Proving Concrete Lower Bounds Using the Dual

To prove lower bounds, we use the dual formulation, and give a feasible solution.

Lemma 1 (Dual formulation). For any distribution p,

eff(p) = max
Babxy

∑
a,b,x,y∈A×B×X×Y

Babxyp(a, b|x, y)

subject to
∑

a,b,x,y∈A×B×X×Y
Babxyl(ab|xy) ≤ 1 ∀� ∈ L⊥

det .

For eff∗(p) the expression is identical save for replacing � by q ∈ Q⊥.

The first equality (for eff) uses linear programming duality and the second (for
eff∗) can be shown using Lagrange multipliers.

Concretely, how does one go about finding a feasible solution to the dual?
Consider a distribution p for which we would like to find a lower bound. We

Classical and Quantum Partition Bound and Detector Inefficiency 625

construct a Bell inequality B(p) =
∑

a,b,x,y Babxyp(a, b|x, y) so that B(p) is

large, and B(�) is small for every � ∈ L⊥. The goal is to balance the coefficients
so that they correlate well with the distribution p and badly with local strategies.

In the full paper, we give an example for a distribution based on the Hidden
Matching problem [4,5,19]; we also study the Khot Vishnoi game for which there
is a large Bell inequality violation [25,19]. We reformulate it as a quantum distri-
bution p ∈ Q (that is, Q0(p) = 0) and prove a lower bound R0(p) = Ω(log(n)).
The proofs use many of the techniques Burhman et al. used to establish large
Bell inequality violations [19].

4 Upper Bounds for One- and Two-Way Communication

The efficiency bound subsumes most known lower bound techniques for random-
ized communication complexity. How close is it to being tight? An upper bound
on randomized communication is proven by Massar [11]. We give a similar bound
for quantum communication complexity in terms of eff∗.

Theorem 5. For any distribution p with outputs in A,B,

1. R
‖
ε (p) ≤ eff(p) log(1ε) log(#(A × B)) [11],

2. R
∗,‖
ε (p) ≤ eff∗(p) log(1ε) log(#(A × B)),

3. R∗
ε (p) ≤ O

(√
eff∗(p) log(1ε)

)
.

Proof (Sketch). For the first two items, the players simulate a zero-communi-
cation protocol �log(1ε)eff(p)� times and send the outcomes to the referee, who
outputs a non-aborting run. For the third item, a quadratic speedup is possible
by using a quantum protocol for disjointness [16,26,27] on the input u, v, where
ui is 0 if Alice aborts in the ith run and 0 otherwise, similarly for v with Bob. ��

The partition and efficiency bounds can easily be tailored to the case of one-way
communication protocols. For the partition bound, we consider only rectangles
of the form X × Y with Y = Y. For the efficiency bound, this amounts to only
letting Alice abort the protocol. The set of local (resp. quantum) distributions
where only Alice can abort is denoted L⊥A

det (resp. Q⊥A).

Definition 5. Define eff→ in the same way as eff, replacing L⊥
det with L⊥A

det ;
and eff∗,→, by replacing Q⊥ with Q⊥A in the definition of eff∗.

The dual can also be interpreted as violations of Bell inequalities.

Lemma 2 (Dual formulation for one-way efficiency). The dual for the
one-way efficiency is as in the dual for eff, replacing L⊥

det with L⊥A
det .

Theorem 6. R→
0 (p) ≥ log eff→(p) and Q∗,→

0 (p) ≥ 1
2 log eff

∗,→(p).

The proof is similar to the two-way case. Here we show that the one-way parti-
tion bound is tight, up to arbitrarily small error. We give the results for quantum
communication since the rectangle bound is already known to be tight for ran-
domized communication complexity [28].

626 S. Laplante, V. Lerays, and J. Roland

Theorem 7. Q∗,→
ε (p) ≤ log(eff∗,→(p)) + log log(1/(ε)).

Proof. Let (ζ,q) be an optimal solution for eff∗,→(p). For any x, y, if we sam-
ple a, b according to q, Prq[a �= ⊥|x] = ζ and Prq[a, b|x, y] = ζp(a, b|x, y) for
all a, b �= ⊥ and all x, y. Let Alice and Bob simulate this quantum distribution
N = �log(1ε)

1
ζ � times, keeping a record of the outputs (ai, bi) for i ∈ [N]. Since

this distribution is quantum, this requires no communication (only shared en-
tanglement). Alice then communicates an index i ∈ [N] such that ai �= ⊥, if
such an index exists, or just a random index if ai = ⊥ for all i ∈ [N]. Alice and
Bob output (ai, bi) corresponding to this index.

The correctness of the protocol follows from the fact that Prq[ai = ⊥(∀i)] =
(1− ζ)N ≤ e−ζN ≤ ε. The protocol then requires logN bits of communication.

��

5 Conclusion and Open Problems

There are many questions to explore. In experimental setups, in particular with
optics, one is faced with the very real problem that in most runs of an experi-
ment, no outcome is recorded. The frequency with which apparatus don’t yield
an outcome is called detector inefficiency. Can we find explicit Bell inequalities
for quantum distributions that are very resistant to detector inefficiency? For
experimental purposes, it is also important for the distribution to be feasible to
implement. One way to achieve this could be to prove stronger bounds for the
inequalities based on the GHZ paradox given by Buhrman et al. [18]. Their anal-
ysis is based on a tradeoff derived from the rectangle bound. It may be possible
to give sharper bounds with our techniques. Another is to consider asymmetric
Bell inequalities and dimension witnesses [29,30]. Here, Alice prepares a state
and Bob makes a measurement. The goal is to have a Bell inequality demonstrat-
ing that Alice’s system has to be large. The dimension is exponential in the size
of Alice’s message to Bob, so proving a lower bound on one-way communication
complexity gives a lower bound on the dimension. In order to close the detection
loophole, one can also consider more realistic models of inefficiency, where the
failure to produce a measurement outcome is the result of either the entangled
state not being produced, or the detector of each player failing independently.
This could be exploited by defining a stronger version of the partition/efficiency
bound that also takes into account the probabilities of events where only one of
the players produces a valid outcome. While such a variation of the efficiency
bound is meaningful for Bell tests, we have not considered it here as it might
not be a lower bound on communication complexity.

We would like to see more applications. For the Khot Vishnoi distribution, we
are not aware of any nontrivial upper bound so there is a gap to be improved.

A family of lower bound techniques still not subsumed by the partition bound
are the information theoretic bounds such as information complexity [31]. It
was recently shown that information complexity is an upper bound on discrep-
ancy [32], and this upper bound was subsequently extended to a relaxation of

Classical and Quantum Partition Bound and Detector Inefficiency 627

the partition bound [33]. This relaxed partition bound also subsumes most al-
gebraic and combinatorial lower bound techniques, with the notable exception
of the partition bound itself, and we would therefore like to see connections one
way or the other between information complexity and the partition bound.

Finally, the quantum partition bound is of particular interest. It is hard to
apply since it is not linear, and it amounts to finding a Tsirelson inequality, a
harder task than finding a good Bell inequality, that can nevertheless be ap-
proached via semidefinite programming [34,35]. On the other hand, it is a very
strong bound and one can hope to get a better upper bound on quantum com-
munication complexity. Finding tight bounds complexity would be an important
step to proving the existence, or not, of exponential gaps for total functions.

Acknowledgements. We wish to particularly thank Raghav Kulkarni and Ior-
danis Kerenidis for many fruitful discussions. Research funded in part by the
EU grant QCS, ANR Jeune Chercheur CRYQ, ANR Blanc QRAC and EU ANR
Chist-ERA DIQIP.

References

1. Jain, R., Klauck, H.: The partition bound for classical complexity and query com-
plexity. In: Proc. 25th CCC 2010, pp. 247–258 (2010)

2. Newman, I., Szegedy, M.: Public vs. private coin flips in one round communication
games. In: Proc. 28th STOC 1996, pp. 561–570 (1996)

3. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys.
Rev. Lett. 87(16), 167902 (2001)

4. Bar-Yossef, Z., Jayram, T.S., Kerenidis, I.: Exponential separation of quantum
and classical one-way communication complexity. SIAM J. Comput. 38(1), 366–
384 (2008)

5. Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., de Wolf, R.: Exponential separation
for one-way quantum communication complexity, with applications to cryptogra-
phy. SIAM J. Comput. 38(5), 1695–1708 (2008)

6. Klartag, B., Regev, O.: Quantum one-way communication can be exponentially
stronger than classical communication. In: Proc. 43rd STOC 2011, pp. 31–40 (2011)

7. Yao, A.C.: Lower bounds by probabilistic arguments. In: Proc. 24th FOCS 1983,
pp. 420–428 (1983)

8. de Graaf, M., de Wolf, R.: On Quantum Versions of the Yao Principle. In: Alt, H.,
Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 347–358. Springer, Heidelberg
(2002)

9. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)
10. Degorre, J., Kaplan, M., Laplante, S., Roland, J.: The communication complexity

of non-signaling distributions. Quantum Information and Computation 11(7-8),
649–676 (2011)

11. Massar, S.: Non locality, closing the detection loophole and communication com-
plexity. Phys. Rev. A 65, 032121 (2002)

12. Buhrman, H., Høyer, P., Massar, S., Röhrig, H.: Combinatorics and quantum non-
locality. Phys. Rev. Lett. 91, 048301 (2003)

13. Lee, T., Shraibman, A.: Lower bounds in communication complexity. Foundations
and Trends in Theoretical Computer Science 3(4), 263–399 (2009)

628 S. Laplante, V. Lerays, and J. Roland

14. Linial, N., Shraibman, A.: Lower bounds in communication complexity based on
factorization norms. Random Structures and Algorithms 34(3), 368–394 (2009)

15. Gisin, B., Gisin, N.: A local hidden variable model of quantum correlation exploit-
ing the detection loophole. Phys. Lett. A 260, 323–327 (1999)

16. Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs classical communication and
computation. In: Proc. 30th STOC 1998, pp. 63–68 (1998)

17. Brassard, G., Cleve, R., Tapp, A.: Cost of exactly simulating quantum entangle-
ment with classical communication. Phys. Rev. Lett. 83, 1874–1877 (1999)

18. Buhrman, H., Høyer, P., Massar, S., Röhrig, H.: Multipartite nonlocal quantum
correlations resistant to imperfections. Phys. Rev. A 73, 012321 (2006)

19. Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.: Near-optimal and explicit Bell
inequality violations. In: Proc. 26th CCC 2011, pp. 157–166 (2011)

20. Lovász, L.: Communication Complexity: a Survey. In: Paths, Flows, and VLSI
Layout, B.H. Korte edition. Springer (1990)

21. Karchmer, M., Kushilevitz, E., Nisan, N.: Fractional covers and communication
complexity. SIAM J. Discrete Math. 8(1), 76–92 (1995)

22. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and proba-
bilistic communication complexity. In: Proc. 26th FOCS 1985, pp. 429–442 (1985)

23. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols and logspace-hard pseudo-
random sequences. In: Proc. 21st STOC 1989, pp. 1–11 (1989)

24. Newman, I.: Private vs. common random bits in communication complexity. Infor-
mation Processing Letters 39(2), 61–71 (1991)

25. Khot, S., Vishnoi, N.: The unique games conjecture, integrality gap for cut prob-
lems and embeddability of negative type metrics into l1. In: Proc. 46th FOCS 2005,
pp. 53–62 (2005)

26. Høyer, P., de Wolf, R.: Improved Quantum Communication Complexity Bounds
for Disjointness and Equality. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS,
vol. 2285, pp. 299–310. Springer, Heidelberg (2002)

27. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. Theory of Com-
puting 1, 47–79 (2005)

28. Jain, R., Klauck, H., Nayak, A.: Direct product theorems for communication com-
plexity via subdistribution bounds. In: Proc. 40th STOC 2008, pp. 599–608 (2008)

29. Brunner, N., Pironio, S., Aćın, A., Gisin, N., Méthot, A., Scarani, V.: Testing the
dimension of Hilbert spaces. Phys. Rev. Lett. 100, 210503 (2008)

30. Vértesi, T., Pironio, S., Brunner, N.: Closing the detection loophole in Bell exper-
iments using qudits. Phys. Rev. Lett. 104, 060401 (2010)

31. Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.: Informational complexity and the
direct sum problem for simultaneous message complexity. In: Proc. 42nd FOCS
2001, pp. 270–278 (2001)

32. Braverman, M., Weinstein, O.: A discrepancy lower bound for information com-
plexity. Technical Report 12-164, ECCC (2011)

33. Kerenidis, I., Laplante, S., Lerays, V., Roland, J., Xiao, D.: Lower bounds on infor-
mation complexity via zero-communication protocols and applications. Technical
Report 12-038, ECCC (2012)

34. Navascués, M., Pironio, S., Aćın, A.: A convergent hierarchy of semidefinite pro-
grams characterizing the set of quantum correlations. New Journal of Physics 10(7),
073013 (2008)

35. Doherty, A.C., Liang, Y.-C., Toner, B., Wehner, S.: The quantum moment problem
and bounds on entangled multi-prover games. In: Proc. 23rd CCC 2008, pp. 199–
210 (2008)

Testing Similar Means

Reut Levi1, Dana Ron1,�, and Ronitt Rubinfeld1,2,��

1 Tel Aviv University
2 MIT

Abstract. We consider the problem of testing a basic property of collections of
distributions: having similar means. Namely, the algorithm should accept collec-
tions of distributions in which all distributions have means that do not differ by
more than some given parameter, and should reject collections that are relatively
far from having this property. By ‘far’ we mean that it is necessary to modify
the distributions in a relatively significant manner (measured according to the �1
distance averaged over the distributions) so as to obtain the property. We study
this problem in two models. In the first model (the query model) the algorithm
may ask for samples from any distribution of its choice, and in the second model
(the sampling model) the distributions from which it gets samples are selected
randomly. We provide upper and lower bounds in both models. In particular, in
the query model, the complexity of the problem is polynomial in 1/ε (where ε
is the given distance parameter). While in the sampling model, the complexity
grows roughly as m1−poly(ε), where m is the number of distributions.

1 Introduction

We consider testing a basic property of collections of distributions: having similar
means. Namely, given a collection D = (D1, . . . , Dm) of distributions over {0, . . . , n},
and parameters γ and ε, we would like to determine whether the means of all dis-
tributions reside in an interval of size γn (in which case they have the property of
γ-similar means), or whether the collection is ε-far from having this property. By “ε-
far” we mean that for every collection D∗ = (D∗

1 , . . . , D
∗
m) that has the property,

1
m

∑m
i=1 d(Di, D

∗
i) > ε, where d(·, ·) is some predetermined distance measure between

distributions.
The problem of determining whether a collection of distributions consists of distribu-

tions that have similar means arises in many contexts: Suppose one is given a collection
of coins and would like to determine whether they have the same (or very similar) bias.
Alternatively, suppose one would like to compare mean behavior of multiple groups
in a scientific experiment. As we discuss in some more detail in Subsection 1.2, re-
lated questions have been studied in the Statistics literature, resulting in particular in
the commonly used family of procedures ANOVA (Analysis of Variance), used for de-
ciding whether a collection of normal distributions all have the same mean. As stated
above, we consider distributions over a discrete domain but other than that we do not

� Research supported by the ISF grant number 246/08.
�� Research supported by NSF grants CCF-1065125 and CCF-0728645, Marie Curie Reintegra-

tion grant PIRG03-GA-2008-231077 and the ISF grant nos. 1147/09 and 1675/09.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 629–640, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

630 R. Levi, D. Ron, and R. Rubinfeld

make any assumptions regarding the distributions. Our formulation of the problem falls
within the framework of property testing [11,4,2], so that in particular it allows for a
small fraction of “outlier” distributions.

1.1 Our Contributions

We consider two models, proposed in previous work [8], that describe possible access
patterns to multiple distributions D1, . . . , Dm over the same domain {0, . . . , n}. In the
query model the algorithm is allowed to specify i ∈ {1, . . . ,m} and receives j that is
distributed according to Di. We refer to each such request for a sample from Di as a
query. In the (uniform) sampling model, the algorithm receives pairs of the form (i, j)
where i is selected uniformly in {1, . . . ,m} and j is distributed according to Di.

The �1 distance between two probability distributions, d(D1, D2) =
∑n

j=0 |D1(j)−
D2(j)|, is perhaps the most standard measure of distance between distributions, as
it measures the maximum difference between the probability of any event (i.e., set
S ⊆ {0, . . . , n}) occurring according to one distribution as compared to the other dis-
tribution. In other words, if the distance is small, then the distributions are essentially
indistinguishable in terms of their behavior. Hence, we take it as our default distance
measure when testing properties of distributions. However, for specific properties one
may consider other distance measures that are appropriate. In this study, since the prop-
erty is related to the means of the distributions and thus the numerical values of the
domain elements are meaningful (as opposed to symmetric properties of distributions),
we also consider the Earth Mover’s Distance (EMD).1 We prove our upper and lower
bounds for the case where the underlying distance measure is the �1 distance and show
by a simple observation that all our results hold for the case which the underlying dis-
tance measure is EMD. Hence, unless stated explicitly otherwise, in all that follows the
underlying distance measure is the �1 distance.

RESULTS IN THE QUERY MODEL. We give an algorithm whose query complexity is
Õ(1/ε2). which is almost tight as there is a simple lower bound of Ω(1/ε2) (even for
the {0, 1} case).

Consider first a basic algorithm that works by obtaining very good estimates of the
means of a sufficient number of randomly selected distributions. If the collection is ε-
far from having γ-similar means, then (with high probability) after performing Θ̃(1/ε3)
queries, the algorithm will obtain two distributions whose estimated means are suffi-
ciently far from each other. Thus, this algorithm essentially uses estimates of means as
estimates of the distance to having a certain mean.

We design and analyze an improved (almost optimal) algorithm that, roughly speak-
ing, tries to directly estimate the distance to having a certain mean. The more direct
estimate is done by estimating means as well, albeit these are means of “mutations” of
the original distribution in which the weight of the distribution is either shifted higher
or lower. By obtaining such estimates we can apply a “bucketing” technique that allows
us to save a factor of Θ̃(1/ε) in the query complexity.

1 Informally, if the distributions are interpreted as two different ways of piling up a certain
amount of earth over the region D, the EMD is the minimum cost of turning one pile into the
other, where the cost is assumed to be amount of earth moved times the distance by which it is
moved. A formal definition appears in the full version of the paper [9].

Testing Similar Means 631

RESULTS IN THE SAMPLING MODEL. While in the query model the complexity of the
problem of testing similar means has no dependence on the number of distributions,m,
this is no longer the case in the sampling model. We prove that the number of samples
required is lower bounded by (1 − γ)m1−Õ((ε/γ)1/2). Thus, for any fixed γ (bounded
away from 0 and 1), the sample complexity approaches a linear dependence on m as ε
is decreased. On the positive side, we can show the following. First, by emulating the
algorithm designed for the query model, we get an algorithm in the sampling model
whose sample complexity is Õ(1/ε2)m1−Ω̃(ε2). If we restrict our attention to the case
where the domain is {0, 1}, then we can get a better dependence on ε in the exponent
(at a cost of a higher dependence in the factor that depends only on ε). We also observe
that (for the {0, 1} case), if γ < ε/c for some sufficiently large constant c, then we can
use an algorithm from [7] whose sample complexity is poly(1/ε)

√
m (we note that it

is not possible to go below
√
m).

In order to prove the abovementioned lower bound we construct a pair of collections
of distributions, one that has the property of γ-similar means, and one that is ε-far from
having this property. We prove that when taking (1− γ)m1−Õ((ε/γ)1/2) samples, these
two collections are indistinguishable. The heart of the proof is the construction of two
random variables that on one hand have the same first t moments (for t = Õ((γ/ε)1/2))
and on the other hand differ in the maximal distance between pairs of elements in the
support. These random variables can then be transformed into collections of distribu-
tions that cannot be distinguished (with the abovementioned number of samples) but
differ in the distance between the maximal and minimal means in the collection. The
construction of the random variables is based on Chebyshev polynomials [3], whose
roots, and their derivatives at the roots, have useful properties that we exploit.

1.2 Related Work

The work that is most closely related to the work presented in this paper appears in [8].
The testing models used here were introduced in [8], where the main focus was on the
property of equivalence of a collection of distributions. Namely, the goal is to distin-
guish between the case that all distributions in the collection are the same (or possibly
very similar), and the case in which the collection is far from having this property. When
the domain of the distributions is {0, 1}, then the problem of testing similar means for
γ = 0 is the same as testing whether the distributions are equivalent. Therefore, an al-
gorithm with sampling complexity poly(1/ε)

√
m that is given in [8] for testing equiv-

alence in the sampling model, carries over directly to our problem, when γ = 0 and
the domain is {0, 1}). In fact, a tolerant version of this algorithm [7] implies the same
complexity for γ ≤ ε/c for a sufficiently large constant c. However, these results do not
have any implications for larger γ, and the problems are very different when the domain
is larger.

Testing and approximating properties of single and pairs of distributions has been
studied quite extensively in the past (see e.g. [2,1,14]).

Statistical techniques for determining whether sets of populations have the same
mean are in wide use. Paired difference tests, and in particular the Student’s and Welch’s
t-tests, are commonly used to study whether the mean of two normally distributed pop-
ulations are equal [10,12,15]. The family of procedures ANOVA (Analysis of Variance),

632 R. Levi, D. Ron, and R. Rubinfeld

applies when there are more than two normally distributed populations (see [6, Chapter
12]), where the difficulty is that the pairwise comparison of all the populations increases
the chance of incorrectly failing collections of populations that do in fact all have the
same mean. In all of these procedures, the problem solved is more stringent than in our
property testing setting, but the assumptions made in all settings are quite strong, e.g.,
assuming the normality of the distributions and assuming that all distributions have the
same variance, and thus the sample complexity bounds are incomparable to those in our
setting.

ORGANIZATION. In Section 2 we give our results for the query model and in Section 3
we give our results for the sampling model. All missing proofs as well as the EMD
extension and suggestions for further research can be found in the full version of the
paper [9].

2 Results for the Query Model

In this section we provide an algorithm for testing γ-similar means in the query model,
and give an almost matching simple lower bound.

For a distribution D over {0, . . . , n}, we shall use the notation μ(D)
def
=∑n

i=1 i · D(i) for the mean of D. for a value 0 ≤ z ≤ n let d1(D, z)
def
=

minD′:μ(D′)=z {‖D −D′‖1} denote the minimum �1 distance between D and a dis-
tribution that has mean z.

A BASIC ALGORITHM. Consider first a basic algorithm that works by randomly select-
ing Θ(1/ε) distributions, and estimating each of their means to within O(εn) additive
error. This can be done by querying each selected distribution so as to obtain Õ(1/ε2)
samples from each. The resulting query complexity is Õ(1/ε3). The correctness of this
algorithm is based on Lemma 1 (stated below), which gives an upper bound on the
“cost”, in terms of the �1-distance, for modifying the mean of a distribution by εn. Note
that in general this cost is not necessarily linear in ε. For example, consider the case in
which εn is an integer and D has all its weight on n(1 − ε), so that μ(D) = n(1 − ε).
Suppose we want to increase D’s mean by εn. The only distribution whose mean is
n is the distribution whose weight is all on n, and the �1 distance between D and this
distribution is 1. On the other hand, if we wanted to decrease the mean of D by εn, then
this can easily be done with a cost linear in ε, by moving ε/(1−ε) weight from n(1−ε)
to 0.

Lemma 1. Let D be a distribution over {0, . . . , n}, let μ = μ(D), and let ε ≤ 1/16.
If μ ≥ n/2, then for every μ′ ∈ [μ − εn, μ] there exists D′ such that μ(D′) = μ′ and
‖D −D′‖1 ≤ 4ε. If μ ≤ n/2, then for every μ′ ∈ [μ, μ+ εn] there exists D′ such that
μ(D′) = μ′ and ‖D −D′‖1 ≤ 4ε.

Lemma 2 can be shown to follow from Lemma 1.

Lemma 2. Let D be a collection of distributions. If D is ε-far from having γ-similar
means, then there exists an interval [x, y] ⊆ [n] where y − x ≥ γn + εn/8 such that

Testing Similar Means 633∑
i:μ(Di)>y d1(Di, y) > (ε/4)m and

∑
i:μ(Di)<x d1(Di, x) > (ε/4)m. In particu-

lar, there are more than (ε/4)m distributions whose mean is at most x and more than
(ε/4)m distributions whose mean is at least y.

The correctness of the basic algorithm follows from Lemma 2: If D is ε-far from having
γ-similar means, then by selecting Θ(1/ε) distributions and estimating the means of
each to within O(εn), with high constant probability the algorithm finds evidence for a
pair of distributions with means outside both sides of the interval defined in Lemma 2.
On the other hand, if D has γ-similar means, then the probability of such an event is
small.

AN IMPROVED ALGORITHM. We can modify the basic algorithm so as to obtain a
lower complexity (which we later show is almost optimal). One ingredient of the mod-
ification (similar to that applied for example in [5]) is roughly the following. Consider
the following two (extreme) cases where the collection is ε-far from having γ-similar
means. In the first case, there is an interval [x, y] of size γn+ 2εn, such that half of the
distributions have mean x and half of the distributions have mean y. If we select just
a constant number of distributions, and for each we estimate its mean to within εn/2,
then we shall have sufficient evidence for rejection. In the second case, all but 2εm of
the distributions have a mean that resides in an interval of size γn, say, [0, γn] and the
remaining 2εm distributions have a mean of n. In this case we need to sample Θ(1/ε)
distributions so as to “hit” one of the high-mean distributions, but then it suffices to take
a constant size sample so as to detect that it has a high mean.

If the distributions were over {0, 1}, then by generalizing the above discussion we
can get a certain trade-off between the number of selected distributions and the required
quality of the estimate of their means. When dealing with general domains, estimating
the means might not suffice. As noted previously, a distribution might have a mean
that is very close to a certain value, while the distribution is very far, in terms of the
�1 distance, from any distribution that has this mean. Therefore, rather than estimating
means as a “proxy” for estimating the �1 distance to having a certain mean, we estimate
the latter directly.

To make the above notion of estimation more precise, we introduce some notation.
For 0 ≤ β ≤ 1 and D such that d1(D,n) ≥ β (where d1(·, ·) is as defined at the
beginning of this section), let μ>

β (D) equal μ > μ(D) such that d1(D,μ) = β and for
D such that d1(D, 0) ≥ β, let μ<

β (D) equal μ < μ(D) such that d1(D,μ) = β. If

d1(D,n) < β, then μ>
β (D)

def
= n and if d1(D, 0) < β, then μ<

β (D)
def
= 0. Observe that

if the domain is {0, 1}, then μ>
β (D) = min{μ(D)+β, 1} and μ<

β (D) = max{μ(D)−
β, 0} (while if the domain is larger, then μ>

β (D)− μ(D) and μ(D)− μ<
β (D) might be

much smaller than βn).
We first describe a procedure that given sampling access to a distribution D and a

parameter β, outputs a pair of estimates such that with high probability one is between
μ(D) and μ>

β (D) and the other is between μ<
β (D) and μ(D). The number of samples

that the procedure takes is quadratic in 1/β. We later show how to apply this procedure
so as to obtain a testing algorithm with query complexity Õ(1/ε2).

The idea behind the procedure is the following. Consider a distribution D. For any
0 ≤ a ≤ a′ ≤ n,

∑
i>a i · D(i) +

∑
i≤a a

′ · D(i) ≥ μ(D). On the other hand, by

634 R. Levi, D. Ron, and R. Rubinfeld

the definition of μ>
β (D), if a is such that PrD[i ≤ a] ≤ β, then

∑
i>a i · D(i) +∑

i≤a n · D(i) ≤ μ>
β (D). Let a indeed be a value that satisfies PrD[i ≤ a] ≤ β, let

a′ = a+ (n − a)/2 = (a+ n)/2 and let μa(D)
def
=
∑

i>a i ·D(i) + a′ · PrD[i ≤ a].
Then on one hand μa(D) ≥ μ(D) + ((n − a)/2) · PrD[i ≤ a] and on the other hand
μa(D) ≤ μ>

β (D)− ((n− a)/2) · PrD[i ≤ a]. If PrD[i ≤ a] ≥ β/c for some constant
c, then by estimating μa(D) to within an additive error of (n− a)β/4c, we get a value
between μ(D) and μ>

β (D). Since μa(D) is the mean of a distribution (we describe this
distribution formally in the proof of Lemma 3) whose support is in the interval [a, n],
this can be done by taking a sample of size Θ(1/β2). A technical issue that arises is that
it is possible that no such value a exists because PrD[i = a] is relatively large. But then
we can slightly modify the definition of μa(D) and still obtain the desired estimate. A
similar argument can give us μ<

β (D) ≤ y ≤ μ(D) (with high probability).

Procedure . GetBounds(D, β, δ)

1. Take a sample of size s1 = Θ(log(1/δ)/β) from D and let i1 ≤ · · · ≤ is1 be the selected
points (ordered from small to large).

2. Set a = i(β/4)s1 , b = i(1−β/4)s1 , a′ = (a+ n)/2 and b′ = b/2.
3. Take a sample of size s2 = Θ(log(1/δ)/β2) from D. Let α̂(a) be the fraction of sampled

points i = a and let α̂(b) be the fraction of sampled points i = b.
4. If α̂(a) ≤ β/4, then let a′′ = a′, else let a′′ = β

4α̂(a)
· a′ + (1− β

4α̂(a)
) · a. Similarly, if

α̂(b) ≤ β/4 then let b′′ = b′, else let b′′ = β
4α̂(b)

· b′ + (1− β
4α̂(b)

) · b.

5. Take a sample of size s3 = Θ(log(1/δ)/β2) from D, and denote the sampled points by

i1, . . . , is3 . Let u = 1
s3

(∑
ij>a ij +

∑
ij<a a

′ +
∑

ij=a a
′′
)

and

� = 1
s3

(∑
ij<b ij +

∑
ij>b b

′ +
∑

ij=b b
′′
)

.

6. Return (u, �).

Lemma 3. The procedure GetBounds(D, β, δ) returns u and � such that with prob-
ability at least 1 − δ (over its internal coin flips), μ(D) ≤ u ≤ μ>

β (D) and
μ<
β (D) ≤ � ≤ μ(D).

Proof: We prove the claim for u, and an analogous (symmetric) analysis holds for �.
Let a, a′, a′′ be as determined in Procedure GetBounds, and let

D̃(i)
def
=

⎧⎪⎪⎨⎪⎪⎩
D(i) if i > a, i �= a′, i �= a′′

D(i) + PrD[i < a] if i = a′

D(i) +D(a) if i = a′′

0 o.w.

(1)

By the definition of the distribution D̃ we have that μ(D̃) =
∑

i>a i·D(i)+a′ ·PrD[i <
a]+a′′ ·PrD[i = a]. Observe that in Step 5, the procedure takes s3 independent samples
from D̃ and that E[u] = μ(D̃).

Testing Similar Means 635

By a multiplicative Chernoff bound, with probability at least 1 − δ/4 (for a suf-
ficiently large constant in the Θ notation for s1) we have that PrD[i < a] ≤ β/3
and PrD[i ≤ a] ≥ β/8. Next, by an additive Chernoff bound, with probability at
least 1 − δ/4 (for a sufficiently large constant in the Θ notation for s2) we have
that PrD[i = a] − β/4 ≤ α̂(a) ≤ PrD[i = a] + β/4. From this point on as-
sume that the above inequalities indeed hold. If α̂(a) ≤ β/4 (so that PrD[i ≤ a] ≤
β/3 + β/4 + β/4 < β), then (as explained in the discussion preceding the algorithm),
on one hand, μ(D̃) ≥ μ(D) + n−a

2 · PrD[i ≤ a] ≥ μ(D) + (n − a) · (β/16), and on

the other hand μ(D̃) ≤ μ>
β (D) − n−a

2 · PrD[i ≤ a] ≤ μ>
β (D) − (n − a) · (β/16). If

α̂(a) > β/4 (so that PrD[i < a] +min{1, β/4α̂(a)} ·PrD[i = a] ≤ β/3+ β/2 < β),
then

μ(D̃) ≥ μ(D) +
n− a

2
·
(
PrD[i < a] +

β

4α̂(a)
· PrD[i = a]

)
≥ μ(D) +

n− a

2
· β
32

and similarly μ(D̃) < μ>
β (D)− (n−a) · (β/32). By the definition of u and an additive

Chernoff bound, with probability at least 1 − δ/4 (for a sufficiently large constant in
the Θ notation for s3), we have that |u − μ(D̃)| ≤ (n − a) · (β/32) implying that
μ(D) ≤ u ≤ μ>

β (D).

Algorithm 1. Testing γ-similar means
1. For q = 1 to r, where r = �log(8/ε)� do:

– Selectt(q)=Θ (2q log(1/ε)) distributions from the collection, and denote them by
Dq

1, . . . , D
q
t(q).

– For each Dq
j selected let (uq

j , �
q
j) = GetBounds

(
Dq

j , (ε/8)2
q−1, 1

(6rt(q))

)
2. Let x̂ = maxq,j{uq

j} and ŷ = minq,j{�qj}. If ŷ − x̂ > γn, then REJECT, otherwise,
ACCEPT.

Theorem 1. Algorithm 1 tests γ-similar means in the query model. The algorithm’s
query complexity is O(log2(1/ε)/ε2).

Proof: Let Eg denote the event that all pairs (uqj , �
q
j) returned by the procedure Get-

Bounds are as specified in Lemma 3. Since each call to GetBounds in iteration q is done
with δ = 1/(6rt(q)), by Lemma 3 the probability that Eg holds is at least 5/6. If D has
γ-similar means, then, conditioned on Eg , the algorithm accepts.

We now turn to the case that D is ε-far from having γ-similar means. Let [x, y] be an
interval as described in Lemma 2. We partition the distributionsDi such that μ(Di) < x
into buckets BL

q , for 1 ≤ q ≤ r, where BL
q = {i : (ε/8)2q−1 < d1(Di, x) ≤ (ε/8)2q},

and similarly we partition the distributions Di such that μ(Di) > y into buckets BR
q ,

where BR
q = {i : (ε/8)2q−1 < d1(Di, y) ≤ (ε/8)2q}. Since

∑
i:μ(Di)<x d1(Di, x) >

(ε/4)m and
∑

i:d1(Di,x)≤ε/8 d1(Di, x) ≤ (ε/8)m, we have that there exists an index qL

such that |BL
qL | >

(
(ε/8)m/r

)
/
(
(ε/8)2q

L
)
= Ω

(
m/(log(1/ε)2q

L

)
)

, and similarly

636 R. Levi, D. Ron, and R. Rubinfeld

there exists an index qR such that |BR
qR | = Ω

(
m/(log(1/ε)2q

R

)
)

. But in such a case,

with high constant probability, the algorithm will select a distribution Di such that
i ∈ BL

qL in iteration qL, and a distribution Dj such that j ∈ BR
qR in iteration qR, and

conditioned on the event Eg , will reject, as required.
Let s(q) denote the number of queries performed in iteration q by the procedure Get-
Bounds for each distribution it is called on. The query complexity of the algorithm

is
∑r

q=1 t(q) · s(q) = O
(∑r

q=1 2
q log(1/ε) · log(1/ε)

22qε2

)
= O(log2(1/ε)/ε2) and the

theorem follows.

A LOWER BOUND. We end this section with a lower bound (almost matching our upper
bound) by reducing the testing problem to the problem of distinguishing two coins.

Fact 4. Distinguishing an unbiased coin from a coin with bias ε with constant success
probability requires Ω(1/ε2) samples.

Corollary 2. Testing γ-similar means in the query model requires Ω(1/ε2) samples.

3 Results for the Sampling Model

As opposed to the query model, where the algorithms had no dependence on the number
of distributions, m, we show that in the sampling model there is a strong dependence
on m. We start by giving a lower bound for the sampling complexity of this problem,
and continue with several upper bounds.

3.1 A Lower Bound

In this section we prove the following theorem.

Theorem 3. For every n ≥ 1, testing γ-similar means in the uniform sampling model
requires (1− γ) ·m1−Õ((ε/γ)1/2) samples.

In particular, when γ is a constant we get a lower bound of m1−Õ(ε1/2). We also note
that we may assume without loss of generality that 1− γ = Ω(ε), or else the algorithm
can accept automatically.

In order to prove Theorem 3 we construct a pair of collections of distributions, one
that has the property of γ-similar means, the YES instance, and one that is ε-far from
having this property, the NO instance. We prove that when taking m1−Õ((ε/γ)1/2) sam-
ples, these pair of collections are indistinguishable and thus prove a lower bound on
the sample complexity of the problem. The main part of this proof is the construction
of two random variables that on one hand have the same first t moments (where t will
be defined later) and on the other hand differ in the maximal distance between pairs
of elements in the support. These random variables can then be transformed into col-
lections of distributions that cannot be distinguished (with the abovementioned number
of samples) but differ in the distance between the maximal and minimal means in the
collection. The next lemma is central to the proof of Theorem 3. In the lemma and what

follows we shall use the notation [k]
def
= {1, . . . , k}.

Testing Similar Means 637

Lemma 5. Given sequences {di}ti=1 and {αi}ti=1 that satisfy 0 ≤ |di|, αi ≤ 1 for
every i ∈ [t] and

∑t
i=1 αi = 1, we define a random variable X = X ({di}, {αi})

over [0, 1] as follows: Pr [X = di] = αi. For every even integer t, there exist sequences
{d+i }ti=1, {α+

i }ti=1, {d−i }t+1
i=1 and {α−

i }t+1
i=1 that obey the aforementioned constraints

and for which the following holds:

1. For the random variables X+ = X
(
{d+i }, {α+

i }
)

and X− = X
(
{d−i }, {α−

i }
)

we have
E
[(
X+
)i]

= E
[(
X−)i] ∀i ∈ [t] . (2)

2. The sequences are symmetric around zero. Namely, d−t/2+1 = 0, and for every 1 ≤
i ≤ t/2, we have that d+i = −d+t+1−i and α+

i = α+
t+1−i as well as d−i = −d−t+2−i

and α−
i = α−

t+2−i.
3. If we denote by d+max (d+min) the maximal (minimal) non-negative element in the

support of X+ (so that d+max = d+1 and d+min = d+t/2) and by α+
max (α+

min) the

corresponding probability, and let d−max, d−min, α−
max, α−

min be defined analogously,
then α−

max(d
−
max − d+max) = Θ̃

(
1
t2

)
and d+max − d+min = Θ(1).

We prove Lemma 5 subsequently, and first show how Theorem 3 follows from it. Let
{α+

i }ti=1, {d+i }ti=1, {α−
i }t+1

i=1 and {d−i }t+1
i=1 be as defined in Lemma 5. We assume for

simplicity that {α+
i m} and {α−

i m} are integers. We deal with the issue of rounding
in [9]. For a parameter δ, we define the collection of distributionsD+

t (the YES instance)
as follows. For every 1 ≤ i ≤ t/2 there are α+

i m distributionsD ∈ D+
t of the following

form:

D(j)
def
=

⎧⎨⎩
1
2 ·
(
1 + d+i δ

)
if j = 0

1
2 ·
(
1− d+i δ

)
if j = n

0 o.w.
(3)

and another α+
i m of the distributions D ∈ D+

t are of the following form:

D(j)
def
=

⎧⎨⎩
1
2 ·
(
1− d+i δ

)
if j = 0

1
2 ·
(
1 + d+i δ

)
if j = n

0 o.w.
(4)

The collection D−
t is defined analogously based on {α−

i }t+1
i=1 and {d−i }t+1

i=1, where for
i = t/2+1 there are α−t/2+1m distributionsD ∈ D−

t such that D(0) = D(n) = 1/2

(recall that d−t/2+1 = 0). The proof of the next lemma appears in [9].

Lemma 6. For every even integer t ≤ m1/2, in order to distinguish between D+
t and

D−
t in the uniform sampling model (with success probability at least 2/3), it is neces-

sary to take Ω
(
m1−1/t(1− d+maxδ)

)
samples.

Proof of Theorem 3: Define γ such that D+
t has the property of γ-similar means, i.e.

γ = 1
2 ·(1+d+maxδ)− 1

2 ·(1−d+maxδ) = d+maxδ. To changeD−
t into a γ-similar means

instance, we have to either change the means of α−
max fraction of the distributions from

1
2 · (1 + d−max) · n to 1

2 · (1 + d+max) · n or change the means of α−
max distributions from

638 R. Levi, D. Ron, and R. Rubinfeld

1
2 ·(1−d−max)·n to 1

2 ·(1−d+max)·n. Letting ε = α+
max ·(d+max−d−max)δ, we get thatD− is

at least ε-far from γ-similar means. By Lemma 5 we have that ε
γ =

α+
max·(d+

max−d−
max)

d+
max

=

Θ̃
(

1
t2

)
. We note that for every ε/γ ≤ 1/ log2m we get that m1−Õ((ε/γ)1/2) = Ω(m).

Hence we can assume without loss of generality that ε/γ = Ω̃(m−1/2) and thus by
setting 1/t = Θ̃(ε1/2/γ1/2), the theorem follows from Lemma 6.

The random variables described in Lemma 5 are constructed via a polynomial f : the
support of X+ (respectively, X−) is the set of roots of f with a negative (respectively,
positive) derivative. If f has an odd number of roots then the sign of the derivative at
the largest root is the same as the sign at the smallest root. If it is positive, then the
support of X− resides in an interval which contains the support of X+. To prove a
lower bound, X− needs to be far from similar means (more precisely, the collection of
coins that corresponds to X−) and indistinguishable from X+. To make X− far from
having similar means, f should maximize the size of X−’s interval (compared to X+’s
interval) and the weight on the extreme roots.

As suggested by Lemma 7 (stated below) X− and X+ have matching moments
if the probability to take the value xi, where xi is a root of f , is 1/|f ′(xi)|, up to
normalization. In this case, a small derivative on the extreme roots would result with
X− which is far from having similar means. When the roots of f is taken to be the value
of the Sine function at equal distances, the derivative at the extreme roots, that is at −1
and 1, is small. As we see next, these roots are the roots of the Chebyshev polynomials.

The proof of Lemma 5 requires some preliminaries concerning Chebyshev polyno-
mials, which we provide next. Let T
 be the �-th Chebyshev polynomial of the first kind,
which is defined by the recurrence relation:

T0(x) = 1, T1(x) = x, and T
+1(x) = 2xT
(x) − T
−1(x) . (5)

Let U
 be the �-th Chebyshev polynomial of the second kind, which is defined by the
recurrence relation:

U0(x) = 1. U1(x) = 2x, and U
+1(x) = 2xU
(x) − U
−1(x) . (6)

Then we have that
dT
(x)

dx
= � · U
−1 , (7)

and that

U
−1(cos(x)) =
sin(�x)

sinx
. (8)

T
 has � different simple roots:

xi = cos

(
π

2
· 2i− 1

�

)
i = 1, . . . , � (9)

and the following equalities hold: T
(1) = 1 and T
(−1) = (−1)
.
We shall also use the next lemma concerning properties of (derivatives of)

polynomials.

Testing Similar Means 639

Lemma 7 ([13]). Let f(x) be a polynomial of degree � whose roots {xi} are real
and distinct. Letting f ′ denote the derivative of f , for every j ≤ � − 2 we have that∑

i=1
xj
i

f ′(xi)
= 0.

We are now ready to prove Lemma 5.

Proof of Lemma 5: Consider the following polynomial: f(x)
def
= (x − 1)(x +

1)T
(x) , where T
(·) is the �-th Chebyshev polynomial of the first kind and � =
2t − 1. The polynomial f(·) has � + 2 roots, which, by decreasing order, are:
1, cos

(
π
2 · 1

)
, cos
(
π
2 · 3

)
, . . . ,−1. The derivative of f(·) is f ′(x) = 2x · T
(x) +

(x2 − 1) · T ′

(x) and thus 1

|f ′(1)| = 1
2T�(1)

= 1
2 and 1

|f ′(−1)| = 1
|2T�(−1)| = 1

2 .

While for xi which is a root of T
 we have: 1
|f ′(xi)| =

1

|(x2
i−1)·T ′

�(xi)| . By Equations (7)

and (8): 1

|T ′
�(xi)| =

∣∣∣∣ sin(π
2 · 2i−1

�)

·sin(π

2 ·(2i−1))

∣∣∣∣ = 1

 ·
∣∣sin (π2 · 2i−1

)∣∣ where we used the fact that∣∣sin (π2 · (2i− 1)
)∣∣ = 1. Therefore by Equation (9) and the identity 1−cos2 x = sin2 x

we obtain:

1

|f ′(xi)|
=

1

�
· 1∣∣sin (π2 · 2i−1

)∣∣ . (10)

Since g(x) = sinx/x is monotone decreasing for 0 < x ≤ π/2, from the fact that
g(π/2) = 2/π we get that sinx > (2/π)x for 0 < x ≤ π/2. Thus for i ≤ �/2,

1
|f ′(xi)| ≤ 1

 ·
π
2 · 1

(π
2 · 2i−1

�)
= 1

2i−1 . Therefore, for {xi}, the roots of T
(·),

∑
i=1

1

|f ′(xi)|
≤ 2
∑
xi≥0

1

|f ′(xi)|
= O(log �) . (11)

We take {d−i }t+1
i=1 to be those roots xj of f(·) for which f ′(xj) > 0 and set α−

i =

1

|f ′(d−
i)| · β

−, where β− = 1/

(∑t+1
i=1

1

|f ′(d−
i)|

)
is a normalization factor. Similarly

we take {d+i }ti=1 to be the roots with the negative derivative. Then d−max = 1 and by
Equation (11), α−

max = Ω(1/ log �). On the other hand, d+max = cos
(
π
2 · 1

)
. Due to

the identity 1− cosx = sinx · tan(x/2), we get that: limx→0
1−cosx

x2 = limx→0
sin x
x ·

sin(x/2)
x · 1

cos(x/2) = 1
2 , and so d−max − d+max = Θ(1/�2). Since � is odd and the sign of

the derivative alternates between roots we get that d−min = cos
(
π
2

)
= 0 while d+min =

cos
(
π
2 ·
−2

)
= sin

(
π
2 · 2

)
. Thus d−min− d+min = Θ (1/�). By Equations (10) and (11)

we get α+
min = Θ̃(1/�). Therefore the requirements in Item 3 of Lemma 5 are satisfied.

Equation (2) follows from Lemma 7. Since the roots of the Chebyshev polynomials are
symmetric around zero, we get that the roots of f(·) are also symmetric. For an odd �we
get that zero is one of the roots and thus each one of the sequences {d+i }ti=1, {d−i }t+1

i=1

is symmetric around zero, as desired.

3.2 Upper Bounds

The lower bound stated in Theorem 3 does not leave much room for an algorithm in
the sampling model with sample complexity that is sublinear in m. In particular note

640 R. Levi, D. Ron, and R. Rubinfeld

that for a constant γ, if ε = o(1/ log2m log logm), then we get a linear dependence on
m. However, for ε that is not too small, we may still ask whether we can get an upper
bound that is sublinear in m. This observation immediately provides a test for γ-similar
means in the sampling model that has m1−Ω̃(ε2) sample complexity (conditioned on
ε > c log logm/ logm for some sufficiently large constant c.)

When the domain of the distributions is {0, 1} and m is sufficiently larger than
1/ε, we can get an improved upper bound. We note that the more efficient algorithm
is not obtained by reducing to the query model. The complexity of this algorithm is
exp(Õ(1/ε))m1−Ω̃(ε). If γ ≤ ε/c for a sufficiently large constant c (and the domain is
{0, 1}) then it is possible to significantly reduce the complexity to Õ(

√
m · poly(1/ε))

by using an algorithm presented in [7]. Furthermore, it is not possible to reduce the
dependence on m below

√
m.

References

1. Batu, T., Fortnow, L., Fischer, E., Kumar, R., Rubinfeld, R., White, P.: Testing random vari-
ables for independence and identity. In: Proceedings of FOCS, pp. 442–451 (2001)

2. Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., White, P.: Testing that distributions are
close. In: Proceedings of FOCS, pp. 259–269 (2000)

3. Chebyshev, P.L.: Théorie des mécanismes connus sous le nom de parallélogrammes.
Mémoires des Savants étrangers présentés â l’Académie de Saint-Pétersbourg 7, 539–586
(1854)

4. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and
approximation. Journal of the ACM 45(4), 653–750 (1998)

5. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica, 302–343
(2002)

6. Larsen, R.J., Marx, M.L.: An introduction to mathematical statistics and its applications,
vol. 1. Pearson Prentice Hall (2006)

7. Levi, R., Ron, D., Rubinfeld, R.: Testing properties of collections of distributions. Technical
Report TR10-157, Electronic Colloquium on Computational Complexity (ECCC) (2010)

8. Levi, R., Ron, D., Rubinfeld, R.: Testing properties of collections of distributions. In: Pro-
ceedings of ICS, pp. 179–194 (2011); See also ECCC TR10-157

9. Levi, R., Ron, D., Rubinfeld, R.: Testing similar means. Technical Report TR12-055, Elec-
tronic Colloquium on Computational Complexity (ECCC) (2012)

10. Mendenhall, W., Beaver, R.J., Beaver, B.M.: Introduction to probability and statistics.
Brooks/Cole, Cengage Learning (2009)

11. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to pro-
gram testing. SIAM Journal on Computing 25(2), 252–271 (1996)

12. Student. The probable error of a mean. Biometrika 6, 1–25 (1908)
13. Valiant, G., Valiant, P.: Estimating the unseen: an n/ log(n)-sample estimator for entropy and

support size, shown optimal via new CLTs. In: Proceedings of STOC, pp. 685–694 (2011)
14. Valiant, P.: Testing symmetric properties of distributions. In: Proceedings of STOC, pp. 383–

392 (2008)
15. Welch, B.L.: The generalization of ‘student’s’ problem when several different population

variances are involved. Biometrika 34, 28–35 (1947)

The Parameterized Complexity of k-Edge
Induced Subgraphs�

Bingkai Lin and Yijia Chen

Shanghai Jiao Tong University
bing314159@sjtu.edu.cn, yijia.chen@cs.sjtu.edu.cn

Abstract. We prove that finding a k-edge induced subgraph is fixed-
parameter tractable, thereby answering an open problem of Leizhen
Cai [2]. Our algorithm is based on several combinatorial observations,
Gauss’ famous Eureka theorem [1], and a generalization of the well-
known fpt-algorithm for the model-checking problem for first-order logic
on graphs with locally bounded tree-width due to Frick and Grohe [13].
On the other hand, we show that two natural counting versions of the
problem are hard. Hence, the k-edge induced subgraph problem is one of
the very few known examples in parameterized complexity that are easy
for decision while hard for counting.

1 Introduction

Induced subgraphs are one of the most natural substructures in graphs. They
capture many different combinatorial objects, e.g., clique, independent set, chord-
less path. Thus, a great number of algorithmic problems are about finding certain
induced subgraphs, and their complexity is among the mostly extensively stud-
ied in algorithmic graph theory [3,7,14]. In this paper, we are mainly interested
in the problem of finding an induced subgraph which contains exactly k edges,
i.e., a k-edge induced subgraph. This problem is equivalent to solving a special
0-1 quadratic Diophantine equation xTAx = k, where A is the adjacent matrix
of G, x ∈ {0, 1}n, n = |V (G)|.

It is not difficult to prove that the k-edge induced subgraph problem is NP-
hard by a reduction from the clique problem. So we approach the problem via
parameterized complexity [9,12] and treat k as the parameter:

p-Edge-Induced-Subgraph
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G contains a k-edge induced subgraph.

As the main result of our paper, we show that p-Edge-Induced-Subgraph
is fixed-parameter tractable. In fact, there are special cases of p-Edge-Induced-
Subgraph whose fixed-parameter tractability has been known for a while. Since

� Full version available at http://arxiv.org/abs/1105.0477

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 641–652, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

642 B. Lin and Y. Chen

we can define a k-edge induced subgraph by a first-order sentence, using logic ma-
chinery, it can be shown that p-Edge-Induced-Subgraph is fixed-parameter
tractable if the graphG has bounded tree-width [8], bounded local tree-width [13],
etc., or most generally locally bounded expansion [10]. Unfortunately, the class
of all graphs containing a k-edge induced subgraph does not possess any of these
bounded measures. As another previously known case, using his Random Sepa-
ration method [5] and Ramsey’s Theorem, Cai [4] gave a very nice combinatorial
algorithm that solves p-Edge-Induced-Subgraph when the parameter k is a
triangular number, i.e., k =

(
m
2

)
for some m ∈ N. However, it looks very diffi-

cult to adapt Cai’s algorithm to handle arbitrary k. Therefore neither logic nor
combinatorial approach so far seems to be sufficient to settle the complexity of
p-Edge-Induced-Subgraph by its own. So our fpt-algorithm is a rather tricky
combination of these two methods.

1.1 Our Approach

As just mentioned, our starting pointing is that the existence of a k-edge induced
subgraph can be characterized by a sentence of first-order logic (FO) which de-
pends on k only. It is a well-known result of Frick and Grohe [13] that the
model-checking problem for FO on graphs of bounded local tree-width is fixed-
parameter tractable. The local tree-width for a graph is a function bounding
the tree-width of the induced subgraphs on the neighborhoods within a cer-
tain radius of every vertex. For instance, bounded-degree graphs have bounded
local tree-width. These give immediately the fixed-parameter tractability of
p-Edge-Induced-Subgraph on graphs with bounded degree1.

With some more efforts, the above result can be extended to graphs G with
degree bounded by a function of the parameter k. In that case, we can say
the degree deg(v) of each vertex v is sufficiently small. The corresponding fpt-
algorithm generalizes Frick and Grohe’s Theorem to graphs with local tree-width
bounded by a function of both the radius of the neighborhoods and an additional
parameter. As a dual, if deg(v) of each vertex v in G is sufficiently large, or more
precisely, the complement of G has degree bounded by a function of k, then we
can decide p-Edge-Induced-Subgraph in fpt time, too.

Moving one step further, we consider graphs in which each deg(v) is either
sufficiently small or sufficiently large, e.g., an n-star. We call such graphs degree-
extreme. Using the same logic machinery as above, we are able to show the
fixed-parameter tractability of p-Edge-Induced-Subgraph on degree-extreme
graphs.

Assume that the graph G is not degree-extreme, i.e., there exists a vertex v0
whose degree is neither sufficiently small nor sufficiently large. We partition the
vertex set of G into two sets V1 and V2, where V1 contains all vertices adjacent to
v0 and V2 the remaining vertices. Then both V1 and V2 are relatively large. Note

1 This is also a direct consequence of Seese’s result that the model-checking problem
for FO on bounded-degree graphs is fixed-parameter tractable [15]. But we find it
more natural to work with bounded local tree-with in the following generalization.

The Parameterized Complexity of k -Edge Induced Subgraphs 643

possibly there are many edges between V1 and V2. Nevertheless, we can compute
a vertex set B in G such that every edge between V1 and V2 has one vertex
in B; and if B is large enough, we can show that G contains a k-edge induced
subgraph. Otherwise, the graph G consists of two induced subgraphs G[V1] and
G[V2], plus the edges between V1 and V2 adjacent to the set B of bounded size.
In case G[V1] and G[V2] are both degree-extreme, we call such a graph G a
bridge (of two degree-extreme graphs). By the logic method again, we prove
that p-Edge-Induced-Subgraph is fixed-parameter tractable on bridges.

Now we are left with the case that at least one of G[V1] and G[V2] is not
degree-extreme, say G[V1]. Then we repeat the above procedure on G[V1] to get
a partition V11 | V12 of V1. And again, both V11 and V12 are sufficiently large.
Arguing as before, either we already know G[V1], and hence G, contains a k-
edge induced subgraph, or there is a set B1 of bounded size such that every edge
between V11 and V22 intersects B1.

Finally we remove the vertex set B0 := B ∪B1 from G. Then G[V \B0] is the
disjoint union of G[V11 \B0], G[V12 \B0] and G[V2 \B0]. Moreover, all the three
induced subgraphs are so large that, by Ramsey’s Theorem, either one of them
contains a large independent set, or we have three large disjoint cliques which
are not adjacent to each other. For both cases, we show that G[V \ B0], and
hence G, contains a k-edge induced subgraph. As a matter of fact, the second
case is an easy consequence of a famous number-theoretic result of Gauss which
states that every natural number is the sum of three triangular numbers.

We should mention that the running time of our algorithm in terms of the
parameter k is triple exponential at least. On the other hand, it is linear in the
size of the graph. We leave the detailed analysis in the full version of the paper.

1.2 Counting k-Edge Induced Subgraphs

We also study the parameterized complexity of computing the number of k-
edge induced subgraphs. For most natural problems, if the decision version is
easy, then so is the counting problem. However, it turns out that two natural
counting versions of p-Edge-Induced-Subgraph are both hard. To the best
of our knowledge, there are only few natural problems which exhibit such a
phenomenon [11,6].

1.3 Organization of Our Paper

In Section 2 we introduce necessary background and fix our notations. We prove
all required combinatorial results in Section 3. In particular, we present sev-
eral simple structures in a graph which, if exist, guarantee the existence of a
k-edge induced subgraph. Then in Section 4 we establish the fixed-parameter
tractability of p-Edge-Induced-Subgraph on the degree-extreme graphs and
the bridges using model-checking problems for FO. We present our fpt-algorithm
for p-Edge-Induced-Subgraph by putting all the pieces together in Section 5.
Finally in Section 6 we prove the hardness of the counting problems. Due to the
space limitations, for some proofs we refer to the full version of this paper.

644 B. Lin and Y. Chen

2 Preliminaries

N and N+ denote the sets of natural numbers (that is, nonnegative integers) and
positive integers, respectively. For a natural number n let [n] := {1, . . . , n}. We
denote the alphabet {0, 1} by Σ and identify problems with subsets Q of Σ∗.
Clearly, as done mostly, we present concrete problems in a verbal, hence uncod-
ified form over Σ. For every set S we use |S| to denote its size. Moreover we let(
S
2

)
be the set of all two-element subsets of S, i.e.,

{
{a, b}

∣∣ a, b ∈ S and a �= b
}
.

A triangular number is
(
k
2

)
:=
∣∣([k]

2

)∣∣ for some k ∈ N. In particular,
(
0
2

)
=
(
1
2

)
= 0.

2.1 Parameterized Complexity

A parameterized problem is a pair (Q, κ) consisting of a classical problem Q ⊆ Σ∗

and a polynomial time computable parameterization κ : Σ∗ → N.
An algorithm A is an fpt-algorithm with respect to a parameterization κ if for

every x ∈ Σ∗ the running time of A on x is bounded by f(κ(x)) · |x|O(1) for a
computable function f : N → N. Or equivalently, we say that the algorithm A
runs in fpt time. A parameterized problem (Q, κ) is fixed-parameter tractable if
there is an fpt-algorithm with respect to κ that decides Q.

2.2 Graphs

We only consider simple graphs, that is, finite nonempty undirected graphs with-
out loops and parallel edges. Every graph G = (V,E) is thus determined by a
nonempty vertex set V and an edge set E ⊆

(
V
2

)
. For an edge {u, v} ∈ E we

say that u is adjacent to v, and vice versa. Often we also use V (G) and E(G) to
denote the vertex set and the edge set of G, respectively.

Let G = (V,E) be a graph. For every vertex v ∈ V the set NG(v) contains all
vertices in G that are adjacent to v, i.e., NG(v) :=

{
u
∣∣ {u, v} ∈ E

}
. Moreover,

for every S ⊆ V we let NG(S) :=
⋃

v∈S N
G(v). Note the degree of v, written

degG(v), is |NG(v)|. If degG(v) = 0, then v is an isolated vertex. The distance
dG(u, v) between two vertices u, v ∈ V is the length of a shortest path from u
to v in the graph G. If it is clear from the context, we omit the superscript G in
the above notations and write N(v), deg(v), etc., instead.

Every nonempty subset S ⊆ V (G) induces a subgraph G[S] with the vertex
set S and the edge set E(G[S]) :=

(
S
2

)
∩ E(G). Consequently, a graph H is

an induced subgraph of G if H = G[V (H)]. Recall that H is a k-edge induced
subgraph of G for k := |E(H)|.

Again, let S be a set of vertices in G. Then S is a clique, if for every u, v ∈ S
we have either u = v or {u, v} ∈ E(G). On the other hand, the set S is an
independent set in G, if {u, v} /∈ E(G) for all u, v ∈ S. For every k ∈ N, there
exists a constant Rk, known as the Ramsey number, such that every graph G
with |V (G)| ≥ Rk has either a clique of size k or an independent set of size k.
It is well-known that Rk < 22·k for every k ∈ N.

The Parameterized Complexity of k -Edge Induced Subgraphs 645

2.3 Relational Structures and First-Order Logic

A vocabulary τ is a finite set of relation symbols. Each relation symbol has an
arity. A structure A of vocabulary τ , or simply structure, consists of a nonempty
set A called the universe, and an interpretation RA ⊆ Ar of each r-ary relation
symbol R ∈ τ . For example, a graph G can be identified with a structure A(G) of
vocabulary τgraph := {E} with the binary relation symbol E such that A(G) :=
V (G) and EA(G) :=

{
(u, v)

∣∣ {u, v} ∈ E(G)
}
.

The disjoint union of two τ -structures A1 and A2 is again a τ -structure,
denoted by A1 ∪̇A2, whose universe is A1 ∪̇A2, and where for each relation
symbol R ∈ τ we let RA1 ∪̇A2 := RA1 ∪̇RA2 .

Let A be a structure of a vocabulary τ . Then the Gaifman graph of A is
G(A) := (V,E) with V := A and E :=

{
{a, b}

∣∣ a, b ∈ A, a �= b, and for someR ∈
τ, and some tuple(a1, . . . , ar) ∈ RA, {a, b} ⊆ {a1, . . . , ar}

}
. Note any unary re-

lation in A has no influence on E.
Let r ∈ N and a ∈ A. Then the r-neighborhood of a is NA

r (a) :=
{
b ∈

A
∣∣ dG(A)(a, b) ≤ r

}
. Moreover, the structure NA

r (a) induced by the r-neighbor-
hood of a has universe NA

r (a), and for each r-ary relation symbol R ∈ τ the
interpretation

{
(a1, . . . , ar) ∈ RA ∣∣ a1, . . . , ar ∈ NA

r (a)
}
.

Formulas of first-order logic of vocabulary τ are built up from atomic formulas
x = y and Rx1 . . . xr where x, y, x1, . . . , xr are variables and R ∈ τ is of arity r,
using the boolean connectives and existential and universal quantification.

2.4 Tree-Width and Local Tree-Width

We assume that the reader is familiar with the notion of tree-width tw(G) of a
graph G. Recall that the tree-width tw(A) of a structure A is simply tw(G(A)),
that is, the tree-width of the Gaifman graph of A. In fact, to understand most
parts of our proofs and algorithms, it is sufficient to know that for every structure
A we have tw(A) < |A|.

Now we are ready to define the local tree-width of a structure A. For every
r ∈ N let ltw(A, r) := max

{
tw
(
NA

r (a)
) ∣∣ a ∈ A

}
. Let g : N × N → N be a

function and p ∈ N. We say a structure A has local tree-width bounded by g with
respect to p if ltw(A, r) ≤ g(r, p) for every r ∈ N. This slightly generalizes the
usual notion of local tree-width bounded by a unary function [13].

3 Some Easy Positive Instances

In this section, let k ∈ N and G = (V,E) be a graph.

Definition 1. G contains a k-independent-set-matching structure on vertices
u1, . . . , uk, v1, . . . , vk if u1, . . . , uk, v1, . . . , vk are pairwise distinct; for every i, j ∈
[k] we have {ui, vj} ∈ E if and only if i = j; and {u1, . . . , uk} is an independent
set in G.

Lemma 1. Every graph containing a k-independent-set-matching structure has
a k-edge induced subgraph.

646 B. Lin and Y. Chen

Proof: The case for k = 0 is trivially true. So assume k ≥ 1 and G contains
a k-independent-set-matching structure on the vertices u1, . . . , uk, v1, . . . , vk.

We choose the maximum k′ ≤ k such that � :=
∣∣∣E(G[{v1, . . . , vk′}]

)∣∣∣ ≤ k. If

k′ = k, then G[V ′] with V ′ :=
{
u1, . . . , uk−

}
∪
{
v1, . . . , vk

}
is a k-edge induced

subgraph of G. Otherwise, k′ < k. In particular,
∣∣∣E(G[{v1, . . . , vk′ , vk′+1}]

)∣∣∣ > k.

As vk′+1 can contribute at most k′ many new edges, we have � + k′ > k, i.e.,
k − � < k′. Then G[V ′] with V ′ :=

{
u1, . . . , uk−

}
∪
{
v1, . . . , vk′

}
is a k-edge

induced subgraph of G. ��

Definition 2. G contains a k-clique-matching structure on vertices u1, . . . , uk,
v1, . . . , vk if u1, . . . , uk, v1, . . . , vk are pairwise distinct; for every i, j ∈ [k] we
have {ui, vj} ∈ E if and only if i = j; and {u1, . . . , uk} is a clique in G.

Lemma 2. If G contains a k-clique-matching structure, then G has a k-edge
induced subgraph.

Proof: The cases for k ≤ 2 are trivial. So we consider k ≥ 3. Let k0 be maximum
with

(
k0

2

)
≤ k and set r := k −

(
k0

2

)
. It is easy to verify that k ≥ k0 + r by

k ≥ 3 and k0 > r. Now assume G contains a k-clique-matching-structure on the
vertices u1, . . . , uk, v1, . . . , vk. Then, we choose the maximum r′ ≤ r such that

� :=
∣∣∣E(G[{v1, . . . , vr′}]

)∣∣∣ ≤ r. If r′ = r, then G[V ′] with V ′ :=
{
v1, . . . , vr

}
∪{

u1, . . . , ur−
, ur+1, . . . , uk0+

}
is a k-edge induced subgraph of G. Otherwise,

r′ < r and by the maximality of r′ we have
∣∣∣E(G[{v1, . . . , vr′ , vr′+1}]

)∣∣∣ > r. As

vr′+1 can add at most r′ many new edges, we have �+r′ > r, or equivalently r−
� < r′. It follows that G[V ′] with V ′ :=

{
v1, . . . , vr′

}
∪
{
u1, . . . , ur−
, ur′+1, . . . ,

ur′+k0−r+

}
has exactly k edges. ��

Definition 3. We say that G contains a k-apex structure on v0, A and B if

(A1) A,B ⊆ V are disjoint with |A| ≥ k and |B| ≥ Rk, v0 ∈ V ;
(A2) A is a clique in G;
(A3) {u, v0} ∈ E for every u ∈ A and {v, v0} /∈ E for every v ∈ B;
(A4) {u, v} ∈ E for every u ∈ A and v ∈ B.

Lemma 3. If G contains a k-apex structure, then it has a k-edge induced sub-
graph.

Proof: The case for k ≤ 1 is trivially true. So let k ≥ 2. Moreover, let v0, A,B
be as stated in Definition 3. Since |B| ≥ Rk, G[B] contains either a clique of size
k or an independent set of size k. If G[B] contains an independent set B′ ⊆ B
with |B′| = k. Then for every u ∈ A the induced subgraph G

[
B′ ∪ {u}

]
has

exactly k edges by (A4). Now assume that there is a clique B′ in G[B] of size k.
Observe by (A3) and k ≥ 2, we have v0 /∈ (A ∪ B′). Furthermore, it is easy to
see that we can write k =

(
k0

2

)
+ r for some appropriate k ≥ k0 ≥ r. We select

arbitrary subsets A′ ⊆ A and B′′ ⊆ B′ with |A′| = r and |B′′| = k0 − r. Then it
is straightforward to check that G

[
A′ ∪B′′ ∪ {v0}

]
has exactly k edges. ��

The Parameterized Complexity of k -Edge Induced Subgraphs 647

Lemma 4. Assume there exists three disjoint cliques S1, S2, S3 in G, all of size
k; and there are no edges between any distinct Si and Sj. Then G has a k-edge
induced subgraph.

It is easy to see that Lemma 4 is a direct consequence of Gauss’ famous Eureka
Theorem [1].

Theorem 1. For every k ∈ N there exist k0, k1, k2 ∈ N such that k =
(
k0

2

)
+(

k1

2

)
+
(
k2

2

)
.

Lemma 5. Let k ∈ N+ and G = (V,E) be a graph without isolated vertices. If
G contains an independent set of size (k − 1)2 + 1, then it has a k-edge induced
subgraph.

To prove the above lemma, we need some further preparation.

Lemma 6. Let m,n ∈ N+ and A,B ⊆ V be disjoint. If for every u ∈ A we have∣∣N(u) ∩B
∣∣ ≥ 1 and |A| > (m− 1)(n− 1), then

(i) either there are m vertices u1, . . . , um in A, and a vertex v in B with {ui, v} ∈
E for every i ∈ [m],

(ii) or there are n vertices u1, . . . , un in A and n vertices v1, . . . , vn in B such
that for all i, j ∈ [n] we have {ui, vj} ∈ E if and only if i = j.

Proof: [of Lemma 5] Let S ⊆ V be an independent set in G with |S| > (k− 1)2.
Since G has no isolated vertex, |N(u) ∩ N(S)| ≥ 1 for every u ∈ S. So we can
apply Lemma 6 on A ← S, B ← N(S), m ← k, and n ← k. If (i) holds, then
we have an induced k-star of exactly k edges. Otherwise, we have (ii). Hence,
there exist vertices u1, . . . , uk ∈ S and v1, . . . , vk ∈ N(S) such that G contains a
k-independent-set-matching structure on those vertices. The result follows from
Lemma 1. ��
Definition 4. Let d ∈ N. We define

V G
[1,d] :=

{
v ∈ V | 1 ≤ deg(v) ≤ d

}
.

It is well-known that if a graph contains many small-degree vertices, then it has
a large independent set. As a result, the following is an easy consequence of
Lemma 5.

Lemma 7. Let d, k ∈ N+. If
∣∣∣V G

[1,d]

∣∣∣ > (d+1)·(k−1)2, then G contains a k-edge

induced subgraph.

3.1 A Further Combinatorial Lemma

For later purpose, we need a generalization of Lemma 6.

Lemma 8. Let m,n, p ∈ N+ and A,B ⊆ V be disjoint in the graph G. If for
every u ∈ A,

∣∣N(u) ∩B
∣∣ ≥ p and |A| > (m− 1)(n− 1)p, then

(i) either there are m vertices u1, . . . , um in A and p vertices v1, . . . , vp in B
with {ui, vj} ∈ E for every i ∈ [m] and j ∈ [p],

(ii) or there are n vertices u1, . . . , un in A and n vertices v1, . . . , vn in B such
that for all i, j ∈ [n] we have {ui, vj} ∈ E if and only if i = j.

648 B. Lin and Y. Chen

4 Easy Instances by Model-Checking

In this section we show the fixed-parameter tractability of p-Edge-Induced-
Subgraph on some restricted classes of graphs via the model-checking problem
for first-order logic. The following is a generalization of a well-known result due
to Frick and Grohe [13].

Theorem 2. For every computable function g : N× N → N the problem

p-Mc-Ltwg-FO

Instance: A structure A, p ∈ N and an FO-sentence ϕ such that
A has local tree-width bounded by g with respect to p.

Parameter: p+ |ϕ|.
Problem: Decide whether A |= ϕ.

is fixed-parameter tractable.

Definition 5. Let d ∈ N and G = (V,E) be a graph. If deg(v) ≤ d or deg(v) ≥
|V | − 1− d for every v ∈ V , then the graph G is d-degree-extreme.

Proposition 1. Let D : N → N be a computable function. Then the problem

Instance: A graph G and k ∈ N such that G is D(k)-degree-
extreme.

Parameter: k.
Problem: Decide whether G contains a k-edge induced subgraph.

is fixed-parameter tractable.

Definition 6. Let d, b ∈ N. Then (G, V1, V2, B) is a (d, b)-bridge (of the two
degree-extreme graphs) if :

(B1) V = V1 ∪ V2 for some disjoint V1 and V2. (B2) G[V1] and G[V2] are both
d-degree-extreme.

(B3) B is a subset of V with |B| = b such that for every edge {u, v} with u ∈ V1
and v ∈ V2 we have either u ∈ B or v ∈ B.

Similar to Proposition 1, we can prove:

Proposition 2. Let D : N → N be a computable function. Then the problem

Instance: A graph G = (V,E), V1, V2, B ⊆ V and k ∈ N such that
(G, V1, V2, B) is a (D(k), |B|)-bridge.

Parameter: k + |B|.
Problem: Decide whether G contains a k-edge induced subgraph.

is fixed-parameter tractable.

The Parameterized Complexity of k -Edge Induced Subgraphs 649

5 The Algorithm

The main component of our fpt-algorithm for p-Edge-Induced-Subgraph is
the following procedure that either already solves the problem or decomposes
the given graph into potentially a bridge of two large degree-extreme graphs (cf.
Definition 6).

For every k ∈ N we let pk := 22·k(> Rk).

Lemma 9. For every computable function D : N → N there is an fpt-algorithm
AD such that for every graph G = (V,E) and every k ∈ N exactly one of following
conditions is satisfied.

(S1) G is D(k)-degree-extreme and AD correctly decides whether G contains a
k-edge induced subgraph.

(S2) G is not D(k)-degree-extreme and AD correctly outputs that G contains a
k-edge induced subgraph.

(S3) G is not D(k)-degree-extreme and AD outputs three subsets V1, V2, B ⊆ V
such that

(S3.1) V = V1 ∪̇V2 with |V1| > D(k) and |V2| > D(k) + 1;
(S3.2) every edge between V1 and V2 in G has one vertex in B and |B| ≤

(pk − 1)pk+1 + (pk − 1)2.

Proof: Let G = (V,E) be a graph and k ∈ N. If G is D(k)-degree-extreme, then
we apply Proposition 1 to achieve (S1). Otherwise let v0 ∈ V be a vertex with

D(k) < deg(v0) < |V | − 1−D(k). (1)

Then we set V1 := N(v0) and V2 := V \ V1. By (1) it holds that |V1| > D(k)

and |V2| = |V | − |V1| = |V | − deg(v0) > D(k) + 1, i.e., (S3.1). Let W1 :=
{
u ∈

V1

∣∣∣ ∣∣N(u) ∩ V2
∣∣ ≥ pk

}
and W2 := V1 \W1.

Claim 1. If |W1| > (pk − 1)pk+1, then G contains a k-edge induced subgraph.
Proof of the claim. We apply Lemma 8 on A ← W1, B ← V2, m ← pk, n ← pk,
and p← pk. So there are pk vertices u1, . . . , uqk inW1 and pk vertices v1, . . . , vpk

in V2 such that

(i) either {ui, vj} ∈ E for every i, j ∈ [pk],
(ii) or for all i, j ∈ [pk] we have {ui, vj} ∈ E if and only if i = j.

Recall pk > Rk, so there is a subset S ⊆ {u1, . . . , upk
} such that S is either

an independent set or a clique. If S is an independent set, then G
[
S ∪ {v0}

]
has exactly k edges. So suppose S is a clique. Assume that (i) is true, then
G contains a k-apex structure on v0, S, {v1, . . . , vpk

}. Hence, Lemma 3 implies
the claim. Otherwise (ii) holds. And say S = {ui1 , . . . , uik}. Then the graph
G contains a k-clique-matching structure on ui1 , . . . , uik , v1, . . . , vk. The result
follows from Lemma 2. 1
Claim 2. If

∣∣N(W2)∩V2
∣∣ > (pk−1)2, then G contains a k-edge induced subgraph.

Proof of the claim. It is easy to verify that we can apply Lemma 6 on A ←
N(W2) ∩ V2, B ←W2, m← pk, and n← pk. So,

650 B. Lin and Y. Chen

(i) either there are pk vertices u1, . . . , uqk in N(W2) ∩ V2 and a vertex v in W2

such that {ui, v} ∈ E for every i ∈ [pk],
(ii) or there are pk vertices u1, . . . , upk

in N(W2)∩V2 and pk vertices v1, . . . , vpk

in W2 such that for all i, j ∈ [pk] we have {ui, vj} ∈ E if and only if i = j.

But (i) contradicts our definition of W2, i.e., for every u ∈W2 we have
∣∣N(u) ∩

V2
∣∣ < pk, therefore (ii) must hold. Recall pk > Rk, hence G

[
{v1, . . . , vpk

}
]

contains either a clique of size of k or an independent set of size k. Without loss
of generality, let {v1, . . . , vk} ⊆W2 ⊆ V1 be a clique or an independent set.

For the independent set case, as v0 /∈ V1, then G
[
{v0, v1, . . . , vk}

]
is a k-

induced subgraph. For the clique case, G contains a k-clique-matching structure
on u1, . . . , uk, v1, . . . , vk. We are done by Lemma 2. 1

Let B := W1∪
(
N(W2)∩V2

)
. If |B| > (pk−1)pk+1+(pk−1)2, then, by Claim 1

and Claim 2, the graph G contains a k-edge induced subgraph, and (S2) follows.
Otherwise |B| ≤ (pk − 1)pk+1 + (pk − 1)2. Observe that every edge between
V1 and V2 has at least one vertex in B. Thus, we achieve (S3) by outputting
(V1, V2, B). ��

Finally we are ready to present our fpt-algorithm for p-Edge-Induced-
Subgraph.

Theorem 3. p-Edge-Induced-Subgraph is fixed-parameter tractable.

Proof: We define a computable function D0 : N → N by

D0(k) := 2 ·
(
(pk − 1)pk+1 + (pk − 1)2

)
+ 22·((k−1)2+1). (2)

Then let AD0 be the algorithm as stated in Lemma 9 for the function D0.
Let (G, k) with G = (V,E) be an instance of p-Edge-Induced-Subgraph.

First, we remove all the isolated vertices in G. For simplicity, the resulting graph
is denoted by G again. Then, we simulate the algorithm AD0 on (G, k). If the
result is either (S1) or (S2) in Lemma 9, we already get the correct answer.
Otherwise, AD0 outputs three subsets V1, V2, B ⊆ V satisfying (S3.1) and (S3.2).

If G[V1] and G[V2] are both D0(k)-degree-extreme, then (G, V1, V2, B) is a
(D0(k), |B|)-bridge with |B| bounded by an appropriate computable function
of k. The fixed-parameter tractability of whether G contains a k-edge induced
subgraph follows from Proposition 2. Otherwise, either G[V1] or G[V2] is not
D0(k)-degree-extreme.

We assume that G[V1] is not D0(k)-degree-extreme. (The case for G[V2] is
symmetric.) Then we simulate the algorithm AD0 on (G[V1], k). Observe that the
result cannot be (S1). If the output is (S2), since G[V1] is an induced subgraph
of G, we conclude that G has an induced subgraph of exactly k edges.

Now we are left with case (S3). In particular, there are subsets V11, V12, B1 ⊆
V1 such that the corresponding properties of (S3.1) and (S3.2) are satisfied. Let
U1 := V11 \ (B∪B1), U2 := V12 \ (B∪B1), and U3 := V2 \ (B∪B1). Observe that
in G if we remove the vertex set B, then there is no edge left between V1 and
V2. Similarly, if we remove the vertex set B1, every edge between V11 and V12

The Parameterized Complexity of k -Edge Induced Subgraphs 651

is destroyed. Thus, by (S3.2), in the original graph G, there is no edge between
each pair of U1, U2 and U3. Moreover by (S3.1) and (S3.2) for every i ∈ [3]

|Ui| > D0(k)− 2 ·
(
(pk − 1)pk+1 + (pk − 1)2

)
= 22·((k−1)2+1) > R(k−1)2+1,

where the equality is by (2).
We use Ramsey’s Theorem again. If there is an independent set of size (k −

1)2+1 in one of the U1, U2 and U3, as G has no isolated vertex, then G contains
a k-edge induced subgraph by Lemma 5. Otherwise every Ui contains a clique
of size (k − 1)2 + 1 ≥ k. As we have seen that there is no edge between U1, U2

and U3 in G, Lemma 4 implies that G contains an induced subgraph of exactly
k edges. ��

6 Counting k-Edge Induced Subgraphs

The most natural counting version of p-Edge-Induced-Subgraph is:

p-#Edge-Induced-Subgraph

Instance: A graph G and k ∈ N.
Parameter: k.

Problem: Compute the number of k-edge induced subgraphs in G.

In fact, the hardness of p-#Edge-Induced-Subgraph is rather easy to show.
We observe that the vertex set of every induced subgraph without any edge is
an independent set, and vice versa. Hence the first slice of p-#Edge-Induced-

Subgraph, i.e., counting the number of 0-edge induced subgraphs is exactly the
classical problem #Independent-Set of counting the number of independent
sets in a given graph. Recall that #Independent-Set is #P-hard [16]. Hence:

Theorem 4. Assume #P �= P. Then p-#Edge-Induced-Subgraph is not
fixed-parameter tractable.

One might attribute the above hardness result to the fact that we allow induced
subgraphs to have isolated vertices. Note these isolated vertices play no role
in the decision problem p-Edge-Induced-Subgraph. Therefore, it also makes
sense to consider:

p-#Edge-Induced-Subgraph
∗

Instance: A graph G and k ∈ N.
Parameter: k.

Problem: Compute the number of k-edge induced subgraphs with-
out isolated vertices in G.

Then we can show:

Theorem 5. p-#Edge-Induced-Subgraph
∗ is hard for #W[1].

652 B. Lin and Y. Chen

Acknowledgement. We thank Leizhen Cai for bringing the problem
p-Edge-Induced-Subgraph to our attention, and Jörg Flum for comments
on earlier versions of this paper. This research has been partly supported by the
National Nature Science Foundation of China (60970011, 61033002).

References

1. Andrews, G.: Eureka! num = Δ+Δ+Δ. Journal of Number Theory 23(3), 285–293
(1986)

2. Bodlaender, H.L., Cai, L., Chen, J., Fellows, M.R., Telle, J.A., Marx, D.: Open
problems in parameterized and exact computation - IWPEC 2006. Technical
Report UU-CS-2006-052, Department of Information and Computing Sciences,
Utrecht University (2006)

3. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters 58(4), 171–176 (1996)

4. Cai, L.: Private communication (2008)
5. Cai, L., Chan, S.M., Chan, S.O.: Random Separation: A New Method for Solving

Fixed-Cardinality Optimization Problems. In: Bodlaender, H.L., Langston, M.A.
(eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)

6. Chen, Y., Flum, J.: On parameterized path and chordless path problems. In: Pro-
ceedings of 22nd Annual IEEE Conference on Computational Complexity (CCC
2007), pp. 250–263. IEEE Computer Society Press (2007)

7. Chen, Y.-J., Thurley, M., Weyer, M.: Understanding the Complexity of Induced
Subgraph Isomorphisms. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS,
vol. 5125, pp. 587–596. Springer, Heidelberg (2008)

8. Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: Van Leeuwen,
J. (ed.) Handbook of Theoretical Computer Science, pp. 192–242. Elsevier Science
Publishers, Amsterdam (1990)

9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
10. Dvorak, Z., Král, D., Thomas, R.: Deciding first-order properties for sparse graphs.

In: Proceedins of the 51th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2010), pp. 133–142. IEEE Computer Society (2010)

11. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM
Journal on Computing 33(4), 892–922 (2004)

12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
13. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable

structures. Journal of ACM 48(6), 1184–1206 (2001)
14. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with heredi-

tary properties. Theoretical Computer Science 289(2), 997–1008 (2002)
15. Seese, D.: Linear time computable problems and first-order descriptions. Mathe-

matical Structures in Computer Science 6(6), 505–526 (1996)
16. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Jour-

nal on Computing 8(3), 410–421 (1979)

Converting Online Algorithms to Local Computation
Algorithms�

Yishay Mansour1,��, Aviad Rubinstein1, Shai Vardi1,� � �, and Ning Xie2,†

1 School of Computer Science, Tel Aviv University, Israel
2 CSAIL, MIT, Cambridge MA 02139, USA

{mansour,shaivar1}@post.tau.ac.il
aviadrub@mail.tau.ac.il,
ningxie@csail.mit.edu

Abstract. We propose a general method for converting online algorithms to lo-
cal computation algorithms,1 by selecting a random permutation of the input, and
simulating running the online algorithm. We bound the number of steps of the
algorithm using a query tree, which models the dependencies between queries.
We improve previous analyses of query trees on graphs of bounded degree, and
extend this improved analysis to the cases where the degrees are distributed bino-
mially, and to a special case of bipartite graphs.

Using this method, we give a local computation algorithm for maximal match-
ing in graphs of bounded degree, which runs in time and space O(log3 n).

We also show how to convert a large family of load balancing algorithms (re-
lated to balls and bins problems) to local computation algorithms. This gives
several local load balancing algorithms which achieve the same approximation
ratios as the online algorithms, but run in O(log n) time and space.

Finally, we modify existing local computation algorithms for hypergraph 2-
coloring and k-CNF and use our improved analysis to obtain better time and
space bounds, of O(log4 n), removing the dependency on the maximal degree of
the graph from the exponent.

1 Introduction

1.1 Background

The classical computation model has a single processor which has access to a given
input, and using an internal memory, computes the output. This is essentially the von

� The full version of the paper can be found at http://arxiv.org/abs/1205.1312
�� Supported in part by the Google Inter-university center for Electronic Markets and Auctions,

by a grant from the Israel Science Foundation, by a grant from United States-Israel Bina-
tional Science Foundation (BSF), by a grant from Israeli Centers of Research Excellence
(ICORE), and by a grant from the Israeli Ministry of Science (MoS).

� � � Supported in part by the Google Inter-university center for Electronic Markets and Auctions.
† Supported by NSF grants CCF-0728645, CCF-0729011 and CCF-1065125.

1 For a given input x, local computation algorithms support queries by a user to values of
specified locations yi in a legal output y ∈ F (x).

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 653–664, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

654 Y. Mansour et al.

Newmann architecture, which has been the driving force since the early days of com-
putation. The class of polynomial time algorithms is widely accepted as the definition
of efficiently computable problems. Over the years many interesting variations of this
basic model have been studied, focusing on different issues.

Online algorithms (see, e.g., [6]) introduce limitations in the time domain. An online
algorithm needs to select actions based only on the history it observed, without access
to future inputs that might influence its performance. Sublinear algorithms (e.g. [9, 12])
limit the space domain, by limiting the ability of an algorithm to observe the entire
input, and still strive to derive global properties of it.

Local computation algorithms (LCAs) [13] are a variant of sublinear algorithms. The
LCA model considers a computation problem which might have multiple admissible
solutions, each consisting of multiple bits. The LCA can return queries regarding parts
of the output, in a consistent way, and in poly-logarithmic time. For example, the input
for an LCA for a job scheduling problem consists of the description of n jobs and
m machines. The admissible solutions might be the allocations of jobs to machines
such that the makespan is at most twice the optimal makespan. On any query of a
job, the LCA answers quickly the job’s machine. The correctness property of the LCA
guarantees that different query replies will be consistent with some admissible solution.

1.2 Our Results

1.2.1 Bounds on Query Trees
Suppose that we have an online algorithm where the reply to a query depends on the
replies to a small number of previous queries. The reply to each of those previous
queries depends on the replies to a small number of other queries and so on. These
dependencies can be used to model certain problems using query trees – trees which
model the dependency of the replies to a given query on the replies to other queries.

Bounding the size of a query tree is central to the analyses of our algorithms. We
show that the size of the query tree is O(log n) w.h.p., where n is the number of ver-
tices. d, the degree bound of the dependency graph, appears only in the constant. 2 This
answers in the affirmative the conjecture of [1]. Previously, Alon et al. [1] show that the
expected size of the query tree is constant, and O(logd+1 n) w.h.p.3 Our improvement
is significant in removing the dependence on d from the exponent of the logarithm. We
also show that when the degrees of the graph are distributed binomially, we can achieve
the same bound on the size of the query tree. In addition, in the full version of this
paper, we show a trivial lower bound of Ω(logn/ log logn).

We use these results on query trees to obtain LCAs for several online problems –
maximal matching in graphs of bounded degree and several load balancing problems.
We also use the results to improve the previous algorithms for hypergraph 2-coloring
and k-CNF.

2 Note that, however, the hidden constant is exponentially dependent on d. Whether or not this
bound can be improved to have a polynomial dependency on d is an interesting open question.

3 Notice that bounding the expected size of the query tree is not enough for our applications,
since in LCAs we need to bound the probability that any query fails.

Converting Online Algorithms to Local Computation Algorithms 655

1.2.2 Hypergraph 2-Coloring
We modify the algorithm of [1] for an LCA for hypergraph 2-coloring, and coupled
with our improved analysis of query tree size, obtain an LCA which runs in time and
space O(log4 n), improving the previous result, an LCA which runs O(logd+1 n) time
and space.

1.2.3 k-CNF
Building on the similarity between hypergraph 2-coloring and k-CNF, we apply our
results on hypergraph 2-coloring to give an an LCA for k-CNF which runs in time and
space O(log4 n).

We use the query tree to transform online algorithms to LCAs. We simulate online
algorithms as follows: first a random permutation of the items is generated on the fly.
Then, for each query, we simulate the online algorithm on a stream of input items ar-
riving according to the order of the random permutation. Fortunately, because of the
nature of our graphs (the fact that the degree is bounded or distributed binomially), we
show that in expectation, we will only need to query a constant number of nodes, and
only O(log n) nodes w.h.p. We now state our results:

1.2.4 Maximal Matching
We simulate the greedy online algorithm for maximal matching, to derive an LCA for
maximal matching which runs in time and space O(log3 n).

1.2.5 Load Balancing
We give several LCAs to load balancing problems which run in O(log n) time and
space. Our techniques include extending the analysis of the query tree size to the case
where the degrees are selected from a binomial distribution with expectation d, and
further extending it to bipartite graphs which exhibit the characteristics of many balls
and bins problems, specifically ones where each ball chooses d bins at random. We
show how to convert a large class of the “power of d choices” online algorithms (see,
e.g., [2, 5, 14]) to efficient LCAs.

1.3 Related Work

Nguyen and Onak [11] focus on transforming classical approximation algorithms into
constant-time algorithms that approximate the size of the optimal solution of problems
such as vertex cover and maximum matching. They generate a random number r ∈
[0, 1], called the rank, for each node. These ranks are used to bound the query tree size.

Rubinfeld et al. [13] show how to construct polylogarithmic time local computa-
tion algorithms to maximal independent set computations, scheduling radio network
broadcasts, hypergraph coloring and satisfying k-SAT formulas. Their proof technique
uses Beck’s analysis in his algorithmic approach to the Lovász Local Lemma [3], and
a reduction from distributed algorithms. Alon et al. [1], building on the technique of
[11], show how to extend several of the algorithms of [13] to perform in polylogarith-
mic space as well as time. They further observe that we do not actually need to assign

656 Y. Mansour et al.

each query a rank, we only need a random permutation of the queries. Furthermore,
assuming the query tree is bounded by some k, the query to any node depends on at
most k queries to other nodes, and so a k-wise independent random ordering suffices.
They show how to construct a 1/n2-almost k-wise independent random ordering4 from
a seed of length O(k log2 n).

Recent developments in sublinear time algorithms for sparse graph and combinato-
rial optimization problems have led to new constant time algorithms for approximating
the size of a minimum vertex cover, maximal matching, maximum matching, minimum
dominating set, and other problems (cf. [12, 9, 11, 16]), by randomly querying a con-
stant number of vertices. A major difference between these algorithms and LCAs is
that LCAs require that w.h.p., the output will be correct on any input, while optimiza-
tion problems usually require a correct output only on most inputs. More importantly,
LCAs reuire a consistent output for each query, rather than only approximating a given
global property.

There is a vast literature on the topic of balls and bins and the power of d choices.
(e.g. [2, 5, 8, 14]). For a survey on the power of d choices, we refer the reader to [10].

2 Preliminaries

Let G = (V,E) be an undirected graph. We denote by NG(v) = {u ∈ V (G) : (u, v) ∈
E(G)} the neighbors of vertex v, and by degG(v) we denote the degree of v. When it
is clear from the context, we omit the G in the subscript. Unless stated otherwise, all
logarithms in this paper are to the base 2. We use [n] to denote the set {1, . . . , n}, where
n ≥ 1 is a natural number.

We present our model of local computation algorithms (LCAs): Let F be a com-
putational problem and x be an input to F . Let F (x) = {y | y is a valid solution
for input x}. The search problem for F is to find any y ∈ F (x).

A (t(n), s(n), δ(n))-local computation algorithm A is a (randomized) algorithm
which solves a search problem for F for an input x of size n. However, the LCA A
does not output a solution y ∈ F (x), but rather implements query access to y ∈ F (x).
A receives a sequence of queries i1, . . . , iq and for any q > 0 satisfies the following: (1)
after each query ij it produces an output yij , (2) With probability at least 1− δ(n)A is
consistent, that is, the outputs yi1 , . . . , yiq are substrings of some y ∈ F (x). (3) A has
access to a random tape and local computation memory on which it can perform current
computations as well as store and retrieve information from previous computations.

We assume that the input x, the local computation tape and any random bits used are
all presented in the RAM word model, i.e., A is given the ability to access a word of
any of these in one step. The running time of A on any query is at most t(n), which
is sublinear in n, and the size of the local computation memory of A is at most s(n).
Unless stated otherwise, we always assume that the error parameter δ(n) is at most
some constant, say, 1/3. We say that A is a strongly local computation algorithm if
both t(n) and s(n) are upper bounded by O(logc n) for some constant c.

4 A random ordering Dr is said to be ε-almost k-wise independent if the statistical distance
between Dr and some k-wise independent random ordering by at most ε.

Converting Online Algorithms to Local Computation Algorithms 657

Two important properties of LCAs are as follows. We say an LCA A is query order
oblivious (query oblivious for short) if the outputs of A do not depend on the order of
the queries but depend only on the input and the random bits generated on the random
tape of A. We say an LCA A is parallelizable if A supports parallel queries, that is A
is able to answer multiple queries simultaneously so that all the answers are consistent.

3 Bounding the Size of a Random Query Tree

3.1 The Problem and Our Main Results

In online algorithms, queries arrive in some unknown order, and the reply to each query
depends only on previous queries (but not on any future events). The simplest way to
transform online algorithms to LCAs is to process the queries in the order in which they
arrive. This, however, means that we have to store the replies to all previous queries,
so that even if the time to compute each query is polylogarithmic, the overall space is
linear in the number of queries. Furthermore, this means that the resulting LCA is not
query-oblivious. The following solution can be applied to this problem ([11] and [1]):
Each query v is assigned a random number, r(v) ∈ [0, 1], called its rank, and the queries
are performed in ascending order of rank. Then, for each query x, a query tree can be
constructed, to represent the queries on which x depends. If we can show that the query
tree is small, we can conclude that each query does not depend on many other queries,
and therefore a small number of queries need to be processed in order to reply to query
x. We formalize this as follows:

Let G = (V,E) be an undirected graph. The vertices of the graph represent queries,
and the edges represent the dependencies between the queries. A real number r(v) ∈
[0, 1] is assigned independently and uniformly at random to every vertex v ∈ V ; we call
r(v) the rank of v. This models the random permutation of the vertices. Each vertex
v ∈ V holds an input x(v) ∈ R, where the range R is some finite set. The input is the
content of the query associated with v. A randomized function F is defined inductively
on the vertices of G such that F (v) is a (deterministic) function of x(v) as well as the
values of F at the neighbors w of v for which r(w) < r(v). F models the output of
the online algorithm. We would like to upper bound the number of queries to vertices
in the graph needed in order to compute F (v0) for any vertex v0 ∈ G, namely, the time
to simulate the output of query v0 using the online algorithm.

To upper bound the number of queries to the graph, we turn to a simpler task of
bounding the size of a certain d-regular tree, which is an upper bound on the number of
queries. Consider an infinite d-regular tree T rooted at v0. Each nodew in T is assigned
independently and uniformly at random a real number r(w) ∈ [0, 1]. For every node w
other than v0 in T , let parent(w) denote the parent node of w. We grow a (possibly
infinite) subtree T of T rooted at v as follows: a node w is in the subtree T if and only
if parent(w) is in T and r(w) < r(parent(w)) (for simplicity we assume all the ranks
are distinct real numbers). That is, we start from the root v0, add all the children of v0
whose ranks are smaller than that of v0 to T . We keep growing T in this manner where
a node w′ ∈ T is a leaf node in T if the ranks of its d children are all larger than r(w′).
We call the random tree T constructed in this way a query tree and we denote by |T |
the random variable that corresponds to the size of T . Note that |T | is an upper bound

658 Y. Mansour et al.

on the number of queries since each node in T has at least as many neighbors as that in
G and if a node is connected to some previously queried nodes, this can only decrease
the number of queries. Therefore the number of queries is bounded by the size of T .
Our goal is to find an upper bound on |T | which holds with high probability.

We improve the upper bound on the query tree of O(logd+1N) given in [1] for the
case when the degrees are bounded by a constant d and extend our new bound to the
case that the degrees ofG are binomially distributed, independently and identically with
expectation d, i.e., deg(v) ∼ B(n, d/n).

Our main result in this section is bounding, with high probability, the size of the
query tree T as follows.

Lemma 1. Let G be a graph whose vertex degrees are bounded by d or distributed
independently and identically from the binomial distribution: deg(v) ∼ B(n, d/n).
Then there exists a constant C(d) which depends only on d, such that

Pr[|T | > C(d) log n] < 1/n2,

where the probability is taken over all the possible permutations π ∈ Π of the vertices
of G, and T is a random query tree in G under π.

3.2 Overview of the Proof

Our proof of Lemma 1 consists of two parts. Following [1], we partition the query tree
into L = 3d levels. The first part of the proof is an upper bound on the size of a single
(sub)tree on any level. For the bounded degree case, this was already proved in [1]. We
extend their proof to the binomial case; that is, we prove the following, where T (j)

i is
the j-th subtree on level i of the tree.

Proposition 1. Let T be a tree with vertex degree distributed i.i.d. binomially with
deg(v) ∼ B(n, d/n). For any 1 ≤ i ≤ L and any 1 ≤ j ≤ ti, Pr[|T (j)

i | ≥ m] ≤∑∞
i=m 2−ci ≤ 2−Ω(m), for n ≥ β, for some constant β > 0.

The proof can be found in the full version of this paper.
The second part, which is a new ingredient of our proof, inductively upper bounds

the number of vertices on each level, as the levels increase. For this to hold, it crucially
depends on the fact that all subtrees are generated independently and that the probability
of any subtree being large is exponentially small. The main idea is to show that although
each subtree, in isolation, can reach a logarithmic size, their combination is not likely
to be much larger. We use the distribution of the sizes of the subtrees, in order to bound
the aggregate of multiple subtrees.

3.3 Bounding the Increase in Subtree Size as We Go Up Levels

From [1] and Proposition 1 we know that the size of any subtree, in particular |T1|,
is bounded by O(log n) with probability at least 1 − 1/n3 in both the bounded degree
and the binomial degree cases (see the full version for a more complete discussion).
Our next step in proving Lemma 1 is to show that, as we increase the levels, the size of

Converting Online Algorithms to Local Computation Algorithms 659

the tree does not increase by more than a constant factor for each level. That is, there
exists an absolute constant η depending on d only such that if the number of vertices
on level k is at most |Tk|, then the number of vertices on level k + 1, |Tk+1| satisfies
|Tk+1| ≤ η

∑k
i=1 |Ti|+O(log n) ≤ 2η|Tk|+O(log n). Since there areL levels in total,

this implies that the number of vertices on all L levels is at most O((2η)L logn) =
O(log n).

The following Proposition establishes our inductive step.

Proposition 2. For any infinite query tree T with constant bounded degree d (or de-
grees i.i.d. ∼ B(n, d/n)), for any 1 ≤ i < L, there exist constants η1 > 0 and

η2 > 0 s.t. if
∑ti

j=1 |T
(j)
i | ≤ η1 logn then Pr[

∑ti+1

j=1 |T
(j)
i+1| ≥ η1η2 logn] < 1/n2

for all n > β, for some β > 0.

Proof. Denote the number of vertices on level k by Zk and let Yk =
∑k

i=1 Zi. Assume
that each vertex i on level ≤ k is the root of a tree of size zi on level k + 1. Notice that
Zk+1 =

∑Yk

i=1 zi.
From [1] and Proposition 1, there are absolute constants c0 and β depending on d

only such that for any subtree T (i)
k on level k and any n > β, Pr[|T (i)

k | = n] ≤ e−c0n.
Therefore, given (z1, . . . , zYk

), the probability of the forest on level k+1 consisting of
exactly trees of size (z1, . . . , zYk

) is at most
∏Yk

i=1 e
−c0(zi−β) = e−c0(Zk+1−βYk).

Notice that, given Yk (the number of nodes up to level k), there are at most(
Zk+1+Yk−1

Yk−1

)
<
(
Zk+1+Yk

Yk

)
vectors (z1, . . . , zYk

) that can realize Zk+1.
We want to bound the probability that Zk+1 = ηYk for some (large enough) constant

η > 0. We can bound this as follows:

Pr[|Tk+1| = Zk+1] <

(
Zk+1 + Yk

Yk

)
e−c0(Zk+1−βYk)

<

(
e · (Zk+1 + Yk)

Yk

)Yk

e−c0(Zk+1−βYk)

= (e(1 + η))
Yke−c0(η−β)Yk

= eYk(−c0(η−β)+ln(η+1)+1)

≤ e−c0ηYk/2,

It follows that there is some absolute constant c′ which depends on d only such that
Pr[|Tk+1| ≥ ηYk] ≤ e−c′ηYk . That is, if ηYk = Ω(logn), the probability that |Tk+1| ≥
ηYk is at most 1/n3. Adding the vertices on all L levels and applying the union bound,
we conclude that with probability at most 1/n2, the size of T is at most O(log n). ��

4 Hypergraph 2-Coloring and k-CNF

We use the bound on the size of the query tree of graphs of bounded degree to improve
the analysis of [1] for hypergraph 2-coloring. We also modify their algorithm slightly
to further improve the algorithm’s complexity. Due to space limitations, we only state
our main theorems for hypergraph 2-coloring and k-CNF; the proofs can be found in
the full version of this paper.

660 Y. Mansour et al.

Theorem 1. Let H be a k-uniform hypergraph s.t. each hyperedge intersects at most d
other hyperedges. Suppose that k ≥ 16 log d+ 19.

Then there exists an (O(log4 n), O(log4 n), 1/n)-local computation algorithm
which, given H and any sequence of queries to the colors of vertices (x1, x2, . . . , xs),
with probability at least 1−1/n2, returns a consistent coloring for all xi’s which agrees
with a 2-coloring of H . Moreover, the algorithm is query oblivious and parallelizable.

Theorem 2. Let H be a k-CNF formula with k ≥ 2. Suppose that each clause inter-
sects no more than d other clauses, and furthermore suppose that k ≥ 16 log d+ 19.

Then there exists a (O(log4 n), O(log4 n), 1/n)-local computation algorithm which,
given a formula H and any sequence of queries to the truth assignments of variables
(x1, x2, . . . , xs), with probability at least 1 − 1/n2, returns a consistent truth assign-
ment for all xi’s which agrees with some satisfying assignment of the k-CNF formula
H . Moreover, the algorithm is query oblivious and parallelizable.

5 Maximal Matching

We consider the problem of maximal matching in a bounded-degree graph. We are
given a graph G = (V,E), where the maximal degree is bounded by some constant d,
and we need to find a maximal matching. A matching is a set of edges with the property
that no two edges share a common vertex. The matching is maximal if no other edge
can be added to it without violating the matching property.

Assume the online scenario in which the edges arrive in some unknown order. The
following greedy online algorithm can be used to calculate a maximal matching: When
an edge e arrives, we check whether e is already in the matching. If it is not, we check
if any of the neighboring edges are in the matching. If none of them is, we add e to the
matching. Otherwise, e is not in the matching.

We turn to the local computation variation of this problem. We would like to query,
for some edge e ∈ E, whether e is part of some maximal matching. (Recall that all
replies must be consistent with some maximal matching).

We use the technique of [1] to produce an almostO(log n)-wise independent random
ordering on the edges, using a seed length of O(log3 n).5 When an edge e is queried,
we use a BFS (on the edges) to build a DAG rooted at e. We then use the greedy online
algorithm on the edges of the DAG (examining the edges with respect to the ordering),
and see whether e can be added to the matching.

As the query tree is an upper-bound on the size of the DAG, we derive the following
theorem from Lemma 1.

Theorem 3. Let G = (V,E) be an undirected graph with n vertices and maximum
degree d. Then there is an (O(log3 n), O(log3 n), 1/n) - local computation algorithm
which, on input an edge e, decides if e is in a maximal matching. Moreover, the algo-
rithm gives a consistent maximal matching for every edge in G.

5 Since the query tree is of size O(log n) w.h.p., we don’t need a complete ordering on the
vertices; an almost O(log n)-wise independent ordering suffices.

Converting Online Algorithms to Local Computation Algorithms 661

6 The Bipartite Case and Local Load Balancing

We consider a general “power of d choices” online algorithm for load balancing. In this
setting there are n balls that arrive in an online manner, and m bins. Each ball selects a
random subset of d bins, and queries these bins. (Usually the query is simply the current
load of the bin.) Given this information, the ball is assigned to one of the d bins (usually
to the least loaded bin). We denote by LB such a generic algorithm (with a decision rule
which can depend in an arbitrary way on the d bins that the ball is assigned to). Our
main goal is to simulate such a generic algorithm.

The load balancing problem can be represented by a bipartite graphG = ({V, U}, E),
where the balls are represented by the vertices V and the bins by the vertices U . The
random selection of a bin u ∈ U by a ball v ∈ V is represented by an edge. By defi-
nition, each ball v ∈ V has degree d. Since there are random choices in the algorithm
LB we need to specify what we mean by a simulation. For this reason we define the
input to be the following: a graph G = ({V, U}, E), where |V | = n, |U | = m, and
n = cm for some constant c ≥ 1. We also allocate a rank r(u) ∈ [0, 1] to every u ∈ U .
This rank represents the ball’s arrival time: if r(v) < r(u) then vertex v arrived before
vertex u. Furthermore, all vertices can have an input value x(w). (This value represents
some information about the node, e.g., the weight of a ball.) Given this input, the al-
gorithm LB is deterministic, since the arrival sequence is determined by the ranks, and
the random choices of the balls appear as edges in the graph. Therefore by a simulation
we will mean that given the above input, we generate the same allocation as LB.

We consider the following stochastic process: Every vertex v ∈ V uniformly and
independently at random chooses d vertices in U . Notice that from the point of view
of the bins, the number of balls which chose them is distributed binomially with X ∼
B(n, d/m). Let Xv and Xu be the random variables for the number of neighbors of
vertices v ∈ V and u ∈ U respectively. By definition, Xv = d, since all balls have d
neighbors, and hence each Xu is independent of all Xv’s. However, there is a depen-
dence between the Xu’s (the number of balls connected to different bins). Fortunately
this is a classical example where the random variables are negatively dependent (see
e.g. [8]). 6

6.1 The Bipartite Case

Recall that in Section 3, we assumed that the degrees of the vertices in the graph were
independent. We would like to prove an O(log n) upper bound on the query tree T
for our bipartite graph. As we cannot use the theorems of Section 3 directly, we show
that the query tree is smaller than another query tree which meets the conditions of our
theorems.

The query tree for the binomial graph is constructed as follows: a root v0 ∈ V is
selected for the tree. (v0 is the ball whose bin assignment we are interested in deter-
mining.) Label the vertices at depth j in the tree by Wj . Clearly, W0 = {v0}. At each
depth j, we add vertices one at a time to the tree, from left to right, until the depth is

6 We remind the reader that two random variables X1 and X2 are negatively dependent if
Pr[X1 > x|X2 = a] < Pr[X1 > x|X2 = b], for a > b and vice-versa.

662 Y. Mansour et al.

"full" and then we move to the next depth. Note that at odd depths (2j + 1) we add bin
vertices and at even depths (2j) we add ball vertices.

Specifically, at odd depths (2j + 1) we add, for each v ∈ W2j its d neighbors
u ∈ N(v) as children, and mark each by u.7 At even depths (2j) we add for each
node marked by u ∈ W2j−1 all its (ball) neighbors v ∈ N(u) such that r(v) <
r(parent(u)), if they have not already been added to the tree. Namely, all the balls
that are assigned to u by time

A leaf is a node marked by a bin u
 for whom all neighboring balls v ∈ N(u
) −
{parent(u
)} have a rank larger than its parent, i.e., r(v) > r(parent(u
)). Namely,
parent(u
) is the first ball to be assigned to bin u
. This construction defines a stochas-
tic process F = {Ft}, where Ft is (a random variable for) the size of T at time t. (We
start at t = 0 and t increases by 1 for every vertex we add to the tree).

We now present our main lemma for bipartite graphs. The proof can be found in the
full version of the paper.

Lemma 2. Let G = ({V, U}, E) be a bipartite graph, |V | = n and |U | = m and
n = cm for some constant c ≥ 1, such that for each vertex v ∈ V there are d edges
chosen independently and at random between v and U . Then there is a constant C(d)
which depends only on d such that

Pr[|T | < C(d) log n] > 1− 1/n2,

where the probability is taken over all of the possible permutations π ∈ Π of the
vertices of G, and T is a random query tree in G under π.

6.2 Local Load Balancing

The following theorem states our basic simulation result.

Theorem 4. Consider a generic online algorithm LB which requires constant time per
query, for n balls and m bins, where n = cm for some constant c > 0. There exists
an (O(log n), O(log n), 1/n)-local computation algorithm which, on query of a (ball)
vertex v ∈ V , allocates v a (bin) vertex u ∈ U , such that the resulting allocation is
identical to that of LB with probability at least 1− 1/n.

Proof. Let K = C(d) log |U | for some constant C(d) depending only on d. K is the
upper bound given in Lemma 2. (In the following we make no attempt to provide the
exact values for C(d) or K .)

We now describe our (O(log n), O(log n), 1/n)-local computation algorithm for
LB. A query to the algorithm is a (ball) vertex v0 ∈ V and the algorithm will chose a
(bin) vertex from the d (bin) vertices connected to v0.

We first build a query tree as follows: Let v0 be the root of the tree. For every u ∈
N(u0), add to the tree the neighbors of u, v ∈ V such that r(v) < r(v0). Continue
inductively until either K nodes have been added to the random query tree or no more

7 A bin can appear several times in the tree. It appears as different nodes, but they are all marked
so that we know it is the same bin. Recall that we assume that all nodes are unique, as this
assumption can only increase the size of the tree.

Converting Online Algorithms to Local Computation Algorithms 663

nodes can be added to it. If K nodes have been added to the query tree, this is a failure
event, and assign to v0 a random bin in N(v0). From Lemma 2, this happens with
probability at most 1/n2, and so the probability that some failure event will occur is at
most 1/n. Otherwise, perform LB on all of the vertices in the tree, in order of addition
to the tree, and output the bin to which ball v0 is assigned to by LB. ��

A reduction from various load balancing algorithms gives us the following corollaries
to Theorem 4.

Corollary 1. (Using [5]) Suppose we wish to allocate m balls into n bins of uniform
capacity, m ≥ n, where each ball chooses d bins independently and uniformly at ran-
dom. There exists a (log n, logn, 1/n) LCA which allocates the balls in such a way that
the load of the most loaded bin is m/n+O(log logn/ log d) w.h.p.

Corollary 2. (Using [15]) Suppose we wish to allocate n balls into n bins of uniform
capacity, where each ball chooses d bins independently at random, one from each of d
groups of almost equal size θ(nd). There exists a (log n, logn, 1/n) LCA, which allo-
cates the balls in such a way that the load of the most loaded bin is ln lnn/(d−1) ln 2+
O(1) w.h.p. 8

Corollary 3. (Using [4]) Suppose we wish to allocate m balls into n ≤ m bins,
where each bin i has a capacity ci, and

∑
i ci = m. Each ball chooses d bins at ran-

dom with probability proportional to their capacities. There exists a (logn, logn, 1/n)
LCA which allocates the balls in such a way that the load of the most loaded bin is
2 log logn+O(1) w.h.p.

Corollary 4. (Using [4]) Suppose we wish to allocate m balls into n ≤ m bins, where
each bin i has a capacity ci, and

∑
i ci = m. Assume that the size of a large bin is at

least rn logn, for large enough r. Suppose we have s small bins with total capacityms,
and that ms = O((n log n)2/3). There exists a (log n, logn, 1/n) LCA which allocates
the balls in such a way that the expected maximum load is less than 5.

Corollary 5. (Using [7]) Suppose we have n bins, each represented by one point on a
circle, and n balls are to be allocated to the bins. Assume each ball needs to choose
d ≥ 2 points on the circle, and is associated with the bins closest to these points. There
exists a (logn, logn, 1/n) LCA which allocates the balls in such a way that the load of
the most loaded bin is ln lnn/ ln d+O(1) w.h.p.

6.3 Random Ordering

In the above we assume that we are given a random ranking for each ball. If we are not
given such random rankings (in fact, a random permutation of the vertices inU will also
suffice), we can generate a random ordering of the balls. Specifically, since w.h.p. the

8 In fact, in this setting the tighter bound is ln lnn
d lnφd

+ O(1), where φd is the ratio of the d-step

Fibonacci sequence, i.e. φd = limk→∞ k
√

Fd(k), where for k < 0, Fd(k) = 0, Fd(1) = 1,
and for k ≥ 1 Fd(k) =

∑d
i=1 Fd(k − i).

664 Y. Mansour et al.

size of the random query is O(log n), an O(log n)-wise independent random ordering9

suffices for our local computation purpose. Using the construction in [1] of 1/n2-almost
O(log n)-wise independent random ordering over the vertices in U which uses space
O(log3 n), we obtain (O(log3 n), O(log3 n), 1/n)-local computation algorithms for
balls and bins.

References

[1] N. Alon, R. Rubinfeld, S. Vardi, and N. Xie. Space-efficient local computation algorithms.
In Proc. 23rd ACM-SIAM Symposium on Discrete Algorithms, pages 1132–1139, 2012.

[2] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM Journal on
Computing, 29(1):180–200, 1999.

[3] J. Beck. An algorithmic approach to the Lovász Local Lemma. Random Structures and
Algorithms, 2:343–365, 1991.

[4] P. Berenbrink, A. Brinkmann, T. Friedetzky, and L. Nagel. Balls into non-uniform bins.
In Proceedings of the 24th IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), pages 1–10. IEEE, 2010.

[5] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking. Balanced allocations: The heavily
loaded case. SIAM J. Comput., 35(6):1350–1385, 2006.

[6] A. Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

[7] John W. Byers, Jeffrey Considine, and Michael Mitzenmacher. Simple load balancing for
distributed hash tables. In Proc. of Intl. Workshop on Peer-to-Peer Systems(IPTPS), pages
80–87, 2003.

[8] D. Dubhashi and D. Ranjan. Balls and bins: A study in negative dependence. Random
Structures and Algorithms, 13:99–124, 1996.

[9] S. Marko and D. Ron. Distance approximation in bounded-degree and general sparse
graphs. In APPROX-RANDOM’06, pages 475–486, 2006.

[10] M. Mitzenmacher, A. Richa, and R. Sitaraman. The power of two random choices: A
survey of techniques and results. In Handbook of Randomized Computing, Vol. I, edited by
P. Pardalos, S. Rajasekaran, J. Reif, and J. Rolim, pages 255–312. Norwell, MA: Kluwer
Academic Publishers, 2001.

[11] H. N. Nguyen and K. Onak. Constant-time approximation algorithms via local improve-
ments. In Proc. 49th Annual IEEE Symposium on Foundations of Computer Science, pages
327–336, 2008.

[12] M. Parnas and D. Ron. Approximating the minimum vertex cover in sublinear time and a
connection to distributed algorithms. Theoretical Computer Science, 381(1–3), 2007.

[13] R. Rubinfeld, G. Tamir, S. Vardi, and N. Xie. Fast local computation algorithms. In Proc.
2nd Symposium on Innovations in Computer Science, pages 223–238, 2011.

[14] K. Talwar and U. Wieder. Balanced allocations: the weighted case. In Proc. 39th Annual
ACM Symposium on the Theory of Computing, pages 256–265, 2007.

[15] Berthold Vöcking. How asymmetry helps load balancing. J. ACM, 50:568–589, July 2003.
[16] Y. Yoshida, Y. Yamamoto, and H. Ito. An improved constant-time approximation algo-

rithm for maximum matchings. In Proc. 41st Annual ACM Symposium on the Theory of
Computing, pages 225–234, 2009.

9 See [1] for the formal definitions of k-wise independent random ordering and almost k-wise
independent random ordering.

Assigning Sporadic Tasks to Unrelated Parallel
Machines

Alberto Marchetti-Spaccamela1, Cyriel Rutten2,�,
Suzanne van der Ster3, and Andreas Wiese1,��

1 Sapienza University of Rome, Rome, Italy
{alberto,wiese}@dis.uniroma1.it

2 Maastricht University, Maastricht, The Netherlands
c.rutten@maastrichtuniversity.nl

3 Vrije Universiteit, Amsterdam, The Netherlands
suzanne.vander.ster@vu.nl

Abstract. We study the problem of assigning sporadic tasks to un-
related machines such that the tasks on each machine can be feasibly
scheduled. Despite its importance for modern real-time systems, this
problem has not been studied before. We present a polynomial-time al-
gorithm which approximates the problem with a constant speedup factor
of 11 + 4

√
3 ≈ 17.9 and show that any polynomial-time algorithm needs

a speedup factor of at least 2, unless P = NP . In the case of a constant
number of machines we give a polynomial-time approximation scheme.
Key to these results are two new relaxations of the demand bound func-
tion which yields a sufficient and necessary condition for a task system
on a single machine to be feasible.

1 Introduction

The sporadic task model is a model of recurrent processes in hard real-time
systems that has received great attention in the last years; see for example [4],
[8], and references therein. A sporadic task τ = (cτ , dτ , tτ) is characterized by a
worst-case execution time cτ , a relative deadline dτ , and a minimum interarrival
separation tτ . Such a sporadic task generates a potentially infinite sequence of
jobs with successive job arrivals separated by at least tτ time units, it has an
execution requirement less than or equal to cτ and a deadline that occurs dτ

time units after its arrival time. A sporadic task system is comprised of several
such sporadic tasks.

A sporadic task system is said to be feasible upon a specified platform if it is
possible to schedule the system on the platform such that all jobs of all tasks will
meet their deadlines, under all permissible combinations of job arrival sequences
by the different tasks comprising the system.

� Supported by the METEOR International Travel Grant.
�� Supported by the German Academic Exchange Service (DAAD).

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 665–676, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

666 A. Marchetti-Spaccamela et al.

The feasibility analysis of sporadic task systems on single processors has been
extensively studied [4]. It is known that the Earliest Deadline First (EDF) algo-
rithm, that schedules at any time the job with the earliest absolute deadline, is
optimal in the sense that for any sequence of jobs it produces a valid schedule
whenever a valid schedule exists [22]. However it is co-NP hard to decide whether
a task system is feasible on a single machine [15].

On multiprocessor systems, there are two main paradigms for scheduling:
global and partitioned scheduling. In the former, all tasks can use all machines,
and jobs can even be migrated from one machine to another. In the partitioned
scheduling approach each task has to be assigned to one of the machines such
that all its jobs have to be executed on this specific machine. Since the process of
partitioning tasks among processors reduces a multiprocessor scheduling problem
to a series of single processor problems, the optimality of EDF for preemptive
single processor scheduling makes EDF a reasonable algorithm to use as the
run-time scheduling algorithm on each machine.

In recent years, hardware design has seen a highly visible trend towards hetero-
geneous processors. In particular, modern hardware architectures often contain
specialized processors for certain tasks (e.g. graphical processors, floating-point
units). To model such settings we assume that the given machines are unrelated ;
i.e., we assume that the processing time of each task depends on the machine
where it is executed.

Related Work. The hardness result for the feasibility problem on a single ma-
chine motivated the study of approximate feasibility tests that run efficiently but
introduce an error in the decision process, controlled by an accuracy parameter
α (the speedup). If an α-approximation test returns “feasible”, then the task set
is guaranteed to be feasible on an α-speed processor(s); if the test returns “in-
feasible”, the task set is guaranteed to be infeasible on a unit-speed processor(s).
For the case of a single processor, a FPTAS feasibility test for EDF has been
proposed [11] (i.e. for any ε > 0, there exists a (1 + ε)-approximation test with
running time polynomial in the number of tasks and in 1/ε).

In the case of m identical processors assuming the global paradigm, the natural
EDF-policy is no longer optimal, but it is known that any feasible collection of
jobs on m machines of unit speed is schedulable using EDF on m machines
of speed 2 − 1

m [23]. Also, a corresponding test for task sets is known [7] [9].
Recently, Anand et al. [2] presented an online algorithm needing only a speedup
factor of e/(e − 1) ≈ 1.58.

In the case of the partitioned paradigm, in the special case of implicit deadline
systems in which all tasks have their deadlines equal to their period parameters
(i.e., dτ = tτ for all τ) it is known that a set of tasks on a machine is feasible if and
only if the sum of the utilizations cτ/tτ are at most one; therefore the problem
reduces to Bin-Packing. Recall that for bin packing an asymptotic FPTAS
exists [19]. In the general case, Baruah and Fisher [5] propose an algorithm
which can partition any set of tasks that is feasible on m machines such that the
assignment is feasible if the machines run (4 − 2

m) times faster; a similar result
is given if the tasks are scheduled according to static priorities, rather than with

Assigning Sporadic Tasks to Unrelated Parallel Machines 667

the more powerful EDF-policy [16]. Chen and Chakraborty [12] improved upon
these results by showing that a deadline-monotonic policy with approximate
demand bound functions leads to 3e−1

e − 1
m ≈ 2.6322− 1

m approximation test in
case of implicit deadlines and a 3 − 1

m approximation test for the general case.
When taking the number of needed machines as objective function, a PTAS

has been proposed if tasks are scheduled according to fixed priorities using re-
source augmentation [14]. Also, the existence of an asymptotic FPTAS has been
ruled out, thus showing that the problem is indeed harder than Bin-Packing.

In [3] a 3- approximation test is presented for partitioning a set of implicit
deadline tasks on a platform of related processors.

As mentioned above, we assume the machines to be unrelated, meaning that
the processing times of the tasks can differ on the different machines and we
observe that results are known only for job scheduling. Lenstra, Shmoys and
Tardos [21] showed a 2-approximation algorithm for the problem of minimizing
the makespan of a set of jobs and that it is NP -hard to achieve a performance
ratio of at most 1.5. Despite a lot of effort, the only improvements in the set-
ting of an arbitrary number of machines are a 1.75-approximation algorithm for
the graph balancing case [13] and a 33/17 ≈ 1.94-estimation algorithm for the
restricted assignment case [24].

For a constant number of machines polynomial-time approximation schemes
are known [18], [21]; recently a PTAS has been proposed for the case that each
machine belongs to one of a fixed number of types, and processing time of each
job depends only on the job and the type of the machine it is assigned to [10].

Our Contribution. To the best of our knowledge, no non-trivial algorithm is
known for assigning a set of sporadic tasks to a set of unrelated machines. We first
present 11 + 4

√
3 ≈ 17.9 approximation test. Also, we show that no polynomial-

time algorithm can compute a task assignment needing a speedup factor of 2− ε
for ε > 0, unless P = NP . Note that this bound is stronger than the best known
(3/2− ε)-hardness result for the contained problem of minimizing the makespan
when scheduling jobs on unrelated machines [21].

If the number of machines is fixed, we present a polynomial-time algorithm
that either finds a feasible task assignment on m machines that are (1+ ε) times
as fast or guarantees that no solution exists on unit-speed processors.

In order to be able to achieve these results, we need deep understanding of the
demand bound function (dbf) which yields a necessary and sufficient condition
for a task system to be feasible on one machine. In particular, we present two
new relaxations for handling this well-studied function. For our result for an
arbitrary number of machines, we give a set of sparse linear constraints which
approximate the dbf up to a constant factor. Due to the sparsity and using other
techniques we are able to design an efficient iterative rounding procedure.

For the case of a constant number of machines we cannot exploit the technique
of partitioning the task set into “big” and “small” tasks as in the job scheduling
problem. A task having small execution times or small utilization might still
be very tight in the sense that its relative deadline is fairly small. Therefore,
assigning small tasks is tricky, i.e., they cannot be simply poured onto machines

668 A. Marchetti-Spaccamela et al.

which still have still some capacity left after scheduling the large tasks. An
important feature of our dbf-relaxation is that the feasibility test of assigning
a task with deadline D to a machine having tasks with deadlines < D already
assigned to it, requires only limited information of the previously assigned tasks.
Namely, the approximated dbf for each task only needs to be evaluated at a
constant number of points. Afterwards, we just approximate the dbf by the task’s
utilization. We exploit this feature and other tricks to polynomially bound the
running time of a dynamic programming algorithm.

2 Preliminaries

Given is a set M of m parallel unrelated machines and a sporadic task sys-
tem T , with |T | = n. Each task τ ∈ T is characterized by a set of values
({ci,τ}i=1,...,m, dτ , tτ), where ci,τ is its execution time on machine i, dτ is its
deadline, relative to its arrival time, and tτ denotes the minimum interarrival
time between two jobs of τ and is called the period. We assume all parameters
to be integer and strictly positive. We study the problem of finding a task as-
signment T = {Ti}i∈M such that ∪iTi = T and Ti∩Ti′ = ∅ for any two machines
i �= i′. A task assignment is feasible if for any machine i, any job arrival sequence
of the tasks in Ti can be feasibly scheduled on i, allowing jobs to be preempted.
Once tasks are partitioned among the machines, EDF will be our scheduling
algorithm of choice.

An α-approximation test for the problem of assigning tasks to unrelated ma-
chines is an algorithm that runs in polynomial time and which either guarantees
that there is no feasible integral assignment of the tasks to the given machines
(running at unit speed), or finds an integral assignment which is feasible if the
machines run at speed α.

By ui,τ we denote the utilization of task τ on machine i and we define it
as ui,τ = ci,τ/tτ . Given a task assignment T , we define the utilization of each
machine i by ui =

∑
τ∈Ti

ui,τ . A necessary (but not sufficient) condition for
feasibility of an assignment then is that ui ≤ 1 for all i ∈ M [22]. It follows that
a task τ for which ui,τ > 1 will never be assigned to machine i. Similarly, in case
ci,τ > dτ task τ will not be assigned to machine i.

Feasibility Test. The synchronous arrival sequence for task system T is defined
to be the collection of job arrivals in which each task in T generates a job at
time-instant zero, and subsequent jobs arrive as soon as legally permitted (i.e.,
task τ generates a job at each time-instant ktτ , k = 0, 1, 2, . . .).

It is known [6] that a set of sporadic tasks Ti is EDF-schedulable on machine
i if and only if the following conditions are satisfied:
1. the utilization of the task system does not exceed 1, i.e. ui =

∑
τ∈Ti

ui,τ ≤ 1,
2. all jobs with deadlines [0, lcmτ∈Ti(tτ)] in the synchronous arrival sequence

of Ti meet their deadlines (here lcm denotes the least common multiple).

This immediately yields an exponential-time test to check whether Ti is EDF-
schedulable; however we recall that the problem is co-NP hard [15] and that it
is not known whether it can be determined in pseudo-polynomial time.

Assigning Sporadic Tasks to Unrelated Parallel Machines 669

A necessary and sufficient condition for a task system T to be schedulable is
based on the demand bound function. We refer to [1,4,6,7,9,12] and references
therein for the study of the properties and the complexity of the demand bound
function.

In the case of unrelated machines we have the following.

Proposition 1. [6] An assignment T = {Ti}i∈M is feasible for task system T
if and only if for all i ∈ M

dbfT ,i(s) :=
∑

τ∈Ti:dτ≤s

⌊
s + tτ − dτ

tτ

⌋
ci,τ ≤ s ∀s ≥ 0,

We write dbfi instead of dbfT ,i whenever the assignment T is clear from the
context. Further, we define dbfi(τ, s) := �(s + tτ − dτ)/tτ � ci,τ ; dbfi(τ, s) denotes
the contribution of task τ to dbfT ,i(s).

3 Arbitrary Number of Machines

In this section we present an α = 11 + 4
√

3 ≈ 17.9-approximation test for
assigning tasks to unrelated machines and we show that the problem is NP -
hard to approximate with a ratio of 2 − ε for any ε > 0.

We will formulate the problem of assigning tasks to unrelated machines as a
linear program, such that the tasks on each machine can be feasibly scheduled,
using the EDF-scheduler. First, we derive a set of linear inequalities which are

– necessary, meaning that they are fulfilled by any feasible assignment,
– approximately sufficient, meaning that any assignment which

(approximately) fulfills the constraints is feasible if the speed of the machine
is increased by some constant factor, and

– sparse, meaning that in our constraints every variable occurs only twice.

We introduce a variable yi,τ for each pair of a machine i and a task τ , modeling
to assign τ to machine i. The first constraints are utilization bounds on all tasks
assigned to the same machine i. Formally, we demand that

∑
τ∈T ui,τyi,τ ≤ 1

for each machine i. Secondly, we require that for all tasks with deadline in the
interval (2k−1, 2k], the sum of their execution time is at most 2k. Formally, we
require

∑
τ∈T :dτ∈(2k−1,2k] ci,τyi,τ ≤ 2k for each machine i and each k ∈ N. We

call these conditions the relaxed dbf -constraints. It is clear that these constraints
have to be fulfilled by any feasible task assignment. Since they are linear, they can
be used in an LP-relaxation for the problem. Their sparsity gives the potential
to derive efficient rounding schemes which result in integral solutions, violating
the relaxed dbf -constraints only by constant factors. Below we will present such
an algorithm; to this end, the following lemma shows that—even when violated
up to constant factors–they are approximately sufficient.

Lemma 1. Let T be an assignment for the task system T such that, for all
machines i,

∑
τ∈Ti

ui,τ ≤ β and
∑

τ∈Ti:dτ∈(2k−1,2k] ci,τ ≤ β ·2k. Then dbfT ,i(s) ≤
6βs for all s ≥ 0 and T is a feasible assignment under a speedup factor of 6β.

670 A. Marchetti-Spaccamela et al.

Let ρ > 1. Assume we are given an instance of our problem. We define the
function r(x) := ρ�logρ x�. Let dmax := maxτ∈T dτ and define the set Dρ :=
{ρ0, ρ1, . . . , r(dmax)}. We formulate the problem with the following linear pro-
gram, denoted by ASS-LP.∑

i∈M

yi,τ = 1 ∀τ ∈ T (1a)

∑
τ∈T

ui,τyi,τ ≤ 1 ∀i ∈ M (1b)∑
τ∈T : r(dτ)≤D

ci,τyi,τ ≤ D ∀D ∈ Dρ, ∀i ∈ M (1c)

yi,τ ≥ 0 ∀τ ∈ T, ∀i ∈ M : ui,τ ≤ 1 ∧ ci,τ ≤ dτ (1d)

If ASS-LP is infeasible, then there can be no feasible (integral) task assign-
ment. Now assume that it is feasible and we have computed a feasible solu-
tion y∗. For each machine i and deadline D ∈ Dρ we extract a value Ui,D :=∑

τ∈T : r(dτ)=D ci,τy∗
i,τ . Based on these values, we define a strengthened variation

of ASS-LP, denoted by ASS2-LP in the sequel. We obtain the latter by replacing
the constraints (1c) by the following set of constraints:

∑
τ∈T : r(dτ)=D

ci,τyi,τ ≤ Ui,D ∀D ∈ Dρ, ∀i ∈ M (1c’)

Clearly if y∗ is a feasible solution for ASS-LP it is also a feasible solution for
ASS2-LP and if ASS2-LP is infeasible then no feasible task assignment exists.
We now round y∗ to an integral vector which approximately satisfies ASS2-LP.
Namely, we follow an iterative rounding approach, similar to [17], which derives
an integer solution ŷ that satisfies constraints (1a) and (1d) and the following
two inequalities

∑
τ∈T

ui,τ ŷi,τ ≤ 4 ∀i ∈ M (2)

∑
τ∈T : r(dτ)=D

ci,τ ŷi,τ ≤ Ui,D + 3D ∀D ∈ Dρ, ∀i ∈ M (3)

The idea of our iterative rounding procedure is the following. In each iteration k,
we first compute an extreme point solution yk of a linear program LP k where
LP 0 equals ASS2-LP and each LP k is obtained by fixing some variables and
removing some constraints of LP k−1.

Given a feasible fractional solution yk to define LP k+1, we first fix all variables
which are integral in yk, i.e., those variables are not allowed to be changed
anymore in the remainder of the procedure. Then, we check whether there exists
a constraint of either type (1b) or type (1c’), with at most three fractional

Assigning Sporadic Tasks to Unrelated Parallel Machines 671

variables. We obtain LP k+1 by dropping this constraint. If such a constraint
does not exist, then we obtain an integral solution by rounding all variables of
yk in a suitable way. The key lemma in our procedure is the following.

Lemma 2. Let yk be an extreme point solution to LP k. Then either,
(i) there is a machine i for which there is a constraint of type (1b) in LP k such
that there are at most three tasks τ with yi,τ ∈ (0, 1) (i.e., yi,τ is fractional), or
(ii) there is a machine i and a deadline D ∈ Dρ for which there is a constraint
of type (1c’) in LP k and there are at most three tasks τ with r(dτ) = D and
yi,τ ∈ (0, 1), or
(iii) for each machine i there are exactly four tasks τ with yi,τ ∈ (0, 1).

Proof (sketch). Let n, w and z be the number of constraints of types (1a), (1b)
and (1c’), respectively, which are still in LP k. With I(yk) and F (yk) being
the number of entries in yk equal to one and the number of fractional entries,
respectively, it holds that n ≤ I(yk)+F (yk)/2. Using also that yk is an extreme
point solution, we have that I(yk)+F (yk) ≤ n+w+z and we get that F (yk) ≤
2w + 2z. If z > w then there are less than 4z fractional variables and by the
pigeonhole-principle in one constraint of type (1c’) at most three of them appear
(as each variable appears in only one constraint of this type). Similarly, if z < w
there must be a constraint of type (1b) with this property. Finally, if z = w
there are at most 4w fractionals and either Case (i) or Case (iii) applies.
�

If Case (i) (Case (ii)) of Lemma 2 applies for a machine i (a machine i and a
deadline D), then we obtain LP k+1 by dropping the corresponding constraint∑

τ∈T ui,τyi,τ ≤ 1 (
∑

τ∈T : r(dτ)=D ci,τyi,τ ≤ Ui,D). Since we fixed the integer
variables, for any solution for the remaining LP it holds that

∑
τ∈T ui,τyi,τ ≤ 4

(
∑

τ∈T : r(dτ)=D ci,τyi,τ ≤ Ui,D + 3D). Therefore, disregarding this constraint in
the sequel, ensures that the right-hand side of this constraint is violated by at
most an amount of 3 (or 3D) no matter how the involved variables are rounded
in the remaining iterations.

If Case (iii) of Lemma 2 applies, using the following lemma we assign all
remaining tasks at once. The claim of the lemma can be shown by taking a frac-
tional matching (representing the fractionally assigned tasks) and transforming
it to an integral matching.

Lemma 3. Assume that in yk for each machine i there are exactly four tasks τ
such that yk

i,τ ∈ (0, 1). Then in polynomial time we can compute an assignment
of all these tasks to the machines such that at most two such tasks are assigned
to a single machine.

If either all constraints have been removed or if Lemma 3 has been applied we
obtain a task assignment ŷ which satisfies

∑
τ∈T ui,τ ŷi,τ ≤ 4 for each machine i

and
∑

τ∈T : r(dτ)=D ci,τ ŷi,τ ≤ Ui,D + 3D for all machines i and all deadlines
D ∈ Dρ. Observe that Ui,D ≤ D for all D ∈ Dρ and all machines i, and hence
the vector ŷ satisfies the relaxed dbf -constraints up to a factor 4. Also, Lemma 1
directly implies that the task assignment given by the vector ŷ is feasible with

672 A. Marchetti-Spaccamela et al.

a speedup of 24 if we choose ρ = 2. However, using the definition of Ui,D and a
more careful calculation, we can bound the needed speedup even further.

Theorem 1. There is a (11 + 4
√

3)-approximation test for the problem of as-
signing tasks to unrelated machines.

Our rounding scheme hinges on the sparsity of the coefficient matrix as the one
proposed in [20]. We remark that our rounding scheme cannot be derived via
the result of [20] since here we need to ensure that the constraints (1a) must be
exactly satisfied by the computed integral solution.

Finally, we show that it is NP -hard to decide whether a task system T has
an assignment which is feasible on m unrelated machines, even with a speedup
factor of 2; the proof follows the lines of the (3

2 −ε)-hardness result for makespan
minimization in [21].

Theorem 2. Let ε > 0. There is no (2 − ε)-approximation test for the problem
of assigning tasks to unrelated machines, unless P = NP .

Note that our hardness result is different from the one by Andersson and Tovar
[3]. They show that, given a task system with implicit deadlines that is feasible
on a platform of m related parallel machines when migration is allowed, then
any partitioned algorithm needs a speedup factor of at least 2 − ε for finding a
feasible partition of the tasks.

4 Constant Number of Machines
Assuming that the number of machines is bounded by a constant, we present a
dynamic programming algorithm (DP) that gives a (1+ε)-approximation test for
any ε > 0. For having a DP-table of bounded size we introduce an approximation
of the demand bound function such that the contribution of each task can be
derived by using only a constant number of values.

Let ε > 0, and we assume w.l.o.g. that ε < 1/2. Let L be the minimum integer
which satisfies 1 ≤ (1 + ε)L−1ε2. We define the function dbf∗:

dbf∗
i (τ, s) :=

{⌊
s+tτ−dτ

tτ

⌋
ci,τ if s < (1 + ε)L · dτ

ci,τ

tτ
s otherwise.

Given a task assignment T of tasks in T to the machines, we define dbf∗
T ,i(s) :=∑

τ∈Ti
dbf∗

i (τ, s), for all s > 0. Further, for having clean notation, we write
dbf∗

i (s) instead of dbf∗
T ,i(s) in case the assignment T is clear from the context.

The key observation is that for computing the function dbf∗
i (τ, ·) for a fixed

task τ , it suffices to know the utilization of the task τ and the values the de-
mand bound function dbfi(τ, s) for s ∈

[
dτ , (1 + ε)L · dτ

)
. Exploiting the prop-

erties of the functions dbfT ,i(s) and dbf∗
T ,i(s), we have that dbf∗

T ,i is a (1 + ε)-
approximation of the “real” demand bound function.

Lemma 4. Given an assignment T and let ε < 1/2. Then, for all machines i,
(i) if dbf∗

T ,i(r) ≤ α · r for all r ≥ 0, then dbfT ,i(s) ≤ (1 + ε) · α · s for all s ≥ 0;
(ii) if dbfT ,i(r) ≤ r for all r ≥ 0, then dbf∗

T ,i(s) ≤ (1 + ε) · s for all s ≥ 0.

Assigning Sporadic Tasks to Unrelated Parallel Machines 673

Note that in contrast to other approximations of the demand bound function
considered in the literature (e.g. [1]), in Lemma 4 we do not use an analysis task
by task, and we do not bound the ratio dbf(τ, s)/dbf∗(τ, s). In fact, the latter
can be unbounded.

The following proposition shows that at the cost of a (1+ε)-speedup it suffices
to check whether the condition dbf∗

T ,i(s) ≤ s is (approximately) satisfied at
powers of 1 + ε. It is useful for our DP as it suffices to characterize each task τ
only by its utilization and the constantly many values dbf∗

i (τ, (1+ε)k) for integers
k such that dτ ≤ (1 + ε)k < (1 + ε)L · dτ (on each machine i).

Proposition 2. Consider a task assignment T and a machine i. If for all k ∈ N

dbf∗
T ,i((1 + ε)k) ≤ α · (1 + ε)k then dbf∗

T ,i(s) ≤ α · s · (1 + ε) for all s ≥ 0.

For each task τ , each machine i and � ∈ N0, we introduce a vector v(i, τ) by
defining position v(i, τ)� := dbf∗

i (τ, (1 + ε)�)/(1 + ε)�.

Proposition 3. Consider an assignment T . For all machines i ∈ M , we have∥∥∑
τ∈Ti

v(i, τ)
∥∥
∞ ≤ α iff dbf∗

T ,i(s) ≤ αs, for each s = (1 + ε)k, k ∈ N.

We present a dynamic programming algorithm which either (i) asserts that there
is no feasible assignment of the tasks to the machines by showing that there is
no assignment T of tasks to machines such that

∥∥∑
τ∈Ti

v(i, τ)
∥∥
∞ ≤ 1 for each

machine i, or (ii) finds an assignment T such that
∥∥∑

τ∈Ti
v(i, τ)

∥∥
∞ ≤ 1 + O(ε)

for each machine i. In the latter case, Lemma 4 and the above proposition imply
an approximation test for the problem of assigning tasks to a constant number
of unrelated machines.

Assume w.l.o.g. that the tasks τ1, ..., τn are ordered such that dτp ≤ dτp+1 for
each p. We partition the tasks into groups Gk := {τ |(1+ε)k ≤ dτ < (1+ε)k+1} for
each k ∈ N. Our DP works in phases; one phase for each task. The key idea is that
when trying to assign task τ ∈ Gk, we need only a constant number of values from
the assignment of the previously considered tasks. With L(k) := min{k, L} (s.t.
k − L(k) ≥ 0), for each machine i we need the sum

∑
τ∈Ti∩(∪k−L(k)

k′=0
Gk′)

ui,τ , the

sum
∑

τ∈Ti∩Gk′ ui,τ , for all k′ : k−L(k) < k′ ≤ k, and the sum
∑

τ∈Ti∩Gk′ v(i, τ)�

for all � : k ≤ � ≤ k + L and all k′ : � − L(�) < k′ ≤ k.
Ideally, we would like to store all possible combinations of the above quantities

that can result from assigning the tasks of previous iterations. Then we could
compute the values for the next iteration by taking each combination of values
from the last iteration and compute the values we get by additionally assigning
τ to one of the machines. Unfortunately, the number of possible combinations
of the above values is not polynomially bounded. In order to bound them, we
round entries of the vectors v(i, τ). We perform the described procedure with
the rounded vectors. This will result in a polynomial time procedure.

We now formally present the dynamic programming algorithm. Consider a
task τ ∈ Gk, k ∈ N. For each i we define v′(i, τ)� := ε

n

⌊
n
ε · v(i, τ)�

⌋
for each

� < k +L, and v′(i, τ)�′ := u′
i,τ := ε

n

⌊
n
ε · ui,τ

⌋
for each �′ ≥ k +L. The following

lemma bounds our rounding error.

674 A. Marchetti-Spaccamela et al.

Lemma 5. Let i be a machine and Ti be a set of tasks. For all �, it holds that∑
τ∈Ti

v′(i, τ)� ≤
∑

τ∈Ti
v(i, τ)� ≤ ε +

∑
τ∈Ti

v′(i, τ)�.

Note that we can also describe each rounded vector v′(i, τ) with only constantly
many pieces of information. When working with the rounded vectors, for the
quantities mentioned above there are only a polynomial number of combinations
(assuming that m is a constant). In particular, we obtain a dynamic program-
ming table of polynomial size. Formally, our dynamic programming table consists
of entries of the form (p, z,w, c) where

– p ∈ {0, ..., n} denotes the phase of the DP. In phase p, task τp is being
assigned to a machine. Let k be an integer such that τp ∈ Gk;

– for each machine i, the value zi is of the form �· ε
n for some integer �, denoting

the rounded aggregated utilization of machine i due to the tasks having a
deadline at least a factor of (1 + ε)L smaller with respect to the deadline of
task τp;

– for each machine i and each k′ with k − L(k) < k′ ≤ k, the value wi,k′ is of
the form � · ε

n for some integer �, denoting the rounded utilization of tasks
in Gk′ ∩ Ti.

– for each triple (i, k′, k′′) ∈ Cp with Cp = {(i, k′, k′′) : 1 ≤ i ≤ m; k ≤ k′′ <

k+L} and k′′−L(k′′) < k′ ≤ k, the value ci,k′,k′′ is of the form � · ε
n for some

integer �, denoting the quantity
∑

τ∈Ti∩Gk′ v′(i, τ)k′′ . Intuitively, it expresses
how much the vectors of the tasks in Gk′ on machine i contribute towards
dimension k′′.

We require the following set of conditions to be satisfied for a DP-cell (p, z,w, c)
to exist; for each machine i ∈ M and all k′′ ∈ {k, . . . , k + L}

zi +
k′′−L(k′′)∑

k′=k−L(k)+1

wi,k′ +
k∑

k′=k′′−L(k′′)+1

ci,k′,k′′ ≤ 1 + ε (4)

This condition implies that, for all parameters, zi, wi,k′ , ci,k′,k′′ ≤ 1 + ε.

Proposition 4. The number of DP-entries is bounded by n · ((1 + ε)n/ε)m3·L3
.

In each entry (p, z,w, c) of the DP-table we store either “YES” or “NO”, which
represents whether or not there is an assignment of the tasks τ1, ..., τp to the
machines which yields the quantities given by the vectors z,w, c.

We now describe how to fill the DP-table. We initialize the table by assigning
a “YES”-entry to (0,0,0,0) and a “NO”-entry to any other entry with p = 0. As-
sume that for some phase p, all entries of the form (p− 1, z(p−1),w(p−1), c(p−1))
have been computed. We extend the DP-table in phase p by considering each
combination of assigning task τp to some machine i and each DP-cell
(p − 1, z(p−1),w(p−1), c(p−1)) with a “YES”-entry. Intuitively, we compute what
values for z(p), w(p), and c(p) we get if we take the task assignment encoded in
(p − 1, z(p−1),w(p−1), c(p−1)) and additionally add τp to i.

Formally, let tasks τp−1 and τp be in group Gh and Gk, respectively. Almost
all entries of the vectors are equal and hence we only list the values which differ.

Assigning Sporadic Tasks to Unrelated Parallel Machines 675

If h = k, then we have: w
(p)
i,k = w

(p−1)
i,k + u′

i,τ , and c
(p)
i,k,k′′ = c

(p−1)
i,k,k′′ + v′(i, τ)k′′ for

all k′′ ∈ {k, . . . , k+L}. If h �= k we may assume w.l.o.g. that h = k−1 by creating
dummy tasks of zero processing requirement. Then, z

(p)
g = z

(p−1)
g +w

(p−1)

g,k−L(k) for

all machines g ∈ M ; w
(p)
g,k′ = w

(p−1)
g,k′ for machines g ∈ M and all k′ : k − L(k) <

k′ < k; w
(p)
i,k = u′

i,τp
and w

(p)
g,k = 0 for all machines g �= i; c

(p)
g,k′,k′′ = c

(p−1)
g,k′,k′′

for all machines g, all k′′ : k ≤ k′′ ≤ k + L and all k′ : k′′ − L(k′′) < k′ < k;
c
(p)
i,k,k′′ = v′(i, τ)(k′′) for all k′′ : k ≤ k′′ ≤ k + L; and c

(p)
g,k,k′′ = 0 for all machines

g �= i and all k′′ : k ≤ k′′ ≤ k + L.
Finally, we check whether the computed values z(p),w(p) and c(p) satisfy the

condition given in (4). If this is the case, then we store a “YES”-entry in the
corresponding DP-cell (p, z(p),w(p), c(p)) and we say that it extends the DP-
cell (p − 1, z(p−1),w(p−1), c(p−1)). In case there does not exist a DP-cell (p −
1, z(p−1),w(p−1), c(p−1)) which can be extended to the DP-cell (p, z(p),w(p), c(p)),
the latter DP-cell is filled with a “NO”-entry.

We fill the DP-table inductively, phase by phase, until each cell in the DP-
table is filled.

Lemma 6. For phase p, there exists a DP-cell of the form (p, z(p),w(p), c(p))
with a “YES”-entry if and only if there exists task assignment T of the first p tasks
to the machines, such that for each i ∈ M it holds that

∥∥∑
τ∈Ti

v′(i, τ)
∥∥
∞ ≤ 1+ε.

Combining Proposition 2 and the Lemmas 4, 5 and 6 yields a (1 + 8ε)-
approximation test, for any ε and a constant number of machines. The claim
on the running time follows from Proposition 4. Redefining ε yields our main
theorem.

Theorem 3. For any ε > 0 there exists a (1 + ε)-approximation test if the
number of machines is constant, that runs in time polynomial in the number of
tasks.

References

1. Albers, K., Slomka, F.: An event stream driven approximation for the analysis of
real-time systems. In: Proceedings of the 16th Euromicro Conference on Real-Time
Systems (ECRTS 2004), pp. 187–195 (2004)

2. Anand, S., Garg, N., Megow, N.: Meeting Deadlines: How Much Speed Suffices?
In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp.
232–243. Springer, Heidelberg (2011)

3. Andersson, B., Tovar, E.: Competitive analysis of partitioned scheduling on uniform
multiprocessors. In: Proceedings of Parallel and Distributed Processing Symposium
(IPDPS), pp. 1–8 (2007)

4. Baker, T.P., Baruah, S.K.: Schedulability analysis of multiprocessor sporadic task
systems. In: Handbook of Real-Time and Embedded Systems, ch. 3. CRC Press
(2007)

5. Baruah, S., Fisher, N.: The partitioned multiprocessor scheduling of sporadic task
systems. In: Proc. 26th IEEE Real-Time Systems Symposium, pp. 321–329. IEEE
(2005)

676 A. Marchetti-Spaccamela et al.

6. Baruah, S., Mok, A., Rosier, L.: Preemptively scheduling hard-real-time sporadic
tasks on one processor. In: Proc. 11th IEEE Real-Time Systems Symposium, pp.
182–190. IEEE (1990)

7. Baruah, S.K., Bonifaci, V., Marchetti-Spaccamela, A., Stiller, S.: Improved multi-
processor global schedulability analysis. Real-Time Systems 46, 3–24 (2010)

8. Baruah, S.K., Pruhs, K.: Open problems in real-time scheduling. Journal of
Scheduling 13, 577–582 (2010)

9. Bonifaci, V., Marchetti-Spaccamela, A., Stiller, S.: A constant-approximate fea-
sibility test for multiprocessor real-time scheduling. Algorithmica 62, 1034–1049
(2012)

10. Bonifaci, V., Wiese, A.: Scheduling unrelated machines of few different types (un-
published manuscript)

11. Chakraborty, S., Künzli, S., Thiele, L.: Approximate schedulability analysis. In:
Proc. 23rd IEEE Real-Time Systems Symposium, pp. 159–168. IEEE (2002)

12. Chen, J.-J., Chakraborty, S.: Resource augmentation bounds for approximate de-
mand bound functions. In: Proceedings of 32nd IEEE Real-Time Systems Sympo-
sium, pp. 272–281. IEEE (2011)

13. Ebenlendr, T., Krcal, M., Sgall, J.: Graph balancing: A special case of scheduling
unrelated parallel machines. In: Proc. 19th Symp. on Discrete Algorithms, pp.
483–490 (2008)

14. Eisenbrand, F., Rothvoß, T.: A PTAS for Static Priority Real-Time Scheduling
with Resource Augmentation. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórs-
son, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS,
vol. 5125, pp. 246–257. Springer, Heidelberg (2008)

15. Eisenbrand, F., Rothvoß, T.: EDF-schedulability of synchronous periodic task sys-
tems is coNP-hard. In: Proc. 21st Symp. on Discrete Algorithms, pp. 1029–1034
(2010)

16. Fisher, N., Baruah, S., Baker, T.P.: The partitioned scheduling of sporadic tasks
according to static-priorities. In: Proc. 18th Euromicro Conf. on Real-Time Sys-
tems, pp. 118–127 (2006)

17. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network
problem. Combinatorica 21, 39–60 (2001)

18. Jansen, K., Porkolab, L.: Improved approximation schemes for scheduling unrelated
parallel machines. In: Proc. 31st Symp. on Theory of Computing, pp. 408–417
(1999)

19. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: Proc. of the 23rd Annual Symposium on
Foundations of Computer Science, pp. 312–320 (1982)

20. Karp, R.M., Leighton, F.T., Rivest, R.L., Thompson, C.D., Vazirani, U.V., Vazi-
rani, V.V.: Global wire routing in two-dimensional arrays. Algorithmica 2, 113–129
(1987)

21. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming 46, 259–271 (1990)

22. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard real-
time environment. Journal of the ACM 20, 46–61 (1973)

23. Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via
resource augmentation. Algorithmica 32, 163–200 (2002)

24. Svensson, O.: Santa claus schedules jobs on unrelated machines. In: Proc. 43rd
Symp. on Theory of Computing, pp. 617–626. ACM Press (2011)

A Tight Lower Bound for Planar Multiway Cut

with Fixed Number of Terminals

Dániel Marx�

Computer and Automation Research Institute,
Hungarian Academy of Sciences (MTA SZTAKI), Budapest, Hungary

dmarx@cs.bme.hu

Abstract. Given a planar graph with k terminal vertices, the Planar

Multiway Cut problem asks for a minimum set of edges whose removal
pairwise separates the terminals from each other. A classical algorithm
of Dahlhaus et al. [2] solves the problem in time nO(k), which was very

recently improved to 2O(k) ·nO(
√
k) time by Klein and Marx [6]. Here we

show the optimality of the latter algorithm: assuming the Exponential

Time Hypothesis (ETH), there is no f(k) · no(
√

k) time algorithm for
Planar Multiway Cut. It also follows that the problem is W[1]-hard,
answering an open question of Downey and Fellows [3].

1 Introduction

Multiway Cut (also called Multiterminal Cut) is a generalization of the
classical minimum s− t cut problem: given an undirected graph G with subset
T of k vertices specified as terminals, the task is to find a set of edges having
minimum total weight whose deletion pairwise separates the k terminal vertices
from each other. While the problem is polynomial-time solvable for k = 2, it
becomes NP-hard for k = 3 on general graphs. The special case of the prob-
lem on planar graphs, Planar Multiway Cut, is also NP-hard if k can be
arbitrarily large, but can be solved in time O((4k)kn2k−1 logn) [2] or in time
O(k4kn2k−4 logn) [4]. That is, perhaps somewhat unexpectedly, the problem is
polynomial-time solvable on planar graphs for every fixed k. In the companion
paper [6], the dependence of the running time on the number of terminals was

significantly improved: an algorithm with running time 2O(k) · nO(
√
k) was given

for Planar Multiway Cut.
How much further the dependence on k can be improved? Dahlhaus et al. [2]

asked if Planar Multiway Cut can be solved in time ck ·nO(1), which would be
a significant improvement over all known algorithms. More generally, Downey
and Fellows asked in the open problem list of their classical 1999 monograph
[3] if the problem parameterized by the number of terminals is fixed-parameter
tractable, that is, can be solved in time f(k) ·nO(1) for some computable function

� Research supported by the European Research Council (ERC) grant
“PARAMTIGHT: Parameterized complexity and the search for tight complexity
results,” reference 280152.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 677–688, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

678 D. Marx

f depending only on k. The main result of the paper is a negative answer to
this question: the problem is W[1]-hard parameterized by the number of termi-
nals, making it unlikely to be fixed-parameter tractable. Moreover, our reduction

shows that there is no f(k) · no(
√
k) time algorithm for any computable function

f , unless the Exponential Time Hypothesis (ETH) fails. ETH is the assumption
that n-variable m-clause 3SAT cannot be solved in time 2o(n) ·mO(1), see [5,7].

Therefore, the 2O(k) ·nO(
√
k) time algorithm of [6] is optimal in the sense that the

exponent of n cannot be better than O(
√
k). We present the hardness proof for

the version of the problem where weights are allowed on the edges. However, the
weights are polynomially large in the reductions, thus the results can be easily
transferred to the case where each edge has unit weight by replacing an edge of
weight c by c parallel edges (or parallel paths if one wishes to state the hardness
result for simple graphs).

2 The Reduction

It will be convenient to present the reduction to Planar Multiway Cut from
the following W[1]-hard problem:

Grid Tiling

Input: Integers k, n, and k2 nonempty sets Si,j ⊆ [n] × [n] (1 ≤
i, j ≤ k).

Find: For each 1 ≤ i, j ≤ k, a value si,j ∈ Si,j such that

– If si,j = (x, y) and si,j+1 = (x′, y′), then x = x′.
– If si,j = (x, y) and si+1,j = (x′, y′), then y = y′.

The W[1]-hardness of Grid Tiling essentially follows from [8]. Note that the
reduction transforms the problem of finding a k-clique into a k×k Grid Tiling

instance (we will need this fact for the tight lower bound in Corollary 5).

Lemma 1. Grid Tiling is W[1]-hard parameterized by k.

To prove the W[1]-hardness of Planar Multiway Cut, we construct gadgets
of the following form. An n× n gadget is an embedded planar graph Gn with a
set of 4n+8 distinguished vertices (see Figure 1). These distinguished vertices all
appear on the boundary of the graph (i.e, on the infinite face) in the clockwise or-
der UL, u1, . . . , un+1, UR, r1, . . . , rn+1, DR, dn+1, . . . , d1, DL, �n+1, . . . , �1. Note
that these distinguished vertices are a subset of the vertices on the boundary of
the gadget, thus e.g., ui and ui+1 are not necessarily adjacent. The four vertices
UL, UR, DR, DL are the only terminal vertices in the gadget. We say that a
multiway cut M of the gadget represents the pair (x, y) ∈ [n]2 if Gn \M has four
components that partition the distinguished vertices into the following classes:

{UL, u1, . . . , uy, �1, . . . , �x} {UR, uy+1, . . . , un+1, r1, . . . , rx}
{DL, d1, . . . , dy , �x+1, . . . , �n+1} {DR, dy+1, . . . , dn+1, rx+1, . . . , rn+1}

The main part of the hardness proof is to show that certain gadgets exist:

A Tight Lower Bound for Planar Multiway Cut 679

UL u1 u2 u3 u4 u5 UR

r1

r2

r3

r4

r5

DL d1 d2 d3 d4 d5 DR

�1

�2

�3

�4

�5

n× n gadget

Fig. 1. The distinguished vertices of a n×n gadget for n = 4. The dashed lines indicate
a multiway cut of UL, UR, DR, DL that represents the pair (2, 3).

Lemma 2. Given a subset S ⊆ [n]2, we can construct in polynomial time a
gadget GS and an integer D such that the following properties hold:

1. For every (x, y) ∈ S, the gadget GS has a multiway cut of weight D repre-
senting (x, y).

2. If a multiway cut of GS has weight D, then it represents some (x, y) ∈ S.
3. Every multiway cut of GS has weight at least D.

The proof of Lemma 2 appears in Section 3. Assuming that such gadgets can be
constructed, we can prove that Planar Multiway Cut is W[1]-hard.

Theorem 3. Planar Multiway Cut is W[1]-hard parameterized by the num-
ber of terminal vertices.

Proof. We reduce Grid Tiling to Planar Multiway Cut. Let Si,j ⊆ [n]2

(1 ≤ i, j ≤ k) be the subsets in a Grid Tiling instance. For every 1 ≤ i, j ≤ k,
we use Lemma 2 to construct the n × n gadget Gi,j and compute the integer
Di,j corresponding to the set Si,j . Let D =

∑
1≤i,j≤k Di,j . We construct a planar

graph G by attaching the gadgets the following way:

– for every 1 ≤ i ≤ k, 1 ≤ j < k, we identify vertices UR, r1, . . . , rn+1, DR
of Gi,j with vertices of UL, �1, . . . , �n+1, DL of Gi,j+1, respectively, and

– for every 1 ≤ i < k, 1 ≤ j ≤ k, we identify vertices DL, d1, . . . , dn+1, DR
of Gi,j with vertices of UL, u1, . . . , un+1, UR of Gi+1,j , respectively.

Note that we glue together the gadgets only at the distinguished vertices, not
along the whole boundary. It is easy to see that G is planar. With these identi-
fications, the 4k2 terminal vertices of the k2 gadgets are identified into a set T
of exactly (k + 1)2 terminal vertices. For the sake of analysis, if there are two
gadgets that have edges between two vertices v and u, then we keep both edges
as parallel edges in the graph G. This way, we can say the the edge set of G is
the disjoint union of the edge sets of all the gadgets.

680 D. Marx

G1,1 G1,k

Gk,kGk,1

Fig. 2. Constructing the instance by identifying the distinguished vertices of k2 gad-
gets. The circled vertices are terminals, the dashed lines indicate a multiway cut that
corresponds to a clique.

We claim that there is a multiway cut of weight D separating the terminals
in T if and only if the Grid Tiling instance has a solution. Suppose first
that si,j ∈ Si,j (1 ≤ i, j ≤ k) is a solution of the Grid Tiling instance. By
property 1 of Lemma 2, every gadget Gi,j has a multiway cut Mi,j of weight
Di,j that represents si,j . We claim that the union of theseMi,j’s is a multiway cut
separating T . This follows from the fact that the multiway cuts are consistent
in the following sense: if distinguished vertices v1 and v2 of gadget Gi,j are
identified with vertices v′1 and v′2, respectively, of gadget Gi,j+1, then v1 and v2
are in the same component of Gi,j \Mi,j if and only if v′1 and v′2 are in the same
component of Gi,j+1 \Mi,j+1. For example, consider vertices rs1 and rs2 of Gi,j ,
which are identified with vertices �s1 and �s2 of Gi,j+1. Suppose that si,j = (x, y)
and si,j+1 = (x′, y′) with x = x′. Then from the fact that Mi,j represents (x, y),
we have that rs1 and rs2 are in different components of Gi,j \Mi,j if and only if
s1 ≤ x < s2. Similarly, �s1 and �s2 are in different components of Gi,j+1 \Mi,j+1

if and only if s1 ≤ x′ < s2. The consistency of the multiway cuts implies that if
we look at a terminal vertex, say DR of Gi,j , then its component in G \M is
exactly the union of the component of DR in Gi,j \Mi,j , the component of DL
in Gi,j+1 \Mi,j+1, the component of UR in Gi+1,j \Mi,j , and the component of
UL in Gi+1,j+1 \Mi+1,j+1. Therefore, the terminals in T are indeed separated
from each other in G \M .

For the other direction of the proof, suppose that M is a multiway cut of
T . In particular, this means that M is a multiway cut of the four terminals
of each gadget. Since the gadgets are edge disjoint, M can be partitioned into
disjoint sets Mi,j (1 ≤ i, j ≤ k) such that Mi,j is a multiway cut of gadget Gi,j .
As every multiway cut of gadget Gi,j has weight at least Di,j (Property 3 of
Lemma 2) and M has weight at most D, it follows that Mi,j has weight exactly

A Tight Lower Bound for Planar Multiway Cut 681

Di,j . Therefore, by Property 2 of Lemma 2, Mi,j represents some set si,j ∈ Si,j .
We claim the the pairs si,j form a solution for Grid Tiling. We verify that if
si,j = (x, y) and si,j+1 = (x′, y′), then x = x′. Suppose first that x < x′. Then
rx+1 of Gi,j is in the same component as DR of Gi,j , while �x+1 of Gi+1,j (which
is actually identified with rx+1 of Gi,j) is in the same component as UL of Gi,j+1

(as x + 1 ≤ x′). Therefore, two terminal vertices are in the same component of
G \M , a contradiction. The case x > x′, as well as the proof that si,j and si+1,j

agree in the second component, is analogous. ��

To obtain a lower bound on the exponent of n in the running time of algorithms
for Planar Multiway Cut, we can use the following lower bound on Clique:

Theorem 4 ([1]). An f(k)no(k) algorithm for Clique implies that ETH fails.

Observe that, given an instance of Clique, the two reductions in Lemma 1
and Theorem 3 create an instance of Planar Multiway Cut with (k + 1)2

terminals. Thus by Theorem 4, we have the following lower bound:

Corollary 5. If there is an f(k)no(
√
k) algorithm for Planar Multiway Cut,

then ETH fails.

3 Gadget Construction

The goal of this section is to construct a gadget that satisfies the requirements
of Lemma 2. Section 3.1 describes the construction of the gadget, Section 3.2
proves Property 1 of Lemma 2 by showing how a pair (x, y) ∈ S defines a cheap
multiway cut, while Section 3.3 proves Properties 2 and 3 by showing how a
cheap multiway cut defines a pair in S.

3.1 Construction

Let N := n2 + 2n + 1. We start the construction of the gadget GS with an
(N + 1)× (N + 1) grid: let us introduce vertices g[i, j] (0 ≤ i, j ≤ N) such that
vertices g[i, j] and g[i′, j′] are adjacent if and only if |i−i′|+ |j−j′| = 1. The grid
is pictured as g[0, 0] being the upper left corner, g[0, N] the upper right corner,
etc. We call the edges on the horizontal path from g[i, 0] to g[i, N] the row Ri,
while the edges on the vertical path from g[0, j] to g[N, j] is the column Cj . We
also say that the horizontal edge {g[i, j], g[i, j+1]} of row Ri has column number
j and the vertical edge {g[i, j], g[i+ 1, j]} of column Cj has row number i.

For ease of notation, we define the functions α(s) = N − n − 2 + s and
β(x, y) = x + yn (observe that β(n + 1, y) = β(1, y + 1) and n + 1 ≤ β(x, y) ≤
n2+n = N −n− 1 = α(1) for every 1 ≤ x, y ≤ n). The distinguished vertices of
the gadget are defined as follows (see Figure 3): for every 1 ≤ s ≤ n+ 1, we set

UL = g[0, 0] UR = g[0, N] us = g[0, β(1, s)] ds = g[N, β(1, s)]
DL = g[N, 0] DR = g[N,N] �s = g[α(s), 0] rs = g[s,N].

682 D. Marx

UL UR

DRDL

r1

r2
r3r3
r4
r5

�5

�4

�3

�2

d1 d2 d3 d4 d5

u1 u2 u3 u4 u5

�1α(1)

α(5)

Fig. 3. A n× n gadget with n = 4 (and hence N = n2 + 2n+ 1 = 25). The black dots
represent the distinguished vertices, strong edges have weight ∞, dotted strong edges
have weight at least W 3, normal edges have weight between W 2 and W 2+NW . Some
of the shaded cells are marked special (the cell edges are omitted from the figure). The
dashed lines show the 4 components created by the multiway cut corresponding to the
pair (2, 3).

We refer to the edges of the grid as grid edges. We define now the weight of the
grid edges. Let W := 100N2. Let us set the weights first as follows:

– For 0 ≤ i ≤ N , 0 ≤ j ≤ N − 1, vertical edge {g[i, j], g[i+ 1, j]} has weight⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if i = j − 1,

∞ if i = 0 and j �∈ [α(1), α(n)],

W 3 +W 2 if i = 0 and j ∈ [α(1), α(n)],

∞ if i = N and j �∈ [1, n],

W 3 +W 2 if i = N and j ∈ [1, n],

W 2 otherwise.

A Tight Lower Bound for Planar Multiway Cut 683

– For 0 ≤ i ≤ N − 1, 0 ≤ j < N − 1, horizontal edge {g[i, j], g[i, j + 1]} has
weight⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if i = 0 and j �∈ [β(1, 1), β(n, n)],

W 3 +W 2 + jW if i = 0 and j ∈ [β(1, 1), β(n, n)],

W 2 + jW if 0 < i < j,

W 3 +W 2 − i2W − (N − i)2W if i = j,

W 2 + (N − j)W if j < i < N ,

W 3 +W 2 + (N − j)W if j = N and j ∈ [β(1, 1), β(n, n)],

∞ if j = N and j �∈ [β(1, 1), β(n, n)].

Note that the only part of the boundary with finite edges are the horizontal path
between u1 and un+1, the horizontal path between d1 and dn+1, the vertical path
between �1 and �n+1, and the vertical path between r1 and rn+1.

Let us consider a column number β(1, 1) ≤ z ≤ β(n, n). The horizontal edges
with column number z have weight either W 2 or W 3 +W 2 plus or minus some
lower-order terms. If we sum the weights of these horizontal edges, then the extra
terms jW in rows less than z and the extra terms (N − j)W for rows greater
than z are canceled by the negative terms in the weight of the edge in row Rz .
Thus the total weight of these edges is the same for every column number z.

Claim 6. For every β(1, 1) ≤ z ≤ β(n, n), the total weight of all the horizontal
edges with column number z is exactly 3W 3 + (N + 1) ·W 2.

For every 1 ≤ s ≤ n, we add the upper ear edge {us, us+1} and the lower ear
edge {ds, ds+1}, both having weight W 3.

The cell C[i, j] is the face of the grid with the corners g[i, j], g[i+ 1, j], g[i+
1, j+1], g[i, j+1] on its boundary. We mark each cell either as normal or special
and add edges to the cell accordingly (we will call these new edges the cell edges).
If the cell C[i, j] is normal, then we add new (parallel) edges {g[i, j], g[i+ 1, j]},
{g[i + 1, j], g[i + 1, j + 1]}, {g[i + 1, j + 1], g[i, j + 1]}, {g[i, j + 1], g[i, j]}, all
with weight 2 (see Figure 4). If the cell C[i, j] is special, then we add the edges
{g[i, j], g[i+1, j]} and {g[i, j +1], g[i+ 1, j + 1]} having weight 1, as well as the
edges {g[i, j], g[i, j + 1]}, {g[i+ 1, j], g[i, j + 1]} having weight 2.

The crucial properties of the cell edges are the following. If the two upper
corners g[i, j], g[i, j + 1] are separated from the two lower corners g[i + 1, j],
g[i + 1, j + 1], then the cell edges connecting these vertices have to be in the
multiway cut. Observe that the total weight of these cell edges is exactly 4 both
in a normal cell and in a special cell. Similarly, if the two corners g[i, j], g[i+1, j]
on the left are separated from the two corners g[i, j + 1], g[i + 1, j + 1] on the
right, then the weight of the edges that need to be in the multiway cut is exactly
4 for both type of cells. However, there is a difference if we want to partition
the four corners of the cell C[i, j] into three components {g[i, j]}, {g[i + 1, j]},
{g[i, j + 1], g[i+ 1, j + 1]}. For normal cells, the edges {g[i, j], g[i+ 1, j]}, {g[i+
1, j], g[i+ 1, j + 1]}, {g[i, j + 1], g[i, j]}, having total weight 6, need to be in the
multiway cut. On the other hand, for special cells, the edges {g[i, j], g[i+ 1, j]},

684 D. Marx

g[i, j] g[i, j + 1]

g[i+ 1, j + 1]g[i+ 1, j]

22

2

2

normal cell

g[i, j] g[i, j + 1]

g[i+ 1, j + 1]g[i+ 1, j]

1

2

2

special cell

1

Fig. 4. The cell edges within a normal and a special cell. The strong edges are the 4
grid edges forming the boundary of the cell. The dashed lines show a 3-way partition
of the corners that costs 6 in a normal cell and only 5 in a special cell.

{g[i, j], g[i, j + 1]}, {g[i + 1, j], g[i, j + 1]} that need to be in the multiway cut
have total weight 5. Similarly, a multiway cut with partition {g[i, j], g[i+ 1, j]},
{g[i, j + 1]}, {g[i + 1, j + 1]} need to contain cell edges of total weight 6 in a
normal cell, but weight 5 is sufficient in a special cell.

We complete the construction of the gadget by encoding the set S: for ev-
ery (x, y) ∈ S, we mark the two cells C[x, β(x, y)] and C[α(x), β(x, y)] special.
Finally, we set D := 7W 3 + (2N + 2)W 2 + 4(2N − 3) + 10 < 8W 3.

3.2 Pair (x, y) ⇒ Multiway Cut

Given a pair (x, y) ∈ S, we construct a multiway cut M representing (x, y) the
following way. We partition the vertices of gadget the following way: vertex g[i, j]
is in the same class as

– UL if i ≤ α(x) and j ≤ β(x, y),
– UR if i ≤ x and j > β(x, y),
– DL if i > α(x) and j ≤ β(x, y),
– DR if i > x and j > β(x, y).

Observe that this partition indeed represents the pair (x, y). The multiway cut
M contains all the edges that connect edges between two different classes:

1. ear edges {uy, uy+1}, {dydy+1},
2. {g[s, β(x, y)], g[s, β(x, y) + 1]} for every 0 ≤ s ≤ N ,
3. {g[α(x), s], g[α(x) + 1, s]} for every 0 ≤ s ≤ β(x, y),
4. {g[x, s], g[x+ 1, s]} for every β(x, y) < s ≤ N ,
5. and some number of cell edges.

The total weight of the two edges in the first group is 2W 3. The second group
contains all the horizontal edges with column number β(x, y), hence their total
weight is exactly 3W 3+(N +1) ·W 2 by Claim 6. Groups 3 and 4 contain N +1
vertical edges in total, two of them having weight W 3 +W 2 and the rest having
weight W 2. Note that none of these edges has weight ∞: it is not possible that
α(x) = s− 1 for some s ≤ β(x, y) (as α(x) ≥ N −n− 1 and β(x, y) ≤ N −n− 1)

A Tight Lower Bound for Planar Multiway Cut 685

or that x = s − 1 for some s > β(x, y) (as x ≤ n and β(x, y) ≥ n + 1). Thus
the total weight of the edges in Groups 3 and 4 is 2W 3 + (N + 1)W 2. We can
conclude that the total weight of the grid edges and ear edges in the multiway
cut is 7W 3 + (2N + 2)W 2.

What remains to be shown is that the weight of the cell edges in M is at most
4(2N − 3) + 10 in the multiway cut. Let us analyze how the corners of the cell
C[i, j] are partitioned by the multiway cut.

1. Horizontal cut: {g[i, j], g[i, j+1]}, {g[i+1, j], g[i+1, j +1]} if i = α(x) and
j < β(x, y) holds, or if i = x and j > β(x, y) holds.

2. Vertical cut: {g[i, j], g[i+ 1, j]}, {g[i, j +1], g[i+1, j + 1]} if j = β(x, y) and
i �∈ {x, α(x)}.

3. 3-way 1 cut: {g[i, j]}, {g[i+1, j]}, {g[i, j+1], g[i+1, j +1]} if i = α(x) and
j = β(x, y).

4. 3-way 2 cut: {g[i, j], g[i + 1, j]}, {g[i, j + 1]}, {g[i + 1, j + 1]} if i = x and
j = β(x, y).

5. All corners are in the same class otherwise.

For each cell in the first two groups, the weight of the cell edges in the multiway
cut is exactly 4 (regardless if the cell is normal or special). As (x, y) ∈ S, the
cells C[α(x), β(x, y)], C[x, β(x, y)] were marked as special. Therefore, each of the
two cells in groups 3 and 4 contribute weight 5 to the multiway cut. It follows
that the total weight of the cell edges in M is exactly 4(2N−3)+10, as required.
This proves Property 1 of Lemma 2.

3.3 Multiway Cut ⇒ pair (x, y)

To prove Properties 2 and 3 of Lemma 2, consider a multiway cut M of weight
at most D. We prove that M has to be of the form shown in Figure 3: it consists
of a “vertical cut” with two “horizontal cuts” on its two sides. Moreover, the the
two cells where these cuts meet should be special. Taking into account the way
in which the special cells are located, we can conclude that the two horizontal
cuts have the same “vertical position” and that the pair (x, y) is indeed in S.

Let us denote by KUL the component of G \M containing the vertex UL
(and we define KUR etc. similarly). We call the path UL = g[0, 0], g[0, 1], g[1, 1],
g[1, 2], . . . , g[N − 1, N − 1], g[N − 1, N], DR = g[N,N] the diagonal path.

Claim 7. Multiway cut M contains exactly one upper ear edge, exactly one
lower ear edge, exactly one edge of the diagonal path, and exactly edge from each
of C0, CN , R0, and RN .

Proof. The vertex u1 is in KUL (as horizontal edges of weight ∞ connect it to
UL) and un+1 is inKUR. This means that at least one of the upper ear edges is in
M . Similarly, at least one of the lower ear edges have to be in M . It is also clear
that M has to contain at least one edge from the diagonal path and each of C0,
CN , R0, and RN , as each one of these 5 edge sets connects two distinct terminals.
Every edge shared by these 5 sets has weight ∞ (note that edge {g[0, 0], g[0, 1]}

686 D. Marx

appears both on the diagonal path and R0, while {g[N−1, N], g[N,N]} appears
both on the diagonal path and CN). Therefore,M contains at least 5 edges from
these 5 sets. As every ear edge and every edge in these 5 sets have weight either
∞ or at least W 3 and the weight of M is at most D < 8W 3, the multiway cut
contains exactly one edge from each of these sets. ��

By Claim 7, the multiway cut M contains

– {uy1, uy1+1} for some 1 ≤ y1 ≤ n,
– {dy2 , dy2+1} for some 1 ≤ y2 ≤ n,
– {�x1, �x1+1} for some 1 ≤ x1 ≤ n,
– {rx2 , rx2+1} for some 1 ≤ x2 ≤ n,
– {g[0, z1], g[0, z1 + 1]} for some β(1, 1) ≤ z1 ≤ β(n, n),
– {g[N, z2], g[N, z2 + 1]} for some β(1, 1) ≤ z2 ≤ β(n, n), and
– {g[z, z], g[z, z+ 1]} for some 0 < z < N .

As C0 contains exactly one edge of the multiway cut, every vertex on C0 is in
KUL ∪KDL. We can argue similarly for the other three sides.

Claim 8. V (C0) ⊆ KUL ∪KDL, V (CN) ⊆ KUR ∪KDR, V (R0) ⊆ KUL ∪KUR,
and V (RN) ⊆ KDL ∪KDR.

Observe that every horizontal grid edge on the diagonal path has weight at least
W 3 + W 2/2. Therefore, the 7 edges given by Claim 7 (4 on the boundary of
the grid, 1 on the diagonal path, and 2 ear edges) have total weight at least
7W 3 + 4W 2 +W 2/2. This implies that the remaining edges have total weight
less than (2N − 2)W 2, otherwise the weight would be at least 7W 3 + (2N +
2)W 2 +W 2/2 > D. In particular, M can contain at most 2N − 3 further grid
edges, that is, the total number of grid edges in M is at most 2N + 2.

Claim 9. M contains exactly one edge from each of Ri and Ci (0 ≤ i, j ≤ N).

Proof. As V (C0) ⊆ KUL ∪KDL and V (CN) ⊆ KUR ∪KDR (by Claim 8), the
multiway cut M has to contain at least one edge of Ri for every 1 ≤ i ≤ N − 1.
In a similar way, M contains at least one edge Cj for every 1 ≤ j ≤ N − 1. As
M contains at most 2N + 2 grid edges, it immediately follows that M contains
exactly one edge of each row and column. ��

Observe that every vertical grid edge inside the grid has weight exactly W 2 if its
weight is finite. Therefore, we know the exact weight of the vertical grid edges
in M and hence can bound the total weight of the horizontal grid edges.

Claim 10. The total weight of vertical grid edges in M is exactly 2W 3 + (N +
1)W 2 and therefore the total weight of horizontal grid edges in M is at most
3W 3 + (N + 1)W 2 + 4(2N − 3) + 10 < 3W 3 + (N + 1)W 2 +W .

Claim 11. M contains {g[i, z], g[i, z + 1]} for every 0 ≤ i ≤ N and the total
weight of the horizontal grid edges in M is exactly 3W 3 + (N + 1)W 2.

A Tight Lower Bound for Planar Multiway Cut 687

Proof. Since {g[z, z], g[z, z+1]} is the unique edge of the multiway cut that is on
the diagonal path from UL to DR, we have g[z, z] ∈ KUL and g[z, z+1] ∈ KDR.
Therefore, the multiway cut has to contain an edge of the vertical path from
g[z, z] ∈ KUL to g[N, z] ∈ RN ⊆ KDL ∪KDR (by Claim 8). Since we know that
the multiway cut M contains exactly one edge of Cz (Claim 9), it follows thatM
does not contain any edge of the vertical path from g[z, z] to g[0, z], that is, every
vertex on this path is in KUL. The multiway cut has to separate the vertices on
this vertical path from the vertices of CN ⊆ KUR∪KDR (Claim 8), thus for every
0 ≤ i < z the unique edge in M ∩Ri has column number at least z. Therefore,
the total weight of these z edges is at least W 3+zW 2+z2W , with equality only
if every edge has column number exactly z (and β(1, 1) ≤ z ≤ β(n, n) to ensure
that {g[0, z], g[0, z+1]} has finite weight). A similar argument shows that every
edge inM∩Ri for i > z has to have column number at most z, and hence the total
weight of these N−z edges is at leastW 3+(N−z)W 2+(N−z)2W with equality
only if all these edges have the same column number β(1, 1) ≤ z ≤ β(n, n).
Taking into account also the edge {g[z, z], g[z, z + 1]}, we get that the total
weight of the horizontal grid edges is at least 3W 3 +(N +1) ·W 2, with equality
only if all of them have column number z. Furthermore, as the weight of every
grid edge is a multiple of W , if not every horizontal edge has column number z,
then the weight is at least 3W 2+(N+1)W 2+W , contradicting Claim 10. Thus
every horizontal edge has the same column number β(1, 1) ≤ z ≤ β(n, n). ��

For i = 0 and i = N , Claim 11 implies z = z1 = z2 and hence β(1, 1) ≤ z ≤
β(n, n) (to avoid the selection of edges with weight ∞ on the boundary).

Claim 12. The unique edge of M ∩ Cj is {g[x1, j], g[x1 + 1, j]} if j ≤ z and
{g[x2, j], g[x2 + 1, j]} if j > z.

Proof. Observe that for every i ≤ x1 and j ≤ z, vertex g[i, j] is in KUL: the
multiway cut does not contain any of the edges on the vertical path from UL to
g[i, 0] and on the horizontal path from g[i, 0] to g[i, j]. Similarly, vertex g[i, j] is
in KDL if i > x1 and j ≤ z. These two statements together imply that the edge
{g[x1, j], g[x1 + 1, j]} has to be in the multiway cut for every 0 ≤ j ≤ z. The
argument for j > z is analogous. ��

By Claim 12, the 2N + 2 grid edges in the multiway cut are arranged as in
Figure 3. It follows that the multiway cut contains cell edges from exactly 2N−1
cells. As the weight of M is at most D, the total weight of these cell edges is at
most 4(2N − 3) + 10.

Claim 13. The cells edges in M have total weight exactly 4(2N − 3) + 10 and
the cells C[x1, z] and C[x2, z] are special.

Proof. For every 0 ≤ j < z, the two upper corners of the cell C[x1, j] are
separated from the two lower corners. Therefore, the weight of the cell edges
from C[x1, j] in the multiway cut is 4 (no matter whether the cell is special or
not). The same is true for every cell C[x2, j] with j > z. For the cells C[i, z]
with i �∈ {x1, x2}, the two corners on the left are separated from the two corners

688 D. Marx

on the right, which again means that the weight contributed by the cell edges
of C[i, z] is 4. Thus the weight contributed by the cell edges of these 2N − 3
cells is at least 4(2N − 3). As the total weight of the cell edges is at most
4(2N − 3) + 10, the contribution of the two cells C[x1, z] and C[x2, z] is at
most 10. The corners of C[x1, z] are partitioned as {g[x1, z]}, {g[x1 + 1, z]},
{g[x1, z + 1], g[x1 + 1, z + 1]} by the multiway cut, while the corners of C[x2, z]
are partitioned as {g[x2, z], g[x2+1, z]}, {g[x2, z+1]}, {g[x1+1, z+1]}. In both
cases, the weight of the edges contained in the multiway cut is 5 if the cell is
special and 6 if it is normal. Therefore, both of these cells have to be special. ��

Suppose that z = β(x, y) for some 1 ≤ x, y ≤ n (recall that β(1, 1) ≤ z ≤
β(n, n)). There are at most two cells with column number z that are special. By
construction, C[x1, z] and C[x2, z] are special only if (x, y) ∈ S and we have x1 =
α(x), x2 = x. That is, the multiway cutM contains the edge {g[α(x), 0], g[α(x)+
1, 0]} = {�x, �x+1} and the edge {g[x,N], g[x+1, N]} = {rx, rx+1}. Finally, as
the multiway cut contains {g[0, z], g[0, z+1]} and {g[N, z], g[N, z+1]}, the two
ear edges contained in the multiway cut should be {uy, uy +1} and {dy, dy +1}.
This proves that the multiway cut represents the pair (x, y) ∈ S, what we had
to show. Claim 13 also shows that there is no multiway cut with weight < D.

References

1. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via
parameterized complexity. Journal of Computer and System Sciences 72(8), 1346–
1367 (2006)

2. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer
Science. Springer, New York (1999)

4. Hartvigsen, D.: The planar multiterminal cut problem. Discrete Applied Mathemat-
ics 85(3), 203–222 (1998)

5. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. System Sci. 63(4), 512–530 (2001)

6. Klein, P.N., Marx, D.: Solving planar k-terminal cut in time O(nc
√

k). In: Czu-
maj, A., et al. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 569–580. Springer,
Heidelberg (2012)

7. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the Exponential
Time Hypothesis. Bulletin of the EATCS 84, 41–71 (2011)

8. Marx, D.: On the optimality of planar and geometric approximation schemes. In:
FOCS 2007, pp. 338–348 (2007)

The Power of Recourse for Online MST and TSP

Nicole Megow1, Martin Skutella1,�, José Verschae2,��, and Andreas Wiese3,� � �

1 Department of Mathematics, Technische Universität Berlin, Germany
{nmegow,skutella}@math.tu-berlin.de

2 Departamento de Ingenieŕıa Industrial, Universidad de Chile, Chile
jverscha@ing.uchile.cl

3 Department of Computer and System Sciences, Sapienza University of Rome, Italy
wiese@dis.uniroma1.it

Abstract. We consider the online MST and TSP problems with re-
course. The nodes of an unknown graph with metric edge cost appear
one by one and must be connected in such a way that the resulting tree
or tour has low cost. In the standard online setting, with irrevocable de-
cisions, no algorithm can guarantee a constant competitive ratio. In our
model we allow recourse actions by giving a limited budget of edge rear-
rangements per iteration. It has been an open question for more than 20
years if an online algorithm equipped with a constant (amortized) budget
can guarantee constant-approximate solutions [7].

As our main result, we answer this question affirmatively in an amor-
tized setting. We introduce an algorithm that maintains a nearly optimal
tree when given constant amortized budget. In the non-amortized set-
ting, we specify a promising proof technique and conjecture a structural
property of optimal solutions that would prove a constant competitive
ratio with a single recourse action. It might seem rather optimistic that
such a small budget should be sufficient for a significant cost improve-
ment. However, we can prove such power of recourse in the offline set-
ting in which the sequence of node arrivals is known. Even this problem
prohibits constant approximations if there is no recourse allowed. Sur-
prisingly, already a smallest recourse budget significantly improves the
performance guarantee from non-constant to constant.

Unlike in classical TSP variants, the standard double-tree and short-
cutting approach does not give constant guarantees in the online setting.
However, a non-trivial robust shortcutting technique allows to translate
online MST results into TSP results at the loss of small factors.

1 Introduction

In the online Minimum Spanning Tree (MST) problem and online Traveling
Salesman Problem (TSP) we aim at constructing low-cost spanning trees, resp.

� Supported by the DFG Research center Matheon in Berlin.
�� Supported by the Berlin Mathematical School (BMS) and Nucleo Milenio Infor-

mación y Coordinación en Redes ICM/FIC P10-024F.
� � � Supported by the German Academic Exchange Service (DAAD).

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 689–700, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

690 N. Megow et al.

tours, for an unknown graph that is revealed online. In each iteration a new node
becomes known, together with all connections to previously revealed nodes, and
an algorithm must make an irrevocable decision on how to connect it. When a
tree must be maintained, then the decision concerns inserting one edge, whereas
for maintaining a tour, an edge must be removed and two new ones inserted. Such
problems appear naturally in applications related to multicast routing in mul-
timedia distribution systems, video-conferencing, software delivery, and group-
ware [12,13]. They have been studied extensively, in particular online MST and
Steiner tree variants. Here, constant competitive ratios are not achievable; the
best possible performance ratio is Θ(log t), where t is the number of iterations [7].

However, in many of the above-mentioned applications it is possible to adapt
solutions in some limited way when the node set changes [14,16]. Clearly, such
recourse actions allow for improved solutions. However, an increasing number of
adaptations—in particular, a complete reconstruction of solutions—might not be
feasible or may cause unacceptable additional cost, and is therefore not desirable.
Our goal is to understand the tradeoff between the amount of adaptivity and the
quality of solutions. As a main problem, we want to determine the amount of
recourse that is necessary to allow for provably near-optimal solutions. Looking
from a different perspective, we construct solutions that satisfy some adequate
concept of robustness, where we measure robustness by the (amortized) recourse
budget that is necessary to guarantee solutions of a particular quality.

More precisely, we consider the online MST and online TSP with recourse:
An undirected complete metric graph is revealed online node by node. In each
iteration a new node becomes known and all edges (with corresponding costs)
to previously arrived nodes are revealed. The objective is to construct in each
iteration a low-cost spanning tree, resp. tour, of the revealed vertices, without
any assumption on the vertices that might arrive in future. We measure the
quality of the solution sequence with standard competitive analysis by comparing
online solutions to the offline optimum, i. e., the MST, resp. TSP tour, on the
currently known subgraph. We control the amount of recourse, i. e., how much
the solution changes along iterations, by limiting the number rearrangements.
More precisely, we give a budget for the number of edges that can be inserted
in each iteration. We say that an algorithm needs budget k if the number of
inserted edges in each iteration is bounded by k. Similarly, the algorithm uses
an amortized budget k if up to iteration t the total number of inserted edges is
at most t · k. Notice that by this definition, the standard online MST problem
equips algorithms with a budget of 1 whereas the online TSP without recourse
requires a minimum budget of 2.

It has been a longstanding open question if constant budget suffices to main-
tain constant-approximate solutions [7,2]. In this paper we not only answer this
question affirmatively, but we also show the surprising fact that already a small-
est amount of recourse suffices to significantly improve the solution.

Related Work. The online MST and Steiner Tree problems have been studied
intensively. The best possible competitive ratio for online algorithms is known
to be Θ(log t), where t is the number of iterations [7]. A simple greedy algorithm

The Power of Recourse for Online MST and TSP 691

that connects a new node to the current tree through a shortest edge achieves
this bound. Even in the special case of Euclidean distances, there is a lower
bound of Ω(log t

log log t) on the competitive guarantee of any online algorithm [1].

Unlike in stochastic programming [3], where recourse actions are an important
concept when optimizing under limited information, the literature on recourse
models for online optimization seems rather sparse. Regarding our model, we
are aware only of the work by Imase and Waxman [7] that deals with the online
Minimum Steiner Tree problem with recourse (or Dynamic Steiner Tree). The
model they introduce is slightly more general as nodes do not only arrive but may
also depart from the terminal set. For this setting, they give an algorithm that
is 8-competitive and performs in t iterations at most O(t3/2) rearrangements.
This translates by our definitions to an algorithm that requires an amortized re-
course budget of O(t1/2). In the more restricted setting considered in this paper,
with no node leaving the terminal set, their algorithm achieves a competitive
guarantee of 4. Furthermore, for the online MST problem, their algorithm is
even 2-competitive when given the mentioned non-constant amortized budget.
The question if there is a constant-competitive algorithm that uses only con-
stant (amortized) budget has been left open, but was conjectured to be true.

Interestingly, the maximization variant of our problem, i. e., finding a sequence
of spanning trees of maximum cost, does not admit constant-competitive algo-
rithms with a low budget [15]. However, this changes when comparing the so-
lution to an optimal solution under the same limited recourse budget, instead
of optimal MSTs. For this case, there is a 2-competitive algorithm, even in the
general context of matroids and a constant competitive ratio for the intersection
of a constant number of matroids [15].

A related online MST variant has been studied in [6]. Here, in each iteration
the cost of some edge increases or decreases by one. The task is to maintain a se-
quence of optimalMSTs with the goal to minimize the number of rearrangements.
They give a best possible deterministic algorithm that is O(t2)-competitive and
a randomized algorithm with expected competitive ratio O(t · log t).

The TSP is one of the most prominent problems in combinatorial optimiza-
tion.Despite a remarkable recent progress, the best known approximation al-
gorithm for the offline metric TSP is still the classic 3/2-approximation by
Christofides [4]. In the online setting, when the nodes appear over time as the
salesman traverses its tour, constant-competitive algorithms are known [8]. In
a different online TSP model, related to graph exploration, where nodes are re-
vealed when the salesman moves to one of its neighbors, constant-competitive
algorithms are known even without any assumption on the cost function [9,11].
Both online models clearly differ from our setting.

Our Contribution.1 Our main contribution, presented in Sect. 3, is an online
algorithm for the online MST problem with recourse that is (1+ ε)-competitive,
for any ε > 0, when given an amortized budget of O(1ε log

1
ε). This is the first and

significant improvement on a 2-competitive algorithm with non-constant budget

1 Due to space limitations for many proofs and details we refer to the full version of
this paper (see also [15]).

692 N. Megow et al.

by Imase andWaxman [7]. We complement our result by showing that any (1+ε)-
competitive algorithm for the online MST problem needs an amortized budget
of Ω(1ε). Thus, our algorithm is best possible up to logarithmic factors. Using a
standard argument, we immediately obtain a (2 + ε)-competitive algorithm for
the online Steiner Tree problem with the same amortized budget.

Our algorithm is simple and easy to implement, but it captures subtleties
in the structure of the problem that allow the improved analysis. Similarly to
the algorithm proposed in [7], we implement the following natural idea: when a
new node appears, we (i) connect it to its closest neighbor, and (ii) iteratively
perform edge swaps if they yield a sufficient improvement of the solution. The
key difficulty when implementing this idea is to balance the number of swaps and
the cost of the solution. As our crucial refinement of this approach, we introduce
two freezing rules that effectively avoid performing unnecessary swaps. The first
rule prevents from removing edges whose cost is very small. The second rule is
more subtle and prohibits an edge swap if the removed edge can be traced back
to a subgraph whose MST has negligible cost compared to the current MST.

Our results imply that amortized budget is much more powerful than its non-
amortized counterpart. Indeed, we contrast our findings for constant amortized
budget with a simple example showing that no online algorithm can be (2− ε)-
competitive, for any ε > 0, if it uses non-amortized constant budget. It is, how-
ever, an important and longstanding open question [2,7] whether there exists a
constant-competitive algorithm with constant budget. In Sect. 4, we contribute
towards an affirmative answer of this question as follows: We consider a simple
online greedy algorithm with budget 2 that is similar to one given in [7]. We state
a structural condition on the behavior of optimal solutions that guarantees this
algorithm to be constant competitive. We conjecture that this condition is satis-
fied for every input sequence. We believe that this conjecture is an important step
towards understanding the problem structure and will foster further research.

It might seem rather optimistic that a single extra rearrangement should be
sufficient to yield a factor-(logn) improvement in the competitive ratio. To sup-
port our conjecture, we study the problem in the case of full information, i. e.,
the offline variant in which the input sequence and the cost function are known
in advance. Even in this case, any algorithm with unit budget has a competitive
factor in Ω(log t). However, allowing just one additional edge insertion leads to
a significant improvement. We give a polynomial time 14-competitive algorithm
with budget 2. Furthermore, we show how to obtain a constant competitive ratio
with “almost” unit budget, i. e., we allow one additional swap every k iterations,
for some constant k. These two offline results prove that only a smallest relax-
ation of the unit-budget restriction may lead to significantly better solutions.

A very natural approach to solve the online TSP with recourse is to combine
the algorithms proposed for the online MST problem with the folkloric classical
double-tree and shortcutting technique [10]. Indeed, with this technique most
offline variants of TSP are equivalent to MST from an approximation point of
view and performance guarantees differ only in a factor of 2. Hence, one might
be tempted to assume that the same conversion technique applies directly to the

The Power of Recourse for Online MST and TSP 693

online model with recourse. However, we observe that this is not true. We give
examples in which two trees differ in just a single edge, but the standard short-
cutting technique leads to completely different tours, no matter which Eulerian
walk on the doubled tree edges is chosen. In Sect. 5 we overcome this difficulty
by introducing a robust variant of the shortcutting technique: we choose the
Eulerian tour in a specific way and keep track of which copy of a node in the Eu-
lerian tour is visited by the TSP tour. With this robust shortcutting technique
we show that any algorithm for the online MST problem with recourse can be
converted to an algorithm for the online TSP by increasing the competitive ratio
by a factor 2 and the budget by a factor 4.

2 Problem Definitions

An instance of the online MST problem with recourse is defined as follows. A
sequence of nodes v0, v1, . . . arrives online one by one. In iteration t ≥ 0, node vt
appears together with all edges vtvs for s ∈ {0, . . . , t − 1}. The cost c(e) ≥ 0
of an edge e is revealed when the edge appears. We assume that the edges are
undirected and that the costs satisfy the triangular inequality, that is, c(vw) ≤
c(vz) + c(zw) for all nodes v, w, z. For each iteration t, the current graph is
denoted by Gt = (Vt, Et) where Vt = {v0, . . . , vt} and Et = Vt × Vt, that
is, Gt is a complete graph. We are interested in constructing an online sequence
T0, T1, T2, . . . where T0 = ∅ and for each t ≥ 1 tree Tt is a spanning tree of Gt.
We say that the sequence needs budget k if |Tt \ Tt−1| ≤ k for all t ≥ 1. A re-
laxed version of this concept is obtained by considering the average or amortized
budget k,

∑t
s=1 |Ts \ Ts−1| ≤ k · t.

In online TSP with recourse, the nodes of a complete metric graph arrive
in the same online fashion as described above and yield a sequence of graphs
G0, . . . , Gt, The objective, now, is to construct a sequence of TSP tours
Q2, Q3, . . . for graphs G2, G3, . . . with minimum cost for each tour. We apply
the same budget constraints as for trees.

We measure the performance of our online algorithms using classic competitive
analysis. Let OPTt be the cost of an MST, resp. TSP tour, of Gt, and for a
given set of edges E denote c(E) :=

∑
e∈E c(e). We say that an algorithm is

α-competitive for some α ≥ 1, if for any input sequence the algorithm computes
a solution sequence X0, X1, . . . such that c(Xt) ≤ α ·OPTt for each t.

3 An Online PTAS with Amortized Constant Budget

In this section we give a (1+ε)-competitive algorithm for the online MST problem
with constant amortized budget for any ε > 0. This improves on a previous 2-
competitive algorithm that requires non-constant amortized budget [7]. We also
show that our budget bound is best possible up to logarithmic factors.

A natural approach to solve our problem is as follows. Let Tt−1 be the tree
solution in iteration t − 1. To construct Tt, we first find the closest connection
between the new node vt and Vt−1, edge gt, and initialize Tt as Tt−1 ∪ {gt}. We

694 N. Megow et al.

can diminish the cost of Tt by subsequently inserting a low cost edge f to Tt and
removing the largest edge h in the formed cycle. Indeed, performing this swap-
ping operation often enough will eventually turn Tt into the optimal solution,
i. e., the MST. The difficulty lies in balancing the number of swaps that increases
the budget, on the one hand, and the closeness of the tree to the MST, and thus,
the total cost, on the other hand. We cope with this challenge by introducing
two freezing rules that effectively avoid performing unnecessary swaps.

The intuition behind these freezing rules is as follows. Note that if at iteration t
the optimal value OPTt is much higher than OPTs for some s < t, e. g., OPTs ∈
O(εOPTt) then the edges in Ts—whose total cost is approximately OPTs—are
already very cheap. Thus, replacing these edges by cheaper ones would only waste
rearrangements. To avoid technical difficulties we use OPTmax

t := max{OPTs :
1 ≤ s ≤ t} instead of OPTt to determine whether OPTs ∈ O(εOPTt); note
that since we assume the triangle inequality for the costs of the edges, OPTt ≤
OPTmax

t ≤ 2OPTt holds.
With this in mind, we define �(t) as the largest iteration with ignorable edges

with respect to OPTmax
t , i. e. , �(t) ≤ t − 1 is the largest non-negative integer

such that OPTmax

(t) ≤ εOPTmax

t .

For our first freezing rule we consider sequences of edges (g0s , . . . , g
i(s)
s),

where g0s corresponds to the greedy edge added at iteration s (that is, an edge
connecting vs to one of its closest neighbors in Vs−1). At the moment when
edge g0s is removed from our solution we define g1s as the element that replaces g0s .
In general gis is the edge that was swapped in for edge gi−1

s . In this way, the only

edge in the sequence that belongs to the current solution is g
i(s)
s . Note that i(s)

changes through the iterations. Notationally, i(s) will refer to the value at the
iteration in consideration in the current context (unless it is stated otherwise).

With this construction, we freeze a sequence (g0s , . . . , g
i(s)
s) in iteration t

if s ≤ �(t). Note that since �(·) is non-decreasing, once the sequence is frozen gi(s)s

will stay indefinitely in the solution. Our second freezing rule is somewhat sim-
pler. We skip swaps that remove edges that are too small, namely, smaller than
εOPTmax

t /(t− �(t)). Combining these ideas we propose the following algorithm.

Algorithm Sequence-Freeze

Define T0 = ∅. For each iteration t ≥ 1 do as follows.

1. Let g0t be any minimum cost edge in {vtvs : 0 ≤ s ≤ t− 1}.
2. Initialize Tt := Tt−1 ∪ {g0t } and i(t) := 0.
3. While there exists a pair of edges (f, h) ∈ (Et \ Tt) × Tt such that

(Tt ∪ {f}) \ h is a tree, and the following three conditions are satisfied
(C1) c(h) > (1 + ε) · c(f),
(C2) h = g

i(s)
s for some s ≥ �(t) + 1, and

(C3) c(h) > ε
OPTmax

t

t−
(t) ,

then set Tt := (Tt ∪ {f}) \ {h}, i(s) := i(s) + 1 and g
i(s)
s := f .

4. Return Tt.

The Power of Recourse for Online MST and TSP 695

Conditions (C2) and (C3) correspond to the two freezing rules described
above. In the following we show that this algorithm is (1 + ε)-competitive and
uses amortized budget O

(
1
ε log

1
ε

)
.

Competitive Analysis. To prove that our algorithm is (1+O(ε))-competitive,
we first show that Conditions (C1) and (C3) imply a cost increase of at most a
factor (1 + 3ε). Then we show that skipping swaps because of Condition (C2)
can increase the cost of the solution by at most O(εOPTt).

Consider an iteration t and let � := �(t). We partition the tree Tt into two

disjoint subsets, Tt = T old
t ∪ T new

t where T old
t := {gi(1)1 , . . . , g

i(
)

 } and T new

t :=

{gi(
+1)

+1 , . . . , g

i(t)
t }.

Lemma 1. For each iteration t it holds that c(T new
t) ≤ (1 + 3 ε)OPTt.

For bounding the cost of T old
t , we use induction over the iterations. The inductive

step is given in the following lemma.

Lemma 2. Let ε < 1
7 . Consider an iteration t and suppose that c(T
(t)) ≤

(1 + 7ε)OPT
(t). Then it holds that c(T old
t) ≤ 4 εOPTt.

The above reasoning implies the following lemma.

Lemma 3. Algorithm Sequence-Freeze is (1+7ε)-competitive for any ε < 1
7 .

Amortized Budget Bound. To show the constant amortized budget bound,
we define kq := |Tq \Tq−1| and prove that for every t ≥ 1 it holds that

∑t
q=1 kq ≤

Dε · t, where Dε ∈ O
(
1
ε log

1
ε

)
.

Lemma 4. Assume that
∑t

q=
(t)+1 kq ≤ Cε · (t − �(�(t) + 1)) for every t ≥ 1

with Cε ∈ O
(
1
ε log

1
ε

)
. Then for every t ≥ 1 it holds that

∑t
q=1 kq ≤ 2Cε · t.

It remains to prove that the assumption of Lemma 4 holds. The two freezing
rules, Conditions (C2) and (C3), are crucial for this purpose. Indeed, we will

bound the length of the sequences (g0s , . . . , g
i(s)
s), which will give a direct bound

on
∑t

q=
(t)+1 kq ≤ Cε · (t − �(�(t) + 1)). This can be done since by Condi-

tion (C1), we only swap edges when the cost is decreased by a (1 + ε) factor,
that is, c(gjs) ≤ c(gj−1

s)/(1 + ε) for each j. Thus, the length of this sequence is

bounded by log1+ε c(g
0
s)− log1+ε c(g

i(s)−1
s)+ 1. We can bound this quantity fur-

ther by lower bounding the cost g
i(s)−1
s with our freezing rules and by exploiting

a particular cost structure of greedy edges g0s .
More precisely, consider the values i(s) at the end of iteration t, and let i′(s) be

the value of i(s) at the beginning of iteration �(t)+1 (and i′(s) := 0 for s ≥ �(t)+
1). By Condition (C2) in the algorithm, in iterations �(t) + 1 to t we only touch

edges belonging to {gi
′(s)
s , g

i′(s)+1
s , . . . , g

i(s)
s } for some s ∈ {�(�(t)+1)+1, . . . , t}.

Let us denote r := �(�(t) + 1). Then,

t∑
q=
(t)+1

kq ≤
t∑

s=r+1

(i(s)− i′(s) + 1) = 2(t− r) +

t∑
s=r+1

(i(s)− 1− i′(s)). (1)

696 N. Megow et al.

We now upper bound each term i(s) − 1 − i′(s) for s ∈ {r + 1, . . . , t}, which
corresponds to the length of the sequence (g

i′(s)+1
s , g

i′(s)+2
s , . . . , g

i(s)−1
s).

Lemma 5. For each s ∈ {r, r + 1 . . . , t} it holds that

i(s)− 1− i′(s) ≤ 1

ln(1 + ε)
·
(
ln c(g0s)− ln c(gi(s)−1

s)
)
. (2)

Proof. The lemma follows due to Condition (C1), since whenever we add an
edge gjs and remove gj−1

s , then c(gjs) < c(gj−1
s)/(1 + ε). ��

In the next claims, we lower bound c(g
i(s)−1
s) and upper bound

∑t
s=r+1 ln c(g

0
s).

These bounds applied to Equation (2) will lead with (1) to the desired bound
on
∑t

q=
(t)+1 kq.

Proposition 1. Due to Condition (C3), it holds that either c(g
i(s)−1
s) ≥

ε2
OPTmax

t

(t−r) or i(s)− 1− i′(s) ≤ 0.

Recall that for any s, g0s is a closest connection between vs and any element in
{v0, . . . , vs−1}. Such greedy edges are known to have a special cost structure [1].

Lemma 6 (Alon and Azar [1]). Let e1, . . . , et be greedy edges reindexed such
that c(e1) ≥ c(e2) ≥ . . . ≥ c(et). Then, c(ej) ≤ 2OPTt

j for all j ∈ {1, . . . , t}.

Lemma 7.
∑t

s=r+1 ln c(g
0
s) ≤ (t− r) · (ln(2 ·OPTmax

t)− ln(t− r) + 1).

Proof. We rename edges {g0r+1, . . . , g
0
t } = {e1, . . . , et−r} such that c(e1) ≥ . . . ≥

c(et−r). Lemma 6 implies that c(ej) ≤ 2OPTt

j ≤ 2OPTt

j

max
for all j. We conclude

t∑
s=r+1

ln c(g0s) =
t−r∑
j=1

ln c(ej) ≤ (t− r) ln(2 ·OPTmax
t)−

t−r∑
j=1

ln j.

The lemma follows since for any n ∈ N>0 it holds that
∑n

j=1 ln j ≥ n ln(n)− n.
��

The above statement and basic arithmetics imply the desired bound.

Lemma 8. For each t ≥ 1 it holds that
∑t

q=1 kq ≤ Dε·t, where Dε ∈ O
(
1
ε log

1
ε

)
.

Our main result follows from Lemmas 3 and 8.

Theorem 2. There exists a (1 + ε)-competitive algorithm for the online MST
problem with amortized recourse budget O

(
1
ε log

1
ε

)
.

Finally, we show that the amortized budget of our algorithm is best possible up
to logarithmic factors. This result also implies that 1-competitive solutions need
non-constant amortized budget.

Theorem 3. Any (1 + ε)-competitive algorithm for the online MST problem
requires an amortized recourse budget of Ω(1ε).

The Power of Recourse for Online MST and TSP 697

4 The Non-amortized Scenario

For the amortized setting we have seen that with sufficient (but constant) budget
we can obtain a competitive ratio of 1+ε. In the non-amortized setting however,
there can be no (2 − ε)-competitive algorithm with constant budget. Neverthe-
less, it is a long standing open question [7] whether in the non-amortized setting
one can obtain constant-competitive online algorithms with constant budget.
We contribute two pieces of evidence for an affirmative answer to this question:
we state a conjecture about a structural property of optimal solutions and show
that a natural greedy algorithm with budget 2 is constant-competitive if the
conjecture holds true. Furthermore, we show that in the full information sce-
nario even one extra recourse action every O(1) iterations is enough to obtain a
constant-competitive algorithm.

4.1 A Greedy Algorithm with Budget 2

A natural online algorithm with budget 2 works as follows: In each iteration t
find the shortest connection gt from vt to Vt−1 and find a pair of edges ft, ht
maximizing c(ht)−c(ft) among all edges such that Tt := (Tt−1∪{gt, ft})\{ht} is
a spanning tree for Vt. Then Tt is the tree for iteration t. Imase and Waxman [7]
suggested to require that c(ft) ≤ c(ht)/2 and ft is adjacent to vt. If no such
edges ft, ht exist they define Tt := Tt−1 ∪{gt}. With this modification, we prove
a relation between the competitive factor of this algorithm and a structural
property of optimal solutions that we conjecture to be true.

To state our conjecture we need the following definition: given a complete
graph G = (V,E) and a non-negative cost function c on the edges, we say that
the graph is 2-metric if for every cycle C ⊆ E it holds that c(e) ≤ 2 · c(C \ {e})
for all e ∈ C. Moreover, for a given real number x we define x+ := max{x, 0}
and x− := max{−x, 0}. Note that x = x+−x−. Also, denote ΔOPTt := OPTt−
OPTt−1.

Conjecture 4. There exists a constant α ≥ 1 satisfying the following. Consider
any input sequence G0, G1, . . . , Gn of the online MST problem with recourse, with
a cost function c′ on the edges such that Gt is 2-metric for all t ≥ 0. If OPTt

denotes the optimal cost of the tree in iteration t for cost function c′, then for
all t ≥ 1 it holds that

∑t
s=1(ΔOPTs)− ≤ α ·OPTt.

We do not know how to show that the conjecture holds. However, it is easy to
see that it holds if OPTt, as a function of t, is unimodal, i. e., there exists a t∗

such that OPTt is non-decreasing for t < t∗, and non-increasing for t ≥ t∗.

Theorem 5. If Conjecture 4 holds then the greedy algorithm with budget 2 is (2·
(α+ 1))-competitive.

To show the theorem let I ⊆ N0 be the subset of iterations t such that Tt =
Tt−1 ∪ {gt}. In particular, for all iterations t �∈ I we have that c(Tt) ≤ c(Tt−1).
Setting ΔTt := c(Tt)−c(Tt−1) for each t, we can decompose the cost of each tree

698 N. Megow et al.

Tt by c(Tt) =
∑t

s=1ΔTt, and by our previous observation c(Tt) ≤
∑

s∈I,s≤tΔTs.
It remains to bound the latter value. To this end, we use the fact that in the
iterations in I the algorithm did not find any pair of edges ft, ht to swap such
that c(ft) ≤ c(ht)/2 with ft being adjacent to vt. As we will see this implies the
same for the optimal solution. In particular, if we double the cost of all edges
of the form vtvs with t ∈ I, s ≤ t − 1 and vtvs �= gt, then the optimal solution
would not see any gain in inserting any other edge but gt in this iteration. More
precisely, consider the following set EI := {vtvs : t ∈ I, s ≤ t− 1} \ {gt : t ∈ I}.
We define a new cost function c′ by setting c′(e) := 2 · c(e) for all e ∈ EI and
c′(e) := c(e) for all e �∈ EI .

Let us denote by OPT′
t the cost of an MST in iteration t with cost function

c′ and note that OPT′
t ≤ 2 · OPTt. Also, since c is metric, graph Gt with cost

function c′ is 2-metric. The next lemma implies that with the new cost function
OPT′

t −OPT′
t−1 = c′(gt) = c(gt) = c(Tt)− c(Tt−1) = ΔTt.

Lemma 9. For all t there exists a minimum spanning tree T ∗∗
t for graph Gt =

(Vt, Et) with cost function c′ such that T ∗∗
t ∩EI = ∅. In particular T ∗∗

t = T ∗∗
t−1 ∪

{gt} if t ∈ I, where gt is a shortest connection between vt and any vertex in Vt−1.

We can show Theorem 5 using the bound c(Tt) ≤
∑

s∈I,s≤tΔTs, the last lemma,
our conjecture, and a short computation.

4.2 The Full Information Scenario

To support the conjecture that there is a constant-competitive online algorithm
with budget 2, we show that there always exists a sequence of spanning trees
with constant competitive ratio, even when allowing one unit of budget in each
iteration and one additional edge swap exactly every k iterations. More formally,
we say that a sequence of trees T0, T1, ... needs budget 1+1/k when: |Tt\Tt−1| ≤ 2
if t ≡ 0 mod k, and |Tt \ Tt−1| = 1 if t �≡ 0 mod k.

First, we present a constant-competitive algorithm with budget 2. Given the
cost function c and graphs G0, . . . , Gn in advance, we compute a 2-approximate
Hamiltonian path Xn (which is a tree) for graph Gn by computing an MST
and using the folkloric shortcutting technique2. Taking shortcuts of this path to
vertices in Gt we obtain a Hamiltonian path Xt for Gt with cost at most 2OPTn.
It is not hard to see that the budget used by the sequenceX1, . . . , Xn is at most 2.
However, it is not necessarily constant-competitive. By carefully embedding this
idea into the classic doubling framework [5] we obtain the following result.

Theorem 6. Under full information there exists a 14-competitive algorithm
with budget 2.

Finally, skipping most of the edge swaps done by the above sequence still yields
constant-competitive solutions. The intuitive idea is that we group the edges

2 The shortcutting technique takes a tree, obtains a Eulerian graph by doubling the
edges, finds a Eulerian walk, and visits the first copy of each node in the walk [10].

The Power of Recourse for Online MST and TSP 699

Fig. 1. Two trees (solid) differing in one edge such that standard shortcutting of a(ny)
walk in the double-tree yields arbitrarily different tours (dotted)

into sets {g0s , ..., g
i(s)
s } where g0s is the greedy edge added in iteration s and each

edge gis is at some point swapped out for the edge gi+1
s with c(gis) ≤ 2 · c(gi+1

s).
Then, we can construct a new sequence with budget 1 + 1

k which performs at
least one out of O(k) swaps of each sequence.

Theorem 7. Let k ∈ N. In the full information scenario, there exists a 2O(k)-
competitive algorithm with budget 1 + 1

k .

5 Applications to TSP

In this section we consider the online TSP with recourse. In a natural approach
we aim for combining our algorithms for the online MST problem with the clas-
sic shortcutting technique [10], which yields a sequence of tours, each with cost
at most twice the cost of the tree. This implies a (2 + ε)-competitive algorithm.
However, bounding the budget is intricate. Obviously, MSTs that differ in few
edges might have quite different Eulerian walks and thus TSP tours. However,
even when adapting the Eulerian walks as much as possible, the standard short-
cutting might lead to very different TSP tours. In fact, there are examples (see
Figure 1) in which two trees T, T ′ differ in just one edge and shortcutting any
Eulerian walk on (doubled) T ′ in the standard way yields a tour Q′ which differs
from Q for T in an unbounded number of edges.

Our key ingredients for solving this problem are as follows: In case of an edge
swap, we decompose the Eulerian walk W corresponding to the tour Q before
the swap into 4 sub-walks defined by the swap edges, which we concatenate then
in an appropriate way. Furthermore, we find a robust variant of the shortcutting
technique: instead of shortcutting the new Eulerian walk by visiting the first
appearance of a node, we remember the copy of each node that we visit in W to
construct Q, and then we visit the same copy when constructing Q′. In general
we cannot expect to obtain the same tour, but we prove that Q and Q′ differ in
at most 4 edges which may be necessary when concatenating the sub-walks.

700 N. Megow et al.

Lemma 10. Given an online algorithm computing a sequence of trees T0, T1, . . .,
there exists an online algorithm that computes tours Q2, Q3, . . . such that c(Qt) ≤
2 · c(Tt) and |Qt \Qt−1| ≤ 4 · |Tt \ Tt−1| for any t ≥ 1.

This lemma and Theorems 2 and 5 yield directly the following results.

Theorem 8. For online TSP with recourse, (i) there exists a (2+ε)-competitive
algorithm with amortized budget O(1ε log

1
ε) for any ε > 0, and (ii) if Conjecture

4 holds for some α, there exists a (4(α+1))-competitive algorithm with budget 8.

References

1. Alon, N., Azar, Y.: On-line Steiner trees in the euclidean plane. Discrete Comp.
Geom. 10, 113–121 (1993)

2. Bafna, V., Kalyanasundaram, B., Pruhs, K.: Not all insertion methods yield con-
stant approximate tours in the euclidean plane. Theor. Comput. Sci. 125, 345–360
(1994)

3. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer Series
in Operations Research. Springer, New York (1997)

4. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem. Report 388, Graduate School of Industrial Administration, CMU (1976)

5. Chrobak, M., Kenyon-Mathieu, C.: Competitiveness via doubling. SIGACT
NEWS 37, 115–126 (2006)

6. Dynia, M., Korzeniowski, M., Kutylowski, J.: Competitive Maintenance of Min-
imum Spanning Trees in Dynamic Graphs. In: van Leeuwen, J., Italiano, G.F.,
van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS,
vol. 4362, pp. 260–271. Springer, Heidelberg (2007)

7. Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM J. Discrete
Math. 4, 369–384 (1991)

8. Jaillet, P., Wagner, M.R.: Online vehicle routing problems: A survey. In: The
Vehicle Routing Problem: Latest Advances and New Challenges. Operations Re-
search/Computer Science Interfaces, vol. 43, pp. 221–237. Springer (2008)

9. Kalyanasundaram, B., Pruhs, K.: Constructing competitive tours from local infor-
mation. Theor. Comput. Sci. 130, 125–138 (1994)

10. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The Traveling
Salesman Problem. John Wiley and Sons, Chichester (1985)

11. Megow, N., Mehlhorn, K., Schweitzer, P.: Online Graph Exploration: New Results
on Old and New Algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part II. LNCS, vol. 6756, pp. 478–489. Springer, Heidelberg (2011)

12. Oliveira, C.A.S., Pardalos, P.M.: A survey of combinatorial optimization problems
in multicast routing. Comput. & Oper. Res. 32, 1953–1981 (2005)

13. Pansiot, J.-J., Grad, D.: On routes and multicast trees in the internet. ACM SIG-
COMM Comp. Comm. Review 28, 41–50 (1998)

14. Subramanian, N., Liu, S.: Centralized multi-point routing in wide area networks.
In: SAC 1991, pp. 46–52 (1991)

15. Verschae, J.: The Power of Recourse in Online Optimization. PhD thesis, Technis-
che Universität Berlin, Germany (2012)

16. Waxman, B.M.: Routing of multipoint connections. IEEE J. Sel. Area Comm. 6,
1617–1622 (1988)

Geometry of Online Packing Linear Programs�

Marco Molinaro and R. Ravi

Carnegie Mellon University

Abstract. We consider packing LP’s with m rows where all constraint coeffi-
cients are normalized to be in the unit interval. The n columns arrive in random
order and the goal is to set the corresponding decision variables irrevocably when
they arrive to obtain a feasible solution maximizing the expected reward. Previ-
ous (1 − ε)-competitive algorithms require the right-hand side of the LP to be
Ω(m

ε2
log n

ε
), a bound that worsens with the number of columns and rows. How-

ever, the dependence on the number of columns is not required in the single-row
case and known lower bounds for the general case are also independent of n.

Our goal is to understand whether the dependence on n is required in the
multi-row case, making it fundamentally harder than the single-row version. We
refute this by exhibiting an algorithm which is (1− ε)-competitive as long as the

right-hand sides are Ω(m
2

ε2
log m

ε
). Our techniques refine previous PAC-learning

based approaches which interpret the online decisions as linear classifications of
the columns based on sampled dual prices. The key ingredient of our improve-
ment comes from a non-standard covering argument together with the realization
that only when the columns of the LP belong to few 1-d subspaces we can obtain
small such covers; bounding the size of the cover constructed also relies on the
geometry of linear classifiers. General packing LP’s are handled by perturbing the
input columns, which can be seen as making the learning problem more robust.

1 Introduction

Traditional optimization models usually assume that the input is known a priori. How-
ever, in most applications the data is either revealed over time or only coarse information
about the input is known, often modeled in terms of a probability distribution. Conse-
quently, much effort has been directed towards understanding the quality of solutions
that can be obtained without full knowledge of the input, which led to the development
of online and stochastic optimization [6,7]. Emerging problems such as allocating ad-
vertisement slots to advertisers and yield management in the internet are of inherent
online nature and have further accelerated this development [1].

Linear programming is arguably the most important and thus well-studied optimiza-
tion problem. Therefore, understanding the limitations of solving linear programs when
complete data is not available is a fundamental theoretical problem with a slew of ap-
plications, including the ad allocation and yield management problems above. Indeed,
a simple linear program with one uniform knapsack constraint, the Secretary Problem,

� Full version available at http://arxiv.org/abs/1204.5810. The first author is sup-
ported by NSF grant CMMI1024554 and the second author is supported in part by NSF award
CCF-1143998.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 701–713, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://arxiv.org/abs/1204.5810

702 M. Molinaro and R. Ravi

was one of the first online problems to be considered and an optimal solution was al-
ready obtained by the early 60’s [13,15]. Although the single knapsack case is currently
well-understood under different models of how information is revealed [4], much less
is known about problems with multiple knapsacks and only recently algorithms with
solution guarantees have been developed [1,10,14].

The Model. We study online packing LP’s in the random permutation model. Consider
a fixed but unknown LP with n columns a1, a2, . . . , an ∈ [0, 1]m, whose associated
variables are constrained to be in [0, 1], and m packing constraints:

OPT = max

n∑
t=1

πtxt

n∑
t=1

atxt ≤ B (LP)

xt ∈ [0, 1] .

We knowB in advance but columns and their associated πt’s are presented in uniformly
random order, and when a column is presented we are required to irrevocably choose
the value of its corresponding variable. We assume that the number of columns n is
known.1 The goal is to obtain a feasible solution while maximizing its value. We use
OPT to denote the optimum value of the (offline) LP.

By scaling down rows as necessary, we assume without loss of generality that all
entries of B are the same, which we also denote with some overload of notation by B.
Due to the packing nature of the problem, we also assume without loss of generality that
all the πt’s are non-negative and all the at’s are non-zero: we can simply ignore columns
which do not satisfy the first property and always set to 1 the variables associated to
the remaining columns which do not satisfy the second property. Finally, we assume
that the columns at’s are in general position: for all p ∈ Rm, there are at most m
different t ∈ [n] such that πt = pat. Notice that perturbing the input randomly by a tiny
amount achieves this property with probability one, while the effect of the perturbation
is absorbed in our approximation guarantees [1,11].

Related work. The random permutation model has grown in popularity [4,11,16] since
it avoids strong lower bounds of the pessimistic adversarial-order model [8] while
still capturing the lack of total information about the input. Different online prob-
lems have already been studied in this model, including bin-packing [19], matchings
[16,18], the AdWords Problem [11] and different generalizations of the Secretary Prob-
lem [2,4,5,17,23]. Closest to our work are packing problems with a single knapsack
constraint. In [20], Kleinberg considered the B-Choice Secretary Problem, where the
goal is to select at most B items coming online in random order to maximize profit.
The author presented an algorithm with competitive ratio 1 − O(1/

√
B) and showed

that 1 − Ω(1/
√
B) is best possible. Generalizing the B-Choice Secretary Problem,

Babaioff et al. [3] considered the Secretary Knapsack Problem and presented a (1/10e)-
competitive algorithm. Notice that in both cases the competitive ratio does not depend
on n.

1 Knowing n up to 1± ε factor is enough; this is required for non-trivial competitive ratios [11].

Geometry of Online Packing Linear Programs 703

Despite all these works, results for the more general online packing LP’s considered
here were only recently obtained by Feldman et al. [14] and Agrawal et al. [1]. The
first paper presents an algorithm that obtains with high probability a solution of value
at least (1 − ε)OPT whenever B ≥ Ω(m log n

ε3) and OPT ≥ Ω(πmaxm logn
ε), where

πmax is the largest profit. In the second paper, the authors present an algorithm which
obtains a solution of expected value at least (1− ε)OPT under the weaker assumptions
B ≥ Ω(mε2 log

n
ε) or OPT ≥ Ω(πmaxm

2

ε2 log n
ε). One other way of stating this result is

that the algorithm has competitive ratio 1− O(
√
m log(n) logB/

√
B); this guarantee

degrades as n increases. The current lower bound on B to allow (1 − ε)-competitive
algorithms is B ≥ logm

ε2 , also presented in [1]. We remark that these algorithms actually
work for more general allocation problems, where a set of columns representing various
options arrive at each step and the solution may choose at most one of the options.

Both of the above algorithms use a connection between solving the online LP and
PAC-learning [9] a linear classification of its columns, which was initiated by Deva-
nur and Hayes [11] in the context of the AdWords problem. Here we further explore
this connection and our improved bounds can be seen as a consequence of making the
learning algorithm more robust by suitably changing the input LP. Robustness is a topic
well-studied in learning theory [12,21], although existing results do not seem to apply
directly to our problem. We remark that a component of robustness more closely related
to the standard PAC-learning literature was also used by Devanur and Hayes [11].

In recent work, Devanur et al. [10] consider the weaker i.i.d. model for the general
allocation problem. While in the random permutation model one assumes that columns
are sampled without replacement, in the i.i.d. model they are sampled with replacement.
Making use of the independence between samples, Devanur et al. substantially improve
requirement on B to Ω(log(m/ε)

ε2) while showing that the lower bound Ω(logm
ε2) still

holds in this model. We remark, however, that these models can present very different
behaviors: as a simple example, consider an LP with n columns, m = 1 constraints
and budget B = 1, where only one of the columns has π1 = a1 = 1 and all others
have πt = at = 0; in the random permutation model the expected value of the optimal
solution is 1, while in the i.i.d. model this value is 1 − (1 − 1/n)n → 1 − 1/e. The
competitiveness of the algorithm of [10] under the random permutation model is still
unknown and was left as an open problem by the authors.

Our results. Our focus is to understand how large B is required to be in order to allow
(1− ε)-competitive algorithms. In particular, the requirements for B in the above algo-
rithms degrade as the number of columns in the LP increases, while the the lower bound
does not. With the trend of handling LP’s with larger number of columns (e.g. columns
correspond to the keywords in the ad allocation problem, which in turn correspond to
visits of a search engine’s webpage), this gap is very unsatisfactory from a practical
point of view. Furthermore, given that guarantees for the single knapsack case do not
depend on the number of columns, it is important to understand if the multi-knapsack
case is fundamentally more difficult. In this work, we give a precise indication of why
the latter problem was resistant to arguments used in the single knapsack case, and
overcome this difficulty to exhibit an algorithm with dimension-independent guarantee.

We show that a modification of the DPA algorithm from [1] that we call Robust DPA
obtains a (1− ε)-competitive solution for online packing LP’s with m constraints in the

704 M. Molinaro and R. Ravi

random permutation model whenever B ≥ Ω(m
2

ε2 log m
ε). Another way of stating this

result is that the algorithm has competitive ratio 1−O(m
√
logB/

√
B). Contrasting to

previous results, our guarantee does not depend on n and in the case m = 1 matches
the bounds for the B-Choice Secretary Problem (up to lower order terms) and improves
[3] for large B. We remark that we can replace the requirement B ≥ Ω(m

2

ε2 log m
ε) by

OPT ≥ Ω(πmaxm
3

ε2 log m
ε) exactly as done in Section 5.1 of [1].

High-level outline. As mentioned before, we use the connection between solving an on-
line LP and PAC-learning a good linear classification of its columns; in order to obtain
the improved guarantee, we focus on tightening the bounds for the generalization error
of the learning problem. More precisely, solving the LP can be seen as classifying the
columns into 0/1, which corresponds to setting their associated variable to 0/1. Consider
a family X ⊆ {0, 1}n of linear classifications of the columns. Our algorithms sample a
set S of columns and learn a classification xS ∈ X which is ‘good’ for the columns in
S (i.e., obtains large proportional revenue while not filling up the proportionally scaled
budget too much). The goal is to upper bound the probability that xS is not good for the
whole LP; this is typically done via a union bound over the classifications in X [1,11].

To obtain improved guarantees, we refine this bound using an argument akin to cov-
ering: we consider witnesses (Section 2.2), which are representatives of groups of ‘sim-
ilar’ bad classifications that can be used to bound the probability that any classification
in the group is learned; for that we need to use a non-standard measure of similarity
between classifications which is based on the budget of the LP. The problem is that,
when the columns (πt, at)’s do not lie in a two-dimensional subspace of Rm, the set
X may contain a large number of mutually dissimilar bad classifications; this is a road-
block for obtaining a small set of witnesses. In stark contrast, when these columns do
lie in a two-dimensional subspace (e.g.,m = 1), these classifications have a much nicer
structure which admits a small set of witnesses. This indicates that the latter learning
problem is intrinsically more robust than the former, which seem to precisely capture
the increased difficulty in obtained good bounds for the multi-row case.

Motivated by this discussion, we first consider LP’s whose columns at’s lie in few
one-dimensional subspaces (Section 2). For each of these subspaces, we are able to
approximate the classifications induced in the columns lying in the subspace by con-
sidering a small subset of the induced classifications; patching together these partial
classifications gives us a witness set for X . However, this strategy as stated does not
make use of the fact that the subspaces are embedded in an m-dimensional space, and
hence leads to large witness sets. By establishing a connection between the ‘useful’
patching possibilities with faces of a hyperplane arrangement in Rm (Lemma 7), we
are able to make use of the dimension of the host space and exhibit witness sets of
much smaller sizes, which leads to improved bounds.

For a general packing LP, we perturb the columns at’s to make them lie in few one-
dimensional subspaces that form an ‘ε-net’ of the space, while not altering the feasibility
and optimality of the LP by more than a (1 ± ε) factor (Section 3). Finally, we tighten
the bound by using the idea of periodically recomputing the classification, following [1]
(Section 4). We remark that omitted proofs are presented in the full version [22].

Geometry of Online Packing Linear Programs 705

2 OTP for Almost 1-dim Columns

In this section we describe and analyze the algorithm OTP (One-Time Pricing) over
LP’s whose columns are contained in few 1-dimensional subspaces of Rm. The overall
goal is to find an appropriate dual (perhaps infeasible) solution p for (LP) and use it to
classify the columns of the LP. More precisely, given p ∈ Rm, we define x(p)t = 1 if
πt > pat and x(p)t = 0 otherwise. Thus, x(p) is the result of classifying the columns
(πt, a

t)’s with the homogeneous hyperplane in Rm+1 with normal (−1, p). The motiva-
tion behind this classification is that it selects the columns which have positive reduced
cost with respect to the dual solution p, or alternatively, it solves to optimality the La-
grangian relaxation that uses p as multipliers.

Sampling LP’s. In order to obtain a good dual solution p we use the (random) LP con-
sisting on the first s columns of (LP) with appropriately scaled right-hand side.

max

s∑
t=1

πσ(t)xσ(t) ((s, δ)-LP)

s∑
t=1

aσ(t)xσ(t) ≤
s

n
δB

xσ(t) ∈ [0, 1] t = 1, . . . , s.

min
s

n
δB

m∑
i=1

pi +

s∑
t=1

ασ(t)

((s, δ)-Dual)

paσ(t) + ασ(t) ≥ πσ(t) t = 1, . . . , s

p ≥ 0

α ≥ 0.

Here σ denotes the random permutation of the columns of the LP. We use OPT(s, δ)
to denote the optimal value of (s, δ)-LP and OPT(s) to denote the optimal value of
(s, 1)-LP.

The static pricing algorithm OTP of [1] can then be described as follows.2

1. Wait for the first εn columns of the LP (indexed by σ(1), σ(2), . . . , σ(εn)) and
solve (εn, 1− ε)-Dual. Let (p, α) be the obtained dual optimal solution.

2. Use the classification given by p as above by setting xσ(t) = x(p)σ(t) for t =
εn + 1, εn + 2, . . . for as long as the solution obtained remains valid. From this
point on set all further variables to zero.

Note that by definition this algorithm outputs a feasible solution with probability one.
Our goal is then to analyze the quality of the solution produced, ultimately leading to
the following theorem.

Theorem 1. Fix ε ∈ (0, 1]. Suppose that there are K ≥ m 1-dim subspaces of Rm

containing the columns at’s and that B ≥ Ω
(
m
ε3 log

K
ε

)
. Then algorithm OTP returns

a feasible solution with expected value at least (1 − 5ε)OPT.

Let S = {σ(1), . . . , σ(εn)} be the (random) index set of the columns sampled by OTP.
We use pS to denote the optimal dual solution obtained by OTP; notice that pS is
completely determined by S. To simplify the notation, we also use xS to denote x(pS).

2 To simplify the exposition, we assume that εn is an integer.

706 M. Molinaro and R. Ravi

Notice that, for all the scenarios where xS is feasible, the solution returned by OTP
is identical to xS with its components xSσ(1), . . . , x

S
σ(εn) set to zero. Given this obser-

vation and the fact that E[
∑

t≤εn πσ(t)x
S
σ(t)] ≤ εOPT, one can prove that the following

proposition implies Theorem 1.

Proposition 1. Fix ε ∈ (0, 1]. Suppose that there are K ≥ m 1-dim subspaces of Rm

containing the columns at’s and that B ≥ Ω
(
m
ε3 log

K
ε

)
. Then with probability at least

(1− ε), xS is a feasible solution for (LP) with value at least (1 − 3ε)OPT.

2.1 Connection to PAC Learning

We assume from now on that B ≥ Ω(mε3 log
K
ε). Let X = {x(p) : p ∈ Rm

+} ⊆
{0, 1}n denote the set of all possible linear classifications of the LP columns which
can be generated by OTP. With slight overload in the notation, we identify a vector
x ∈ {0, 1}n with the subset of [n] corresponding to its support.

Definition 1 (Bad solution). Given a scenario, we say that xS is bad if it does not
satisfy the properties of Proposition 1, namely xS is either infeasible or has value less
than (1− 3ε)OPT. We say that xS is good otherwise.

As noted in previous work, since our decisions are made based on reduced costs it
suffices to analyze the budget occupation (or complementary slackness) of the solu-
tion in order to understand its value. To make this precise, given x ∈ {0, 1}n let
ai(x) =

∑
t∈x a

t
i be its occupation of the ith budget and let aSi (x) =

1
ε

∑
t∈x∩S a

t
i be

its appropriately scaled occupation of ith budget in the sampled LP (recall |S| = εn).

Lemma 1. Consider a scenario where xS satisfies: (i) for all i ∈ [m], ai(xS) ≤ B and
(ii) for all i ∈ [m] with pSi > 0, ai(xS) ≥ (1− 3ε)B. Then xS is good.

Moreover, since we are making decisions based on the optimal reduced cost for the
sampled LP, our solution satisfies the above properties for the sampled LP.

Lemma 2. In every scenario, xS satisfies the following: (i) for all i ∈ [m], aSi (x
S) ≤

(1− ε)B and (ii) for every i ∈ [m] with pSi > 0, aSi (x
S) ≥ (1 − 2ε)B.

Given that ai(x) = E[aSi (x)] for all x, the idea is to use concentration inequalities to ar-
gue that the conditions in Lemma 1 hold with good probability. Although concentration
of aSi (x) for fixed x can be achieved via Chernoff-type bounds, the quantity aSi (x

S) has
undesired correlations; obtaining an effective bound is the main technical contribution
of this paper.

Definition 2 (Badly learnable). For a given scenario, we say that x ∈ X can be badly
learned for budget i if either (i) aSi (x) ≤ (1 − ε)B and ai(x) > B or (ii) aSi (x) ≥
(1− 2ε)B and ai(x) < (1− 3ε)B.

Essentially these are the classifications which look good for the sampled (εn, 1 − ε)-
LP but are actually bad for (LP). Putting Lemmas 1 and 2 together and unraveling the
definitions gives that

Geometry of Online Packing Linear Programs 707

Pr
(
xS is bad

)
≤ Pr

⎛⎝ ∨
i∈[m],x∈X

x can be badly learned for budget i

⎞⎠ .

Notice that the right-hand side of this inequality does not depend on xS , it is only a
function of how skewed aSi (x) is as compared to its expectation ai(x) (over all x ∈ X).

Usually the right-hand side in the previous equation is upper bounded by taking a
union bound over all its terms [1]. Unfortunately this is too wasteful: when x and x′

are ‘similar’ there is a large overlap between the scenarios where aSi (x) is skewed and
those where aSi (x

′) is skewed. In order to obtain improved guarantees, we introduce in
the next section a new way of bounding the right-hand side of the above expression.

2.2 Similarity via Witnesses
First, we partition the classifications which can be badly learned for budget i into two
sets, depending on why they are bad: for i ∈ [m], let X+

i = {x ∈ X : ai(x) > B}
and X−

i = {x ∈ X : ai(x) < (1 − 3ε)B}. In order to simplify the notation, given a
set x we define skewmi(ε, x) to be the event that aSi (x) ≤ (1 − ε)B and skewpi(ε, x)
to be the event that aSi (x) ≥ (1 − 2ε)B. Notice that if x ∈ X+

i , then skewmi(ε, x) is
the event that aSi (x) is significantly smaller than its expectation (skewed in the minus
direction), while for x ∈ X−

i skewpi(ε, x) is the event that aSi (x) is significantly larger
than its expectation (skewed in the plus direction). These definitions directly give the
equivalence

Pr

⎛
⎝ ∨

i,x∈X
x can be badly learned for budget i

⎞
⎠ = Pr

⎛
⎜⎝

∨

i,x∈X+
i

skewmi(ε, x) ∨
∨

i,x∈X−
i

skewpi(ε, x)

⎞
⎟⎠ .

In order to introduce the concept of witnesses, consider two sets x, x′, say, in X+
i . Take

a subset w ⊆ x∩x′; the main observation is that, since at ≥ 0 for all t, for all scenarios
we have aSi (w) ≤ aSi (x) and aSi (w) ≤ aSi (x

′). In particular, the event skewmi(ε, x) ∨
skewmi(ε, x

′) is contained in skewmi(ε, w). The set w serves as a witness for scenarios
which are skewed for either x or x′; if additionally ai(w) reasonably larger than (1 −
ε)B, we can then use concentration inequalities over skewmi(ε, w) in order to bound
probability of skewm(ε, x) ∨ skewm(ε, x′). This ability of bounding multiple terms of
the right-hand side of (2.2) simultaneously is what gives an improvement over the naive
union bound.

Definition 3 (Witness). We say that W+
i is a witness set for X+

i if: (i) for allw ∈ W+
i ,

ai(w) ≥ (1−ε/2)B and (ii) for all x ∈ X+
i there is w ∈ W+

i contained in x. Similarly,
we say that W−

i is a witness set for X−
i if: (i) for all w ∈ W−

i , ai(w) ≤ (1 − 3ε/2)B
and (ii) for all x ∈ X−

i there is w ∈ W−
i containing x.

As indicated by the previous discussion, given witness sets W+
i and W−

i for X+
i and

X−
i , we directly get the bound

Pr

⎛
⎜⎝

∨

i,x∈X+
i

skewm(ε, x) ∨
∨

i,x∈X−
i

skewp(ε, x)

⎞
⎟⎠ ≤ Pr

⎛
⎜⎝

∨

i,w∈W+
i

skewm(ε, w) ∨
∨

i,w∈W−
i

skewp(ε, w)

⎞
⎟⎠ .

(2.1)

708 M. Molinaro and R. Ravi

Putting together the last three displayed equations and using Chernoff-type bounds,
we can get an upper estimate on the probability that xS is bad in terms of the size of
witnesses sets.

Lemma 3. Suppose that, for all i ∈ [m], there are witness sets for X+
i and X−

i of size

at most M . Then Pr(xS is bad) ≤ 8mM exp
(
− ε3B

33

)
.

One natural choice of a witness set for, say, X+
i is the collection of all of its minimal

sets; unfortunately this may not give a witness set of small enough size. But notice that
a witness set need not be a subset of X+

i (or even X). Allowing elements outside X+
i

gives the flexibility of obtaining witnesses which are associated to multiple “similar”
minimal elements of X+

i , which is effective in reducing the size of witness sets.

2.3 Small Witness Sets for Almost 1-dim Columns

Given the previous lemma, our task is to find small witness sets. Unfortunately, when
the (πt, a

t)’s lie in a space of dimension at least 3, X+
i and X−

i may contain many
(Ω(n)) disjoint sets [22], which shows that in general we cannot find small witness sets
directly. This sharply contrasts with the case where the (πt, a

t)’s lie in a 2-dimensional
subspace of Rm+1, where one can show that X is a union of 2 chains with respect to
inclusion. In the special case where the at’s lie in a 1-dimensional subspace of Rm, we
show that X is actually a single chain (Lemma 5) and therefore we can take W+

i as the
minimal set of X+

i and W−
i as the maximal set of X−

i .
Due to the above observations, we focus on LP’s whose at’s lie in few 1-dimensional

subspaces. In this case, X+
i and X−

i are sufficiently well-behaved so that we can find
small (independent of n) witness sets.

Lemma 4. Suppose that there are K ≥ m 1-dimensional subspaces of Rm which con-
tain the at’s. Then there are witness sets forX+

i andX−
i of size at most (O(Kε log K

ε))
m.

To prove this lemma, assume its hypothesis and partition the index set [n] into
C1, C2, . . . , CK such that for all j ∈ [K] the columns {at}t∈Cj belong to the same
1-dimensional subspace. Equivalently, for each j ∈ [K] there is a vector cj of �∞-norm
1 such that for all t ∈ Cj we have at = ‖at‖∞cj . An important observation is that
now we can order the columns (locally) by the ratio of profit over budget occupation:
without loss of generality assume that for all j ∈ [K] and t, t′ ∈ Cj with t < t′, we
have πt

‖at‖∞
≥ πt′

‖at′‖∞
.3

Given a classification x, we use x|Cj to denote its projection onto the coordinates in
Cj ; so x|Cj is the induced classification on columns with indices in Cj . Similarly, we
defineX|Cj = {x|Cj : x ∈ X} as the set of all classifications induced in the columns in
Cj . The most important structure that we get from working with 1-d subspaces, which
is implied by the local order of the columns, is the following.

Lemma 5. For each j ∈ [K], the sets in X|Cj are prefixes of Cj .

3 Notice that this ratio is well-defined since by assumption at
= 0 for all t ∈ [n].

Geometry of Online Packing Linear Programs 709

To simplify the notation fix i ∈ [m] for the rest of this section, so we aim at providing
witness sets for X+

i and X−
i . The idea is to group the classifications according to their

budget occupation caused by the different column classes Cj ’s. To make this formal,
start by covering the interval [0, B+m]with intervals {I
}
∈L, where I0 = [0, εB

4K) and
I
 = [εB4K (1+ ε

4)

−1, εB

4K (1+ ε
4)

) for � > 0 andL = {0, . . . , �log1+ε/4
8K
ε �} (note that

since B ≥ m, we have B +m ≤ 2B). Define B

i,j as the set of partial classifications

y ∈ X|Cj whose budget occupation ai(y) lie in the interval I
. For v ∈ LK define the
family of classifications Bv

i = {(y1, y2, . . . , yK) : yj ∈ Bvj
i,j}. The Bv

i ’s then provide
the desired grouping of the classifications. Note that theBv

i ’s may include classifications
not in X and may not include classifications in X which have occupation ai(.) greater
than B +m.

Now consider a non-emptyBv
i . Let wv

i be the inclusion-wise smallest element in Bv
i .

Notice that such unique smallest element exists: since X|Cj is a chain, so is Bvj
i,j , and

hence wv
i is the product (over j) of the smallest elements in the sets {Bvj

i,j}j . Similarly,
let wv

i denote the largest element in Bv
i . Intuitively, wv

i and wv
i will serve as witnesses

for all the sets in Bv
i .

Finally, define the witness sets by adding the wv
i and wv

i ’s of appropriate size cor-
responding to meaningful Bv

i ’s: set W+
i = {wv

i : v ∈ LK ,Bv
i ∩ X �= ∅, ai(wv

i) ≥
(1− ε/2)B} and W−

i = {wv
i : v ∈ LK ,Bv

i ∩ X �= ∅, ai(wv
i) ≤ (1− 3ε/2)B}.

It is not too difficult to see that, say, W+
i is a witness set for X+

i : If x ∈ X+
i belongs

to some Bv
i , then wv

i belongs to W+
i and is easily shown to be a witness for x. However,

if x does not belong to any Bv
i , by having too large ai(x), the idea is to find x′ ⊆ x

which belongs to some Bv
i and to X , and then use wv

i as witness for x. We note that
ignoring induced classifications with occupation larger than B +m and ignoring Bv

i ’s
which do not intersectX is very important for guaranteeing thatW+

i andW−
i are small.

Lemma 6. The sets W+
i and W−

i are witness sets for X+
i and X−

i .

Bounding the size of witness sets. Clearly the witness sets W+
i and W−

i have size at
most |L|K . Although this size is independent of n, it is still unnecessarily large since
it only uses locally (for each Cj) the fact that X consists of linear classifications; in
particular, it does not use the dimension of the ambient space Rm. Now we sketch the
argument for an improved bound, and details are provided in the full version.

First notice that the partial classification x(p)|Cj is completely defined by the value
pcj . Thus, if J ⊆ [K] is such that the directions {cj}j∈J form a basis of Rm then
knowing pcj for all j ∈ J completely determines the whole classification x(p). Sim-
ilarly, if we know that x(p)|Cj ∈ Bvj

i for all j ∈ J , then for each j /∈ J we should
have fewer possible Bvj

i ’s where the partial classification x(p)|Cj can belong to; this
indicates that some of the sets {Bv

i }v∈LK do not contain any element from X , which
implies a reduced size for the witness sets.

In order to capture this idea, we focus on the space of dual vectors p and define the
sets P

j = {p ∈ Rm
+ : x(p)|Cj ∈ B

i,j} and P v = {p ∈ Rm
+ : x(p) ∈ Bv

i }. Notice
that P v =

⋂
j P

vj
j and that Bv

i is empty iff P v is. The main step is to show that each
P

j is a polyhedron with ‘few’ facets, which uses the definition of x(p) and Lemma 5.

We then consider the arrangement of the hyperplanes which are facet-defining for the
P

j ’s and conclude that the P v’s are given by unions of the cells in this arrangement;

710 M. Molinaro and R. Ravi

classical bounds on the number of cells in a hyperplane arrangement in Rm then allow
us to upper bound the number of nonempty P v’s. This gives the following.

Lemma 7. At most (O(Kε log K
ε))

m of the Bv
i ’s contain an element from X .

This implies that both W+
i and W−

i have size at most (O(Kε log K
ε))

m, which then
proves Lemma 4. Finally, applying Lemma 3 we conclude the proof of Proposition 1.

3 Robust OTP

In this section we consider (LP) with columns that may not belong to few 1-dimensional
subspaces. Given the results of the previous section we would like to perturb the columns
of this LP so that it belongs to few 1-dim subspaces, and such that an approximate so-
lution for this perturbed LP is also an approximate solution for the original one. More
precisely, we obtain a set of vectors Q ⊆ Rm and transform each column at into a col-
umn ãt which is a scaling of a vector in Q, and we let the rewards πt remain unchanged.
The crucial observation is that the solutions of an LP are robust to slight changes in the
the constraint matrix.

Lemma 8. Consider real numbers π1, . . . , πn and vectors a1, . . . , an and ã1, . . . , ãn

in Rm
+ such that ‖ãt − at‖∞ ≤ ε

m+1‖at‖∞. If x is an ε-approximate solution for (LP)
with columns (πt, ãt) and right-hand side (1 − ε)B, then x is a (1 − 2ε)-approximate
solution for (LP).

Perturbing the columns. To simplify the notation, set δ = ε
m+1 ; for simplicity of expo-

sition we assume that 1/δ is integral. When constructing Q we want the rays spanned
by the each of its vectors to be “uniform” over Rm

+ . Using �∞ as normalization, let Q
be a δ-net of the unit �∞ sphere, namely let Q be the vectors in {0, δ, 2δ, 3δ, . . . , 1}m
which have �∞ norm 1. Note that |Q| = (O(mε))

m.
Given a vector at ∈ Rm we let ãt = ‖at‖∞qt, where qt is the vector in Q closest (in

�∞) to at

‖at‖∞ . By definition of Q, for every vector v ∈ Rm with ‖v‖∞ = 1 there is a
vector q ∈ Q with ‖v − q‖∞ ≤ δ. It then follows from positive homogeneity of norms
that the ãt’s satisfy the property required in Lemma 8: ‖at − ãt‖∞ ≤ δ‖at‖∞.

Algorithm Robust OTP. One way to think of the algorithm Robust OTP is that it works
in two phases. First, it transforms the vectors at into ãt as described above. Then it
returns the solution obtained by running the algorithm OTP over the LP with columns
(πt, ã

t) and right-hand side (1 − ε)B. Notice that this algorithm can indeed be imple-
mented to run in an online fashion.

Putting together the discussion in the previous paragraphs and the guarantee of OTP
for almost 1-dim columns given by Theorem 1 with K = |Q| = (O(mε))

m, we obtain
the following theorem.

Theorem 2. Fix ε ∈ (0, 1] and suppose B ≥ Ω
(

m2

ε3 log m
ε

)
. Then algorithm Robust

OTP returns a solution to the online (LP) with expected value at least (1 − 10ε)OPT.

Geometry of Online Packing Linear Programs 711

4 Robust DPA

In this section we describe our final algorithm, which has an improved dependence on
1/ε. Following [1], the idea is to update the dual vector used in the classification as new
columns arrive: we use the first 2iεn columns to classify columns 2iεn+1, . . . , 2i+1εn.
This leads to improved generalization bounds, which in turn give the reduced depen-
dence on 1/ε. The algorithm Robust DPA (as the algorithm DPA) can be seen as a
combination of solutions to multiple sampled LP’s, obtained via a modification of OTP
denoted by (s, δ)-OTP.

Algorithm (s, δ)-OTP. This algorithm aims at solving the program (2s, 1)-LP and can
be described as follows: it finds an optimal dual solution (p, α) for (s, (1− δ))-LP and
sets xσ(t) = x(p)σ(t) for t = s+ 1, s+2, . . . , t′ ≤ 2s such that t′ is the maximum one

guaranteeing
∑2s

t=s+1 a
σ(t)xσ(t) ≤ s

nB (for all other t’s it sets xσ(t) = 0).
The analysis of (s, δ)-OTP is similar to the one employed for OTP. The main differ-

ence is that this algorithm tries to approximate the value of the random LP (2s, 1)-LP.
This requires a partition of the bad classifications which is more refined than simply
splitting intoX+

i andX−
i , and witness sets need to be redefined appropriately. Nonethe-

less, using these ideas we can prove the following guarantee for (s, δ)-OTP. Again let
S = {σ(1), σ(2), . . . , σ(s)} be the random index set of the first s columns of the LP,
let T = {σ(s+ 1), σ(s+ 2), . . . , σ(2s)} and U = S ∪ T .

Proposition 2. Suppose that there are K ≥ m 1-dim subspaces of Rm containing the
columns at’s. Fix an integer s and a real number δ ∈ (0, 1/10) such that δ2sB

n ≥
Ω(m ln K

δ). Then algorithm (s, δ)-OTP returns a solution x satisfying aTi (x) ≤ B
for all i ∈ [m] with probability 1 and with expected value E[

∑
τ∈U πτxτ] ≥ (1 −

3δ)E[OPT(2s)]− E[OPT(s)]− δ2OPT.

Algorithm Robust DPA. In order to simplify the description of the algorithm, we assume
in this section that log(1/ε) is an integer.

Again the algorithm Robust DPA can be thought as acting in two phases. In the first
phase it converts the vectors at into ãt, just as in the first phase of Robust OTP. In the
second phase, for i = 0, . . . , log(1/ε)− 1, it runs (ε2in,

√
ε/2i)-OTP over (LP) with

columns (πt, ãt) and right-hand side (1− ε)B to obtain the solution xi. The algorithm
finally returns the solution x consisting of the ‘union’ of xi’s: x =

∑
i x

i.
Note that the second phase corresponds exactly to using the first ε2in columns to

classify the columns ε2in + 1, . . . , ε2i+1n. This relative increase in the size of the
training data for each learning problem allow us to reduce the dependence of B on ε
in each of the iterations, while the error from all the iterations telescope and are still
bounded as before. Furthermore, notice that Robust DPA can be implemented to run
online.

The analysis of Robust DPA reduces to that of (s, δ)-OTP. That is, using the def-
inition of the parameters of (s, δ)-OTP used in Robust DPA and Proposition 2, it is
routine to check that the algorithm produces a feasible solution which has expected
value (1 − ε)OPT. This is formally stated in the following theorem.

712 M. Molinaro and R. Ravi

Theorem 3. Fix ε ∈ (0, 1/100) and suppose that B ≥ Ω(m
2

ε2 ln m
ε). Then the algo-

rithm Robust DPA returns a solution to the online LP (LP) with expected value at least
(1− 50ε)OPT.

5 Open Problems

A very interesting open question is whether the techniques introduced in this work
can be used to obtain improved algorithms for generalized allocation problems [14].
The difficulty in these problems is that the classifications of the columns are not linear
anymore; they essentially come from a conjunction of linear classifiers. Given this ad-
ditional flexibility, having the columns in few 1-dimensional subspaces does not seem
to impose strong enough properties in the classifications. It would be interesting to find
the appropriate geometric structure of the columns in this case.

Of course a direct open question is to improve the lower or upper bound on the
dependence on the right-hand side B to obtain (1 − ε)-competitive algorithms. One
possibility is to investigate how much the techniques presented here can be pushed
and what are their limitations. Another possibility is to analyze the performance of the
algorithm from [10] under the random permutation model.

References

1. Agrawal, S., Wang, Z., Ye, Y.: A dynamic near-optimal algorithm for online linear program-
ming, http://arxiv.org/abs/0911.2974

2. Babaioff, M., Dinitz, M., Gupta, A., Immorlica, N., Talwar, K.: Secretary problems: weights
and discounts. In: SODA (2009)

3. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.D.: A Knapsack Secretary Problem
with Applications. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM
2007 and APPROX 2007. LNCS, vol. 4627, pp. 16–28. Springer, Heidelberg (2007)

4. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Online auctions and generalized
secretary problems. SIGecom Exchanges 7(2) (2008)

5. Bateni, M., Hajiaghayi, M., Zadimoghaddam, M.: Submodular Secretary Problem and Ex-
tensions. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM
2010, LNCS, vol. 6302, pp. 39–52. Springer, Heidelberg (2010)

6. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer Series in Oper-
ations Research and Financial Engineering. Springer (1997)

7. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge Univer-
sity Press (1998)

8. Buchbinder, N., Naor, J.S.: Online primal-dual algorithms for covering and packing. Mathe-
matics of Operations Research 34, 270–286 (2009)

9. Cucker, F., Zhou, D.X.: Learning Theory: An Approximation Theory Viewpoint. Cambridge
University Press (2007)

10. Devanur, N.R., Jain, K., Sivan, B., Wilkens, C.A.: Near optimal online algorithms and fast
approximation algorithms for resource allocation problems. In: EC (2011)

11. Devenur, N.R., Hayes, T.P.: The adwords problem: online keyword matching with budgeted
bidders under random permutations. In: EC (2009)

12. Devroye, L., Wagner, T.: Distribution-free performance bounds for potential function rules.
IEEE Transactions on Information Theory 25, 601–604 (1979)

http://arxiv.org/abs/0911.2974

Geometry of Online Packing Linear Programs 713

13. Dynkin, E.B.: The optimum choice of the instant for stopping a Markov process. Soviet
Mathematics Doklady 4 (1963)

14. Feldman, J., Henzinger, M., Korula, N., Mirrokni, V.S., Stein, C.: Online Stochastic Packing
Applied to Display Ad Allocation. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS,
vol. 6346, pp. 182–194. Springer, Heidelberg (2010)

15. Gilbert, J.P., Mosteller, F.: Recognizing the Maximum of a Sequence. Journal of the Ameri-
can Statistical Association 61(313), 35–73 (1966)

16. Goel, G., Mehta, A.: Online budgeted matching in random input models with applications to
adwords. In: SODA (2008)

17. Im, S., Wang, Y.: Secretary problems: Laminar matroid and interval scheduling. In: SODA
(2011)

18. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for on-line bipartite match-
ing. In: STOC (1990)

19. Kenyon, C.: Best-fit bin-packing with random order. In: SODA (1996)
20. Kleinberg, R.: A multiple-choice secretary algorithm with applications to online auctions.

In: SODA (2005)
21. Kutin, S., Niyogi, P.: Almost-everywhere algorithmic stability and generalization error. In:

Uncertainty in Artificial Intelligence, pp. 275–282 (2002)
22. Molinaro, M., Ravi, R.: Geometry of online packing linear programs,

http://arxiv.org/abs/1204.5810
23. Soto, J.A.: Matroid secretary problem in the random assignment model. In: SODA (2011)

http://arxiv.org/abs/1204.5810

Self-assembly with Geometric Tiles�

Bin Fu1,��, Matthew J. Patitz2,� � �, Robert T. Schweller3,∗∗∗,
and Robert Sheline4,∗∗∗

Department of Computer Science, University of Texas - Pan American
{binfu,mpatitz,schwellerr}@cs.panam.edu,

b.sheline@gmail.com

Abstract. In this work we propose a generalization of Winfree’s ab-
stract Tile Assembly Model (aTAM) in which tile types are assigned
rigid shapes, or geometries, along each tile face. We examine the number
of distinct tile types needed to assemble shapes within this model, the
temperature required for efficient assembly, and the problem of designing
compact geometric faces to meet given compatibility specifications. We
pose the following question: can complex geometric tile faces arbitrar-
ily reduce the number of distinct tile types to assemble shapes? Within
the most basic generalization of the aTAM, we show that the answer
is no. For almost all n at least Ω(

√
log n) tile types are required to

uniquely assemble an n×n square, regardless of how much complexity is
pumped into the face of each tile type. However, we show for all n we can
achieve a matching O(

√
log n) tile types, beating the known lower bound

of Θ(log n/ log log n) that holds for almost all n within the aTAM. Fur-
ther, our result holds at temperature τ = 1. Our next result considers a
geometric tile model that is a generalization of the 2-handed abstract tile
assembly model in which tile aggregates must move together through ob-
stacle free paths within the plane. Within this model we present a novel
construction that harnesses the collision free path requirement to allow
for the unique assembly of any n×n square with a sleek O(log log n) dis-
tinct tile types. This construction is of interest in that it is the first tile
self-assembly result to harness collision free planar translation to increase
efficiency, whereas previous work has simply used the planarity restric-
tion as a desireable quality that could be achieved at reduced efficiency.
This surprisingly low tile type result further emphasizes a fundamental
open question: Is it possible to assemble n×n squares with O(1) distinct
tile types? Essentially, how far can the trade off between the number of
distinct tile types required for an assembly and the complexity of each
tile type itself be taken?

� A full version of this paper can be found at [13].
�� This author’s research was supported in part by National Science Foundation Early

Career Award 0845376.
� � � This author’s research was supported in part by National Science Foundation Grant

CCF-1117672.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 714–725, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Self-assembly with Geometric Tiles 715

1 Introduction

The stunning diversity of biological tissues and structures found in nature, in-
cluding examples such as signaling axons stretching from neurons, powerfully
contracting muscle tissue, and specifically tailored coats protecting viral pay-
loads, are composed of basic molecular building blocks called proteins. These
proteins, in turn, are assembled from an amazingly small set of only around 20
amino acids. So how is it that so much structural and functional variety can be
derived from so few unique components? The simplified answer is “geometry”.
Essentially, a protein’s function is determined by its 3-dimensional shape, or
geometry. The exact sequence of amino acids which compose a protein (along
with environmental influences such as temperature and pH levels) determine
how that particular string of amino acids will fold into a protein’s characteris-
tic 3-dimensional structure. However, as simple as it may sound, the resulting
geometries are often extremely complex, and predicting them has proven to be
computationally intractable. It is from such geometrically intricate structure
that nearly all of the complexity of life as we know it arises.

c

C

1

c

C

1

c

C

0

0

a A a Aa A

1000

d

D

d

D

d

D

1

0

0

1

b B b Bb B

10 00

Fig. 1. The use of jigsaw faced macro tiles for self-assembly is emerging in both the-
oretical and experimental work. This figure contains three separate recent examples.
The first figure depicts a macro tile assembled using staged assembly from smaller tile
types [9]. The second figure depicts the experimental work of [24] to create geometric
tiles made from DNA origami which encode a binary number on their edges. Finally,
the third figure depicts the experimental work of [12] in which a jigsaw geometry on
the face of tiles is created with the DNA origami technique.

Scientists and inventors have always recognized nature as providing invaluable
examples and inspiration, and as for many other fields, this is also true for the
study of artificial self-assembling systems. Self-assembling systems are systems
in which sets of relatively simple components begin in disconnected and disorga-
nized initial states, and then spontaneously and autonomously combine to form
more complex structures. Self-assembling systems are pervasive in nature, and
their power for creating intricate structures at even the nano-scale have inspired
researchers to design artificial systems which self-assemble. One such productive

716 B. Fu et al.

line of research has followed from the introduction of the Tile Assembly Model
(TAM) by Winfree in [22]. As a basic model, the TAM has proven powerful,
providing a basis for laboratory implementations [4, 6, 14, 16, 17, 20] as well as
copious amounts of theoretical work [5, 8, 10, 11, 15, 21]. However, in this work,
we’ve once again looked to nature’s guidance, this time in terms of the power
and importance of the geometric complexity of the components of self-assembling
systems, to extend the TAM in an attempt to harness that power.

1.1 Overview

We introduce a generalization of the abstract Tile Assembly Model (aTAM) in
which tile types are assigned rigid shapes, or geometries, along each tile face.
This model is motivated by the plausibility of implementing novel sophisticated
nanoscale shapes with technology such as DNA origami [18]. We show that this
model permits substantially greater efficiency in terms of tile type complexity
when compared to assembling shapes in the basic temperature 2 aTAM. Fur-
thermore, these efficiency improvements hold even at temperature 1.

1.2 Results

The abstract tile assembly model (aTAM) [22], as well as many of the nanoscale
self-assembly models spawned by it, feature single stranded DNA sequences as
the primary mechanism for decision making. This commonality applies to weak
systems such as deterministic temperature-1 assembly, as well as stronger ones
that rely on higher temperatures or stochastic methods. Since it is known that
DNA strands are capable of hybridizing with sequences other than their exact
Watson-Crick complements, it is therefore reasonable to consider a tile assembly
model in which one glue can potentially bond with an arbitrary subset of the
other glues, with possibly differing strengths. Aggarwal et. al. [7] have shown
that such a non-diagonal glue function allows for significant efficiency gains
in terms of the numbers of unique tile types used to assemble a target shape.
Despite this potentially promising result, it is also true that designing non-
specific hybridization pairs, while possible, is severely limited in a practical sense,
and would likely introduce a potential for error in a much greater sense than is
already present in laboratory experiments.

Table 1. Summary of our Results. σ denotes the set of distinct glues of a tile system
to be simulated, with σn and σw denoting only the north/south and west/east glue
types respectively.

n × n square Tile Types Temperature Geometry Size
aTAM (previous work) [1, 19] Θ(log n/ log log n) 2 -

GTAM (Thms. 1,2) Θ(
√
logn) 1 O(

√
logn)

2GAM (Thm. 5) O(log logn) 2 O(logn log logn)

Zig-zag simulation Tile Type Scale Glues Temperature Geometry Size
Theorem 3 O(1) O(|σw |) 1 log |σn| + log log |σn| + O(1)
Theorem 4 O(1) 1 1 log |σ| + log log |σ| + O(1)

Self-assembly with Geometric Tiles 717

Fig. 2. Examples of geometric tiles. Note that only the black portions on the corners
are binding surfaces with glues, while the “teeth” in between provide potential geomet-
ric hindrance. Left: Compatible tiles. Right: Incompatible tiles (colliding teeth, which
prevent the glue pads from coming together, are circled).

If non-specific binding is impractical or impossible to implement, but powerful
in theory, the question remains: are there any other mechanisms by which this
power can be realized? One possible answer to this question is motivated by
advances in DNA origami [12,18] in which DNA strands can be folded into blocks
with semi-rigid jig-saw faces (see the rightmost image in Figure 1). In this work
we introduce a generalization of the aTAM in which tile faces are given some
rigid shape (which we hereon refer to as geometry). As suggested in Figure 2,
the geometric hindrance which can be provided by this geometry is capable of
simulating non-diagonal glue functions by creating a set of compatible and non-
compatible faces. We show that this new model realizes much of the power of
non-specific hybridization. Among our results, we show that n×n squares can be
assembled in Θ(

√
logn) distinct tile types, which meets an information theoretic

lower bound for the model and improves what is possible without geometric tiles
from Θ(log n/ log logn) (see [19]). In addition, this tile efficient construction
requires only a temperature threshold of 1, thus showing this model can mimic
both non-specific glue functions and temperature 2 self-assembly simultaneously.

Next, we show that temperature-1 systems utilizing geometry can efficiently
simulate a powerful class of temperature-2 aTAM systems. This class of sys-
tems, called zig-zag systems, is capable of simulating arbitrary Turing machines
and therefore universal computation. Furthermore, the simulation performed us-
ing geometric tiles is efficient in that it requires no asymptotic increase in tile
complexity (i.e. the number of unique tile types required) or in the size of the
assembly. This is especially notable due to the fact that it is conjectured (al-
though currently unproven) that temperature-1 systems in the aTAM are not
computationally universal.

While tile geometries provide a method for greatly reducing the tile complexity
required to build squares in a seeded model like the aTAM (i.e. one in which tiles
can only combine with a growing assembly one at a time), our next result holds
for geometric tiles considered within the 2-handed assembly model (sometimes
referred to by other names [2,7,9,15,23]). We show that, in this model, the tile
complexity required to build a square is reduced to only O(log logn) tile types,
while the complexity of the geometries increases to O(log n log logn.

In the full version of this paper [13] we additionally conduct a detailed analysis
of problems related to computing necessary patterns for tile geometries given
specifications of the desired compatibility matrices (i.e. the listings of which tile

718 B. Fu et al.

sides should be compatible and incompatible with each other), with the goal
being to minimize the size of the necessary geometries (as well as the running
time of the computations). While these results are omitted in this version, we
apply some of these results in our constructions for this paper.

2 Model

In this section we define the basic geometric tile assembly model (GTAM) and
the two-handed planar geometric tile assembly model (2GAM). See [13] for a
more detailed technical definition of these models.

2.1 Basics

A tile type is a unit square with four sides, each having a glue consisting of a
label (a finite string) and strength (0, 1, or 2). We assume a finite set T of tile
types, but an infinite number of copies of each tile type, each copy referred to as
a tile. A supertile (a.k.a., assembly) is a positioning of tiles on the integer lattice
Z2. Two adjacent tiles in a supertile interact if the glues on their abutting sides
are equal. Each supertile induces a binding graph, a grid graph whose vertices
are tiles, with an edge between two tiles if they interact. The supertile is τ -stable
if every cut of its binding graph has strength at least τ , where the weight of an
edge is the strength of the glue it represents. That is, the supertile is stable if at
least energy τ is required to separate the supertile into two parts. A seeded tile
assembly system (TAS) is a triple T = (T, τ, s), where T is a finite tile set, τ is
the temperature, usually 1 or 2, and s ∈ T is a special tile type denoted as the
seed. Given a TAS T = (T, τ, s), a supertile is producible if either it is the seed
tile, or it is the τ -stable result of attaching a single tile r ∈ T to a producible
supertile. A supertile α is terminal if for every tile type r ∈ T , r cannot be
τ -stably attached to α. A TAS is directed (a.k.a., deterministic or confluent) if
it has only one terminal, producible supertile. Given a connected shape X ⊂ Z2,
a TAS T produces X uniquely if every producible, terminal supertile places tiles
only on positions in X (appropriately translated if necessary).

2.2 Geometric Tiles and the Basic (GTAM)

In this paper we generalize the basic aTAM by assigning a geometric pattern to
each side of a tile type along with its glue. For each tile set in the GTAM, fix
two values w, � ∈ N. While at a high-level we still consider tiles as occupying
unit squares within the plane, in order to determine whether or not adjacent
tiles are geometrically compatible with each other, we define a tile body to be an
� × � square (see Figure 3), and we define a (tile face) geometry to be a subset
of Zw × Z
. A geometric tile type consists of a tile body which has both a glue
and a geometry assigned to each side. For a tile type t, let northGeometry(t)
denote the geometry assigned to the north side of t. Define eastGeometry(t),
southGeometry(t), and westGeometry(t) analogously. Intuitively, the geometry
of a tile type face represents the positions of inflexible bumps, or “filled-in” loca-
tions of the w× � rectangle, that can prevent two tiles from lining up adjacently

Self-assembly with Geometric Tiles 719

to one another so that the rectangles of their adjacent geometries completely
overlap. Only if the w × � geometries on adjacent sides of two combining tiles
can completely overlap so that no location contains a filled-in portion of both,
can any glues on those adjacent sides interact. Formally, we say a tile type t is
east incompatible with tile type r if eastGeometry(t)

⋂
westGeometry(r) �= ∅.

We define north, south, and west incompatibility analogously. Seeded Geometric
Tile Assembly takes place in the same manner as in the aTAM, with the added
requirement that a tile type cannot be attached to a supertile at a position in
which the tile type is either east, west, north, or south incompatible with an-
other adjacent tile type in the supertile at a position west, east, south, or north,
respectively, of the attachment position. As in the original aTAM, tiles are not
allowed to rotate and must always maintain their pre-specified orientation, even
while moving into position to attach to an assembly.

2.3 Two-Handed Geometric Tile Assembly Model

Body

North geometry

South geometry

 East
geometry

 West
geometry

w

l

w

l

w

w

Fig. 3. Definition of a geometric tile

The Two-Handed Geometric Tile Assem-
bly Model (2GAM) extends the GTAM
by allowing large assembled supertiles to
attach to one another. As in the GTAM,
tiles are composed of tile bodies and tile
face geometries as shown in Figure 3.
Within the 2GAM, two tiles may attach if
1) there exists a collision free path within
the 2D plane to shift the tiles into an
adjacent position in which the east (or
south) geometry box of one tile exactly
overlaps the west (or north) geometry
box of the second tile, and 2) the east
(north) and west (south) glues of each tile
are equal and have strength at least τ .
More generally, preassembled multiple tile supertiles may come together if there
is a collision free path in which the supertiles line up to create a τ -stable as-
sembly. The set of producible supertiles within the 2GAM is defined recursively:
As a base case, all singleton supertiles consisting of a single tile are producible.
Recursively, for any two producible supertiles α and β such that there exists a
collision free path within the plane to shift α and β into a τ -stable configuration
γ, then the supertile γ is also producible. The subset of producible assemblies of
a 2GAM system to which no producible assembly can attach defines the termi-
nally produced supertiles. Intuitively, this set represents the set of assemblies we
expect to see from a system if it is given enough time to assemble, and we refer
to this as the output of the system. A 2GAM is directed (e.g., deterministic, con-
fluent) if it has only one terminal, producible supertile. Given a connected shape
X ⊆ Z2, a 2GAM Γ produces X uniquely if every producible, terminal supertile
places tiles only on positions in X (appropriately translated if necessary).

720 B. Fu et al.

3 GTAM Complexities: Squares and τ = 1 Assembly

In this section we examine the power of the GTAM in the context of efficiently
building squares and simulating temperature τ = 2 aTAM systems at τ = 1.
Our first result shows that the tile complexity of n × n squares in the GTAM
is O(

√
logn) for all n by providing a O(

√
logn) tile complexity upper bound

construction for all n. This result is notable in that it beats a lower bound of
Ω(log n/ log logn) for almost all n for the aTAM [19], and further, does so at
τ = 1 (all known sublinear tile complexities in the aTAM use at least τ = 2).

Theorem 1. The minimum tile complexity required to assemble an n×n square
in the GTAM is O(

√
logn). Further, this complexity can be achieved by a tem-

perature τ = 1 system with O(
√
logn) size geometry.

C

1

0

A

1

0

B

1

0

Fig. 4. Geometric tile compatibility can mimic flexible glue functions in which non-
equal glues may have non-zero bonding strength. This flexible glue compatibility allows
for the assembly of a length log n bit string using only order

√
log n tile types, which

in turn can be used to seed a counter for the assembly of an n× n square.

The key idea behind this upper bound is the fact that geometry can mimic
flexible (a.k.a. non-diagonal) glue functions in which non-equal glues are per-
mitted to have bonding strength. Figure 4 provides a simple example in which
the southern geometry of a pair of tiles interacts with a large set of different tile
types A, B, and C. In this example, the 0 tile is compatible with A and C, and
the 1 tile is compatible with tile B. As shown in [3], flexible glue functions permit
the assembly of squares in O(

√
logn) tile types. By modifying this construction

to utilize geometry instead of flexible glues, we obtain the same result, with the
added bonus of only requiring temperature τ = 1 and only a single glue type.

Our next result shows an asymptotically tight lower bound for almost all n.

Theorem 2. For almost all integers n, the minimum tile complexity required to
assemble an n× n square in the GTAM is Ω(

√
logn).

The possibility of efficient assembly at τ = 1 extends beyond just squares to
a computationally powerful class of assembly systems called zig-zag systems in
which growth proceeds upward row by row, each row alternating left and right.

Definition 1. Zig-Zag System. A system Γ = (T, τ, s) is a zig-zag system if:

Self-assembly with Geometric Tiles 721

1. The location and type of the ith tile to attach is the same for all assembly
sequences.

2. The ith tile attachment occurs to the north, west, or east (not south) of the
previously placed tile attachment in all assembly sequences.

3. For finite assemblies, the final tile type placed does not occur anywhere else
in the assembly.

The first theorem shows how to simulate zig-zag temperature τ = 2 systems at
temperature τ = 1 by utilizing geometry to mimic the cooperative binding effect
of temperature τ = 2.

Theorem 3. Any τ = 2 zig-zag aTAM system Γ = (T, 2, s) can be simulated
by a τ = 1 GTAM system Υ = (R, 1, q) with tile type scale |R|/|T | = O(1). The
simulation utilizes geometry size at most log |σn|+ log log |σn|+O(1) where σn
is the set of distinct north/south glue types represented in T .

The next result extends the temperature τ = 1 result by further showing that
the number of distinct glues in the simulating system can be reduced to use just
a single glue type.

Theorem 4. Any τ = 2 zig-zag aTAM system Γ = (T, 2, s) can be simulated by
a τ = 1 GTAM system Υ = (R, 1, q) using only 1 glue type and tile type scale
|R|/|T | = O(1). The geometry size of Υ is at most log |σ| + log log |σ| + O(1)
where σ is the set of distinct glue types represented in T .

4 n × n 2GAM Squares with O(log logn) Tile Types

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

n

n

n’’+4 C1

C2

filler tiles

filler tiles

n’’+4

2n’’

2n’’+1-1

2n’-s

C3

 0 1 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0s

Fig. 5. Construction building a square in the 2GAM

In this section, we ex-
plore the theoretical lim-
its achievable when utilizing
geometric tiles by design-
ing tiles whose edges con-
tain highly complex geome-
tries. Furthermore, we move
to the 2-handed variant of
the GTAM, the 2GAM, to
allow for the geometric hin-
drances experienced by in-
dividual tiles to be grouped
and combined to provide
more complex interactions
between larger supertiles.
The goal, rather than pro-
viding a realistic and poten-
tially experimentally realiz-
able set of constructions, is

722 B. Fu et al.

to gain further understanding into the interplay between geometry and the types
of computations which can be carried out via algorithmic self-assembly. Our con-
struction reduces the tile complexity required to self-assemble an n×n square to a
mere O(log logn) tile types, while requiring a geometry size of O(log n log logn).
It requires the constraint of planarity, in which components are not allowed to
float into position from above or below the assembly, but must always be able to
slide into position with a series of translations along only the x and y axes. How-
ever, the intricate geometric designs and complex series of movements require
that individual tile geometries are composed of disconnected components. (Note
that in [13] we show how to extend the tiles into the third dimension, utilizing a
total of 4 planes, in a manner which results in connected tiles and also implicitly
enforces the restriction that only tile translations along the x and y axes must
be sufficient to allow for tile attachments.)

Theorem 5. For every n ∈ N, there exists a 2GAM tile system Γ = (T, 2)
which uniquely produces an n × n square, where |T | = O(log logn), and with
O(log n log logn) size geometry.

To prove Theorem 5, we present the following construction.
These values are based on the particular dimensions of the square to be formed

and are used throughout the following discussion:

– n: dimensions of the square to self-assemble
– n′: �logn�
– n′′: �logn′�
– s: 2n

′
+ 2n

′′
+ 2n′′ + 8− n

– h: 2n
′′−1 − 1

– C1: 2-handed counter which counts from 0 through 2n
′′ − 1 for a total of 2n

′′

columns
– C2: standard counter which counts from s through 2n

′ − 1 for a total of
2n

′ − s columns
– C3: 2-handed counter with additional “buffer” columns which counts from 0

through 2n
′′ − 1 for a total of 2n

′′+1 − 1 columns

Figure 5 shows a high-level view of the main components of this construction.
Without loss of generality, we can consider the construction to be composed of
a series of sub-assemblies, or modules, which assemble in sequence, with each
module completely assembling before the next begins. The careful design of
all modules ensures that none can grow so that they occupy space required
by another, and that each will be able to terminally grow to precisely defined
dimensions that result in the final combination forming exactly an n×n square.
For the rest of this discussion, we will describe the formation of the modules in
such a sequence.

This construction makes use of one counter, C1, to assemble an encoding of
a number which in turn seeds another counter, C2. C1 assembles in a 2-handed
manner, meaning that each number which is counted is represented by exactly
one one-tile-wide column of tiles, and individual columns form separately and

Self-assembly with Geometric Tiles 723

Bit 0 10

Bit 11 1

Bit 21 1

0-Cap
Tile 1

0-Cap
Tile 2

0-Cap
Tile 0

0-Cap
Tile 3

Bit 0 01

Bit 10 1

Bit 21 1

1-Cap
Tile 0

1-Cap
Tile 1

1-Cap
Tile 2

1-Cap
Tile 3

Fig. 6. Example columns for the counter C1.
Note that all colored areas are filled-in, and
areas colored white are empty, although they
may be outlined for reference.

then combine to form the full
counter of length 2n

′′
(similar in de-

sign to counters found in [11]). Each
column of the counter, besides rep-
resenting a counter value, is used
to represent (on the north face of
the northernmost tile) one bit of
the seed value s for C2. Each col-
umn can form in one of two ver-
sions: one that represents a 0, and
one that represents a 1. The east and
west sides of the tiles forming the
columns contain geometries which
force the columns, in order to com-
bine, to “wiggle” up and down in
patterns based on the counter val-
ues of those columns. See Figure 6
for an example pair of compatible
columns. The topmost tiles of the
columns consist of tiles with geome-
tries which “read” those patterns of
wiggling and allow columns to com-
bine with each other if and only
if they are the correct versions of
the counter columns, namely those
with the bit values of s which cor-
rectly correspond to their location
in the counter. It is the tiles of
this component as well as those of
the counter C3 in which the in-
tricate O(log n log logn) geometries
are contained.
C2 is a standard binary counter

(i.e. one that would also assemble
correctly in the aTAM) which uti-
lizes 16 tile types and grows to com-
plete the majority of the western
side of the square. Next, a small set
of 7 “filler” tile types fill in the majority of the square, and once they have filled
in a sufficient portion of the northern portion they provide a platform to which
C3 can attach (as long as C3 is fully formed). In order to provide a directed
system with only one terminal assembly, the “incorrect” columns (those which
couldn’t become part of C1 due to their nondeterministic selection of 0 or 1 cap
tiles) are able to combine into the 2-handed counter structure C3 via some extra
buffer columns. Finally, the filler tiles are able to complete the formation of the

724 B. Fu et al.

square. Note that the tile types which make up C2 and the filler tiles require no
geometries but only standard glues.

By utilizing the assembly of supertiles (i.e. sub-assemblies of grouped tiles)
and carefully designing geometries which force the supertiles forming C1 to move
in well-defined patterns as they attach, we are able to essentially “transmit” in-
formation about tiles in one location of a supertile to the interfaces where poten-
tial binding is occurring with other tiles in the same supertile. By concatenating
this information from such a group of distant tiles, the binding “decision” can
be made based on an arbitrarily large amount of information (as long as the
geometry sizes scale appropriately). This results in a dramatic lowering of the
tile complexity required to assemble an n×n square, with the tradeoff being an
increase in the complexity of the tiles themselves.
C1 and C3 each require a constant number of tile types for each of the n′′

bit positions, and thus O(log log n) tile types, and C2 and the filler tiles consist
of a constant number of tile types, for an overall tile complexity of O(log logn).
The geometries defined for all tiles in this construction consist of rectangles
of dimensions (2n

′′
+ h + 4) × (n′′ + 2) = (2n

′′
+ �2n′′

/2� + 4) × (n′′ + 2) =
O(log n× log logn), and therefore the geometry size is O(log n log logn).

References

1. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D.: Running time and program
size for self-assembled squares. In: Proceedings of the Thirty-third Annual ACM
Symposium on Theory of Computing, pp. 740–748. ACM, New York (2001)

2. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D., Wasserman, H.: Linear self-
assemblies: Equilibria, entropy and convergence rates. In: Sixth International Con-
ference on Difference Equations and Applications. Taylor and Francis (2001)

3. Aggarwal, G., Goldwasser, M.H., Kao, M.-Y., Schweller, R.T.: Complexities for
generalized models of self-assembly. In: Proceedings of ACM-SIAM Symposium on
Discrete Algorithms (2004)

4. Barish, R.D., Schulman, R., Rothemund, P.W., Winfree, E.: An information-
bearing seed for nucleating algorithmic self-assembly. Proceedings of the National
Academy of Sciences 106(15), 6054–6059 (2009)

5. Chandran, H., Gopalkrishnan, N., Reif, J.: The Tile Complexity of Linear Assem-
blies. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas,
W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 235–253. Springer, Heidelberg (2009)

6. Chen, H.-L., Schulman, R., Goel, A., Winfree, E.: Reducing facet nucleation during
algorithmic self-assembly. Nano Letters 7(9), 2913–2919 (2007)

7. Cheng, Q., Aggarwal, G., Goldwasser, M.H., Kao, M.-Y., Schweller, R.T., de Es-
panés, P.M.: Complexities for generalized models of self-assembly. SIAM Journal
on Computing 34, 1493–1515 (2005)

8. Cook, M., Fu, Y., Schweller, R.T.: Temperature 1 self-assembly: Deterministic
assembly in 3d and probabilistic assembly in 2d. In: Randall, D. (ed.) Proceedings
of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2011, pp. 570–589. SIAM (2011)

9. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller,
R.T., Souvaine, D.L.: Staged self-assembly: nanomanufacture of arbitrary shapes
with O(1) glues. Natural Computing 7(3), 347–370 (2008)

Self-assembly with Geometric Tiles 725

10. Doty, D., Lutz, J.H., Patitz, M.J., Summers, S.M., Woods, D.: Intrinsic univer-
sality in self-assembly. In: Proceedings of the 27th International Symposium on
Theoretical Aspects of Computer Science, pp. 275–286 (2009)

11. Doty, D., Patitz, M.J., Reishus, D., Schweller, R.T., Summers, S.M.: Strong fault-
tolerance for self-assembly with fuzzy temperature. In: Proceedings of the 51st
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pp.
417–426 (2010)

12. Endo, M., Sugita, T., Katsuda, Y., Hidaka, K., Sugiyama, H.: Programmed-
assembly system using DNA jigsaw pieces. Chemistry: A European Journal, 5362–
5368 (2010)

13. Fu, B., Patitz, M.J., Schweller, R., Sheline, R.: Self-assembly with geometric tiles.
Arxiv preprint arXiv:1104.2809 (2012)

14. LaBean, T.H., Winfree, E., Reif, J.H.: Experimental progress in computation by
self-assembly of DNA tilings. DNA Based Computers 5, 123–140 (1999)

15. Luhrs, C.: Polyomino-Safe DNA Self-assembly via Block Replacement. In: Goel,
A., Simmel, F.C., Sośık, P. (eds.) DNA. LNCS, vol. 5347, pp. 112–126. Springer,
Heidelberg (2009)

16. Mao, C., LaBean, T.H., Relf, J.H., Seeman, N.C.: Logical computation using algo-
rithmic self-assembly of DNA triple-crossover molecules. Nature 407(6803), 493–
496 (2000)

17. Reif, J.H., Sahu, S., Yin, P.: Compact Error-Resilient Computational DNA Tiling
Assemblies. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS,
vol. 3384, pp. 293–307. Springer, Heidelberg (2005)

18. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Na-
ture 440(7082), 297–302 (2006)

19. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: STOC 2000: Proceedings of the Thirty-Second
Annual ACM Symposium on Theory of Computing, Portland, Oregon, United
States, pp. 459–468. ACM Press (2000)

20. Schulman, R., Winfree, E.: Synthesis of crystals with a programmable kinetic bar-
rier to nucleation. Proceedings of the National Academy of Sciences 104(39), 15236–
15241 (2007)

21. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal
on Computing 36(6), 1544–1569 (2007)

22. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute
of Technology (June 1998)

23. Winfree, E.: Self-healing tile sets. In: Chen, J., Jonoska, N., Rozenberg, G. (eds.)
Nanotechnology: Science and Computation. Natural Computing Series, pp. 55–78.
Springer (2006)

24. Woo, S., Rothemund, P.W.K.: Stacking bonds: Programming molecular recognition
based on the geometry of dna nanostructures. Nature Chemistry 3, 620–627 (2011)

Quasi-polynomial Local Search for Restricted

Max-Min Fair Allocation�

Lukas Polacek1 and Ola Svensson2

1 KTH Royal Institute of Technology, Sweden
polacek@csc.kth.se
2 EPFL, Switzerland
ola.svensson@epfl.ch

Abstract. The restricted max-min fair allocation problem (also known
as the restricted Santa Claus problem) is one of few problems that en-
joys the intriguing status of having a better estimation algorithm than
approximation algorithm. Indeed, Asadpour et al. [1] proved that a cer-
tain configuration LP can be used to estimate the optimal value within a
factor 1/(4 + ε), for any ε > 0, but at the same time it is not known how
to efficiently find a solution with a comparable performance guarantee.

A natural question that arises from their work is if the difference
between these guarantees is inherent or because of a lack of suitable
techniques.We address this problem by giving a quasi-polynomial approx-
imation algorithmwith thementioned performance guarantee.More specif-
ically, we modify the local search of [1] and provide a novel analysis that
lets us significantly improve the bound on its running time: from 2O(n) to
nO(logn). Our techniques also have the interesting property that although
we use the rather complex configuration LP in the analysis, we never actu-
ally solve it and therefore the resulting algorithm is purely combinatorial.

1 Introduction

We consider the problem of indivisible resource allocation in the following clas-
sical setting: a set R of available resources shall be allocated to a set P of
players where the value of a set of resources for player i is given by the function
fi : 2

R !→ R. This is a very general setting and dependent on the specific goals
of the allocator several different objective functions have been studied.

One natural objective, recently studied in [7,8,11,15], is to maximize the so-
cial welfare, i.e., to find an allocation π : R !→ P of resources to players so as
to maximize

∑
i∈P fi(π

−1(i)). However, this approach is not suitable in settings
where the property of “fairness” is desired. Indeed, it is easy to come up with
examples where an allocation that maximizes the social welfare assigns all re-
sources to even a single player. In this paper we address this issue by studying
algorithms for finding “fair” allocations. More specifically, fairness is modeled
by evaluating an allocation with respect to the satisfaction of the least happy
player, i.e., we wish to find an allocation π that maximizes mini∈P fi(π

−1(i)).

� A full version of this paper is available at http://arxiv.org/abs/1205.1373. This
research was supported by ERC Advanced investigator grants 228021 and 226203.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 726–737, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Quasi-polynomial Local Search for Restricted Max-Min Fair Allocation 727

In contrast to maximizing the social welfare, the problem of maximizing fairness
is already NP-hard when players have linear value functions. In order to sim-
plify notation for such functions we denote fi(j) by vi,j and hence we have that
fi(π

−1(i)) =
∑

j∈π−1(i) vi,j . This problem has recently received considerable at-
tention in the literature and is often referred to as the max-min fair allocation
or the Santa Claus problem.

One can observe that the max-min fair allocation problem is similar to
the classic problem of scheduling jobs on unrelated machines to minimize the
makespan, where we are given the same input but wish to find an allocation that
minimizes the maximum instead of one that maximizes the minimum. In a classic
paper [13], Lenstra, Shmoys & Tardos gave a 2-approximation algorithm for the
scheduling problem and proved that it is NP-hard to approximate the problem
within a factor less than 1.5. The key step of their 2-approximation algorithm is
to show that a certain linear program, often referred to as the assignment LP,
yields an additive approximation of vmax = maxi,j vi,j . Bezáková and Dani [5]
later used these ideas for max-min fair allocation to obtain an algorithm that al-
ways finds a solution of value at least OPT−vmax, where OPT denotes the value
of an optimal solution. However, in contrast to the scheduling problem, this algo-
rithm and more generally the assignment LP gives no approximation guarantee
for max-min fair allocation in the challenging cases when vmax ≥ OPT .

In order to overcome this obstacle, Bansal & Sviridenko [3] proposed a stronger
linear program relaxation, known as the configuration LP, for the max-min fair al-
location problem. The configuration LP that we describe in detail in Section 2 has
been vital to the recent progress on better approximation guarantees. Asadpour &
Saberi [2] used it to obtain aΩ(1/

√
|P|(log |P|)3)-approximation algorithmwhich

was later improved byBateni et al. [4] andChakrabarty et al. [6] to algorithms that
return a solution of value at least Ω(OPT/|P|ε) in time O(|P|1/ε).

The mentioned guarantee Ω(OPT/|P|ε) is rather surprising because the inte-
grality gap of the configuration LP is no better thanO(OPT/

√
|P|) [3]. However,

in contrast to the general case, the configuration LP is significantly stronger
for the prominent special case where values are of the form vi,j ∈ {vj , 0}.
This case is known as the restricted max-min fair allocation or the restricted
Santa Claus problem and is the focus of our paper. The worst known integral-
ity gap for the restricted case is 1/2 and it is known [5] that it is NP-hard
to beat this factor (which is also the best known hardness result for the gen-
eral case). Bansal & Sviridenko [3] first used the configuration LP to obtain
an O(log log log |P|/ log log |P|)-approximation algorithm for the restricted max-
min fair allocation problem. They also proved several structural properties that
were later used by Feige [9] to prove that the integrality gap of the configuration
LP is in fact constant in the restricted case. The proof is based on repeated use
of Lovász local lemma and was turned into a polynomial time algorithm [12].

The approximation guarantee obtained by combining [9] and [12] is a large con-
stant and is far away from the best known analysis of the configuration LP by
Asadpour et al. [1]. More specifically, they proved in [1] that the integrality gap is
lower bounded by 1/4 by designing a beautiful local search algorithm that even-

728 L. Polacek and O. Svensson

tually finds a solution with the mentioned approximation guarantee, but is only
known to converge in exponential time. As the configuration LP can be solved
up to any precision in polynomial time, this means that we can approximate the
value of an optimal solution within a factor 1/(4 + ε) for any ε > 0 but it is not
known how to efficiently find a solution with a comparable performance guarantee.
Few other problems enjoy this intriguing status (see e.g. the overview article by
Feige [10]). One of them is the restricted assignment problem1, for which the sec-
ond author in [14] developed the techniques from [1] to show that the configuration
LP can be used to approximate the optimal makespan within a factor 33/17 + ε
improving upon the 2-approximation by Lenstra, Shmoys & Tardos [13]. Again it
is not known how to efficiently find a schedule of the mentioned approximation
guarantee. However, these results indicate that an improved understanding of the
configuration LP is likely to lead to improved approximation algorithms for these
fundamental allocation problems.

In this paper we make progress that further substantiates this point. We
modify the local search of [1] and present a novel analysis that allows us to sig-
nificantly improve the bound on the running time from an exponential guarantee
to a quasi-polynomial guarantee.

Theorem 1. For any ε ∈ (0, 1], we can find a 1
4+ε -approximate solution to

restricted max-min fair allocation in time nO(1
ε logn), where n = |P|+ |R|.

In Section 3.1, we give an overview of the local search of [1] together with our
modifications. The main modification is that at each point of the local search,
we carefully select which step to take in the case of several options, whereas in
the original description [1] an arbitrary choice was made. We then use this more
stringent description with a novel analysis (Section 3.3) that uses the dual of the
configuration LP as in [14]. The main advantage of our analysis (of the modified
local search) is that it allows us to obtain a better upper bound on the search
space of the local search and therefore also a better bound on the run-time.
Furthermore, our techniques have the interesting property that although we use
the rather complex configuration LP in the analysis, we never actually solve it.
This gives hope to the interesting possibility of a polynomial time algorithm
that is purely combinatorial and efficient to implement (in contrast to solving
the configuration LP) with a good approximation ratio.

Finally, we note that our approach currently has a similar dependence on ε as
in the case of solving the configuration LP since, as mentioned above, the linear
program itself can only be solved approximately. However, our hidden constants
are small and for a moderate ε we expect that our combinatorial approach is
already more attractive than solving the configuration LP.

2 The Configuration LP

The intuition of the configuration linear program (LP) is that any allocation of
value T needs to allocate a bundle or configuration C of resources to each player

1 Also here the restricted version of the problem is the special case where vij ∈ {vj ,∞}
(∞ instead of 0 since we are minimizing).

Quasi-polynomial Local Search for Restricted Max-Min Fair Allocation 729

i so that fi(C) ≥ T . Let C(i, T) be the set of those configurations that have
value at least T for player i. In other words, C(i, T) contains all those subsets of
resources that are feasible to allocate to player i in an allocation of value T . For
a guessed value of T , the configuration LP therefore has a decision variable xi,C
for each player i ∈ P and configuration C ∈ C(i, T) with the intuition that this
variable should take value one if and only if the corresponding set of resources is
allocated to that player. The configuration LP CLP (T) is a feasibility program
and it is defined as follows:

∑
C∈C(i,T)

xi,C ≥ 1 i ∈ P

∑
i,C:j∈C,C∈C(i,T)

xi,C ≤ 1 j ∈ R

x ≥ 0

The first set of constraints ensures that each player should receive at least one
bundle and the second set of constraints ensures that a resource is assigned to
at most one player.

If CLP (T0) for some T0 is feasible, then CLP (T) is also feasible for all T ≤
T0, because C(i, T0) ⊆ C(i, T) and thus a solution to CLP (T0) is a solution to
CLT (T) as well. Let TOPT be the maximum of all such values. Every feasible
allocation is a feasible solution of configuration LP, hence TOPT is an upper
bound on the value of the optimal allocation.

We note that the LP has exponentially many constraints; however, it is known
that one can approximately solve it to any desired accuracy by designing a
polynomial time (approximate) separation algorithm for the dual [3]. Although
our approach does not require us to solve the linear program, the dual shall
play an important role in our analysis. By associating a variable yi with each
constraint in the first set of constraints, a variable zj with each constraint in the
second set of constraints, and letting the primal have the objective function of
minimizing the zero function, we obtain the dual program:

max
∑
i∈P

yi −
∑
j∈R

zj

yi ≤
∑
j∈C

zj i ∈ P , C ∈ C(i, T)

y, z ≥ 0

730 L. Polacek and O. Svensson

3 Local Search with Better Run-Time Analysis

In this section we modify the algorithm by Asadpour et al. [1] in order to sig-
nificantly improve the run-time analysis: we obtain a 1/(4 + ε)-approximate
solution in run-time bounded by nO(1/ε log n) whereas the original local search
is only known to converge in time 2O(n). For better comparison, we can write
nO(1/ε logn) = 2O(1/ε log2 n). Moreover, our modification has the nice side effect
that we actually never solve the complex configuration LP — we only use it in
the analysis.

3.1 Description of Algorithm

Throughout this section we assume that T — the guessed optimal value — is
such that CLP (T) is feasible. We shall find an 1/α approximation where α is a
parameter such that α > 4. As we will see, the selection of α has the following
trade-off: the closer α is to 4 the worse bound on the run-time we get.

We note that if CLP (T) is not feasible and thus T is more than TOPT , our
algorithm makes no guarantees. It might fail to find an allocation, which means
that T > TOPT . We can use this for a standard binary search on the inter-
val [0, 1

|P|
∑

i vi] so that in the end we find an allocation with a value at least

TOPT /α.

Max-min Fair Allocation Is a Bipartite Hypergraph Problem. Similar
to [1], we view the max-min fair allocation problem as a matching problem in
the bipartite hypergraph G = (P ,R, E). Graph G has an hyperedge {i} ∪C for
each player i ∈ P and configuration C ⊆ R that is feasible with respect to the
desired approximation ratio 1/α, i.e., fi(C) ≥ T/α, and minimal in the sense
that fi(C

′) < T/α for all C′ ⊂ C. Note that the graph might have exponentially
many edges and the algorithm therefore never keeps an explicit representation
of all edges.

From the construction of the graph it is clear that a matching covering all
players corresponds to a solution with value at least T/α. Indeed, given such a
matching M in this graph, we can assign matched resources to the players and
everyone gets resources with total value of at least T/α.

Alternating Tree of “Add” and “Block” Edges. The algorithm of Asad-
pour et al. [1] can be viewed as follows. In the beginning we start with an empty
matching and then we increase its size in every iteration by one, until all players
are matched. In every iteration we build an alternating tree rooted in a currently
unmatched player p0 in the attempt to find an alternating path to extend our
current matching M . The alternating tree has two types of edges: edges in the
set A that we wish to add to the matching and edges in the set B that are cur-
rently in the matching but intersect edges in A and therefore block them from
being added to the matching. While we are building the alternating tree to find
an alternating path, it is important to be careful in the selection of edges, so as

Quasi-polynomial Local Search for Restricted Max-Min Fair Allocation 731

to guarantee eventual termination. As in [1], we therefore define the concept of
addable and blocking edges.

Before giving these definitions, it will be convenient to introduce the following
notation. For a set of edges F , we denote by FR all resources contained in edges
in F and similarly FP denotes all players contained in edges in F . We also write
eR instead of {e}R for an edge e and use eP to denote the player in e.

Definition 1. We call an edge e addable if eR ∩ (AR ∪ BR) = ∅ and eP ∈
{p0} ∪ AP ∪BP .

Definition 2. An edge b in the matching M is blocking e if eR ∩ bR �= ∅.

Note that an addable edge matches a player in the tree with resources that
currently do not belong to any edge in the tree and that the edges blocking an
edge e are exactly those in the matching that prevent us from adding e. For a
more intuitive understanding of these concepts see Figure 1 in Section 3.2.

The idea of building an alternating tree is similar to standard matching algo-
rithms using augmenting paths. However, one key difference is that the matching
can be extended once an alternating path is found in the graph case, whereas
the situation is more complex in the considered hypergraph case, since a single
hyperedge might overlap several hyperedges in the matching. It is due to this
complexity that it is more difficult to bound the running time of the hypergraph
matching algorithm of [1] and our improved running time is obtained by analyz-
ing a modified version where we carefully select in which order the edges should
be added to the alternating tree and drop edges from the tree beyond certain
distance.

We divide resources into 2 groups. Fat resources have value at least T/α
and thin resources have less than T/α. Thus any edge containing a fat resource
contains only one resource and is called fat edge. Edges containing thin resources
are called thin edges. Our algorithm always selects an addable edge of minimum
distance to the root p0 according to the following convention. The length of a
thin edge in the tree is one and the length of a fat edge in the tree is zero. Edges
not in the tree have infinite length. Hence, the distance of a vertex from the
root is the number of thin edges between the vertex and the root and, similarly,
the distance of an edge e is the number of thin edges on the way to e from p0
including e itself. We also need to refer to distance of an addable edge that is
not yet in the tree. In that case we take the distance as if it was in the tree.
Finally, by the height of the alternating tree we refer to the maximum distance
of a resource from the root.

Algorithm for Extending a Partial Matching. Algorithm 1 summarizes the
modified procedure for increasing the size of a given matching by also matching
a previously unmatched player p0. For better understanding of the algorithm,
we included an example of an algorithm execution in Figure 1 in Section 3.2.

732 L. Polacek and O. Svensson

Input : A partial matching M
Output: A matching of increased size assuming that T is at most TOPT

Find an unmatched player p0 ∈ P , make it a root of the alternating tree
while there is an addable edge within distance 2 log(α−1)/3(|P|) + 1 do

Find an addable edge e of minimum distance from the root
A← A ∪ {e}
if e has blocking edges b1, . . . , bk then

B ← B ∪ {b1, . . . , bk}
else// collapse procedure

while e has no blocking edges do
if there is an edge e′ ∈ B such that e′P = eP then

M ←M \ {e′} ∪ {e}
A← A \ {e}
B ← B \ {e′}
Let e′′ ∈ A be the edge that e′ was blocking
e← e′′

else
M ←M ∪ {e}
return M

end if

end while
Drop from A and B all edges of greater or the same distance as e

end if

end while
return TOPT is less than T

Algorithm 1. Increase the size of the matching

Note that the algorithm iteratively tries to find addable edges of minimum
distance to the root. On the one hand, if the picked edge e has blocking edges
that prevents it from being added to the matching, then the blocking edges are
added to the alternating tree and the algorithm repeatedly tries to find addable
edges so as to make progress by removing the blocking edges.

On the other hand, if edge e has no blocking edges, then this means that the
set of resources eR is free, so we make progress by adding e to the matching
M . If the player was not previously matched, it is the root p0 and we increased
the size of the matching. Otherwise the player eP was previously matched by an
edge e′ ∈ B such that e′P = eP , so we remove e′ from M and thus it is not a
blocker anymore and can be removed from B. This removal has decreased the
number of blockers for an edge e′′ ∈ A. If e′′ has 0 blockers, we recurse and
repeat the same procedure as with e. Note that this situation can be seen on
Figure 1(b) and 1(c) in Section 3.2.

3.2 Example of Algorithm Execution

Figure 1 is a visualization of an execution of Algorithm 1. The right part of every
picture is the alternating tree and to the left we display the positions of edges in
the tree in the bipartite graph. Gray edges are A-edges and white are B-edges.

Quasi-polynomial Local Search for Restricted Max-Min Fair Allocation 733

p0

p0

(a) Step 1

p0

p0

(b) Step 2

p0

p0

(c) Step 3

p0

p0

(d) Step 4

Fig. 1. Alternating tree visualization. The right part of every picture is the alternating
tree and to the left we display the positions of edges in the tree in the bipartite graph.
Gray edges are in the set A and white edges are in the set B.

In Figure 1(a) we start by adding an A-edge to the tree. There are 2 edges in
the matching intersecting this edge, so we add them as blocking edges. Then in
Figure 1(b) we add a fat edge that has no blockers, so we add it to the matching
and thus remove one blocking edge, as we can see in Figure 1(c). Then in Figure
1(d) we add a thin edge which has no blockers. Now the A and B edges form an
alternating path, so by swapping them we increase the size of the matching and
the algorithm terminates.

Note that the fat edge in step 2 is added before the thin edge from step 4,
because it has shorter distance from the root p0. Recall that the distance of an
edge e is the number of thin edges between e and the root including e, thus the
distance of the fat edge is 2 and the distance of the thin edge is 3.

3.3 Analysis of Algorithm

Let the parameter α of the algorithm equal 4 + ε for some ε ∈ (0, 1]. We first

prove that Algorithm 1 terminates in time nO(1
ε log n) where n = |P|+ |R| and,

in the following subsection, we show that it returns a matching of increased size
if CLP (T) is feasible.

734 L. Polacek and O. Svensson

Theorem 1 then follows from that, for each guessed value of T , Algorithm 1
is at most invoked n times and we can find the maximum value T for which
our algorithm finds an allocation by binary search on the interval [0, 1

|P|
∑

i vi].

Since we can assume that the numbers in the input have bounded precision, the
binary search only adds a polynomial factor to the running time.

Run-Time Analysis. We bound the running time of Algorithm 1 using that
the alternating tree has height at most O(log(α−1)/3 |P|) = O

(
1
ε log |P|

)
. The

proof is similar to the termination proof in [1] in the sense that we associate
a signature vector with each tree and then show that its lexicographic value
decreases. However, one key difference is that instead of associating a value
with each edge of type A in the tree, we associate a value with each “layer” that
consists of all edges of a certain distance from the root. This allows us to directly
associate the run-time with the height of the alternating tree.

Lemma 1. For a desired approximation guarantee of 1/α = 1/(4 + ε), Algo-

rithm 1 terminates in time nO(1
ε log n).

Proof. We analyze the run-time of Algorithm 1 by associating a signature vector
with the alternating tree of each iteration. When considering an alternating tree
it is convenient to partition A and B into A0, A1, . . . , A2k and B0, B1, . . . , B2k

respectively by the distance from the root, where 2k is the maximum distance
of an edge in the alternating tree (it is always an even number). The signature
vector of an alternating tree is then defined to be

(−|A0|, |B0|,−|A1|, |B1|, . . . ,−|A2k|, |B2k|,∞).

We prove that each addition of an edge decreases the lexicographic value of the
signature or increases the size of the matching.

On the one hand, if we add an edge with no blocking edges, we either com-
pletely collapse the alternating tree or collapse only a part of it and change the
signature to (−|A0|, |B0|, . . . ,−|A2
|, |B2
| − 1,∞) for some 0 ≤ � ≤ k as the
algorithm drops all edges farther away or in the same distance from the root
as the edge last added to the matching. Thus we either increase the size of the
matching or decrease the signature of the alternating tree.

On the other hand, if the added edge e has blocking edges, there are two
cases. We either open new layers A2k+1 = {e} and B2k+2 where e is a thin edge
and the signature gets smaller, since −|A2k+1| < ∞. If we do not open a new
layer, we increase the size of some A
 and −(|A
| + 1) < −|A
|, so in this case
the signature decreases too.

The algorithm only runs as long as the height of the alternating tree is at most

O(log(α−1)/3 |P|) = O(log1+ε/3 |P|). This can be rewritten as O
(

log |P|
log(1+ε/3)

)
=

O
(

log |P|
ε

)
where the equality follows from x ≤ 2 log(1+x) for x ∈ (0, 1] and we

only consider ε ∈ (0, 1]. There are at most |P| possible values for each position in
a signature, so the total number of signatures encountered during the execution

Quasi-polynomial Local Search for Restricted Max-Min Fair Allocation 735

of Algorithm 1 is |P|O(1
ε
log |P|). As adding an edge happens in polynomial time

in n = |P|+|R|, we conclude that Algorithm 1 terminates in time nO(1
ε logn). ��

Correctness of Algorithm 1. We show that Algorithm 1 is correct, i.e., that
it returns an increased matching if CLP (T) is feasible.

We have already proved that the algorithm terminates in Lemma 1. The
statement therefore follows from proving that the condition of the while loop
always is satisfied assuming that the configuration LP is feasible. In other words,
we will prove that there always is an addable edge within the required distance
from the root. This strengthens the analogous statement of [1] that states that
there always is an addable edge (but without the restriction on the search space
that is crucial for our run-time analysis). We shall do so by proving that the
number of thin blocking edges increases quickly with respect to the height of the
alternating tree and, as there cannot be more than |P| blocking edges, this in
turn bounds the height of the tree.

For this purpose, let us again partition A and B into A0, A1, . . . , A2k and
B0, B1, . . . , B2k respectively by the distance from the root. Note that Bi is empty
for all odd i. Also, A2i contains only fat edges and A2i+1 only thin edges. For a
set of edges F denote by F t all the thin edges in F and by F f all the fat edges
in F . We also use Rt to denote thin resources and Rf to denote fat resources.

We are now ready to state the key insight behind the analysis that shows that
the number of blocking edges increases as a function of α and the height of the
alternating tree.

Lemma 2. Let α > 4. Assuming that CLP (T) is feasible, if there is no addable
edge e within distance 2D + 1 from the root for some integer D, then

α− 4

3

D∑
i=1

|Bt
2i| < |Bt

2D+2|.

Before giving the proof of Lemma 2, let us see how it implies that there always is
an addable edge within distance 2 log(α−1)/3(|P|)+1 from the root assuming the
configuration LP is feasible, which in turn implies the correctness of Algorithm 1.

Corollary 1. If α > 4 and CLP (T) is feasible, then there is always an addable
edge within distance 2D + 1 from the root, where D = log(α−1)/3 |P|.

The proof of the corollary follows intuitively from that Lemma 2 says that the
number of blocking edges increases exponentially in terms of the height of the
tree and therefore, as there are at most |P| blocking edges, the height must be
Oα(log |P|). The detailed proof can be found in the full version of this paper. We
complete the correctness analysis of the algorithm by presenting a proof sketch
of the key lemma.

Proof (Lemma 2). We give an overview of the proof of Lemma 2 (the complete
proof can be found in the full version of this paper).

736 L. Polacek and O. Svensson

Suppose toward contradiction that there is no addable edge within distance
2D + 1 and

α− 4

3

D∑
i=1

|Bt
2i| ≥ |Bt

2D+2|.

We show that this implies that the dual of the configuration LP is unbounded,
which in turn contradicts the assumption that the primal is feasible. Recall that
the objective function of the dual is max

∑
i∈P yi −

∑
j∈R zj. Furthermore, as

each solution (y, z) of the dual can be scaled by a scalar c to obtain a new solution
(c · y, c · z), any solution with positive objective implies unboundedness. We
proceed by defining such solution (y∗, z∗), that is determined by the alternating
tree. More precisely, we take

y∗i =

{
α−1
α if i ∈ P is within distance 2D from the root,

0 otherwise,

and

z∗j =

⎧⎪⎨⎪⎩
(α− 1)/α if j ∈ R is fat and within distance 2D from the root,

vj/T if j ∈ R is thin and within distance 2D + 2 from the root,

0 otherwise.

It can be shown that (y∗, z∗) is a feasible solution provided that there is no
addable edge within distance 2D + 1.

The proof is completed by showing that

∑
j∈R

zj ≤
α− 1

α

D∑
i=0

|Bf
2i|+

α− 1

α

D∑
i=1

|Bt
2i| <

α− 1

α

(
1 +

D∑
i=0

|B2i|
)

=
∑
i∈P

yi,

so the dual is unbounded, which contradicts the assumption that the primal is
feasible. ��

4 Conclusions

Asadpour et al. [1] raised as an open question whether their local search (or a
modified variant) can be shown to run in polynomial time. We made progress
toward proving this statement by showing that a modified local search procedure
finds a solution in quasi-polynomial time. Moreover, based on our findings, we
conjecture the stronger statement that there is a local search algorithm that
does not use the LP solution, i.e., it is combinatorial, and it finds a 1/(4 + ε)-
approximate solution in polynomial time for any fixed ε > 0.

References
1. Asadpour, A., Feige, U., Saberi, A.: Santa claus meets hypergraph matchings. In:

Proceedings of the 11th International Workshop and 12th International Workshop
on Approximation, Randomization and Combinatorial Optimization, pp. 10–20
(2008); see authors’ homepages for the lower bound of 1/4 instead of the claimed
1/5 in the conference version

Quasi-polynomial Local Search for Restricted Max-Min Fair Allocation 737

2. Asadpour, A., Saberi, A.: An approximation algorithm for max-min fair allocation
of indivisible goods. In: Proceedings of the Thirty-Ninth Annual ACM Symposium
on Theory of Computing, STOC 2007, pp. 114–121. ACM, New York (2007)

3. Bansal, N., Sviridenko, M.: The santa claus problem. In: Proceedings of the Thirty-
Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 31–40.
ACM Press, New York (2006)

4. Bateni, M., Charikar, M., Guruswami, V.: Maxmin allocation via degree lower-
bounded arborescences. In: Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, STOC 2009, pp. 543–552. ACM, New York (2009)

5. Bezáková, I., Dani, V.: Allocating indivisible goods. SIGecom. Exch. 5, 11–18
(2005)

6. Chakrabarty, D., Chuzhoy, J., Khanna, S.: On allocating goods to maximize fair-
ness. In: Proceedings of the 2009 50th Annual IEEE Symposium on Foundations
of Computer Science FOCS 2009, pp. 107–116. IEEE Computer Society Press,
Washington, DC (2009)

7. Dobzinski, S., Schapira, M.: An improved approximation algorithm for combinato-
rial auctions with submodular bidders. In: Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithm, SODA 2006, pp. 1064–1073. ACM,
New York (2006)

8. Feige, U.: On maximizing welfare when utility functions are subadditive. In: Pro-
ceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing,
STOC 2006, pp. 41–50. ACM, New York (2006)

9. Feige, U.: On allocations that maximize fairness. In: Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 287–293.
Society for Industrial and Applied Mathematics, Philadelphia (2008)

10. Feige, U.: On estimation algorithms vs approximation algorithms. In: Hariharan,
R., Mukund, M., Vinay, V. (eds.) IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2008). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 2, pp. 357–363. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2008)

11. Feige, U., Vondrak, J.: Approximation algorithms for allocation problems: Improv-
ing the factor of 1 - 1/e. In: 47th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2006, pp. 667–676 (October 2006)

12. Haeupler, B., Saha, B., Srinivasan, A.: New constructive aspects of the lovasz
local lemma. In: 2010 51st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 397–406 (October 2010)

13. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling
unrelated parallel machines. Math. Program. 46, 259–271 (1990)

14. Svensson, O.: Santa claus schedules jobs on unrelated machines. In: Proceedings
of the 43rd Annual ACM Symposium on Theory of Computing, STOC 2011, pp.
617–626. ACM, New York (2011)

15. Vondrak, J.: Optimal approximation for the submodular welfare problem in the
value oracle model. In: Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, STOC 2008, pp. 67–74. ACM, New York (2008)

Strictly-Black-Box Zero-Knowledge

and Efficient Validation of Financial Transactions

Michael O. Rabin1, Yishay Mansour2,�, S. Muthukrishnan3, and Moti Yung4

1 Harvard University, Hebrew University
2 Tel-Aviv University

3 Google Inc. and Rutgers University
4 Google Inc. and Columbia University

Abstract. Zero Knowledge Proofs (ZKPs) are one of the most striking
innovations in theoretical computer science. In practice, the prevalent
ZKP methods are, at times, too complicated to be useful for real-life
applications. In this paper we present a practically efficient method for
ZKPs which has a wide range applications. Specifically, motivated by
the need to provide an upon-demand efficient validation of various fi-
nancial transactions (e.g., the high-volume Internet auctions), we have
developed a novel secure and highly efficient method for validating cor-
rectness of the output of a transaction while keeping input values secret.
The method applies to input values which are publicly committed to by
employing generic commitment functions (even input values submitted
using tamper-proof hardware solely with input/ output access can be
used.) We call these: strictly black box [SBB] commitments. Hence these
commitments are typically much faster than public-key ones, and are the
only cryptographic/ security tool we give the poly-time players, through-
out. The general problem we solve in this work is: Let SLC be a publicly
known staight line computation on n input values taken from a finite
field and having k output values. The inputs are publicly committed to
in a SBB manner. An Evaluator performs the SLC on the inputs and
announces the output values. Upon demand the Evaluator, or a Prover
acting on his behalf, can present to a Verifier a proof of correctness of the
announced output values. This is done in a manner that (1) The input
values as well as all intermediate values of the SLC remain information
theoretically secret. (2) The probability that the Verifier will accept a
false claim of correctness of the output values can be made exponen-
tially small. (3) The Prover can supply any required number of proofs of
correctness to multiple Verifiers. (4) The method is highly efficient. The
application to financial processes is straight forward. To this end (1) we
first use a novel technique for representation of values from a finite field
which we call “split representation”, the two coordinates of the split rep-
resentation are generically committed to; (2) next, the SLC is augmented
by the Prover into a ”translation” which is presented to the Verifier as a

� This research was supported in by The Israeli Centers of Research Excellence (I-
CORE) program, (Center No. 4/11), by a grant from the Israel Science Foundation
(ISF), by a grant from United States-Israel Binational Science Foundation (BSF),
and by a grant from the Israeli Ministry of Science (MoS).

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 738–749, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Strictly-Black-Box Zero-Knowledge and Efficient Validation 739

sequence of generically committed split representations of values; (3) us-
ing the translation, the Prover and Verifier conduct a secrecy preserving
proof of correctness of the announced SLC output values; (4) in order to
exponentially reduce the probability of cheating by the Prover and also
to enable multiple proofs, a novel highly efficient method for preparation
of any number of committed-to split representations of the n input values
is employed. The extreme efficiency of these ZK methods is of decisive
importance for large volume applications. Secrecy preserving validation
of announced results of Vickrey auctions is our demonstrative example.

1 Introduction

Many current methods for validation of auctions employ “additive homomor-
phic encryptions.” The Paillier encryption [8], in particular, employs a public
integer n = p · q where p, q, are large primes constituting the private key. A
value x ∈ [0, n − 1] is encrypted, using n, as C = E(x, r) where r is a help
value. Given two ciphers Ci = E(xi, ri), i = 1, 2, then (C1 · C2)mod n2 =
E((x1 + x2)mod n, (r1 · r2)mod n). In [1-7] numerous applications of Paillier
encryption to secure auctions are given. In [11] Paillier encryption is applied to
combinatorial clock-proxy auctions. There are drawbacks to the use of homo-
morphic encryptions for verifying financial processes. Practicality, [10] employs
Paillier encryption for providing secrecy preserving proofs of correctness of Vick-
ery auctions. A proof of correctness of a 100 bidder auction required 800 minutes.

This work uses values x ∈ Fp where p is a prime. A 128-bit prime is adequate
for all applications. A value x is randomly represented by a vector X = (u, v)
such that (u+v)modp = x, where u ∈ Fp is randomly chosen. A value x appear-
ing in a proof of correctness of outputs of a straight line computation is repre-
sented by a vector X and is committed to by COM(X) = (COM(u), COM(v))
where COM is any generic information- theoretic hiding and computation-
ally binding commitment function. In proofs of correctness, the Prover never
opens/reveals both coordinates of a commitment COM(X) to a representation
of a value x appearing the proof.

The method of using split representations of values and generic commitments
appears in Kilian’s [19] who credits it to [20]. However, Kilian only treats values
in F2, i.e. bits, and implements correctness proofs for boolean operations on
bits. Also, he deals with ZKPs by a Prover without inputs from others, such as
bidders in the case of auctions.

In [9] there appears the first use of random split representations of values
x ∈ Fp for a general prime p as well as information theoretic value hiding proofs
for straight line computations involving (x+ y)modp = z, (x · y)modp = z, and
the predicate x ≤ y. The method of [9] allows a Prover to provide only a single
ZK proof of correctness. Once this is done and commitments to components
values are opened, another proof is impossible. A 100 bidder Vickery auction is
ZK verified by this method in 4 minutes.

The present work greatly improves over [9] in several ways. The ZK proofs
of correctness are considerably simpler and faster. The probability of a Verifier

740 M.O. Rabin et al.

accepting a false claim by the Prover is smaller and better analyzed. Most im-
portantly, the Prover can supply to different Verifiers any required number of
verifications. A 100 bidder Vickery auction is ZK verified by this new method in
2 ms. This new work enables repeated ZK verifications of large and large volume
auctions and other financial processes.

The full version of the paper will include a full discussion of the SBB ZK
proofs, as well as all the omitted proofs.

2 Representation, Commitment, and Translation

2.1 Validation Domain: The Financial Application Domain Settings

Consider as an example a Vickrey auction. An Auctioneer AU receives sealed
bids x1, · · · , xn from bidders P1, · · · , Pn. At closing time the bid values are
revealed to AU and he determines that, say, P1 is the winner and he should pay
x2. Proving correctness of the announced result involves proving x1 > x2 and
x2 ≥ x3, · · · , x2 ≥ xn. After announcement of the result, the AU acting as a
Prover, wants to prove correctness of the result to a Verifier, say one or all of
the bidders, or to a judge, and this without revealing any of the bid values.

In general, the above example and many other real life situations are captured
by a model where an Evaluator Prover EP who receives inputs from participants
(i.e., they post commitments to the values and decommit privately to EP). EP,
in turn, computes certain output values from these inputs (the computational
procedure is efficient and public), and announces these “outputs.” Later on,
possibly upon demand, the EP provides a ZKP of correctness of the output
values (given the public commitments) to a Verifier.

2.2 Inputs and Straight Line Computations

In our setting we assume that all inputs, constants, intermediate values and
outputs of the EP’s calculations are values smaller than p/32 where p is a known
prime number, say p ∼ 2128. Our computations are in the finite field Fp so that
for x, y ∈ Fp, x+ y and x · y are abbreviations for (x+ y)mod p and x · ymod p.
For financial applications the range of values 0 ≤ x < 2128 is adequate.

Definition 1. A straight line computation (SLC) on inputs x1, . . . , xn in Fp with
k outputs xL+1, . . . , xL+k is a sequence

SLC = x1, . . . , xn, xn+1, . . . , xL+1, . . . , xL+k (1)

where for all m > n there exist i, j < m,L such that

– xm = xi + xj, or
– xm = xi · xj , or
– xm = xi , or
– xm = TruthV alue(xi ≤ xj). These xm are restricted to output values.

Strictly-Black-Box Zero-Knowledge and Efficient Validation 741

An example of the SLC for the output x1+. . .+xn is: x1, . . . , xn, xn+1, . . . , x2n−1,
where

xn+1 = x1 + x2, xn+2 = xn+1 + x3, . . . (2)

We now come to the main construct for enabling ZKP’s for the correctness of
the results xL+1, . . . , xL+k of the SLC in the above definition (with the strictly-
black-box restriction as a SBB proof). It also presents a key component of our
overall input representation.

Definition 2. Let x ∈ Fp be a value. A random representation RR(x) of x is a
vector X = (u, v) where u, v ∈ Fp, u was chosen randomly (notation u← Fp) and
x = (u+ v) mod p. For a vector X = (u, v) we denote val(X) = (u+ v)mod p.

The method for creating a RR(x) = (u, v) of x is to randomly chose u← Fp and
set v = (x− u)mod p. Note that from u (or v) by itself, no information about x
can be deduced.

2.3 Generic Commitment Schemes

We can use any commitment scheme we wish (i.e., a generic commitment). We
can use physically secure and physically binding scheme (based on physical as-
sumptions) or any of the two kinds of commitments. Let us define one for con-
creteness: We express our work in terms of a generic commitment function COM ,
which is information theoretic hiding and computationally binding and is used
as a ”black box”.

Definition 3. An information theoretic hiding and computationally binding
generic (black-box) commitment for values u ∈ Fp, is a function COM : Fp ×
[0,m− 1] −→ R, where R is a set of m elements, such that:

For any fixed u ∈ Fp, {COM(u, r)|r ∈ [0,m− 1]} = R. I.e. for a fixed u, the
mapping COM(u, r) is 1-1 from [0,m− 1] onto R.

It is assumed that COM is computationally collision-free. I.e. finding two
different pairs (u1, r1), (u2, r2) such that COM(u1, r1) = COM(u2, r2) is not
possible by a polynomial-time algorithm.

To commit to a value u ∈ Fp, a committer Alice randomly selects a random
help value r ∈ [0,m − 1], obtains from the Black Box the commitment value
c = COM(u, r) and submits c to the receiver Bob or posts it.

To de-commit c, Alice submits to Bob, or posts, the pair (u, r). Bob, or anyone
else, has the result COM(r, u) computed by the Black Box on the decommitted
values and verifies the equality of the commitment value c to the newly obtained
value COM(u, r).

Because m = |R|, and the above 1-1 property for fixed u ∈ Fp, this commitment
is clearly information theoretic hiding.

Remark: Note that if the scheme is implemented via a physical envelope it is also
information theoretically binding (the only way to get the value is to open the
envelope). The literature often employs the highly structured Discrete-Log-based
Pedersen commitment function [18].

742 M.O. Rabin et al.

Definition 4. Let X = (u, v) be a representation of x = (u + v) mod p, then a
commitment to X is defined as COM(X) = (COM(u, r1), COM(v, r2)), where ,
r1, , r2 are randomly chosen help values.

2.4 The Main Theorem: SBB ZK Arguments for SLC

Theorem 1. Let EP be computationally bounded prover. Having posted generic
black-box information-theoretic hiding “split commitments”

COM(X1), · · · , COM(Xn), (∗)

of representations X1, · · ·Xn of values x1, · · · , xn in Fp , the EP can create a
translation

TR = COM(X1), · · · , COM(Xn), COM(Yn+1), · · · , COM(YM), xL+1, · · · , xL+k, (∗∗)

of the public SLC (1) so that:

1. Using the translation TR, the EP can conduct a two round interactive Zero
Knowledge Argument for the statement that xL+1, · · · , xL+k , are the correct
output values of the publicly known SLC (1) [namely, completeness holds].

2. The proof is information theoretic hiding [i.e., there is a ZK simulator in
the SBB model, and in fact if run over commitment of canonical input the
visible transcript has the same distribution, i.e., the proof is Witness Indis-
tinguishable].

3. The probability of EP cheating is at most 3/4 [i.e., this is the soundness
error, and it is implies validity as in proof of correctness (probability of ex-
tracting is bounded by this value)].

4. Finally, the length TR is at most 11 · L.

3 Proving Correctness of Additions and Equalities

We now show how the EP can prove to a Verifier correctness of an equation (3)
for posted commitments (4). Let X = (u1, v1), Y = (u2, v2), and Z = (u3, v3),
be random representations of the values x, y, and z. Note that

val(X) + val(Y) = val(Z) (3)

if and only if there exists a value w such that X + Y = Z + (w,−w).
The EP has prepared commitments

COM(X) = [COM(u1, r1), COM(v1, s1)], COM(Y)

= [COM(u2, r2), COM(v2, s2], COM(Z)

= [COM(u3, r3), COM(v3, s3)] (4)

Strictly-Black-Box Zero-Knowledge and Efficient Validation 743

The EP posts the commitments (4) or sends them to the Verifier and claims
that the hidden vectors X, Y, Z, satisfy the equation (3).

When challenged to prove this claim, the EP posts or sends to Verifier the
above value w. The Verifier now presents to EP a randomly chosen challenge
c← {1, 2}.

Assume that c = 1. The EP de-commits /reveals to Verifier uj, rj , j = 1, 2, 3.
The Verifier checks the commitments, i.e. computes COM(uj, rj), j = 1,2,3 and
compares to the posted first coordinates of COM(X), COM(Y), COM(Z).

The Verifier next checks that u1 + u2 = u3 +w. If c = 2 was chosen, then the
Verifier checks that v1+v2 = v3−w. The following two theorems are immediately
obvious.

Theorem 2. If the equation (3) is not true for the vectors committed in COM(X),
COM(Y), COM(Z), then Verifier will accept with probability at most 1/2 the claim
that (3) holds.

Proof. Under our assumption about the COM function being computationally
binding, the EP can open the commitments for uj , vj , j = 1, 2, 3, in only one way.
Now, if (3) does not hold then at least one of the equations u1 + u2 = u3 + w,
or v1 + v2 = v3 − w is not true. So the probability that a random challenge
c← {1, 2} will not uncover the falsity of the claim (3) is less than 1/2.

Theorem 3. The above interactive proof between EP and Verifier reveals noth-
ing about the values val(X) , val(Y), val(Z) beyond, if successful, that the claim
that (3) is (actually may be) true.

Proof. We note that the interactive proof involves only the revelation of ei-
ther all the first coordinates of the “split representation” based commitments,
or of all the second coordinates, of X,Y, Z. Assume that Verifier’s challenge
was c = 1. The only revealed values were random u1, u2, u3, w which satisfy
u1 + u2 = u3 + w. Because the commitment function C(,) is information
theoretically hiding, the un-opened second coordinates in the commitments (4)
of COM(X), COM(Y), COM(Z), are consistent with any three values v1,1, v2,2 , , v3,3,
satisfying v1,1+v2,2 = v3,3 −w. Thus the interactive proof is consistent with any
three vectors X1, Y1, Z1 satisfying the sum equality (3)– any consistent triple
can serve as an alternative input as in Witness Indistinguishable (WI) proofs.

It is clear how to similarly create and conduct ZK Arguments for the correct-
ness of a claim val(X) = val(Y), for given commitments COM(X), COM(Y).

4 Proving Correctness of Multiplications

For proving correctness of the operations of multiplication xm = xi · xj in the
SLC, the EP will have presented to Verifier commitments COM(Xm), COM(Xi),
COM(Xj) for random representations of the values xm, xi, xj . The EP has to
prove to Verifier that

val(Xi) · val(Xj) = val(Xm) (5)

744 M.O. Rabin et al.

Let Xi = (u1, v1), Xj = (u2, v2), and Xm = (u3, v3). The EP prepares auxiliary
vectors Z0 = (u1 ·u2, v1 ·v2), Z1 = (u1 ·v2+w1, p−w1), Z2 = (u2 ·v1+w2, p−w2),
where w1, w2 are randomly chosen values. The EP augments the commitments
presented to Verifier into:

COM(Xm), COM(Xi), COM(Xj), COM(Z0), COM(Z1), COM(Z2) (6)

Clearly (5) holds if the following Aspects 0-4 hold true for the vectors committed
in (6):

– Aspect 0: Z0 is (u1 · u2, v1 · v2).
– Aspect 1: val(Z1) = u1 · v2.
– Aspect 2: val(Z2) = u2 · v1.
– Aspect 4: val(Xm) = val(Z0) + val(Z1) + val(Z2).

In the interactive proof/verification either Aspects 0 and 4 are checked together,
or Aspect 1, or Aspect 2 are separately checked. The Verifier randomly chooses
with probability 1/2 to verify Aspect 0 and the addition in Aspect 4. He ran-
domly chooses c ← {1, 2}. Say c = 1. The EP reveals the first coordinates of
Xm, Xi, Xj and Z0. Aspect 0 is verified. Aspect 4 is verified in the manner of
verification of addition, see Section 3. If the EP ’ s claim is false with respect
to Aspect 0 or Aspect 4, then the probability of Verifier accepting is at most
3/4 = 1− (1/2) · (1/2).

The Verifier chooses to check either Aspect 1 or Aspect 2, each with probabil-
ity 1/4. Say Aspect 1 was chosen by Verifier. The EP reveals the first coordinate
u1 of Xi and the second coordinate v2 of Xj and both coordinates of Z1 and
checks the equality of Aspect 1. Note that if Aspect 1 is false and is chosen for
verification then Verifier will never accept. Similarly for Aspect 2. Consequently,
if (5) is false and the proof of correctness (5) presented by EP to Verifier is false
in Aspect 1, or Aspect 2, then the probability that Verifier will accept is at most
3/4.

Altogether we have:

Theorem 4. If the product claim is false then the probability that the Verifier
will accept EP s proof of correctness is at most 3/4.

To achieve the information-theoretic ZK property of the above interactive proof
of correctness we require an additional step in EP ’s construction of the posted
proof (6). We note that the same xi can appear in the SLC (1) as left factor and
as right factor. One example arises if the SLC has an operation xm = xi · xi. In
this case verifying Aspect 1 will reveal both coordinates of Xi and hence reveal
the value xi = val(Xi).

When preparing a proof of correctness of SLC the EP creates for every xi
involved in multiplications two random vector representations XLi and XRi.

Strictly-Black-Box Zero-Knowledge and Efficient Validation 745

The proof of correctness of the multiplication xm = xi · xj will be:

COM(Xm), COM(XLi), COM(XRj), COM(Z0), COM(Z1), COM(Z2),

where now XLi = (u1, v1), XRj = (u2, v2). It is clear that even if i = j, and
Aspect 1 is checked, u1 and v2 are independent random values from Fp. Similarly
if SLC contains another multiplication xk = xs · xi it as well as xm = xi · xj
are verified wrt Aspect 1. For the first multiplication XRi will be employed, for
the second multiplication XLi will be used. Thus again independent random
first coordinate of XRi and and second coordinate of XLi are revealed. These
considerations lead to a proof of:

Theorem 5. If the SLC comprises only the operations + and · (and no compar-
isons TruthV alue(xi ≤ xj)) then the EP can prepare a proof of correctness that
is information-theoretically hiding and, by Theorem 3, if false will be accepted by
Verifier with probability at most 3/4.

Proof: Once the commitments (*) to the representations of the input values
x1, · · · , xn are posted or sent to the Verifier, the EP prepares a translation TR
for the SLC (1) as follows. Successively, after X1, · · · , Xm−1 were created, if
xm = xi + xj then EP creates a RR(xm) = Xm. Thus, by induction, val(Xi) +
val(Xj) = val(Xm). If xm = xi ·xj then EP creates the vectors Z0, Z1, Z2, Xm as
in the proof of correctness of multiplications, Section 4. Now val(Xi) ·val(Xj) =
val(Xm). In addition EP creates for every xi appearing in the SLC (1) as a first
and second factor in a multiplication, once Xi was created, another RR(xi).

The EP now has a translation TR for the SLC (1). He now creates commit-
ments to all the vectors beyond the already posted commitments (*) and posts
or sends those to the Verifier.

In the interactive proof of correctness, the Verifier chooses with probability
1/2 to simultaneously verify all additions, equalities, and Aspect 0 for all mul-
tiplications. Verifier randomly chooses c ← {1, 2}. Say c = 1. The EP reveals
the first coordinates of all the Xi, and of all the Z0, Z1, Z2 and all the w values
required for proving correctness of additions. Using these first coordinates and
w values the Verifier checks all equations. Similarly if c = 2. If the TR is false
with respect to any addition, equality, or Aspect 0 of any multiplication, then
the probability of Verifier accepting is at most 3/4. The Verifier chooses with
probability 1/4 to simultaneously verify all Aspects 1 of all multiplications, and
with probability 1/4 to simultaneously verify all Aspects 2 of all multiplications.
If the TR is false in Aspect 1 or Aspect 2 for any multiplication then the prob-
ability of Verifier accepting the correctness of TR and hence the correctness of
the results of the SLC (1) is at most 3/4. The above arguments lead to proving
completeness, validity and statistical ZK/WI.

5 Proving Inequalities x ≤ y, When x, y < p/32

Let b2 < p/32 be an explicit bound on all values xi, xj in the SLC(1) for which
xi ≤ xj needs to be proved. In the application to auctions, where the inputs
x1, · · · , xn are bids, it is required that all bids are bounded by p/32.

746 M.O. Rabin et al.

We note that for integers x, y < p/2 we have x ≤ y iff (y − x) mod p < p/2.
Thus if the EP proves to a verifier these three inequalities for split representations
X,Y, Z of the values x, y, z, then he has proved that as integers x ≤ y. Following
[15], given 0 ≤ z ≤ b the EP can supply within the framework of SLC proofs
of correctness, a proof that (b) ≤ z ≤ 2b (i.e., as an integer p − b ≤ z < p or
0 ≤ z ≤ 2b). Such a proof verification can be made part of Aspect 4 of the
verification. All such inequalities can be simultaneously proved.

How do we get rid of the p− b ≤ z < p possibility?
Lagrange proved that every integer x is the sum of four squares of integers,

x = z21 + z22 + z23 + z24 . Rabin in 1977 MIT lectures and [17] gave an efficient
polynomial-time algorithm for computing such a representation. For numbers
x ≤ 232, Schorn’s Python implementation computed 60, 000 representations in
1 second.

[16] proposed using Lagrange in the context of proving range statements for
encrypted numbers.

We apply Lagrange and [17] in our context of SLCs.
Given 0 ≤ x ≤ b2 < p/32, the EP computes z1, . . . , z4 such that x = z21 + z22 +

z23 + z24 . Each zi is between 0 and b. The numbers x, z1, . . . , z4 are represented
as usual in a translation TR by pairs X,Z1, . . . , Z4.

EP incorporates in the SLC steps for enabling verification that−b ≤ val(Zi) ≤
2b and that val(X) = val(Z1)

2 + . . . + val(Z4)
2. This implies 0 ≤ x ≤ 16b2.

Now 32b2 < p, i.e. 16b2 < p/2.

Theorem 6. Given a SLC including inequalities, the EP can create a proof
of correctness of the whole SLC and present it to V. The verification by V

information-theoretically hides all input and intermediate values. If the proof is
false then the probability that V will accept is at most 3/4.

Proof: For every xi appearing in an inequality

xm = TruthV alue(xi ≤ xj)

and every difference xj − xi linked to such an inequality, the EP calculates
the Lagrange sum of 4 squares representation. For each such sum of 4 squares
x = z21 + z22 + z23 + z24 the EP creates random vector representation Zj of
zj, 1 ≤ j ≤ 4 as well as random representations Sj of (zj)

2, 1 ≤ j ≤ 4. The proof
of correctness of the SLC now reduces to proof of correctness of a SLC involving
only the operations + and ·, so that Theorem 4 applies.

This establishes Main Theorem 1, but to use the result with negligible prob-
abilities we need amplification, thus copying!

6 Exponential Reduction of Probability of Cheating
and Multiple Proofs of Correctness

The use of a single translation of a SLC in a proof of correctness allows a prob-
ability of 3/4 for the EP to cheat the Verifier. This soundness probability is

Strictly-Black-Box Zero-Knowledge and Efficient Validation 747

unacceptable in real-life applications. The way to reduce the margin of uncer-
tainty is for the EP to add redundancy and present to the Verifierm translations
TR1, . . . , TRm of the SLC. The Verifier randomly and independently challenges
the EP for each Tj to verify Aspect 4 with probability 1/2 or one of Aspects
1, 2, each with probability 1/4. Recall that the EP ’s construction of the whole
translation for the SLC starts with commitments COM(X1), . . . , COM(Xn), where
Xj is a random representation of the input value xj , 1 ≤ j ≤ n. As explained in
the Overview, COM(X1), . . . , COM(Xn), were submitted by P1, . . . , Pn. To reduce
the probability of cheating and to allow multiple proofs of correctness, each par-
ticipant Pj has to submit multiple random representations (i.e., “the redundant
split commitment”) of his input value xj . The whole protocol proceeds as fol-
lows. P1, . . . , Pn submit input values x1, . . . , xn to EP : Pi, 1 ≤ i ≤ n, prepares

3k random representations Y
(i)
1 , . . . , Y

(i)
3k of his value xi. Pi submits commit-

ments COM(Y
(i)
1), . . . , COM(Y

(i)
3k) to the EP . EP posts all commitments from all

Pi, 1 ≤ i ≤ n, denoted Y:

COM(Y
(1)
1), COM(Y

(1)
2), . . . , COM(Y

(1)
3k)

COM(Y
(2)
1), COM(Y

(2)
2), . . . , COM(Y

(2)
3k)

· · ·
COM(Y

(n)
1), COM(Y

(n)
2), . . . , COM(Y

(n)
3k)

EP creates additional random representations of input values: Every Pi opens

(reveals) Y
(i)
1 , . . . , Y

(i)
3k to EP . The EP chooses L (say L = 20) and constructs

and posts additional 10kL = m columns, denoted X :

COM(X
(1)
1), COM(X

(1)
2), . . . , COM(X(1)

m)

COM(X
(2)
1), COM(X

(2)
2), . . . , COM(X(2)

m)

· · ·
COM(X

(n)
1), COM(X

(2)
2), . . . , COM(X(n)

m)

Definition 5. We call two sequences X(1), . . . , X(n) and Y (1), . . . , Y (n) value
consistent if val(X(j)) = val(Y (j)), 1 ≤ j ≤ n.

We have by the following a way to replicate values consistently:

Theorem 7. Given commitments COM(X(j)), COM(Y (j)), 1 ≤ j ≤ n, to two se-
quences of representations for which the EP claims value consistency. The EP

can give a ZKP for this claim such that if the claim is false then the probability
that V will accept is at most 1/2.

Using this Theorem, we derive the following which will imply SBB proof of
correctness with validity probability negligible and statistical security, resulting
in our second major Theorem:

748 M.O. Rabin et al.

Theorem 8. Interactively with V, EP can provide an SBB ZK (WI) proof of
knowledge with probability of cheating at most (1/2 + 1/e2)k + (1/2 + 1/e2)3k

that

1. In the n × 3k posted matrix Y of representation of input values, at least
2k columns are pair-wise value consistent. By definition, the common 2k
majority of values in row i is P ′

i s input xi.
2. In the n × m matrix X at least (1 − 1/L)m columns are pair-wise value

consistent with the majority values of the input matrix.
3. The interactive proof involves all input representations of matrix Y and 6kL

columns of the matrix X . The remaining untouched 4kL columns of the ma-
trix X may be used by EP to construct 4L proofs of correctness of announced
SLC results.

Proof: In the interactive proof/verification, the Verifier randomly chooses for
each of the 3k columns Ci of the inputs matrix Y, 2L columns of the matrix
of the matrix X constructed by the EP. The EP interactively proves that Ci

is value-consistent with each of the 2L correspondingly chosen columns. The
Verifier accepts only if all those verifications are successful. The proof for claimed
probability of soundness will be given in the full version of the paper.

6.1 Putting It All Together

As a consequence of Theorem 8 the EP and V now have available 4kL unused
columns of the matrix 7 and with high probability at least (1−1/L)4kL of these
columns are value consistent with the input values x1, . . . , xn.

For the interactive ZKP of the correctness of the outputs of the SLC, V
randomly chooses k of these columns and presents this choice to the EP . The
EP extends each of the k columns (representing commitments to the n inputs to
the SLC) to a full proof of correctness according to Theorem 5. The probability
of V accepting such a proof for a single translation is 1/L+3/4. The 1/L terms
bounds the probability that the chosen column is not value consistent with the
inputs. The probability that the outputs are incorrect and yet V will accept
is at most (1/2 + 1/e2)k + (1/2 + 1/e2)3k + (1/L + 3/4)k. This replication of
commitment is also the crux of the ability to repeat the proof process.

References

1. Abe, M., Suzuki, K.: M+1-st Price Auction Using Homomorphic Encryption. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 115–124. Springer,
Heidelberg (2002)

2. Brandt, F.: How to obtain full privacy in auctions. Tech. rep., Carnegie Mellon
University (2005) (online)

3. Burmaster, M., Magkos, E., Chrissikopoulos, V.: Uncoercible e-bidding games.
Electrocronic Commerce Research 4(1-2), 113–125 (2004)

Strictly-Black-Box Zero-Knowledge and Efficient Validation 749

4. Chen, X., Kim, K., Lee, B.: Receipt-Free Electronic Auction Schemes Using Homo-
morphic Encryption. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 259–273. Springer, Heidelberg (2004)

5. Damgard, I., Jurik, M.: A generalisation, a simplification and some applications of
P probabilistic public-key system. In: PKC 2001 (2001)

6. Jurik, M.J.: Extensions to the paillier cryptosystem with applications to crypto-
logical protocols. Ph.D. thesis, University of Arhus (2003)

7. Lipmaa, H., Asokan, N., Niemi, V.: Secure Vickrey Auctions Without Threshold
Trust. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidel-
berg (2003)

8. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–239.
Springer, Heidelberg (1999)

9. Rabin, M.O., Servedio, R.A., Thorpe, C.: Highly efficient secrecy-preserving proofs
of correctness of computations and applications. In: Proc. IEEE Symposium on
Logic in Computer Science (2007)

10. Parkes, D.C., Rabin, M.O., Shieber, S.M., Thorpe, C.A.: Practical secrecy-
preserving, verifiably correct and trustworthy auctions. In: Proceedings of the 8th
International Conference on Electronic Commerce (ICEC), pp. 70–81 (2006)

11. Thorpe, C., Parkes, D.C.: Cryptographic Combinatorial Securities Exchanges. In:
Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 285–304. Springer,
Heidelberg (2009)

12. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft,
T.: Secure Multiparty Computation Goes Live. In: Dingledine, R., Golle, P. (eds.)
FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

13. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof Systems. SIAM Journal on Computing 18(1), 186–208 (1989)

14. Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing but Their
Validity, or all Languages in NP have ZKP systems. Journal of the ACM 38(3),
691–729 (1991)

15. Brickell, E.F., Chaum, D., Damg̊ard, I.B., van de Graaf, J.: Gradual and Verifiable
Release of a Secret. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp.
156–166. Springer, Heidelberg (1988)

16. Camenisch, J.L., Shoup, V.: Practical Verifiable Encryption and Decryption of
Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
126–144. Springer, Heidelberg (2003)

17. Rabin, M.O., Shallit, J.O.: Randomized Algorithms in Number Theory. Comm.
Pure and Applied Mathematics 39, 239–256 (1986)

18. Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

19. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings
of STOC 1992, pp. 723–732 (1992)

20. Brassard, G., Chaum, D., Crepeau, C.: Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences 37, 156–189 (1988)

Parameterized Tractability of Multiway Cut
with Parity Constraints

Daniel Lokshtanov1 and M.S. Ramanujan2

1 University of California, San Diego, USA
daniello@ii.uib.no

2 The Institute of Mathematical Sciences, Chennai, India
msramanujan@imsc.res.in

Abstract. In this paper, we study a parity based generalization of the classi-
cal MULTIWAY CUT problem. Formally, we study the PARITY MULTIWAY CUT

problem, where the input is a graph G, vertex subsets Te and To (T = Te ∪ To)
called terminals, a positive integer k and the objective is to test whether there
exists a k-sized vertex subset S such that S intersects all odd paths from v ∈ To

to T \ {v} and all even paths from v ∈ Te to T \ {v}. When Te = To, this
is precisely the classical MULTIWAY CUT problem. If To = ∅ then this is the
EVEN MULTIWAY CUT problem and if Te = ∅ then this is the ODD MULTI-
WAY CUT problem. We remark that even the problem of deciding whether there
is a set of at most k vertices that intersects all odd paths between a pair of ver-
tices s and t is NP-complete. Our primary motivation for studying this problem
is the recently initiated parameterized study of parity versions of graphs minors
(Kawarabayashi, Reed and Wollan, FOCS 2011) and separation problems similar
to MULTIWAY CUT. The area of design of parameterized algorithms for graph
separation problems has seen a lot of recent activity, which includes algorithms
for MULTI-CUT on undirected graphs (Marx and Razgon, STOC 2011, Bousquet,
Daligault and Thomassé, STOC 2011), k-WAY CUT (Kawarabayashi and Thorup,
FOCS 2011), and MULTIWAY CUT on directed graphs (Chitnis, Hajiaghayi and
Marx, SODA 2012). A second motivation is that this problem serves as a good
example to illustrate the application of a generalization of important separators
which we introduce, and can be applied even when most of the recently develped
tools fail to apply. We believe that this could be a useful tool for several other sep-
aration problems as well. We obtain this generalization by dividing the graph into
slices with small boundaries and applying a divide and conquer paradigm over
these slices. We show that PARITY MULTIWAY CUT is fixed parameter tractable
(FPT) by giving an algorithm that runs in time f(k)nO(1). More precisely, we
show that instances of this problem with solutions of size O(log log n) can be
solved in polynomial time. Along with this new notion of generalized important
separators, our algorithm also combines several ideas used in previous parame-
terized algorithms for graph separation problems including the notion of impor-
tant separators and randomized selection of important sets to simplify the input
instance.

1 Introduction

A fundamental min-max theorem about connectivity in graphs is Menger’s Theorem,
which states that the maximum number of vertex disjoint paths between two vertices

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 750–761, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Parameterized Tractability of Multiway Cut with Parity Constraints 751

s and t, is equal to the minimum number of vertices whose removal separates these
two vertices. Indeed, a maximum set of vertex disjoint paths between s, t and a mini-
mum size set of vertices separating these two vertices can be computed in polynomial
time. A known generalization of this theorem, commonly known as Mader’s T -path
Theorem [18] states that, given a graph G and a subset T of vertices, there are either
k vertex disjoint paths with only the end points in T (such paths are called T -paths
and if their length is odd (even), then odd (even) T -paths), or there is a vertex set of
size at most 2k which intersects every T -path. Although computing a maximum set of
vertex disjoint T -paths can be done in polynomial time through matching techniques,
the decision version of the dual problem of finding a minimum set of vertices that inter-
sects every T -path is NP-complete for |T | > 2. Formally, this problem is the classical
MULTIWAY CUT problem, where the input is a graph G, a subset of vertices T called
terminals, a positive integer k and the objective is to test whether there exists a k-sized
vertex subset that intersects every T -path. This is a very well studied problem in terms
of approximation, as well as parameterized algorithms [2,8,19]. In this paper we study a
generalization of this classical MULTIWAY CUT problem to a parity version. Formally,
we study the PARITY MULTIWAY CUT problem which is defined as follows.

PARITY MULTIWAY CUT (PMWC)
Instance: A graph G = (V,E), vertex subsets Te and To (T = Te ∪ To), integer k.

Parameter: k
Question: Is there a vertex set S of size at most k which intersects

1. all odd paths from a vertex v ∈ To to some other vertex u ∈ T \ {v},
2. all even paths from a vertex v ∈ Te to some other vertex u ∈ T \ {v}?

When Te = To, this is precisely the classical MULTIWAY CUT problem. If To = ∅ then
this is the EVEN MULTIWAY CUT (EMWC) problem and if Te = ∅ then this is the
ODD MULTIWAY CUT (OMWC) problem.

Our main motivation for studying this particular generalization is the recently initi-
ated parameterized study of parity versions of graphs minors by Kawarabayashi, Reed
and Wollan [14] and separation problems similar to MULTIWAY CUT [1,4,20]. The area
of design of parameterized algorithms for graph separation problems has seen a lot of
recent activity, which includes algorithms for MULTI-CUT on undirected graphs [20,1],
k-WAY CUT [15] and MULTIWAY CUT on directed graphs [4]. Furthermore, recently,
Geelen, Gerards, Reed, Seymour and Vetta [9] proved an odd variant of Mader’s T -path
Theorem. They showed that, given a graph G and a subset T of vertices, there are either
k vertex disjoint odd T -paths, or there is a vertex set of size at most 2k which intersects
every odd T -path. This result has already turned out to be useful in graph theory [9,17],
as well as in the design of parameterized algorithms [10,12,13]. This result was crucial
in settling the parameterized complexity of finding k vertex disjoint odd length cycles
in a graph [13]. Observe that, this odd variant of Mader’s T -path Theorem naturally
gives rise to OMWC, a special case of PMWC.

The goal of parameterized complexity is to find ways of solving NP-hard problems
more efficiently than by brute force. Here, the aim is to restrict the combinatorial explo-
sion of computational difficulty to a parameter that is hopefully much smaller than the
input size. Formally, a parameterization of a problem is the assignment of an integer

752 D. Lokshtanov and M.S. Ramanujan

k to each input instance and we say that a parameterized problem is fixed-parameter
tractable (FPT) if there is an algorithm that solves the problem in time f(k) · |I|O(1),
where |I| is the size of the input instance and f is an arbitrary computable function
depending only on the parameter k. For more background, the reader is referred to the
monographs [6,7,21].

Unlike MULTIWAY CUT, PMWC is already NP-complete for the case when
|T | = 2. Indeed, consider the following reduction from VERTEX COVER to PMWC.
Given an instance (G = (V,E), k) of VERTEX COVER, add two new vertices t1 and t2,
make them both adjacent to every vertex in V , and set To = {t1, t2} and Te = ∅. Call
this new graphG′. It is easy to see that G has a vertex cover of size at most k if and only
if G′ has k-sized vertex subset that intersects every odd To-path. In fact, our argument
shows that OMWC is NP-complete for the case when |T | = 2. One can similarly show
that EMWC is NP-complete for the case when |T | = 2.

Marx [19] was the first to consider cut problems in the context of parameterized
complexity. He gave an algorithm for MULTIWAY CUT with running time O(4k

3

nO(1))
with the current fastest algorithm running in time O(2knO(1)) [5]. Even the recent
developments in techniques to solve graph separation problems [20] and parity based
graph problems [16], do not seem to apply to PMWC, a natural companion of these
problems. In this paper, we introduce a new notion of generalized important separators,
which along with the tools used to solve parameterized cut problems like MULTIWAY

CUT and MULTI-CUT, allows us to design an FPT algorithm for PMWC. In general,
this notion seems to allow us to bring a number of problems under a single umbrella,
and in particular we demonstrate its application to PMWC. The main result of this
paper is the following.

Theorem 1. PMWC can be solved in time 22
O(k)

nO(1) time.

Our algorithm combines the key idea of generalization of separators with several ideas
used in previous parameterized algorithms for graph separation problems The algorithm
for PMWC has three phases, in the first phase using the well-known technique of iter-
ative compression, we bound the number of even terminals by a linear function of k. In
the second phase we remove even terminals using the notion of generalized important
separators that we define in this paper and obtain f(k) instances of OMWC. We obtain
the generalized important separators by dividing the graph into slices with small bound-
aries and applying a divide and conquer paradigm over these slices. In the final phase
we solve these instances of OMWC by designing an FPT algorithm for OMWC. More
precisely, we have the following result.

Lemma 1. OMWC can be solved in time 22
O(k)

nO(1) time.

We note that OMWC can be shown to be FPT be a simple reduction to the SUBSET

ODD CYCLE TRANSVERSAL (SUBSET OCT) problem which was shown to be FPT
in [16]. However, such an algorithm for OMWC would have a much worse dependence
on the parameter k when compared to the algorithm we present in this paper. Moreover,
we would like to point out that the EMWC problem does not seem to reduce to SUB-
SET OCT. We also note that in the case of the EMWC problem with two terminals,
we may subdivide the edges incident on one of them, thus converting all even paths be-
tween these terminals into odd paths and vice versa. This reduction shows that OMWC

Parameterized Tractability of Multiway Cut with Parity Constraints 753

is equivalent to EMWC in the case of two terminals and hence Lemma 1 immediately
gives an FPT algorithm for EMWC in the case of two terminals. We also consider
the edge version of PMWC, the EDGE PARITY MULTIWAY CUT (EPMWC) problem,
where the input is a graph G, a subset of vertices T = Te ∪ To, a positive integer k and
the objective is to determine whether there exists a k-sized edge subset that intersects
every even path from a vertex v ∈ Te to T \ {v} and every odd path from a vertex
v ∈ To to T \ {v}. We show that this problem is also FPT by establishing a parameter
preserving reduction from EPMWC to PMWC.

Related Work. Parity problems hold a lot of promise and remain hitherto unexplored in
the light of parameterized complexity, with exceptions that are few and far between. The
first parameterized algorithm for ODD CYCLE TRANSVERSAL, finding a k sized vertex
subset that intersect all odd cycles only appeared in 2004 [24]. Recently, Kawarabayashi
and Reed [12] obtained a faster algorithm for ODD CYCLE TRANSVERSAL that runs in
almost linear time. Kawarabayashi and Reed [13] settled the parameterized complexity
of ODD CYCLE PACKING, finding k vertex disjoint odd cycles in a graph, by show-
ing it to be FPT. The parameterized complexity of ODD CYCLE PACKING was a long
standing open problem and is much more general problem than the famous DISJOINT

PATHS problem, finding vertex disjoint paths between given pairs of vertices. Recently,
Kawarabayashi, Reed and Wollan [14] initiated the parameterized study of parity ver-
sions of graphs minors and gave an algorithm to find odd minors. Other studies include
finding odd subdivision, parity paths passing through specific vertices [11,10]. On the
cut side, as we mentioned before, the area was initiated by the paper of Marx [19].
The notions used in this paper has been useful in settling parameterized complexity
of variety of problems including DIRECTED FEEDBACK VERTEX SET [3], ALMOST

2 SAT [23] and ABOVE GUARANTEE VERTEX COVER [23,22]. Recently, Marx and
Razgon [20] and Bousquet, Daligault and Thomassé [1] independently showed that
MULTI-CUT, finding k vertices to disconnect given pairs of terminals is FPT. Con-
tinuing this line of study, Chitnis, Hajiaghayi and Marx studied MULTIWAY CUT on
directed graphs and showed it to be FPT [4].

2 Preliminaries

Given a graphG = (V,E) and T ⊆ V , paths with only the end points in T are called T -
paths and if their length is odd (even), then odd (even) T -paths. In an instance (G, Te ∪
To, k) of PMWC, the vertices in Te are called even terminals and those in To are called
odd terminals. Vertices in Te \ To are called purely even terminals and those in To \ Te

are called purely odd terminals.

3 PMWC Parameterized by the Solution Size

The algorithm for PMWC has three phases; in the first phase, using the well-known
technique of iterative compression, we bound the number of even terminals by 7k,
the second phase consists of removing even terminals using the notion of generalized
important separators that we define in this section and obtain f(k) instances of OMWC

754 D. Lokshtanov and M.S. Ramanujan

and the final phase consists of solving the instances of OMWC. In this section, we
outline the first two phases of the algorithm. Before moving on to the first phase, we
make the following observation, which will be used in the description this first phase.

Observation 2. 1 Let (G, T = Te ∪ To, k) be an instance of PMWC and let S be a
solution to this instance.
(a) Any connected component of G \ S with at least two terminals contains terminals
from exactly one of To \ Te or Te \ To.
(b) Any connected component of G \ S contains at most 2 vertices from Te.

3.1 Bounding the Number of Even Terminals

We will first describe a way to reduce the given instance of PMWC to multiple (but
bounded number of) instances, each with a bounded number of even terminals, such
that solving these instances will lead to a solution for the input instance. To this end
we will use the technique of iterative compression. In this technique, we assume that a
solution of size k + 1 is part of the input, and attempt to compress it to a solution of
size k. The method adopted usually is to begin with a subgraph that trivially admits a
(k + 1)-sized solution and then expand it iteratively.

Given an instance (G = (V,E), T = Te∪To, k) of PMWC, whereV = {v1, . . . , vn},
we define a graph Gi = G[Vi] where Vi = {v1, . . . , vi}. We iterate through the in-
stances (Gi, Ti = (Te ∩ Vi) ∪ (To ∩ Vi), k) starting from i = k + 1 and for the ith

instance, with the help of a known solution Si of size at most k + 1 we try to find a so-
lution Ŝi of size at most k. Formally, the compression problem we address is following.

PMWC COMPRESSION
Instance: (G = (V,E), T= Te ∪ To, k, S) where G is an undirected graph, Te, To are

vertex sets, k a postive integer and S, a PMWC of size at most k + 1.
Parameter: k

Question: Does there exist a PMWC of size at most k for this instance?

We will reduce the PMWC problem to n− k instances of the PMWC COMPRESSION

problem as follows. Let Ii = (Gi, (Te ∩ Vi) ∪ (To ∩ Vi), Si, k) be the ith instance
of PMWC COMPRESSION. Clearly, the set Vk+1 is a solution of size at most k + 1
for the instance Ik+1. It is also easy to see that if Ŝi−1 is a solution of size at most k
for instance Ii−1, then the set Ŝi−1 ∪ {vi} is a solution of size at most k + 1 for the
instance Ii. We use these two observations to start off the iteration with the instance
(Gk+1, (Te ∩ Vk+1) ∪ (To ∩ Vk+1), k, Sk+1 = Vk+1) and try to compute a solution
of size at most k for this instance. If there is such a solution Ŝk+1, we set Sk+2 =
Ŝk+1 ∪ {vk+1} and try to compute a solution of size at most k for the instance Ik+2

and so on. If, during any iteration, the corresponding instance does not have a solution
of the required size, it implies that the original instance is also a NO instance. Finally
the solution for the original input instance will be Ŝn. Since there can be at most n
iterations, the total time taken is bounded by n times the time required to solve the
PMWC COMPRESSION problem.

1 Proofs not appearing in the main text are given in the full version.

Parameterized Tractability of Multiway Cut with Parity Constraints 755

We will now describe a way to bound the number of terminals in an instance of
PMWC COMPRESSION. Let (G, T = Te ∪ To, k, S) be an instance of PMWC COM-
PRESSION. Fix a hypothetical solution Ŝ for this instance. We first guess the set Y =
S ∩ Ŝ. There are 2k+1 such possibilities. For each guess of Y , we delete it from the
instance, and also delete vertices which are no longer relevant for the instance. This
results in an instance of PMWC which has a solution N = S \ Y and we are required
to find a solution of size at most k − |Y | which is disjoint from N . Now, we show that
if the resulting instance has such a solution, then it must be the case that the number of
even terminals in this instance is bounded.

Suppose that the resulting instance indeed has such a solution. Fix such a solution S′.
We call a component of G \N affected if it contains some vertex of S′ and unaffected
otherwise. Clearly, there can be at most k affected components. Now, consider the un-
affected components which contain even terminals. We claim that the number of such
components cannot be more that 2k. Suppose this was not the case. Then there must
exist three unaffected components which contain even terminals and share a neighbor
in N . But this implies that there will be an even path between atleast two of these ter-
minals which is disjoint from the new solution S′, a contradiction. Hence, the number
of components of N which contain even terminals is at most 3k. By Observation 2,
any component can contain at most 2 even terminals. Since N contains at most k even
terminals, the number of even terminals in the instance is bounded by 7k. Hence, if the
number of terminals in the instance after removing the guess Y exceeds 7k, we can
reject this guess right away. Note that, even if we compute a solution of the required
size which is not disjoint from the set N , we can use it to continue the iteration. Hence,
once we have an instance with a bounded number of even terminals, we ignore the fact
that there is a solution disjoint from N and just compute any solution of the required
size for the corresponding PMWC instance. Since we only need to deal with PMWC
instances arising from instances of PMWC COMPRESSION, henceforth we will assume
that the given instance of PMWC contains at most 7k even terminals.

3.2 Removing Even Terminals

We now describe a way to separate and remove the even terminals from the instance.
We initially perform the following preprocessing step on the given instance (G, T =
Te∪To, k) of PMWC. For every purely odd terminal ti ∈ T \Te, we add 2(k+1) new
vertices Ti = {t1i , . . . , tk+1

i } and T̂i = {t̂1i , . . . , t̂k+1
i } and make ti adjacent to every

vertex in Ti. Finally, we make a complete bipartition between the sets Ti and T̂i. We
now define a new set of purely odd terminals T ′

o =
⋃

ti∈T\Te
T̂i. That is, for every ti in

T \ Te, we replace ti with the k + 1 vertices t̂ji in the set of purely odd terminals. We
note that the resulting instance is indeed equivalent to the input instance.

Lemma 2. Given an instance (G, T = Te∪To, k) of PMWC, let (G′, T ′ = Te∪T ′
o, k)

be the instance obtained as a result of the terminal transformation described above.
Then, (G, T, k) is a YES instance if and only if (G′, T ′, k) is a YES instance.

Due to Lemma 2, henceforth, we will assume that the given input instance is already
of the form described above. This also allows us to assume that the solution will be

756 D. Lokshtanov and M.S. Ramanujan

disjoint from the set of purely odd terminals. We will now describe a procedure to
reduce this instance of PMWC to an instance with no even terminals, thereby resulting
in an instance of OMWC.

We fix a hypothetical solution for the PMWC instance and work with this solution.
We first guess the intersection of the hypothetical solution with the set of even terminals
and delete these vertices from the graph. Let S be the subset of the solution left after
this step, that is S is a solution for the remaining instance. We then guess the way S
partitions the even terminals into different connected components in the graph G \ S.
There are at most 2|Te| possible intersections and |Te||Te| = 2O(k log k) partitions for
the even terminals. Hence, the total number of possible guesses is 2O(k log k). We say
that S conflicts with a partition if there is a component of G \ S containing terminals
from two distinct sets of the partition. For each guess of the partition, we attempt to find
a solution which partitions the even terminals in a way which does not conflict with the
guess. We fix one such guess of the partition, say P and work with this partition for
the rest of the section. In addition, note that, we can now assume that the solution S is
disjoint from the entire set of terminals. This is because we have already guessed (and
deleted) the intersection with even terminals, and it is already disjoint from the purely
odd terminals.

3.3 Important Separators

The notion of important separators was formally introduced in [19] to handle the
MULTIWAY CUT problem and the same concept was used implicitly in [2] to give an
improved algorithm for the same problem. In this subsection, we recall some defini-
tions related to important separators and a few lemmas which will be required for our
algorithm.

Definition 1. Let G = (V,E) be an undirected graph, let X,S ⊆ V be vertex subsets.
We denote by RG(X,S) the set of vertices of G reachable from X in the graph G \ S
and we denote by NRG(X,S) the set of vertices of G\S which are not reachable from
X in the graph G \ S. We drop the subscript G if it is clear from the context.

Definition 2. LetG = (V,E) be an undirected graph and letX,Y ⊂ V be two disjoint
vertex sets. A subset S ⊆ V \ (X ∪ Y) is called an X-Y separator in G if RG(X,S)∩
Y = ∅ or in other words there is no path from X to Y in the graph G \S. We denote by
λG(X,Y) the size of the smallest X-Y separator in G. An X-Y separator S1 is said
to cover an X-Y separator S with respect to X if R(X,S1) ⊃ R(X,S) and S1 is said
to dominate S if it covers S and |S1| ≤ |S|. If the set X is clear from the context, we
just say that S1 dominates S. An X-Y separator is said to be inclusion wise minimal if
none of its proper subsets is an X-Y separator.

Definition 3. Two X-Y separators are said to be incomparable if neither covers the
other.

Observation 3. Let S1 andS2 be two incomparableX-Y separators. Then,R(X,S1)∩
S2 �= ∅ and R(X,S2) ∩ S1 �= ∅. That is, there is a vertex of S1 reachable from X in
the graph G \ S2 and a vertex of S2 reachable from X in the graph G \ S1. Also,

Parameterized Tractability of Multiway Cut with Parity Constraints 757

NR(X,S1) ∩ S2 �= ∅ and NR(X,S2) ∩ S1 �= ∅. That is, there is a vertex of S1 sep-
arated from X in the graph G \ S2 and a vertex of S2 separated from X in the graph
G \ S1.

Definition 4. Let G = (V,E) be an undirected graph, X,Y ⊂ V be vertex sets and
S ⊆ V be an X-Y separator in G. We say that S is an important X-Y separator if it
is inclusionwise minimal and there does not exist another X-Y separator S1 such that
S1 dominates S with respect to X .

Lemma 3. ([19]) Let G = (V,E) be an undirected graph, X,Y ⊂ V be disjoint
vertex sets. There exists a unique important X-Y separator S∗ of size λG(X,Y) and it
can be computed in polynomial time.

3.4 Important Separator Sequences and a Generalization of Important
Separators

In this subsection we will define the notion of an important separator sequence and use
it in the context of PMWC to define generalized vertex separators with the properties
we require.

Definition 5. Let G = (V,E) be a graph and let X,Y ⊆ V be disjoint vertex sets. We
define an important X-Y separator of order i, Si to be the unique smallest important
X-Si−1 separator in G, where S0 = Y .

By Lemma 3, for every i, an important X-Y separator of order i is unique and can be
computed in polynomial time.

Definition 6. We define a smallest X-Y separator sequence I to be a set I = {Si|1 ≤
i ≤ l}, where Si is an important X-Y separator of order i, for every 1 ≤ i, j ≤ l,
|Si| = |Sj |, and λ(X,Sl) > λ(X,Y), that is there is no X-Sl cut of size |Sl|.

Observation 4. Given two X-Y separators S1 and S2, we say that S1 - S2 if S2 cov-
ers S1. Then, (I,-) forms a total order where I is a smallest X-Y separator sequence.

Note that a smallest X-Y separator sequence is unique and can be computed in poly-
nomial time. Observation 4 is the reason we refer to the set I as a sequence.
The key consequence of the definition of the smallest separator sequence is that it de-
fines a natural partition of the graph into slices with small boundaries. Using this, we
may restrict our search to local parts of the graph, in which case finding separators with
certain properties becomes easier. We will now describe how this concept is applied in
the context the PMWC problem.

Definition 7. Given sets X and Y and a minimal X-Y separator S, let l be the size
of a minimum EMWC of the set X in the graph G \ S. We say that a minimal X-Y
separator S′ well dominates S (with respect to X) if S′ dominates S with respect to X
and the size of a minimum EMWC of X in the graph G \ S′ is at most l.

758 D. Lokshtanov and M.S. Ramanujan

Note that any X-Y separator well dominates itself. Now, let T1 be any set in the parti-
tion P , and let Ŝ be a minimal part of S separating T1 from T \ T1. Recall that T1 is a
set of even terminals and by Observation 2, we can assume that T1 contains at most 2
even terminals. We will first show that for any separator which well dominates Ŝ, there
is a solution for the PMWC instance containing this separator. Following that, we will
describe an algorithm to compute a T1-T \ T1 separator that well dominates Ŝ.

Lemma 4. Let (G, T = Te ∪ To, k) be an instance of PMWC, let S be a solution for
this instance, and T1 be a set in P , with T2 = T \ T1. Let Ŝ be a minimal part of S
separating T1 and T2. Let Ŝ1 be a T1-T2 separator which well dominates Ŝ. Then, there
is also a solution for the instance which contains Ŝ1.

Proof. Let K̂ ⊆ S \ Ŝ be a minimum EMWC of T1 in the graph G \ Ŝ and let K̂1 be a
minimum EMWC of T1 in the graph G\ Ŝ1. We know that |Ŝ| ≥ |Ŝ1| and |K̂| ≥ |K̂1|.
Now, consider the set S′ = (S \ (Ŝ ∪ K̂)) ∪ (Ŝ1 ∪ K̂1). We claim that S′ is also a
solution for the given instance. It is clear that the size of S′ is at most that of S. Hence,
it remains to show that S′ is indeed a PMWC for the given instance.

Suppose that this is not the case and let ti and tj be two terminals such that there is
a path P of forbidden parity between ti and tj in the graph G \ S′. Then, there must be
a vertex v ∈ Ŝ ∪ K̂ such that the path P intersects v. Since Ŝ1 dominates Ŝ, this vertex
must be reachable from T1 in the graph G \ Ŝ1. But, Ŝ1 is a T1-T2 separator. Hence,
if ti or tj is in T2, then the path P must intersect Ŝ1 and hence also intersects S′, a
contradiction. Therefore, it must be the case that ti and tj are precisely the vertices in
T1. Now, since this path P lies entirely inside the component containing T1 in the graph
G \ Ŝ1, it must be the case that this path intersects K̂1 and this in turn implies that the
path P intersects S′, a contradiction. This completes the proof of the lemma.

Lemma 5. Let (G, T = Te ∪ To, k) be an instance of PMWC with a solution S, P
be a partition of Te such that S does not conflict with P . Let T1 be a set in P and T2

be the set T \ T1. Let X be a minimal part of S separating T1 from T2. Then, there is

an algorithm which runs in time 22
O(k)

nO(1) and returns a set of at most 2O(k3) T1-
T2 separators of which at least one separator well dominates X (X is also called the
target separator for this instance).

Proof. For a given subset of vertices, the algorithm computes (if there is one) a T1-T2

separator of size at most k, which is contained in the given subset, and well dominates
X . Initially, and also when the subset is not explicitly given, we allow this subset to be
the entire vertex set of the current graph, and as we prune our search, we will define
the subset accordingly. We first fix a hypothetical minimum EMWC of T1 in the graph
G \X , say K and guess the size of this set, say l.

Description of Algorithm. We first check if there is a T1-T2 separator of size at most
k within the given subset Z . If not, we return NO. If there is no path from T1 to T2,
then we return ∅. Otherwise, we compute the smallest T1-T2 separator sequence, I
comprising only of the vertices of Z . We call a T1-T2 separator S′ good if the size of
the minimum EMWC of T1 in the graphG\S′ is at most l and we call it bad otherwise.
The following observation plays a crucial role in allowing us to ignore (potentially)
large parts of the graph during our search.

Parameterized Tractability of Multiway Cut with Parity Constraints 759

Observation 5. If a T1-T2 separator is good, all T1-T2 separators covered by this sep-
arator are also good and if a T1-T2 separator is bad, all T1-T2 separators which cover
this separator are bad.

For each T1-T2 separator in I, we now determine if the separator is good or bad. Since
|T1| ≤ 2, by Lemma 1, this step takes 22

O(k)

nO(1) time. Let P1 be the maximal element
of I which is good and let P2 be the minimal element of I, which is bad. That is, P1

is good and every separator in I \ {P1} which covers P1 is bad, P2 is bad and every
separator in I \ {P2} covered by P2 is good. If all the separators in I are good, then P2

is defined as T2 and if all separators in I are bad, then P1 is defined as T1. We also have
a final base case. If k = 1 and neither of the other base case conditions apply, then P1

is the required separator and we simply return P1. Otherwise, we will create a number
of sub-instances, recurse on each of these sub-instances and finally return the union of
the sets returned by these recursive calls. The sub-instances are created by exhaustive
branching according to the following case analysis on the “relative position” of the tar-
get separator with P1 and P2.

1. P1 covers the target separator X or P1 = X . In this case, P1 itself is a separator
which well dominates the target separator and we have indeed found a separator of the
required kind. Hence, we return P1.
2. The target separator X covers P1, but is itself covered by P2. Let S̃1 be the intersec-
tion of X with P1 and S̃2 be the intersection of X with P2. We first guess the set S̃1.
If this set is non empty, then we delete it from the graph G, and recursively compute
a T1-T2 separator of size at most k − |S̃1| in the graph G \ S̃1, which lies in the set
NRG(T1, P1), and well dominates X \ S̃1 in the graph G \ S̃1. If the set S̃1 is empty
and P2 �= T2, then we guess the set S̃2. If this set is non empty, then we delete it from
the graph and recursively compute a set containing a T1-T2 separator of size at most
k − |S̃2| in the graph G \ S̃2, which lies in the set NRG(T1, P1) ∩RG(T1, P2), which
also well dominates X \ S̃2 in the graph G \ S̃2. Finally, if the set S̃2 is also empty,
then we recursively compute a set containing a T1-T2 separator of size at most k which
is contained in the set NRG(T1, P1) ∩RG(T1, P2) and well dominates X in the graph
G, and return this set.
3. The target separatorX is incomparable with P1. Let S̃1 be the intersection of X with
P1, P r

1 be the intersection of P1 with RG(T1, X), Pnr
1 be the rest of P1. Also, let Xr

be the intersection of X with RG(T1, P1) and let Xnr be the rest of X . Since X is
incomparable with P1, by Observation 3, P r

1 , Xr, Pnr
1 and Xnr are non empty. We

first guess the set S̃1. If it is non empty, then we delete it from the graph and recursively
compute a set containing a T1-T2 separator of size at most k− |S̃1| in the graph G \ S̃1

which well dominates X \ S̃1. If it is empty, then we guess the sets P r
1 and Pnr

1 and
also the sizes of the sets Xr and Xnr.
We now construct a graph G′ as follows. Initially, we set G′ as the subgraph of G in-
duced on the set RG(T1, P1). For every vertex in P r

1 , we guess if it is in the set K ,
in which case, we delete it from the graph G′. From the remaining vertices of P r

1 , for
every pair of vertices, we guess if there is an odd (respectively even) path between them
in the graph G \S, with the internal vertices disjoint from the vertices of G′ and add an
edge (respectively subdivided edge) between these vertices. We note that it is possible

760 D. Lokshtanov and M.S. Ramanujan

to add both an edge and a subdivided edge between a pair of vertices. This completes
the construction of G′. Now, we recursively compute a set containing a T1-Pnr

1 sepa-
rator in the graph G′, which well dominates Xr in this graph. Once we compute this
set, for each separator X ′ in the set, we delete it from the graph G and in the result-
ing graph, recursively compute a set containing a T1-T2 separator which lies in the set
NRG(T1, P1) and well dominates Xnr in G \ X ′. Finally, we construct a new set by
pairing up each separator from the first set, with the corresponding separators in the
second set, and return this new set.
4. The target separator is incomparable with P2. This case is analogous to case 3.

We note that the target separator is distinct from P2 and cannot cover P2, due to
Observation 5 and hence this case need not be taken into consideration. Proof of cor-
rectness and the running time analysis appear in the full version. ��

Proof of Theorem 1. Given Lemma 4 and Lemma 5, we do the following. Pick a set T1

in P and guess a T1-T \ T1 separator well dominating the minimal part of the solution
separating T1 and T \T1. Once T1 has been separated from the rest of the terminals, we
use Lemma 1 to compute a minimum EMWC of T1 in the component containing T1.
Following this, we pick another set fromP , and repeat. At the end of this procedure, we
will be left with an instance of PMWC with no even terminals, resulting in an instance
of the OMWC problem. In each step, we either pick a vertex in the solution or discard
an even terminal. Hence the number of steps is bounded by 8k and by Lemma 5, in
22

O(k)

nO(1) time, we obtain 2O(k4) instances of OMWC such that the given instance
of PMWC is a YES instance if and only if one of these instances of OMWC is a YES

instance. This, combined with Lemma 1 proves Theorem 1. ��

We can also give a parameter preserving reduction from the edge version of PMWC
(EDGE PARITY MULTIWAY CUT) to PMWC and thus we have the following theorem.

Theorem 6. EDGE PARITY MULTIWAY CUT can be solved in time 22
O(k)

nO(1).

4 Conclusion

In this paper, we introduce a notion of generalized important separators and by sup-
plementing this idea with randomized selection of important components, along with
the iterative compression technique, we give an FPT algorithm for a parity based gen-
eralization of the classical MULTIWAY CUT problem, the PARITY MULTIWAY CUT

problem. The design of improved FPT algorithms for this problem, as well as FPT
algorithms for other parity based separation problems like the parity version of MULTI-
CUT remains an interesting open problems, as does the kernelization complexity of
these problems.

Acknowledgements. We would like to thank Saket Saurabh for the insightful discus-
sions on graph separation problems.

Parameterized Tractability of Multiway Cut with Parity Constraints 761

References

1. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is fpt. In: STOC, pp. 459–468 (2011)
2. Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum node mul-

tiway cut problem. Algorithmica 55(1), 1–13 (2009)
3. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the

directed feedback vertex set problem. J. ACM 55(5) (2008)
4. Chitnis, R.H., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed multiway

cut parameterized by the size of the cutset. In: SODA, pp. 1713–1725 (2012)
5. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On Multiway Cut Parameterized

above Lower Bounds. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp.
1–12. Springer, Heidelberg (2012)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)
7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Sci-

ence. An EATCS Series. Springer, Berlin (2006)
8. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway Cuts in Directed and Node Weighted

Graphs. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 487–498.
Springer, Heidelberg (1994)

9. Geelen, J., Gerards, B., Reed, B.A., Seymour, P.D., Vetta, A.: On the odd-minor variant of
hadwiger’s conjecture. J. Comb. Theory, Ser. B 99(1), 20–29 (2009)

10. Kawarabayashi, K., Li, Z., Reed, B.A.: Recognizing a totally odd k4-subdivision, parity 2-
disjoint rooted paths and a parity cycle through specified elements. In: SODA, pp. 318–328
(2010)

11. Kawarabayashi, K., Reed, B.A.: A nearly linear time algorithm for the half integral parity
disjoint paths packing problem. In: SODA, pp. 1183–1192 (2009)

12. Kawarabayashi, K., Reed, B.A.: An (almost) linear time algorithm for odd cyles transversal.
In: SODA, pp. 365–378 (2010)

13. Kawarabayashi, K., Reed, B.A.: Odd cycle packing. In: STOC, pp. 695–704 (2010)
14. Kawarabayashi, K., Reed, B.A., Wollan, P.: The graph minor algorithm with parity condi-

tions. In: FOCS, pp. 27–36 (2011)
15. Kawarabayashi, K., Thorup, M.: The minimum k-way cut of bounded size is fixed-parameter

tractable. In: FOCS, pp. 160–169 (2011)
16. Kakimura, N., Kawarabayashi, K., Kobayashi, Y.: Erdös-pósa property and its algorithmic

applications: parity constraints, subset feedback set, and subset packing. In: SODA, pp.
1726–1736 (2012)

17. Kakimura, N., Kawarabayashi, K., Marx, D.: Packing cycles through prescribed vertices. J.
Comb. Theory, Ser. B 101(5), 378–381 (2011)

18. Mader, W.: Über die Maximalzahl kreuzungsfreier H-Wege. Arch. Math. (Basel) 31(4), 387–
402 (1978)

19. Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci. 351(3), 394–406
(2006)

20. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of
the cutset. In: STOC, pp. 469–478 (2011)

21. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Math-
ematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

22. Raman, V., Ramanujan, M.S., Saurabh, S.: Paths, Flowers and Vertex Cover. In: Demetrescu,
C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 382–393. Springer, Heidel-
berg (2011)

23. Razgon, I., O’Sullivan, B.: Almost 2-sat is fixed-parameter tractable. J. Comput. Syst.
Sci. 75(8), 435–450 (2009)

24. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–
301 (2004)

Set Cover Revisited: Hypergraph Cover
with Hard Capacities�

Barna Saha1 and Samir Khuller2

1 AT&T Shannon Research Laboratory
barna@research.att.com

2 University of Maryland College Park
samir@cs.umd.edu

Abstract. In this paper, we consider generalizations of classical covering prob-
lems to handle hard capacities. In the hard capacitated set cover problem, addi-
tionally each set has a covering capacity which we are not allowed to exceed.
In other words, after picking a set, we may cover at most a specified number of
elements. Based on the classical results by Wolsey, an O(log n) approximation
follows for this problem.

Chuzhoy and Naor [FOCS 2002], first studied the special case of unweighted
vertex cover with hard capacities and developed an elegant 3 approximation for
it based on rounding a natural LP relaxation. This was subsequently improved to
a 2 approximation by Gandhi et al. [ICALP 2003]. These results are surprising in
light of the fact that for weighted vertex cover with hard capacities, the problem is
at least as hard as set cover to approximate. Hence this separates the unweighted
problem from the weighted version.

The set cover hardness precludes the possibility of a constant factor ap-
proximation for the hard-capacitated vertex cover problem on weighted graphs.
However, it was not known whether a better than logarithmic approximation is
possible on unweighted multigraphs, i.e., graphs that may contain parallel edges.
Neither the approach of Chuzhoy and Naor, nor the follow-up work of Gandhi et
al. can handle the case of multigraphs. In fact, achieving a constant factor approxi-
mation for hard-capacitated vertex cover problem on unweighted multigraphs was
posed as an open question in Chuzhoy and Naor’s work. In this paper, we resolve
this question by providing the first constant factor approximation algorithm for
the vertex cover problem with hard capacities on unweighted multigraphs. Previ-
ous works cannot handle hypergraphs which is analogous to consider set systems
where elements belong to at most f sets. In this paper, we give an O(f) approx-
imation algorithm for this problem. Further, we extend these works to consider
partial covers.

1 Introduction

Covering problems have been widely studied in computer science and operations re-
search, starting from the early work on set-cover [11, 15, 18]. In addition, the vertex
cover problem has been extremely well studied as well – this is a special case of set

� Research supported by NSF CCF-0728839, NSF CCF-0937865 and a Google Research Award.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 762–773, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Set Cover Revisited: Hypergraph Cover with Hard Capacities 763

cover, where each element belongs to exactly two sets [2, 10]. Both these problems
have played a central role in the development of many important ideas in algorithms
– greedy algorithms, LP rounding, randomized algorithms, primal-dual methods, and
have been the vehicle to convey many central ideas in combinatorial optimization.

In this paper, we consider covering problems with hard capacity constraints. In
other words, if a set is chosen, it cannot cover all its elements, but there is an up-
per bound on the number of elements that the set can cover. More formally, consider
a ground set of elements U = {a1, a2, . . . , an} and a collection of subsets of U ,
S = {S1, S2, . . . , Sm}. Each set S ∈ S has a positive integral capacity k(S) ∈ N
and has an upper bound (denoted by m(S)) on the number of copies. In addition, each
set can have arbitrary non-negative weight w̃ : S → R+. A solution for capacitated cov-
ering problem contains each set S ∈ S, x(S) times where x(S) = {0, 1, 2, . . . ,m(S)}
such that there is an assignment of at most x(S)k(S) elements to set S and all the ele-
ments are covered by the assignment. The goal is to minimize

∑
S∈S w̃(S)x(S). Using

Wolsey’s greedy algorithm [18], we can easily derive a O(log n) approximation for the
capacitated set cover problem with hard capacities.

Approximation algorithms for vertex cover with (soft) capacities were developed
by Guha et al [9]. In the soft capacitated covering problem there is no bound on the
number of copies of each set (vertex) that can be chosen. In [9], a primal dual algorithm
was developed to give a 2 approximation. This algorithm can be extended easily to
handle vertex cover with (soft) capacities in hypergraphs. In other words, if we have a
hyper graph with hyper edges of size at most f (set cover problem where each element
belongs to at most f sets), then we can easily get an f approximation [9]. On the other
hand, the case of hard capacities is quite difficult. In a surprising result, Chuzhoy and
Naor [4] showed that the weighted vertex cover problem with hard capacities is set-
cover hard and showed that for unweighted graphs a randomized rounding algorithm
can give a 3 approximation. This was subsequently improved to a 2 approximation [7].
Vertex cover is a special case of set cover problem where f = 2. This naturally raises
the question whether it is possible to obtain an f approximation for the unweighted set
cover problem with hard capacities, where each element belongs to at most f sets. The
approaches of [4, 7] do not extend to case when f > 2. Moreover, the results of [4, 7]
only hold for simple graphs. Obtaining a constant factor approximation algorithm for
the hard-capacitated vertex cover problem for unweighted multigraphs was posed as
an open question in [4]. In this paper, we resolve that question, and extending our
approach we also obtain an O(f)-approximation for the unweighted set cover problem
with hard capacities. Further, we also provide an O(f) approximation algorithm for
partial cover problem with hard capacities. Partial cover is a natural generalization of
covering problems where only a desired number of elements need to be covered [8].
While the works of [3, 17] extended the vertex cover with soft capacities to consider
partial cover, nothing prior to our work was known in the case of hard capacities.

The notion of capacities is also natural in the context of facility location problems, as
well as clustering problems and has been widely studied. Capacitated facility location
and k-median problems have been an active area of research [1,5,16] and frequently ap-
pear in applications involving placement of warehouses, web caches and as a subroutine
in several network design protocols. Non-metric capacitated facility location problem

764 B. Saha and S. Khuller

is a generalization of hard-capacitated set cover problem for which Bar-Ilan et al. [1]
gave an O(log n+ logm)-approximation. In this problem, there are m facilities and n
clients; there is a cost associated for opening each facility and each client connects to
one of the open facility paying a connection cost while the number of clients that can
be assigned to an open facility remains bounded by its capacity. When, the connection
costs are either 0 or ∞, we get the set cover problem with hard capacities.

In several set cover applications, an element only belongs to a few sets. This is es-
pecially true in the context of scheduling. One such example is the work of Khuller, Li
and Saha [12] where they study a scheduling algorithm to allocate jobs to machines in
data centers such that the minimum number of machines are activated. The goal is to
minimize the energy to run machines while maintaining the makespan (maximum sum
of processing times on any machine). In data centers, each data is replicated a small
number of times (typically 3 copies). Thus a job needed to access specific data can be
run on one of a small number of machines. In [12], a (lnn+1) approximation algorithm
is provided that violates the makespan by a factor of 2. However, it does not consider
the fact that each job can be scheduled only on f (here f ≈ 3) machines. Incorporating
this, and in addition, considering that jobs have some fixed processing time, we obtain
the hard-capacitated set cover problem with elements belonging to at most f sets. The
scheduling model of [6] can also be seen as a hard-capacitated set covering instance
with multiple capacity constraints.

Our algorithms for the hard-capacitated versions of both vertex cover and set cover
are based on rounding linear programming (LP) relaxations. In the following subsec-
tion, we outline the main reasons why the previous approaches fail and provide a sketch
of our algorithms.

1.1 Our Approach and Contributions

The works of [4, 7] cannot handle the hard-capacitated vertex cover problem on multi-
graphs, neither do their approaches extend to hypergraphs or set systems with elements
belonging to at most f sets. The algorithms in both of these works are based on LP
rounding and involve three major steps. First, they pick all vertices with fractional val-
ues above a desired threshold. Next, a randomized rounding step is performed to choose
some additional vertices. If even after step two, there are edges with unsatisfied frac-
tional coverage, an alteration step is performed, in which vertices are chosen as long
as all the edges are not fractionally fully covered maintaining the capacity constraints.
Finally, the fractional edge assignment variables are rounded through a flow computa-
tion. While, the expected cost of selecting vertices in the first two steps can be easily
bounded within a small factor of the optimal LP cost, the main crux of the argument re-
lies in showing that with high probability the alteration cost can also be charged within
a small factor of the cost incurred in the first two steps. When the graph does not contain
any parallel edge, the random variables required to prove such a statement are all in-
dependent and thus strong concentration inequalities can be employed for the analysis.
However, the presence of parallel edges (or having hypergraphs) make these random
variables positively correlated. This hinders the application of required concentration
inequalities and the analysis breaks down.

Set Cover Revisited: Hypergraph Cover with Hard Capacities 765

We utilize the LP-structure to decompose the problem into two simpler instances.
Instead of consolidating the variables corresponding to sets (vertices), we modify the
variables associated with assignment of elements (edges) to sets (vertices). Viewing the
LP solution as a bipartite graph between elements and sets, the graph is decomposed
into a forest (H1) and an additional subgraph (H2) such that elements entirely covered
by either one of these can be rounded without much loss in the approximation. There
may be elements that are partially covered (fractionally) by sets in both H1 and H2.
We further modify the remaining fractional solution to recast the capacitated covering
problem on these unsatisfied elements as a multiset multicover (MM) problem without
any capacity constraints.

We show that the partially rounded solution is feasible for the natural linear pro-
gramming relaxation for MM. However the natural LP relaxation for MM has an
unbounded integrality gap. Using a stronger LP relaxation, it is possible to give logn-
approximation algorithm for MM [14], but our fractional solution may not be feasible
for such stronger relaxations. Moreover, a logn approximation for MM is not sufficient
for our purpose. Instead, we show that it is possible to charge the cost of the obtained
solution to a constant factor of LP cost for MM and the number of elements in the set
system, and this suffices to ensure a constant approximation. Our algorithm for MM
follows the paradigm of grouping and scaling used for column restricted (each set has
same multiplicity for all elements) packing and covering problems [13]. However, our
set system is not column restricted. We still can group the elements into small and big
based on the extent of coverage these elements get from sets with relatively lower or
higher multiplicities compared to their demands. By scaling the fractional variables and
doing randomized rounding, we can satisfy the requirements of small elements, but
big elements may still have residual demands left. Satisfying the requirements of big
elements need a further step of careful rounding. Details are described in Section 2.2.

Our main contributions are as follows.

– We obtain an O(1) approximation algorithm for the vertex cover problem with hard
capacities on unweighted multigraphs for the unit multiplicity case, i.e., when all
m(v) = 1.

– We show an O(f)-approximation algorithm for the unweighted set cover problem
with hard capacities where each element belongs to at most f sets.

As a corollary, we obtain an O(1) approximation for the hard-capacitated vertex
cover problem on unweighted multigraphs for arbitrary multiplicities.

– We consider partial covering problem with hard capacities. We give O(1) approx-
imation for partial vertex cover with hard capacities and O(f) approximation for
partial set cover problem with hard capacities.

In the following section, we describe a constant factor approximation algorithm for the
hard-capacitated vertex cover problem on multigraphs with unit multiplicity (m(v) =
1, ∀v ∈ V(G)). The algorithm and the analysis contain the main technical ingredients
which are later used to obtain O(f) approximation algorithms for the set cover and par-
tial cover problems with hard capacities and arbitrary multiplicities. For lack of space,
the latter two results appear in the full version of the paper.

766 B. Saha and S. Khuller

2 Vertex Cover on Multigraphs with Hard Capacities

We start with the following linear programming relaxation for hard-capacitated vertex
cover with unit multiplicities.

minimize
∑
v∈V

x(v) (LPVC)

subject to

y(e, u) + y(e, v) = 1 ∀ e = (u, v) ∈ E, (1)

y(e, v) ≤ x(v), y(e, u) ≤ x(u) ∀e = (u, v) ∈ E, (2)∑
e=(u,v)

y(e, v) ≤ k(v)x(v) ∀v ∈ V, (3)

0 ≤ x(v), y(e, v), y(e, u) ≤ 1 ∀ v ∈ V, ∀e = (u, v) ∈ E. (4)

Here x(v) is an indicator variable, which is 1 if vertex v is chosen and 0 otherwise.
Variables y(e, u) and y(e, v) are associated with edge e = (u, v). y(e, u) = 1 (y(e, v)
= 1) indicates edge e is assigned to vertex u (v). Constraints (1) ensure each edge
is covered by at least one of its end-vertices. Constraints (2) imply an edge cannot be
covered by a vertex v, if v is not chosen in the solution. The total number of edges
covered by a vertex v is at most k(v) if v is chosen and 0 otherwise (constraints (3)).
We relax the variables x(v), y(e, v) to take value in [0, 1] in order to obtain the desired
LP-relaxation. The optimal solution of LPVC denoted by LPVC(OPT) clearly is a lower
bound on the actual optimal cost OPT.

2.1 Rounding Algorithm

Let (x∗, y∗) denote an optimal fractional solution of LPVC. We create a bipartite graph
H = (A,B,E(H)), where A represents the vertices of G, B represents the edges of G 1

and the links E(H) correspond to the (e, v) variables e ∈ B, v ∈ A with non-zero y∗

value 2. Each v ∈ A(H) is assigned a weight of x∗(v). Each link (e, v) is assigned a
weight of y∗(e, v). We now modify the link weights in a suitable manner to decompose
the link sets of H into two graphs H1 and H2. Special structures of H1 and H2 make
rounding relatively simpler on them.

– H1 is a forest. For each node v ∈ A(H1) and link (e, v) ∈ E(H1), y∗(e, v) < x∗(v).
– In H2, if (e, v) ∈ E(H2), then weight of link (e, v) is equal to the weight of v. Thus,

for each node v ∈ A(H2) and link (e, v) ∈ E(H2), y∗(e, v) = x∗(v).

A moment’s reflection shows the usefulness of such a property, essentially, in H2,
we can ignore the hard capacity constraints altogether.

1 We often refer a vertex in B(H) by edge-vertex to indicate it belongs to E(G).
2 in order to avoid confusion between edges of G with edges of H, we refer to edges of H by

links.

Set Cover Revisited: Hypergraph Cover with Hard Capacities 767

The decomposition procedure is based on iteratively breaking cycles. We now explain
the rounding algorithms on each of H1 and H2.

Rounding on H2.

We discard all isolated vertices from H2. Let η ≥ 2 be the desired approximation factor.
We select all vertices in A(H2) with value of x∗ at least 1

η . Let us denote the chosen
vertices by D. Then,

D = {v | v ∈ A(H2), x
∗(v) ≥ 1

η
}.

For every edge-vertex e = (u, v) ∈ B(H2), if v (or u) is in D, and (e, v) ∈ E(H2) (or
(e, u) ∈ E(H2)), then we set y∗(e, v) = 1 (or y∗(e, u) = 1). That is, we assign e to v,
if the link (e, v) is in E(H2) and v is in D, else if u ∈ D and (e, u) ∈ E(H2), the edge e
is assigned to u.

Observation 1. From constraints (3),
∑

e=(u,v) y(e, v) ≤ x(v)k(v). Therefore,∑
e=(u,v)

y(e,v)
x(v) ≤ k(v), and hence in H2, after the assignment of edges to vertices

in D, all vertices maintain their capacity.

In fact, in H2, capacity constraints become irrelevant. Whenever, we decide to pick a
vertex in A(H2), we can immediately cover all the links in E(H2) incident on it.

All edges with both links in E(H2) get covered at this stage. In addition, if e ∈ B(H2)
has only one link (e, v) ∈ E(H2), but x∗(v) = y∗(e, v) ≥ 1

η , then since v ∈ D, e gets
covered. Therefore, the uncovered edges after this step either have no link in E(H2) or
are fractionally covered to an extent less than 1

η in H2.

Rounding on H1.

H1 is a forest; edge-vertices in H1 either have both or one link in E(H1). While the
vertices of H1 and H2 may overlap, the link sets are disjoint. Edge-vertices in B(H1)
with only one link in H1 are called dangling edges. We root H1 arbitrarily to some

Fig. 1. Structure of H1, dangling edges are
colored black and connected by dashed lines,
edges with both end-points in H1 are colored
white and connected by solid lines.

Fig. 2. Structure of H1 after the edges with two
end points in H1 have been assigned.

768 B. Saha and S. Khuller

node of A(H1). This naturally defines a parent-child relationship. Figure (1a) depicts
the structure of H1. Dangling edges are shown by dashed lines.

Rounding edges with both links in H1.
Algorithm (1) describes the procedure to assign edge-vertices that have both links in

E(H1).

Algorithm 1. Assigning edges with two links in H1

1: letD′ = {v ∈ A(H1) | x∗(v) ≥ 1
η
}, select all the vertices in D′.

2: for each edge-vertex e with two links in H1 do
3: if the child vertex of e is selected in D′ then
4: assign e to the selected child vertex.
5: end if
6: end for
7: let T(v) denote the set of unassigned children edge-vertices incident on v ∈ A(H1) with

both links in H1.
8: select any t(v) = �

∑
e=(u,v)∈T(v) y

∗(e, u)� vertices from the children of the edge-vertices
in T(v), and assign the corresponding t(v) edge-vertices in T(v) to these selected children
vertices. If v′ is a newly selected vertex in this step and there are edges that have links incident
on v′ in E(H2), then assign those edges to v′ as well.

9: assign the remaining edge-vertices from T(v) to v.

We first select a collection of D′ vertices from A(H1) \ D with x∗ value at least 1
η .

Any edge-vertex in B(H1) that has a child vertex chosen in D′ gets assigned to its child.
For each vertex v ∈ A(H1), we use T(v) to denote the set of children edge-vertices
that are not assigned in step (4). We select t(v) = �

∑
e=(u,v)∈T(v) y

∗(e, u)� vertices
from the children of the edge-vertices in T(v). We assign the corresponding t(v) edge-
vertices in T(v) to these newly selected children vertices. Rest of the edges in T(v) are
assigned to v.

Rounding dangling edges, i.e., with one link in H1.

After Algorithm 1 finishes, let L(v) denote the set of unassigned dangling edge-vertices
connected to v, and let l(v) =

∑
e=(u,v),e∈L(v) y

∗(e, u). L(v) are the leaf edge-vertices
of H1. We first prove a lemma that shows after the edge-assignment in Algorithm 1, we
still can safely assign at least |L(v)| − �l(v)� edges from L(v) to v without violating
its capacity. We show the residual capacity of v after assigning edges from E(H2) is at
least as high as 1 + |T(v)| − �t(v)� + |L(v)| − �l(v)�. The number of edges assigned
to v from Algorithm 1 is at most 1+ |T(v)| − �t(v)� and hence the following lemma is
established.

Lemma 1. Each vertex v ∈ A(H1) can be assigned |L(v)| − �l(v)� leaf edges-vertices
without violating its capacity.

The edge-vertices in L(v) are leaves of H1, they are connected to v and have their other
link in E(H2). We first pick one vertex from A(H2) such that it covers at least one edge

Set Cover Revisited: Hypergraph Cover with Hard Capacities 769

from L(v). Let us denote this vertex by h2(v) and let it cover p2(v) ≥ 1 parallel edges
(v, h2(v)). If l(v) ≤ p2(v), then following Lemma 1, the rest of the edge-vertices of
L(v) can be assigned to v, and we do so.

If l(v) > p2(v). Let R(v) denote the vertices of A(H2) \ h2(v) that are end-points
of edges in L(v). If we pick enough vertices from R(v) such that they cover at least
l′(v) = l(v)− p2(v) + 1 leaf-edges, then again from Lemma 1, rest of the edges from
L(v) can be assigned to v.

We scale up all the x∗ variables of
⋃

v∈A(H1)
R(v) by a factor of 1

1− 1
η

. We also scale

up the corresponding y∗ link variables by a factor of 1
1− 1

η

. Let (x̄, ȳ) denote the scaled

up variables. Then,
∑

e=(u,v)∈
L(v)\(v,h2(v))

ȳ(e, u) = (l(v)−p2(v)x∗(h2(v)))
(1− 1

η)
≥ (l(v)− p2(v)

η)
(1− 1

η)
>

l(v) − p2(v) + 1 = l′(v), where the last inequality follows from the fact that l(v) >
p2(v) ≥ 1. We let l′(v) = 0, if l(v) ≤ p2(v). We now have the following multi-set
multi-cover problem (MM).

For each v ∈ A(H1) with l′(v) > 0, we create an element a(v). For each vertex
u ∈
⋃

v∈A(H1)
R(v), we create a multi-set S(u). If there are d(v, u) leaf edge-vertices

in L(v) \ (v, h2(v)) incident upon u, then we include a(v) in S(u), d(v, u) times . Each
element a(v) has a requirement of r(a(v)) = (l′(v)). The goal is to pick minimum num-
ber of sets such that each element a(v) is covered (l′(v)) times counting multiplicities.

Note that, since the original graph is a multigraph, d(v, u) can be greater than 1.

Lemma 2. If we set z(S(u)) = x̄u, ∀u ∈
⋃

v∈A(H1)
R(v), then z is a feasible fractional

solution for the above stated multi-set multi-cover problem.

As described in Section 1.1, existing approaches are not sufficient to obtain an inte-
gral solution for the above MM problem that will ensure a constant approximation.
We instead, obtain an algorithm where the total number of sets picked is close to
s+
∑

u∈⋃v∈A(H1) R(v)
x̄u, where s is the number of vertices in A(H1) with l′(v) > 0. In

Section 2.2, we prove the following theorem.

Theorem 3. Given any feasible fractional solution x̄ with cost F for multi-set multi-
cover problem with N elements, there is a polynomial time randomized rounding algo-
rithm that rounds the fractional solution to a feasible integral solution with expected
cost at most 21N + 32F .

The algorithm for assigning the leaf edge-vertices in L(v) is given in Algorithm (2).
Since, each vertex v ∈ A(H1) covers at most |L(v)| − �l(v)� leaf edge-vertices,

by Lemma 1 the capacity of all the vertices in H1 are maintained. We now proceed to
analyze the cost.

Theorem 2. There exists a polynomial time algorithm achieving an approximation fac-
tor of 34 for the hard-capacitated vertex cover problem with unit multiplicity on un-
weighted multigraphs.

2.2 Proof of Theorem 3

In the multi-set multi-cover problem (MM), we are given a ground set of N elements
U and a collection of multi-sets S of U , S = {S1, S2, . . . , SM}. Each multi-set S ∈ S

770 B. Saha and S. Khuller

Algorithm 2. Assigning edges with only one link in H1

1: for each vertex v ∈ A(H1) with |L(v)| ≥ 1 do
2: select the vertex h2(v) that covers at least one edge-vertex from L(v) and assign the

corresponding edge-vertices to h2(v).
3: end for
4: for each vertex v ∈ A(H1) with l(v) ≤ p2(v) do
5: assign all the remaining edge-vertices (at most |L(v)| − �l(v)�) to v
6: end for
7: for each vertex v ∈ A(H1) with l′(v) > 1 do
8: scale up the x∗ variables in

⋃
v∈A(H1)

R(v) by a factor of 1

1− 1
η

and denote it by x̄.

9: end for
10: create the MM instance ({(a(v), d(v))}, {S(u)}), and round the fractional solution x̄ to

obtain an integral solution.
11: for each u such that S(u) is chosen by MM algorithm do
12: select u and assign all the leaf-edges incident on u to it.
13: end for
14: for each v ∈ A(H1) with l′(v) > 1 do
15: assign all the remaining leaf edge-vertices of L(v) (at most |L(v)| − �l(v)�) to it.
16: end for

contains M(S, e) copies of element a ∈ U . Each element a has a demand of r(a) and
needs to be covered r(a) times. The objective is to minimize the number of chosen
sets that satisfy the demands of all the elements. Here we propose a new algorithm that
proves Theorem 3.

The following is a linear program relaxation for MM.

min
∑
S∈S

x(S)

∑
a∈S

M(a, S)x(S) ≥ r(a) ∀ a ∈ U

0 ≤ x(S) ≤ 1 ∀S ∈ S

2.3 Rounding Algorithm for MM

Let x∗ denote the LP optimal solution. The rounding algorithm has several steps.

Step 1. Selecting Sets with High Fractional Value. First, we pick all sets S ∈ S
such that x∗(S) ≥ α > 0, where 1

α is the desired approximation factor. De-
note the chosen sets by H. Each element a now has a residual requirement of
r(a) −

∑
a∈S,S∈HM(S, a). Clearly the fractional solution x∗ projected on the sets

S \ H is a feasible solution for the residual problem. For each element a ∈ U , let
r̄(a) = r(a)−

∑
a∈S,S∈HM(S, a) be the residual requirement. For some β > 0 (to be

set later), let y(S) = βx∗(S), for each S ∈ S \ H. We have for all elements a ∈ U ,∑
a∈S,S∈S\HM(S, a)y(S) ≥ βr̄(a).

Set Cover Revisited: Hypergraph Cover with Hard Capacities 771

Note that after this step, we have a fractional solution with cost

|H |+
∑

S∈S\H
y(S) ≤ 1

α

∑
S∈H

x∗(S) + β
∑

S∈S\H
x∗(S).

For notational simplicity, we denote C = S \ H. Next, we proceed to round the
variables y(S) for S ∈ C.

Step 2. Rounding into Powers of 2. For each multiplicity M(S, a), ∀S ∈ C, a ∈ U ,
we round it to the highest power of 2 lesser than or equal to M(S, a) and denote it by
M1(S, a). For each requirement r̄(a), ∀a ∈ U , consider the lowest power of 2 greater
than or equal to r̄(a) and denote it by r̄1(a). Clearly, if

∑
a∈S,S∈C M(S, a)y(S) ≥

βr̄(a), then
∑

a∈S,S∈C M
1(S, a)4y(S) ≥ βr̄1(a). We denote y1 = 4y.

Step 3. Division into Small and Big Elements. First, for each element if there is a
set that completely satisfies its requirement, we pick the set. We continue the pro-
cess as long as no more element can be covered entirely by a single set. Thus after
this procedure, for all elements a, and for all sets S, M1(S, a) < r̄1(a) and hence

M1(S, a) ≤ r̄1(a)
2 . Now for each element a, we divide the sets in C containing a into

big sets (Big(a)) and small sets (Small(a)). A set S ∈ C is said to be a big set for a, if
M1(S, a) ≥ 1

18 lnn r̄
1(a), otherwise it is called a small set, i.e.,

Big(a) = {S ∈ C |M1(S, a) ≥ 1

18 lnn
r̄1(a)}

Small(a) = {S ∈ C |M1(S, a) <
1

18 lnn
r̄1(a)}

Now, we decompose elements into big and small. An element is small if it is covered
to an extent of r̄1(a) by the sets in Small(a). Else, the element is covered at least to an
extent of (β − 1)r̄1(a) by the sets in Big(a) and we call it a big element. This follows
from the inequality

∑
a∈S,S∈C∩Big(a)

M1(S, a)y1(S) +
∑

a∈S,S∈C∩Small(a)

M1(S, a)y1(S) ≥ βr̄1(a).

Therefore, either the sets in Small(a) cover a to an extent of r̄1(a), or the sets in
Big(a) cover a to an extent of (β − 1)r̄1(a). Let β1 = β − 1. In the first case, we refer
a as a small element, otherwise it is a big element.

Step 4. Covering Small Elements. We employ simple independent randomized round-
ing for covering small elements. We pick each set S ∈ C with probability γy1S , for some
γ ≥ 2.

Lemma 3. All small elements are covered in Step 4 with probability at least(
1− 1

n1/3

)
.

772 B. Saha and S. Khuller

Step 5. Covering Big Elements. This is the most crucial ingredient in the algorithm.
For each big element, we consider only the big sets containing it. For each such big

element and big set we have 1
18 lnnr

1
a < M1(S, a) ≤ r1a

2 . Since, multiplicities are
powers of 2, there are at most l = ln lnn + 3 different values of multiplicities of the
sets for each element a.

Let T a
1 , T

a
2 , . . . T

a
l denote the collection of these sets with multiplicities

r̄1(a)
2 , r̄

1(a)
22 , . . . , r̄

1(a)
2l

respectively. That is, T a
i = {S ∈ Big(a) | M(S, a) = r̄1(a)

2i }.
Set β1 ≥ 3.

For each i = 1, 2, . . . , l, if
∑

S∈Ta
i
y1(S) > i and the number of sets that have been

picked from T a
i in Step 4 is less than

∑
S∈Ta

i
y1(S)

(β1−2) , pick new sets from T a
i such that the

total number of chosen sets from T a
i is

⌈∑
S∈Ta

i
y1(S)

(β1−2)

⌉
.

We now show that each big element gets covered the required number of times and
the total cost is bounded by a constant factor of the optimal cost.

Lemma 4. Each big element a is covered r(a) times by the chosen sets.

Lemma 5. The expected number of sets selected in Step 4 is at most 21n’, where n′ are
the number of big elements that are not covered after Step 5.

Theorem 3. The algorithm returns a solution with expected cost at most 21N + 32F ,
where F =

∑
S x

∗(S), and covers all the elements with probability at least 1− 1
n1/3 .

This completes the description of the O(1) approximation algorithm for hard-
capacitated vertex cover problem on multigraphs with unit multiplicities. We have not
tried to optimize the constants of our approach, but reducing the approximation ratio
to 2 or 3 may require significant new ideas. Theorem 3 is also crucially used to obtain
an O(f)-approximation algorithm for the set cover and partial cover problem with ar-
bitrary multiplicities. The results for set cover and partial cover problem appear in the
full version of the paper.

References

1. Bar-Ilan, J., Kortsarz, G., Peleg, D.: Generalized submodular cover problems and applica-
tions. Theor. Comput. Sci. 250, 179–200 (2001)

2. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover
problem. Annals of Discrete Mathematics 25, 27–45 (1985)

3. Bar-Yehuda, R., Flysher, G., Mestre, J., Rawitz, D.: Approximation of Partial Capacitated
Vertex Cover. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp.
335–346. Springer, Heidelberg (2007)

4. Chuzhoy, J., Naor (Seffi)., J.: Covering problems with hard capacities. SIAM J. Com-
put. 36(2), 498–515 (2006)

5. Chuzhoy, J., Rabani, Y.: Approximating k-median with non-uniform capacities. In: Proceed-
ings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005,
pp. 952–958 (2005)

Set Cover Revisited: Hypergraph Cover with Hard Capacities 773

6. Demaine, E.D., Zadimoghaddam, M.: Scheduling to minimize power consumption using
submodular functions. In: Proceedings of the 22nd ACM Symposium on Parallelism in Al-
gorithms and Architectures, SPAA 2010, pp. 21–29 (2010)

7. Gandhi, R., Halperin, E., Khuller, S., Kortsarz, G., Srinivasan, A.: An improved approxima-
tion algorithm for vertex cover with hard capacities. J. Comput. Syst. Sci. 72, 16–33 (2006)

8. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering prob-
lems. J. Algorithms 53(1), 55–84 (2004)

9. Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated vertex covering. Journal of Algo-
rithms 48(1), 257–270 (2003)

10. Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover problems.
Siam Journal on Computing 11, 555–556 (1982)

11. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst.
Sci. 9, 256–278 (1974)

12. Khuller, S., Li, J., Saha, B.: Energy efficient scheduling via partial shutdown. In: SODA, pp.
1360–1372 (2010)

13. Kolliopoulos, S.G.: Approximating covering integer programs with multiplicity constraints.
Discrete Appl. Math. 129, 461–473 (2003)

14. Kolliopoulos, S.G., Young, N.E.: Tight approximation results for general covering integer
programs. In: IEEE Symposium on Foundations of Computer Science, pp. 522–528 (2001)

15. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Mathemat-
ics 13(4), 383–390 (1975)

16. Mahdian, M., Pal, M.: Universal facility location. In: Proc. of European Symposium of Al-
gorithms 2003, pp. 409–421 (2003)

17. Mestre, J.: A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Edu-
cated Guesses. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005
and RANDOM 2005. LNCS, vol. 3624, pp. 182–191. Springer, Heidelberg (2005)

18. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem.
Combinatorica 2, 385–393 (1982)

On the Limits of Sparsification�

Rahul Santhanam1,�� and Srikanth Srinivasan2,� � �

1 University of Edinburgh
rsanthan@inf.ed.ac.uk

2 DIMACS, Rutgers University
srikanth@dimacs.rutgers.edu

Abstract. Impagliazzo, Paturi and Zane (JCSS 2001) proved a sparsi-
fication lemma for k-CNFs: every k-CNF is a sub-exponential size dis-
junction of k-CNFs with a linear number of clauses. This lemma has
subsequently played a key role in the study of the exact complexity of
the satisfiability problem. A natural question is whether an analogous
structural result holds for CNFs or even for broader non-uniform classes
such as constant-depth circuits or Boolean formulae. We prove a very
strong negative result in this connection: For every superlinear function
f(n), there are CNFs of size f(n) which cannot be written as a disjunc-
tion of 2n−εn CNFs each having a linear number of clauses for any ε > 0.
We also give a hierarchy of such non-sparsifiable CNFs: For every k, there
is a k′ for which there are CNFs of size nk′

which cannot be written as
a sub-exponential size disjunction of CNFs of size nk. Furthermore, our
lower bounds hold not just against CNFs but against an arbitrary fam-
ily of functions as long as the cardinality of the family is appropriately
bounded.

As by-products of our result, we make progress both on questions
about circuit lower bounds for depth-3 circuits and satisfiability algo-
rithms for constant-depth circuits. Improving on a result of Impagliazzo,
Paturi and Zane, for any f(n) = ω(n log(n)), we define a pseudo-random
function generator with seed length f(n) such that with high probability,
a function in the output of this generator does not have depth-3 circuits
of size 2n−o(n) with bounded bottom fan-in. We show that if we could de-
crease the seed length of our generator below n, we would get an explicit
function which does not have linear-size logarithmic-depth series-parallel
circuits, solving a long-standing open question.

Motivated by the question of whether CNFs sparsify into bounded-
depth circuits, we show a simplification result for bounded-depth cir-
cuits: any bounded-depth circuit of linear size can be written as a sub-
exponential size disjunction of linear-size constant-width CNFs. As a
corollary, we show that if there is an algorithm for CNF satisfiability
which runs in time O(2αn) for some fixed α < 1 on CNFs of linear size,
then there is an algorithm for satisfiability of linear-size constant-depth
circuits which runs in time O(2(α+o(1))n).

� This is an extended abstract with some proofs missing. The full version may be
found at [11].

�� Partially supported by ESPRC Grant EP/H05068X/1.
� � � Work partially done as a Member at the Institute of Advanced Study, Princeton.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 774–785, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On the Limits of Sparsification 775

1 Introduction

The Satisfiability (SAT) problem is of central importance in theoretical computer
science. Since SAT is NP-complete, the NP vs P problem reduces to the question
of whether SAT has polynomial-time algorithms. We do not believe that SAT
has polynomial-time algorithms, however it is still a very interesting question
which the best algorithms are for solving SAT in the worst case. Specifically,
by how much can we improve over the “naive” brute-force search algorithm for
SAT, which enumerates over all possible 2n assignments for a SAT instance and
checks whether any of them are satisfying? A very concrete motivation for this
problem is that SAT instances need to be solved in the real world, in a variety
of contexts such as verification, automated planning and testing [6].

From a complexity-theoretic point of view, the importance of improving over
brute-force search has been illustrated by the recent results of Williams [14]
[15]. He shows that even marginal improvements over brute-force search for sat-
isfiability of Boolean circuits in a class C implies that NEXP does not have
polynomial-size circuits in the class C, for a range of natural classes C of circuits.
He applies his methodology [15] to obtain a new circuit lower bound, namely
that NEXP � ACC0, by designing an algorithm performing slightly better than

brute-force search for ACC0-SAT. In fact, there are connections between SAT
algorithms and lower bounds in the opposite direction as well, as evidenced
in recent work using lower bound techniques to design and analyze improved
Satisfiability algorithms [10] [3]. This makes the question of understanding the
complexity landscape of the SAT problem even more intriguing.

When trying to design an improved algorithm, a natural approach is to find
general structural properties of the class of instances which can be exploited
algorithmically. Some examples of such properties for SAT are the downward self-
reducibility property used to reduce the search problem to the decision version,
and the Satisfiability Coding Lemma of Paturi, Pudlak and Zane, which has
been used to design and analyze better algorithms for k-SAT as well as to prove
depth-3 circuit lower bounds for restricted classes of circuits [9] [8].

Perhaps the most influential such property is that of sparsifiability. The Spar-
sification Lemma of Impagliazzo, Paturi and Zane [5] plays a key role in the
study of the exact complexity of SAT. It states that for any constants ε > 0 and
k a positive integer, any k-CNF on n variables can be written as the disjunction
of 2εn linear-size CNFs, where the constant factor in the size depends only on k
and ε.

The Lemma has found many different applications in both algorithmic and
lower bound contexts. Impagliazzo, Paturi and Zane [5] used a constructive ver-
sion of it in their study of sub-exponential reducibilities between NP-complete
problems. Their results indicate that the Exponential-Time Hypothesis (ETH),
which states that 3-SAT is not solvable in time 2o(n), can be used as a unifying
hypothesis in the study of exact complexity of NP-hard problems. They prove
that, for various problems such as k-SAT (where k ≥ 3 is a positive integer),
k-Colourability, Clique, Vertex Cover, Satisfiability of linear-size Boolean cir-
cuits etc., existence of a 2o(n) time algorithm is equivalent to ETH. The Lemma

776 R. Santhanam and S. Srinivasan

has also been used to undertake more refined studies of the complexity of SAT
in terms of various parameters such as clause width and clause density [4] [2].
From the point of view of lower bounds, the Lemma has been used to construct a
small pseudorandom family of functions such that with high probability, a func-
tion in this family does not have depth-3 circuits of size 2n−o(n) and bounded
bottom fan-in. This is closely related to classical questions about lower bounds
for linear-size logarithmic-depth circuits [13].

It is natural to ask whether a similar sparsifiability property holds for broader
classes of formulae or circuits, such as CNFs or even constant-depth circuits.
Such a result would be useful in getting better algorithmic results and deriving
new lower bounds. For example, while k-SAT is solvable in time 2n−Ω(n) for
m = poly(n) and constant k, the best known algorithm for SAT on general
CNFs runs in time 2n−Ω(n/ log(m/n)). A sparsification lemma for CNFs would be
an important step towards a 2n−Ω(n) time algorithm for SAT on polynomial-size
formulae. Indeed, this has explicitly been posed as an open question by Calabro,
Impagliazzo and Paturi [2].

In this paper, we show a strong negative answer to the question of whether
CNFs (and hence also more general classes of circuits) can be sparsified.

Theorem 1. Let f : N → N be any function such that f(n) = ω(n). Then there
is a sequence of CNFs {φn}, where for each n φn has n variables and has size
at most f(n), such that for any constants ε ∈ (0, 1] and c > 0, for all large
enough n φn cannot be written as the OR of 2n−εn CNFs of size at most cn. In
particular, CNFs are not sparsifiable.

In fact, what we show is significantly stronger - for any sequence {Fn} of families
of Boolean functions such that |Fn| = nO(n), there is a sequence of CNFs which
are not expressible as a 2n−Ω(n) size disjunction of functions in Fn. Also, the
CNFs for which we show this are very natural. The functions they represent are
the solution sets of sparse linear equations.

Theorem 1 only rules out “sparsifying” superlinear-size CNFs to linear-size
CNFs. It could potentially still be the case that n3-size CNFs are sparsifiable
into n2-size CNFs. It turns out that the counter-examples of Theorem 1 cannot
establish this stronger statement, however by using a different set of counter-
examples and a similar argument, we derive a hierarchy of non-sparsifiable CNFs.

Theorem 2. Let k and k′ > 2k be any fixed constants. There is a fixed ε > 0
and a sequence of CNFs {φn} where φn has n variables and |φn| ≤ nk′

such that
for large enough n, φn cannot be written as the OR of 2εn CNFs of size at most
nk.

The hard CNFs are again natural - they are simply random CNFs of a specified
width and size. Thus, in a sense, the proof of Theorem 2 shows that CNFs cannot
be sparsified even on average.

We motivated the question about sparsification by describing the possible
applications of a positive result. It turns out that our negative results have a
couple of interesting byproducts as well. By itself, the results give some indication
of the obstacles to designing better SAT algorithms, as well as what kinds of

On the Limits of Sparsification 777

instances are likely to be hard. For example it is known that in certain contexts,
such as for Resolution-based algorithms, instances encoding subspaces or random
instances are hard. Our results are in a similar spirit.

More concretely, motivated by Theorem 1, we construct a simple new sub-
exponential time reduction from satisfiability on linear-size constant-depth cir-
cuits to k-SAT. The motivation is to apply Theorem 1 to show that CNFs cannot
in general be sparsified into linear-size constant depth circuits. We cannot simply
use the stronger form of Theorem 1 for arbitrary families of functions of small
enough cardinality here, as we are unable to bound the number of functions
computed by unbounded fan-in linear-size constant-depth circuits by nO(n). In-
stead, we show a positive result that any linear-size constant-depth circuit can be
written as an OR of 2εn k-CNFs for any ε > 0 and k depending only on ε. This
decomposition can actually be done constructively, and this gives us the reduc-
tion we mentioned before. The decomposition also implies that superlinear-size
CNFs cannot be sparsified into linear-size constant-depth circuits.

Theorem 3. Let {fn} be a sequence of Boolean functions on n bits, such that
fn is computed by linear-size constant-depth circuits. For any constant ε > 0,
there is a constant k such that fn is the disjunction of 2εn functions each of
which is computed by a k-CNF of linear size.

Theorem 1 also has an application to circuit lower bounds. Here we are con-
cerned with lower bounds for depth-3 circuits where there is a bound on the
bottom fan-in. If we could show that there is an explicit function which does not
have size 2n/2 depth-3 circuits with bottom fan-in O(1), this would be a lower
bound breakthrough, as using a connection due to Valiant[13] it would imply
a superlinear-size lower bound against logarithmic-depth series-parallel circuits.
Valiant argues that the series-parallel restriction on the structure of the circuit is
interesting because the best-known circuits for many problems are series-parallel.
Impagliazzo, Paturi and Zane [5] make progress on this question by constructing

an explicit pseudo-random family of 2O(n2) functions such that most functions
in the family do not have size 2n−Ω(n) depth-3 circuits with bottom fan-in O(1).
We improve their result by reducing the size of the function family down to nf(n)

for any f(n) = ω(n). We also argue that a further improvement of the family
size to 2cn for c < 1 would actually imply a breakthrough lower bound for an
explicit function.

In the theorem below, a Σ3 circuit is an unbounded fan-in depth 3 circuit
where the top gate is an OR. Note that when trying to prove a lower bound for
an explicit function, we can assume wlog that the top gate is an OR.

Theorem 4. For each f(n) = ω(n), there is a sequence {Fn} of families of
Boolean functions on n bits, where Fn has size at most nf(n), such that with
probability 1−o(1), a random function from Fn does not have Σk

3 circuits of size
2n−Ω(n) with bottom fan-in O(1). Moreover, given i ∈ [1, nf(n)] in binary and
x ∈ {0, 1}n, there is a polynomial-time algorithm for evaluating the i’th function
in Fn on x.

778 R. Santhanam and S. Srinivasan

2 Preliminaries

2.1 Basic Complexity Notions

We assume a basic knowledge of complexity theory. Standard references for this
include the book by Arora and Barak [1] and the Complexity Zoo1.

When discussing sparsification, we find it convenient to talk of non-uniform
complexity measures. A non-uniform complexity measure CSIZE associates with
each integer n and size bound s, a class of Boolean functions CSIZE(s(n)) on
n bits, such that for any s′ ≥ s, CSIZE(s(n))) ⊆ CSIZE(s′(n)). We will be
concerned mainly with measures which correspond directly to standard models
of computation, such as CNFs, CNFs of constant width (referred to as O(1)-
CNFs), constant-depth unbounded fan-in circuits (AC0), Boolean formulae and
Boolean circuits.

By the size of a CNF, we will typically mean the number of clauses. If we
mean the total number of literal occurrences, we will make this explicit.

As we will be studying lower bounds for depth-3 circuits, we require some
notation for such circuits. Define Σk

d to be the set of depth d circuits with top
gate OR such that each bottom gate has fan-in at most k. It is known that anyΣk

3

circuit for the Parity function or the Majority function requires Ω(2n/k) gates,
and such bounds are tight for k = O(

√
n). For k = 2, a 2n−o(n) size lower bound

is known for an explicit function in P, however not even an Ω(2n/2) size lower
bound is known for an explicit function for any k > 2. Using a connection due to
Valiant [13], this question can be related to classical lower bound questions about
linear-size logarithmic-depth Boolean circuits. Valiant’s results imply that linear-
size logarithmic-depth Boolean circuits with bounded fan-in can be computed
by depth-3 unbounded fan-in circuits of size O(2n/ log logn) with bottom fan-in
limited by nε for arbitrarily small ε. If in addition, the graph of connections of
the circuit is restricted to be series-parallel, the simulation can be modified to
give size 2n/2 and fan-in O(1).

Given functions f, g : N → R>0, we occasionally use f . g to denote
f(n) = o(g(n)). This notation makes the transitivity of the o(·) relation more
transparent.

2.2 Sparsification and Simplification

Definition 1. Given non-uniform complexity measures CSIZE and C′SIZE,
and functions s, s′ : N → N, we say that there is a (C, s, C′, s′)-sparsification if
for any constant ε > 0 and any function f ∈ CSIZE(O(s)), f is the OR of at
most 2εn functions each belonging to CSIZE(O(s′)). We say that C is sparsifiable
to C′ if there is a (C, nk, C′, n)-sparsification for each k, and we say simply that
C is sparsifiable if C is sparsifiable to C.

Definition 2. Given non-uniform complexity measures CSIZE and C′SIZE,
and function s : N → N, we say that there is an OR-simplification of C to C′

1 http://qwiki.stanford.edu/index.php/Complexity Zoo

On the Limits of Sparsification 779

at size s if there is a (C, s, C′, s)-sparsification. We say that there is an OR-
simplification of C to C′ if there is an OR-simplification of C to C′ at size n.

The following proposition is immediate since sub-exponential size ORs are closed
under composition.

Proposition 1. If C is sparsifiable to C′ and there is an OR-simplification of C′

to C, then C is sparsifiable.

There are many interesting positive results on sparsification and simplification.
Impagliazzo, Paturi and Zane [5] showed that k-CNFs are sparsifiable for any
constant k. Improved parameters were obtained by [2].

Lemma 1 (Sparsification Lemma). [5] [2] Let k > 0 be any integer. For any
constant ε > 0, there exists a constant c(k, ε) such that for large enough n, any
k-CNF over n variables can be expressed as the OR of 2εn k-CNFs each of size
at most c(k, ε)n.

The original proof of Lemma 1 [5] yielded c doubly exponential in k but this
was subsequently improved to singly exponential in k. Using results of Miltersen,
Radhakrishnan andWegener [7], it can be shown that an exponential dependence
on k is necessary.

Schuler [12] showed that there is an OR-simplification of CNFs to O(1)-CNFs.
This follows from the following more general lemma, the proof of which is similar
and is deferred to the full version.

Lemma 2. For any constant ε ∈ (0, 1] and function c : N → N, every CNF ϕ
with at most cn clauses can be written as the OR of at most 2εn many k-CNFs
with at most cn clauses, where k = O(1ε log(

c
ε)).

Note that when c is a constant in Lemma 2, k is a constant as well.

Corollary 1. There is an OR-simplification of CNFs to O(1)-CNFs.

3 The Limits of Sparsification

3.1 Non-sparsifiability of CNFs

We will show that there are CNFs of slightly superlinear size that cannot be
written as a subexponential OR of CNFs of linear size.

Given �, r ∈ N, let S
,r denote the collection of all r-tuples of subsets of [n] of
size �. Given S = (S1, . . . , Sr) ∈ S
,r, let ϕS denote some CNF for the following
function:

GS =

r∧
i=1

¬
⊕
j∈Si

xj

Though the above function has not been written in CNF form, it is easy to see
that for any S as above, ϕS can be chosen to be CNFs of size at most r2
.

Lemma 3. Fix any �, r : N → N. Then we have that for any S ∈ S
,r, the CNF
ϕS has at least 2n−r satisfying assignments.

780 R. Santhanam and S. Srinivasan

Proof. This follows from the fact that any homogeneous system of r linear equa-
tions has at least 2n−r solutions over F2. ��

Now we proceed to the proof of the main lemma. Given a CNF formula ϕ, let
Sat(ϕ) denote the set of satisfying assignments of ϕ.

Fix a T ⊆ [n] and assume that S ∈
(
[n]

)
is chosen uniformly at random. Given

η ∈ [0, 1], we call S (1 − η)-balanced w.r.t. T if |S ∩ T | ≥ (1 − η)ES [|S ∩ T |].
We call S balanced w.r.t. T if S is 1/2-balanced w.r.t. T . Given S ∈ S
,r, we say
that S is (1 − η)-balanced w.r.t. T (balanced w.r.t. T) if at least half the Si are
(1− η)-balanced w.r.t. T (respectively, balanced w.r.t. T).

We need the following technical lemma regarding balance.

Lemma 4. Let ε, η ∈ (0, 1) be constants. Fix � = �(n), r = r(n) such that 1 .
�(n) and n/�. r(n). Assume T ⊆ [n] such that |T | ≥ εn. Then for a randomly
chosen S ∈ S
,r, we have PrS [S is not (1 − η)-balanced w.r.t. T] = 1

2ω(n) .

Proof. A simple concentration equality tells us that for any i ∈ [r],
PrSi [Si not (1− η)-balanced] ≤ 2−Ω(
). Hence, given a set of r/2 many Si, the
probability that none of them are balanced w.r.t. T is bounded by 2−Ω(
r) =
2−ω(n+r), where the last equality follows from the fact that r � n/�. By a
union bound, it follows that the probability that there exists a subset of S
of size r/2 all of whose elements are not (1 − η)-balanced w.r.t T is at most(

r
r/2

)
2−ω(n) ≤ 2r2−ω(n+r) ≤ 2−ω(n). The lemma now follows since this event

corresponds precisely to S not being balanced w.r.t T . ��

Lemma 5. Fix constants c, ε > 0. Let � = �(n), r = r(n) be parameters such
that 1 . � = O(log n), n/� . r . n. Fix any collection A of subsets of {0, 1}n
of size at most ncn such that each A ∈ A has size at least 2εn. Then, for a
random S ∈ S
,r, we have PrS [∃A ∈ A : A ⊆ Sat(ϕS)] = o(1).

Proof. Fix any A ∈ A. Since Sat(ϕ) is a subspace of Fn
2 , we see that A ⊆ Sat(ϕ)

iff Span(A) ⊆ Sat(ϕ), where Span(A) is the span of A in Fn
2 . Hence, we assume

wlog that every A ∈ A is actually a subspace of dimension at least εn. Fix such
a subspace A. Let d ≥ εn denote the dimension of A.

By Gaussian elimination, we can choose a d × n matrix M(A) such that the
rows of M(A) generate A and after some column permutations, M(A) = [Id M

′]
where Id denotes the d×d identity matrix. Let the variables indexed by the first
d columns of M(A) be denoted S(A).

Consider a uniformly random S = (S1, . . . , Sr) ∈ S
,r. For i ∈ [r] let χi

denote the characteristic vector of Si. It is easily seen that A ⊆ Sat(ϕS) iff each
χi ∈ A⊥, where A⊥ denotes the dual space of A.

We now consider the probability that χi ∈ A⊥ for any fixed i. This happens
iff M(A)χi = 0. Note that this event can occur with probability at least 1

2O(�)

if, for example, M ′ = 0 and it happens that Si ⊆ [n] \ S(A). We now show that
this probability is much lower if we condition on the event that Si is balanced
w.r.t. S(A).

Say we condition on |Si ∩ S(A)| = q, where q ∈ [�]. Note that picking a
random Si conditioned on this event is equivalent to picking a random subset

On the Limits of Sparsification 781

S′
i of S(A) of size q and a random subset S′′

i of S(A) of size � − q and setting
Si = S′

i ∪ S′′
i . Let χ

′
i and χ′′

i denote the characteristic vectors of S′
i and S′′

i

respectively. Then, M(A)χi = 0 iff Idχ
′
i + M ′χ′′

i = 0 iff χ′
i = M ′χ′′

i . For any
fixed choice of χ′′

i , the probability over the choice of χ′
i that this occurs is at

most 1/
(
d
q

)
≤ (q/εn)q ≤ 1

(εn)Ω(q) . Hence, conditioned on Si being balanced w.r.t.

S(A), we see that the probability that M(A)χi = 0 is at most 1
(εn)Ω(ε�) ≤ 1

nΩ(�) .

Using the fact that r = ω(n/�), this implies that PrS [∀i ∈ [r] : M(A)χi =

0 | S balanced w.r.t. S(A)] ≤
(

1
nΩ(�)

)r/2
= 1

nω(n) . (∗)
We are now ready to bound the probability that there exists a subspace A ∈ A

that is contained in Sat(ϕS). Let E1(A) denote the event that A ⊆ Sat(ϕS).
Given T ⊆ [n] s.t. |T | ≥ εn, let E2(T) denote the event that S is not balanced
w.r.t. T . We have

Pr
S
[
∨
A

E1(A)] ≤ Pr
S
[
∨
A

E1(A) ∨
∨

T⊆[n]:|T |≥εn

E2(T)]

= Pr
S
[
∨
T

E2(T)] + Pr
S
[
∨
A

E1(A) ∧ ¬
∨
T

E2(T)]

≤
∑
T

Pr
S
[E2(T)] +

∑
A

Pr
S
[E1(A) ∧ ¬E2(S(A))]

≤
∑
T

Pr
S
[E2(T)] +

∑
A

Pr
S
[E1(A) | ¬E2(S(A))]

≤ 2n · 1

2ω(n)
+ ncn · 1

nω(n)
= o(1)

where the last inequality follows from Lemma 4 and (∗). This concludes the
proof of the lemma. ��
Theorem 5. Fix any constants c > 0 and ε ∈ (0, 1]. Say S is chosen uniformly
at random from S
,r, where �, r are as in the statement of Lemma 5. Then, the
probability that ϕS can be written as a union of at most 2n−εn many CNFs of
size at most cn is o(1).

Proof. Assume that for some S, ϕS can be written as an OR of at most
2n−εn many CNFs of size at most cn. By Lemma 2, each such CNF can
be written as a union of at most 2εn/2 many k-CNFs of size at most cn,
where k = k(c, ε) is a constant. Moreover, Lemma 3 implies that |Sat(ϕS)| ≥
2n−r = 2n−o(n). Hence, it must be the case that there is some k-CNF ψ
of size at most cn such that |Sat(ψ)| ≥ 2εn/4 and Sat(ψ) ⊆ Sat(ϕS). Let
A =

{
Sat(ψ)

∣∣ ψ a k-CNF, Size(ψ) ≤ cn, and |Sat(ψ)| ≥ 2εn/4
}
; clearly, |A| ≤(

(2n)k

cn

)
≤ nkcn. We have seen above that if ϕS can be written as an OR of at

most 2n−εn many CNFs of size at most cn, then there must be an A ∈ A such
that A ⊆ Sat(ϕS). By Lemma 5, the probability that this happens is o(1). Hence,
the theorem follows. ��
The above easily yields Theorem 1 by choosing � = ω(1) small enough and
r = n/

√
� so that f(n) ≥ n2
/

√
�, and then using Theorem 5 to yield existence

of CNFs of the desired size which are non-sparsifiable.

782 R. Santhanam and S. Srinivasan

3.2 A Hierarchy Theorem for Non-Sparsifiability

Theorem 5 shows the existence of CNFs of slightly super-linear size which cannot
be sparsified into linear-size CNFs. A natural question is whether there is a
hierarchy of such non-sparsifiable CNFs: is it true that for each k, there is an
k′ > k such that there are CNFs of size nk′

which cannot be sparsified into CNFs
of size nk.

First note that the hard CNFs we’re looking for cannot be of the form ϕS

for some S ∈ S
,r. This is because the corresponding function GS trivially has
formulae of size o(n log(n)) over the basis {∧,∨,⊕}, and so also is sparsifiable
into formulae of the same size over this basis. Lemma 5 shows non-sparsifiability
into any class of functions of small enough cardinality, so we cannot hope to
strengthen Lemma 5 to get the desired result for k > 1.

Instead, we use a random CNF ψ with a prescribed width and clause density.
Fix n ∈ N and � : N → N. We denote by Ψn,
(n) the collection of all CNF

formulas on n boolean variables of width exactly �(n) with 2
(n) many clauses
(with possible repetitions). To sample a random ψ from Ψn,
(n), we simply sample

2
(n) random clauses of width �(n). We establish the following theorem, whose
proof is omitted in this version.

Theorem 6. Fix constants c ≥ 1, η > 0. Assume � = �(n) = (2c + η) logn.
Then, then there exists a fixed δ = δ(η, c) > 0 such that the probability that a
random ψ sampled from Ψn,
 can be written as an OR of at most 2δn many CNFs
of size at most O(nc) is at most 3/4 + o(1). In particular, there is no (CNF,
n2c+η, CNF, nc)-sparsification.

Theorem 6 straightaway implies Theorem 2.

4 Simplifying AC0 to CNFs

In this section, all AC0 circuits considered will have AND gates as their output
gates. Note that any AC0 circuit can be converted to this form by adding an
additional AND gate at the output, hence increasing the size and depth by 1.

Definition 3. Given s, d, k ∈ N, an AC0 circuit C with an AND gate as its
output gate is said to be (s, d, k)-bounded if it has size at most s, depth at most
d, and all of its gates except the output gate have fanin bounded by k.

Fact 7. For constants d, k ∈ N and any s ∈ N, any (s, d, k)-bounded AC0 circuit
can be written as a CNF of size O(s) and width kd.

Definition 4. Given N, s, k ∈ N, a set C of at most N (s, d, k)-bounded AC0

circuits is said to be an (N, s, d, k)-disjoint system if the set of satisfying assign-
ments of each pair of distinct circuits C1 �= C2 from C are disjoint. The function
computed by C is defined to be

∨
C∈C C.

Lemma 6. Fix constants c, d ∈ N such that d ≥ 2 and ε ∈ (0, 1]. There exists
a k = k(c, d, ε) and a c′ = c′(c, d, ε) such that for any AC0 circuit C of depth d
and size at most cn on n variables, there is an (2εn, c′n, d, k)-disjoint system C
that computes the same function as C.

On the Limits of Sparsification 783

Proof. The proof is by induction on d. We need a small variant of Lemma 2,
which gives us the base case of d = 2:

Claim. For any c ∈ N and ε ∈ (0, 1], there exists a k = k(c, ε) ∈ N such that
for any collection S of at most cn many clauses (respectively, terms), there
is a partition of {0, 1}n into at most 2εn many parts such that in each part,
each clause (resp. term) in S has size at most k. Moreover, each element of the
partition is specified by a k-CNF with at most (c+ 1)n clauses.

Proof. We prove the result in the case of clauses; the proof for terms is almost
identical. Let k be a parameter that we will choose later. As long as there is a
clause of width at least k, choose k literals from the clause and split the remainder
of the space into two parts depending on whether the disjunction of these literals
is satisfied or not. Call the branch where the literals are not satisfied the good
branch. Along the good branch, we can set k variables to some boolean values;
along the other branch, we still end up satisfying the clause.

Note that there can be only cn+n/k many steps overall, since every step either
satisfies a clause or sets k variables. Moreover, there can be at most n/k many
good steps along any branch. This means that the total number of branches is
bounded by

(
cn+n/k

n/k

)
≤
(
(c+1)n
n/k

)
≤ (ek(c+1))n/k ≤ 2O(log(kc)n/k) ≤ 2εn for large

enough k depending on c and ε.
Note, moreover, that inputs corresponding to each branch is given by a k-

CNF, where k with at most cn+ n/k · k = (c+ 1)n many clauses. ��

The above claim easily implies that for any CNF ϕ with at most cn clauses,
there is a (2εn, (2c + 1)n, 2, k)-disjoint system computing the same function as
ϕ, where k is as defined in Claim 4.

Now consider a circuit of depth d > 2. Let C<d be the circuit C up to layer
d − 1, with the layer of height 1 gates being replaced by a new set of variables
y1, . . . , ym, where m ≤ cn. By applying the induction hypothesis to C<d with
ε = ε/(2c), we see that there exist c1, k1 ∈ N and a (2εn/2, c1n, d− 1, k1)-disjoint
system C that computes the same function as C<d on inputs coming from {0, 1}m.

Moreover, by applying Claim 4 to the AND and OR gates at height 1, there
exists k2 ∈ N and a partition P of {0, 1}n into at most 2εn/2 parts, each of which
is specified by a k2-CNF of size at most (c+1)n, such that in each partition, each
gate at height 1 depends on at most k2 variables. For each P ∈ P , let ϕP denote
the k2-CNF of size at most (c+ 1)n that accepts exactly the inputs in P ; given
any circuit C′ ∈ C, let CP denote the circuit C′′ ∧ ϕP , where C

′′ is obtained by
substituting for each yi the corresponding term or clause of width at most k2
that agrees with the corresponding gate on inputs from the set P of inputs. The
set of all such circuits CP gives us a (2εn, (c1 + c+ 1)n, d,max{k1, k2})-disjoint
system that computes the same function as the circuit C. ��

Corollary 2. There is an OR-simplification of AC0 to O(1)-CNFs. In particu-
lar, we have:

1. For any function f(n) = ω(n) and constants c, ε > 0, there is a sequence of
CNFs {ϕn}, where ϕn has n variables and size at most f(n) such that ϕn

784 R. Santhanam and S. Srinivasan

cannot be written as an OR of at most 2n−εn many AC0 circuits of depth d
and size at most cn.

2. If satisfiability of linear-size CNFs can be tested in time 2αn for some fixed
α < 1, then satisfiability of linear-size AC0 circuits can also be tested in time
2(α+ε)n, for any fixed ε > 0.

Proof. That there is an OR-simplification of AC0 to O(1)-CNFs follows directly
from Lemma 6 and Fact 7. Item 1 then follows from Theorem 1. Item 2 follows
trivially. ��

Theorem 3 follows from Corollary 2.

5 Circuit Lower Bounds for Depth-3 Circuits

Impagliazzo, Paturi and Zane [5] showed that non-sparsifiability is closely con-
nected to lower bounds for depth-3 circuits with bounded bottom fan-in. It is a
long-standing open problem to find an explicit Boolean function which requires
Σk

3 circuits of size 2ω(n/k), where k is the bottom fan-in.
It is implicit in [5] that there is no (AC0[⊕], n2, C, n)-sparsification for any

complexity measure CSIZE such that there are at most nO(n) Boolean functions
in CSIZE(O(n)). They use this to construct an explicit family of 2O(n2) Boolean
functions such that with probability close to 1, a random function from this
family does not have Σk

3 circuits of size 2n−o(n) for k = o(log log(n)). Note
that such a lower bound holds for a purely random Boolean function using a
straightforward counting argument; what their result gives is a pseudo-random
function family of significantly smaller size for which the lower bound still holds
with high probability. Their result relies on the sparsification lemma first proved
in the same paper. Using our result, we can prove Theorem 4, which reduces
the size of the family down to nf(n) for any f(n) = ω(n), which, as we show, is
“close” to getting the lower bound for an explicit function.

Proof (of Theorem 4). The function family {Fn} we use is simply the set {GS},
where S ∈ S
,r, with � and r chosen as in the proof of Theorem 1. The bound
on the cardinality of Fn and the polynomial-time evaluability of functions in
Fn are clear. We will show that if a function f cannot be written as an OR of
2n−εn CNFs of linear size for any ε > 0, then it does not have Σk

3 circuits of size
2n−o(n) with bottom fan-in O(1). Thus the theorem follows using Theorem 5.

Suppose, on the contrary, that there is a constant c < 1 such that f has Σk
3

circuits of size 2cn with bottom fan-in k = O(1). Consider the gates with output
wires feeding in to the top OR gate. Each such gate computes an O(1)-CNF.
By Lemma 1, for any ε > 0 each such gate can be written as the OR of 2εn

O(1)-CNFs of size O(n). By choosing ε such that ε+ c < 1, we get that f is the
OR of 2c

′n functions, each of which has CNFs of size O(n) for some c′ < 1. This
contradicts the assumption on f , hence we are done. ��

Theorem 8. Suppose there is a sequence {Fn} of families of Boolean functions
on n bits, where Fn has size at most 2n−Ω(n), such that for large enough n, there

On the Limits of Sparsification 785

exists a function fn ∈ Fn such that fn does not have Σk
3 circuits of size 2n−o(n)

with bottom fan-in k(n) = O(1) (resp. no(1)). Also assume that given i ∈ [1, |Fn|]
in binary and x ∈ {0, 1}n, there is a polynomial-time algorithm for evaluating
the i’th function in Fn on x. Then there is a Boolean function g ∈ P such
that g does not have linear-size logarithmic-depth series-parallel circuits (resp.
linear-size logarithmic-depth circuits).

The proof is omitted in this version.

References

1. Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge
University Press (2009)

2. Calabro, C., Impagliazzo, R., Paturi, R.: A duality between clause width and clause
density for SAT. In: Proceedings of IEEE Conference on Computational Complex-
ity, pp. 252–260 (2006)

3. Impagliazzo, R., Matthews, W., Paturi, R.: A satisfiability algorithm for AC0. In:
Proceedings of Symposium on Discrete Algorithms (to appear, 2012)

4. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. Journal of Computer and
System Sciences 63(4), 512–530 (2001)

5. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? Journal of Computer and System Sciences 62(4), 512–530 (2001)

6. Malik, S., Zhang, L.: Boolean satisfiability from theoretical hardness to practical
success. Communications of the ACM 52(8), 76–82 (2009)

7. Miltersen, P.B., Radhakrishnan, J., Wegener, I.: On converting cnf to dnf. Theo-
retical Computer Science 347(1-2), 325–335 (2005)

8. Paturi, R., Pudlak, P., Saks, M., Zane, F.: An improved exponential-time algo-
rithm for k-sat. In: Proceedings of 39th International Symposium on Foundations
of Computer Sciece (FOCS), pp. 628–637 (1998)

9. Paturi, R., Pudlak, P., Zane, F.: Satisfiability coding lemma. In: Proceedings of
38th International Symposium on Foundations of Computer Science (FOCS), pp.
566–574 (1997)

10. Santhanam, R.: Fighting perebor: New and improved algorithms for formula and
QBF satisfiability. In: Proceedings of 51st Annual IEEE Symposium on Founda-
tions of Computer Science, pp. 183–192 (2010)

11. Santhanam, R., Srinivasan, S.: On the limits of sparsification. Electronic Collo-
quium on Computational Complexity (ECCC) 18, 131 (2011)

12. Schuler, R.: An algorithm for the satisfiability problem of formulas in conjunctive
normal form. J. Algorithms 54(1), 40–44 (2005)

13. Valiant, L.G.: Graph-Theoretic Arguments in Low-Level Complexity. In: Gruska,
J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 162–176. Springer, Heidelberg (1977)

14. Williams, R.: Improving exhaustive search implies superpolynomial lower bounds.
In: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing,
pp. 231–240 (2010)

15. Williams, R.: Non-uniform ACC circuit lower bounds. In: Proceedings of 26th
Annual IEEE Conference on Computational Complexity, pp. 115–125 (2011)

Certifying 3-Connectivity in Linear Time�

Jens M. Schmidt

MPI für Informatik, Saarbrücken, Germany

Abstract. One of the most noted construction methods of 3-vertex-connected
graphs is due to Tutte and based on the following fact: Every 3-vertex-connected
graph G on more than 4 vertices contains a contractible edge, i. e., an edge whose
contraction generates a 3-connected graph. This implies the existence of a se-
quence of edge contractions from G to K4 such that every intermediate graph
is 3-vertex-connected. A theorem of Barnette and Grünbaum yields a similar se-
quence using removals of edges instead of contractions.

We show how to compute both sequences in optimal time, improving the pre-
viously best known running times of O(|V |2) to O(|E|). Based on this result,
we give a linear-time test of 3-connectivity that is certifying; finding such an al-
gorithm has been a major open problem in the design of certifying algorithms in
the last years. The 3-connectivity test is conceptually different from well-known
linear-time tests of 3-connectivity; it uses a certificate that is easy to verify in time
O(|E|). We also provide an optimal certifying test of 3-edge-connectivity.

1 Introduction

The class of 3-connected (i. e., 3-vertex-connected) graphs has been studied intensively
for many reasons in the past 50 years. Besides being a fundamental graph property,
3-connectivity has numerous applications, in particular (but not only) for problems in
graph drawing (see [14] for a survey), problems related to planarity and online problems
on planar graphs (see [3] for a survey).

We use graph constructions throughout the paper. Let B be a set of graphs, G be
a graph and O be a finite set of graph operations. A sequence of operations of O that
generates G when applied to a graph of B is called a construction sequence from B
to G (using O). We will call B the set of base graphs. When B and O are clear from
the context, we just refer to a construction sequence of G. Such a sequence can also
be described by giving the inverse operations from G to a base graph; we call this the
top-down variant of a construction sequence, as opposed to a bottom-up variant.

The importance of construction sequences for this paper stems mainly from the fact
that they certify 3-connectivity; it is however the author’s belief that the inductive nature
of construction sequences is a very useful, yet not fully utilized, framework to solve
computational graph problems efficiently.

One of the most noted constructions for 3-connected graphs was given by Tutte [19]:
Every 3-connected graph G on more than 4 vertices contains a contractible edge, i. e.,
an edge whose contraction generates a 3-connected graph. Iteratively contracting such

� This research was partly supported by the Deutsche Forschungsgemeinschaft within the re-
search training group “Methods for Discrete Structures” (GRK 1408) and FU Berlin.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 786–797, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Certifying 3-Connectivity in Linear Time 787

an edge yields a top-down construction sequence from G to a K4-multigraph. Unfor-
tunately, also non-3-connected graphs can contain contractible edges, but adding a side
condition establishes a full characterization [6]: A graph G on more than 4 vertices is
3-connected if and only if there is a construction sequence from G to a K4-multigraph
using contractions on edges with both end vertices having at least 3 neighbors; we will
call this a sequence of contractions. In fact, the existence of the bottom-up variant of
this sequence is commonly stated as Tutte’s famous wheel theorem [19].

Barnette and Grünbaum [2] and Tutte [20] prove that every 3-connected graph G on
more than 4 vertices contains a removable edge, i. e., an edge whose deletion generates
a subdivision of a 3-connected graph. Let removing an edge e be the operation that
deletes e and, for each end vertex v of e with exactly two distinct neighbors x and y
in the remaining graph, deletes v and inserts the edge xy. Removing a removable edge
leads, similar as in the sequence of contractions, to a top-down construction sequence
from G to K4; we will call this a sequence of removals. Again, adding a side condition
fully characterizes the 3-connected graphs [18].

Although both existence theorems on contractible and removable edges are used fre-
quently, the first non-trivial computational result to create the corresponding construc-
tion sequences was published more than 45 years afterwards: In 2006, Albroscheit [1]
showed how to compute a construction sequence for3-connected graphs in timeO(|V |2).
However, in this algorithm, contractions and removals are allowed to intermix. In 2010,
two results [13,18] were given that both computed a sequence of contractions in time
O(|V |2). The latter result also gives an algorithm that computes a sequence of removals
in O(|V |2). All mentioned algorithms do not rely on the 3-connectivity test of Hopcroft
and Tarjan [9], which runs in linear time but is rather involved. No algorithm is known
that computes any of these sequences in subquadratic time.

We give an algorithm that computes a sequence of removals in linear time. This will
also imply a linear-time algorithm that computes a sequence of contractions (in the
bottom-up and top-down variants) and has a number of consequences.

Certifying 3-Connectivity in Linear Time. Mehlhorn and Näher [12] (see [11] for a
survey) introduced the concept of certifying algorithms, i. e., algorithms that produce
with each output a certificate that the particular output has not been compromised by
a bug. Such a certificate can be any data that allows to check the correctness of the
particular output (uniformly using a verifying algorithm), but should allow for an easy
verification. Achieving certifying algorithms is a major goal for problems where the
fastest solutions known are complicated and difficult to implement. Testing a graph on
3-connectivity is such a problem, but surprisingly little work has been devoted to certify
3-connectivity, although sophisticated linear-time recognition algorithms are known for
over 35 years [9,17,21]. However, none of them describes an easy-to-verify certificate.

The currently fastest algorithms that certify 3-connectivity need Θ(|V |2) time and
use construction sequences as certificates [1,13,18]. Recently, a linear time certifying
algorithm for 3-connectivity has been proposed for the subclass of Hamiltonian graphs,
when a Hamiltonian cycle is given [6]. In general, finding a certifying algorithm for
3-connectivity in subquadratic time is a major open problem [11, Chapter 5.4] [6].

We give a linear-time certifying algorithm for 3-connectivity that uses a sequence of
removals as certificate. This implies a new linear-time 3-connectivity test that neither

788 J.M. Schmidt

assumes the graph to be 2-connected nor needs to compute low-points (see [9] for a def-
inition); instead, it uses the structure of 3-connected graphs implicitly by applying sim-
ple path-generating rules. This is conceptually different from all previous linear-time
3-connectivity tests. The algorithm has already been implemented and made publicly
available [15]; interestingly, it outperforms the test in [9] on no-instances.

Certifying 3-edge-connectivity in linear time. There is no test for 3-edge-connectivity
that is certifying and runs in linear time, although many non-certifying linear-time al-
gorithms for this problem are known, the first being [7]. Based on a reduction in [7], we
give a linear-time test on 3-edge-connectivity that is certifying.

Applications. Certifying 3-connectivity allows to make many graph algorithms that
use the SPQR-tree data structure [8] certifying (e. g., [3,14]). Moreover, algorithms on
polytopes can be augmented with a quick and easy check that their input represents in-
deed a polytope. Applications in communication networks include certificates for their
reliability and the property to admit a perfectly secure message transmission [5].

We use standard graph-theoretic terminology from [4]; let n = |V | andm = |E|. Let
v →G w denote a path P from vertex v to vertex w in a graph G and let s(P) = v and
t(P) = w be the source and target vertex of P , respectively (this imposes an orientation
from s(P) to t(P) on P). Every vertex in P \ {s(P), t(P)} is called an inner vertex
of P . For v ∈ V (G), let N(v) = {w | vw ∈ E} (possibly v ∈ N(v)) and deg(v)
its degree (counting multiedges). Let δ(G) be the minimum degree in G. Let T be an
undirected tree rooted at r. For two vertices x and y in T , let x be an ancestor of y and
y be a descendant of x if x ∈ V (r →T y). If additionally x �= y, x and y are proper
ancestors and descendants, respectively. Let T (x) be the subtree of T that contains all
descendants of x. Let Km

2 be the graph on 2 vertices that contains exactly m parallel
edges and no self-loops.

2 BG-Paths

Iteratively removing removable edges in a 3-connected graph G leads to a sequence of
removals from G to K4, in which all generated intermediate graphs are 3-connected.
However, the intermediate graphs are not necessarily subgraphs of G, which makes
a linear-time computation difficult. For that reason, we reduce the computation to a
closely related construction sequence [18], which is described next.

A subdivision of a graph G is a graph generated fromG by replacing each edge of G
by a path of length at least one. Let S be a subdivision of either K3

2 or of a 3-connected
graph. Let a vertex v in S be real if deg(v) ≥ 3 and let Vreal(S) be the set of real
vertices in S. Let the links of S be the paths in S that have real end vertices but contain
no other real vertices. Note that the links of S are in one-to-one correspondence to the
edges of the subdivided graph (which is K3

2 or 3-connected) and thus partition E(S).
Let two links be parallel if they share the same end vertices.

Definition 1. A BG-path for S is a path P = x→G y, x �= y, such that

1. V (P) ∩ V (S) = {x, y}
2. Every link of S that contains both x and y contains them as end vertices.

Certifying 3-Connectivity in Linear Time 789

3. If x and y are inner vertices of distinct links Lx and Ly of S, respectively, and
|Vreal(S)| ≥ 4, then Lx and Ly are not parallel.

It was shown in [18] that a graph G without self-loops is 3-connected if and only if
δ(G) ≥ 3 and G can be constructed from an (arbitrary)K4-subdivision in G by adding
BG-paths. This implies that every 3-connected graph G contains a subdivision of K4, a
result first shown by J. Isbell [2]. For technical reasons, we will use a slightly modified
construction that starts with a K3

2 -subdivision and demand that the first BG-path gen-
erates a K4-subdivision. Thus, a construction sequence using BG-paths starts with a
K3

2 -subdivision of G, adds one BG-path that generates a K4-subdivision and then adds
BG-paths until G is constructed.

Let S3, S4, S5, . . . , Sz = G be the intermediate graphs that are generated by such a
construction. We benefit from two key features: Each Sl, 3 ≤ l < z, is a subdivision
of a 3-connected graph and, additionally, a subgraph of Sl+1 and therefore of G. This
does not only yield an easy representation in linear space, it will also allow to compute
a next BG-path efficiently by searching the neighborhood of the current subgraph in G.
We give old and new results about construction sequences.

Theorem 1. The following statements are equivalent.

(1) A simple graph G is 3-connected
(2) There is a sequence of removals from G to K4 of removable edges e = xy with

|N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x) ∪N(y)| ≥ 5 (see [18])
(3) There is a sequence of removals from G to K4 of edges e = xy with

|N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x) ∪N(y)| ≥ 5

(4) There is a sequence of contractions from G to a K4-multigraph of contractible
edges e = xy with |N(x)| ≥ 3 and |N(y)| ≥ 3 (see [18], chapter 5 in [19])

(5) There is a sequence of contractions from G to a K4-multigraph of
edges e = xy with |N(x)| ≥ 3 and |N(y)| ≥ 3 (see [6])

(6) δ(G) ≥ 3 and there is a sequence of BG-paths from a K3
2 -subdivision in G to G

such that the first BG-path generates a K4-subdivision
(7) δ(G) ≥ 3 and there is a sequence of BG-paths from a K4-subdivision in G to

G [2,18]
(8) δ(G) ≥ 3 and there is a sequence of BG-paths from each K4-subdivision in G to

G [18]

Lemma 1. There are algorithms that transform a sequence of Type (6) to the sequences
of each of the Types (2)–(7) in linear time.

With Lemma 1, we can transform a sequence of Type (6) to every sequence of The-
orem 1 efficiently. We will therefore focus on computing this sequence; if not stated
otherwise, a construction sequence will refer to a sequence of Type (6). The following
lemma provides an iterative algorithmic approach to compute it.

Lemma 2 ([18]). Let G be a 3-connected graph and H ⊂ G such that H is a subdivi-
sion of either K3

2 or of a 3-connected graph. There is a BG-path for H in G.

Clearly, every sequence of Type (4) and (5) must contain exactly n − 4 contractions.
We give a corresponding result for the number of operations in the other sequences.

790 J.M. Schmidt

Lemma 3. Every sequence of Type (2), (3) and (7) contains exactly m− n− 2 opera-
tions and every sequence of Type (6) contains exactly m− n− 1 operations.

3 Chain Decompositions and Certificates

We first describe a decomposition of a simple graph G, which is closely related to ear
and open ear (i. e., no ear is a cycle) decompositions [10]. This decomposition will be
the base structure that allows to compute a sequence of Type (6) efficiently. We define
the structure algorithmically on a depth-first search (DFS) forest [9]; a similar procedure
for the computation of so-called low-points (see [9]) can be found in [17]. Let F be a
(rooted) DFS-forest of G. For every backedge e, let s(e) and t(e) denote the two end
vertices of e such that s(e) is a proper ancestor of t(e) in F .

We decompose G into a set C = {C1, . . . , C|C|} of cycles and paths, called chains,
by applying the following procedure for each vertex v in DFS-order (see also Figure 1):
Let T be the tree in F that contains v and let r be the root of T . For every backedge vw
with s(vw) = v, we traverse the path w →T r until a vertex x is found that is either r
or already contained in a chain. The traversed subgraph vw ∪ (w →T x) forms a new
chainCi with s(Ci) = v and t(Ci) = x. We callC a chain decomposition. Let< be the
strict total order on C in which the chains were found, i. e., C1 < · · · < C|C|. Clearly,
the decomposition into chains can be computed in time O(n+m).

Interestingly, C is an open ear decomposition if and only if G is 2-connected, an
ear decomposition if and only if G is 2-edge-connected and we can test both facts by
checking very easy conditions on C in linear time (proofs omitted). Thus, chain de-
compositions unify existing linear-time tests on 2-connectivity and 2-edge-connectivity
without the necessity to compute low-points in advance. If G is not 2-(edge)-connected,
a cut vertex (respectively, a bridge) can be found in linear time.

Easy-to-Verify Certificates for Low (edge-)Connectivity. Suppose there is a vertex
or edge cut X of size k − 1 ≥ 0 in a graph G with n > 1 (for vertex-connectivity,
let n > k). Then X would be a straight-forward certificate for G being not k-(edge-
)connected. However, certificates should be as easy to check as possible, while the
running time for computing them is less important. We thus apply a paradigm of shifting
as much as possible of the checker’s work to the computation of the certificate.

Instead of using X as certificate, we color the vertices of one connected component
of G \X red and the vertices of all other connected components of G \ X green (we
call this a red-green coloring). A checker for G being not k-connected then just needs
to check that at most k−1 vertices are uncolored, there is at least one red and one green
vertex and that no edge joins a red vertex with a green one. For G being not k-edge-
connected, it suffices to check that there is a red, a green and no uncolored vertex and
that the end vertices of at most k − 1 edges differ in color. The certificates need space
O(n) and can be checked in time O(m), as n > m+ 1 proves G to be disconnected.

A certificate forG being connected is given in [11], using an easy numbering scheme
on the vertices. Easy-to-verify certificates for 2- and 2-edge-connectivity are open ear
decompositions and ear decompositions [10], respectively, as computed by the chain
decomposition. For 3-connectivity, we will use a sequence of Type (6) as certificate,

Certifying 3-Connectivity in Linear Time 791

which proves G to be 3-connected due to Theorem 1. A simple checker in O(m) time
for this sequence is given in [18].

For certifying 3-edge-connectivity, we use a reduction to 3-connectivity due to Galil
and Italiano [7]. The reduction modifies the simple input graph G in linear time to a
graph with m + 3n vertices and 3m edges. First, a graph G′ is generated from G by
subdividing each edge with one vertex; these vertices are called arc-vertices. For each
non-arc-vertexw in G′, let v1, . . . , vdeg(w) be the arc-vertices neighboring w. Then the
edges (v1v2, v2v3, . . . , vdeg(w)v1) are added to G′ if not already existent. The graph G
is 3-edge-connected if and only if G′ is 3-connected [7]. Moreover, every vertex cut of
minimal size in G′ contains only arc-vertices (Lemma 2.2 in [7]).

We now apply a certifying 3-connectivity test to G′. If G′ is not 3-connected, the
test on 3-connectivity returns a vertex cut of minimal size in G′, which corresponds to
an edge cut X of size at most two in G. We can then use a red-green coloring of the
connected components of G \X as certificate.

Otherwise, G′ is 3-connected and we have a sequence of Type (6) for G′. The certifi-
cate consists of this sequence, G′ and the injective mapping φ from each vertex in G′

to its corresponding vertex or edge in G to certify the construction of G′. For a checker,
it suffices to test that G′ is 3-connected using the given sequence, every vertex in G
has a unique preimage in V (G′) under φ, every non-arc-vertex v in G′ is the hub of a
wheel graph with v + 1 vertices that are all arc-vertices except for v, every two wheels
in G′ share at most one arc-vertex and every arc-vertex u in G′ is incident to exactly
two non-arc-vertices v and w such that φ(u) = φ(v)φ(w) and φ(u) ∈ E(G). Note that
this checker may fail in detecting additional edges (but not additional vertices) in G and
that this does not harm the 3-edge-connectivity of G. In both cases, the given certificate
needs linear space and can be checked in time O(m).

4 A Certifying Algorithm for 3-Connectivity in Linear Time

Due to space constraints, we give only a high level description of the certifying algo-
rithm. According to Lemma 2, it suffices to add iteratively BG-paths to an arbitrary
K3

2 -subdivision S3 in G to get a sequence of Type (6) from S3 to Sz = G. With
Lemma 3, z = m− n+ 2. Note that we cannot make wrong decisions when choosing
a BG-path (except for the first one), as Lemma 2 ensures a completion of the sequence
if G is 3-connected. We aim for adding chains as BG-paths, as they can be efficiently
computed.

We compute a chain decomposition on a DFS-forest T of G and check n ≥ 4,
δ(G) ≥ 3 and 2-connectivity of G as part of this computation. If the test fails, we
can easily find a certificate for G being not 3-connected; otherwise, we obtain the K3

2 -
subdivision S3 = C1 ∪ C2. To keep further explanations as simple as possible, we
abuse notation and split the cycle C1 into two paths by setting C0 = t(C2) →T r and
redefining C1 = r →C1\E(C0) t(C2). We will represent the chain decomposition C as
C0, . . . , Cm−n+1.

For every chain Ci �= C0, Ci contains exactly one backedge, namely its first edge,
and s(Ci) is a proper ancestor of t(Ci). We define the following necessity for the 3-
connectivity of G, which can be checked in linear time, giving a separation pair if
violated. Recall that T (x) is the subtree of T that contains all descendants of x.

792 J.M. Schmidt

Property B: For every chain Ci ∈ C \ {C0} that is not a backedge and for its last inner
vertex x, G contains a backedge e that enters T (x) such that s(e) is an inner vertex of
t(Ci) →T s(Ci).

Fig. 1. A chain decomposi-
tion. Light solid chains are
of Type 1, red dashed ones
of Type 2 (Type 2a: C3) and
black solid ones of Type 3
(Type 3b: C14 and C16, giv-
ing the caterpillars L14 =
{C14, C6, C4} and L16 =
{C16, C5}).

Until now we only checked necessary properties for the
3-connectivity ofG, which we will take for granted for the
rest of the paper. Let the parent of a chainCi �= C0 be the
chain Ck that contains the edge from t(Ci) to the parent
of t(Ci) in T . Chains admit the following tree structure.

Lemma 4. The parent relation onC defines a treeU with
V (U) = C and root C0.

We assign one of the Types 1, 2a, 2b, 3a and 3b to each
chain Ci �= C0 in ascending order of <. Some types will
be BG-paths and therefore lead to the next subgraph in
the construction sequence. The remaining ones will be
grouped into bigger structures that can be decomposed
into BG-paths later. Algorithm 1 defines the types in lin-
ear time; all chains are unmarked at the beginning. We
illustrate the different types in Figure 1.

Algorithm 1 marks every chain of Type 2b. We explain
how the algorithm groups chains of certain types. When-
ever a chain Ci of Type 3b is found, the path Ci →U C0

is traversed until a chain Cj occurs whose parent is not
marked. The chains in Ci →U Cj are stored in a list Li

and unmarked (see Line 15 of Algorithm 1). This way,
every chain Ci of Type 3b is associated with a list Li of
chains; we call Li a caterpillar. Property B ensures that
caterpillars consist of exactly the chains in C that are of
Type 2b and 3b.

In order to decide which chain can be added as BG-path, we want to impose the
following structure on every graph Sl, 3 ≤ l ≤ m− n+ 2.

Definition 2. Let Sl be upwards-closed if, for each vertex v in Sl, the edge from v to its
parent in T is contained in Sl. Let Sl be modular if Sl is the union of chains.

Clearly, S3 is upwards-closed and modular. We would be done if we could restrict every
Sl to be upwards-closed and modular, as then every BG-path would be a chain:

Lemma 5. If Sl and Sl+1 are upwards-closed and modular, the BG-path P for Sl is a
chain.

Proof. Assume that P is not a chain. Since Sl+1 is modular,P must be the union of t >
1 chains forming a path; let Ci be the first chain in P . Now P cannot start with t(Ci), as
Property 1.1 and s(Ci) ∈ V (Sl) would forceCi to be the only chain in P , contradicting
t > 1. Thus, P starts with s(Ci) and, for the same reason, (t(Ci) →T s(Ci)) �⊆ Sl.
Since Sl+1 is upwards-closed, (t(Ci) →T s(Ci)) ⊆ Sl+1. This contradicts t > 1 as
well, as a chain in P that contains an edge of t(Ci) →T s(Ci) would induce a vertex
of degree at least 3 in the path P , because it contains a backedge. ��

Certifying 3-Connectivity in Linear Time 793

Algorithm 1. Classify(Ci ∈ C \ {C0},DFS-tree T) � classifies chains into Types 1,2a,2b,3a,3b

1: Let Ck be the parent of Ci in U � Ck < Ci

2: if t(Ci) →T s(Ci) is contained in Ck then � Type 1
3: assign Type 1 to Ci

4: else if s(Ci) = s(Ck) then � Type 2: Ck �= C0, t(Ci) is inner vertex of Ck

5: if Ci is a backedge then
6: assign Type 2a to Ci � Type 2a
7: else
8: assign Type 2b to Ci; mark Ci � Type 2b
9: else � Type 3: s(Ci) �= s(Ck), Ck �= C0, t(Ci) is inner vertex of Ck

10: if Ck is not marked then
11: assign Type 3a to Ci � Type 3a
12: else � Ck is marked
13: assign Type 3b to Ci; create a list Li = {Ci}; Cj := Ck � Type 3b
14: while Cj is marked do � Li is called a caterpillar
15: unmark Cj ; append Cj to Li; Cj := parent(Cj)

Unfortunately, restricting every Sl to be upwards-closed and modular is not possible, as
the 3-connected graph in Figure 2 shows: Since every BG-path for S3 has end vertices
x and y, S4 cannot be modular. We therefore aim to restrict only certain subgraphs. Let
a cluster be either a caterpillar or a chain of Type 1, 2a or 3a (the cluster of a chain is
the cluster containing the chain). Instead of adding BG-paths one by one, we will add
clusters that can be decomposed into subsequent BG-paths later; we restrict only the
subgraph obtained from the last BG-path to be upwards-closed and modular. We list the
restrictions for adding a cluster in detail.

Restrictions: We add a cluster to an upwards-closed modular subgraph Sl only if it
(R1) can be decomposed into as many subsequent BG-paths as it contains chains

and creates an upwards-closed and modular subgraph Sl+t, t > 0, such that
(R2) no link in Sl+t that consists only of tree edges has a parallel link in Sl+t (note

that Sl+t �= S3).

Fig. 2. No
BG-path for
S3 (thick sub-
graph) preserves
modularity.

Finding such a cluster clearly gives the next t BG-path(s) for Sl. In
particular, (R1) ensures that the total number of BG-operations is
|C|−3 = m−n−1, as shown in Lemma 3. Restriction (R2) implies
that the first BG-path generates a K4-subdivision, as demanded for
a construction sequence, and not, e. g., a K4

2 -subdivision. We will
assume from now on that Sl was obtained obeying Restrictions (R1)
and (R2). Let a cluster for Sl that satisfies (R1) and (R2) be addable.
In the following, we investigate how a set of addable clusters for Sl

can be obtained.

Definition 3. For Sl and a chain Ci in Sl, let Children12(Ci) be the
set of children of Ci of Types 1 and 2 that are not contained in Sl and
let Type3(Ci) be the set of chains of Type 3 that start at a vertex in
Ci and are not contained in Sl.

We process chains in the order < of creation, i. e., top-down in the tree U . The key idea
for each Ci is to add (among others) the clusters of all chains in Children12(Ci) and the

794 J.M. Schmidt

clusters of all chains in Type3(Ci). Note that we defined Children12(Ci) to contain only
chains of Type 1 and 2. It will not be necessary to consider children of Ci of Type 3,
as their clusters will be added before as part of Type3(Cj) for an ancestor Cj of Ci in
U . The sets Children12(Ci) and Type3(Ci) can be computed efficiently. We give the
precise set of clusters we add.

Definition 4. For Sl and a subset A ⊆ C of chains, let cl(A) be the set of clusters that
contains all (not necessarily proper) ancestors of chains in A that are not contained in
Sl. For every Ci, we add the clusters in cl(Children12(Ci) ∪ Type3(Ci)).

Theorem 2. Let Ci be a chain in Sl with Children12(Cj) = Type3(Cj) = ∅ for every
proper ancestor Cj of Ci. If G is 3-connected, there is an order in which the clusters in
cl(Children12(Ci) ∪ Type3(Ci)) are successively addable.

Assume for a moment that G is 3-connected. Clearly, C0 satisfies the precondition of
Theorem 2 for S3. By induction, let the precondition be true for everyCj , j ≤ i. Apply-
ing Theorem 2 on Ci then generates a subgraph, in which the precondition is satisfied
for Ci+1. This ensures that iteratively applying Theorem 2 on C0, C1, . . . , Cm−n+1

constructs G. We obtain the following corollary.

Corollary 1. For every 3-connected graph G there is a sequence of Type (6) to G that
is restricted by (R1) and (R2).

4.1 Reduction to Overlapping Intervals

Theorem 2 provides an algorithmic method to compute a construction sequence: For
each Ci, 0 ≤ i ≤ m− n+ 1, we add the clusters in cl(Children12(Ci) ∪ Type3(Ci));
we say that Ci is processed. We describe the processing phase of Ci (see Algorithm 2).
Let Sl be the current subgraph. Theorem 2 does not state in which order the clusters are
addable; it therefore remains to show how we can compute this order if exists. We first
partition the chains in Type3(Ci) into so-called segments of Sl.

Definition 5. Let E′ be a maximal subset of E(G) \ E(Sl) such that every two edges
of E′ are contained in a path whose inner vertices are disjoint from V (Sl). Then the
edge-induced subgraph G[E′] is called a segment of Sl. Let the segment of a chain
Ci �⊆ Sl be the segment of Sl that contains Ci.

Note that every segment of Sl is the union of all vertices in a subtree of U , as Sl is
upwards-closed and modular. A segment can therefore be represented by the minimal
chain it contains. Let X be the subset of chains in Type3(Ci) whose segments do not
contain a chain in Children12(Ci). Then the clusters in cl(X) are successively addable
in the order of <. We just add them in this order and delete X from Type3(Ci). For
convenience, we abuse notation and let Sl be again the current subgraph.

Let Y be the set of segments that contain a chain in Children12(Ci). Note that every
cluster that we still have to add in this processing phase is contained in one segment
in Y . For each segment H ∈ Y , let H ∩ Sl be the attachment vertices of H . It can be
deduced from H containing a chain in Children12(Ci) that all attachment vertices of H

Certifying 3-Connectivity in Linear Time 795

Algorithm 2. Certify3Connectivity(Graph G)

1: Compute a DFS-tree T of G, a chain decomposition C, classify the chains and check simple properties
2: Check Property B, Set S3 := C0 ∪ C1 ∪ C2 � Page 792 and Section 3
3: for i := 0 to m − n+ 1 do � process each Ci and add clusters of Theorem 2
4: Compute the lists Children12(Ci) and Type3(Ci)
5: Partition Type3(Ci) into segments
6: X := subset of chains in Type3(Ci) whose segments do not contain a chain of Children12(Ci)
7: Add the clusters in cl(X) successively in the order of <; update Type3(Ci)
8: Y := set of segments that contain a chain in Children12(Ci)
9: for each segment H ∈ Y do

10: Compute the attachment vertices of H and the dependent path of H
11: Map H to a set of intervals on Ci � Section 4.1
12: if the merged overlap graph G′ of Y is connected then
13: Obtain a proper order σ on Y from G′ � Lemma 7
14: for each segment H ∈ Y in the order of σ do � Add clusters; save construction seq.
15: Add the clusters in cl(Type3(Ci) ∪ Children12(Ci)) that are in H in the order of <
16: else
17: Compute a separation pair � G′ is not 3-connected

(a) Ci and the partition of the clusters in
cl(Type3(Ci) ∪ Children12(Ci)) into segments.

(b) For each of the two inner real vertices
v6 and v7 in Ci, there is one interval in I0.

Fig. 3. Mapping the segments H1−4 to intervals on Ci. Different colors depict different segments.

are contained in Ci (see, e. g., Figure 3(a)). Let the maximal path in Ci that connects
two attachment vertices of H be the dependent path of H . For example, the dependent
path of H4 in Figure 3(a) is v5 →Ci v9.

Consider a segment H ∈ Y and its dependent path P . It can be shown that the
clusters in cl(Children12(Ci) ∪ Type3(Ci)) that are contained in H are successively
addable in the order of < if P contains an inner real vertex. Moreover, if P does not
contain an inner real vertex, none of these clusters is addable. Whenever we have found
a segment with an inner real vertex in its dependent path, we will therefore add all
clusters in this segment successively.

Note that adding the clusters of a segment H causes all attachment vertices of H to
be real. This might induce new inner real vertices for dependent paths of other segments
in Y . It remains to compute in which order the segments of Y can be added such that
every dependent path will have an inner real vertex if possible. Let an order σ on Y be

796 J.M. Schmidt

proper if the dependent path of each segment in σ contains an inner real vertex or an
inner vertex that is an attachment vertex of a previous segment in σ. A proper order on
Y thus gives the desired order on all clusters in cl(Children12(Ci) ∪ Type3(Ci)).

We describe how to compute a proper order σ efficiently, if exists. This is the heart
of the reduction. We map each segment H in Y to a set I(H) of intervals on V (Ci):
Let a1, . . . , ak be the attachment vertices of H and let I(H) =

⋃
1<j≤k{[a1, aj]} ∪⋃

1<j<k{[aj, ak]} (see Figure 3). Additionally, we augment Ci by an artificial vertex
v0 (next to t(Ci)) and map the real vertices b1, . . . , bk of Ci to the set of intervals
I0 =

⋃
1<j<k{[v0, bj]}. The intervals can be efficiently computed; there are at most

|Children12(Ci)| + 2|Type3(Ci)| + |Vreal(Ci)| − 2 intervals for Ci, giving a total of
O(m) intervals for all processing phases.

Let two intervals [a, b] and [c, d] overlap if a < c < b < d or c < a < d < b. We
want to compute a proper order on Y by finding a sequence of overlapping intervals
that starts with an interval in I0. Let the overlap graph of Y be the graph with vertex
set I0 ∪

⋃
H∈Y I(H) and an edge between two vertices if and only if the corresponding

intervals overlap. Let the merged overlap graph of Y be the graph that results from the
overlap graph by merging the vertices in I0 and in I(H), respectively, to one vertex, for
every segment H ∈ Y .

Lemma 6. There is a proper order on the segments in Y if and only if the merged
overlap graph G′ of Y is connected.

Clearly, the overlap graph (and the merged overlap graph) can have a quadratic number
of edges in the number of intervals, e. g., consider k pairwise distinct intervals of the
same length lying very close to each other. Interestingly, the connected components
of the merged overlap graph can still be computed in linear time, without the need to
construct the graph itself. The key idea is to use a modified variant of a sweep-line
algorithm in [16] that computes the connected components of interval overlap graphs
by selecting only sparse subgraphs for each component. If there is only one component,
a proper order on Y can be obtained from the sparse subgraph of that component.

Lemma 7. Let k be the number of intervals that have been created for the segments in
Y and letG′ be the merged overlap graph of Y . There is an algorithm with running time
O(k+ |V (Ci)|) that computes a proper order σ on Y , if it exists, and that computes the
connected components of G′, if no proper order on Y exists.

This computes the desired order. With Lemma 1, we obtain the following theorem.

Theorem 3. The sequence of each of the types (2)–(7) for a simple 3-connected graph
G can be computed in time O(m).

It is possible to extend the algorithm to certify non-3-connectivity: If the algorithm of
Lemma 7 outputs more than one connected component of the merged overlap graph, a
separation pair can be computed. This gives our main result.

Theorem 4. There are certifying algorithms for testing the 3-connectivity and 3-edge-
connectivity of graphs G in time O(n +m) using the certificates of Section 3.

Certifying 3-Connectivity in Linear Time 797

References

1. Albroscheit, S.: Ein Algorithmus zur Konstruktion gegebener 3-zusammenhängender
Graphen. Diploma thesis, Freie Universität Berlin (2006)

2. Barnette, D.W., Grünbaum, B.: On Steinitz’s theorem concerning convex 3-polytopes and on
some properties of 3-connected graphs. In: Many Facets of Graph Theory, pp. 27–40 (1969)

3. Battista, G.D., Tamassia, R.: Online Graph Algorithms With SPQR-Trees. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 598–611. Springer, Heidelberg (1990)

4. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer (2008)
5. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. J.

ACM 40, 17–47 (1993)
6. Elmasry, A., Mehlhorn, K., Schmidt, J.M.: An O(n+m) certifying triconnnectivity algorithm

for Hamiltonian graphs. Algorithmica 62(3), 754–766 (2012)
7. Galil, Z., Italiano, G.F.: Reducing edge connectivity to vertex connectivity. SIGACT

News 22(1), 57–61 (1991)
8. Gutwenger, C., Mutzel, P.: A Linear Time Implementation of SPQR-Trees. In: Marks, J. (ed.)

GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)
9. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Com-

put. 2(3), 135–158 (1973)
10. Lovász, L.: Computing ears and branchings in parallel. In: Proceedings of the 26th Annual

Symposium on Foundations of Computer Science (FOCS 1985), pp. 464–467 (1985)
11. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms. Computer

Science Review 5(2), 119–161 (2011)
12. Mehlhorn, K., Näher, S.: From Algorithms to Working Programs: On the Use of Pro-

gram Checking in LEDA. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS,
vol. 1450, pp. 84–93. Springer, Heidelberg (1998)

13. Mehlhorn, K., Schweitzer, P.: Progress on Certifying Algorithms. In: Lee, D.-T., Chen, D.Z.,
Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 1–5. Springer, Heidelberg (2010)

14. Mutzel, P.: The SPQR-Tree Data Structure in Graph Drawing. In: Baeten, J.C.M., Lenstra,
J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 34–46. Springer,
Heidelberg (2003)

15. Neumann, A.: Implementation of Schmidt’s algorithm for certifying triconnectivity testing.
Master’s thesis, Universität des Saarlandes and Graduate School of CS, Germany (2011)

16. Olariu, S., Zomaya, A.Y.: A time- and cost-optimal algorithm for interlocking sets – With
applications. IEEE Trans. Parallel Distrib. Syst. 7(10), 1009–1025 (1996)

17. Ramachandran, V.: Parallel open ear decomposition with applications to graph biconnectivity
and triconnectivity. In: Synthesis of Parallel Algorithms, pp. 275–340 (1993)

18. Schmidt, J.M.: Construction sequences and certifying 3-connectedness. In: Proceedings of
the 27th Symposium on Theoretical Aspects of Computer Science (STACS 2010), pp. 633–
644 (2010)

19. Tutte, W.T.: A theory of 3-connected graphs. Indag. Math. 23, 441–455 (1961)
20. Tutte, W.T.: Connectivity in graphs. In: Mathematical Expositions, vol. 15. University of

Toronto Press (1966)
21. Vo, K.-P.: Finding triconnected components of graphs. Linear and Multilinear Algebra 13,

143–165 (1983)

Epsilon-Net Method for Optimizations

over Separable States�

Yaoyun Shi and Xiaodi Wu

Department of EECS, University of Michigan, Ann Arbor, USA
shiyy@eecs.umich.edu, xiaodiwu@umich.edu

Abstract. Wegive algorithms for the optimization problem:maxρ 〈Q, ρ〉,
where Q is a Hermitian matrix, and the variable ρ is a bipartite sepa-
rable quantum state. This problem lies at the heart of several problems
in quantum computation and information, such as the complexity of
QMA(2). While the problem is NP-hard, our algorithms are better than
brute force for several instances of interest. In particular, they give
PSPACE upper bounds on promise problems admitting a QMA(2) proto-
col in which the verifier performs only logarithmic number of elementary
gate on both proofs, as well as the promise problem of deciding if a bipar-
tite local Hamiltonian has large or small ground energy. For Q ≥ 0, our
algorithm runs in time exponential in ‖Q‖F . While the existence of such
an algorithm was first proved recently by Brandão, Christandl and Yard
[Proceedings of the 43rd annual ACM Symposium on Theory of Computa-
tion , 343–352, 2011], our algorithm is conceptually simpler.

1 Introduction

Entanglement is an essential ingredient in many ingenious applications of quan-
tum information processing. Understanding and exploiting entanglement re-
mains a central theme in quantum information processing research [16]. Denote
by SepD (A1 ⊗A2) the set of separable density operators over the space A1⊗A2.
The weak membership problem for separability that is to decide, given a clas-
sical description of ρ ∈ SepD (A1 ⊗A2), whether the state ρ is inside or ε far
away in trace distance from SepD (A1 ⊗A2), turns out to be NP-hard when ε is
inverse exponential [14] (or even inverse polynomial [18,12]) in the dimension of
A1 ⊗A2.

In this paper we study a closely related problem, namely the linear opti-
mization problem over separable states below where 〈A,B〉 denotes the Hilbert-
Schmidt inner product of A and B.

Problem 1. Given a Hermitian matrix Q over A1 ⊗ A2 (of dimension d × d),
compute the optimum value, denoted by OptSep(Q), of the optimization problem

max 〈Q,X〉 subject to X ∈ SepD (A1 ⊗A2) .

� A full version of this paper is available at arXiv:1112.0808. This research was sup-
ported in part by National Basic Research Program of China Awards 2011CBA00300
and 2011CBA00301, and by NSF of United States Award 1017335.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 798–809, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Epsilon-Net Method for Optimizations over Separable States 799

It is a standard fact in convex optimization [13,18] that the weak membership
problem and the weak linear optimization, a special case of Problem 1, over
certain convex set, such as SepD (A1 ⊗A2), are equivalent up to polynomial
loss in precision and polynomial-time overhead. Thus it is NP-hard to compute
OptSep(Q) with inverse polynomial additive error. Besides the connection men-
tioned above, Problem 1 can also be understood from various aspects. Firstly,
Problem 1 can be viewed as finding the minimum energy of some physical sys-
tem that is achieved by separable states. Secondly, in the study of the tensor
product space [8], the value OptSep(Q) is precisely the injective norm of Q in
L(A1) ⊗ L(A2), where L(A) denote the Banach space of operators on A with
the operator norm. Finally, one may be equally motivated from the study in
operations research (e.g.,“Bi-Quadratic Optimization over Unit Spheres” [23]).

Another motivation to study Problem 1 is the recent interest about the com-
plexity class QMA(2). Originally the class QMA was defined [22] as the quantum
counterpart of the complexity class NP. While the extension of NP to allow mul-
tiple provers trivially reduces to NP itself, the power of QMA(2), the extension
for QMA with multiple unentangled provers, remains far from being well un-
derstood. The study of the multiple-prover model was initiated in [21], where
QMA(k) denotes the complexity class for the k-prover case. Much attention
was attracted to this model because of the surprising discovery that NP admits
logarithmic-size unentangled quantum proofs [5], comparing with the fact that
single prover quantum logarithm-size proofs only characterize BQP [24]. It seems
adding one unentangled prover increases the power of the model substantially.
There are several subsequent works on refining the initial protocol either with
improved completeness and soundness bounds [3,1] or with less powerful ver-
ifiers [7]. Recently it was proved that QMA(2)=QMA(poly) [17] by using the
so-called product test protocol that determines whether a multipartite state is
a product state when two copies of it are given. Also, variants of QMA(2) with
restricted verifiers, such as BellQMA and LOCCQMA that refers to restricted
verifiers that perform only nonadaptive or adaptive local measurements respec-
tively, were defined in [1] and studied in [6].

Despite much effort, no nontrivial upper bound of QMA(2) is known. The best
known upper bound QMA(2)⊆NEXP follows trivially by nondeterministically
guessing the two proofs. It would be surprising if QMA(2) = NEXP. Thus it
is reasonable to seek a better upper bound like EXP or even PSPACE. It is
not hard to see that simulating QMA(2) amounts to distinguishing between two
promises of OptSep(Q), although one is free to choose the appropriate Q.

Our contributions. In this paper we provide efficient algorithms for Problem 1
in either time or space for several Qs of interest. Our idea is to enumerate via
epsilon-nets more ”cleverly” with the help of certain structure of Q.

Now we briefly describe our strategy of obtaining space-efficient algorithms.
When the total number of points to enumerate is not large, one canrepresent and
hence enumerate each point in polynomial space. If the additional computation
for each point can also be done in polynomial space, one immediately gets a
polynomial-space implementation for the whole algorithm by composing those

800 Y. Shi and X. Wu

two components naturally. We make use of the relation NC(poly)=PSPACE [4]
to obtain space-efficient implementation for the additional computation, which
in our case basically includes the following two parts. The first part assures
that the enumeration procedure functions correctly because these epsilon-nets
of interest are not standard. This part turns out to be a simple application
of the so-called multiplicative matrix weight update (MMW) method [2,20] to
computing a min-max form. The second part only contains fundamental matrix
operations, which usually admit efficient parallel algorithms [11]. As a result,
both parts of the additional computation admit efficient parallel algorithms,
and therefore can be implemented in polynomial space. We summarize below
the main results obtained by applying the above ideas.

1. The first property exploited is the so-called decomposability of Q which refers
to whether Q can be decomposed in the form Q =

∑M
i=1Q

1
i ⊗ Q2

i with small
M . Intuitively, if one substitutes this Q’s decomposition into 〈Q, ρ1 ⊗ ρ2〉 and
treat

〈
Q1

1, ρ1
〉
, · · · ,

〈
Q1

M , ρ1
〉
,
〈
Q2

1, ρ2
〉
, · · · ,

〈
Q2

M , ρ2
〉
as variables, the optimiza-

tion problem becomes quadratic and M is the number of second-order terms
in the objective function. If we plug the values of

〈
Q1

1, ρ1
〉
, · · · ,

〈
Q1

M , ρ1
〉
into

the objective function, then the optimization problem reduces to be an effi-
ciently solvable semidefinite program. Hence by enumerating all possible values
of
〈
Q1

1, ρ1
〉
, · · · ,

〈
Q1

M , ρ1
〉
one can efficiently solve the original problem when M

is small. Since this approach naturally extends to the k-partite case for k ≥ 2,
we obtain the following general result.

Theorem 1. Given any Hermitian Q (of dimension d) and its decomposition

Q =
∑M

i=1Q
1
i ⊗ · · · ⊗Qk

i , OptSep(Q) can be approximated with additive error δ
in quasi-polynomial time1 in d and 1/δ if kM is O(ploy-log(d)).

By exploiting the space-efficient algorithm design strategy above, this algorithm
can also be made space-efficient. To facilitate the later applications to complexity
classes, we choose the input size to be some n such that d = exp(poly(n)).

Corollary 1. If kM/δ ∈ O(poly(n)), the quantity OptSep(Q) can be approxi-
mated with additive error δ in PSPACE.

As a direct application, we prove the following variant of QMA(2) belongs to
PSPACE where QMA(2)[poly(n), O(log(n))] refers to the model where the ver-
ifier only performs O(log(n)) elementary gates that act on both proofs at the
same time and a polynomial number of other elementary gates.

Corollary 2. QMA(2)[poly(n), O(log(n))] ⊆ PSPACE.

This result establishes the first PSPACE upper bound for a variant of QMA(2)
where the verifier is allowed to generate some quantum entanglement between
two proofs. In contrast, previous results are all about variants with nonadaptive
or adaptive local measurements, such as BellQMA(2) or LOCCQMA(2).

2. The second structure made use of is the eigenspace of Q of large eigenvalues,
where we establish an algorithm in time exponential in ‖Q‖F.
1 Quasi-polynomial time is upper bounded by 2O((logn)c) for some fixed c, where n is
the input size.

Epsilon-Net Method for Optimizations over Separable States 801

Theorem 2. For Q ≥ 0, OptSep(Q) can be approximated with additive error δ
in time exp(O(log(d) + δ−2‖Q‖2F ln(‖Q‖F/δ))).

A similar running time exp(O(log2(d)δ−2‖Q‖2F)) was obtained in [6] using some
known results (i.e., the semidefinite programming for finding symmetric exten-
sion [9] and an improved quantum de Finetti-type bound) in quantum infor-
mation theory. In contrast, our algorithm only uses fundamental operations of
matrices and epsilon-nets. To approximate with precision δ, it suffices to consider
the eigenspace of Q of eigenvalues greater than δ whose dimension is bounded
by ‖Q‖2F/δ2. Nevertheless, naively enumerating density operators over that sub-
space does not work since one cannot detect the separability of those density
operators. We circumvent this difficulty by making nontrivial use of the Schmidt
decomposition of bipartite pure states.

We note, however, that other results in [6] do not follow from our algorithm,
and our method cannot be seen as a replacement of the kernel technique therein.
Furthermore, our method does not extend to the k-partite case, as there is no
Schmidt decomposition in that case.

Organizations: The necessary background knowledge on the epsilon-nets in use
is introduced in Section 2. The main algorithm based on the decomposability of
Q is illustrated in Section 3, which is followed by the simulation of variants of
QMA(2) in Section 4. Finally, the demonstration of an algorithm with running
time exponential in ‖Q‖F for Problem 1 can be found in Section 5.

Notations: We assume familiarity with standard concepts from quan-
tum information [22,27]. Let A,B denote complex Euclidean spaces and
L (A),Herm (A),D (A) denote the linear, Hermitian and density operators over
A respectively. We denote the trace norm of operator Q by ‖Q‖tr, i.e. ‖Q‖tr =
Tr (Q∗Q)1/2 where Q∗ stands for the conjugate transpose of Q. The Frobenius
norm is denoted by ‖Q‖F and the operator norm is denoted by ‖Q‖op. The
�1 norm of vector x ∈ Cn is denoted by ‖x‖1 =

∑n
i=1 |xi| and its �∞ norm is

denoted by ‖x‖∞ = maxi=1,··· ,n |xi|. We use ‖x‖ to denote the Euclidean norm.
The unit ball of Cn under certain norm ‖·‖ is denoted by B(Cn, ‖·‖).

Due to space limit, all proofs except for Theorem 4 and Corollary 4 are omitted
and can be found in the full version.

2 Epsilon Net

Definition 1 (ε-net). Let (X, d) 2 be any metric space and let ε > 0. A subset
Nε is called an ε-net of X if for each x ∈ X, there exists y ∈ Nε with d(x, y) ≤ ε.

Now we turn to the particular ε-net in this paper. Let H be any Hilbert space
of dimension d and Q = Q(M,w) = (Q1, Q2, · · ·QM) be a sequence of operators
on H with ‖Qi‖op ≤ w, for all i. Define the Q-space, denoted by SP(Q), as

SP(Q) = {(〈Q1, ρ〉 , 〈Q2, ρ〉 , · · · , 〈QM , ρ〉) : ρ ∈ D(H)} ⊆ CM .

2 We will abuse the notation later where the metric d is replaced by the norm from
which the metric is induced.

802 Y. Shi and X. Wu

The set is convex and compact, and a (possibly proper) subset of Raw-(M,w) =
{(q1, q2, · · · , qM) : ∀i, qi ∈ C, ‖qi‖ ≤ w}. In the following, we construct an ε-net
of the metric space (SP(Q), �1) by first generating an ε-net of (Raw-(M,w), �1)
via a standard procedure and then selecting those points close to Q-space.

Selection Process

The selection process determines if some point p in Raw-(M,w) is close to SP(Q).
Denote by dis(p) the distance of p ∈ CM to SP(Q), i.e.,

dis(p) = min
q∈SP(Q)

‖p− q‖1.

The distance dis(p) can be efficiently computed in time by casting the problem
as a semidefinite program. However, it is unknown whether the time-efficient
solutions for SDPs can be made space-efficient in general. In our case where
Q has a concise description, space-efficient solutions correspond to PSPACE
upper bound. Thus we need to develop our own space-efficient algorithm for this
problem. Due to the duality of the �1 norm, one has

dis(p) = min
ρ∈D(H)

max
z∈B(CM ,‖·‖∞)

Re 〈p− q(ρ), z〉 ,

where q(ρ) = (〈Q1, ρ〉 , 〈Q2, ρ〉 , · · · , 〈QM , ρ〉) ∈ CM . By rephrasing dis(p) in
the above form, one shows the quantity dis(p) is actually an equilibrium value.
This follows from the well-known extensions of von’ Neumann’s Min-Max The-
orem [26,10]. One can easily verify that the density operator set D (H) and the
unit ball of CM under �∞ norm are convex and compact sets and the objective
function is a bilinear form over the two sets.

min
ρ∈D(H)

max
z∈B(CM ,‖·‖∞)

Re 〈p− q(ρ), z〉 = max
z∈B(CM ,‖·‖∞)

min
ρ∈D(H)

Re 〈p− q(ρ), z〉 .

(1)
Fortunately, there is an efficient algorithm in both time and space (in terms of
d,M,w, 1/ε) to approximate dis(p) with additive error ε. The main tool used
here is the so-called matrix multiplicative weight update method [2,20]. Similar
min-max forms also appeared before in a series of work on quantum complex-
ity [19,28,15].

Lemma 1. Given any point p ∈ Raw-(M,w) and ε > 0, there is an algorithm
that approximates dis(p) with additive error ε in poly(d,M,w, 1/ε) time. Fur-
thermore, if d is considered as the input size and M,w, 1/ε ∈ O(poly-log(d)),
this algorithm is also efficient in parallel, namely, it is inside NC.

Construction of the ε-Net

Given any Q(M,w) and ε > 0, we construct the ε-net of SP(Q) as follows.

– Construct the ε-net of the set Raw-(M,w) with the metric induced from the
�1 norm. Denote such an ε-net by Rε.

Epsilon-Net Method for Optimizations over Separable States 803

– For each point p ∈ Rε, determine dis(p) and select it to Nε if dis(p) ≤ ε.
We claim Nε is the ε-net of (SP(Q), �1).

The construction for the first step is rather routine. Creating an ε′-net T ′
ε over

a bounded complex region {z ∈ C : ‖z‖ ≤ w} is simple: we can place a 2D grid
over the complex plane to cover the disk ‖z‖ ≤ w. Simple argument shows |T ′

ε| ∈
O(w

2

ε′2). Then Rε can be obtained by the M times cross-product T ′
ε × · · · × T ′

ε .
To ensure the closeness in the �1 norm, we will choose ε′ = ε/M .

Theorem 3. The Nε constructed above is indeed an ε-net of (SP(Q), �1) with

cardinality at most O((w
2M2

ε2)M). For any point n ∈ Nε, we have dis(n) ≤ ε.

3 The Main Algorithm

Without loss of generality, we assume A1,A2 are identical, and of dimension d
in Problem 1. Moreover, our algorithm will deal with the set of product states
rather than separable states. Namely, we consider the following problem.

max: 〈Q, ρ〉 , (2)

subject to: ρ = ρ1 ⊗ ρ2, ρ1 ∈ D(A1) , ρ2 ∈ D(A2) .

It is easy to see these two optimization problems are equivalent since product
states are extreme points of the set of separable states. Our algorithm works
for both maximization and minimization of the objective function and can be
extended naturally to the k-partite version.

Problem 2 (k-partite version). Given any Hermitian matrix Q over A1⊗· · ·⊗Ak

(k ≥ 2), compute the optimum value OptSep(Q) with additive error δ.

max: 〈Q, ρ〉 , (3)

subject to: ρ = ρ1 ⊗ · · · ⊗ ρk, ∀i, ρi ∈ D(Ai) .

Before describing the algorithm, we need some terminology about the decom-
posability of a multi-partite operator. Any Hermitian operator Q is called M -
decomposable if there exists (Qt

1, Q
t
2, · · · , Qt

M) ∈ L (At)
M for each t such that

Q =

M∑
i=1

Q1
i ⊗Q2

i ⊗ · · · ⊗Qk−1
i ⊗Qk

i .

To facilitate the use of ε-net, we adopt a slight variation of the decomposability
above. Let w ∈ Rk

+ denote the widths of operators over each Ai. Any Q is called
(M,w)-decomposable if Q is M -decomposable and the widths of those operators
in the decomposition are bounded in the sense that maxi‖Qt

i‖op ≤ wt for each
t. It is noteworthy to mention that the decomposability defined above is related
to the concept tensor rank. However, given the representation Q as input, it is
hard in general to compute the tensor rank of Q or its corresponding decompo-
sition. Therefore,for any (M,w)-decomposable Q we assume its corresponding
decomposition is also a part of the input to our algorithm.

804 Y. Shi and X. Wu

1. Let Qt(M,wt) = (Qt
1, Q

t
2, · · · , Qt

M) for t=1,..., k-1. Let W = Πk
i=1wi. Generate

the εt-net (by Theorem 3) of (SP(Qt), �1) for each t=1,..., k-1 with εt = wtδ/(k−
1)W and denote such a set by N t

εt . Also let OPT store the optimum value.
2. For each point q = (q1, q2, · · · qk−1) ∈ N 1

ε1 ×N
2
ε2 × · · · × N

k−1
εk−1

, let Qk be

Qk =

M∑
i=1

q1i q
2
i · · · qk−1

i Qk
i ,

and calculate Q̃k = 1
2
(Qk +Qk∗). Then compute the maximum eigenvalue of Q̃k,

denoted by λmax(q). Update OPT as follows: OPT = max{OPT, λmax(q)}.
3. Return OPT.

Fig. 1. The main algorithm with precision δ

Theorem 4. Let Q be some (M,w)-decomposable Hermitian over A1 ⊗ · · · ⊗
Ak (each Ai is of dimension d) and δ > 0. Also let (Qt

1, Q
t
2, · · · , Qt

M), t =
1, · · · , k be the operators in the corresponding decomposition of Q. The algorithm
shown in Fig. 1 approximates OptSep(Q) of Problem 2 with additive error δ in

O(((k−1)2W 2M2

δ2)(k−1)M)× poly(d,M, k,W, 1/δ) time where W = Πk
i=1wi.

Proof. By substituting the identity Q =
∑M

i=1Q
1
i ⊗ Q2

i ⊗ · · · ⊗ Qk−1
i , the opti-

mization problem becomes

max:

〈
M∑
i=1

p1i p
2
i · · · pk−1

i Qk
i , ρk

〉
subject to: ∀t ∈ {1, · · · , k − 1},pt ∈ SP(Qt(M,wt)), and ρk ∈ D(Ak) .

Thus, solving the optimization problem amounts to first enumerating pt ∈
SP(Qt(M,w1)) for each t, and then solving the optimization problem over
D (Ak).

Consider any point p = (p1,p2, · · · ,pk−1) ∈ SP(Qi)
k−1 where SP(Qi)

k−1

denotes SP(Q1)× · · ·×SP(Qk−1). Due to Theorem 3, there is at least one point
q = (q1, q2, · · · qk−1) ∈ {N i

εi}k−1 where {N i
εi}k−1 denotesN 1

ε1×N 2
ε2×· · ·×N k−1

εk−1

such that ‖qt − pt‖1 ≤ εt for t=1,..,k-1. The choice of Q̃k is to symmetrize Qk.

With Q̃k being Hermitian, it is clear that λmax(q) = maxρk∈D(Ak)

〈
Q̃k, ρk

〉
.

Now let’s analyze how much error will be induced in this process.
Let P k(p) =

∑M
i=1 p

1
i p

2
i · · · pk−1

i Qk
i and P̃ k = 1

2 (P
k + P k∗). It is not hard to

see that P k = P̃ k. The error bound is achieved by applying a chain of triangle
inequalities as follows. Firstly, one has

‖P̃ k − Q̃k‖op = ‖ 1
2
(P k −Qk) +

1

2
(P k∗ −Qk∗)‖op ≤ ‖P k −Qk‖op.

Epsilon-Net Method for Optimizations over Separable States 805

Substitute the expressions for P k, Qk and apply the standard hybrid argument.

‖P k −Qk‖op = ‖
M∑
i=1

(p1i p
2
i · · · pk−1

i − q1i q
2
i · · · qk−1

i)Qk
i ‖op

= ‖
M∑
i=1

k−1∑
t=1

(q1i · · · qt−1
i ptip

t+1
i · · · pk−1

i − q1i · · · qt−1
i qtip

t+1
i · · · pk−1

i)Qk
i ‖op,

which is immediately upper bounded by the sum of the following terms,

M∑
i=1

|p1i − q1i ||p2i · · · pk−1
i |‖Qk

i ‖op, , · · · ,
M∑
i=1

|q1i · · · qk−2
i ||pk−1

i − qk−1
i |‖Qk

i ‖op.

As the tth term above can be upper bounded by εtW/wt for each t, we have,

‖P̃ k−Q̃k‖op ≤ ε1W/w1+ε2W/w2+· · ·+εk−1W/wk−1 =
δ

k − 1
+ · · ·+ δ

k − 1︸ ︷︷ ︸
k-1 terms

= δ.

Hence the optimum value for any fixed p won’t differ too much from the one for
its approximation q in the ε-net. This is because

max
ρk∈D(Ak)

〈
P̃ k, ρk

〉
= max

ρk∈D(Ak)

〈
Q̃k, ρk

〉
+
〈
P̃ k − Q̃k, ρk

〉
.

By Hölder Inequalities we have |
〈
P̃ k − Q̃k, ρk

〉
| ≤ ‖P̃ k − Q̃k‖op‖ρk‖tr ≤ δ,

λmax(q)− δ ≤ max
ρk∈D(Ak)

〈
P̃ k(p), ρk

〉
≤ λmax(q) + δ.

We now optimize p over SP(Qi)
k−1 and the corresponding q will run over the

ε-net {N i
εi}k−1. As every point q ∈ {N i

εi}k−1 is also close to SP(Qi)
k−1 in the

sense that dis(qt) ≤ εt for each t, we have

max
q∈{N i

εi
}k−1

λmax(q)− δ ≤ max
p∈SP(Qi)

k−1
max

ρk∈D(Ak)

〈
P̃ k(p), ρk

〉
≤ max

q∈{N i
εi

}k−1
λmax(q) + δ.

Finally, it is not hard to see that OPT = maxq∈{N i
εi
}k−1 λmax(q) and therefore

OPT− δ ≤ OptSep(Q) ≤ OPT+ δ.

Now let us analyze the efficiency of this algorithm. The total number of points

in the ε-net {N i
εi}k−1 is upper bounded by O(((k−1)2W 2M2

δ2)(k−1)M) . The gener-
ation of each point q will cost time polynomial in d,M,W, 1/δ (See Lemma 1.).
Afterward, one needs to calculate Q̃k and its maximum eigenvalue for each point,
which can be done in time polynomial in d, k,M . Thus, the total running time

is bounded by O(((k−1)2W 2M2

δ2)(k−1)M)× poly(d,M, k,W, 1/δ).

806 Y. Shi and X. Wu

Remarks. All operations in the algorithm described in Fig. 1 can be imple-
mented efficiently in parallel in some situation. This is because fundamental
operations of matrices can be done in NC and the calculation of dis(p) can be
done in NC (See Lemma 1) when M,W, k, 1/δ are in nice forms of d.

Corollary 3. Let n be the input size such that d = exp(poly(n)), if W/δ ∈
O(poly(n)), kM ∈ O(poly(n)), then OptSep(Q) can be approximated with additive
error δ in PSPACE.

4 Simulation of Several Variants of QMA(2)

This section illustrates the use of the algorithm shown in Section 3 to simulate
some variants of the complexity class QMA(2). The idea is to show for those vari-
ants, the corresponding POVMmatrices of acceptance are (M,w)-decomposable
with small Ms. Recall the definition of the complexity class QMA(2).

Definition 2. A language L is in QMA(2)m,c,s if there exists a polynomial-time
generated family of quantum verification circuits Q = {Qn|n ∈ N} such that for
any input x of size n, the circuit Qn implements a two-outcome measurement
{Qacc

x , I−Qacc
x }. Furthermore,

– Completeness: If x ∈ L, there exist |ψ1〉 ∈ A1, |ψ2〉 ∈ A2, each of m qubits,

〈Qacc
x , |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|〉 ≥ c.

– Soundness: If x /∈ L, then for any states |ψ1〉 ∈ A1, |ψ2〉 ∈ A2,

〈Qacc
x , |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|〉 ≤ s.

We call QMA(2)=QMA(2)poly(n),2/3,1/3. It is easy to see that simulating the
complexity class QMA(2) amounts to distinguishing between the two promises
of the maximum acceptance probability (i.e. OptSep(Qacc

x)).
The first example is the variant with only logarithm-size proofs, namely

QMA(2)O(log(n)),2/3,1/3. It is not hard to find out the corresponding POVMs
of acceptance (i.e. Qacc

x) need to be (poly(n),w)-decomposable where w = (1, 1)
since A1,A2 are only of polynomial dimension. Thus, it follows directly from
Corollary 3 that OptSep(Qacc

x) can be approximated in polynomial space.
Namely,

QMA(2)O(log(n)),2/3,1/3 ⊆ PSPACE.

The next example is slightly less trivial. Before moving on, we need some termi-
nology about the quantum verification circuits Q. Assume the input x is fixed
from now on. Let A1,A2 be the Hilbert space of size dA for the two proofs and
let V be the ancillary space of size dV . Then the quantum verification process will
be carried out on the space A1⊗A2⊗V with some initial state |ψ1〉⊗ |ψ2〉⊗ |0〉
where |ψ1〉 , |ψ2〉 are provided by the provers. The verification process is also
efficient in the sense that the whole circuit only consists of polynomial elemen-
tary gates. Without loss of generality, we can fix one universal gate set for the

Epsilon-Net Method for Optimizations over Separable States 807

verification circuits. Particularly, we choose the universal gate set to be single
qubit gates plus the CNOT gates. One can also choose other universal gate sets
without any change of the main result.

We categorize all elementary gates in the verification circuits into two types.
A gate is of type-I if it only affects the qubits within the same space (i.e,
A1,A2, or,V). Otherwise, this gate is of type-II. It is easy to see single qubit gates
are always type-I gates. The only type-II gates are CNOT gates whose control
qubit and target qubit sit in different spaces. Let p, r : N → N be polynomial-
bounded functions. A polynomial-time generated family of quantum verification
circuits Q is called Q[p, r] if each Qn only contains p(n) type-I elementary gates
and r(n) type-II elementary gates.

Definition 3. A language L is in QMA(2)m,c,s[p, r] if L is in QMA(2)m,c,s

with some Q[p, r] verification circuit family.

It is easy to see that QMA(2) = QMA(2)[poly, poly] from our definition.

Lemma 2. For any family of verification circuits Q[p, r], the POVM Qacc
x is

(4r(n), (1, 1))-decomposable for any n ∈ N and input x. Moreover, this decompo-
sition can be calculated in parallel with O(t(n)4r(n))× poly(n) time.

We will show that when the number of type-II gates is relatively small, one can
simulate this complexity model efficiently by the algorithm in Fig. 1.

Corollary 4. QMA(2)[poly(n), O(log(n))] ⊆ PSPACE.

Proof. This is a simple consequence of Lemma 2 and Corollary 3. For any fixed
x of length n, one can first compute the decomposition of Qacc

x in parallel with
O(t(n)4r(n))× poly(n) time, which is parallel polynomial time in n when r(n) =
O(log(n)) and t(n) ∈ poly(n). Hence the first step can be done in polynomial
space via the relation NC(poly)=PSPACE [4].

Then one can invoke the parallel algorithm in Corollary 3 to approximate
OptSep(Qacc

x) to sufficient precision δ such that one can distinguish between the
two promises. Precisely in this case, we choose those parameters as follows,

k = 2,W = 1,M = 4O(log(n)) = poly(n), 1/δ = poly(n).

Thus the whole algorithm can be done in polynomial space.

Remarks. Although the proof of the result is not too technical, it establishes
the first non-trivial upper bound (PSPACE in this case) for variants of QMA(2)
that allow quantum operations acting on both proofs at the same time.

However, our results are hard to extend to the most general case of QMA(2).
This is because SWAP-test operation uses many more type-II gates than what
is allowed in our method. And SWAP-test seems to be inevitable if one wants
to fully characterize the power of QMA(2).

808 Y. Shi and X. Wu

1. Compute the spectral decomposition of Q =
∑

t λt |Ψt〉〈Ψt|. Choose ε = δ/2 and
Γε = {t : λt ≥ ε}.Also let OPT store the optimum value.

2. Generate the ε-net of the unit ball of C|Γε| under the Euclidean norm with ε =
δ

4‖Q‖F . Denote such set by Nε. Then for each point α ∈ Nε,

(a) Compute |φα〉 =
∑

t∈Γε
α∗
t

√
λt |Ψt〉 and compute the Schmidt decomposi-

tion of |φα〉, i.e.
|φα〉 =

∑
i

μi |ui〉 |vi〉 ,

where μ1 ≥ μ2 ≥ · · · and {ui}, {vi} are orthogonal bases.
(b) Update OPT as follows: OPT=max{OPT,μ1}.

3. Return OPT.

Fig. 2. The algorithm runs in time exponential in ‖Q‖F/δ.

5 Exponential Running Time Algorithm in ‖Q‖F

In this section we demonstrate another application of the simple idea ”enumer-
ation”. As a result, we obtained an algorithm with running time exponential in
‖Q‖F (or ‖Q‖LOCC [25]3) for computing OptSep(Q) with additive error δ. A
similar running time exp(O(log2(d)δ−2‖Q‖2F)) was obtained in [6].

Theorem 5. Given any positive semidefinite Q over A1 ⊗ A2 (of dimension
d× d) and δ > 0, the algorithm in Fig. 2 approximates OptSep(Q) with additive
error δ with running time exp(O(log(d) + δ−2‖Q‖2F ln(‖Q‖F/δ))).

Acknowledgement. We thank Zhengfeng Ji and John Watrous for helpful dis-
cussions and anonymous reviewers for helpful comments on the manuscript.

References

1. Aaronson, S., Beigi, S., Drucker, A., Fefferman, B., Shor, P.: The Power of Unen-
tanglement. Theory of Computing 5, 1–42 (2009)

2. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta
algorithm and applications (2005)

3. Beigi, S.: NP vs QMAlog(2). Quantum Information and Computation 54(1&2),
0141–0151 (2010)

4. Borodin, A.: On relating time and space to size and depth. SIAM Journal on
Computing 6(4), 733–744 (1977)

5. Blier, H., Tapp, A.: All languages in NP have very short quantum proofs. In:
Proceedings of the ICQNM, pp. 34–37 (2009)

3 This follows easily from the fact ‖Q‖F = O(‖Q‖LOCC) [25] where ‖Q‖LOCC stands
for the LOCC norm of the operator Q.

Epsilon-Net Method for Optimizations over Separable States 809

6. Brandão, F., Christandl, M., Yard, J.: A quasipolynomial-time algorithm for the
quantum separability problem. In: Proceedings of the 43rd Annual ACM Sympo-
sium on Theory of Computation (STOC 2011), p. 343 (2011)

7. Chen, J., Drucker, A.: Short multi-prover quantum proofs for SAT without entan-
gled measurements. arXiv:1011.0716 (2010)

8. Defant, A., Floret, K.: Tensor norms and operator ideals. North Holland (1992)
9. Doherty, A., Parrilo, P., Spedalieri, F.: A complete family of separability criteria.

Physical Review A 69, 022308 (2004)
10. Fan, K.: Minimax theorems. Proceedings of the National Academy of Sciences 39,

42–47 (1953)
11. Gathen, J.: Parallel linear algebra. In: Synthesis of Parallel Algorithms. Morgan

Kaufmann Publishers (1993)
12. Gharibian, S.: Strong NP-hardness of the quantum separability problem. Quantum

Information and Computation 10, 343 (2010)
13. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial

optimization. Springer (1993)
14. Gurvits, L.: Classical complexity and quantum entanglement. Journal of Computer

and System Sciences 69, 448 (2004)
15. Gutoski, G., Wu, X.: Parallel approximation of min-max problems with applica-

tions to classical and quantum zero-sum games. In: Proceedings of the 27rd Annual
IEEE Conference on Computational Complexity (to appear, 2012)

16. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entangle-
ment. Review Modern Physics 81, 865 (2009)

17. Harrow, A., Montanaro, A.: An efficient test for product states, with applications to
quantum Merlin-Arthur games. In: Proceedings of IEEE 51st Annual Symposium
on Foundations of Computer Science (FOCS 2010), p. 633 (2010)

18. Ioannou, L.: Computational complexity of the quantum separability problem.
Quantum Information and Computation 7, 335 (2007)

19. Jain, R., Watrous, J.: Parallel approximation of non-interactive zero-sum quantum
games. In: Proceedings of the 24th IEEE Conference on Computational Complex-
ity, pp. 243–253 (2009)

20. Kale, S.: Efficient algorithms using the multiplicative weights update method. PhD
thesis. Princeton University (2007)

21. Kobayashi, H., Matsumoto, K., Yamakami, T.: Quantum Certificate Verification:
Single versus Multiple Quantum Certificates, quant-ph/0110006 (2001)

22. Kitaev, A., Shen, A., Vyalyi, M.: Classical and Quantum Computation. American
Mathematical Society (2002)

23. Ling, C., Qi, L., Nie, J., Ye, Y.: Bi-Quadratic Optimization over Unit Spheres
and Semidefinite Programming Relaxations. SIAM Journal on Optimization 20(3),
1286–1310 (2009)

24. Marriott, C., Watrous, J.: Quantum Arthur-Merlin Games. Computational Com-
plexity 14(2), 122–152 (2005)

25. Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under
restricted families of measurements with an application to quantum data hiding.
Comm. Math. Phys., 291 (2009)

26. Neumann, J.: Zur theorie der gesellschaftsspiele. Mathematische Annalen 100, 295–
320 (1928)

27. Watrous, J.: Lecture Notes on Theory of Quantum Information (2008)
28. Wu, X.: Equilibrium value method for the proof of QIP=PSPACE.

arXiv:1004.0264v4 (2010)

Faster Algorithms for Privately

Releasing Marginals�

Justin Thaler��, Jonathan Ullman� � �, and Salil Vadhan†

School of Engineering and Applied Sciences &
Center for Research on Computation and Society

Harvard University, Cambridge, MA
{jthaler,jullman,salil}@seas.harvard.edu

http://seas.harvard.edu/~jthaler

http://seas.harvard.edu/~jullman

http://seas.harvard.edu/~salil

Abstract. We study the problem of releasing k-way marginals of a
database D ∈ ({0, 1}d)n, while preserving differential privacy. The an-
swer to a k-way marginal query is the fraction of D’s records x ∈ {0, 1}d
with a given value in each of a given set of up to k columns. Marginal
queries enable a rich class of statistical analyses of a dataset, and de-
signing efficient algorithms for privately releasing marginal queries has
been identified as an important open problem in private data analysis
(cf. Barak et. al., PODS ’07).

We give an algorithm that runs in time dO(
√
k) and releases a private

summary capable of answering any k-way marginal query with at most

±.01 error on every query as long as n ≥ dO(
√
k). To our knowledge, ours

is the first algorithm capable of privately releasing marginal queries with
non-trivial worst-case accuracy guarantees in time substantially smaller
than the number of k-way marginal queries, which is dΘ(k) (for k d).

1 Introduction

Consider a database D ∈ ({0, 1}d)n in which each of the n = |D| rows corre-
sponds to an individual’s record, and each record consists of d binary attributes.
The goal of privacy-preserving data analysis is to enable rich statistical analyses
on the database while protecting the privacy of the individuals. In this work,
we seek to achieve differential privacy [6], which guarantees that no individual’s
data has a significant influence on the information released about the database.

One of the most important classes of statistics on a dataset is its marginals. A
marginal query is specified by a set S ⊆ [d] and a pattern t ∈ {0, 1}|S|. The query
asks, “What fraction of the individual records in D has each of the attributes

� A full version of this paper appears on the authors’ websites.
�� Supported by the Department of Defense (DoD) through the National Defense

Science & Engineering Graduate Fellowship (NDSEG) Program, and in part by
NSF grants CCF-0915922 and IIS-0964473.

� � � Supported by NSF grant CNS-0831289 and a gift from Google, Inc.
† Supported by NSF grant CNS-0831289 and a gift from Google, Inc.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 810–821, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://seas.harvard.edu/~jthaler
http://seas.harvard.edu/~jullman
http://seas.harvard.edu/~salil

Faster Algorithms for Privately Releasing Marginals 811

j ∈ S set to tj?” A major open problem in privacy-preserving data analysis
is to efficiently create a differentially private summary of the database that
enables analysts to answer each of the 3d marginal queries. A natural subclass of
marginals are k-way marginals, the subset of marginals specified by sets S ⊆ [d]
such that |S| ≤ k.

Privately answering marginal queries is a special case of the more general prob-
lem of privately answering counting queries on the database, which are queries
of the form, “What fraction of individual records in D satisfy some property q?”
Early work in differential privacy [5,2,6] showed how to approximately answer
any set of of counting queries Q by perturbing the answers with appropriately
calibrated noise, providing good accuracy (say, within ±.01 of the true answer)
as long as |D| � |Q|1/2.

In a setting where the queries arrive online, or are known in advance, it may
be reasonable to assume that |D| � |Q|1/2. However, many situations necessitate
a non-interactive data release, where the data owner computes and publishes a
single differentially private summary of the database that enables analysts to
answer a large class of queries, say all k-way marginals for a suitable choice of
k. In this case |Q| = dΘ(k), and it may be impractical to collect enough data to
ensure |D| � |Q|1/2. Fortunately, the remarkable work of Blum et. al. [3] and
subsequent refinements [7,9,17,13,12,11], have shown how to privately release ap-
proximate answers to any set of counting queries, even when |Q| is exponentially
larger than |D|. For example, these algorithms can release all k-way marginals
as long as |D| ≥ Θ̃(k

√
d). Unfortunately, all of these algorithms have running

time at least 2d, even when |Q| is the set of 2-way marginals (and this is inherent
for algorithms that produce “synthetic data” [19]; as discussed below).

Given this state of affairs, it is natural to seek efficient algorithms capable of
privately releasing approximate answers to marginal queries even when |D| . dk.
A recent series of works [10,4,14] have shown how to privately release answers to
k-way marginal queries with small average error (over various distributions on
the queries) with both running time and minimum database size much smaller

than dk (e.g. dO(1) for product distributions [10,4] and min{dO(
√
k), dO(d1/3)}

for arbitrary distributions [14]). Hardt et. al. [14] also gave an algorithm for
privately releasing k-way marginal queries with small worst-case error and min-
imum database size much smaller than dk. However the running time of their
algorithm is still dΘ(k), which is polynomial in the number of queries.

In this paper, we give the first algorithms capable of releasing k-way marginals
up to small worst-case error, with both running time and minimum database
size substantially smaller than dk. Specifically, we show how to create a private

summary in time dO(
√
k) that gives approximate answers to all k-way marginals

as long as |D| is at least dO(
√
k). When k = d, our algorithm runs in time 2Õ(

√
d),

and is the first algorithm for releasing all marginals in time 2o(d).

1.1 Our Results and Techniques

In this paper, we give faster algorithms for releasing marginals and other classes
of counting queries.

812 J. Thaler, J. Ullman, and S. Vadhan

Theorem 1 (Releasing Marginals). There exists a constant C such that for
every k, d, n ∈ N with k ≤ d, every α ∈ (0, 1], and every ε > 0, there is an
ε-differentially private sanitizer that, on input a database D ∈ ({0, 1}d)n, runs
in time |D| ·dC

√
k log(1/α) and releases a summary that enables computing each of

the k-way marginal queries on D up to an additive error of at most α, provided

that |D| ≥ dC
√
k log(1/α)/ε.

For notational convenience, we focus on monotone k-way disjunction queries.
However, our results extend straightforwardly to general non-monotone k-way
disjunction queries (see Section 4.1), which are equivalent to k-way marginals.
A monotone k-way disjunction is specified by a set S ⊆ [d] of size k and asks
what fraction of records in D have at least one of the attributes in S set to 1.

Our algorithm is inspired by a series of works reducing the problem of private
query release to various problems in learning theory. One ingredient in this
line of work is a shift in perspective introduced by Gupta, Hardt, Roth, and
Ullman [10]. Instead of viewing disjunction queries as a set of functions on the
database, they view the database as a function fD : {0, 1}d → [0, 1], in which
each vector s ∈ {0, 1}d is interpreted as the indicator vector of a set S ⊆ [d], and
fD(s) equals the evaluation of the disjunction specified by S on the database D.
They use the structure of the functions fD to privately learn an approximation
gD that has small average error over any product distribution on disjunctions.1

Cheraghchi, Klivans, Kothari, and Lee [4] observed that the functions fD can
be approximated by a low-degree polynomial with small average error over the
uniform distribution on disjunctions. They then use a private learning algorithm
for low-degree polynomials to release an approximation to fD; and thereby obtain
an improved dependence on the accuracy parameter, as compared to [10].

Hardt, Rothblum, and Servedio [14] observe that fD is itself an average of
disjunctions (each row of D specifies a disjunction of bits in the indicator vec-
tor s ∈ {0, 1}d of the query), and thus develop private learning algorithms for
threshold of sums of disjunctions. These learning algorithms are also based on
low-degree approximations of sums of disjunctions. They show how to use their
private learning algorithms to obtain a sanitizer with small average error over

arbitrary distributions with running time and minimum database size dO(
√
k).

They then are able to apply the private boosting technique of Dwork, Roth-
blum, and Vadhan [9] to obtain worst-case accuracy guarantees. Unfortunately,
the boosting step incurs a blowup of dk in the running time.

We improve the above results by showing how to directly compute (a noisy
version of) a polynomial pD that is privacy-preserving and still approximates
fD on all k-way disjunctions, as long as |D| is sufficiently large. Specifically, the
running time and the database size requirement of our algorithm are both poly-

nomial in the number of monomials in pD, which is dO(
√
k). By “directly”, we

mean that we compute pD from the databaseD itself and perturb its coefficients,

1 In their learning algorithm, privacy is defined with respect to the rows of the database
D that defines fD, not with respect to the examples given to the learning algorithm
(unlike earlier works on “private learning” [15]).

Faster Algorithms for Privately Releasing Marginals 813

rather than using a learning algorithm. Our construction of the polynomial pD
uses the same low-degree approximations exploited by Hardt et. al. in the de-
velopment of their private learning algorithms.

In summary, the main difference between prior work and ours is that prior
work used learning algorithms that have restricted access to the database, and
released the hypothesis output by the learning algorithm. In contrast, we do
not make use of any learning algorithms, and give our release algorithm direct
access to the database. This enables our algorithm to achieve a worst-case error
guarantee while maintaining a minimal database size and running time much
smaller than the size of the query set. Our algorithm is also substantially simpler
than that of Hardt et. al.

We also consider other families of counting queries. We define the class of
r-of-k queries. Like a monotone k-way disjunction, an r-of-k query is defined by
a set S ⊆ [d] such that |S| ≤ k. The query asks what fraction of the rows of D
have at least r of the attributes in S set to 1. For r = 1, these queries are exactly
monotone k-way disjunctions, and r-of-k queries are a strict generalization.

Theorem 2 (Releasing r-of-k Queries). For every r, k, d, n ∈ N with r ≤ k ≤
d, every α ∈ (0, 1], and every ε > 0 there is an ε-differentially private sanitizer

that, on input a database D ∈ ({0, 1}d)n, runs in time |D| · dÕ
(√

rk log(1/α)
)
and

releases a summary that enables computing each of the r-of-k queries on D up

to an additive error of at most α, provided that |D| ≥ d
Õ
(√

rk log(1/α)
)
/ε.

Note that monotone k-way disjunctions are just r-of-k queries where r = 1, thus
Theorem 2 implies a release algorithm for disjunctions with quadratically better
dependence on log(1/α), at the cost of slightly worse dependence on k (implicit
in the switch from O(·) to Õ(·)).

Finally, we present a sanitizer for privately releasing databases in which the
rows of the database are interpreted as decision lists, and the queries are inputs
to the decision lists. That is, instead of each record in D being a string of d
attributes, each record is an element of the set DLk,m, which consists of all
length-k decision lists over m input variables. (See Section 4.3 for a precise
definition.) A query is specified by a string y ∈ {0, 1}d and asks “What fraction
of database participants would make a certain decision based on the input y?”

As an example application, consider a database that allows high school stu-
dents to express their preferences for colleges in the form of a decision list. For
example, a student may say, “If the school is ranked in the top ten nationwide,
I am willing to apply to it. Otherwise, if the school is rural, I am unwilling to
apply. Otherwise, if the school has a good basketball team then I am willing to
apply to it.” And so on. Each student is allowed to use up to k attributes out
of a set of m binary attributes. Our sanitizer allows any college (represented by
its m binary attributes) to determine the fraction of students willing to apply.

Theorem 3 (Releasing Decision Lists). For any k,m ∈ N s.t. k ≤ m, any
α ∈ (0, 1], and any ε > 1/n, there is an ε-differentially private sanitizer with

running time mÕ(
√
k log(1/α)) that, on input a database D ∈ (DLk,m)n, releases

814 J. Thaler, J. Ullman, and S. Vadhan

a summary that enables computing any length-k decision list query up to an

additive error of at most α on every query, provided that |D| ≥ mÕ(
√
k log(1/α))/ε.

For comparison, we note that all the results on releasing k-way disjunctions
(including ours) also apply to a dual setting where the database records specify
a k-way disjunction overm bits and the queries are m-bit strings (in this setting
m plays the role of d). Theorem 3 generalizes this dual version of Theorem 1, as
length-k decision lists are a strict generalization of k-way disjunctions.

We prove the latter two results (Theorems 2 and 3) using the same approach
outlined for marginals (Theorem 1), but with different low-degree polynomial
approximations appropriate for the different types of queries.

Table 1. Summary of prior results on differentially private release of k-way marginals.
The database size column indicates the minimum database size required to release an-
swers to k-way marginals up to an additive error of α. For clarity, we ignore the depen-
dence on the privacy parameters and the failure probability of the algorithms. Notice
that this paper contains the first algorithm capable of releasing k-way marginals with
running time and worst-case error substantially smaller than the number of queries.

Paper Running Time Database Size Error Typea Synthetic Data?

[5,8,2,6] dO(k) O(dk/2/α) Worst case N

[1] 2O(d) O(dk/2/α) Worst case Y

[3,7,9,12] 2O(d) Õ(k
√
d/α2) Worst case Y

[10] dÕ(1/α2) dÕ(1/α2) Product Dists. N

[4] dO(log(1/α)) dO(log(1/α)) Uniform Dist.b N

[14] dO(d1/3 log(1/α)) dO(d1/3 log(1/α)) Any Dist. N

[14] dO(k) dO(d1/3 log(1/α)) Worst case N

[14] dO(
√
k log(1/α)) dO(

√
k log(1/α)) Any Dist. N

[14] dO(k) dO(
√
k log(1/α)) Worst case N

This paper dO(
√
k log(1/α)) dO(

√
k log(1/α)) Worst case N

a Worst case error indicates that the accuracy guarantee holds for every marginal. The
other types of error indicate that accuracy holds for random marginals over a given
distribution from a particular class of distributions (e.g. product distributions).

b The results of [4] apply only to the uniform distribution over all marginals.

On Synthetic Data. An attractive type of summary is a synthetic database. A
synthetic database is a new database D̂ ∈ ({0, 1}d)n̂ whose rows are “fake”,

but such that D̂ approximately preserves many of the statistical properties of
the database D (e.g. all the marginals). Some of the previous work on counting
query release has provided synthetic data, starting with Barak et. al. [1] and
including [3,7,9,12].

Unfortunately, Ullman and Vadhan [19] (building on [7]) have shown that
no differentially private sanitizer with running time dO(1) can take a database
D ∈ ({0, 1}d)n and output a private synthetic database D̂, all of whose 2-way
marginals are approximately equal to those of D (assuming the existence of one-
way functions). They also showed that there is a constant k ∈ N such that no

Faster Algorithms for Privately Releasing Marginals 815

differentially private sanitizer with running time 2d
1−Ω(1)

can output a private
synthetic database, all of whose k-way marginals are approximately equal to
those of D (under stronger cryptographic assumptions).

When k = d, our sanitizer runs in time 2Õ(
√
d) and releases a private summary

that enables an analyst to approximately answer any marginal query on D. Prior
to our work it was not known how to release any summary enabling approximate

answers to all marginals in time 2d
1−Ω(1)

. Thus, our results show that releasing
a private summary for all marginal queries can be done considerably more effi-
ciently if we do not require the summary to be a synthetic database (under the
hardness assumptions made in [19]).

2 Preliminaries

2.1 Differentially Private Sanitizers

Let a database D ∈ Xn be a collection of n rows x(1), . . . , x(n) from a data
universe X . We say that two databases D1, D2 ∈ Xn are adjacent if they differ
only on a single row, and we denote this by D1 ∼ D2.

A sanitizer A : Xn → R takes a database as input and outputs some data
structure in R. We are interested in sanitizers that satisfy differential privacy.

Definition 4 (Differential Privacy [6]). A sanitizer A : Xn → R is (ε, δ)-
differentially private if for every two adjacent databases D,D′ ∈ Xn and every
subset S ⊆ R, Pr [A(D) ∈ S] ≤ eε Pr [A(D′) ∈ S] + δ. In the case where δ = 0
we say that A is ε-differentially private.

Since a sanitizer that always outputs ⊥ satisfies Definition 4, we also need to
define what it means for a sanitizer to be accurate. In particular, we are interested
in sanitizers that give accurate answers to counting queries. A counting query is
defined by a boolean predicate q : X → {0, 1}. We define the evaluation of the
query q on a database D ∈ Xn to be q(D) = 1

n

∑n
i=1 q(x

(i)). We use Q to denote
a set of counting queries.

Since A may output an arbitrary data structure, we must specify how to
answer queries in Q from the output A(D). Hence, we require that there is an
evaluator E : R × Q → R that estimates q(D) from the output of A(D). For
example, if A outputs a vector of “noisy answers” Z = (q(D) + Zq)q∈Q, where
Zq is a random variable for each q ∈ Q, then R = RQ and E(Z, q) is the q-th
component of Z. Abusing notation, we write q(Z) and q(A(D)) as shorthand for
E(Z, q) and E(A(D), q), respectively. Since we are interested in the efficiency of
the sanitization process as a whole, when we refer to the running time of A, we
also include the running time of the evaluator E . We say that A is “accurate” for
the query set Q if the values q(A(D)) are close to the answers q(D). Formally,

Definition 5 (Accuracy). An output Z of a sanitizer A(D) is α-accurate for
the query set Q if |q(Z) − q(D)| ≤ α for every q ∈ Q. A sanitizer is (α, β)-
accurate for the query set Q if for every database D,

816 J. Thaler, J. Ullman, and S. Vadhan

Pr [∀q ∈ Q, |q(A(D))− q(D)| ≤ α] ≥ 1− β,

where the probability is taken over the coins of A.

We will make use of the Laplace mechanism. Let Lapk(σ) denote a draw from
the random variable over Rk in which each coordinate is chosen independently
according to the density function Lapσ(x) ∝ e−|x|/σ. Let D ∈ Xn be a database
and g : Xn → Rk be a function such that for every pair of adjacent databases
D ∼ D′, ‖g(D)− g(D′)‖∞ ≤ Δ. Then we have the following two theorems:

Lemma 6 (Laplace Mechanism, ε-Differential Privacy [6]). For D, g, k,Δ
as above, the mechanism A(D) = g(D)+Lapk(Δk/ε) satisfies ε-differential pri-
vacy. Furthermore, for any β > 0, PrA [‖g(D)−A(D)‖1 ≤ α] ≥ 1 − β, for
α = 2Δk2 log(k/β)/ε.

The choice of the L1 norm in the accuracy guarantee of the lemma is for conve-
nience, and doesn’t matter for the parameters of Theorems 1-3 (except for the
hidden constants).

2.2 Query Function Families

We take the approach of Gupta et. al. [10] and think of the database D as
specifying a function fD mapping queries q to their answers q(D), which we call
the Q-representation of D. We now describe this transformation more formally:

Definition 7 (Q-Function Family). Let Q = {qy}y∈YQ⊆{0,1}m be a set of

counting queries on a data universe X , where each query is indexed by an m-bit
string. We define the index set of Q to be the set YQ = {y ∈ {0, 1}m | qy ∈ Q}.

We define the Q-function family FQ = {fx : {0, 1}m → {0, 1}}x∈X as follows:
For every possible database row x ∈ X , the function fQ,x : {0, 1}m → {0, 1} is
defined as fQ,x(y) = qy(x). Given a database D ∈ Xn we define the function
fQ,D : {0, 1}m → [0, 1] where fQ,D(q) = 1

n

∑n
i=1 fQ,x(i)(q). When Q is clear

from context we will drop the subscript Q and simply write fx, fD, and F .

For some intuition about this transformation, when the queries are monotone
k-way disjunctions on a database D ∈ ({0, 1}d)n, the queries are defined by
sets S ⊆ [d] , |S| ≤ k. In this case each query can be represented by the d-bit
indicator vector of the set S, with at most k non-zero entries. Thus we can take

m = d and YQ =
{
y ∈ {0, 1}d |

∑d
j=1 yj ≤ k

}
.

2.3 Polynomial Approximations

An m-variate real polynomial p ∈ R[y1, . . . , ym] of degree t and (L∞) norm T
can be written as p(y) =

∑
j1,...,jm≥0

j1+···+jm≤t

cj1,...,jm
∏m

=1 y
j�

 where |cj1,...,jm | ≤ T for

every j1, . . . , jm. Recall that there are at most
(
m+t
t

)
coefficients in an m-variate

polynomial of total degree t. Often we will want to associate a polynomial p of

degree t and norm T with its coefficient vector p ∈ [−T, T](
m+t

t). Specifically,

Faster Algorithms for Privately Releasing Marginals 817

p = (cj1,...,jm) j1,...,jm≥0

j1+···+jm≤t

. Given a vector p and a point y ∈ {0, 1}m we use p(y)

to indicate the evaluation of the polynomial described by the vector p at the

point y. Observe this is equivalent to computing p · y where y ∈ {0, 1}(
m+t

t) is
defined as yj1,...,jm =

∏m

=1 y

j�

 for every j1, . . . , jm ≥ 0, j1 + · · ·+ jm ≤ t.

Let Pt,T be the family of all m-variate real polynomials of degree t and norm
T . In many cases, the functions fQ,x : {0, 1}m → {0, 1} can be approximated
well on all the indices in YQ by a family of polynomials Pt,T with low degree
and small norm. Formally:

Definition 8 (Uniform Approximation by Polynomials). Given a family
of m-variate functions F = {fx}x∈X and a set Y ⊆ {0, 1}m, we say that the
family Pt,T uniformly γ-approximates F on Y if for every x ∈ X , there exists
px ∈ Pt,T such that maxy∈Y |fx(y)− px(y)| ≤ γ.

We say that Pt,T efficiently and uniformly γ-approximates F if there is an
algorithm PF that takes x ∈ X as input, runs in time poly(log |X |,

(
m+t
t

)
, logT),

and outputs a coefficient vector px such that maxy∈Y |fx(y)− px(y)| ≤ γ.

3 From Polynomial Approximations to Data Release
Algorithms

In this section we present an algorithm for privately releasing any family of
counting queries Q such that FQ that can be efficiently and uniformly approx-
imated by polynomials. The algorithm will take an n-row database D and, for
each row x ∈ D, constructs a polynomial px that uniformly approximates the
function fQ,x (recall that fQ,x(q) = q(x), for each q ∈ Q). From these, it con-
structs a polynomial pD = 1

n

∑
x∈D px that uniformly approximates fQ,D. The

final step is to perturb each of the coefficients of pD using noise from a Laplace
distribution (Theorem 6) and bound the error introduced from the perturbation.

Theorem 9 (Releasing Polynomials). Let Q = {qy}y∈YQ⊆{0,1}m be a set of

counting queries over {0, 1}d, and FQ be the Q function family (Definition 7).
Assume that Pt,T efficiently and uniformly γ-approximates FQ on YQ (Defini-

tion 8). Then there is a sanitizer A : ({0, 1}d)n → R(
m+t

t) that

1. is ε-differentially private,
2. runs in time poly(n, d,

(
m+t
t

)
, logT, log(1/ε)), and

3. is (α, β)-accurate for Q for α = γ +
4T(m+t

t)
2
log((m+t

t)/β)
εn .

Proof. First we construct the sanitizer A. See the relevant codebox below.

Privacy. We establish that A is ε-differentially private. This follows from the
observation that for any two adjacent D ∼ D′ that differ only on row i∗,

‖pD − pD′‖∞ =

∥∥∥∥∥ 1n
n∑

i=1

px(i) − 1

n

n∑
i=1

px′(i)

∥∥∥∥∥
∞

=
1

n
‖px(i∗) − px′(i∗)‖∞ ≤ 2T

n
.

818 J. Thaler, J. Ullman, and S. Vadhan

The Sanitizer A
Input: A database D ∈ ({0, 1}d)n, an explicit family of polynomials P , and a pa-
rameter ε > 0.
For i = 1, . . . , n

Using efficient approximation of F by P , compute a polynomial px(i) = PF(x(i))
that γ-approximates fx(i) on YQ.
Let pD = 1

n

∑n
i=1 px(i) , where the sum denotes standard entry-wise vector addition.

Let p̃D = pD + Z, where Z is drawn from an
(
m+t

t

)
-variate Laplace distribution

with parameter 2T/εn (Section 2.1).
Output: p̃D.

The last inequality is from the fact that for every x, px is a vector of L∞ norm
at most T . Part 1 of the Theorem now follows directly from the properties of
the Laplace Mechanism (Theorem 6). Now we construct the evaluator E .

The Evaluator E for the Sanitizer A
Input: A vector p̃ ∈ R(

m+t
t) and the description of a query y ∈ {0, 1}m.

Output: p̃(y). Recall that we view p̃ as an m-variate polynomial, p, and p̃(y) is the
evaluation of p on the point y.

Efficiency. Next, we show that A runs in time poly(n, d,
(
m+t
t

)
, logT, log(1/ε)).

Recall that we assumed the polynomial construction algorithm P runs in time
poly(d,

(
m+t
t

)
, logT). The algorithm A needs to run PF on each of the n rows,

and then it needs to generate
(
m+t
t

)
samples from a univariate Laplace dis-

tribution with magnitude poly(T,
(
m+t
t

)
, 1/n, 1/ε), which can also be done in

time poly(
(
m+t
t

)
, logT, logn, log(1/ε)). We also establish that E runs in time

poly(
(
m+t
t

)
, logT, logn, log(1/ε)), observe that E needs to expand the input into

an appropriate vector of dimension
(
m+t
t

)
and take the inner product with the

vector p̃, whose entries have magnitude poly(
(
m+t
t

)
, T, 1/n, 1/ε). These observa-

tions establish Part 2 of the Theorem.

Accuracy. Finally, we analyze the accuracy of the sanitizer A. First, by the
assumption that Pt,T uniformly γ-approximates F on Y ⊆ {0, 1}m, we have

max
y∈Y

|fD(y)− pD(y)| ≤ 1

n

n∑
i=1

max
y∈Y

|fx(i)(y)− px(i)(y)| ≤ γ.

Now we want to establish that Pr
[
maxy∈{0,1}m |p̃D(y)− pD(y)| ≤ α′] ≥ 1 − β

for α′ = 4T
(
m+t
t

)2
log
((

m+t
t

)
/β
)
/εn, where the probability is taken over the

coins of A. Part (3) of the Theorem will then follow by the triangle inequality.
To see that the above statement is true, observe that by the properties of the

Laplace mechanism (Theorem 6), we have Pr [‖p̃D − pD‖1 ≤ α′] ≥ 1− β, where

Faster Algorithms for Privately Releasing Marginals 819

the probability is taken over the coins of A. Given that ‖p̃D − pD‖1 ≤ α′, it
holds that for every y ∈ {0, 1}m,

|p̃D(y)− pD(y)| = |(p̃D − pD)(y)| ≤ ‖p̃D − pD‖1 ≤ α′.

The first inequality follows from the fact that every monomial evaluates to 0 or
1 at the point y. This completes the proof of the theorem.

4 Applications

In this section we establish the existence of explicit families of low-degree poly-
nomials approximating the families FQ for some interesting query sets.

4.1 Releasing Monotone Disjunctions

We define the class of monotone k-way disjunctions as follows:

Definition 10 (Monotone k-Way Disjunctions). Let X = {0, 1}d. The
query set QDisj,k = {qy}y∈Yk⊆{0,1}d of monotone k-way disjunctions over {0, 1}d

contains a query qy for every y ∈ Yk =
{
y ∈ {0, 1}d | |y| ≤ k

}
. Each query is

defined as qy(x1, . . . , xd) =
∨d

j=1 yjxj. The QDisj,k function family FQDisj,k
=

{fx}x∈{0,1}d contains a function fx(y1, . . . , yd) =
∨d

j=1 yjxj for every x ∈ {0, 1}d.

Thus the family FQDisj,k
consists of all disjunctions, and the index set, Yk, con-

sists of all vectors y ∈ {0, 1}d with at most k non-zero entries.
The next lemma shows that FQDisj,k

can be efficiently and uniformly approxi-
mated by polynomials of low degree and low norm. The statement is a well-known
application of Chebyshev polynomials, and a similar statement appears in [14]
but without bounding the running time of the construction or a bound on the
norm of the polynomials.

Lemma 11 (Approximating FQDisj,k
by polynomials, similar to [14]).

For every k, d ∈ N such that k ≤ d and every γ > 0, the family Pt,T of d-variate

real polynomials of degree t = O(
√
k log(1/γ)) and norm T = dO(

√
k log(1/γ))

efficiently and uniformly γ-approximates the family FQDisj,k
on the set Yk.

Theorem 1 in the introduction follows by combining Theorems 9 and 11.

4.2 Releasing Monotone r-of-k Queries

We define the class of monotone r-of-k queries as follows:

Definition 12 (Monotone r-of-k Queries). Let X = {0, 1}d and r, k ∈ N
such that r ≤ k ≤ d. The query set Qr,k = {qy}y∈Yk⊆{0,1}d of monotone r-of-k

queries over {0, 1}d contains a query qy for every y ∈ Yk =
{
y ∈ {0, 1}d | |y| ≤ k

}
.

Each query is defined as qy(x1, . . . , xd) = 1∑d
j=1 yjxj≥r. The Qr,k function family

FQr,k
= {fx}x∈{0,1}d contains a function fx(y1, . . . , yd) = 1∑d

j=1 yjxj≥r for every

x ∈ {0, 1}d.

820 J. Thaler, J. Ullman, and S. Vadhan

The next lemma shows that FQr,k
can be efficiently and uniformly approximated

over Yk by low-degree polynomials. The statement is based on
approximation-theoretic results of Sherstov [18, Lemma 3.11].

Lemma 13 (Approximating FQr,k
on Yk). For every r, k, d ∈ N such that

r ≤ k ≤ d and every γ > 0, the family Pt,T of d-variate real polynomials of degree

t = Õ(
√
kr log(1/γ)) and norm T = dÕ(

√
kr log(1/γ)) efficiently and uniformly

γ-approximates the family FQr,k
on the set Yk.

Remark 1. Using the principle of inclusion-exclusion, the answer to a monotone
r-of-k query can be written as a linear combination of the answers to kO(r)

monotone k-way disjunctions. Thus, a sanitizer that is (α/kO(r), β)-accurate for
monotone k-way disjunctions implies a sanitizer that is (α, β)-accurate for mono-
tone r-of-k queries. However, combining this implication with Theorem 1 yields

a sanitizer with running time dO(r
√
k log(k/β)), which has a worse dependence on

r than what we achieve in Theorem 2.

4.3 Releasing Decision Lists

A length-k decision list over m variables is a function which can be written in
the form “if �1 then output b1 else · · · else if �k then output bk else output bk+1,”
where each �i is a boolean literal in {x1, . . . , xm}, and each bi is an output bit in
{0, 1}. Note that decision lists of length-k strictly generalize k-way disjunctions
and conjunctions. We use DLk,m to denote the set of all length-k decision lists
over m binary input variables.

Definition 14 (Evaluations of Length-k Decision Lists). Let k,m ∈ N
such that k ≤ m and X = DLk,m. The query set QDLk,m

= {qy}y∈{0,1}m of

evaluations of length-k decision lists contains a query qy for every y ∈ {0, 1}m.
Each query is defined as qy(x) = x(y) where x ∈ DLk,m is a length-k decision list
over m variables. The QDLk,m

function family FQDLk,m
= {fx}x∈DLk,m

contains

functions fx(y) = x(y) for every x ∈ DLk,m. That is, FQDLk,m
= DLk,m.

We clarify that in this setting, the records in the database are length-k decision
lists over {0, 1}m and the queries inputs in {0, 1}m. Thus |X | = |DLk,m| = mO(k)

and |Q| = 2m. Alternatively, X = {0, 1}d for d = k(logm+2)+1, since a length-k
decision list can be described using this many bits.

Lemma 15 ([16]). For every k,m ∈ N such that k ≤ m and every γ > 0,

the family Pt,T of m-variate real polynomials of degree Õ
(√

k log(1/γ)
)

and

norm T = mÕ(
√
k log(1/γ)) efficiently and uniformly γ-approximates the family

FQDLk,m
= DLk,m on all of {0, 1}m.

We obtain Theorem 3 of the introduction by combining Theorems 9 and 15.

Acknowledgements. We thank Moritz Hardt, Varun Kanade, Aaron Roth,
Guy Rothblum, and Li-Yang Tan for helpful discussions.

Faster Algorithms for Privately Releasing Marginals 821

References

1. Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy,
accuracy, and consistency too: a holistic solution to contingency table release. In:
Libkin, L. (ed.) PODS, pp. 273–282. ACM (2007)

2. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SuLQ frame-
work. In: Li, C. (ed.) PODS, pp. 128–138. ACM (2005)

3. Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive
database privacy. In: Dwork, C. (ed.) STOC, pp. 609–618. ACM (2008)

4. Cheraghchi, M., Klivans, A., Kothari, P., Lee, H.K.: Submodular functions are
noise stable. In: Randall, D. (ed.) SODA, pp. 1586–1592. SIAM (2012)

5. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: PODS,
pp. 202–210. ACM (2003)

6. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in
Private Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006)

7. Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.P.: On the complex-
ity of differentially private data release: efficient algorithms and hardness results.
In: STOC 2009, pp. 381–390 (2009)

8. Dwork, C., Nissim, K.: Privacy-Preserving Datamining on Vertically Partitioned
Databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 528–544.
Springer, Heidelberg (2004)

9. Dwork, C., Rothblum, G.N., Vadhan, S.P.: Boosting and differential privacy. In:
FOCS, pp. 51–60. IEEE Computer Society (2010)

10. Gupta, A., Hardt, M., Roth, A., Ullman, J.: Privately releasing conjunctions and
the statistical query barrier. In: STOC 2011, pp. 803–812 (2011)

11. Gupta, A., Roth, A., Ullman, J.: Iterative Constructions and Private Data Release.
In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 339–356. Springer, Heidelberg
(2012)

12. Hardt, M., Ligett, K., McSherry, F.: A simple and practical algorithm for differen-
tially private data release. CoRR abs/1012.4763 (2010)

13. Hardt, M., Rothblum, G.N.: A multiplicative weights mechanism for privacy-
preserving data analysis. In: FOCS, pp. 61–70. IEEE Computer Society (2010)

14. Hardt, M., Rothblum, G.N., Servedio, R.A.: Private data release via learning
thresholds. In: Randall, D. (ed.) SODA, pp. 168–187. SIAM (2012)

15. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What
can we learn privately? SIAM J. Comput. 40(3), 793–826 (2011)

16. Klivans, A.R., Servedio, R.A.: Toward Attribute Efficient Learning of Decision Lists
and Parities. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI),
vol. 3120, pp. 224–238. Springer, Heidelberg (2004)

17. Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In:
STOC 2010, pp. 765–774 (2010)

18. Sherstov, A.A.: Approximate inclusion-exclusion for arbitrary symmetric functions.
Computational Complexity 18(2), 219–247 (2009)

19. Ullman, J., Vadhan, S.: PCPs and the Hardness of Generating Private Synthetic
Data. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 400–416. Springer, Hei-
delberg (2011)

Stochastic Matching with Commitment�

Kevin P. Costello2, Prasad Tetali1, and Pushkar Tripathi1

1 Georgia Institute of Technology
2 University of California at Riverside

Abstract. We consider the following stochastic optimization problem
first introduced by Chen et al. in [7]. We are given a vertex set of a
random graph where each possible edge is present with probability pe.
We do not know which edges are actually present unless we scan/probe
an edge. However whenever we probe an edge and find it to be present,
we are constrained to picking the edge and both its end points are deleted
from the graph. We wish to find the maximum matching in this model.
We compare our results against the optimal omniscient algorithm that
knows the edges of the graph and present a 0.573 factor algorithm using
a novel sampling technique. We also prove that no algorithm can attain
a factor better than 0.898 in this model.

1 Introduction

The matching problem has been a corner-stone of combinatorial optimization
and has received considerable attention starting from the work of Jack Ed-
monds [9]. There has been recent interest in studying stochastic versions of the
problem due to its applications to online advertising and several barter exchange
settings [22,18,23]. Much of the recent research focused on studying matchings
on bipartite graphs. In this paper we study a recently introduced variant on the
stochastic online matching problem [7] on general graphs as described below.

For p a probability vector indexed by pairs of vertices from a vertex set V ,
let G(V, p) denote an undirected Erdős-Rényi graph on V . That is, for any
(u, v) ∈ V × V , puv = pvu denotes the (known) probability that there is an
edge connecting u and v in G. For every pair (u, v) ∈ V × V we are not told
a priori whether there is an edge connecting these vertices, until we probe/scan
this pair. If we scan a pair of vertices and find that there is an edge connecting
them we are constrained to pick this edge and in this case both u and v are
removed from the graph. However, if we find that u and v are not connected by
an edge, they continue to be available (to others) in the future. The goal is to
maximize the number of vertices that get matched.

We will refer to the above as the Stochastic Matching with Commitment
Problem (SMCP), since whenever we probe a pair of adjacent vertices, we are
committed to picking them. The performance of our algorithm is compared
against the optimal offline algorithm that knows the underlying graph for each

� The full version is available under the same name at the arxiv.org

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 822–833, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Stochastic Matching with Commitment 823

instantiation of the problem and finds the maximum matching in it. Note that
since the input is itself random, the average performance of the optimal offline-
algorithm is the expected size of the maximum matching in this random graph.
We use the somewhat non-standard notation of G(V, p), rather than Gn,p, since
we will need to refer to the (fixed) vertex set V and also since p is a vector with
typically different entries.

1.1 Our Results

It is easy to see that the simple greedy algorithm, which probes pairs in an arbi-
trary order, would return a maximal matching in every instance of the problem
and is therefore a factor 0.5 approximation algorithm. We give a sampling based
algorithm for this problem that does better than this:

Theorem 1. There exists a randomized algorithm that attains a competitive
ratio of at least 0.573 for the Stochastic Matching with Commitment Problem
that runs in time Õ(n4) for a graph with n vertices. Furthermore, the running
time can be reduced to Õ(n3) in the case where the expected size of the optimal
matching is a positive fraction of the number of vertices in the graph.

Our algorithm uses offline simulations to determine the relative importance of
edges to decide the order in which to scan them. It is based on a novel sampling
lemma that might be of independent interest in tackling online optimization
settings, wherein an algorithm needs to make irrevocable online decisions with
limited stochastic knowledge. This sampling trick is explained in section 2.3.
Even though the proof for our sampling lemma is based on solving an expo-
nentially large linear program, we also give a fast combinatorial algorithm for
it.

On the hardness front, we prove the following theorem, using rigorous analysis
of the performance of the optimal online algorithm for a carefully chosen graph.

Theorem 2. No algorithm can attain a competitive ratio better than 0.898 for
the SMCP.

1.2 Previous Work

The problem has similar flavor to several well known stochastic optimization
problems such as the stochastic knapsack [8] and the shortest-path [19,20]; refer
to [24] for a detailed discussion on these problems. We will now present more
explicit connections between SMCP and several previously studied models of
matching with limited information.

Stochastic Matching Problems: Chen et al. [7] considered a more general
model for stochastic matching than the one presented above. In their model
every vertex v ∈ V had a patience parameter t(v) indicating the maximum num-
ber of failed probes v is willing to participate in. After t(v) failed attempts, vertex

824 K.P. Costello, P. Tetali, and P. Tripathi

v would leave the system, and would not be considered for any further matches.
Our model can be viewed as a special case of their setting where t(v) = n for
every vertex. However Chen et al., and subsequently Bansal et al. [4], compared
their performance against the optimal online algorithm. This was necessary be-
cause if we consider the case of the star graph, where each edge has a probability
of 1/n and t(v) = 1 for every vertex v, then any online algorithm can match the
center of the star with probability at most 1/n, while there exists an edge inci-
dent on the center with probability 1− 1/e. In contrast, our results are against
the strongest adversary, i.e., the optimal offline omniscient algorithm. Clearly
the performance of the optimal online algorithm can be no better than that of
such an omniscient algorithm.

In their model [7], Chen et al. presented a 1/4 competitive algorithm which
was later improved to a 0.5 factor algorithm by Adamczyk [1]. The results in [7]
were extended to the weighted setting by Bansal et al. [4] who gave a 1/4 com-
petitive algorithm for the general case, and a 1/3 competitive algorithm for the
special case of bipartite graphs.

Online Bipartite Matching Problems: Online bipartite matching was first
introduced by Karp et al. in [15]. Here one side of a bipartite graph is known
in advance and the other side arrives online. For each arriving vertex we are
revealed its neighbors in the given side. The task is to match the maximum
number arriving vertices. In [15], the authors gave a tight 1−1/e factor algorithm
for this problem. This barrier of 1−1/e has been breached for various stochastic
variants of this problem [11,5,17], by assuming prior stochastic knowledge about
the arriving vertices. Goel and Mehta [13] studied the random order arrival
model where the vertices of the streaming side are presented in a random order
and showed that the greedy algorithm attains a factor of 1− 1/e. This was later
improved to a 0.69 competitive algorithm by [16,14].

Remark 1. The algorithm in [16,14] can be thought of as the following random-
ized algorithm for finding a large matching in a given bipartite graph - randomly
permute one of the sides and consider the vertices of the other side also in a
(uniformly) random order. Match every vertex to the first available neighbor
(according to the permutation) on the other side. It can be viewed as an oblivi-
ous algorithm that ignores the edge structure of the graph and can therefore be
simulated in our setting. This yields a 0.69 competitive algorithm for the SMCP
restricted to bipartite graphs.

Randomized Algorithms for Maximum Matchings: Fast randomized al-
gorithms for finding maximum matchings have been studied particularly in the
context of Erdős-Rényi graphs [3,12,6] starting from the work of Karp and
Sipser [21]. However all these algorithms explicitly exploit the edge structure
of the graph and are not applicable in our setting. In [2], Aronson et al. anal-
ysed the following simple algorithm for finding a matching in a general graph -
consider the vertices of the graph in a random order and match each vertex to
a randomly chosen neighbor that is unmatched. This algorithm was shown to
achieve a factor of 0.50000025.

Stochastic Matching with Commitment 825

Remark 2. To the best of our knowledge, the algorithm in [2] is the only non-
trivial algorithm for finding a large matching in a general graph that works
without looking at the edge structure. Since this algorithm works for arbitrary
graphs, it can be simulated in our setting and yields a 0.50000025 factor algo-
rithm for SMCP for general graphs. However we manage to improve the fac-
tor by exploiting the additional stochastic information available to us in our
model.

1.3 Informal Description of the Proof Technique

Observe that the simple algorithm, which weighs (or probes) an edge e according
to probability pe, is not necessarily the best way to proceed. Consider a path
having 3 edges such that the middle edge is present with probability 1 whereas
the other two edges are each present with probability 0.9. Even though the
middle edge is always present, it is unlikely to be involved in any maximum
matching. Conversely, the outer edges will always be a part of some maximum
matching when they appear.

To determine the relative importance of edges, our algorithm relies on offline
simulations. We sample from the given distribution to obtain a collection of
representative graphs. We use maximum matchings from these graphs to esti-
mate the probability (denoted by q∗e) that a given candidate edge e belongs to
the maximum matching. Note that this is done as a preprocessing step without
probing any of the edges in the given graph (a necessary requirement, as probing
an edge could lead to unwanted commitments). Clearly the probability that a
vertex would get matched in the optimal solution is the sum of q∗e for all edges
incident on it and this gives us a way to approximate the optimal solution.

Similarly we can also calculate the conditional probability that an edge be-
longs to the maximum matching, given that it is present in the underlying graph.
We use this as a measure of the importance of the edge. Observe that it is safe
to probe edges where this conditional probability is large, since we are unlikely
to make a mistake on such edges. After we are done probing these edges we are
left with a residual graph where this conditional probability is small for every
edge.

Ideally at this point what we would like to do is to simulate the fractional
matching given by the q∗e , i.e., include every edge with probability q∗e . However,
this is made impossible by the combination of our lack of knowledge of the
graph and the commitments we are forced to make as we scan edges to obtain
information about the graph. To overcome these limitations, we devise a novel
sampling technique, described in section 2.3, that gives us a partial simulation.
This sampling algorithm outputs a (randomized) ordering to scan the edges
incident to a given vertex, so as to ensure that edge e is included with probability
at least some large positive fraction of q∗e .

826 K.P. Costello, P. Tetali, and P. Tripathi

2 Preliminaries

2.1 The Model

We are given a set of vertices V , and for every unordered pair of vertices u, v ∈
V , we have a (known) probability puv of the edge (u, v) being present. These
probabilities are independent over the edges. Let D denote this distribution over
all graphs defined by p. Let G(V,E) be a graph drawn from D. We are given
only the vertex set V of G, but the edge-set E is not revealed to us unless we
scan an unordered pair of vertices. A pair (u, v) ∈ V × V may be scanned to
check if they are adjacent and if so then they are matched and removed from
the graph. The objective is to maximize the expected number of vertices that
get matched.

We compare our performance to the optimal off-line algorithm that knows the
edges before hand, and reports the maximum matching in the underlying graph.
We say an online algorithmA attains a competitive ratio of γ for the SMCP if, for
everyproblem instanceI = (G(V, .), p), the expected size of thematching returned
by A is at least γ times the expected size of the optimal matching in the Erdős

Rényi graph G(V, p). That is, γ = min
I=(G(V,.),p)

{
E [A(I)]

E [max matching in G(V, p)]

}
.

2.2 Definitions

For any graph H drawn from D, let M(H) be an arbitrarily chosen maximum
matching on H . We define q∗uv = Pr

H←D
(u ∼ v in M(H)) .

Clearly q∗uv ≤ puv, since an edge cannot be part of a maximal matching unless
it is actually in the graph. In general, the ratio q∗uv/puv can be thought of as the
conditional probability that an edge is in the matching, given that it appears
in the graph. For a given vertex u, the probability that u is matched in M is
exactly Qu(G) :=

∑
v q

∗
uv.

This of course is at most 1. We will compare the performance of our algorithm
against the expected size of a maximum matching (denoted by OPT) for a
graph drawn from D. Thus we have, E[|OPT|] = E [|M(H)|] = 1

2

∑
uQu(G) =∑

(u,v) q
∗
uv, where the last sum is taken over unordered pairs. Finally define an

unordered pair (u, v) to be a candidate edge if both u and v are still unmatched
and (u, v) is yet to be scanned. At any stage let F (G) ⊆ V × V be the set of
candidate edges, and for any u ∈ V , let N(u,G) = {v | uv ∈ F (G)}. A vertex u
is defined to be alive if |N(u,G)| > 0.

2.3 Sampling Technique

In this section we will describe a sampling technique that will be an important
component of our algorithm. A curious reader may directly read Corollary 1
and proceed to Section 3 to see an application of this technique. Frequently
over the course of our algorithm we will encounter the following framework: We
have a vertex v, whose incident edges have known probabilities puv of being

Stochastic Matching with Commitment 827

connected to v. We would like to choose an ordering on the incident edges to
probe accordingly so that each edge is included(scanned and found to be present)
with some target probability of at least ruv (which may depend on u).

Clearly there are some restrictions on the ruv in order for this to be feasible;
for example the situation is clearly hopeless if ruv > puv. More generally, for
each subset S of the neighborhood of v, it must be the case that the sum of the
target probabilities of vertices in S (the desired probability of choosing some
member of S) is at most the probability that at least one vertex of S is adjacent
to v. As it turns out, these are the only necessary restrictions.

Lemma 1. Let A1, A2, . . . Ak be independent events having probabilities
p1, . . . , pk. Let r1, . . . , rk be fixed non-negative constants such that for every
S ⊆ {1, . . . , k} we have ∑

i∈S

ri ≤ 1−
∏
i∈S

(1− pi). (1)

Then there is a probability distribution over permutations π of {1, 2, . . . , k} such
that for each i, we have

P(Ai is the earliest occurring event in π) ≥ ri . (2)

Proof. By the Theorem of the Alternative from Linear Duality [10], it suf-
fices to show that the following system of n! + 1 inequalities in n + 1 variables
{x1, . . . , xn, y} does not have a non-negative solution:

y −
∑
k

xkrk < 0 (3)

∀π ∈ Sn, y −
∑
k

xkpk
∏
j<k
inπ

(1− pj) ≥ 0 (4)

Assume such a solution exists. Without loss of generality we may assume x1 ≥
x2 ≥ · · · ≥ xn ≥ 0. Combining the first inequality with the inequality from the
identity permutation, we have

n∑
i=1

xipi

i−1∏
j=1

(1− pj) <

n∑
k=1

xkrk. (5)

On the other hand, we have for each k by applying (1) to S = {1, 2, . . . k} that∑k
i=1 ri ≤ 1−

∏k
j=1(1−pj). By weighting each of these equations by (xi−xi+1)

and treating xn+1 = 0 (note that each of these weights are nonnegative by
assumption) and adding, we obtain

n∑
k=1

xkrk ≤
n∑

k=1

(xk − xk+1)[1−
k∏

j=1

(1− pj)]. (6)

It can be checked directly that both the left side of (5) and the right hand side
of (6) are equal to ∑

S⊆{1,2,...n}
S �=∅

(−1)|S|−1xmax(S)

∏
i∈S

pi ,

828 K.P. Costello, P. Tetali, and P. Tripathi

implying that the two equations contradict each other. Therefore no such solution
to the dual system can exist, so the original system must have been feasible.

In theory, it is possible to find the desired distribution π using linear program-
ming. However, it turns out there is a faster constructive combinatorial algorithm
details of which appear in the full version of this paper.

Lemma 2. A probability distribution π on permutations solving the program (2)
can be constructively found in time O(n2).

Corollary 1. Given a graph G(V,E) and u ∈ V , such that q∗uv/puv < α < 1 for
every v ∈ N(u,G), there exists a randomized algorithm for scanning the edges in
{uv | v ∈ N(u,G)} such any edge uv, v ∈ N(u,G), is included in the matching
with probability at least δ(u,G)q∗uv, where

δ(u,G) =
1− exp(−

∑
v∈N(u,G) q

∗
uv/α)∑

v∈N(u,G) q
∗
uv

Proof. Note that for any u ∈ V , and S ⊆ N(u,G), 1 −
∏

v∈S(1 − puv) ≥∑
v∈S q

∗
uv, since the right side represents the probability u is matched to S

in our chosen maximal matching and the left side the probability that there
is at least one edge connecting u to S. Thus (p, q∗) satisfy the condition for
Lemma 1. However, we can do better. For any given S, if we scale each qe by(
1 −
∏

v∈S(1 − puv)
)
/
∑

v∈S q
∗
uv, the above condition still remains satisfied for

that S. Since q∗e/pe < α we have

1−
∏

v∈S(1− puv)∑
v∈S q

∗
uv

≥
1− exp(−

∑
v∈S puv)∑

v∈S q
∗
uv

≥
1− exp(−

∑
v∈S q

∗
uv/α)∑

v∈S q
∗
uv

(7a)

≥
1− exp(−

∑
v∈N(u,G) q

∗
uv/α)∑

v∈N(u,G) q
∗
uv

= δ(u,G) , (7b)

and (7b) follows since 1−exp(−
∑

v∈S q
∗
uv/α)/

∑
v∈S q

∗
uv is a decreasing function

in
∑

v∈S q
∗
uv, thus achieving its minimum value at S = N(u,G). Therefore we

can replace our q∗ by δ(u,G)q∗ and still have the conditions of Lemma 1 hold.

3 Matching Algorithm on Unweighted Erdős-Rényi
graphs

Our algorithm can be divided into two stages. The first stage involves several
iterations each consisting of two steps - Estimation and Pruning. The parameters
α and C will be determined in Section 4.

– Step 1 (Estimation): Generate samples H1, H2, . . .HC of the Erdős-Rényi
graph by sampling from D. For each sample, generate the corresponding
maximum matching M(Hj). For every prospective edge (u, v), let quv be the
proportion of samples in which the edge (u, v) is contained in M(Hj).

Stochastic Matching with Commitment 829

– Step 2 (Pruning): Let (u, v) be an edge having maximum (finite) ratio
quv/puv. If this ratio is less than α, end Stage 1. Otherwise, scan (u, v). If
(u, v) is present, add it to the partial matching; remove u and v from V , and
return to Step 1; otherwise set puv to 0 and return to Step 1.

We recompute quv every time we scan an edge. Stage 1 ends when the maximum
(finite) value of qe/pe falls below α. Note that at this point we stop recomputing
q, and these values of q will remain the same for each pair of vertices for the
remainder of the algorithm. We now describe the second stage of the algorithm.

The second stage also has several iterations each consisting of two steps. At
the start of this stage define X = V . The algorithm terminates when X becomes
empty.

– Step 1 (Random Bipartition): Randomly partition X into two equal
sized sets L and R and let B be the bipartite graph induced by L and R.

– Step 2 (Sample and Match): Iterate through the vertices in L in an
arbitrary order, and for each vertex u ∈ L sample a neighbor in N(u,B)
by choosing a vertex in R using the sampling technique described in Corol-
lary 11. At the end redefine X to be the set of alive vertices in R and discard
the unmatched vertices in L. Recall that a vertex was defined to be alive if
it is still unmatched and it has at least one candidate edge incident on it.

4 Analysis

In this section we will analyze the competitive ratio for the algorithm described
earlier. We begin by analyzing Stage 1 of the algorithm. For each iteration in
Stage 1, define the residual graph at the start of the ith iteration to be Gi starting
with G1 = G. We denote by q∗e,i the actual probability that e is contained in
the maximal matching on Gi and qe,i as our estimate calculated in Step 1. We
define εe := maxi |qe,i − q∗e,i|

Let the total number of iterations in this stage be k and let G′ = Gk. Let
ALG1 be the set of edges that are matched in Stage 1 and let OPT (Gi) be the
optimal solution in the residual graph at the start of the ith iteration.

Lemma 3. E [|OPT | − |OPT (G′)|] ≤ (2 − α)E[|ALG1|] +
∑

e εe

Proof. For i ∈ [k], let Gain(i) be 1 if the edge scanned in the
ith iteration is present, and 0 otherwise. We will first show that
E [|OPT (Gi)| − |OPT (Gi+1)|] ≤ (2− α)E[Gain(i)]. Three cases may arise dur-
ing the ith iteration.

– Case 1: The edge scanned in the ith iteration is not present. Then
OPT (Gi) = OPT (Gi+1) andGain(i) = 0 thus, |OPT (Gi)|−|OPT (Gi+1)| =
Gain(i) = 0.

1 The algorithm described in Corollary 1 requires the exact estimates for q∗e . However
we will show in our analysis that for large enough samples C, qe defined above is a
good estimate of q∗e .

830 K.P. Costello, P. Tetali, and P. Tripathi

– Case 2.1: The edge scanned in the ith iteration is present but does not belong
to OPT (Gi+1). This happens with probability pe − q∗e,i. Then |OPT (Gi)| −
|OPT (Gi+1)| = 2 and Gain(i) = 1.

– Case 2.2: The edge scanned in the ith iteration is present and be-
longs to OPT (Gi). This happens with probability q∗e,i. Then |OPT (Gi)| −
|OPT (Gi+1)| = 1 and Gain(i) = 1.

Summing over all three cases, we see that

E[|OPT (Gi)| − |OPT (Gi+1)|] = 2(pe − q∗e,i) + q∗e,i ≤ pe(2 − α) + εe ,

while the expected gain from scanning the edge is simply pe. The result follows
from adding over all scanned edges, and noting for the additive factor that
each edge is scanned at most once in the first stage (and indeed in the whole
algorithm).

Analysis of Stage 2: Let us begin by analyzing the first iteration of the sec-
ond stage of the algorithm. The analysis for the subsequent iterations would
follow along similar lines. Let G′ be the residual graph at the start of the sec-
ond stage, where qe/pe < α for every candidate edge e, and 1/2

∑
uQu(G

′) =
E[|OPT (G′)|]. The following lemma bounds the performance of the first iteration
of Stage 2 on G′. We defer the proof to the full version of the paper.

Lemma 4. The expected number of edges that are matched in the first iteration
of Stage 2 of the algorithm is at least

(
1− 1

e

) (
1− e−1/2α

)
|OPT (G′)| −

∑
e εe.

For ease of notation, let φ = (1− 1/e)
(
1− e−1/2α

)
. Let ALG2 be the set of edges

that get matched in Stage 2 of the algorithm. Next we lower bound E[|ALG2|].

Lemma 5. E[|ALG2|] ≥ E[|OPT (G′)|]
[

φ

1−(1−φ
2)2

]
−
∑

e εe

Proof. Observe that not all candidate edges in G′ have been considered during
the first iteration of Stage 2. In particular, candidate edges with both end points
in R are yet to be considered. For analyzing the subsequent iterations in Stage
2, we will consider only these candidate edges. Clearly this only lower bounds
the performance of the algorithm.

We can infact prove something slightly stronger than Lemma 4 (refer to the
full version for details), i.e., we can show that every vertex v ∈ R is chosen with
probability at least φ Qv(G

′). By slightly altering the algorithm it is easy to
ensure that for every v ∈ R, it is chosen with exactly this probability. Thus any
vertex in R survives the first iteration with probability 1−φQv(G

′) > 1−φ. Since
the partitions L and R are chosen at random, the probability that a vertex is in R
and unmatched after the first iteration is at least μ = (1−φ)/2. Continuing this
argument further, the probability that an ordered pair (u, v) is a candidate edge
at the start of the ith iteration is the probability that both u and v have always
been in R in all previous iterations, and are still unmatched; this probability is
at least μ2(i−1).

Stochastic Matching with Commitment 831

Let G′
i be the residual graph at the start of the ith iteration in Stage

2, with G′
1 = G′. By the above observation and using linearity of expecta-

tion, the expected sum of qe’s on candidate edges in G′
i is lower bounded by

μ2i−2
∑

e∈F (G′) qe. Observe that the expected size of the matching returned by

the ith iteration in the second stage is at least φμ2i−2
∑

e∈F (G′) qe. Summing
over all iterations in Stage 2 we have,

E[|ALG2|] ≥
∑
i

φμ2i−2
∑

e∈F (G′)

qe ≥ φ
∑

e∈F (G′)

qe
∑
i=1

μ2i−2 (8a)

= φ
∑

e∈F (G′)

qe
1

1− μ2
=

1

2

∑
u∈G′

Qu(G
′)

φ

1− μ2
(8b)

= |OPT (G′)| φ

1− μ2
= |OPT (G′)| φ

1−
(

1−φ
2

)2 . (8c)

Now all that is left is to balance the factors for both the stages and set the
optimal value of α. In the subsequent theorem we find the optimal value of α.

Theorem 3. The above algorithm attains a factor of at least 0.573− 2γ where∑
e εe ≤ γE(|OPT |).

Proof. By Lemma 3, E[|OPT |− |OPT (G′)|] ≤ 2/(1+α)E[|ALG1|]+
∑

εe. Also

by Lemma 5, E[|OPT (G′)|] ≤ 1−(1−φ
2)2

φ E[|ALG2|] +
∑

εe. Combining these two

and substituting α = 0.255 and φ = (1− 1/e)
(
1− e−1/2α

)
= 0.543 we have,

E[|OPT |] ≤ (2 − α)E[|ALG1|] +
1− (1−φ

2)2

φ
E[|ALG2|] + 2

∑
e

εe (9a)

= 1.74(E[|ALG1|] +E[|ALG2|]) + 2
∑
e

εe (9b)

= 1.74E[|ALG|] + 2
∑
e

εe (9c)

Thus E[|ALG|] ≥ 0.573 E[|OPT |].

The above algorithm can be implemented in Õ(n4) time. Also, if the optimal
matching is a non-negligible fraction of the vertices the running time can be
reduced to Õ(n3). We defer the analysis to the full version of the paper.

On the hardness front, we prove the following theorem.

Theorem 4. No randomized algorithm can attain a competitive ratio better than
0.898 for the SMCP.

Proof. The proof of this theorem relies on a full analysis of the performance of
the optimal online theorem on the Erdos-Renyi graph G(4, p) with probability
0 < p < 1 (identical across all edges) to be chosen later. We provide a brief
overview of the proof in this extended abstract.

832 K.P. Costello, P. Tetali, and P. Tripathi

The performance of an algorithm on this graph is (P1+P2)/(Q1+Q2), where
Pi denotes the probability the algorithm finds a matching with at least i edges,
and Qi denotes the probability a matching with at least i edges is present.

We know P1 = Q1 = 1 − (1 − p)6, the probability G(p) contains an edge.
For P2 and Q2, we think of the complete graph K4 as being divided into 3
pairs of opposite edges (a1, a

′
1), (a2, a

′
2), (a3, a

′
3). Call an edge ”Type 1” if it is

the first edge of its pair scanned. An algorithm only finds a matching of size 2
if some type-1 edge is present, and the mate of the first type-1 edge found is
present. This occurs with probability at most (1 − (1 − p)3)p, an upper bound
on P2. Conversely Q2 is the probability both edges from any pair are present,
1− (1− p2)3. Plugging these values into our ratio and optimizing over p, we see
we can take p = 0.638 to bound the factor by 0.8972.

References

1. Adamczyk, M.: Improved analysis of the greedy algorithm for stochastic matching.
Inf. Process. Lett. 111(15), 731–737 (2011)

2. Aronson, J., Dyer, M., Frieze, A., Suen, S.: Randomized greedy matching. ii. Ran-
dom Struct. Algorithms 6, 55–73 (1995)

3. Aronson, J., Frieze, A., Pittel, B.G.: Maximum matchings in sparse random graphs:
Karp-sipser revisited. Random Struct. Algorithms 12, 111–177 (1998)

4. Bansal, N., Gupta, A., Li, J., Mestre, J., Nagarajan, V., Rudra, A.: When LP Is
the Cure for Your Matching Woes: Improved Bounds for Stochastic Matchings. In:
de Berg, M., Meyer, U. (eds.) ESA 2010, Part II. LNCS, vol. 6347, pp. 218–229.
Springer, Heidelberg (2010)

5. Birnbaum, B., Mathieu, C.: On-line bipartite matching made simple. SIGACT
News 39, 80–87 (2008)

6. Chebolu, P., Frieze, A., Melsted, P.: Finding a maximum matching in a sparse
random graph in o(n) expected time. J. ACM 57, 24:1–24:27 (2010)

7. Chen, N., Immorlica, N., Karlin, A.R., Mahdian, M., Rudra, A.: Approximating
Matches Made in Heaven. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp.
266–278. Springer, Heidelberg (2009)

8. Dean, B.C., Goemans, M.X., Vondrák, J.: Adaptivity and approximation for
stochastic packing problems. In: Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2005, pp. 395–404. Society for Indus-
trial and Applied Mathematics, Philadelphia (2005)

9. Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449–
467 (1965)

10. Farkas, J.G.: Uber die theorie der einfachen ungleichungen. Journal fur die Reine
und Angewandte Mathematik 124, 1–27 (1902)

11. Feldman, J., Mehta, A., Mirrokni, V.S., Muthukrishnan, S.: Online stochastic
matching: Beating 1-1/e. In: FOCS, pp. 117–126 (2009)

12. Frieze, A., Pittel, B.: Perfect matchings in random graphs with prescribed mini-
mal degree. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2003, pp. 148–157. Society for Industrial and Applied
Mathematics, Philadelphia (2003)

13. Goel, G., Mehta, A.: Online budgeted matching in random input models with
applications to adwords. In: SODA, pp. 982–991 (2008)

Stochastic Matching with Commitment 833

14. Karande, C., Mehta, A., Tripathi, P.: Online bipartite matching in the unknown
distributional model. In: STOC, pp. 106–117 (2011)

15. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for online bipar-
tite matching. In: Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing (1990)

16. Mahdian, M., Yan, Q.: Online bipartite matching with random arrivals: An ap-
proach based on strongly factor-revealing lps. In: STOC, pp. 117–126 (2011)

17. Manshadi, V.H., Oveis-Gharan, S., Saberi, A.: Online stochastic matching: Online
actions based on offline statistics. In: SODA (2011)

18. Mehta, A., Mirrokni, V.: Online ad serving: Theory and practice. Tutorial (2011)
19. Nikolova, E., Kelner, J.A., Brand, M., Mitzenmacher, M.: Stochastic Shortest Paths

Via Quasi-convex Maximization. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168, pp. 552–563. Springer, Heidelberg (2006)

20. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theor. Com-
put. Sci. 84, 127–150 (1991)

21. Karp, R.M., Sipser, M.: Maximum matching in sparse random graphs. In: FOCS,
pp. 364–375 (1981)

22. Ross, L.F., Rubin, D.T., Siegler, M., Josephson, M.A., Thistlethwaite, J.R., Woo-
dle, E.S.: The case for a living emotionally related international kidney donor
exchange registry. Transplantation Proceedings 18, 5–9 (1986)

23. Ross, L.F., Rubin, D.T., Siegler, M., Josephson, M.A., Thistlethwaite, J.R., Woo-
dle, E.S.: Ethics of a paired-kidney-exchange program. The New England Journal
of Medicine 336, 1752–1755 (1997)

24. Shmoys, D.B., Swamy, C.: An approximation scheme for stochastic linear program-
ming and its application to stochastic integer programs. J. ACM 53, 978–1012
(2006)

Rademacher-Sketch: A Dimensionality-Reducing
Embedding for Sum-Product Norms, with an

Application to Earth-Mover Distance

Elad Verbin1 and Qin Zhang2

1 Aarhus University: MADALGO� and CTIC��

elad.verbin@gmail.com
2 MADALGO, Aarhus University

qinzhang@cs.au.dk

Abstract. Consider a sum-product normed space, i.e. a space of the form Y =
�n1 ⊗ X , where X is another normed space. Each element in Y consists of a
length-n vector of elements in X , and the norm of an element in Y is the sum
of the norms of its coordinates. In this paper we show a constant-distortion em-
bedding from the normed space �n1 ⊗X into a lower-dimensional normed space
�n

′
1 ⊗ X , where n′ n is some value that depends on the properties of the

normed space X (namely, on its Rademacher dimension). In particular, compos-
ing this embedding with another well-known embedding of Indyk [18], we get
an O(1/ε)-distortion embedding from the earth-mover metric EMDΔ on the grid

[Δ]2 to �Δ
O(ε)

1 ⊗EEMDΔε (where EEMD is a norm that generalizes earth-mover
distance). This embedding is stronger (and simpler) than the sketching algorithm
of Andoni et al [4], which maps EMDΔ with O(1/ε) approximation into sketches
of size ΔO(ε).

1 Introduction

Sum-product norms. A normed space (X, ‖·‖X) consists of a linear space X and a
norm ‖·‖X (i.e. a positive function from X to the reals, which satisfies the triangle
inequality and where for c ∈ R, x ∈ X it holds that ‖c · x‖X = |c| · ‖x‖X). A sum-
product normed space is a normed space of the form Y = �n1 ⊗X , where X is another
normed space. Each element y in Y consists of a length-n vector y = (x1, . . . , xn) of
elements in X , and the norm of y is the sum of the norms of its coordinates, namely,
‖y‖Y =

∑n
i=1 ‖xi‖X . Sum-product normed spaces have arisen in the literature on

streaming and sketching algorithms. In particular, in 2009 Andoni et. al. [6] used prod-
uct normed space to overcome the �1 non-embeddability barrier for the Ulam metric. A
year later Andoni and Nguyen [8] used sum-product of Ulam metrics to obtain faster

� MADALGO is the Center for Massive Data Algorithmics, a center of the Danish National
Research Foundation.

�� The first author acknowledges support from the Danish National Research Foundation and
The National Science Foundation of China (under the grant 61061130540) for the Sino-
Danish Center for the Theory of Interactive Computation, within which part of this work was
performed.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 834–845, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Rademacher-Sketch 835

approximation algorithms for computing the Ulam distance between two non-repetitive
strings. Sum-product metrics have also been used by Andoni and Onak [9] to compute
the edit distance between two strings in near-linear time.

Given two normed spaces Y and Y ′, an embedding (also called strong embedding)
of Y into Y ′ is a function φ : Y → Y ′. The distortion of φ is analogous to the “approx-
imation ratio” achieved by Y ′ as an approximation of Y . Specifically, the distortion of
φ is the value

max
y∈Y

(‖y‖Y / ‖φ(y)‖Y ′) ·max
y∈Y

(‖φ(y)‖Y ′ / ‖y‖Y) .

Efficiently-computable embeddings with small distortion have been of much recent in-
terest in theoretical computer science and various branches of mathematics, see, e.g.,
[25,19]. In particular, if there is an efficient algorithm for computing the norm in the
space Y ′, then the norm in Y can be computed by first applying the embedding and
then performing the computation in Y ′; the approximation factor of this algorithm is
equal to the distortion. Similar approaches were used when designing sketches and data
structures: rather than design a data structure for Y from scratch, simply embed Y in
an efficient way into a normed space for which good data structures are already known.
Applications of this approach are too numerous to cite, see e.g. Indyk’s survey [16].

In this paper we show dimensionality-reducing embeddings in sum-product normed
spaces: the goal is, given a normed space Y = �n1 ⊗X , to find a small-distortion embed-
ding of Y into a smaller-dimensional sum-product normed space Y ′ = �n

′
1 ⊗ X . Our

embeddings are generic, in the sense that their general structures do not depend on the
properties of X . This is the first such generic dimension-reduction work that we know
of for sum-product spaces. Previous literature has considered dimension-reduction for
particular spaces, such as �n1 or �n2 . For literature on dimension reduction in �n1 , see for
example the paper of Andoni et al. [5] as well as the references therein. For dimension
reduction in �n2 , consider the classical Johnson-Lindenstrauss lemma [21].

1.1 Our Results

We first define a central concept in this paper: the Rademacher dimension of a normed
space. As far as we know, this definition was never used or given in the literature; it is
somewhat related to the property of being a Rademacher type p metric for p > 0 (see
e.g. [26], also see the recent paper by Andoni et. al. [7]) but it is not the same.

Definition 1. A normed space X has Rademacher dimension α if for any natural num-
ber s, and for any x0, x1, . . . , xs−1 ∈ X with ‖xi‖X ≤ T , we have with probability at
least 1− 1/αc (for some universal constant c) that∥∥∥∑i∈[s] εixi

∥∥∥
X
≤ α ·

√
s · T.

Here, ε0, ε1, . . . , εs−1 are (±1)-valued random variables such that Pr[εi = +1] =
Pr[εi = −1] = 1/2 for all i ∈ [s], and the probability is taken over the sample space
defined by these variables. If there is no real number α which this holds, then we say
that the Rademacher dimension of the space is ∞.

836 E. Verbin and Q. Zhang

As an illustrative example, it is easy to see that the normed space (Rd, ‖·‖1) has
Rademacher dimensionO(d2). The proof of this fact follows from Hoeffding’s inequal-
ity, in a similar way as in Lemma 1 below.

For x = {x0, x1, . . . , xn−1} ∈ �n1 ⊗ X , we denote ‖x‖1,X =
∑

i∈[n] ‖xi‖X .
Our main theorem states that any sum-product normed space �n1 ⊗ X can be weakly-
embedded with distortion O(1) into �n

′
1 ⊗X , where n′ ≈ α is roughly the Rademacher

dimension of X :

Theorem 1. Let X be a normed space with Rademacher dimension α. Let λ =
max{α, log3 n}. Then there exists a distribution over linear mappings μ : �n1 ⊗X →
�λ

O(1)

1 ⊗X , such that for any x ∈ �n1 ⊗X we have

– ‖μ(x)‖1,X ≥ Ω(‖x‖1,X) with probability 1− 1/λΩ(1).
– ‖μ(x)‖1,X ≤ O(‖x‖1,X) with probability 0.99.

Remarks:

1. The embedding is linear. This is an important property, since it allows efficient
updating of the sketch given updates in a streaming way, as well as computing
the associated distance function (the distance function associated with the normed
space X is the function d(x, y) = ‖x− y‖X).

2. The above embedding is a weak embedding, in the sense that for each vector, the
norm of its embedded representation is good with constant probability. Thus, for
each particular instantiation of the random variable μ, we would expect a constant
fraction of the vectors in the source space to embed to vectors that are too large in
the target space. This is as opposed to a strong embedding, that would be good for
all of the vectors simultaneously.
In another dimension-reduction paper, Indyk [17] showed a weak dimension re-
duction in �1, which was sufficient for applications such as norm estimation in data
streams and approximate nearest neighbor search. In general, weak embeddings
seem applicable for most of the purposes where strong embeddings are used, and
they might not encounter the same barriers as strong embeddings: our embedding
is in fact a good example of this, as we explain next.

3. The last theorem states that �n1 ⊗ X can be weakly-embedded into �n
′

1 ⊗ X with
constant distortion, where n′ ≈ α. It is natural to ask whether there exists a strong
embedding with similar properties. The answer is a resounding “no”: Even in the
special case when X is simply �11 = R, a result by Brinkman and Charikar [10]

shows that an n point subset of �1 cannot be embedded into �n
Ω(1/D2)

1 with dis-
tortion o(D). Thus, if we require a strong embedding with constant distortion, the
dimension can be reduced by no more than constant factors.

4. Also, it is interesting to note that Theorem 1 works when X is a normed space,
but if X was a metric space (i.e. a space where we have a measure for the distance
between any two points, but not necessarily a norm for each point) then it is not
clear whether any similar result can be obtained. Our embeddings inherently rely
on the properties of normed space: in particular, we need the ability to sum elements
of the space, which is not available in metric spaces.

Rademacher-Sketch 837

What happens when the underlying space X has bad, or even infinite, Rademacher
dimension? We can still achieve dimensionality reduction, but this time the more we
want to reduce the dimension, the larger the distortion will be. Specifically, to reduce
from dimension n to dimension nε, the distortion will be O(1/ε):

Theorem 2. For any normed space X and any λ ≥ log3 n, there exists a distribution
over linear mappings μ : �n1 ⊗ X → �λ

O(1)

1 ⊗ X , such that for any x ∈ �n1 ⊗ X , we
have

– ‖μ(x)‖1,X ≥ Ω(‖x‖1,X) with probability 1− 1/λΩ(1).
– ‖μ(x)‖1,X ≤ O(logλ n · ‖x‖1,X) with probability 0.99.

The results of this theorem are easier to achieve, and might be folklore in the field.
Theorem 2 can be obtained from a similar embedding as we use for proving Theorem 1
and with a simpler proof, so for most of the paper we concentrate on proving Theorem
1, and where appropriate we discuss Theorem 2.

2 Earth-Mover Distance

2.1 Introduction to Earth-Mover Distance

Earth-Mover Distance. Denote [n] = {0, 1, . . . , n− 1}. Given two multisets A,B in
the grid [Δ]2 with |A| = |B| = N , the earth-mover distance is defined as the minimum
cost of a perfect matching between points in A and B, where the cost of two matched
points a ∈ A and b ∈ B is the �1 distance between them. Namely,

EMD(A,B) = min
π:A→B a bijection

∑
a∈A

‖a− π(a)‖1 .

Earth-Mover distance (EMD) is a natural metric that measures the difference between
two images: If one, for example, thinks of pixels of a certain color laid out in two im-
ages, then the distance between the two images can be defined as the minimum amount
of work to move one set of pixels to match the other. EMD has been extensively used in
image retrieval and experiments show that it outperform many other similarity measures
in various aspects [31,15,14,12,30].

Historically, EMD is a special case of the Kantorovich metric, which is proposed
by L. V. Kantorovich in an article in 1942 [22]. This metric has numerous applications
in probabilistic concurrency, image retrieval, data mining and bioinformatics. One can
refer to [13] for a detailed survey. Other equivalent formulations of EMD including
Transportation distance, Wasserstein distance and Mallows distance [24].

The general (non-planar) EMD can be solved by the classical Hungarian method [23]
in time O(N3). However, this approach is too expensive to scale to perform retrievals
from large databases. A number of (approximation) algorithms designed for the planar
case are proposed in literature [32,1,33,11,20,2,18]. In particular, Indyk [18] proposed a
constant approximation algorithm with running time O(N logO(1)N), which is almost
linear.

838 E. Verbin and Q. Zhang

Recently, there has been an increasing interest in designing sketching algorithms for
EMD. A good sketch can lead to space/time-efficient streaming algorithms and nearest
neighbor algorithms [4]. Searching for good sketching algorithms for EMD is consid-
ered to be a major open problem in the data stream community [27].

For a multiset A in the grid [Δ]2, a sketching algorithm defines a mapping f that
maps A into a host space (such as the space of short bit-strings {0, 1}S). The sketching
algorithm must satisfy the property that for any two multisets A and B, the earth-mover
distance EMD(A,B) can be approximately reconstructed from the two sketches f(A)
and f(B). The sketching algorithm and the reconstruction algorithm should be space-
efficient (and for practical considerations sometimes also time-efficient) in order to get
efficient data structures and streaming algorithms. An embedding can thus be seen as a
special type of sketch, where the reconstruction algorithm consists simply of comput-
ing the norm of the difference f(A) − f(B) in the host space. Some embeddings of
EMD into �1 space were proposed in [11,20]. However, in [28] the authors showed that
it is impossible to embed EMDΔ into �1 with distortion o(

√
logΔ). Therefore to get

constant-approximation algorithms we need to investigate other, probably more sophis-
ticated host spaces.

Recently, Andoni et. al. [4] obtained a sketch algorithm for planar EMD with O(1/ε)
approximation ratio andΔε space for any 0 ≤ ε ≤ 1. This is the first sublinear sketching
algorithm for EMD achieving constant approximation ratio. Their sketching algorithm
is not an embedding since their reconstruction algorithm involves operations such as
binary decisions which are not metric operations. It remains an interesting open problem
to embed EMD into simple normed spaces or products of simple normed spaces with
constant distortion.

2.2 Applying our Results to Earth-Mover Distance

We now introduce the metric EEMD, which is an extension of EMD to any multisets
A,B ⊆ [Δ]2 not necessary having the same size. It is defined as follows:

EEMD(A,B) = min
S⊆A,S′⊆B,|S|=|S′|

[EMD(S, S′) +Δ(|A− S|+ |B − S′|)] .

It is easy to see that when |A| = |B|, we have EEMD(A,B) = EMD(A,B).
EEMD can be further extended to a norm: For a multiset A ⊆ [Δ]2, let x(A) ∈

RΔ2

be the characteristic vector of A. We next define the norm EEMD such that for
any multiset A,B ⊆ [Δ]2, we have EEMD(A,B) = ‖x(A) − x(B)‖EEMD. The norm
‖·‖EEMD is defined as follows: for each x ∈ Zd, let x+ contain only the positive entries
in x, that is, x+ = (|x|+ x)/2, and let x− = x− x+. And then we define ‖x‖EEMD =
EEMD(x+, x−). One can easily verify that this norm is well-defined. This definition
can also be easily extended to x ∈ Rd by an appropriate weighting.

Let EEMDΔ denote the normed space (RΔ2

, ‖·‖EEMD).

Lemma 1. EEMDΔ has Rademacher dimension Δ4.

Proof. For any x0, . . . , xs−1 ∈ RΔ2

with ‖xi‖EEMD ≤ T for all i ∈ [s], let xdi (d ∈
[Δ2]) be the d-th coordinates of xi. By the triangle inequality and the definition of

Rademacher-Sketch 839

EEMD,
∥∥∥∑i∈[s] εixi

∥∥∥
EEMD

≤
∑

d∈[Δ]2

(
Δ
∣∣∣∑i∈[s] εix

d
i

∣∣∣), where ε0, . . . , εs−1 are

(±1)-valued random variables. Thus we only need to bound
∣∣∣∑i∈[s] εix

d
i

∣∣∣ for each

d ∈ [Δ2].
Fix a d ∈ [Δ2]. Since for each xi (i ∈ [s]), we have that

∣∣xdi ∣∣ ≤ T . By Hoeffding’s

inequality we have that Pr
[∣∣∣∑i∈[s] εix

d
i

∣∣∣ ≥ Δ
√
sT
]
≤ 2e

− 2(Δ
√

sT)2

s·(2T)2 = e−Ω(Δ2).

Therefore with probability at least 1 − Δ2 · e−Ω(Δ2) ≥ 1 − 1/ΔΩ(1), we have that∥∥∥∑i∈[s] εixi

∥∥∥
EEMD

≤ Δ4
√
sT .

The following fact is shown by Indyk [18].

Fact 1. ([18]) For any ε ∈ (0, 1), there exists a distribution over linear mappings
F = 〈F0, . . . , Fn−1〉 with Fi : EEMDΔ → EEMDΔε for all i = 0, . . . , n − 1, such
that for any x ∈ EEMDΔ we have

– ‖x‖EEMD ≤
∑

i∈[n] ‖Fi(x)‖EEMD with probability 1.
–
∑

i∈[n] ‖Fi(x)‖EEMD ≤ O(1/ε) ‖x‖EEMD with probability 0.95.

Moreover, n = ΔO(1).

Combining Theorem 1, Lemma 1 and Fact 1, we have the following.

Theorem 3. For any ε ∈
[
log logΔ
logΔ , 1

]
, there exists a distribution over linear mappings

ν : EEMDΔ → �Δ
O(ε)

1 ⊗ EEMDΔε , such that for any two A,B ⊆ [Δ]2 of equal size,
we have

– ‖ν(x(A) − x(B))‖1,EEMD ≥ Ω(EMD(A,B)) with probability 1− 1/ΔΩ(ε).
– ‖ν(x(A) − x(B))‖1,EEMD ≤ O(1/ε · EMD(A,B)) with probability 0.9.

The embedding given by this theorem can also serve as an alternative to the sketching
algorithm of Andoni et al. [4]; it is simpler so its actual performance might be better.
Furthermore, there might be additional advantages to having an embedding rather than
a sketching algorithm (e.g., if there exists a good nearest neighbor data structure for
�Δ

O(ε)

1 ⊗ EEMDΔε , then we can use it to answer nearest neighbor queries for EMDΔ).

3 The Embedding

In this section we construct the random linear mapping μ from Theorem 1. The random
linear mapping for Theorem 2 is the same, and its analysis is simpler; we shall address
the differences in Section 4.3.

Before giving the embedding, we first introduce a few definitions. Let x = (x0, . . . ,
xn−1) ∈ �n1 ⊗ X be the vector that we want to embed. The embedding will work in
� levels, where � = �logλ(4λn)�. Note that � ≤ λ1/3 since λ ≥ log3 n. At each level
k ∈ [�] we define a parameter pk = λ−k. For each level k we define a subsampled set,
a hash function, and a series of (±1)-valued random variables, all of them random and
independent. The subsampled set is a set Ik ⊆ [n] such that each i ∈ [n] is placed in Ik

840 E. Verbin and Q. Zhang

with probability pk; the hash function is a random functionhk : [n] → [t] where t = λ5;
the (±1)-valued variables are εk,1, . . . , εk,n, each of them is +1 with probability 1/2
and −1 with probability 1/2. All the random choices are independent.

We denote χ[E] = 1 if event E is true and χ[E] = 0 if it is false.

The Embedding μ. For each level k ∈ [�] and for each value v ∈ [t] of the hash
function hk, compute

Zv
k =
∑

i∈[n] χ[i ∈ Ik] · χ[hk(i) = v] · εk,i · xi · 1/pk .

We see that the embedded vector μ(x) ∈ �t·
1 ⊗ X consists of all the values Zv
k , one

after another. These are t · l = λO(1) cells (=coordinates), each of which contains an
element from X .

Remarks: The use of ±1 random variables, also known in this context as Rademacher
random variables, is superficially similar to usage in the seminal paper of Alon et. al. [3].
However, these variables are used here for an entirely different purpose. In [3] and other
related work, these variables are used to decrease the variance of a random variable that
estimates the second frequency moment of a steam of items. In our algorithm they are
used for a different purpose: roughly speaking, they are used to isolate a class of items
with norms in a certain range from items with much smaller norms by making the
variables with smaller norm cancel with one another.

For the purpose of proving Theorem 2, the ±1 random variables are not needed, and
it is enough to define Zv

k =
∑

i∈[n] χ[i ∈ Ik] · χ[hk(i) = v] · xi · 1/pk .
Also note that to use the above embedding as a sketching algorithm, it is necessary to

remember all the random choices we made. This amount of space is huge: much more
than n. However, this is not actually necessary. A standard approach using pseudo-
random generators allows to decrease the amount of random bits to λO(1), thus giving
the “correct” space complexity. These random bits can be generated by Nisan’s pseudo-
random generator [29]. See the similar discussions in [17,4].

4 Analysis

We first introduce a few more definitions. Let M = ‖x‖1,X . Let Tj = M/λj (j =
0, 1, . . .). Let Sj = {i ∈ [n] | ‖xi‖X ∈ (Tj/λ, Tj]} and let sj = |Sj |. We say xi is in
class j if i ∈ Sj .

It is easy to see that we only need to consider classes up to �− 1 since elements from
classes j ≥ � contribute at most n ·M/λ
 · � ≤ M/4 to all the levels. Therefore for
simplicity we assume that all elements belong to classes {0, 1, . . . , �− 1}.

Let β = 1/100�. We say class j ∈ [�] is important if elements from Sj contribute
significantly to the sum M , that is,

∑
i∈Sj

‖xi‖X ≥ βM . Thus for an important class j

we have sj ≥ β ·M/Tj = βλj . Also note that sj ≤ M/(Tj/λ) = λj+1 for all j ∈ [�]
by definition. Therefore sj ∈ [βλj , λj+1] for each important class j. Let J denote the
set of all important classes.

During the analysis when we say an event holds with high probability we mean that
the probability is at least 1− 1/λΩ(1).

Rademacher-Sketch 841

A Few More Notations. Before the analysis, we would like to introduce a few more
notations to facilitate our exposition. For item class j ∈ [�], sample level k ∈ [�] and
cell v ∈ [t], we define the following random variables.

– Let Sj,k be the set of elements in class j that are sampled at sample level k. That
is, Sj,k = Sj ∩ Ik . Let sj,k = |Sj,k|.

– Let Sv
j,k be the set of elements in class j that are sampled at level k and hashed to

cell v. That is, Sv
j,k = {i ∈ Sj,k | hk(i) = v}. Let svj,k =

∣∣∣Sv
j,k

∣∣∣.
– For each class j, letW (Sj) =

∑
i∈Sj

‖xi‖X . And for each class j and sample level
k, let W (Sj,k) =

∑
i∈Sj,k

‖xi‖X · 1/pk.
– For each class j, sample level k and cell v, let Zv

j,k =
∑

i∈Sv
j,k

εk,i ·xi · 1/pk. Note

that ‖Zv
k‖X ≤

∑
j∈[
]

∥∥∥Zv
j,k

∥∥∥
X

by the triangle inequality.

– For each class j and sample level k, let Cj,k = {v | max{i | i ∈ Sv
j,k} = j}. We

also say each cell v ∈ Cj,k a j-dominated cell at level k.
– Let W (Cj,k) =

∑
v∈Cj,k

‖Zv
k‖X . That is, the sum of X-norms of class j el-

ements in those j-dominated cells at level k. Moreover, let W (Cj,k, j
′) =∑

v∈Cj,k

∥∥∥Zv
j′,k

∥∥∥
X

and W (Cj,k,≥ j′) =
∑

j′′≥j′ W (j, k, j′′). Note that by the

triangle inequality we have W (Cj,k, j) − W (Cj,k,≥ j + 1) ≤ W (Cj,k) ≤
W (Cj,k, j) +W (Cj,k,≥ j + 1).

We need the following tool (c.f. [4]).

Lemma 2. (A variant of Hoeffding bound) Let Y0, Y1, . . . , Yn−1 be n independent ran-
dom variables such that Yi ∈ [0, T] for some T > 0. Let μ = E[

∑
i Yi]. Then for any

a > 0, we have Pr
[∑

i∈[n] Yi > a
]
≤ e−(a−2μ)/T .

Now we prove Theorem 1. We accomplish it by two steps.

4.1 No Underestimation

In this section we show that ‖μ(x)‖1,X ≥ Ω(M) with probability 1 − 1/λΩ(1). To
show this we first prove the following lemma,

Lemma 3. For each important class j ∈ J , we have W (Cj,j−1) ≥ W (Sj)/2 for all
j ≥ 1 and W (C0,0) ≥W (S0)/2 for j = 0 with probability at least 1− 1/λΩ(1).

The proof of the lemma is essentially that for each important class j ∈ J , at sample
level max{j − 1, 0}, the scaled contribution of elements in class j is close to W (Sj)
and the noise from other classes is small. The intuition of the later is simply that the
range of each hash function is large enough such that:

1. There is no collision between elements in Sj and elements in
⋃

j′>j Sj′ with high
probability.

2. The noise from
⋃

j′>j Sj′ is small since only a small fraction of elements from
each Sj′ (j

′ < j) will collide with elements in Sj and the X-norm of each item in
Sj′ (j

′ < j) is much smaller compared with those in Sj .

842 E. Verbin and Q. Zhang

Proof. (of Lemma 3.) For notational convenience we set k = j − 1 in this proof. For
each important class j ≥ 1, we have E[|Sj,k|] = sjpk ∈ [βλ, λ2]. By Chernoff bound
we have that with probability at least 1− e−Ω(βλ), βλ/2 ≤ |Sj,k| ≤ 2λ2. Similarly, we
have that |Sj′,k| ≤ 2λ for all class j′ ≤ j−1 with probability 1−�·e−Ω(λ). Conditioned
on these, the probability that any two of

⋃
j′≤j Sj′,k hash into the same cell is at most(

2λ2+
·2λ
2

)
/t ≤ O(1/λ). That is, with probability at least 1 − O(1/λ) − � · e−Ω(λ) =

1− 1/λΩ(1), there is no collision between elements in class 0, 1, . . . , j at sample level
k. In particular, we have |Cj,k| = |Sj,k| ∈ [βλ/2, 2λ2] and W (Cj,k, j) = W (Sj,k) for
each class j ≥ 1 with high probability.

With similar arguments we can show that W (C0,0, 0) = W (S0,0) with high proba-
bility if 0 ∈ J .

Now we show that W (Sj,k) ≥ 2
3W (Sj) with high probability for each important

class j ≥ 1. We define for each i ∈ Sj a random variable Yi = χ[i ∈ Sj,k] · ‖xi‖X /Tj .
Note that 0 ≤ Yi ≤ 1 for all i ∈ Sj and W (Sj,k) = (

∑
i∈Sj

Yi) · Tj · 1/pk. We also
have that

μ = E[
∑

i∈Sj
Yi] = W (Sj)pk/Tj = Ω(βM/Tj · λ−(j−1)) = Ω(βλj · λ−(j−1)) = Ω(βλ).

By Chernoff bound we have Pr
[∣∣∣∑i∈Sj

Yi − μ
∣∣∣ ≥ μ/3

]
≤ 2e−Ω(μ) ≤ e−Ω(βλ).

Therefore with probability at least 1 − � · e−Ω(βλ) ≥ 1 − 1/λΩ(1), we have
W (Sj,k) ≥ 2

3W (Sj) for all important classes j ≥ 1. Consequently, we have
W (Cj,k, j) ≥ 2

3W (Sj) for all important j ≥ 1 with high probability.
Moreover, note that W (S0,0) = W (S0) is trivial since we pick each item at sample

level 0. Therefore it also holds that with high probability, W (C0,0, 0) = W (S0,0) =
W (S0) if 0 ∈ J .

Next we bound W (Cj,k,≥ j + 1) for each important class j ≥ 1 and W (C0,0,≥ 1)
if 0 ∈ J . We first bound the former. For each class j′ ≥ j + 1, let w = |Cj,k|,
we have E

[∑
i∈Sj′ ,k

χ[hk(i) ∈ Cj,k]
]

= sj′pk · w/t. By Lemma 2 we have that

Pr
[∑

i∈Sj′,k
χ[hk(i) ∈ Cj,k] ≥ 2 · sj′pk · w/t+ λ

]
≤ e−Ω(λ). Summing up for all

classes j′ ≥ j + 1, with probability at least 1− � · e−Ω(λ), we have

W (Cj,k,≥ j + 1) ≤
∑

j′≥j+1

∑
i∈Sj′ ,k

χ[hk(i) ∈ Cj,k] · Tj′ · 1/pk
≤
∑

j′≥j+1(2 · sj′pk · w/t+ λ) · Tj′ · 1/pk
≤ � · (2 ·M · w/λ5 + Tj · 1/pk)
≤ o(βM) ≤ o(W (Sj))

The second to the last inequality holds since w ≤ 2λ2 with probability at least 1 −
e−Ω(λ). Therefore by a union bound over j ∈ [�] we have that with probability at least
1− �2 · e−Ω(λ) ≥ 1− 1/λΩ(1), W (Cj,k,≥ j+1) = o(W (Sj)) for all important j ≥ 1.

Similarly, we can show that W (C0,0,≥ 1) = o(W (S0)) with high probability if
0 ∈ J .

Finally, for each important class j ≥ 1, we have W (Cj,k) ≥ W (Cj,k, j) −
W (Cj,k,≥ j + 1). Therefore W (Cj,k) ≥ 2

3W (Sj) − o(W (Sj)) ≥ W (Sj)/2 for all

Rademacher-Sketch 843

important j ≥ 1 with high probability. Similarly we can show that W (C0,0) ≥
W (S0)/2 with high probability if 0 ∈ J .

Note that Lemma 3 immediately gives the following. With probability at least 1 −
1/λΩ(1), we have

‖μ(x)‖1,X ≥
∑

j∈J:j≥1 W (Cj,j−1) + χ[0 ∈ J] ·W (C0,0)

≥
∑

j∈J W (Sj)/2 =
(
M −

∑
j �∈J W (Sj)

)
/2

≥ (M − � · βM)/2 ≥ Ω(M).

4.2 No Overestimation

In this section we show that ‖μ(x)‖1,X ≤ O(M) with probability 0.99. The general
idea is the following:

1. Elements from Sj contribute little to all levels k < j−9. This is because in each of
such levels k and each cell v ∈ [t] at that level, many elements from Sj are sampled
and hashed into v and they will cancel with each other heavily due to the random
variables εk,i ∈ {+1,−1} multiplied.

2. On the other hand, elements from Sj will not be sampled at all levels k > j + 1
with high probability according to the sample ratios we choose at each level.

Now we prove the second part of Theorem 1. By the triangle inequality and the fact

that
∑

v∈[t]

∥∥∥Zv
j,k

∥∥∥
X
≤W (Sj,k) we have

‖μ(x)‖1,X ≤
∑
j∈[
]

∑
k∈[
]

∑
v∈[t]

∥∥Zv
j,k

∥∥
X

≤
∑
j∈[
]

−1∑
k=j+2

W (Sj,k) +
∑
j∈[
]

j+1∑
k=j−9

W (Sj,k) +
∑
j∈[
]

j−10∑
k=0

∑
v∈[t]

∥∥Zv
j,k

∥∥
X
.

We bound the three terms of (1) separately. For the first term, the probability that there
exists an element in class j that is sampled at level higher than j + 2 is at most � ·
sjpj+2 ≤ O(�/λ). Union bound over all class j ∈ [�] we have that with probability at
least 1−O(�2/λ) ≥ 1− 1/λΩ(1), the first term is 0.

For the second term, since E[W (Sj,k)] = W (Sj) for each k ∈ [�], by the linearity
of expectation and Markov inequality we obtain that with probability at least 0.991,

∑
j∈[
]

j+1∑
k=j−9

W (Sj,k) ≤ 2000 ·
∑
j∈[
]

W (Sj) = 2000M.

Now we try to bound the third term. We know by lemma 2 that sj,k ≤ 2sjpk + λ with
probability at least 1− e−Ω(λ). By the assumption X has Rademacher dimension λ we
have that for each j, k such that j ≥ k + 10,

844 E. Verbin and Q. Zhang

∑
v∈[t]

∥∥∥Zv
j,k

∥∥∥
X
≤
∑

v∈[t] λTj
√
svj,k · 1/pk

≤ λTj · t
√
sj,k/t · λk

≤ λM/λj · λ5
√
2λj+1λ−k/λ5 + λ · λk

≤ 2M · λ1+5/2− j−k−1
2

≤ 2Mλ1+5/2−9/2 = 2M/λ.

Summing over all j ∈ [�] and all k ∈ [0, . . . , j − 10] we have that the third term is at
most O(2M�2/λ) = o(M) with probability at least 1− �2 · e−Ω(λ) ≥ 1− 1/λΩ(1).

To sum up, with probability at least 1 − 1/λΩ(1) − (1 − 0.991) ≥ 0.99 we have
‖μ(x)‖1,X ≤ 2000M + o(M) = O(M).

4.3 Proof for Theorem 2

We can also prove Theorem 2 by two steps. The proof for the first part of the theorem
(i.e., no underestimate) is exactly the same as that in Theorem 1 since in that proof
we do not use any property of Rademacher dimension. For the second part, just notice
that ‖μ(x)‖1,X ≤

∑
k∈[
]

∑
j∈[
]W (Sj,k) where � = O(logλ n), and E[W (Sj,k)] =

W (Sj) for all j, k ∈ [�]. Thus E[‖μ(x)‖1,X] ≤ O(logλ n)·
∑

j∈[
]W (Sj) = O(logλ n·
M). Directly applying Markov inequality gives the result.

References

1. Agarwal, P.K., Efrat, A., Sharir, M.: Vertical decomposition of shallow levels in 3-
dimensional arrangements and its applications. In: SoCG, pp. 39–50 (1995)

2. Agarwal, P.K., Varadarajan, K.R.: A near-linear constant-factor approximation for eu-
clidean bipartite matching? In: Symposium on Computational Geometry, pp. 247–252
(2004)

3. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency
moments. J. Comput. Syst. Sci. 58, 137–147 (1999)

4. Andoni, A., Ba, K.D., Indyk, P., Woodruff, D.: Efficient sketches for earth-mover distance,
with applications. In: FOCS (2009)

5. Andoni, A., Charikar, M.S., Neiman, O., Nguyen, H.L.: Near linear lower bound for dimen-
sion reduction in �1. In: IEEE Symposium on Foundations of Computer Science (2011)

6. Andoni, A., Indyk, P., Krauthgamer, R.: Overcoming the �1 non-embeddability barrier: al-
gorithms for product metrics. In: SODA, pp. 865–874 (2009)

7. Andoni, A., Krauthgamer, R., Onak, K.: Streaming algorithms via precision sampling. In:
FOCS, pp. 363–372 (2011)

8. Andoni, A., Nguyen, H.L.: Near-optimal sublinear time algorithms for Ulam distance. In:
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, pp. 76–86 (2010)

9. Andoni, A., Onak, K.: Approximating edit distance in near-linear time. In: STOC, pp. 199–
204 (2009)

10. Brinkman, B., Charikar, M.: On the impossibility of dimension reduction in �1. J. ACM 52,
766–788 (2005)

Rademacher-Sketch 845

11. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: STOC, pp.
380–388 (2002)

12. Chefd’hotel, C., Bousquet, G.: Intensity-based image registration using earth mover’s dis-
tance. In: SPIE (2007)

13. Deng, Y., Du, W.: The Kantorovich metric in computer science: A brief survey. Electr. Notes
Theor. Comput. Sci. 253(3), 73–82 (2009)

14. Grauman, K., Darrell, T.: Fast contour matching using approximate earth movers distance.
In: CVPR, pp. 220–227 (2004)

15. Holmes, A.S., Rose, C.J., Taylor, C.J.: Transforming pixel signatures into an improved met-
ric space. Image Vision Comput 20(9-10), 701–707 (2002)

16. Indyk, P.: Algorithmic aspects of geometric embeddings. In: IEEE Symposium on Founda-
tions of Computer Science (2001)

17. Indyk, P.: Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM 53, 307–323 (2006)

18. Indyk, P.: A near linear time constant factor approximation for euclidean bichromatic
matching (cost). In: SODA, pp. 39–42 (2007)

19. Indyk, P., Matousek, J.: Low-distortion embeddings of finite metric spaces. In: Handbook
of Discrete and Computational Geometry, pp. 177–196. CRC Press (2004)

20. Indyk, P., Thaper, N.: Fast color image retrieval via embeddings. In: Workshop on Statistical
and Computational Theories of Vision, at ICCV (2003)

21. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. In:
Conference in modern analysis and probability (New Haven, Conn., 1982). Contemporary
Mathematics, vol. 26, pp. 189–206. American Mathematical Society (1984)

22. Kantorovich, L.V.: On the translocation of masses. Dokl. Akad. Nauk SSSR 37(7-8), 227–
229 (1942)

23. Lawler, E.: Combinatorial optimization - networks and matroids. Holt, Rinehart and Win-
ston, New York (1976)

24. Levina, E., Bickel, P.J.: The earth mover’s distance is the mallows distance: Some insights
from statistics. In: ICCV, pp. 251–256 (2001)

25. Linial, N.: Finite metric spaces - combinatorics, geometry and algorithms. In: Proceedings
of the International Congress of Mathematicians III, pp. 573–586 (2002)

26. Maurey, B.: Type, cotype and k-convexity. In: Handbook of the Geometry of Banach
Spaces, vol. 2, pp. 1299–1332. North-Holland (2003)

27. McGregor, A.: Open problems in data streams, property testing, and related topics (2011),
http://www.cs.umass.edu/˜mcgregor/papers/11-openproblems.pdf

28. Naor, A., Schechtman, G.: Planar earthmover is not in �1. SIAM J. Comput. 37(3), 804–826
(2007)

29. Nisan, N.: Pseudorandom generators for space-bounded computations. In: Proceedings of
the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC 1990, pp.
204–212 (1990)

30. Puzicha, J., Buhmann, J.M., Rubner, Y., Tomasi, C.: Empirical evaluation of dissimilarity
measures for color and texture. In: ICCV, pp. 1165–1173 (1999)

31. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth movers distance as a metric for image re-
trieval. International Journal of Computer Vision 40 (2000)

32. Vaidya, P.M.: Geometry helps in matching. SIAM J. Comput. 18, 1201–1225 (1989)
33. Varadarajan, K.R., Agarwal, P.K.: Approximation algorithms for bipartite and non-bipartite

matching in the plane. In: SODA, pp. 805–814 (1999)

http://www.cs.umass.edu/~mcgregor/papers/11-openproblems.pdf

A Matrix Hyperbolic Cosine

Algorithm and Applications�

Anastasios Zouzias

Department of Computer Science
University of Toronto, Canada

Abstract. In this paper, we generalize Spencer’s hyperbolic cosine al-
gorithm to the matrix-valued setting. We apply the proposed algorithm
to several problems by analyzing its computational efficiency under two
special cases of matrices; one in which the matrices have a group struc-
ture and an other in which they have rank-one. As an application of the
former case, we present a deterministic algorithm that, given the mul-
tiplication table of a finite group of size n, it constructs an expanding
Cayley graph of logarithmic degree in near-optimal O(n2 log3 n) time.
For the latter case, we present a fast deterministic algorithm for spectral
sparsification of positive semi-definite matrices, which implies an im-
proved deterministic algorithm for spectral graph sparsification of dense
graphs. In addition, we give an elementary connection between spectral
sparsification of positive semi-definite matrices and element-wise matrix
sparsification. As a consequence, we obtain improved element-wise spar-
sification algorithms for diagonally dominant-like matrices.

1 Introduction

A non-trivial generalization of Chernoff bound type inequalities for matrix-
valued random variables was introduced by Ahlswede and Winter [2]. In parallel,
Vershynin and Rudelson introduced similar matrix-valued concentration inequal-
ities using different machinery [27,28]. Following these two seminal papers, many
variants have been proposed in the literature [26]; see [39] for more. Such inequal-
ities, similarly to their real-valued ancestors, provide powerful tools to analyze
probabilistic constructions and the performance of randomized algorithms. There
is a rapidly growing line of research exploiting the power of these inequalities
including new proofs of probabilistic constructions of expander graphs [3,21,23],
matrix approximation by element-wise sparsification [13], graph approximation
via edge sparsification [35], analysis of algorithms for matrix completion and de-
composition of low rank matrices [26,22], semi-definite relaxation and rounding
of quadratic maximization problems [29].

In many settings, it is desirable to convert the above probabilistic proofs
into efficient deterministic procedures. That is, to derandomize the proofs.
Wigderson and Xiao presented an efficient derandomization of the matrix Cher-
noff bound by generalizing Raghavan’s method of pessimistic estimators to the

� A full version of this paper can be found at http://arxiv.org/abs/1103.2793

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 846–858, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://arxiv.org/abs/1103.2793

A Matrix Hyperbolic Cosine Algorithm and Applications 847

matrix-valued setting [41]. In this paper, we generalize Spencer’s hyperbolic co-
sine algorithm to the matrix-valued setting [30]. In an earlier, preliminary version
of our paper [42] the generalization of Spencer’s hyperbolic cosine algorithm was
also based on the method of pessimistic estimators. However, here we present
a proof which is based on a simple averaging argument. Next, we carefully an-
alyze two special cases of matrices; one in which the matrices have a group
structure and the other in which they have rank-one. We apply our main re-
sult to the following problems: deterministically constructing Alon-Roichman
expanding Cayley graphs, approximating graphs via edge sparsification and ap-
proximating matrices via element-wise sparsification.

The Alon-Roichman theorem asserts that Cayley graphs obtained by choosing
a logarithmic number of group elements independently and uniformly at random
are expanders [3]. The original proof of Alon and Roichman is based on Wigner’s
trace method, whereas recent proofs rely on matrix-valued deviation bounds [21].
Wigderson and Xiao’s derandomization of the matrix Chernoff bound implies
a deterministic O(n4 logn) time algorithm for constructing Alon-Roichman
graphs. Independently, Arora and Kale generalized the multiplicative weights
update (MWU) method to the matrix-valued setting and, among other inter-
esting implications, they improved the running time to O(n3polylog (n)) [19].
Here we further improve the running time to O(n2 log3 n) by exploiting the
group structure of the problem. In addition, our algorithm is combinatorial
in the sense that it only requires counting the number of all closed (even)
paths of size at most O(log n) in Cayley graphs. All previous algorithms involve
numerical matrix computations such as eigenvalue decompositions and matrix
exponentiation.

The second problem that we study is the graph sparsification problem. This
problem poses the question whether any dense graph can be approximated by
a sparse graph under different notions of approximation. Given any undirected
graph, the most well-studied notions of approximation by a sparse graph include
approximating, all pairwise distances up to an additive error [25], every cut to an
arbitrarily small multiplicative error [9] and every eigenvalue of the difference of
their Laplacian matrices to an arbitrarily small relative error [34]; the resulting
graphs are usually called graph spanners, cut sparsifiers and spectral sparsifiers,
respectively. Given that the notion of spectral sparsification is stronger than
cut sparsification, so we focus on spectral sparsifiers. An efficient randomized
algorithm to construct an (1+ε)-spectral sparsifier with O(n log n/ε2) edges was
given in [35]. Furthermore, an (1+ ε)-spectral sparsifier with O(n/ε2) edges can
be computed in O(mn3/ε2) deterministic time [8]. The latter result is a direct
corollary of the spectral sparsification of positive semi-definite (psd) matrices
problem as defined in [36]; see also [24] for more applications. Here we present a
fast deterministic algorithm for spectral sparsification of psd matrices and, as a
consequence, we obtain an improved deterministic spectral graph sparsification
algorithm for the case of dense graphs.

The last problem that we analyze is the element-wise matrix sparsification
problem. This problem was first introduced by Achlioptas and McSherry in [1].

848 A. Zouzias

They described sampling-based algorithms that select a small number of entries
from an input matrix A, forming a sparse matrix Ã, which is close to A in the
operator norm sense. The motivation to study this problem lies on the need to
speed up several matrix computations including approximate eigenvector compu-
tations [1] and semi-definite programming solvers [4,7]. Recently, there are many
follow-up results on this problem [5,13]. To the best of our knowledge, all known
algorithms for this problem are randomized (see Table 1 of [13]). In this paper
we present the first deterministic algorithm and strong sparsification bounds for
symmetric matrices that have an approximate diagonally dominant1 property.
Diagonally dominant matrices arise in many applications such as the solution of
certain elliptic differential equations via the finite element method [11], several
optimization problems in computer vision [20] and computer graphics [18], to
name a few.

Organization of the Paper. The paper is organized as follows. In § 2, we present
the matrix hyperbolic cosine algorithm (Algorithm 1). We apply the matrix hy-
perbolic cosine algorithm to derive improved deterministic algorithms for the
construction of Alon-Roichman expanding Cayley graphs in § 3, spectral spar-
sification of psd matrices in § 4 and element-wise matrix sparsification. Due to
space constraints, the element-wise matrix sparsification section and all proofs
have been deferred to the full version of the paper.

Our Results

The main contribution of this paper is a generalization of Spencer’s hyperbolic
cosine algorithm to the matrix-valued setting [30], [33, Lecture 4], see Algo-
rithm 1. As mentioned in the introduction, our main result has connections with
a recent derandomization of matrix concentration inequalities [41]. We should
highlight a few advantages of our result compared to [41]. First, our construction
does not rely on composing two separate estimators (or potential functions) to
achieve operator norm bounds and does not require knowledge of the sampling
probabilities of the matrix samples as in [41]. In addition, the algorithm of [41]
requires computations of matrix expectations with matrix exponentials which
are computationally expensive, see [41, Footnote 6, p. 63]. In this paper, we
demostrate that overcoming these limitations leads to faster and in some cases
simpler algorithms.

Next, we demonstrate the usefulness of the main result by analyzing its com-
putational efficiency under two special cases of matrices. We begin by presenting
the following result

Theorem 1 (Restatement of Theorem 5). There is a deterministic algo-
rithm that, given the multiplication table of a group G of size n, constructs an
Alon-Roichman expanding Cayley graph of logarithmic degree in O(n2 log3 n)

1 A symmetric matrix A of size n is called diagonally dominant if |Aii| ≥
∑

j �=i |Aij |
for every i ∈ [n].

A Matrix Hyperbolic Cosine Algorithm and Applications 849

time. Moreover, the algorithm performs only group algebra operations that cor-
respond to counting closed paths in Cayley graphs.

To the best of our knowledge, the above theorem improves the running time
of all previously known deterministic constructions of Alon-Roichman Cayley
graphs [6,41,19]. Moreover, notice that the running time of the above algorithm
is optimal up-to poly-logarithmic factors since the size of the multiplication table
of a finite group of size n is O(n2).

In addition, we study the computational efficiency of the matrix hyperbolic
cosine algorithm on the case of matrix samples with rank-one. The motivation
for studying this special setting is its connection with problems such as graph
approximation via edge sparsification as was shown in [8,36] and matrix approx-
imation via element-wise sparsification as we will see later in this paper. The
main result for this setting can be summarized in the following theorem (see
§ 4), which improves the O(mn3/ε2) running time of [36] when, say, m = Ω(n2)
and ε is a constant.

Theorem 2. Suppose 0 < ε < 1 and A =
∑m

i=1 vi ⊗ vi are given, with column
vectors vi ∈ Rn. Then there are non-negative real weights {si}i≤m, at most
�n/ε2� of which are non-zero, such that

(1− ε)3A - Ã - (1 + ε)3A,

where Ã =
∑m

i=1 sivi ⊗ vi. Moreover, there is a deterministic algorithm which

computes the weights si in
2 Õ(mn2 log3 n/ε2 + n4 logn/ε4) time.

First, as we have already mentioned the graph sparsification problem can be
reduced to spectral sparsification of positive semi-definite matrix. Hence as a
corollary of the above theorem (proof omitted, see [36] for details), we obtain
a fast deterministic algorithm for sparsifying dense graphs, which improves the
currently best known O(n5/ε2) running time for this problem.

Corollary 1. Given a weighted dense graph H = (V,E) on n vertices with
positive weights and 0 < ε < 1, there is a deterministic algorithm that returns an
(1+ε)-spectral sparsifier with O(n/ε2) edges in Õ(n4 logn/ε2 max{log2 n, 1/ε2})
time.

Second, we give an elementary connection between element-wise matrix sparsi-
fication and spectral sparsification of psd matrices. A direct application of this
connection implies strong sparsification bounds for symmetric matrices that are
close to being diagonally dominant. More precisely, we give two element-wise
sparsification algorithms for symmetric and diagonally dominant-like matrices;
in its randomized and the other in its derandomized version (see Table 1 of [13]
for comparison). Here, for the sake of presentation, we state our results for diago-
nally dominant matrices, although the results hold under a more general setting
(see full version for details).

2 The Õ(·) notation hides log log n and log log(1/ε) factors throughout the paper.

850 A. Zouzias

Theorem 3. Let A be any symmetric and diagonally dominant matrix of size
n and 0 < ε < 1. Assume for normalization that ‖A‖ = 1.

(a) There is a randomized linear time algorithm that outputs a matrix Ã ∈ Rn×n

with at most O(n logn/ε2) non-zero entries such that, with probability at

least 1− 1/n,
∥∥∥A− Ã

∥∥∥ ≤ ε.

(b) There is a deterministic Õ(ε−2nnz (A)n2 lognmax{log2 n, 1/ε2}) time al-

gorithm that outputs a matrix Ã ∈ Rn×n with at most O(n/ε2) non-zero

entries such that
∥∥∥A− Ã

∥∥∥ ≤ ε.

Preliminaries. The next discussion reviews several definitions and facts from
linear algebra; for more details, see [10]. By [n] to be the set {1, 2, . . . , n}. We
denote by Sn×n the set of symmetric matrices of size n. Let x ∈ Rn, we denote
by diag (x) the diagonal matrix containing x1, x2, . . . , xn. For a square matrix
M , we also write diag (M) to denote the diagonal matrix that contains the
diagonal entries of M. Let A be an m × n matrix. A(j) will denote the j-th
column of A and A(i) the i-th row of A. We denote ‖A‖ = max{‖Ax‖ | ‖x‖ = 1},
‖A‖∞ = maxi∈[m]

∑
j∈[n] |Aij | and by ‖A‖F =

√∑
i,j A

2
ij the Frobenius norm of

A. Also sr (A) := ‖A‖2F / ‖A‖
2 is the stable rank of A and by nnz (A) the number

of its non-zero entries. The trace of a square matrix B is denoted as tr (B). We
write Jn for the all-ones square matrices of size n. For two symmetric matrices
X,Y, we say that Y & X if and only if Y − X is a positive semi-definite (psd)
matrix. Let x ∈ Rn, then x⊗ x is the n× n matrix such that (x⊗ x)i,j = xixj .

Given any matrix A, its dilation is defined as D (A) =

[
0 A
A� 0

]
. It is easy to see

that λmax(D (A)) = ‖A‖, see e.g. [37, Theorem 4.2].

Functions of Matrices. Here we review some basic facts about the matrix expo-
nential and the hyperbolic cosine function, for more details see [17]. All proofs
of this section have been deferred to the appendix. The matrix exponential of a

symmetric matrix A is defined as exp [A] = I+
∑∞

k=1
Ak

k! . Let A = Q
matLamQ� be the eigendecomposition of A. It is easy to see that exp [A] =
Qexp [Λ]Q�. For any real square matrices A and B of the same size that com-
mute, i.e., AB = BA, we have that exp [A+ B] = exp [A] exp [B]. In general,
when A and B do not commute, the following estimate is known for symmetric
matrices.

Lemma 1. [15,38] For any symmetric matrices A and B, tr (exp [A+ B]) ≤
tr (exp [A] exp [B]).

We will also need the following fact about matrix exponential for rank one ma-
trices.

Lemma 2. Let x be a non-zero vector in Rn. Then exp [x⊗ x] = In+
e‖x‖2−1
‖x‖2 x⊗

x. Similarly, exp [−x⊗ x] = In − 1−e−‖x‖2

‖x‖2 x⊗ x.

A Matrix Hyperbolic Cosine Algorithm and Applications 851

Let us define the matrix hyperbolic cosine function of a symmetric matrix A as
cosh [A] := (exp [A]+ exp [−A])/2. Next, we state a few properties of the matrix
hyperbolic cosine.

Lemma 3. Let A be a symmetric matrix. Then tr (exp [D (A)]) = 2tr (cosh [A]).

Lemma 4. Let A be a symmetric matrix and P be a projector matrix that com-
mutes with A, i.e., PA = AP. Then cosh [PA] = Pcosh [A] + I− P.

Lemma 5. [40, Lemma 2.2] For any positive semi-definite symmetric matrix
A of size n and any two symmetric matrices B,C of size n, B - C implies
tr (AB) ≤ tr (AC).

2 Balancing Matrices: A Matrix Hyperbolic Cosine
Algorithm

We briefly describe Spencer’s balancing vectors game and then generalize it to
the matrix-valued setting [33, Lecture 4]. Let a two-player perfect information
game between Alice and Bob. The game consists of n rounds. On the i-th round,
Alice sends a vector vi with ‖vi‖∞ ≤ 1 to Bob, and Bob has to decide on a sign
si ∈ {±1} knowing only his previous choices of signs and {vk}k<i. At the end of
the game, Bob pays Alice ‖

∑n
i=1 sivi‖∞. We call the latter quantity, the value

of the game.
It has been shown in [32] that, in the above limited online variant, Spencer’s

six standard deviations bound [31] does not hold and the best value that we can
hope for is Ω(

√
n lnn). Such a bound is easy to obtain by picking the signs {si}

uniformly at random. Indeed, a direct application of Azuma’s inequality to each
coordinate of the random vector

∑n
i=1 sivi together with a union bound over all

the coordinates gives a bound of O(
√
n lnn).

Now, we generalize the balancing vectors game to the matrix-valued setting.
That is, Alice now sends to Bob a sequence {Mi} of symmetric matrices of size
n with3 ‖Mi‖ ≤ 1, and Bob has to pick a sequence of signs {si} so that, at the
end of the game, the quantity ‖

∑n
i=1 siMi‖ is as small as possible. Notice that

the balancing vectors game is a restriction of the balancing matrices game in
which Alice is allowed to send only diagonal matrices with entries bounded in
absolute value by one. Similarly to the balancing vectors game, using matrix-
valued concentration inequalities, one can prove that Bob has a randomized
strategy that achieves at most O(

√
n lnn) w.p. at least 1/2. Indeed,

Lemma 6. Let Mi ∈ Sn×n, ‖Mi‖ ≤ 1, 1 ≤ i ≤ n. Pick s∗i ∈ {±1} uniformly at
random for every i ∈ [n]. Then ‖

∑n
i=1 s

∗
iMi‖ = O(

√
n lnn) w.p. at least 1/2.

3 A curious reader may ask him/her-self why the operator norm is the right choice.
It turns out the the operator norm is the correct matrix-norm analog of the �∞
vector-norm, viewed as the infinity Schatten norm on the space of matrices.

852 A. Zouzias

Now, let’s assume that Bob wants to achieve the above probabilistic guarantees
using a deterministic strategy. Is it possible? We answer this question in the
affirmative by generalizing Spencer’s hyperbolic cosine algorithm (and its proof)
to the matrix-valued setting. We call the resulting algorithm matrix hyperbolic
cosine (Algorithm 1). It is clear that this simple greedy algorithm implies a deter-
ministic strategy for Bob that achieves the probabilistic guarantees of Lemma 6
(set fj ∼ sjMj, t = n and ε = O(

√
lnn/n) and notice that γ, ρ2 are at most

one).
Algorithm 1 requires an extra assumption on its random matrices compared to

Spencer’s original algorithm. That is, we assume that our random matrices have
uniformly bounded their “matrix variance”, denoted by ρ2. This requirement is
motivated by the fact that in the applications that are studied in this paper
such an assumption translates bounds that depend quadratically on the matrix
dimensions to bounds that depend linearly on the dimensions.

We will need the following technical lemma for proving the main result of this
section, which is a Bernstein type argument generalized to the matrix-valued
setting [39].

Lemma 7. Let f : [m] → Sn×n with ‖f(i)‖ ≤ γ for all i ∈ [m]. Let X be a
random variable over [m] such that E f(X) = 0 and

∥∥E f(X)2
∥∥ ≤ ρ2. Then, for

any θ > 0, ‖E[exp [D (θf(X))]]‖ ≤ exp
(
ρ2(eθγ − 1− θγ)/γ2

)
. In particular, for

any 0 < ε < 1, setting θ = ε/γ implies that E[exp [D (εf(X)/γ)]] - eε
2ρ2/γ2

I2n.

Now we are ready to prove the correctness of the matrix hyperbolic cosine
algorithm.

Algorithm 1. Matrix Hyperbolic Cosine

1: procedure Matrix-Hyperbolic({fj}, ε, t) � fj : [m]→ Sn×n as in Theorem 4,
0 < ε < 1.

2: Set θ = ε/γ
3: for i = 1 to t do
4: Compute x∗

i ∈ [m]: x∗
i = arg mink∈[m] tr

(
cosh

[
θ
∑i−1

j=1 fj(x
∗
j) + θfi(k)

])
5: end for
6: Output: t indices x∗

1, x
∗
2, . . . , x

∗
t such that

∥∥∥ 1
t

∑t
j=1 fj(x

∗
j)
∥∥∥ ≤ γ ln(2n)

tε
+ ερ2

γ

7: end procedure

Theorem 4. Let fj : [m] → Sn×n with ‖fj(i)‖ ≤ γ for all i ∈ [m] and j =
1, 2, Suppose that there exists independent random variables X1, X2, . . . over
[m] such that E fj(Xj) = 0 and

∥∥E fj(Xj)
2
∥∥ ≤ ρ2. Algorithm 1 with input

{fj}, ε, t outputs a set of indices {x∗j}j∈[t] over [m] such that
∥∥∥ 1t ∑t

j=1 fj(x
∗
j)
∥∥∥ ≤

γ ln(2n)
tε + ερ2

γ .

A Matrix Hyperbolic Cosine Algorithm and Applications 853

We conclude with an open question related to Spencer’s six standard deviation
bound [31]. Does Spencer’s six standard deviation bound holds under the matrix
setting? More formally, given any sequence of n symmetric matrices {Mi} with
‖Mi‖ ≤ 1, does there exist a set of signs {si} so that ‖

∑n
i=1 siMi‖ = O(

√
n)?

3 Alon-Roichman Expanding Cayley Graphs

We start by describing expander graphs. Given a connected undirected d-regular
graph H = (V,E) on n vertices, let A be its adjacency matrix, i.e., Aij = wij

where wij is the number of edges between vertices i and j. Moreover, let Â = 1
dA

be its normalized adjacency matrix. We allow self-loops and multiple edges. Let
λ1(Â), . . . , λn(Â) be its eigenvalues in decreasing order. We have that λ1(Â) = 1
with corresponding eigenvector 1/

√
n, where 1 is the all-one vector. The graph

H is called a spectral expander if λ(Â) := max2≤j{|λj(Â)|} ≤ ε for some positive
constant ε < 1.

Denote by mk = mk(H) := tr
(
Ak
)
. By definition, mk is equal to the number

of self-returning walks of length k of the graph H . A graph-spectrum-based
invariant, recently proposed by Estrada is defined as EE(A) := tr (exp [A]) [14],
which also equals to

∑∞
k=0mk/k!. For θ > 0, we define the even θ-Estrada index

by EEeven(A, θ) :=
∑∞

k=0m2k(θA)/(2k)!.
Now let G be any finite group of order n with identity element id. Let S

be a multi-set of elements of G, we denote by S � S−1 the symmetric closure
of S, namely the number of occurrences of s and s−1 in S � S−1 equals the
number of occurrences of s ∈ S. Let R be the right regular representation4, i.e.,
(R(g1)φ)(g2) = φ(g1g2) for every φ : G → R and g1, g2 ∈ G. The Cayley graph
Cay (G;S) on a group G with respect to the mutli-set S ⊂ G is the graph whose
vertex set is G, and where g1 and g2 are connected by an edge if there exists
s ∈ S such that g2 = g1s (allowing multiple edges for multiple elements in S).
In this section we prove the correctness of the following greedy algorithm for
constructing expanding Cayley graphs.

Theorem 5. Algorithm 2, given the multiplication table of a finite group G of
size n and 0 < ε < 1, outputs a (symmetric) multi-set S ⊂ G of size O(log n/ε2)
such that λ(Cay (G;S)) ≤ ε in O(n2 log3 n/ε3) time. Moreover, the algorithm
performs only group algebra operations that correspond to counting closed paths
in Cayley graphs.

Let Â be the normalized adjacency matrix of Cay
(
G;S � S−1

)
for some S ⊂

G. It is not hard to see that Â = 1
2|S|
∑

s∈S (R(s) +R(s−1)). We want to

bound λ(A). Notice that λ(A) = ‖(I− J/n)A‖. Since we want to analyze
the second-largest eigenvalue (in absolute value), we consider (I − J/n)A =

4 In other words, represent each group algebra element with a permutation matrix of
size n that preserves the group structure (i.e., it is a group homeomorphism). This
is always possible due to Cayley’s theorem.

854 A. Zouzias

Algorithm 2. Expander Cayley Graph via even Estrada Index Minimization

1: procedure GreedyEstradaMin(G, ε) � Multiplication table of G, 0 < ε < 1
2: Set S(0) = ∅ and t = O(log n/ε2)
3: for i = 1, . . . t do
4: Let g∗ ∈ G that (approximately) min. the even ε/2-Estrada index of

Cay
(
G;S(i−1) ∪ g ∪ g−1

)
over all g ∈ G � Use Lemma 9

5: Set S(i) = S(i−1) ∪ g∗ ∪ g−1
∗

6: end for
7: Output: A multi-set S := S(t) of size 2t such that λ(Cay (G;S)) ≤ ε
8: end procedure

1
|S|
∑

s∈S (R(s) +R(s−1))/2 − J/n. Based on the above calculation, we define

our matrix-valued function as

f(g) := (R(g) +R(g−1))/2− J/n (1)

for every g ∈ G. The following lemma connects the potential function that is
used in Theorem 4 and the even Estrada index.

Lemma 8. Let S ⊂ G and A be the adjacency matrix of Cay
(
G;S � S−1

)
. For

any θ > 0, tr
(
cosh

[
θ
∑

s∈S f(s)
])

= EEeven(A, θ/2) + 1− cosh(θ|S|).

The following lemma indicates that it is possible to efficiently compute the (even)
Estrada index for Cayley graphs with small generating set.

Lemma 9. Let S ⊂ G, θ, δ > 0, and A be the adjacency matrix of Cay (G;S).
There is an algorithm that, given S, computes an additive δ approximation to
EE(θA) or EEeven(A, θ) in O(n|S|max{log(n/δ), 2e2|S|θ}) time.

Proof. (of Theorem 5) By Lemma 8, minimizing the even ε/2-Estrada index in
the i-th iteration is equivalent to minimizing tr

(
cosh

[
θ
∑

s∈S(i−1) f(s) + θf(g)
])

over all g ∈ G with θ = ε. Notice that f(g) ∈ Sn×n for g ∈ G, Eg∈RG f(g) =
0n since

∑
g∈GR(g) = J. It is easy to see that ‖f(g)‖ ≤ 2 and moreover a

calculation implies that
∥∥Eg∈RG f(g)2

∥∥ ≤ 2 as well. Theorem 4 implies that we

get a multi-set S of size t such that λ(Cay
(
G;S � S−1

)
) =
∥∥∥ 1
|S|
∑

s∈S f(s)
∥∥∥ ≤ ε.

The moreover part follows from Lemma 9 with δ = eε
2

nc for a sufficient large
constant c > 0. Indeed, in total we incur (following the proof of Theorem 4) at

most an additive ln(δneε
2t)/ε error which is bounded by ε.

4 Fast Isotropic Sparsification and Spectral Sparsification

Let A be an m× n matrix with m� n whose columns are in isotropic position,
i.e., A�A = In. For 0 < ε < 1, consider the problem of finding a small subset

of (rescaled) rows of A forming a matrix Ã such that
∥∥∥Ã�Ã− I

∥∥∥ ≤ ε. The ma-

trix Bernstein inequality (see [39]) tells us that there exists such a set with size

A Matrix Hyperbolic Cosine Algorithm and Applications 855

O(n logn/ε2). Indeed, set f(i) = A(i) ⊗ A(i)/pi − In where pi =
∥∥A(i)

∥∥2 / ‖A‖2F.
A calculation shows that γ and ρ2 are O(n). Moreover, Algorithm 1 implies an
O(mn4 logn/ε2) time algorithm for finding such a set. The running time of Algo-
rithm 1 for rank-one matrix samples can be improved to O(mn3polylog (n) /ε2)
by exploiting their rank-one structure. More precisely, using fast algorithms for
computing all the eigenvalues of matrices after rank-one updates [16]. Next we
show that we can further improve the running time by a more careful analysis.

We show how to improve the running time of Algorithm 1 to

O(mn2

ε2 polylog
(
n, 1ε
)
) utilizing results from numerical linear algebra including

the Fast Multipole Method [12] (FMM) and ideas from [16]. The main idea be-
hind the improvement is that the trace is invariant under any change of basis.
At each iteration, we perform a change of basis so that the matrix corresponding
to the previous choices of the algorithm is diagonal. Now, Step 4 of Algorithm 1
corresponds to computing all the eigenvalues of m different eigensystems with
special structure, i.e., diagonal plus a rank-one matrix. Such eigensystem can be
solved in O(npolylog (n)) time using the FMM as was observed in [16]. However,
the problem now, is that at each iteration we have to represent all the vectors
A(i) in the new basis, which may cost O(mn2). The key observation is that the
change of basis matrix at each iteration is a Cauchy matrix (see the full ver-
sion). It is known that matrix-vector multiplication with Cauchy matrices can
be performed efficiently and numerically stable using FMM. Therefore, at each
iteration, we can perform the change of basis in O(mnpolylog (n)) and m eigen-
value computations in O(mnpolylog (n)) time. The next theorem states that the
resulting algorithm runs in O(mn2polylog (n)) time (see Appendix for proof).

Theorem 6. Let A be an m× n matrix with A�A = In, m ≥ n and 0 < ε < 1.
Algorithm 3 returns at most t = O(n lnn/ε2) indices x∗1, x

∗
2, . . . x

∗
t over [m] with

corresponding scalars s1, s2, . . . , st using Õ(mn2 log3 n/ε2) operations such that∥∥∥∥∥
t∑

i=1

siA(x∗
i)
⊗ A(x∗

i)
− In

∥∥∥∥∥ ≤ ε. (2)

Next, we show that Algorithm 3 can be used as a bootstrapping procedure to
improve the time complexity of [36, Theorem 3.1], see also [8, Theorem 3.1]. Such
an improvement implies faster algorithms for constructing graph sparsifiers and,
as we will see in element-wise matrix sparsification section (see full version).

Theorem 7. Suppose 0 < ε < 1 and A =
∑m

i=1 vi ⊗ vi are given, with column
vectors vi ∈ Rn and m ≥ n. Then there are non-negative weights {si}i≤m, at
most �n/ε2� of which are non-zero, such that

(1− ε)3A - Ã - (1 + ε)3A, (3)

where Ã =
∑m

i=1 sivi ⊗ vi. Moreover, there is an algorithm that computes the

weights {si}i≤m in deterministic Õ(mn2 log3 n/ε2 + n4 logn/ε4) time.

856 A. Zouzias

Algorithm 3. Fast Isotropic Sparsification

1: procedure ISOTROP(A, ε) � A ∈ Rm×n,
Pm

k=1 A(k) ⊗ A(k) = In and 0 < ε < 1
2: Set θ = ε/n, t = O(n ln n/ε2), and A(k) ← A(k)/

√
pk for every k ∈ [m], where

pk =
‚
‚A(k)

‚
‚2

/n

3: Set Λ{0} = 0n and Z =
√

θ A
4: for i = 1 to t do
5: x∗

i = arg mink∈[m] tr
`
exp

ˆ
Λ{i−1} + Z(k) ⊗ Z(k)

˜
e−θi + exp

ˆ−Λ{i−1} − Z(k) ⊗ Z(k)

˜
eθi

´

� Apply m times Lemma 12 (see full version)
6: [Λ{i}, U{i}] = eigs(Λ{i−1} + Z(x∗

i) ⊗ Z(x∗
i)) � eigs computes eigensystem

7: Z = ZU{i} � Apply fast matrix-vector multiplication
8: end for

9: Output: t indices x∗
1, x

∗
2, . . . , x

∗
t , x∗

i ∈ [m] s.t.
‚
‚
‚
‚

Pt
k=1

A(x∗
k
)⊗A(x∗

k
)

tpx∗
k

− In

‚
‚
‚
‚ ≤ ε

10: end procedure

Acknowledgements. The author would like to thank Mark Braverman for
several interesting discussions and comments about this work.

References

1. Achlioptas, D., McSherry, F.: Fast Computation of Low-rank Matrix Approxima-
tions. SIAM J. Comput. 54(2), 9 (2007)

2. Ahlswede, R., Winter, A.: Strong Converse for Identification via Quantum Chan-
nels. IEEE Transactions on Information Theory 48(3), 569–579 (2002)

3. Alon, N., Roichman, Y.: Random Cayley Graphs and Expanders. Random Struct.
Algorithms 5, 271–284 (1994)

4. Arora, S., Hazan, E., Kale, S.: Fast Algorithms for Approximate Semidefinite Pro-
gramming using the Multiplicative Weights Update Method. In: Proceedings of the
Symposium on Foundations of Computer Science (FOCS), pp. 339–348 (2005)

5. Arora, S., Hazan, E., Kale, S.: A Fast Random Sampling Algorithm for Sparsifying
Matrices. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006
and RANDOM 2006. LNCS, vol. 4110, pp. 272–279. Springer, Heidelberg (2006)

6. Arora, S., Kale, S.: A Combinatorial, Primal-Dual Approach to Semidefinite Pro-
grams. In: Proceedings of the Symposium on Theory of Computing (STOC), pp.
227–236 (2007)

7. d’Aspremont, A.: Subsampling Algorithms for Semidefinite Programming. In:
Stochastic Systems, pp. 274–305 (2011)

8. Batson, J.D., Spielman, D.A., Srivastava, N.: Twice-ramanujan sparsifiers. In: Pro-
ceedings of the Symposium on Theory of Computing (STOC), pp. 255–262 (2009)

9. Benczúr, A.A., Karger, D.R.: Approximating s-t Minimum Cuts in Õ(n2) Time.
In: Proceedings of the Symposium on Theory of Computing (STOC) (1996)

10. Bhatia, R.: Matrix Analysis, 1st edn. Graduate Texts in Mathematics, vol. 169.
Springer, Heidelberg (1996)

11. Boman, E.G., Hendrickson, B., Vavasis, S.: Solving Elliptic Finite Element Sys-
tems in Near-Linear Time with Support Preconditioners. SIAM J. on Numerical
Analysis 46(6), 3264–3284 (2008)

12. Carrier, J., Greengard, L., Rokhlin, V.: A Fast Adaptive Multipole Algorithm for
Particle Simulations. SIAM J. on Scientific and Statistical Computing 9(4), 669–
686 (1988)

A Matrix Hyperbolic Cosine Algorithm and Applications 857

13. Drineas, P., Zouzias, A.: A note on Element-wise Matrix Sparsification via a
Matrix-valued Bernstein Inequality. Information Processing Letters 111(8), 385–
389 (2011)

14. Estrada, E., Rodŕıguez-Velázquez, J.A.: Subgraph Centrality in Complex Net-
works. Phys. Rev. E 71 (May 2005)

15. Golden, S.: Lower Bounds for the Helmholtz Function. Phys. Rev. 137(4B), B1127–
B1128 (1965)

16. Gu, M., Eisenstat, S.C.: A Stable and Efficient Algorithm for the Rank-One Mod-
ification of the Symmetric Eigenproblem. SIAM J. Matrix Anal. Appl. 15 (1994)

17. Higham, N.J.: Functions of Matrices: Theory and Computation. Society for Indus-
trial and Applied Mathematics (SIAM) (2008)

18. Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic Coordinates
for Character Articulation. ACM Trans. Graph. 26 (2007)

19. Kale, S.: Efficient Algorithms Using the Multiplicative Weights Update Method.
PhD in Computer Science, Princeton University (2007)

20. Koutis, I., Miller, G.L., Tolliver, D.: Combinatorial Preconditioners and Multilevel
Solvers for Problems in Computer Vision and Image Processing. In: Bebis, G.,
Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Wang, J.-X., Wang, J., Pa-
jarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming,
D. (eds.) ISVC 2009. LNCS, vol. 5875, pp. 1067–1078. Springer, Heidelberg (2009)

21. Landau, Z., Russell, A.: Random Cayley Graphs are Expanders: a simplified proof
of the Alon-Roichman theorem. The Electronic J. of Combinatorics 11(1) (2004)

22. Magen, A., Zouzias, A.: Low Rank Matrix-Valued Chernoff Bounds and Approx-
imate Matrix Multiplication. In: Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 1422–1436 (2011)

23. Naor, A.: On the Banach Space Valued Azuma Inequality and Small set Isoperime-
try of Alon-Roichman Graphs. To Appear in Combinatorics, Probability and Com-
puting (September 2010), arxiv:1009.5695

24. Naor, A.: Sparse Quadratic Forms and their Geometric Applications (after Batson,
Spielman and Srivastava) (January 2011), arxiv:1101.4324

25. Peleg, D., Schäffer, A.A.: Graph Spanners. J. of Graph Theory 13(1), 99–116 (1989)
26. Recht, B.: A Simpler Approach to Matrix Completion. J. of Machine Learning

Research, 3413–3430 (December 2011)
27. Rudelson, M.: Random Vectors in the Isotropic Position. J. Funct. Anal. 164(1),

60–72 (1999)
28. Rudelson, M., Vershynin, R.: Sampling from Large Matrices: An Approach through

Geometric Functional Analysis. J. ACM 54(4), 21 (2007)
29. So, A.M.C.: Moment Inequalities for sums of Random Matrices and their Applica-

tions in Optimization. Mathematical Programming, pp. 1–27 (2009)
30. Spencer, J.: Balancing Games. J. Comb. Theory, Ser. B 23(1), 68–74 (1977)
31. Spencer, J.: Six Standard Deviations Suffice. Transactions of The American Math-

ematical Society 289, 679–679 (1985)
32. Spencer, J.: Balancing Vectors in the max Norm. Combinatorica 6, 55–65 (1986)
33. Spencer, J.: Ten Lectures on the Probabilistic Method, 2nd edn. Society for Indus-

trial and Applied Mathematics, SIAM (1994)
34. Spielman, D.A.: Algorithms, Graph Theory, and Linear Equations in Laplacian

Matrices. In: Proceedings of the International Congress of Mathematicians, vol. IV,
pp. 2698–2722 (2010)

35. Spielman, D.A., Srivastava, N.: Graph Sparsification by Effective Resistances. In:
Proceedings of the Symposium on Theory of Computing, STOC (2008)

858 A. Zouzias

36. Srivastava, N.: Spectral Sparsification and Restricted Invertibility. PhD in Com-
puter Science, Yale University (2010)

37. Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory (Computer Science and
Scientific Computing). Academic Press, London (1990)

38. Thompson, C.J.: Inequality with Applications in Statistical Mechanics. J. of Math-
ematical Physics 6(11), 1812–1813 (1965)

39. Tropp, J.A.: User-Friendly Tail Bounds for Sums of RandomMatrices. Foundations
of Computational Mathematics, pp. 1–46 (2011)

40. Tsuda, K., Rätsch, G., Warmuth, M.K.: Matrix Exponentiated Gradient Updates
for on-line Learning and Bregman Projections. JMLR 6, 995–1018 (2005)

41. Wigderson, A., Xiao, D.: Derandomizing the Ahlswede-Winter Matrix-valued Cher-
noff Bound using Pessimistic Estimators, and Applications. Theory of Comput-
ing 4(1), 53–76 (2008)

42. Zouzias, A.: A Matrix Hyperbolic Cosine Algorithm and Applications. Ver. 1.
(March 2011), arxiv:1103.2793

Author Index

Aceto, Luca II-30
Achlioptas, Dimitris I-1
Ada, Anil I-13
Alur, Rajeev II-42
Ambainis, Andris I-25
Arrighi, Pablo II-54
Atserias, Albert II-67
Azar, Yossi I-38

Babai, László I-51
Bačkurs, Artūrs I-25
Balcan, Maria Florina I-63
Balodis, Kaspars I-25
Barenboim, Leonid II-403
Barendregt, Henk II-364
Barman, Siddharth I-75
Baron, Joshua I-88
Bar-Yehuda, Reuven II-416
Bauwens, Bruno I-100
Benedikt, Michael II-79
Berns, Andrew II-428
Bhaskara, Aditya I-109
Bhawalkar, Kshipra II-440
Bojańczyk, Miko�laj II-92, II-104, II-116
Bose, Prosenjit I-121
Bourhis, Pierre II-79
Bouyer, Patricia II-128
Brázdil, Tomáš II-141
Bringmann, Karl I-133
Broadbent, Chris II-165
Broadbent, Christopher II-153
Buchbinder, Niv I-145
Byrka, Jaroslaw I-157

Carayol, Arnaud II-30, II-165
Chakrabarty, Deeparnab I-170
Chan, T.-H. Hubert I-182
Chandran, Nishanth II-452
Charikar, Moses I-109, I-194
Chattopadhyay, Arkadev I-13
Chawla, Shuchi I-75
Chekuri, Chandra I-206
Chen, Danny Z. I-218
Chen, Ning II-464

Chen, Yijia I-641
Chiesa, Marco II-476
Chitnis, Rajesh I-230
Codenotti, Paolo I-51
Colini-Baldeschi, Riccardo II-1
Collette, Sébastien I-121
Costello, Kevin P. I-822
Crowston, Robert I-242
Cygan, Marek I-230, I-254

D’Antoni, Loris II-42
Dawar, Anuj II-67, II-251
De, Anindya I-266
Deng, Xiaotie II-464
Deshpande, Amit I-278
Diakonikolas, Ilias I-266, II-488
Di Battista, Giuseppe II-476
Diekert, Volker II-177
Dieudonné, Yoann II-500
Dinitz, Michael I-290
Dowek, Gilles II-13, II-54
Dunphy, Brian P. II-337

Elbassioni, Khaled II-513
Emek, Yuval I-302
Ene, Alina I-206
Erlebach, Thomas II-476
Ésik, Zoltán II-30
Etessami, Kousha I-314

Fagerberg, Rolf I-121
Farzan, Arash I-327
Fawzi, Omar I-13
Fearnley, John II-189
Feige, Uriel I-339
Fellows, Michael R. I-351
Fernández, Maribel II-201
Fiore, Marcelo II-214
Fomin, Fedor V. II-525
Fu, Bin I-714
Fu, Hongfei II-227

Gamzu, Iftah I-38
Garay, Juan II-452
Gaspers, Serge I-363

860 Author Index

Gavenčiak, Tomáš II-239
Gehrke, Mai II-364
Gelles, Ran II-537
Georgiadis, Loukas I-375
Gharibian, Sevag I-387
Gørtz, Inge Li I-411
Goldberg, Leslie Ann I-399
Golovach, Petr II-525
Goodrich, Michael T. II-549
Groce, Adam II-561
Gugelmann, Luca II-573
Gupta, Anupam I-424, I-436

Hague, Matthew II-165
Hajiaghayi, Mohammadtaghi I-230
Halldórsson, Magnús M. I-302, I-449
Harel, David II-16
Hegeman, James II-428
Henzinger, Monika II-1
Holm, Bjarki II-251
Honda, Kohei II-23
Hsu, Justin I-461
Huang, Zhiyi I-170
Hughes, Andrew I-473

Im, Sungjin I-485
Ingólfsdóttir, Anna II-30
Ito, Hiro I-498

Jain, Navendu II-586
Jansson, Jesper I-510
Jeffery, Stacey I-522
Jerrum, Mark I-399
Jeż, Artur I-533
Jones, Mark I-242
Jozeph, Shlomo I-339

Kane, Daniel M. II-598
Kannan, Ravindran I-278
Kantor, Erez II-416
Kapralov, Michael I-545
Katz, Jonathan II-561
Kempe, Julia I-387
Khanna, Sanjeev I-461
Khuller, Samir I-762
Kikot, Stanislav II-263
Kimmel, Shelby I-557
Klein, Philip N. I-569
Kleinberg, Jon II-440
Kontchakov, Roman II-263

Kortsarz, Guy I-290
Kosowski, Adrian II-610
Kothari, Robin I-522
Koutsoupias, Elias II-623
Král, Daniel II-239
Kratsch, Stefan I-254, I-581
Krauthgamer, Robert I-594
Kravčenko, Dmitrijs I-25
Krysta, Piotr II-636
Kučera, Antońın II-141
Kufleitner, Manfred II-177, II-275
Kulik, Ariel I-351
Kuperberg, Denis II-287
Kutten, Shay II-416

Laekhanukit, Bundit I-606
Langerman, Stefan I-121
Laplante, Sophie I-617
Lasota, S�lawomir II-92
Lauser, Alexander II-275
Leonardi, Stefano II-1
Lerays, Virginie I-617
Levi, Reut I-629
Lewi, Kevin I-424, II-440
Li, Bi II-610
Li, Mingfei I-182
Li, Shi I-194
Liang, Yingyu I-63
Lin, Bingkai I-641
Litak, Tadeusz II-299
Lokshtanov, Daniel I-750

Magniez, Frédéric I-522
Malec, David I-75
Manokaran, Rajsekar I-109
Mansour, Yishay I-653, I-738
Manzonetto, Giulio II-364
Marchetti-Spaccamela, Alberto I-665
Markey, Nicolas II-128
Marx, Dániel I-230, I-569, I-677
Megow, Nicole I-689
Mehlhorn, Kurt II-598
Menache, Ishai II-586
Menchaca-Mendez, Ricardo I-1
Mitzenmacher, Michael II-549
Mnich, Matthias I-242
Molinaro, Marco I-701
Munro, J. Ian I-327
Murawski, Andrzej II-312
Muthukrishnan, S. I-738

Author Index 861

Nagarajan, Viswanath I-411, I-436,
I-485

Naor, Joseph (Seffi) I-145, II-586
Nederlof, Jesper II-525
Nguyen, Phuong I-13
Ning, Li I-182
Nisse, Nicolas II-610
Novotný, Petr II-141

Ochel, Marcel II-648
Ong, C.-H. Luke II-325
Ostrovsky, Rafail I-88, II-452, II-537
Oum, Sang-il II-239
Oveis Gharan, Shayan I-606
Ozols, Raitis I-25

Panagiotou, Konstantinos I-133, II-573
Panigrahy, Rina I-545
Papadimitriou, Christos II-488
Papakonstantinopoulou, Katia II-623
Patitz, Matthew J. I-714
Patrignani, Maurizio II-476
Pattinson, Dirk II-299
Pavan, A. I-473
Pelc, Andrzej II-500
Peleg, David II-660
Pemmaraju, Sriram V. II-428
Peter, Ueli II-573
Pierrakos, George II-488
Pilipczuk, Marcin I-254, I-581
Pilipczuk, Micha�l I-254, I-581, II-525
Place, Thomas II-104, II-116
Podolskii, Vladimir II-263
Polacek, Lukas I-726

Qiao, Youming I-51

Rabin, Michael O. I-738
Radke, Klaus II-648
Raman, Rajeev I-327
Ramanujan, M.S. I-750
Ravi, R. I-145, I-701
Rawitz, Dror II-416
Raz, Ran I-290
Reddy, Uday S. II-337
Reinhardt, Klaus II-177
Roditty, Liam II-660
Roland, Jérémie I-617
Ron, Dana I-629
Rosamond, Frances I-351

Rosén, Adi I-302
Roşu, Grigore II-351
Roth, Aaron I-461
Roughgarden, Tim II-440
Rubinfeld, Ronitt I-629
Rubinstein, Aviad I-653
Rubio, Albert II-201
Russell, Nathan I-473
Rutten, Cyriel I-665
Rybicki, Bartosz I-157

Sadakane, Kunihiko I-510
Saha, Barna I-762
Saket, Rishi I-411
Salvati, Sylvain II-364
Sankur, Ocan II-128
Sano, Katsuhiko II-299
Santhanam, Rahul I-774
Sauerwald, Thomas II-598
Schewe, Sven II-189
Schmidt, Jens M. I-786
Schröder, Lutz II-299
Schweller, Robert T. I-714
Selman, Alan I-473
Senellart, Pierre II-79
Serre, Olivier II-165
Servedio, Rocco I-266
Shachnai, Hadas I-351
Sharma, Aneesh II-440
Sheline, Robert I-714
Shepherd, F. Bruce II-586
Shi, Yaoyun I-798
Singer, Yaron II-488
Singh, Mohit I-145, I-606
Skutella, Martin I-689
Smotrovs, Juris I-25
Spielman, Daniel A. II-24
Srinivasan, Srikanth I-774
Srivastava, Nikhil I-278
Starnberger, Martin II-1
Ştefănescu, Andrei II-351
Stewart, Alistair I-314
Suchan, Karol II-610
Sun, He II-598
Sun, Xiaoming I-449
Sung, Wing-Kin I-510
Svensson, Ola I-726
Szegedy, Mario I-449
Szeider, Stefan I-363

862 Author Index

Tal, Elad II-660
Tanigawa, Shin-Ichi I-498
Tarjan, Robert E. I-375
Tetali, Prasad I-822
Thaler, Justin I-810
Thiruvengadam, Aishwarya II-561
Toruńczyk, Szymon II-377
Tripathi, Pushkar I-822
Tsukada, Takeshi II-325
Tzevelekos, Nikos II-312

Ullman, Jonathan I-810
Umboh, Seeun I-75

Vadhan, Salil I-810
Vakilian, Ali I-206
Vanden Boom, Michael II-287
van der Ster, Suzanne I-665
van der Zwaan, Ruben I-485
Vardi, Shai I-653
Velner, Yaron II-390
Verbin, Elad I-834
Verschae, José I-689
Vijayaraghavan, Aravindan I-109
Virza, Madars I-25

Visconti, Ivan I-88
Vöcking, Berthold II-27, II-636, II-648

Wahlström, Magnus I-254, I-581
Walter, Tobias II-177
Wang, Chengu I-449
Wang, Haitao I-218
Wiese, Andreas I-665, I-689
Winoto, Kina II-537
Wojtczak, Dominik II-141
Wu, Xiaodi I-798

Xie, Ning I-653

Yannakakis, Mihalis I-314
Yoshida, Yuichi I-498
Yung, Moti I-738

Zakharyaschev, Michael II-263
Zhang, Hongyang II-464
Zhang, Jie II-464
Zhang, Qin I-834
Zikas, Vassilis II-561
Zondiner, Tamar I-594
Zouzias, Anastasios I-846

	Title

	Preface
	Organization
	Table of Contents
	Track A – Algorithms, Complexity and Games
	Unsatisfiability Bounds for Random CSPs
from an Energetic Interpolation Method
	Introduction
	Motivation and Past Work
	Past Work on the Interpolation Method for Random CSPs

	Highlights of the Interpolation Method on RCSPs
	Why an Energetic Interpolation Method

	Energetic Interpolation for General CSPs
	The Interpolation Method on Sparse Degree Sequences
	Applying Energetic Interpolation to Random CSPs
	Random k-SAT
	Random Max-k-Lin-2

	Computing Explicit Energetic Interpolation Bounds for k-SAT
	References

	The NOF Multiparty Communication Complexity
of Composed Functions
	Introduction
	Preliminaries
	Communication Complexity of Composed Functions
	sym g
	modm g
	maj g
	nor g

	Conclusion
	References

	Quantum Strategies Are Better Than Classical
in Almost Any XOR Game
	Introduction
	Technical Preliminaries
	Quantum Upper and Lower Bound
	Classical Upper and Lower Bound
	Conclusion
	References

	Efficient Submodular Function Maximization
under Linear Packing Constraints
	Introduction
	Submodular Maximization with Linear Packing Constraints
	The Algorithm
	Analysis

	Submodular Maximization with Binary Packing Constraints
	The Algorithm
	Analysis

	References

	Polynomial-Time Isomorphism Test for Groups
with No Abelian Normal Subgroups
	Introduction, Main Results
	Technical Ingredients
	Strategy for the Main Result
	Organization of the Paper

	Group-Theoretic Preliminaries
	Twisted Code Equivalence
	Permutational Isomorphism for Transitive Groups
	Further Group-Theoretic Preliminaries
	Transitive Groups: Outline of the Proof of Theorem 3

	Semisimple Group Isomorphism: The Proof of Theorem 1
	The Framework
	Semisimple Groups with a Unique Minimal Normal Subgroup
	All Semisimple Groups

	Comparison with Prior Work
	References

	Clustering under Perturbation Resilience
	Introduction
	Notation and Preliminaries
	-Perturbation Resilience for Center-Based Objectives
	(,)-Perturbation Resilience for the k-Median Objective
	Structure of (,)-Perturbation Resilience
	Approximating the Optimal Clustering

	-Perturbation Resilience for the Min-Sum Objective
	Discussion and Open Questions
	References

	Secretary Problems with Convex Costs
	Introduction
	Notation and Preliminaries
	Unconstrained Profit Maximization
	Matroid-Constrained Profit Maximization
	Multi-dimensional Profit Maximization
	References

	Nearly Simultaneously Resettable Black-Box
Zero Knowledge
	Introduction
	Overview of Our Contribution
	Other Related Work

	Preliminaries, Definitions and Tools
	Black-Box rZK with t-Resettable Soundness
	From a rZK Proof System to a New rZK Proof System

	 An Admissible, Near-Compatible rZK Proof System
	High-Level Simulator Strategy in the Proof of Theorem 6

	References

	Complexity of Complexity and Maximal Plain versus
Prefix-Free Kolmogorov Complexity
	Complexity of Complexity Can Be High
	The Game
	How White Can Win
	Proof of Gacs' Theorem
	Modified Game and the Proof of Theorem 1
	Version for Prefix Complexity

	Strings with Maximal Plain and Non-maximal Prefix-Free Complexity
	References

	On Quadratic Programming with a Ratio
Objective
	Introduction
	Our Results

	Algorithms for QP-Ratio
	An (n1/3) Rounding Algorithm
	Integrality Gap Instance
	The Bipartite Case
	Algorithms for Special Cases

	Hardness of Approximating QP-Ratio
	Candidate Hard Instances
	Reduction from Random k-AND
	Reductions from Ratio versions of CSPs

	Normalized QP-Ratio
	References

	De-amortizing Binary Search Trees
	Introduction
	Pop-Tarts
	Simulation
	De-amortization
	References

	Efficient Sampling Methods for Discrete Distributions
	Introduction
	Subset Sampling
	Proportional Sampling

	Proportional Sampling on Unsorted Probabilities
	Subset Sampling
	Proportional Sampling on Sorted Probabilities
	Special Case 1/2 1
	General Case

	Relaxations
	References

	Approximation Algorithms for Online Weighted Rank Function Maximization under Matroid Constraints
	Introduction
	Problem Setting, Main Result and Techniques
	Related Results

	Preliminaries
	Linear Program and the Fractional Algorithm
	Online Algorithm for a Fractional LP Solution

	Randomized Rounding Algorithm
	References

	Improved LP-Rounding Approximation Algorithm for k-level Uncapacitated Facility Location
	Introduction
	Related Work and Our Results
	The Main Idea behind Our Algorithm

	Extended LP Formulation
	The LP

	Algorithm
	Clustering
	Randomized Facility Opening

	Analysis
	How to Apply Scaling
	References

	Testing Coverage Functions
	Introduction
	The W-Transform: Characterizing Coverage Functions

	Reconstructing Succinct Coverage Functions
	Testing Coverage Functions Is Hard?
	Consistent Coverage Functions and Farkas Lemma
	Nullity of Farkas Certificate

	W-Distance and Usual Distance
	References

	Sparse Fault-Tolerant Spanners for Doubling Metrics with Bounded Hop-Diameter or Degree
	Introduction
	Our Results and Techniques
	Preliminaries

	Basic Construction of Sparse Fault-Tolerant Spanners
	Achieving Small Hop-Diameter
	Achieving Bounded Degree
	Fault-Tolerant Single-Sink Spanners
	(k, 1 +)-VFTS with Bounded Degree

	References

	A Dependent LP-Rounding Approach
for the k-Median Problem
	Introduction
	Our Results

	The Approximation Algorithm for the k-Median Problem
	Filtering Phase
	Bundling Phase
	Matching Phase
	Sampling Phase

	Outline of the Proof of the 3.25-Approximation Ratio
	Running Time of the Algorithm
	Generalization of the Algorithm to Variants of k-Median

	Approximation Algorithms for Knapsack-Median and Matroid-Median
	References

	Node-Weighted Network Design in Planar and Minor-Closed Families of Graphs
	Introduction
	Algorithm for Node-Weighted EC-SNDP and Proper Functions
	A Primal-Dual Algorithm for the Augmentation Problem

	Proof of Theorem 3
	References

	Computing the Visibility Polygon of an Island in a Polygonal Domain
	Introduction
	Preliminaries
	Our Algorithm
	Observations
	Computing Vis(P*)

	The Convex Version
	References

	Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable
	Introduction
	Preliminaries
	Iterative Compression

	Covering the Shadow of a Solution
	Reducing the Instance by Torso
	Finding a Shadowless Solution
	FPT Algorithm for Disjoint Subset-DFVS Reduction
	Conclusion and Open Problems
	References

	Max-Cut Parameterized above the Edwards-Erd˝os Bound
	Introduction
	Preliminaries
	Fixed-Parameter Algorithm for Max-Cut above the Edwards-Erdős Bound
	Polynomial Kernel for Max-Cut above Edwards-Erdős
	Discussion and Open Problems
	References

	Clique Cover and Graph Separation: New Incompressibility Results
	Introduction
	Preliminaries
	Clique Cover
	AND-Cross-Composition
	Cross-Composition

	Directed Multiway Cut
	Multicut
	bold0mu mumu kkkkkk-Way Cut
	Conclusion and Open Problems
	References

	The Inverse Shapley Value Problem
	Introduction
	Reformulation of Shapley-Shubik Indices
	A Useful Anti-concentration Result
	A Useful Algorithmic Tool
	Our Main Results
	References

	Zero-One Rounding of Singular Vectors
	Introduction
	Our Results
	Related Work
	Preliminaries and Notation
	Dyadic Rounding of Vectors
	Rounding Singular Vectors

	Rounding Multiple Singular Vectors Simultaneously
	Rounding SVD to Cut Decompositio
	Open Problems
	References

	Label Cover Instances with Large Girth and the
Hardness of Approximating Basic k-Spanner
	Introduction
	Label Cover and Probabilistically Checkable Proofs
	The Basic k-Spanner Problem and Previous Work
	Our Results
	The Error in ELD and Our Techniques

	Sampling Lemma for 2-Query PCPs
	Label Cover and Min-Rep with Large (Super)Girth
	References

	Space-Constrained Interval Selection
	Introduction
	Preliminaries
	The Main Algorithm
	Lower Bound(s)
	References

	Polynomial Time Algorithms for Branching Markov Decision Processes and Probabilistic Min(Max) Polynomial
Bellman Equations
	*-0.1in Introduction
	Definitions and Background
	Generalizing Newton's Method Using Linear Programming
	References

	Succinct Indices for Range Queries
with Applications to Orthogonal Range Maxima
	Introduction
	Preliminaries
	The Data Structure
	A Recursive Formulation and Its Space Usage
	The Slab-Rank and Slab-Select Problems
	Encoding 2-Sided Queries
	Data Structures for 2-Sided Queries
	Putting Things Together

	Succinct Indices for 2-Sided Queries
	Conclusions
	References

	Universal Factor Graphs
	Introduction
	Preprocessing
	Universal Factor Graphs
	Some Research Goals
	Related Work
	Our Results

	Overview of Proofs
	Subexp-Universal Families
	Threshold-Universal Families
	Threshold-Universal Families with Nearly Tight Bounds

	References

	Parameterized Approximation via Fidelity Preserving Transformations
	Introduction
	Our Results
	Related Work

	 Main Technique: Fidelity Preserving Transformations
	Approximation via Shrinking
	-Fidelity Kernels

	Parametrization by Problem Objective
	Obtaining -Shrinking by Simple Reduction Steps
	Applications of the Technique

	The Parametrized Steiner Tree Problem
	The Shrinking Technique for Parameterized Steiner Tree
	Applicability

	Discussion
	References

	Backdoors to Acyclic SAT
	Introduction
	Weak Backdoor Sets
	Strong Backdoor Sets
	#SAT and Implied Cycle Cutsets

	Preliminaries
	Background and Methods
	Weak Forest-BDSs
	Strong Forest-BDSs
	Conclusion
	References

	Dominators, Directed Bipolar Orders, and Independent Spanning Trees
	Introduction
	Terminology and Related Work
	Linear-Time Verification and Construction Algorithms
	Alternative Verification Algorithms
	Using Headers
	Using Semidominators

	References

	Hardness of Approximation for Quantum Problems
	Introduction and Results
	Definitions
	Hardness of Approximation
	A Canonical cq2-Complete Problem
	References

	The Complexity of Computing the Sign
of the Tutte Polynomial (and Consequent #P-hardness of Approximation)
	Introduction
	Preliminaries
	The Tutte Polynomial
	Implementing New Edge Weights, Series Compositions and Parallel Compositions
	Computational Problems

	A Glimpse at the Hardness Result
	A Very Brief Glimpse at the Tractability Results
	Putting Things Together for Points with |y|<1
	References

	Stochastic Vehicle Routing with Recourse
	Introduction
	Algorithm for Polynomial Scenarios
	Algorithm for General Distributions
	UGC Hardness of Approximation
	References

	The Online Metric Matching Problem
for Doubling Metrics
	Introduction
	Notation and Preliminaries
	The Harmonic Algorithm for the Line
	Proof of the Hybrid Lemma: A Coupling Argument

	The Random-Subtree Algorithm
	References

	Approximating Sparse Covering Integer
Programs Online
	Introduction
	An Algorithm for a Special Class for Covering LPs
	The Online Algorithm for CIPs
	Fractional Solution with Upper Bounds and KC-inequalities
	Online Rounding

	References

	Streaming and Communication Complexity
of Clique Approximation
	Introduction
	Problem Definitions
	Our Methodology
	Lower Bounds
	r vs. logn
	R(s)-1 vs. s-1
	r2 vs. 2r-1

	Upper Bounds
	References

	Distributed Private Heavy Hitters
	Introduction
	Our Results
	Our Techniques
	Related Work

	Preliminaries
	Differential Privacy
	Probabilistic Tools

	Information Theoretic Upper and Lower Bounds.
	An Upper Bound via Johnson-Lindenstrauss Projections
	A Lower Bound via Anti-concentration

	Efficient Algorithms
	GLPS Sparse Recovery
	The Bucket Mechanism

	Discussion and Open Questions
	References

	A Thirty Year Old Conjecture
about Promise Problems
	Introduction
	Preliminaries
	ESY Conjecture
	Unpredictability

	ESY Conjecture for Bounded Truth-Table Reductions
	Length-Increasing Reductions
	General Reductions

	Application to Probabilistic Encryption
	Discussion
	References

	Minimum Latency Submodular Cover
	Introduction
	Algorithm for Minimum Latency Submodular Cover
	Stochastic Submodular Ranking
	References

	Constant-Time Algorithms for Sparsity Matroids
	Introduction
	Preliminaries
	Testing (k,)-Fullness
	Approximating the Rank of Mk,0(G)
	Approximating the Rank of Mk,(G)

	Testing (k,)-Edge-Connected-Orientability
	References

	CRAM: Compressed Random Access Memory
	Introduction
	Our Contributions
	Organization of the Paper

	Preliminaries
	Empirical Entropy
	Review of Ferragina and Venturini's Data Structure

	Entropies of Similar Strings
	Memory Management
	A Data Structure for Maintaining the CRAM
	Phase 0: Preprocessing
	Algorithm for Access
	Algorithm for Replace
	Space Analysis

	Concluding Remarks
	References

	Improving Quantum Query Complexity of Boolean Matrix Multiplication
Using Graph Collision
	Introduction
	Preliminaries
	Quantum Query Framework
	Quantum Search Algorithms

	Graph Collision
	Problem Description
	Relation to Boolean Matrix Multiplication
	Algorithm for Graph Collision

	Boolean Matrix Multiplication
	Algorithm
	Lower Bound

	References

	Faster Fully Compressed Pattern Matching
by Recompression
	Introduction
	Basic Notions, Outline of the Algorithm
	Details
	References

	NNS Lower Bounds via Metric Expansion
for l∞ and EMD
	Introduction
	Expansion and Its Relation to Complexity of NNS

	Robust Expansion of l
	Earth Mover Distance
	References

	Quantum Adversary (Upper) Bound
	Introduction
	A Nonconstructive Upper Bound on Query Complexity
	Example Where the General Adversary Upper Bound Is Useful
	Quantum Algorithms for Constant-Fault Direct Trees
	Span Program Algorithm
	Quantum Haar Transform Algorithm
	Extensions and Related Problems

	Conclusions and Future Work
	References

	Solving PLANAR k-TERMINAL CUT in O(nc√k) Time
	Introduction
	Preliminaries
	Reducing the Problem to the Biconnected Case
	Algorithm for Problem B
	Proof of Theorem 4.7
	Realization
	References

	Fixed-Parameter Tractability of Multicut
in Directed Acyclic Graphs
	Introduction
	Preliminaries
	Important Separators and Shadows

	The Algorithm
	Potential Function and Simple Operations
	Degree Reduction
	Overview on the Branching Step
	Branchings and Reductions

	Conclusions
	References

	Preserving Terminal Distances Using Minors
	Introduction
	Our Results
	Related Work

	A Lower Bound of (k2)
	(k) Bounds for Constant Treewidth Graphs
	An Upper Bound of O(p3k)
	A Lower Bound of (pk)

	Concluding Remarks
	References

	A Rounding by Sampling Approach to the Minimum Size k-Arc Connected
Subgraph Problem
	Introduction
	Our Results
	Notations

	An Approximation Algorithm for Min-Size k-ACSS
	A Lower Bound on the Integrality Gap
	Construction
	Lower Bounding the Integrality Gap

	Conclusion
	References

	Classical and Quantum Partition Bound
and Detector Inefficiency
	Introduction
	Communication Complexity and the Partition Bound
	Bell Experiments
	Summary of Results
	Related Work

	Preliminaries
	Classical Partition Bound
	Local and Quantum Distributions
	Communication Complexity Measures

	Partition Bound and Detector Inefficiency
	The Partition Bound for Distributions
	The Efficiency Bound
	Lower Bound for Quantum Communication Complexity
	Proving Concrete Lower Bounds Using the Dual

	Upper Bounds for One- and Two-Way Communication
	Conclusion and Open Problems
	References

	Testing Similar Means
	Introduction
	Our Contributions
	Related Work

	Results for the Query Model
	Results for the Sampling Model
	A Lower Bound
	Upper Bounds

	References

	The Parameterized Complexity of k-Edge Induced Subgraphs
	Introduction
	Our Approach
	Counting k-Edge Induced Subgraphs
	Organization of Our Paper

	Preliminaries
	Parameterized Complexity
	Graphs
	Relational Structures and First-Order Logic
	Tree-Width and Local Tree-Width

	Some Easy Positive Instances
	A Further Combinatorial Lemma

	Easy Instances by Model-Checking
	The Algorithm
	Counting k-Edge Induced Subgraphs
	References

	Converting Online Algorithms to Local Computation Algorithms
	Introduction
	Background
	Our Results
	Related Work

	Preliminaries
	Bounding the Size of a Random Query Tree
	The Problem and Our Main Results
	Overview of the Proof
	Bounding the Increase in Subtree Size as We Go Up Levels

	Hypergraph 2-Coloring and k-CNF
	Maximal Matching
	The Bipartite Case and Local Load Balancing
	The Bipartite Case
	Local Load Balancing
	Random Ordering

	References

	Assigning Sporadic Tasks to Unrelated Parallel
Machines
	Introduction
	Preliminaries
	Arbitrary Number of Machines
	Constant Number of Machines
	References

	A Tight Lower Bound for Planar Multiway Cut with Fixed Number of Terminals
	Introduction
	The Reduction
	Gadget Construction
	Construction
	Pair (x,y) Multiway Cut
	Multiway Cut pair (x,y)

	References

	The Power of Recourse for Online MST and TSP
	Introduction
	Problem Definitions
	An Online PTAS with Amortized Constant Budget
	The Non-amortized Scenario
	A Greedy Algorithm with Budget 2
	The Full Information Scenario

	Applications to TSP
	References

	Geometry of Online Packing Linear Programs
	Introduction
	OTP for Almost 1-dim Columns
	Connection to PAC Learning
	Similarity via Witnesses
	Small Witness Sets for Almost 1-dim Columns

	Robust OTP
	Robust DPA
	Open Problems
	References

	Self-assembly with Geometric Tiles
	Introduction
	Overview
	Results

	Model
	Basics
	Geometric Tiles and the Basic (GTAM)
	Two-Handed Geometric Tile Assembly Model

	GTAM Complexities: Squares and =1 Assembly
	n n 2GAM Squares with O(loglogn) Tile Types
	References

	Quasi-polynomial Local Search for Restricted Max-Min Fair Allocation
	Introduction
	The Configuration LP
	Local Search with Better Run-Time Analysis
	Description of Algorithm
	Example of Algorithm Execution
	Analysis of Algorithm

	Conclusions
	References

	Strictly-Black-Box Zero-Knowledge and Efficient Validation of Financial Transactions
	Introduction
	Representation, Commitment, and Translation
	Validation Domain: The Financial Application Domain Settings
	Inputs and Straight Line Computations
	Generic Commitment Schemes
	The Main Theorem: SBB ZK Arguments for SLC

	Proving Correctness of Additions and Equalities
	 Proving Correctness of Multiplications
	Proving Inequalities x y, When x,y < p/32
	Exponential Reduction of Probability of Cheating and Multiple Proofs of Correctness
	 Putting It All Together

	References

	Parameterized Tractability of Multiway Cut with Parity Constraints
	Introduction
	Preliminaries
	PMWC Parameterized by the Solution Size
	Bounding the Number of Even Terminals
	Removing Even Terminals
	Important Separators
	Important Separator Sequences and a Generalization of Important Separators

	Conclusion
	References

	Set Cover Revisited: Hypergraph Cover with Hard Capacities
	Introduction
	Our Approach and Contributions

	Vertex Cover on Multigraphs with Hard Capacities
	Rounding Algorithm
	Proof of Theorem 3
	Rounding Algorithm for MM

	References

	On the Limits of Sparsification
	Introduction
	Preliminaries
	Basic Complexity Notions
	Sparsification and Simplification

	The Limits of Sparsification
	Non-sparsifiability of CNFs
	A Hierarchy Theorem for Non-Sparsifiability

	Simplifying AC0 to CNFs
	Circuit Lower Bounds for Depth-3 Circuits
	References

	Certifying 3-Connectivity in Linear Time
	Introduction
	BG-Paths
	Chain Decompositions and Certificates
	A Certifying Algorithm for 3-Connectivity in Linear Time
	Reduction to Overlapping Intervals

	References

	Epsilon-Net Method for Optimizations over Separable States
	Introduction
	Epsilon Net
	The Main Algorithm
	Simulation of Several Variants of QMA(2)
	Exponential Running Time Algorithm in 69645069 1muQ1mu86422285 F
	References

	Faster Algorithms for Privately Releasing Marginals
	Introduction
	Our Results and Techniques

	Preliminaries
	Differentially Private Sanitizers
	Query Function Families
	Polynomial Approximations

	From Polynomial Approximations to Data Release Algorithms
	Applications
	Releasing Monotone Disjunctions
	Releasing Monotone r-of-k Queries
	Releasing Decision Lists

	References

	Stochastic Matching with Commitment
	Introduction
	Our Results
	Previous Work
	Informal Description of the Proof Technique

	Preliminaries
	The Model
	Definitions
	Sampling Technique

	Matching Algorithm on Unweighted Erdős-Rényi graphs
	Analysis
	References

	Rademacher-Sketch: A Dimensionality-Reducing Embedding for Sum-Product Norms, with an Application to Earth-Mover Distance
	Introduction
	Our Results

	Earth-Mover Distance
	Introduction to Earth-Mover Distance
	Applying our Results to Earth-Mover Distance

	The Embedding
	Analysis
	No Underestimation
	No Overestimation
	Proof for Theorem 2

	References

	A Matrix Hyperbolic Cosine Algorithm and Applications
	Introduction
	Balancing Matrices: A Matrix Hyperbolic Cosine Algorithm
	Alon-Roichman Expanding Cayley Graphs
	Fast Isotropic Sparsification and Spectral Sparsification
	References

	Author Index

