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Preface

This volume contains the papers presented at the 39th International Colloquium
on Automata, Languages and Programming (ICALP 2012), held during July
9-13, 2012 at the University of Warwick, UK. ICALP is the main conference and
annual meeting of the European Association for Theoretical Computer Science
(EATCS) and first took place in 1972. This year the ICALP program consisted
of three tracks:

— Track A: Algorithms, Complexity and Games
— Track B: Logic, Semantics, Automata and Theory of Programming
— Track C: Foundations of Networked Computation

In response to the call for papers, the three Program Committees received a total
of 432 submissions: 248 for Track A, 105 for Track B, and 79 for Track C. Each
submission was reviewed by three or more Program Committee members, aided
by sub-reviewers. The committees decided to accept 123 papers for inclusion in
the scientific program: 71 papers for Track A, 30 for Track B, and 22 for Track C.
The selection was made by the Program Committees based on originality, quality,
and relevance to theoretical computer science. The quality of the submissions
was very high indeed, and many deserving papers could not be selected.

The EATCS sponsored awards for both a best paper and a best student paper
(to qualify for which, all authors must be students) for each of the three tracks,
selected by the Program Committees.

The best paper awards were given to the following papers:

Track A: Leslie Ann Goldberg and Mark Jerrum for their paper “The Com-
plexity of Computing the Sign of the Tutte Polynomial (and Consequent
#P-hardness of Approximation)”

Track B: Volker Diekert, Manfred Kufleitner, Klaus Reinhardt, and Tobias
Walter for their paper “Regular Languages are Church-Rosser Congruen-
tial”

Track C: Piotr Krysta and Berthold Vocking for their paper “Online Mecha-
nism Design (Randomized Rounding on the Fly)”

The best student paper awards were given to the following papers:

Track A: jointly, Shelby Kimmel for her paper “Quantum Adversary (Upper)
Bound” and Anastasios Zouzias for his paper “A Matrix Hyperbolic Cosine
Algorithm and Applications”

Track B: Yaron Velner for his paper “The Complexity of Mean-Payoff Automa-
ton Expression”

Track C: Leonid Barenboim for his paper “On the Locality of Some NP-Complete
Problems”



VI Preface

In addition to the contributed papers, the conference included six invited lec-
tures, by Gilles Dowek (INRIA Paris), Kohei Honda (Queen Mary London),
Stefano Leonardi (Sapienza University of Rome), Daniel Spielman (Yale), Bert-
hold Vécking (RWTH Aachen University), and David Harel (The Weizmann
Institute of Science). David Harel’s talk was in honor of Alan Turing, since the
conference was one of the Alan Turing Centenary Celebration events, celebrating
the life, work, and legacy of Alan Turing.

The following workshops were held as satellite events of ICALP 2012 on July
8, 2012:

— Workshop on Applications of Parameterized Algorithms and Complexity
(APAC)

— 4th International Workshop on Classical Logic and Computation (CL&C)

— Third Workshop on Realistic models for Algorithms in Wireless Networks
(WRAWN)

We wish to thank all the authors who submitted extended abstracts for consider-
ation, the members of the three Program Committees for their scholarly efforts,
and all sub-reviewers who assisted the Program Committees in the evaluation
process. We thank the sponsors Microsoft Research, Springer-Verlag, EATCS,
and the Centre for Discrete Mathematics and its Applications (DIMAP) for their
support, and the University of Warwick for hosting ICALP 2012. We are also
grateful to all members of the Organizing Committee and to their support staff.
The conference-management system EasyChair was used to handle the submis-
sions, to conduct the electronic Program Committee meeting, and to assist with
the assembly of the proceedings.

May 2012 Artur Czumaj
Kurt Mehlhorn

Andrew Pitts

Roger Wattenhofer
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Abstract. The interpolation method, originally developed in statistical physics,
transforms distributions of random CSPs to distributions of much simpler prob-
lems while bounding the change in a number of associated statistical quantities
along the transformation path. After a number of further mathematical develop-
ments, it is now known that, in principle, the method can yield rigorous unsatisfia-
bility bounds if one “plugs in an appropriate functional distribution”. A drawback
of the method is that identifying appropriate distributions and plugging them in
leads to major analytical challenges as the distributions required are, in fact, in-
finite dimensional objects. We develop a variant of the interpolation method for
random CSPs on arbitrary sparse degree distributions which trades accuracy for
tractability. In particular, our bounds only require the solution of a 1-dimensional
optimization problem (which typically turns out to be very easy) and as such can
be used to compute explicit rigorous unsatisfiability bounds.

1 Introduction

The problem of determining the satisfiability of Boolean formulas is central to the un-
derstanding of computational complexity. Moreover, it is of tremendous practical inter-
est as it arises naturally in numerous settings. Random CNF formulas have emerged as
a mathematically tractable vehicle for studying the performance of satisfiability algo-
rithms and proof systems. For a given set of n Boolean variables, let By denote the set
of all possible disjunctions of k distinct, non-complementary literals from its variables
(k-clauses). A random k-SAT formula Fy,(n, m) is formed by selecting uniformly and
independently m clauses from Bj and taking their conjunction. Such random formu-
las have been shown to be hard both for proof systems, e.g., in the seminal work of
Chvatal-Szemérdi on resolution [7]], and, more recently, for some of the most sophisti-
cated satisfiability algorithms known [8]].

More generally, in Random Constraint Satisfaction Problems (RCSPs) one has a set
of n variables all with the same (small) domain D and a set of m = rn constraints,
for some constant » > 0, each of which binds a randomly selected subset of O(1)
variables. Canonical examples are finding large independent sets and colorings sparse
random graphs, variations of satisfiability, and systems of random linear equations. We
will be interested in random CSPs (RCSPs) from an asymptotic point of view, i.e., as the

* Research supported by NSF CCF-0546900, a Sloan Fellowship, and ERC grant 210743.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 1-[2]2012.
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number of variables grows. In particular, we will say that a sequence of random events
&y, occurs with high probability (w.h.p.) if lim Pr[€,,] = 1. The ratio of constraints-to-
variables, r = m/n, known as density, plays a fundamental role here as most interesting
monotone properties are believed to exhibit 0-1 laws with respect to density. Perhaps
the best known example is the satisfiability property for random k-CNF formulas. Let
gr(n, ) denote the probability that F(n,rn) is satisfiable.

Conjecture 1 (Satisfiability Threshold Conjecture). For each k > 3, there exists a con-
stant 7, such that for any ¢ > 0,

lim gg(n,rx —€)=1, and lim ggp(n,7, +¢€) =0 .
n—oo n—oo
The satisfiability threshold conjecture, which motivates our work, has attracted a lot of
attention in computer science, mathematics and statistical physics [17/1816]. At this
point, neither the value, nor even the existence of 7 has been established. For k& = 3,
the best known bounds are 3.52 < r3 < 4.49, due to results in [9] and [[13], respectively.
The last decade has seen a great deal of rigorous results on random CSPs, including
a proliferation of upper and lower bounds for the satisfiability threshold of a number
of problems. Equally importantly, random CSPs have been the domain of an extensive
exchange of ideas between computer science and statistical physics [15], including the
positing of the clustering phenomenon, establishing it rigorously, and relating it to al-
gorithmic performance. In this work we take another step in this direction by taking
a technique from mathematical physics, the interpolation method of Guerra [12]], and
using it to show how to derive end-to-end rigorous explicit upper bounds for the satisfi-
ability threshold of a number of problems. To do so, we introduce a new version of the
interpolation method that can be made computationally effective and give a new, much
simpler, extension of the method to CSPs with arbitrary degree distributions.
Our method can be used to prove among other things the following result [15] regard-
ing the satisfiability of mixtures of 2- and 3-clauses.

Theorem 1 ([S]). Let F be a random CNF formula on n variables with (1—e€)n random
2-clauses, and (1 + €)n random 3-clauses. W.h.p. F is unsatisfiable for ¢ = 10~%,

Theorem [Il combined with the methods of [3], implies that a number of DPLL al-
gorithms require exponential time on easily satisfiable random 3-CNF formulas. For
example, ORDERED DLL requires exponential time for all » > 2.78, while GUC for all
r > 3.1. Similar results hold for a host of other algorithms, including, for example, all
algorithms analyzed in [2[] and [1].

2 Motivation and Past Work

Perhaps the simplest possible upper bound on the satisfiability threshold comes from
taking the union bound over all assignments o € {0, 1}™ of the probability they satisfy
arandom formula F' = Fy(n,rn). That is,

Pr[Fy(n, rn) is satisfiable] < Z Pr[o satisfies Fi(n,mn)] = [2(1 - 27%)"]" =0 ,

o
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for all > 7}, where 2(1 — 2_’")’“Z = 1. For example, 75 = 5.19.., but a long series of
increasingly sophisticated results has culminated with the bound r3 < 4.48... by Diaz et
al. [9]. At the same time, statistical physics results by Mertens et al. [[14] give evidence
that r3 < 4.26....

2.1 Past Work on the Interpolation Method for Random CSPs

The interpolation method is a remarkable tool originally developed by Guerra and
Toninelli [[12] to deal with the Sherrignton Kirkpatrick model (SK) of statistical physics.
Following their breakthrough, Franz and Leone [10], in a very important paper, applied
the interpolation method to random k-SAT and random k-XOR-SAT to prove that cer-
tain expressions derived via the non-rigorous replica method of statistical physics for
these problems can, in principle, be used to derive upper bounds for the satisfiability
threshold of each problem. As we will see, though, doing so involves the solution of cer-
tain functional equations that appear beyond analytical penetration. In [20], Panchenko
and Talagrand showed that the results of [10] can be derived in a simpler and uniform
way, unifying the treatment of different levels of Parisi’s Replica Symmetry Breaking.

A crucial ingredient in all the above proofs is a Poissonization device exploiting that
in Erd6s-Renyi (hyper)graphs the degrees of the vertices behave, essentially, like in-
dependent, Poisson random variables. Franz, Leone, and Tonnineli [L1]] extended the
interpolation method to other degree sequences, but at the cost of introducing another
level of complexity (multi-overlaps), thus placing the method even further out of reach
in terms of explicit computations. In [19], Montanari gave a simpler method for dealing
with degree sequences in the context of error-correcting codes, which proceeds by ap-
proximating the intended degree distribution “in chunks”. This, unfortunately, requires
the number of approximation steps to go to infinity (so that the chunk size goes to zero)
in order to give results for the original problem.

Finally, in a recent paper, Bayati, Gamarnik and Tetali [6], showed that a combina-
torial analogue of the interpolation method can be used to elegantly derive an approxi-
mate subadditivity property for a number of CSPs on Erdés-Renyi and regular random
graphs. This allowed them to prove the existence of a number of limits in these prob-
lems. The simplicity of that approach, though, comes at the cost of losing the capacity
to give bounds for the associated limiting quantities.

3 Highlights of the Interpolation Method on RCSPs

For simplicity of exposition we focus on the case where all constraints have the same
arity k > 2. It is very easy to see that the proof goes through transparently for CSPs
that are mixtures of constraints of different arities. Let C, ,, denote the set of all pos-
sible k-constraints on n variables for the CSP at hand and let D denote the domain of
each variable. So, for example, Cj,,, could contain all 2% (}) clauses of length k on n
variables, or all (Z)D! possible unique-games constraints on a graph with n vertices.
A random CSP instance Iy (n,r) is a conjunction of m constrains taken independently
with replacement from the set C', ,,, where m is a Poisson random variable with mean
E[m] = rn. Note that in the more standard models of random CSPs m is fixed (not a
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random variable). Since, though, the standard deviation of the Poisson distribution is the
square root of its mean we have m = (1+o0(1))rn w.h.p., thus not affecting any asymp-
totic results regarding densities. At the same time, along with the Poissonization of the
variable degrees, this is key to the original development of the method. Eliminating the
need for Poisson variable degrees and allowing arbitrary (sparse) degree sequence, as
we do in Section[3] is part of the technical contribution in our work.

We shall work with the random variable H,, (o), known as the Hamiltonian, count-
ing the number of unsatisfied constraints in the instance for each o € D". (The ran-
domness of H being in the random choice of the instance). We will sometimes refer to
H, (o) as the energy function. The goal is to compute lower bounds for the following
quantity as a function of 8 > 0,

fr = fr(ﬁ) = nilE

log < Z exp (—BHTW(U))>] . (1)

oceD™

For each fixed value of 8 > 0, the sum in f,.(3) is dominated by those value assign-
ment having energy (violated constraints) in some narrow window that depends on f3.
(The idea being that assignments violating more constraints are penalized too heavily to
contribute significantly to the sum, while assignment violating even fewer constraints
are too rare to have substantial contribution.) Thus, f,. (/) effectively counts the number
of assignments at each energy level is known as the free entropy density. Note that as
B is increased f. () places more and more weight to assignments violating fewer con-
straints, recovering the number of solutions as 5 — oo (writing 5 = 1/7 this is also
known as the zero-temperature limit). Standard martingale arguments imply that if any
finite 5 > 0 we have lim,,, o f+(8) < 0, then w.h.p. no solutions exist. The goal of
the interpolation method is to give negative upper bounds for f,.(3) and since f; is the
free entropy, we refer to this as entropic interpolation.

Given 0 = (z1,%2,...,%,) we will write Hy (o) as the sum of m functions
0a(Zay, -y Tq, ), one for each constraint. That is, 04 (24, , ..., Te,) = 1 if the associ-
ated constraint is not satisfied and 0 otherwise. For example, for k-SAT, we take the
domain of the variables to be {+1, —1}" and for each k-clause ¢, (g, , ..., Zq,, ) We let

k

1+ Jg, 2q,

Oa(Tay, - ay) = [ | 2‘“ Y 2)
j=1

where J, ; € {+1, —1} represents the sign of literal a; in clause c,: 41 if the literal is
negated and —1 otherwise.

The basic object of the interpolation method is a modified energy function that in-
terpolates between H,, (o) and the energy function of a dramatically simpler and fully
tractable model. Specifically, for t € [0, 1], let

me n k’,t
BHp i (@1, 20) = Y Bay (Tayys s Tay )+ D Y log (0i(x:) (3
m=1

i=1 j=1

where m; is a Poisson random variable with mean E[m,] = trn, the k;;’s are i.i.d.
Poisson random variables with mean E[k; ;] = (1 — t)kr, and the functions ; ;(-) are
i.i.d. random functions distributed as the function defined in (3)) below.
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Before delving into the meaning of the random functions ¥; ;(-), which are the heart
of the method, let us first make a few observations about (3). First, note that (3)) is simply
the energy function of the original model when ¢ = 1. On the other hand, when ¢t < 1,
we expect that (1 — ¢)m of the original k-clauses will be replaced by k times as many
functions each of which takes as input a single variable. A helpful way to think about
this replacement is as a decombinatorialization of the energy function wherein k-ary
functions are replaced by univariate, and therefore, independent functions. As one can
imagine, for ¢ = 0 the model is fully tractable. In particular, letting

log ( > exp(ﬁHn,r,t(a))ﬂ : @

O-ED‘H

fr(t) =n"'E

one can readily compute f,(0) since one can compute H, (o) by examining one
variable at a time. To relate the two models the plan is to give a lower bound for the
change in f, as ¢ goes from 1 to 0, hence the name interpolation, thus bounding f;.(1)
by f(0) plus a term depending on our bound on the derivative.

The main idea of the interpolation method is to select the (still mysterious) univari-
ate functions 9; ;(-) independently, from a probability distribution that reflects aspects
of the geometry of the underlying solution space. The more accurate the reflection, the
better the bound. One, of course, needs to guess this geometry and here is where the
insights from statistical physics are most valuable. A beautiful aspect of the interpola-
tion method is that it projects all information about the geometry of the solution space
into a single object, a distribution ~y as defined below. With that in mind, we now define
the random univariate functions, but without specifying the all-important distribution ~y.
This is because the method gives a valid bound for any 7, i.e., the choice of ~ affects
the quality but not the validity of the derived bound.

Let v(x) denote the density function of a random variable over D, where the proba-
bilities p1, . . ., p;p| are themselves chosen at random from a distribution ~y with support
on the unit (|D| — 1)-dimensional simplex. Let ¢(x) be a random univariate function
defined as follows

k—1
i) = > exp(—ﬂe@l,...,yk_l,x))ij<yj>, )

Yis--3Yk—1

where 6(-) is a random constraint-function and the functions v;(-) are i.i.d. with the
same distribution as v(x).

To interpret the function in (@) it helps to think of its argument x as corresponding to
a particular occurrence of a variable in a constraint c, e.g., a literal occurrence in a ran-
dom k-clause. The idea is for (3) to simulate the biases that this particular occurrence
of = “feels” from its presence in c. To do this we replace ¢ with a brand new random
constraint (appearing as 6 in (3)) containing & — 1 new variables y1, . . ., yx_1 which are
“private” to 6, i.e., which will occur in no other constraint in the interpolating energy
function. To simulate the statistical joint behavior of the £ — 1 original variables in ¢
due to their participation in clauses other than ¢, we assume that since the underlying
random hypergraph is sparse, these £ — 1 new variables are independent in the absence
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of #, hence the product in (@). Finally, specifying the probability distribution v govern-
ing the behavior of each ersatz variable is precisely what reflects our beliefs about the
geometry of the space of solutions. Statistical physics considerations suggest candidate
distributions as solutions to distributional equations.

To see how the geometry of the space of solutions enters the distribution -y, consider
two dramatically different settings, precisely those separated by the so-called shattering
(or clustering, or dynamical) transition. In one setting, the set of solutions has the prop-
erty that if a solution is chosen uniformly at random, changing the value of any variable
to any other value can be accommodated by changing, in expectation, the value of O(1)
other variables, i.e., by “local repair”. In such a world, v is a single density function
over the (| D| — 1)-dimensional simplex. In contrast, after shattering occurs [4] the set
of solutions consists of exponentially many clusters (connected components of solu-
tions), separated by linear Hamming distance. In each cluster, a constant fraction of all
variables take the same value in all solutions in the cluster, while all other variables are
locally repairable. In this world, v becomes a distribution over densities, the different
densities corresponding to different clusters.

3.1 Why an Energetic Interpolation Method

What motivates our derivation of a different, so-called energetic, interpolation method
is that dealing with the shattered case above leads to massive analytical obstacles, ren-
dering the derivation of explicit, mathematically rigorous bounds problematic. In the
realm of statistical mechanics, these are addressed via a numerical stochastic method
known as population dynamics, used to derive the estimates in [[14] for random k-SAT.

In contrast, we will see that the energetic approach leads to bounds which can be de-
rived analytically, precisely because we dramatically collapse the information captured
by . In particular, in our bounds y will be specified by a single real number, while the
bound itself is expressed by truncating an infinite sum to a finite one (at any desired
degree of accuracy) and adding up the corresponding explicit terms, each involving the
joint behavior of a finite number of Poisson random variables.

The reason this approach works is that in bivariate binary CSPs, such as random
[MAX] 2-SAT, random MAX 2-LIN-2, and random (2 + p)-SAT, whenever a frozen
variable appears in a constraint “the wrong way” (the freezing being due to its partici-
pation in other constraints) this necessarily causes the other variable in the constraint to
also freeze. This percolative type of behavior causes the fraction of frozen variables to
take off smoothly in such problems, a situation that can be captured by a simple model
for the distribution +y if one focuses on states of lowest energy. This is precisely what
we exploit in deriving our new upper bounds for these problems.

4 Energetic Interpolation for General CSPs

To develop an energetic interpolation method we replace the (far richer) free entropy
density of the previous section with the following much simpler quantity

& =n"1E [min Hn’,a(a)} , (6)

oceD™



Unsatisfiability Bounds for Random CSPs 7

known as ground-state energy density, which simply tells us the fraction of violated
constraints in the optimal (least-violating) assignments. By standard martingale argu-
ments the random variable min, H,, (o) concentrates around its expectation (consider
the martingale exposing the constraints one by one and note that changing any one con-
straint cannot change its value by more than 1). Therefore, if liminf, . & > 0 we
can conclude that the satisfiability threshold is upper bounded by r.

The univariate factors in the energy interpolation method are given as follows:

[T3LL)

— For 1 < j <|D|, let “j” denote the indicator function that the input is j, i.e., “j” is
1 if its input is j and O otherwise.

— Let “*” denote the function that assigns O to all elements of D.

— Let h(z) be a random function in {“1”,...,“|D|”,“ * 7} with Pr(h(-) = “*”) =
1~ pand Pr(a(-) = *j”) = p/|D|.

The analogue of (3) is now

13
9

Yis--3Yk—1

k—1
iL(l‘) = min {H(yl, ..,yk_l,.%‘) + th(yz)} 5 (7)

=1

where 6(-) is a random constraint-function as before while the functions h;(+) are i.i.d.
random functions distributed as h(zx).

Observe that the energy interpolation method models all information about the ge-
ometry of the solution space into a single probability p, which can be interpreted as the
probability that a variable picked at random will be frozen, i.e., have the same value
in all optimal assignments. If that occurs for all £ — 1 variables vy, .., yx—1 and they
all happen to be frozen the wrong way as far as 6 is concerned, then unless variable x
takes the value desired by 6 the function fL(;v) will evaluate to 1. When, at the end of the
interpolation, we will have replaced all k-ary constraints with univariate random func-
tions h, the optimal overall assignment is simply found by assigning to each variable
the value that makes the majority of its h functions evaluate to 0. The method delivers
a valid bound for any choice of p € [0, 1] and the bound is then optimized by choosing
the best value of p, i.e., performing a single-parameter search.

While we could give lower bounds on (6) for RCSPs defined on ErdGs-Renyi (hy-
per)graphs by exploiting the same Poissonization device as in earlier works, we will
instead show how to carry out the method in arbitrary sparse degree distributions.

5 The Interpolation Method on Sparse Degree Sequences

Let d; denote the number of times variable ¢ should appear in the random instance and
let L, = {l, }j"zl denote the set of occurrences corresponding to variable 7. Note that
the occurrences can be decorated so that, for example in £-SAT, we can specify how
many of the L; occurrences correspond to positive occurrences of the variables and
how many to negative occurrences. It will be helpful to think of each occurrence as
a piece of paper carrying the index of the underlying variable along with any desired
decoration. To form a random instance with m = rn constraints we simply choose a
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random permutation of the krn elements of £ = {L;}? , and consider the first & to
specify the first constraint, the next k to specify the second constraint etc.

Consider now the following algorithm to build a random Hamiltonian composed of
a mixture of k-ary constraint-factors of the desired CSP and of univariate functions as
in (B). The algorithm has three inputs: The collection of occurrences £, an integer ¢,
and a sequence x € {b, c}'.

1. Set H=0,set L = L, and set j = 1.
2. Select a random permutation 7 of the elements of L.
3. While j < min{t, |L|} do:
(a) If x; = bthen
i. Add a random univariate factor to H with argument 7 (7).
. j<j+1
(b) If z; = c then with probability 1/k
i. Add a random k-constraint to H on occurrences 7 (j),...,n(j +k — 1).
. j<j+k

Let H(L, z) denote the family of energy functions produced by the above algorithm.
Observe that when ¢t = |£| and £ = u---u, the energy functions produced by the
algorithm have variable degree distribution given by £ and consist of univariate factors
only. On the other hand when ¢t = |£| and = ¢- - - ¢ the resulting energy functions
consist of m energy constraint functions of arity k& where m is a Binomial random
variable with km trials and probability of success 1/k, conditioned on being at most
m. In other words, w.h.p. the instance generated will have the desired degree sequence
except for o(n) variables (and, therefore, o(n) constraints). Since we are interested in
establishing a non-vanishing lower bound for (@) this will not affect any of our results.

The goal now is to relate the ground state energy of these two extreme cases. A
key property, which will allow us to establish such relation, is that H(L, x) is invariant
under any permutation 7(z) of the elements in z.

Lemma 1. For every sequence x, and every permutation , the families H(L, z) and
H(L, 7(x)) have the same distribution.

Proof. The very first step of our construction is to take a uniformly random permutation
of the elements of L.

For any £ and any s < ¢, since the order of the steps in = does not matter, let us write
H(L,t,s) to denote the distribution of energy functions generated by the algorithm
when we take ¢ steps in total, ¢ — s of which are additions of a univariate factor. Let

— 2 'E | mi
Ec(t,s) =n"'E Lrélbn Hﬁ,t,s(g):|

Observe that if t = km and s = km, then &, = &.(km, km) corresponds to the
original ground state energy, whereas . (km, 0) corresponds to the ground state energy
of the model composed of univariate factors only.

Our lower bounds come from the following theorem.
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Theorem 2. For any choice of p € [0, 1], if m = rn then
& > &-(km,0) — r(k — 1)E[h] —o(1) (8)

where

k

Y1, Yk i—1

To prove this we will prove that as s goes from ¢ to 0, we can control the change of
&-(t, s). Specifically,

Lemma 2. If m = rn then forany e > 0, allt € [0, (kr — e)n], and all 1 < s < {,
Emin{Hz ;s 1(0)}] — (k= )k 'E[h.] < Emin{Hz; (o)} +o(1) .

Iteratively applying Lemmal2lso that we can increase the number of univariate factors
from 0 to t = (kr — €)n and letting e — 0 yields Theorem[2l

Proof (Lemmal2)). Let Hy be an energy function from the family H(L, ¢t — 1,s — 1),
that is, the energy function resulting from executing ¢ — 1 steps of the algorithm where
s — 1 of such steps correspond to adding a univariate factor. The key observation is that
Hp i s—1(0) and Hz ¢ (o) can be obtained from Hy by execution an additional step of
the algorithm: H. ; s_1(0) corresponds to the processing of a ¢ symbol and H ; s(0)
corresponds to the precessing of a u symbol.

We will show that conditional on any realization of Hy we have

E [min{Hp ¢ o1 (0)}| Ho— (k— 1)k~ E [he] < E [min{Hp ¢ (o)} Ho] +o(1) . (9)

That is, the proof reduces to comparing the effect of adding a single univariate factor
to the effect of adding, with probability 1/k, a single constraint. As one can imagine,
the proof of @) is problem specific. Below we prove it for random k-SAT and random
Max-k-Lin-2. For all other random CSPs with binary domains the proof is very similar.

6 Applying Energetic Interpolation to Random CSPs
6.1 Random k-SAT

Let C* C {0,1}" be the set of optimal assignments in Hy. A variable x; is frozen
if its value is the same in all optimal assignments. The processing of a ¢ symbol will
increase the value of the minimum by at most 1 only if the following two conditions
hold: 1) a new clause is added, which occurs with probability 1/k, and 2) all the literals
appearing in the new random factor correspond to a frozen variables. By the principle
of deferred decisions we can think of the permutation 7 as generated on-the-fly, i.e., as
we need occurrences to consume. Therefore, if the number of remaining occurrences
is £2(n) and f denotes the fraction of them that are associated with frozen variables
corresponding to Hy, then

E [min{Hz ¢ s(0)}|Ho] — min{Ho} = k~*27%f* - O(1/n) ,

where the last term is due to the fact that we are selecting without replacement.
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Similarly, the processing of a u symbol will increase the value of the minimum by 1
if the chosen literal correspond to a frozen variable = and  must take the opposite of
its frozen value to minimize the added factor h(z). Thus the expected change is

E min{H; ¢ s—1(0)}|Ho] —min{Hp} = 2_kpk'_1f .
Finally,

k
Elh] =E | min {8(y1,...yx) + Y _hi(y:)}| =27"p" .

Y1, Yk i1
By combining the above equations and adding —(k — 1)k~'27*p* we get

E[min{Hz ¢ s1(0)}|Ho] — (k — 1)k~ "2 % p* — E [min{H ; () }|Ho]
= k7127 (kp" = fF = (k= 1pF) +O(1/n)

Finally, the polynomial F'(z, p) = kp*~ 1z + 2% — (k — 1)p* < 0forall 0 < z,p < 1.
To see this last statement note that (i) F'(0,p), F'(1,p), F(x,0), F(x,1) < 0 and, (ii)
the derivative of F' with respect to p is 0 only when p = x, in which case F'(z, z) = 0.

6.2 Random Max-k-Lin-2

The constraints in the Max-k-Lin-2 problem are chosen uniformly from the set of all
onk possible boolean equations on n variables, i.e., the k variables are chosen at random
with replacement and the required parity is equally likely tobe O or 1. Let C* C {0, 1}"
be the set of optimal assignments in Hy. A variable z; is frozen if its value is the same
in all optimal assignments. The processing of a ¢ symbol will increase the value of the
minimum by at most 1 only if the following three conditions hold: 1) a new Boolean
equation is added, which occurs with probability 1/k, 2) all the literals appearing in
the new random factor correspond to frozen variables and 3) the parity of the frozen
variables is different from the one required by the new equation. As in the proof for
random k-SAT above, if the number of remaining occurrences is {2(n) and f denotes
the fraction of them that are associated with frozen variables corresponding to Hy, then,

E [min{H ; s(0)}|Ho] — min{Ho} = k=127 f* + O(1/n) .

where the last term is due to the fact that we are selecting without replacement. Simi-
larly, the processing of a ¢ symbol can increase the value of the minimum by 1 if the
chosen literal correspond to a frozen variable x and and « must take the opposite of its
frozen value to minimize the added factor ﬁ(m) Thus the expected change is given by

E [min{H s s—1(0)} Ho] — min{Ho} =27 'pF~1f .
Finally,
k
Elh] =E | min {6(y1,..,yx) + Zhi(yz')} — 9 lyk
k

Y1,y i1
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Combining the above equations and adding —(k — 1)k~1271p* we get
E[min{Hz ¢ s—1(0)}|Ho] — (k — 1)k~ '2 % p* — E[min{H, ; +(c)}|Ho]
= k727 (kpP T = fF = (k= 1)p") + O(1/n)

where the r.h.s. of the equality entails the same polynomial as for random k-SAT.

7 Computing Explicit Energetic Interpolation Bounds for k-SAT

Applying Theorem2lon a Poisson degree sequence we get that

£.(0) = min Z hy( , (10)
j:

z€{0,1}

where s is a Poisson random variable with mean k7, and the functions h j (+),i.e., random
functions in {“0”, “1”,“ % '} with Pr(ﬁj() =“1") = Pr(ﬁj() =07) = 27 kph-1,

Let Iy, l1, and [, denote the number “0”, “1”, and “*” functions respectively among
the /;(-) functions inside the summation of equation (I0). Conditional on the value
of s, the random vector (lo, l1,.) is distributed as a multinomial random vector and,
therefore,

:L‘xl()

Z Z Z min{lp, {1} x Poi(kr,z)Multi(lo,l1,z —lo — 11) ,

z=019=01,=0

where Multi(+, -, -) denotes the multinomial density function.

Changing the limits of all summations to infinity, does not change the value of &,.(0),
since Multi(-, -, -) evaluates to zero for negative numbers, hence, we can interchange the
order of the summations to get

&-(0) = Z Z min{lp, {1 } x ZPOI kr,x)Multi(lo, l1, 2 — lp — 11) .
1o=01,=0 =0

The last equation can be simplified by summing out the randomness in the Poisson
random variable. The result is that [y and /; become two independent Poisson random
variables with mean ;. rp*~!. Thus,

— ko g koo
= Z Z Il’lirl{l()7 l1} x Poi <2k' rpk_l’ ZO> % Poi (Qk Tpk_17 ll) ,
lo=011=0

i.e., &-(0) is the expected value of the minimum of two independent Poisson random
variables [y, [; with mean \ = 2"}; rp¥~1. Finally, we note that

E [min{lo,11}] = Y i | 2Poi(}, 1) 1—iPoi()\,j) — (Poi(A, i) ] . D

To compute a rigorous lower bound for (IT) one now simply truncates the sum at any
desired level of accuracy.
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Abstract. We study the k-party ‘number on the forehead” communica-
tion complexity of composed functions fog, where f : {0,1}" — {%1},
g : {0,1}% = {0,1} and for (xi,...,x) € ({0,1¥), foglxy,....x;) =
f(. 8145, Xk),-..). We show that there is an O(log?n) cost simultaneous
protocol for SYMo g when k > 1 +logn, SYM is any symmetric function and g is
any function. Previously, an efficient protocol was only known for SYM o g when
g is symmetric and “compressible”. We also get a non-simultaneous protocol for
SYMog of cost O((n/2%)logn+ klogn) for any k > 2.

In the setting of k < 1+ logn, we study more closely functions of the form
MAJORITY o g, MOD,;, o g, and NOR o g, where the latter two are generalizations
of the well-known and studied functions Generalized Inner Product and Disjoint-
ness respectively. We characterize the communication complexity of these func-
tions with respect to the choice of g. As the main application of our results, we
answer a question posed by Babai et al. (SIAM Journal on Computing, 33:137—
166, 2004) and determine the communication complexity of MAJORITY 0 QCSBy,
where QCSBy, is the “quadratic character of the sum of the bits” function.

1 Introduction

The ‘number on the forehead’ (NOF) model of communication complexity was intro-
duced by Chandra, Furst and Lipton [7]] who used it to obtain branching program lower
bounds. In this model, k players wish to evaluate a function F : Xj X --- x X; — {£1}
on a given input (x1,...,x;). The input is distributed among the players in a way that
Player i sees every x; for j # i. This scenario is visualized as x; being written on the
forehead of Player i. In order to compute F(xi,...,x;), the players communicate by
means of broadcasting, according to a protocol which they have agreed upon before-
hand. The goal is to compute F(xj,...,x;) by communicating as few bits as possible.
Note that for k = 2, this model is equivalent to the standard two player model intro-
duced by Yao [24]. We are mainly interested in the case X; = {0,1}" for all i. Here,
every function can be trivially computed using n + 1 bits of communication, and proto-
cols of cost at most polylogarithmic in n are considered to be efficient. Deterministic,
non-deterministic, randomized and quantum communication complexity models natu-
rally manifest themselves in this setting. The overlap of information among the players

* A full version can be found online [1]].

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 13-24] 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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makes the NOF model interesting, powerful and fruitful in terms of applications. Apart
from the aforementioned application in branching programs, this model also has impor-
tant applications in circuit complexity, proof complexity and pseudorandom generators.

The class ACCY represents functions computable by polynomial-size, constant-depth
circuits with unbounded fan-in AND, OR, NOT and MOD,, gates. Showing NP is not
in ACCY is one of the frontiers in complexity theory. It is well known that a function
in ACC has a polylog(n) k-party deterministic communication complexity, where k is
polylog(n) [12l6]). In fact the protocol is simultaneous where all the players, without
interacting, speak once to an external referee who determines the output based only on
the messages she receives. Proving that a function in NP requires super-polylogarithmic
communication in the simultaneous model for polylogarithmic number of players would
result in a major breakthrough. Currently no non-trivial lower bound is known for an
explicit function for k = logn and this has proven to be a formidable barrier. Despite
intense effort, even the 3 player model is far from being well understood and many
important problems that are solved in the 2 player setting remain open in the 3 player
setting. For example, in the 3 player setting, there is no known explicit function that is
hard in the deterministic model but easy in the randomized model. On the other hand,
the equality function is a canonical example of such a function in the 2 player setting.

Most of the well known and studied functions in the standard two party as well as
the multiparty model have the following ‘composed’ structure. Let f: {0,1}" — {£1}
be a function and g = (g1,...,g,) be a vector of functions g; : {0,1}* — {0,1}. Define
fo ?(xl, cooxe) = (., 8i(X1i X2, ., Xk i), - - ), Where x; denotes the ith coordinate
of the n-bit string x;. When all the g; are the same, say g, we denote fo ? by fog.Inthis
notation, the famous communication functions generalized inner product, disjointness
and hamming distance can be written as GIP = MOD, o AND, DISJ = NOR o AND, and
HD = THR, o XOR respectively. In an important paper [19], Razborov characterizes
the 2 party communication complexity of SYM o AND functions, where SYM denotes
a symmetric function. Shi and Zhang [22]] obtain a similar characterization for SYM o
XOR functions. Note that when k£ = 2, AND and XOR are the only interesting “inside
functions” as other functions are either trivial or reduce to the case of AND or XOR.

In this paper, we study the multiparty communication complexity of composed func-
tions with two goals in mind. The first goal is to better understand the power of logn and
more players. The second and more general goal is to understand which combinations of
the “inside” function g and the “outside” function f lead to hard communication prob-
lems and which combinations lead to easy communication problems. The focus of pre-
vious research has been on proving lower bounds for composed functions by selecting
a “hard” outside function and a convenient inside function (see e.g. [2012315/8I5116]).
Our approach is to study composed functions without putting any restriction on g and
obtain characterizations for the communication complexity of composed functions with
respect to the choice of g. This dual approach is particularly interesting in the multiparty
setting where the choice for g increases double exponentially in k.

First, we consider SYM o g functions in the setting of k > logn. This rich class con-
tains many interesting functions and it is tempting to conjecture that some of these
functions are candidates to break the logn barrier mentioned earlier. In particular, since
the majority function MAJ = THR,, is conjectured to be outside of ACCO, it is of
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interest to try to determine the communication complexity of MAJ o g for all g. For
instance, Babai, Kimmel and Lokam [3]] identified MAJ o MAJ as a candidate function
to be hard for more than logn many players. Later, in a significantly expanded version
of [3l], Babai et al. [2] show that MAJ o MAJ has an efficient simultaneous protocol when
k > 1+ logn. Their upper bound in fact applies to SYM o g where SYM is any sym-
metric function and g is any symmetric “compressible” function. Although the class of
symmetric compressible functions contains natural functions like THR; and MOD,,,, this
class is only a small portion of all symmetric functions as a random symmetric function
is not compressible with high probability. Babai et al. [2] in fact identify QCSB, the
quadractic character of the sum of bits function, as a symmetric inside function g for
which their method fails. In this paper, we remove the symmetry and compressibility
conditions on g and show that functions of the form SYM o g are easy in the simultaneous
model when k > 1 + logn, for any choice of the inside function g.

Theorem 1 (Informal statement). For any g, there is a simultaneous deterministic k-
party protocol for SYM o g of cost O(log® n) when k > 1+ logn. When k > 1 +2logn,
the simultaneous protocol applies to SYM o ? for any vector of functions ? Fur-
thermore, there is a deterministic protocol (non-simultaneous) for SYM o ? of cost
O((n/2%)1ogn + klogn) for any k.

The above result rules out functions of the form SYM o g as candidates to break the logn
barrier. Moreover, by the well known connections of the multiparty model with Ram-
sey theory [7]], our k + 1 party protocol for NOR o XOR gives the first non-trivial upper
bound on the number of colors needed to color (Fg)k so that no k dimensional corner is
monochromatic. Although communication complexity bounds have been proven using
Ramsey theory, no bounds on Ramsey numbers have been proven via communication
complexity bounds beford].

The insight for our (non-simultaneous) protocols is from the work of Grolmusz
and Pudldk. Grolmusz [10] presented an efficient non-simultaneous protocol for the
function SYM o AND when k > logn players. Later, Pudldk [[17] gave an elegant rein-
terpretation of Grolmusz’s protocol. We obtain our simultaneous protocols when k is
sufficiently large by extending [10l17] and combining it with a result of Babai et al [2]].

In the setting of k < logn, we study more closely functions of the form MAJo g,
MOD,, o g and NOR o g, where the latter two are generalizations of arguably the most
well known and studied functions GIP and DISJ respectively. We are able to obtain
dichotomies, with respect to the choice of g, that characterize the communication com-
plexity of MAJo g, MOD,, o g and NOR o g for every g. Furthermore, our results show
that these functions have polynomially related quantum and classical communication
complexities{g. It is worth noting that these characterizations are tightly connected to
our upper bound result mentioned above. The upper bounds for these functions in the
setting of k < logn use crucially the ideas developed for the upper bound for SYMo g
in the setting of k > logn. Perhaps surprisingly, even our lower bounds for MOD,, 0 g
functions use these ideas as well. We state our results below.

! The details of this result are given in the full version of the paper.
2 Note that by the work of [14]], all our lower bounds hold in the quantum model, but we confine
ourselves to the classical setting for simplicity.
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Theorem 2 (Informal statement). Let Sp = {y € g~ !(1) : y has even weight} and
S1={y€g (1) : yhas odd weight}. If m divides |So| —|S1|, MOD,, o g has a simulta-
neous deterministic protocol of cost O(klogm). On the other hand, if m does not divide
|So| — [S1], MOD,, 0 g is a very hard functior] in the randomized model, up to ~ 1logn

1
many players and m up to n2-9 for a constant § > 0.

The first strong lower bounds in the NOF model were obtained by Babai, Nisan and
Szegedy [4]], who showed a very strong lower bound for the GIP function. Their proof
is later refined by [9/18]]. Grolmusz [[11] extended the technique of [4] to show a lower
bound for MOD,,, o AND. We obtain our lower bound for MOD,,, o g, where m is coprime
to |So| — |S1], by extending the analysis of [9/18]]. For other m for which MOD,, o g
is hard (i.e. m and |So| — |S1| are not coprime but m does not divide |Sp| — |S1]), this
analysis does not apply. In this case, we obtain the lower bound through a reduction to
the previous case. This reduction uses ideas from our upper bound for SYM o g.

, then MAJ o g has a k-party simulta-
, MAJ o g is hard in the

Theorem 3 (Informal statement). If |Sy| = |S;
neous deterministic protocol of cost O(klogn). If |So| # |Si
randomized bounded error model for k up to ~ ; logn

The above result is obtained by using our characterization for MOD,, o g. As immedi-
ate applications, we show for instance that MAJ o MAT and MAJ o XOR are hard in the
randomized model for k up to ~ ; logn.

Theorem 4 (Informal statement). NOR o g is hard in the randomized bounded error
model for k up to = é logn many players if and only if g has support size 1.

This result shows that the hardness of DISJ crucially relies on the fact that g has single-
ton support. The lower bound is obtained by a simple reduction and follows from the
best known lower bound on DISJ = NOR o AND [21]. An important ingredient in our
upper bound is the use of our characterization for MOD,, 0 g.

As an application of our MAJ o g characterization (Theorem[3]) and our protocol for
SYM o g functions (Theorem[I)), we answer an open question posed by Babai et al. [2]
and determine the communication complexity of MAJ o QCSB. Recall that the techniques
of Babai et al. fail for QCSB as it is a non-compressible function.

Corollary 1 (Informal statement). If x = 1 mod 4, MAJ o QCSBy, has cost O(klogn)
in the simultaneous deterministic model, and if k =3 mod 4, the function is hard in the
randomized model for up to ~ ; logn many players with. For k > 1+logn, MAToQCSB
has cost O(log® n) in the simultaneous deterministic model.

2 Preliminaries

We refer the reader to [13]] for details about the communication complexity models
discussed in this paper. For F : X X --- X X; — {£1}, we denote by Dy(F), Dl{l (F)

3 Here ‘very hard’ means that even if the error probability of the protocol is allowed to be
exponentially close to 1/2, the function does not have an efficient protocol. Note that achieving
error probability 1/2 is trivial for any function.
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and R} (F') the k-party deterministic, simultaneous deterministic and randomized e-error
communication complexities of F respectively. A stronger model allowing quantum
communication between the players can similarly be defined, and in fact, all the lower
bounds in the randomized model that we prove here carry over to the quantum model
using the results of [[14]].

A subset C; of Xj X --- X X is a cylinder in the ith direction if membership in C; does
not depend on the ith coordinate, i.e., if (xi,...,x;,...,xx) € Ci, then (x1,...,x},...,x¢) €
C; for every x§ € X;. A cylinder intersection C is an intersection of k cylinders, one in
each direction. It is well known that a k-party deterministic protocol for F of cost ¢
partitions the input space into at most 2° monochromatic (with respect to F’s output)
cylinder intersections. We identify a cylinder intersection C C Xj X --- X X; with its
characteristic function C : Xj x --- x Xz — {0,1}.

We define the discrepancy of F : X X --- x X;; — C under u and with respect to a
cylinder intersection C as disc, (F,C) = |Ey, [F (x)C(x)]|. The discrepancy of F under
u is disc,(F) = maxcdisc,(F,C), where the maximum is over all possible cylinder
intersections C. By the well-known discrepancy method:

1—-2¢
R (F)>1 . 1

k( )— Og<dISC‘u(F)> ( )
In order to upper bound the discrepancy we will use the cube measure. Let u be a
product distribution over Xj X - - X X, i.e., u(x1,...,x¢) = w1 (x1) - g (xx ), where ; is
a distribution over X;. We define the cube measure of F' under u as

E(F)=Ep o 9 H T (F () |
xadxl ue{0,13

where in the expectation, x? and xil are distributed according to y;, and C denotes the
complex conjugation operator: C’(z) = z if b is even, and C?(z) = z otherwise. It is
not difficult to verify that the cube measure is always a non-negative real number.
In fact, the quantity (Eq(F))"/ 2 where € is the uniform distribution, is known as
the hypergraph uniformity norm and is a measure of “quasirandomness” of F'. When
F(x1,...,x¢) = f(x1 ® - ®xx), the hypergraph uniformity norm of F corresponds to
Gowers uniformity norm of f over 5.

Lemma 1 ([9,18]). Let F : Xi X --- X Xz — C be a complex valued function and y; a
distribution over X;. Define u as the product of the y;. Then, disc,(F) < (‘Z,U(F))lﬂk.

In this paper X; = {0,1}" for all i. We let x = (x1,...,x;) denote an input in ({0, 1}")¥.
Often we will view the input as a k X n dimensional matrix X, where the ith row of X
is x;. We reserve the variables x; to denote an n-bit string whose j-th bit is denoted by
x;,j, and reserve the variables y; to denote a single bit. Let H, denote the k dimensional
hypercube where the vertex set is {0, l}k and there is an edge between two vertices iff
their Hamming distance is 1. Given an input in the k X n dimensional matrix form X, we
associate each column of X with the corresponding vertex of #. For each v € {0, 1},
define n, as the number of times v occurs as a column of X.
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3 Communication Complexity of Composed Functions

3.1 SYyMog

A boolean function f : {0,1}" — {£1} is called symmetric if the output depends only
on the Hamming weight of the input. In this section we present our deterministic proto-
col for SYMo g where g is any function. Our result improves upon the result of Babai
et al. [2]], who give an efficient simultaneous protocol for SYM o g, where g is symmetric
and compressible, when k > 1 +logn. First, we remove the symmetry and compressibil-
ity conditions on g and allow inside function(s) to be selected arbitrarily, and second,
we provide a non-trivial protocol even when k£ < 1 4 logn. We obtain our protocols in
the non-simultaneous model by extending the ideas of Grolmusz [[10] and Pudldk [17].
We combine this with a beautiful lemma of Babai et al. [2, Lemma 6.10] in order to
make our protocols simultaneous:

Lemma 2 ([2]). Suppose k > 1 +1logn and let X be a k x n boolean matrix given as an
input for a k-party communication problem. Let n; be the number of columns of X with
Hamming weight i. Then by communicating O(k*logn) bits, the players can compute
n; for all i in the simultaneous deterministic model.

We note that in the following theorem, it will be clear from the proof that allowing
different inner functions for different columns is important even to handle functions
f o g when the number of players k >> logn.

Theorem 1. Ler f: {0,1}" — {£1} be a symmetric function, g : {0,1}" — {0,1} an
arbitrary function, and g = (g1,...,8n) a vector of n functions where g; : {0,1}¢ —
{0,1} are arbitrary functions. Then,

(@) Di(fog) <O0((n/2%)logn+ klogn),
(b) for k> 1+logn: D) (fog) < O(log*n),
(¢) for k> 1+2logn: D} (fog) < O(log* n).

Proof. We first prove part (a). Fix an input for f o ? given in k X n matrix form X.
The protocol proceeds in two steps. In the first step, the players determine the column
positions of some u € H;. Later, they use this to compute the output of f o 7.

We now describe the first step. Let X=* denote the (k — 2) x n dimensional submatrix
of X where the first two rows are deleted. Since X3 has n columns and there are 242
possible strings of length k — 2, the string s € {0, I}k*2 that appears the least number of
times as a column of X~ appears at most n / 2%=2 times. Without any communication,
players 1 and 2 can agree on this string (breaking ties in say lexicographical order).
Player 2, using at most 7/2%~2 bits of communication, can send player 1 the bits on
player 1’s forehead corresponding to the positions that string s appears. With this infor-
mation, player 1 knows the positions of four vertices 00s, O1s, 10s and 11s. Now player
1 can announce one of these vertices (call it #) and the column indices corresponding
to u. The total cost is at most O((n/2¥)logn).

We proceed to step 2. Observe that the columns corresponding to u are taken care
of, that is, we already know the value g;(x) where j is a column index corresponding
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tou. Let §; = g;'(1). For v € {0,1}%, let 1;(v) = 1 if v is in column j, and 1;(v) =0
otherwise. To compute the output of f o ?, it suffices to compute

> > 1), )

J VES_/'

where the outer sum is over all column indices that do not correspond to u. Consider a
shortest path from v to u: v =wy,w2,...,w; = u. Observe that since 1;(u) =0,

t—1

1;(v) = 2 (=D (1 (wi) + 1j(wira)). 3)

i=1

Each term (1;(w;)+1;(wit1)) is known by some player because w; and w; differ only
in one coordinate. To compute (), each player announces her part of the sum. Since
22 S; 1;(v) < n, it suffices for players to send their part of the sum modulo n+ 1.
Therefore this step of the protocol has cost at most & - [log(n + 1)]. This completes the
proof of part (a). Note that the second step of the protocol is simultaneous while the
first step is not. When k is sufficiently large, we bypass the first step using Lemma2]
We now prove part (¢). Let £ = 2 + 2logn. Only the first ¢ players will speak. For
each column j, the rows £+ 1 to k naturally induce a function g’ : {0, 1} — {0,1};

g';(u) = gj(u-v) where v € {0,1}*~* appears in column j from row £+ 1 to k. Thus our

%
task reduces to finding a protocol for fo g’ with £ players. From now on we drop the
superscript in g’j and denote it by g;.
As before we are interested in computing

iZhM. )

J=1veSs;

— —
Let O be the all O vertex. Let v € S; and let v = wy,...,w; = 0 be a shortest path
between v and 6> Then we have

t—1

L) = 2 (=D (1,0m) + 1, 0wi0) + (=D 1(0). )

i=1
Substitute (@) into @). Since the quantity in @) is at most n, we can do arithmetic
modulo n+ 1. As before, each term (1;(w;) 4+ 1;(wit1)) in the sum is known to a player
so the part of the sum involving these terms can be computed by the players using at
most - [log(n+1)] bits. For each j € {1,...,n}, we group the terms involving 1;( 0 )
when substituting (3)) into @) and let c; be the coefficient of 1 1(6)) modulo n+ 1. We

also need to compute ¥,;c;1;( 0 ), which can be done as follows. From the original
¢ x n input matrix X, we create a new matrix X’ by duplicating the jth column ¢; many
times. Note that X has at most n> columns so we can apply Lemma[lon X’ to compute
the number of all 0 columns in X', which is exactly what we want. This step has cost
O(log? n). So putting things together, we can compute @) with at most O(log> n) bits of
communication. The whole protocol is easily seen to be simultaneous. This completes
the proof of part (c).
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We conclude with the proof of part (b). The strategy is exactly the same as above. We
need to calculate 3 ;¢;1;( 0 ). Since all the g; are the same, c; = c for all j for some c.

So we want to compute ¢ ¥.;1;( 0 ), which is precisely cn . We can compute n using
Lemma 2] when k > 1+ logn. So putting things together, we can compute () using at

most O(k*logn) bits of communication. Given part (c), we are done.

3.2 MODjog

For (y1,y2,-..,¥n) € {0,1}", let MOD, (y1,¥2,--.,yn) = —1 iff ¥7_;y; =0 modm.In
this section we show that the complexity of MOD,, o g is determined by the quantity
||S0| —|S1||, where S; is the subset of the support of g that consists of all inputs whose
Hamming weight has parity i. Part (b) of Theorem[2lis important because it will be used
to derive the lower bound in the next subsection.

Theorem 2. Let m > 2 be an integer. The function MOD,, o g satisfies:

(@) If mdivides |So| — |S1], then DL‘(MODm og) <k[logm].
(b) Otherwise, R§(MOD,,0g) > 3 +log(1 —2¢) — (k+ 1)[logm] — 1.

m24k

Before sketching the proof, we first state a lemma which is essential for our protocols
here and in the next subsection.

Lemma 3. Ler So = {uy,...,u,} and S; = {vi,...,v,} be subsets of the vertices of H;
such that for each i, the distance between u; and v; is odd. Then Y_in,, + Yi_;ny,
mod m can be computed in the simultaneous model using at most k - [logm] bits. Simi-
larly, if the distance between u; and v; is even for each i, ¥.;_ n,; — >i_; n,, modm can
be computed in the simultaneous model using at most k - [logm]| bits.

Proof. Using the notation in the proof of Theorem [I note that we are interested in
computing 3 ¥} 1;(u;) +1;(v;) mod m. Eachterm (1;(u;)+1;(v;)) can be written
as a telescoping sum as in (3)). Each term in the telescoping sum is known by a player.
Since we can do arithmetic modulo m, the desired value can be computed with each
player sending their part of the sum modulo m. So the total cost is k- [logm]. The
second part holds similarly.

Proof (Proof Sketch of Theorem[2). Part (a): Suppose m divides |So| — |S1| and assume
without loss of generality that |So| > |Si|. We choose (arbitrarily) a subset S C Sp
of size |Si|. As the distance between an element of S; and an element of S; is odd,
we can compute ZVE% ny + Yyes, iy mod m using Lemma Bl For the remaining el-

ements in Sy — Sj,, we pair them with 0. Hence, using Lemma [3] once again, we can
compute (|So| = [Si[)ng + Xies, s, v = yesy s, v mod m. Thus, we have computed
Yvesous, v mod m, from which the output of MOD,, 0 g is determined. Observe that the
sums Y, s My + Yyes, v modmand ¥, s My mod m need not be computed sepa-
rately and that we can compute ,cg, s, 7y mod m in one shot using k [logm]| bits.

Part (b), Case 1: We consider two cases, depending on whether m and |So| — | S| are
coprime or not. The first case is when m and |So| — |S1]| are coprime. The proof makes
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use of the characterization of the MOD,, function in terms of exponential sums. Fix
2<meNand0<ag,b<m—1.Letwy= e2™/m be an m-th root of unity. The function
ExP%? is defined as EXP?,,’b(yhyg7 ey Yn) = o (Zj=17)-0),

The strategy is as follows. Define fi(y1,...,y2) = X;y; modm. First we show
that for any cylinder intersection, the fraction of points x in the cylinder intersec-
tion that satisfy f,, o g(x) = b is roughly (with exponentially small error) 1/m for all
be{0,1,...,m— 1}. This step uses an estimate of the cube measure of EXan’b o g under
the uniform distribution.

Lemma 4. Assume m and |So| — |S1| are coprime. For any a € {1,2,...,m— 1} and
be {O, 1,....m— 1}, ‘Eru(EXP%b og) < efsn/(m22k).

It is perhaps remarkable that one can obtain a bound on the cube measure as a func-
tion of only [So| — |S1| and m. A proof of this lemma can be found in the full ver-
sion [1, Lemma 3.5]. Define the distribution u that puts equal weight to all x with
Sfmog(x) =0and f,, 0g(x) = 1. All other points get 0 weight. It will easily follow that
disc,(MOD,, o g) is exponentially small and thus the desired lower bound is achieved
using the discrepancy method (Inequality ().

Part (b), Case 2: It is not hard to show that the above analysis of Case 1 cannot work
when m and |So| — |S1] are not coprime. Thus, to get the complete characterization, we
need new ideas. For this, we construct a reduction to Case 1 using insights from the
protocol of Theorem [Tl We can assume without loss of generality that |So| — |S1| > 0.
Let 1 <d = ged(m,|So| —|S1]), and let m = dg and |So| — |S1| = dr, where g and r are
coprime integers. Because m does not divide |So| — |S1|, ¢ > 2. Our strategy is to use a
protocol for MOD,, o g in order to construct a protocol for MOD4 o g’ for some function
g for which we can apply the lower bound proved in Case 1.

We start by partitioning the set Sp into sets S, T1,...,T; with |Sj| = |S1| and |T7| =
--+ =|Ty| = r. Let g’ be the function whose support is 7}. Note that the support of g’ has
size r and consists only of inputs of even Hamming weight. So we can apply the lower
bound of Case 1 to MOD, 0 g'.

Using a protocol for MOD,, o g, we will construct a protocol for MOD4 0 g’ as follows.
Fix an input X € {0, 1}**" in matrix form. Recall that for each v € {0, 1}%, n, denotes
the number of occurrences of v as a column of X. First, using Lemma[3]we can compute
P spus; M mod m using k [logm] bits of communication. Again using Lemma[3] for

any ¢ € {2,...,d}, the difference ¥,c7, ny — X,cr; v mod m can also be computed at
a cost of k [logm]| bits. As a result, we can compute

Z nv+zd:(2nvfz:nv) = vadenv mod m.

vESHUS| (=2 veTy; veT veS veT)

Let s = s(X) denote this number. Observe that 3,7, n, =0 mod q iff d¥,cq, n, =0
mod m. So ¥,.cr, 1y =0 mod g iff ¥, cgn, =s mod m. The latter can be determined
by running the protocol for MOD,, o g on the input which is obtained from X (viewed as
an k x n’ array) by appending m — s columns all of which belong to S.

In short, the protocol for MOD4 o g’ on inputs from ({0, 137 )% consists of two steps:
First, the players compute s. Then they simulate the protocol for MOD,, o g on the input
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of size ({0, 1}")* specified above, where n = n’ 4 (m — s). A lower bound for MOD,, 0 g
then follows from Case 1.

3.3 MAJog

For each n > 1, the majority function MAJ" : {0,1}" — {—1,1} is defined as
MAJ*(y1,...,yn) = —1 iff ¥;¥; > n/2. When no confusion arises we drop the super-
cript n from MAJ”. It is not difficult to show that MAJ o g cannot be much easier than
SYMog:

Proposition 1. Let g: {0,1}* — {0, 1} be a boolean function and f : {0,1}" — {—1,1}
be a symmetric function on n variables. For any € > 0, R,EC, (fog) < RZ(MAJZ” og)-
[log(n+1)], where € =¢€[log(n+1)].

We can combine Proposition[Ilwith our lower bounds for MOD,, o g functions (Theorem
D) to obtain a characterization for the complexity of MAJ o g for every g.

Theorem 3. Let g : {0,1}* — {0,1} be a boolean function and S be its support. The
function MAJ o g satisfies:

— If|So| = |S1|, then D) (MATo g) < k- [log(n+1)].
— Otherwise, R]l(/3(MAJ 0g)>Q (

n
(klogk)2-4klognloglogn ) :

Theorem[3] can be used to determine the communication complexity of a class of func-
tions considered by Babai et al. [2]. For an odd prime k, define the function QCSBy :
{0,1}* — {0,1} by QCSBi(y1,...,vx) = 1 if and only if y; + --- + y is a quadratic
residue modulo k. Recall that z € F is a quadratic residue if there exists a € [Fy such
that z = a?. The authors of [2]] prove that QCSBy is not ‘compressible’, so their proto-
col for k > 1+ logn does not apply for SYM o QCSBy. They leave as an open question
the problem of finding good bounds for the communication complexity of the func-
tion MAJ o QCSB;. The following corollary completely determines the hardness of this
function for any number of players, except in the range between = é logn and logn.

Corollary 1 (Answers Babai et al. [2]). Let k be an odd prime.

- Ifk=1 mod4, then Dl{l (MAJ0QCSBy) < O(klogn).

1/3
- Ifk=3 mod 4, then Rk/ (MAJO QCSBk) 2Q ((klogk)24/< lnognloglogn).

— Ifk > 1+logn, then D) (MAToQCSBy) < O(log’n).

3.4 NORog

We obtain a simple and perhaps surprising characterization for the k-player randomized
communication complexity of NOR o g, where NOR(y1,...,y,) = —1iff (y1,...,y,) =
(0,...,0). In a very recent paper, Sherstov [21]] significantly improves on the bounds of
[LL5],[8] and [S] on the multiparty bounded error communication complexity of disjoint-

1/4
ness: R,](/3(DISJ) >Q (fk) . First we observe that this lower bound applies - via a
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simple reduction - to NOR o g when g’s support size is 1. We complement this with an
efficient randomized protocol for NOR o g when g’s support size is more than one. The
main ingrediants of the upper bound is Theorem[2l together with random sampling.

Theorem 4. Let g : {0,1}% — {0,1} be a boolean function and S = {y € {0,1}* :
g(y) = 1} be its support.

13 1/4
- If|S| = 1, R;*(NorR 0 g) > (k)
— Otherwise, R{(NOR o g) < O(k) for a constant €.

4 Conclusion

The most well-studied communication problems like GIP, set-disjointness have a com-
posed structure with an outer function f and an inner function g. Recently, this structure
has been exploited by several authors to prove hardness in the NOF model. A natural
question that arises is what combination of f and g results in hardness. Almost all previ-
ous work focused on fixing the inner function g with a convenient property that allows
one to prove hardness for a range of outer functions f. In this work, we address the dual
and natural problem of studying families of functions that arise from varying the inner
function g. We obtain complete characterizations of hard and easy functions in three of
these families: MAJ o g, MOD,;, o g and NOR o g. Our characterizations show that hard
functions in each of these families, somewhat unexpectedly, exhibit simple and elegant
structure.

A key component of our characterization is a new simultaneous protocol for SYM o
g that is efficient for every g, when the number of players is more than logn. This
rules out the possibility of composing a symmetric function with any inner function
to take us past the logn barrier for proving strong lower bounds. To the best of our
knowledge, such an impossibility was not known before. In particular, Babai et. al., ten
years ago, posed an open problem of determining the communication complexity of the
function MAJ o QCSBy, where QCSBy is the quadratic residuosity function. Combining
our protocol for SYM o g with our characterization of MAJ o g, we are able to completely
answer this question. While this may sound as a setback to the hope of going past
the logn barrier, it highlights the importance of considering block composition where
the inner function acts on a block of columns rather than one column as presented in
this paper. We end this discussion by pointing out an open problem: Is there an inner
function g that acts on two columns such that MAJ o g is hard for more than logn players?
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Abstract. We initiate a study of random instances of nonlocal games.
We show that quantum strategies are better than classical for almost
any 2-player XOR game. More precisely, for large n, the entangled value
of a random 2-player XOR game with n questions to every player is at
least 1.21... times the classical value, for 1 — o(1) fraction of all 2-player
XOR games.

1 Introduction

Quantum mechanics is strikingly different from classical physics. In the area
of information processing, this difference can be seen through quantum algo-
rithms which can be exponentially faster than conventional algorithms [27/25]
and through quantum cryptography which offers degree of security that is im-
possible classically [5].

Another information-theoretic way of seeing the difference between quantum
mechanics and the classical world is through non-local games. An example of a
non-local game is the CHSH (Clauser-Horne-Shimony-Holt) game [I0]. This is
a game played by two players against a referee. The two players cannot com-
municate but can share common randomness or a common quantum state that
is prepared before the beginning of the game. The referee sends an independent
uniformly random bit to each of the two players. Each player responds by send-
ing one bit back to the referee. Players win if x @y = i A j where 4, j are the bits
that the referee sent to the player and x, y are players’ responses. The maximum
winning probability that can be achieved is 0.75 classically and 5 + 2\1/2 =0.85...
quantumly.

There are several reasons why non-local games are interesting. First, CHSH
game provides a very simple example to test the validity of quantum mechanics.
If we have implemented the referee and the two players A, B by devices so that

* Supported by ESF project 2009/0216/1DP/1.1.1.2.0/09/APIA /VIAA /044 and FP7
FET-Open project QCS. Full version available as arXiv preprint arXiv:1112.3330.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 25-B7] 2012.
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there is no communication possible between A and B and we observe the winning
probability of 0.85..., there is no classical explanation possible. Second, non-local
games have been used in device-independent cryptography [1126].

Some non-local games show big gaps between the classical and the quantum
winning probabilities. For example, Buhrman et al. [§] construct a 2-player quan-
tum game where the referee and the players send values z,y,i,57 € {1,...,n}
and the classical winning probability is % + O( \/1”) while the quantum winning
probability is 1. In contrast, Almeida et al. [2] construct a non-trivial example
of a game in which quantum strategies provide no advantage at all.

Which of those is the typical behaviour? In this paper, we study this question
by looking at random instances of non-local games.

More specifically, we study two-party XOR games with uniform distribution
of inputs. This is a subclass of non-local games with 2 players, where the referee
chooses inputs ¢ € {1,2,...,n}, j € {1,2,...,k} uniformly at random and sends
them to the players. The players reply by sending bits = and y. The rules of the
game are specified by an n X k matrix A whose entries are +1 and —1. To win,
the players must produce z and y with =y if A;; =1 and « and y with z # y
if A;; =—1.

We consider the case when the matrix A that specifies the rules of the game
is chosen randomly against all +1-valued n x k& matrices A. For the case when
n = k, we show that

— The maximum winning probability p, that can be achieved by a quantum
strategy is 5 + Hi;’?il) with a probability 1 — o(1);

— The maximum winning probability p.; that can be achieved by a classical
strategy satisfies

1 0.8325... + o(1)
< <
vn = Pl = 2 + Vvn

with a probability 1 — o(1).

In the literature on non-local games, one typically studies the difference between
the winning probability p, (p.) and the losing probability 1 — p, (1 — pe):
Ay =2pg — 1 (Ag = 2pe — 1). The advantage of quantum strategies is then

evaluated by the ratio A4 For random XOR games, our results imply that
A

cl

Aq
1.2011... < ©\ 7 < 1.5638...

cl

~

for almost all games. Our computer experiments suggest that, for large n, iql ~
1.305.... For comparison, the biggest advantage that can be achieved in any 2-
player XOR game is equal to Grothendieck’s constant K¢ [14] about which we
know that [16l23]/6]

1.67696.... < Kg < 1.7822139781...
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Thus, the quantum advantage in random XOR games is comparable to the max-
imum possible advantage for this class of non-local games.

We find this result quite surprising. Quantum-over-classical advantage usually
makes use of a structure that is present in the computational problem (such as
the algebraic structure that enables Shor’s quantum algorithm for factoring [25]).
Such structure is normally not present in random computational problems.

The methods that we use to prove our results are also quite interesting. The
upper bounds are easy in both classical and quantum case but both lower bounds
are fairly sophisticated. The lower bound for the entangled value requires proving
a new version of Marcenko-Pastur law [19] for random matrices.

The classical value of random XOR games is equal to a natural quantity
(lo = 11 norm of a random matrix) that might be interesting for other purposes.
The lower bound for it requires a subtle argument that reduces lower-bounding
the classical value to analyzing a certain random walk.

Related Work. Junge and Palazuelos [I7] and Briet and Vidick [7] have con-
structed non-local games with a big gap between the quantum (entangled) value
and the classical value, via randomized constructions. The difference between
this paper and [7J17] is as follows. The goal of [7I17] was to construct a big gap
between the entangled value and the classical value of a non-local game and the
probability distribution on non-local games and inputs was chosen so that this
goal would be achieved.

Our goal is to study the behaviour of non-local games in the case when the
conditions are random. We therefore choose a natural probability distribution
on non-local games (without the goal of optimizing the quantum advantage) and
study it. The surprising fact is that a substantial quantum advantage still exists
in such setting.

2 Technical Preliminaries

We use [n] to denote the set {1,2,...,n}.

In a 2-player XOR game, we have two players A and B playing against a
referee. Players A and B cannot communicate but can share common random
bits (in the classical case) or an entangled quantum state (in the quantum case).
The referee randomly chooses values i € {1,...,n} and j € {1,...,n} and sends
them to A and B, respectively. Players A and B respond by sending answers
x € {0,1} and y € {0,1} to the referee.

Players win if answers « and y satisfy some winning condition P(i,j,z,y).
For XOR games, the condition may only depend on the parity « @ y of players’
responses. Then, it can be written as P(i,j,z ® y).

For this paper, we also assume that, for any i, j, exactly one of P(i,j,0) and
P(i, j,1) is true. Then, we can describe a game by an n x n matrix (A4;;)7;_;
where A;; = 1 means that, given ¢ and j, players must output x,y with x®y =0
(equivalently, = y) and A;; = —1 means that players must output z,y with
x @y =1 (equivalently, x # y).
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Let ps,win be the probability that the players win if they use a strategy S and
DS,ios = 1 —Ds,win be the probability that they lose. We will be interested in the
difference Ags = pg win — Ps,i0s between the winning and the losing probabilities.
The classical value of a game, A, is the maximum of Ag over all classical
strategies S. The entangled value of a game, Ay, is the maximum of Ag over all
quantum strategies S.

Let p;; be the probability that the referee sends question ¢ to player A and
question j to player B. Then [I1} section 5.3], the classical value of the game is
equal to

Acl = max E{ 1 1} Z pz] ij WiVj . (1)

w1, un€{—1,1}  vi,.. 0

In the quantum case, Tsirelson’s theorem [9] implies that

Aq = 1max pzj ij Uz U]> (2)
wiilul =1 o5 oy l= Z ’

where the maximization is over all tuples of unit-length vectors u1, ..., u, € RY,

v1,...,0, € R? (in an arbitrary number of dimensions d).

We will assume that the probability distribution on the referee’s questions i, j
is uniform: p;; = nlz and study Ay and A, for the case when A is a random
Bernoulli matrix (i.e., each entry A;; is +1 with probability 1/2 and —1 with
probability 1/2, independently of other entries).

Other probability distributions on referee’s questions can be considered, as
well. For example, one could choose y;; to be normally distributed random vari-

ables with mean 0 and variance 1 and take p;; = s ": “yij‘ . Or, more generally,
one could start with y;; being i.i.d. random variables from some arbitrary dis-
tribution D and define p;; in a similar way.

Most of our results are still true in this more general setting (with mild as-
sumptions on the probability distribution D). Namely, Theorem [ and the upper
bound part of Theorem Ml remain unchanged. The only exception is the lower
bound part of Theorem @ which relies on the fact that the probability distribu-
tion p;; is uniform. It might be possible to generalize our lower bound proof to
other distributions D but the exact constant in such generalization of our lower
bound could depend on the probability distribution D.

3 Quantum Upper and Lower Bound

Theorem 1. For a random 2-player XOR game with n inputs for each player,

2+ 0(1)

a=""

with probability 1 — o(1).
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Proof. Because of (), proving our theorem is equivalent to showing that

Uiy Vi o n3/2
- 12214” i05) = (2% 0(1))

u v
s =iy —~ =

holds with probability 1 — o(1).

For the upper bound, we rewrite this expression as follows. Let u be a vector
obtained by concatenating all vectors u; and v be a vector obtained by concate-
nating all v;. Since ||u;|| = ||v;]| = 1, we have ||u|| = ||v]| = /n. We have

SN Aijlu,vg) = (u, (A Do) < Jull - [A I - [lo]| < [|A]n.

i=1 j=1

By known results on operator norms of random matrices [30], | A]| = (24+0(1))v/n
with a high probability.
For the lower bound, we note that

n n

E E Aij{ug,v max E E Agj{ug,vj).
=1 i iy v3) T il <L <1 A

fucl=io; —~ = <Ll <1 4=

We have

Theorem 2 (Maréenko-Pastur law, [19]). Let A be a n x n random matrix
whose entries A;; are independent random variables with mean 0 and variance
1. Let C € [0,2]. With probability 1 — o(1), the number of singular values \ of A
that satisfy A > C+/n is (f(C) — o(1))n where

1 [ 4
= / \/ — 1dx.
27 Jyp—c2 V

Let A1,...,Am be the singular values of A that satisfy \; > (2 — €)y/n. With
high probability, we have m € [(f(2 —€) — o(1))n, (f(2 — €) + o(1))n]. We now
assume that this is the case.

Let I; and r; be the corresponding left and right singular vectors: Ar; = \;l;.
(Here, we choose I; and r; so that ||l;|| = ||r:]] = 1 for all 4.) Let ;; and r;; be
the components of [; and r;: I; = (lij)?zl and r; = (rij)?zl.

We define u; and v; in a following way:

wj = (lij)ity, v = (rij)its-
We have

Z ZAij<ui7 Uj) = ZZ ZAijlkirkj

i=1 j=1 i=1 j=1 k=1

3

Z lgy Arg) Z Ak > (2 — €)ma/n. (3)
k=1 k=1
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Since ||l;|| = ||7:]| = 1 and the vectors u; and v; are obtained by rearranging the
entries of /; and r;, we have

n n
D lual® =Y lEll? =m
i=1 i=1

and, similarly, ", ||v;[|> = m. If u; and v; all were of the same length, we would
have ||u;]|? = ||v;||*> = ™. Then, replacing u; and v; by v}, = i and v} =

n v ] vt ol
would increase each vector \/ o times and result in

SN A, vf) > (2— /2,

i=1 j=1

To deal with the general case, we will show that almost all u; and v; are of
roughly the same length. Then, a similar argument will be used. The key to our
proof is a new modification of Marcenko-Pastur law.

Theorem 3 (Modified Maréenko-Pastur law). Let A be an n X n random
matriz whose entries A;; are independent random variables with mean 0 and
variance 1. Let C € [0,2]. Let e; be the i'" vector of the standard basis. Let
Pc be the projector on the subspace spanned by the right singular vectors with
singular values at least C\/n. Then,

Pr [|||Pcei||2 - f(C)|>¢ =0 <1)

n
with the big-O constant depending on C' and €.

The same result also holds for the left singular vectors.

Proof. The proof is given in the full version of the paper. O
We now complete the proof, assuming the modified Maréenko-Pastur law. Since
Pc is spanned by the right singular vectors r1,..., 7., we have
m m
2 2 2 2
1Peesl* = (rye® =Y i = [loil*. (4)
j=1 j=1

Therefore, the modified Marcenko-Pastur law means that
9 1
Pr{||vi||* > f(2—¢€)+ 6] =0 0

Thus, the expected number of i € {1,...,n} for which ||v;]|> > f(2 —€) +d is
O(1). We now apply the following transformations to vectors v;:

1. For each v; with ||v;]|2 > f(2 —€) + d (or u; with [Ju||? > f(2 —€) +6), we
%
replace it by the zero vector 0;
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2. We replace each v; by
/ U4
v, =

CVf2—e+6
and similarly for wu;.
After the first step [|v;[|> < f(2 — €) + J for all 4. Hence, after the second step,

04|12 < 1 for all 4.
We now bound the effect of those two steps on the sum

n n
> oD Ai{uivg).
i=1j=1
Because of (), the initial value of this sum is at least

(2—myn > (2— (f(2— ) — o(1))n*/2. (5)

Because of @), ||v;||> = ||Pcejl|?* < |lej||* = 1. Similarly, |lu;||*> < 1. Hence,
[{(ui,vj)] < 1 and replacing one v; (or w;) by 0 changes the sum by at most
>t 1 ]Aij| = n. Replacing O(1) v;’s (or u,’s) changes it by O(n). Since the sum
(@) is of the order ©(n3/?), this is a lower order change.

Replacing v;’s by v’s (and u;’s by similarly defined u}’s) increases each inner

product (u;,v;) f(2716) s times and achieves
ZZA’J w01 2(2*6( (2 *6)*0(1))713/2.
Pt f2—e)+0

Since this can be achieved for any fixed € > 0 and § > 0, we get that

3/2
[|uf H<1 HU H<1ZZAU IR ] Z (2 — O(l))n / A

=15=1
O
4 Classical Upper and Lower Bound
In the classical case, we have to estimate
Ag = max Ajuv; 6
cl ut,...,un €{—1,1} v1,.. ,U.y,e{ 11} Z 1R ( )

There are several ways how one can interpret this expression and several contexts
in which similar quantities have been studied before:

1. (@) is equal to the I — I3 norm of A (denoted ||Al|oo—1)- It is known that,
for a random matrix A, ||Al|cc—1 = ©(ny/n) (e.g., from [21] or [I]]), but the
exact constant under © is not known.
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2. One can also interpret (B) combinatorially, as a problem of “unbalancing
lights” [3]. In this interpretation, n x n matrix represents an array of lights,
with each light being “on” (A;; = 1) or “off” (A4;; = —1). We are allowed to
choose a row or a column and switch all lights in this row or column. The
task is to maximize the difference between the number of lights that are on
and the number of lights that are off. It is known that for any n x n matrix

A with £1 entries, (@) is at least \/inS/Q [B, p.19]. We are not aware of any

work on evaluating (@) for a random matrix A in this context.
3. In the context of statistical physics, there has been substantial work on
determining the order of

n

max Z Aijuiuj (7)

uL,...,un€{—1,1} =1
=

when A;; is a symmetric Gaussian matrix (each A;; = Aj; is an independent
Gaussian random variable with mean 0 and variance 1). It is known that
(@) is equal to (1.527... + o(1))n/? with probability 1 — o(1). This was first
discovered in [24]22] and rigorously proven by Talagrand [29].

The quantities (6) and (7)) are of similar flavour but are not identical and
there is no clear relation between them.

Theorem 4. For a random 2-player XOR game, its classical value A satisfies

L2789 2VI2+0(1) _ L6651 +o(1)

with probability 1 — o(1).
This is equivalent to
1.2789..n%? < || Al o1 < 1.6651...n3/2
for a Bernoulli random matrix A.

In computer experiments, the ratio
3/2

ANl o1
n3/2

for n = 26. By fitting a formula an®/“+ bn where the leading term is of the order
n3/2 and the largest correction term is of the order n to the data, we obtained
that

grows with n and reaches 1.4519...

| Alloos1 ~ 1.53274...n%/% — 0.472806...n.

Figure [ shows the fit. Curiously, the constant in front of n3/2 is very close to the

constant 1.527... for the sum (7). We do not know whether this is a coincidence
or there is some connection between the asymptotic behaviour of the two sums.

Proof. The upper bound follows straightforwardly from Chernoff bounds (and is
similar to the argument in [I8] which provides an upper bound on () which holds
with probability 1 —O(1/¢™)). We use the following form of Chernoff inequality:
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Fig. 1. ||Al|co—1, for random n X n matrices A

Theorem 5. [3, p.263] Let X1,...,X, be independent random variables with
PriX;=1]=Pr[X; =-1]=} and let X = X1 + ...+ Xp. Then,

a2

PriX >a]l<e 2.

Let z1,...,2, € {—1,1} and y1,...,yn € {—1,1} be arbitrary. If A;; € {-1,1}
are uniformly random, then A;;x;y; € {—1, 1} are also uniformly random. Hence,
i Aijxiyj is a sum of n? uniformly random values from {—1,1}. By Theorem

3\2
—(Ccn2
3 ) 1
Pr E Aijjziy; > Cn2 | <e 20 = -
e 2

,J
By taking C' = 2v/In2 + 2\/ln” we can ensure that this probability is less than

Vvn
QQWQ Then, by the union bound, the probablhty that Z Ay > Cn> for

some choice of z;’s and y;’s is less than 22n 2% 2 = n2
We now prove the lower boundl. We first show

Lemma 1. Let A be an n X n random Bernoulli matriz. Then,

E i A | > (1.2789... — o(1))n3/2.
A Mrg?x“}Zuvj il = o(1))n

! This lower bound is not necessary for proving the advantage of quantum strategies
which follows by combining the classical upper bound and the quantum lower bound.
But it is interesting for two other reasons. First, it is necessary to show that, for a
random XOR game, AA“ is less than Grothendiek’s constant. Second, as discussed at
the beginning of this sectlon the classical value is equal to a natural quantity that
comes up in several other settings.
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Let X = maxy, o, c({-1,1} Zi’j u;v; Aij. By Lemmalll E[X] > (1.2789...—o(1))n%/2.
To prove that X > (1.2789... — o(1))n?/? with probability 1 —o(1), we show that
X is concentrated around E[X].

Lemma 2. Let X = max,, y;e{-1,1} Z u;v; Ay for a random n xn matriz A.
Then,

Pr{|X — E[X]| > an] < 2¢~*/5.

We then apply Lemma [2] with @ = logn (or with @ = f(n) for any other f(n)
that has f(n) — oo when n — oo and f(n) = o(y/n)) and combine it with
Lemma [T

It remains to prove the two lemmas.

Proof (of Lemma [d). Let A be a random +1 matrix. We choose u; and v,
according to Algorithm [I1
Because of the last step, we get that

ZZ UiUg w—Z|S -

Each of Sj, ; is a random variable with an identical distribution. Hence,

DD A | =Y ElSn ;| =nE|Snal. (8)

i=1 j=1 j=1

1. Set uy = 1.
2. For each £k =2,...,n do:

(a) For each j =1,...,n, compute Si_1,; = Zf;ll Aiju;.

(b) Let ar = (Z(Sk-1,1),Z(Sk=1,2)s -, Z(Sk—1,n)) where Z(z) = 1 if z > 0,
Z(x) = —1if z < 0 and Z(z) = 1 or Z(z) = —1 with equal probability }
if x =0.

(C) Let by = (Ak;l,AkQ, 7Akn)

(d) Let ur € {+1,—1} be such that a; and uxbx agree in the maximum number
of positions.

3. For each j =1,...,n, let v; be such that v;Sn ; > 0 where Sn; = >" | Aijui.

Algorithm 1. Algorithm for choosing u; and v; for a given matrix A

We now consider a random walk with a reflecting boundary. The random walk
starts at position 0. If it is at the position 0, it always moves to the position 1.
If it is at the position ¢ > 0, it moves to the position ¢+ 1 with probability ; +5
and position ¢ — 1 with probability ; — 5. Let Kf be the position of the walker

after 7 steps.
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Lemma 3. |S, 1| = K, for some e = (1 + 0(1))\/ 2

™

Proof. b; = (Ai1, ..., Ain) is a vector consisting of random +1’s that is indepen-
dent of a;. Hence, the expected number of agreements between a; and wu;b; is
(34 5)n where e = (1+ 0(1))\/73” [3, p.21]. Moreover, the probability of a; and
u;b; agreeing in location j is the same for all j.

Hence, if |S;_1 1| > 0, we have |S; 1| = |S;—1,1| + 1 with probability ; + 5 and
[Si1] = 1Si—1,1] — 1 with probability é — 5. If |[Si—1,1| = 0, then we always have
[Si1| = 1. O

Lemma 4. For a random walk with a reflecting boundary and € = \‘/)‘n, we have

E[KS] > (f(o) — o(1))y/n where

fla) = ; <e—”22 \/i +a+ (; +a> Erf(\j;)).

Proof. The proof is given in the full version of the paper. O
By combining () and Lemmas [l and @] the probability of winning minus the
probability of losing in the classical case of a random XOR game is at least

2+2e7 Y™ 4 (24 m)Erf () )
f(\/2>\/n~n~ 12: (\/)Tf?
s n

2v/2m

— 1.2789076012442957..n "2 .

Proof (of Lemmal3). Let

f(A117A127"'3Ann) max ZU ’U] ij

ui,vje{—1,1}

Then, changing one A;; from +1 to —1 (or from —1 to +1) changes }_, ; u;v;A;;
by at most 2. This means that f(Ai1,..., Ann) changes by at most 2 as well. In
other words, f is 2-Lipschitz. By applying Azuma’s inequality [20, p. 303-305]
WlthC—Zt—n , A= 3, we get

Pr “f(All’ Tt A”n) - E[f(Alla ceey Ann)” 2 an] < 2670’2/8,

5 Conclusion

We showed that quantum strategies are better than classical for random in-
stances of XOR games. We expect that similar results may be true for other
classes of non-local games.
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A possible difficulty with proving them is that the mathematical methods

for analyzing other classes of non-local games are much less developed. There
is a well developed mathematical framework for studying XOR games [9ITTI31]
which we used in our paper. But even with that, some of our proofs were quite
involved. Proving a similar result for a less well-studied class of games would be
even more difficult.

Acknowledgments. We thank Assaf Naor, Oded Regev, Stanislaw Szarek and
several anonymous referees for useful comments and references to related work.
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Abstract. We study the problem of maximizing a monotone submodular set
function subject to linear packing constraints. An instance of this problem con-
sists of a matrix A € [0, 1]™*™, a vector b € [1, 00)™, and a monotone submod-
ular set function f : 2" — R, . The objective is to find a set .S that maximizes
F(S) subject to Azs < b, where x g stands for the characteristic vector of the set
S. A well-studied special case of this problem is when f is linear. This special
linear case captures the class of packing integer programs.

Our main contribution is an efficient combinatorial algorithm that achieves
an approximation ratio of 2(1/m/"W), where W = min{b;/A;; : A;; > 0}
is the width of the packing constraints. This result matches the best known per-
formance guarantee for the linear case. One immediate corollary of this result
is that the algorithm under consideration achieves constant factor approximation
when the number of constraints is constant or when the width of the constraints
is sufficiently large. This motivates us to study the large width setting, trying to
determine its exact approximability. We develop an algorithm that has an approx-
imation ratio of (1—¢)(1—1/e) when W = £2(Inm/€*). This result essentially
matches the theoretical lower bound of 1 — 1/e. We also study the special setting
in which the matrix A is binary and k-column sparse. A k-column sparse matrix
has at most k non-zero entries in each of its column. We design a fast combina-
torial algorithm that achieves an approximation ratio of 2(1/(W k™)), that is,
its performance guarantee only depends on the sparsity and width parameters.

1 Introduction

Let f : 2["l — R be a set function, where [n] = {1,2,...,n}. The function f is called
submodular if and only if f(S)+ f(T) > f(SUT)+ f(SNT), forall S,T C [n]. An
alternative definition of submodularity is through the property of decreasing marginal
values. Given a function f : 2["/ — R and a set S C [n], the function fs is defined by
fs(g) = f(SU{j})—f(S). The value fs(j) is called the incremental marginal value of

* This research was supported in part by the Israeli Centers of Research Excellence (I-CORE)
program (Center No.4/11), the Israel Science Foundation (grant No. 1404/10), and by the
Google Inter-university center. Due to space limitations, some proofs are omitted from this
extended abstract. We refer the reader to the full version of this paper (available online at
http://arxiv.org/abs/1007.3604), in which all missing details are provided.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 38-50] 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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element j to the set S. The decreasing marginal values property requires that fs(j) is
non-increasing function of S for every fixed j. Formally, it requires that fs(j) > fr(j)
for all S C T. Since the amount of information necessary to convey an arbitrary sub-
modular function may be exponential, we assume a value oracle access to the function.
A value oracle for the function f allows us to query about the value of f(.5) for any
set S. Throughout the rest of the paper, whenever we refer to a submodular function,
we shall also imply a normalized and monotone function. Specifically, we assume that
a submodular function f also satisfies f(#) = 0 and f(S) < f(T) whenever S C T.

In this paper, we focus our attention on the problem (or rather class of problems)
of maximizing a monotone submodular set function subject to linear packing con-
straints. Formally, the input of this problem consists of a matrix A € [0, 1]™*™, a vector
b € [1,00)™, and a monotone submodular set function f : 2[" — R . The objective
is to find a set S that maximizes f(.5) subject to Azg < b, where xg stands for the
characteristic vector of the set .S. We note that the domain restrictions on the entries of
A and b are without loss of generality since arbitrary non-negative packing constraints
can be reduced to the above form by first eliminating any element j for which there is
some constraint 7 such that A;; > b;, and then scaling the input (see, e.g., the discussion
in [26]). A well-studied special setting of our problem is when the objective function
f is linear, namely, there is a weight vector ¢ € R} such that f(S5) = >_,c 5 ¢;. This
special setting captures the class of packing integer programs, which models many fun-
damental combinatorial optimization problems, including maximum independent set,
hypergraph matching, and disjoint paths.

Previous Work. There has been a long line of research on maximizing monotone sub-
modular functions subject to matroid and knapsack constraints. Arguably, the most clas-
sic scenario is maximizing a submodular function subject to a cardinality constraint,
that is, max{ f(S) : |S| < k}. It is known that a simple greedy algorithm achieves an
approximation ratio of 1 — 1 /e for this problem [23]]. Furthermore, this result is optimal
in two different ways: (i) given only oracle access to f, one cannot attain a better ap-
proximation ratio without asking exponentially many value queries [22]], and (ii) even
if f has a compact representation, it is still NP-hard to obtain a better approximation re-
sult [L1]. The greedy approach and its variants has been shown to be useful in additional
constraint structures [15/19l6/18]]. One relevant setting is maximizing a monotone sub-
modular function under a knapsack constraint [30]. A knapsack constraint is essentially
a single packing constraint, and may be viewed as the weighted analog of a cardinality
constraint. Sviridenko [27] demonstrated that a greedy algorithm with partial enumera-
tion achieves an approximation guarantee of 1 — 1 /e for this problem.

Another approach that has been proven effective in handling submodular function
maximization under different constraint structures is based on approximately solv-
ing a continuous fractional relaxation of the problem, followed by pipage or random-
ized rounding. The pipage rounding technique was originally developed by Ageev and
Sviridenko [1], and was adapted to submodular maximization scenarios by Calinescu,
Chekuri, P4l and Vondrék [5]]. Vondrak [28]] utilized the continuous relaxation approach
to achieve a tight (1 — 1/e)-approximation for maximizing a monotone submodular
function subject to a matroid constraint, and Kulik, Shachnai and Tamir [20] used
this approach to attain a (1 — €)(1 — 1/e)-approximation for maximizing a monotone
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submodular function under a constant number of packing constraints. Later on, Chekuri,
Vondrdk and Zenklusen [8] presented a dependent randomized rounding scheme that
can be utilized to extend those results for maximizing a monotone submodular function
subject to one matroid and constant number of packing constraints. Recently, Feldman,
Naor and Schwartz [[14] presented a new unified continuous relaxation approach that
finds approximate fractional solutions in both monotone and non-monotone scenarios.

Our Contribution. Our main result is an efficient multiplicative updates algorithm for
maximizing a monotone submodular function subject to any number of linear packing
constraints. The approximation ratio of our algorithm matches the best known perfor-
mance guarantee for the special case when the objective function f is linear, which
is achieved using the randomized rounding technique [25/24126]. More precisely, let
W = min{b;/A;; : A;; > 0} be the width of the packing constraints, we attain the
following result.

Theorem 1. There is a deterministic polynomial-time algorithm that attains an approx-
imation guarantee of 2(1/m"/ W for maximizing a monotone submodular function
under linear packing constraints.

It is worth noting that our combinatorial algorithm is deterministic and efficient. More-
over, our technique is different than the two leading approaches used in the past
for submodular maximization, namely, the greedy approach and the continuous re-
laxation approach. Our algorithm is based on a multiplicative updates method (see,
e.g., [3141642/4]]). This method is known to be fruitful for approximately solving prob-
lems that can be cast as linear and integer programs. Nevertheless, the analysis of these
algorithms relies heavily on primal-dual results, which are not applicable in our sub-
modular setting. We believe that this new approach may be suitable for other submod-
ular optimization problems. We also like to remark that a comparable approximation
guarantee may be obtained using the continuous relaxation approach applied with ran-
domized rounding [7]. However, in contrast with that approach, our algorithm is deter-
ministic, efficient and combinatorial. In particular, the continuous relaxation approach
runs in polynomial-time but is very far from being practical.

One immediate corollary of Theorem [1l is that the algorithm under consideration
achieves a constant factor approximation when the number of constraints is constant or
when the width of the packing constraints is sufficiently large, say W = 2(Inm). This
motivates us to study the large width setting, trying to determine its exact approxima-
bility. The following theorem summarizes our result in this context.

Theorem 2. There is a deterministic polynomial-time algorithm that achieves an ap-
proximation ratio of (1 — €)(1 — 1/e) for maximizing a monotone submodular function
subject to linear packing constraints when W = 2(Inm/€?), for any fixed ¢ > 0.

We note that this result almost matches the theoretical lower bound of 1 — 1/e, which
already holds for maximizing a monotone submodular function subject to a cardinality
constraint [23U11]]. Specifically, the large width setting captures the hard instances of
that problem. We remark that the (1 — 1/e)-approximation in the submodular setting
stands in contrast with a (1 4 €)-approximation which can be achieved by randomized
rounding when the objective function is linear and the width is sufficiently large.
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We also study the interesting special setting of the problem in which the constraints
matrix is binary, namely, A € {0,1}™*" instead of A € [0,1]™*"™. We demonstrate
how to fine-tune our algorithm and its analysis to achieve an improved approximation
guarantee of £2(1/m/(W+1). We like to emphasize that this result is optimal unless
P = ZPP. Recently, Bansal et al. [3] considered the special case of maximizing a
submodular function under k-column sparse packing constraints. In this setting, the
constraints matrix has at most k& non-zero entries in each column. They developed an
algorithm whose approximation ratio only depends on the sparsity and width parame-
ters of the input matrix. Specifically, they presented a £2(1/k*/")-approximation algo-
rithm that employs the continuous relaxation approach in conjunction with randomized
rounding and alteration. We make a first step towards attaining their performance guar-
antee in a deterministic and efficient way. We present a fast combinatorial algorithm
for the binary k-column sparse setting whose approximation ratio only depends on the
sparsity and width parameters of the input matrix. The following theorem outlines this
result.

Theorem 3. There is a deterministic polynomial-time algorithm that achieves an ap-
proximation guarantee of 2(1/(WkYW)) for maximizing a monotone submodular
function under binary packing constraints.

Other Related Work. The problem of maximizing a non-monotone submodular func-
tion without any structural constraints is known to be both NP-hard and APX-hard since
it generalizes the maximum cut problem. Feige, Mirrokni and Vondrék [12] developed
an algorithm whose approximation ratio is 0.4. This result was iteratively improved
by Oveis Gharan and Vondrédk [17], and then by Feldman, Naor and Shwartz [13] to
a ratio of 0.42. Lee, Mirrokni, Nagarajan and Sviridenko [21]] presented a (1/4 — ¢)-
approximation algorithm for non-monotone submodular maximization subject to a con-
stant number of packing constraints. This result was iteratively improved by Chekuri,
Vondrdk and Zenklusen [9], and then by Feldman, Naor and Shwartz [14] to a ratio
of 1/e — e. Vondrék [29], and very recently, Dobzinski and Vondrék [[10] developed
general approaches to derive inapproximability results in the value oracle model.

2 Submodular Maximization with Linear Packing Constraints

In this section, we develop a multiplicative updates algorithm for the problem and an-
alyze its performance. An important input parameter of our algorithmic template is an
update factor. This parameter plays an essential role in achieving the desired approxi-
mation guarantees in the two settings of interest. We first consider the general problem,
and demonstrate that there is an update factor for which our algorithm attains an ap-
proximation ratio of £2(1/m"'/"). In particular, this implies that the algorithm achieves
constant factor approximation for input instances that have a large width, e.g., instances
with W = 2(Inm). This motivates us to study this large width setting, trying to deter-
mine its exact approximability. We match (up to a disparity of €) the theoretical lower
bound of 1 — 1/e using a different update factor and a refined analysis.

2.1 The Algorithm

The multiplicative updates algorithm, formally described below, maintains a collection
of weights that are updated in a multiplicative way. Informally, these weights capture
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the extent to which each constraint is close to be violated under a given solution. The
algorithm is built around one main loop. In each iteration of that loop, the algorithm
extends the current solution with a non-selected element that minimizes a normalized
sum of the weights. When the loop terminates, the algorithm returns the resulting so-
lution in case it is feasible; otherwise, either the last selected element or the result-
ing solution without that element is returned, depending on their value. Recall that
fs(g) = f(SU{j}) — f(S) is the incremental marginal value of element j to the set
S, and zg is the characteristic vector of the set .S.

Algorithm 1. Multiplicative Updates
Input: A collection of linear packing constraints defined by A € [0, 1]™*™ and b € [1, 00)™,
a monotone submodular set function f : PALQ N R4, an update factor A € Ry
Output: A subset of [n]
1: S« 0
2: for i < 1tomdo w; < 1/b; end for
3: while Y~ | byw; < Xand S # [n] do
4: Let j € [n] \ S be the element with minimal Y " | Asjwi/ fs(5)
5 S+ SU{s}
6: for i « 1 to m do w; < w;A*#/% end for
7: end while
8: if Axs < bthen return S
9:
10

selseif f(S\ {j}) > f({j}) thenreturn S\ {j}
: else return {;j} end if

2.2 Analysis

In the remainder of this section, we analyze the performance of the algorithm. We be-
gin by establishing several lemmas that hold independently of the value of the update
factor. Later on, we consider specific update factors, and study their effect on the ap-
proximation ratio of the algorithm. For ease of presentation, it would be convenient to
first introduce some notation and terminology:

— Let S* C [n] be a solution that maximizes the submodular function subject to the
linear packing constraints, with value of f(S™).

— Let S; be the solution at the end of iteration ¢ of the algorithm, and note that So = ()
indicates the solution at the beginning of the algorithm. Moreover, let v(t) denote
the element selected at iteration ¢ of the algorithm, and let 6; = f(S;) — f(S¢—1)
be its incremental marginal value to the solution. Finally, let w;; be the value of w;
at the end of iteration ¢ of the algorithm, and remark that w;o = 1/b; is the value of
w; at the beginning of the algorithm.

- Let Ay = Y7 bywg and oy = Y71 Ay (pywy(z—1)/0¢. Notice that the algorithm
may proceed to iteration ¢ + 1 only if A; < A, and that Ay = m. Also note that oy
is the value which gave rise to the selection of element () at iteration ¢.

Correctness. We prove that the algorithm outputs a feasible solution. This is achieved
by demonstrating that the returned solution respects the packing constraints.

Lemma 1. The algorithm outputs a feasible solution.
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Approximation. We turn to analyze the approximation guarantee of the algorithm. We
begin by establishing a generic algebraic bound applicable for any monotone submod-
ular function and any arbitrary sequence of element additions.

Proposition 1. Given a submodular function f : 2" — R, a set collection Sy C
S1 C--- C S, Cn), and a set S* C [n] satisfying f(S*) > f(St) then

" f(Se) = F(Se-1) F(S*) = f(So)
2 (5%) — (50 = (f(S*) - f<st>) |

We continue by bounding the value of the optimal solution using the main parameters
of the algorithm at the end of iteration /.

Proposition 2. f(S*) < f(S¢) + A¢/ 1 in every iteration £.

Proof. The element selected at iteration £+ 1 minimizes the term Y ;- | A;;wie/ fs,(j)
with respect to every j € [n]\S. This clearly implies that o1 < > i) Ajjwie/ fs,(5)
for every 7 under consideration. Rearranging the terms in this inequality, we can bound
the marginal value of each element j € [n] \ S; with respect to Sy, and obtain that
fs.() < 30 Ajjwie/apqq. Let J* = {j : j € S*andj ¢ S¢} be the set of ele-
ments selected by the optimal solution, but not selected by the algorithm up to the end
of iteration ¢. Note that J* C [n] \ S, and notice that

FIST) < F(STUS) < F(S)+ Y f5.(5)

jeJ*

where the first inequality follows from the monotonicity of f, and the last inequality
holds as a result of its submodularity. Specifically, the latter inequality is obtained using
the decreasing marginal values property. We now focus on bounding the above right-
hand side term. For this purpose, we utilize the bound derived earlier on the marginal
values of the elements in [n] \ Sy, and attain

ZfSe ZZ Uwzezi Wig ZAU—waM: Ay

9
(% (% (% (0%
jeT jere o Qe Pl R e+1 41

where the last inequality follows by recalling that the elements in J* are a subset of the
elements in the optimal solution, and thus, constitute a feasible solution respecting all
constraints. As a result, EJEJ* Ay < by

We next prove that the algorithm attains an approximation guarantee of £2(1/m!/")
when the update factor is A = ¢"V'm. Recall that W = min{b;/A;; : A;; > 0} is the
width of the constraints.

w

1/W)-apprwcimation by using A = e”' m.

Lemma 2. The algorithm archives 2(1/m
Proof. Suppose the main loop terminates after ¢ iterations. Notice that when the loop
terminates either S; = [n] or Zf;l b;w;: > e"V'm. In the former case, one can easily in-
fer that the returned solution is 1/2-approximation to the optimal solution. Specifically,
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if .S is returned by the algorithm then the outcome is clearly optimal since .Sy consists
of all elements, and if one of S; \ {j} or {;j} is returned then the value of the solution is
a 1/2-approximation since max{ £(5, \ {7}), F({i})} > (F(S:\ {j}) + F({i})/2 >
f(St)/2, where the last inequality uses the submodularity of f. In fact, one can easily
validate that the above analysis also holds in case that f(S;) > f(5*), which can hap-
pen since S; may be infeasible. Hence, in the remainder of the proof, we shall assume
that f(S*) > f(S;) and that the loop terminates with A, = > " | bw;; > eV'm.

We concentrate on upper bounding the value of A,. For this purpose, we analyze the
changein )", b;w; along the loop iterations. Observe that forany £ = 1,.. .1,

m m
Ae= D biwie = biwie—) - (W) v/t

i=1 =1

Ui eWm'W A, .,
< Zbiwi(zq) : (1 + b, "0

<
_

biw;e—1) + eWmt'W Z Ay (0)Wice—1)
1 1=1
Ap_1+ BWml/WOzgég .

ﬁ'Dlﬂg

The first inequality follows by plugging a = em" and y = W Aiyo)/bi to the
inequality a¥ < 1 4+ ay, which is known to be valid for any ¢ € Ry and y € [0, 1],
and the last equality results from the definition of ;. By Proposition 2, we know that
oy < Ag_q/(f(S*) — f(Se=1)) incase f(S*) > f(Se—1). The latter condition clearly
holds since f(S*) > f(S:) by previous assumption, and f(S;) > f(S¢—1) for any ¢
under consideration. Therefore,

1w /W
A< Ay (1 n f(eWm Oy eWmt'" o, > 7

%) — f(Sz—l)) < Ao <f(5*) — f(Se-1)

where the last inequality holds since 1 4+ y < e¥. The resulting recursive definition can
be used, in conjunction with the base case Ay = m, to upper bound A; by

T Wm Vo, N\ _ L F(S0) = £(Se-)
= plexp(fw*)—f(su)) o <ewm ;f@*)—f(s“)) |

Recall that we assumed that the loop terminated with A; > e¢"'m. This lower bound
on A; can be utilized, together with the upper bound on A;, to yield

oW S~ L) = F(Sem1) e (F(57) = f(S0)
L=em ™3 fise) —psen) <o (f(S*)—f(St)> ’

where the last inequality is due to the Proposition[1l We note that f(Sy) = 0 since f
is normalized and Sy = (). Subsequently, one can obtain that 1 — 1/ exp(1/em!/") <
f(St)/f(S*) using simple algebraic manipulations. This can be further simplified to
1/(em*W 4+ 1) < f(S:)/f(S*) by reutilizing the fact that 1 + y < e¥. Notice that
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this proves that the algorithm archives £2(1/m'/")-approximation since the value of
the returned solution is at least f(S;)/2. This follows from arguments similar to those
presented at the beginning of the proof.

We are now ready to complete the proof of the first main result of the paper. We note
that this result matches the best known approximation guarantee for the case that the
objective function f is linear, achievable using the randomized rounding technique.

Proof of Theorem[Il By Lemma/[ll and Lemma[2l we know that when the algorithm
uses an update factor of A = e"'m, it constructs a feasible solution which approximates
the optimal solution within a factor of £2(1/m'/W).

One immediate corollary of this theorem is that the algorithm under consideration at-
tains a constant approximation guarantee when the number of constraints is constant or
when the width is sufficiently large, say W = (2(ln m). In particular, one can reexamine
the analysis presented in the proof of Lemmal2] and deduce that the approximation ratio
of the algorithm approaches 1/(2e + 2) for sufficiently large W’s. A natural followup
question is whether one can improve upon this result. In what follows, we demonstrate
that we can beat this approximation ratio by a careful selection of the update factor.
We present a refined analysis that proves an approximation ratio of (1 — €)(1 — 1/e)
when W = 2(Inm/€?). In particular, our analysis avoids the two-factor loss due to the
max-selection in the last two lines of the algorithm.

Lemma 3. The algorithm achieves an approximation ratio of (1 — 4€)(1 — 1/e) by
using A = e when W > max{Inm/e2,1/€} for any fixed € > 0.

We are now ready to complete the proof of the second principal result of the paper.
We note that this result almost matches the theoretical lower bound of 1 — 1/e, which
already holds for maximizing a monotone submodular function subject to a cardinality
constraint [23|11]]. In particular, our large width setting captures the hard instances of
the latter problem as this problem can be solved in polynomial-time when W = O(1/¢)
by enumerating over all sets of size at most W.

Proof of Theorem[2l Given an instance of the problem in which W = Q2(Inm/e?)
for any fixed ¢ > 0, Lemma [l and Lemma [3] guarantee that employing the algorithm
with an update factor of A = e“"V/4 results in a feasible solution that approximates the
optimal solution within a factor of (1 — €)(1 — 1/e).

3 Submodular Maximization with Binary Packing Constraints

We consider the special setting of monotone submodular maximization under binary
packing constraints, namely, when A € {0,1}"*™ instead of A € [0, 1]”*™. Note that
we may assume without loss of generality that b € N'[" since each vector entry can be
rounded down to the nearest integer without any consequences whatsoever. This natural
setting has been considered in the past for linear objective functions. Similarly to the
general linear case, the randomized rounding technique attains the best known approx-
imation guarantee in this case as well. In particular, it achieves an approximation ratio
of £2(1/m*W+1))_ This outcome is also known to be optimal unless P = ZPP [6].
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We can demonstrate that our multiplicative updates approach from Section [2| can be
utilized to obtain the above-mentioned improved approximation guarantee for the un-
derlying setting. This requires a fine-tuning of the algorithm and its analysis.

We next develop a different multiplicative updates algorithm for the special setting
in which the constraints matrix is k-column sparse. In this case, the number of 1-value
entries in each column of the input matrix is at most k. We prove that our algorithm
achieves an approximation guarantee that does not depend on the number of rows m,
but only depends on the sparsity parameter k and width parameter W. More precisely,
we establish that the algorithm attains an approximation ratio of 2(1/(Wk'/W)).

3.1 The Algorithm

The multiplicative updates algorithm, formally described below, maintains a collection
of weights that capture the extent to which each constraint is close to be violated under
a given solution. The algorithm is built around one main loop. In each iteration of that
loop, the algorithm considers a remaining element whose marginal contribution to the
current solution is maximal, and adds it to the solution set if its corresponding sum of
weights is sufficiently small. In any case, the element under consideration is removed
from the list of remaining elements. When the loop terminates, the algorithm returns
the resulting solution.

Algorithm 2. Column Sparse Multiplicative Updates
Input: A collection of linear packing constraints defined by A € {0,1}™*" and b € N7,
a monotone submodular set function f : 2"} — R, an update factor A € R
Output: A subset of [n]
I: S+ 0, R+ [n]
2: for i < 1 to m do w; < 0 end for
3: while R # 0 do
4: Let 7 € R be the element with maximal fs(7)
5: if 2111 Aijwi < ()\ - ].) then S <+ S U {]}
6: R« R\{j}
7 for i < 1tom do w; < A\>ies 4ii/% _ 1 end for
8: end while
9: return S

3.2 Analysis

In what follows, we analyze the performance of the algorithm. We begin by establishing
an algebraic bound applicable for any monotone submodular function and any solution
set of elements, attained by an algorithm that considers the elements in a greedy fashion.
Note that our algorithm indeed considers the elements in such fashion. We define the
greedy elements sequence E(f,S) = (e1,...,ey,) of a submodular function f and a set
S as the ordered sequence of elements considered by a greedy process whose outcome
is S. Specifically, the greedy process is initialized with Ry = [n] and Sy = ). Then,
it runs for n steps, where in each step ¢, it considers the element e; € R;_; that has a
maximum marginal value with respect to the current solution set S;_1, and adds it to the
solution set S; of the next step if e; € S. In any case, the element ¢; is removed from
R,_1 to obtain the set R, of remaining elements for the next step. With this definition
in mind, let E; = {e1, ..., e} be the set of first ¢ elements in the sequence.
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Proposition 3. Given a submodular function f : 2"l — R, a set S C [n), their
greedy elements sequence E(f,S) = (e1, ..., eyn), and another set S* C [n] satisfying
[SNE| > a-|S*N E for every t € [n] and a parameter o < 1, it holds that
f(8) = (af(a+1))- f(57).

Proof. Let us assume without loss of generality that the greedy process goes over the
elements according to the order 1 to n, namely, F4 = {1}, E2 = {1, 2}, and so on. We
note that this assumption is valid since one can appropriately rename the elements. Fur-
thermore, let S = {ay,...,ag} and S* = {by, ..., b5+ } be the respective elements
of S and S* sorted in an increasing order. Let us suppose that 1/« is integral. We em-
phasize that this assumption is merely for simplicity of presentation, as we demonstrate
later. We match between each element of S and 1/« distinct elements from S*. Specif-
ically, each element a; is matched to the elements set S} = {bi—1)/a+1s---0¢/a}-
Notice that every element of S* is matched to an element of S; else, it must be that
|S*| > |S|/«, but this contradicts the fact that |S| = |[SNE,| > «-|S*NE,| = a|S*|.
We next argue that each a; < b(;_1)/q1. As aresult, we attain that each

fsnE., 1 (at) > fsnga, 1 (bg—1)/a+1)s s fsnEa, 1 (bija) -

The last inequality holds since we known that when the element a; was considered
by the greedy process, all the elements of S; were still available, and therefore, their
marginal value with respect to the solution S N E,,_1 was no more than the marginal
value of the element a;. Consequently,

[a]S™[]
FS)<FS)+ Y fs(b + D s
beS*\S t=1 beSy

S|

ZfSﬂEat 1 a'f (1+i> f(S)7

where both inequalities hold by the submodularity of f. For the purpose of establishing
the previously mentioned argument, suppose by way of contradicting that there is some
t for which a; > b(;_1)/a+1. Let us concentrate on the elements set F(;_1)/441. Notice
that |[SNE_1)/a+1| < t—1, whereas [S*NE;_1)/q41] = (t—1)/a+1. This implies
that SN Ey_1)/a41| < a-[S* N Eg_1)/a41/, a contradiction. We conclude by noting
that our assumption that 1/« is integral can be easily neglected. Specifically, one need
to modify that proof in such a way that a fractional part of an element from S* may
be matched to an element form S. Then, notice that at most two fractional parts of an
element of 7" are matched to elements of .S, and those elements must appear before the
element of S* in the greedy elements sequence.

We now turn to establish our main result for the special setting of maximizing a mono-
tone submodular function under k-column sparse packing constraints.

Proof of Theorem[3l We first claim that the algorithm outputs a feasible solution, that
is, a solution that respects the packing constraints. Suppose by way of contradiction
that / is the first element that is added to S and induces a violation in some constraint
i at iteration ¢ of the main loop. Note that A;; = 1. Let .Sy be the solution at the end of
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iteration ¢, and notice that jes, Aj;j = b;+1 since all the entries of A are binary. This
implies that w; = A — 1 at the beginning of the iteration in which ¢ was considered, and
thus, 2211 Ajpw; > X — 1. Inspecting the selection rule, one can infer that ¢ could not
have been selected.

We next prove that the algorithm attains an approximation ratio of 2(1/(Wk'/W))
when the update factoris A = £+ 1. Recall that W is the width of the constraints, which
is equal to min{b;} in our case. Similarly to before, we denote by S* C [n] a solution
that maximizes the submodular function subject to the linear packing constraints. Let

(e1,...,en) be the ordered sequence of elements considered by our algorithm, and
note that it is essentially the greedy elements sequence £(f,S). Moreover, let E; =
{e1,..., e} bethe set of first ¢ elements in that sequence, S; = S*N E; be the elements

of E; in the optimal solution, S; = S N E; be the elements of F; in our algorithm’s
solution, and w;; = AZjes, A/ 1 be the value of w; at the end of iteration ¢ of the
algorithm. We prove the two following propositions:

Proposition 4. For everyt € {0,...,n},

2711 biwst
Syl > i .
|5t 2 WAUW (k+ X —1)

Proposition 5. Foreveryt € {0,...,n},

Zﬁil biw;y
Sl <8, = .
S71 < 18] + L
We can now utilize the above propositions and get that for every ¢ € {0,...,n},
™ bw; WAYW(k+X—1
1571 < |St|+21;1 ’1w” <18+ A( +1 )|St| = (1+2W)\1/W).|St|,

where the last equality holds as A = k1. Therefore, we can employ Proposition[3with
a=1/1+ 2WAY/W)), and attain that our algorithm’s solution approximates the opti-
mal solution to within a factor of av/(a+1) = 1/(24+2WAYW) = Q(1/(WEYW)).

Acknowledgments. The authors thank Chandra Chekuri, [lan Cohen, Gagan Goel, and
Jan Vondrdk for valuable discussions on topics related to the subject of this study.
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Abstract. We consider the problem of testing isomorphism of groups
of order n given by Cayley tables. The trivial n'°®™ bound on the time
complexity for the general case has not been improved upon over the past
four decades. We demonstrate that the obstacle to efficient algorithms
is the presence of abelian normal subgroups; we show this by giving a
polynomial-time isomorphism test for groups without nontrivial abelian
normal subgroups. This concludes a project started by the authors and
J. A. Grochow (SODA 2011). Two key new ingredient are: (a) an algo-
rithm to test permutational isomorphism of permutation groups in time,
polynomial in the order and simply exponential in the degree; (b) the
introduction of the “twisted code equivalence problem,” a generalization
of the classical code equivalence problem by admitting a group action on
the alphabet. Both of these problems are of independent interest.
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1 Introduction, Main Results

The isomorphism problem for groups asks to determine whether or not two
groups of order n, given by their Cayley tables (multiplication tables), are iso-
morphic. As pointed out long ago [7UI5], if G is generated by k elements then
isomorphism can be decided, and all isomorphisms listed, in time n*+9() Since
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k < log,n for all groups, this gives an n'°82 "+ _time algorithm for all groups
and a polynomial-time algorithm for finite simple groups (because the latter
are generated by 2 elements [20/I]). In spite of considerable attention to the
problem over the decades, no general bound with a sublogarithmic exponent has
been obtained. While the abelian case is easy (O(n) by [9]), just one step away
from the abelian case lurk the most notorious cases: nilpotent groups of class 2
(groups G such that the quotient G/Z(G) is abelian, where Z(G) is the center
of G). No complete structure theory of such groups is known; recent work in
this direction by James B. Wilson [22/23] commands attention. Recently, special
classes of non-nilpotent solvable groups have been considered [ITJI6//4].

The group isomorphism problem is of great importance to computational
group theory; heuristic methods (e.g., Cannon and Holt [6]) have been imple-
mented in the Magma and GAP computational algebra systems for groups are
given as permutation groups, represented by sets of generators. In this context
the isomorphism problem is graph-isomorphism hard and therefore no subexpo-
nential (exp(n°™1))) worst-case algorithm can currently be expected (n is now
the size of the permutation domain), while efficient practical algorithms remain
a possibility.

While class-2 nilpotent groups have long been recognized as the chief bottle-
neck in the group isomorphism problem, this intuition has never been formalized.
The ultimate formalization would be to reduce the general case to this case. As
a first step, we consider a significant class without a complete structure theory
at the opposite end of the spectrum: groups without abelian normal subgroups.
Following Robinson [I7], we call such groups semisimpldl.

In 2010, J. A. Grochow and the present authors started a project to test
isomorphism of semisimple groups [3]. In that paper we observed, based on an
elementary analysis of the group structure, that this problem can be solved in
time n!°81°8" and using a combination of additional structure theory and combi-
natorial /algorithmic techniques, we gave a polynomial time algorithm assuming
the boundedness of certain parameters. The main result of the present paper,
stated next, concludes the project.

Theorem 1. Isomorphism of semisimple groups given by their Cayley tables
can be decided in polynomial time.

We note that semisimplicity of a given group can be decided in polynomial time
(trivially for groups given by Cayley tables and nontrivially even for permutation
groups given by generators [14]).

Our second main result concerns permutational isomorphism.

Definition 1. Two permutation groups G, H < Sy are permutationally isomor-
phic if 37 € Sk such that G™ = H, where G™ := {r o | 0 € G}.

! We note that various authors use the term ‘semisimple group’ in several different
meanings (see e.g. [2I]). The definition we use conforms to the general practice
in algebra that an algebraic structure (ring, algebra, inner product space, etc.) is
semisimple if its ‘radical’ is trivial; each concept of ‘radical’ then corresponds to a
notion of semisimplicity. In our case, the ‘radical’ is the solvable radical, i.e., the
largest solvable normal subgroup.
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Theorem 2. Permutational Isomorphism of permutation groups G, H < Sk,
given by lists of generators, can be decided in time poly(|G|) c*, for an absolute
constant c.

The proofs of these two main results are intertwined. First we solve the per-
mutational isomorphism problem for the special case of transitive groups in a
stronger sense (see Section [[I]); then we use this to solve our main problem,
isomorphism of semisimple groups, via “twisted code equivalence.” The general
case of the permutational isomorphism problem follows via a simple reduction
(cf. [}, Theorem 7.2]).

The two main ingredients that support Theorem [l and 2] are: permutational
isomorphism of transitive permutation groups and twisted code equivalence. We
explain them in the next section.

1.1 Technical Ingredients

Theorem 3. There exists an absolute constant ¢ such that for all pairs of tran-
sitive permutation groups G,H < Sy (a) the number of permutational auto-
morphisms of G is at most |G|c¥; (b) we can list the set of all permutational
isomorphisms of G and H in time |G| c*.

The proof involves a detailed group-theoretic study of the structure of transitive
permutation groups. (See Section Ml for an outline of the proof.)

Another key ingredient is the concept of “twisted code equivalence,” a general-
ization of the code equivalence problem, and a problem of independent interest.
A code of length ¢ over a finite alphabet I' is a subset of I'* for some set A
with |A| = ¢. An equivalence of the codes A C I'* and B C I'B is a bijec-
tion A — B that takes A to B. If |I'| = 2 then the code is a Boolean function
or hypergraph, so the code equivalence problem is a generalization of the hy-
pergraph isomorphism problem. Slightly simplifying and extending Luks’s C*
dynamic programming algorithm for hypergraph isomorphism [12] to treat code
equivalence, in [3] we gave an algorithm to test equivalence of codes of length ¢
over an alphabet I" in time (c|I'|)%, for an absolute constant c. In the present
paper we introduce a generalization of this problem by allowing to permute the
symbols by some group W acting on I', independently for each coordinate.

Definition 2 (Twisted code equivalence). Let A C I'*, B C I'B be codes
of length € over I'. Let a group W act on I'. Given a bijection m : A — B and
a function w : B — W, the pair (m, w) is a W-twisted equivalence of the codes
A and B if by applying 7 to the coordinates of each codeword in A and then
applying w(b) to the entry in position b for each b € B we obtain the code B.

Generalizing the algorithm from [3] and improving its data management, we
obtain the following result, proved in Section [Bl Our algorithm uses a coset in-
tersection subroutine and operates on rather large alphabets. In our case, W will
have a low-degree faithful permutation representation, and we take advantage
of this.
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Theorem 4. Let I" be an alphabet, W < Sym(I"), and assume a faithful permu-
tation representation of W of degree d is given. The set of W -twisted equivalences
of two codes A, B C I'* can be found in time c*poly(|A|, |W|,|T|).

In the special case where W = {id}, twisted code equivalence is simply code
equivalence and the theorem gives a running time of ¢/ poly(|I'|, |A|). This im-
provement in the dependence on |I'| over the previous bound of (c|I"|)?* from [3]
is critical to our main result.

1.2 Strategy for the Main Result

Our approach is motivated by the Babai-Beals filtration of groups [2] (see [3]
Section 7.5]). Specifically, the socle of a group is the product of its minimal
normal subgroups. The socle of a semisimple group G is the direct product of
nonabelian simple groups, and G acts on the set of simple factors of the socle
by conjugation, producing a permutation group of degree at most logg, |G|. (60
is the order of Ajs, the smallest nonabelian simple group.)

First we observe that isomorphism of groups that are direct products of simple
groups can be tested in polynomial time. So we can assume that our semisimple
groups G and H have isomorphic socles. The second observation is that an
isomorphism of the socles extends in at most one way to an isomorphism of G
and H. Moreover, given an isomorphism of the socles, we can find the unique
extension if it exists (Observation B]). Our next step is to identify isomorphic
simple factors of the socles with a canonical copy. From now on we look for
only those isomorphisms that respect the specific identification. We note that
the number of identifications to consider is polynomially bounded (3| Lemma
4.1]). We look at the conjugation action of the groups G and H on the set of
simple factors of their socles. The orbits of this action correspond to the minimal
normal subgroups. Our alphabets will be the isomorphism types of these actions
under identification-preserving isomorphisms; these can be computed using our
algorithm for transitive permutational isomorphism (Theorem [3)). The problem
then reduces to twisted code equivalence over these alphabets. The twisting
groups consist of the identification-preserving automorphisms of the alphabets;
they can be represented as permutation groups acting on the set of simple factors,
thus giving a small value of d for the application of Theorem [l

1.3 Organization of the Paper

We first present the two technical ingredients: twisted code equivalence in Sec-
tion Bl and permutational isomorphism of transitive groups in Section @l We
outline the proof of the main result, Theorem [l in Section Bl Detailed proofs,
and in some cases the detailed statements, appear in the full version of this

paper.

2 Group-Theoretic Preliminaries

For a function f: X — Y, we write 2/ for the image of = € X.
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General group theory. For groups H,G, we write H < G to say that H is a
subgroup of G. Given groups G and H, ISO(G, H) denotes the set of G — H
isomorphisms; Aut(G) = ISO(G,G). The set ISO(G, H) is either empty or a
coset of Aut(G). For g € G, conjugation by g means the map g: G — G defined
by x + 29 := g lxg. For S C G and g € G we set S9 = {s9 | s € S}.

Permutation groups. Let Sym({2) denote the symmetric group acting on the set
£2, the group of all permutations of 2. We write Sy for Sym([k]) where [k] =
{1,...,k}. Permutation groups of degree k are subgroups of Sym({2) with |2| =
k. A homomorphism ¢: G — Sym({2) is called a permutation representation of
G of degree |£2|; such a homomorphism defines a G-action  +— z™ := 2%(™) on 2
(x € 2,7 € G). We say that ¢ is faithful if it is injective. Let Alt(£2) < Sym(£2)
denote the alternating group. Let G < Sym(£2). The orbit of x € {2 is the set
% := {2™ : © € G}. The length of an orbit is its size. A permutation group
G < Sym(£2) is transitive if 2% = 2 for some (any) z € 2. The stabilizer G, of
apoint x € Nis Gy ={reG | 2™ =z}

Given a G-action on {2, a nonempty set B C (2 is a block of imprimitivity (or
simply “a block”) if (V7 € G)(B™ = B or BN B™ = ). A transitive action is
primitive if all blocks are trivial (the singletons or the whole domain (2), and
imprimitive otherwise. Let G < Sym({2) and H < Sym(A). The wreath product
G H is a permutation group acting on 2 x A viewed as |A| copies of 2. |4]
copies of G act independently on each copy of 2 and H permutes the copies.
This defines the standard action of this group. In its product action, the same
group acts on 24, such that the copies of G act on each coordinate and H
permutes the coordinates.

Algorithms for permutation groups. For the purposes of computation, a permu-
tation group G < Sym({2) will be represented by a list of generators. Many
basic computational tasks for permutation groups, including membership test-
ing, finding the order of a group, finding pointwise stabilizers of subsets of the
domain, finding blocks of imprimitivity, can be performed in polynomial time
([I9URILO], cf. [18]).

3 Twisted Code Equivalence

Let EQyy (A, B) denote the set of W-twisted equivalences of the codes A and B.
(See Section [Tl for the definitions.) Note that this is either empty or a coset of
the group EQyy (A, A) < W Sym(A).

In this section we prove the following, more precise version of Theorem [4l

Theorem 5. Let A C I'* and B C I'B be codes of length €. Let W < Sym(I),
and assume we are given a faithful permutation representation of W of degree
d. Then EQu (A, B) can be found in time O(2°@+TD W ||| |A|? log |Al).
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Proof. For a subset U C A we call a function y: U — I" a “partial string over
A The set U is the domain of y, denoted dom(y), and |U| the length of y. For
a partial string y over A, let A, be the set of strings in A that are extensions of
y. We make analogous definitions for B.

We construct a dynamic programming table with an entry for each pair (y, z)
of partial strings, y over A and z over B, of equal length such that A, # 0,
and B, # (). For each such pair (y,z), we store the set I(y,z) of W-twisted
equivalences of the restriction Ay of A, to A\ dom(y) with the restriction B of
B. to B\ dom(z). Note that the I(y, z) are either empty or cosets of the groups
EQw (A5, A7) < W Sym(A\ dom(y)), and hence they can be stored efficiently.

We start with full strings y € A, z € B and work our way down to dom(y) =
dom(z) = 0, at which point we shall have constructed all 4 — B twisted W-
equivalences. When y, z are full strings, we have |A,| =1, |B,| = 1, and I(y, 2)
is trivial.

Let y, z be proper partial strings of length h, and assume we have constructed
I(y',2") for all ¢/, 2’ of length greater than h. To construct I(y,z) we augment
the domain of y by one index r € A\ dom(y), and the domain of z by one index,
s € B\ dom(z). We fix r, and make all possible choices of s € B\ dom(z). For
each s € B\ dom(z) and o € W, we will separately find the set of all elements
of I(y, z) that move s to r, and act on the symbol in that position by o.

More formally, for v € I', and r € A\ dom(y), let y(r,v) be the partial string
extending y by « at position r, and let 0 € W, s € B\ dom(z). Given some
7 (A\dom(y)\ {r}) — (B\dom(z)\{s}), let 7* : (A\dom(y)) — (B\dom(z))
extend 7 by sending 7 to s; and for w : (B \ dom(z) \ {s}) — W, let w* :

(B \ dom(z)) — W extend w by sending s to o. Let I*(y,z; r o), s) be the
set of all (7*,w*) for (m,w) € I(y(r, 7)72(3,7"_1)). Then

=U U N Fezr )

SEB o€W yel Ay )70

If z(s,’y"fl) € B, then we can look up the value of I(y(r, 'y),z(s,'y‘fl)) in
the table and use that to compute the corresponding I*. If for some ¢ and
v, 2(s,7° ") & B, then I(y(r,7),z(s,7° ")) is empty and so is I*.

Analysis. We consider ¢|A| partial strings of A (all prefixes), and 2¢|.4| par-
tial strings of B (we can assume |A| = |B|, otherwise we reject equivalence). So
the number of table entries we store is at most 2¢¢|A|2. The cost of comput-
ing each dynamic programming entry is £|I’||TW| coset intersection operations,
and ¢|I'||W| times the cost of checking whether some A,/ is empty. Standard
techniques allow us to compute the I* and paste cosets together in polynomial
time. The cost of coset intersection is O(2¢?) [12]. (Stronger bounds for coset
intersection are available but not needed here.) The cost of checking if A,/ is
empty is log |A] if we add a preprocessing step to sort A. |

We shall need a simple generalization of this result to multiple alphabets. (As
before, we refer to the full version for all missing details.)
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4 Permutational Isomorphism for Transitive Groups

4.1 Further Group-Theoretic Preliminaries

Permutational Isomorphism. If G < Sym(£2) and H < Sym(A) are permutation
groups, a bijection 7: 2 — A is a permutational isomorphism from G to H if
G™ = H. We denote the set of all G — H permutational isomorphisms by
PISO(G, H); PAut(G) := PISO(G,G). We say G and H are permutationally
isomorphic if PISO(G, H) # 0. Each m € PISO(G, H) induces an isomorphisim

7:G — H. Let PISO(G, H) := {7 | 7 € PISO(G, H)}.

Proposition 1. Given G,H < Sy and f € Sk, we can decide in poly(k) time
whether or not f € PISO(G, H). Proof: use membership testing.

Bounds on primitive groups. Let G < Sk. We call G a giamE if kK > 7 and
G = Sk or Ag. These two groups are far larger than any other primitive group.

Lemma 1. Let G < S}, be primitive and let H < Si. (a) If G is non-giant then
|PAut(G)| < exp(O(Vk)). (The tilde hides polylog factors.)

(b) If G is non-giant then we can list PISO(G, H) in time exp(O(Vk)).

(c) We can find the coset PISO(G, H) in quasipolynomial time (exp(polylog(k)).

The proof requires the classification of finite simple groups via Cameron’s clas-
sification of the large primitive groups [5].

Structure trees. For a transitive group G < Sym(f2), a G-invariant tree is a
rooted tree whose set of leaves is {2 and to which the G-action extends as tree
automorphisms. (Such extension is necessarily unique.) A G-invariant tree is a
structure tree for G if every internal node has at least 2 children, and for every
internal node u of the tree, the action of the stabilizer G, on the set of children
of u is primitive. The following observation will allow us to list all structure trees
of a transitive group.

Lemma 2. Let G < Sym({2) be a transitive permutation group of degree k.
Then (a) G has at most k21°8% structure trees; (b) we can list all structure trees
of G in time O(k?'08k+0()),

Subdirect products, diagonals. Given groups Gy, ...,G,, wewritem;: [[;_, G; —
G for the projection map of the direct product onto the j-th factor. A subdirect
product of the G; is a subgroup H < []'_, G; such that ;(H) = G, for each
j. A particularly important example of subdirect products is a diagonal. Let
Vi,..., V. be isomorphic groups, (Vi)(V; 2 T). A diagonal of (V1,...,V,) is an
embedding ¢ : T < []'_, V; such that Im(¢) is a subdirect product of the V;.
Tts image is denoted diag(V; x - - - x V;.). The standard diagonal of T" is the map
Acites (... 1)

2 We remark that Sy and A, are primitive for k > 3. We look at k > 5 and k # 6
since Ay is simple when k > 5; and Aut(Ax) = Sy when k > 4, k # 6.
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For permutation groups, analogously, we can define permutational diagonals.
Let V; < Sym(§2;) (for ¢ € [r]) be permutation groups, permutationally isomor-
phic to T" < Sym(&). (In particular, for every i, |£2;| = |=Z|.) A permutational
dmgonal of [T;_, Vi is a list of permutational 1som0rphlsms ¢; € PISO(T, V) (so
¢ T — V; is the corresponding isomorphism). Let (/5 T — [ Vi be defined
by t + (t%1,...,t?"). We use pdiag(Vy, x - -+ x V;.) to denote the image ¢( ) for
some permutational diagonal of (V1,...,V,).

For example, given G < Sym({2), consider the induced action of G" on (27.
The standard diagonal T of G” acting on {(w, ...,w) | w € 2} is a permutational
diagonal defined by the identity bijections.

Fact 6. Let G < Hy x---x H,, be a subdirect product, where each H; is a simple
group. Then G is a direct product of diagonals.

Fact 7. Let G < Alt(§21) x -+ - x Alt(£2,,), where (Vi)(|£2;] > 5, 6) be a subdi-
rect product of alternating groups. Then G is a direct product of permutational
diagonals.

4.2 Transitive Groups: Outline of the Proof of Theorem [3]

Let G < Sym(£2) and H < Sym(A) be transitive permutation groups of degree
k = |22 = |A|. Our job is to list all their permutational isomorphisms in time
c*|G|. Our strategy is to fix a structure tree of G' and work by induction on its
depth. The base case is when G is primitive; this is settled by Lemma [l

We call a structure tree T' of G and a structure tree U of H compatible if their
depth is the same and, for every ¢, the primitive groups arising on level £ in G
and H (as actions of the stabilizers of a node on level £ on the children of that
node) are permutationally isomorphic.

By Lemma 2] we can try all structure trees of H that are compatible with the
chosen structure tree of G. So we may assume we have fixed structure trees T’
and U on G and H, resp., and we are looking for permutational isomorphisms
respecting them. Assume these trees have depth d > 1 (the root is level 0). Let
G* denote the action of G on T'(d — 1): the set of nodes at level d — 1; define H*
analogously. Assume by induction that the set PISO(G*, H*) is available. Now,
for each m € PISO(G*, H*) we wish to list the set PISO(G, H, 7) of extensions
of 7 to elements of PISO(G, H).

For i € T(d — 1) let {2; denote the set of children of ¢ and let G(i) denote the
action of G, the stabilizer of 4, restricted to §2;. Note that {21,...,2,} is a
maximal system of imprimitivity for G, where m = |T'(d —1)|. For j € U(d — 1),
define A; and H(j) analogously. Since T' and U (the structure trees) are com-
patible, all the G(i) and H(j) are permutationally isomorphic primitive groups.
Let K be the pointwise stabilizer of T(d — 1) in G, and L the corresponding sta-
bilizer in H. So K <1 G is the kernel of the restriction homomorphism G — G*;
analogously for L <« H. Let K (i) be the restriction of K to §2;; and L(j) the
restriction of L to A;. We now distinguish two cases.
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Case 1. G(4) is not a giant. In this case, by Lemma [Il the number of permuta-
tional isomorphisms between G(i) and H(i") is at most c* where h = k/m =
|£2;|. We can combine these in (c")™ = c* ways, settling this case.

Case 2. G(i) is a gilant. This case is more technical. For simplicity, in this case
we shall assume K (i) = Alt(f2;) in this outline. The basic observation is that
K (i) < G(i) and therefore either K (i) = {id} (Case 2a) or K (%) is a giant (Case
2b).

Case 2a. K(i) = {id}. If this is true for some 4, it is true for all. Therefore,
K = {id}, so G embeds in G*, i.e., m has at most one extension. Let us call
this unique extension ¢ if it exists. Let & € £2;; we wish to find y = z¥ € A;x.
One can show that if such a y exists then it is unique, and to find such a y it
is sufficient to consider the stabilizer GG, and look for a corresponding stabilizer
H, for some y € A;~.

Case 2b. K(i) = Alt(£2;). Clearly, PISO(G, H) C PISO(K, L). While this is
always true, under Case 2b we shall also see that the set PISO(K, L;x) has
“affordable size,” so we can list PISO(K, L;w) and check each of its elements
(Proposition[I]). Assuming h > 5, h # 6, we can bound the number of extensions
of m by 2™|K|, and list them in time O(2™|K |k).

5 Semisimple Group Isomorphism: The Proof of
Theorem [1]

5.1 The Framework

Recall our strategy from Section[[2l If G is semisimple then Soc(G) is the direct
product of its minimal normal subgroups; and each minimal normal subgroup
is the direct product of isomorphic nonabelian simple groups. Both of these
decompositions are unique. The conjugation action of G permutes the simple
factors of the socle; this defines a permutation representation G — S where k
is the number of simple factors of the socle. The kernel of this representation is
denoted Pker(G); this is the first characteristic subgroup in the BB chain [2].
So G/Pker(G) is a permutation group of degree k < logg, |G|. The orbits of this
permutation representation correspond to the minimal normal subgroups of G;
in particular, it is transitive exactly if G has a unique minimal normal subgroup
(namely, the socle).

Lumping together isomorphic minimal normal subgroups, we obtain the prod-
uct decomposition Soc(G) = H;i:l Hj‘zl N;; = H;i:l K7, where the N;; are
the minimal normal subgroups and (Vz, j)(N; ; = K;). The K; are pairwise non-
isomorphic. Let IV;; = Hzi:l Vijn be the decomposition of IV;; into simple factors.
Let T; = Vi1, be a canonical copy of the simple factors of K; = Nj;.

Our first trick is to fix an isomorphism between T; and each Vjj, i.e., a
diagonal of [ i.n Vih for each 7. Since T; is generated by two elements, we have
|Aut(T;)| < |Ti|?, and therefore the number of diagonals we need to consider is
at most [Soc(G)|?. Let ¢ and v be diagonals of Soc(G) and Soc(H), resp., with
respect to their factorizations into simple factors. We write ISOds(G, H; ¢, ¥)
for the set of G — H isomorphisms which respect these diagonals.
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Observation 8 ([3, Corollary 3.1]) If G and H are semisimple groups then
(a) any isomorphism f : Soc(G) — Soc(H) extends in at most one way to a
f: G — H isomorphism; and, (b) given f we can decide if f exists, and find it
if it does, in polynomial time.

Part (a) of the observation follows from a well-known fact [17, Claim 3.3.19,
page 90] (cf. [0, sec. 3.1], [3, Lemma 3.1]). It follows that an isomorphism y €
1SOds(G, H; ¢,1) is uniquely determined by the permutational isomorphism it
induces between G /Pker(G) and H/Pker(H).

5.2 Semisimple Groups with a Unique Minimal Normal Subgroup

Corollary 1. Let G and H be semisimple groups with a unique minimal normal
subgroup. (a) |Aut(G)| < |G|°M), and (b) we can list ISO(G, H) in time |G|°™).

Proof. Fix a diagonal ¢ of Soc(G) and consider all diagonals ¢ of Soc(H); in
each case, we shall compute ISOds(G, H; ¢,1)). Because simple groups have 2
generators, the latter needs to be performed < [Soc(G)|> < |G|? times (cf. [3]
Lemma 4.1]).

By part (a) of Observation [§ every isomorphism x € ISOds(G, H; ¢, 1))
is uniquely determined by the permutational isomorphism it induces between
G /Pker(G) and H/Pker(H). Therefore the number of automorphisms respecting
¢ is at most the number of permutational automorphisms of G/Pker(G), which
in turn is at most ¢*|G /Pker(G)|, by part (a) of Theorem[3l Since k = O(log |G|),
this proves part (a). For part (b), we apply the algorithm in part (b) of Theo-
rem [3l to the transitive permutation groups G/Pker(G) and H/Pker(H) and list
all 7 € PISO(G/Pker(G), H/Pker(H)). For each such 7, let f be the isomor-
phism of Soc(G) and Soc(H) determined by 7 and the diagonals ¢, and . For
each such f, apply part (b) of Observation [§ to check whether f extends to an
isomorphism f: G — H. O

5.3 All Semisimple Groups

In this subsection we outline the reduction of testing isomorphism of the semisim-
ple groups G, H to twisted code equivalence. Since isomorphism of the socles and
their direct decomposition to minimal normal subgroups are easy to test, we may
assume that Soc(G) = Soc(H) and they have the same decomposition into min-
imal normal subgroups, using the notation from Section Il The conjugation
action of G on Soc(G) embeds G into []; []; Aut(NNy;); we call this embedding
a, and let G* = a(G); we define the embedding 5 and H* = S(H) analogously.
We view G* and H* as permutation groups acting on Soc(G).

Having fixed diagonals as in Section [5.I] we are only interested in those per-
mutational isomorphisms G* — H* which act on the socles by permuting the
copies of the K; and within them, permuting the copies of T}, respecting their
standard diagonals. Let X be the set of these G* — H* permutational isomor-
phisms (given as a coset). If we knew X, by [17, Claim 3.3.19, page 90|, we
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can recover the coset of G — H isomorphisms respecting the diagonals by the
formula X 8~!. We now describe how to find X.

Let G7; denote the restriction of G* to Nj;, and similarly H}; the restriction
of H* to N;;. By Cor. [l we can compute the isomorphism types of the G} and
H}; under permutational isomorphisms in X. Let I7,..., I} be representatives
of these isomorphism types. These will be our alphabets. For each 1, j, pick
an arbitrary isomorphism ¢;; of this type between G7; and the corresponding
representative, and analogously for H*.

We create codes G and H over the alphabets I'; as follows. Let 0 € G*, and
let o;; € G;‘j denote the restriction of o to N;;. The string associated with o is

o = (0)7")ij. Then G = {0 | 0 € G*}. Define H analogously.

For ¢ € [r], let Wy be the group of automorphisms of Iy induced by per-
mutational automorphisms that preserve the standard diagonals. These auto-
morphisms are determined by the permutation they induce on the set of simple
factors. Thus if I} is acting on a copy of K;(= T;") then W, has a faithful
permutation representation of degree t;.

Let x : G* — H* be a permutational isomorphism respecting the standard
diagonals (i.e., x € X). So x induces a permutation 7(x) of the minimal normal
subgroups. 7 = 7(x) determines x up to elements of the W applied to each letter
of the codes G and H. In other words, the set X of G* — H* isomorphisms we
are looking for corresponds exactly to the set of (W;)-twisted equivalences of G
and H.

Analysis. Fixing diagonals will only add a factor of [Soc(G)|> < |G|*. The
algorithm for groups with a unique minimal normal subgroup (part (b) of Corol-
lary [I) takes polynomial time. The length of the codes is the number of mini-
mal normal subgroups, which is O(log|G|). The alphabets Iy are subgroups of
G* = G and hence (V0)(|Iy] < |G]). The groups W; have polynomial size by
part (a) of Corollary [l and faithful permutation representations of degree t;.
Therefore the permutation group where we will perform coset intersection will
have a permutation representation of degree k = Zi’ jti, the number of simple
factors of Soc(G), which is O(log |G|). Finally the size of the codes themselves
is the order of the groups. Therefore the total running time of the twisted code
equivalence algorithm is polynomial. a

6 Comparison with Prior Work

A 2003 paper by Cannon and Holt [6] describes a practical method to test isomor-
phism of permutation groups. Sec. 3 of their paper is dedicated to semisimple
groups, underlining the significance of this class. Naturally, our framework is
based on the same simple structural observations regarding the socle as theirs
(Sec. EI)); the most notable common element is part (a) of Obs. Bl After these
initial observations, the two algorithms diverge in accordance with their very dif-
ferent goals: [6] describes heuristic algorithms with no performance guarantees
and with reference to programs that use backtracking which would count as ille-
gal steps for us; [6] reports practical efficiency. We devise algorithms which take
time, polynomial in the order of the group, a prohibitive cost in their context.
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Abstract. Motivated by the fact that distances between data points in many
real-world clustering instances are often based on heuristic measures, Bilu and
Linial [6] proposed analyzing objective based clustering problems under the as-
sumption that the optimum clustering to the objective is preserved under small
multiplicative perturbations to distances between points. In this paper, we provide
several results within this framework. For separable center-based objectives, we
present an algorithm that can optimally cluster instances resilient to (1 + v/2)-
factor perturbations, solving an open problem of Awasthi et al. [2]. For the k-
median objective, we additionally give algorithms for a weaker, relaxed, and more
realistic assumption in which we allow the optimal solution to change in a small
fraction of the points after perturbation. We also provide positive results for min-
sum clustering which is a generally much harder objective than k-median (and
also non-center-based). Our algorithms are based on new linkage criteria that
may be of independent interest.

Keywords: clustering, perturbation resilience, k-median, min-sum.

1 Introduction

Problems of clustering data from pairwise distance information are ubiquitous in sci-
ence. A common approach for solving such problems is to view the data points as
nodes in a weighted graph (with the weights based on the given pairwise information),
and then to design algorithms to optimize various objective functions such as k-median
or min-sum. For example, in the k-median clustering problem the goal is to partition
the data into k clusters C;, giving each a center ¢;, in order to minimize the sum of
the distances of all data points to the centers of their cluster. In the min-sum cluster-
ing approach the goal is to find k clusters C; that minimize the sum of all intra-cluster
pairwise distances. Yet unfortunately, for most natural clustering objectives, finding the
optimal solution to the objective function is NP-hard. As a consequence, there has been
substantial work on approximation algorithms [1US5I7I8l9] with both upper and lower
bounds on the approximability of these objective functions on worst case instances.
Recently, Bilu and Linial [6] suggested an exciting, alternative approach aimed at
understanding the complexity of clustering instances which arise in practice. Motivated
by the fact that distances between data points in clustering instances are often based
on a heuristic measure, they argue that interesting instances should be resilient to small
perturbations in these distances. In particular, if small perturbations can cause the op-
timal clustering for a given objective to change drastically, then that probably is not

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 63-74] 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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a meaningful objective to be optimizing. They specifically define an instance to be
a-perturbation resilient for an objective @ if perturbing pairwise distances by multi-
plicative factors in the range [1, a] does not change the optimum clustering under .
They consider in detail the case of max-cut clustering and give an efficient algorithm
to recover the optimum when the instance is resilient to perturbations on the order of
O(v/nA) where n is the number of points and A is the maximum degree of the graph.
They also give an efficient algorithm for instance of unweighted max-cut that is resilient
to perturbations on the order of O(y) where ¢ is the minimum degree of the graph.

Two important questions raised by the work of Bilu and Linial [[6] are: (1) the de-
gree of resilience needed for their algorithm to succeed is quite high: can one develop
algorithms for important clustering objectives that require much less resilience? (2) the
resilience definition requires the optimum solution to remain exactly the same after per-
turbation: can one succeed under weaker conditions? In the context of separable center-
based objectives such as k-median and k-center, Awasthi et al. [2]] partially address the
first question and show that an algorithm based on the single-linkage heuristic can ef-
ficiently find the optimal clustering for a-perturbation-resilient instances for o = 3.
They also conjecture it to be NP-hard to beat 3 and prove beating 3 is NP-hard for a
related notion.

In this work, we address both questions raised by Bilu and Linial [6] and additionally
improve over Awasthi et al. [2]. First, for separable center-based objectives we design a
polynomial time algorithm for finding the optimum for instances resilient to perturba-
tions of value & = 1-++/2, thus beating the previously best known factor of 3 of Awasthi
et al. [2]]. Second, for k-median, we consider a weaker, relaxed, and more realistic no-
tion of perturbation-resilience where we allow the optimal clustering of the perturbed
instance to differ from the optimal of the original in a small € fraction of the points.
This is arguably a more natural though also more difficult condition to deal with. We
give positive results for this case as well, showing for somewhat larger values of « that
we can still achieve a near-optimal clustering. We additionally give positive results for
min-sum clustering which is a generally much harder objective than k-median (and also
non-center-based). For example, the best known guarantee for min-sum clustering on
worst-case instances is an O(6~* log!*° n)-approximation in time n®(*/%) due to [3];
by contrast, the best guarantee known for k-median is factor 3 + € due to [1].

Our results are achieved by carefully deriving structural properties of perturbation-
resilience. At a high level, all the algorithms we introduce work by first running appro-
priate linkage procedures to produce a tree, and then running dynamic programming to
retrieve the best k-clustering in the tree. To ensure that (under perturbation resilience)
the tree output in the first step has a low-cost pruning, we derive new linkage procedures
(closure linkage and approximate closure linkage) which are of independent interest.

Our Results: We provide several results for clustering perturbation-resilient instances
in the metric space for separable center-based objectives and for the min-sum objective.

In Section [3l we improve on the bounds of Awasthi et al. [2] for a-perturbation re-
silient instances for separable center-based objectives, giving an algorithm that effi-
cientlyE] finds the optimum for & = 1 + /2. Commonly used separable center-based

! For clarity, efficient means polynomial in 7 (number of points) and k (number of clusters).



Clustering under Perturbation Resilience 65

objectives, such as k-median, are NP-hard to even approximate, yet we can recover the
exact solution for perturbation resilient instances. Our algorithm is based on a new link-
age procedure using a new notion of distance (closure distance) between sets that may
be of independent interest.

In Section ] we consider the more challenging and more general notion of (o, €)-
perturbation resilience for k-median, where we allow the optimal solution after per-
turbation to be e-close to the original. We provide an efficient algorithm which for
a > 2 + /7 produces (1 + O(¢/p))-approximation to the optimum, where p is the
fraction of the points in the smallest cluster. The key property we derive and exploit is
that, except for en bad points, most points are « closer to their own center than to any
other center. Using this, we then design an approximate version of the closure linkage
criterion that allows us to carefully eliminate the noise introduced by the bad points and
construct a tree with a low-cost pruning that is a good approximation to the optimum.

In Section [3 we provide the first efficient algorithm for optimally clustering c-min-
sum perturbation resilient instances. Our algorithm is based on an appropriate modifi-
cation of average linkage that exploits the structure of such instances.

Due to the lack of space we only provide sketches for most proofs in this paper. Full
proofs appear in the long version of the paper [4]. In the long version, we also provide
sublinear-time algorithms, showing algorithms that can return an implicit clustering
from only access to a small random sample.

2 Notation and Preliminaries

In a clustering instance, we are given a set S of n points in a finite metric space, and we
denote d : S x S — R as the distance function. ¢ denotes the objective function over
a partition of S into k < n clusters which we want to optimize, i.e. @ assigns a score to
every clustering. The optimal clustering w.r.t. @ is denoted as C = {C1,Cy,...,Ci},
and its cost is denoted as OPT . The core concept we study in this paper is the pertur-
bation resilience notion introduced by Bilu and Linial [6]. Formally:

Definition 1. A clustering instance (S, d) is a-perturbation resilient to an objective ®
ifforanyd : SxS — Rs.t.Vp,q € S,d(p,q) < d'(p,q) < ad(p, q), there is a unique
optimal clustering C' for & under d’ that equals the optimal clustering C under d.

In this paper, we focus on center-based and min-sum objectives. For center-based ob-
jectives, we consider separable center-based objectives defined by Awasthi et al. [2].

Definition 2. A clustering objective is center-based if the solution can be defined by
partitioning S into k clusters P = {Py, Pa,..., Py} and assigning a set of centers
p = {p1,p2,-..,pr} C S for the clusters. Such an objective is separable if it further-
more satisfies the following two conditions: 1) The objective function value of a given
clustering is either a (weighted) sum or the maximum of the individual cluster scores;
2) Given a proposed single cluster, its score can be computed in polynomial time.

For example, for the k-median objective which we study substantially, the objective
is &(P,p) = Ele > pep, A(p,p;). Other examples of center-based objectives in-

clude k-means for which (P, p) = Zle > pep, @(p,pi), and k-centers for which
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@(P,p) = max¥_, max,cp, d(p,p;). The centers in the optimal solution are denoted
asc = {ci1,...,cx}. Clearly, in an optimal solution, each point is assigned to its nearest
center. In such cases, the objective is denoted as (c).

We also consider a different type of objective function: the min-sum objective. For
this objective, S is partitioned into k clusters P = { Py, P, ..., Py}, and the goal is to
minimize $(P) = Zle > paep; 4D ).

In Section [4] we consider a generalization of Definition [I] where we allow a small
difference between the original and the new optimum after perturbation. Formally:

Definition 3. Let C be the optimal k-clustering and C' be another k-clustering of a set
of n points. We say C' is e-close to C if min,¢s, Zle |C; \ C(;(i)| < en, where o is a
matching between indices of clusters of C' and those of C.

Definition 4. A clustering instance (S, d) is («, €)-perturbation resilient to an objec-
tive @ if forany d' : S x S — Rs.t. Vp,q € S,d(p,q) < d'(p,q) < ad(p,q), the
optimal clustering C' for & under d' is e-close to the optimal clustering C under d.

For simplicity, we use shorthand d(A,B) = > 4> pd(p,q) and d(p, B) =
d({p}, B). Also, we will sometimes assume that min; |C;| and en is known. (Other-
wise, we can simply search over the n possible different values for each parameter.)

3 «-Perturbation Resilience for Center-Based Objectives

In this section we show that, for o > 1++/2, if the clustering instance is a-perturbation
resilient for separable center-based objectives, then we can efficiently find the optimal
clustering. This improves on the o > 3 bound of Awasthi et al. [2] and stands in sharp
contrast to the NP-Hardness results on worst-case instances. Our algorithm succeeds
for an even weaker property, the a-center proximity, introduced in Awasthi et al. [2].

Definition 5. A clustering instance (S, d) satisfies the a-center proximity property if
for any optimal cluster C; € C with center ¢;, Cj € C(j # i) with center c;, any point
p € C; satisfies ad(p, ¢;) < d(p, ¢;).

Lemma 1. (/2]) Any clustering instance that is a-perturbation resilient to separable
center-based objectives also satisfies the a-center proximity.

The proof follows by constructing a specific perturbation that blows up all the pairwise
distances within C; by a factor of . By a-perturbation resilience, the optimal clustering
remains the same, which then implies the desired result. In this section, we prove our
results for a-center proximity. The results also hold for a-perturbation resilience since
it implies a-center proximity. We begin with some key properties.

Lemma 2. For any points p € C; and q € C;(j # 1) in the optimal clustering of an
a-center proximity instance, when o > 1 + \/ 2, we have:

(1) d(Ci,Q) > d(Ci,p), (2) d(p7 Ci) < d(p7 q)
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Proof. (1) By Lemma [1l d(q,¢;) > ad(q,c;). By triangle inequality, d(c;,c;) <
d(gq,c;) +d(g,ci) < (1+ i)d(q, ¢;). Also, d(p, ¢j) > ad(p, ¢;) and thus d(c;, ¢;) >
d(p,c;) — d(p,c;) > (o — 1)d(p, ¢;). The result follows by these inequalities.
(2) It also follows from triangle inequality. The proof appears in [2].

O

Lemma 2] implies that for any optimal cluster C;, the ball of radius max,ec, d(c;, p)
around the center ¢; contains only points from C;, and moreover, points inside the ball
are each closer to the center than to any point outside the ball. Inspired by this structural
property, we define the notion of closure distance between two sets as the radius of the
minimum ball that covers the sets and has some margin from points outside the ball.
We show that any (strict) subset of an optimal cluster has smaller closure distance to
another subset in the same cluster than to any subset or union of other clusters. Using
this, we will be able to define an appropriate linkage procedure that produces a tree on
subsets that will all be laminar with respect to the optimal clusters. This will then allow
us to extract from the tree the optimal solution using dynamic programming. We now
define the notion of closure distance and then present our algorithm.

Definition 6. Let B(p,r) = {q : d(q,p) < r}. The closure distance ds(A, A") be-
tween two disjoint non-empty subsets A and A’ of point set S is the minimum d > 0
such that there is a point c € AU A’ satisfying the following requirements:

(1) coverage: the ball B(c,d) covers Aand A', i.e. AU A’ C B(c,d);

(2) margin: points inside B(c, d) are closer to the center c than to points outside,

i.e.Vp € B(c,d), q € B(c,d), we have d(c,p) < d(p, q).

Note that for any A, A’, dg(A, A") = ds(A’, A) < max, qesd(p,q), and it can be
computed in polynomial time.

Algorithm 1. Separable center-based objectives, « perturbation resilience

Input: Data set S, distance function d(-,-) on S.

Phase 1: Begin with n singleton clusters.

e Repeat till only one cluster remains: merge clusters C, C’ which minimize ds(C, C").

e Let T be the tree with single points as leaves and internal nodes corresponding to the merges.

Phase 2: Apply dynamic programming on 7" to get the minimum cost pruning C.
Output: Clustering C.

Theorem 1. For (1 +/2)-center proximity instances, Algorithm[lloutputs the optimal
clustering in polynomial time.

The proof follows from the following key property of the Phase 1 of Algorithm[Il

Theorem 2. For (1 + /2)-center proximity instances, Phase 1 of Algorithm [ con-
structs a binary tree such that the optimal clustering is a pruning of this tree.

Proof. We prove correctness by induction. In particular, assume that our current clus-
tering is laminar to the optimal clustering — that is, for each cluster A in our current
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clustering and each C' in the optimal clustering, we have either A C C, or C C A or
AN C = @. This is clearly true at the start. To prove that the merge steps preserve the
laminarity, we need to show the following: if A is a strict subset of an optimal cluster C;,
A’ is a subset of another optimal cluster or the union of one or more other clusters, then
there exists B from C; \ A in the current clustering, such that dg(A, B) < dg(A, A").

Let d = maxpec; d(c;, ), p* = argmaxpec, d(c;, p). We first prove that there is
acluster B C C; \ A in the current clustering such that ds(A, B) < d. There are
two cases. First, if ¢; € A, then define B to be the cluster in the current clustering
that contains ¢;. By induction, B C C; \ A. Then we have dg(B, A) < d since there
is¢; € B, and (1) forany p € AU B, d(c;,p) < d, (2) for any p € S satisfying
d(ci,p) < d, and any ¢ € S satisfying d(c;, q) > d, by LemmaPlwe know p € C; and
q ¢ C;, and thus d(c;, p) < d(p, q). Second, if ¢; € A, we pick any B C C; \ Aand a
similar argument gives ds(A, B) < d.

As a second step, we need to show that d < d= dg(A, A’). There are two cases:
the center for dg(A, A’) is in A or in A’. In the first case, there is a point ¢ € A
such that ¢ and d satisfy the requirements of the closure distance. Pick a point ¢ €
A’, and suppose C; is the optimal cluster that contains ¢. As d(c,q) < d, and by
Lemma 2 d(c;,q) < d(c,q), we must have d(cj,c) < d (otherwise it violates the
second requirement of closure distance). Then we have d = d(p*, ¢;) < d(p*,¢;)/a <
(d + d(ci,c) + d(c,¢;))/ o from Lemma [l and triangle inequality. Since d(c;,c) <
d(c, ¢j)/ao, we can combine the above inequalities and compare d and d(c, ¢;), and
when a > 1+ v/2 we have d < d(c, ¢j) < d.

case 1l:cin A case 2:cin A'

Fig. 1. Tllustration for comparing d and ds (A, A") in Theorem 2]

Now consider the second case, when there is a point ¢ € A’ such that ¢ and d satisfy
the requirements of the closure distance. Pick a point ¢ € A. We have d > d(e,q)
from the first requirement, and d(c, q¢) > d(c;, ¢) by Lemma[2 Then from the second
requirement d(c;, ¢) < d. So by Lemmall d = d(c;, p*) < d(c;, ¢) < d. O

Note: Our factor of &« = 1+ /2 beats the NP-hardness lower bound of o = 3 of [2]] for
center proximity instances. The reason is that the lower bound requires the addition of
Steiner points that can act as centers but are not part of the data to be clustered (though
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the upper bound of [2] does not allow such Steiner points). One can also show a lower
bound for center proximity instances without Steiner points. In particular one can show
that for any e > 0, solving (2 — €)-center proximity k-median instances is NP-hard [10].

4 (a,€)-Perturbation Resilience for the k-Median Objective

In this section we consider a natural relaxation of the a-perturbation resilience, the
(«, €)-perturbation resilience, that requires the optimal clustering after perturbation to
be e-close to the original. We show that for (o, €)-perturbation resilient instances, with
a > 2++/Tand e = O(¢'p) where p is the fraction of the points in the smallest cluster,
we can in polynomial time output a clustering that provides a (1 + ¢’)-approximation
to the optimum. Thus this improves over the best worst-case approximation guarantees
known when ¢’ < 2 and also beats the lower bound of (1 + 2/¢) on the best approxi-
mation achievable on worst case instances for metric k-median [9] when ¢ < 1/e.

The key idea is to understand and leverage the structure implied by («, €)-perturbation
resilience. We show that perturbation resilience implies that there exists only a small
fraction of points that are bad in the sense that their distance to their own center is not
« times smaller than their distance to any other centers in the optimal solution. We then
use this bounded number of bad points in our clustering algorithm.

4.1 Structure of (v, €)-Perturbation Resilience

To understand (o, €)-perturbation resilience, we need to consider the difference between
the optimal clustering C under d and the optimal clustering C’ under d’, defined as
min,es, Zle |Ci\Cy ;|- Without loss of generality, we assume in this subsection that

C’ is indexed so that the argmin o is the identity, and the difference is Zle |Ci \ CY.
We denote by c; the center of C.

In the following we call a point good if it is « times closer to its own center than to
any other center in the optimal clustering; otherwise we call it bad. Let B; be the set
of bad points in C;. Thatis, B; = {p : p € C;,3j # i,ad(c;,p) > d(c;,p)}. Let
G; = C; \ B; be the good points in cluster C;. Let B = U; B; and G = U;G;. We show
that under perturbation resilience we do not have too many bad points. Formally:

Theorem 3. Suppose the clustering instance is («, €)-perturbation resilient to k-median
and min; |C;| > 5 en. Then |B| < en.

Here we describe a proof sketch of the theorem. In the full version we provide the
detailed proof, and also point out that the bound in Theorem [3] is an optimal bound
for the bad points in the sense that for any @ > 1 and € < é, we can construct an
(a, €)-perturbation resilient 2-median instance which has en bad points.

Proof Sketch of [Theorem [3] The main idea is to construct a specific perturbation
that forces certain selected bad points to move from their original optimal clusters.
For technical reasons, we only perturb a selected subset of bad points, and show that
they move out after perturbation. Then the (c, ¢)-perturbation resilience leads to a
bound on the number of selected bad points, which can also be proved to be a bound
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on all the bad points. The selected bad points B; in cluster C; are defined by arbi-
trarily selecting min(en + 1, |B;|) points from B;. Let B = U;B;. For p € Bz,
let ¢(p) = argming, j; cl(p7 ¢;) denote its second nearest center; for p € C; \ Bj,
¢(p) = ¢;. The perturbation we consider blows up all distances by a factor of « except
for those distances between p and ¢(p). Formally, we define d’ as d’'(p, q¢) = d(p, q) if
p = c(q) or g = ¢(p), and d'(p, q¢) = ad(p, q) otherwise.

The key challenge in proving a bound on the selected bad points is to show that
¢, = ¢; forall i, 1.e., the optimal centers do not change after the perturbation. Then in the
optimum under d’ each point p is assigned to the center ¢(p), and therefore the selected
bad points (B) will move from their original optimal clusters. By (a, €)-perturbation
resilience property we get an upper bound on the number of selected bad points.

Suppose C! is obtained by adding point set A; and removing point set M; from C;,
ie. A; = CI\C;, M; = C;\C}. Atahighlevel, we prove that ¢; = ¢] for all i as follows.
We first show that for each cluster, its new center is close to its old center, roughly
speaking since the new and old clusters have a lot in common (Claim[I)). We then show
if ¢; # ¢; for some 4, then the weighted sum of the distances ;. [Ci|d(ci, ¢7)
should be large (Claim [2). However, this contradicts Claim[I] so ¢} = ¢; for all 4.

. . A C;
Claim 1. For each i, d(c;,(C; N CI)\ B;) > 31% | 3 Id(cl7 ).

Proof Sketch: The key idea is that under d’, ¢} is the optimal center, so it has no more
cost than ¢; on C}. Since B; \ M, and A; are small compared to (C;NCY) \B’i, ¢; cannot
save much on B; \ M, and A;, thus it cannot have much more cost on (C; N CY) \ B;
than ¢;. Then ¢} is close to (C; N CY) \ B;, and so is ¢;, then ¢} is close to ¢;. Formally,
we have d’ (¢} C’) < d'(ci, CF). We divide Cj into (C; NCH\ B;, B; \ M; and A;, and
move terms on (C; N C!) \ B; to one side (the cost more than ¢; on (CiNCH\ By), the
rest terms to another side (the cost saved on Bl \ M; and A;). After translating from d’
to d, we apply triangle inequality and obtain the claim. O

Claim 2. Let I; = 1 if ¢; # ¢ and I; = 0 otherwise. Then we have
Ycicn lid(ei (CiN T\ Bi) € 3oy, G (e, ).

Proof Sketch: The key idea is that the clustering that under d’ assigns points in C? \ B;
to ¢; and points p in B; \ M; to ¢(p), saves much cost on (C; N C}) \ B; compared to
the optimal clustering {C/} under d', if ¢} # ¢;. Then {C}} must save this cost on other
parts of points. So {c;} should be near these points and {c;} should be far away, and
the weighted sum of the distances between {c;} and {c¢;} should be large. Formally,
Yo d (e, Cl) <> d (e, Cf \B’i) + Zpeéi\Mi d'(c(p), p)] since {c}} are the optimal
centers for C/ under d’. By dividing C/ into A;, B; \ M; and (C; N C)) \ B;, and by
the fact a ), d(c;, C;) < o), d(c}, C;) since ¢; are the optimal centers, we can show
that {C/} should save as much as approximately (o — 1) 3>, d(ci, (C; N CY) \ B;) cost
on points other than (C; N C?) \ B;. Then the result follows by triangle inequality. 0
These claimslead to >, ., -, |Cild(ci, ;) [1 — (v +2)I; /(e + 1)] > 0.1f I; = 0, then
d(c;, ;) = 05 if I; = 1, the coefficient of d(c;, ¢}) is negative. So the left hand side is
at most 0. Then all terms equal 0, i.e. d(c;, ¢;) = 0(1 <4 < k). Then points in B; will
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move to other clusters after perturbation, Yvhich means that Bi C M;, thus B C U; M;.
Then |B| < |U; M;| < en. In particular, | B;| < en forany i. Then [ B;| < en, otherwise
|B;| would be en + 1. So B; = B;, and B = B and |B| = |B| < en. O

4.2 Approximating the Optimal Clustering

Since (a, €)-perturbation resilient instances have at most en bad points, we can show
that for @ > 4 such instances satisfy the e-strict separation property (the property that
after eliminating an ¢ fraction of the points, the remaining points are closer to points in
their own cluster than to other points in different clusters). Therefore, we could use the
algorithms in [3]] to output a tree with a pruning e-close to the optimal clustering. How-
ever, this pruning might not have a small cost and it is not clear how to retrieve a small
cost clustering from the tree constructed by these generic algorithms. Here we design
a new algorithm for obtaining a good approximation for (c, €)-perturbation resilient
instances. This algorithm first uses a novel linkage procedure based on an approximate
version of the closure condition in Section[3]to construct a tree, and then processes the
tree to output a desired clustering. We first define the approximate closure condition.

Definition 7. Suppose C' is a clustering of S and p,q € S.
Let Uy, 4 denote the set of clusters that are nearly contained in the ball B(p, d(p, q)),
ie. Uy, ={C|C €l |C\B(p,d(p,q)| <en,CNB(p,d(p,q)) # 0}
The ball B(p, d(p, q)) satisfies the approximate closure condition with respectto C' if
|Uceu, , C| > min; |C;| — en and the following conditions are satisfied:
(1) approximate coverage: it covers most of Uy 4, i.e. |Ucev, ,Ci\B(p, d(p, q))| < enfl
(2) approximate margin: after removing a few points outside the ball, points inside

are closer to each other than to points outside, i.e. 3£ C S\ B(p, d(p, q)),|E| < en,

5.t.Yp1,p2 € B(p,d(p,q)), 1 € S\B(p,d(p, q))\E, we have d(p1, p2) < d(p1,q1).

We are now ready to present our main algorithm for the («, €)-perturbation resilient in-
stances, Algorithm[2l Informally, it starts with singleton points in their own clusters. It
then checks in increasing order of d(p, ¢) whether the ball B(p, d(p, q)) satisfies the ap-
proximate closure condition, and if so it merges all the clusters nearly contained within
B(p,d(p, q)). As we show below, the tree produced has a pruning that respects the op-
timal clustering. However, this pruning may contain more than k-clusters, so in the
second phase, we clean the tree so that there is a pruning with k-clusters that coincides
with the optimal clustering on the good points. Finally we run dynamic programming to
get the minimum cost pruning, which provides a good approximation to the optimum.

Our main result in this section is Theorem[d] which follows from Lemma[3] for Phase
1 of the algorithm and Lemmal[d] for Phase 2.

Theorem 4. For (o, €)-perturbation resilient instances to k-median, if « > 2 + /7
and € < p/8 where p = min, |C;|/n, then in polynomial time, Algorithm[2 outputs a
tree T that contains a pruning e-close to the optimal clustering. Moreover, if e < pe’ /8
where € < 1, the clustering produced is a (1 + €')-approximation to the optimum.

? Note that in the definition of Uy, 4, each cluster in it has at most en points outside B(p, d(p, q)).
But the approximate coverage is stronger: Up 4, as a whole, can have at most en outside.
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Algorithm 2. k-median, («, €) perturbation resilience
Input: Data set S, distance function d(-, ) on S, min; |C;|, e > 0
Phase 1: Initialize C’ to be the clustering with each singleton point being a cluster.
e Sort all the pairwise distances d(p, q). For d(p, q) in ascending order,
e IfB(p,d(p, q)) satisfies approximate closure condition and |Up,q| > 1, merge Uy, 4.
e Construct the tree 7" with points as leaves and internal nodes corresponding to the merges.
Phase 2: If a node has only singleton points as children, delete his children; get 7.
e Assign any singleton node p to the non-singleton leaf of smallest median distance; get 7.
Phase 3: Apply dynamic programming on 7" to get the minimum cost pruning C.
Output: Clustering C, (optional) tree T.

Lemma3. If o« > 2+ /7, € < p/8, then the tree T contains nodes N;(1 <i<k)
such that N; \ B = C; \ B.

Proof Sketch: For each i, we let ¢; = arg max,cc,\ g d(ci, q). The proof follows from
two key facts: (1) If C’ \ B is laminar to C \ B right before checking some d(p, ¢), and
Up,q contains both good points from C; and C; (i # j), then d(c;, ¢; ) and d(c;, q; ) are
checked before d(p, ¢). (2) If C’ \ B is laminar to C \ B right before checking d(c;, ¢}°),
we have that right after checking d(c;, ¢F) there is a cluster containing all the good
points in cluster ¢ and no other good points.

Consider any merge step s.t. Uy, 4 contains good points from both C; and C;(j # 7).
Fact (1) implies both d(c;, g;) and d(c;, ¢} ) must have been checked, and then fact (2)
implies all good points in C; and C; respectively have already been merged. So the
laminarity is always satisfied. Then the lemma follows from fact (2).

We now prove fact (1). Suppose that there exist good points from C; and Cj in
Up,q. From the laminarity assumption, the fact that clusters in U, , have only en points
outside B(p, d(p, q)) and | B| < en, we can show there exist good points p; € C; and
p; € C;inB(p,d(p,q)). When o > 2 + /7 we can show d(c;, gf) < d(pi, pj)/2, and
by triangle inequality d(p;, p;)/2 < d(p, ¢), so d(p,q) > d(ci, g} ). The same argument
leads to d(p, q) > d(cj, q}). So d(ci, g7 ) and d(c;, g ) are checked before d(p, q).

We now prove fact (2). It is sufficient to show that UCeUct,q_*C \B =C;\B
and U, q- satisfies the approximate closure condition. First, Uc“;;; contains no good
points outside C; by fact (1). Second, any C' containing good points from C; is in
Ue,,q: - By fact (1), C has no good points outside C;. Since B(c;, d(c;, ¢} )) contains all
good points in C;, C' has only bad points outside the ball, so C' € U,, 4-. We finally
show U, 4+ satisfies the approximate closure condition. Since in addition to all good
points in C;, Uceu,, - C can only contain bad points, it has at most en points outside

B(c;, d(ci,q})), so approximate coverage condition is satisfied. And we can show for
a > 24+/7,2d(c;, g ) is smaller than the distance between any point in B(c;, d(c;, ¢F))
and any good point outside C;. Then let E = B \ B(¢;, d(¢;, ¢F)), approximate margin
condition is satisfied. We also have | Ucep, . C| = |C; \ B| =2 min; [Cj[ —en. D

Lemma 4. I[fa > 2+/7, € < €p/8where ¢ < 1, then C is a (14 ¢')-approximation.

Proof Sketch: By Lemma 3 7" has a pruning P that contains N;(1 < i < k) and
possibly some bad points, such that N; \ B = C; \ B. Therefore, each non-singleton
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leaf in 7" has only good points from one optimal cluster and has more good points than
bad points. This implies that each singleton good point in 7" is assigned to a leaf that
has good points from its own optimal cluster.

So after Phase 2, P in T becomes P’ = { N/} in T such that N/ \ B = C; \ B.Itis
sufficient to prove the cost of P’ approximates OPT, i.e. to bound the increase of cost
caused by a bad point p; € C; ending up in N/ (i # j). There are two cases: p; belongs
to a non-singleton leaf node in 7" or p; is a singleton in 7”. In either case, we can find
K = (min, |C;| —en)/2 — en good points p;; from C; in the leaf in which p; ends up in
T,and K good points p;s from C} in any other leaf containing only good points from
C, such that d(p;, pit) < d(p;,pjs)- Then d(p;,¢;) — d(p;, ¢;) can be bounded by

Il({ S [y i) + dpine)] = S [d<pj7pjs>d<pj57cj>}}s LorT.

1<t<K 1<s<K

As |B| < en, the cost of P"is < (14 7 )OPT. Setting ¢’ > 7 gives the lemma. O

We note that approximate margin condition in the Definition [7] can be verified in
O(n?) time by enumerating p1,p2 € B(p,d(p,q)),q1 & B(p, d(p,q)), and checking if
there are no more than en such ¢; that there exist pq, p2 violating the condition. So the
algorithm runs in polynomial time.

5 «a-Perturbation Resilience for the Min-Sum Objective

In this section we provide an efficient algorithm for clustering a-perturbation resilient
instances for the min-sum k-clustering problem (Algorithm [3). We use the following
notations: dq.q(A, B) = d(A, B)/(|A||B]) and davg(p, B) = davg({p}, B).

Theorem 5. For (3 || Y perturbation resilient instances to min-sum,

min; |Ci|—1
AlgorithmBloutputs the optimal min-sum k-clustering in polynomial time.

Algorithm 3. Min-sum, « perturbation resilience
Input: Data set S, distance function d(-, -) on .S, min; |C|.
Phase 1: Connect each point with its ; min; |C;| nearest neighbors.
o Initialize the clustering C’ with each connected component being a cluster.
e Repeat till one cluster remains in C’: merge clusters C, C” that minimize dqvq(C, C").
o Let T be the tree with components as leaves and internal nodes corresponding to the merges.

Phase 2: Apply dynamic programming on 7" to get the minimum cost pruning C.
Output: Output C.

Proof Sketch: First we show that the a-perturbation resilience property implies that
for any two optimal clusters C; and C; and any A C C;, we have ad(A,C; \ A) <
d(A, Cj). This follows by considering the perturbation where d'(p,q) = ad(p,q)
ifp € A q € C; \ A and d(p,q) = d(p,q) otherwise, and using the fact that
the optimum does not change after the perturbation. This can be used to show that
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when a > SHTSX‘CIVC[_H we have: (1) for any optimal clusters C; and C; and any

ACC;, A CCjst.min(|C; \ A],|C; \ A'|) > min; |C;|/2 we have dg,q(A, A7) >
min{dauvg(A4, Ci \ A), davg(A’, C; \ A’)}; (2) for any point p in the optimal cluster C;,
twice its average distance to points in C; \ {p} is smaller than the distance to any point
in other optimal cluster C;;. Fact (2) implies that for any point p € C; its |C;|/2 nearest
neighbors are in the same optimal cluster, so the leaves of the tree 1" are laminar to the
optimum clustering. Fact (1) can be used to show that the merges preserve the laminar-
ity with the optimal clustering, so the minimum cost pruning of 7" will be the optimal
clustering, as desired. See the full version for the details. O

6 Discussion and Open Questions

In this work, we advance the line of research on perturbation resilience in clustering in
multiple ways. For a-perturbation resilient instances, we improve on the known guar-
antees for center-based objectives and give the first analysis for min-sum. Furthermore,
for k-median, we analyze and give the first algorithmic guarantees known for a relaxed
but more challenging condition of (c, €)-perturbation resilience, where an ¢ fraction of
points are allowed to move after perturbation. We also give sublinear-time algorithms
for k-median and min-sum under perturbation resilience in the long version.

A natural direction for future investigation is to explore whether one can take ad-
vantage of smaller perturbation factors for perturbation resilient instances in Euclidian
spaces. More broadly, it would be interesting to explore other ways in which perturba-
tion resilient instances behave better than worst case instances (e.g., natural algorithms
converge faster).
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grant FA9550-09-1-0538, by a Microsoft Research Faculty Fellowship, and by a Google
Research award.
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Abstract. We consider online resource allocation problems where given
a set of requests our goal is to select a subset that maximizes a value mi-
nus cost type of objective. Requests are presented online in random order,
and each request possesses an adversarial value and an adversarial size.
The online algorithm must make an irrevocable accept /reject decision as
soon as it sees each request. The “profit” of a set of accepted requests is
its total value minus a convex cost function of its total size. This problem
falls within the framework of secretary problems. Unlike previous work
in that area, one of the main challenges we face is that the objective func-
tion can be positive or negative, and we must guard against accepting
requests that look good early on but cause the solution to have an ar-
bitrarily large cost as more requests are accepted. This necessitates new
techniques. We study this problem under various feasibility constraints
and present online algorithms with competitive ratios only a constant
factor worse than those known in the absence of costs for the same fea-
sibility constraints. We also consider a multi-dimensional version of the
problem that generalizes multi-dimensional knapsack within a secretary
framework. In the absence of feasibility constraints, we present an O(¢)
competitive algorithm where £ is the number of dimensions; this matches
within constant factors the best known ratio for multi-dimensional knap-
sack secretary.

1 Introduction

We study online resource allocation problems under a natural profit objective:
a single server accepts or rejects requests for service so as to maximize the total
value of the accepted requests minus the cost imposed by them on the system.
This model captures, for example, the optimization problem faced by a cloud
computing service accepting jobs, a wireless access point accepting connections
from mobile nodes, or an advertiser in a sponsored search auction deciding which
keywords to bid on. In many of these settings, the server must make accept or
reject decisions in an online fashion as soon as requests are received without
knowledge of the quality of future requests. We design online algorithms with the
goal of achieving a small competitive ratio—ratio of the algorithm’s performance
to that of the best possible (offline optimal) solution.

* This work was supported in part by NSF awards CCF-0643763 and CNS-0905134.
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A classical example of online decision making is the secretary problem. Here
a company is interested in hiring a candidate for a single position; candidates
arrive for interview in random order, and the company must accept or reject each
candidate following the interview. The goal is to select the best candidate with
as high a probability as possible. What makes the problem challenging is that
each interview merely reveals the rank of the candidate relative to the ones seen
previously, but not the ones following. Nevertheless, Dynkin [I2] showed that it
is possible to succeed with constant probability using the following algorithm:
unconditionally reject the first 1/e fraction of the candidates; then hire the next
candidate that is better than all of the ones seen previously. Dynkin showed
that as the number of candidates goes to infinity, this algorithm hires the best
candidate with probability approaching 1/e and in fact this is the best possible.

More general resource allocation settings may allow picking multiple candi-
dates subject to a certain feasibility constraint. We call such a problem a gen-
eralized secretary problem (GSP) and use (®,F) to denote an instance of the
problem. Here F denotes a feasibility constraint that the set of accepted requests
must satisfy (e.g. the size of the set cannot exceed a given bound), and @ de-
notes an objective function that we wish to maximize. As in the classical setting,
we assume that requests arrive in random order; the feasibility constraint F is
known in advance but the quality of each request, in particular its contribution
to @, is only revealed when the request arrives. Recent work has explored vari-
ants of the GSP where @ is the sum over the accepted requests of the “value”
of each request. For such a sum-of-values objective, constant factor competitive
ratios are known for various kinds of feasibility constraints including cardinality
constraints [I8)20], knapsack constraints [4], and certain matroid constraints [5].

In many settings, the linear sum-of-values objective does not adequately cap-
ture the tradeoffs that the server faces in accepting or rejecting a request, and
feasibility constraints provide only a rough approximation. Consider, e.g., a wire-
less access point accepting connections. Each accepted request improves resource
utilization and brings value to the access point. However as the number of ac-
cepted requests grows the access point performs greater multiplexing of the spec-
trum, and must use more and more transmitting power in order to maintain a
reasonable connection bandwidth for each request. The power consumption and
its associated cost are non-linear functions of the total load on the access point.
This directly translates into a value minus cost type of objective where the cost
is an increasing function of the total size of accepted requests.

Our goal then is to accept a set A out of a universe U of requests such that
the “profit” mw(A4) = v(A) — C(s(A)) is maximized; here v(A) is the total value
of all requests in A, s(A) is the total size, and C is a known increasing convex
cost functiorfl.

Note that when the cost function takes on only the values 0 and oo it captures a
knapsack constraint, and therefore the problem (7, 2Y) (i.e. where the feasibility

! Convexity is crucial in obtaining any non-trivial competitive ratio—if the cost func-
tion were concave, the only solutions with a nonnegative objective function value
may be to accept everything or nothing.
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constraint is trivial) is a generalization of the knapsack secretary problem [4]. We
further consider objectives that generalize the /-dimensional knapsack secretary
problem. Here, we are given ¢ different (known) convex cost functions C; for 1 <
1 < £, and each request is endowed with ¢ sizes, one for each dimension. The profit
of a set is given by m(A) = v(4) — Zle Ci(si(A)) where s;(A) is the total size of
the set in dimension :.

We consider the profit maximization problem under various feasibility con-
straints. For single-dimensional costs, we obtain online algorithms with com-
petitive ratios within a constant factor of those achievable for a sum-of-values
objective with the same feasibility constraints. For /-dimensional costs, in the
absence of any constraints, we obtain an O(¢) competitive ratio. We remark
that this is essentially the best approximation achievable even in the offline set-
ting: Dean et al. [I0] show an 2(¢'~¢) hardness for the simpler /-dimensional
knapsack problem under a standard complexity-theoretic assumption. For the
multi-dimensional problem with general feasibility constraints, our competitive
ratios are worse by a factor of O(¢°) over the corresponding versions without
costs. Improving this factor is a possible avenue for future research.

We remark that the profit function 7 is a submodular function. Recently
several works [I4U7ITI7] have looked at secretary problems with submodular ob-
jective functions and developed constant competitive algorithms. However, all
of these works make the crucial assumption that the objective is always nonneg-
ative; it therefore does not capture m as a special case. In particular, if @ is a
monotone increasing submodular function (that is, if adding more elements to
the solution cannot decrease its objective value), then to obtain a good compet-
itive ratio it suffices to show that the online solution captures a good fraction
of the optimal solution. In the case of [7] and [I7], the objective function is not
necessarily monotone. Nevertheless, nonnegativity implies that the universe of
elements can be divided into two parts, over each of which the objective essen-
tially behaves like a monotone submodular function in the sense that adding
extra elements to a good subset of the optimal solution does not decrease its
objective function value. In our setting, in contrast, adding elements with too
large a size to the solution can cause the cost of the solution to become too large
and therefore imply a negative profit, even if the rest of the elements are good in
terms of their value-size tradeoff. As a consequence we can only guarantee good
profit when no “bad” elements are added to the solution, and must ensure that
this holds with constant probability. This necessitates designing new techniques.

Our Techniques. In the absence of feasibility constraints (see SectionB]), we note
that it is possible to classify elements as “good” or “bad” based on a threshold on
their value to size ratio (a.k.a. density) such that any large enough subset of the
good elements provides a good approximation to profit; the optimal threshold
is defined according to the offline optimal fractional solution. Our algorithm
learns an estimate of this threshold from the first few elements (that we call
the sample) and accepts all the elements in the remaining stream that cross the
threshold. Learning the threshold from the sample is challenging. First, following
the intuition about avoiding all bad elements, our estimate must be conservative,
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i.e. exceed the true threshold, with constant probability. Second, the optimal
threshold for the sample can differ significantly from the optimal threshold for
the entire stream and is therefore not a good candidate for our estimate. Our
key observation is that the optimal profit over the sample is a much better
behaved random variable and is, in particular, sufficiently concentrated; we use
this observation to carefully pick an estimate for the density threshold.

With general feasibility constraints, it is no longer sufficient to merely classify
elements as good and bad: an arbitrary feasible subset of the good elements is not
necessarily a good approximation. Instead, we decompose the profit function into
two parts, each of which can be optimized by maximizing a certain sum-of-values
function (see Section H). This suggests a reduction from our problem to two
different instances of the GSP with sum-of-values objectives. The catch is that
the new objectives are not necessarily non-negative and so previous approaches
for the GSP don’t work directly. We show that if the decomposition of the profit
function is done with respect to a good density threshold and an extra filtering
step is applied to weed out bad elements, then the two new objectives on the
remaining elements are always non-negative and admit good solutions. At this
point we can employ previous work on GSP with a sum-of-values objective to
obtain a good approximation to one or the other component of profit. We note
that while the exposition in Section @ focuses on a matroid feasibility constraint,
the results of that section extend to any downwards-closed feasibility constraint
that admits good offline and online algorithms with a sum-of-values objective@.

In the multi-dimensional setting (discussed in Section[H), elements have differ-
ent sizes along different dimensions. Therefore, a single density does not capture
the value-size tradeoff that an element offers. Instead we can decompose the value
of an element into ¢ different values, one for each dimension, and define densities
in each dimension accordingly. This decomposes the profit across dimensions as
well. Then, at a loss of a factor of ¢, we can approximate the profit objective
along the “best” dimension. The problem with this approach is that a solution
that is good (or even best) in one dimension may in fact be terrible with respect
to the overall profit, if its profit along other dimensions is negative. Surprisingly
we show that it is possible to partition values across dimensions in such a way
that there is a single ordering over elements in terms of their value-size tradeoff
that is respected in each dimension; this allows us to prove that a solution that
is good in one dimension is also good in other dimensions. We present an O({)
competitive algorithm for the unconstrained setting based on this approach in
Section Bl and defer a discussion of the constrained setting to the full version of
the paper.

Related Work. The classical secretary problem has been studied extensively; see
[15/16] and [24] for a survey. Recently a number of papers have explored vari-
ants of the GSP with a sum-of-values objective. Hajiaghayi et al. [I§] consid-
ered the variant where up to k secretaries can be selected (a.k.a. the k-secretary

2 We obtain an O(a”B) competitive algorithm where « is the best offline approxima-
tion and (3 is the best online competitive ratio for the sum-of-values objective.
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problem) in a game-theoretic setting and gave a strategyproof constant-competitive
mechanism. Kleinberg [20] later showed an improved 1 — O(1/v/k) competitive
algorithm for the classical setting. Babaioff et al. [4] generalized this to a set-
ting where different candidates have different sizes and the total size of the
selected set must be bounded by a given amount, and gave a constant fac-
tor approximation. In [5] Babaioff et al. considered another generalization of
the k-secretary problem to matroid feasibility constraints. A matroid is a set
system over U that is downwards closed (that is, subsets of feasible sets are
feasible), and satisfies a certain exchange property (see [22] for a comprehen-
sive treatment). They presented an O(logr) competitive algorithm, where r is
the rank of the matroid, or the size of a maximal feasible set. This was sub-
sequently improved to a O(+/logr)-competitive algorithm by Chakraborty and
Lachish [8]. Several papers have improved upon the competitive ratio for special
classes of matroids [IJITI21]. Bateni et al. [7] and Gupta et al. [17] were the first
to (independently) consider non-linear objectives in this context. They gave on-
line algorithms for non-monotone nonnegative submodular objective functions
with competitive ratios within constant factors of the ratios known for the sum-
of-values objective under the same feasibility constraint. Other versions of the
problem that have been studied recently include: settings where elements are
drawn from known or unknown distributions but arrive in an adversarial or-
der [9T9123], versions where values are permuted randomly across elements of a
non-symmetric set system [25], and settings where the algorithm is allowed to
reverse some of its decisions at a cost [2/3].

2 Notation and Preliminaries

We consider instances of the generalized secretary problem represented by the
pair (m, F), and an implicit number n of requests or elements that arrive in
an online fashion. U denotes the universe of elements. F C 2V is a known
downwards-closed feasibility constraint. Our goal is to accept a subset of elements
A C U with A € F such that the objective function 7(A) is maximized. For a
given set T C U, we use O*(T') = argmax 4 rnor 7(A) to denote the optimal
solution over T'; O* is used as shorthand for O*(U).

We now describe the function 7. In the single-dimensional cost setting, each
element e € U is endowed with a value v(e) and a size s(e). Values and sizes are
integral and are a priori unknown. The size and value functions extend to sets of
elements as s(A) = > . 4 s(e) and v(A4) = > ., v(e). The “profit” of a subset
is given by 7(A) = v(A) — C(s(A)) where C is a non-decreasing convex function
of size, C: Z* — Z7, satisfying C(0) = 0. The following quantities will be useful
in our analysis:

— The density of an element, p(e) := v(e)/s(e). We assume w.l.o.g that densi-
ties of elements are unique and let e, denote the unique element with density
5.

— The marginal cost function, c(s) := C(s) — C(s — 1). Note that this is non-
decreasing.
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— The inverse marginal cost function, 5(p), is defined to be the maximum size
for which c(s) < p.

— The density prefiz for a given density v and a set T, Pf ={eeT:ple) >
v}, and the partial density prefix, Pf = Pf \ {e5}. We use P, and P, as
shorthand for P,y and }5§] respectively.

We will sometimes find it useful to discuss fractional relaxations of the offline
problem of maximizing 7 subject to F. To this end, we extend the definition
of subsets of U to allow for fractional membership. We use ae to denote an a-
fraction of element e; this has value v(ae) = awv(e) and size s(ae) = as(e). We
compute the cost C(s) for a non-integral size s by piecewise linear interpolation.
We say that a fractional subset A is feasible if its support supp(A) is feasible.
Note that when the feasibility constraint can be expressed as a set of linear
constraints, this relaxation is more restrictive than the natural linear relaxation.

Note that since cost is a convex non-decreasing function of size, it may at
times be more profitable to accept a fraction of an element rather than the
whole. That is, argmax, m(«ae) may be strictly less than 1. For such elements,
p(e) < c(s(e)). We use F to denote the set of all such elements: F = {e €
U : argmax, m(ae) < 1}, and I = U \ F to denote the remaining elements.
Our solutions will generally approximate the optimal profit from F by running
Dynkin’s algorithm for the classical secretary problem; most of our analysis will
focus on I. Let F*(T') denote the optimal (feasible) fractional subset of TN 1
for a given set T. Then 7(F*(T)) > n(O*(T'NT)). We use F* as shorthand for
F*(U), and let s* be the size of this solution.

In the multi-dimensional setting each element has an ¢-dimensional size s(e) =
(s1(e),...,se(e)). The cost function is composed of ¢ different non-decreasing
convex functions, C; : ZT — Z*. The cost of a set of elements is defined to be
C(A) = >, Ci(si(A)) and the profit of A is its value minus its cost: 7(A) =
v(A) — C(A).

3 Unconstrained Profit Maximization

We begin by developing an algorithm for the unconstrained version of the gen-
eralized secretary problem with F = 2V, which already exhibits some of the
challenges of the general setting. Note that this setting captures as a special
case the knapsack secretary problem of [4] where the goal is to maximize the
total value of a subset of size at most a given bound. In fact in the offline setting,
the generalized secretary problem is very similar to the knapsack problem. If all
elements have the same (unit) size, then the optimal offline algorithm orders
elements in decreasing order of value and picks the largest prefix in which each
element contributes a positive marginal profit. When element sizes are different,
a similar approach works: we order elements by density, and note that either a
prefix of this ordering or a single element is a good approximation (much like the
greedy 2-approximation for knapsack). The full version of this paper [6] provides
a detailed analysis of the algorithm as well as other missing proofs.
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Precisely, we show that |O* NF| < 1, and we can therefore focus on approxi-
mating 7 over the set I. Furthermore, let A(U) denote the greedy subset obtained
by considering elements in I in decreasing order of density and picking the largest
prefix where every element has nonnegative marginal profit. The following lemma
implies that either A(U) or the single best element is a 3-approximation to O*.

Lemma 1. We have that m(0*) < 7(F*) + maxeeyw(e) < w(AU)) +
2max.cy 7(e). Therefore the greedy offline algorithm achieves a 3-approximation
for (m,2Y).

The offline greedy algorithm suggests an online solution as well. In the case
where a single element gives a good approximation, we can use the classical
secretary algorithm to get a good competitive ratio. In the other case, to get
good competitive ratio, we only need to estimate the smallest density, say p, in
the prefix of elements that the offline greedy algorithm picks, and then accept
every element that exceeds this threshold.

We pick an estimate for p~ by observing the first few elements of the stream
U. Note that it is important for our estimate of p~ to be no smaller than p.
In particular, if there are many elements with density just below p~, and our
algorithm uses a density threshold less than p~, then the algorithm may be
fooled into mostly picking elements with density below p~ (since elements arrive
in random order), while the optimal solution picks elements with densities far
exceeding p~. We now describe how to pick an overestimate of p~ which is not too
conservative, that is, such that there is still sufficient profit in elements whose
densities exceed the estimate.

In the remainder of this section, we assume that every element has profit
at most kll ,m(O*) for an appropriate constant ki, to be defined later. (If this
does not hold, the classical secretary algorithm obtains an expected profit of
at least e(k11+1)7r(0*)). Then Lemma [l implies 7(F*) > (1 — 1/(k1 + 1)) m(O*),
maxeey w(e) < (1/k1)w(F*), and 7(AU)) > (1 — 1/ky) m(F™*).

We divide the stream U into two parts X and Y, where X is a random subset
of U. Our algorithm unconditionally rejects elements in X and extracts a density
threshold 7 from this set. Over the remaining stream Y, it accepts an element
if and only if its density is at least 7 and if it brings in non-negative marginal
profit. Under the assumption of small element profits, we can use a concentration
lemma of Feige et al. [I3] to show that 7(XN.A(U)) is concentrated and is a large
enough fraction of 7(O*). This implies that with high probability 7(X N .A(U))
(which is a prefix of A(X)) is a significant fraction of 7(A(X)). Therefore we
attempt to identify X NA(U) by looking at profits of prefixes of X. We will need
the following lemma about A().

Lemma 2. For any set S, consider subsets Ay, As C A(S). If Ay D As, then
w(A1) > w(As). That is, 7 is monotone-increasing when restricted to A(S) for
all SCU.

We define two good events. F; asserts that X N A(U) has high enough profit.
Our final output is the set PY . E, asserts that the profit of PY is a large enough
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Algorithm 1. Online algorithm for single-dimensional (r,2Y)

1: With probability 1/2 run the classic secretary algorithm to pick the single most
profitable element else execute the following steps.

2: Draw k from Binomial(n,1/2).

: Select the first k£ elements to be in the sample X. Reject these elements.

Let 7 be largest density such that 7(P7) > 3 (1 — kll) w(F*(X)) for constants /3

and k1 to be specified later.
Initialize selected set O < 0.
forie Y =U\X do
if 7(OU{i}) —7(0O) >0 and p(i) > 7 and ¢ ¢ F then
O+ OU{i}
end if
: end for

= W

—_

fraction of the profit of P;. Recall that A(U) is a density prefix, say P,-, and
so X NA(U) = PX. Let E; denote the event that m(P,X) > 8 m(P, ), where
B is a constant to be specified later. Conditioned on FEj, we have W(Pp)f) >
B(1—=1/k)n(F*) > B(1—1/k)w(F*(X)). Note that threshold 7, as selected
by Algorithm/[I] is the largest density such that 7(PX) > 8 (1 — 1/k;) 7(F*(X)).
Therefore, F4 implies 7 > p~, and we have the following lemma.

Lemma 3. Conditioned on F1, O =P, NY C A(U).

On the other hand, PX C P, C A(U) along with Lemma [ implies
m(Pr) > w(PY) > (1= 1/k)m(F* (X)) > (1= 1/k) 7(Py5) > B (1 = 1/k1)* (F”)

where the second inequality is by the definition of 7, the third by optimality and
the last is obtained by applying Fy and A(U) > (1 — 1/ky) F*.

We define p* to be the largest density such that 7(P,+) > 82 (1 — 1/k1)? w(F*).
Then p* > 7, which implies P,+ C P; and the following lemma.

Lemma 4. Event Ey implies O 2 Y N P,+.

Based on the above lemma, we define event F» : W(P’ﬁ) > ['m(P,+), for an
appropriate constant 5’. Conditioned on events F; and Es, and using Lemma
again, we get w(0) > W(ngr) > '8%(1 —1/k1)*7(F*). To wrap up the analysis,
we show that F; and Fs are high probability events.

Lemma 5. If no element of U has profit more than 1137'((0*), then Pr(Ey A
Es] > 0.52, where 8 = 0.262 and 8/ = 0.094.

Putting everything together we get the following theorem.

Theorem 1. Algorithm [ achicves a competitive ratio of 616 for (m,2Y) using
ki = 112 and B8 = 0.262.
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Proof. 1f there exists an element with profit at least |1,m(O*(U)), the classical
secretary algorithm (Step 1) gives a competitive ratio of 11136 > 338. Otherwise,
using Lemma [l with 8’ = 0.094, we have E[x(O)] > E[r(O) | E1 A Eo] Pr[Eq A
Ey] > 0.528'52(1— 1/k0)*m(F*) > 0.52882(1— 1/kr)? (1 — 1/ (ks + 1)) m(O%) >
3577T(O*). Since we flip a fair coin to decide whether to output the result of
running the classical secretary algorithm, or output the set O, we achieve a

2max{308,307} = 616-approximation to 7w(O*) in expectation (over the coin
flip).

4 Matroid-Constrained Profit Maximization

We now extend the algorithm of Section Bl to the setting (m, F) where F is a
matroid constraint. In particular, F is the set of all independent sets of a matroid
over U. We skip a precise definition of matroids and will only use the following
facts: F is a downward closed feasibility constraint and there exist an exact
offline and an O(+/log r)-competitive online algorithm for (®,F), where @ is a
sum-of-values objective and r is the rank of the matroid. The algorithms and
detailed proofs for this section are given in the full version [6] of the paper.

In the unconstrained setting, we showed that there always exists either a
density prefix or a single element with near-optimal profit. So in the online setting
it sufficed to determine the density threshold for a good prefix. In constrained
settings this is no longer true, and we need to develop new techniques. Our
approach is to develop a general reduction from the 7 objective to two different
sum-of-values type objectives over the same feasibility constraint. This allows us
to employ previous work on the (@, F) setting; we lose only a constant factor in
the competitive ratio. We will first describe the reduction in the offline setting
and then extend it to the online algorithm using techniques from Section [3

Decomposition of . For a given density v, we define the shifted density function
h+() over sets as hy(A) := 3 ., (p(e) —)s(e) and the fized density function
g~() over sizes as gy(s) := ys — C(s). For a set A we use g,(A) to denote
g~(s(A)). It is immediate that for any density v we can split the profit function
as m(A) = hy(A) + g, (A). In particular 7(O*) = hy(0*) + g,(0*). Our goal will
be to optimize the two parts separately and then return the better of them.

Note that the function h, is a sum of values function where the value of an
element is defined to be (p(e) — v)s(e). Its maximizer is a subset of P,, the set
of elements with nonnegative shifted density p(e) — . In order to ensure that
the maximizer of h~, say A, also obtains good profit, we must ensure that g-(A)
is nonnegative, and therefore m(A) > h,(A). This is guaranteed for a set A as
long as s(A) < 5(v).

Likewise, the function g, increases as a function of size s as long as s is
at most 5(vy), and decreases thereafter. Therefore, in order to maximize g., we
merely need to find the largest (in terms of size) feasible subset of size no more
than 5(v). As before, if we can ensure that for such a subset h. is nonnegative
(e.g. if the set is a subset of P,), then the profit of the set is no smaller than its
g~ value. This motivates the following definition of “bounded” subsets:
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Definition 1. Given a density v a subset A C U is said to be y-bounded if
ACP, and s(A) <5(v).

Proposition 1. For any y-bounded set A, m(A) > hy(A) and w(A) > g4(A).

For a density v, we define H, := argmaxycr ycp, hy(H) along with G, :=
argmaXge r GCP, s(G).

Following our observations above, both H, and G, can be determined effi-
ciently (in the offline setting) using standard matroid maximization. However,
we must ensure that the two sets are y-bounded. Further, in order to compare
the performance of G, against O*, we must ensure that its size is at least a
constant fraction of the size of O*.

We show in the full version of this paper that there exists a density p~ for
which H., and G, satisfy these properties. The following is our main claim of
this section.

Lemma 6. There exists a density p~ such that for any density v > p-,
n(0O*(Py)) < w(Hy) + w(Gy). Furthermore, m(O*) < w(H, ) + w(G,) +
2maxeecy m(e).

This lemma immediately gives us an offline approximation algorithm for (7, F):
for every element density v, we find the sets H, and G,; we then output the
best (in terms of profit) of these sets or the best individual element. We obtain
the following theorem:

Theorem 2. The algorithm outlined above 4-approzimates (m,F) in the offline
setting.

The Online Setting. Our online algorithm, as in the unconstrained case, uses
a sample X from U to obtain an estimate 7 for the density p~. Then with
equal probability it applies the online algorithm for (h,, F) on the remaining set
Y N P: or the online algorithm for (s, F) (in order to maximize g,) on Y N P-.
The algorithm is described in detail in the full version of the paper. Lemma
indicates that it should suffice for 7 to be larger than p~ while ensuring that
7(O*(P;)) is large enough. As in Section B] we define the density p* as the
upper limit on 7, and claim that 7 satisfies the required properties w.h.p.

Theorem 3. If there exists an a-competitive algorithm for the matroid secretary
problem (P, F) where @ is a sum-of-values objective, then the online algorithm
outlined above achieves a competitive ratio of O(«) for the problem (mw,F).

5 Multi-dimensional Profit Maximization

In this section, we consider the GSP with a multi-dimensional profit objective.
Recall that in this setting each element e has ¢ different sizes sq(e), ..., se(e),
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and the cost of a subset is defined by ¢ different convex functions Cy, ..., C,. The
profit function is defined as w(A4) = v(A) — Y, Ci(si(A)).

As in the single-dimensional setting, we partition U into two sets I and F
with F = {e € U : argmax, m(ae) < 1}. We show in the full version that, as
before, an optimal solution cannot contain too many elements of F: |O* NF| < /.
We therefore devote the remainder of this section to approximating 7 over L
Here we focus on the unconstrained problem (,2Y), but our results extend to
constrained settings as well [6].

Our high level approach is to distribute the value of each element across the ¢
dimensions, thereby defining densities and decomposing profit across dimensions
appropriately. We do this in such a way that a maximizer of the ith dimensional
profit for some dimension ¢ gives us a good overall solution (albeit at a cost of a
factor of £).

Formally, let p : U — R’ denote an ¢-dimensional vector function p(e) =
(p1(e),...,pe(e)) that satisfies Y . pi(e)si(e) = wv(e) for all e. We set vi(e) =
pi(e)si(e) and m;(A) = v;(A) — Ci(s;(A)) and note that m(A) = >, m;(A). Let
F} denote the maximizer of m; over I. Then, m(F*) <> . m;(F}").

Given this observation, it is natural to try to obtain an approximation to 7 by
solving for F* for all ¢ and rounding the best one. This does not immediately work:
even if m; (F}*) is very large, w(F;*) could be negative because of the profit of the set
being negative in other dimensions. Instead, with each element we can associate
a density vector p such that for any two elements e and e’ either p(e) component
wise dominates p(e’) or vice versa. We call such vectors proper densities. We show
that under p the best set F;* indeed gives an O(¢) approximation to O*(I).

Proper density vectors induce a single ordering over elements, say, e1, ..., €,.
Note that each F}* is a (fractional) prefix of this sequence. Let F} be the shortest
prefix and let A = {eq,..., ek, } denote the integral part of Fy. A satisfies the
inequality 7(F*) < ¢(m(A)+max, w(e)). Thus A or the single best element gives
us an offline O(¢)-approximation for (7,2Y) in the multi-dimensional setting.

The Online Setting. Note that proper densities essentially define a 1-dimensional
manifold in /-dimensional space. We can therefore hope to apply our online al-
gorithm from Section [3] to this setting. However, there is a caveat: the algorithm
from Section [3] uses the offline algorithm as a subroutine on the sample X to
estimate the threshold 7; naively replacing the subroutine by the O(¢) approxi-
mation described above leads to an O(¢?) competitive online algorithm}. In order
to improve the competitive ratio to O(¢) we pick the threshold 7 more carefully.
(The online algorithm is described in detail in the full version of the paper).
Via a similar argument as for Theorem [, we get

Theorem 4. Algorithm/[1 with the modifications outlined above is O(£) compet-
itive for (m,2Y) where 7 is a multi-dimensional profit function.

3 Note the (1 — 1/k1)? factor in the final competitive ratio in Theorem [T} this factor
is due to the use of the offline subroutine in determining 7.
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Abstract. An important open question in Cryptography concerns the
possibility of achieving secure protocols even in the presence of physical
attacks. Here we focus on the case of proof systems where an adversary
forces the honest player to re-use its randomness in different executions.
In 2009, Deng, Goyal and Sahai [1] constructed a simultaneously re-
settable non-black-box zero-knowledge argument system that is secure
against resetting provers and verifiers.

In this work we study the case of the black-box use of the code of
the adversary and show a nearly simultaneously resettable black-box
zero-knowledge proof systems under standard assumptions. Compared
to [, our protocol is a proof (rather then just argument) system, but
requires that the resetting prover can reset the verifier up to a bounded
number of times (which is unavoidable for black-box simulation), while
the verifier can reset the prover an arbitrary polynomial number of times.
The main contribution of our construction is that the round complexity
is independent of the above bound. To achieve our result, we construct
a constant-round nearly simultaneously resettable coin-flipping protocol
that we believe is of independent interest.

Keywords: Reset attacks, Black-box simulation.

1 Introduction

In this work, we study the feasibility of achieving efficient zero-knowledge proof
systems in the presence of physical attacks. Specifically, we examine the role
of the black-box use of the code of the adversary with respect to simultane-
ously resettable proof systems. Such proof systems are of interest as examples of
proof systems that are secure under very relaxed constraints on the re-use of the
same randomness in multiple executions. In the case of resettable zero knowledge
(rZK), a malicious verifier may cheat against an honest prover who must use
the same random tape polynomially many times. Further, resettably sound zero
knowledge constrains the randomness used by the verifier: a malicious prover
may try to cheat against an honest verifier who must use the same random tape
polynomially many times. The former property was introduced and instantiated
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by Canetti, Goldreich, Goldwasser and Micali [2]; the later property was in-
troduced by Micali and Reyzin [3] and later instantiated by Barak, Goldreich,
Goldwasser and Lindell [4]. Because rZK is a generalization of concurrent zero
knowledge (cZK) [BIGITISI9], every rZK proof system is a ¢cZK proof system. A
question opened by [4] and resolved by [1] is “Does there exist a resettably sound
rZK proof system for all N'P 2”. [1] answered this question in the affirmative, but
they required a construction with a security proof that required a non-black-box
simulator strategy, which utilize the specific strategy of a cheating verifier in
its specification. Currently, there is no known practical protocol that relies on
a non-black-boxll simulation strategy, while for instance there do exist efficient
constructions for ¢cZK and concurrent non-malleable zero knowledge that rely on
black-box simulation strategies [LO/TT], which work against any verifier strategy.

It is proved in [4] that resettably sound black-box zero-knowledge arguments
can be constructed for languages in BPP. Instead, we study whether there ex-
ist t-bounded resettably sound rZK proof systems with black-box simulation, and
more in general, with only a black-box use of the code of the adversary (i.e.,
both the simulation and the proof of soundness do not rely on non-black-box
uses of the code of the adverary). Such proof systems are rZK but also allow
a malicious prover to conduct at most t(n) resets against an honest verifier,
where ¢ is any fixed polynomial and n is the security parameter. Such a security
setting has practical applications (indeed, in [12] it has been considered for the
case of e-passports) because real hardware that may be reset to break security,
such as smart cards or stateless devices, have certain wear costs; after enough
resets, the hardware may simply break, a simple counter may run out, or built-in
battery may become depleted. Our black-box construction is also of theoretical
interest, and moreover may lead to more efficient near-simultaneously rZK pro-
tocols. Indeed while all known non-black-box constructions based on standard
assumptions are inefficient, there are in several cases alternative efficient black-
box constructions [I0JI1]. Further, unlike [4], we obtain unconditional soundness,
a property that is hard to achieve when the simulator is non-black-box.

We remark that constructing t-resettably sound rZK proof systems for any
language L € NP with black-box simulation is quickly accomplished if round
complexity is allowed to be t-dependent. For any ¢, take any rZK proof system
with black-box simulation and repeat it sequentially with independent random-
ness t 4+ 1 times; a verifier then accepts only if he accepts for each of the ¢ + 1
protocol runs. What we desire is to construct a t-resettably sound rZK proof
system where the round complexity is t-independent.

1.1 Overview of Our Contribution
For all NP and for any polynomial ¢, we construct a t-resettably sound rZK
proof system with black-box use only of the code of the adversary and round

complexity O(n¢) for security parameter n and for any constant € > 0. We require

! We ignore controversial non-black-box extraction assumptions.
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standard assumptions as the existence of enhanced trapdoor permutations and
collision-resistant hash functions.

We re-examinine the rZK protocol of [2]. Their protocol involves an adapta-
tion of the ¢ZK construction of [6]. We first give a high-level description of the
protocol of [2]. V commits to a set of n® strings of length n. Then, in the next 2n®
rounds, P first commits to an n-bit string and V' subsequently decommits to the
next string, eventually decommitting to the entire set. The protocol concludes
by P giving a tWI proof that either x € L or that at least one of the strings
committed by P is identical to the subsequent decommitment of V. Clearly, such
a protocol is not t-resettably sound (for any ¢ > 1), as a resetting prover can
simply obtain one of V’s committed strings, rewind a round and then commit to
that string. However, we use this protocol as a basis to construct our protocol.

We think of the initial commitment by V' to n¢ strings of length n as a database.
The idea for our protocol is that V' should commit to a database of poly(n,t)
strings of length n; then, in each of the next 2n°¢ rounds, P asks for n entries
of V’s database, which V' then reveals. Finally, P provides a t-resettably sound,
rWI proof that either x € L or that P can commit to a large constant fraction
of V’s database. The idea is that even if P was able to successfully ask for tn¢t!
indices of the database, P would still not know a large constant fraction of the
database; in this way, the protocol will be t-resettably sound.

We overcome several challenges to accomplish such a protocol. First, we re-
quire the simulator to discover significantly more indices of V’s database than
a t-resetting P* possibly could. We note that we can modify the (black-box)
simulator strategy given in [2]; there, at each prover commitment phase, the
simulator executes an independent look-ahead subprotocol call to t discover the
string that V' would decommit to. In fact, these look-ahead subprotocol calls are
independent from one round to the next. We take advantage of this independence
by having our simulator execute polynomially many look-ahead subprotocol calls
for each round and proving that such a strategy produces more than half of V’s
database. On the other hand, we will show that for suitable parameters, a t-
resetting P* will only be able to discover at most 1/16 of V’s database except
with negligible probability. Therefore, our protocol starts by V committing to
a large database followed by 2n¢ rounds where V' decommits to the n (distinct)
random indices in each round that P asks for. Finally, P commits to a guess
of the entire database and proves that either x € L or that a large constant
fraction of the guess correctly corresponds to V’s database.

However to have a meaningful statement for the proof given by P, it seems
that V should reveal the entire database, but this exposes again V to reset
attacks. Therefore, a second challenge is that V will reveal a small fraction of
the database and P will prove that it committed to a large portion of this
fraction. The challenge of such a strategy is that a cheating V* might skew the
distribution of what it reveals to be used for the rWI proof at the conclusion
of our protocol such that the simulator might not discover enough entries of
the database. Therefore, we require a special coin-flipping protocol by which V'
reveals n uniformly random elements of its database, at which point P proves,
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using a t-resettably sound rWI proof, that either € L or that P’s database
guess, committed to before the final proof, contains a correct guess for at least
1/4 of the n indices that V last decommitted to. Since the n revealed indices
are uniformly distributed over V’s database, only if P’s initial database guess
matches at least 1/4 of V’s database will P be able to give a correct WI proof
without using the witness for € L (except with negligible probability).

A first attempt for such a coin-flipping protocol between left player P; and
right player Pr might be for Py, to a apply pseudorandom function family, f%F
with a previously committed seed, s, on input a random string sent by Pr. The
string sent by Pr would be constructed by applying a (¢t + 1)-wise independent
hash function on the transcript thus far (Pgr cannot use a pseudorandom function
because Pj is unbounded and could distinguish the output). However, a cheating
P; might commit to a seed in such a way that even on random input, the output
of the pseudorandom function has skewed distribution. Once can also try to
modify the protocol by having Pr hash and output the pair (R, R’) and send
it to Pr, who then computes fZ7F(R) & R'. However, cheating P}, could then
simply rewind, keep R fixed and send whatever R’ he wished. Instead, we solve
our problem as follows: Pr hashes to obtain the triple (R, R',r’'), computes a
(statistically hiding) commitment to R’, denoted ¢, using randomness 7/, and
sends (R, c) to Pr. Then, using previous committed seed s, Pr, applies fZF to
the concatenation of R and ¢, which also binds the output of the pseudorandom
function to R’ before R’ has been revealed. Finally, Pr opens the decommitment
of R’ to Pr, and both set the random string 7 to be the sum of the output of the
pseudorandom function and R’. We remark that an adversary (resetting or not)
may always guess O(logn) bits of the coin-flipping output; however, since the
output length is n, an adversary will have only a negligible chance of correctly
guessing a constant fraction of the coin-flipping output.

A final note is that while P} may construct R and R’ as he wishes, it is
very important that a cheating P; formats his pseudorandom function outputs
correctly; otherwise, upon discovering Pr’s R and R’ , P} could simply rewind
and lie about the output of fF#F. Therefore, P;, must send a rWI proof that
either € L or the function output was formatted correctly. In this way, only
in the case that Pj is cheating with = ¢ L the correct formatting will need to
be assured; we can bootstrap the witness for x € L to make the rWI proof of
consistency witness hiding.

A third challenge is that our coin-flipping protocol makes the larger protocol
not admissible. In particular, the simulator in [2] was given in the so-called hy-
brid model, where a cheating V* is somewhat constrained. Therefore to prove
rZK for our protocol, we must demonstrate that our protocol is not meaningfully
different enough from the protocol of [2] even though their simulator no longer
applies to our setting. To accomplish this task, we prove a theorem based on
the observation that the only place where the simulators might differ are where
they play identically to the honest prover against the verifier but using a dif-
ferent witness. We therefore construct a variant of our own protocol that more
explicitly models the protocol of [2] but is only rZK (and not bounded resettably
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sound). We then construct the simulator for the intermediate protocol. Finally,
we prove that the existence of a simulator for this intermediate protocol implies
the existence of a simulator for the protocol that we desire. We believe that such
a proof strategy is of independent interest.

We note that our protocol has communication complexity that is dependent of
t; finding a protocol using standard assumptions with communication complexity
independent of ¢ is an interesting open questiorE7 as is improving the round
complexity of our construction.

1.2 Other Related Work

The notion of rZK was first introduced by [2]; later constructions of black-box
rZK protocols have better round complexity. In [7] it is shown a rZK proof
system with black-box simulation and w(log? n) rounds. The protocol improved
the round complexity of [6], by examining a static simulator rewind schedule and
showing that such a schedule produced a successful single extraction, except with
negligible probability. It is not clear how to adapt such a scheduling strategy to
the polynomial many successful extractions that we require. The results of [9]
can also be used to construct a black-box rZK proof system. Their protocol
requires O(log n) rounds and also build upon the protocol of [6]. The simulator
strategy of [J] relies on a careful analysis of the random tapes used by the
simulator throughout its run together with the oblivious simulator strategy of [7]
to obtain a single successful extraction, while our approach relies on segmenting
the simulator of [2] and running various of its subprotocols in parallel to obtain
polynomially many successful look-aheads. Finding compatibility between the
two approaches is an interesting open question.

The first resettably sound (non-black-box) zero-knowledge argument was con-
structed by [4]. Deng and Lin [13] constructed a zero-knowledge argument se-
cure in a weakened notion of simultaneous resettability: both cheating prover
and verifier can reset the other polynomially many times, but can only reset
a particular party with a fixed random tape (e.g., an incarnation) a bounded
number of times. Their protocol requires only a constant number of rounds and
also required non-black-box simulation in the proof.

The construction of a simultaneously rZK argument was first provided by [I]
and requires polynomial round complexity. Their protocol relies on the prover
initially committing to his challenges for the extraction stage and using the
resettably sound zero-knowledge argument of [4] to prove that either z € L or
that the decommitted challenges are correct. Because the protocol heavily relies
on the non-black-box zero-knowledge argument of [4], the simulator used for the
security proof is non-black-box. Recently, it has been shown in [19] how to obtain
a constant-round resettably sound resettable witness indistinguishable argument
of knowledge.

We note that all the protocols listed here are in the standard model. In par-
ticular, [2I4T3ITAT5IT6] also provide constructions in the bare public-key model.

2 Using less standard assumptions like complexity leveraging, constructing a protocol
t-independent communication complexity seems to be more easily to accomplish.
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In addition, [I7] give a resettable black-box statistical zero-knowledge proof for
several non-trivial languages, but they do not have a construction for all N'P.
As such research is incomparable to our work, we do not consider it here.

2 Preliminaries, Definitions and Tools

We denote by n the security parameter throughout our discussion., by [m] the set
{1,...,m}, by x|y the concatenation of z and y, by U,, the uniform distribution
over {0,1}" and by fFRF a pseudorandom function family, where fFEF(z) is
the evaluation of the function specified by seed s at x.

We will denote by C' the PPT committer and by R the PPT receiver. We
use the standard notions of statistically (respectively, computationally) binding
and computationally (respectively, statistically) hiding. When statistical hiding
or binding is discussed for a commitment scheme, the not mentioned property
is assumed to hold with computational security.

We denote by (P;(x), P2(y)) the interactive protocol between party P; with in-
put 2 and party P» with input y; moreover, we denote the sequential composition
of protocols m; = (P{, P§) and 7; = (P}, PJ) by (mi,m;) = ((P{, P{), (Pi, P3)).

We refer the reader to [2] for the definition of rZK (and witness indistinguish-
able) proof systems, and the definition of admissible proof systems as well as the
hybrid model. Our definition of ¢-bounded resettable soundness follows from the
definition in [] for resettable soundness, except that a malicious prover P* has
a bound of ¢(n) many resets he can execute against a verifier V. We omit the
formal definition here due to lack of space.

We will utilize the following construction] of Dwork and Naor [18].

Theorem 1 (zaps). If enhanced trapdoor permutations exist, then for every
language L there exists a two-round simultaneously resettable WI proof system.

3 Black-Box rZK with t-Resettable Soundness

Before giving the exact protocol specification for our candidate construction
IT = (P,V), we first outline its crucial steps. We consider our protocol as the
composition of three subprotocols, my, m, and s, for two reasons. The first
reason is that the purpose of each of the subprotocols is distinct and so discussing
them separately is natural. The second reason is that in order to prove rZK of
11, we will construct another protocol that will rely on the first two subprotocols
but will require a different third subprotocol, 75. In what follows, fix a language
L € NP, let n be the security parameter, let ¢ > 0 be any constant, and let ¢
be the polynomial resetting bound of the prover.

3 In fact, zaps are not inherently resettable WI, though they are resettably sound, as
noted by [4]. However, when the prover’s zap message is computed using a random
tape that is a pseudorandom function applied to V’s initial message and P’s random
tape, as is done here, zaps are rWI. We will therefore refer to zaps here and implicitly
assume that their instantiation in our protocol constructions utilize the appropriate
PRF-random tape construction.
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Table 1. Outline of protocol II = Table 2. Outline of nearly re-
(mo,m1,m2). CHCom is statistically settable coin-flipping subprotocol
binding, while SHCom is statistically with output 7. fF7F is a pseu-
hiding,. dorandom function family. (P exe-

cutes Pr and V executes Pr.)
mo : Setup Phase

1) P sets up SHCom Coin Flipping Subprotocol
2) V constructs DB, |[DB| = 16tn(n° + 1) 1) P sends CHCom(s) to Pg
3) V sets up zap, V sends SHCom(DB) 2) a) Pg applies (t + 1)-wise

71 : Extraction Phase independent hash function h to
1) n° Iterations: transcript to obtain (R, R',r")
i) P asks V for n indices of DB b) Pr computes ¢ + SHCom(R')
ii) V' decommits to the n indices using randomness r’
72 : rWI Proof Phase ¢) Pr sends R, c to Pr
1) P guesses DB as y; P sends PBCom(7) 3) Py computes r + fZ7(R|c),
2) P and V jointly generate n random and sends r to Pgr
indices, 7, of DB (coin flipping) 4) P, sends zap for “x € L or
3) V decommits to the indices 7 of DB r formatted correctly”
4) P sends zap for “z € L or 5) Pr decommits R’

agrees with at least 1/4 of the n values 6) Pr and Pp output 7 =7 @ R’
of DB in positions 7”

For subprotocol mp, P and V instantiate the proof system. P sends the setup
message for a 2-round statistically hiding, computationally binding commitment
scheme. V' then constructs an ordered database, DB, consisting of 16¢tn(n + 1)
random distinct strings of length n, and sends a statistically hiding commitment
of DB to P. V also sends the setup message used by P to execute zap proofs.
At this point, P applies a pseudorandom function ( ff "Iwith seed chosen using
P’s initial random tape) to the current transcript and uses the output as his
random tape for the rest of the protocol.

For subprotocol 71, for each of the n® sequential iterations, P asks for a
random sequence of n entries of DB, which V' then decommits to. Note that for
this subprotocol, a resetting P can discover at most tn'*¢ entries of DB. We
note that this protocol is very similar to the protocol in [2]; where their protocol
requires O(n)-length (random) P commitments, our protocol requires O(n logn)-
length random index requests, where both protocols require corresponding V'
decommitments.

For subprotocol 73, P guesses V’s database and commits to the guess (which
we call v) using a non-interactive perfectly binding commitment scheme. P and
V then attempt to jointly compute an (nlog |DB|)-length random string as fol-
lows: P commits to a seed s using a non-interactive perfectly binding commit-
ment scheme. V uses a (¢t + 1)-wise independent hash function h with input the
transcript (of 7, and 7o thus far) to output a random triple (R, R’,7"). V then
computes ¢, a statistically hiding commitment to R’ using randomness /', and
sends R and ¢ to P. P sends back, using the PRF family fI2, r = fP2(R|c).
P proves using a zap that either x € L or that r is properly formed from R,
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¢ and the commitment of s. Note that P’s commitment to s earlier in w9 can
now be viewed as a partial commitment to a random string. V' then decommits
to R’ and sets 7 = R’ @ r as the set of n indices of DB. V decommits to the
n indices of DB corresponding to 7. Therefore, a resetting P* can discover at
most tn(n€+ 1) entries, or 1/16 of DB, including protocol 71. P provides a zap
that either € L or that 1/4 of the entries of P’s guess 7 corresponds to the
final n decommitments from DB (that correspond to 7). We denote this lan-
guage by As. We note that only in the case of z ¢ L we have that the property
that 7 is distributed randomly is important; we use this fact to “bootstrap”
well-formedness of 7 in the unbounded, cheating P* case.

Theorem 2. Assuming the existence of enhanced trapdoor permutations and
collision-resistant hash functions, protocol II is a t-bounded resettably sound
rZK proof system for L.

The proof that IT is rZK will follow from proofs that IT is t-resettably sound and
complete (Lemma [), that (mp,m2) is tWI (Theorem [)) and that there exists a
specific, simpler protocol II’ that is also rZK (Theorem [B]). We will then prove
that since IT’ is both rZK and sufficiently similar to II, in a manner we define
as near compatible, IT is also rZK (Lemma [l).

Lemma 3. I is t-resettably sound and t-resettably complete for L.

Completeness follows from the completeness of the zap protocols. Resettable
soundness follows from the rWI of zap proofs and the security of the coin-tossing
protocol; since P* cannot discover 1/4 of the database DB except with negligible
probability (due to the statistical hiding property of V’s commitment scheme),
P* cannot find a correct witness for language Ay except with negligible proba-
bility due to the distribution of the coin-tossing protocol output.

In what follows, we will need that the sequential composition (g, 72) is TWI
for languages A5 and L.

Theorem 4. Assuming the existence of enhanced trapdoor permutations and
collision-resistant hash functions, protocol (mo, ) is rWI for Ay and for L.

For lack of space, we omit the proof of Theorem [l The intuition for the proof
is that rWI holds due to the rWI of zap proofs, the security of the respective
commitment schemes, and the security of the coin-flipping protocol.

3.1 From a rZK Proof System to a New rZK Proof System

We now outline how we prove rZK of protocol IT by constructing another pro-
tocol where rZK is easier to prove. We note that this definition may likely be
generalized, but we only detail properties that will apply in our case for simplic-
ity. It is important to note that the “simpler” rZK protocol does not need to
be t-resettably sound; since the purpose here is to prove rZK, resettable sound-
ness is not required. Due to lack of space, we omit here the precise definition of
near-compatible protocols.
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The idea of our transformation stems from the idea of constructing a rZK proof
system for L from a rWI proof system; see the constructions of [2[7]9]. What
generally occurs is that first the setup of the rWI proof is executed; then a so-
called extraction protocol is executed, where a cheating prover learns nothing,
but a simulator learns some secret s. Finally, a rtWI proof is completed for the
language “x € L or the secret s has been learned”; in the specific case of [2],
the “secret” was that the prover had committed to a string before the verifier
had decommitted to that same string, while in our case, the prover commits to
a largely correct guess of the database previously committed to by the verifier.

At a high level, we say that a protocol IT = (mg, 71, 72), which is the protocol
that we wish to prove rZK, is near-compatible to a protocol II’ = (mg, 71, 75)
if the following holds. Fix a language L € N'P. Then (mo, 7, 75) is rZK for L.
(mo, 71, m2) is an interactive proof for L, and (g, m2) must be rWI so that it
does not reveal to the verifier whether the transcript is generated by using the
genuine witness of a real prover or by fake witness belonging to a simulatorfd.
Finally, we wish that the extraction stage, 7y, is essential for the simulator to
complete both (mg, 75) and (mg, m2) but extraneous for the honest prover.

Lemma 5. (Informal) Fiz a language L. Let (7o, w1, m2) be near-compatible to
(mo, 71, 7h). Let (mwo, 71, mh) be rZK with a simulator that plays honestly for mo
and w5 and such that any witness extracted by the simulator is, except with
negligible probability, a valid witness for (mg,m1,m2) (with the same messages
sent for my and w1 ). Then (mo, 71, m2) is rZK.

For lack of space, the formal version of Lemma [§] in omitted. The intuition for
the proof of Lemma [l is that by definition of near-compatible protocols and
by the lemma statement, if simulator Sim’ for (w71, 75) is able to extract
a witness to complete the protocol, then so is simulator Sim for (m, 71, m2)
that acts identically to Sim’ for m; and honestly for 7y and m. This is because
both simulators act identically for the rounds where extraction occurs. Further,
(o, m2) being rWI implies that V* cannot distinguish whether the transcript is
generated by a real prover using a witness for x € L or by a simulator using an
extracted witness.

4 An Admissible, Near-Compatible rZK Proof System

Here we outline an admissible rZK proof system that has the same initialization
phase and extraction phase as protocol IT but with a simplified end stage in order
to make the proof of rZK easier. In particular, (7, 71, 75) is not constructed to be
t-resettably sound, and therefore the verifier can eventually reveal the entire DB.

4 Some additional technical properties specified in the precise definition: it is enough
for our purposes that the setup phase, 7o, consists of one round of messages sent
by P followed by a round of messages sent by V. In order to prove the lemma, we
will require security reductions that will need limited access to the prover’s random
tape; therefore, P’s message for mo must be public coin.
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For lack of space, we will only sketch 7. 75 has the same inputs as 7o above. 7
also begins like mo: first, prover commits his guess v using a statistically binding
commitment scheme and sends it to V. Then, however, V' decommits the entire
DB. P then executes a zap that either € L or that « corresponds to 1/4 of
DB; we denote this new language by As.

Note that by construction, (mg,;,75) satisfies the respective properties of
near-compatibility. Further, (mo, 71, 7%) is admissible since the verifier, after its
initial message, only sends decommitments.

Since (mg, 71, 75 ) and (g, 71, m2) are near-compatible, the only remaining sub-
tlety is to note that the witness extraction property of Lemma 5] holds. But this
is indeed the case because the simulator, will extract a set of entries from V' that
correspond to at least 1/2 of V’s DB except with negligible probability. Since,
for 7o, the entries chosen for Ay are selected uniformly at random from DB, if
the simulator knows 1/2 of DB, then the simulator will know 1/4 of the entries
selected for Ao except with negligible probability.

Theorem 6. Assuming the existence of enhanced trapdoor permutations and
collision-resistant hash functions, protocol (wg,m,mh) is zero knowledge in the
hybrid model (i.e, hZK) for L.

Since the protocol (mg, 71, 75) is hZK and already in the form needed to trans-
form zero-knowledge proofs secure in the hybrid model to zero-knowledge proofs
secure in the resettably model, Theorem [6] implies the followingE.

Corollary 7. (mo,m1,74) is rZK for L.

We would like to contrast the protocol (mg, 71, 75) with that given in [2]. As
noted in the high-level outline of IT in Section [ the extraction stage of [2] and
the subprotocol m are very similar. Indeed, 75 is a natural extension of the
protocol in [2] because in both their protocol and ours, DB is revealed and the
rWI proof incorporates the whole DB. In order to prove Theorem [B] we will
need the fact that (mg,75) is rWT for Az and for L.

Lemma 8. Assuming the existence of enhanced trapdoor permutations and
collision-resistant hash functions, then protocol (mg,mh) is rWI for As and
for L.

4.1 High-Level Simulator Strategy in the Proof of Theorem

In [2], the high level strategy of the simulator was that it would try to “look
ahead” to try to figure out the verifier’s commitment ahead of time, but otherwise

® We note that the simulator does not change from Theorem [ to Corollary [l The
reason is that the proof in [2] that takes a hZK protocol and proves that it is rZK
does not change the simulator; rather, it proves that for every hybrid adversary there
exists a corresponding adversary that however is still simulatable. In particular, if
the simulator given here in the hybrid model only rewinds during 71 and otherwise
plays honestly, so does the simulator in the full rZK model.
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play honestly for all other (non-extraction stage) rounds. This is also true for the
simulator here: the simulator would like to discover as many D B decommitments
as possible and otherwise plays honestly. The most important difference between
the rZK simulator here and the simulator in [2] is that their protocol only requires
1 successful look-ahead to proceed, while our protocol requires polynomially
many successful look-aheads to proceed.

To construct our simulator, we will use a nearly identical strategy as the simu-
lator from [2] except that we will execute the individual (main-thread level) look-
aheads | DB| many times in parallel. Namely, the simulator Sim’ in the extraction
stage, w1, attempts to discover half of DB; if this has not occurred at the end
of the extraction stage, then the simulator simply aborts and fails to complete.
One of the main inefficiencies of the [2] simulator is that it computes a distinct
look-ahead subprotocol run (embedded in the subroutine NextProverMsg, which
then unfolds recursively, see details in [2]) at each of the n® round iterations of
the extraction stage. The idea of their simulator is that if the simulator makes
a distinct look-ahead subprotocol run at each round, which in turn consists of
polynomially many look-ahead attempts, then except with negligible probability,
the simulator will be able to extract one “secret”. Since the look-ahead subpro-
tocol success probability is independent from one round to the next, the strategy
of our simulator is that instead of making one independent look-ahead subpro-
tocol run at each round, we make poly(n,t) = |DB| independent calls at each
(main-thread) iteration of the extraction stagd’. By a union bound, our simu-
lator will also fail to extract only with negligible probability. A subtlety is that
| D B| successful look-aheads might not reveal as much of |[DB| as desired. How-
ever, because the prover messages in m; consist of n randomly chosen indices,
V* is unable to both complete the protocol with P/Sim’ and sufficiently control
the distribution of the prover messages that V* chooses to proceed with.

We omit the full simulator specification and proof here due to lack of space.
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Complexity of Complexity and Maximal Plain versus
Prefix-Free Kolmogorov Complexity

Bruno Bauwens*
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Abstract. Peter Gacs showed [2] that for every n there exists a bit string x of
length n whose plain complexity C (x) has almost maximal conditional complex-
ity relative to x, i.e., C (C (x)|x) > logn—log® n—O(1). Here log?(i) = loglogi
etc. Following Elena Kalinina [4], we provide a game-theoretic proof of this re-
sult; modifying her argument, we get a better (and tight) bound logn — O(1). We
also show the same bound for prefix-free complexity.

Robert Solovay’s showed [11] that infinitely many strings x have maximal
plain complexity but not maximal prefix-free complexity (among the strings of
the same length); i.e. for some c: |x| — C(x) < ¢ and |x| + K (|]x]) — K (x) >
log® |x| — clog®®) |x|. Using the result above, we provide a short proof of Solo-
vay’s result. We also generalize it by showing that for some ¢ and for all n there
are strings x of length n withn— C (x) < ¢, and n+K (n) — K (x) > K (K (n)|n) —
3K (K (K (n)|n) |n) — c. This is very close to the upperbound K (K (n)|n) + O(1)
proved by Solovay.

Introduction

Plain Kolmogorov complexity C(x) of a binary string x was defined in [3] as the min-
imal length of a program that computes x. (See the preliminaries or [3\6/10] for the
details.) It was clear from the beginning (see, e.g., [13]) that complexity function is not
computable: no algorithm can compute C (x) given x. In [2/3l6] a stronger non-uniform
version of this result was proven: for every n there exists a string x of length n such
that conditional complexity C (C (x)|x), i.e., the minimal length of a program that maps
x to C(x), is at least logn — O(log®® n). (If complexity function were computable, this
conditional complexity would be bounded.)

In Section [1] we revisit this classical result and improve it a bit by removing the
log® n term. No further improvement is possible because C (n) < n+ O(1), therefore
C(C(n)|x) <logn+ O(1) for all x. We use a game technique that was developed by
Andrej Muchnik (see [9I8l12]) and turned out to be useful in many cases. Recently

* Full version: www.bcomp.be/papers/compcompfull.pdf. Supported by the Portuguese sci-
ence foundation FCT (SFRH/BPD/75129/2010), and partially supported by the project CSI>
(PTDC/EIAC/099951/2008). The author is grateful to Elena Kalinina and (Nikolay) Kolia
Vereshchagin for giving the text [4]. The author is also grateful to (Alexander) Sasha Shen for
his very generous help: for reading earlier texts on these results, for discussion, for providing
a clear exposition of section[Tland some parts of section[2] and for his permission to publish it
(with small modifications).

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 100-[08] 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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Elena Kalinina (in her master thesis [4]]) used it to provide a proof of Gacs’ result. We
use a more detailed analysis of essentially the same game to get a better bound.

For some ¢, a bit string x is C-random if n — C (x) < ¢. Note that n+ O(1) is the
smallest upper bound for C(x). A variant of plain complexity is prefix-free or self-
delimiting complexity, which is defined as the shortest program that produces x on a
Turing machine with binary input tape, i.e. without blanc or terminating symbol. (See
the preliminaries or [3l6I10] for the details.) The smallest upper bound for K (x) for
strings of length n is n+ K (n) + O(1). For some ¢, the string x is defined to be K -
randomif n+ K (n) — K (x) <ec.

Robert Solovay [11!/1] observed that K -random strings are also C-random strings
(for some ¢’ < O(c)), but not vice versa. Moreover, he showed that some ¢ and infinitely
many x satisfy |x| — C(x) < c and

¥ + K (]x]) = K (x) > log® [x] - clog®) ||

He also showed that for C-random x the left-hand side of the equation is upper-bounded
by K (K (n)|n)+O(1), which is bounded by log® n4 O(1). Later Joseph Miller [7] and
Alexander Shen [9]] generalized this, by showing that every co-enumerable set (i.e., the
complement is enumerable) containing strings of every length, also contains infinitely
many x such that the above equation holds. (Note that the set of C-random strings is
co-enumerable but the set of K -random strings not.)

In Section2lwe provide a short proof for Solovay’s result using the improved version
of Gacs’ theorem. Then we generalize it by showing that for some ¢ and every n there
are strings x of length n with n — C(x) < ¢ and

n+ K (n) — K (x) > K (K (n)[n) — 3K (K (K (n)}n) [n) —c

This is very close to the upperbound K (K (r)|n) — O(1), which was shown by Solo-
vay [L1]. By the improved version of Gacs’ result, we can choose n such that
K (K (n)|n) = 1log® n + O(1). For such n we obtain Solovay’s theorem with the
clog® |x| term replaced by a O(1) constant.

Preliminaries: Let U be a Turing machine. The plain (Kolmogorov) complexity rela-
tive to U is defined by

Cy(xly) =min{|p|: U(p,y) = x} .

If the machine U is prefix-free (i.e., for every p,y such that U (p, y) halts, there is no pre-
fix g of p such that U (g, y) halts) then we write K iy (x|y) rather than Cy (x|y), and refer
to it as prefix-free (Kolmogorov) complexity relative to U. There exist plain and prefix-
free Turing machines U and V for which Cy (x|y) and Ky (x|y) are minimal within an
O(1) constant. We fix such machines and omit the indexes U,V If y is the empty string
we use the notation C (x) and K (x).

1 Complexity of Complexity Can Be High

Theorem 1. There exist some constant ¢ such that for every n there exists a string x of
length n such that C (C (x)|x) > logn —c.
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To prove this theorem, we first define some game and show a winning strategy for
the game. (The connection between the game and the statement that we want to prove
will be explained later.)

1.1 The Game

Game G, has parameter n and is played on a rectangular board divided into cells. The
board has 2" columns and n rows numbered 0, 1,...,n — 1 (the bottom row has number
0, the next one has number 1 and so on, the top row has number n — 1), see Fig.[1l

Initially the board is empty. Two players: White and Black, alternate their moves. At
each move, a player can pass or place a pawn (of his color) on the board. The pawn can
not be moved or removed afterwards. Also Black may blacken some cell instead. Let
us agree that White starts the game (though it does not matter).

The position of the game should satisfy some restrictions; the player who violates
these restrictions, loses the game immediately. Formally the game is infinite, but since
the number of (non-trivial) moves is a priori bounded, it can be considered as finite, and
the winner is determined by the last (limit) position on the board.

Restrictions: (1) each player may put at most 2/ pawns in row i (thus the total number
of black and white pawns in a row can be at most 2 +2%); (2) in each column Black
may blacken at most half of the cells.

We say that a white pawn is dead if either it is on a blackened cell or has a black
pawn in the same column strictly below it.

Winning rule: Black wins if he killed all white pawns, i.e., if each white pawn is dead
in the final position.

n—1/0 e

0)1@)

271
Fig. 1. Game board

For example, if the game ends in the position shown at Fig.[T] the restrictions are not
violated (there are 3 < 22 white pawnsinrow 2 and 1 < 21 white pawninrow 1, as well
as 1 < 22 black pawn in row 2 and 1 < 29 plack pawn in row 0). Black loses because
the white pawn in the third column is not dead: it has no black pawn below and the cell
is not blackened. (There is also one living pawn in the fourth column.)

1.2 How White Can Win

The strategy is quite simple. White starts by placing a white pawn in an upper row
of some column and waits until Black kills it, i.e., blackens the cell or places a black
pawn below. In the first case White puts her pawn one row down and waits again. Since
Black has no right to make all cells in a column black (at most half may be blackened),
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at some point he will be forced to place a black pawn below the white pawn in this
column. After that White switches to some other column. (The ordering of columns is
not important; we may assume that White moves from left to right.)

Note that when White switches to a next column, it may happen that there is a black
pawn in this column or some cells are already blackened. If there is already a black
pawn, White switches again to the next column; if some cell is blackened, White puts
her pawn in the topmost white (non-blackened) cell.

This strategy allows White to win. Indeed, Black cannot place his pawns in all the
columns due to the restrictions (the total number of his pawns is Z?;o] 20 =2m 1,
which is less than the number of columns). White also cannot violate the restriction for
the number of her pawns on some row i: all dead pawns have a black pawns strictly
below them, so the number of them on row i is Z;;%) 2/ =2¢ — 1, hence White can put
an additional pawn.

In fact we may even allow Black to blacken all the cells except one in each column,
and White will still win, but this is not needed (and the n/2 restriction will be convenient
later).

1.3 Proof of Gacs’ Theorem

Let us show that for each n there exists a string x of length n such that C(C (x|n)|x) >
logn — O(1). Note that here C (x|n) is used instead of C (x); the difference between
these two numbers is O(logn) since n can be described by logn bits, so the difference
between the complexities of these two numbers is O(loglogn).

Consider the following strategy for Black (assuming that the columns of the table
are indexed by strings of length n):

- Black blackens the cell in column x and row i as soon as he discovers that C (i|x) <
logn — 1. (The constant 1 guarantees that less than half of the cells will be black-
ened.) Note that Kolmogorov complexity is an upper semicomputable function, and
Black approximates it from above, so more and more cells are blackened.

— Black puts a black pawn in a cell (x,i) when he finds a program of length i that
produces x with input n (this implies that C (x|n) < i). Note that there are at most
2! programs of length i, so Black does not violate the restriction for the number of
pawns on any row i.

Let White play against this strategy (using the strategy described above). Since the
strategy is computable, the behavior of White is also computable. One can construct a
decompressor V for the strings of length n as follows: each time White puts a pawn in a
cell (x,i), a program of length i is assigned to x. By White’s restriction, no more than 2
programs need to be assigned. By universality, a white pawn on cell (x,7) implies that
C(x|n) <i+O(1).If White’s pawn is alive in column x, there is no black pawn below,
so C(x|n) > i, and therefore C (x|n) = i+ O(1). Moreover, for a winning pawn, the cell
(x,7) is not blackened, so C (i|x) > logn — 1. Therefore, C (C (x|n)|x) > logn — O(1).

Remark: the construction also guarantees that C (x|n) > n/2 — O(1) for that x. (Here the
factor 1/2 can be replaced by any o < 1 if we change the rules of the game accordingly.)
Indeed, according to white’s strategy, he always plays in the highest non-black cell of
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some column, and at most half of the cells in a column can be blackened, therefore no
white pawns appear in the lower half of the board.

1.4 Modified Game and the Proof of Theorem[I]

Now we need to get rid of the condition n and show that for every n there is some x
such that C (C (x)|x) > logn— O(1). Imagine that White and Black play simultaneously
all the games G,,. Black blackens the cell (x,i) in game G|, when he discovers that
C(ilx) < logn — 1, as he did before, and puts a black pawn in a cell (x,i) when he
discovers an unconditional program of length i for x. If Black uses this strategy, he
satisfies the stronger restriction: the total number of pawns in row i on all boards is
bounded by 2'.

Assume that White uses the described strategy on each board. What can be said about
the total number of white pawns in row i? The dead pawns have black pawns strictly
below them and hence the total number of them does not exceed 2/ — 1. On the other
hand, there is at most one live white pawn on each board. We know also that in G,
white pawns never appear below row n/2 — 1, so the number of live white pawns does
not exceed 2i + O(1). Therefore we have O(2') white pawns on the i-th row in total.

For each n there is a cell (x,i) in G, where White wins in G,. Hence, C(x) < i+
O(1) (because of property just mentioned and the computability of White’s behavior),
C(x) > iand C (i]x) > logn — 1 (by construction of Black’s strategies and the winning
condition). Theorem[T]is proven.

1.5 Version for Prefix Complexity

Theorem 2. There exist some constant ¢ such that for every n there exists a string x
of length n such that C (K (x)|x) > logn — ¢ and K (x) > n/2. This also implies that
K (K (x)|x) > logn—c.

The proof of C (K (x)|x) > logn — ¢ goes in the same way. Black places a pawn in cell
(i,x) if some program of length i for a prefix-free (unconditional) machine computes
x (and hence K (x) < i); White uses the same strategy as described above. The sum of
2~ for all black pawns is less than 1 (Kraft-inequality); some white pawns are dead,
i.e., strictly above black ones, and for each column the sum of 2—J where j is the row
number, does not exceed z;giz—f < 27'. Hence the corresponding sum for all dead
white pawns is less than 1; for the rest the sum is bounded by ¥, 27%/2%1, so the total
sum is bounded by a constant, and we conclude that for x in the winning column the
row number is K (x) + O(1), and this cell is not blackened.

2 Strings with Maximal Plain and Non-maximal Prefix-Free
Complexity

In this section we compare two measures of non-randomness. Let x be a string of length
n; we know that C (x) < n+ O(1), and the difference n — C (n) measures how “nonran-
dom” x is. Let us call it C-deficiency of x. On the other hand, K (x) <n+K (n)+ O(1),



Complexity of Complexity and Maximal Plain 105

so n+ K (n) — K (x) also measures “nonrandomness” in some other way; we call this
quantity K -deficiency of x.

The following proposition means that K -random strings (for which K -deficiency is
small; they are also called “Chaitin random”) are always C-random (C-deficiency is
small; such strings are also called “Kolmogorov random”).

Proposition 1 (Solovay [11]). |x| + K(|x|) — K(x) < c implies |x| — C(x) < O(c).
Proof. We use a result of Levin: for every string u
K (u[C(u)) = C(u)+0(1),
and, on the other hand, for any positive or negative integer number c:
K(uli)=i+c,

implies C (u) = i+ O(c)[!.
Let n = |x|. Notice that

n+K(n) <K(x)—c=K(x,n)—0(c) < K(x|n) +K(n) — O(c).
Hence, K (x|n) > n— O(c), thus K(x|n) = n+ O(c) and thus: C(x) = n+ O(c).
R. Solovay showed that the reverse statement is not always true: a C-random string may

be not K -random. However, as the following result shows, the K -deficiency still can be
bounded for C-random strings:

Proposition 2 (Solovay [11]). For any x of length n the inequality C (x) > n— c implies:
n+K(n)—K(x) <K(K(n)|n)+0(c).
Note that K (K (n)|n) < log® n+ O(1).

Proof. The proof uses another result of Levin [243l6]: for all u,v we have the additivity
property

K (u,v) =K (u)+ K (v|u,K (u))+0O(1).
To prove Proposition 2 notice that n = C(x) = K (x| C(x)) = K (x|n) with O(c)-
precision. By additivity we have: K (x) =K (n,x) = K (n) + K (x|n, K (n)). Putting these
observations together, we get

n+K(n) =K (x) =K (x|n) + K (n) = (K (n) + K (x|n,K(n))) +O(c)
=K (x|n) — K (x|n,K (n)) +0(c). (D)

Observe that K (x|n) < K (x|n,K (n)) + K (K (n)|n) + O(1), hence the K -deficiency is
bounded by K (K (n)|n) + O(c).

! Textbooks like [6, Lemma 3.1.1] mention only the first statement. To show the second, note that
the function i — K (x|i) maps numbers at distance ¢ to numbers at distance O(logc), hence, the
fixed point C (x) must be unique within an O(1) constant. Furthermore, for any , the fixed point
must be within distance O(|i — K (ui)|) from i, hence | C (u) —i| < O(|i — K (u|i)|) = O(c).
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The following theorem shows that for all n the bound K (K (n)|n) for K -deficiency for
C-random strings can almost be achieved. The error is at most O(log K (K (n)|n)).

Theorem 3. For some c and all n there are strings x of length n such thatn— C (x) <,
and
n+K(n) = K () = K (K (n)n) = 3K ( K (K (n)|n) |n) —c.

By corollary, infinitely many C-random strings have K -deficiency log®® x| + O(1).
Indeed, for n such that K (K (n)|n) = log® n+ O(1), we have K ( K (K (n)|n) |n) <
O(1), and hence, a slightly stronger statement than proved by Solovay [[11] is obtained.

Corollary 1. There exists a constant ¢ and infinitely many x such that |x| — C (x) < ¢
and x|+ K (|x]) — K (x) > log® |x| —c.

Before proving Theorem[3] we prove the corollary directly.

Proof. First we choose n, the length of string x. It is chosen in such a way that
K (K (n)|n) = log® n+ 0(1) and K (n) > (logn)/2 (Theorem ). (So the bound of
Proposition[2] is not an obstacle.) We know already (see equation[I)) that for a string x
with C-deficiency c the value of K -deficiency is O(c)-close to K (x|n) — K (x|n, K (n)).
This means that adding K (n) in the condition should decrease the complexity, so let us
include K (n) in x somehow. We also have to guarantee maximal C-complexity of x.
This motivates the following choice:

— choose r of length n —log® n such that K (r|n,K (n)) > |r|. Note that this implies
K (r|n,K (n)) = |r| 4+ O(1), since the length of r is determined by the condition.

- Letx = (K(n))r, the concatenation of K(n) (in binary) with r. Note that (K(n)) has
at most log<2) n-+ O(1) bits for every n, and by choice of n has at least log<2) n—1
bits, hence |x| =n+ O(1).

As we have seen (looking at equation (I))), it is enough to show that K (x| K (n),n) <
n—1og® n and K (x|n) > n (the latter equality implies C (x) = n); all the equalities here
and below are up to O(1) additive term.

— Knowing n, we can split x in two parts (K (n)) and r. Hence, K (x| K (n),n) =
K (K (n),r|n,K (n)), and this equals K (r|n,K (n)), i.e., n —log® n by choice of
r.

— To compute K (x|n), we use additivity:

K (x|n) = K (K (n),r|n) = K (K (n)|n) + K (r| K (n),K (K (n)|n),n).

By choice of n, we have K (K (n)|n) = log® n, and the last term simplifies to
K (r|K (n),10g® n,n), and this equals K (r| K (n),n) = n—log!® n by choice of r.
Hence K (x|n) = log® n+ (n —log® n) = n.

Remark 1: One can ask how many strings exist that satisfy the conditions of Corol-
lary [II By Proposition [2] the length n of such a string must satisfy K (K (n)|n) >
log(z)n — O(1). By Theorem [2] there is at least one such an n for every length of n
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in binary. Hence such n, can be found within exponential intervals. One can also ask
for such n, how many strings x of length n satisfy the conditions of Corollary[Il By a
theorem of Chaitin [[6], there are at least O(2"* ) strings with K -deficiency &, hence we

can have at most O(Z”‘log(2>”) such strings. It turns out that indeed at least a fraction
1/0(1) of them satisfy the conditions of Corollary[Il To show this, note that in the proof
Theorem[3] every different r of length |n| —log® n 4 O(1) leads to the construction of
a different x. For such r we essentially need K (r|n,K (n)) > |r| — O(1), and hence there
are 0(2”’]°g(2>”) of them.

Proof of Theorem [3 In the proof above, in order to obtain a large value K (x|n) —
K (x|n,K (n)), we incorporated K (n) in a direct way (as (K (n))) in x. To show that
C(x) = K(x|n) + O(1) is large we essentially used that the length of (K (n)) equals
K (K (n)|n) + O(1). For general n, this trick does not work anymore, but we can use a
shortest program for K (n) given n (on a plain machine). For every n we can construct x
as follows:

— let g be a shortest program that computes K (n) from n on a plain machine (if
there are several shortest programs, we choose the one with shortest running time).
Note that |g| = C(K (n)|n) + O(1) = C(g|n) + O(1) (remind that by adding some
fixed instructions, a program can print itself, and that a shortest program is always
incompressible, thus up to O(1) constants: |g| > C (K (n)|n) > C(g|n) > |g|), by
Levin’s result (conditional version), the last term also equals K (¢|n, |¢|) + O(1);

— let r have length n — |g|, such that K (r|n,K (n),q) > |r|. Note that this implies
K (r|n,K (n),q) = |r|+O(1), (since the length of r is determined by the condition).

— We define x as the concatenation gr.

We show that C (x) =n+ O(1) and that the K -deficiency is at least |¢| — K (|g| |n) +
O(1). To show that this implies the theorem, we need that

K (K (n)ln) =3K(K (K (n)|n)[n) < C(K (n)|n) = K(C(K(n)|n) |n)+O(1),
which is for a = K (n) the conditioned version of Lemmal[Ik
K (aln) =3K (K (aln) |n) < C(aln) =K ( C(a|n) [n)+O(1).

Following the same structure as the proof above, it remains to show that K (x| K (n),n) <
n—|q|+K(|g||n) and K (x|n) > n (the latter equality implies C (x) = n); all the equali-
ties here and below are up to O(1) additive term.

- Knowing |g|, we can split x in two parts ¢ and r. Hence, K (x|K (n),n,|q|) =
K(q,r|n,K (n),|q|). Given n,K (n),|q| we can search for a program of length |g|
that on input n outputs K (n); the one with shortest computation time is g. Hence,
K(q,r|n,K (n),|q|) = K (r|n,K (n),|q|), i-e., n — |q| by choice of r, and therefore
K (x| K (n).m) < n— |g| + K (|q]|n)

— To compute K (x|n), we use additivity:

K (x|n) = K (x|n, |q]) = K (¢, rIn; |q]) = K (q|n,[4]) + K (r|g, K (q|n, |g]), ).

By choice of ¢ we have K (g|n, |g|) = |g|. The last term is K (r|q, |g|,n) which equals
K (r|g,n) = n—|g| by choice of r. Hence, K (x|n) > |q| + (n — |g|) = n. O
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Lemma 1. K (a) —3K(K(a)) <C(a)—K(C(a))+0(1)

Proof. Note thatK (a) — C (a) < K (C (a)). Indeed, any program for a plain machine can
be considered as a program for a prefix-free machine conditional to it’s length. Hence,
we can transform a plain program p to a prefix-free program by adding a description
of |p| of length K (|p|) to p. Hence it remains to show 2K (C (a)) < 3K (K (a)) + O(1).
Solovay [[1141] showed that

K(a)—C(a) =K (K (a))+ O(K (K (K (a)))),

hence,
|K (K (a)) —K(C(a))| < O(logK (K (a)))-
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where the variables take values in the domain {—1,0,1}. The specific
problem we study is

QP-Ratio : max Zi#j T
{~1,0,1}n Sa?
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carry over to the {—1,0,1} domain. We give approximation algorithms
and evidence for the hardness of approximating these problems.

We consider an SDP relaxation obtained by adding constraints to the
natural eigenvalue (or SDP) relaxation for this problem. Using this, we
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a O(nl/ 4) approximation for bipartite graphs, and better algorithms for
special cases.

As with other problems with ratio objectives (e.g. uniform spars-
est cut), it seems difficult to obtain inapproximability results based on
P # NP. We give two results that indicate that QP-Ratio is hard to
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tion that random instances of Max k-AND are hard to approximate,
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1 Introduction

Semidefinite programming techniques have proved very useful for quadratic opti-
mization problems (i.e. problems with a quadratic objective) over {0, 1} variables
or {1} variables. Such problems admit natural SDP relaxations and beginning
with the seminal work of Goemans and Williamson [GW95], sophisticated tech-
niques have been developed for exploiting these SDP relaxations to obtain ap-
proximation algorithms. For a large class of constraint satisfaction problems, a
sequence of exciting results [KKMOQT, [KV05, [Aus07] culminating in the work
of Raghavendra [Rag08|, shows that in fact, such SDP based algorithms are
optimal (assuming the Unique Games Conjecture).

In this paper, we initiate a study of a quadratic programming problem (QP-
Ratio) with variables in {0, £1}.

QP-Ratio : max Zi#j aij;jixj
{-1,0,1}n >

An alternate phrasing of the ratio-quadratic programming problem is the follow-
ing: the goal is to select a subset of non-zero variables S and assign them values
in {£1} so as to maximize the ratio of the quadratic programming objective
Zi<jeS a;jriz; to the size of S. This can be viewed as an outlier version of
quadratic programming, where the variables corresponding to outliers must be
set to 0, and the goal is to maximize the solution quality on the rest. Note that
the numerator itself is the quadratic programming objective >, . a; jz;2;, and
can be maximized by setting all variables to be +1. However, the denominator
term in the objective makes it worthwhile to set variables to 0.

Variants of this problem are well known: Restricting to {£1} variables results
in a problem with an O(logn) approximation [NRT99, [CW04]. On the other
hand, restricting to non-negative variable values (when the a; ; are non-negative)
yields a polynomial time solvable problem. In fact, ratio objectives like this have
been studied in several contexts and algorithms to optimize them are often useful
subroutines in designing approximation algorithms.

Despite these connections, QP-Ratio seems to fall outside the realm of our
current understanding on both the algorithmic and inapproximability fronts.
One of the goals of our work is to enhance (and understand the limitations of)
the SDP toolkit for approximation algorithms by applying it to this natural
problem. On the hardness side, the issues that come up are akin to those arising
in other problems with a ratio/expansion flavor, where conventional techniques
in inapproximability have been ineffective.

A normalized version of the QP-Ratio objective arose in recent work of Tre-
visan [Tre09] on computing Max Cut Gain using eigenvalue techniques. The idea
here is to use the eigenvector to come up with a ‘good’ partial assignment, and
recurse. Crucial to this procedure is a quantity called the GainRatio defined for
a graph; this is a special case of Normalized QP-Ratio where a;; = —1 for edges,
and 0 otherwise.

(1)
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1.1 Our Results

Algorithms. We first study mathematical programming relaxations for QP-
Ratio. The main difficulty in obtaining such relaxations is imposing the constraint
that the variables take values {—1,0,1}. Capturing this using convex constraints
is the main challenge in obtaining good algorithms for the problem.

We counsider a semidefinite programming (SDP) relaxation obtained by adding
constraints to the natural eigenvalue relaxation, and round it to obtain an
O(n'/ 3) approximation algorithm. A natural, interesting special case is bipartite
instances of QP-Ratio, where the support of a;; is the adjacency matrix of a bi-
partite graph (akin to bipartite instances of quadratic programming, also known
as the Grothendieck problem). For bipartite instances, we obtain an O(n'/*)
approximation and an almost matching SDP integrality gap of £2(n'/4).

Techniques. The main challenge in semi-definite programming(SDP) based ap-
proaches for ratio quadratic programs is the situation that vectors in the SDP
solution could have very different lengths. To overcome this, we strengthen the
SDP by having additional constraints in the SDP, and come up with new round-
ing techniques to move to SDP solutions with a smaller range of lengths.

We can take further advantage of these additional inequalities in the case of
bipartite graphs to get an improved n'/* approximation. Here, we combine the
previous SDP rounding with a different rounding scheme, which performs well
when the vector solution has equal contributions from many length scales.

Inapproximability. Complementing our algorithmic result for QP-Ratio, we
show hardness results for the problem. We first show that there is no PTAS for
the problem assuming P # NP. We also provide evidences that it is hard to
approximate to within any constant factor.

In section we rule out constant factor approximation algorithms for QP-
Ratio assuming Feige’s hypothesis [Fei02] that random instances of k-AND are
hard to distinguish from ‘well-satisfiable’ instances. Even the strongest known
SDP relaxations (£2(n) rounds of the Lasserre hierarchy) cannot refute this con-
jecture [Tul09]. We also show in section a reduction from a ratio version of
the well-known Unique Games problem to QP-Ratio. We think that ratio version
of Unique Games is an interesting problem worthy of study that could shed light
on the complexity of other ratio optimization questions. The technical challenge
in our reduction is to develop the required fourier-analytic machinery to tackle
PCP-based reductions to ratio problems.

As with other ratio problems like Sparsest Cut, there is a big gap in the

approximation guarantees and inapproximability results. We suspect that the
problem is in fact hard to approximate to an n® factor for some ¢ > 0. In
Section [3] we decribe a natural distribution over instances which we believe
are hard to approximate up to polynomial factors.
Normalized QP-Ratio. Our original motivation to study quadratic ratio prob-
lems was the related GainRatio problem studied in Trevisan [Tre09]. We give
a sharp contrast between the strengths of different relaxations and disprove
Trevisan’s conjecture that the eigenvalue approach towards Max Cutgain is as
powerful as the SDP-based approach[CW04]. See Section [ for details.
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2 Algorithms for QP-Ratio

We start with the most natural relaxation for QP-Ratio () :

> Aijic;
(instead of {0, £1}). The solution to this is precisely the largest eigenvector of A
(scaled such that entries are in [—1, 1]). However it is easy to construct instances
with a large integrality gap of £2(y/n) (for example, the instance given by the
adjancency matrix of a n-vertex star graph).

We show that SDP relaxations give more power in expressing the constraints
x; € {0,£1}. Consider the following relaxation:

maXZAij -(w;, w;) subject to Z||W1||2 =1, and
i

4,9

max subject to z; € [—1,1]

(i, w5)] < WP for all 7, j (2)

It is easy to see that this is indeed a relaxation: start with an integer solution
{x;} with k non-zero x;, and set v; = (xl/\/k) - v for a fixed unit vector vy.

Without constraint (2]), the SDP relaxation is equivalent to the eigenvalue
relaxation given above. Roughly speaking, equation (2) tries to impose the con-
straint that non-zero vectors are of equal length. In the example of the n-vertex
star, this relaxation has value equal to the true optimum. In fact, for any instance
with A;; > 0 for all 4, j, this relaxation is exact [Cha00].

In the remainder of the section, we describe a simple 5(n1/ 3) rounding algo-
rithm, which shows that the additional constraints (2)) indeed help.

2.1 An O(n'/?) Rounding Algorithm

Consider an instance of QP-Ratio defined by A, ). Let w; be an optimal
solution to the SDP, and let the objective value be denoted sdp.

Since the problem is the same up to scaling the A;;, let us assume that
max; ; |4;;| = 1. There is a trivial solution which attains a value 1/2 (if 4, j
are indices with |A;;| = 1, set x;,x; to be £1 appropriately, and the rest of
the «’s to 0). Now, since we are aiming for an 5(n1/3) approximation, we can
assume that sdp > n'/3.

As alluded to earlier (and as can be seen in the gap example), the difficulty is
when most of the contribution to sdp is from non-zero vectors with very different
lengths. The idea of the algorithm will be to move to a situation in which this
does not happen. First, we show that if the vectors indeed have roughly equal
length, we can round well. Roughly speaking, the algorithm uses the lengths ||v;||
to determine whether to pick 4, and then uses the ideas of [CW04] or [NRT99]
applied to the vectors H:,/:H'

! We consider other SDP relaxations that can be writing by viewing the {0, +1} as a 3-
alphabet CSP, and show a §2(y/n)-integrality gap in the full version. It is interesting
to see if lift and project methods starting with this relaxation can be useful.
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Lemma 1. Given a vector solution {v;}, with ||v;||*> € [7/A, 7] for some T >0
and A > 1, we can round it to obtain an integer solution with cost at least
sdp/(v/ Alogn).

Proof. Starting with v;, we produce vectors w; each of which is either 0 or a
unit vector, such that

It > Ai{vi, vi) 2oij Aij (Wi, wj)  sdp
> vi > Wi VA
Stated this way, we are free to re-scale the v;, thus we may assume 7 = 1. Now
note that once we have such w;, we can throw away the zero vectors and apply
the rounding algorithm of [CW04] (with a loss of an O(logn) approximation
factor), to obtain a 0, +1 solution with value at least sdp/(v/Alogn).

So it suffices to show how to obtain the w;. Let us set (recall we assumed
T=1)

= sdp, then

o, ¥/ Ivill, with prob. v
! 0 otherwise

(this is done independently for each 7). Note that the probability of picking i is
proportional to the length of v; (as opposed to the typically used square lengths,
[CMMO6] say). Since A;; = 0, we have

E[X; Aglwi,wi)] 3, 5 Ailviovy) 30 AV, vi)  sdp
) = > = . (3)
E[; wi] > vil VAY,v? VA
The above proof only shows the existence of vectors w; which satisfy the bound
on the ratio. The proof can be made constructive using the method of conditional
expectations, by setting the variables one by one, and use the fact that if ¢,d > 0
and 51‘2 > 0, then either ¢ > 6 or Z > 6.

Let us define the ‘value’ of a set of vectors {w;} to be val := ZA§<VV‘;§WJ'>. The

v; we start will have val = sdp. o
Lemma 2. We can move to a set of vectors such that (a) val is at least sdp/2,
(b) each mon-zero vector v; satisfies v > 1/n, (c) vectors satisfy @), and (d)
Ei Vz‘2 <2

The proof is by showing that very small vectors can either be enlarged or thrown
away (proof in full version). The next lemma also gives an upper bound on the
lengths — this is where the constraints (2]) are crucial. It uses equation 2 to upper
bound the contribution from each vector — hence large vectors can not contribute
much in total, since they are few in number (see the full version for details).

Lemma 3. Suppose we have a solution of value Bnf and ), vZ < 2. We can
move to a solution with value at least Bn? /2, and v? < 16/n” for all i.

Theorem 1. Suppose A is an n X n matriz with zero’s on the diagonal. Then

there exists a polynomial time O(nl/ 3logn) approximation algorithm for the
QP-Ratio problem defined by A.
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Proof. As before, let us rescale and assume maxi, j|A;;| = 1. Now if p > 1/3,
Lemmata 2] and Bl allow us to restrict to vectors satisfying 1/n < v < 4/n?,
and using Lemma [ gives the desired 6(711/3) approximation; if p < 1/3, then
the trivial solution of 1/2 is an O(n!/3) approximation.

We now describe an integrality gap of roughly n'/#4, as it highlights the issues
that arise in getting better approximations.

2.2 Integrality Gap Instance

Consider a complete bipartite graph on L, R, with |L| = n'/2, and |R| = n. The
edge weights are set to +1 uniformly at random. Denote by B the n'/2 x n matrix
of edge weights (rows indexed by L and columns by R). A standard Chernoff
bound argument shows (see the full version for a proof):

Lemma 4. With high probability over the choice of B, opt < y/logn - n/%.

Let us now exhibit an SDP solution with value n'/?

. Let vi,va,...,v 4, be
mutually orthogonal vectors, with each v? = 1/ 2n'/2. We assign these vectors
to vertices in L. Now to the jth vertex in R, assign the vector w; defined by
Wi =22 Bij -

It is easy to check that this assignment satisfies the SDP constraints , and
attains a value £2(n'/?). This gives a gap of 2(n'/%).

This gap instance can be seen as a collection of n'/# stars (vertices in L are
the ‘centers’). O(y/n) different coordinates allow us to satisfy the constraints (2)).

This gap instance is bipartite. In such instances it turns out that there is a
better rounding algorithm with a ratio O(n'/4).

1/2

2.3 The Bipartite Case
In this section, we prove the following theorem:

Theorem 2. When A is bipartite (i.e. the adjacency matriz of a weighted bi-
partite graph), there is a (tight upto logarithmic factor) O(n'/* log? n) approxi-
mation algorithm for QP-Ratio .

Bipartite instances of QP-Ratio can be seen as the ratio analog of the Grothendieck
problem [ANO6]. The algorithm works by rounding the semidefinite program re-
laxation from section @2l As before, let us assume max; ;j a;; = 1 and consider
a solution to the SDP (). To simplify the notation, let u; and v; denote the
vectors on the two sides of the bipartition. Suppose the solution satisfies:

(1) Z aij(ui,vj) > n, (2) ZUE = va =1.
(i,J)€E i J
If the second condition does not hold, we scale up the vectors on the smaller

side, losing at most a factor 2. Further, we can assume from Lemma [2] that the

squared lengths ufﬂ)]z are between an and 1. Let us divide the vectors {u;}

and {v;} into logn groups based on their squared length. There must exist two
levels (for the u and v’s respectively) whose contribution to the objective is at
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least n®/ log2 n Let L denote the set of indices corresponding to these u;, and
R denote the same for v;. Thus we have >, o p aij(ui, vj) > n®/log?n. We
may assume, by symmetry that [L| < |R[. Now since v? < 1, we have that
v? < 1/|R| for all j € R. Also, let us denote by A; the |L|-dimensional vector
consisting of the values a;;, ¢ € L. Thus

1
D aglune) < 30 agl-vf< o >l (@)

i€L,jER i€L,jER JER

nCE

log2 n
We will construct an assignment z; € {+1,—1} for ¢« € L such that ‘}1%‘ .
ZjER | Y el aijxi‘ is ‘large’. This suffices, because we can set y; € {+1,—1},
J € R appropriately to obtain the value above for the objective (this is where it

is crucial that the instance is bipartite — there is no contribution due to other
y;’s while setting one of them).

Lemma 5. There exists an assignment of {+1, —1} to the x; such that

SIS agrl =, SlAl

JjER i€l JER
Furthermore, such an assignment can be found in polynomial time.

Proof. The intuition is the following: suppose X;,i € L are iid. {+1,—1}
random variables. For each j, we would expect (by random walk style argu-
ment) that EH Yicr ainiH ~ ||A4j]l2, and thus by linearity of expectation,
E[ZjeR | > er ainz” ~ > ierll4jll2. Thus the existence of such x; follows.
This can in fact be formalized using the following lemma (please refer to full
version for the proof)

Lemma 6. Let by,...,b, € R with >, b7 = 1, and let Xi,..., X, be iid.
{+1, -1} r.v.s. Then
B Y b)) > 1/12.
i

We also make this lemma constructive (please see the appended full version for
details).

Proof (Proof of Theorem[2.). By Lemma[land Eq (), there exists an assignment
to x;, and a corresponding assignment of {+1, —1} to y; such that the value of
the solution is at least

1 1 n<
. Aille > Al > . By Cauchy Schwarz
i 2 g 22 g P Gy S

2 Such a clean division into levels can only be done in the bipartite case — in general
there could be negative contribution from ‘within’ the level.
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Now if |[L] < n'/2, we are done because we obtain an approximation ratio of
O(n'/*1og? n). On the other hand if | L| > n'/2 then we must have ||u;]|3 < 1/n'/2.
Since we started with u? and v? being at least 1/2n (Lemma [2)) all the vector
squared lengths are within a factor O(n'/?) of each other. Thus by Lemma [Tl we
obtain an approximation ratio of O(n'/*1logn). This completes the proof.

2.4 Algorithms for Special Cases

We obtain better approximation algorithms for QP-Ratio in restricted settings.
We defer the proofs to the full version of the paper.

— When A is positive semi-definite (A > 0), we can round the eigenvector to
get an O(log® n) approximation for QP-Ratio. In independent work, [DKSTT]
recently showed an O(y/logn) approximation to QP-Ratio when A is psd.

— When OPT > €Dyax (where Dyax = max; y , |ai;| is the maximum degree),
we can find a solution of value e~/ D, .- using techniques from [Tre09].

3 Hardness of Approximating QP-Ratio

Given that our algorithmic techniques give only an n'/3 approximation in gen-
eral, and the natural relaxations do not seem to help, it is natural to ask how
hard we expect the problem to be. Our results in this direction are as follows: we
show that the problem is APX-hard i.e., there is no PTAS unless P = NP (see
Appendix B for details). Next, we show that there cannot be a constant factor
approximation assuming that Max k-AND is hard to approximate ‘on average’
(related assumptions are explored in [Fei02]). Our reduction therefore gives a
(fairly) natural hard distribution for the QP-Ratio problem.

3.1 Candidate Hard Instances

To reconcile the large gap between our upper bounds and lower bounds, we
describe a natural distribution on instances we do not know how to approximate
to a factor better than n% (for some fixed § > 0).

Let G denote a bipartite random graph with vertex sets Vi, of size n and Vg
of size n?/3, left degree n’ for some small § (say 1/10) [i.e., each edge between
Vy, and V is picked i.i.d. with prob. n=(9/19]. Next, we pick a random (planted)
subset Py, of Vi, of size n?/? and random assignments py, : Py, — {+1,—1} and
pr : Ve — {+1,—1}. For an edge between ¢ € P, and j € Vg, ai; == pr(4)pr(j).
For all other edges we assign a;; = +1 independently at random.

The optimum value of such a planted instance is roughly n°, because the
assignment of pr, pr (and assigning 0 to V7 \ Pr) gives a solution of value n?.
However, for 6 < 1/6, we do not know how to find such a planted assignment:
simple counting and spectral approaches do not seem to help.

Making progress on such instances appears to be crucial to improving the al-
gorithm or the hardness results. In fact, the instances produced by the reduction
from Random k-AND are similar in essence. We also note the similarity to other
problems which are beyond current techniques, such as the Planted Clique and
Planted Densest Subgraph problems [BCCT10).
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3.2 Reduction from Random k-AND

We start out by quoting the assumption we use.
Conjecture 1 (Hypothesis 3 in [Fei02)]). For some constant ¢ > 0, for every k,
3Ag, such that for every A > Ay, there is no polynomial time algorithm that, on
most k-AND formulas with n-variables and m = An clauses, outputs ‘typical’,
but never outputs ‘typical’ on instances with m/ 2¢Vk satisfiable clauses.
The reduction to QP-Ratio is as follows: Given a k-AND instance on n vari-
ables X = {1, z2,...x,} with m clauses C = {C1, Cq,...C,,}, and a parameter
0 <a<1,let A= {a;;} denote the m x n matrix such that a;; is 1/m if variable
x; appears in clause C; as is, a;; is —1/m if it appears negated and 0 otherwise.
Let f: X —»{-1,0,1},¢9: C — {—1,0, 1} denote functions which correspond
to assignments. Let pp =37, [f(2i)|/n and pg =3, |9(Cj)[/m. Let
I(f,g) = Zij aij f(zi)g(C;)
’ apf +pg
Observe that if we treat f(), g() as variables, we obtain an instance of QP-Ratio
(we describe how to get rid of the weighting in the denominator in the full

()

version) We pick oo = 2-<Vk and A a large enough constant so that Conjecture[I]
and the rest of the proofs work. The completeness follows from the natural
assignment (proof in full version).

Lemma 7 (Completeness). If « fraction of the clauses in the k-AND instance
can be satisfied, then there exists function f, g such that 6 is at least k/2.

Soundness: We will show that for a typical random k-AND instance (i.e., with
high probability), the maximum value ¥(f, g) can take is at most o(k).

Let the maximum value of 9 obtained be 9,,,4,. We first note that there exists
a solution f, g of value ¥,,44/2 such that the equality apy = p,4 holddd - so we
only need consider such assignments.

Now, the soundness argument is two-fold: if only a few of the vertices (X) are
picked (uy < ,0,) then the expansion of small sets guarantees that the value
is small . On the other hand, if many vertices (and hence clauses) are picked,

then we claim that for every assignment to the variables (every f), only a small
fraction (2"”(‘/’“)) of the clauses contribute more than k”/® to the numerator.
These lemmas shows together show a gap of k vs k7/® assuming Hypothesis [l
The complete proof is included in the full version of the paper. Since we can pick
k to be arbitrarily large, we can conclude that QP-Ratio is hard to approximate
to any constant factor.

3.3 Reductions from Ratio versions of CSPs

Here we ask: is there a reduction from a ratio version of Label Cover to QP-
Ratio? For this to be useful we must also ask: is the (appropriately defined) ratio

3 if auy > g, we can pick more constraints such that the numerator does not decrease
(by setting g(C;) = £1 in a greedy way so as to not decrease the numerator) till
tgr = oy, while losing a factor 2. Similarly for auy < pg, we pick more variables.
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version of Label Cover hard to approximate? The answer to the latter question
is yes (see the full version for details and proof that Ratio-LabelCover is hard
to approximate to any constant factor). Unfortunately, we do not know how to
reduce from Ratio-LabelCover.

Here, we present a reduction starting from a ratio version of Unique Games
to QP-Ratio (inspired by [ABHT05], who give a reduction from Label Cover to
Quadratic Programming, without the ratio). However, we do not know whether
it is hard to approximate for the parameters we need. While it seems related to
Partial Unique Games introduced by [RS10], they have an added size constraint
that at least « fraction of vertices should be labeled, which enables a reduction
from Unique Games with Small-set Expansion. However, a key point to note is
that we do not need ‘near perfect’ completeness, as in typical UG reductions.

We hope the Fourier analytic tools we use to analyze the ratio objective could
find use in other PCP-based reductions to ratio problems. Informally, Ratio UG is
a Unique Label Cover problem U(G(V, E), [R],{nc|e € E}) where we only ask
for a partial labeling (L : V' — [R]U{L}). The objective value is the ratio of the
number of satisfied constraints to the number of labeled variables (please see the
full version for details). We reduce Ratio UG to the following useful intermediate
problem:

QP-Intermediate. Given A, ) with A;; < 0, maximize f;‘&fl s.t.x; € [-1,1].

Now given an instance 1" = (V, E, IT) of Ratio UG , with alphabet [R] and a
regular graph (V, E), we associate 2 variables to each vertex, which are denoted
fu(z), indexed by z € {—1,1}. The intended solution to each vertex is either
the long code corresponding to the label, or f,, =0 (for each x). Now,

— Fourier coefficients (]?U(S)) are linear forms in the variables f,(z).
— For (u,v) € E, Ty, —def o Jul{i}) fo{muw(9)}). [Tt is 1 if edge is satisfied]
— Foru eV, L(u) —def >5:I8] 41 fu(S)2. [Penalizes f, that are not dictators]

The instance of QP-Intermediate we consider is (here || f,||1 denotes E.[|fu(z)|])

E(u,v)eETuv — By, L(u)
Eu'fu|1

For a function f, we define the ‘linear’ and the ‘non-linear’ parts to be

=" F0xEi)  and f7i=f = f7 = DT F(S)X(S).
i |S]£1

Q := max , where 1 will be picked large enough.

The choice of 1 will ensure that for each u, || f7(3 is tiny.

A key step in the analysis is the following: if a boolean function f is ‘nearly
linear’, then it must also be spread out [i.e. ||f||2 & ||f]|1].- This helps us deal
with the main issue in a reduction with a ratio objective — showing we cannot
have a large numerator along with a very small value of || f||1 (the denominator).
Morally, this is similar to a statement that a boolean function with a small
support cannot have all its Fourier mass on the linear Fourier coefficients. Please
refer to the full version for the complete proof.
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4 Normalized QP-Ratio

Given any symmetric matrix A, the normalized QP-Ratio problem aims to find
the best {—1,0,1} assignment which maximizes the following:

iz Wi TiT

{_rlr}gi(}n S dga? where d; = Z la;;| are “the degrees” (6)

J

Note that when the degrees d; are all equal (d; = d Vi), this is the same as QP-
Ratio upto a scaling. In the non-regular case, the normalized objective tends to
penalize picking vertices of high degree in the solution.

Let us consider the natural eigenvalue relaxation below. This is also the max-
imum eigenvalue of D~Y/2AD'/? where D is the diagonal matrix of degrees.

rt Az 23 s GiTiT;

max UAT 3 4T (")
xel-11m Y diwg 30 laij|(2f + 25)
GainRatio and Trevisan[Tre09]’s Conjecture
The special case when A = —Adj(G) where Adj(G) is the matrix of edge weights
is called GainRatio of G. [Tre09] studied in the context of a purely spectral algo-
rithm for Max CutGain: he gave an algorithm for GainRatio based on the above
eigenvalue relaxation (), and used this as a subroutine to obtain algorithms for
Max CutGain. His randomized rounding technique showed that if the eigenvalue
is e, the GainRatio is at least e~?(1/¢). This also gives an algorithm for Normal-
ized QP-Ratio with a similar guarantee (we defer to the full version for details).
Trevisan|[Tre09] also conjectures a better dependence:

Eigenval A(A) =

. . A(4)
GainRatio = Q( )
log(1/A(A4))
This would give an spectral algorithm which matches the SDP-based algorithm
of [CW04] (as for Max Cut [Tre09]). We show that this conjecture is false, and
describe an instance for which

GainRatio = O(exp (- 1//\(A)1/4)).

This shows that the eigenvalue based approach is necessarily ‘exponentially’
weaker than an SDP-based one. Roughly speaking, SDPs are stronger because
they can enforce vectors to be all of equal length, while this cannot be done
in an eigenvalue relaxation. The description of the instance and proof of the
exponential integrality gap can be found in the full version.
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Abstract. We present a general method for de-amortizing essentially any Bi-
nary Search Tree (BST) algorithm. In particular, by transforming Splay Trees,
our method produces a BST that has the same asymptotic cost as Splay Trees on
any access sequence while performing each search in O(logn) worst case time.
By transforming Multi-Splay Trees, we obtain a BST that is O(log log n) com-
petitive, satisfies the scanning theorem, the static optimality theorem, the static
finger theorem, the working set theorem, and performs each search in O(log n)
worst case time. Transforming OPT proves the existence of an O(1)-competitive
offline BST algorithm which performs at most O(log n) BST operations between
each access to the keys in the input sequence. Finally, we obtain that if there is
an O(1)-competitive online BST algorithm, then there is also one that performs
every search in O(log n) operations worst case.

1 Introduction

Over half a century since the discovery of rotation-based Binary Search Trees, their
exact performance is still not fully understood. The very first works on BST focused
on maintaining O(log n) height during insertions and deletions [1[18], or guaranteeing
better average case bounds for searches with known distributions [22]].

By introducing splay trees [23], Sleator and Tarjan proposed an alternate view of the
problem, where instead of looking at the cost of individual searches, it is the entire cost
of a sequence of accesses which is bounded, using amortized analysis.

The purpose of this article is to show that the two approaches are not exclusive—i.e.,
that it is possible to combine the good amortized performances of self-adjusting and
other adaptive BST with strong worst case guarantees for individual searches.

The BST Model. Central to the line of work originating from the splay tree paper [23]]
is the BST model. This is because competitive analysis (see below) of online BST algo-
rithms requires lower bounds on the optimal offline algorithm, which again requires a
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precise model of computation. All existing lower bounds [[10J13l25]] use one of several
existing, asymptotically equivalent, variants of this model. In order to describe accu-
rately our results, we choose one specific BST model, which we now describe. In line
with previous work, we do not consider insertions and deletions. Hence, our BST model
consists of a binary search tree 7" containing the n distinct keys, which wlog. may be
taken to be {1,2,...,n} with their natural order. The position of a finger, initially at
the root of T, is maintained, and the following two BST operations, each of unit cost,
are allowed: 1) moving the finger from a node to its parent or to one of its children, and
2) performing a rotation between the node pointed to by the finger and its parent.

Given the current tree 7" and the current finger position, an access to a key x is a list
of BST operations (finger movements and rotations), during which the finger position
is at the node containing z at least once.

For an input sequence S = (1, S2, . . ., Sm ) of keys to be accessed, a BST algorithm
A that realizes S returns a list A(S) of BST operations for accessing the keys s1, s2, . . .
in that order—that is, where .S is a subsequence of the sequence of keys pointed to by
the finger during the execution of A(S). An offline algorithm A is given the entire
sequence S and the starting tree 7" as input and then outputs the sequence of operations
A(S), while an online algorithm is fed the keys from S one by one and must output the
BST operations for the access of one key before the next key is given. More formally,
A is online if A(S) is a prefix of A(S”) whenever S is a prefix of S’. The cost of A(S)
is the number of BST operations it contains.

Note that the model, as all the standard variants of the BST model used in com-
petitive analysis of online BST algorithms, only requires the algorithm to list the BST
operations .A(S) to be performed (see, e.g, [23]). In particular, the model does not re-
strict how those operations are generated, what auxiliary memory is used in order to
generated them, or even how much time is used to generate them.

Of course, real-world implementations of practical BST algorithms have some sen-
sible limits on their time and space usage. In fact, almost all BST implementations in
the literature besides adhering to the standard BST model described above also have
the following additional features: they work in the pointer machine model, use no more
space than the tree itself plus O(1) words of balance information in each node of the
tree and O(1) extra working variables, and generate their access sequence A(.S) in time
proportional to the BST model cost of .A(.S). We in this version of the paper show how
to de-amortize BST algorithms with a method working in the standard BST model. In
the full version we show how to extend the method to maintain the additional features
just listed, should the BST algorithm being de-amortized have these.

Denote by OPT the best offline algorithm, that is, OPT'(S) is a shortest possible
list of operations that realizes S. An algorithm A (online or offline) is f(n)-competitive
if we have A(S) = O(f(n) - OPT(S)) for all sequences S. It is dynamically optimal
if itis O(1)-competitive.

Prior Works. The study of self-adjusting BSTs to minimize the overall cost over a
sequence of accesses was initiated by Allen and Munro [2] with their analysis of the
move-to-root and the simple exchange heuristics, and then by Sleator and Tarjan with
the introduction of Splay Trees [23]], which they conjectured to be dynamically optimal.
They show how the running time of Splay Trees can be upper bounded in several ways
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as a function of the access sequence. They prove the balance theorem (accesses run
in O(log n) amortized), the static optimality theorem (any sequence of accesses runs
within a constant factor of the time to run it on the best possible static tree for that
sequence; in particular it reaches the entropy bound), the static finger theorem (access
x runs in O(log d(x, f)), where d(z, f) is the number of keys between the query item
x and any fixed finger element f), the working set theorem (access x runs in time
O(log w(z)) where w(z) is the number of distinct elements accessed since the previous
access to x), and the scanning theorem (accessing all nodes in symmetric order takes
time O(n)). They also conjectured the dynamic finger theorem (access to y runs in
amortized O(log d(x,y)) where x is the previous item in the access sequence), which
was subsequently proved by Cole [98]. All bounds above are amortized.

On another front, Wilber [25] gave a formal analysis of several variants of the BST
model, providing equivalence reductions between them, and provided two lower bounds
on the number of operations that any BST algorithm must perform for a given sequence.
In particular, he proved that the bit reversal sequence requires {2(log n) amortized oper-
ations per access. These lower bounds were recently generalized in [13/10]. Splay Trees
were also shown to be key independent optimal [20], that is, they are O(1)-competitive
if the order of the keys is arbitrary or random, and that they are O(1)-competitive with
respect to a wide class of balanced BST algorithms [[15].

New bounds have been designed: the queueish bound (opposite of the working set
bound: the number of elements not accessed since the last access to x) was shown not to
be achievable by any BST algorithm [21]. Recent papers have attempted to engineer a
BST that satisfies the unified property, a bound that implies both the dynamic finger and
the working set bound [[1913]. The skip-splay trees [12] perform each access within a
multiplicative factor O(log log n) of the unified bound, amortized. The layered working
set trees [1] are BSTs that achieve the working set bound worst case. By combining
it with the skip-splay structure, the authors show how to achieve the unified bound,
amortized, with an additive cost of O(loglogn).

The first significant breakthrough on the competitive analysis of BST algorithms
came with the invention of tango trees [[11]], the first provably O(log log n)-competitive
BST. This result was subsequently improved independently by the multi-splay trees [24]
and the chain-splay trees [16] which both offer the additional guarantee of performing
each access in O(logn) amortized time. Further properties of multi-splay trees were
proved in [14], where they were shown to satisfy static optimality, the static finger
property, the working set property, and key-independent optimality. They further satisfy
the dequeue property which is not known to be satisfied by splay trees.

In recent years, the question was raised as to whether the good amortized properties
could be reconciled with the O(log n) worst case bounds satisfied by well balanced trees
such as AVL or red-black trees. Such results were known for static trees [3], however
recent works gave indication that strong balance constraints at every node forces the
working set bound to be an amortized lower bound, thus forbidding any such tree to
have stronger properties such as the dynamic finger property [4] (the proof was given for
self-adjusting skip-lists and B-trees, however the proofs can easily be adapted to BST
with balance constraints at every node). However, it remained open whether relaxing
the balance condition to just bounding the height of the tree would be compatible with
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obtaining better amortized performances. In [6], a BST based on Tango trees [[L1]] is
engineered to be both O(loglogn)-competitive and guarantees O(logn) worst case
access time for each access. However, this structure is unlikely to possess all the other
desirable properties of Splay Trees.

Our Results. In this paper we show that it is possible to automatically transform any
BST algorithm into one that provides worst case time guarantees per access while keep-
ing the same asymptotic amortized running times. Our core result shows how to keep a
BST balanced while losing only a constant factor in the running time:

— Any BST algorithm A on tree 7' can be transformed into a BST algorithm A" on a
tree T such that for any access sequence S, |A’'(S)| = O(]A(S)|), while the depth
of T" is always O(logn). If A is online, so is A’.

Using this, we then show how to de-amortize the BST and answer each query in O(log n)
worst case cost:

— Any BST algorithm A on tree T can be transformed into a BST algorithm 4" on
a tree 7" such that for any access sequence S, |A”(S)| = O(JA(S)|) and each
access to a node is performed in O(logn) operations worst case. If A is online, so
is A”.

Finally, we in the full version show that we can extend the method to maintain the
additional features of real-world online BST algorithms described above. In particular,
we have that if .4 works in the pointer machine model, with working space being O(1)
words of information in the nodes and O(1) global working variables, and computes
each access to a key in time proportional to the number of BST operation of the access,
then so does our final algorithm.

Applying this transformation to Splay Trees, we obtain a BST that executes every se-
quence within a constant factor of the Splay Tree and thus satisfies the scanning theorem,
the working set property, static optimality, the key-independent optimality, the static fin-
ger property, the dynamic finger property, and that performs each access in O(logn)
worst case. Applying it to Multi-Splay Trees, we obtain a BST that is O(loglogn)
competitive, satisfies the scanning theorem, the working set property, static optimality,
the key-independent optimality, the static finger property, and performs each search in
O(log n) worst case time. Applying it to OPT proves the existence of an O(1)-competitive
offline BST algorithm which performs at most O(log n) BST operations between each
access to the keys in the input sequence. Furthermore, if there is an O(1)-competitive
online BST algorithm, then there is also one that performs every search in O(logn)
operations worst case.

Overview of Paper. On a high level, our construction works by performing a heavy-
path decomposition of the tree of the original algorithm .4, and then during .A’s BST
operations maintain each heavy-path as a constant number of structures accessed in a
stack-like fashion. The remaining and most technical ingredient is a method for main-
taining such stack structures as trees in the BST model, while fulfilling a weight-based
balance criterion that ensures the total composition of the stack representations of the
heavy-paths to be a balanced tree. In the paper, these ingredients are covered in the
reverse order of above.
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2 Pop-Tarts

We start by implementing a stack using a balanced BST. We differentiate internal nodes,
which always have two children, and leaves which have no children (leaves can also be
seen as empty pointers). In order to fit the stack data structure in the BST model, we
assume that nodes to be pushed onto the stack appear as the parent of the root of the
current stack, and that nodes are pushed onto the stack in decreasing key order (that is,
after the push operation the old stack is the right child of the newly inserted node, and its
left child is a leaf). Our later application of the stack structure fulfils these assumptions.
An empty stack is composed of one leaf. The structure will maintain the invariant that
the left child of the root is always a leaf, to allow for easy pop operations. After each
push or pop operation, the structure is allowed to perform a sequence of operations in
the BST model (finger movements and rotations), and at the end of the sequence, the
finger is back at the root. Leaves can have a weight associated to them, and we use the
convention that internal nodes all have weight 1 (it would not be difficult to generalize
these structures to support arbitrary internal weights, however this is not necessary for
our application).

A BST implementing a stack in this manner we call a Pop—tar. A pop-tart is good
if push and pop operations are performed in O(1) amortized time and O(log n) worst-
case time. It is crazy good [17] if it is good and the depth of every leaf of weight w is
O(log(W/w)), where W is the total weight of all leaves in the pop-tart, or O(log n) for
an unweighted pop-tart with n leavesd.

In the remainder of this section, we will describe three pop-tart structures. The first
two lay down ground concepts that will be used to construct the third pop-tart (Choco-
late), which is always crazy good.

Vanilla Pop-Tart. Implementing a good pop-tart is easy. In fact, performing no BST
operations after each push or pop operation will produce a linear tree with exactly
O(1) time per operation. This elementary implementation is called Vanilla Pop-Tart.
A vanilla pop-tart will be crazy good if the weight of each pushed leaf is always larger
than the total weight of all other leaves in the pop-tart.

Lemma 1. The Vanilla Pop-Tart is crazy good if nodes are added in decreasing key
order and new leaves have weight larger or equal to the total weight of all other leaves
in the pop-tart. That is, it uses O(1) time per push and pop operation and the depth of
a leaf of weight w is at most 1 + log W/w where W is the total weight of all leaves in
the pop-tart.

Proof. The proof is by induction. If the pop-tart contains one leaf, then it is at depth
0, this covers the base case. Assume by induction that the lemma is true for the right
subtree of the root, which is of total weight 1’. Then the left child of the root is the last
added leaf and it has weight at least W', thus, W > 2W’. The left child of the root is

! Pop-Tarts are a line of crazy good [[I7] breakfast products. that pop out of the toaster, which
reminds us of popping a stack. Pop-tart is a trademark of the Kellogg Company.

% We slightly abuse the big-Oh notation and write O(log(WW/w)) to mean a function which is
smaller than clog(W/w) + d for some constants ¢ and d.
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at depth 1 < 1 4 log W/w. Any other leaf in the tree by induction is at depth at most
24+logW'/w < 1+ logW/w.

Cherry Pop-Tart. We now describe the Cherry Pop-Tart, which is a crazy good pop-tart
if all leaves have weight 1. Although Cherry Pop-tarts are not used explicitly in this
paper, they serve as a warm up, introducing some key concepts needed to define the
Chocolate Pop-tart structure, which is used later.

The algorithm used is a variant of a 2-4 tree implemented as a BST. On a high level,
it may be viewed as reversing edges on the leftmost path in a red-black tree, and then
having a permanent finger at the leftmost internal node (effectively making it the root
of the BST).

In greater detail: The Cherry Pop-tart is a BST with the nodes on the right path of the
tree grouped into layers. A layer consists of consecutive nodes on the right path, and
the left subtrees of these nodes are called crumbs. The right child of the last node in the
layer is the top node of the next layer (except for the last layer, where it is the original
leaf of the initial empty stack). By definition of BSTs, the layers are linearly ordered,
that is, all keys in a layer are smaller than the keys in the next layer.

We number the layers as follows: the layer containing the root is layer 0, the next one
along the right path is layer 1, and so on. We maintain the invariants that each layer has
between 1 and 3 nodes on the right path (hence that many crumbs), and that the crumbs
pointed to by layer 7 (called i-crumbs) are perfectly balanced trees containing exactly
2¢ leaves.

The invariant is true for a pop-tart containing one node: that node is layer O and it
points to one 0-crumb (containing one leaf). When a new node is pushed as the parent
of the root, it is added to layer 0. Layer O therefore has one more node and one more 0-
crumb. Either the new layer O still has no more than 3 crumbs, maintaining the invariant,
or layer 0 now has 4 0-crumbs (each composed of exactly one leaf). In this case, we
perform a left rotation between the last two nodes of the layer. This replaces the last
two nodes of the layer with one node whose left pointer points to a 1-crumb. We now
move that node from layer O to layer 1. See Figure[Il Again, the reconfiguration could
either stop there or ripple down further. In general, as a node is added as the parent of
the first node in layer ¢, either layer ¢ still has no more than 3 ¢-crumbs, or we preform a
rotation on the node between the last two crumbs, forming a (i + 1)-crumb with twice
as many leaves which is inserted into layer 7 + 1. A pop operation works symmetrically.

i-crumb

i-crumb

next node
i-crumb
icing
N . ..
x Fig.2. Level 7 in the Chocolate

Fig. 1. Restoring the Cherry Pop-tart invariant at level 7 Pop-tart
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Lemma 2. The Cherry Pop-Tart is crazy good if nodes are added in decreasing key
order and all leaves have weight 1. That is, it uses O(1) amortized time and O(logn)
worst case time per push and pop operation and its tree has height O(logn).

Proof. To show that a push or pop operation has amortized cost O(1), we assign a
potential of 0 to layers with 2 nodes, and a potential of 1 to layers with 1 or 3 nodes. A
push or pop operation has actual cost proportional to the number of layers that had to
be readjusted to restore the invariant. Each readjusted layer had a potential of 1 before
the operation (i.e., had 3 nodes before a push or 1 node before a pop) and of 0 after the
operation (i.e., has 2 nodes exactly). Therefore, the decrease of potential pays exactly
for the readjustments. The insertion or deletion in the last layer possibly increases its
potential by 1, which is the amortized cost of the operation. Therefore, this pop-tart is
good.

Since layer 4 has at least one i-crumb containing 2¢ leaves, a pop-tart with n leaves
has at most logn layers, each having crumbs of height O(log n), thus the total height
of the tree is O(log n). So in the unweighted case, this pop-tart is crazy good.

Chocolate Pop-Tart. Again, the structure will be decomposed into a sequence of layers
whose nodes form a right path and point to crumbs. This time, the right path of the i*
layer will be composed of 1 to 3 regular nodes whose left child is an ¢-crumb, then a
next node whose left child points to the next layer and whose right child points to a
subtree called the icing. This will be called the structural invariant. See Figure 2l The
icing is itself a stack, implemented using a Vanilla Pop-tart (that is, a simple linear tree),
whose leaves will be frozerﬁ subtrees of the chocolate pop-tart. In order for the icing
to be crazy good, we will ensure that the nodes (frosted subtrees) pushed onto it will
always be at least as heavy as the total weight of the icing. The subtrees to be frosted
and pushed into the icing of level ¢ will always be the next node and the entire subtree
rooted at the top node of level ¢ + 1. Therefore, we maintain the invariant that the total
weight of layer 7 + 1 (that is, the the total weight of the subtree rooted at the topmost
node of that layer) is smaller than the total weight of the icing of layer ¢ (thick icing
invariant). If violated, layer ¢ 4+ 1 will be frosted and pushed into the icing, to maintain
the invariant.

The last layer, say, layer ¢, is incomplete: it is composed of 0 to 3 regular nodes, has
no pointer to the next layer, and always contains an icing as its rightmost subtree. It can
only have 0 regular nodes if the icing contains exactly one element (which is always an
i-crumb).

As before, when a new node is pushed onto the i-layer (starting with ¢ = 0), either
the i-layer has at most 3 regular nodes, in which case we are done, or it contains 4
regular nodes and we need to restore the structural invariant. We start by performing a
left rotation between the two lowest regular nodes in the layer, creating an (i+1)-crumb.
We have two cases to consider. If the i*" layer is not the last one, then we perform a left
rotation between the next node and the lowest regular node, to move the new (i + 1)-
crumb and its node to the (i + 1) layer. On the other hand, if the i*" layer is the last
one, then it has no next node. Then the lowest regular node becomes a next node which

3 or frosted.
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points to the new (i + 1)*" layer. That (i + 1)*” layer contains 0 regular nodes, no next
node and an icing which contains the (i + 1)-crumb as its only leaf.

Having done this, there are again two cases to consider: if the total weight of the
subtree rooted at the (new) top node of the (i+1)!" layer is smaller than the total weight
of the icing of the i*" layer, then we proceed with the insertion of the (i + 1)-crumb,
by restoring the structural invariant if necessary, and so on. Otherwise, we restore the
thick icing invariant by frosting the (i + 1)** layer without modifying it further (even
if it contains now 4 regular nodes), and push it and its parent node (the next node of the
i" layer) into the icing of the i layer. The i layer then becomes the last layer. It has
no next node and two regular nodes.

The deletion operation is symmetric: when the first regular node of the i*" layer is
deleted, either the layer still has at least one regular node left, in which case we are
done, or we have to restore the structural invariant. If ¢ is not the last layer, we pull two
nodes and their associated i-crumbs from the (i + 1) layer (by performing two right
rotations and possibly recursively restoring the invariant in the (i + 1) layer). If the
(i 4+ 1) layer is only composed of an icing (which then contains one frosted (i + 1)-
crumb), we defrost the icing, perform a right rotation, transforming the next layer into
two regular nodes pointing to i-crumbs and the i* layer becomes the last one. On the
other hand, if 7 is the last layer, then we pop a frosted subtree from the icing (unless it
contains only one leaf), and perform a right rotation to turn the frosted subtree into one
regular node and a next node, the latter pointing to the new, unfrosted, (i + 1)*" layer
and to the remaining icing.

Lemma 3. The Chocolate Pop-Tart is crazy good if nodes are added in decreasing key
order and new leaves are added with arbitrary weights. That is, it uses O(1) amortized
time per push and pop operation and the depth of a leaf of weight w is O(log W/w)
where W is the total weight of all leaves in the pop-tart.

Proof. We first show that the Chocolate Pop-tart is good, that is, it uses O(1) amortized
time per push and pop operation. For this, we assign a potential of 0 to layers with
2 regular nodes, and a potential of 1 to all other layers. A push operation will cause
a bunch of reconfigurations in successive layers, that end in either adding a crumb to
a layer that does not overflow, or pushing an element in the icing of a layer. Either
case costs O(1) amortized. As in the case of Cherry Pop-tarts, it is easily verified that
every layer that overflows had 3 regular nodes before, and thus a potential of 1, and two
regular nodes after, so a potential of O (except possibly for the last rearranged layer).
Likewise, during a pop operation, the potential of a rearranged layer (except the last one)
goes from 1 to O since the number of regular nodes it contains goes from 1 to 2. Thus,
the decrease of potential of a layer during a push or a pop pays for its rearrangement,
while the amortized cost of O(1) pays for the potential increase and the rearrangement
in the last node and the push in the icing if it occurs.

It now remains to prove that the depth of a node of weight w is O(log W/w). The
proof will be by induction on the layer number. Consider the subtree rooted at the first
node of the i*" layer and let 1¥; be the total weight of that subtree. Assume by induction
that at any moment in the algorithm, any leaf of weight w has depth i + 6 + 7 log W; /w
starting from the root of the i*" layer. We want to show that in the subtree rooted at the
first node of the (i—1)*" layer, any leaf of weight w has depth (i—1)+6+7log W;_1 /w.
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Obviously, the hypothesis is true for an i*" layer that contains only an icing with one
frosted i-crumb, since all its leaves are at distance 7; this covers the base case.

For a (i — 1)*" layer, we consider the leaves located (i) in (i — 1)-crumbs pointed
by regular nodes, (ii) in the i layer if it exists, and (iii) in the icing of the (i — 1)t"
layer. Any leaf of type (i) is at distance < 3 + ¢ — 1 which is small enough. For type (ii)
leaves, notice that as long as i-crumbs are being moved from the (i — 1) layer to the
it" layer without being frosted and pushed to the icing, W; < W;_; /2. Therefore, for
any leaf of weight w in the subtree of the i*" layer, the depth of that leaf is at most

44i+6+TlogWi/w <10+i+TlogW; 1 /w—T< (i —1)+ 4+ TlogW;_1/w

which is below the desired bound.

Finally for case (iii), since the icing of the (i — 1)*" layer is implemented as a Vanilla
pop-tart and the frosted subtrees are pushed with (total) weights always larger than all
other leaves (frosted subtrees) in the icing, the icing is crazy good, that is, a frosted
subtree of total weight W will have its root at depth at most 5 + log W, _1 /W. Let p be
the parent of the frosted subtree containing the node of weight w, let W), be the weight
of the subtree rooted at p. The depth of p is at most 4 4 log W;_1 /W, since the left
child of every node on the right path of the icing contains at least half of the weight of
that node. Every frosted subtree has its first node whose left pointer points to a possibly
heavy i-crumb, and whose right pointer points to what used to be the i‘" layer at some
point in time. Let W’ be the weight of that ' layer. Then W' < W,,/2 otherwise the
i'" layer would have been frosted earlier. By induction, a leaf of weight w in this former
ith layer must have depth no more than 4 + log W;_1 /W, +2 + i + 6 + 7Tlog W' /w

<12+i+1logWi_1 /Wy + TlogWp/w —7< (i — 1)+ 6+ Tlog W,;_1 /w

which is the desired bound. A leaf in the i-crumb pointed by the left pointer of the root
node of the frosted subtree has weight at most W), and its depth is

44+1logWi1 /Wy +24+i<(i—1)4+ 6+ TlogW;_1/w.

This completes the induction proof. For ¢ = 0, we have that any leaf of weight w
has depth at most 6 + 7 log W/w, so the chocolate pop-tart is crazy good for arbitrary
weights.

Note that all pop-tarts described in this section can also be flipped to maintain ele-
ments pushed in increasing order. If the cherry or chocolate pop-tarts need to be imple-
mented in a real-world BST, O(1) extra bits of information in each node is sufficient
for storing the function of that node (regular, next, icing, crumb).

3 Simulation

We now show how to efficiently simulate any BST algorithm while keeping the tree of
logarithmic height. The method will work for trees with weighted nodes as well. Let
w; be the weight of the node with key ¢ and let W = > | w;. For unweighted trees,
set w; = 1 and W = n. We represent the tree 1" of the original BST algorithm using a
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heavy path decomposition. To construct this decomposition, we denote every edge of T'
as either solid or dotted. For each non-leaf node, the edge to its child with largest total
subtree weight (or the left child, in case of a tie) is a solid edge, and the edge to its other
child is dotted. The solid edges form heavy paths connected together by dotted edges.

We simulate the original BST algorithm as follows: When its finger is at the root
of T', each heavy path is implemented using a pair of weighted pop-tarts: a heavy path
from node y to node = (with y an ancestor of x) is a sequence of nodes that can be
decomposed into the subsequence L(y, x) of nodes smaller than x on the path, and the
subsequence R(y, x) of nodes larger than x on the path. Note that L(y, ) is increasing,
and R(y, x) is decreasing. In our simulation, the end of the path = does not change, but
y can move up or down along the path to the root. As y moves up, the new nodes are
added to L(y, x) in decreasing order, or to R(y, x) in increasing order.

The sequences L(y, z) and R(y,z) will each be stored in the weighted chocolate
pop-tart structure described in the previous section, and these two pop-tarts will be left
and right children of x, respectively, see Fig.[3l Each node on the path is connected

L(y, x)

R(y,x) *

I Q8
U U

/A pop-tart
L(y,z)

&

Fig. 3. Representing a heavy path with Pop-tarts

via a dotted edge to a subtree which will be considered as a leaf in the pop-tart, whose
weight is exactly the total weight of all the nodes in that subtree. The subtrees contained
in those leaves will be structured in the same manner, recursively. The nodes in the tree
will contain two extra bits, one to determine if the edge to its parent node is solid or
dotted, and another to determine if the next node on its heavy path is in L(y,z) or
R(y,x).

When the finger f is not at the root r of the tree, the path from the finger to the the
root is also represented as a pair of pop-tarts in a similar way, but this time upside-down
(see Fig. H). Thus, as f walks down, the elements of L(r, f) are added in increasing
order, and the elements of R(r, f) are added in decreasing order. Hence, finger move-
ments in the original BST algorithm can be implemented using one push and one pop
operation by transferring a node from one pop-tart to the other using O(1) rotations.
Likewise, rotations in the original BST algorithm only involve the first few nodes on
the pop-tarts linked from the finger, and thus can be implemented in O(1) rotations
and push/pop operations. Note that the finger in the tree maintained by our simulation
always stays at the root.
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Fig. 4. Representing the finger in general position

Any path from the root to a node x of weight w uses at most log W/w dotted edges.
Further, let W1, Wa, ..., W, be the total weights of the successive heavy paths (along
with their descendants) on the path from the root to 2. By Lemma 3] the i*" heavy
path will be stored at depth O(log(W;_1/W;)) in the pop-tart of the (i — 1)*" heavy
path, and node x will be at depth O(log(W}, /w)) in the pop-tart of the last heavy path.
Thus, the total depth of x in the tree is bounded by a telescoping sum that sums up to
O(log(W/w)). Clearly, if A is online, so is .A’. We obtain:

Theorem 1. Given a BST algorithm A with a starting tree T, there is a BST algorithm
A’ with a starting tree T" such that |A’(S)| = O(].A(S)|), and such that the depth of a
node i in T is always O(log(W/w;)) and the finger is always at the root of T'. If A is
online, so is A’

We note that O(1) extra bits per node is sufficient for storing the structure of the original
tree and the function of each node in the simulation: each node needs to indicate whether
a child is part of the same heavy path or not, and for all nodes on the path from to f, a
bit is needed to determine if the next node on the path is stored in L(r, f) or in R(r, f).

4 De-amortization

Theorem 2. For any BST algorithm A with a starting tree T there is a BST algorithm
A" with a starting tree T" such that for any access sequence S, |A”(S)| = O(|A(S)|)
and each access to a node is performed in O(logn) operations worst case. If A is
online, so is A”.

Proof. Using Theorem [I] transform A and T into A’ and 7’ such that the depth of
node 7 in 7" is always clogn for some constant c. Algorithm A’ is then modified as
follows: while running the sequence of operations in .A4’(.S), every time clogn opera-
tions from the original A’(.S) sequence have been performed without accessing the next
unaccessed element of the input sequence, access this element by moving the finger to
it and back (thereby inserting < 2clogn extra BST operations into the sequence at this
point). Thus every access is performed in worst case 3clogn, and the total cost of the
sequence is the same within a factor 3. If A is online, so is A"
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Abstract. We study the fundamental problem of the exact and efficient
generation of random values from a finite and discrete probability dis-
tribution. Suppose that we are given n distinct events with associated
probabilities p1,...,p,. We consider the problem of sampling a subset,
which includes the ith event independently with probability p;, and the
problem of sampling from the distribution, where the ith event has a
probability proportional to p;. For both problems, we present on two
different classes of inputs — sorted and general probabilities — efficient
preprocessing algorithms that allow for asymptotically optimal query-
ing, and prove almost matching lower bounds for their complexity.

1 Introduction

Generating random variables from finite and discrete distributions has long been
an important building block in many applications. For example, in computer
simulations usually a huge number of random decisions based on prespecified
or dynamically changing distributions is made. In this work we consider two
fundamental computational problems, namely sampling independent events and
sampling from a distribution, on two different classes of inputs, sorted and un-
sorted probabilities. As we will see, there is a rich interplay in designing efficient
algorithms that solve these different variants.

Our results are valid in the classical RealRAM model |1, |9] of computation.
In particular, we will assume that the following operations take constant time:

e Accessing the content of any memory cell.

e Generating a uniformly distributed real number in the interval [0, 1].

e Performing any basic arithmetical operation involving real numbers like ad-
dition, multiplication, division, comparison, truncation, and evaluating any
fundamental function like exp and log.

Whether our results can be generalized to more realistic machine models is an
interesting question for future work.

In the remainder, we will abbreviate [n] = {1,...,n} and we will write Inz
for the natural logarithm of x and logx for the binary logarithm of z. Finally,
we will write rand() for a uniform random number in [0, 1].

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 133-[[Z4] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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1.1 Subset Sampling

We consider n independent events with indicator random variables X1, ..., X,,
and Pr[X; = 1] = p;. For shortcut we write p = pp = >0, p; = E[}_" | X;] and
p = (p1,...,pn). Consider the random variable X = X, = {i € [n] | X; = 1},
which is the set of all events that occurred.

We concern ourselves with the problem of sampling X . We study this problem
on two different classes of input sequences, sorted and general (i.e., not neces-
sarily sorted) sequences; dependent on the class under consideration we call the
problem SORTEDSUBSETSAMPLING or UNSORTEDSUBSETSAMPLING.

A single-sample algorithm for SORTEDSUBSETSAMPLING or UNSORTEDSUB-
SETSAMPLING gets input p and outputs a set S C [n] that has the same dis-
tribution as X. When we speak of “input p” we mean that the algorithm gets
to know n and can access every p; in constant time. This can be achieved by
storing all p;’s in an array, but also, e.g., by a constant depth arithmetic circuit
computing p; given ¢. In particular, the algorithm does not know the number of
i’s with p; = 0 (i.e., the input format is not sparse).

Such an algorithm cannot run faster than O(1+4 ), as its expected output size
is p and any algorithm requires a running time of 2(1). This runtime, however,
is in general not achievable, as our results below make more precise. Hence, we
consider a preprocessing-query variant of the problem, where we want to be able
to answer queries in the optimal expected runtime of O(1 + u) after a certain
preprocessing.

In the preprocessing-query variant we consider the interplay of two algorithms.
First, the preprocessing algorithm P gets p as input and computes some auxiliary
data D = D(p). Second, the query algorithm @ gets input p and D, and samples X,
i.e., forany S C [n] wehave Pr[Q(p, D) = S| = Pr[X, = S]. Here Pr goes only over
the random choices of @, so that, after running the preprocessing once, running the
query algorithm multiple times generates multiple independent samples. Note that
if the preprocessing time is p and the query time is ¢, then we can generate a single
sample of X in time p+ ¢, so the single-sample variant of the problem is also solved
by the preprocessing-query variant. In this paper we will not consider single-sample
algorithms any further, because our constructed preprocessing-query algorithms
are already for a single query as efficient as the best single-sample algorithm we
can devise. This holds for all problem variants we consider.

The single-sample variant of UNSORTEDSUBSETSAMPLING can be solved triv-
ially in time O(n); we just toss a biased coin for every p;. A classic algorithm
solves this problem for p; = ... = p,, = p in the optimal expected time O(1+ u),
see e.g. the monographs [2] by Devroye and [3] by Knuth, where also many other
cases are discussed. Indeed, observe that the index i of the first sampled element
is geometrically distributed, i.e., Pr[i; = i] = (1 — p)*~!p. Such a random value
can be generated by setting i; = Llf; gg E?rf;())J. Moreover, after having sampled the
index of the first element, we iterate the process starting at i; + 1 to sample the
second element, and so on, until we arrive for the first time at an index i, > n. In
[13] the “orthogonal” problem is considered, where we want to uniformly sample
a fixed number of elements from a stream of objects.



Efficient Sampling Methods for Discrete Distributions 135

In this paper we generalize the algorithm for equal probabilities as far as
possible. More precisely, we ask whether the optimal query time O(1 + p) is
achievable for larger classes of inputs and how much preprocessing is needed.
We obtain the following answers.

Theorem 1. SORTEDSUBSETSAMPLING can be solved in O(logn) preprocessing
time and O(1+p) expected query time. Moreover, the bound on the preprocessing

time is nearly tight, as the sum of preprocessing and query time is {2 (10?%0 gn)

for any such algorithm, asn — oo and u = p(n) = (logn)~ M),

Note that all our lower bounds only hold for algorithms that work for all n
and all sorted sequences p1,...,p,. They are worst-case bounds over the input
sequence p and asymptotic in n. For particular instances p there can be faster
algorithms. Due to space limitations, the proof of the lower bound of Theorem [I]
is not included in this extended abstract.

To avoid any confusion, note that we mean worst-case bounds whenever we
speak of (running) time and expected bounds whenever we speak of expected
(running) time. The next result addresses the case where the probabilities are
not necessarily sorted.

Theorem 2. UNSORTEDSUBSETSAMPLING can be solved in O(n) preprocessing
time and O(1 + p) expected query time. Moreover, this is optimal, as even any
single-sample algorithm for UNSORTEDSUBSETSAMPLING needs time {2(n).

Both positive results in the previous theorems depend highly on each other.
In particular, as it is demonstrated in Section [3, we prove them by repeatedly
reducing the instance size n and switching from the one problem variant to the
other.

The problem of UNSORTEDSUBSETSAMPLING was considered also recently in
the two papers [11, [12], where algorithms with linear preprocessing time and
suboptimal query time O(logn + u) were designed. Thus, our results improve
upon these running times, and provide accompanying and (almost) matching
lower bounds.

1.2 Proportional Sampling

In the previous section we considered the problem of sampling subsets. Here
we will focus on a slightly different and more classical problem. Given p =
(p1,---,pn) € RY,, we define a random variable Y =Y}, that takes values in [n]
such that Pr[Y = i] = p;/p, where again p = "' | p;. We call the problem of
sampling ¥ SORTEDPROPORTIONALSAMPLING or UNSORTEDPROPORTIONAL-
SAMPLING, if we consider it on sorted or general input sequences, respectively.
As previously, we consider two variations of the problem. In the single-sample
variant we are given p and we want to compute an output that has the same
distribution as Y. Moreover, in the preprocessing-query variant we have a pre-
computation algorithm that, given p, computes some auxiliary data D, and a
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query algorithm that is given p and D and has an output with the same dis-
tribution as Y'; where the results of multiple calls to the query algorithm are
independent.

In this setting, we no longer output p elements. So, it could be that the
optimal expected query time reduces to O(1). For sorted sequences, this optimal
query time can be indeed achieved after a relatively small preprocessing time,
as the next result shows.

Theorem 3. SORTEDPROPORTIONALSAMPLING can be solved in O(logn) pre-
processing time and O(1) expected query time.

For general input sequences, this problem can be solved by the technique known
as pairing or aliasing |5, [14]. This result is not new, but will be used in the
proofs of Theorem [I] and Theorem 2], so we include it for completeness.

Theorem 4. UNSORTEDPROPORTIONALSAMPLING can be solved in O(n) pre-
processing time and O(1) query time. Moreover, this is optimal, as any single-
sample algorithm for UNSORTEDPROPORTIONALSAMPLING needs time §2(n).

The fundamental problem of the exact and efficient generation of random values
from discrete and continuous distributions has been studied extensively in the
literature. Knuth and Yao investigated in their seminal work [6] the power of
several restricted devices, like finite-state machines; the articles |3, [L5] provide
a further refined treatment of the topic. However, their results are not directly
comparable to ours, since they do not make any assumption on the sequence of
probabilities, and use unbiased coin flips as the only source of randomness, but
cannot guarantee efficient precomputation on general sequences. Furthermore,
Hagerup, Mehlhorn and Munro [4] and Matias, Vitter and Ni [7] provided algo-
rithms for a dynamic version of UNSORTEDPROPORTIONALSAMPLING, where the
probabilities may change over time. In particular, under certain mild conditions
their results guarantee the same bounds as in Theorem [

The rest of the paper is structured as follows. In the following section we
will show Theorem [l Section [B] contains the proofs of Theorems [[] and 2 while
Section M is devoted to the proof of Theorem Bl We discuss relaxations to our
input model and possible extensions in Section [l

2 Proportional Sampling on Unsorted Probabilities

In this section we consider UNSORTEDPROPORTIONALSAMPLING and prove The-
orem 4l The upper bound can be reached by the old technique known as pairing
or aliasing |14]; see also Mihai Patragcu’s blog |10] for a nice explanation. Ba-
sically, we use O(n) preprocessing to distribute the probabilities of all elements
over n urns such that any urn contains probability mass of at most two elements.
For querying we choose an urn uniformly at random and choose a random one of
the two included elements according to their probability mass in the urn, which
gives O(1) worst-case querying time.

The lower bound for Theorem @ is provided by the following lemma, which re-
duces UNSORTEDPROPORTIONALSAMPLING to searching in an unordered array.



Efficient Sampling Methods for Discrete Distributions 137

Moreover, the same proof yields the lower bound of Theorem [2] for UNSORTED-
SUBSETSAMPLING.

Lemma 1. Any single-sample algorithm for UNSORTEDPROPORTIONALSAM-
PLING needs {2(n) expected time. Moreover, any single-sample algorithm for UN-
SORTEDSUBSETSAMPLING needs £2(n) expected time.
Proof. Consider the instances p(¥) = (p(lk)7 ... ,p%k)) with pl(-k) = d;, where d;;,
is the Kronecker delta. Any sampling algorithm for UNSORTEDPROPORTIONAL-
SAMPLING returns k on instance p(*) with probability 1. This cannot be done
better than with linear search for k, and randomness does not help, either. With
varying i, no better bound is possible, either: Simply set pgk) = 1ok

Observe that on the same instance any sampling algorithm for UNSORTED-
SUBSETSAMPLING returns {k} with probability 1. This needs runtime {2(n) for
the same reasons. With varying p, no better bound is possible, either: Set the
first s := [u—1] probabilities p; to values that sum up to p—1, and let pl(-k) = ik
for s < i < n. Then we still need runtime 2(n — p) for searching k. As we also
need runtime (2(u) for outputting the result, the claim follows. O

3 Subset Sampling

In this section we consider SORTEDSUBSETSAMPLING and UNSORTEDSUBSET-
SAMPLING and prove Theorems [[land 2l An interesting interplay between both
of these problems will be revealed on the way.

We begin with a first algorithm for unsorted probabilities that has a quite
large preprocessing time, but will be used for a base case later. The algorithm
uses Theorem [ which we proved in the preceding section.

Lemma 2. UNSORTEDSUBSETSAMPLING can be solved in O(n?) preprocessing
time and O(1 + p) expected query time.

Proof. For i € [n] let X; be the smallest sampled element which is at least i,
or oo, if no such element is sampled. X; is a random variable with Pr[X; =
31 =pj [ lick<;(1 = px) and Pr[X; = oo] = [[;<1,, (1 — px). These probabilities
can be computed in time O(n) for any i, i.e., in time O(n?) for all i. After
having computed the distribution of the X;’s, we execute, for each ¢ € [n], the
preprocessing of Theorem Ml see the beginning of Section Bl which allows us to
quickly sample X; later on. This preprocessing costs in total O(n?).

For querying, we start at ¢ = 1 and iteratively sample the smallest element
j =i (i.e., sample X;), output j, and start over with ¢ = j+ 1. This is done until
j =00 ori=mn+ 1. Note that any sample of X; can be computed in O(1) time
with our preprocessing, so that sampling S C [n] will be done in time O(1+|S5]).
The expected runtime is, thus, O(1 + p). O

After having this base case, we turn towards reductions between SORTEDSUB-
SETSAMPLING and UNSORTEDSUBSETSAMPLING. First, we give an algorithm
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for UNSORTEDSUBSETSAMPLING, that reduces the problem to SORTEDSUBSET-
SAMPLING. For this, we roughly sort the probabilities so that we get good upper
bounds for each probability. Then these upper bounds will be a sorted instance.
After querying from this sorted instance, we use rejection (see, e.g., |5]) to sample
with the original probabilities.

Lemma 3. Assume that SORTEDSUBSETSAMPLING can be solved in p(n, u) pre-
processing time and q(n, ) expected query time, where p and q are monotoni-
cally increasing in n and p. Then UNSORTEDSUBSETSAMPLING can be solved
in O(n + p(n,2u + 1)) preprocessing time and O(1 + p+ q(n,2p + 1)) expected
query time.

Proof. Let p1,...,p, be an input sequence to UNSORTEDSUBSETSAMPLING. For
preprocessing, we permute the input p so that it is approximately sorted, by
putting it into buckets By := {i € [n] | 27% > p; > 27 %1}, for k € {0,1,..., L},
and By, := {i € [n] | 27% > p;}, where L = [logn]. For each i € By we set
p; = 27k, which is an upper bound on p;. We sort the probabilities p;, i € [n],
descendingly using bucket sort with the buckets By, yielding pj > ... > p/,. In
this process we store the original index ind(#) corresponding to p}, so that we can
find pinq(i) corresponding to p} in constant time. Then we run the preprocessing

of SORTEDSUBSETSAMPLING on pf,...,pl. Note that
oo n 1
= L= - < ; < .
N ;pz ;pz\;maX{Qp“n}\Qu—kl
For querying, we query pf, . .., p,, using SORTEDSUBSETSAMPLING, yielding S’ C

[n]. We compute S := {ind(¢) | ¢ € S'}. Each ¢ € S was sampled with probability
p; = pi- We use rejection to get this probability down to p;. For this, we generate
for each ¢ € S a random number rand() and check whether it is smaller than or
equal to Z i. If this is not the case, we delete ¢ from S. Note that we have thus
sampled i with probability p;, and all elements are sampled independently, so
that we can return S. O

We also give a reduction in the other direction, solving SORTEDSUBSETSAM-
PLING by UNSORTEDSUBSETSAMPLING.

Lemma 4. Assume that UNSORTEDSUBSETSAMPLING can be solved in p(n, )
preprocessing time and q(n, 1) expected query time, where p and q are mono-
tonically increasing in n and p. Then SORTEDSUBSETSAMPLING can be solved
in O(logn + p(14+logn,2u)) preprocessing time and O(1 + p + q(1+logn,2u))
expected query time.

Proof. Let p1,...,p, be an input sequence to SORTEDSUBSETSAMPLING. We
consider blocks B, = {i € [n] | 2¥ < i < 2¥1} with k € {0,...,L} and
L := |logn]. For i € By we let p; := pax, which is an upper bound on p,. We
will first sample with respect to the probabilities p; - call the sampled elements
potential - and then use rejection. For this, let Xj be an indicator random
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variable for the event that we sample at least one potential element in By. Then
qr = Pr[Xg = 1] = 1 — (1 — por)!Bxl. Moreover, let Y be a random variable
for the first potential element in block By minus 2*. Let Y}, = oo, if no element
in By is sampled as a potential element. Then Pr[Yy = i] = pox (1 — pox)® for
i €{0,...,|Bg| — 1}, and Pr[Y} = oo] = Pr[Xj = 0] = 1 — q. We calculate
PrlYi =i _ por

PI‘[Yk =1 | Xk] = Pr[Xk] = 0

1-— ka)i.
Since this is a geometric distribution, we can sample from it in constant time as
sketched in the introduction; see also |4].

Now, for preprocessing, we compute the probabilities ¢, which can be done
in time O(logn) (as a® = exp(bloga) can be computed in constant time on
a Real RAM), and run the preprocessing of UNSORTEDSUBSETSAMPLING on
them. Note that the g are in general unsorted.

For querying, we query the blocks Bj that contain potential elements using
the query algorithm for UNSORTEDSUBSETSAMPLING. Then for each block By
that contains a potential element, we sample all potential elements in this block.
Note that the first of the potential elements in By is distributed as Pr[Y; =
i | Xg], which is geometric, so we can sample it in constant time, while all
further potential elements are distributed as Yj (but only on the remainder of
the block), which is still geometric. After thus sampling potential elements S,
we reject each potential element with the right probability: We keep each i € §
only if rand() < g This yields a correctly distributed sample.

Let p:= .7, p;. The overall query time is at most g(1+logn, p) + O(1+15])
when sampling potential elements S. As the expected value of |S| is p, all we
need to show in order to finish the proofis p < 2u. For this, note that p; < pri/27-
This yields

n

p= P <Y prm <2 pi=2p
=1 =1

i=1
O

Next, we put above three lemmas together to prove the upper bounds of Theo-
rems [I] and 21

Proof (Theorem[3, upper bound). To solve UNSORTEDSUBSETSAMPLING, we use
the reduction Lemma [3l and then Lemma [ followed by the base case Lemma 2l
This reduces the instance size from n to O(logn), so that preprocessing costs
O(n) for the invocation of the first lemma, O(log n) for the second, and O(log® n)
for the third. Note that p is increased by constant factors only, so that we indeed
get the optimal query time O(1 + p). O

Proof (Theorem [, upper bound). To solve SORTEDSUBSETSAMPLING, we use
the reductions Lemma [ Lemma [B, and Lemma M again, followed by the base
case Lemma [2l This reduces the instance size from n to O(logn) and further
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down to O(loglogn), while y is increased by constant factors only. For precom-
putation this yields a runtime of O(logn) from Lemmas [ and B O(loglogn)
from the second invocation of Lemma @, and O(log?logn) from the base case
Lemma[2] summing up to O(logn). The query time is the optimal expected time
O(1+ p). |

4 Proportional Sampling on Sorted Probabilities

We prove Theorem [ in this section, i.e., we show how to solve SORTEDPRO-
PORTIONALSAMPLING in O(logn) preprocessing time and O(1) expected query
time. We do this by first considering the special case of % < p < 1, so that we
have a (nearly) proper probability distribution. Lemma [7 shows how to reduce
SORTEDPROPORTIONALSAMPLING to SORTEDSUBSETSAMPLING in this special
case. Then we reduce the general case with arbitrary p to the special case.

4.1 Special Case 1/2 < p <1

We first fix some notation for this section. Let p be an instance to SORTEDPRO-
PORTIONALSAMPLING with 1 = pp in the range [; 1]. Instead of p we consider
p = (p},...,p)) with p} := ﬁ"'pi. Note that p’ ist still sorted and p' := Y | p}
is in the range [4, p], thus in the range [17 1].

Let Y = SORTEDPROPORTIONALSAMPLING(p) be the random variable denot-
ing proportional sampling on input p, and X = SORTEDSUBSETSAMPLING(p')
be the random variable denoting subset sampling on input p’. Then conditioned
on sampling exactly one element X = {i}, this element ¢ is distributed exactly
as Y, as formulated by the following lemma.

Lemma 5. With the definitions and assumptions of this section we have for all
i € [n]
Pr[X ={i} | |X| =1] =Pr[Y =1].

Proof. Bayes’ rule and straightforward calculation give

Pr(X = {i} | | X[ =1] = Pr[X = {i}]/ Pr[| X[ =1]

<1fsz1pk> lepnlfpk

i k=1 j=1 J k=1

P} —~ 7
_ i J
(1—292)/ Zl— /

j=1 Pj

Plugging in the definition of p} yields

PX = (i} | 1X] = 1] = pi/ 3 p; = PrlY = .
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Moreover, the probability of sampling exactly one element is large, as shown in
the following lemma. Note that this bound is not best possible but sufficient for
our purposes.

Lemma 6. With the definitions and assumptions of this section we have
Pr[|X|=1] > 1/8.
Proof. Clearly,

I n

n
Pr{|X| =1] = Z b Hl—pk

Assume there is no p} greater than 1/2. Then we have 1 — p} > 47Pi for all
i € [n], so we get

’ n ’ ’ ].
(X = YRR >
Pr{|X]=1] E:Pg ||4pk—u4 P = AT 2

Otherwise, there is exactly one pj. > 1/2, as y/ < 1. Then 1 —pj, > 4Pk holds
for all k € [n], k # i*, which yields

- 1 .
PrX|=1]>Pr[X = {i"}|=p,. [[ 1-p})> 0 IT 4
1<k<n 1<k<n
k#£i* k#£i*
s by e S b
2 2 8

We put these facts together to show the following result.

Lemma 7. Assume that SORTEDSUBSETSAMPLING can be solved in p(n, j1) pre-
processing time and g(n, ) expected query time, where p and q are monotonically
increasing in n and . Then SORTEDPROPORTIONALSAMPLING on instances
with § < p < 1 can be solved in O(p(n,1)) preprocessing time and O(q(n, 1))
expected query time.

Proof. For preprocessing, given input p, we run the preprocessing of SORTED-
SUBSETSAMPLING on input p’. This does not mean that we compute the vector
p’ beforehand, but if the preprocessing algorithm of SORTEDSUBSETSAMPLING
reads the i-th input value, we compute p;, = 1:1‘% on the fly, so that this needs
runtime O(p(n, 1)). It allows to sample X later on in expected runtime O(g(n, 1))
using the same trick of computing p’ on the fly.

For querying, we repeatedly sample X until we sample a set S of size one.
Returning the unique element of S results in a proper sample according to SORT-
EDPROPORTIONALSAMPLING by Lemma Bl Moreover, by Lemma [6] and the fact
that sampling X needs expected time O(g(n, 1)) after our preprocessing, we need

expected query time O(g(n,1)). O
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4.2 General Case

Lemma 8. Assume that SORTEDPROPORTIONALSAMPLING on instances with
é < 1 < 1 can be solved in p(n) preprocessing time and q(n) expected query time.
Then SORTEDPROPORTIONALSAMPLING (for general instances) can be solved in
O(logn + p(n)) preprocessing time and O(q(n)) expected query time.

Proof. We need to compute a good upper bound p > p. For this we reuse an
idea of the proof of Lemma[d For i € [n] let 2¥ be the largest power of two less
than or equal to ¢, and set p; := por. Then p := Z?:l D; = Z?:l pi = i, and we
have p; < pri/2), so that

n n

p= Zpi < anm < QZPi =2pu.
1=1

i=1 =1

Hence, p is indeed a good upper bound on p. Moreover, u can be computed in
time O(logn), as

[log ]
w= Z por (min{28F1 — 1,n} — 2% +1).
k=0

Now, for preprocessing, we compute p and consider p’ = (pf, ..., p}) with p} :=
]L Since 1 > p > % we have p/ := Y7 | p} in the range [}, 1]. Thus, we can
run the preprocessing of SORTEDPROPORTIONALSAMPLING (on instances with
bounded p) on p’. We do this without computing the whole vector p’. Instead,
if the preprocessing algorithm reads the i-th input value, we compute p; = ’I’;
on the fly. This way we need a runtime of O(logn + p(n)).

For querying, we query according to p’ within expected runtime O(q(n)),
where we again compute values of p’ on the fly as needed. As we want to sample
proportional to the input probabilities, a sample with respect to p’ has the same
distribution as a sample with respect to p, so that we simply return the sample

we have. 0

Proof (Theorem[3). To solve SORTEDPROPORTIONALSAMPLING we take Lem-
mas [8 and [ and Theorem [ together. O

5 Relaxations

In this section we describe some natural relaxations for the input model studied
so far in this paper.

Large Deviations for the Running Times. The query runtimes in Theorems [T
and 3] are, in fact, not only small in expectation, but they are also concentrated,
i.e., they satisfy large deviation estimates in the following sense. Let ¢ be the
expected runtime bound and T the actual runtime. Then

Pr[T > kt] = e~ “®),
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where the asymptotics are with respect to k. This is shown rather straightfor-
wardly along the lines of our proofs of these theorems. The fundamental reason
for this is that the size of the random set X is concentrated. Indeed, let X; be
an indicator random variable for the i-th element as above. Then for any a > 1
we obtain along the lines of the proof of the Chernoff bound

E[azz;1 Xt]

- iy Xi k(p+1)
Pr[|S] > k(u + 1)] = Prlasi=1 "¢ > o"# 7] < k(D)

Then, the independence of the X;’s implies that

n aXi
i< T2
_ T (api+ (1= pi)

ak(p+1) <exp((a—Dp—k(p+1)Ina).

Setting a = k + 1 yields
Pr[|S| > k(u+ 1)] < exp(kp — k(4 1) log(k + 1)) < (k+1)7F,

for k > 2, as claimed.

Unimodular Input. Many natural distributions p are not sorted, but unimodular,
meaning that p; is monotonically increasing for 1 < ¢ < m and monotonically
decreasing for m < i < n (or the other way round). Knowing m, we can run the
algorithms developed in this paper on both sorted halfs, and combine the return
values, which gives an optimal query algorithm for unimodular inputs. Alter-
natively, if we have strong monotonicity, we can search for m in time O(logn)
using ternary search, which does not increase our precomputation time.

This can be naturally generalized to k-modular inputs, where the monotonic-
ity changes k times.

Approzimate Input In some applications it may be costly to compute the proba-
bilities p; exactly, but we are able to compute approximations p;(g) > p; > pi(s)7
with relative error at most ¢, where the cost of computing these approximations
depends on €. We can still guarantee optimal query time, if the costs of comput-
ing these approximations are small enough, see e.g. [g].

Indeed, we can surely sample a superset S with respect to the probabilities
p;(1). Then we want to use rejection, i.e., for each element ¢ € S we want to
compute a random number r := rand() and delete ¢ from S if r - p;(1) > p;,
to get a sample set S. This check can be performed as follows. We initialize
k:=1.1fr-p;(1) > p;(27%) we delete i from S. If r - p;(1) < pi(2_k) we keep
1 and are done. Otherwise, we increase k by 1. This method needs an expected
number of O(1) rounds of increasing k; the probability of needing k rounds is
O(27%). Hence, if the cost of computing p;(¢) and p,(e) is O(e™¢) with ¢ < 1,
the expected overall cost is constant, and we get an optimal expected query time
of O(1 + p).
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Abstract. Consider the following online version of the submodular max-
imization problem under a matroid constraint. We are given a set of
elements over which a matroid is defined. The goal is to incrementally
choose a subset that remains independent in the matroid over time. At
each time, a new weighted rank function of a different matroid (one per
time) over the same elements is presented; the algorithm can add a few
elements to the incrementally constructed set, and reaps a reward equal
to the value of the new weighted rank function on the current set. The
goal of the algorithm as it builds this independent set online is to max-
imize the sum of these (weighted rank) rewards. As in regular online
analysis, we compare the rewards of our online algorithm to that of an
offline optimum, namely a single independent set of the matroid that
maximizes the sum of the weighted rank rewards that arrive over time.
This problem is a natural extension of two well-studied streams of ear-
lier work: the first is on online set cover algorithms (in particular for the
max coverage version) while the second is on approximately maximizing
submodular functions under a matroid constraint.

In this paper, we present the first randomized online algorithms for
this problem with poly-logarithmic competitive ratio. To do this, we em-
ploy the LP formulation of a scaled reward version of the problem. Then
we extend a weighted-majority type update rule along with uncrossing
properties of tight sets in the matroid polytope to find an approximately
optimal fractional LP solution. We use the fractional solution values as
probabilities for a online randomized rounding algorithm. To show that
our rounding produces a sufficiently large reward independent set, we
prove and use new covering properties for randomly rounded fractional
solutions in the matroid polytope that may be of independent interest.
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1 Introduction

Making decisions in the face of uncertainty is the fundamental problem addressed
by online computation [5]. In many planning scenarios, a planner must decide
on the evolution of features to a product without knowing the evolution of the
demand for these features from future users. Moreover, any features initially in-
cluded must be retained for backward compatibility, and hence leads to an online
optimization problem: given a set of features, the planner must phase the addi-
tion of the features, so as to maximize the value perceived by a user at the time
of arrival. Typically, users have diminishing returns for additional features, so it
is natural to represent their utility as a submodular function of the features that
are present (or added) when they arrive. Furthermore, the set of features that are
thus monotonically added, are typically required to obey some design constraints.
The simplest are of the form that partition the features into classes and there is a
restriction on the number of features that can be deployed in each class. A slight
extension specifies a hierarchy over these classes and there are individual bounds
over the number of features that can be chosen from each class. We capture these,
as well as other much more general restrictions on the set of deployed features,
via the constraint that the chosen features form an independent set of a matroid.
Thus, our problem is to monotonically construct an independent set of features
(from a matroid over the features) online, so as to maximize the sum of submodu-
lar function values (users) arriving over time and evaluated on the set of features
that have been constructed so far.

This class of online optimization problems generalizes some early work of
Awerbuch et al. [2]. They considered a set-cover instance, in which the restric-
tion is to choose at most k sets with the goal of maximizing the coverage of
the elements as they arrive over time. In this setting there is no gain from an
element which is covered later than its arrival time. This is precisely the online
maximization version of the well-studied maximum coverage problem. Even this
special case of our problem already abstracts problems in investment planning,
strategic planning, and video-on-demand scheduling.

1.1 Problem Setting, Main Result and Techniques

In our setting, we are given a universe of elements E, |E| = m, and a matroid
M = (E,Z(M)) whose independent sets characterize the limitations on which
sets of elements can be chosen. At every time step i, 1 < ¢ < n, a client arrives
with a non-negative monotone submodular function f; : 2¥ — Z, representing
her welfare function. The objective is to maintain a monotonically increasing
set F' € Z(M) over time; that is, the set F;_; of elements (at time ¢ — 1) can
only be augmented to F; after seeing f; at time step i. The welfare of client ¢
is then f;(F;), and our objective is to maximize Y., f;(F;). We compare our
performance to the offline optimum maxoez (i) Yo fi(0).

We are concerned with the case that each of the submodular functions f; is a
weighted rank function of a matroid N, ie., fi(S) = max;cs rez(nN;) Decs Wie

1 Matroid N; is defined on the same set of elements as M.
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where w; : E — Ry is an arbitrary weight function. This class of submodular
functions is very broad and includes all the examples discussed above; Further-
more, we believe it captures the difficulty of general submodular functions even
though we have not yet been able to extend our results to the general case. Nev-
ertheless, there are submodular functions which are not weighted rank functions
of a matroid, for example, multi-set coverage function [§].

Theorem 1. There exists a randomized polynomial time algorithm which is
O (log2 nlogmlog fmtio)-competitive, for the online submodular function mazi-
mization problem under a matroid constraint over m elements, when each f;, 1 <

i < n, s a weighted rank function of a matroid and fratio = QHHH_m;XE'{e }f;#(;{]e;)({e}) )

In other words, the algorithm maintains monotonically increasing independent
sets F; € (M) such that

n 1 n
>R 22 ( ) 5, SO

E 2
log® nlogmlog fratio
Our result should be contrasted with the lower bound proved in [2}

Lemma 1. Any randomized algorithm for the submodular mazximization prob-
lem under a matroid constraint is 2(lognlog(m/r))-competitive, where r is the
rank of the matroid. This lower bound holds even for uniform matroids and when
all f; are unweighted rank functions.

We note that the O(logm) factor in our analysis can be slightly improved to an
O(log(m/r)) factor with a more careful analysis. A lower bound of 2(log fratio)
also follows even when the functions f; are linear (see, for example, [0]).

Main Techniques. To prove our results, we combine techniques from online
computation and combinatorial optimization. The first step is to formulate an
integer linear programming formulation for the problem. Unfortunately, the nat-
ural linear program is not well-suited for the online version of the problem. Thus,
we formulate a different linear program in which we add an extra constraint that
each element e contributes roughly the same value to the objective of the optimal
solution. While this may not be true in general, we show that an approximate
optimal solution satisfies this requirement.

We note that the online setting we study is quite different from the online
packing framework studied by [6] and leads to new technical challenges. In par-
ticular, there are two obstacles in applying the primal-dual techniques in [6] to
our setting. First, the linear formulation we obtain (which is natural for our
problem) is not a strict packing LP and contains negative variables (see Sec-
tion[3). Second, the number of packing constraints is exponential, and hence the
techniques of [6] would give a linear competitive factor rather than a polylog-
arithmic one. Nevertheless, we present in Section Bl an online algorithm which

2 The lower bounds in [2] even apply to a special case of a uniform matroid and very
restricted submodular functions.
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gives a fractional solution to the linear program having a large objective value.
One of the crucial ingredients is the uncrossing property of tight sets for any
feasible point in the matroid polytope.

To obtain an integral solution, we perform in Section [ a natural randomized
rounding procedure to select fractionally chosen elements. But, we have to be
careful to maintain that the selected elements continue to form an independent
set. The main challenge in the analysis is to tie the performance of the random-
ized algorithm to the performance of the fractional algorithm. As a technical
tool in our proof, we show in Lemma [ that randomly rounding a fractional
solution in the matroid polytope gives a set which can be covered by O(logn)
independent sets with high probability. This lemma may be of independent in-
terest and similar in flavor to the results of Karger [15] who proved a similar
result for packing bases in the randomly rounded solution.

Some of the proofs are excluded here due to space considerations and appear
in the full version of the paper [7].

1.2 Related Results

Maximizing monotone submodular function under matroid constraints has been
a well studied problem and even many special cases have been studied widely
(see survey by Goundan and Schulz [I4]). Fisher, Nemhauser and Wolsey [13]
gave a (1— é)—approximation for a uniform matroid and showed that the greedy
algorithm gives a %—approximation. This was improved by Calinescu at ol [§] and
Vondrék [21] who gave a (1 — !)-approximation for the general problem. They
also introduced the multi-linear extension of a submodular function and used
pipage rounding introduced by Ageev and Sviridenko [I]. The facility location
problem was introduced by Cornuejols et al. [I0] and was the impetus behind
studying the general submodular function maximization problem subject to ma-
troid constraints. The submodular welfare problem can be cast as a submodular
maximization problem subject to a matroid constraint (the reduction appears in
Fisher et al. [13]), and the problem has been extensively studied [TOT7IT8IT6].
The result of Vondrak [21I] implies a (1 — é)-approximation for the problem.
Despite the restricted setting of our benefit functions, we note that recent work
in welfare maximization in combinatorial auctions [I1] has focused on precisely
the case when the valuations are matroid rank sums (MRS) that we consider in
our model.

A special case of our online problem was studied by Awerbuch et al. [2].
They studied an online variant of the max-coverage problem, where given n sets
covering m elements, the elements arrive one at a time, and the goal is to pick up
to k sets online to maximize coverage. They obtained a randomized algorithm
which is O(log nlog(m/k))-competitive for the problem and proved that this
is optimal in their setting. Our results generalize both the requirement on the
cardinality of the chosen sets to arbitrary matroid constraints, and the coverage
functions of the arriving elements to monotone submodular functions that are
weighted rank functions of matroids.
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Another closely related problem with a different model of uncertainty was
studied by Babaioff et al. [3]. They studied a setting in which elements of a
matroid arrive in an online fashion and the goal is to construct an independent set
which is competitive with the maximum weight independent set. They considered
the random permutation model which is a non-adversarial setting, and obtained
an O(log k)-competitive algorithm for general matroids, where k is the rank of
the matroid, and constant competitive ratio for several interesting special cases.
Recently, Bateni et al. [4] studied the same model where the objective function
is a submodular function (rather than linear).

Chawla et al. [9] study Bayesian optimal mechanism design to maximize ex-
pected revenue for a seller while allocating items to agents who draw their val-
ues for the items from a known distribution. Their development of agent-specific
posted price mechanisms when the agents arrive in order, and the items allocated
must obey matroid feasibility constraints, is similar to our setting. In particu-
lar, we use the ideas about certain ordering of matroid elements (Lemma 7 in
their paper) in the proof that our randomized rounding algorithm give sufficient
profit.

2 Preliminaries

Given a set E, a function f : 2F — R, is called submodular if for all sets
ABCE, f(A)+ f(B) > f(ANB) + f(AU B). Given set E and a collection
T C2F M = (E,Z(M)) is a matroid if (i) for all A € T and B C A implies that
B € T and (ii) for all A, B € T and |A| > |B| then there exists a € A\ B such
that BU {a} € Z. Sets in Z are called independent sets of the matroid M. The
rank function r : 2 — R* of matroid M is defined as r(S) = maxrez.rcs|T)|.
A basic property of matroids is the fact that the rank function of any matroid
is submodular.

We also work with weighted rank functions of a matroid, defined as f(S) =
MaX;cs,7eT(M) D_ecs We for some weight function w : 28 — R,. Given any
matroid M, we define the matroid polytope to be the convex hull of independent
sets P(M) = conv{1y : T € T} C RIFl. Edmonds [12] showed that P(M) = {z >
0:z(S) <r(S) VS C E}. We also use the following fact about fractional points
in the matroid polytope (The proof follows from standard uncrossing arguments.
See, e.g., Schrijver [20], Chapter 40).

Fact 2. Given a matroid M = (E,Z(M)) with rank function r and feasible
point © € P(M), let 7 = {S C E : x(S) = r(S)}. Then, 7 is closed under
intersection and union and there is a single maximal set in T.

3 Linear Program and the Fractional Algorithm

We now give a linear program for the online submodular function maximization
problem and show how to construct a feasible fractional solution online which is
O(logmlognlog fratio)-competitive. Before we give the main theorem, we first
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LP : max Y'Y . cpZie
s.t.
VSCE Y. cgze <7(S5) (1)
V1<i<n,SCEY g% <1i(S) (2)
Vi<i<n,e€ E Zie < Te (3)

Vi<i<n,e€FE Zie,Te > 0

Fig. 1. LP for maximizing a sum of (unweighted) rank functions subject to matroid
constraint

formulate a natural LP. Let O C F denote the optimal solution having value
>, [i(O). Since each f; is the weighted rank function of matroid N;, we have
that f;(0) = w;(0;) = ZeEOt w;. where O 2 O; € Z(N;). For the sake of
simplicity, we assume that w; . = 1 (In the full version we show that this as-
sumption can be removed with an additional loss of an O(log fratio) factor in
the competitive ratio). Observe that in this case, f;(S) = r;(S), where r; is the
rank function of matroid N; for any set S C E.

We next formulate a linear program where x. is the indicator variable for
whether e € O and z; . is the indicator variable for whether e € O;. Since
O € I(M) and O; € Z(N;), we have that x € P(M) and z; € P(N;) as
represented by constraints () and constraints (2]), respectively in Figure [Tl

We prove the following theorem.

Theorem 3. There exists a polynomial time algorithm A that constructs a fea-
sible fractional solution (x,z) online to LP; which is O(lognlogm)-competitive.
That is, algorithm A maintains a monotonically increasing solution (x, z) such

that Y7 1 Y e p Zie = Q(Z;L:l fi(o)) where O is an optimal integral solution.

log nlogm

To prove Theorem [ instead of working with the natural linear program LP,
we formulate a different linear program. The new linear program is indexed by
an integer o and places the constraints that each e € O occurs in [, o different
O,’s as represented by constraints (7) and (8). The parameter « will be defined
later.

The next lemma, whose proof is omitted, shows that if we pick O(logn) dif-
ferent values of o then the sum of the integer solutions to the linear programs
LP(a) perform as well as the optimal solution

Lemma 2. Let OPT denote the value of an optimal integral solution to linear
program LPy and let OPT,, denote the value of an optimal integral solution
to the linear program LPy(a) for each a € {1,2,4,...,21"°8"1}, Then OPT <
Zae{1,2,4,...,2ﬂogvﬂ} OPT,.

Using the above lemma, a simple averaging argument shows that for some
guess «, the optimal integral solution to LP,(«) is within a logn factor of the

3 We assume that the algorithm knows the value of n. In the full version of the paper
we show how to deal with an unknown n losing an additional small factor.
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LP(a): max Y'Y cpZie
s.t.

VSCE Y. cgze <7(S5) (4)
V1<i<n,SCEY g% <1i(S) (5)
Vi<i<n,e€ E Zie < Te (6)

Vec E Y7 zie < axe (7

Vee E Y7 | zie> 95° (8)

Vi<i<n,e€FE Zie,Te > 0

Fig. 2. A restricted LP for the submodular function maximization subject to matroid
constraint

optimal integral solution to LP;. Hence, we construct an algorithm which first
guesses o and then constructs an approximate fractional solution to LPs(a).

3.1 Online Algorithm for a Fractional LP Solution

Given a fractional solution z, a set S C E tight is called tight if z(S) = r(S).

Guessing Algorithm:

— Guess a value o € {1,2,4...,n}.
— Run AlgG with value a.

AlgG:

— Initialize z. < 1/m? (where m = |E|), set z; . = 0 for each i, e.
— When function f; arrives, order the elements arbitrarily.

— For each element e in order:

- IfVSle € S, x(S) < r(S) and z(S) < r;(S) —1/2:

Z.  min {x exp (81°gm>  min {r(S) — (S \ {e})}} )

o SleeS
Zie 4 Te /2 (10)

Using an independence oracle for each of the matroids N, the above condi-
tions can be checked in polynomial time by a reduction to submodular function
minimization (See Schrijver [20], Chapter 40) and therefore the running time
of the algorithm is polynomial. Note that the fractional algorithm is carefully
designed. For example, it is very reasonable to greedily update the value of z; .
even when the value z. is not updated by the algorithm(of course, ensuring
that z; € P(N;)). While such an algorithm does give the required guarantee on
the performance of the fractional solution, it is not clear how to round such a
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solution to an integral solution. In particular, our algorithm for finding a frac-
tional solution is tailored so as to allow us to use the values later on as rounding
probabilities in a randomized algorithm.

Before we continue, we define some helpful notation regarding the online al-
gorithm. Let z; . (a) be the value of the variable x. after the arrival of user ¢ for
some guess . Let Az; .(a) be the change in the value of z, when user ¢ arrives.
Let z.(a) be the value of x. at the end of the execution. Similarly, let z; .(a) be
the value of z; . at the end of the execution. We start with the following lemma
that follows from the update rule (@). The proof is omitted.

Lemma 3. For any element e € E, and guess «,

izi’e(o‘) ~ 48 ng (”e(a) - n}ﬂ) ! (11)

where x. () is the value at the end of the execution of AlgG.

Next we prove that the solution produced by AlgG is almost feasible with respect
to an optimal solution to LPs(c).

Lemma 4 (Feasibility Lemma). Let (z(a), z(a)) be the fractional solution
generated by AlgG at the end of the sequence. Then, it satisfies all constraints
of LPy(«) except constraints (8).

Proof. We prove that the solution is feasible.

Matroid constraints (). Clearly, the algorithm never violates the matroid con-
straints by choosing the minimum of the two terms in (@I).

Constraints ([3) and constraints (). zie  xie(a)/2 < ze(a)/2, thus con-
straints (@) hold. Finally, the algorithm only updates z;. if for all Sle € S,
zi(S) < r;(S) — 1/2. Since by the above observations z; o < ze(a)/2 < 1/2, we
never violate constraints (Bl after the update.

Constraints (7). This constraint follows since

n

Y zie= > micla)/2 < z(a)|{i: Az > 0}
=1 i Axy >0

However, after o augmentations, z.(«) > T;Q exp (81057” -a) > 1. Thus, z.

must be in a tight set and so by design we never update z. and any z; ..

In order to evaluate the performance of the algorithm we first show that the size
of the solution returned by the algorithm is large as compared to the optimal
integral solution. Later in Lemmal[6, we relate the objective value of the solution
to its size. This lemma uses crucially the properties of the matroid. The proof is
omitted.

Lemma 5 (Large Fractional Size). Let (z*(«), 2*(«)) be an optimal integral
solution to LPs(a). Let (x(a), z(v)) be the fractional solution generated by AlgG
at the end of the sequence. Then, we have Y cpxe(a) > L3 pai(a).
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Finally, we prove a lemma bounding the performance of the algorithm.

Lemma 6. For any guess value o, the algorithm maintains a fractional solution
to LPy(«) such that:

n
OPT,
e -2 (7)),
ecE i=1 &
where OPT,, is objective of an optimal integral solution to LPa(c).

Proof. Let (z*, z*) denote the optimal integral solution to LPs(«). If 7 = 0 for
each e, then the lemma follows immediately. We have the following

Yeer 2z Fie(@) 2 g logm De€E (ze(a) = ,L2) (Lemma)
8logm doecE (%1(6(1) - 7,12) (LemmalB)

2 (1ot Toer is #el@)

Y

where the last equality follows since in LP;(a) for each element Y ", z* (a) <
azr} and ) . p o7 > 1. This completes the proof of Lemma.
Finally, we get our main theorem.

Theorem 4. The online algorithm for the fractional LP solution (of LPy) is
O(log mlog n)-competitive.

Proof. The proof follows by combining Lemma (@), Lemma (@), Lemma (2)) and
the observation that there are O(logn) possible values of o, where each is guessed
with probability £2(1/logn).

4 Randomized Rounding Algorithm

In this section we present a randomized algorithm for the unweighted problem
which is O(log2 nlogm)-competitive when each submodular function f; is a rank
function of a matroid. The algorithm is based on the fractional solution designed
in Section [Bl Although our rounding scheme is extremely simple, the proof of
its correctness involves carefully matching the performance of the rounding al-
gorithm with the performance of the fractional algorithm. Indeed, here the fact
that LP>(«) has extra constraints not present in LP; is used very crucially.

Theorem 5. The expected profit of the randomized algorithm is {2 (log'ronfi)g;Q n)



154 N. Buchbinder et al.

The randomized algorithm follows the following simple rounding procedure.

Matroid Randomized Rounding Algorithm:

- F « 0.
— Guess the value a € {1,2,4...,n}.
— Run AlgG with value a.
e Whenever z. increases by Az, if FU{e} € Z(M) then F + FU{e}

with probability Ajf c.

In order to prove our main theorem, we prove several crucial lemmas. The
main idea is to tie the performance of the randomized algorithm to the perfor-
mance of the fractional solution that is generated. In the process we lose a factor
of O(logn). We first introduce some notation. All of the following notation is
with respect to the execution of the online algorithm for a fixed value of o and we
omit it from the notation. Let F; denote the solution formed by the randomized
algorithm at the end of iteration ¢ and let F' denote the final solution returned
by the algorithm. Let Y denote the indicator random variable of the event that
element e has been selected till iteration i. Let AY denote the indicator ran-
dom variable that element e is selected in iteration i. Let y? = Pr[Y = 1] and
Ayt = Pr[AY! = 1]. Finally, let y. denote the probability element e is in the
solution at the end of the execution. Recall that x; . denotes the value of the
variable z. in the fractional solution after iteration ¢ and let z. denote the frac-
tional value of element e at the end of the execution of the fractional algorithm,
and let Az; . be the change in the value of e in iteration :.

Since the algorithm tosses a coin for element e in iteration ¢ with probability
Az, /4, therefore the probability that an element e is included in the solution
till iteration 4 is at most z; ¢ /4. Our first lemma states that the expected number
of elements chosen by the algorithm is at least half that amount in expectation
and is comparable to the total size of the fractional solution. Thus, Lemma, [7]
plays the role of Lemma [0 in the analysis of the randomized algorithm. The
proof is omitted.

Lemma 7. Let F' be the solution returned by the randomized rounding algo-
Tithm, then E“F” = ZEEE ye > ZeESE Te )

Our second lemma relates the change in the probability an element is chosen to
the change in the fractional solution. This lemma shows that a crucial property
of the exponential update rule for the fractional solution is also satisfied by the
integral solution. The proof is omitted.

Ay; < Az e < 24 logm

Lemma 8. For each element e and iteration 1, it < o
e i,e

We next prove a general lemma regarding randomized rounding in any matroid
polytope. The proof of the lemma utilizes a lemma proved in Chawla et al. [9]
and it is omitted.

Lemma 9. Given a matroid N = (E,Z) and a solution z such that for all
S CE, z(S) <r(S)/2, construct a set F' by including in e € F with probability
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ze for each e € E independently. Then, with high probability (1 — mzlnz), F can
be covered by O(logm + logn) independent sets where m = |N|.

We now prove a relation between the profit accrued by the algorithm at iteration
i, denoted by the random variable r;(F;), and the events that a particular set of
elements are chosen in the solution. For any i, Let H; denote the set of elements
such that z; . > 0. Note that z; . > 0 if and only if Az; . > 0.

Lemma 10. Y | E[r;(F;)] > lolgn doii Y een, Ui, where ¢ is some constant.

- C

Now we have all the ingredients for proving Theorem [l

Proof of Theorem We prove that the expected profit of the algorithm

OPT,
logmlogn

with guess « is at least {2 ( ) Since each « is guessed with probability

1/logn, and the value of OPT is the sum over all values «, we get the desired
value. The expected profit of the algorithm when we guess « is at least.

Zz 1E[f1( F)] > c10gn Zz 1ZeeH ye (Lemma [I0)

- Zi:l ZeeHi c’ logmlognAyé (Lemma’ E)
- ZeeE < log?”bg”ye (Zz e€H; i = ye)
= ZeEE 8¢’ log?ém logn‘%‘e (Lemma M)

_ QA Ne _ OPT,
=10 (logmlogn) =0 (logmlogn) . (Lemmaﬂ)
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Abstract. We study the k-level uncapacitated facility location problem,
where clients need to be connected with paths crossing open facilities of k
types (levels). In this paper we give an approximation algorithm that for
any constant k, in polynomial time, delivers solutions of cost at most
times OPT, where ay is an increasing function of k, with limg_, 0. ax = 3.

Our algorithm rounds a fractional solution to an extended LP for-
mulation of the problem. The rounding builds upon the technique of
iteratively rounding fractional solutions on trees (Garg, Konjevod, and
Ravi SODA’98) originally used for the group Steiner tree problem.

We improve the approximation ratio for k-UFL for all £k > 3, in
particular we obtain the ratio equal 2.02, 2.14, and 2.24 for k = 3,4,
and 5.

1 Introduction

In k-level facility location problem we have a set C' of clients and a set F' =
Ule F; of facilities (locations to potentially open a facility). Facilities are of k
different types (levels), e.g., for k = 3 one may think of these facilities as shops,
warehouses and factories. Each set F; contains facilities on level i. Each facility
¢ has cost of opening it f; and for each ¢,j € C' U F there is distance ¢; ; > 0
which satisfies the triangle inequality. The task is to connect each client to an
open facility at each level, i.e., for each client j it needs to be connected with a
path p; = (J,41,%2, - ,ik—1, k), where ¢; is an open facility at level [. We aim
at minimizing the total cost of opening facilities (at all levels) plus the total
connection cost, i.e., the sum of the lengths of clients paths.

1.1 Related Work and Our Results

The studied k-level UFL, generalizes the standard 1-level UFL, for which Guha
and Khuller [§] showed a 1.463-hardness of approximation. This was recently
improved by Krishnaswamy and Sviridenko [9] who showed 1.539-hardness for
two levels (k = 2) and 1.61-hardness for general k, which demonstrates that
multilevel facility location is strictly harder to approximate than the single level
variant for which the current best known approximation ratio is 1.488 by Li [10].

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 157-{[69] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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The first constant factor approximation algorithm for k = 2 is due to Shmoys,
Tardos, and Aardal [2], who gave a 3.16-apx. algorithm. For general k, the first
constant factor approximation algorithm was the 3-apx. algorithm by Aardal,
Chudak, and Shmoys [1].

As it was naturally expected that the problem is easier for smaller number of
levels, Ageev, Ye, and Zhang [3] gave an algorithm which reduces an instance
of the k-level problem into a pair of instances of the (k — 1)-level problem and
of the single level problem. By this reduction they obtained 2.43-apx. for k = 2
and 2.85-apx. for k = 3. This was later improved by Zhang [12], who got 1.77-apx
for k = 2, 2.53—apx for k = 3, and 2.81-apx for k = 4. Byrka and Aardal [4]
have then improved the approximation ratio for k = 3 to 2.492.

Zhang [12] predicted the existence of an algorithm that for any fixed k has
approximation ratio strictly smaller than 3. In this paper we give such an al-
gorithm, which is a natural generalization of LP-rounding algorithms for single
level UFL. Our new LP-rounding algorithm improves the currently best known
approximation ratio for k-level UFL for any k£ > 2. The ratios we obtain for
k <10 are summarized in the following table.

k 1 2 3 4 5 6 7 8 9 10

previous best 149177250281 3 3 3 3 3 3
our alg. (no scaling) 1.74 2.07 2.26 2.38 2.47 2.53 2.59 2.63 2.66 2.69
our alg. (with scaling) 1.58 1.85 2.02 2.14 2.24 2.31 2.37 2.42 2.46 2.50

In this paper we describe the simpler variant (with no scaling) in full detail.
The application of the scaling and filtering techniques from UFL is straightfor-
ward but technical. It turns out that the analysis analogous to the one in [5] gives
best approximation when applied to the version of our algorithm with scaling.
In Section B, we briefly discuss the application of scaling to our algorithm.

1.2 The Main Idea behind Our Algorithm

The 3-approximation algorithm of Aardal, Chudak, and Shmoys, rounds a frac-
tional solution to the standard path LP-relaxation of the studied problem by
clustering clients around so-called cluster centers. Each cluster center gets a di-
rect connection, while all the other clients only get a 3-hop connection via their
centers. In the single level UFL problem, Chudak and Shmoys observed that
by randomly opening facilities one may obtain an improved algorithm using the
fact that for each client, with at least some fixed probability, he gets an open
facility within a 1-hop path distance. While in the single level problem inde-
pendently sampling facilities to open is sufficient, the multilevel variant requires
coordinating the process of opening facilities across levels.

The key idea behind our solution relies on an observation that the optimal
integral solution has a form of a forest, while the fractional solution to the
standard LP-relaxation may not have this structure. We start by modifying

! This value of vy deviates slightly from the value 2.51 given in the paper. The original
argument contained a minor calculation error.
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the instance and hence the LP, so that we enforce the forest structure also
for the fractional solution of the relaxation. Having the hierarchical structure
of the trees, we then use the technique of Garg, Konjevod, and Ravi [7], to
first round the top of the tree, and then only consider the descendant edges if
the parent edge is selected. This approach naturally leads to sampling trees (not
opening lower level facilities if their parent facilities are closed), but to eventually
apply the technique to a location problem, we need to make it compatible with
clustering. To this end we must ensure that all cluster centers get a direct 1-
hop path service. This we obtain by a specific modification of the rounding
algorithm, which ensures opening exactly one direct path for each cluster center,
while preserving the necessary randomness for all the other clients. It is only
possible because cluster centers do not share top level facilities, and in rounding
a single tree we only care about at most one cluster center. In Section we
propose a token-passing based rounding procedure which has exactly the desired
properties.

2 Extended LP Formulation

To describe our new LP we first describe a process of splitting vertices of the
input graph into a number of (polynomially many for fixed k) copies of each
potential facility location.

Graph Modification. Our idea is to have a graph in which each facility f on
level j may only be connected to a single facility on level j 4+ 1. Since we do not
know a priori to which facility on level j+1 facility f is connected in the optimal
solution, we will introduce multiple copies of f, one for each possible parent on
level j + 1.

To be more precise, we let F’ denote the original set of facilities, and we
construct the new set of facilities denoted by F'. Nothing will change for facilities
in set F}, so Fy, = FJ]. For each facility f € F}_, we have |F}| facilities each
connected with different facility in set Fj. So the cardinality of the set Fj_; is
equal to |F| - |F}_,|. In general: for each i = 1,2,...,k — 1 set F; has |F; 4|
copies of each element in set F/ and each copy is connected with a different
element in the set Fi41, so |F;| = |Fiq1| - |F/|. Observe that so created copies of
facilities at level [ are in one to one correspondence with paths (i, %41, ..., k)
on original facilities on levels I, [+1, ..., k. We will use such paths on the original
facilities as names for the facilities in the extended instance.

The distance between any two copies i!,i2 of element 7 is equal to zero and
the cost of opening facility ' and i? is the same and equal to f;. If 4} is a copy
of i1 and iy is a copy of iz then ¢y = ¢;i,. Distance between copy of facility i
and client ¢ is equal to c;. Set C' of clients will stay unchanged.

Connection and Service Cost. P¢ is the set of paths (in the above described
graph), which start in some client and end in a facility at level k. P; is the set of
facilities at level j in the extended instance, or alternatively the set of paths on
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Level 3

Level 2 >

Level 1

Fig. 1. Figure presets graph before (left part) and after (right part) modification. As
you can see vertices in the highest level do not change.

original facilities which start in a facility at level j and end in a facility at level
k. Now we define the cost of path p denoted by ¢,. For p = (¢, 1,42, --ix) € Po
we have ¢, = ¢coiy + Ciy iy + ...+ Cip 4, and for p = (45,4541, ix) € P; we
have ¢, = fi;. So if p € Po then ¢, is a service cost (i.e., the length of path
p), and if p € P; then ¢, is the cost of opening the first facility on this path.

P=rcUl;, P

2.1 The LP
min Z TpCp (1)
peP

Z Tp Z 1 VjEC (2)

pEPc:jEP
x(il+1,il+2,...ik) - x(il,il+1,...ik) Z O Vp=(i1,i1+1,...ik)EPl,l<k (3)
Lqg — Z rp 20 Vjecvq:(iz’i1+1’~~-ik)€P\Pc (4)

p=(J,..-t1,5141...i ) EPC

Tp Z 0 VpeP (5)
The natural interpretation of the above LP is as follows. Inequality (2] states
that each client is assigned to at least one path. Inequality ([B]) encodes that
opening of a lower level facility implies opening of its unique higher level facility.
The most complicated inequality ) for a client j € C and a facility i; € F,
imposes that the opening of ; must be at least the total usage of it by client j.
Let p 1 ¢ denote that p is suffix of g. The dual program to the above LP is:

v — Z Yp — Z wjq < ¢ ViVpere (7)

qePr:qp g€ P\ Pc:qp
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Z Yq + Z Wip < ¢ VYpep, (8)

qE€P;_1:p0q jec
Z Yp — Z Yp + Z wip < ¢ Vieqr,.. k—1}Vpep, (9)
q€P;—1:p0q qEP41:qTp jec
Vjs Yps Wi,g = 0 Yp.a (10)

Lemma 1. Let x and (v,y,w) be optimal solutions to the above primal and dual
linear programs, respectively. For any p € Pc, if x, > 0, then ¢, < v;, where j
is the client connected by the path c,.

Proof. Using () we can write following complementary slackness condition:

zp (cp —vj + Z Yp + Z Wj,q) = 0 Vjec Ypepe:jep

qePr:qp g€ P\ Pc:qp

We are interested in p for which z, > 0, so

Cp + Z Yp + Z Wj,q = Vj

g€ P1:qTp g€ P\ Pc:qdp

From (I0) we know that each variable in dual program is non-negative, so we
can write that x, > 0 implies ¢, < vj. O

Let PJ denote the set of paths beginning in client j, which have positive chance
to open. Define d*“(j) = C} = Zpepj cpy, A (f) = max,epiiz,>0Cp < V5,
and F} =vj —C} . Of course F* =3, F and C* =3, C}.

3 Algorithm

The approximation algorithm that we propose has the following structure:

1: formulate and solve the extended LP (1)-(5);
2: scale up facility opening by v > 1
(optional, only to improve the approximation ratio)
3: cluster clients;
4: round facility opening (tree by tree);
5: connect each client j with a closest open connection path p € PJ.

It starts by solving the above described extended LP which, by contrast to the
LP used in [1], enforces the fractional solution to have a forest like structure. The
step 3. can be interpreted as an adaptation of (by now standard) LP-rounding
techniques used for (single level) facility location. Step 4. is an almost direct
application of a method from [7]. The final connection step 5. is straightforward,
the algorithm simply connects each client via a shortest path of open facilities.

For the clarity of presentation we first only describe the algorithm without
scaling which achieves a slightly weaker approximation ratio. We will now present
steps 3. and 4. in more detail.
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3.1 Clustering

Like in LP-rounding algorithms for UFL, we will partition clients into disjoint
clusters and for each cluster center select a single client which will be called the
center of this cluster.

Please recall that the solution 2* we obtain by solving LP (1)-(5) gives us
(possibly fractional) weights on paths. Paths p € P. we interpret as connections
from clients to open facilities, while other (shorter) paths from P\ P. encode
the (fractional) opening of facilities, which has a structure of a forest (i.e., every
facility from a lower level is assigned only to a single facility at a higher level).

Observe that if two client paths p1,ps € P, share at least one facility, then
they must also end in the same facility at the highest k-th level. For a client j
and a k-th level facility ¢« we will say j is fractionally connected to 4 in z* if and
only if there exists path p € P, of the form (j, . ..,4) with z, > 0. Two clients are
called neighbors if they are fractionally connected to the same k-th level facility.

The clustering is done as follows. Consider all clients to be initially unclus-
tered. While there remains at least one unclustered client do the following:

— select an unclustered client j that minimizes d*’(j) + d™**(3),
— create cluster containing j and all its yet unclustered neighbors,
— call j the center of the new cluster;

The procedure is known (see e.g., [0]) to provide good clustering, i.e., no two
cluster centers are neighbors and the distance from each client to his cluster
center is not too big.

3.2 Randomized Facility Opening

We will now give details on how the algorithm decides which facilities to open.
Recall that the facility opening part of the fractional solution can be interpreted
as a set of trees rooted in top level facilities and having leaves in level-1 facilities.

We will start by describing how a single tree is rounded. For the clarity of
presentation we will change the notation and denote the set of vertices (facilities)
of such tree by V, and we will use z, to denote the fractional opening of v € V'
in the initial fractional solution z*. We will also use y, to denote how much a
cluster center uses v. Please note, that for each of the trees of the fractional
solution there is at most one cluster center client j using this tree. If the tree
we are currently rounding is not used by any cluster center, then we set all
Yy = 0. If cluster center j uses the tree, then for each facility v in the tree, we set
Yo = Zpepjwep Zp, i.e., Y, is the sum over the connection paths p of j crossing
v of the extent the fractional solution uses this path.

Let p(v) denote the parent node of v for all (not-root) nodes, and let C(v)
denote the set of children nodes of v for all nodes except on the lowest level.
Observe, that = and y satisfy:
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1. if v is not a leaf, then ¥, = Euec(v) Yu;
2. if v is not the root node, then z, < xp,);
3. for all v € V we have z, > y,.

The following procedure will be used to round both the fractional x into an
integral & and the fractional y into an integral . The procedure will visit each
node of the tree exactly once. For certain nodes it will be run in a ’with a token’
mode and for some others it will be run 'without a token’. It will be initiated in
the root node and will recursively execute itself on a subset of lower level nodes.
Initially &, and g, are set to 0 for all nodes v, and unless indicated otherwise a
node does not have a token.
Procedure ROUND(v)

1: if v has a token then

20 By =1¢g,=1

3: if v is not a leaf then

4: select a single node u € C(v)

taking each ¢ € C'(v) with probability equal é’v

5: give the token to the node u

6: for i € C'(v) do

7 ROUND(z)

8: end for

9: end if
10: else
11:  if v is the root node then
12: Tpred = 1
13: else
14: Tpred = Lp(v)
15:  end if
16:  toss a coin that comes up “heads” with probability z:ﬂ;;g’;v

17:  if it is “heads” then

18: Ty, =1

19: if v is not a leaf then
20: for i € C(v) do

21: ROUND(3)

22: end for

23: end if

24:  end if

25: end if

Now we briefly describe what the algorithm does. Suppose that we are in node
v which is not a leaf. If v has a token then we set &, = ¢, = 1, choose one son
(each son ¢ has probability 51) and give him a token. Make recursive call on

Ty —Yv
pred —Yu
v is a root or xp(,) otherwise) set £, = 1 and make recursive call on each son. If

v is a leaf we don’t choose a son to give him a token and don’t make a recursive

each son. If v doesn’t have a token then with probability (Tprea is 1 if
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calls on sons. We execute the above procedure on the root of the tree, possibly
assigning the token to the root node just before the execution. Observe, that an
execution of the procedure ROUND(v) on a root of the tree brings the token to
a single leaf of the tree if and only if it starts with the token at the root node. In
case of the token, the g, variables will record the path of the token, and hence
will form a single path from the root to a leaf.

Consider a procedure that first with probability y, gives the token to the root
r of the tree and then executes ROUND(r). We will argue that this procedure
preserves marginals when used to round x into £ and y into g.

Lemma 2. E[j,] =y, for allveV.

Proof. By induction on the distance of v from the root r. E[g,] is just the
probability that we started with a token in 7, hence it is y,.. For a non-root
node v, by inductive assumption, his parent node u = p(v) has E[j,] = yu. The
probability of ¢, = 1 can be written as:

Prlj, = 1) = Pr{jy = 1|§u = 1] - Pr[§u = 1] + Prgy = 1|§u = 0] - Pr[g, = 0]
Yo
= “Yu + 0 =1y,.

u

Lemma 3. E[%,] =z, forallve V.

Proof. By Lemma [2is is now sufficient to show, that E[Z, — §,] = @, —y, for all
v € V. Observe that &, — ¢, is always either 0 or 1, hence E[Z, — §,] = Pr|&, =
1, gv = 0]'

The proof is again by induction on the distance of v from the root node r.
Clearly, E[&, — .| = Pr[@, = 1,9, = 0] = Pr[z, = 1|g, = 0] - Pr[y, = 0] =
zij?? : (1 - yr) =Ty — Yr-

For a non-root node v, by inductive assumption, his parent node u = p(v)
has F[Z,] = x,. Note that §, = 1 implies &, = 1. Hence, by Lemmal[2 Pr[Z, =
1,9» = 0] =z, — y». The probability of &, = 1 and ¢, = 0 can be written as:

Pr(z, =1,3, =0] = Pr[z, = 1,2, = 1,9, = 0]
= P’I"[i‘v = 1|jju = 17@1} :O] Pr[i‘u = 17:()1} :0]
_ To Yo _
= (Tu = Yo) = Ty — Yo
Ty — Yo

O

To round the entire fractional solution we run the above described single tree
rounding procedure as follows:

1. For each cluster center j, put a single token on the root node of one of the
trees he is using in the fractional solution. Every single tree is selected with
probability equal the fractional connection of j to this tree.

2. Execute the ROUND(.) procedure on the root of each tree.
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By the construction of the rounding procedure, every single cluster center, since
he had placed his token on a tree, will have one of his paths open so that he can
directly connect via this path. Moreover, by Lemma [2] the probability of opening
a particular connection path p € P? for him (as indicated by variables §) is
exactly equal the weight x, the fractional solution assigns to this path. Hence,
his expected connection cost is exactly his fractional cost.

To bound the expected connection cost of the other (non-center) clients is
slightly more involved and will be discussed in the following section.

4 Analysis

Let us first comment on the running time of the algorithm. The algorithm first
solves a linear program of size O(n*), where n is the maximal number of facilities
on a single level. For fixed k it is of polynomial size, hence may be directly solved
by the ellipsoid algorithm. The rounding of facility openings is by traversing trees
whose total size is again bounded by O(n*). Finally each client can try each of
his at most O(n*) possible connecting paths and see which of them is the closest
open one.

Every client j will find an open connecting path to connect with, since he is a
part of a cluster, and the client j' who is the center of this cluster certainly has
a good open connecting path. Client j may simply use (the facility part of) the
path of cluster center j', which by the triangle inequality will cost him at most
the distance ¢; j more than it costs j'.

In fact a slightly stronger bound on the expected length of the connection
path of j is easy to derive. We use the following bound, which is analogous to
the Chudak ans Shmoys [6] argument for UFL.

Lemma 4. For a non central client j € C, if all paths from P’ are closed, then
the expected connection cost of client j is

E[C;] <2d™(5) + d** ().

Again like in the work of Chudak ans Shmoys [6], the crux of our improvement
lies in the fact that with a certain probability the quite expensive 3-hop path
guaranteed by the above lemma will not be necessary, because j will happen to
have a shorter direct connection. The main part of the analysis which will now
follow is to evaluate the probability of this lucky event.

We will use the following technical lemma .

Lemma 5. Forc,d > 0, Zi x; =c and V; x; > 0 we have

T[]t -+ ad) < (1 - ; + “yn.

3 n
=1

Suppose a (non-center) client is connected with a flow of value z to a tree in
the fractional solution. Suppose further that this flow saturates all the fractional
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openings on this tree, then the following function fi(z) gives a lower bound
on the probability that at least one path of this tree will be open as a result
of the rounding routine. Function fi(z) is defined recursively. For k = 1 it
is just equal to fractional opening, i.e., fi(z) = z. For k > 2 it is fi(z) =
z-ming(1—T[; (1= fem1(%)) . Tt is a product of the probability of opening
the root node, and the (recursively bounded) probability that at least one of the
subtrees has an open path, conditioned on the root being open.
The following lemma displays the structure of fi(.).

Lemma 6. Inequality fr(z) > - (1 —c) implies fri1(x) > x- (1 —ec71).

Proof. Note that fi(x) > z and fa(z) > (1 — é), so base follows. Now we
show induction step. Suppose that fr(z) > - (1 — ¢) then frt1(z) =2 - (1 —
maz [y (1 — fu(2)) > 2+ (1 — maz [Ty (1= % + % - 0)) = a(1 — (1 -
L o)) s 2(1 — e°71). Last equality base on Lemma [5] but we have to put

n n.
T = ", O

x
Since a single client j may not use the full opening (capacity) of the tree he is
using, a more direct and accurate estimate of his probability of getting a path
would be the following function fi(z,z) which depends on both the opening of
the root node x and the fractional usage of the tree by j given as z.

z when k =1,

fr(w,2) = . . T 2 .
’ x-ming (1 — (1_[1(1 — fr-1( ;, ;)))) otherwise.
=
Fortunately enough, we may inductively prove the following lemma, which states
that the worst case for our analysis is when the tree capacity is saturated by the

connectivity flow of a client.
Lemma 7. If1 > x > z > 0 then fi(x,z) > fi(2)

Consider now a single client j who is fractionally connected to a number of
trees with a total weight of his connection paths equal v (you may think he
sends a total flow of value v through these trees, from leaves to roots). Now,
to bound the probability of at least one of these paths getting opened by the
rounding procedure, we introduce function Fj(y) defined as follows. Fy(y) =
1 —maz~ [];—,(1 = fe(z;)). That function is one minus the biggest chance that
no tree gives route from root to leaf, using the previously defined fi(.) function
to express the success probability on a single tree.
Now we can give an analogue of Lemma [@ but for F (7).

Lemma 8. Inequality Fy(v) > 1 — eV implies Fjq1(y) > 1 — ele” =1,

** For notational convenience we use maz, (ming) to denote maZq,+.. +z,=z,2;>0
(MiNay 4. f oy =a,2,>0)-
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Proof. Suppose that fr(z) > z(1 — ¢). Note that Fi(y) = 1 — maz, [\, (1 —
fo(@)) > 1= mazy [[7;(1 -2+ 2ic) =1— (1= 7+ )" = 1 —elemD,
(Last equality base on Lemmald]). Leading observation is that in the last equality
there is no requirement for positive constant ¢ - we can replace it with any other
positive constant and equality will be still true. Using Lemma [f] we know that
fre1(x) > z(1 — e“71). The only difference in the way we evaluate Fji1(7) is
the replacement of constant ¢ by other constant e, so the equality for F(v)
implies the equality for Fj11(7), and hence the lemma holds. O

We are now ready to combine our arguments into a bound on the expected total
cost of the algorithm.

Theorem 1. Ezxpected total cost of the algorithm is at most (3 — 2F(1))OPT.

Proof. Note first that by Lemma [ the probability of opening of each single
facility equals its fractional opening, and hence the expected facility opening
cost is exactly the fractional opening cost F™.

Consider client j € C' which is a cluster center. He randomly chooses one of
the paths from set P7. Expected connection cost for client j is E[C;] = d*(j) =
Epepj cpp = CF. Suppose now j € C'is not a cluster center. As discussed above,
the chance that at least one path from P/ is open is not less than F(1). Suppose
that at least one path from P7 is open. Each path from that set has proportional
probability to open, so the expected length of the chosen path is equal to d*V(j).
If there is no open paths in set P7, client j will use path p’ € PJ" which was
chosen by his cluster center j' € C, but j has to pay extra for the distance to
the center. In this case, by Lemma [l we have E[C;] < 2d™%*(j) + d*”(j).

The total cost of the algorithm can be bounded by the following expression:

F* 4 ) (Rl (1= Fe(1)(2d™*(5) +d*(5))) <
jeED

F* 4+ ) (F()C; + (1= F(1)(2(C; + F)) +Cp)) =
jeD

(3 —2F,(1))(F* +C™)

Note that Fj(1) > 0 for each k, so expected total cost of algorithm is strictly
less than three times the optimum cost. a

5 How to Apply Scaling

By means of scaling up facility opening variables before rounding, just like in
the case of 1-level UFL, we gain on the connectivity cost in two ways. First of
all, the probability for j of connecting to one of his fractional facilities via a
shorter 1-hop path increases, decreasing the usage of the longer backup paths.
The second effect is that in clustering clients may ignore the furthest of their
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fractionally used facilities, hence filtering the solution and reducing the lengths
of the 3-hop connections. In fact, if the scaling factor is sufficient, which is the
case for our application, we eventually do not need the dual program to upper
bound the length of a fractional connection with a dual variable. All this is well
studied for UFL (see, e.g., [5]), but would require a few pages to present in detail.

All we need in order to use the techniques from UFL is to give bounds on the
probability of opening a connection to specific groups of facilities as a function
of the scaling parameter . So the probability of connecting j to one of his
close facilities (total opening equal 1 after scaling) will be at least Fj(1). The
probability of connecting j to either a close or a distant facility (total opening
equal vy after scaling) will be at least Fj (). The probability of using the backup
3-hop path via the cluster center will be at most 1 — Fi(v). To obtain the
approximation ratios claimed in the table in Section [[L1] it remains to plug in
these numbers to the analysis in [5], and for each value of k find the optimal
value for the scaling parameter 7. A complete description of the algorithm with
scaling will appear in the full version of this paper.
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Abstract. A coverage function f over a ground set [m] is associated with a
universe U of weighted elements and m sets A1,..., A, C U, and for any
T C [m], f(T) is defined as the total weight of the elements in the union
UjerA;. Coverage functions are an important special case of submodular func-
tions, and arise in many applications, for instance as a class of utility functions of
agents in combinatorial auctions.

Set functions such as coverage functions often lack succinct representations,
and in algorithmic applications, an access to a value oracle is assumed. In this
paper, we ask whether one can test if a given oracle is that of a coverage function
or not. We demonstrate an algorithm which makes O(m/|U]|) queries to an oracle
of a coverage function and completely reconstructs it. This gives a polytime tester
for succinct coverage functions for which |U]| is polynomially bounded in m. In
contrast, we demonstrate a set function which is “far” from coverage, but requires
29(™) queries to distinguish it from the class of coverage functions.

1 Introduction

Submodular set functions are set functions f : 2™ — R defined over a ground set [1m]
which satisfy the property: f(SNT)+ f(SUT) < f(S)+ f(T). These are arguably the
most extensively studied set functions, and arise in various fields such as combinatorial
optimization, computer science, electrical engineering, economics, etc. In this paper,
we focus on a particular class of submodular functions, called coverage functions.
Coverage functions arise out of families of sets over a universe. Given a universe U
and sets Ay, -+, A, C U, the coverage of a collection of sets T C [m] is the number
of elements in the union | J jer Aj;. More generally, each element 7 € U has a weight

w; > 0, inducing the function f : olm] R>o:
VT C[m]: f(T)=w (UieT Ai)

with the usual notation of w(S) := ;s w;. A set function is called a coverage func-
tion iff f is induced by a set system as described above. In the definition above, the size
of the universe U of the inducing set system can be arbitrarily large. We call a coverage
function succinct if |U| is bounded by a fixed polynomial in m.

* The second author is supported in part by the ONR MURI Grant N000140710907.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 170-[81] 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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Coverage functions arise in many applications (plant location [5]], machine learning
[[10); an important one being that in combinatorial auctions [[11/3]]. Utilities of agents
are often modeled as coverage functions — agents are thought to have certain require-
ments (the universe U) and the items being auctioned (the A;’s) fulfill certain subsets
of these. Many auction mechanisms take advantage of the specific property of these
utility functions; a notable one is the recent work of Dughmi, Roughgarden and Yan [6]]
who give O(1)-approximate truthful mechanisms when utilities of agents are coverage.
(Such a result is not expected for general submodular functions [7].)

In general, set functions have exponentially large (in m) description, and algorithmic
applications often assume access to a value oracle which returns f(7") on being queried
a subset T' C [m)]. Efficient algorithms making only polynomially many queries to this
oracle, exploit the coverage property of the underlying function to ensure correctness.
This raises the question we address in this paper:

Can one test, in polynomial time, whether the oracle at hand is indeed that of
a coverage (or a ‘close’ to coverage) function?

It is easy to see that the parenthesized qualification in the above question is necessary.
Using property testing parlance [9/8], we say a function is e-far from coverage if it
needs to be modified in e-fraction of the points to make it a coverage function.

Our first result (Theorem?2)) is a reconstruction algorithm which makes O(m/|U]|)
queries to a value oracle of a true coverage function and reconstructs the coverage
function, that is, deduces the underlying set system (U; A1, . .., A,,) and weights of the
elements in U. Such an algorithm can be used distinguish coverage functions with those
which are e-far from being coverage (Corollary T). In particular, for succinct coverage
functions, the answer to the above question is yes.

Our second result illustrates why the testing question may have a negative answer
for general coverage functions. We show that certifying ‘non-coverageness’ requires
exponentially many queries. To explain this, let us first consider a certificate of a non-
submodularity. By definition, for any non-submodular function f, there must exist sets
S,T,SUT, and S N T such that f(S) + f(T) < f(SUT) + f(SNT). Therefore,
four queries (albeit non-deterministic) to a value oracle of f certifies non-submodularity
of f. In contrast, we exhibit non-coverage functions for which any certificate needs to
query the function at exponentially many sets (Corollary 2)).

In fact, from just the definition of coverage functions it is not a priori clear what a
certificate for coverageness should be. In we show that a particular linear
transformation (the W -transform) of set functions can be used: we show a function
f is coverage iff all its W-coefficients are non-negative. This motivates a new notion
of distance to coverageness which we call W -distance: a set function has W -distance
e if at least an e-fraction of the W-coefficients are negative. This notion of distance
captures the density of certificates to non-coverageness. Our lower bound results show
that testing coverage functions against this notion of distance is infeasible: we construct
set functions with TW-distance at least 1 — e~©(™) which require 2°(™) queries to
distinguish them from coverage functions (Corollary 3)).

How is the usual notion of distance to coverage related to the W -distance? We show
in that there are functions which are far in one notion but close in the other.
Nonetheless, we believe that the functions we construct for our lower bounds also have
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large (usual) distance to coverage functions. We prove this assuming a conjecture on
the number of roots of certain multilinear polynomials; we also provide some partial
evidence for this conjecture.

Related Work. The work most relevant to, and indeed which inspired this paper, is
that by Seshadhri and Vondrak [16]], where the authors address the question of test-
ing general submodular set functions. The authors focus on a particular simple testing
algorithm, the “square tester”, which samples a random set R, i,j ¢ R and checks
whether or not f(R,i,7) + f(R) < f(R,i) + f(R,7). [16] show that e~©(V™) ran-
dom samples are sufficient to distinguish submodular functions from those e-far from
submodularity, and furthermore, at least ¢ ~%® samples are necessary. Apart from the
obvious problem of closing this rather large gap, the authors of [[16] suggest tackling
special, well-motivated cases of submodularity. In fact, the question of testing coverage
functions was specifically raised by Seshadhri in [[15] (attributed to N. Nisan).

It is instructive to compare our results with that of [[16]. Firstly, although coverage
functions are a special case of submodular functions, the sub-exponential time tester of
[L6] does not imply a tester for coverage functions. This is because a function might be
submodular but far from coverage; in fact, the function f* in our lower bound result is
submodular. Given our result that there are no small certificates of non-coverageness,
we believe testing coverageness is harder than testing submodularity.

A recent relevant paper is that of Badanidiyuru et. al. [1]. Among other results,
[1] shows that any coverage function f can be arbitrarily well approximated by a
succinct coverage function. More precisely, if f is defined via (U; 44, ..., A,,) with
weights w, then for any € > 0, there exists another coverage function f’ defined via
(U'; A, ... ALY with weights w’ such that f/(T") is within (1 & &) f(T') such that
|U'| = poly(m,1/e). This, in some sense shows that succinct coverage functions
capture the essence of coverage functions. Unfortunately, this ‘sketch’ is found using
random sampling on the universe U and it is open whether this can be obtained via
polynomially many queries to an oracle for f.

1.1 The W-Transform: Characterizing Coverage Functions

Given a set function f : 2[™ — R>, we define the W -transform w : 2[m] \ 0+ Ras

vse2mNg,  w(S)= Y (-1 o))

T:SUT=[m]

We call the resulting set {w(S) : S C [m]} the W-coefficients of f. The W -coefficients
are unique; this follows since the (2" — 1) x (2™ — 1) matrix M defined as M (S,T) =
(=1)ISOTIHL if S U T = [m] and 0 otherwise, is full rank|. Inverting we get the unique
evaluation of f in terms of its W -coefficients.

VI Clml, f(T)= Y w(S) )

SC[m]:SNT#0

! One can check M™1(S,T) = 1if SN T # § and 0 otherwise.
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If f is a coverage function induced by the set system (U; Ay, - - , A,,), then the func-
tion w(S) precisely is the size of (), g A; and is hence non-negative. This follows from
the inclusion-exclusion principle. Indeed the non-negativity of the W-coefficients is a
characterization of coverage functions.

Theorem 1. A set function f : 2™ R>g is coverage iff all its W -coefficients are
non-negative.

Proof. Suppose that f is a function with all W -coefficients non-negative. Consider a
universe U consisting of {S : S C [m]} with weight of element S being w(S), the Sth
W-coefficient of f. Given U, fori = 1...m, define A; := {S C [m] : ¢ € S}. For any
T C m),Ujer Ai ={S C [m] : SNT # 0}. From @) we get f(T) = w (U;er 4i)
proving that f is a coverage function.

Suppose f is a coverage function. By definition, there exists (U; Ay, ..., A,,) with
non-negative weights on elements in U such that f(T) = w (UiET Ai). Each element
in § € U corresponds to a subset of [m] defined as {i : S € A;}. We may assume
each element of U corresponds to a unique subset; if more than one elements have the
same incidence structure, we may merge them into one element with weight equalling
sum of both the weights. This transformation doesn’t change the function value and
keeps the weights non-negative. Furthermore, we may also assume every subset on [m]
is an element of U by giving weights equal to 0; this doesn’t change the function value
either. In particular, |[U| may be assumed to be 2™. As before, one can check that for any
T C [m], f(T) = X g.5nr40 w(S). From (@) we get that these are the W -coefficients
of f, and are hence non-negative.

From the second part of the proof above, note that the positive W-coefficients of a
coverage function f correspond to the elements in the universe U. Let {S : w(S) >
0} be the support of a coverage function f. Note that succinct coverage functions are
precisely those with polynomial support size.

One can use to certify non-coverageness of a function f: one of its W-
coefficients w(S) must be negative, and the function values in the summand of (I)) cer-
tifies it. Observe, however, that this certificate can be exponentially large. In
we’ll show this is inherent in any certificate of coverageness. The W -transformation
also motivates the following notion of distance to coverage functions.

Definition 1. The W -distance of a function f from coverage functions is the fraction
of its negative W -coefficients.

Comparison with Fourier Transformation. Readers who are familiar with the analysis
of Boolean functions might find [(T)| similar to the Fourier transformation. Indeed, if we
sum over all 7' in the summation of [(T)|instead of only over the T's.t. SUT = [m)], then
it becomes the Fourier transformation. However, it is worth pointing out that due to this
subtle change, the W -transformation behaves quite differently to the representation by
Fourier basis. In particular, unlike the Fourier basis, the basis of the W -transform is not
orthonormal with respect to the usual notion of inner product.
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2 Reconstructing Succinct Coverage Functions

Given a coverage function f, suppose {Si,...,S,} is the support of f. That is, these
are the sets in the WW-transform of f with w(S;) > 0, and all the other sets have weight
0. We now give an algorithm to find these sets and weights using O(mn) queries. As
a corollary, we will obtain a polynomial time algorithm for testing succinct coverage
functions where n = poly(m).

The procedure is iterative. The algorithm maintains a partition of 2! at all times,
and for each part in the partition, stores the total weight of the all the sets contained
in the part. We start of with the trivial partition containing all sets whose weight is
given by f([m]). In each iteration, these partitions are refined; for instance, in the first
iteration we divide the partition into sets containing a given element ¢ and those that
don’t contain the element ¢. The total weights of the first collection can be found by
querying f({i}). Any time the sum of a part evaluates to 0, we discard it and subdivide
it no moretl. After m iterations, the remaining n parts give the support sets and their
weights. To describe formally, we introduce some notation.

Given a vector x € {0,1}* we associate a subset of [k] containing the elements i
iff x(¢) = 1. At times, we abuse notation and use the vector to imply the subset. Let
F(x) := {S C [m] : SN [k] = x}, that is, subsets of [m] which “match” with the
vector x on the first k elements. Note that | F(x)| = 2™~ and {F(x) : x € {0,1}F}
is a partition of 2("; if k = 0, then F(x) is the trivial partition consisting of all subsets
of [m]. Given x € {0,1}*, we let x ® 0 be the (k + 1) dimensional vector with x
appended with a 0. Similarly, define x & 1. At the kth iteration, the algorithm maintains
the partition {F(x) : x € {0,1}*} and the total weight of subsets in each F(x). In the
subsequent iteration refines each partition F(x) into 7 (x @ 0) and F(x @® 1). However,
if a certain weight of a part of the partition evaluates to 0, then the algorithm does not
need to refine that part any further since all the weights of that subset must be zero.
The algorithm terminates in m iterations making O(mn) queries. We now give the
refinement procedure. In what follows, we say a vector y < x if they are of the same
dimensionandy(i) =1 = x(i) = 1. Wesayy < xify < xand y # x.

[m]

Claim. The procedure Refine returns the correct weights of the refinement.

Proof. It suffices to show that Ax, = w (F(x; ® 1)) = > g. g )= k15 W(S). The
RHS equals

Yoowe oY Y w0
S:8N[k]Cx;, k+1€S y<xi Snlk]=y,k+1€S
The first term above equates to

Y, w(S)= > w(s) — Y, w(S) = F —F

S:SOUk\x;=0, S:SN([K]\x; Uk+1) 0 S:SN([k]\x:)#£0

2 Familiar readers will observe the similarity of our algorithm and the Goldreich-Levin algo-
rithm to compute ‘large’ Fourier coefficients (see, for instance, [[13]] for an exposition).
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Procedure Refine
1: Input: 0 < k < m, {w(F(x)) >0:x € {0,1}*}
2: Output: {w(F(x @ 0)),w(F(xP1)):x € {0,1}*}
3: Order {x : w(F(x)) > 0} by increasing number of 1’s breaking ties arbitrarily.
Call the order {x1,...,Xn};

4: fori =1— N do

5. Query f(K] \ xi) = FO and f(([}] \x:) Uk +1) = FL.
6:  Define Ay, := F}' — F) =Y., Ax.

7. w(Fi®1l) =Ag; w(F(x®0)) =w(F(xi)) — Ax,
8: end for

Procedure Recover Coverage

1: Input: Value oracle to coverage function f,

2: Output: {S1, ..., S, } with w(S;) > 0.

3: Initialize £ = 0, x to be the empty vector, and list L to contain x.
Let w(F(x)) = £([m)).

cfork=1—mdo

Run Refine on each x in list L and remove it.

Add x @ 0 and x @ 1 to L only if the weights evaluate to positive.

: end for

: Foreach x € {0,1}"™ in L, return corresponding set and weight calculated by the
Refine procedure.

SR NEV NN

Note that the summation > g _y riiesw(S) equals 0 if w(F(y)) =
2 sn[k—y W(S) equals zero since w(S) = 0 for all S. Therefore, the second term
in (3) is precisely }°; , w(F(x; & 1)). If ¢ = 1, then this is 0; for other i this equates
o> <i Ay by induction.

Theorem 2. Given value oracle access to a coverage function f with positive weight
sets {S1,...,Sn}, the procedure Recover Coverage returns the correct weights with
O(mn) queries to the oracle.

Proof. Whenever a certain w(JF(x)) evaluates to 0, we can infer that w(S) = 0 for all
S € F(x) since f is a coverage function. It is also clear that the algorithm terminates
in m steps since the partition refines to singleton sets. The number of oracle accesses
is proportional (twice) to the number of calls to the Refine subroutine. The latter is at
most mn since in each iteration the number of parts remaining is at most the number of
parts remaining in the end.

Corollary 1. Given any n, there exists a O(mn + €~ 1) time tester which will return
YES for coverage functions having W -support size at most n, and return NO with
£2(1) probability for functions that are e-far from the set of coverage functions with
W -support at most n.

Proof. Run the reconstruction algorithm described above. If we get a set with negative
weight, return NO. If we succeed, then if f is truly a coverage function, we have derived
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the unique weights. We sample O(¢~!) random sets and compare the value of our
computed function with that of the oracle; if the function is e-far from coverage, then
we will catch it with probability O(1).

Theorem 3. Reconstructing coverage functions on m elements with W -support size n
requires at least {2(mn/ logn) probes.

Proof. Consider the bipartite graphs with m and n vertices on the A and U side. Let the
weight be 1 on all vertices in U. Each non-isomorphic (on permutation of the U vertices)
maps to a different coverage function over the A side: the neighborhood of a vertex
A; € Ais precisely the elements it contains. Note each such graph corresponds to a way
of allocating n identical balls (U-side vertices) into 2™ different bins (different choice

myn—1

of set of adjacent A-side vertices). This number is at least (2" ™" 71) > (27)" ",
Hence, we need at least {2(mn) bits of information. Notlce that each probe of func-

tion value only provides O(log n) bits of information since the function value is always

an integer between 0 and n, we get the lower bound in

3 Testing Coverage Functions Is Hard?

In this section we demonstrate a set function whose W -distance to coverage functions is
‘large’, but it takes exponentially many queries to distinguish from coverage functions.
In particular, the function has W-coefficients w(S) = —1if |S| > k := k(m), and
w(S) = N if |S| < k, where N is a positive integer and k(m) is a growing function of
m, which will be precisely determined later. Let this function be called f*.

Firstly, observe that from it follows that w(S) can be precisely determined by
querying the 215 setsin {T: TU S = [m]} = {SU X : X C S}. It follows that f*
can be distinguished from coverage using 2**! queries.

In this section we show an almost tight lower bound: Any tester which makes less
than 2% queries cannot distinguish f* from a coverage function. Our bound is infor-
mation theoretic and holds even if the tester has infinite computation power. More pre-
cisely, we show that given the value of f* on a collection of sets J with || < 2%,
there exists a coverage function f which has the same values on the sets in 7.

Theorem 4. There exists a coverage function consistent with the queries of f* on J if
| 7| < 2.

Corollary 2. Any certificate of non-coverageness of f* must be of size at least 2.
Setting k(m) = m/4, we get f* has W-distance at least (1 — e~®("™)), giving us:

Corollary 3. Any tester distinguishing between coverage functions and functions of
W -distance as large as (1 — e=©(™)) needs at least 2°™) queries.

We give a sketch of the proof before diving into the details. Suppose a tester queries the
collection 7. We first observe that the existence of a coverage function consistent with
the queries in 7 can be expressed as a set of linear inequalities. Using Farkas’ lemma,
we get a certificate of the non-existence of such a completion. This certificate, at a high
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level, corresponds to an assignment of values on the m-dimensional hypercube satis-
fying certain linear constraints. We show that if the parameter [V is properly chosen,
most of these assignments can be assumed to be 0. In the next step we use this prop-
erty to show that unless the size of |J| > 2F all the assignments need to be 0 which
contradicts the Farkas linear constraints, thereby proving the existence of the coverage
function consistent with 7.

3.1 Consistent Coverage Functions and Farkas Lemma
Recall, from Theorem 11 a function f : 2I™) i R+ is coverage iff it satisfies

VS C [m] Srsur—pm (CDIETTHLA(T) >0

VT C [m] : /(1) > 0
Let J be the collection of sets on which the function f* has been queried. Define

b(S) == ZTej:SuTz[m](*DISHTIf*(T)
Therefore, if we can find assignments f : 2[™\ 7 — R satisfying:
VS C [m) Sressor_pm(-DSTHAT) 2 0S) @
VT ¢ T F(T) > 0 (5)

we can complete the queries on 7 to a coverage function. Applying Farkas’ lemma (see
for instance [2]), we see that there is no feasible solution to if and only if there
is a feasible solution a : 2(™ — R satisfying:

2osCm US)b(S) > 0 (6)
VI'¢& T : Y s:sur—pm (~DFTHa(S) <0 0
VS C [m] : a(S) > 0 (8)

Now we define the parameter NV for the function f*; let N be any integer larger than
(2m)!. Note that this makes the values doubly exponential, but we are interested in the
power of an all powerful tester. In the next lemma we show that one can assume there
is a feasible solution to and [(8) with half of the a(.S)’s set to 0.

Lemma 1. If there exists « satisfying[(6)] [(7)} and[(8)] then we may assume ag = 0 for
all S such that |S| < k.

Intuitively, what this lemma says is that the constraint[(4)] for sets of size < k should not
help in catching the function not being coverage. This is because the true function values
satisfies the constraints with huge ‘redundancy’: > 7. g7 () (—1) ISOTI+L () =
N > 0. Formally, we can prove the lemma as follows.

Proof. Suppose there is an « satisfying and Then, by scaling we may
assume that

ng[m] a(S) =1 €))
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Equivalently, there is a positive valued solution to the LP {max}_gc(,,; b(S)a(S) :
[(TL[®L[O)}. Choose « to be a basic feasible optimal solution. Such a solution makes
2™ of the inequalities in[(7)} [(8) and [(9) tight, and therefore by Cramer’s rule, each of
the non-zero a(S) > (2}”)1 since all coefficients are {—1,0,1}.

Now we show that if « is basic feasible and N > (2)!, then we must have that
a(S) = 0 for all S such that |S| < k. We first note that V.S C [m]:

wS)= Y (YT = Y ()T T —b(S)
T:SUT=[m] T¢J:SUT=[m]
Therefore, 3 g(,,) @(5)b(S) > 0 and the above equality imply that
ST a@) (=0T M) = N a(S)ws = > alS)b(S) >0 .
T¢J S:SUT=[m] SC[m] SC[m]

But by [T} Y gy (S)(=1)*MTIHL < 0 forall T ¢ 7, and f*(T) > 0 for all
T C [m]. So we have that 3 g (,,,; a(S)w(S) < 0. Assume for contradiction that there
exists Sp, |So| < k such that aug, # 0. From the earlier discussion we know that g, >
(2,1”)!. Therefore, we have Y gc,, a(S)w(S) > (2,1”)!]\[ — Yscimpis|<k @(S) >
1 — 1 = 0, a contradiction. The latter inequality follows from and our assumption
that N > (2™)\.

3.2 Nullity of Farkas Certificate

In the following discussion, we assume without loss of generality a(S) = 0 for all .S,
|S] < k. We will work with the following linear function of the «’s. For a set T', define

9(T) = ZS:SUT:[m](*1)|SOT‘+10‘(5)
From|[(7)] we get g(T') < 0 forall T ¢ J. Inverting, we get
a(S) =2 rrns09(T) = G =32 rcs9(T), where G := ZTg[m] g(T) (10)

We now show that if a(S) = 0 for all |S| < k, then g(T') must be > 0 for at least 2¥
sets T'. This will imply | 7| > 2*.

Lemma 2. [fa(S) = 0 forall |S| < k, then g(T) > 0 for at least 2% subsets T C [m).

Proof. Let S* be any minimal set with o(S*) > 0. Note that [S*| > k + 1. From[(T0},
we get G == a(S*) = G — Y ;g g(T) > 0. Consider any i € S*. By minimality,
we have o(S* \ i) = 0, giving us

0=G=2rcs\i9T) =G =3 rcs 9(T) = Yopcs» 9(T V1)

Therefore for all i € S*, " ;g g(T'U Q) = G > 0. By induction, we can extend the
above calculation to any subset X C S*,

Srcs 9(TUX) = (-)X+@ (11)
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Note that the summands in[(T1) are disjoint for different sets X, and furthermore, when-
ever | X | is odd, the sum is > 0 implying at least one of the summands must be positive
for each odd subset X C S*. This proves the lemma since |S*| = k + 1.

Proof of [(TD} Let’s denote the sum » ;.. g(T'U X) as h(X). So G =G —h(D), and

by induction, h(Y) = (—1)IYI+1G for every proper subset of X. Now, a/(S* \ X) =0
gives us
0=G - ZTQS*\X 9(T) =G - Zygx h(Y)

Rearranging, h(X) = G=3y c x h(Y) = G- IXIH (X))~ G = (-1) X G

Suppose there is no consistent completion, implying s satisfying[(6)
and[(8) By Lemma Iland[Cemma2} we get that if [(7) holds, then | 7| > 2*.

4 W -Distance and Usual Distance

We first note that the two notions are unrelated; in particular, we show two functions
each “far” in one notion, but “near” in the other. The proofs of the following two lemmas
can be found in the full version of the paper [4].

ol

Lemma 3. There is a function with W -distance 1 —e~®("™) whose distance to coverage

is e=©@(m),

Lemma 4. There is a function with W -distance O(m? /2™) whose distance to cover-
ageis £2(1).

Despite the fact that the two notions are incomparable, we argue that the lower bound
example of is in fact also far from coverage (with proper choice of k(m))
in the usual notion of distance, under a reasonable conjecture about the property of
multilinear polynomials. Unfortunately, we are unable to prove this conjecture and leave
it as an open question.

Conjecture 1. For any m-variate multilinear polynomials f () = 3", As [Lies #s
with Ag < 0 for all |S| > k, has at most O(k2™/,/m) zeroes on the hypercube
{0,1}™.

In fact, we conjecture that the maximum number of zeros is achieved when the & + 1
layers of function values in the “middle of the hypercube” are zero, that is, f(x) = 0
iff. (m — k)/2 < ||z|1 < (m + k)/2. At the end of this section, we present some
evidence for this conjecture by giving a proving it for symmetric functions, that is,
when f(x1,...,2m) = f(Zo@),---,To(m)) for any permutation o of [m]. We now
show that the conjecture implies f* is far from coverage in the usual notion of distance.

Lemma 5. Assuming with k(m) = o(y/m), f* is 1 — o(1) far from

coverage.

Remark 1. [Theorem 4limplies that f* requires superpolynomial queries to test as long
as we have k(m) = w(logm).
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Proof. Consider the coverage function f” that is closest to f* in the usual notion of
distance. Let w’, w* be the W-coefficients of f/, f*. Define the function Af := f'— f*
and let Aw := w’ — w*. By linearity of W -transformation, we get that Aw are the W -
coefficients for A f. Therefore,

Af(T) = X sirnszo Aw(S) = 3 gc ) Aw(S)(1 = 1ras=p) -

Consider the following binary vector representation of S C [m]: x € {0,1}"™ such
that x; = 0 iff. ¢ € S. Using this, the function Af can be interpreted as Af(x) =
W = 3" scm W(S) I, 5 @i- We are using here the fact that TN S = @ is equivalent

to S C T. By our choice of w* and the assumption that w’(S) > 0 for all S, we have
Aw(S) > 1forall |[S| > k. From|Conjecture I we get that at most O(k/+/m)-fraction
of the function values of Af are zeroes. So f’ is at least 1 — O(k/+/m) far from f*.
The lemma follows since k = o(y/m).

Support for|Conjecture 1| Proof for Symmetric Functions. Since f is symmetric, each
As is equal for sets of the same cardinality. Let ); denote the value of Ag when |S| = j.

Then f is equivalent to the function g : [m] — R

9(@) = flx [l =i) = X7 Vs M [lies 7 = o A (2) -

By our assumption, A; < 0 for all j > k. Hence, all the high order derivatives (at least
k + 1-th order) of f are negative. Intuitively, since the high order derivatives of g are
negative, there are at most k + 1 sign-changes of g(i). Therefore, there are at most k + 1
different ’s such that g(i) = 0. This implies the conjecture for symmetric functions.

Acknowledgements. The authors wish to thank C. Seshadhri, Jan Vondrak , Sam-
path Kannan, Jim Geelen and Mike Saks for very fruitful conversations. DC especially
thanks Sesh for illuminating conversations over the past few years, and Mike for asking
insightful questions.

References

1. Badanidiyuru, A., Dobzinski, S., Fu, H., Kleinberg, R., Nisan, N., Roughgarden, T.: Sketch-
ing valuation functions. In: SODA (2012)

2. Bertsimas, D., Tsitsiklis, J.: Introduction to linear optimization. Athena Scientific Belmont,
MA (1997)

3. Blumrosen, L., Nisan, N.: Combinatorial auctions. Algorithmic Game Theory (2007)

4. Chakrabarty, D., Huang, Z.: Testing coverage functions. Arxiv (2012)

5. Cornuejols, G., Fisher, M., Nemhauser, G.: Location of bank accounts to optimize float: An
analytic study of exact and approximate algorithms. Management Science, 789-810 (1977)

6. Dughmi, S., Roughgarden, T., Yan, Q.: From convex optimization to randomized mecha-
nisms: toward optimal combinatorial auctions. In: STOC, pp. 149-158. ACM (2011)

7. Dughmi, S., Vondrak, J.: Limitations of randomized mechanisms for combinatorial auctions.
In: FOCS (2011)

8. Goldreich, O.: Combinatorial property testing (a survey). Randomization Methods in Algo-
rithm Design 43, 45-59 (1999)



10.

11.

12.
13.

14.
15.

16.

Testing Coverage Functions 181

Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and
approximation. Journal of the ACM (JACM) 45(4), 653-750 (1998)

Krause, A., McMahan, H., Guestrin, C., Gupta, A.: Robust submodular observation selection.
Journal of Machine Learning Research 9, 2761-2801 (2008)

Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing marginal
utilities. Games and Economic Behavior 55(2), 270-296 (2006)

Mabhler, K.: Introduction to p-adic numbers and their functions (1973)

O’Donnell, R.: Chapter 3.5 highlight: The Goldreich-Levin algorithm. In: Analysis of
Boolean Functions (2012), http://analysisofbooleanfunctions.org/
Robert, A.: A course in p-adic analysis, vol. 198. Springer (2000)

Seshadhri, C.: Open problems 2: Open problems in data streams, property testing, and related
topics (2011),
http://www.cs.umass.edu/~mcgregor/papers/11l-openproblems.pdf
Seshadhri, C., Vondrak, J.: Is submodularity testable? In: ICS (2011)


http://analysisofbooleanfunctions.org/
http://www.cs.umass.edu/~mcgregor/papers/11-openproblems.pdf

Sparse Fault-Tolerant Spanners for Doubling
Metrics with Bounded Hop-Diameter or Degree

T.-H. Hubert Chan, Mingfei Li, and Li Ning

The University of Hong Kong

Abstract. We study fault-tolerant spanners in doubling metrics. A sub-
graph H for a metric space X is called a k-vertex-fault-tolerant ¢-spanner
((k,t)-VFTS or simply k-VFTS), if for any subset S C X with |S| < k,
it holds that dg\s(z,y) < t-d(z,y), for any pair of z,y € X \ S.

For any doubling metric, we give a basic construction of k-VFTS with
stretch arbitrarily close to 1 that has optimal O(kn) edges. In addition,
we also consider bounded hop-diameter, which is studied in the context of
fault-tolerance for the first time even for Euclidean spanners. We provide
a construction of k-VFTS with bounded hop-diameter: for m > 2n, we
can reduce the hop-diameter of the above k-VFTS to O(a(m,n)) by
adding O(km) edges, where « is a functional inverse of the Ackermann’s
function.

Finally, we construct a fault-tolerant single-sink spanner with bounded
maximum degree, and use it to reduce the maximum degree of our basic
kE-VFTS. As a result, we get a k-VFTS with O(k*n) edges and maximum
degree O(k?).

1 Introduction

A metric space (X,d) can be represented by a complete graph G = (X, E),
where the edge weight w(e) on an edge e = {x,y} is d(z,y). A t-spanner of X,
is a weighted subgraph H = (X, E’) of G that preserves all pairwise distance
within a factor of ¢, i.e., dg(x,y) < t-d(z,y) for all z,y € X. Here, dy(z,y)
denotes the shortest-path distance between x and y in H. The factor ¢ is called
the stretch of H. A path between z and y in H with length at most ¢ - d(z,y) is
called a t-spanner path. Spanners have been studied extensively since the mid-
eighties (see [2I8TTOT2I3I4)T0] and the references therein; also refer to [I5] for
an excellent survey).

Spanners are important structures, as they enable approximation of a metric
space in a much more economical form. One natural requirement is that spanners
should be sparse, ideally with the number of edges being linear in the number
of points in the metric space. In addition, for some applications, it might also
be required that a spanner should have small maximum degree, or a small hop-
diameter, i.e., every pair of points x and y should be connected by a ¢-spanner
path with small number of edges.

In many applications of spanners, we want our spanner to be robust to failures,
meaning that even when some of the points in the spanner fail, the remaining
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part is still a ¢t-spanner. Formally, given 1 < k < n — 2, a spanner H of X is
called a k-vertex-fault-tolerant ¢-spanner ((k,t)-VEFTS or simply k-VFTS if the
stretch ¢ is clear from context), if for any subset S C X with |[S| <k, H\ Sisa
t-spanner for X \ S.

The notion of fault-tolerant spanners was introduced by Levcopoulos et al. [13]
in the context of Fuclidean spanners (the special case when X is a finite subset
of low dimensional Euclidean space and d(z,y) = ||z — y||2). They presented an
algorithm that constructs Euclidean (k,1 + ¢)-VFTS with O(k?n) edges. This
result was later improved by Lukovszki in [I4]. They provided two constructions
of (k,1+ €)-VFTS: one with optimal O(kn) edges, and the other with O(k*n)
edges and maximum degree O(k?). There has also been research on the trade-off
between maximum degree and weight in fault-tolerant Euclidean spanners [I3l[7],
and fault-tolerant spanners for general graphs [6/9].

In this paper, we study fault-tolerant spanners for doubling metrics. The dou-
bling dimension of a metric space (X, d), denoted by dim(X) (or dim when the
context is clear), is the smallest value p such that every ball in X can be covered
by 2” balls of half the radius [11]. A metric space is called doubling, if its doubling
dimension is bounded by some constant. Doubling dimension is a generalization
of Euclidean dimension to arbitrary metric spaces, as the space R” equipped
with £,-norm has doubling dimension ©(T) [I1]. Spanners for doubling metrics
have been studied in [T23I4IT0IT6].

1.1 Our Results and Techniques

Basic spanner with small number of edges. Our first result is a construction of
(k,1 4+ ¢€)-VFTS for doubling metrics with O(kn) edges. Note that the size is
optimal up to a constant factor [14].

Theorem 1 ((k,1+ ¢)-VFTS with O(kn) Edges). Let (X,d) be a doubling
metric with n points and let 0 < e < é be a constant. Given 1 < k <n—2, there

exists a (k,1+ €)-VFTS of X with e ™) . kn edges.

Our technique of the basic k-VFTS construction is an extension of that in [3].
Specifically, we give a k-fault-tolerant version of the hierarchical nets and net-
trees used in [3], which guarantee that even under the failure of at most & points,
for any functioning point x and level i, there exists a net-tree in which there is
a path with length at most O(2¢) between = and some level-i net point. We also
add cross edges between net points at the same level that are reasonably close.
Then, we show that under the failure of at most k points, a (1 + €)-spanner path
between x and y can be formed by first climbing from z to some net point =’ at
an appropriate level i, then going along a cross edge {z’,y'}, and finally going
from 3’ down to y.

The upper bound on the number of edges in the spanner is established in
a way similar to [3] by carefully assigning a direction to each edge, and then
showing that the out-degree of each point is bounded by O(k). However, we
simplify and improve the analysis because in our case cross edges can be added
between arbitrarily close points.
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Spanners with small hop-diameters. We also consider the hop-diameter, which
is studied in the context of fault-tolerance for the first time even for Euclidean
spanners. The k-vertex-fault-tolerant hop-diameter is defined as follows.

Definition 1 (k-Vertex-Fault-Tolerant Hop-Diameter). Let H be a (k,t)-
VFTS for the metric space (X,d). The k-vertez-fault-tolerant hop-diameter (or
simply hop-diameter) of H is at most D, if for any set of points S C X with
|S| < k, there exists a t-spanner path in H \ S with at most D edges (hops)
between every pair of x,y € X.

We show that by adding a few extra edges to our basic k-VFTS, we can signifi-
cantly reduce its hop-diameter.

Theorem 2 ((k,1 + ¢)-VFTS with Small Hop-Diameter). Let m > 2n.
We can add O(km) extra edges to the spanner in Theorem [ to get a (k,1+ €)-
VFTS with hop-diameter at most O(a(m,n)), where « is the functional inverse
of Ackermann’s function.

The technique of reducing the hop-diameter is similar to that in [4]. Let H be the
spanner in Theorem [Il Recall that when the points in S fail, the (1 4 ¢)-spanner
path in H \ S between any two points of « and y is the concatenation of a path
Py in some net-tree 77, the cross edge {z’,y'} and a path P, in some net-tree Tb.
We add edges to net-trees to shortcut the paths P, and P», and hence obtain a
spanner with small hop-diameter.

Spanners with bounded degree. We also give a construction of (k,¢)-VFTS with
bounded maximum degree. This is achieved with a sacrifice of increasing the
number of edges. The result matches the state-of-the-art result of the bounded-
degree Euclidean (k,1 + ¢)-VFTS in [I4].

Theorem 3 ((k,1+ ¢)-VFTS with Bounded Degree). Let (X, d) be a dou-
bling metric with n points and let 0 < € < 1 be a constant. Given 1 < k <n—2,

there exists a (k,1 + €)-VFTS with e OWim) 1200 edges and mazimum degree
—O(dim) | 1.2
€ :

In [3], it is shown how to reduce the maximum degree of net-tree based span-
ners for doubling metrics. This is achieved by replacing some cross edges with
inter-level edges. As a result, the end points of a replaced cross edge {u,v} are
connected by a path {u,wy,ws,...,w;, v}, with approximately the same length.
However, in the context of fault-tolerance, some of the w;’s might fail, and it is
unclear how to make this procedure resilient to failures.

However, we note that the degree-reduction techniques similar to those in
[1UT4] can be applied. Recall that the edges of the k-VFTS in Theorem [ can be
directed such that the out-degree of each point is bounded by O(k). To reduce
the in-degrees, for each point x, we replace the star consisting of x and edges go-
ing into x with a k-vertex-fault-tolerant single-sink spanner that approximately
preserves the distances to z, and has maximum degree O(k).

We show how to construct k-vertex-fault-tolerant single-sink spanners with
bounded degree for doubling metrics. The construction for those in Euclidean
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space is based on ©-graphs [1I14]. We provide a novel technique called ring-
partition, which can be seen as a replacement for the @-graph in doubling met-
rics. Given a specific root point from X, the metric space X is partitioned into
rings centered at the root with geometrically increasing radii, and each ring is
further partitioned into small clusters. From each cluster, we select some por-
tals, which are connected to the root by short paths. In addition, points in each
cluster are connected to the portals with short paths as well. As a result, every
point’s distance to the root is approximately preserved.

1.2 Preliminaries

For any positive integer m, we denote [m] := {1,2,...,m}.

Throughout this paper, let (X, d) be a metric space with n points, 1 < k <
n—2 be an integer representing the number of faults allowed, and let 0 < € < 5 be
a constant. Without loss of generality, we also assume that the minimum inter-
point distance of X is strictly greater than 1. We denote A := max, yex d(x,y)
as the diameter of X.

Suppose r > 0. The ball of radius r centered at z is B(z,r) := {y € X :
d(z,y) < r}. We say that a cluster C C X has radius at most r, if there exists
x € C such that C C B(xz,r). Let ro > r1 > 0. The ring of inner radius r and
outer radius ro centered at x is R(x,r1,r2) := B(x,r2) \ B(z,71).

A set Y C X is an r-cover for X if for any point « € X there is a point y € Y
such that d(z,y) < r. A set Y is an r-packing if for any pair of distinct points
v,y € Y, it holds that d(y,y’) > r. We say that a set Y C X is an r-net for X
if Y is both an r-cover for X and an r-packing. Note that if X is finite, an r-net
can be constructed greedily.

By recursively applying the definition of doubling dimension, we can get the
following key proposition [I1].

Proposition 1 (Nets Have Small Size). Let R > 2r > 0 and let Y C X be
an r-packing contained in a ball of radius R. Then, |Y| < (#)2dim,

2 Basic Construction of Sparse Fault-Tolerant Spanners

In this section, we extend the O(n)-edge spanner construction in [4] and build
a k-VFTS with O(kn) edges. We construct k + 1 sequences of hierarchical nets
and assign each sequence with a distinct “color”. Then based on the hierarchy of
each color, we extract a net-tree. We show some properties similar to those in
[3], and in addition we show that the fault-tolerance property can be established.
Fault-Tolerant Hierarchical Nets. We color each point in X with one of k+1
colors and let X, be the set of points with color ¢. For each color ¢ € [k + 1], we
build a sequence of hierarchical nets of ¢ := [log, A] levels, X, = N§ 2 Nf D
<o D le" We denote by N; := U.cp11) N the set of all level-i net points. Let
r; = 2° be the distance scale of level ¢. Fault-tolerant hierarchical nets should
satisfy the following properties:
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1. Packing. For each 0 < i </ and ¢ € [k + 1], Nf is an r;-packing;
2. Covering. For any 1 < ¢ </, if x € X is not a net point in N;, then for each
color ¢ € [k + 1], there exists a net point y. € Nf such that d(y.,z) <.

Construction. The hierarchical nets can be constructed in a top-down approach.
Initially, each N§ consists of a distinct point in X. Note that £ < n — 2 and
hence the initialization is well defined. Also, the single point in N§ is colored
with ¢ and points not included in any cluster N; stay uncolored.

Suppose all nets on level ¢ + 1 have been built and we construct the level-i
nets as follows. For ¢ from 1 to k+ 1, let U, be the set of uncolored points when
we start to build N, i.e., after finishing the construction of N}, N2, ..., Nic_l.
We initialize N := N7, |, and extend Nf,; to get N/ by greedily adding points
in U, to N/ such that the resulting IV is an r;-net for U.; we color the points
in N7 N U, with color c.

Note that the packing property and the covering property follow directly from
the net construction.

Fault-Tolerant Net-Trees. For each color ¢ € [k + 1], we define a net-tree
T., which spans all nodes in X except nodes in the highest level N, with colors
different from c¢. The construction is given in Algorithm [Il It follows from the
construction that all internal nodes of T, have color ¢, and all points excluding
Ny U X, are leaves of T..

1 Initialize T, to be the only point in Ny, which is the root of T¢;

2 fori=/¢—-1t00do

3 for each point x € N; \ N;11 do

4 let y. € Nfy; be a point such that d(y.,z) < ri+1 (such a point exists by
the covering property of fault-tolerant hierarchical nets);

5 add z to T and set y. as its parent in T. by adding the edge {y.,z} to
T

6 end

7 end

8 return T¢;

Algorithm 1. Construction of net-tree T, for color ¢

For any c € [k + 1], a path P = {z¢,21,...,2;} is called a c-path, if all edges
on P are contained in T,. Note that for a c-path P = {x¢, z1,...,;}, any point
x; with 0 < j < 7 has degree at least 2 in T, and hence is an internal node. Thus,
its color must be ¢. The length of P is defined as length(P) := 22:1 d(xi—1, ;).
The following lemma shows that for any point = ¢ Ny, any color ¢ € [k + 1] and
any 0 <14 </, there is a c-path from x to some node in N; with length at most

27’7;.

Lemma 1 (Climbing Path in Net-tree). Let T, be a net-tree obtained above
and let x € X\ Ny be a non-root point. For any 0 < i < {, there exists a c-path P;
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starting from x and ending at some net point x; € N;, such that length(P;) < 2-r;.
In addition, x; also has color ¢ if x; # x.

Proof. Let i*(z) be the largest ¢ such that « € N;. For 0 <1 <i*(z), let P, = {z}
and x; = z. The conclusion holds trivially for P;.

Now suppose i*(z) < i < ¢ and we use induction on i. The base case is for
i =i"(x) + 1. We let z; be a’s parent in T, and let P; := {z,z;}. Note that P,
is a c-path. By the construction of T,, we know that z; € Nf and d(z,z;) < r;.
Hence, x; has color ¢ and length(P;) = d(z,z;) <7; <2-71;.

Suppose i > i*(z) + 1 and there exists an z;_1 with color ¢, and a c-path
Py ={x,...,x;_1} such that length(P,_1) < 2-r;_1. If ;-1 € Ny, let x; = 2,1
and P; = P;_;. In this case, we have length(P;) = length(P,—_1) <2-r;,_1 < 2.7
Other properties of P; follow directly from the properties of P;_1, and hence P;
is a c-path.

Otherwise, ;1 ¢ N; and we know that z;_1 is not the root of T, and let x;
be x;_1’s parent in T.. By our construction of net-trees, x; € N/ and hence has
color ¢; in addition, d(z;—1,z;) < r;. We let P; = P;_1 @ x;, which is formed by
appending z; to the end of P;_;. Note that the edge {x;—1,2;} € T. and hence
P, C T, is a c-path. Also, length(P;) = length(Pi—1) +d(zi—1,x;) < 21147 =
2.1, O

Fault-Tolerant Spanners. We have added inter-level edges in the net-trees.
Now we add edges connecting net points at the same level to achieve small
stretch. Define v := 4 4+ *2. For any 0 < i < ¢, we call {z,y} a cross edge at
level 4, iff « and y are both in N;, and d(z,y) < - r;. (An edge can be a cross
edge at more than one level.) We construct a spanner H by taking the union of
all edges in the net-trees of all colors, and all cross edges at all levels, and claim
that H is a k-VFTS with stretch at most 1 + e.

Lemma 2 (Fault-Tolerant Stretch). Let S C X be any set with |S| < k. For
any T,y € X \ S: dH\S(x7y) < (1 +€) ’ d(l’7y)

Proof. Fix x #y € X\ S and suppose 1; < d(x,y) < r;41. Let ¢ be some integer
such that qu <e< 537 say q 1= ﬂog f]

If i <g—1, then d(z,y) < rip1 <27 < 166 < 7 -ro. Hence, {z,y} is a cross
edge at level 0 and dg\ 5(z,y) = d(,y).

Now suppose i > ¢ and let j := i — ¢ > 0. Since |S| < k, there exists some
¢ € [k + 1] such that X. NS = 0. We first show that there exist =’ and y’ such
that dg\s(z,2") < 2-7; and dy\s(y,y’) < 2-7;. Note that either the node x is in
Nj, or i*(z) < j and hence x ¢ Ny. In the latter case, by Lemma [I], there exists
an z; € N; with color ¢ and a c-path P connecting « and x;. We let 2’ = = and
x' = x; in respective cases. If 2’ = z, then di\s(2,2") = d(z,2') =0 < 2-7;.
Otherwise, since P is a c-path and z’ has color ¢, no point on P is contained in
S and hence P C H \ S. Therefore, we have dg\ g(z,2") < 2-7;. Similarly, we
can choose some y' € N; \ S such that dg\s(y,y') < 2-75.

Note that d(z,2') < dg\s(z,2') < 2r; and d(y,y') < dms(y,y') < 2r;.
Hence, we have d(2/,y") < d(2/,z) + d(z,y) + d(y,y') < 2rj + rip1 + 2r; <
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(4+ %) .r; =~-r;. It follows that {a’,y'} is a cross edge at level j and thus
dins(@',y") = d(@',y').

Note that d(z',y") < d(2', x)+d(z,y)+d(y,y") < 4rj+d(z,y), and dg 5 (7, y) <
dins(z,2") +dms(@',y') + dms(y', y). Hence we conclude that dgg(x,y) <
8'7"j+d($,y): 284 7’Z+d<l'7y)§(1+€)d(l'7y) g

Remark. Note that in the proof, there exists a color ¢ such that no node in
S has color ¢. Also, the spanner path in H \ S is the concatenation of a path
P, = {z,...,2'}, a cross edge {2/,y'}, and a path P» = {y/,...,y}, such that
each of P, and P, is either a c-path or a trivial path with only one point. This
property is useful in our later construction of k-VFTS with small hop-diameter.
Bounding the Number of Edges. We show that the number of edges in H
is O(kn). We actually show a stronger result: we can direct the edges in H in a
way such that every point has out-degree O(k).

Lemma 3 (Bounding the Number of Edges). Let H be the (k,1+¢)-VFTS
we construct above. Then, the number of edges in H is e Cdim) . kn. Moreover,
the edges of H can be directed such that the out-degree of each point is bounded
by efO(dim) k.

Proof. Note that the edges of H come from two sources: the net-trees and cross
edges; we bound them separately.

In any net-tree T, we direct the edge {z,p(z)} from x to p(x), where p(x) is
the parent of = in T,.. Note that every point has out-degree at most 1 in each
tree, and hence the out-degree due to the net-tree edges is bounded by k + 1.

Now we bound the out-degree due to the cross edges. Recall that i*(z) is the
maximum ¢ such that € N;. Given an edge {z,y}, we direct it from x to y if
i*(z) < i*(y), and direct it arbitrarily if i*(z) = i*(y).

Fix x € X. We bound the number of edges coming out of x and going into
some point with a fixed color c. Let i := i*(x). For any directed edge (z,y) such
that y has color ¢, we know that i*(y) > i*(xz) = ¢ and hence y € Nf. Note
that the existence of a cross edge {x,y} implies that d(z,y) < - r;. Also note
that Nf is an r;-packing. Then, by Proposition [l the number of such edges is
AOdim) — (4 4 362)0(‘1““). Since there are at most k + 1 colors, the number of
cross edges coming out of z is bounded by (k+1)- (4+ 362)0(‘”’“) = ¢ Odim) .}

The upper bound on the number of edges follows directly from the analysis
of out-degree. O

3 Achieving Small Hop-Diameter

In this section, we show that a technique similar to that in [4] can be used to
reduce the hop-diameter of our basic k-VFTS.

Let T be a tree metric with n nodes. It is shown in [5l4] that for m > 2n, we
can add m edges to T to obtain a spanner R, such that for the unique tree path
P between x and y in T, there is a path P’ in R that connects z and y via at
most O(a(m,n)) nodes on P (in the same order), where a(-,-) is defined below.
By the triangle inequality, length(P’) < length(P).
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Definition 2 (Ackermann’s Function [I7]). Let A(%, j) be a function defined
for integers i,5 > 0 as the following.

A(0,7) =2j forj=0
A(i,0) = 0, A>3,1) = 2 fori>1

Define the function a(m,n) := minf{ili > 1, A(i,4["]) > logy n}.

Adding Edges to Reduce Hop-diameter. Let H be the (k,1 + ¢)-VFTS
constructed in Section 2l Now we show how to add edges to H to reduce the
hop-diameter. For each net-tree T,, we use the technique in [5] to add m edges
to T, to get a spanner R, such that between any two points in T, there is a
path between them in R. with O(a(m,n)) hops which preserves their original
path distance in T,. Let H’ denote the spanner constructed by taking the union
of all edges in R.’s for all colors, and all cross edges at all levels. Hence, H' has
k(m + e~ Odm) . n) edges. We prove in the following lemma that H’ has small
hop-diameter.

Lemma 4 (Bounded Hop-Diameter). For m > 2n, the spanner H' con-
structed above has k(m + e~ . n) edges. Let S C X be a set with |S| < k.
For any pair x,y € X \ S, there exists a path between x and y in H'\ S with
O(a(m,n)) hops, and the path has length at most (1 4+ ¢€) - d(z,y).

Proof. In Lemma 2l we have proved that there is a color ¢ such that no point
in S has color ¢, and the (1 + ¢)-spanner path in H \ S connecting x and y is a
concatenation of a path Py, a cross edge and a path P», where each of P; and
P; is either a c-path or a trivial path consisting of only one point. Note that if
Py is not a trivial path, it can be substituted by a path P} in R.\ S C H'\ S
consisting of O(a(m, n)) hops. Similarly, P, can also be substitued by a path P
with O(a(m,n)) hops. The new spanner path connecting z and y in H'\ S after
the substitution has length at most (1 + €) - d(x,y), as length(P]) < length(P})
and length(Pj) < length(P,). O

4 Achieving Bounded Degree

4.1 Fault-Tolerant Single-Sink Spanners

Our technique of reducing degrees in fault-tolerant spanners is based on single-
sink spanners. Given a point v € X, a spanner H for X is a k-vertex-fault-
tolerant v-single-sink t-spanner ((k,t,v)-VETssS), if for any subset S C X \ {v}
with [S] < k, and any point x € X \ S, it holds that dg\s(v,z) < t-d(v,x).
Here, t is called the root-stretch of H. In this section, we show a construction of
a (k,1+€,v)-VFTssS with maximum degree O(k). Throughout this section, we
assume a point v € X is given. Without loss of generality, we assume 0 < ¢ < é
is a constant and build a (k,1 4 9¢,v)-VEFTssS. Our construction is based on a
technique called ring-partition.
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Ring-Partition. Let ¢ = {logi A—‘ and r; = 611- with ¢ € [¢]. For convenience, let
ro = 1 (recall that we assume inter-point distances are larger than 1). Consider
the rings, denoted by Ry, ..., Ry, where R; := R(v,7;_1,7;). For convenience, let
Ry := {v}. The rings are pairwise disjoint and their union covers X. For each
i € [¢], we build an er;_j-net N; for R;. By Proposition [, N; contains at most
(ﬂf;";l )2dim — ¢—4dim p4ints. We denote this upper bound by I' := [e_4dim] and
then we have |[N;| < I'. Let N := U;~oN; be the set of net points. Then, for each
net point y € NN;, we construct a net cluster C,, such that a point z € X is in
Cy iff = isin R;, and among all points in N;, y is the closest one to x (breaking
ties arbitrarily). For each y € N, we arbitrarily choose k+ 1 portals Q, C Cy, (if
|Cyl < k+1, welet Q, = Cy). Let Q; := Uyen, @y be the portals in R;, and and
Q := UyenQy be the set of all portals. Note that |Q;| < (k+1)-|N;| < I'-(k+1).

We construct a (k,1 4+ 9¢,v)-VFTssS in two stages. First, we add edges to
connect portals to the root and obtain a (k, 1+ €,v)-VFTssS for Q U {v}. Then,
we add edges to connect the points in each cluster with their portals by short
paths.

Connecting Portals to the Root. Assign each point ¢ € @ a unique identifier
id(q) € [|Q]], such that for any ¢ € R; and ¢’ € R; with ¢ < j, it holds that
id(q) < id(¢’); also let id(v) = 0. In other words, points closer to the root v
have smaller identifiers. We divide the points in @ into groups of size k + 1.
Specifically, let A; :={qeQ|(j—1)-(k+1)+1<id(q) <j-(k+1)} for j > 1.
The edges to connect portals with the root are added as follows.

— For ¢ € Q with 1 <id(q) < (2I"+1) - (k + 1), add an edge {q,v}. Let Ej
denote the set of such edges.

— For j > 21"+ 1, we add an edge between every point in A; and every point
in Aj_sp_1, and let E; denote the set of such edges, i.e. E; := {{z,y}|z €
A]‘ and y € Ajfgpfl}.

Define E := Ey U (Ujsars1E;) and H := (Q U {v}, E). Note that the degree of
vin H is at most (2" + 1) - (k 4+ 1) = ¢ 9™ .k and the degree of any point
q € Q is at most 2(k+ 1) = O(k).

Lemma 5 (Edges Connect Portals at least Two Levels Apart). Let q €
Q, and let {q,z} € E be an edge with id(x) < id(q). Then, either x = v or there
erist1>2 and 0 <i <1i—2 such that g € Q; and x € Q.

Proof. We first consider {¢,z} with ¢ € Q1 U Q2. Since |Q1| < I'-(k+1) and
|Q2] < I'- (k+1), it holds that id(¢) < 2I'- (k+1) < (2" +1) - (k+1). Hence,
q is connected to the root and x = v.

Now consider the case that ¢ € @; for some i > 2. If x = v, then we are
done. Now suppose « # v. Then, we know that ¢ € A; for some j > 21"+ 1 and
x € Aj_or_1. Note that there are exactly 2I"- (k+1) pointsin A;_opU---UA,_1,
and hence id(x) < id(q) —2I"- (k+1). On the other hand, since there are at most
2I' - (k + 1) points in Q; U Q;_1, x cannot be in Q; UQ;—1. Hence, x € Q for
some ¢/ < i — 2. O
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Lemma 6. Let S C X \ {v} be a set of at most k points. Then, for any point
qc Q \ S; dH\S(U7q) < (1 + 36) : d(U,q).

Proof. We use induction on id(g). For ¢ € Q\ S with 1 <id(q) < (2I"+1)-(k+1),
we know that ¢ is connected to v in H and hence dj(v,q) = d(v, q).

Now suppose id(q) > (2I' + 1) - (k + 1) and for any point ¢’ € Q \ S with
id(¢') < id(q), it holds that dg\ g(v,¢") < (14 3€)d(v,q¢'). Let j > 2I"+ 1 be
such that ¢ € A;. From the construction of H, we know that for any point p €
Aj_op_1, there exists an edge {p,q} € H. Since Aj_sr—1 contains k + 1 points,
there exists a functioning point p* ¢ S in A,;_or_1. Note that id(p*) < id(g).
Hence, we have

di\s(v,p7) < (14 3€)d(v, p) (1)
by induction hypothesis.

Note that id(¢q) > (2'+1)-(k+1) implies ¢ € Q; for some 7 > 2. By Lemmal5]
we have p* € Q C Ry for some 0 < 4’ < i — 2. Hence,

d(v,p*) <ry =erpp1 <erimq < ed(v,q) (2)

By the triangle inequality, dg\ ¢(v,q) < dg\(v,p") +d(p*,q) < dp\ (v, ") +
d(p*,v) + d(v, q), which by () and () is at most (1 + 6(2 +3¢))d(v,q) < (1+
3e)d(v, q), where the last inequality holds when ¢ § O

Connecting Points in Clusters to Portals. Fix ¢ € [¢(] and a point y € N;.
Recall that C, denotes the net cluster centered at y, whose radius is at most
r = €-r;_1, and @, is the set of portals for Cy. We call the portals in @,
r-portals since they are portals for clusters with radius at most r. We define a
procedure Add(Cy, @y, r) which adds edges to connect points in Cy with portals

in Qy.
1. Sub-clustering. We return immediately if Cy = Q. Suppose Cy # Q,. We
build an J-net N for C. v\ @y. Recall that r is an upper bound on C,’s radius.
By Proposmon m |N| < 44im_ Then for each node z € N we construct a
cluster C’z7 such that a point x € Cy is in C’ iff «isin Cy\ Qy, and among
all points of N, z is the closest one to x (breaking ties arbitrarily).
2. Connecting sub-portals. For each sub-cluster 527 we arbitrarily select k + 1
sub-portals @, (called j-portals) in C (select all points if [C.| < k + 1).
Then, for each sub-portal in @Z and each portal in @, we add an edge

between them. Note that since N < 44im - and thus each portal ¢ € Qy is
connected with at most 44™ . (k + 1) = 20(dim) . 1 syb-portals.

3. Recursion. For every z € N recursively call Add(C’z7 Qz, 5)-

Let Hy be the resulting spanner returned by Add(C,, Q,,r). We have the fol-
lowing lemma.

Lemma 7. Let S C X be a set of at most k points. For any x € Cy \ (Qy U S)
and any r-portal g € Q, \ S, it holds that dﬁy\s(l‘, q) < 2r.
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Proof. Suppose that x is an ., -portal. Note that x is connected to k -+ 1 distinct
2
5i—1-portals, and at least one of them must be functioning (i.e., not in 5). We
let x;—1 be such a ,,”,-portal. Using this argument, we can find a sequence of
2
portals * = x;,x;—1,%;—2,...,Z9 = ¢, such that f0£ all 0 < j <i,z; ¢ Sis
an ,;-portal. In addition, for j € [i], {z;,2;1} € H, and d(zj,z;-1) < 7.

Hence, dﬁy\s(x7q) < Z;zl i1 <27 |

Obtaining the (k, 1+ 9¢,v)-VFTssS. Our final (k, 1 4 9¢,v)-VFTssS, denoted
by H,, is the union of H and ﬁy’s for all y € N. Note that the degree of v is
bounded by e~ 9™ . k and the degree of any other point in H, is bounded by
20(dim) . & Tt remains to show that H, has root-stretch at most 1+ 9¢ under the
failure of at most k& points.

Lemma 8. Let S C X \ {v} be a set of at most k points. For any x € X \ S,
dp,(v,z) < (14 9¢) - d(v, z).

Proof. Suppose x # v. Otherwise the conclusion holds trivially. Let y € N be
the net point covering z, i.e., x € Cy, and let R; be the ring that contains C.

If = is a portal for Cy, then by Lemma [l we know that dg\s(v,x) < (1+
3€)d(v, z) and hence dp,\s(v, ) < dp\g(v,2) < (1 + 9e)d(v, z).

Otherwise, @y # Cy and hence |Qy| = k + 1. Therefore, there must be some
g € @y which is functioning. Let r := er;_; be an upper bound on the radius of
Cy. From the construction of the ring-partition, we know that d(¢q,z) < r and
r < e-d(v,z). By Lemmalil it holds that dﬁy\s(q,x) < 2r. Hence, dg,\s(v,z) <

dHU\S(U7q) + dH1,\S(q7x) S dﬁ\s(vaq) + dﬁy\s((Lx) S (1 + 36)d(’l}7q) + 2r S
(14 3e)(d(v,z) + d(z,q)) +2r < (1 4+ 3e)d(v,x) + 6r < (1 +9€)d(v, z). O

4.2 (k,1+ €)-VFTS with Bounded Degree

Now we construct a (k, 1+ €)-VFTS with bounded degree as follows. We first
construct a basic (k,1+ 5)-VFTS for X with O(kn) edges, and denote it by Ho.
Recall that the edges of Hy can be directed such that the out-degree of each point
in Hy is e 9™ . & Denote an edge {x,y} by (z,y) if it is directed from z to y
in Hy. For any point z € X, we let Ny, (x) := {y € X|(y,x) € Ho}, and build a
(k, 1+ 5,2)-VFTssS H, for Nj,(x) U {z}. We take the spanner H := Uyex H,,
and show that H is a (k, 1+ €)-VFTS with maximum degree O(k?).

Lemma 9. For (0 < e < ;, H is a (k,1+4¢€)-VFTS, in which the degree of any

—O(dim) k2. —O(dim) k2

point x € X is € Consequently, H has € n edges.

Proof. We first prove that H is a (k,1+ ¢)-VFTS. Let S C X be a set of at
most k points. Since Hy is a (k,1+ 5)-VFTS, for any z,y € X \ S, there exists
a (14 %)-spanner path Py in Hp \ S between z and y.

For each edge {u,v} € Py, suppose the edge is directed as (u,v). Then, since
H, is a (k,1+ 5,v)-VFTssS and u,v are both funcitoning, there is a (1 + £)-
spanner path P,, C H, \ S between u and v. Let P denote the concatenation of
P,,’s for all edges {u,v} € Py. Then, P is contained in H \ S and is a spanner
path between z and y with stretch at most (1+ §)* <1+e.
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Next we bound the degree of an arbitrary point z € X in H. The edges
incident to x in H are contained in H, and H,’s such that the edge {z,y} is
directed from z to y in Hy. Note that the number of H,’s involving x is bounded
by the out-degree of x in Hy, which is e~ ©(dim) . k. Also recall that the degree
of z in Hy is e O™ . I and the degree of z in each Hy, is 20(dim) . k. Hence,
we conclude that the degree of x in H is ¢~ O(dim) . 2,

The upper bound on the number of edges follows directly from the degree
analysis. O
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A Dependent LP-Rounding Approach
for the k-Median Problem*

Moses Charikar and Shi Li

Department of Computer Science, Princeton University, Princeton NJ 08540, USA

Abstract. In this paper, we revisit the classical k-median problem. Us-
ing the standard LP relaxation for k-median, we give an efficient algo-
rithm to construct a probability distribution on sets of k centers that
matches the marginals specified by the optimal LP solution. Analyzing
the approximation ratio of our algorithm presents significant technical
difficulties: we are able to show an upper bound of 3.25. While this is
worse than the current best known 3 + € guarantee of [2], because: (1) it
leads to 3.25 approximation algorithms for some generalizations of the
k-median problem, including the k-facility location problem introduced
in [10], (2) our algorithm runs in O(k*n?/62) time to achieve 3.25(1+ §)-
approximation compared to the O(ns) time required by the local search
algorithm of [2] to guarantee a 3.25 approximation, and (3) our approach
has the potential to beat the decade old bound of 3 + € for k-median.

We also give a 34-approximation for the knapsack median problem,
which greatly improves the approximation constant in [I3]. Using the
same technique, we also give a 9-approximation for matroid median prob-
lem introduced in [II], improving on their 16-approximation.

Keywords: Approximation, k-Median Problem, Dependent Rounding.

1 Introduction

In this paper, we present a novel LP rounding algorithm for the metric k-median
problem which achieves approximation ratio 3.25. For the k-median problem, we
are given a finite metric space (F UC,d) and an integer k > 1, where F is a
set of facility locations and C is a set of clients. Our goal is to select k facilities
to open, such that the total connection cost for all clients in C is minimized,
where the connection cost of a client is its distance to its nearest open facility.
When F = C = X, the set of points with the same nearest open facility is
known as a cluster and thus the sum measures how well X can be partitioned
into k clusters. The k-median problem has numerous applications, starting from
clustering to data mining [3], to assigning efficient sources of supplies to minimize
the transportation cost([T2/16]).

The problem is NP-hard and has received a lot of attention ([I5], [6], [7], [10],
[1]). The best known approximation factor is 3 + e approximation due to [2].

* A full version of this paper is available at the authors’ web pages.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 194-PU5] 2012.
© Springer-Verlag Berlin Heidelberg 2012



Dependent Rounding for k-Median 195

Jain et al. [9] proved that the k-median problem is 1 4 2/e ~ 1.736-hard to
approximate.

Our algorithm (like several previous ones) for the k-median problem is based
on the following natural LP relaxation:

LP(l) min Zie]—‘,jec d(i,j)l‘i,j s.t.
Zmi,j:L Vi €C; Zij < Yi, Vie F,jeC,;
a
Zyigk; xi,j7yi€[031]a VZGFaJGC
i€F

It is known that the LP has an integrality gap of 2. On the positive side, [I]
showed that the integrality gap is at most 3 by giving an exponential time
rounding algorithm.

Very recently, Kumar [13] gave a (large) constant-factor approximation algo-
rithm for a generalization of the k-median problem, which is called knapsack
median problem. In the problem, each facility ¢« € F has an opening cost f; and
we are given a budget M. The goal is to open a set of facilities such that their
total opening cost is at most M, and minimize the total connection cost. When
M =k and f; =1 for every facility ¢ € F, the problem becomes k-median.

Krishnaswamy et al. [11] introduced another generalization of k-median, called
matroid-median problem. In the problem, the set of open facilities has to form
an independent set of some given matroid. [I1] gave a 16-approximation for this
problem, assuming there is a separation oracle for the matroid polytope.

1.1 Owur Results

We give a simple and efficient rounding procedure. Given an LP solution, we
open a set of k facilities from some distribution and connect each client j to
its closest open facility, such that the expected connection cost of j is at most
3.25 times its fractional connection cost. This leads to a 3.25 approximation for
k-median. Though the provable approximation ratio is worse than that of the
current best algorithm, we believe the algorithm (and particularly our approach)
is interesting for the following reasons:

Firstly, our algorithm is more efficient than the 3+ e-approximation algorithm
with the same approximation guarantee. The bottleneck of our algorithm is
solving the LP, for which we can apply Young’s fast algorithm for the k-median
LP [17].

Secondly, our approach has the potential to beat the decade old 3 + e-approxi-
mation algorithm for k-median. In spite of the simplicity of our algorithm, we are
unable to exploit its full potential due to technical difficulties in the analysis. Our
upper bound of 3.25 is not tight. The algorithm has some parameters which we
have instantiated for ease of analysis. It is possible that the algorithm with these
specific choices gives an approximation ratio strictly better than 3; further there
is additional room for improvement by making a judicious choice of algorithm
parameters.
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The distribution of solutions produced by the algorithm satisfies marginal
conditions and negative correlation. Consequently, the algorithm can be easily
extended to solve the k-median problem with facility costs and the k-median
problem (called k-facility location problem) with multiple types of facilities, both
introduced in [10]. The techniques of this paper yield a factor 3.25 algorithm for
the two generalizations.

Based on our techniques for the k-median problem, we give a 34-approximation
algorithm for the knapsack median problem, which greatly improves the constant
approximation given by [I3].(The constant was 2700.) Following the same line of
the algorithm, we can give a 9-approximation for the matroid-median problem,
improving on the 16-approximation in [I1].

2 The Approximation Algorithm for the k-Median
Problem

Our algorithm is inspired by the 6§—approximation for k-median by [7] and
the clustered rounding approach of Chudak and Shmoys [§] for facility location
as well as the analysis of the 1.5-approximation for UFL problem by [4]. In
particular, we are able to save the additive factor of 4 that is lost at the beginning
of the 6§—approximation algorithm by [7], using some ideas from the rounding
approaches for facility location.

We first give with a high level overview of the algorithm. A simple way to
match the marginals given by the LP solution is to interpret the y; variables
as probabilities of opening facilities and sample independently for each 7. This
has the problem that with constant probability, a client j could have no facility
opened close to j. In order to address this, we group fractional facilities into
bundles, each containing a total fractional of between 1/2 and 1. At most one
facility is opened in each bundle and the probability that some facility in a
bundle is picked is exactly the volume, i.e. the sum of y; values for the bundle.

Creating bundles reduces the uncertainty of the sampling process. E.g. if the
facilities in a bundle of volume 1/2 are sampled independently, with probability
e~1/2 in the worst case, no facility will be open; while sampling the bundle as a
single entity reduces the probability to 1/2. The idea of creating bundles alone
does not reduce the approximation ratio to a constant, since still with some
non-zero probability, no nearby facilities are open.

In order to ensure that clients always have an open facility within expected
distance comparable to their LP contribution, we pair the bundles. Each pair
now has at least a total fraction of 1 facility and we ensure that the rounding
procedure always picks one facility in each pair. The randomized rounding pro-
cedure makes independent choices for each pair of bundles and for fractional
facilities that are not in any bundle. This produces k facilities in expectation.
We get exactly k facilities by replacing the independent rounding by a depen-
dent rounding procedure with negative correlation properties so that our anal-
ysis need only consider the independent rounding procedure. (The technique of
dependent rounding was used in [5] to approximate the fault-tolerant facility
location problem.)
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Now we proceed to give more details. We solve LP(]) to obtain a fractional so-
lution (x,y). By splitting one facility into many if necessary, we can assume x; ; €
{0, y;}. We remove all facilities ¢ from C with y; = 0. Let F; = {i € F : ; ; > 0}.
So, instead of using « and y, we shall use (y, {F;|j € C}) to denote a solution.

For a subset of facilities 7' C F, define vol(F') = .. » i to be the vol-
ume of F'. So, vol(F;) = 1,Vj € C. W.L.O.G, we assume vol(F) = k. Denote
by d(j,F') the average distance from j to F' w.r.t weights y, i.e, d(j, F') =
> icr Yid(j,1)/vol(F'). Define do,(j) = Eiefj y;d(i,7) to be the connection
cost of j in the fractional solution. For a client j, let B(j,r) denote the set of
facilities that have distance strictly smaller than r to j.

Our rounding algorithm consists of 4 phases, which we now describe.

2.1 Filtering Phase

We begin our algorithm with a filtering phase, where we select a subset C’ C C of
clients. C’ has two properties: (1) The clients in C’ are far away from each other.
With this property, we can guarantee that each client in C’ can be assigned an
exclusive set of facilities with large volume. (2) A client in C\C' is close to some
client in C’, so that its connection cost is bounded in terms of the connection
cost of its neighbour in C’. So, C’ captures the connection requirements of C and
also has a nice structure. After this filtering phase, our algorithm is independent
of the clients in C\C'. Following is the filtering phase.

Initially, C' = (,C" = C. At each step, we select the client j € C” with the
minimum dg,(j), breaking ties arbitrarily, add j to ¢’ and remove j and all j's
that d(j, ') < 4da,(3") from C”. This operation is repeated until " = .

Lemma 1. (1) For any j,j' € C',j # j',d(j,7") > 4max{day(j), dav (') };
(2) For any j' € C\C', there is a client j € C' such that dey(j) < daw(§'),d(4,5") <
4dy (7).

We leave the proof of the lemma to the full version of the paper.

2.2 Bundling Phase

Since clients in C’ are far away from each other, each client j € C’ can be assigned
a set of facilities with large volume. To be more specific, for a client j € C’, we
define a set U; as follows. Let R; = 5 minj e jr25 d(J, j') be half the distance
of j to its nearest neighbour in C’, and F; = F; N B(j, 1.5R;) to be the set of
facilities that serve j and are at most 1.5R; awayE A facility ¢ which belongs to

! It is worthwhile to mention the motivation behind the choice of the scalar 1.5 in the
definition of Fj. If we were only aiming at a constant approximation ratio smaller
than 4, we could replace 1.5 with 1, in which case the analysis is simpler. On the
other hand, we believe that changing 1.5 to oo would give the best approximation,
in which case the algorithm also seems cleaner (since F; = F;). However, if the
scalar were oo, the algorithm is hard to analyze due to some technical reasons. So,
the scalar 1.5 is selected so that we don’t lose too much in the approximation ratio
and yet the analysis is still manageable.



198 M. Charikar and S. Li

at least one F7 is claimed by the nearest j € C’ such that i € F, breaking ties
arbitrarily. Then, U; C F; is the set of facilities claimed by j.

Lemma 2. The following two statements are true:
(1) 1/2 < VO|(Z/[j) <1,Vje C/, and (2) Z/[j ﬁZ/lj/ = @,Vj,j/ S Cl,j #£ j/.

Proof. Statement 2 is trivial; we only consider the first one. Since U; C .7-']’» C Fj,
we have vol(i;) < vol(F;) = 1. For a client j € C’, the closest client j* € C'\ {j}
to j has d(7,5") > 4dq.(j) by lemmalll So, R; > 2dq,(j) and the facilities in F;
that are at most 2d,,(j) away must be claimed by j. The set of these facilities
has volume at least 1 — doy(5)/(2dav(j)) = 1/2. Thus, vol(U;) > 1/2.

The sets U;’s are called bundles. Each bundle U is treated as a single entity
in the sense that at most 1 facility from it is open, and the probability that 1
facility is open is exactly vol(i;). From this point, a bundle {; can be viewed as a
single facility with y = vol(l{;), except that it does not have a fixed position. We
will use the phrase “opening the bundle ¢{;” the operation that opens 1 facility
randomly from U, with probabilities y; /vol(U;).

2.3 Matching Phase

Next, we construct a matching M over the bundles (or equivalently, over C’). If
two bundles U; and U, are matched, we sample them using a joint distribution.
Since each bundle has volume at least 1/2, we can choose a distribution such
that with probability 1, at least 1 bundle is open.

We construct the matching M using a greedy algorithm. While there are at
least 2 unmatched clients in C’, we choose the closest pair of unmatched clients
j,j" € C" and match them.

2.4 Sampling Phase

Following is our sampling phase.
1: for each pair (j,j') € M do
2:  With probability 1 — vol(U;:), open U;; with probability 1 — vol(l4;), open
U;r; and with probability vol(U;) + vol(U;:) — 1, open both U; and U,
3: end for
4: If some j € C' is not matched in M, open U; randomly and independently
with probability vol(i4;);
5: For each facility 7 not in any bundle U{;, open it independently with proba-
bility y;.
After we selected the open facilities, we connect each client to its nearest open
facility. Let C; denote the connection cost of a client j € C. Our sampling process
opens k facilities in expectation, since each facility ¢ is open with probability y;.
It does not always open k facilities as we promised. In the full version of the
paper, we shall prove the following lemma:
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Lemma 3. There is a rounding procedure in which we always open k facilities
and the probability that i is open is exactly y;. The E[C}] in this procedure is at
most the E[C}] in the rounding procedure we described. Moreover, the events that
facilities are open are megatively-correlated; that is, for every set S of facilities,

Pr[all facilities in S are open] < H Yi-
€S

By Lemma [3] it suffices to consider the rounding procedure we described. We
shall outline the proof of the 3.25 approximation ratio for the above algorithm
in section Bl As a warmup, we conclude this section with a much weaker result:

Lemma 4. The algorithm gives a constant approzximation for k-median.

Proof. It is enough to show that the ratio between E[C;] and dq,(j) is bounded,
for any j € C. Moreover, it suffices to consider a client j € C’. Indeed, if j ¢ C’,
there is a client j3 € C’ such that dgy(j1) < daw(J),d(J, j1) < 4day(j), by the
second property of lemma [l So E[C;] < E[C},] 4+ 4day(j). Thus, the ratio for j
is bounded by the ratio for j; plus 4. So, it suffices to consider j;.

W.L.O.G, assume dg,(j1) = 1. Let jo be the client in C'\ {j1} that is closest
to ji. Consider the case where j; is not matched with jo (this is worse than
the case where they are matched). Then, jo must be matched with another
client, say js3 € C’, before j; is matched, and d(jo, j3) < d(j1,j2). The sampling
process guarantees that there must be a open facility in U;, UUj,. It is true
that jo and js may be far away from j;. However, if d(ji,j2) = 2R (thus,
d(j1,J3) < 4R, dav(j2), dav(j3) < R/2), the volume of U, is at least 1 — 1/R.
That means with probability at least 1 — 1/R, j; will be connected to a facility
that serves it in the fractional solution; only with probability 1/R, j; will be
connected to a facility that is O(R) away. This finishes the proof.

3 Outline of the Proof of the 3.25-Approximation Ratio

If we analyze the algorithm as in the proof of lemmal an additive factor of 4 is
lost at the first step. This additive factor can be avoidedE if we notice that there
is a set F; of facilities of volume 1 around j. Hopefully with some probability,
some facility in F; is open. It is not hard to show that this probability is at least
1 —1/e. So, only with probability 1/e, we are going to pay the additive factor
of 4. Even if there are no open facilities in F}, the facilities in F;, and F;, can
help to reduce the constant.

A natural style of analysis is: focus on a set of “potential facilities”, and
consider the expected distance between j and the closest open facility in this
set. An obvious candidate for the potential set is F; U F;, U F;, U F;,. However,
we are unable to analyze this complicated system.

Instead, we will consider a different potential set. Observing that U;, ,U;,,U;,
are disjoint, the potential set F;Ul;, UlL;, UU;, is much more tractable. Even with

2 This is inspired by the analysis for the facility location problem in [8I4114].
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this simplified potential set, we still have to consider the intersection between
F; and each of U;,, U;, and Uj,. Furthermore, we tried hard to reduce the
approximation ratio at the cost of complicating the analysis(recall the argument
about the choice of the scalar 1.5). With the potential set F; UlU;, Ul;, UlUj,,
we can only prove a worse approximation ratio. To reduce it to 3.25, different
potential sets are considered for different bottleneck cases.

W.L.O.G, we can assume j ¢ C’, since we can think of the case j € C' as j & C’
and there is another client j; € C' with d(j,j1) = 0. We also assume d,,,(j) = 1.
Let j1 € C’ be the client such that du,(j1) < daw(7) = 1,d(4, j1) < 4dan(j) = 4.
Let jo be the closest client in C'\ {j1} to ji, thus d(ji,j2) = 2R;,. Then, either
j1 is matched with jo, or jo is matched with a different client j3 € C’, in which
case we will have d(j2,73) < d(j1,72) = 2R;,. We only consider the second case.
Readers can verify this is indeed the bottleneck case.

For the ease of notation, define 2R := d(j1,j2) = 2R;,,2R’ := d(j2,j3) <
2R, dy = d(j, 1), da == d(j, jz) and ds := d(j, js).

At the top level, we divide the analysis into two cases : the case 2 < d; < 4 and
the case 0 < d; < 2. (Notice that we assumed dg,(j) = 1 and thus 0 < d; < 4.)
For some technical reason, we can not include the whole set F; in the potential
set for the former case. Instead we only include a subset F; (notice that j ¢ C’
and thus F} was not defined before). F is defined as F; N B(j,d1).

The case 2 < dy < 4 is further divided into 2 sub-cases : .7-']'» N .7’-']'»1 C U;, and
FiNF}, £ Uj,. Thus, we will have 3 cases, and the proof of the approximation
ratios appear in the full paper.

1. 2<d; <4, .7-']'» N .7-'j’-1 C U;, . In this case, we consider the potential set " =
FiUF; UU;, UU;,. Notice that F}; = F; N B(j,dy1), F; = Fj, NB(j1,1.5R).
In this case, E[C;] < 3.243.

2.2<d; < 4,]—}’- N ]-'j’-1 & U;, . In this case, some facility ¢ in ]-'j’- N ]-']'»1 must be
claimed by some client j' # ji. Since d(j,4) < d1,d(j1,7) < 1.5R, we have

d(j,5") < d(j,i) +d(5', 1) < d(j,i) + d(j1,7) < dy + 1.5R.

If j' ¢ {jo2, j3}, we can include U/ in the potential set and thus the potential
set is F' = F; U F; Ul Ul Ul If j € {32, j3}, then we know j and
Jj2,js are close. So, we either have a “larger” potential set, or small distances
between j and jo,j3. Intuitively, this case is unlikely to be the bottleneck
case. In this case, we show E[C;] < 3.189.

3. 0 < dy < 2.1Inthis case, we consider the potential set F” = F;Ul;, U, U, .
In this case, E[C;] < 3.25.

3.1 Running Time of the Algorithm

We now analyze the running time of our algorithm in terms of n = |F UC|. The
bottleneck of the algorithm is solving the LP. Indeed, the total running time for
rounding is O(n?).

To solve the LP, we use the (1+ ¢€) approximation algorithm for the fractional
k-median problem in [17]. The algorithm gives a fractional solution which opens
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(1+ €)k facilities with connection cost at most 1+ ¢ times the fractional optimal
in time O(kn®1In(n/e)/€?). We set € = §/k for some small constant d. Then, our
rounding procedure will open k facilities with probability 1 —§ and k+1 facilities
with probability §. The expected connection cost of the integral solution is at
most 3.25(1 4+ §/k) times the fractional optimal. Conditioned on the rounding
procedure opening k facilities, the expected connection cost is at most 3.25(1 +
0/k)/(1 —0) <3.25(1+ O(9)) times the optimal fractional value.

Theorem 1. For any 6 > 0, there is a 3.25(1 + 6)-approzimation algorithm for
k-median problem that runs in O ((1/6%)k3n?) time.

3.2 Generalization of the Algorithm to Variants of k-Median

The distribution of k£ open facilities produced by our algorithm satisfies marginal
conditions. That is, the probability that a facility ¢ is open is exactly y;. This
allows our algorithm to be extended to some variants of the k-median problem.

The first variant is called k-facility location problem, which is a common
generalization of k-median and UFL introduced in [10]. In the problem, we are
given set F of facilities, set C of clients, metric (d, F U C), opening cost f; for
each facility ¢ € F and an integer k. The goal is to open at most k facilities
and connect each client to its nearest open facility so as to minimize the sum of
the opening cost and the connection cost. The best known approximation ratio
for the k-facility location problem was 2 + v/3 + ¢, due to Zhang [I8]. For this
problem, the LP is the same as LP(l), except that we add a term Zie}‘ fiy; to
the objective function. After solving the LP, we use our rounding procedure to
obtain an integer solution. The expected opening cost of the solution is exactly
the fractional opening cost in the LP solution, while the expected connection
cost is at most 3.25 times the fractional connection cost. This gives a 3.25-
approximation for the problem, improving the 2 + v/3 + e-approximation.

Another generalization introduced in [10] is the k-median problem with ¢ types
of facilities. The goal of the problem is to open at most k facilities and connect
each client to one facility of each type so as to minimize the total connection
cost. Our techniques yield a 3.25 approximation for this problem as well. We first
solve the natural LP for this problem. Then, we apply the rounding procedure
to each type of facilities. The only issue is that the number of open facilities of
some type in the LP solution might not be an integer. This can be handled using
the techniques in the proof of Lemma [3l

4 Approximation Algorithms for Knapsack-Median and
Matroid-Median

The LP for knapsack-median is the same as LP ([I), except that we change the
constraint ) ;. »y; < k to the knapsack constraint ), » fiy; < M.

As shown in [I3], the LP has unbounded integrality gap. To amend this, we
do the same trick as in [13]. Suppose we know the optimal cost OPT for the
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instance. For a client j, let L; be its connection cost. Then, for some other client
j’, its connection cost is at least max {0, L; — d(j,j')}. This suggests

> max{0,L; — d(j,j')} < OPT. (1)
j'ec

Thus, knowing OPT, we can get an upper bound L; on the connection cost of
j: L; is the largest number such that the above inequality is true. We solve
the LP with the additional constraint that x; ; = 0 if d(,j) > L;. Then, the
LP solution, denoted by LP, must be at most OPT. By binary searching, we
find the minimum OPT so that LP < OPT. Let (z),y)) be the fractional

solution given by the LP. We use LP; = duy(j) = > i+ d(i,j)xl(-’lj) to denote the
contribution of the client j to LP.

Then we select a set of filtered clients C’ as we did in the algorithm for the
k-median problem. For a client j € C, let 7(j) be a client j° € C’ such that
dav (7)) < dan(4),d(4,5") < 4day(j). Notice that for a client j € C’, we have
7(j) = j. This time, we can not save the additive factor of 4; instead, we move the
connection demand on each client j ¢ C’ to m(j). For a client 5/ € C’, let wj =
|7T_1(j’)| be its connection demand. Let LP() = Yo jrecricr Wiy d(i, j') =
Ej’eC’ wjrday(j") be the cost of the solution (;U(l)7 y(l)) to the new instance. For

a client j € C, let LP;l) = dgy(m(§)) be the contribution of j to LP®Y. (The
amount w;:dg,(j') is evenly spread among the wj clients in 7=1(5').) Since
LP; = dau(j) < daw(7(j)) < LPS", we have LP() < LP.

For any client j € C', let 2R; = minjecr o2, d(4,7"), if vol(B(j, R;)) < 1;
otherwise let R; be the smallest number such that vol(B(j, R;)) = 1. (vol(S) is
defined as ) ;g yi(l).) Let B; = B(j, R;) for the ease of notation. If vol(B;) =1,
we call B; a full ball; otherwise, we call B; a partial ball. Notice that we always
have vol(B;) > 1/2. Notice that R; < L; since ;Uglj) = 0 for all facilities ¢ with
diﬁj > Lj.

We find a matching M over the partial balls as in Section [2} while there are
at least 2 unmatched partial balls, match the two balls B; and Bj; with the
smallest d(j,j’). Consider the following LP.

LP2)  min Ycewy (Sien, did )i+ (1= Yies, ui) By )
Z vi=1, Vj €C' By full Z v <1, Vj' el Bj partial;
i€Bj, i€B;
Swit > w1, V(BB eM; > fiyi <M;
iEBj iij/ ieF
y; >0, YieF

Let y® be an optimal basic solution of LP (@) and let LP® be the value
of LP(@). For a client j € C with w(j) = j/, let LP;Z) = Ziij/ d(i, j")y: +

(1 — Ziij/ yi) Rj be the contribution of j to LP® . Then we prove
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Lemma 5. LP® < LP™M,

Proof. Tt is easy to see that y(!) is a valid solution for LP(@). By slightly abusing
the notations, we can think of LP® is the cost of y to LP[@). We compare
the contribution of each client j € C with n(j) = j' to LP® and to LPYW. If
Bj: is a full ball, j' contributes the same to LP® and as to LPW. If Bj is a
partial ball, j' contributes Eie}‘j/ (i, ")y, M to LPM and ZleB L, d(i, )y, Wy

(1= e, i) Ry to LP®). Since By = B(j, Ryr) € Fy and vol(Fy) = 1, the

K2

contribution of j' to LP® is at most that to LP™), So, LP® < LpW,

Notice that LP(2) only contains y-variables. We show that any basic solution y*
of LP(@) is almost integral. In particular, we prove the following lemma in the
full version of the paper:

Lemma 6. Any basic solution y* of LP @) contains at most 2 fractional values.
Moreover, if it contains 2 fractional values y},y};, then yf +y5 =1 and either
there exists some j € C' such that i,i" € Bj or there exists a pair (Bj, Bj) € M
such that i € Bj,i € Bjr.

Let y® be the integral solutin obtained from y(® as follows. If y(?) contains
at most 1 fractional value, we zero-out the fractional value. If y(®) contains 2
fractional values yl( ),yf?), let y(g) =1 yz(d) =0if f; < fi and let yl( ) = 0, yz(d)
1 otherwise. Notice that since yz(z) + y(z) = 1, this modification does not increase
the budget. Let SOL be the cost of the solution y®) to the original instance.

We leave the proof of the following lemma to the full version of the paper.

) (3) . )
Lemma 7. ZieB(j’,5Rj/)yi > 1 and ZieB(j’,st/)yi > 1. i.e, there is an
open facility (possibly two facilities whose opening fractions sum up to 1) inside
B(j',5R;:) in both the solution y® and the solution y©®.

Lemma 8. SOL < 340PT.

Proof. Let i be the facility that yéz) >0, yé‘g) =0, if it exists; let j be the client
that i € B;.

Now, we focus on a client j € C with w(j) = j'. Then, d(j, j') < 4da,(j) =
4LP;. Assume that j' # j. Then, to obtain y®), we did not move or remove an
open facility from Bj/. In other words, for every i € Bj/, yf?’) > yl(z). In this case,
we show

SOL; < Z d(i,j") (2) Z y(z) ) X BRjr.

zGB -/ ’LEB .

If there is no open facility in Bj: in y3) then there is also no open facility in
Bj/ in y?). Then, by Lemma [7] SOL;» = 5R;s = right-side. Otherwise, there is
exactly one open facility in Bj/ in y®). In this case, SOLj =3 icp, d(j' i)y, (3) <

right-side since ygg) > yz@) and d(i,j') < 5Rj for every i € Bj.



204 M. Charikar and S. Li

2)

Observing that the right side of the inequality is at most 5LP§ , we have

SOL; < 4LP; +SOL;s < 4LP; + 5LP?.

Now assume that j' = j. Since there is an open facility in B(j’, 5Rj/) b
Lemmal[7, we have SOL; < 4LP;+5R;/. Consider the set 771 (j’) of clients. Notlce
that we have R; < Lj since xE ) = 0 for facilities i such that d(i,j") > Lj.
Also by Inequahty (III) we have Zyerl(y V(R —d(j,5')) < Zyerl(g y(Ljr —
d(j,7")) < OPT. Then, since d(j, j') < 4LP; for every j € 7=1(j), we have

> sol <Z4LP +5R;) <4) LP;+5) Ry
J J

jem=1(3")

< 42 LP; + 5(0PT +3d(, j')) <243 LP; + 50PT,
J J J

where the sums are all over clients j € 7=1(j'). Summing up all clients j € C,
we have

SOL=)"SOL;j= Y SOL;+ > SOL;

jec i#m () jen1()
< > (4P +5LPP) 424 Y LP; 4 50PT
o) jen=1()
<243 LP;+5Y LP® + 50PT < 24LP + 5LP®) + 50PT < 340PT,
jec jec

where the last inequality follows from the fact that LP®? < Lp™ < LP < SOL.
Thus, we proved

Theorem 2. There is an efficient 34-approximation algorithm for the knapsack-
median problem.

It is not hard to change our algorithm so that it works for the matroid median
problem. The analysis for the matroid median problem is simpler, since y(? will
already be an integral solution. We leave the proof of the following theorem to
the full version of the paper.

Theorem 3. There is an efficient 9-approzimation algorithm for the matroid
median problem, assuming there is an efficient oracle for the input matroid.
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Abstract. We consider node-weighted network design in planar and
minor-closed families of graphs. In particular we focus on the edge-connectivity
survivable network design problem (EC-SNDP). The input consists of a node-
weighted undirected graph G = (V, E)) and integral connectivity requirements
r(uv) for each pair of nodes uv. The goal is to find a minimum node-weighted
subgraph H of G such that, for each pair wv, H contains r(uv) edge-disjoint
paths between v and v. Our main result is an O(k)-approximation algorithm for
EC-SNDP where k = maxy, r(uv) is the maximum requirement. This improves
the O(k log n)-approximation known for node-weighted EC-SNDP in general
graphs [15]]. Our algorithm and analysis applies to the more general problem
of covering a proper function with maximum requirement k. Our result is in-
spired by, and generalizes, the work of Demaine, Hajiaghayi and Klein [5] who
gave constant factor approximation algorithms for node-weighted Steiner tree
and Steiner forest problems (and more generally covering 0-1 proper functions)
in planar and minor-closed families of graphs.

1 Introduction

Network design is an important area of discrete optimization with several practical ap-
plications. Moreover, the clean optimization problems that underpin the applications
have led to fundamental theoretical advances in combinatorial optimization, algorithms
and mathematical programming. In this paper we consider a class of problems that can
be modeled as follows. Given an undirected graph G = (V| E) find a subgraph H
of minimum weight/cost such that H satisfies certain desired connectivity properties.
A common cost model is to assign a non-negative weight w(e) to each e € E and
the weight/cost of H is simply the total weight of edges in it. A number of well-studied
problems can be cast as special cases. Examples include polynomial-time solvable prob-
lems such as the minimum spanning tree (MST) problem when H is required to connect
all the nodes of GG, and the NP-Hard Steiner tree problem where H is required to connect
only a given subset S C V of terminals. A substantial generalization of these problems
is the survivable network design problem which is defined as follows. The input, in
addition to G, consists of an integer requirement function r(uwv) for each (unordered)
pair of nodes uv in G; the goal is to find a minimum-weight subgraph H that contains
r(uv) edge-disjoint paths between w and v for each pair wwv. This problem is called the

* The authors are partially supported by NSF grant CCF-1016684.

A. Czumaj et al. (Eds.): ICALP 2012, Part I, LNCS 7391, pp. 206-217] 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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edge-connectivity SNDP (EC-SNDP) to distinguish from more general problems such
as Elem-SNDP and VC-SNDP that require the paths to be element and vertex disjoint
respectively. SNDP arises naturally in the design of fault-tolerant networks, and vari-
ous special cases have been extensively studied. Algorithmic approaches for SNDP and
related problems are based on solving a larger class of abstract network design prob-
lems such as covering proper and skew-supermodular cut-requirement functions that
we describe formally later.

Node Weights: The cost of a network is dependent on the application. In connectivity
problems, as we remarked, a common model is the edge-weight model. A more general
problem is obtained when each node v of G has a weight w(v) and the weight of H is
the total weight of the nodes in HI. Node weights are relevant in several applications,
in particular telecommunication networks, where they can model the cost of setting
up routing and switching infrastructure at a given node. There have also been several
recent applications in wireless network design [17016] where the weight function is
closely related to that of node weights. We refer the reader to [5] for some additional
applications of node weights to network formation games.

The node-weighted versions of network design problems often turn out to be strictly
harder to approximate than their corresponding edge-weighted versions. For instance
the Steiner tree problem admits a 1.39-approximation for edge-weights [2], however,
Klein and Ravi [[12] showed, via a simple reduction from the Set Cover problem, that
the node-weighted Steiner tree problem on n nodes is hard to approximate to within
an {2(logn)-factor unless P = N P. They also described a (2 log k)-approximation
where k is the number of terminals. A more dramatic difference emerges if we consider
SNDP. Jain gave a 2-approximation for EC-SNDP with edge-weights [10]. The best
known approximation for EC-SNDP with node-weights is O(k logn) [15] where k& =
maxy, r(uv) is the maximum connectivity requirement. Nutov [15]] gives evidence, via
a reduction from the k-densest-subgraph problem, that for the node-weighted problem
a dependence on k in the approximation ratio is necessary.

Demaine, Hajiaghayi and Klein [5] considered the approximability of the node-
weighted Steiner tree problem in planar graphs. In an interesting result, they adapted
the well-known primal-dual algorithm for the edge-weighted problem [117]] to the node-
weighted problem and showed that it gives a 6-approximation in planar graphs.
Demaine et al. also showed that their algorithm works for a more general class of 0-1-
valued proper functions (first considered by Goemans and Williamson [7]) that includes
several other problems such as the Steiner forest problem ([14] claims an improved 9/4
approximation for the Steiner forest problem). Their analysis also shows that one ob-
tains a constant factor approximation (the algorithm is the same) for any minor-closed
family of graphs where the constant depends on the family. In addition to their the-
oretical value, these results have the potential to be useful in practice since in many
real-world networks the underlying graph G is either planar or has very few crossings.

! For many problems of interest, including Steiner tree and SNDP, the version with weights on
both edges and nodes can be reduced to the version with only node weights; sub-divide an
edge e by placing a new node v, and set the weight of v, to be that of e.
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Our Results: In this paper we consider node-weighted network design problems in
planar graphs for higher connectivity. In particular we consider EC-SNDP and show
that the insights in [5] can be used to develop improved approximation algorithms for
this more general problem as well. However, the results require non-trivial technical
work that we explain after we state the results. The algorithm works for any graph but
the ratio is constant for planar graphs and more generally graphs from any minor-closed
family; we articulate the precise dependence of the ratio on the family in later sections.
Our main result is the following.

Theorem 1. There is an O(k)-approximation for node-weighted EC-SNDP in planar
graphs where k is the maximum requirement.

The above theorem extends to a more general problem that we describe now. An integer
valued set function f : 2" — Z, on the vertex set of G is said to be proper if it satisfies
the following conditions: (i) f is symmetric, thatis, f(S) = f(V —S) forall S, and (ii)
f is maximal, that is, f(A U B) < max{f(A4), f(B)} for any two disjoint sets A, B.
Given a proper function f on V' (by a value oracle) and a graph G on V, the f-covering
problem is to find a subgraph H of minimum weight such that |d 5 (S)| > f(S) for all
SB. EC-SNDPis a special case of this problem [18]. We obtain an O(k)-approximation
for the node-weighted version of this problem in planar graphs where £ = maxg f(.5).

Overview of Technical Ideas and Contribution: The two main algorithmic ap-
proaches for SNDP are the following. The first is the augmentation approach pioneered
by Williamson et al. [18] in which the required network is built in k£ phases. At the end
of the first (i — 1) phases the connectivity of a pair uv is at least min{r(uv),i — 1}.
Thus the ¢’th phase is required to increase the connectivity of some of the pairs by 1 by
adding additional edges; the advantage of this approach is that we now work with a 0-1
covering problem. On the other hand the covering problem is no longer so simple. The
function that we need to cover falls into the more general class of uncrossable func-
tions: A requirement function f : 2V — {0, 1} is uncrossable if for any sets A, B C V/,
f(A) = f(B) = limplies f(ANB) = f(AUB)=1lor f(A—B) = f(B—A)=1.
Williamson et al. [[18] showed that a primal-dual algorithm achieves a 2-approximation
for the edge-weighted version of covering uncrossable functions. Nutov [15] gave
an O(logn)-approximation for the node-weighted case. These results for uncross-
able functions, when combined with the augmentation framework, give a 2k and an
O(klogn) approximation for the edge-weighted and node-weighted versions of EC-
SNDP in general graphsﬁ. The second approach for SNDP is the powerful iterated
rounding technique pioneered by Jain which led to a 2-approximation for EC-SNDP
[10] and also for covering a certain class of skew-supermodular functiond]. Tterated
rounding does not quite apply to node-weighted problems for various technical reasons.

% We work with node-induced subgraphs H of G' in which case H may not contain all the nodes
of aset S C V. In that case 6 (S) denotes the edges of H with exactly one endpoint in S.

3 The approximation for the edge-weighted version can be improved to 2H}, by doing the aug-
mentation in the reverse [6].

* A function f : 2¥ — Z is skew-supermodular if for all A,B C V, f(A) + f(B) <
max{f(ANB)+ f(AUB), f(A—B)+ f(B — A)}. A skew-supermodular function f with
f(A) < 1 forall A gives rise to an uncrossable function.
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We follow the augmentation approach. Demaine et al. adapted the primal-dual al-
gorithm for edge-weighted 0-1-proper functions to the node-weighted case. The novel
technical ingredient in their analysis is to understand properties of node-minimal fea-
sible solutions instead of edge-minimal feasible solutions. For the most part, problems
captured by 0-1-proper functions are very similar to the Steiner forest problem, a canon-
ical problem in this class. In this setting it is possible to visualize and understand node-
minimal solutions through connected components and basic reachability properties. In
the augmentation approach for higher-connectivity, as we remarked, the problem in
each phase is no longer that of covering a proper function but belongs to the richer class
of covering uncrossable functions. The primal-dual analysis for this class of functions
is more subtle and abstract [18]] and proceeds via uncrossing arguments and laminar
witness families.

Our main technical contribution is understanding properties of node-minimal feasi-
ble solutions for uncrossable functions. We refer the reader to Theorem [3lin Section 3]
for the precise statement; the theorem holds for general graphs (not just planar graphs)
and may have other applications. We remark on a crucial aspect of our algorithm and
analysis. Why do our results only apply for covering proper functions and not the more
general class of skew-supermodular functions? For the node-weighted problem of cov-
ering an arbitrary uncrossable function there is no natural covering LP relaxation. How-
ever, we observe that the particular uncrossable functions that arise in the augmentation
framework for a proper function (including EC-SNDP) have certain additional connec-
tivity properties that allow for an LP relaxation and the primal-dual approach. We obtain
a constant factor approximation in each phase and this results in an O (k)-approximation
overall where k is the maximum requirement.

As in [3]] we use planarity only in one step of the analysis where we argue about the
average degree of a certain graph that is a minor of the original graph; this is the reason
that the algorithm and analysis generalize to any minor-closed family. In this paper, in
the interest of clarity and exposition, we have not attempted to optimize the constants
in the approximation.

Extensions: Our ideas for EC-SNDP can be extended to give an O(k) approximation
for node-weighted Elem-SNDP in planar graphs. We again use the augmentation ap-
proach but for Elem-SNDP we use a primal-dual algorithm and analysis with respect
to the setpair relaxation [[11J3]. There are however some non-trivial differences and the
generalization is not immediate. An improved algorithm for node-weighted VC-SNDP
in planar graphs follows from a generic reduction of VC-SNDP to Elem-SNDP [4]. A
longer version of this paper will discuss these extensions.

Other Related Work: There is extensive literature on network design but due to space
limitations we are unable to discuss it in detail. We refer the reader to [§]] for a survey
on primal-dual based algorithms for network design, and to recent surveys [13l9] for an
overview of the known approximation results and references to related work.

Organization: Section 2] describes our algorithm based on the augmentation approach
and the primal-dual algorithm for each phase of the augmentation. The analysis is done
by assuming the main technical theorem on a node-minimal augmentation of the un-
crossable requirement functions that arise in the augmentation framework. We state
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and prove this theorem in Section 3l Some of the proofs are omitted in this version.
A longer version with detailed proofs as well as the claimed extensions will be made
available on arXiv and the authors’ web pages in the near future.

2 Algorithm for Node-Weighted EC-SNDP and Proper Functions

We start by defining the node-weighted EC-SNDP problem formally. The input consists
of an undirected node-weighted graph G = (V, E) (weight of node v is denoted by
w(v)) and a requirement function r(uwv) for each pair of nodes. The goal is to find a
minimum node-weighted subgraph H of G such that H contains r(uv) edge-disjoint
paths for each pair uv. We use k to denote the maximum requirement. A node u is called
a terminal if there is some node v such that r(uv) > 0. Since any feasible solution has to
contain all terminals, we can assume without loss of generality that the weight of every
terminal is zero. We define a function f : 2V — Z, where f(S) = max{r(uv) | u €
S,v ¢ S}. It is well-known that f is a proper function. By Menger’s theorem, solving
node-weighted EC-SNDP is equivalent to finding a minimum node-weight subgraph H
such that |5z (S)| > f(S) for all S C V. (Recall that 67 (.S) is the set of all edges of
H with exactly one endpoint in S.) Our algorithm and analysis extend to the problem
of finding a node-weighted subgraph to cover a given proper function. For an arbitrary
proper function f we call a node v a terminal if f({v}) > 0; maximality of f implies
that S contains a terminal if f(S) > 0. Again, we can assume without loss of generality
that terminals have zero weight, since they are included in any feasible solution.

We alert the reader that, in order to cover the function f, we need to pick a set
of edges. But since the weights are (only) on the nodes, we pay for a set of nodes
and we can use any of the edges in the graph induced by the nodes in order to cover
the function. More precisely, our goal is to select a minimum-weight node-induced
subgraph H = G[X] that covers f, where X is a subset of nodes of G. We will always
assume that X contains the terminals.

As we mentioned, our algorithm for covering f uses the augmentation framework
introduced in [18]. Let f,, : 2V — Z be the function such that f,(S) = min{f(S), p}
for each set S. If f is a proper function then f), is also a proper function. The algorithm
performs k phases: for 1 < p < k, at the end of phase p, the algorithm has a subgraph
H,, that covers f,. In phase p the algorithm starts with H,_; that covers f,_; and
adds some additional nodes to obtain H,, that covers f,. We can express the underlying
optimization problem in phase p as follows.

It is convenient to assume that all of the vertices of H,_; have zero weight; since
we have already paid for the nodes, we can set their weight to zero at the beginning
of phase p. Let G}, = (V, E(G) — E(Hp-1)). (We emphasize that G}, has all of the
nodes of G and that the terminals and vertices of V(H,_1) have zero weight.) Our
goal is to select a minimum-weight subgraph H of G; that covers the following 0-1
function h, : 2 — {0,1}. For each set S, we have h,(S) = 1iff f(S) > p and
|0m,_,(S)| = p — 1. The function h,, is known to be an uncrossable function [18]; note
that it may no longer be a proper function. We use a primal-dual algorithm to cover h,, in
the graph G},. A 2-approximation exists for this covering problem for the edge-weighted
problem and an O(log n)-approximation for the node-weighted case [[15]. We show that
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the primal-dual algorithm achieves an O(1)-approximation for the node-weighted case
in planar graphs, however, we emphasize that it only applies for the specific uncrossable
functions that arise from proper functions as above; in particular it is important that the
chosen subgraphs at the end of each phase are node-induced. We describe and analyze
the primal-dual algorithm below and point out the place where we need this restriction.

2.1 A Primal-Dual Algorithm for the Augmentation Problem

In the following, we fix a phase p of the augmentation framework. Let h = h,, and G’ =
G;. Recall that all of the terminals and the vertices selected in the first p— 1 phases have
zero weight. In the following, we use '/ (S) to denote the set of all vertices v such that
v ¢ Sbut there is an edge uv € E(G’) such that u € S. We use a primal-dual algorithm
in order to select a subgraph H of G’ that covers h. The primal and dual LPs that we use
are described below. We remark that the primal LP has unbounded integrality gap for
an arbitrary uncrossable functior. However, the function & that arises from a proper
function f in the augmentation framework has additional properties that allow us to
avoid such examples.

Primal: Dual:
min Z z(v)w(v) max Z y(S)h(S)
vev Scv
s.t. Z z(v) > h(S) VSCV st Z y(S) <w(v) YveV
’UGFG/(S) S:’UE[‘G/(S)
z(v) >0 YoeV y(S§)>0 vVSCV

We omit the constraint 2(v) < 1 in the primal since & is a 0-1 function.

The primal-dual algorithm is a “standard” one in that it is the natural adaptation
to the node-weighted setting (as done in [5]]) of the primal-dual algorithm for edge-
weighted network design formalized by Goemans and Williamson [7]. The algorithm
selects a set X C V/(G’) of nodes such that the graph G'[X] covers h. Initially, X
consists of all vertices that have zero weight. We also maintain a feasible dual solution
y that is implicitly initialized to zero. We proceed in iterations. Consider iteration ¢ and
let X;_1 be the set of nodes selected in the first © — 1 iterations; the set X consists
of all zero-weight vertices. A set S is violated with respect to X;_; iff h(S) = 1
and dgrpx,_,](S) = 0. A set S is a minimal violated set with respect to X; 1 iff S
is a violated set and no proper subset of S is violated. Let C; denote the collection
of all minimal violated sets with respect to X;_1. As shown in [18], no two minimal
violated sets of an uncrossable function can intersect; further the collection of minimal
violated sets for h arising from proper functions can be computed in polynomial time.
Moreover, Lemmal[Ilbelow shows that the sets in C; are subsets of X;_1. If C; is empty,

3 A simple example is a function A such that there is a single set S such that h(S) = 1. Each
vertex in S has weight 1, and each vertex in V' — S has weight 0. The optimum solution has
value 1 since at least one node in S has to be picked but the optimum LP value is 0; note that
the value is 0 even if we have integrality constraints.
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G'[X;_1] covers h and we return G'[X;_1]. Otherwise, we increase the dual variables
{y(S)}sec, uniformly until a dual constraint for a vertex v becomes tight, i.e., we have
> swery (s) Y(S) = w(v); we add v to X. Note that, since the components of C; are
contained in X;_1, for each minimal violated component C' € C;, none of the vertices
in '/ (C) arein X;_; and thus it is possible to increase the dual variables {y(5)}sec; .

Finally we perform a reverse-delete step. Let X be the set of vertices selected by the
primal-dual algorithm. We select a subset Y of X as follows. We start with Y = X. We
order the vertices of Y in the reverse of the order in which they were selected by the
primal-dual algorithm. Let v be the current vertex. If G'[Y" — v] is a feasible cover for
h, we remove v from Y.

The primal-dual algorithm described above is not well-defined for an arbitrary un-
crossable function & but the following property holds for those that arise from proper
functions. Using the following lemma, we can show that the algorithm is well-defined
and it outputs a cover of h in polynomial time.

Lemma 1. Every minimal violated component C € C; is a subset of X;_1.
Proof: Consider C' € C; and suppose C € X; 1. Let C' = C' N X;_1. We observe

that f,(C \ C") = 0 since all the terminals are in X;_;. Since f, is maximal, we have
1,(C) < max{£,(C"), £,(C\ €'V} = max{£,(C"),0} = f,(C"). Since C € C,
we have f,(C) = p and |6g[x,_,)(C)| = p — 1. Therefore f,(C') > f,(C) = p.
Additionally, dg(x,_,1(C) = d¢x,_,)(C”), since G[X;_1] does not have any edges
incident to vertices in V' \ X;_1. It follows that C” is violated with respect to X;_1,
which contradicts the minimality of C. ]

Now we turn our attention to the analysis of the primal-dual algorithm. In the following,
we show that the algorithm achieves an O(1) approximation for the augmentation prob-
lem when the graph G is from a minor-closed family of graphs G; the constant depends
on the family G.

Theorem 2. If G is a graph from a minor-closed family of graphs G, the weight of
the set Y is O(OPT},), where OPTy, is the optimum solution to the LP relaxation for
covering h.

The dual variables are grown uniformly in each iteration and the standard primal-
dual analysis [[7] gives a condition under which the approximation ratio can be upper
bounded. This is encapsulated in the lemma below.

Lemma 2. Let B, =Y — X;_1. Suppose there exists a y such that, for each iteration
i of the primal-dual algorithm, 3 -cc. |Bi N I'c/(C)| < 7|Ci|. Then the weight of Y is
at most YOPT},, where OPTy, is the value of an optimal solution to the LP relaxation.

The content of the above lemma is the following. Consider the minimal violated sets in
C;. Theset B; =Y — X,;_; forms a node-minimal set that together with X;_; covers h
(minimality follows from the reverse delete step). We are interested in -y, the “average
degree’ﬁ of the components in C;, with respect to nodes in B;. In general graphs « can

% Here we are abusing the term slightly and we refer to the ratio >cee, 1BiN T (C)|/|Ci| as
the average degree of the components in C;. One can view the ratio as the average degree of
the components if we shrink each of the components in C; to a single vertex and we remove
parallel edges.
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be 2(n) in the worst case which does not give a useful bound. However, planar graphs
are sparse. Thus one can bound the average degree if one can bound the number of
nodes in B; that are adjacent to components in C;. This was done in [5] for 0-1 proper
functions but the case of uncrossable functions is more involved and it is our main
technical contribution. Theorem [l is stated in a general and useful form and proved
in Section 3l Assuming the theorem, we finish the analysis as follows. The following
lemma upper bounds the number of nodes in B; that are adjacent to components in C;.

Lemma 3. Let B] be the set of all vertices w € B; such that u € I'c:/(C) for some
component C € C;. We have |Bj| < 4|C|.

In order to take advantage of the fact that planar and minor-closed graphs are sparse,
we need the following technical ingredient. The proof of Lemma [ follows from the
maximality of f,, and it is similar to the proof of Lemmal[ll

Lemma 4. For each component C € C;, the graph G[C) is connected.

In order to finish the average degree argument, we shrink each component C' € C; into
a single node and we use Lemma[3land the fact that, for a graph K from a minor-closed
family G there is a constant ¢’ that depends only on the family such that |E(K)| <
V(K.

Lemma 5. Let B; =Y — X;_1. If G is a graph from a minor-closed family of graphs
G, we have ) cc. |Bi N I'c/(C)| < c|Ci|, where c is a constant that depends only on
the family G.

Theorem Pl follows from LemmaPland Lemma[3 Theorem[2]together with the augmen-
tation framework gives an O(k)-approximation for finding a minimum node-weighted
subgraph to cover a proper function with maximum requirement k. The result for EC-
SNDP is a special case of this result.

Remark 1. For planar graphs, we get a 10-approximation for the augmentation prob-
lem and a 10k-approximation for the EC-SNDP problem. Demaine et al. [5]] get a 6-
approximation for planar graphs when &£ = 1, and thus our ratio is slightly weaker. Our
analysis in Lemmal[3lcould be tightened in several ways. We believe that the analysis in
Theorem[3land consequently Lemma 3l can be improved to obtain a factor of 3 instead
of 4. The analysis uses the maximality of f but not symmetry and hence our results
hold for a larger class of functions than proper functions.

3  Proof of Theorem 3

Let G = (V, E) be a graph. Let h : 2V — {0, 1} be a requirement function. A set S is
violated if h(S) = 1. A set C is a minimal violated component of h if C'is violated and
no proper subset of C'is violated. Let H be a subgraph of G. The graph H is a feasible
cover for h if, for any set S C V such that h(S) = 1, there is at least one edge of H
leaving S; in other words, [0 (S)| > h(S). We say that H is a node-minimal feasible
cover for h if, for any vertex v € V(H ), H — v is not a feasible cover for h.

Now we are ready to state our main theorem.
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Theorem 3. Let h : 2V — {0,1} be an uncrossable function. Let C be the minimal
violated components of h. Let H be a node-minimal feasible cover for h. Let X be the
set of all vertices v € V(H) such that v is not in the union of the components in C and
there is an edge of H connecting v to a component of C. Then | X | < 4|C]|.

We devote the rest of this section to the proof of Theorem 3l A basic property of un-
crossable functions [[18] is stated below.

Lemma 6. Let h be an uncrossable function. The minimal violated components of h
are disjoint. Moreover; if S is a violated set and C' is a minimal violated component, S
and C' do not properly intersect.

We start with a high-level overview of the proof. The main idea is to pick a subset
M of the edges of H such that M is an edge-minimal feasible cover for h. Such a
minimal cover has nice properties that were pointed out and used in the analysis for
edge-weighted problems [18]]. More precisely, for each edge e € M, we can pick a
“witness set” that is a violated set such that e is the only edge of M that is leaving the
set. Moreover, we can pick a family of witness sets, one for each edge of M, such that
the family is laminafl. This laminar family can be used to upper bound the number of
edges of M that are incident to the components of C.

We are interested in analyzing a node-minimal cover H which is not necessarily
edge-minimal; there can be a node w that is adjacent to components in C but it is pos-
sible that an edge-minimal cover M does not contain any of the edges connecting u to
components of C. Thus we cannot use the witness family to count such vertices. We
address this issue by counting them separately using a witness family for a different set
of edges.

We now turn our attention to the formal proof of the theorem. We refer to the vertices
in X as critical vertices. We refer to edges connecting a critical vertex to a component
C € C as red edges, and we refer to all other edges of H as blue edges.

We define two subsets of edges F; and F» as follows. We start with Fy = E(H)
and we remove some of the edges as follows. We order the blue edges arbitrarily. We
consider the blue edges in this order. Let e be the current edge. If F} — e is a feasible
solution for h, we remove e from F}. At the end of this process, each red edge is in F}
and each blue edge in F} is necessary to cover h. We refer to critical vertices that are
incident to at least one blue edge of F} as regular vertices; critical vertices that are not
regular are referred to as special vertices. As we will see shortly, we can use the blue
edges in F to upper bound the number of regular vertices.

In order to count the special vertices, we pick a subset F5 of F} as follows. We start
with F» = Fj. We consider the red edges of F» in some order. Let e be the current
edge. If 5 — e is a feasible cover, we remove e from F5. We can use the red edges in
F to upper bound the number of special vertices. Since H is a node-minimal cover for
h, each special vertex is incident to at least one red edge of Fb.

Note that F5 is an edge-minimal feasible cover for & while F} is a feasible cover but
is not necessarily edge-minimal. The difficulty is in counting the regular vertices via
. We consider the regular and special vertices separately. Theorem [3] follows from
the following two lemmas.

7 A set family F is laminar iff no two sets in F properly intersect.
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Lemma 7. The number of regular vertices is at most 2|C|.
Lemma 8. The number of special vertices is at most 2|C|.

Our counting arguments are based on the laminar witness family approach of Williamson
et al. More precisely, we define a witness set as follows.

Definition 1. Let F be a set of edges. A set S, C V is an F-witness set for an edge e
iff h(Se) = 1 and 5p(S.) = {e}.

An F-witness set S, is a violated set; from Lemmal[@lit follows that for each component
celC,CCS.orCNS, =0.

Recall that a family of sets £ is laminar if no two sets in £ properly intersect; differ-
ently said, for any two sets A, B € L, either A and B are disjoint or one is contained in
the other. The following lemma follows from [[18].

Lemma 9 ([18]). Let F be a feasible cover for an uncrossable function h. Let M C F'
be a subset of F' such that, for each edge e € M, F' — e is not a feasible cover for h.
There is a laminar family £ = {S. | e € M} such that S, is an F-witness set for e.

Our approach is to use laminar witness families for the blue edges of F} and the red
edges of F5 in order to count the regular and special vertices. Before we turn our atten-
tion to the counting arguments, we describe some properties of laminar witness families
that we need.

We can associate a forest F with a laminar set family £ as follows. The forest F has
anode vg for each set S € L. We add an edge between v4 and vp iff A is the smallest
set in £ that contains B. Let £ = {S, | e € M} be a laminar F-witness family for a
set M C F of edges. Let T be the tree associated with £ U {V'}; we root T at the node
vy.

We define the following bijection between the edges of the tree 7 and the edges of
M. Let e be an edge of M and let S, be the witness set for e. The node vg, has a parent
v4 in T, and we associate the edge e € M with the edge (v4, vs,) of T. We say that
the edge e corresponds to the edge (v4,vs, ). A node vg of T owns a vertex v € V iff
S is the smallest set in £ U {V'} that contains v.

Proposition 1. Let £L = {S. | e € M} be a laminar F-witness family for a set M C F
of edges. Let T be the tree associated with L U {V'}. For each leaf vs of T there is a
distinct component C' € C such that C C S.

The following simple observation plays a crucial role in our counting argument.

Proposition 2. Let L = {S. | e € M} be a laminar F-witness family for a set M C F
of edges. Let T be the tree associated with LU {V'}. Let vg be a node of T and let e be
an edge of F'\ M. Either both endpoints of e are contained in S or neither endpoint of
e is contained in S. In particular, the endpoints of e are owned by the same node of T.

The following lemma was proved in [18].
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Lemma 10 ([18]). Let £ = {S. | e € M} be a laminar F-witness family for a set
M C F of edges. Let T be the tree associated with L U {V'}. Let e be an edge of M
and let (va,vs,) be the edge of T corresponding to e, where S, is the witness set for
e and v4 is the parent of vs,. Then v owns one endpoint of e and vg, owns the other
endpoint of e.

Counting Argument for Regular Vertices. Let Ly, = {S. | eis ablue edge in F}}
be a laminar F} -witness family for the blue edges in F} that is guaranteed by Lemma[9l
Let 7r, be the tree associated with the family Ly, U {V'}; we view Tr, as a rooted tree
whose root is the node corresponding to V.

Recall that each regular vertex w« is incident to a red edge ur; the edge ur is in Fi,
since F contains all the red edges. Additionally, u is incident to a blue edge ub € F.
Since r is contained in a minimal component of C, it follows from Proposition [2] that
the node of T, that owns u also owns a component C,, € C. Our approach is to charge
each regular vertex u in its subtree; more precisely, we charge u to a component C' € C
that is owned by a node in the subtree rooted at the node that owns u and C,,.

We charge each regular vertex u as follows. Recall that there is a blue edge ub € Fy
that is incident to u. Let v4 and v be the nodes of T, that own u and b, respectively.
By Lemmal[I0Ql one of v4, vp is the parent of the other.

Suppose that v/4 is the parent of vp. Since each leaf owns a component of C (from
Proposition[I]), there is a descendant of v (possibly vp itself) that owns a component
of C. Let vg be the closest such descendant, i.e., a descendant whose distance to vpg
is minimized. (If there are several descendants whose distance to vz is minimum, we
pick one of them arbitrarily.) We charge u to one of the components of C that vs owns;
we refer to this charge as a subtree charge (since u is charged in a subtree rooted at a
child of the node v4 that owns u). Since a regular vertex v and its component C,, are
owned by the same node of the tree, the components C', serve as sentinels that ensure
that there is at most one subtree charge to each component of C.

Suppose that v/ 4 is a child of v5. We charge u to the component C,,; we refer to this
charge as a parent charge (since the charge corresponds to the tree edge connecting the
node v4 that owns C to its parent). Since each node has at most one parent edge, there
is at most one parent charge to each component of C.

Proposition 3. There is at most one subtree charge to each component C € C.

Proposition 4. There is at most one parent charge to each component C' € C.

Proof of Lemma (7t Each component of C is charged at most twice and thus the number
of regular vertices is at most 2|C]|. O

Counting Argument for Special Vertices. Recall that F, is an edge-minimal cover
of h. Moreover, a critical vertex v is special only if there is an edge e € F5 (in fact a
red edge) such that e connects v to a minimal violated component C'. Thus, the total
number of special vertices is upper bounded by >~ [0r, (C)|. Williamson et al. [18]
show that for any edge-minimal cover of an uncrossable function this is upper bounded
by 2|C|. Thus we can upper bound the number of special vertices by 2|C| which proves
Lemmal8l We remark that some of the regular vertices are counted in this step as well,
but this can only help us.
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Abstract. Given a set P of h pairwise-disjoint polygonal obstacles of
totally n vertices in the plane, we study the problem of computing the
(weakly) visibility polygon from a polygonal obstacle P* (an island) in
P. We give an O(n?h?) time algorithm for it. Previously, the special case
where P* is a line segment was solved in O(n?) time, which is worst-case
optimal. In addition, when all obstacles in P (including P*) are convex,
our algorithm runs in O(n + h*) time.

1 Introduction

Given a set P of h pairwise-disjoint polygonal obstacles of totally n vertices in the
plane, the space minus the interior of all obstacles is called the free space. Two
points are visible to each other if the open line segment joining them lies in the
free space. Two objects are visible to each other if a point of one object is visible
to a point of the other object (this is often called weakly visible in the literature;
we use visible when there is no confusion from the context). Consider a polygonal
obstacle P* € P (an island). The (weak) visibility polygon/region of P* (or from
P*), denoted by Vis(P*), is the set of points in the plane visible to P*. In this
paper, we present an O(n?h?) time algorithm for computing Vis(P*). When all
obstacles in P (including P*) are convex, referred to as the conver version, we
give an O(n + h*) time solution for computing Vis(P*).

Visibility problems have been studied extensively (e.g.,
24 8ITOTTIT3ITAITOIT7ITS]). Linear time algorithms were given for com-
puting the visibility polygon inside a simple polygon P from a single point
[(I3IT4/16], from a line segment [I0], and from another simple polygon [§]
contained in the polygon P. For the problem versions on a polygonal domain
P as defined above, if P* is a single point, Suri and O’Rourke [I8] and Asano
et al. [I] presented O(nlogn) time algorithms for computing Vis(P*); later,
Heffernan and Mitchell [I1] gave an O(n + hlogh) time algorithm. If P* is a
line segment, Suri and O’Rourke [I8] presented an O(n?) time algorithm and
showed that this is optimal in the worst case. To our best knowledge, no result
for the general problem of computing Vis(P*) in P when P* is an arbitrary
simple polygon was known before.
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Fig. 1. [6]Illustrating a triangulation of Fig. 2. [6]Illustrating an open hourglass (left)
the free space among two obstacles and and a closed hourglass (right) with a corridor
the corridors (with red solid curves). path connecting the apices z and y of the two
There are two junction triangles indi- funnels. The dashed segments are diagonals.
cated by the large dots inside them, The paths 7(a,b) and 7 (e, f) are shown with
connected by three solid (red) curves. thick solid curves. A bay bay(cd) with gate
Removing the two junction triangles re- cd (left) and a canal canal(z,y) with gates
sults in three corridors. zd and yz (right) are also indicated.

Our O(n%h?) time algorithm for computing Vis(P*) with P* being a simple
polygon improves (for small k) the O(n*) time solution [I8] for the special case
where P* is a line segment, and actually solves a more general problem.

Our approach generalizes Suri and O’Rourke’s algorithm [I8], which we call
the SO algorithm, by exploiting a corridor structure of the obstacles in P. Corri-
dor structures have been used in solving shortest path problems (e.g., [BIGJT2T5]).
In Section 2, we review the corridor structure of P and introduce some concepts
and observations. In Section Bl we present our algorithm. The convex version is
discussed in Section @l Due to the space limit, some details are omitted and can
be found in the full version of the paper.

2 Preliminaries

We review the corridor structure [I5] and define some new concepts, e.g., the
ocean M, bays, and canals, etc. For simplicity, we assume all obstacles in P are
contained in a rectangle R (see Fig.[I]). We also use R to denote the space inside
the rectangle, and use F to denote the free space in R.

Denote by Tri(F) a triangulation of F. Let G(F) denote the (planar) dual
graph of Tri(F). The degree of each node in G(F) is at most three. Based on
G(F), we compute a planar 3-regular graph, denoted by G* (the degree of every
node in G? is three), possibly with loops and multi-edges, as follows. First, we
remove every degree-one node from G(F) along with its incident edge; repeat
this process until no degree-one node remains in the graph. Second, remove every
degree-two node from G(F) and replace its two incident edges by a single edge;
repeat this process until no degree-two node remains. The resulting graph is G°
(see Fig. ). The resulting graph G® has h + 1 faces, 2h — 2 nodes, and 3h — 3
edges [15]. Every node of G corresponds to a triangle in 77 (F), which is called a
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Junction triangle (see Fig.[I]). The removal of the nodes for all junction triangles
from G3 results in O(h) corridors, each of which corresponds to one edge of G3.

The boundary of a corridor C' consists of four parts (see Fig.[2): (1) A bound-
ary portion of an obstacle P; € P, from a point a to a point b; (2) a diagonal
of a junction triangle from b to a boundary point e on an obstacle P; € P
(P; = Pj is possible); (3) a boundary portion of the obstacle P; from e to a
point f; (4) a diagonal of a junction triangle from f to a. The corridor C is
a simple polygon. Let 7(a,b) (resp., w(e, f)) be the shortest path from a to b
(resp., e to f) inside C. The region H¢o bounded by 7(a,b), w(e, f), and the two
diagonals be and fa is called an hourglass, which is open if w(a,b) Nw(e, f) =0
and closed otherwise (see Fig. ). If H¢ is open, then both 7(a,b) and (e, f)
are convex chains and are called the sides of He; otherwise, Ho consists of two
“funnels” and a path 7c = w(a,b) N7(e, f) joining the two apices of the two
funnels, called the corridor path of C. Each funnel side is also a convex chain.
We compute the hourglass for each corridor. After Tri(F) is produced, the total
time for computing all hourglasses is O(n).

Let M be the union of the O(h) junction triangles, open hourglasses, and
funnels. We call the space M the ocean, and M C F. Since the sides of open
hourglasses and funnels are convex, the boundary dM of M consists of O(h)
convex chains with totally O(n) vertices; further, there are O(h) reflex vertices
on OM. This implies that the complementary region R \ M consists of a set
of polygons bounded by O(h) convex chains with O(h) reflex vertices. Thus,
R\ M can be partitioned into a set P’ of O(h) pairwise interior-disjoint convex
polygons of totally O(n) vertices [15]. If we view the convex polygons in P’ as
obstacles, then the ocean M is the free space with respect to P’. A point on OM
must be on the boundary of a convex obstacle in P’. The set P’ can be obtained
easily in O(n + hlogh) time. It should be pointed out that our algorithms given
later can be applied to M directly without having to explicitly partition R \ M
into convex polygons in P’. But for ease of exposition, we always discuss our
algorithms on P’. Next, we examine the other free space of F than M, i.e.,
F \ M, which consists of two types of regions: bays and canals, defined below.

Consider the hourglass H¢ of a corridor C'. We first discuss the case when Hg
is open (see Fig.[). H¢ has two sides. Let S1(H¢) be an arbitrary side of He.
The obstacle vertices on S1(H¢) all lie on the same obstacle, say P € P. Let ¢
and d be any two consecutive vertices on S1(H¢) such that the line segment cd
is not an edge of P (see the left figure in Fig. 2l with P = P;). The free region
enclosed by cd and a boundary portion of P between ¢ and d is called the bay
of e¢d and P, denoted by bay(cd), which is a simple polygon. We call c¢d the bay
gate of bay(cd), which is a common edge of bay(cd) and M.

If the hourglass H¢ is closed, let x and y be the two apices of its two funnels.
Consider two consecutive vertices ¢ and d on a side of a funnel such that cd is
not an obstacle edge. If neither ¢ nor d is a funnel apex, then ¢ and d must lie
on the same obstacle and the segment cd also defines a bay with that obstacle.
However, if ¢ or d is a funnel apex, say, ¢ = z, then ¢ and d may lie on different
obstacles. If they lie on the same obstacle, then they also define a bay; otherwise,
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we call zd the canal gate at x = ¢ (see Fig.Bl). Similarly, there is also a canal gate
at the other funnel apex y, say yz. Let P; and P; be the two obstacles bounding
the hourglass Hc. The free region enclosed by P;, P;, and the two canal gates
xd and yz that contains the corridor path of H¢ is the canal of He, denoted by
canal(z,y), which is also a simple polygon.

Note that the bays and canals together constitute the space F \ M. While
the total number of all bays is O(n), the total number of all canals is O(h) since
each canal corresponds to a corridor and the number of corridors is O(h).

The fact that each bay has only one gate allows us to process a bay eas-
ily. Intuitively, an observer outside a bay cannot see any point outside the bay
“through” its gate. But, each canal has two gates, which could possibly cause
trouble. The next lemma discovers an important property that an observer out-
side a canal cannot see any point outside the canal through the canal (and its
two gates); we call it the opaque property of canals.

Lemma 1. (The Opaque Property) For any canal, suppose a line segment pq
is in F (i.e., p is visible to q) such that neither p nor q is in the canal. Then,
pq cannot contain any point of the canal that is not on its two gates.

Proof. A sketch. Assume to the contrary that pg contains a point ¢ in a canal such
that ¢ is not on either gate of the canal. Let canal(z,y) be the canal as shown in
Fig. 2l Since pq travels through the canal without intersecting any obstacle, the
shortest paths 7(a, b) and (e, f) do not intersect. Thus, the hourglass defined by
the corridor containing canal(z,y) is open. But this means the corridor cannot
contain a canal, incurring contradiction.

For a line segment pq in the free space F, consider extending pq along both
directions of the line containing pg until it first hits an obstacle (or goes to
infinity) in each direction; the two points on obstacles (or at infinity) first hit by
extending pq are called the extension ends of pq.

3 Our Algorithm

This section presents our algorithm for computing Vis(P*). We first compute
the corridor structure of P and obtain the convex polygonal obstacle set P’.
Denote by 0P* the boundary of P*. Clearly, a point p is in Vis(P*) if and only
if p is visible to a point on dP*. With respect to P’, we partition the edges of
OP* into three types. Some edges of 9P* may be in a bay (resp., canal), and we
call these edges of OP* the Type-I edges (resp., Type-II edges). Other edges of
OP* lie on OM and thus on the boundaries of some convex obstacles in P’, and
we call these edges of OP* the Type-III edges. Clearly, Vis(P*) is the union of
the visibility regions of the Type-I, Type-II, and Type-I1I edges. We first give
some observations on the three types of edges.

3.1 Observations

The Type-1I Edges. We begin with the Type-1 edges. Suppose a bay bay(cd)
contains some Type-I edges. Since the boundary of bay(cd) except its gate cd
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lies on the same obstacle of P, all edges on the boundary of bay(cd) except its
gate are Type-I edges. The following observation is self-evident.

Observation 1. If a bay B contains Type-1 edges, then every point in B is
visible to the Type-1I edges in B; further, a point outside B is visible to the Type-
I edges in B if and only if it is visible to the gate of B.

Let « denote the set of the Type-I edges in bay(cd). By Observation [ the
visibility region of « in F is the union of bay(cd) and the visibility region of cd
in the space F\ bay(cd). In other words, besides bay(cd), computing the visibility
region of « is reduced to computing the visibility region of ¢d in F \ bay(cd). If
a bay contains any Type-I edges, we call its gate an illumination gate.

The Type-II Edges. Consider a canal canal(z,y) with two gates zd and yz
(see Fig. ) such that canal(z,y) contains some Type-1I edges. Recall that the
boundary of canal(z,y) consists of xd, a boundary portion of an obstacle P; € P,
yz, and a boundary portion of an obstacle P; € P. Then, one of P; and P; must
be P*. Denote by « the set of Type-II edges in canal(z,y).

Recall that P; = P; is possible. If P; = P; = P*, then o consists of all edges
of canal(z,y) except its two gates. Due to the opaque property in Lemma/[ll we
have the next lemma, similarly to Observation [l

Lemma 2. If P, = P; = P*, then every point in canal(z,y) is visible to o and
a point outside canal(x,y) is visible to « if and only if the point is visible to a
gate of canal(x,y).

Proof. A sketch. Since canal(zx,y) is a simple polygon and « contains all edges
of canal(z,y) except xd and yz, every point in canal(x,y) is visible to a.

Consider any point p outside canal(x,y) that is visible to «, say, at a point
g € a. Then pqg C F. Since p is outside canal(z,y) and ¢ is in canal(x,y), pq
must intersect a gate of canal(x,y). Therefore, p is visible to that gate.

Consider any point p outside canal(z,y) that is visible to a gate, say zd, of
canal(z,y). Then, there must be a point ¢ € xd such that pg € F. By extending
pq along the direction from p to g, the first point on obstacles of P hit by this
extension of pg must be on «, which implies that p is visible to a.

By Lemma [ when P, = P; = P*, the visibility region of « is the union
of canal(z,y) and the visibility region of the two gates of canal(z,y) in F \
canal(z,y). If P, = P; = P*, then the two gates of canal(x,y) are also called
illumination gates.

We then discuss the case of P; # P;. In this case, only one of P; and P; is P*,
say P; = P*, and the edge sequence of a has two endpoints at the two gates of
canal(x,y) respectively (e.g., they are x and y in Fig.[Z). Each such endpoint of
« is on a side of a funnel and thus lies on M. For simplicity of discussion, we
assume that each such endpoint of o is on M but not on «. In other words,
a does not include these two endpoints. With this assumption, we mean that
these two endpoints of « are considered as part of the Type-III edges, and the
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visibility region of the two endpoints of a will be found when we compute the
visibility region of the Type-III edges.

Let Vis(a, F) (resp., Vis(a, canal(z,y))) denote the visibility region of « in
F (resp., canal(x,y)). We will show below that in this case, Vis(a, F) is either
Vis(a, canal(z,y)), or the union of Vis(a, canal(z,y)) and the visibility region
of one or both gates of canal(z,y) in F (not in F \ canal(z,y)). For example,
in the situation of Fig. @ (with P; = P*), Vis(«, F) = Vis(a, canal(x, y)).

Recall that  and y are the two funnel apices of canal(x,y). For its gate dx, if
the vertex d € P*, then we call dx an illumination gate, and we also assume that
dx does not include its two end vertices since they are on M and are treated as
part of the Type-III edges. Similarly, if z € P*, then yz is an (open) illumination
gate. Note that canal(z,y) may have zero, one, or two illumination gates (e.g.,
the example in Fig. 2 has zero illumination gates with P; = P*). The following
lemma (with proof omitted) characterizes the visibility region Vis(a, F).

Lemma 3. The visibility region Vis(o, F) is the union of Vis(a,canal(z,y))
and the wvisibility region of the (open) illumination gates (if any) of canal(x,y)
in F.

By Lemma B to find Vis(a, F), it suffices to compute Vis(a, canal(zx,y)) and
the visibility region of the illumination gates of canal(x,y) (if any) in F and
then take their union. Note that we can compute Vis(a, canal(z,y)) in linear
time in terms of the number of vertices of canal(z,y) [8].

The Type-III Edges and Illumination Gates. For the Type-III edges
(which lie on OM), since the illumination gates of all bays/canals also lie on
OM, our algorithm computes the visibility region of the union of all Type-III
edges and illumination gates as a whole. Let 7" denote the union of all Type-III
edges and illumination gates. The following lemma (with proof omitted) is due
to the fact that the number of canals is O(h).

Lemma 4. T consists of O(h) convex chains on OM.

3.2 Computing Vis(P*)

Let Visq(P*) denote the union of the visibility regions of the Type-I edges
inside their corresponding bays and the visibility regions of the Type-II edges
inside their corresponding canals which are characterized by Lemmal[2 (i.e., each
point in Visy(P*) is either in a bay that contains Type-I edges or in a canal
with P, = P; = P*). Let Visa(P*) denote the union of the visibility regions of
the Type-II edges inside their corresponding canals which are characterized by
Lemma B (i.e., P, = P* or P; = P*, but P; # P;). Let Vis3(P*) denote the
visibility region of 7" in F. Then by Observation[Iland Lemmas2land [l we have
Vis(P*) = Visy(P*) U Visa(P*) U Viss(P*).

We first compute Vis; (P*) and Visa(P*). By Observation [Il and Lemma [2]
Visy(P*) is the union of all bays/canals each of which either (as a bay) contains
some Type-I edges or (as a canal) satisfies Lemmal[2 Visy(P*) can be computed
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in totally O(n) time by using the algorithm in [§] since no two different canals
intersect in their interior. Henceforth, we focus on computing Viss(P*).

When computing Viss(P*) in F, we can ignore all bays/canals involved in
Visy(P*) since they are entirely in Visy (P*) (i.e., we treat these bays/canals as
being inside the obstacles defining them). But, the canals involved in Visy(P*)
cannot be ignored since some points in such a canal canal(z,y) that are not
visible to the Type-II edges in canal(z,y) can still be visible to other boundary
portions of P*. In the discussion below, we assume all bays/canals contained in
Vis1(P*) have been ignored. In other words, each bay considered below contains
no Type-I edges, and if a canal contains some Type-II edges, then only one of
the two obstacles defining the canal is P*.

Consider an (open) illumination gate xd of a canal canal(z,y). We may
view xd as having two “sides”, one (called the canal side) facing the inside
of canal(x,y) and the other (called the ocean side) facing the ocean M. A point
in F visible to xd must be visible to a side of xd. In other words, the visibil-
ity region of xd in F is the union of the visibility regions of its two sides. By
Lemmal[ll the visibility polygon of the canal side of zd is a subset of canal(z, y).
By the definition of illumination gates of the canal canal(x,y), the obstacle on
which the vertex d lies is P*. Let a be the set of the Type-II edges contained
in canal(z,y). We can show that the visibility polygon of the canal side of zd
is a subset of the visibility polygon of « in canal(z,y), which is contained in
Visa(P*). The details are omitted. Thus, when computing Visz(P*), we can ig-
nore the visibility polygon of the canal side of xd. For this purpose, we view zd
as two obstacle edges that are close infinitely to each other, and these two edges
connect the two obstacles that define canal(x,y) into one obstacle. Further, the
edge of xd that is adjacent to M is still viewed as an edge in 7', i.e., it is used
to compute the visibility region of the ocean side of xd later; but, the other edge
of zd is not treated as an edge of 7. For the other gate yz of canal(z,y), if
yz is not an illumination gate, then the canal canal(x,y) now becomes a bay
with yz as its gate. Otherwise, we do the same thing on yz, and the interior of
canal(z,y) can be ignored in computing Viss(P*). We process each illumination
gate of a canal in this way. Processing all illumination gates of the canals (which
satisfy Lemma [3]) takes O(n) time. Then, we obtain a new obstacle set, and all
illumination gates of the canals satisfying Lemma 3] now become obstacle edges
in?.

Further, we view all illumination gates of the bays/canals contained in
Visi(P*) also as obstacle edges in 1" (since we ignore these bays/canals). Hence,
7 now has only obstacle edges and no more illumination gates. WLOG, we still
use P, P’, and M to denote such structures built on the new obstacle set. Note
that P’ still consists of O(h) convex polygons of totally O(n) vertices and 1" still
consists of O(h) convex chains on OM. Below, we compute Viss(P*) of 1.

In addition to the corridor structure, the efficiency of our algorithm is also
due to the property of 7 in Lemma [dl For this, we generalize the SO algorithm
[18] for a single line segment to convex chains.
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Fig.3. The segments in S(v) are parti- Fig.4. Illustrating the case when u; and
tioned in two sorted lists (left and right)  w;4+1 are on the same obstacle edge

We first compute a set S’ of line segments in which each segment uv connects
two mutually visible obstacle vertices (u and v) and has an extension end on 7.
The segments of S’ adjacent to each obstacle vertex are sorted by their slopes.
The set S can be computed in O(n?) time [9] and |S’| = O(n?). By applying the
SO algorithm, Vis3(P*) may be computed in O(|S’|?) time. Since 7" may have
2(n) edges, |S’| = 2(n?) is possible. Our idea is to extend the SO algorithm
and use a subset S of S’ with |S| = O(nh), as follows.

We compute the set S by removing some segments from S’. For each segment
uv € S, if one of u and v is on a convex chain v € 7" and wv is not tangent to
7, then we remove uv from S’ (if one of v and v is an endpoint of v, then wv is
considered to be tangent to 7). Further, if wv is an edge of 7, we also remove
it from S’ (alternatively, we could keep such wv and modify the following algo-
rithm accordingly although the running time may be the same). The remaining
segments in S’ constitute the set S, which can be obtained in O(n?) time.

For each obstacle vertex v, denote by S(v) the set of segments in S that
are incident to v; the segments in S(v) are sorted by their slopes (this is done
when constructing S). For each obstacle vertex v € 7', we perform a rotational
sweeping on v using S(v); this is done exactly as in the SO algorithm, in O(]S(v)])
time. The sweeping on all obstacle vertices not on 1" generates O(|S|) triangles
altogether, in O(n + |S]) time. Below, we discuss the vertices on 7.

For the vertices on 7", we do not sweep each such vertex individually. Instead,
we perform, for each convex chain v € 7', a rotational sweeping on ~ as a whole.
For this, all segments of S adjacent to v are maintained in two cyclically sorted
lists. Specifically, let S() be the set of segments in S adjacent to . Thus, for
each segment uv € S(v), either w or v is on « (say, v € 7). According to our
construction of S, uv must be tangent to v at v. If we view vu as a segment
directed from v to u, we say vu is a left segment (resp., right segment) of S(~) if
~v is on the left (resp., right) of the directed vu. We partition S(v) into two lists:
one list contains the left segments of S(y) and the other list contains the right
segments of S() (see Fig. Bl); each list is sorted by the slopes of its segments.

Using each list of S(7) (say, the left segment list), we perform a sweeping on
~ by rotating a ray that keeps its origin on « and is tangent to ~ at its origin,
as follows. Suppose the rotating ray currently contains a segment v;u; in the list
with v; € 7 (i.e., the origin of the ray is at v; and the direction of the ray is from
v; to u;), and v;1u41 is the next segment in the list to be encountered with



226 D.Z. Chen and H. Wang

Fig. 5. Illustrating the case when u; and Fig. 6. Illustrating the case when w; and
u;4+1 are not on the same obstacle edge and wu;41 are not on the same obstacle edge and
e is incident to neither u; nor w;+1. Both e is incident to u;+1. The point ¢; must be
¢ and g;+1 must be on e. on e.

vity1 € v (see Fig.[). Note that v; = v;11 is possible. Let vy(v;, v;11) denote the
portion of « from v; counterclockwise to v;41. If u; and w;41 are on the same
obstacle edge (see Fig. M), then the sweeping generates a region that is bounded
by viui, witit1, Vig1Uit1, and y(v;, vip1). Further, if v; # v;11, then we extend
each edge of v(v;,v;+1) into this region until it hits w;u;+1, thus partitioning
the region into g triangles where g is the number of edges on v(v;, vit1). If u;
and wu;11 are not on the same obstacle edge, then let ¢; (resp., ¢i+1) be the
extension end of v;u; (resp., viy1ui+1) from v; to u; (resp., v;41 to u;41). Note
that during the sweeping from v;u; to v;yi1u;41, the hitting end of the rotating
ray (i.e., the end of the ray that is not its origin and hits an obstacle) must be
moving on a single obstacle edge e (or at infinity). In other words, during the
above sweeping, the rotating ray must be hitting e continuously such that the
portion of the rotating ray between its origin on ~ and its intersection with e lies
entirely in the free space. Note that the vertex u; (resp., u;4+1) is incident to two
obstacle edges. Depending on whether e is one of the obstacle edges incident to
u; or u;+1, there are several cases. If e is incident to neither w; nor w;y1, then
the two extension ends ¢; and ¢;11 must be on e (see Fig. []). In this case, the
sweeping generates a region bounded by v;q;, ¢iGit1, vit1¢i+1, and (v, vig1),
and triangulates this region in a similar way if v; # v;41 (see Fig. B)). If e is
incident to u;11 (see Fig.[d]), then g; is on e, and the sweeping generates a region
bounded by v;qi, qitiit+1, wir1vir1, and y(v;,v;41) and triangulates this region
similarly if v; # v;41 (see Fig. ). The case when e is incident to u; can be
handled similarly.

Since each edge of v introduces at most two additional triangles (one for each
list of S(7)) and 7 has O(n) edges, the entire sweeping algorithm on 1" generates
O(n+|S]) triangles. In summary, the sweeping on all obstacle vertices generates
totally O(n + |S]) triangles. The proof of Lemma [l is omitted.

Lemma 5. Vis3(P*) is the union of all triangles generated by the sweeping
algorithm.

Therefore, we have obtained Visz(P*) as the union of O(n + |S|) triangles;
computing the union takes O((n+|S|)?) time [18]. Below, we prove |S| = O(nh).
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We define three subsets S, S, and S3 of S. A segment uv € S is in S; if and
only if v is contained in a bay/canal and uv is not a gate of that bay/canal. A
segment uv € S is in S if and only if uv is tangent to a convex obstacle of P’ at u
or v, or uv is an edge of an obstacle in P’. For S3, a segment uv € S is in S3 if and
only if uv has an endpoint on 7. By our construction of S, if uv has an endpoint
(say u) on 7', then wv must be tangent to the convex chain of 7" that contains
u. Since 7" has O(h) convex chains, |S3| = O(nh) holds. Note that Ss N S3 # ()
is possible. We can prove |S1| = O(n), |S2| = O(nh), and S = S; U Sz U Ss. The
proofs are omitted. Hence, |S| = O(nh) follows. In summary, we can compute
Visg(P*) as the union of O(nh) triangles in O(n?h?) time.

It remains to compute Vis(P*) = Visi(P*) U Visa(P*) U Visg(P*). Since
Vis1(P*) and Visa(P*) consist of simple polygons of totally O(n) complexity,
we triangulate them into O(n) triangles in O(n) time [3]. Thus, we have Vis(P*)
as the union of O(nh) triangles, which can be computed in O(n?h?) time [I8].

Theorem 1. If P* is a simple polygon, then the visibility polygon of P* among
the obstacles in P can be computed in O(n?h?) time.

4 The Convex Version

We sketch our O(n + h*) time algorithm for the convex version. A complete
description is in our full paper. Our algorithm generalizes the SO algorithm [18].
We call a line segment tangent to two convex obstacles of P at the two end-
points of the segment a bitangent. A bitangent is free if it lies entirely in the
free space F. The total number of free bitangents of P is O(h?). In the following
discussion, unless otherwise specified, a bitangent always refers to a free one.

We first compute all bitangents of the obstacles in P as well as their extension
ends. We retain only those bitangents each of which either has an extension end
on P* or has an endpoint on P*, and let B denote the resulting bitangent set.
For each obstacle A € P, let B(A) be the set of bitangents in B each of which
has an endpoint on 0A. We further partition B(A) into two subsets B;(A) and
B.(A), as follows. Consider a bitangent uv € B(A) and assume u is on A. If
A = P*, then uv is in By(P*) (resp., B.(P*)) if P* is on the left (resp., right) of
uw directed from u to v. If A # P*, wv has an extension, say a, on P*. Then, uv is
in B;(A) (resp., Br(A)) if A is on the left (resp., right) of au directed from a to .
Further, the bitangents in B;(A) (resp., B,(A)) are sorted cyclically around A by
their slopes. In other words, when rotating a line tangent to A counterclockwise
around A, the rotating line encounters the bitangents of 5;(A) (resp., B,(A4)) in
this sorted order. Clearly, |B| = O(h?).

For each obstacle A € P, we perform a rotational sweeping on the vertices
along JA and the bitangents of B,.(A) (resp., Bi(A)), as follows.

Let the bitangents of B,.(A) be {t1,t2,...,t4} sorted counterclockwise around
A.Foreach 1 <i < g,lett; = v;u; with v; lying on A, and the two extension ends
of t; be p; and ¢; with p; lying on P* (if ¢; has an endpoint on P*, then let p; be
that endpoint). Let I(¢;) denote the line containing ¢;. We rotate a line [ tangent
to A counterclockwise around A starting at the point v;. When [ encounters a
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Gi+1

Fig. 7. [llustrating the situation when v; € Fig. 8. [llustrating the situation when u; €
piu; and A’ is below the line I(t;) (t; = piv; and A’ is above the line I(t;) (¢; =
viui) viui)

bitangent in B,.(A), two regions, called pseudo-triangles will be generated, such
that each point in the two pseudo-triangles is visible to P*. We will show later
that Vis(P*) is the union of such pseudo-triangles for all obstacles in P.

Suppose the rotating line [ currently overlaps with I(¢;) for ¢; € B,.(A). Note
that either v; € p;u; (see Fig.[M) or u; € p;v; (see Fig. B) is possible. We only
discuss the former case and the other case is similar.

If v; € p;u;, then let A’ be the convex obstacle in P on which w; lies. The
obstacle A’ can be either above or below the line I(¢;). We only discuss the case
where A’ is below [(t;) (see Fig. [[]) and the other case is similar.

At this moment, the rotating line [ overlaps with [(¢;). We continue rotating [
counterclockwise until encountering ¢;41. Then, we produce two pseudo-triangles
(defined below). Let p be the intersection of I(¢;) and I(t;+1) (p = v; = viy1 18
possible). Let A” be the convex obstacle in P on which g; lies. It is possible that
ui11 is also on A” | in which case t;11 is tangent to A” at w; 1. If u;11 isnot on A”,
then ¢;+1 must be on A” (see Fig.[D). Suppose u; 11 ¢ A”. Then the first pseudo-
triangle (refer to Fig. [) is bounded by pg;, pgi+1, and the boundary portion of
A" between ¢; and g;+1. The second pseudo-triangle is bounded by pv;, pvit1,
and the boundary portion of A between v; and v;11. (When p = v; = v;41, the
second pseudo-triangle is degenerated to 0.) If u; 11 € A”, then the first pseudo-
triangle is bounded by pq;, puiy1, and the boundary portion of A” between ¢; and
ui+1, and the second pseudo-triangle is the same as above. Thus, each pseudo-
triangle is bounded by two line segments and a convex chain on the boundary of
an obstacle in P. Note that when a pseudo-triangle is found, only its two sides
need to be output explicitly (i.e., its base is represented implicitly). In this way,
each pseudo-triangle is output in O(1) time and is represented in O(1) space.

After we perform rotational sweeping on all obstacles in P as above, we can
obtain O(h?) pseudo-triangles. We can show that the visibility polygon Vis(P*)
is the union of all generated pseudo-triangles and their union can be computed
in O(n + h*) time. The details are omitted.
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Abstract. Given a graph G and an integer k, the FEEDBACK VERTEX SET (FVS)
problem asks if there is a vertex set 7 of size at most & that hits all cycles in the
graph. Bodlaender (WG °91) gave the first fixed-parameter algorithm for FVS
in undirected graphs. The fixed-parameter tractability status of FVS in directed
graphs was a long-standing open problem until Chen et al. (STOC ’08) showed
that it is fixed-parameter tractable by giving an 4kf1p00) algorithm. In the subset
versions of this problems, we are given an additional subset S of vertices (resp.
edges) and we want to hit all cycles passing through a vertex of S (resp. an edge
of §). Indeed both the edge and vertex versions are known to be equivalent in the
parameterized sense. Recently the SUBSET FEEDBACK VERTEX SET in undi-
rected graphs was shown to be FPT by Cygan et al. (ICALP "11) and Kakimura
et al. (SODA ’12). We generalize the result of Chen et al. (STOC ’08) by showing
that SUBSET FEEDBACK VERTEX SET in directed graphs can be solved in time
220(k)n0(1), i.e., FPT parameterized by size k of the solution. By our result, we
complete the picture for feedback vertex set problems and their subset versions
in undirected and directed graphs.

The technique of random sampling of important separators was used by Marx
and Razgon (STOC °11) to show that UNDIRECTED MULTICUT is FPT and
was generalized by Chitnis et al. (SODA ’12) to directed graphs to show that
DIRECTED MULTIWAY CUT is FPT. In this paper we give a general family of
problems (which includes DIRECTED MULTIWAY CUT and DIRECTED SUBSET
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of important separators and obtain a set which is disjoint from a minimum solu-
tion and covers its “shadow”. We believe this general approach will be useful for
showing the fixed-parameter tractability of other problems in directed graphs.

1 Introduction

The FEEDBACK VERTEX SET (FVS) problem has been one of the most extensively
studied problems in the parameterized complexity community. Given a graph G and
an integer k, it asks if there is a set T of size at most k£ which hits all cycles in G.
FVS in both undirected and directed graphs was shown to be NP-hard by Karp [18]]. A
generalization of the FVS problem is the SUBSET FEEDBACK VERTEX SET (SFVS)
problem: given a subset S C V (resp. S C E), find a set T of size at most k such that T
hits all cycles passing through a vertex of S (resp. an edge of S). It is easy to see that
S =1V (resp. S = E) gives the FVS problem.

As compared to undirected graphs, FVS behaves differently on digraphs. In particu-
lar the trick of replacing each edge of an undirected graph G by arcs in both directions
does not work: every feedback vertex set of the resulting digraph is a vertex cover of G
and vice versa. Any other simple transformation does not seem possible either and thus
the directed and undirected versions are very different problems. This is reflected in
the best known approximation ratio for the directed versions as compared to the undi-
rected problems: FVS in undirected graphs has an 2-approximation [[1]] while FVS in
directed graphs has an O(log [V |loglog |V |)-approximation [13124]. For SFVS in undi-
rected graphs there is an 8-approximation [[14] while the best-known approximation in
directed graphs is O(min{log|V|loglog|V|,log?|S|}) [13].

Rather than finding approximate solutions in polynomial time, one can look for exact
solutions in time that is superpolynomial, but still better than the running time obtained
by brute force solutions. In both the directed and the undirected versions of the feed-
back vertex set problems, brute force can be used to check in time nO%W) if a solution
of size at most k exists: one can go through all sets of size at most k. Thus the prob-
lem can be solved in polynomial time if the optimum is assumed to be small. In the
undirected case, we can do significantly better: since the first FPT algorithm for FVS
in undirected graphs by Bodlaender [3]] almost 21 years ago, there have been a num-
ber of papers [2I5l6/17]] giving faster algorithms and the current fastest algorithm runs
in 0*(3%) time [10] (the O* notation hides all factors which are polynomial in size of
input). That is, undirected FVS is fixed-parameter tractable parameterized by the size
of the cutset we remove. Recall that a problem is fixed-parameter tractable (FPT) with
a particular parameter p if it can be solved in time f (p)no(l), where f is an arbitrary
function depending only on p; see [12/15122] for more background. For digraphs, the
fixed-parameter tractability status of FVS was a long-standing open problem (almost
16 years) until Chen et al. [[7] resolved it by giving an O*(4¥k!) algorithm. This was
recently generalized by Bonsma and Lokshtanov [4] who gave a O* (47.5kk!) algorithm
for FVS in mixed graphs, i.e., graphs having both directed and undirected edges.

In the more general SUBSET FEEDBACK VERTEX SET problem, given an additional
subset S of vertices and we want to find a set T of size at most k that hits all cycles pass-
ing through a vertex of S. In the edge version we are given a subset S C E(G) and we
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want to hit all cycles passing through an edge of S. The vertex and edge versions are in-
deed known to be equivalent in the parameterized sense in both undirected and directed
graphs. Recently Cygan et al. [[11] and independently Kakimura et al. [16] have shown
that SUBSET FEEDBACK VERTEX SET in undirected graphs is FPT parameterized by
the size of the solution. Our main result is that SUBSET FEEDBACK VERTEX SET in
digraphs is also fixed-parameter tractable parameterized by the size of the solution:

Theorem 1. (main result) SUBSET FEEDBACK VERTEX SET (SUBSET-DFVS) in di-
rected graphs can be solved in O* (220(k>) time.

Our Techniques. As a first step, we use the standard technique of iterative compression
[23] to argue that it is sufficient to solve the compression version of SUBSET-DFVS,
where we assume that a solution T of size k+ 1 is given in the input and we have
to find a solution of size k. Our algorithm for the compression problem is inspired
by the algorithm of Marx and Razgon [21]] for undirected MULTICUT and Chitnis et
al. [8] for DIRECTED MULTIWAY CUT. We define the “shadow” of a solution X as
those vertices that are disconnected from T (in either direction) after the removal of
X. Our goal is to ensure that there is a solution whose shadow is empty, as finding
such a shadowless solution can be a significantly easier task. For this purpose, we use
the technique of “random sampling of important separators,” which was introduced in
[21] for undirected graphs and was generalized to directed graphs in [8]]. We present
this approach here in generic way that can be used for the following general family of
problems:

Finding an F-transversal for some 7-connected F

Inpur : A directed graph G = (V,E), a positive integer k, a set T C V and a set
F ={F,F,...,F;} of subgraphs such that F is T-connected, i.e., V i € [g] each
vertex of F; can reach some vertex of T by a walk completely contained in F; and
is reachable from some vertex of T by a walk completely contained in F;.
Parameter : k

Question : Does there exist an F-transversal W C V with |[W| <k, i.e., a set W
such that F; W # 0 for every i € [¢]?

It is easy to see that the above family includes DIRECTED MULTIWAY CUT (take
T as the set of terminals and F as the set of all walks between different terminals)
and the compression version of SUBSET-DFVS (take T as the solution that we want
to compress and F as set of all S-closed-walks). For this family of problems, we can
invoke the random sampling of important separators technique and obtain a set which is
disjoint from a minimum solution and covers its shadow. Given such a set, we can use
(some problem specific variant of) the “torso operation” to find an equivalent instance
that has a shadowless solution. Therefore, we can focus on the simpler task of finding a
shadowless solution. We believe this will be a useful opening step in the design of FPT
algorithms for other transversal and cut problems on digraphs.

In the case of undirected MULTICUT |[21]], if there was a shadowless solution, then
the problem could be reduced to an FPT problem called ALMOST 2SAT. In the case of
DIRECTED MULTIWAY CUT [8], if there was a solution whose shadow is empty, then
the problem could be reduced to the undirected version which was known to be FPT.
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For SUBSET-DFVS, the situation is a bit more complicated. As mentioned above, we
first use the technique of iterative compression to reduce the problem to an instance
where we are given a solution 7 and we want to find a disjoint solution of size at most
k. We define the “shadows” with respect to the solution 7' that we want to compress
whereas in [8], the shadows were defined with respect to the terminal set 7. The “torso”
operation we define in this paper is specific to the SUBSET-DFVS problem and differs
from the one defined in [8]. Even after ensuring that there is a solution 7’ whose shadow
is empty, we are not done unlike in [8]. We then analyze the structure of the graph G\ T’
and use “pushing” to branch on some important separators. Then for each branch, we
need to do the whole process of random sampling of important separators to find a
solution whose shadow is empty. This is followed again by branching on important
separators. We repeat this two-step process until the budget k becomes zero.

2 Preliminaries

Observe, that a directed graphs contains no cycles if and only if it contains no closed-
walks, for this reason throughout the article we use the term closed-walks, since it is
sometimes easier to show a closed walk and avoid discussion whether it is a simple
cycle or not. A feedback vertex set is a set of vertices that hits all the closed-walks of
the graph.

Definition 2. (feedback vertex set) Let G be a directed graph. A set T CV(G) is a
feedback vertex set of G if G\ T does not contain any closed-walks.

This gives rise to the DIRECTED FEEDBACK VERTEX SET (DFVS) problem where we
are given a directed graph G and we want to find if G has a feedback vertex set of size
at most k. DFVS was shown to be FPT by Chen et al. [7], closing a long-standing open
problem in the parameterized complexity community.

In this paper we consider a generalization of the DFVS problem where given a set
S CV(G), we ask if there exists a vertex set of size < k that hits all closed-walks passing
through S.

SUBSET DIRECTED FEEDBACK VERTEX SET (SUBSET-DFVS)

Input : A directed graph G = (V,E), aset S C V(G) and a positive integer k.
Parameter : k

Question : Does there exist a set T C V(G) with |T| < k such that G\ T has no
closed walk containing a vertex of S?

It is easy to see that SUBSET-DFVS is a generalization of DFVS by setting S =
V(G). We also define an equivalent variant of SUBSET-DFVS where the set S is a
subset of edges. First we define a special type of closed-walks:

Definition 3. (S-closed-walk) Let G = (V,E) be a digraph and S C E(G). A closed
walk (starting and ending at same vertex) C in G is said to be a S-closed-walk if it
contains an edge from S.
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EDGE SUBSET DIRECTED FEEDBACK VERTEX SET (EDGE-SUBSET-
DFVS)

Input : A directed graph G = (V,E), aset S C E(G) and a positive integer k.
Parameter : k

Question : Does there exist a set T C V(G) with |T| < k such that G\ T has no
S-closed-walks?

2.1 Iterative Compression

We now use the technique of iterative compression introduced by Reed et al. [23]]. It
has been used to obtain faster FPT algorithms for various problems [6/7/21]]. In the first
step we transform the SUBSET-DFVS problem into the following problem:

SUBSET-DFVS REDUCTION

Input : A directed graph G = (V,E), aset S C E(G), a positive integer k and a set
T CV such that G\ T has no S-closed-walks .

Parameter : k+ |T|

Question : Does there exist a set T’ C V(G) with |T’| < k such that G\ T’ has no
S-closed-walks?

Lemma 4. [*]E] (power of iterative compression) SUBSET-DFVS can be solved by
O(n) calls to an algorithm for the SUBSET-DFVS REDUCTION problem.

Now we transform the SUBSET-DFVS REDUCTION problem into the following prob-
lem whose only difference is that the subset feedback vertex set in the output must be
disjoint from the one in the input:

DISJOINT SUBSET-DFVS REDUCTION

Input : A directed graph G = (V,E), aset S C E(G), a positive integer k and a set
T CV such that G\ T has no S-closed-walks.

Parameter : k+ |T|

Question : Does there exist a set T/ C V(G) with |T’| < k such that TNT’' = @ and
G\ T’ has no S-closed-walks?

Lemma 5. [«] (adding disjointness) SUBSET-DFVS REDUCTION can be solved by
021 calls to an algorithm for the DISJOINT SUBSET-DFVS REDUCTION problem.

From Lemmas [ and[3 an FPT algorithm for DISJOINT SUBSET-DFVS REDUCTION
translates into an FPT algorithm for SUBSET-DFVS with an additional blowup factor
of 0(2/"In).

3 Covering the Shadow of a Solution

The purpose of this section is to present the “random sampling of important separators”
technique used in [8] for DIRECTED MULTIWAY CUT in a generalized way that applies
to SUBSET-DFVS as well. The technique consists of two steps:

! The proofs of the results labeled with + have been deferred to the full version of the paper.
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1. First find a set Z small enough to be disjoint from a solution X (of size < k) but
large enough to cover the “shadow” of X.

2. Then define a “torso” operation which uses the set Z to reduce the problem instance
in such a way that X becomes a shadowless solution.

In this section, we define a general family of problems for which Step 1 can be ef-
ficiently performed. The general technique to execute Step 1 is very similar to what
was done for DIRECTED MULTIWAY CUT [8] and so we defer most of the proofs to
the full version of the paper. In Section [4] we show how Step 2 can be done for the
specific problem of DISJOINT SUBSET-DFVS REDUCTION. First we start by defining
shadows:

Definition 6. (separator) Letr G = (V,E) be a directed graph. Given two disjoint non-
empty sets X, Y CV we call a set W of vertices as an X —Y separator if W is disjoint
Sfrom X UY and there is no walk from X to Y in G\ W. A set W is a minimal X —Y
separator if no proper subset of W is an X —Y separator.

Definition 7. (shadow) Let G be graph and W C V(G). Then for v € V(G) we say that
v is in the “forward shadow” fgr (W) of W (with respect to T), if W is a T — {v}
separator in G. Similarly, we say that v is in the “reverse shadow” rg (W) of W (with
respectto T), if W is a {v} — T separator in G.

That is, we can imagine T as a light source with light spreading on the directed edges.
The forward shadow of W is the set of vertices that remain dark if the set W blocks the
light. In the reverse shadow, we imagine that light is spreading on the edges backwards.
We abuse the notation slightly and write v — T separator instead of {v} — T separator.
We also drop G and T from the subscript if they are clear from the context. Note that W
itself is not in the shadow of W (as a T'— v or v — T separator needs to be disjoint from
T and v), that is, W and fg7(W)Urg (W) are disjoint.

Let G = (V,E) be a directed graph and T C V(G). Consider F = {F|,F>,...,F,}
which is a set of subgraphs of G. We define the following property:

Definition 8. (T-connected) Let F = {F\,F,,...,F,} be a set of subgraphs of G. Then
F is said to be T-connected if V i € [q] , each vertex of the subgraph F; can reach some
vertex of T by a walk completely contained in F; and is reachable from some vertex of
T by a walk completely contained in F;.

For a set F of subgraphs of G, a transversal is a set of vertices which hits each subgraph
in F. We note that the subgraphs in F are given implicitly to us.

Definition 9. (F-transversal) Let F = {F\,F,...,F;} be a set of subgraphs of G. Then
W is said to be an F-transversal if V i € [g] we have F;NW # 0.

The main theorem of this section is the following:

Theorem 10. [«](randomized covering of the shadow) Let T C V(G). In O* (4%) time,
we can construct a set Z C V(G) such that for any set of subgraphs F which is T-
connected, if there exists an JF-transversal of size < k, then the following holds with

probability 272°Y: there is an F-transversal X of size < k satisfying
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1. XNZ=0.
2. Z covers the shadow of X.

We also prove the following derandomized version of Theorem[1Qt

Theorem 11. [x|(deterministic covering of the shadow) Ler T C V(G). In O* (220(k))

. ok
time, we can construct a set {Z1,2,,...,Z;} wheret = 220 log2 n such that for any set
of subgraphs F which is T-connected, if there exists an F-transversal of size < k, then
there is an F-transversal X of size < k such that for at least one i € [t] we have

1. XNz =0.
2. Z; covers the shadow of X.

In DIRECTED MULTIWAY CUT, T was the set of terminals and the set & was the set
of all walks from one vertex of 7 to another vertex of T. In SUBSET-DFVS , the set T
is the solution that we want to compress and F is the set of all closed S-walks passing
through some vertex of 7.

We say that an F-transversal T’ is shadowless if f(T')Ur(T") = 0. Note that if 7’
is a shadowless solution, then in the graph G\ T’, each vertex is reachable from some
vertex of T and can reach some vertex of T. In Section [3] we will see how we can
make progress in DISJOINT SUBSET-DFVS REDUCTION if there exists a shadowless
solution. So we would like to transform the instance in such a way that ensures the
existence of a shadowless solution, by taking the torso (Section ) and make progress
by using the BRANCH algorithm from Section[3]

4 Reducing the Instance by Torso

We use the algorithm of Theorem[IT]to construct a set Z of vertices that we want to get
rid of. The second ingredient of our algorithm is an operation that removes a set of ver-
tices without making the problem any easier. This transformation can be conveniently
described using the operation of taking the forso of a graph. From this point onwards
in the paper, we do not follow [8]]. In particular, the forso operation is problem-specific.
For DISJOINT SUBSET-DFVS REDUCTION, we define it as follows:

Definition 12. (torso) Let (G,S,T, k) be an instance of DISJIOINT SUBSET-DFVS RE-
DUCTION and C C V(G). The graph torso(G,C) has vertex set C and there is (directed)
edge (a,b) in torso(G,C) if there is an a — b walk in G whose internal vertices are not
in C. Furthermore, we add the edge (a,b) to S if there is an a — b walk in G which
contains an edge from S and whose internal vertices are not in C.

In particular, if a,b € C and (a,b) is a directed edge of G, then torso(G,C) contains
(a,b) as well. Thus torso(G,C) is a supergraph of the subgraph of G induced by C. The
following lemma shows that the torso operation preserves S-closed-walks inside C.

Lemma 13. [x] (torso preserves S-closed-walks) Let G be a directed graph and C C
V(G). Let G’ =torso(G,C),v € Cand W C C. Then G\W has an S-closed-walk passing
through v if and only if G\ W has an S-closed-walk passing through v.
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If we want to remove a set Z of vertices, then we create a new instance by taking the
torso on the complement of Z:

Definition 14. Ler I = (G,S,T,k) be an instance of DISJOINT SUBSET-DFVS RE-
DUCTION and Z C V(G)\ T. The reduced instance 1/Z = (G',S,T, p) is defined as

- G' =torso(G,V(G)\Z)
— § is modified as specified in Definition[I2]

The following lemma states that the operation of taking the torso does not make the
DiISJOINT SUBSET-DFVS REDUCTION problem easier for any Z C V(G)\ T in the
sense that any solution of the reduced instance I/Z is a solution of the original instance
1. Moreover, if we perform the torso operation for a Z that is large enough to cover
the shadow of some solution 7* and also small enough to be disjoint from 7%, then T*
becomes a shadowless solution for the reduced instance I/Z.

Lemma 15. [«] (creating a shadowless instance) Let I = (G, S, T, k) be an instance of
DISJOINT SUBSET-DFVS REDUCTION and Z C V(G)\ T.

1. IfI is a no-instance, then the reduced instance I /Z is also a no-instance.
2. If I has solution T" with for(T')Urgr(T') CZ and T'NZ =0, then T' is a
shadowless solution of 1/ Z.

For every Z; in the output of Theorem [TIl we use the torso operation to remove the
vertices in Z;. We prove that this procedure is safe by showing the following:

Lemma 16. [x] Let I = (G,S,T,k) be an instance of DISJIOINT SUBSET-DFVS RE-
DUCTION. Let the sets in the output of Theorem[[llbe Z,,Z,,...,Z;. For every i € [t],
let G; be the reduced instance G/ Z;.

1. IfI is a no-instance, then G; is also a no-instance for every i € [t].
2. If I is a yes-instance, then there exists a solution T* of I which is a shadowless
solution of some G| for some j € [t].

5 Finding a Shadowless Solution

Consider an instance (G,S,T,k) of DISJOINT SUBSET-DFVS REDUCTION. First, let
us assume that from each vertex of 7, we can reach an edge of S, since otherwise we
can clearly remove such a vertex from the set 7', without violating the assumption that

G\ T has no S-closed walk. Next, we branch on all 220(k> log2n choices for Z taken
from {Z,Z,,...,Z;} (given by Theorem[IT)) and build a reduced instance I/Z for each
choice of Z. By Lemma[I3] if I is a no-instance then / /Zj is a no-instance for each
J € [t]. If I is a yes-instance, then by Lemmal[I@] there is at least one i € [r] such that /
has a solution 7’ which is a solution, and in fact a shadowless solution, for the reduced
instance 1/Z;.

So for the reduced instance //Z; we know that each vertex in G\ T’ can reach some
vertex of T and can be reached from a vertex of T. Since T’ is a solution for the in-
stance (G, S, T,k) of DISJOINT SUBSET-DFVS REDUCTION, we know that G\ 7’ does
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>

C]_ C2 CS Cl
Fig. 1. We arrange the strong components of G\ 7" in topological order so that the only possible
direction of edges between the strong components is as shown by the blue arrow. We will claim
later that the last component C; must contain a non-empty subset 7y of 7' and further that no

edge of S can be present within C,. This allows us to make some progress as we shall see in
Theorem 2]]

not have any S-closed-walks. Consider a topological ordering say C;,C>,...,Cy of the
strong components of G\ T’, i.e., there can be an edge from C; to C; only if i < j. We
illustrate this in Figure[Il

Definition 17. (starting points of S) Let S~ be the set of starting points of edges in S,
ie,S™={ul| (u,v)eS}

Lemma 18. [x] (properties of C;) Let C; be the last strong component in the topological
ordering of G\ T’ (refer to Figurell)). Then

1. Cy contains a non-empty subset Ty of T.
2. No edge of S is present within Cy.
3. S” is disjoint from Cy.

Since Ty is the subset of T' present in Cy and only edges between strong components can
be from left to right, we have that there are no Tp — (7' \ Tp) walks in G\ 7’. Along with
the third claim of Lemmal[I8] this implies that the solution 7’ contains a Ty — (S~ U (T \
Tp)) separator. We now define a special type of separators:

Definition 19. (important separator) Let G be a digraph and let X,Y C 'V be two
disjoint non-empty sets. A minimal X —Y separator W is called an important X —Y
separator if there is no X —Y separator W' with |W'| < |W| and RZ\W (X)cC Ré\w/ (X),
where Ry (X) is the set of vertices reachable from X in A.

For any X,Y C V(G), the following lemma (proved in [8]) gives an upper bound the
number of important X — Y separators of size at most k:

Lemma 20. [x](number of important separators) Let X,Y C V(G) be disjoint sets in
a directed graph G. Then for every k > 0 there are at most 4* important X —Y separators
of size at most k. Furthermore, we can enumerate all these separators in time O* (4%),

By “pushing”, we have the following theorem:
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Algorithm 1. BRANCH
Input: An instance I = (G, S, T,k) of DISJOINT SUBSET-DFV'S REDUCTION.
Output: A new set of 2°*+IT1) instances of DISJOINT SUBSET-DFVS REDUCTION where the
budget k is reduced.
1: for every non-empty subset 7y of 7: do
2:  Use Lemma[Z0lto enumerate all the at most 4¥ important Ty — (S~ U (T \ Tp)) separators
of size at most k.

3:  Let the important separators be B = {B},B,...,Bn}.
4:  for each i € [m] do
5: Create a new instance Ir, ; = (G \ B;,S,T,k —|B;|) of DISJOINT SUBSET-DFVS RE-

DUCTION.

Theorem 21. [x] (pushing) Either T' contains an important Ty — (S~ U (T \ Tp)) sep-
arator or there is another solution T" of the instance (G,S,T,k) such that |T"| < |T'|
and T" contains an important Ty — (S~ U (T \ Ty)) separator.

Theorem 2]l tells us that there is always a minimum solution which contains an im-
portant 7o — (S~ U (T \ Tp)) separator where T is a non-empty subset of 7. This gives
2|71 — 1 choices for Ty. For each guess of Ty we enumerate all the at most 4% important
To— (S~ U(T\ Tp)) separators of size at most k in time O* (4%) as given by Lemma 20l
This gives the following natural branching algorithm:

6 FPT Algorithm for DISJOINT SUBSET-DFVS REDUCTION

Lemmall6land the BRANCH algorithm together combine to give a bounded-search-tree
FPT algorithm for DISJOINT SUBSET-DFVS REDUCTION as follows:

FPT Algorithm for SUBSET-DFVS
Step 1: At the first step, for a given instance I = (G, S, T, k), use Theorem [T1] to

obtain a set of instances {Z;,2,,...,Z;} where 2200 log? n and Lemmal[I@implies

- If I'is ano-instance, then all the reduced instances G; = G/Z; are no-instances
forall j € []

- IfIis a yes-instance, then there is at least one i € [t] such that there is a solution
T* for I which is a shadowless solution for the reduced instance G; = G/Z;.

. . ok o
So at this step we branch into 22 <) log? n directions.

Step 2 : For each of the instances obtained from the above step, we run the

BRANCH algorithm to obtain a set of 2°*+I71) instances where in each case either
the answer is NO, or the budget k is reduced.

We then repeatedly perform Steps 1 and 2. Note that for every instance, one execution
. . ok . . .
of steps 1 and 2 gives rise to 2° “ log? n instances such that for each instance, either we
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know that the answer is NO or the budget k has decreased, because we have assumed
that from each vertex of T one can reach the set S~, and hence each important separator
is non-empty. Therefore, considering a level as an execution of Step 1 followed by Step
2, the height of the search tree is at most k. Each time we branch into at most 220 log’n
directions (as |T| is at most k + 1). Hence the total number of nodes in the search tree

k
is (Zzo(k) log® n) .
Lemma 22. [x] For every n and k < n, we have (logn)* < (2klogk)* + ok

k k
So the total number of nodes in the search tree is (220(k> log? n) = (220(k)) (log?n)k =
2
22°N(1og?n)k < (22°Y) ( (2klogk)® + ) < 22°Y32. We then check the leaf nodes
( g — g 2/( —
and see if there are any S-closed-walks left even after the budget k has become zero. If
the graph at least one of the leaf nodes is S-closed-walk free, then the given instance is a

. o . o ok .
yes-instance. Otherwise it is a no-instance. This gives an O* (22 ( >) algorithm for DIs-

JOINT SUBSET-DFVS REDUCTION. By Lemma ] we have an 0*(220(k>) algorithm
for the SUBSET-DFVS problem.

7 Conclusion and Open Problems

In this paper we gave the first fixed-parameter algorithm for DIRECTED SUBSET FEED-
BACK VERTEX SET parameterized by the size of the solution. Our algorithm used var-
ious tools from the FPT world such as iterative compression, bounded-depth search
trees, random sampling of important separators, etc. We also gave a general family of
problems for which we can do random sampling of important separators and obtain a set
which is disjoint from a minimum solution and covers its shadow. We believe this gen-
eral approach will be useful for deciding the fixed-parameter tractability status of other
problems in digraphs where we do not know that much techniques unlike undirected
graphs.

The next natural question is whether SUBSET-DFVS has a polynomial kernel or
can we rule out such a possibility under some standard assumptions? The recent devel-
opments [9419/20] in the field of kernelization may be useful in answering this ques-
tion. Another question is to try and reduce the complexity of our algorithm to single
exponential. In the field of exact exponential algorithms, Razgon gave a O(1.9977")
algorithm for DEVS. It would be interesting to break the trivial 2"7n°() barrier for
SUBSET-DFVS.
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Abstract. We study the boundary of tractability for the MAx-CuT
problem in graphs. Our main result shows that MAX-CuT above the
Edwards-Erdés bound is fixed-parameter tractable: we give an algorithm
that for any connected graph with n vertices and m edges finds a cut of
size
m n-—1 k
2 + 4 +
in time 20 . n*, or decides that no such cut exists.
This answers a long-standing open question from parameterized com-
plexity that has been posed a number of times over the past 15 years.
Our algorithm is asymptotically optimal, under the Exponential Time
Hypothesis, and is strengthened by a polynomial-time computable kernel
of polynomial size.

Keywords: Algorithms and data structures, maximum cuts, combina-
torial bounds, fixed-parameter tractability.

1 Introduction

The study of cuts in graphs is a fundamental area in theoretical computer science,
graph theory, and polyhedral combinatorics, dating back to the 1960s. A cut
of a graph is an edge-induced bipartite subgraph, and its size is the number
of edges it contains. Finding cuts of maximum size in a given graph was one of
Karp’s famous 21 NP-complete problems [18]. Since then, the MAX-CUT problem
has received considerable attention in the areas of approximation algorithms,
random graph theory, combinatorics, parameterized complexity, and others; see
the survey [26].

As a fundamental NP-complete problem, the computational complexity of
MAX-CUT has been intensively scrutinized. We continue this line of research and
explore the boundary between tractability and hardness, guided by the question:
Is there a dichotomy of computational complexity of MAX-CUT that depends on
the size of the maximum cut?

* Due to space constraints, several proofs and details were omitted. A full version of
the paper can be found at http://arxiv.org/abs/1112.3506.
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This question was already studied by Erdés [11] in the 1960s, who gave a
randomized polynomial-time algorithm that in any n-vertex graph with m edges
finds a cut of size at least m/2. Erdés [11, [12] also (erroneously) conjectured
that the value m/2 can be raised to m/2 + em for some € > 0; only much
later it was shown [15, 24] that finding cuts of size m/2 4+ em is NP-hard for
every € > 0. Furthermore, the MAX-CUT GAIN problem—maximize the gain
compared to a random solution that cuts m/2 edges—does not allow constant
approximation [19] under the Unique Games Conjecture, and the best one can
hope for is to cut a 1/2+4 2(e/log(1/¢)) fraction of edges in graphs in which the
optimum is 1/2 + ¢ [6].

However, the lower bound m/2 can be increased, by a sublinear function:
Edwards [9, 10] in 1973 proved that a cut of size

1
m/2+ ¢ (V8m+1-1) (1)
always exists, and for connected graphs this can be further increased to
m/2+ (n—1)/4, (2)

which is always at least as large as ([II). Thus, any graph with n vertices, m edges
and ¢ connected components has a cut of size at least m/2+ (n—t)/4. The lower
bound (@) is famously known as the Fdwards-Erdds bound, and it is tight for
cliques of every odd order n.

The bound has been proved several times (|4, 1,13, 24, 125]), with some proofs
yielding polynomial-time algorithms to attain it. As (@]) is tight for infinitely
many non-isomorphic graphs, and finding maximum cuts is NP-hard, finding
cuts beyond (@) requires a new approach: a fized-parameter algorithm, that for
any connected graph with n vertices and m edges, and integer k£ € N, finds a cut
of size at least m/2 + (n — 1)/4 + k (if such exists) in time f(k) - n¢, where f
is an arbitrary function dependent only on k and ¢ is an absolute constant
independent of k. The point here is to confine the combinatorial explosion to the
(small) parameter k. But at first sight, it is not even clear how to find a cut of
size m/2 + (n — 1)/4 4 k in time n/ )| for an arbitrary function f.

In 1997, Mahajan and Raman [22] gave a fixed-parameter algorithm for the
variant of this problem with Erdés’ lower bound m/2, and showed how to decide
existence of a cut of size m/2+k in time 2°() . @) Their result was strength-
ened by Bollobds and Scott [4] who replaced m/2 by the stronger bound ().
It remained an open question (|7, [14, 22, 123, 27]) whether this result could be
strengthened further by replacing (II) with the stronger bound (2]).

Main Results

We settle the computational complexity of MAX-CUT above the Edwards-Erddés
bound ().

Theorem 1. There is an algorithm that computes, for any connected graph G
with n vertices and m edges and any integer k € N, in time 2°F) . n* o cut of
G with size at least m/2 + (n —1)/4 + k, or decides that no such cut exists.
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Theorem [I] answers a question posed several times over the past 15 years (|22,
23] |1, [14, 27]). In particular, instances with & = O(logm) can be solved in
polynomial time, thereby enlarging the realm of tractability.

The running time of our algorithm is likely to be optimal, as the following
theorem shows.

Theorem 2. No algorithm can find cuts of size m/2 + (n — 1)/4 + k in time
20(K) . nOM) given a connected graph with n vertices and m edges, and integer
k € N, unless the Fxponential Time Hypothesis fails.

The Exponential Time Hypothesis was introduced by Impagliazzo and Pa-
turi [17], and states that n-variable SAT formulas cannot be solved in subexpo-
nential time.

Fixed-parameter tractability of MAX-CuT above Edwards-Erdés bound
m/2 + (n — 1)/4 implies the existence of a so-called kernelization, which effi-
ciently transforms any instance (G, k) into an equivalent instance (G', k'), the
kernel, whose size g(k) = |G'| + k' itself depends on k only. Alas, the size g(k)
of the kernel for many fixed-parameter tractable problems is enormous, and in
particular many fixed-parameter tractable problems do not admit kernels of size
polynomial in k unless coNP C NP /poly [3]. We prove the following.

Theorem 3. There is a polynomial-time algorithm that transforms any con-
nected graph G = (V, E) with integer k € N to a connected graph G' = (V', E’)
of order O(k®), such that G has a cut of size |E|/2+ (|V|—1)/4+k if and only
if G' has a cut of size |E'|/2+ (V| —1)/4+ K/, for some k' < k.

Bollobds and Scott [4] proved fixed parameter tractability for the weighted ver-
sion of Max Cut parameterized above (III) They give a 20(’“4) +n+ w(G) time
algorithm to find a cut of weight w(G)/2 + \/8w )+1—1)+k if such a
cut exists, or else an optimal cut, where w is an edge-weighting on the graph G.
The proof in 4] can easily be seen to give a kernel of size O(k*) (although it is
not described as such in 4], as kernelization has only recently begun to attract
significant attention). We improve this to a kernel of size O(k?).

Theorem 4. There is a linear-time algorithm that, for any integer k € N, trans-

forms any connected graph G = (V, E) with edge-weighting w to a connected

graph G' = (V’ E") of size O(k:3) with edge-weighting w’, such that G has a

cut of size w(G)/2 + ¢ L(V8w(G) + 1 —1) + k if and only if G’ has a cut of size
W' (G')/2+ L(/8w!( G’ )+1—=1)+ %, for some k' <k.

The proof is a slight modification of the proof of Theorem 22 in Bollobas and

Scott [4]. Note that Theorems [Il and B] only hold for unweighted graphs; the

weighted versions remain open. Due to space contraints, the proofs of Theorems[2]
and [l are omitted.

Our Techniques and Related Work

Our results are based on algorithmic as well as combinatorial arguments. To
prove Theorem[I] we design a Turing reduction to a generalization of the problem
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on block graphs, for which we show how to to solve the problem efficiently.
Theorem [2 is established by a combinatorial reduction. Theorem [3] is proven by
a careful analysis of random cuts via the probabilistic method, whereas the proof
of Theorem Ml is through a characterization of graphs for which the lower bound
is nearly tight, and weighted graph decompositions as “edge-sums”.

A number of the standard approaches that have been developed for “above-
guarantee” parameterizations of other problems are unavailable for this problem.
The most common approach is to use probabilistic analysis of a random vari-
able whose expected value corresponds to a solution matching the guarantee.
However, there is no simple randomized procedure known giving a cut of size
m/2+ (n—1)/4. Another approach is to make use of approximation algorithms
that give a factor-c approximation, when the problem is parameterized above
the bound c - n; here, n is the maximum value of the objective function. But
there is no such approximation algorithm for this problem.

Our paper also differs in its use of reduction rules. Most reduction rules for
above-guarantee problems remove certain subgraphs of constant size, on which
the bound is tight. But for our problem the bound is tight on cliques. Thus our
reduction rules remove maximal cliques from the graph, which may contain a
large fraction of the vertices in G. Moreover, rather than using reduction rules to
reduce to an equivalent instance, which is then solved quickly, our reduction rules
do not produce an equivalent instance. Instead, they either reduce to a ‘yes”-
instance or we can determine useful restrictions on the structure of the original
instance, which can then be used to solve the original instance in fixed-parameter
tractable time.

2 Preliminaries

We use standard graph theory terminology and notation. Given a graph G, let
V(G) be the vertices of G and let E(G) be the edges of G. For disjoint sets
S, T CV(G), let E(S,T) denote the set of edges in G with one vertex in S and
one vertex in T. For S C V(G), let G[S] denote the subgraph induced by the
vertices of S, and let G — S denote the graph G[V(G) \ S]. We say that G has
a cut of size t if there exists an S C V(G) such that |E(S,V(G) \ S)| = t. The
graph G is connected if any two of its vertices are connected by a path, and it
is 2-connected if G — v is connected for every v € V(G). A connected component
of G is a connected subgraph G’ of G that is maximal with respect to vertex
inclusion, and we often identify G’ with its vertex set V(G’).

We study the following formulation of MAX-CuT parameterized above
Edwards-Erdés bound:

MaXx-Cut above Edwards-Erdds (MAax-CuT-AEE)

Instance: A connected graph G with n = |[V(G)] vertices and m = |E(G)|
edges, and an integer k € N.

Parameter: k.

Question: Does G have a cut of size at least ) + ”Zl + ’z?
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We ask for a cut of size ") + ”4_1 + ’Z, rather than the more usual '} + ”11 +k,
so that we may treat k£ as an integer at all times. Note that this does not affect
the existence of a fixed-parameter algorithm or polynomial-size kernel. A pair
(G, k) is called a “yes”-instance if G has a cut of size at least 7} + ”Zl + ’Z, and
a “no”-instance otherwise.

An assignment or coloring on G is a function « : V(G) — {red, blue}, and an
edge is cut or satisfied by « if one of its vertices is colored red and the other
vertex is colored blue. Note that a graph has a cut of size ¢ if and only if it
has an assignment that satisfies at least ¢t edges. A partial assignment on G is a
function a : X — {red, blue}, where X is a subset of V(G).

A clique in G is a set of vertices X C V(G) any two of which are adjacent in G.
A block in G is a maximal subgraph of G which is 2-connected. A block graph
is a connected graph in which every block is a clique. Observe that a complete
graph is a block graph, and a graph formed by identifying together one vertex
each from two disjoint block graphs is also a block graph. (For the purposes of
this paper we count an isolated vertex as a block graph.)

3 Fixed-Parameter Algorithm for Max-Cut above the
Edwards-Erdés Bound

In this section, we prove Theorem [Il To this end, we prove the following lemma,
which also forms the basis of our kernel in Theorem [3]

Lemma 1. Given a connected graph G with n vertices and m edges and an
integer k, we can in polynomial time decide that either G has a cut of size at
least 3 + "Zl + ]z, or find a set S of at most 3k vertices in G such that each
component of G — S is a block graph.

The algorithm starts by applying the following rules to the given connected
graph G. These rules are such that if an instance (G’, k) is reduced from (G, k)
and (G', k') is a “yes”-instance, then (G, k) is also a “yes”-instance. The converse
does not necessarily hold — a “yes”-instance may be reduced to a “no”-instance.
In some rules, we mark certain vertices, that will be collected in the set S of
Lemma [I1

Rule 1. Let G be a connected graph with v € V(G), X C V(G) such that X is a
connected component of G —v and X U{v} is a cliqgue. Then remove all vertices
in X and incident edges. Reduce k by 1 if | X| is odd, otherwise leave k the same.
Do not mark any vertices.

Rule 2. Let G be a connected graph reduced by Rule[dl with v € V(G) such that
for all connected components X of G — v, except possibly one, X is a clique.
Then remove v and all incident edges, and all vertices in X and incident edges,
for every connected component X of G —v which is a clique. Mark v, and reduce
k by 2t — 1, where t is the number of connected components of G — v removed.
(Only apply this rule if t > 1.)
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Rule 3. Let G be a connected graph with z,y € V(G) such that {z,y} ¢ E(G),
and for all connected components X of G —{x,y}, except possibly one, X U{z}
and X U{y} are cliqgues. Then remove {x,y} U X for any clique X satisfying
these conditions. Mark x and y, and reduce k by 3t — 2, where t is the number
of connected components of G — {x,y} removed. (Only apply this rule if t > 1.)

Rule 4. Let G be a connected graph with a,b,c € V(G) such that {a,b},{b,c} €
E(G),{a,c} ¢ E(G), and G—{a,b, c} is connected. Then mark a,b,c, and remove
a,b,c and incident edges, and reduce k by 1.

These rules can be applied exhaustively in polynomial time, as each rule reduces
the number of vertices in G, and for each rule we can check for any applications
of that rule by trying every set of at most three vertices in V(G), and examining
the connected components of the graph when those vertices are removed.

Lemma 2. Let (G, k) and (G', k') be instances of MAX-CUT-AEE such that
(G', k') is reduced from (G, k) by an application of Rules[, [2 [3 and[f} Then G’
is connected, and if (G' k') is a “yes”-instance of MAX-CUT-AEE then so is
(G, k).

Proof. First, we show that G’ is connected. For Rule [II, observe that for s, €
V(G)\ X, no path between s and ¢ passes through X, so G — X is connected.
For Rules 2 and [3] observe that we remove some vertices together with all but
at most one of the connected components in the resulting graph, so we are left
with a single component. For Rule[d] the conditions explicitly state that we only
apply the rule if the resulting graph is connected.

Second, we prove separately for each rule the following claim, in which n’
denotes the number of vertices and m’ the number of edges removed by the rule.

Any assignment to the vertices of G’ can be extended to an
assignment on G that cuts an additional ’g, + ’jl/ + k_4k/ edges.

(*)

The proofs for Rules 2] and 3] are omitted due to length; their proofs are similar
to Rule [[ but more complicated.

Rule[Ik Since v is the only vertex connecting X to the rest of the graph, any
assignment to G’ can be extended to one which is optimal on X U {v}. (Indeed,
let « be an optimal coloring of G[X U {v}], and let o’ be the a with all colors
reversed. Both o and o are optimal colorings of G[X U{v}], and one of these will
agree with the coloring we are given on G’ since the only overlap is v.) Observe
that n’ = |X| and m' = ‘Xl(lé(‘“), since the edges we remove form a clique
including v, and all vertices in the clique except v are removed.

If | X| is even then the maximum cut of the clique X U {v} has size

1) = |X‘(‘f|+2) = |X‘(‘f|+1) + ‘ifl = m2, + Z,’ which is what we require as k is

|X]
2

unchanged in this case.
If |X| is odd then the maximum cut of the clique X U {v} has size
(‘Xéﬂ) (\X|2+1) = IX‘(E{HQ) - = m2’ + Z/ + 1, which is what we require as

we reduce k by 1 in this case.
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Rule [# Observe that n’ = 3 and m’ = 2 + |E(G’,{a,b,c})|. Consider two
colorings a, o' of {a,b, c}: ala) = a(c) = red, a(b) = blue, and o/(a) = &/(c) =
blue, o/ (b) = red. Both these colorings satisfy edges {a, b} and {b, ¢}, and at least
one of them will satisfy at least half the edges between {a, b, ¢} and G’. Therefore,
the number of satisfied edges incident with {a, b, c} is at least 2+ lE(G,’{Q“’b’C}” =
m’ + n’ 41
2 4 Ty
This concludes the proof of the claim ().
We now know that any assignment on G’ can be extended to an assignment
on G that cuts an additional ”;/ + Z/ + k’4k/ edges. Hence, if G’ has a cut of size

‘E(QGI)‘ + V(EHi-1 + 'f;, then G has a cut of size m—2m' + ”_Z,_l + IZ + "QL/ +
(’jlc,:—;)kjlk, =7+ ”4_1 + ’Z. Therefore, if (G',k’) is a “yes’-instance then so is
k). O

Lemma 3. To any connected graph G with at least one edge, at least one of
Rules[IH] applies.

Proof. The full proof is omitted due to length; we give an outline.

Suppose that G is reduced by Rules [Il 2] and Bl We show that there exist
a,b,c € V(G) such that {a,b},{b,c} € E(G) but {a,c} ¢ E(G) and G —{a,b,c}
is connected, that is, Rule @ applies.

Observe that if G does not contain a set of vertices a,b,c¢ such that
{a,b},{b,c} € E(G) and {a,c} ¢ E(G), then G is a clique and so Rule [l applies.
So such a set a,b, ¢ must exist, and our only problem is if every such set a,b, ¢
disconnects the graph. Assuming G is not a clique, it is possible to find a set of
vertices a, b, ¢ such that {a,b},{b,c} € E(GQ), {a,c} ¢ E(G), and at most one
component of G\{a,b,c} is not a clique. Reduction Rules [[] 2l and B] impose
restrictions on the edges between a, b, ¢ and the clique components of G\{a, b, ¢}
(for example, every clique component in G\{a, b, c} must be adjacent to at least
two vertices of a,b, ¢), and we can use these restrictions to find a set of vertices
satisfying Reduction Rule [ O

Lemma 4. Let G be a connected graph and let S C V(G) be the set of vertices
that are marked after applying Rules[IH7) exhaustively to G; then every component
of G — S is a block graph.

Proof. The complete proof is omitted due to length; we give an outline.

We proceed by induction on the number of applications of a reduction rule.
By Lemma [B] a graph to which Rules [l 2 Bl and M do not apply contains no
edges, and is therefore a block graph. (In fact by Lemma 2 such a graph is also
connected, and therefore consists of a single vertex.) This handles the base case.
For the inductive step, it can be shown that for each reduction rule, if G’ is
reduced by an application of that rule from G, and G’ — S is a block graph, then
sois G — S. O

Putting Lemmas [2] and [ together, we can now prove Lemma [Tl

Proof (Proof of Lemma[dl). Apply Rules [l 2 Bl and [ exhaustively, and let S
be the set of vertices which are marked after doing this. By Lemma M every
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connected component in G — S is a block graph. Therefore, if |S| < 3k we are
done. It remains to show that if |S| > 3k then G has an assignment that satisfies
at least "} + ”Zl + ’Z edges.

So suppose that |S| > 3k. Let (G’, k') be the instance obtained from (G, k)
by exhaustively applying Rules [l 2l Bl and @ Observe that every time k is
reduced, at most three vertices are marked. Therefore since at least 3k vertices
are marked, we have ¥’ < 0. But since the Edwards-Erdds bound holds for all
connected graphs, (G', k') is a “yes”-instance. Therefore, by Lemma 2] (G, k) is
a “yes”-instance, as required. a

We now show that, for a given assignment to .S, we can efficiently find an optimal
extension to G — S. For this, we consider the following generalisation of MAX-
CuT where each vertex has an associated weight for each part of the partition.
These weights may be taken as an indication of how much we would like the
vertex to appear in each part.

MAX-CUT-WITH- WEIGHTED- VERTICES
Instance: A graph G with weight functions wo : V(G) — Ny
and wy : V(G) — Ny, and an integer ¢t € N.

Question: Does there exist an assignment f : V' — {0,1} such
that ZmyeE |f(z) = f(y)l +Zf(g,g):o wo(x) +Zf(x)=1 wy(z) = 17

Now MAX-CUT is the special case of MAX-CUT-WITH- WEIGHTED- V ERTICES
in which G is connected and wo(z) = w1 (z) =0 for all x € V(G).

Lemma 5. MAX-CUT-WITH-WEIGHTED-VERTICES is solvable in polynomial
time when G is a block graph.

Proof. The full proof is omitted due to length; we give an outline.

For each vertex z let e(x) = wi(x) — wo(z). If G is a clique, we can solve
the problem in polynomial time by numbering the vertices x1, ...z, such that
if ¢ < j then e(x;) > e(z;). Then there is an optimal assignment in which z; is
assigned 1 for every i < ¢, and x; is assigned 0 for every i > t, for some 0 < ¢ < n.
We therefore find the optimal assignment by trying each value of t.

We may use this approach to reduce the problem when G is not a clique.
Find a block C for which only one vertex r € V(C) is adjacent to any vertex
in V(G)\V(C). Then we may reduce the problem by removing V(C)\r, and
changing w;(r) to the value of the optimal solution on C' for which f(r) =4. O

We are ready to prove Theorem [Il and show that MAX-CUT-AEE is fixed-
parameter tractable.

Proof (of Theorem [). By Lemma [l we can in polynomial time either decide
that G has an assignment that satisfies at least ' + ”Zl + ’Z edges, or find a
set S of at most 3k vertices in G such that G — S is a block graph. So assume
we have found such an S. Then we transform our instance into at most 23%
instances of MAX-CUT-WITH-WEIGHTED-VERTICES, such that the answer to
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our original instance is “yes” if and only if the answer to at least one of the
instances of MAX-CUT-WITH-WEIGHTED-VERTICES is “yes”, and in each MAX-
CuT-WITH-WEIGHTED-VERTICES instance the graph is a block graph. As each
of these instances can be solved in polynomial time by Lemma Bl we have a
fixed-parameter tractable algorithm.

For every possible coloring of the vertices in S, we construct one of the in-
stances of MAX-CUT-WITH-WEIGHTED-VERTICES as follows. For every vertex
x € G — 8, let wo(x) equal the number of vertices in S adjacent to x which
are colored blue, and let wq(x) equal the number of vertices in S adjacent to x
which are colored red. Then remove the vertices of S from G. By Lemma [I], each
component of the resulting graph G’ is a block graph. Let m/ be the number
of edges in G — S, let n’ be the number of vertices in G — S, and let p be the
number of edges within S satisfied by the assignment to S. Then for an assign-
ment to the vertices of G — S, the total number of satisfied edges in G would be
exactly >°, cpia_s) (@) = FW) + 1+ 250y =0 wo(@) + X p(py=1 wi(w), where
f:V(G)\ S — {0,1} is such that f(z) = 0 if x is colored red, and f(z) =1 if
x is colored blue. Thus, the assignment to S can be extended to one that cuts
at least ) + ”4_1 + ’Z edges in G if and only if the instance of MAX-CUT-WITH-
WEIGHTED-VERTICES is a “yes”-instance with ¢ = "} + ”4_1 + ’Z —p. O

4 Polynomial Kernel for Max-Cut above Edwards-Erdds

In this section, we prove Theorem Bl By Lemma [l in polynomial time we can
either decide that (G, k) is a “yes”-instance, or find a set S of vertices in G such
that |S| < 3k and G — S is a block graph. In what follows we assume we have
found such a set S.

Observe that we can find all blocks in G — S in polynomial time. Indeed, if X
is a clique on at least 2 vertices then any vertex not in X which is adjacent to
two or more members of X is part of a block containing X, and there is only
one such block. Therefore, we can find all the blocks by expanding greedily from
each edge in G — S.

Let C1,...,Cy+ be the blocks in G — S. Let J be the set of vertices in G — §
which occur in two or more blocks. For each i € {1,...,n*} let A, =C; — J.

We first apply the following reduction rules.

Rule 5. Let G be a connected graph with v € V(G), X C V(G) such that X is a
connected component of G —v and X U{v} is a cliqgue. Then remove all vertices
in X and incident edges. Reduce k by 1 if | X| is odd, otherwise leave k the same.

Note that Reduction Rule [l is the same as Reduction Rule [l which we used to
find the set S.

Rule 6. Suppose there exists a verter x € G — S and a set of vertices X C
V(G) \ S such that X U {x} is a clique and X is a connected component of
G — (SU{z}), and there is exactly one vertex s € S which is adjacent to X, and
X U{s} is a cligue. Then remove all but one vertex from X, and incident edges.
Reduce k by 1 if | X| is even, otherwise leave k the same.
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Rule 7. Suppose there exist vertex sets X,Y C G — S such that X and Y are
mazximal odd cliques, with vertices x € X,y € Y,{z} = XNY, such that x, z are
the only vertices in X adjacent to a vertex in G—X, and y, z are the only vertices
in'Y adjacent to a vertex in G—=Y . Then remove all vertices in (XUY)—{z,y, z}
and incident edges, and add new vertices u,v, and edges such that {z,y, z,u,v}
s a clique. Do not change k.

Rule 8. Suppose for some block C; in G — S, there exists X C A; such that
| X| > ‘A”HQJIHS‘ and for all z,y € X, x and y have ezactly the same neighbors
in S. Then remove any two vertices from X and incident edges. Do not change k.

The complete proof of Theorem [3lis omitted due to length; instead we give a
brief outline.

We first show that Reduction Rules Bl [6, [ and [ are valid; we then assume
G is reduced by these rules. We show that for any “no”-instance, the number of
blocks in G\ S is O(k?), and for each block, the number of vertices in that block
is O(k3).

We show the bound on the number of blocks by a probabilistic argument.
Suppose a block C; contains at most one vertex in J. For such a graph, given
a random coloring on S, we can expect to achieve at least an extra i above
the Edwards-Erdés bound in the graph consisting of edges between vertices in
A; and between A; and S. So if the number of blocks is big enough we have a
“yes”-instance. Otherwise, we have a bound on the number of blocks with one
vertex in J, and using this we can limit the total number of blocks in G\S.

To limit the number of vertices in a block C;, we show that if there there exist
X1, X5 C C; such that X7, Xo are large enough and some s € S is adjacent to all
vertices in X3 and no vertices in X5, then by coloring S to exploit this distinction
we can satisfy enough edges in E (S, C;) to ensure that we have a “yes”-instance.
It then follows that if C; is large enough but G is a “no”-instance then a large
number of vertices in C; have exactly the same neighbourhood in S, and we
would have an application of Rule Bl

Putting the limits on the number of vertices in a block together with the
number of block in G\S gives us a bound of O(k°) on the number of vertices

in G.

5 Discussion and Open Problems

We showed fixed-parameter tractability of MAX-CUT parameterized above the
Edwards-Erdés bound m/2 + (n — 1)/4, and thereby resolved an open question
from [1, [14, 22, 123, 27]. Furthermore, we showed that the problem has a kernel
with O(k®) vertices and the “edge version” of the bound admits a kernel of
size O(k?). We have not attempted to optimize running time or kernel size, and
indeed we conjecture that MAX-CUT has a kernel with O(k?) vertices and the
edge version admits a linear kernel.

It remains an open problem whether the weighted version of MAX-CUT above
the Edwards-Erdés bound is fixed-parameter tractable; our conjecture is that
this problem is also fixed-parameter tractable with a polynomial kernel.
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The problem MAX-BISECTION is a variant of MAX-CUT in which we seek
a cut such that the number of vertices in both sides of the bipartition is as
equal as possible. The the tight lower bound on the bisection size in terms of m
is m/2. Fixed-parameter tractability of MAX-BISECTION above m/2 was shown
by Gutin and Yeo [14]. An improved bound lower bound in terms of m and n
is mn/2(n — 1). It is an open question whether MAX-BISECTION parameterized
above mn/2(n — 1) is fixed-parameter tractable.
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sults complement very recent developments in designing parameterized
algorithms for cut problems by Marx and Razgon [STOC’11], Bousquet
et al. [STOC’11], Kawarabayashi and Thorup [FOCS’11] and Chitnis
et al. [SODA’12].
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1 Introduction

In order to cope with the NP-hardness of many natural combinatorial problems,
various algorithmic paradigms such as brute-force, approximation, or heuristics
are applied. However, while the paradigms are quite different, there is a com-
monly used opening move of first applying polynomial-time preprocessing rou-
tines, before making sacrifices in either exactness or runtime. The aim of the field
of kernelization is to provide a rigorous mathematical framework for analyzing
such preprocessing algorithms. One of its core features is to provide quantitative
performance guarantees for preprocessing via the framework of parameterized
complexity, a feature easily seen to be infeasible in classical complexity (cf. [2]).

In the framework of parameterized complexity an instance z of a parame-
terized problem comes with an integer parameter k, formally, a parameterized
problem @ C X* x N for some finite alphabet Y. We say that a problem is fized
parameter tractable (FPT) if there exists an algorithm solving any instance (z, k)
in time f(k)poly(]z|) for some (usually exponential) computable function f. It
is known that a problem is FPT iff it is kernelizable. A kernelization algorithm
(kernel for short) for a problem @ is a polynomial time preprocessing routine
that takes an instance (x, k) and in time polynomial in |z|+ & produces an equiv-
alent instance (z/, k') (i.e., (z,k) € Q iff (2/, k") € Q) such that |2'| + k" < g(k)
for some computable function g. The function g is the size of the kernel, and if
it is polynomial, we say that Q admits a polynomial kernel. If ¢ is small, after
preprocessing even an exponential-time brute-force algorithm might be feasible.
Therefore small kernels, with g being linear or polynomial, are of big interest.

Although polynomial kernels for a wide range of problems have been devel-
oped for the last few decades (see the surveys of Guo and Niedermeier [3] and
Bodlaender [4]), a framework for proving kernelization lower bounds was discov-
ered only three years ago by Bodlaender et al. [5], with the backbone theorem
proven by Fortnow and Santhanam [6]. The crux of the framework is the follow-
ing idea of a composition. Assume we are able to combine in polynomial time an
arbitrary number of instances x1, 2, . . ., x; of an NP-complete problem L into a
single instance (z, k) of a parameterized problem @) € NP such that (z,k) € Q
if and only if one of the instances z; is in L, while k£ is bounded polynomially
in max; |z;|. If such a composition algorithm was pipelined with a polynomial ker-
nel for the problem @, we would obtain an OR-distillation of the NP-complete
language L: the resulting instance is of size polynomial in max; |z;|, possibly
significantly smaller than ¢, but encodes a disjunction of all input instances z;
(i.e., an OR-distillation is a compression of the logical OR of the instances). As
proven by Fortnow and Santhanam [6], existence of such an algorithm would
imply NP C coNP /poly, which is known to cause a collapse of the polynomial
hierarchy to its third level [7g].

The astute reader may have noticed that the above description of a composi-
tion is actually using the slightly newer notion of a cross-composition [9]. This
generalization of the original lower bound framework will be the main ingredient
of our proofs. The framework of kernelization lower bounds was also extended by
Dell and van Melkebeek [10] to allow excluding kernels of particular exponent in
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the polynomial. Recently, Dell and Marx [I1] and, independently, Hermelin and
Wu [12] simplified this approach and applied it to various packing problems.

The aforementioned (cross-)composition algorithm is sometimes called an OR-
composition, as opposed to an AND-composition, where we require that the
output instance (z,k) is in @ if and only if all input instances belong to L.
Various problems have been shown to be AND-compositional, with the most
important example being the problem of determining whether an input graph
has treewidth no larger than the parameter [5]. It is conjectured [5] that no
NP-complete problem admits an AND-distillation, which would be the result of
pipelining an AND-composition with a polynomial kernel. However, it is now a
major open problem in the field of kernelization to support this claim with a
proof based on a plausible complexity assumption.

Although the framework of kernelization lower bounds has been applied suc-
cessfully multiple times over the last three years, there are still many important
problems where the existence of a polynomial kernel is widely open. The reason
for this situation is that an application of the idea of a composition (or appro-
priate reductions, see [13]) is far from being automatic. To obtain a composition
algorithm, usually one needs to carefully choose the starting language L (for
example, the choice of the starting language is crucial for compositions of Dell
and Marx [I1], and the core idea of the composition algorithms for connectiv-
ity problems in degenerate graphs [I4] is to use GRAPH MOTIF as a starting
point) or invent sophisticated gadgets to merge the instances (for example, the
colors and IDs technique introduced by Dom et al. [I5] or the idea of an instance
selector, used mainly for structural parameters [9/16]).

Our results. The main contribution of this paper is a proof of non-existence of
polynomial kernels for four important problems.

Theorem 1. Unless NP C coNP/poly, EDGE CLIQUE COVER, parameterized by
the number of cliques, as well as DIRECTED MuLTIWAY CUT, MULTICUT and
k-Way CuT, parameterized by the size of the cutset, do not admit polynomial
kernelizations.

The common theme of our compositions is a very careful choice of starting prob-
lems. Not only do we select particular NP-complete problems, but we also restrict
instances given as the input, to make them satisfy certain conditions that allow
designing cross-compositions. Each time we constrain the set of input instances
of an NP-complete problem we need to prove that the problem remains NP-
complete. Even though this paper is about negative results, in our constructions
we use intuition derived from the design of parameterized algorithms techniques,
including iterative compression (in case of EDGE CLIQUE COVER) introduced
by Reed et al. [I7] and important separators (in case of MULTICUT) defined by
Marx [I8].

For the three cut problems listed in Theorem [ our kernelization hardness
results complement very recent developments in the design of algorithm param-
eterized by the size of the cutset [19/20/21122)]. In this extended abstract we give
some motivation and related work for each of the four problems, and informally
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describe the compositions algorithms. For detailed proofs, as well as a more
thorough description of motivation and related work, see the full version [I].

Edge clique cover. In the EDGE CLIQUE COVER problem the goal is to cover the
edges of an input graph G with at most & cliques all of which are subgraphs of G.
This problem, NP-complete even in very restricted graph classes, is also known
as COVERING BY CLIQUES (GT17), INTERSECTION GRAPH Basis (GT59) [23]
and KEYWORD CONFLICT [24]. Tt has multiple applications in various areas in
practice, such as computational geometry [25], applied statistics [26/27], and
compiler optimization [2§].

From the point of view of parameterized complexity, EDGE CLIQUE COVER
was extensively studied by Gramm et al. [29]. A simple kernelization algorithm
is known that reduces the size of the graph to at most 2¥ vertices; the best
known fixed-parameter algorithm is a brute-force search on the 2*-vertex ker-
nel. The question of a polynomial kernel for EDGE CLIQUE COVER, probably
first verbalized by Gramm et al. [29], was repeatedly asked in the parameterized
complexity community, for example on the last Workshop on Kernels (WorKer,
Vienna, 2011). We show that EDGE CLIQUE COVER is both AND- and OR-
compositional (i.e., both an AND- and an OR-composition algorithm exist for
some NP-complete input language L), thus the existence of a polynomial kernel
would both cause a collapse of the polynomial hierarchy as well as violate the
AND-conjecture. To the best of our knowledge, this is the first natural parame-
terized problem that is known to admit both an AND- and an OR-composition.

Multicut and directed multiway cut. With MULTICUT and DIRECTED MULTI-
wAY CUT we move on to the family of graph separation problems. The central
problems of this area are two natural generalizations of the s — ¢ cut problem,
namely MULTIWAY CUT and MULTICUT. In the first problem we are given a
graph G with designated terminals and we are to delete at most p edges (or
vertices, depending on the variant) so that the terminals remain in different
connected components. In the MULTICUT problem we consider a more general
setting where the input graph contains terminal pairs and we need to separate
all pairs of terminals. The graph separation problems became one of the most
important subareas in parameterized complexity after Marx introduced the con-
cept of important separators [I8]. This technique turns out to be very robust,
and is now a key ingredient in fixed-parameter algorithms for several problems.

Although the picture of the fixed-parameter tractability of the graph sepa-
ration problems becomes more and more complete, very little is known about
polynomial kernelization. Very recently, Kratsch and Wahlstrém came up with
a genuine application of matroid theory to graph separation problems. They
were able to obtain randomized polynomial kernels for ODD CYCLE TRANSVER-
SAL [30], ALMOST 2-SAT, and MuLTIWAY CUT and MULTICUT restricted to a
bounded number of terminals, among others [31]. We are not aware of any other
results on kernelization of the graph separation problems.
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We prove that DIRECTED MULTIWAY CUT, even in the case of two termi-
nals, as well as MULTICUT, parameterized by the size of the cutset, are OR-
compositional, thus a polynomial kernel for any of these two problems would
cause a collapse of the polynomial hierarchy. In fact, in the full version [I] we
give two OR~compositions for MULTICUT: the constructions are very different
and the presented gadgets may inspire lower bounds for similar problems.

The k-way cut problem. The last part of this work is devoted to another gener-
alization of the s-t cut problem, but of a bit different flavor. The k-Way CuT
problem is defined as follows: given an undirected graph G and integers k and s,
remove at most s edges from G to obtain a graph with at least & connected compo-
nents. This problem has applications in numerous areas of computer science, such
as finding cutting planes for the traveling salesman problem, clustering-related
settings (e.g., VLSI design) or network reliability [32]. In general, k-WAy CUT is
NP-complete [33] but solvable in polynomial time for fixed k: a long line of research
led to a deterministic algorithm running in time O(mn?*~2) [34]. The dependency
on k in the exponent is probably unavoidable: from the parameterized perspec-
tive, the k-WAy CUT problem parameterized by k is W [1]-hard [35]. Moreover, the
node-deletion variant is also W[l]-hard when parameterized by s [18]. Somewhat
surprisingly, in 2011 Kawarabayashi and Thorup presented a fixed-parameter al-
gorithm for (edge-deletion) k-WAy CuUT parameterized by s [22]. In this paper
we complete the parameterized picture of the edge-deletion k-WAY CUT problem
parameterized by s by showing that it is OR-compositional and, therefore, a poly-
nomial kernel is unlikely to exist.

2 Preliminaries

We here informally summarize the kernelization lower bounds framework; see
the full version [I] for formal definitions.

We use the cross-composition technique due to Bodlaender et al. [9]. Let L be
a (classical) language, and @ be a parameterized one. We first split instances of L
into equivalence classes of a polynomially-computable relation (called polynomial
equivalence relation) that partitions all instances of size n into nPW equivalence
classes (e.g., we may partition the input graphs according to the number of their
vertices and edges). Within each equivalence class, we exhibit a polynomial-time
cross-composition algorithm that, given ¢ instances x1,xs, ..., x; of L, produces
one instance (z*,k*) of @ such that k* is bounded polynomially in max; |z;]
and (2%, k*) € Q iff at least one instance x; belongs to L. If such a composition
is pipelined with a polynomial kernelization algorithm for (), we obtain a very
efficient distillation algorithm for the language L: by the result of Fortnow and
Santhanam [6], L belongs to coNP /poly. Thus, if L is NP-complete, we obtain
NP C coNP/poly and a collapse of the polynomial hierarchy.

If we assume that the output instance (z*,k*) € @ iff all input instances x;
belong to L, we obtain an A ND-cross-composition. It is conjectured (the so-called
AND-conjecture [5]) that no NP-complete problem admits an AND-distillation,
obtained by pipelining such an AND-cross-composition and a polynomial kernel.
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3 Clique Cover

EDGE CLIQUE COVER

Input: An undirected graph G and an integer k.

Task: Does there exist a set of k subgraphs of G, such that each subgraph is
a clique and each edge of G is contained in at least one of these subgraphs?

In this section we present both a cross-composition and an AND-cross-
composition of EDGE CLIQUE COVER parameterized by k. We start with the
AND-cross-composition since the construction we present is also used in the
cross-composition.

3.1 AND-Cross-Composition

Theorem 2. EDGE CLIQUE COVER AND-cross-composes to EDGE CLIQUE
COVER parameterized by k.

Proof (sketch). For the equivalence relation we take a relation that puts two
instances (G, k1), (Ga,k2) of EDGE CLIQUE COVER into the same equivalence
class iff k1 = ko and the number of vertices in G; is equal to the number of
vertices in G. Therefore, in the rest of the proof we assume that we are given
a sequence (G, k‘)z;é of EDGE CLIQUE COVER instances that are in the same
equivalence class (to avoid confusion we number everything starting from zero in
this proof). Let n be the number of vertices in each of the instances. By adding
isolated vertices in the instances and duplicating some instances we may ensure
that n = 2" and t = 2" for some integers h,, and hs.

Now we construct an instance (G*, k*), where k* is polynomial in n + k + h;.
Initially as G* we take a disjoint union of graphs G; for ¢ = 0,...,t — 1 with
added edges between every pair of vertices from G, and G} for a # b. Next,
in order to cover all the edges between different instances with few cliques we
introduce the following construction. Let us assume that the vertex set of G;
is Vi = {v§,...,v}_}. For each 0 < a < n, for each 0 < b < n and for each 0 <
r < hy we add to G* a vertex w(a, b, r) which is adjacent to exactly one vertex
in each V;, that is v} where j = (a+b| ;. ]) mod n. By W we denote the set of all
added vertices w(a, b, 7). As the new parameter k* we set k* = |W|+k = n?h;+k.

Note that W is an independent set of non-isolated vertices in G*. As for
each w € W the set Ng«[w] induces a clique, we may assume that an optimal
clique cover of G* contains |W| cliques Ng«[w] for w € W. We observe that
these cliques cover no edges of G; for any 0 < i < ¢ while covering all other
edges of G*. Thus the remaining & cliques need to induce solutions for all input
instances. g

As a consequence we obtain the following result.

Corollary 1. There is no polynomial kernel for the EDGE CLIQUE COVER prob-
lem parameterized by k unless the AND-conjecture fails.
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3.2 Cross-Composition

In this section we show a cross-composition to EDGE CLIQUE COVER, which
we obtain by extending the AND-cross-composition gadgets from the previous
section. We cross-compose from a strengthened variant of the EDGE CLIQUE
COVER problem, proven to be NP-complete in the full version.

COMPRESSION CLIQUE COVER

Input: An undirected graph G, an integer k and a set C of k + 1 cliques
in G covering all edges of G.

Task: Does there exist a set of k subgraphs of G, such that each subgraph
is a clique and each edge of G is contained in at least one of the subgraphs?

Theorem 3. COMPRESSION CLIQUE COVER cross-composes to EDGE CLIQUE
COVER parameterized by k.

Proof (sketch). Similarly as in the proof of Theorem [2 we assume that we are
given a sequence (G, k,C;)!Z5 of COMPRESSION CLIQUE COVER instances with
|V(G;)| = n for each 0 < i < t, and n = 2hn ¢t = 2he,

We extend the construction from Theorem 21 by adding h; gadgets D;, for 0 <
Jj < h;. Each gadget D; is a 6-vertex clique with a perfect matching removed
and a vertex set partitioned into two halves L; and R; such that in each of the
three non-edges of D; one endpoint is in L; and the second in R;. For each
instance (Gj, k,C;) we connect the vertices of G; to L; if the j-th bit of the
index ¢ equals zero and to R; otherwise. Moreover, we add simplicial vertices
similar to the vertices w(a,b,r) to cover the edges connecting the gadgets D;
with the graphs G;. The requested number of cliques is: one for each simplicial
vertex, four for each gadget D;, and additional k cliques.

The key observation is that there are only
two reasonable ways to cover the edges of the
gadget D; (see Figure[I]). We first choose three
triangles to cover the edges between the halves L
and R. These three triangles contain vertices
both from L and R and, therefore, cannot con-
tain any other vertex outside D;. The fourth
clique contains the entire set L or the entire
set R and may contain other vertices in the in-
stances G; connected to the chosen set (L or R).
Thus, each gadgets D; grants an extra clique to all instances with j-th bit set to
zero or one. We infer that there is exactly one instance G; left where the edges
need to be covered by the remaining £ cliques. a

Fig. 1. One of the two optimal
ways to cover the edges of a gad-
get D; with four cliques

Corollary 2. There is no polynomial kernel for the EDGE CLIQUE COVER prob-
lem parameterized by k unless NP C coNP/poly.
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4 Directed Multiway Cut

DIRECTED EDGE (VERTEX) MuLTiway CUT

Input: A digraph G = (V, A), a set of terminals T C V and an integer p.
Task: Does there exist a set S of at most p arcs in A (p vertices in V' \ T),
such that in G\ S there is no path between any pair of terminals in 77

It is well known that the edge- and vertex-deletion variants are equivalent
(cf. [20]). Further, in the node-deletion variant we may assume that aset V° 2 T
is given, and the solution cutset needs to be disjoint with V'°°: for any v € V°\T,
we can replace v with a clique on p + 1 vertices. Hence we show a cross-
composition to DIRECTED VERTEX MULTIWAY CUT with a set of undeletable
vertices V°°. We start from the following restricted variant of DIRECTED VER-
TEX MULTIWAY CUT, proven to be NP-complete in the full version.

PROMISED DIRECTED VERTEX MULTIWAY CUT

Input: A digraph G = (V, A), two terminals T = {s1, s2}, a set of forbidden
vertices V°° O T and an integer p. Moreover, after removing any set of at
most p/2 vertices of V' '\ V*°, both an s;ss-path and an sgs;-path remain.
Task: Does there exist a set S of at most p vertices in V' \ V°°, such that in
G\ S there is no sjse-path nor sosq-path?

Theorem 4. PROMISED DIRECTED VERTEX MULTIWAY CUT cross-composes
into DIRECTED VERTEX MULTIWAY CUT with two terminals, parameterized by
the size of the cutset p.

Proof (sketch). By choosing an appropriate equivalence relation, we assume
that we are given a sequence I; = (G;,T; = {si,st},V;>®,p)i_; of PROMISED
DIRECTED VERTEX MULTIWAY CUT instances. As the graph G’ we take the
disjoint union of all the graphs G; and for each i = 1,...,t — 1, in G’ we iden-
tify the vertices s and si™!. Let I’ = (G', {s1,s4}, U§=1 V.>°,p) be an instance
of DIRECTED VERTEX MULTIWAY CuUT. To see the correctness of this cross-
composition, observe that the crucial assumption that in the input instances
a p/2-cut cannot separate s; from sy in any direction ensures that a p-cut in
G’ can make any significant separation only in one input instance, and in this

instance it needs to separate both s} from si and s& from si. O

Corollary 3. Both DIRECTED VERTEX MULTIWAY CUT and DIRECTED EDGE
MuLTiway CUT do not admit a polynomial kernel when parameterized by p
unless NP C coNP/poly, even in the case of two terminals.

5 Multicut

EDGE (VERTEX) MULTICUT

Input: An undirected graph G = (V, E), a set of pairs of terminals 7 =
{(s1,t1),- .., (Sk,tr)} and an integer p.

Task: Does there exist a set S C E (S C V) such that no connected com-
ponent of G \ S contains both vertices s; and t;, for some 1 <i < k?
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It is easy to see that the vertex version of the MULTICUT problem is at least
as hard as the edge version. In order to show a cross-composition into the MUL-
TICUT problem parameterized by p we consider the following restricted variant
of the MULTIWAY CUT problem with three terminals, which we prove to be
NP-complete in the full version.

PrOMISED MULTIWAY CUT

Input: An undirected graph G = (V, E), a set of three terminals T =
{s1,52,83} € V and an integer p. An instance satisfies: (i) deg(s1) =
deg(sz) = deg(ss) = d > 0, (ii) for each 7 = 1,2,3 and any non-empty
set X C V' \ T we have |0(X U{s;})| > d, and (iii) d < p < 2d.

Task: Does there exist a set S of at most p edges in F, such that in G\ S
there is no path between any pair of terminals in 77

Condition (i) ensures that degrees of all the terminals are equal, whereas
condition (ii) guarantees that the set of edges incident to a terminal s; is the
only minimum size s;—(T \ {s;}) cut. Having both (i) and (ii), condition (iii)
verifies whether an instance is not a trivially YES- or NO-instance, because by
(i) and (ii) there is no solution of size less than d and removing all the edges
incident to two terminals always gives a solution of size at most 2d.

Theorem 5. PROMISED MULTIWAY CUT cross-composes into EDGE MULTI-
CUT parameterized by the size of the cutset p.

Proof (sketch). By choosing an appropriate relation and duplicating some input
instances, we assume that we are given a sequence of an odd number of PROMISED
MurTiwAay CUT instances with equal cutset size p and terminal degree d.

We arrange the instances as
on FigureZ the empty and full Q “
circles are the terminals of the Lo

‘e @i ...
input instances, and the multi- ﬂ L '&
N O\~ . ! . _ ’O -:

ple edges are of multiplicity d. R R

The empty circles are the ter- R S N R

minals of the constructed EDGE ",‘.,.,\’:\.-\' .
MULTICUT instance: we request .:' S ’;@.\ \\\\ :

to separate a terminal from the ‘-..O/ b

two terminals that lie on the

opposite side of the circle (de- Fig. 2. Cross-composition for MULTICUT

noted by dashed lines on Figure

). The properties of PROMISED MULTIWAY CUT ensures that the only way to
obtain a solution of size p’ = d + p is to solve one input instance and to cut an
opposite edge of multiplicity d. a

Corollary 4. MULTICUT does not admit a polynomial kernel when parameter-
ized by p unless NP C coNP/poly.

A second (significantly different) cross-composition for MULTICUT is presented
in the full version [I].
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6 k-Way Cut

k-Way Cut

Input: An undirected connected graph G and integers k and s.

Task: Does there exist a set X of at most s edges in G such that G\ X has
at least k connected components?

Note that in the problem definition we assume that the input graph is con-
nected and, therefore, for & > s 4+ 1 the input instances are trivial. However,
if we are given an instance (G, k, s) where G has ¢ > 1 connected components,
we can easily reduce it to the connected version: we add to G a complete graph
on s+ 2 vertices (so that no two vertices of the complete graph can be separated
by a cut of size s), connect one vertex from each connected component of G to
all vertices of the complete graph, and decrease k by ¢ — 1. Thus, by restricting
ourselves to connected graphs G we do not make the problem easier.

The main result of this section is that k-WAY CuT, parameterized by s, does
not admit a polynomial kernel (unless NP C coNP/poly). We show a cross-
composition from the CLIQUE problem, well-known to be NP-complete.

CLIQUE
Input: An undirected graph G and an integer /.
Task: Does G contain a clique on ¢ vertices as a subgraph?

Theorem 6. CLIQUE cross-composes to k-WAY CUT parameterized by s.

Proof (sketch). By defining the polynomial equivalence relation appropriately,
in the designed cross-composition we may assume that we are given t instances
(G;,0) for 1 < i <t of the CLIQUE problem with |V(G;)| = n and |E(G;)| = m
forall 1 <i <t

We consider a weighted version of the k-WAY CUT problem where each edge may
have a positive integer weight and the cutset X needs to be of total weight at most s.
We use three weights: light, medium and heavy; all weights in our construction are
polynomial in n and m. The weighted version can be reduced to the unweighted one
by replacing each vertex v by a huge clique H, and connecting cliques H, and H,
with the number of edges equal to the weight of the edge uv.

The construction is as follows. The input instances have light edges. In each
input instance, between every two vertices we add an additional edge of medium
weight. Moreover, we introduce a root vertex r and connect it to each vertex
of the input instances with a heavy edge. We ask for k = n — £ + 1 connected
components created by cutting n—¢ heavy edges, (g) — (g) medium edges and m—
(g) light edges.

The heavy edges ensure that in any solution, after removal of the cutset we
have one large connected component and n — ¢ isolated vertices. The only way
to cut only (g) — (g) medium edges is to cut n — £ isolated vertices from one
input instance. The budget for light edges forces us to leave from this particular
input instance a clique of size ¢ in the large connected component. O
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Corollary 5. k-WAY CUT parameterized by s does not admit a polynomial ker-
nel unless NP C coNP/poly.

7 Conclusion and Open Problems

We have shown that four important parameterized problems do not admit a
kernelization algorithm with a polynomial guarantee on the output size unless
NP C coNP/poly and the polynomial hierarchy collapses. We would like to
mention here some open problems very closely related to our work.

— The OR-composition for DIRECTED MULTIWAY CUT in the case of two ter-
minals excludes the existence of a polynomial kernel for most graph separa-
tion problems in directed graphs. There are two important cases not covered
by this result: one is the MULTICUT problem in directed acyclic graphs, and
the second is DIRECTED MULTIWAY CUT with deletable terminals.

— Both our OR-compositions for MULTICUT use a number of terminal pairs
that is linear in the number of input instances. Is MULTICUT parameterized
by both the size of the cutset and the number of terminal pairs similarly
hard to kernelize?

Acknowledgements. We would like to thank Jakub Onufry Wojtaszczyk for
some early discussions on the kernelization of the graph separation problems.
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Abstract. For f a weighted voting scheme used by n voters to choose between
two candidates, the n Shapley-Shubik Indices (or Shapley values) of f provide a
measure of how much control each voter can exert over the overall outcome of
the vote. Shapley-Shubik indices were introduced by Lloyd Shapley and Martin
Shubik in 1954 [SS54]] and are widely studied in social choice theory as a measure
of the “influence” of voters. The Inverse Shapley Value Problem is the problem
of designing a weighted voting scheme which (approximately) achieves a desired
input vector of values for the Shapley-Shubik indices. Despite much interest in
this problem no provably correct and efficient algorithm was known prior to our
work.

We give the first efficient algorithm with provable performance guarantees for
the Inverse Shapley Value Problem. For any constant € > 0 our algorithm runs
in fixed poly(n) time (the degree of the polynomial is independent of €) and has
the following performance guarantee: given as input a vector of desired Shapley
values, if any “reasonable” weighted voting scheme (roughly, one in which the
threshold is not too skewed) approximately matches the desired vector of values
to within some small error, then our algorithm explicitly outputs a weighted vot-
ing scheme that achieves this vector of Shapley values to within error €. If there
is a “reasonable” voting scheme in which all voting weights are integers at most
poly(n) that approximately achieves the desired Shapley values, then our algo-
rithm runs in time poly(n) and outputs a weighted voting scheme that achieves
the target vector of Shapley values to within error € = n~/8,

1 Introduction

In this paper we consider the common scenario in which each of n voters must cast a
binary vote for or against some proposal. What is the best way to design such a voting
scheme? [] If it is desired that each of the n voters should have the same “amount of
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! Throughout the paper we consider only weighted voting schemes, in which the proposal
passes if a weighted sum of yes-votes exceeds a predetermined threshold. Weighted vot-
ing schemes are predominant in voting theory and have been extensively studied for many
years, see [EGGWO7, |[ZEBEQS| and references therein. In computer science language, we
are dealing with linear threshold functions (henceforth abbreviated as LTF's) over n Boolean
variables.
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power” over the outcome, then a simple majority vote is the obvious solution. However,
in many scenarios it may be the case that we would like to assign different levels of
voting power to the n voters — perhaps they are shareholders who own different amounts
of stock in a corporation, or representatives of differently sized populations. In such a
setting it is much less obvious how to design the right voting scheme; indeed, it is far
from obvious how to correctly quantify the notion of the “amount of power” that a
voter has under a given fixed voting scheme. As a simple example, consider an election
with three voters who have voting weights 49, 49 and 2, in which a total of 51 votes
are required for the proposition to pass. While the disparity between voting weights
may at first suggest that the two voters with 49 votes each have most of the “power,”
any coalition of two voters is sufficient to pass the proposition and any single voter is
insufficient, so the voting power of all three voters is in fact equal.

Many different power indices (methods of measuring the voting power of individuals
under a given weighted voting scheme) have been proposed over the course of decades.
These include the Banzhaf index [Ban63|], the Deegan-Packel index [DP78]], the Holler
index [Hol82], and others (see the extensive survey of de Keijzer [dKOS]|). Perhaps
the best known, and certainly the oldest, of these indices is the Shapley-Shubik index
[SS54], which is also known as the index of Shapley values (we shall henceforth refer to
it as such). Informally, the Shapley value of a voter ¢ among the n voters is the fraction
of all n! orderings of the voters in which she “casts the pivotal vote” (see [Rot88] for
much more on Shapley values). We shall work with the Shapley values throughout this
paper.

Given a particular weighted voting scheme (i.e. an n-variable linear threshold func-
tion), standard sampling-based approaches can be used to efficiently obtain highly ac-
curate estimates of the n Shapley values (see also the works of [Lee03, BMR™10]).
However, the inverse problem is much more challenging: given a vector of n desired
values for the Shapley values, how can one design a weighted voting scheme that
(approximately) achieves these Shapley values? This problem, which we refer to as
the Inverse Shapley Value Problem, is quite natural and has received considerable at-
tention; various heuristics and exponential-time algorithms have been proposed, e.g.
[APLO7, [FWJ08| [dKKZ10, [Kurl1]], but prior to our work no provably correct and effi-
cient algorithms were known.

Our Results. We give the first efficient algorithm with provable performance guaran-
tees for the Inverse Shapley Value Problem. Our results apply to “reasonable” voting
schemes; roughly, we say that a weighted voting scheme is “reasonable” if fixing a
tiny fraction of the voting weight does not already determine the outcome, i.e. if the
threshold of the linear threshold function is not too extreme. This seems to be a plau-
sible property for natural voting schemes. Roughly speaking, we show that if there is
any reasonable weighted voting scheme that approximately achieves the desired input
vector of Shapley values, then our algorithm finds such a weighted voting scheme. Our
algorithm runs in fixed polynomial time in n, the number of voters, for any constant
error parameter € > 0. In a bit more detail, our first main theorem, stated informally, is
as follows (see Section [ for Theorem[3] which gives a precise theorem statement):

Main Theorem (Arbitrary Weights, Informal Statement). There is a poly(n)-time
algorithm with the following properties: The algorithm is given any constant accuracy
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parameter € > 0 and any vector of n real values a(1),...,a(n). The algorithm has
the following performance guarantee: if there is any monotone increasing reasonable
LTF f(x) whose Shapley values are very close to the given values a(1), . ..,a(n), then
with very high probability the algorithm outputs v € R™, 8 € R such that the linear
threshold function h(x) = sign(v - « — ) has Shapley values e-close to those of f.

Our second main theorem gives an even stronger guarantee if there is a weighted
voting scheme with small weights (at most poly(n)) whose Shapley values are close to
the desired values. For this problem we give an algorithm which achieves 1/poly(n)
accuracy in poly(n) time. An informal statement of this result is (see Section [3 for
Theorem ] which gives a precise theorem statement):

Main Theorem (Bounded Weights, Informal Statement). There is a poly(n, W)-
time algorithm with the following properties: The algorithm is given a weight bound
W and any vector of n real values a(1),...,a(n). The algorithm has the following
performance guarantee: if there is any monotone increasing reasonable LTF f(x) =
sign(w - x — 0) whose Shapley values are very close to the given values a(1), ..., a(n)
and where each w; is an integer of magnitude at most W, then with very high probability
the algorithm outputs v € R™, 0 € R such that the linear threshold function h(xz) =
sign(v - « — 0) has Shapley values n~"/8-close to those of f.

Discussion and Our Approach. At a high level, the Inverse Shapley Value Problem
that we consider is similar to the “Chow Parameters Problem” that has been the sub-
ject of several recent papers [[Gol06, [OS08, [IDDES12]. The Chow parameters are an-
other name for the n Banzhaf indices; the Chow Parameters Problem is to output a
linear threshold function which approximately matches a given input vector of Chow
parameters. (To align with the terminology of the current paper, the “Chow Parameters
Problem” might perhaps better be described as the “Inverse Banzhaf Problem.”)

Let us briefly describe the approaches in [OS08] and [DDES12]] at a high level
for the purpose of establishing a clear comparison with this paper. Each of the pa-
pers [OS08, IDDES12]] combines structural results on linear threshold functions with an
algorithmic component. The structural results in [OSO8] deal with anti-concentration
of affine forms w - © — 6 where x € {—1,1}" is uniformly distributed over the
Boolean hypercube, while the algorithmic ingredient of [OS08] is a rather straight-
forward brute-force search. In contrast, the key structural results of [DDFS12] are ge-
ometric statements about how n-dimensional hyperplanes interact with the Boolean
hypercube, which are combined with linear-algebraic (rather than anti-concentration)
arguments. The algorithmic ingredient of [DDES12] is more sophisticated, employing
a boosting-based approach inspired by the work of [TTV08, Imp95].

Our approach combines aspects of both the [OS08] and [DDFS12]] approaches. Very
roughly speaking, we establish new structural results which show that linear threshold
functions have good anti-concentration (similar to [OSOS]]), and use a boosting-based
approach derived from [TTVOS] as the algorithmic component (similar to [DDES12]).
However, this high-level description glosses over many “Shapley-specific” issues and
complications that do not arise in these earlier works; below we describe two of the
main challenges that arise, and sketch how we meet them in this paper.
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First Challenge: Establishing Anti-concentration with Respect to Non-Standard
Distributions. The Chow parameters (i.e. Banzhaf indices) have a natural definition in
terms of the uniform distribution over the Boolean hypercube {—1, 1}". Being able to
use the uniform distribution with its many nice properties (such as complete indepen-
dence among all coordinates) is very useful in proving the required anti-concentration
results that are at the heart of [OSOS8]|. In contrast, it is not a priori clear what is (or
even whether there exists) the “right” distribution over {—1,1}" corresponding to the
Shapley values. In this paper we derive such a distribution x over {—1,1}", but it is
much less well-behaved than the uniform distribution (it is supported on a proper sub-
set of {—1,1}", and it is not even pairwise independent). Nevertheless, we are able to
establish anti-concentration results for affine forms w - * — 6 corresponding to linear
threshold functions under the distribution g as required for our results. This is done
by showing that any linear threshold function can be expressed with “nice” weights,
and establishing anti-concentration for any “nice” weight vector by carefully combin-
ing anti-concentration bounds for p-biased distributions across a continuous family of
different choices of p (see Section[3|for details).

Second Challenge: Using Anti-concentration to Solve the Inverse Shapley
Problem. The main algorithmic ingredient that we use is a procedure from [TTVO08].
Given a vector of values (E[f(x)x;])i=1,...,n (correlations between the unknown lin-
ear threshold function f and the individual input variables), it efficiently constructs a
bounded function g : {—1,1}" — [—1, 1] which closely matches these correlations,
ie. E[f(z)z;] = Elg(x)z;] for all 5. Such a procedure is very useful for the Chow
parameters problem, because the Chow parameters correspond precisely to the values
E[f(z)x;] —i.e. the degree-1 Fourier coefficients of f — with respect to the uniform dis-
tribution. (This correspondence is at the heart of Chow’s original proof [Cho61]] show-
ing that the exact values of the Chow parameters suffice to information-theoretically
specify any linear threshold function; anti-concentration is used in [[OSOS8]] to extend
Chow’s original arguments about degree-1 Fourier coefficients to the setting of approx-
imate reconstruction.)

For the inverse Shapley problem, there is no obvious correspondence between the
correlations of individual input variables and the Shapley values. Moreover, without a
notion of “degree-1 Fourier coefficients” for the Shapley setting, it is not clear why
anti-concentration statements with respect to 1 should be useful for approximate recon-
struction. We deal with both these issues by developing a notion of the degree-1 Fourier
coefficients of f with respect to distribution i and relating these coefficients to the Shap-
ley values; see Section B Armed with this notion, we prove a key result (Lemma [6)
saying that if the LTF f is anti-concentrated under distribution p, then any bounded

2 We actually require two related notions: one is the “coordinate correlation coefficient”
Eo~u[f(x)x;], which is necessary for the algorithmic [TTVOS8] ingredient, and one is the
“Fourier coefficient” f(i) = E,~,[f(x)L;], which is necessary for Lemma[G We define both
notions and establish the necessary relations between them in Section 2l

We note that Owen [Owe72| has given a characterization of the Shapley values as a weighted
average of p-biased influences (see also [KS06]). However, this is not as useful for us as our
characterization in terms of “u-distribution” Fourier coefficients, because we need to ultimately
relate the Shapley values to anti-concentration with respect to .
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function g which closely matches the degree-1 Fourier coefficients of f must be close
to f in ¢1-measure with respect to p. (This is why anti-concentration with respect to p
is useful for us.) From this point, exploiting properties of the [TTVOS|| algorithm, we
can pass from g to an LTF whose Shapley values closely match those of f.

Organization. Because of space constraints most proofs are deferred to the full version.
In Section [2| we define the distribution x and the notions of Fourier coefficients and
“coordinate correlation coefficients,” and the relations between them, that we will need.
At the end of that section we prove a crucial lemma, Lemma[6l which says that anti-
concentration of affine forms and closeness in Fourier coefficients together suffice to
establish closeness in ¢; distance. Section [3] proves that “nice” affine forms have the
required anti-concentration, and Section4] describes the algorithmic tool from [TTVO08]
that lets us establish closeness of coordinate correlation coefficients. Section 3] puts the
pieces together to prove our main theorems.

2 Reformulation of Shapley-Shubik Indices

Given f : {—1,1}* — {—1,1}, we will denote by f(i) the i-th Shapley value of f.
The original definition of Shapley values is somewhat cumbersome to work with. In
this section we derive alternate characterizations of Shapley values in terms of “Fourier
coefficients” and “coordinate correlation coefficients” and establish various technical
results relating Shapley values and these coefficients; these technical results will be
crucially used in the proof of our main theorems.

There is a particular distribution £ that plays a central role in our reformulations. We
start by defining this distribution p and introducing some relevant notation, and then
give our results. Because of space constraints all proofs are deferred to the full version.

The Distribution /.. Let us define A(n) :== >, _, . + +,,*,; clearly we have A(n) =
O(logn), and more precisely we have A(n) < 2logn. We also define Q(n, k) as
Q(n, k) := i + nik for0 < k < n,sowehave A(n) = Q(n,1)+ -+ Q(n,n—1).

For z € {—1,1}" we write wt () to denote the number of 1s in z. We define the set
B, tobe By, :={x € {-1,1}": 0 < wt(x) < n},ie. B, = {-1,1}"\ {1, -1}

The distribution p is supported on B,, and is defined as follows: to make a draw from
w, sample k € {1,...,n — 1} with probability Q(n, k)/A(n). Choose z € {—1,1}"
uniformly at random from the k‘" “weight level” of {—1,1}", i.e. from {—1,1}", :=
{z e {-1,1}": wt(x) = k}.

Useful Notation. For ¢ = 0,...,n we define the “coordinate correlation coefficients”
of a function f : {—1,1}" — R (with respect to p) as:
[7(0) = Epuplf (@) - 2] ()

(here and throughout the paper =y denotes the constant 1).

Later in this section we will define an orthonormal set of linear functions Ly,
Li,..., Ly : {—1,1}" — R. We define the “Fourier coefficients” of f (with respect to
1) as:

f(@) := Exnp[f(2) - Li()]. 2
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An Alternative Expression for the Shapley Values. We start by expressing the Shap-
ley values in terms of the coordinate correlation coefficients:
Lemma 1. Given f : {—1,1}" — [~1,1], for each i = 1,...,n we have f(i) =
1)—f(—-1 A w /- n * /[
FOZIED AW (fr@) = LS5 1G)) -
Construction of a Fourier Basis for Distribution 4. For all # € B,, we have that
w(x) > 0, and consequently we know that the functions 1, x1, . . ., 2,41 form a basis for
the subspace of linear functions from B,, — R. By Gram-Schmidt orthogonalization,
we can obtain an orthonormal basis Ly, ..., L,, for this subspace, i.e. one that satisfies
(L;, L), = 1foralliand (L;,L;), = 0foralli # j.
We now give explicit expressions for these basis functions. We start by defining
Ly : B, — Ras Ly : x — 1. Next, by symmetry, we can express each L; as

Li(z) =ax1 + ...+ x,) + Bas.

Using the orthonormality properties it is straightforward to solve for « and 3. The
following Lemma gives the values of « and 3:

Lemma 2. For the choices o = }L . <\/nA(n§l(Zzn1) - W;“”) ,B= \//;(n) , the set

{L;}? is an orthonormal set of linear functions under the distribution .

We note for later reference that « = —© (\/I‘;?") and 3 = O(y/logn).

Relating the Shapley Values to the Fourier Coefficients. The next lemma gives a
useful expression for f(¢) in terms of f(7):

Lemma 3. Ler f : {—1,1}" — [—1, 1] be any function. Then for eachi = 1,...,nwe
have f(i) = 20 - (f(i) _ f(l)—nf(—1>) Ly R
Bounding Shapley Distance in Terms of Fourier Distance. Recall that the Shapley
distance dsnapley(f; g) between f, g : {—1,1}™ — [—1, 1] is defined as dsnapley (f; 9) :
= \/22;1 (f(i) — §(i))2. We define the Fourier distance between f and g as
drousier(f.9) = /S0 (F0) — 4(0)?.

Our next lemma shows that if the Fourier distance between f and g is small then so
is the Shapley distance.
Lemmad. Let f,g : {~1,1}" — [~1,1). Then, dsnapiey(f,9) < 1, + 35 -
dFourier(f7 g) .

Bounding Fourier Distance by ‘“Correlation Distance.” The following lemma will
be useful for us since it lets us upper bound Fourier distance in terms of the distance
between vectors of correlations with individual variables:

Lemma 5. Let f,g : {—1,1}" — R. Then we have drourie:(f,9) < O(y/logn) -
Vo (2 (i) — g* ()2
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From Fourier Closeness to /1-Closeness. An important technical ingredient in our
work is the notion of an affine form ¢(z) having “good anti-concentration” under dis-
tribution p; we now give a precise definition to capture this.

Definition 1 (Anti-concentration). Fix w € R™ and 0 € R, and let the affine form
l(x) be U(x) = w-x — 0. We say that {(x) is (, x)-anti-concentrated under p if
Prou[(x)] < 0] < &.

The next lemma plays a crucial role in our results. It essentially shows that for f =
sign(w - « — ), if the affine form ¢(x) = w - x — @ is anti-concentrated, then any
bounded function g : {—1,1}" — [—1, 1] that has drourier(f, g) small must in fact be
close to f in ¢; distance under .

Lemma 6. Ler f : {—1,1}" — {—1,1}, f = sign(w -  — 0) be such that w - x — 0
is (0, k)-anti-concentrated under i (for some k. < 1/2), where |0| < ||w||1. Let g :
{—1,1}" — [-1, 1] be such that dpourier(f,g) < p. Then we have

Eonpllf(2) — g(2)]] < (4llwll1v/p)/6 + 4k.

3 A Useful Anti-concentration Result

In this section we prove an anti-concentration result for monotone increasing 7-reason-
able affine forms under the distribution p. Note that even if k is a constant the result
gives an anti-concentration probability of O(1/logn); this will be crucial in the proof
of our first main result in Section

Theorem 1. Let L(z) = wo + Y., w;x; be a monotone increasing 1-reasonable
affine form, so w; > 0 fori € [n] and |wo| < (1 —n) >_1, |w;|. Letk € [n],0 < ¢ <

1/2, k > 2/nandr € Ry be such that |S| > k, where S := {i € [n] : |w;| > r}. Then

1 1 1 1
Pr,.,[|L(z)| <r] =0 <logn T EL/3-¢ <( + n)) '

This theorem essentially says that under the distribution u, the random variable L(z)
falls in the interval [—r, r] with only a very small probability. Such theorems are known
in the literature as “anti-concentration” results, but almost all such results are for the
uniform distribution or for other product distributions, and indeed the proofs of such
results typically crucially use the fact that the distributions are product distributions.

In our setting, the distribution y is not even a pairwise independent distribution, so
standard approaches for proving anti-concentration cannot be directly applied. Instead,
we exploit the fact that y is a symmetric distribution; a distribution is symmetric if the
probability mass it assigns to an n-bit string € {—1, 1}™ depends only on the number
of 1’s of x (and not on their location within the string). This enables us to perform
a somewhat delicate reduction to known anti-concentration results for biased product
distributions. Our proof adopts a point of view which is inspired by the combinatorial
proof of the basic Littlewood-Offord theorem (under the uniform distribution on the
hypercube) due to Benjamini et. al. [BKS99]. The proof is given in the full version.
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4 A Useful Algorithmic Tool

In this section we describe a useful algorithmic tool arising from recent work in com-
putational complexity theory. The main result we will need is the following theorem of
[TTVO8] (the ideas go back to [Imp95|] and were used in a different form in [DDES12])):

Theorem 2. [TTVO8] Let X be a finite domain, p be a samplable probability distri-
bution over X, f : X — [—1,1] be a bounded function, and L be a finite family of
Boolean functions £ : X — {—1,1}. There is an algorithm Boosting-TTV with the
following properties: Suppose Boosting-TTV is given as input a list (ag)ecr of real
values and a parameter & > 0 such that | Eg,[f(2)0(x)] — ae] < £/16 for every
¢ € L. Then Boosting-TTV outputs a function h : X — [—1, 1] with the following
properties:

(i) | Ezopll(z)h(z) — l(x) f(x)]| < & forevery L € L;
(ii) h(x)is of the form h(x) = Py (g > ver wel(x)) where the wy’s are integers whose
absolute values sum to O(1/£2).

The algorithm runs for O(1/€2) iterations, where in each iteration it estimates
E, [l (x)l(x)] to within additive accuracy ££/16. Here each h' is a function of the
form I/ (z) = Pi(§ - > ver Vel(x)), where the vy’s are integers whose absolute values

sumto O(1/€2).

We note that Theorem 2]is not explicitly stated in the above form in [TTVO0S]; in par-
ticular, neither the time complexity of the algorithm nor the fact that it suffices for the
algorithm to be given “noisy” estimates a, of the values E,,[f(z)¢(z)] is explicitly
stated in [TTVO08]. So for the sake of completeness, in the full version we state the al-
gorithm in full and sketch a proof of correctness of this algorithm using results that are
explicitly proved in [TTVO08].

5 Our Main Results

In this section we combine ingredients from the previous subsections and prove our
main results, Theorems 3] and 4]

Our first main result gives an algorithm that works if any monotone increasing 7-
reasonable LTF has approximately the right Shapley values:

Theorem 3. There is an algorithm IS (for Inverse-Shapley) with the following prop-
erties. IS is given as input an accuracy parameter € > 0, a confidence parameter § > 0,
and n real values a(1), ... ,a(n); its output is a pair v € R™,0 € R. Its running time
is poly(n, 2P°Y(1/€) 1og(1/6)). The performance guarantees of IS are the following:

1. Suppose there is a monotone increasing n-reasonable LTF f(x) such that
dshapley (@, f) < 1/poly(n, 2Py (1/€)) Then with probability 1 — § algorithm IS
outputs v € R™, 6 € R which are such that the LTF h(x) = sign(v - © — 0) has
dShapley(fa h) S €.
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2. For any input vector (a(1),...,a(n)), the probability that IS outputs v € R™,0 €
R such that the LTF h(x) = sign(v - © — 0) has dsnapley(f, h) > € is at most §.

Proof. We first note that we may assume ¢ > n~° for a constant ¢ > 0 of our choos-
ing, for if e < n™° then the claimed running time is 292(n*logn) Tn this much time we
can easily enumerate all LTFs over n variables (by trying all weight vectors with inte-
ger weights at most n™; this suffices by [MTT61]]) and compute their Shapley values
exactly, and thus solve the problem. So for the rest of the proof we assume thate > n=°.

It will be obvious from the description of IS that property (2) above is satisfied, so
the main job is to establish (1). Before giving the formal proof we first describe an
algorithm and analysis achieving (1) for an idealized version of the problem. We then
describe the actual algorithm and its analysis (which build on the idealized version).

Recall that the algorithm is given as input €, § and a(1), ..., a(n) that satisfy
dshapley(a, f) < 1/poly(n, gpoly(1/ 6)) for some monotone increasing 7-reasonable
LTF f. The idealized version of the problem is the following: we assume that the al-
gorithm is also given the two real values f*(0), (f*(1) + ... + f*(n))/n. It is also
helpful to note that since f is monotone and 7-reasonable (and hence is not a constant
function), it must be the case that f(1) = 1 and f(—1) = —1.

The algorithm for this idealized version is as follows: first, using Lemmalll the val-
ues f(i),i=1,...,n are converted into values a* (i) which are approximations for the
values f*(i). Each a* (1) satisfies |a* (i) — f*(i)| < 1/poly(n,20®ely(1/€))) The algo-
rithm sets a*(0) to f*(0). Next, the algorithm runs Boosting-TTV with the following
input: the family £ of Boolean functionsis {1, z1, ...,z }; the values a*(0), ..., a*(n)
comprise the list of real values; p is the distribution; and the parameter & is set to
1/poly(n, 2P°Y(1/€)), (We note that each execution of Step 3 of Boosting-TTV, namely
finding values that closely estimate B, [h:(z)x;] as required, is easily achieved us-
ing a standard sampling scheme; details in the full version.) Boosting-TTV outputs an
LBF h(z) = Pi(v - 2 — 0); the output of our overall algorithm is the LTF h/(z) =
sign(v - x — 6).

Let us analyze this algorithm for the idealized scenario. By Theorem 2] the output
function h that is produced by Boosting-TTV is an LBF h(z) = P;(v -« — ) that sat-

isfies \/Z] _o(h*(§) = £#(j))2 = 1/poly(n, 2P°¥(1/9))_Given this, Lemma[Simplies

that dFourler(fa ) S p = 1/pOIY<na 2p01y(1/€)).

At this point, we have established that h is a bounded function that has drourier(f, 2)
< 1/poly(n, 2P°(1/€)). We would like to apply Lemma[@ and thereby assert that the
¢; distance between f and h (with respect to ) is small. To see that we can do this,
we first claim (see full version for details) that since f is a monotone increasing 7-
reasonable LTF, it has a representation as f(z) = sign(w - ¢ + wy) whose weights
satisfy the following property: for any choice of ¢ > 0, after rescaling all the weights,
the largest-magnitude weight has magnitude 1, and the k := O, (1/e5+2¢) largest-
magnitude weights each have magnitude at least r := 1/(n - k°®)). (Note that since
€ > n~°¢ we indeed have k < n as required.) Given this, Theorem [I] implies that the
affine form L(z) = w - & + wy satisfies

Pr,u[|L(z)] < 1] < & := €%/(10241og(n)), 3)
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i.e.itis (r, x)-anticoncentrated with x = €2 /(1024 log(n)). Thus we may indeed apply
Lemmal@l and it gives us that

Eopllf(z) = h(2)]] < 4Hwﬂ1‘/p + 4k < €?/(1281ogn). 4)

Nowlet ' : {—1,1}" — {—1, 1} be the LTF defined as h'(x) = sign(v - x — 0) (recall
that h is the LBF P (v -2 —#)). Since f is a {—1, 1}-valued function, it is clear that for
every input x in the support of 4, the contribution of x to Pr,,[f(z) # h/(z)] is at
most twice its contribution to E,,[| f(x) — h(x)|]. Thus we have that Pr,..,[f(z) #
h'(z)] < €2/(64logn). By a standard argument, we obtain that drousier(f,h’) <
¢/(4y/logn). Finally, Lemma M gives that dspapley(f, ') < 4/v/n + /A(n) -
€¢/(4y/1ogn) < €/2.So indeed the LTF 1/ (z) = sign(v-z—0) satisfies dshapley (f, ') <
€/2 as desired.

Now we turn from the idealized scenario to actually prove Theorem [3, where we
are not given the values of f*(0) and (f*(1) + ... + f*(n))/n. To get around this,
we note that f*(0), (f*(1) + ... + f*(n))/n € [—1,1]. So the idea is that we will
run the idealized algorithm repeatedly, trying “all” possibilities (up to some prescribed
granularity) for f*(0) and for (f*(1) + ...+ f*(n))/n. At the end of each such run
we have a “candidate” LTF h'; we use a simple procedure Shapley-Estimate to esti-
mate dsnapley(f, h’) to within additive accuracy £¢/10, and we output any i’ whose
estimated value of dgnapley(f, 1) is at most 8¢/10.

We may run the idealized algorithm poly (n, 2P°Y(1/€)) times without changing its
overall running time (up to polynomial factors). Thus we can try a net of possible
guesses for f*(0) and (f*(1) + ... + f*(n))/n which is such that one guess will
be within £1 /poly(n, 2P°Y(1/€)) of the the correct values for both parameters. It is
straightforward to verify that the analysis of the idealized scenario given above is suffi-
ciently robust that when these “good” guesses are encountered, the algorithm will with
high probability generate an LTF &' that has dshapiey(f, h') < 6€/10. A straightfor-
ward analysis of running time and failure probability shows that properties (1) and (2)
are achieved as desired, and Theorem[3is proved. O

For any monotone 7-reasonable target LTF f, Theorem [3] constructs an output LTF
whose Shapley distance from f is at most ¢, but the running time is exponential in
poly(1/€). We now show that if the target monotone 7)-reasonable LTF f has integer
weights that are at most 1V, then we can construct an output LTF h with dsnapley (f, h) <
n~1/% running in time poly(n, W); this is a far faster running time than provided by
Theorem[3] for such small €. (The “1/8” is chosen for convenience; it will be clear from
the proof that any constant strictly less than 1/6 would suffice.)

Theorem 4. There is an algorithm ISBW (for Inverse-Shapley with Bounded
Weights) with the following properties. ISBW is given as input a weight bound W €
N, a confidence parameter § > 0, and n real values a(1), . .., a(n); its output is a pair
v € R™, 0 € R. Its running time is poly(n, W,log(1/6)). The performance guarantees
of ISBW are the following:

1. Suppose there is a monotone increasing n-reasonable LTF f(x) = sign(u - x — 6),
where each u; is an integer with |u;| < W, such that dgnapiey(a, f) < 1/poly(n, W).
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Then with probability 1 — ¢ algorithm ISBW outputs v € R™, 0 € R which are
such that the LTF h(z) = sign(v -  — 0) has dsnapley (f, h) < n~1/8.

2. For any inputvector (a(1), ..., a(n)), the probability that IS outputs v, 0 such that
the LTF h(x) = sign(v -  — 0) has dsnapley (f, h) > n~1/% is at most 5.

Proof. Let f(x) = sign(u - = — ) be as described in the theorem statement. We may
assume that each |u;| > 1 (by scaling all the u;’s and 6 by 2n and then replacing any
zero-weight u; with 1). Next we observe that for such an affine form -2z —6, Theorem[I
immediately yields the following corollary:

Corollary 1. Let L(z) = Y ., u;z; — 0 be a monotone increasing n-reasonable affine
form. Suppose that u; > r foralli =1,... n. Then for any { > 0, we have

Prw[|L(x)|<r]—o< ! ! <1+1)>.

logn nl/3-¢ \¢ ' p

With this anti-concentration statement in hand, the proof of Theorem[ closely follows
the proof of Theorem Bl The algorithm runs Boosting-TTV with £, a*(i) and p as
before but now with ¢ set to 1/poly(n, W). The LBF h that Boosting-TTV outputs
satisfies dpourier (f, R) < p := 1/poly(n, W). We apply Corollary [Tl to the affine form
L(z) := fufy * T~ Ju, @nd get that for r = 1/poly(n, W), we have

Pr,.,[|L(z)| < 7] < &= €*/(1024logn) 5)

where now € := n~1/%  in place of Equation (3). Applying Lemmal[@ we get that

E.ullf(z) — h(z)]] < 4”wﬂlw’ + 4k < €2 /(128 logn)

analogous to @). The rest of the analysis goes through exactly as before, and we get
that the LTF h/(x) = sign(v - © — 0) satisfies dsnapley (f, #’) < €/2 as desired. The rest
of the argument is unchanged so we do not repeat it. O
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Abstract. We propose a generic and simple technique called dyadic
rounding for rounding real vectors to zero-one vectors, and show its
several applications in approximating singular vectors of matrices by
zero-one vectors, cut decompositions of matrices, and norm optimization
problems. Our rounding technique leads to the following consequences.

1. Given any A € R™*", there exists z € {0,1}" such that
| Az]|

_1 1_
2 2 (e ogm) ™) 1Al
P

where ||A[|,,, = maxzxo [|Az|, / [|z][,. Moreover, given any vector
v € R™ we can round it to a vector z € {0,1}" with the same
approximation guarantee as above, but now the guarantee is with
respect to [|Av|[, /[|Av][, instead of ||A]|, . Although stated for
p +— ¢ norm, this generalizes to the case when [|Az||, is replaced by

any norm of z.
2. Given any A € R™*", we can efficiently find z € {0,1}" such that

JA2]  oi(4)
=l = 2v/210gn’

where 01(A) is the top singular value of A. Extending this, we can
efficiently find orthogonal z1, z2, ...,z € {0,1}" such that

[| Az ( or(A) ) -
> , forall i€ [k].
||z ]| Vklogn [k]

We complement these results by showing that they are almost tight.

3. Given any A € R™*" of rank r, we can approximate it (under the
Frobenius norm) by a sum of O(r log® mlog? n) cut-matrices, within
an error of at most ||A| /poly(m,n). In comparison, the Singu-
lar Value Decomposition uses r rank-1 terms in the sum (but not
necessarily cut matrices) and has zero error, whereas the cut decom-
position lemma by Frieze and Kannan in their algorithmic version
of Szemerédi’s regularity partition [QIT0] uses only O(1/€?) cut ma-
trices but has a large ey/mn || Al error (under the cut norm). Our
algorithm is deterministic and more efficient for the corresponding
error range.

Keywords: rounding, matrix norms, singular value decomposition, cut
decomposition.
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1 Introduction

In most combinatorial optimization problems, once we come up with the right
relaxation, solving the relaxation is often routine compared to the final rounding.
Several sophisticated and clever rounding techniques are known that round real
solutions to integer or zero-one solutions [19]. These rounding techniques often
exploit the structure of the problem at hand (e.g., graph problems) as well as its
corresponding relaxation (e.g., linear and semidefinite programs). In this paper,
however, we propose a generic and simple rounding scheme that rounds any unit
vector to a normalized vector in {0,1}", works for a wide range of problems,
and has applications in cut decompositions of matrices and norm optimization
problems.

The Singular Value Decomposition (SVD) decomposes any given matrix into
a sum of rank-1 matrices, where the number of terms used in the decomposition
is equal to the rank of the given matrix [11I]. Often in practice, when the data
is given as a matrix (e.g., document-term matrix, DNA microarray data), its
rows and columns have special meanings as objects or attributes or features.
When we use the singular value decomposition and its several analogs such as
Principal Component Analysis (PCA) in practice, our actual intent is to find out
the most important objects, attributes or features rather than just reducing the
dimensionality by picking out a small number of important directions. The usual
SVD or PCA fail to do this because the singular vectors are often real vectors
and they correspond to linear combinations of objects, attributes or features,
which are meaningless in practice [14]. Thus, it is desirable to have analogs of
singular value decomposition that round the singular vectors to zero-one vectors.

One particular matrix decomposition that fits the above requirement is the
cut decomposition of matrices. In cut decomposition, we decompose a given ma-
trix into a sum of rank-1 matrices of a special type, known as cut-matrices. A
cut-matrix is a rank-1 matrix obtained by taking an outer product of two zero-
one vectors. Among the notable theoretical applications of cut decompositions
are the algorithmic version of Szemerédi’s regularity lemma [I8] as well as the
approximation schemes for dense constraint satisfaction problems due to Frieze
and Kannan [9/T0] and Alon et al. [I]. The cut decomposition lemma of Frieze
and Kannan that lies at the heart of these results is a randomized algorithm to
decomposes any given matrix (approximately) into a constant number of cut-
matrices. While the approximation error in the Frieze-Kannan cut decomposi-
tion is large, it is still negligible for their applications, may it be the regularity
lemma, or dense constraint satisfaction problems. In this paper, we come up with
a different deterministic cut decomposition algorithm that is based on the sin-
gular value decomposition and dyadic rounding of the singular vectors, and uses
only polylogarithmically more number of terms in the sum than the SVD while
keeping the error polynomially small.

The top singular value of a matrix is the same as its spectral or |[|-||,, ,, norm
[I1]. This can be generalized to p-to-¢ norm of a matrix, which is defined as
mMax|z| 1 [|Az]|,, where ||-||, and [|-[|, denote the £, and £,-norms, respectively.
Several natural problems and their relaxations can be expressed using matrix
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p-to-g norms (see [6] for a survey), e.g., £,-Grothendieck problem [2], subspace
approximation problem [7], condition number estimation [I2], robust optimiza-
tion [1I7], and spectral relaxations of graph cuts. Our rounding technique for the
singular vectors generalizes to p-to-g norm optimization and even beyond to a
larger class of norm optimization problems. To illustrate this, we give tensor
norm optimization as an example of its generality.

2  Our Results

Our dyadic rounding technique leads to the following consequences.
1. Given any A € R™*" there exists z € {0,1}" such that

| Az]]

>0 (ptrogn)r L) A
i (p = (togm)» =) 1Al

where [|A]|,_,, = maxy .o || Az, / [[z]|,.- Moreover, given any vector v € R"
we can round it to a vector z € {0,1}"™ with the same approximation guar-
antee as above, but now with respect to ||Avl|, / [|Av|, instead of |[A][,_, .
Thus, our rounding can be combined with the known algorithms [GIT6/185]
for computing or approximating p-to-¢ norms of matrices to finally get a
zero-one solution while losing only a small (logn)/9 factor.
2. A special case of the above: Given any A € R™*™ we can efficiently find

z € {0,1}" such that

ey

Izl ~ 2v/2logn’

where o1 (A) is the top singular value of A. Extending this, we can efficiently
find orthogonal z1,z2, ...,z € {0,1}"™ such that

Ml g o
Izl =\ klogn

We complement these results by showing that they are almost tight.

3. Given any A € R™*" of rank r, we can approximate it (under the Frobenius
norm) by a sum of O(r log? m log® n) cut-matrices, within an error of at most
|A|| = /poly(m, n). Our algorithm runs in time O(Tsyq), where Ty,q be the
running time of the Singular Value Decomposition (SVD). In comparison,
the singular value decomposition uses r rank-1 terms in the sum (but not
necessarily cut matrices) and has zero error, whereas the cut decomposition
lemma by Frieze and Kannan in their algorithmic version of Szemerédi’s
regularity partition [QT0] uses only O(1/€?) cut matrices but has a large

) , forallie k]

ey/mn ||Al|p error (under the cut norm), and runs in time 20(1/€*) Notice
that the cut norm of any m by n matrix is at most v/mn times its Frobenius
norm (which can be shown by Cauchy-Schwarz inequality), so our upper
bound for the approximation error under the Frobenius norm also applies to
the cut norm.
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4. Given any k-dimensional tensor A € (R™)®* there exist z1,72,...,75 €
{0,1}™ such that

|A(z1, ..., z1)|

> 2 ((logn)~*/? max |A(x1, ... zk)|.
][ - [l | ( )

lzill=...=llzxl=1

3 Related Work

The problem of rounding the top singular vector to zero-one vector was con-
sidered by Bollobas and Nikiforov [4] in the context of ‘discrepency of graphs’.
They considered the slightly different formulation

zT Ay
|l ly
and showed that for Hermitian A there are always a’,y’ € {0,1}" which come
within a factor of O(logn) of achieving this optimum. By applying their theorem
to adjacency matrices of graphs (minus the trivial top singular vector) they
disproved a conjecture of Fan Chung which asserted that the rounding could

be done to within a constant factor, thus providing a strong converse to the
expander mixing lemma. This was refined by Bilu and Linial [3] to show that

(A~ (dfn)T)y (A~ (d/n)JYy
< O(logd max
S | (logd) , e el

0'1(A) =

max
z,y€R™

where A is the adjacency matrix of a d-regular graph and J is the all 1’s matrix.
This is indeed a converse to the expander mixing lemma, since

’ (/ﬁ;nﬁ/ﬁmy' =|E(S,T) — (d/n)|S|IT|

for 2/, 3’ indicator vectors of sets S, T. They used a randomized bucketing tech-
nique for the coordinates based on powers of 2 but their results apply only to
matrices whose row and column sums are bounded by d.

Another special case appears in a recent manuscript of Matousek [15] (see
Lemma 7), where the given matrix is a vector of all 1’s and the rounding gives a
vector whose non-zero coordinates are almost equal, i.e., within a factor 2 of each
other. Brubaker and Vempala [6] also used indicator decomposition for tensor
norms to get {2 ((logn)*k) guarantee, which we improve to {2 ((log n)*k/z).
Recently, it was pointed out to us that the dyadic rounding of only the top
singular vector also appeared in [I3] in a different context. Our dyadic rounding
is also different from the binary expansion method of Beck and Spencer [8] — our
method is deterministic and we do not round digit-by-digit.

4 Preliminaries and Notation

For a vector v € R™ its £)-norm is defined as |[v]|, = (327, v;")"/?. When we
use ||v|| without any subscript, it should be considered as ||v||,. For a matrix
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A € R™*"™ its p-to-¢g norm is defined as

A = max |Azx
Al = o, 1421

In particular, ||A[|,, ,, is known as the spectral norm or the operator norm of A,
and the vector x that achieves this maximum is called the top (right) singular
vector of A.

Given any matrix A € R™*" of rank r, there exist non-negative real numbers
01 > 09 > ...0, > 0, an orthonormal system of vectors u1,...,u, € R™ and
another orthonormal system of vectors vy, va, ..., v, € R™ such that

-

T

A= g OiUV; .
i=1

This is also known as the Singular Value Decomposition (SVD) of A. In other
words, the Singular Value Decomposition decomposes A into a sum of r rank-1
matrices.

The Frobenius norm of a matrix A € R™*" is defined as the ¢o-norm of it
when thought of as a vector of length mn, i.e.,

1/2

1A= | D47
i

Using the Singular Value Decomposition, one can show that ||A||?$ =>_ ol

The cut-norm of a matrix A € R™*" is defined as

Al = Al
Il =, max | D0 Ay
iel,jed

By Cauchy-Schwarz inequality, we have || Al < /|I||J] | Al » < vmn | Al g

5 Dyadic Rounding of Vectors

Here we state the dyadic rounding lemma that is at the core of our results.

Lemma 1. (Dyadic rounding lemma) Given any A € R™*™, there exists a vec-
tor z € {0,1}"™ such that
[Az|
Iz,
Proof. Let v = argmax, 4 [|Az||, / [|2]|, and [[v][, = 1, without loss of generality.

In the first step, we find a constant factor approximation x to v using a small grid
of size n=/?_ In the second step, we divide this vector into two vectors, call them

14zl

e = R0 2,

_1 1_
"2 0 (p' 0 (ogn) ) Al where A
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Zpos and Tneg, containing the positive and negative coordinates of , respectively.
We show that one of x,0s and znee gives a constant factor approximation to z,
and therefore, to v. Finally in the third step, using the fact that the coordinates
of our new vector are bounded integer multiples of the grid size, we divide them
into O(log n) parts based on powers of 2 (which gives the name dyadic rounding),
and write our vector as a linear combination of O(logn) vectors from {0,1}".
One of these (up to scaling) is the vector z that we are looking for.

Here is a formal proof. Let v = argmax,_5 and [jv[|, = 1, without loss of
generality. We can write v as a convex combination v = ), ayxy, where x; €
(7”F1/JDZ)n7 ||:Ut||p <2and a; > 0forall ¢, and ), oy = 1. By triangle inequality,
|Av|l, < 32, ar [|Aze]|,, so there must exist some ¢ such that [|Az, > [|Av]],.

We proceed with this particular x; € (n’l/pZ)n. Let 24 = Tpos + Tneg, Where

(Tpos)i = {(xt)i if (z¢); >0 (Tneg)i = {(xt)i if (24); <0

0 otherwise 0 otherwise

By triangle inequality, [|Az|[, < |[Azpos|, + [[AZnegl|, and ||a:pos||g + ||xneg||§ =
||30t||§ < 2P. Define

Yy = argmax

|Az[, .

2E{Zpos,Tneg } |

Then ||Ayll, > [[Az:[|, /2 = [|Av], /2 and [|y[[, < 2, and all the non-zero coordi-

nates of y are integer multiples of n~!/? upper bounded by 2 and have the same

sign. Now we can write y = Zjoz(ﬁfl tos7) zj, where
(2;) 0 if binary expansion of |y;| n'/? does not contain 27
) = ‘ ,
I sign(y;)2/n=YP if |y;| n*/P > 0 and its binary expansion contains 27
Therefore,
O(p_1 logn)
lAyll, < D 1145l
§=0
Ol | Az
= Tzl
2y, ol
O(p~*logn) ||AZJ || p/(p—1) (p=1)/p O(p~tlogn) /p
q P
<(x () > sk
j=0 Jllp j=0
by Holder’s inequality
O(p~ ' logn) HAZJH p/(p—1) (p=1)/p
q
() ol
j=0 Jp
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—1
where the last inequality works because Z]Q:(g log ")(zj)f is subsumed by y?,

for each ¢. Thus, by averaging, there must exist some j such that

Az; A
| j”q > Q(plle)(logn)rlfl) || y||
1211, vll,

14wl

“> 0 (p'~r (logn)» ! :
( ) v,

Remark: Observe that the above proof works even when [|Az||, is replaced
by any norm of z. Moreover, this proof can can be made algorithmic using the
following simple idea.

Proposition 1. Given any v € [0,1]", we can efficiently find x1,xa, ... ,Tpy1 €
{0,1}™ such that v = Z?:ll oy, with Z?:ll ay =1 and ay > 0 for all t.

Proof. We prove this by induction on the number of coordinates. Let v; be the
maximum coordinate of v. Then w = (1/v;)v is still in [0, 1]™ and v is a convex
combination of 0 and w. Now w has its i-th coordinates as 1, so by induction
hypothesis w can be written as a convex combination w = Y.}, Bz, where
xy € {0,1}™ and all z; have their i-coordinate as 1. Putting these two together,
v can be written as a convex combination of 0 and z1, ..., ..

5.1 Rounding Singular Vectors

Here are some immediate corollaries of Lemma [l We skip the proofs as they
are essentially identical to that of Lemmal[ll For spectral or ||-||,_,, norm we get
slightly better constants as follows.

Corollary 2. Given any A € R™*™ there exists a vector z € {0,1}"™ such that
JAz] o)
Izl — 2v/2logn’

and such a vector z can be found in polynomial time.

Using a vector instead of matrix, we get the next corollary, which says that the

set of normalized zero-one vectors is a weak e-net for "~ ! with e = 2 — V2 llogn'

Corollary 3. Given any a € R"™, there exists a vector z € {0,1}" such that

llallfl=]
a,z) > .
(a,2) 2 2v/2logn
This special case is actually equivalent to corollary 2] for matrices: given any
matrix A with top singular vector u satisfying || Au|| = o1(A)u, we simply round
u to z € {0,1}™ and observe that

Az||? = 2TAT Az > 2T (o1 (A)uuT )z > 01(A ,

| Az|| >z (o1(Auu’ )z = o1 )2\/210gn
We prove an almost matching tightness result, and our rounding also generalizes
to give {2 ((log n)*k/ 2) guarantee for tensor norm optimization, which improves
an earlier £2 ((logn)~*) guarantee by Brubaker and Vempala [6]. We defer the
proofs of both these to the full version.

as in Corollary 2l
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6 Rounding Multiple Singular Vectors Simultaneously

Our dyadic rounding does not preserve orthogonality property when applied to
the top k singular vectors simultaneously. But surprisingly, we can get around
it to show that there exist k& orthogonal zero-one vectors such that all of them
are at least as good as the k-th singular vector.

Theorem 4. (Multiple rounding with orthogonality constraint) Given any A €
R™*™ there exist vectors x1,xa,...,x € {0,1}™ such that

or(A)
24/2(2k — 1)logn
This proof is also constructive and these vectors can be found efficiently.
Proof. Let ATA = Zj 105

R™" with o1 > 02 > ... > 0, > 0, and let B = o7 ZFl j j . Since ATA =

B = 0, we have ||Az||* = 2T AT Az > 27 Bz, and it suffices to find orthogonal
vectors x1, Z2, ..., € R such that

|Az;|| > llzil|, for alli € [E], and (x;, ;) =0 fori # j.

vjv be the singular value decomp051t10n of ATA ¢

2
x] B”“”‘”(mog >||xi||2, for all i € [k].

However,
k
2
zl Bx; = o} E xZijv T =0} E vmxl =o? |Vail*,
Jj=1 Jj=1
where V' € RF*™ be a matrix with v, v, ..., v as its rows. Thus, it suffices to
find orthogonal vectors x1,xs, ..., T € R™ such that

V|| = £2 ) lz: ||, for all i € [K].

1

< Vklogn
To prove this, we first divide the columns of V into k disjoint parts to get
column submatrices C;,Cy,...,C) such that ||C’j||2 = (1), for all j € [k].
Let aj,as,...,a, be the squared lengths of the columns of V. Then Z?:l a; =
||V||% = k and moreover, a; € [0, 1], for all ¢ € [n], since the columns of V" are in
isotropic position. Therefore, using Lemma 2] we can partition the columns into
k disjoint sets P, Ps, ..., P; such that

Z a; > , for all j € [k].
i€ P;j o
Now we can define matrices Ci,Cs, ..., C) € RFX" ag

V, forqe P;
C.). —J e J
(Ci)a {O otherwise
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i.e., C; is a matrix that keeps all the columns of V' that are in P; and makes all
the others zero. Thus,

2 1 2 1 .
o1 (Cj) > kHCJ”FZ %