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Abstract. This paper proves a long standing conjecture in formal
language theory. It shows that all regular languages are Church-Rosser
congruential. The class of Church-Rosser congruential languages was in-
troduced by McNaughton, Narendran, and Otto in 1988. A language
L is Church-Rosser congruential if there exists a finite, confluent, and
length-reducing semi-Thue system S such that L is a finite union of
congruence classes modulo S. It was known that there are deterministic
linear context-free languages which are not Church-Rosser congruential,
but on the other hand it was strongly believed that all regular languages
are of this form. This paper solves the conjecture affirmatively by actu-
ally proving a more general result.
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1 Introduction

It has been a long standing conjecture in formal language theory that all regular
languages are Church-Rosser congruential. The class of Church-Rosser congruen-
tial languages was introduced in 1988 by McNaughton, Narendran, and Otto [9],
see also [10]. A language L is Church-Rosser congruential, if there exists a fi-
nite confluent, and length-reducing semi-Thue system S such that L is a finite
union of congruence classes modulo S. One of the main motivations to consider
this class of languages is that the membership problem for L can be solved in
linear time; this is done by computing normal forms using the system S, fol-
lowed by a table look-up. For this it is not necessary that the quotient monoid
A∗/S is finite, it is enough that L is a finite union of congruence classes modulo
S. It is not hard to see that {anbn | n ∈ N} is Church-Rosser congruential, but
{ambn | m,n ∈ N and m ≥ n} is not. This led the authors of [9] to the more
technical notion of Church-Rosser languages; this class of languages captures
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all deterministic context-free languages. For more results about Church-Rosser
languages see e.g. [2, 10, 15, 16].

From the very beginning it was strongly believed that all regular languages are
Church-Rosser congruential in the pure sense. However, after some significant
initial progress [10, 11, 12, 13, 14] there was stagnation.

Before 2011 the most advanced result was the one announced in 2003 by
Reinhardt and Thérien [14]. According to this manuscript the conjecture is true
for all regular languages where the syntactic monoid is a group. However, the
manuscript has never been published as a refereed paper and there are some
flaws in its presentation. The main problem with [14] has however been quite
different for us. The statement is too weak to be useful in the induction for the
general case. So, instead of being able to use [14] as a black box, we shall prove
a more general result in the setting of weight-reducing systems. This part about
group languages is a cornerstone in our approach.

The other ingredient to our paper has been established only very recently.
Knowing that the result is true if the syntactic monoid is a group, we started
looking at aperiodic monoids. Aperiodic monoids correspond to star-free lan-
guages and the first two authors together with Weil proved that all star-free
languages are Church-Rosser congruential [6]. Our proof became possible by
loading the induction hypothesis. This means we proved a much stronger state-
ment. We showed that for every star-free language L ⊆ A∗ there exists a finite
confluent semi-Thue system S ⊆ A∗×A∗ such that the quotient monoid A∗/S is
finite (and aperiodic), L is a union of congruence classes modulo S, and moreover
all right-hand sides of rules appear as scattered subwords in the corresponding
left-hand side. We called the last property subword-reducing, and it is obvious
that every subword-reducing system is length-reducing. We have little hope that
such a strong result could be true in general. Indeed here we step back from
subword-reducing to weight-reducing systems.

We prove in Theorem 2 the following result: Let L ⊆ A∗ be a regular language
and ‖a‖ ∈ N \ {0} be a positive weight for every letter a ∈ A (e.g., ‖a‖ =
|a| = 1). Then we can construct for the given weight a finite, confluent and
weight-reducing semi-Thue system S ⊆ A∗ ×A∗ such that the quotient monoid
A∗/S is finite and recognizes L. In particular, L is a finite union of congruence
classes modulo S. Using the notation of Niemann [11], this implies that regular
languages are strongly Church-Rosser congruential.

Note that this gives us another characterization for the class of regular lan-
guages. By Corollary 1 we see that a language L ⊆ A∗ is regular if and only if
L is recognized by a finite Church-Rosser system S with finite index. As a con-
sequence, a long standing conjecture about regular languages has been solved
positively.

2 Preliminaries

Throughout this paper, A is a finite alphabet. An element of A is called a letter.
The set A∗ is the free monoid generated by A. It consists of all finite sequences of
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letters from A. The elements of A∗ are called words. The empty word is denoted
by 1. The length of a word u is denoted by |u|. We have |u| = n for u = a1 · · · an
where ai ∈ A. The empty word has length 0, and it is the only word with this
property. The set of words of length at most n is denoted by A≤n, and the set
of all nonempty words is A+. We generalize the length of a word by introducing
weights. A weighted alphabet (A, ‖·‖) consists of an alphabet A equipped with
a weight function ‖·‖ : A → N \ {0}. The weight of a letter a ∈ A is ‖a‖ and
the weight ‖u‖ of a word u = a1 · · · an with ai ∈ A is ‖a1‖ + · · · + ‖an‖. The
weight of the empty word is 0. The length is the special weight with ‖a‖ = 1 for
all a ∈ A. A word u is a factor of a word v if there exist p, q ∈ A∗ such that
puq = v, and u is a proper factor of v if pq �= 1. The word u is a prefix of v if
uq = v for some q ∈ A∗, and it is a suffix of v if pu = v for some p ∈ A∗. We say
that u is a factor (resp. prefix, resp. suffix) of v+ if there exists n ∈ N such that
u is a factor (resp. prefix, resp. suffix) of vn. Two words u, v ∈ A∗ are conjugate
if there exist p, q ∈ A∗ such that u = pq and v = qp. An integerm > 0 is a period
of a word u = a1 · · · an with ai ∈ A if ai = ai+m for all 1 ≤ i ≤ n−m. A word
u ∈ A+ is primitive if there exists no v ∈ A+ such that u = vn for some integer
n > 1. It is a standard fact that a word u is not primitive if and only if u2 = puq
for some p, q ∈ A+. This follows immediately from the result from combinatorics
on words that xy = yx if and only if x and y are powers of a common root; see
e.g. [8, Section 1.3].

A monoid M recognizes a language L ⊆ A∗ if there exists a homomorphism
ϕ : A∗ →M such that L = ϕ−1ϕ(L). A language L ⊆ A∗ is regular if it is recog-
nized by a finite monoid. There are various other well-known characterizations of
regular languages; e.g., regular expressions, finite automata or monadic second
order logic. Regular languages L can be classified in terms of structural proper-
ties of the monoids recognizing L. In particular, we consider group languages;
these are languages recognized by finite groups.

A semi-Thue system over A is a subset S ⊆ A∗ ×A∗. In this paper, all semi-
Thue systems are finite. The elements of S are called rules. We frequently write
�→ r for rules (�, r). A system S is called length-reducing if we have |�| > |r| for
all rules � → r in S. It is called weight-reducing with respect to some weighted
alphabet (A, ‖·‖), if ‖�‖ > ‖r‖ for all rules �→ r in S. Every system S defines the
rewriting relation =⇒

S
⊆ A∗ ×A∗ by setting u =⇒

S
v if there exist p, q, �, r ∈ A∗

such that u = p�q, v = prq, and �→ r is in S.
By

∗
=⇒
S

we mean the reflexive and transitive closure of =⇒
S

. By
∗⇐⇒
S

we mean

the symmetric, reflexive, and transitive closure of =⇒
S

. We also write u
∗⇐=
S

v

whenever v
∗

=⇒
S

u. The system S is confluent if for all u
∗⇐⇒
S

v there is some w

such that u
∗

=⇒
S

w
∗⇐=
S

v. It is locally confluent if for all v ⇐=
S

u =⇒
S

v′ there

exists w such that v
∗

=⇒
S

w
∗⇐=
S

v′. If S is locally confluent and weight-reducing

for some weight, then S is confluent; see e.g. [1, 7]. Note that u =⇒
S

v implies

that ‖u‖ > ‖v‖ for weight-reducing systems. The relation
∗⇐⇒
S

⊆ A∗ × A∗ is a

congruence, hence the congruence classes [u]S = {v ∈ A∗ | u ∗⇐⇒
S

v} form a
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monoid which is denoted by A∗/S. The size of A∗/S is called the index of S.
A finite semi-Thue system S can be viewed as a finite set of defining relations.
Hence, A∗/S becomes a finitely presented monoid A∗/ {� = r | (�, r) ∈ S}. By
IRRS(A

∗) we denote the set of irreducible words in A∗, i.e., the set of words
where no left-hand side occurs as a factor.

Whenever the weighted alphabet (A, ‖·‖) is fixed, a finite semi-Thue system
S ⊆ A∗ × A∗ is called a weighted Church-Rosser system if it is finite, weight-
reducing for (A, ‖·‖), and confluent. Hence, a finite semi-Thue system S is a
weighted Church-Rosser system if and only if (1) we have ‖�‖ > ‖r‖ for all
rules � → r in S and (2) every congruence class has exactly one irreducible
element. In particular, for weighted Church-Rosser systems S, there is a one-to-
one correspondence between A∗/S and IRRS(A

∗). A Church-Rosser system is
a finite, length-reducing, and confluent semi-Thue system. In particular, every
Church-Rosser system is a weighted Church-Rosser system. A language L ⊆ A∗

is called a Church-Rosser congruential language if there is a finite Church-Rosser
system S such that L can be written as a finite union of congruence classes [u]S .

Definition 1. Let ϕ : A∗ → M be a homomorphism and let S be a semi-Thue
system. We say that ϕ factorizes through S if for all u, v ∈ A∗ we have:

u =⇒
S

v implies ϕ(u) = ϕ(v).

Note that if S is a semi-Thue system and ϕ : A∗ → M factorizes through S,
then ψ([u]S) = ϕ(u) is well-defined and the following diagram commutes (here,
π(u) = [u]S is the canonical homomorphism).

A∗ M

A∗/S

ϕ

π ψ

3 Finite Groups

Our main result is that every homomorphism ϕ : A∗ → M to a finite monoid
M factorizes through a Church-Rosser system S. Our proof of this theorem
distinguishes whether or not M is a group. Thus, we first prove this result
for groups. Before we turn to the general group case, we show that for some
particular groups, proving the claim is easy. The techniques developed here will
also be used when proving the result for arbitrary finite groups.

3.1 Groups without Proper Cyclic Quotient Groups

The aim of this section is to show that finding a Church-Rosser system is very
easy for many cases. This list includes presentations of finite (non-cyclic) simple
groups, but it goes far beyond this. Let ϕ : A∗ → G be a homomorphism to



Regular Languages Are Church-Rosser Congruential 181

a finite group, where (A, ‖·‖) is a weighted alphabet. This defines a regular
language LG = {w ∈ A∗ | ϕ(w) = 1}. Let us assume that the greatest common
divisor gcd {‖w‖ | w ∈ LG} is equal to one; e.g. {6, 10, 15} ⊆ {‖w‖ | w ∈ LG}.
Then there are two words u, v ∈ LG such that ‖u‖ − ‖v‖ = 1. Now we can use
these words to find a constant d such that all g ∈ G have a representing word
vg with the exact weight ‖vg‖ = d. To see this, start with some arbitrary set
of representing words vg. We multiply words vg with smaller weight with u and
words vg with larger weights with v until all weights are equal.

The final step is to define the following weight-reducing system

SG =
{
w → vϕ(w)

∣
∣ w ∈ A∗ and d < ‖w‖ ≤ d+max {‖a‖ | a ∈ A}} .

Confluence of SG is trivial; and every language recognized by ϕ is also recognized
by the canonical homomorphism A∗ → A∗/SG.

Now assume that we are not so lucky, i.e., gcd {‖w‖ | w ∈ LG} > 1. This
means there is a prime number p such that p divides ‖w‖ for all w ∈ LG. Then,
the homomorphism of A∗ to Z/pZ defined by a �→ ‖a‖ mod p factorizes through
ϕ and Z/pZ becomes a quotient group of G. This can never happen if ϕ(A∗) is
a simple and non-cyclic subgroup of G, because a simple group does not have
any proper quotient group. But there are many other cases where a natural
homomorphism A∗ → G for some weighted alphabet (A, ‖·‖) satisfies the prop-
erty gcd {‖w‖ | w ∈ LG} = 1 although G has a non-trivial cyclic quotient group.
Just consider the length function and a presentation by standard generators for
dihedral groups D2n or the permutation groups Sn where n is odd.

For example, let G = D6 = S3 be the permutation group of a triangle. Then G
is generated by elements τ and ρ with defining relations τ2 = ρ3 = 1 and τρτ =
ρ2. The following six words of length 3 represent all six group elements:

1 = ρ3, ρ = ρτ2, ρ2 = τρτ, τ = τ3, τρ = ρ2τ, τρ2.

The corresponding monoid {ρ, τ}∗ /SG has 15 elements. More systematically,
one could obtain a normal form of length 5 for each of the group elements in{
1, ρ, ρ2, τ, τρ, τρ2

}
by adding factors ρ3 and τ2. For example, this could lead to

the set of normal forms
{
τ2ρ3, τ4ρ, ρ5, τ5, τρ4, τ3ρ2

}
. We will use this pumping

idea in our proof of the general case for finding normal forms of approximately
the same size.

It is much harder to find a Church-Rosser system for the homomorphism
ϕ : {a, b, c}∗ → Z/3Z where ϕ(a) = ϕ(b) = ϕ(c) = 1 mod 3. Restricting ϕ
to the submonoid {a, b}∗ makes the situation simpler. Still it is surprisingly
complicated. A possible Church-Rosser system S ⊆ {a, b}∗ × {a, b}∗ of finite
index such that the restriction of ϕ factorizes through S is given by:

S =
{
aaa→ 1, baab→ b, (ba)3b→ b, bb u bb→ b|u|+1

∣
∣
∣ 1 ≤ |u| ≤ 3

}
.

There are 272 irreducible elements and the longest irreducible word has length 16.
Note that the last set of rules has bb as a prefix and as a suffix on both sides
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of every rule. The idea of preserving end markers such as ω = bb in the above
example is essential for the solution of the general case, too.

In some sense this phenomenon suggests that finite cyclic groups or more gen-
eral commutative groups are obstacles to find a simple construction for Church-
Rosser systems.

3.2 The General Case for Group Languages

In this section, we consider arbitrary groups. We start with some simple prop-
erties of Church-Rosser systems. Then, in Theorem 1, we state and prove that
group languages are Church-Rosser congruential.

Lemma 1. Let (A, ‖·‖) be a weighted alphabet, let d ∈ N, and let S ⊆ A∗ ×A∗

be a weighted Church-Rosser system such that IRRS(A
∗) is finite. Then

Sd =
{
u�v → urv

∣∣ u, v ∈ Ad and �→ r ∈ S
}

is a weighted Church-Rosser system satisfying: (1) IRRSd
(A∗) is finite, (2) all

words of length at most 2d are irreducible with respect to Sd, and (3) the mapping
[u]Sd

�→ [u]S for u ∈ A∗ is well-defined and yields a surjective homomorphism
from A∗/Sd onto A∗/S.

Proof. First, one shows that local confluence of S transfers to local confluence of
Sd. The remaining proof is straightforward and therefore left to the reader. �
Lemma 2. Let Δ ⊆ A+ be a set of words such that all words in Δ have length
at most n. If u ∈ A>2n is not a factor of some δ+ for δ ∈ Δ, then there is a
proper factor v of u which is also not a factor of some δ+ for δ ∈ Δ.

Proof. Assume that such a factor v of u does not exist. Let u = awb for a, b ∈ A.
Then aw is a factor of δ+ and wb is a factor of δ′+ for some δ, δ′ ∈ Δ. Let p = |δ|
and q = |δ′|. Now, p is a period of aw and q is a period of wb. Thus p and q are
both periods of w. Since |w| ≥ 2n− 1 ≥ p+ q − gcd(p, q), we see that gcd(p, q)
is also a period of w by the Periodicity Lemma of Fine and Wilf [8, Section 1.3].
The (p + 1)-th letter in aw is a. Going in steps gcd(p, q) to the left or to the
right in w, we see that the (q + 1)-th letter in aw is a. Thus awb is a factor of
δ′+, which is a contradiction. �
We are now ready to prove the main result of this section: Group languages are
Church-Rosser congruential. An outline of the proof is as follows. By induction
on the size of the alphabet, we show that every homomorphism ϕ : A∗ → G
factorizes through a weighted Church-Rosser system S with finite index. Remove
some letter c from the alphabet A. This leads to a system R for the remaining
letters B. Lemma 1 allows us to assume that certain words are irreducible. Then
we set K = IRRR(B

∗)c which is a prefix code in A∗. We consider K as a new
alphabet. Essentially, it is this situation where weighted alphabets come into
play because we can choose the weight of K such that it is compatible with the
weight over the alphabet A. Over K, we introduce two sets of rules TΔ and TΩ.
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The TΔ-rules reduce long repetitions of short words Δ, and the TΩ-rules have
the form ω uω → ω vg ω. Here, Ω is some finite set of markers and ω ∈ Ω is such
a marker. The word vg is a normal form for the group element g. The TΩ-rules
reduce long words without long repetitions of short words. We show that TΔ
and TΩ are confluent and that their union has finite index over K∗. Since by
construction all rules in T = TΔ ∪ TΩ are weight-reducing, the system T is a
weighted Church-Rosser system over K∗ with finite index such that ϕ : K∗ → G
factorizes through T . Since K ⊆ A∗, we can translate the rules �→ r in T over
K∗ to rules c�→ cr over A∗. This leads to the set of T ′-rules over A∗. The letter
c at the beginning of the T ′-rules is required to shield the T ′-rules from R-rules.
Finally, we show that S = R ∪ T ′ is the desired system over A∗.

Theorem 1. Let (A, ‖·‖) be a weighted alphabet and let ϕ : A∗ → G be a
homomorphism to a finite group G. Then there exists a weighted Church-Rosser
system S with finite index such that ϕ factorizes through S.

Proof. We may assume that ϕ is surjective. In the following, n denotes the
exponent of G; this is the least positive integer n such that gn = 1 for all g ∈ G.
The proof is by induction on the size of the alphabet A. If A = {c}, then we set
S = {cn → 1}. Let now A = {a0, . . . , as−1, c} and let a0 have minimal weight.
We set B = A \ {c}. Let

γi = a
n+�i/s�
i mod s c.

Since A and {a0c, . . . , as−1c, c} generate the same subgroups of G and since every
element ajc ∈ G occurs infinitely often as some γi, there exists m > 0 such that
for every g ∈ G there exists a word

vg = γn0
0 · · · γnm

m γ0

with ni > 0 satisfying ϕ(vg) = g and ‖vg‖ − ‖vh‖ < n ‖a0‖ for all g, h ∈ G. The
latter property relies on ‖γ0‖+ ‖a0‖ = ‖γs‖ and pumping with γn0 and γns which
both map to the neutral element of G: Assume ‖vg‖ − ‖vh‖ ≥ n ‖a0‖ for some
g, h ∈ G. Then we do the following. All vg with maximal weight are multiplied
by γn0 on the left, and for all other words vh the exponent ns of γs is replaced
by ns +n. After that, the maximal difference ‖vg‖−‖vh‖ has decreased at least
by 1 (and at most by n ‖a0‖). We can iterate this procedure until the weights of
all vg differ less than n ‖a0‖. Let

Γ = {γ0, . . . , γm}

be the generators of the vg. By induction there exists a weighted Church-Rosser
system R for the restriction ϕ : B∗ → G satisfying the statement of the theorem.
By Lemma 1, we can assume Γ ⊆ IRRR(B

∗) c. Thus vg ∈ IRRR(A
∗) for all

g ∈ G. Let
K = IRRR(B

∗) c.

The set K is a prefix code in A∗. We consider K as an extended alphabet and
its elements as extended letters. The weight ‖u‖ of u ∈ K is its weight as a
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word over A. Each γi is a letter in K. The homomorphism ϕ : A∗ → G can
be interpreted as a homomorphism ϕ : K∗ → G; it is induced by u �→ ϕ(u)
for u ∈ K. The length lexicographic order on B∗ induces a linear order ≤ on
IRRR(B

∗) and hence also on K. Here, we define a0 < · · · < as−1. The words vg
can be read as words over the weighted alphabet (K, ‖·‖) satisfying the following
five properties: First, vg starts with the extended letter γ0. Second, the last two
extended letters of vg are γmγ0. Third, all extended letters in vg are in non-
decreasing order from left to right with respect to ≤, with the sole exception of
the last letter γ0 which is smaller than its predecessor γm. The fourth property
is that all extended letters in vg have a weight greater than n ‖a0‖. And the last
important property is that all differences ‖vg‖ − ‖vh‖ are smaller than n ‖a0‖.
Let

Δ =
{
δ ∈ K+

∣
∣ δ ∈ K or ‖δ‖ ≤ n ‖a0‖

}
.

Note that Δ is closed under conjugation, i.e., if uv ∈ Δ for u, v ∈ K∗, then
vu ∈ Δ. We can think of Δ as the set of all “short” words. Choose t ≥ n such
that all normal forms vg have no factor δt+n for δ ∈ Δ and such that ‖ct‖ ≥ ‖u‖
for all u ∈ K2n. Note that c ∈ Δ has the smallest weight among all words in Δ.

The first set of rules over the extended alphabet K deals with long repetitions
of short words: The Δ-rules are

TΔ =
{
δt+n → δt

∣
∣ δ ∈ Δ and δ is primitive

}
.

Let F ⊆ K∗ contain all words which are a factor of some δ+ for δ ∈ Δ and
let J ⊆ K+ be minimal such that K∗JK∗ = K∗ \ F . By Lemma 2, we have
J ⊆ K≤2n. In particular, J is finite. Since J and Δ are disjoint, all words in J
have a weight greater than n ‖a0‖. Let Ω contain all ω ∈ J such that ω ∈ ΓK∗

implies ω = γγ′ for some γ, γ′ ∈ Γ with γ > γ′, i.e.,

Ω = J ∩ {ω ∈ K∗ | ω �∈ ΓK∗ or ω = γγ′ for γ, γ′ ∈ Γ with γ > γ′} .
As we will see below, every sufficiently long word without long Δ-repetitions
contains a factor ω ∈ Ω.

Claim 1. There exists a bound t′ ∈ N such that every word u ∈ K∗ with ‖u‖ ≥ t′

contains a factor ω ∈ Ω or a factor of the form δt+n for δ ∈ Δ.

The proof of Claim 1 can be found on arXiv [4].
Since Δ is closed under factors, u contains no factor of the form δt+n for

δ ∈ Δ if and only if u ∈ IRRTΔ(K
∗). In particular, it is no restriction to only

allow primitive words from Δ in the rules TΔ. Every sufficiently long word u′

can be written as u′ = u1 · · ·uk with ‖ui‖ ≥ t′ and k sufficiently large. Thus, by
repeatedly applying Claim 1, there exists a non-negative integer tΩ such that
every word u′ ∈ IRRTΔ(K

∗) with ‖u′‖ ≥ tΩ contains two occurrences of the
same ω ∈ Ω which are far apart. More precisely, u′ has a factor ω uω with
‖u‖ > ‖vg‖ for all g ∈ G.

This suggests rules of the form ω uω → ω vϕ(u) ω; but in order to ensure
confluence we have to limit their use. For this purpose, we equip Ω with a linear
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order � such that γmγ0 is the smallest element, and every element in Ω ∩K+γ0
is smaller than all elements in Ω \K+γ0. By making tΩ bigger, we can assume
that every word u′ with ‖u′‖ ≥ tΩ contains a factor ω uω such that

– ‖u‖ > ‖vg‖ for all g ∈ G, and

– for every factor ω′ ∈ Ω of ω uω we have ω′ � ω.

The following claim is one of the main reasons for using the above definition of
the normal forms vg, and also for excluding all words ω ∈ ΓK∗ in the definition
of Ω except for ω = γγ′ ∈ Γ 2 with γ > γ′.

Claim 2. Let ω, ω′ ∈ Ω and g ∈ G. If ω vg ω ∈ K∗ω′K∗, then ω′ � ω.

The proof of Claim 2 can be found on arXiv [4].
We are now ready to define the second set of rules over the extended alpha-

bet K. They are reducing long words without long repetitions of words in Δ.
We set

T ′
Ω =

{
ω uω → ω vϕ(u) ω

∣
∣
∣
∣

∥
∥vϕ(u)

∥
∥ < ‖u‖ ≤ tΩ and

ω uω has no factor ω′ ∈ Ω with ω ≺ ω′

}
.

Whenever there is a shorter rule in T ′
Ω ∪ TΔ then we want to give preference to

this shorter rule. Thus the Ω-rules are

TΩ =

{
�→ r ∈ T ′

Ω

∣∣
∣
∣
there is no rule �′ → r′ ∈ T ′

Ω ∪ TΔ
such that �′ is a proper factor of �

}
.

Let now T = TΔ ∪ TΩ.
Claim 3. The system T is locally confluent over K∗.

The proof of Claim 3 can be found on arXiv [4].
Since all rules in T are weight-reducing, it follows from Claim 3 that T is

confluent. Moreover, all rules � → r in T satisfy ϕ(�) = ϕ(r). We conclude that
T is a weighted Church-Rosser system such that K∗/T is finite and ϕ : K∗ → G
factorizes through T . Remember that every element in K∗ can be read as a
sequence of elements in A∗. Thus every u ∈ K∗ can be interpreted as a word
u ∈ A∗. We use this interpretation in order to apply the rules in T to words in
A∗; but in order to not destroy K-letters when applying rules in R, we have to
guard the first K-letter of every T -rule by appending the letter c. This leads to
the system

T ′ = {c�→ cr ∈ A∗ ×A∗ | �→ r ∈ T } .
Combining the rules R over the alphabet B with the T ′-rules yields

S = R ∪ T ′.

Since left sides of R-rules and of T ′-rules can not overlap, the system S is con-
fluent. By definition, each S-rule is weight-reducing. This means that S is a
weighted Church-Rosser system. The sets IRRS(A

∗) and A∗/S are finite. Since
�→ r in S satisfies ϕ(�) = ϕ(r), the homomorphism ϕ factorizes through S. �
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4 Arbitrary Finite Monoids

This section contains the main result of this paper. We show that every homo-
morphism ϕ : A∗ → M to a finite monoid M factorizes through a weighted
Church-Rosser system S with finite index. The proof relies on Theorem 1 and
on a construction called local divisors. The notion of local divisor has turned out
to be a rather powerful tool when using inductive proofs for finite monoids, see
e.g. [3, 5, 6]. The same is true in this paper. The definition of a local divisor is as
follows: Let M be a monoid and let c ∈ M . We equip cM ∩Mc with a monoid
structure by introducing a new multiplication ◦ as follows:

xc ◦ cy = xcy.

It is straightforward to see that ◦ is well-defined and (cM ∩Mc, ◦) is a monoid
with neutral element c.

The following observation is crucial. If 1 ∈ cM ∩Mc, then c is a unit. Thus
if the monoid M is finite and c is not a unit, then |cM ∩Mc| < |M |. The set
M ′ = {x | cx ∈Mc} is a submonoid of M , and c· : M ′ → cM ∩Mc : x �→ cx is
a surjective homomorphism. Since (cM ∩Mc, ◦) is the homomorphic image of a
submonoid, it is a divisor of M . We therefore call (cM ∩Mc, ◦) the local divisor
of M at c.

4.1 The Main Result

We are now ready to prove our main result. Let (A, ‖·‖) be a weighted alphabet.
Then every homomorphism ϕ : A∗ → M to a finite monoidM factorizes through
a weighted Church-Rosser system S with finite index. The proof uses induction
on the size ofM and the size of A. If ϕ(A∗) is a group, then we apply Theorem 1;
and if ϕ(A∗) is not a group, then we find a letter c ∈ A such that c is not a unit.
Thus in this case we can use local divisors.

Theorem 2. Let (A, ‖·‖) be a weighted alphabet and let ϕ : A∗ → M be a
homomorphism to a finite monoid M . Then there exists a weighted Church-
Rosser system S of finite index such that ϕ factorizes through S.

Proof. The proof is by induction on (|M | , |A|) with lexicographic order. If ϕ(A∗)
is a group, then the claim follows by Theorem 1. If ϕ(A∗) is not a group, then
there exists c ∈ A such that ϕ(c) is not a unit. Let B = A \ {c}. By induction
on the size of the alphabet there exists a weighted Church-Rosser system R for
the restriction ϕ : B∗ →M satisfying the statement of the theorem. Let

K = IRRR(B
∗)c.

We consider the prefix code K as a weighted alphabet. The weight of a letter
uc ∈ K is the weight ‖uc‖ when read as a word over the weighted alphabet
(A, ‖·‖). Let Mc = ϕ(c)M ∩Mϕ(c) be the local divisor of M at ϕ(c). We let
ψ : K∗ → Mc be the homomorphism induced by ψ(uc) = ϕ(cuc) for uc ∈ K.
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By induction on the size of the monoid there exists a weighted Church-Rosser
system T ⊆ K∗ × K∗ for ψ satisfying the statement of the theorem. Suppose
ψ(�) = ψ(r) for �, r ∈ K∗ and let � = u1c · · ·ujc and r = v1c · · · vkc with
ui, vi ∈ IRRR(B

∗). Then

ϕ(c�) = ϕ(cu1c) ◦ · · · ◦ ϕ(cujc)
= ψ(u1c) ◦ · · · ◦ ψ(ujc)
= ψ(�) = ψ(r) = ϕ(cr).

This means that every T -rule � → r yields a ϕ-invariant rule c� → cr. We can
transform the system T ⊆ K∗ ×K∗ for ψ into a system T ′ ⊆ A∗ ×A∗ for ϕ by

T ′ = {c�→ cr ∈ A∗ ×A∗ | �→ r ∈ T } .

Since T is confluent and weight-reducing over K∗, the system T ′ is confluent
and weight-reducing over A∗. Combining R and T ′ leads to S = R∪T ′. The left
sides of a rule in R and a rule in T ′ cannot overlap. Therefore, S is a weighted
Church-Rosser system such that ϕ factorizes through A∗/S. Suppose that every
word in IRRT (K

∗) has length at most k. Here, the length is over the extended
alphabet K. Similarly, let every word in IRRR(B

∗) have length at mostm. Then

IRRS(A
∗) ⊆ {u0cu1 · · · cuk′+1 | ui ∈ IRRR(B

∗), k′ ≤ k}

and every word in IRRS(A
∗) has length at most (k+2)m. In particular IRRS(A

∗)
and A∗/S are finite. �
The following corollary is a straightforward translation of the result in Theorem 2
about homomorphisms to a statement about regular languages.

Corollary 1. A language L ⊆ A∗ is regular if and only if there exists a Church-
Rosser system S of finite index such that L =

⋃
u∈L[u]S. In particular, all regular

languages are Church-Rosser congruential.

5 Conclusion

We have shown that all regular languages are Church-Rosser congruential. The
proof has been done by loading the induction hypothesis. Our result says that
for all ϕ : A∗ →M to a finite monoid M and all weights ‖·‖ : A→ N \ {0} there
exists a weighted Church-Rosser system S of finite index such that ϕ factorizes
through S. A very interesting question is whether we can change quantifiers. Is it
true that for all such ϕ there exists a finite confluent system S of finite index such
that ϕ factorizes through S and which is weight-reducing for all weights? Note
that whether a system is weight-reducing for all weights is a natural condition
on the number of letters in the Parikh image. Thus, we can call such a system
Parikh-reducing. This result is true for aperiodic monoids [6], because every
subword-reducing system is Parikh-reducing.
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Another problem for future research is which algebraic invariants ofM can be
maintained in A∗/S . For example, ifM satisfies the equation xt+p = xt, then our
construction yields that A∗/S satisfies an equation xs+p = xs for some s large
enough. We conjecture that we must choose s > t, in general. In particular, we
doubt that we can choose A∗/S to be a group, even ifM is a (cyclic) finite group.
However proving such a lower bound result seems to be a hard task.

The consideration of weights makes perfect sense in the setting of [9], too. If
a language is a finite union of congruence classes w.r.t. to some finite confluent
and weight-reducing system, then it has essentially the very same nice properties
as a Church-Rosser congruential language. This program goes beyond regular
languages and might lead to interesting new results in the interplay of string
rewriting, formal languages, and algebra.
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