
Regular Languages of Infinite Trees That Are

Boolean Combinations of Open Sets

Miko�laj Bojańczyk and Thomas Place�

University of Warsaw

Abstract. In this paper, we study boolean (not necessarily positive)
combinations of open sets. In other words, we study positive boolean
combinations of safety and reachability conditions. We give an algorithm,
which inputs a regular language of infinite trees, and decides if the lan-
guage is a boolean combination of open sets.

1 Introduction

In this paper, we work with infinite binary trees labeled by a finite alphabet.
The set of trees can be interpreted as a compact metric space. The distance
between two different trees is 2−n, where n is the smallest depth where the two
trees are different. In the topology induced by this distance, a set of trees L
is open if for every tree t ∈ L, there is a finite prefix of t such that changing
nodes outside the prefix does not affect membership in L. In other words, an
open set is a reachability language. We are interested in understanding finite
boolean combinations, not necessarily positive, of open sets. The main result of
this paper is:

Theorem 1.1. The following problem is EXPTIME complete. Given a nonde-
terministic parity automaton on infinite trees, decide if the recognized language
is a boolean combination of open sets.

In other words, this paper provides an effective characterization of boolean (not
necessarily positive) combinations of open sets, within the class of regular lan-
guages of infinite trees.

A similar version of the problem, where one asks if L is simply an open set, and
not a finite boolean combination of open sets, is significantly simpler. Here is the
solution to this simpler problem which is folklore to the best of our knowledge.
The key observation is that the topological closure of a tree language L is the
set

closure(L) = {t : every finite prefix of t can be extended to some tree in L}.
A language L is open if and only if its complement Lc satisfies Lc = closure(Lc).
Automata for both Lc and closure(Lc) can be computed based on the automaton
for L, and then one can test two regular languages for equality.

� Both authors supported by ERC Starting Grant “Sosna”. A full version of this paper
can be found at www.mimuw.edu.pl/∼bojan.

A. Czumaj et al. (Eds.): ICALP 2012, Part II, LNCS 7392, pp. 104–115, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Regular Languages of Infinite Trees That Are Boolean Combinations 105

The difficulty in Theorem 1.1 is dealing with the boolean combinations.
Our approach to the problem uses forest algebra for infinite trees [4]. We

intended to achieve two complementary goals: use the algebra to understand
boolean combinations of open sets; and use boolean combinations of open sets
to understand the algebra.

Goal 1: Understand Boolean Combinations of Open Sets. We believe
that giving an effective characterization for a class L of regular languages can be
the most mathematically rewarding thing that one can do with L . The ostensible
goal of an effective characterization – the algorithm deciding membership in
L – is usually less interesting than the insight into the structure of L that is
needed to get the algorithm. A famous example is the theorem of Schützenberger
and McNaughton/Papert, which makes a beautiful connection between logic and
algebra: a word language is definable in first-order logic if and only if its syntactic
monoid is aperiodic [8,6].

We believe that our study of boolean combinations of open sets achieves this
goal. We discover that this class of languages has a rich structure, which is much
more complex in the case of infinite trees than in the case of infinite words.
On our way to Theorem 1.1, we provide three conditions which are equivalent
to being a boolean combination of open sets, see Theorem 5.3. Two of these
conditions are stated in terms of games, and one is stated in terms of algebraic
equations. We believe that each of these conditions are interesting in their own
right.

Goal 2: Understand Algebra for Infinite Trees. The algebraic theory of
languages of finite words is well studied, using monoids and semigroups, see the
book by Straubing [9]. The algebraic theory of languages of infinite words is also
well understood, see the book by Perrin and Pin [7]. There has been quite a lot
of recent work on algebra for finite trees [2], but the theory is still not mature.
Finally, the algebraic theory of infinite trees is very far from being understood,
despite some work [4,1].

We believe that our study of boolean combinations of open sets has highlighted
the kind of tools that might be important in the algebraic theory of infinite
trees. An important theme is the use of games. As mentioned previously, we
characterize boolean combinations of opens sets in terms of games, and a set of
two identities. Even in the identities, there is a hidden game, which is played in
the algebra. We see this as evidence that the algebraic theory of infinite trees
will need to take games into account.

Organization of the Paper. In Section 2 we give our first characterization of
boolean combination of open sets using games. Note that this characterization
is not specific to trees and works for all topological spaces. Unfortunately, it is
not effective. In Section 3, we provide basic definitions for trees and algebra.
In Section 4, we make a sharper analysis of the non-effective characterization
of Section 2 in the setting of trees. Finally, in Section 5 we state our effective
characterization using algebraic identities.

106 M. Bojańczyk and T. Place

2 A Game Characterization

We begin by studying boolean combinations of open sets in arbitrary topological
spaces. Fix a topological space. In this paper, we are interested in the topological
space of infinite trees, but the discussion in this section works for all spaces.

Let X1, . . . , Xn be arbitrary subsets of the topological space. We define a
game

H (X1, . . . , Xn)

which is played by two players, called Alternator and Constrainer. The game is
played in n rounds. At the beginning of each round i ∈ {1, . . . , n}, there is an
open set Ui. Initially, U1 is the whole space. Round i of the game is played as
follows.

– Alternator chooses a point xi ∈ Ui ∩ Xi. If there is no such point xi, the
game is interrupted and Constrainer wins immediately. Otherwise,

– Constrainer chooses an open set Ui+1 � xi, and the next round is played.

If Alternator manages to survive n rounds, then he wins.
A base for a topology is a set of ’base open sets’ such that open sets are

obtained as infinite unions of these sets. The following lemma shows that the
rules of the game could be changed such that Constrainer can only pick base
open sets.

Lemma 2.1. Choose some base for the topology. If Constrainer has a winning
strategy, then he has a winning strategy which uses base open sets for U1, . . . , Un.

Suppose that X is a set and n ∈ N. We write H∈/∈(X,n) for the game where
Alternator needs to alternate n times between X and its complement, that is:

H (X1, . . . , Xn) where Xi =

{
X when i is odd

the complement of X when i is even
.

Example 2.2. Consider the space of real numbers, and let X be the rational
numbers. Then for every n, Alternator wins the game H∈/∈(X,n).

Example 2.3. In the real numbers, let X be the complement of {1/n : n ∈
N}. Alternator wins H∈/∈(X, 3). In the first round, Alternator plays 0 ∈ X . In
the second round, Alternator plays 1/n �∈ X for some large n depending on
Constrainer’s move. In the third round, Alternator plays 1/n + ε ∈ X , for some
small ε depending on Constrainer’s move. Constrainer wins H∈/∈(X,n) for n ≥ 4.

Proposition 2.4. The following conditions are equivalent for a set X:

– X is a finite boolean combination of open sets
– Constrainer wins the game H∈/∈(X,n) for all but finitely many n.

Regular Languages of Infinite Trees That Are Boolean Combinations 107

Refinement lemma. We now state a lemma, which shows that if the topolog-
ical space is a metric space (this is the case of trees) Alternator’s winning sets
can be refined in an arbitrary finite way.

Lemma 2.5. Assume the topological space is a metric space and let X1, . . . , Xn

be sets. For i ∈ {1, . . . , n}, let Yi a finite family of sets partitioning Xi. If
Alternator wins

H (X1, . . . , Xn)

then there exist Y1 ∈ Y1, . . . , Yn ∈ Yn such that Alternator wins

H (Y1, . . . , Yn).

3 Preliminaries on Trees

Trees. We use possibly infinite trees where every node has zero or two children.
For a finite alphabet A, we denote by HA the set of infinite binary trees labeled
over A. Notions of node, leaf, child, root, descendant are defined as usual. We
write ’<’ the descendant relation (the smallest node being the root of the tree).
If t is a tree and x a node of t, we write t(x) the label of x in t, and t|x for the
subtree of t at x.

Multicontexts. A multicontext is a tree with some distinguished unlabeled
leaves called its ports. The number of ports is called the arity, there might be
infinitely many ports. Given a multicontext C and a valuation η which maps
ports to trees, we write C[η] for the tree obtained by replacing each port x
by the tree η(x). A tree C[η] is said to extend the multicontext C, conversely
the multicontext C is said to be a prefix of the tree C[η]. The set of all trees
extending a multicontext C is denoted by C[∗]. The following picture shows three
multicontexts, with arities 0, 1 and 2, with the ports depicted by squares.

The multicontext C0 is a tree, and C0[∗] is {C0}. The multicontext C1 is a prefix
of every tree where the root label is a, and the left child of the root is a leaf with
label a. Finally, C2 is a prefix of every tree with root label a. We are mostly
interested in finite prefixes, which are multicontexts where every path ends in a
leaf, which is either a port or a normal leaf.

Contexts. A context is a multicontext with exactly one port. We write VA the
set of contexts over A. We write C,D for contexts. Given two contexts C,D, we
write C ·D for the context obtained by replacing the port of C with D. One can
verify that · is associative, therefore, (VA, ·) is a monoid (with the empty context,
denoted by �, as neutral element). VA also acts on HA, with C · t defined as the
tree obtained by replacing the port of C with t. Finally, we write C∞ for the
infinite tree C · C · C · · · .

108 M. Bojańczyk and T. Place

3.1 Tree Languages and Algebra

We are mainly concerned with regular languages of infinite trees. This is the
class of languages of infinite trees that is recognized by nondeterministic parity
automata; or equivalently recognized by alternating parity automata; or equiv-
alently can be defined in monadic second-order logic. See [5].

Recall that our goal is to decide if a given regular language L of infinite
trees is a boolean combination of open sets. It will be important for us to work
with a canonical representation of L. As our canonical representation, we use
equivalence classes of trees and contexts with respect to a natural Myhill-Nerode
style equivalence, see below.

The equivalence classes form a kind of algebra, which is similar to the forest
algebra for infinite trees from [4]. The similarity is that both algebras represent
infinite trees. The difference is that the algebra in [4] represents finitely branching
unranked trees, while the algebra in this paper represents binary trees. We do not
use unranked trees because for unranked finitely branching trees, the topological
space is not compact. This is because there is no converging subsequence in a
sequence of trees where the n-th tree has n children of the root.

Myhill-Nerode Equivalence. Fix L a language of trees over an alphabet A.
We define two Myhill-Nerode equivalence relations: one for trees and one for
contexts.

Let C be a multicontext, possibly with infinitely many ports. For a tree t, we
write C[t] for the tree obtained by putting t in all ports of C. In the Myhill-
Nerode equivalence for trees, we say trees t and t′ are L-equivalent if

C[t] ∈ L ⇔ C[t′] ∈ L for every multicontext C.

To give a similar definition for contexts, we use a variant of multicontexts where
the ports can be substituted by contexts and not trees. Such a multicontext
is called a context environment. Formally speaking, a context environment is
defined like a multicontext, except that the ports have exactly one child (instead
of being leaves). Given a context environment E and a context C, we write C[E]
for the tree obtained by substituting C for every port of E, as in the following
picture:

We define two contexts C and C′ to be L-equivalent if

E[C] ∈ L ⇔ E[C′] ∈ L for every context environment E.

Regular Languages of Infinite Trees That Are Boolean Combinations 109

The Algebra. We write HL for the equivalence classes of trees with respect to
L, and VL for the equivalence classes of contexts with respect to L. We write:

α : (HA, VA) → (HL, VL)

for the two-sorted function which maps trees and contexts to their L-equivalence
classes; this function is called the syntactic morphism of L. We use the name tree
type for elements of HL and context type for elements of VL. It is not difficult to
show that both HL and VL are finite when L is regular. The syntactic morphism
can be computed based on a nondeterministic tree automaton recognizing L, in
exponential time [4]. Finiteness of HL and VL is necessary but not sufficient for
regularity, for instance both HL and VL are finite for any language defined in
the logic MSO+U [3].

Lemma 3.1. The following operations respect L-equivalence.

1. For every multicontext D, the operation: t
→ D[t].
2. For every context environment E, the operation: C
→ E[C].
3. The composition of contexts (C1, C2)
→ C1 · C2.
4. Substituting a tree in the port of a context: (C, t)
→ C · t.
5. Infinite iteration of a context: C
→ C∞.
6. For every letter a, the operations t
→ a(t,�) and t
→ a(�, t).

It follows that the above operations can be applied to elements of the syntactic
algebra.

Idempotents. Given any finite monoid V , there is (folklore) a number ω(V)
(denoted by ω when V is understood from the context) such that for each element
v of V , vω is an idempotent: vω = vωvω.

4 Boolean Combinations of Open Sets of Trees

As mentioned in the introduction, we use prefix topology on trees, which yields
a topology identical to that of the Cantor space. In this topology, a base open
set is defined to be any set C[∗], where C is a finite multicontext. Open sets are
defined to be arbitrary unions of base open sets. This topology is the same as
the topology generated by a distance, which says that trees are at distance 2−n

where n is the smallest depth where the two trees differ. This paper is about
finite boolean combination of open sets. Typical boolean combinations of open
sets include

– Trees over alphabet {a, b, c} which contain at least one a and no b’s.
– Trees over alphabet {a, b} which contain two or five a’s.

Languages, which are not boolean combinations of open sets include

– Trees over alphabet {a, b} with finitely many a’s.
– Trees over alphabet {a, b} with a finite and even number of a’s.

110 M. Bojańczyk and T. Place

Let us revisit the game from Proposition 2.4 in the case of trees. In this special
case, points are trees. By Lemma 2.1, we may assume that Constrainer uses base
open sets, which are finite multicontexts. The game begins with the whole space,
which corresponds to the empty multicontext. In each round, Alternator chooses
a tree that extends the current multicontext, and then Constrainer chooses a
finite multicontext that is a prefix of the tree chosen by Alternator.

Example 4.1. Consider an alphabet {a, b} and the language L=“infinitely many
a’s”. It is not difficult to see that Alternator can win the game H∈/∈(L, n) for
every n ∈ N. This is because every finite multicontext can be extended to a tree
with finitely many a’s, or to a tree with infinitely many a’s. By Proposition 2.4,
L is not a boolean combination of open sets.

Proposition 2.4 helps us understand finite boolean combinations of open sets,
but it is not an effective characterization. To be effective, we should be able to
decide if Alternator wins H∈/∈(L, n) for every n. The following simple lemma
shows how to decide the winner for a given n.

Lemma 4.2. Given regular tree languages L1, . . . , Ln, one can decide who
wins H (L1, . . . , Ln). In particular, given L and n, one can decide who wins
H∈/∈(L, n).

Proof. The statement “Alternator wins the game H (L1, . . . , Ln)” can be for-
malized in monadic second-order logic on the complete binary tree, by a formula
which can be computed based on the languages L1, . . . , Ln. Therefore, the win-
ner can be decided using Rabin’s theorem. ��
The above lemma gives a semi-algorithm for deciding if a regular language is
a finite boolean combination of open sets. For n = 1, 2, . . ., use Lemma 4.2 to
compute the winner of H∈/∈(L, n). If Constrainer wins the game for some n,
then he also wins the game for n + 1, n + 2, . . . and therefore the algorithm can
terminate and declare that the L is a finite boolean combination of open sets. If
the language is not a finite boolean combination of open sets, then the algorithm
does not terminate.

Observe that even when the algorithm does terminate, it does multiple calls
to Rabin’s theorem, which has non-elementary complexity.

The main contribution of this paper is a finer analysis of the problem, which
yields an algorithm (not a semi-algorithm) deciding if a tree language is a finite
boolean combination of open sets.

4.1 The Infinite Game

Proposition 2.4 can be rephrased as: a language L is not a finite boolean com-
bination of open sets if and only if player Alternator can win H∈/∈(L, n) for
arbitrarily large n. One could imagine a variant of the game, more difficult for
Alternator, where infinitely many rounds have to be played. Call the infinite vari-
ant H∈/∈(L,∞). In Example 2.2, which is about rational numbers, Alternator
can win the infinite game.

Regular Languages of Infinite Trees That Are Boolean Combinations 111

It is clear that if Alternator wins H∈/∈(X,∞), then he also wins H∈/∈(X,n)
for every n. We show a counterexample for the converse implication, which is
a regular tree language. This counterexample language necessarily uses trees,
because the converse implication holds for regular languages of infinite words.

The counterexample language L is the set of trees over {a, b} of the form:

...

such that n is some natural number, and for each i ∈ {1, . . . , n}, the tree ti is
either finite, or contains no b nodes. Observe that in a tree from L, the rightmost
branch is necessarily finite.

Fact 1. Alternator loses H∈/∈(L,∞), but wins H∈/∈(L, n) for every n.

5 The Effective Characterization

In this section, we present the main result of the paper.

The Context Game. So far we have worked with a game H (L1, . . . , Ln), for
tree languages L1, . . . , Ln. We define a similar game for languages of contexts.
Recall that contexts are defined as a special case of trees, with an additional port
label that appears in exactly one leaf. From the distance on trees, we get a dis-
tance on contexts. This yields the definition of a game for a sequence K1, . . . ,Kn

of context languages. To avoid confusion between trees and contexts, we denote
the context game by V (K1, . . . ,Kn).

Games on Types. Consider a language L and its syntactic morphism

αL : (HA, LA) → (HL, VL).

Recall that by definition of the syntactic morphism, a type h ∈ HL is actually
equal to the set of trees α−1

L (h). Therefore, it makes sense to talk about the game
H (h1, . . . , hn) for a sequence of tree types. Likewise for context types. Define

HL
def
= {(h1, . . . , hn) ∈ (HL)n : n ∈ N and Alternator wins H (h1, . . . , hn)}

VL
def
= {(v1, . . . , vn) ∈ (VL)n : n ∈ N and Alternator wins V (v1, . . . , vn)}

A comment on notation is in order here. The sets HL and VL contain words, over
alphabets HL and VL, respectively. Usually when dealing with words, one omits

112 M. Bojańczyk and T. Place

the brackets and commas, and writes abc instead of (a, b, c). When the alphabet
is VL, this leads to ambiguity, since the expression vwu can be interpreted as: 1)
a word with a single letter obtained by multiplying v, w, u in the context monoid
VL; or 2) a three-letter word over the alphabet VL. These two interpretations
should not be confused, so we write (v1, . . . , vn) for n-letter words over the
alphabet VL. For the sake of uniformity, we also write (h1, . . . , hn) for n-letter
words in over the alphabet HL, although there is no risk of ambiguity here.

Fact 2. Both HL and VL are regular languages of finite words.

Proof. Both languages are closed under removing letters. Every language closed
under removing letters is regular, by Higman’s lemma. ��
The above fact is amusing, but useless, because it does not say how to compute
automa for HL and VL as a function of the language L.1 If we are not interested
in efficiency, membership in HL can be decided with Lemma 4.2. The same kind
of algorithm works for VL. Later on, we give a more efficient algorithm.

(h1, . . . , hn) ∈ HL implies (C[h1], . . . , C[hn]) ∈ HL

(v1, . . . , vn) ∈ VL implies (E[v1], . . . , E[vn]) ∈ HL

(v1, . . . , vn), (w1, . . . , wn) ∈ VL implies (v1w1, . . . , vnwn) ∈ VL

(v1, . . . , vn) ∈ VL, (h1, . . . , hn) ∈ HL implies (v1h1, . . . , vnhn) ∈ HL

(v1, . . . , vn) ∈ VL implies (v∞1 , . . . , v∞n) ∈ HL

(h1, . . . , hn) ∈ HL implies (a[�, h1], . . . , a[�, hn]) ∈ VL

(h1, . . . , hn) ∈ HL implies (a[h1,�], . . . , a[hn,�]) ∈ VL

Table 1. Closure properties of HL and VL. C is a multicontext, E is a context envi-
ronment, and a is a letter.

Lemma 5.1. The sets HL and VL satisfy the closure properties in Table 1.

Notice the similarity of Table 1 with the operations in Lemma 3.1. Another way
of stating Lemma 5.1 is that for every n ∈ N, (HL,VL) restricted to sequences of
length n is a subalgebra of the the n-fold power of the syntactic algebra (HL, VL).

We define the alternation of a word to be its length, after iteratively elimi-
nating letters that are identical to their predecessors. The alternation of abaabbb
is 4. We say that a set of words has unbounded alternation if it contains words
with arbitrarily large alternation.

Proposition 5.2. For a regular language L of infinite trees, the following con-
ditions are equivalent.

– Alternator wins the game H∈/∈(L, n) for infinitely many n.
– The set HL has unbounded alternation.

1 To the best of our knowledge it is possible, although unlikely, that computing HL

and VL is undecidable.

Regular Languages of Infinite Trees That Are Boolean Combinations 113

Proof. We begin with the top-down implication. We show that if Alternator
wins the game H∈/∈(L, n), then HL contains a word of length n where every two
consecutive letters are different. Suppose then that Alternator wins H∈/∈(L, n),
which means that he wins H (L1, . . . , Ln) where Li is L for odd-numbered rounds
and its complement for even-numbered rounds. Both L and its complement can
be partitioned into tree types. By Lemma 2.5, Alternator wins H (h1, . . . , hn)
for some sequence of types, such that hi is included in L or its complement,
depending on the parity of i. In particular, the consecutive types are different.

We now do the bottom-up implication. Suppose that HL has unbounded
alternation. Since HL is closed under removing letters, there must be some
g, h ∈ HL such that HL contains all the words

(g, h), (g, h, g, h), (g, h, g, h, g, h), (1)

Since g and h are different elements of the syntactic algebra, it follows that there
must be some multicontext C such that the tree type C[g] is contained in L,
while the tree type C[h] is disjoint with L. By applying Lemma 5.1 to (1), we
conclude HL contains all the words(

C[g], C[h]
)
,
(
C[g], C[h], C[g], C[h]

)
,
(
C[g], C[h], C[g], C[h], C[g], C[h]

)
,

It follows that Alternator can alternate arbitrarily long between the language L
and its complement. ��

The Main Theorem. So far, we have proved Propositions 2.4 and 5.2, which
characterize finite boolean combinations of open sets in terms of games. Neither
of these game characterizations is effective. We now add a final characterization,
which uses identities and is effective.

Theorem 5.3 (Main Theorem). For a regular language L of infinite trees,
the following conditions are equivalent.

1. L is a finite boolean combination of open sets.
2. Constrainer wins the game H∈/∈(L, n) for all but finitely many n.
3. The set HL has bounded alternation.
4. The following identities are satisfied.

uωwwω = uωvwω = uωuwω if (u, v, w) ∈ VL or (w, v, u) ∈ VL (2)

(u2w
ω
2 v)ωu1w

∞
1 = (u2w

ω
2 v)∞ if (u1, u2) ∈ VL and (w1, w2) ∈ VL (3)

Theorem 5.3 implies Theorem 1.1 from the introduction, which says that one
can decide if the language recognized by a nondeterministic parity automaton
on infinite trees, is a boolean combination of open sets. Indeed: there are finitely
many sequences of length two and three in VL. These sequences can be computed
using Lemma 4.2. It is then sufficient to test if the identities from item 4 are
valid by checking all combinations. A more detailed proof, together with the
EXPTIME completeness, can be found in the full version of the paper.

114 M. Bojańczyk and T. Place

In Propositions 2.4 and 5.2, we have shown that conditions 1, 2 and 3 in
Theorem 5.3 are equivalent. It remains to show that conditions 3 and 4 are
equivalent. The proof of the implication from 4 to 3 is the technical core of this
paper, and is in the full version. Below we prove the much simpler converse
implication, which at least can serve to illustrate the identities.

Implication from 3 to 4. We prove the contrapositive: if one of the identi-
ties (2) or (3) is violated, then HL has unbounded alternation.

Suppose first that (2) is violated. We will show that VL has unbounded alter-
nation. This is enough, by the following lemma.

Lemma 5.4. If VL has unbounded alternation, then so does HL.

The assumption that (2) is violated says that there are u, v, w ∈ VL such that

(u, v, w) ∈ VL or (w, v, u) ∈ VL,

but the three context types uωwwω , uωvwω and uωuwω are not all equal. If the
three context types are not equal, then second one must be different from either
the first one or the third one. We only do the proof for the case when (u, v, w) ∈ V
and when uωwwω �= uωvwω . For nonzero n ∈ N and i ∈ {1, . . . , n}, define

w(i,n) = (

2n − 2i + 1 times︷ ︸︸ ︷
u, . . . , u , v,

2(i− 1) times︷ ︸︸ ︷
w, . . . , w) ∈ (HL)2n.

This word is obtained from (u, v, w) by duplicating some letters, and therefore
it belongs to VL. For some n, consider the words

w(1,n), . . . ,w(n,n) ∈ VL.

These are n words of length 2n. Let us multiply all these words coordinate-wise,
yielding a word w, also of length 2n, which is depicted in the following picture:

Choose some k, and take n = k ·ω + 1, and i ∈ {ω, 2ω, . . . , (k− 1) ·ω}. Consider
letters 2i + 1 and 2i + 2 in the word w, which are

uiwn−i = uωwwω uivwn−i−1 = uωvwω .

Regular Languages of Infinite Trees That Are Boolean Combinations 115

By assumption, these letters are different, and therefore the word w has al-
ternation at least k. Because k was chosen arbitrarily, it follows that VL has
unbounded alternation.

Consider now the case when (3) is violated. This means VL contains pairs
(u1, u2) and (w1, w2) such that for some v ∈ VL,

e∞ �= eu1w
∞
1 for e

def
= (u2w

ω
2 v)ω.

Lemma 5.5. Let u1, u2, w1, w2 and e be as above. If (h1, . . . , hn) ∈ HL, then

(e∞, eh1, . . . , ehn) ∈ HL (4)

(eu1w
∞
1 , eh1, . . . , ehn) ∈ HL (5)

Using the lemma, one shows by induction that for every n, the sequence which
alternates n times between e∞ and e∞u1w

∞
1 belongs to HL. This completes the

proof of the implication from 3 to 4, and also of Theorem 5.3.

6 Conclusion

We have proved an effective characterization of boolean combination of open
sets. We hope that the characterization sheds some light on the nature of such
languages. Also, we hope that the technical tools we developed, involving both
algebra and games, will be useful in future work on regular languages of infinite
trees. One class of particular interest is Weak-MSO (i.e. MSO where set quan-
tification is restricted to finite sets). This class can be characterized by wreath
products of boolean combinations of open sets.

References

1. Blumensath, A.: An algebraic proof of Rabin’s theorem (unpublished manuscript)
2. Bojańczyk, M.: Algebra for trees. In: Handbook of Automata Theory. European

Mathematical Society Publishing House (to appear)
3. Bojańczyk, M.: A Bounding Quantifier. In: Marcinkowski, J., Tarlecki, A. (eds.)

CSL 2004. LNCS, vol. 3210, pp. 41–55. Springer, Heidelberg (2004)
4. Bojańczyk, M., Idziaszek, T.: Algebra for Infinite Forests with an Application to the

Temporal Logic EF. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS,
vol. 5710, pp. 131–145. Springer, Heidelberg (2009)

5. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

6. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press (1971)
7. Perrin, D., Pin, J.-É.: Infinite Words. Elsevier (2004)
8. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Information

and Control 8 (1965)
9. Straubing, H.: Finite Automata, Formal Languages, and Circuit Complexity.

Birkhäuser (1994)

	Regular Languages of Infinite Trees That Are Boolean Combinations of Open Sets
	Introduction
	A Game Characterization
	Preliminaries on Trees
	Tree Languages and Algebra

	Boolean Combinations of Open Sets of Trees
	The Infinite Game

	The Effective Characterization
	Conclusion
	References

