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Lambek Calculus and Linear Logic:
Proof Nets as Parse Structures

Summary. This chapter, a large part of which is a translation of (Retoré, 1996), deals with
the connection between Lambek categorial grammar and linear logic, the main objective be-
ing the presentation of proof nets which are excellent parse structures, because they identify
linguistically equivalent analyses of a given sentence.

This graphical notation for proofs that are parse structures in categorial grammar is a not a
mere variation for convenience. On a technical ground, it avoids the so-called spurious ambi-
guity problem of categorial grammars (the fact that we can find many different proofs/parse
structures for what corresponds to a single analysis or lambda term). Conceptually, this proof
syntax is a justification of the use of the expression parsing as deduction often associated with
categorial grammar. Indeed proof nets only distinguish between proofs which correspond to
different syntactic analyses.

We first give a rather complete presentation of the correspondence between the Lambek
calculus and variants of multiplicative linear logic, since the Lambek calculus can be defined
as non-commutative intuitionistic multiplicative linear logic without empty antecedents.

Next we define proof nets and establish their correspondence with the more traditional se-
quent calculus, present parsing as proof net construction and present some recent descriptions
of non commutative proof nets.

As an evidence of their linguistic relevance, we explain how they provide a formal account
of some performance questions, like the complexity of the processing of several intricate
syntactic constructs, like center embedded relatives, garden path phenomena and preferred
readings.

6.1 The Formula Language of Categorial Grammar
and of Linear Logic

6.1.1 The Formula Language of Multiplicative Linear Logic

Let us recall the language of the Lambek calculus:

Lp ::= P | (Lp •Lp) | (Lp/Lp) | (Lp\Lp)
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194 6 Lambek Calculus, Linear Logic and Proof Nets

As we have seen in the previous chapters \ and / are implications, and the product
• is a conjunction. All these connectives are linear logic connectives, but are rather
denoted by: ◦−,−◦,⊗ in the linear logic community.

Lambek calculus \ / •
Linear logic −◦ ◦− ⊗

Multiplicative linear logic is a classical calculus which extends the Lambek calculus
by a negation denoted by (. . .)⊥ (the orthogonal of . . . ) together with the symmetries
induced by a classical negation: the familiar De Morgan identities of classical logic.

To be precise, Multiplicative Linear Logic extends the Lambek calculus without
the non empty antecedent requirement, and allows for permutation (hypotheses can
be permuted). In order to have a single involutive negation and two distinct implica-
tions ◦− and −◦, one must restrict the allowed permutations to cyclic permutations.
In the absence of any form of permutation, there have to be two negations (Abrusci,
1991, 1995).

Because of the De Morgan identities, there will be a disjunction℘ (par, standing
for in parallel with) corresponding to the conjunction⊗. As we are especially inter-
ested in having a non commutative conjunction, the disjunction, by duality, will be
non commutative as well.

Such a disjunction and a classical negation allow the implication A\B to be de-
fined as A⊥℘B and the implication B /A to be defined as B℘A⊥ — just like it is
possible to define A⇒ B as ¬A∨B in classical logic. Notice that the non commu-
tativity of the disjunction is necessary if we want to be able to distinguish between
these two implications.

In the Lambek calculus, one has the following equivalence: (C /B)/A≡C / (A •
B) : indeed (C /B) /A is a formula which requires an A and then a B to obtain C,
and C / (A •B) is a formula which requires an A followed by a B, to obtain a C. The
formula (C/B)/A can be written as C℘B⊥℘A⊥ using the (associative) disjunction
and the formulaC/(A•B) as C℘(A⊗B)⊥. Therefore if there is a classical extension
of the Lambek calculus then negation has to swap the components of a disjunction
(and of a conjunction, by duality).

Linear logic, when seen as a classical extension of the Lambek calculus, has the
following language:

Li+ ::= P | Li⊥+ | (Li+℘Li+) | (Li+⊗Li+) | (Li+ \Li+) | (Li+ /Li+)

and enjoys the elimination of double negation and the De Morgan identities, as
shown below.

(A⊥)⊥ ≡ A (A℘B)⊥ ≡ B⊥⊗A⊥ (A⊗B)⊥ ≡ B⊥℘A⊥
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6.1.2 Reduced Linear Language (Negative Normal Form)

For every formula X in Li+ there exists a unique equivalent formula +X such that
negation only applies to propositional variables, and its only connectives are con-
junction and disjunction. In some books, the analogous of +X for classical logic is
called its negative normal form. The formula +X is obtained by replacing its impli-
cation by its definition as a disjunction, and then applying De Morgan identities as
rewriting rules from left to right, and, finally by cancelling double negations. Notice
that, unlike disjunctive normal form and conjunctive normal form, this form does
not require distributivity of ℘ w.r.t. ⊗ or ⊗ w.r.t. ℘ — these distributivity identities
do not hold in linear logic.1

So every formula in Li+ is equivalent to a formula +X in Li, where Li is:

Li ::= N | Li℘Li | Li⊗Li where N= P∪P⊥ is the set of atoms.

Observe that if F ∈ Li then +F = F .
Let us denote by−F the unique formula in Li equivalent to (F)⊥ ∈ Li+ —−F =

+(F⊥). Given +F , −F is obtained by replacing every propositional variable in
+F with its negation, every conjunction by a disjunction, every disjunction by a
conjunction, and finally by reversing the left to right order of the result.

Given F = (α⊥℘β )⊗ γ⊥ one first obtains F ′ = (α ⊗ β⊥)℘γ , which yields
F⊥ ≡ −F = γ℘(β⊥⊗α) by rewriting F ′ from right to left.

6.1.3 Relating Categories and Linear Logic Formulae: Polarities

Since Lp is a sublanguage of Li+, for every formula L in Lp there exists a unique for-
mula +L in Li which is equivalent to L and a unique formula−L which is equivalent
to L⊥. These two maps from Lp to Li can be inductively defined as follows:

L α ∈ P L = M •N L = M \N L = N /M

+L α +M⊗+N −M℘+N +N℘−M
−L α⊥ −N℘−M −N⊗+M +M⊗−N

Example 6.1

L +L −L

np np np⊥ noun phrase

np/n np⊥℘n n⊥⊗np determiner

n n n⊥ common noun

n\n n⊥℘n n⊥⊗n right adjective

(n\n)/ (n\n) (n⊥℘n)℘(n⊥⊗n) (n⊥℘n)⊗ (n⊥⊗n) left modifier for
right adjectives

β \ ((α /β )\α) β⊥℘((β ⊗α⊥)℘α) (α⊥⊗ (α ℘β⊥))⊗β ) type raising

1 Though the classical distributivities, such as the equivalences A∧(B∨C)↔ (A∧B)∨(A∧
C) and A∨ (B∧C)↔ (A∨B)∧ (A∨C) which are required for disjunctive and conjunctive
normal form do not hold between tensor and par, we do have some weaker implications,
eg. A∧ (B∨C)→ (A∧B)∨C, or written using tensor and par: A⊗ (B℘C) � (A⊗B)℘C.
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Let us consider the following sets of formulae, which enable us to recognize,
among linear formulae the ones which are Lambek formulae or the negation of
Lambek formulae.

Li◦ = {F ∈ Li/∃L ∈ Lp +L = F} : positive linear formulae
Li• = {F ∈ Li/∃L ∈ Lp −L = F} : negative linear formulae
Li◦ ∪Li• : intuitionistic or polarized linear formulae

We then have:

F ∈ Li• ⇔ −F ∈ Li◦ and F ∈ Li◦ ⇔ −F ∈ Li•

Li◦ ∪Li• �= Li — for instance α ℘β �∈ Li◦ ∪Li•
Li• ∩Li◦ = /0 — because of the following proposition:

Proposition 6.2. The sets of formulae Li◦ and Li• are inductively defined by:

[
Li◦ ::= P | (Li◦ ⊗Li◦) | (Li•℘Li◦) | (Li◦℘Li•)
Li• ::= P⊥ | (Li•℘Li•) | (Li◦ ⊗Li•) | (Li• ⊗Li◦)

The maps + and − are bijections from Lp to Li◦ and Li• respectively.

If (. . .)◦Lp denotes the inverse bijection of +, from Li◦ to Lp and if (. . .)•Lp denotes the
inverse bijection of − from Li• to Lp. Then these two maps are inductively defined
as follows:

F∈Li◦ α∈P (G∈Li◦)⊗ (H∈Li◦) (G∈Li•)℘(H∈Li◦) (G∈Li◦)℘(H∈Li•)
F◦Lp α G◦Lp⊗H◦

Lp G•Lp \H◦
Lp G◦Lp /H•

Lp

F∈Li• α⊥∈P⊥ (G∈Li•)℘(H∈Li•) (G∈Li◦)⊗ (H∈Li•) (G∈Li•)⊗ (H∈Li◦)
F•Lp α H•

Lp⊗G•Lp H•
Lp /G◦Lp H◦

Lp \G•Lp

The inductive definition of Li◦ and Li• yields an easy decision procedure to check
whether a formula F is in Li◦ or Li• — if so, all subformulae of F are in Li◦ or in
Li•: replace every propositional variable with ◦ and every negation of a propositional
variable with • and compute using ℘ and ⊗ as the following operations on �,◦,• :

℘ � ◦ •
� � � �
◦ � � ◦
• � ◦ •

⊗ � ◦ •
� � � �
◦ � ◦ •
• � • �
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The result of this simple computation is used as follows:

• � whenever the formula is neither in Li◦ nor in Li•

• ◦ whenever the formula is in Li◦
• • whenever the formula is in Li•

Example 6.3

F computation conclusion F◦Lp F•Lp
(α⊥℘β )℘α (•℘◦)℘◦= ◦℘◦= � F �∈ Li◦∪Li• undefined undefined

(α⊥℘β )℘α⊥ (•℘◦)℘•= ◦℘•= ◦ F ∈ Li◦ (α \β )/α undefined

(α⊥℘β )⊗α⊥ (•℘◦)⊗•= ◦⊗•= • F ∈ Li• undefined α / (α \β )

6.2 Two Sided Calculi

Here is the two sided linear calculus MLL+ for all connectives of the language Li+.
In the Section 6.3.1, we shall see how it embeds the Lambek calculus.

Exchange
Γ ,A,B,Δ �Ψ

(x)h
Γ ,B,A,Δ �Ψ

Θ � Γ ,A,B,Δ
(x)i

Θ � Γ ,B,A,Δ

Axiom ax
A ∈ Li+A � A

Γ � A,Δ ⊥
h

A⊥,Γ � Δ
Negation

A,Γ � Δ ⊥
i

Γ � A⊥,Δ

Γ ,A �Θ B,Γ ′ �Θ ′
℘h

Γ ,A℘B,Γ ′ � Θ ,Θ ′ Disjunction
Θ � Γ ,A,B,Δ

℘h
Θ � Γ ,A℘B,Δ

Logical
rules

Γ ,A,B,Δ �Ψ
⊗h

Γ ,A⊗B,Δ �Ψ
Conjunction

Θ � Φ ,A Θ ′ � B,Φ ′
⊗i

Θ ,Θ ′ � Φ ,A⊗B,Φ ′

Γ � Φ ,A Γ ′,B,Δ ′ �Ψ ′
\hΓ ′,Γ ,A\B,Δ ′ � Φ ,Ψ ′

Implications

A,Γ � C,Φ
\i

Γ � A\C,Φ

Γ � Φ ,A Γ ′,B,Δ ′ �Ψ ′
/h

Γ ′,B/A,Γ ,Δ ′ � Φ ,Ψ ′
Γ ,A � Φ ,C

/i
Γ � Φ ,C /A
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6.2.1 Properties of the Linear Two Sided Sequent Calculus

Cut Elimination

We left out the cut rule on purpose. There are two ways to formulate the cut rule in
a classical calculus:

Θ � Φ,A A,Θ ′ �Ψ ′
cut

Θ ,Θ ′ � Φ,Ψ ′
Θ � Φ,A Θ ′ � A⊥,Φ ′

cut
Θ ,Θ ′ � Φ,Φ ′

As in the Lambek calculus, this rule is redundant, and the proof is more or less the
same. As a consequence, the subformula property also holds for this calculus.

De Morgan Identities and Double Negation Elimination

As we claimed before, these identities hold for linear logic. For instance:

A � A ⊥
i

A⊥,A � ⊥
i

A � (A⊥)⊥

A � A ⊥
i� A⊥,A ⊥

i
(A⊥)⊥ � A

Restriction to Atomic Axioms

As for the Lambek calculus, an easy induction on A, shows that every axiom A � A
can be derived from axioms α � α , where α is a propositional variable, without
using the exchange rule. For instance let us show that A � A with A = α ℘β⊥ can
be derived from the axioms α � α and β � β :

ax
α � α

ax
β � β ⊥

h
β ,β⊥ � ⊥

i
β⊥ � β⊥

℘hα ℘β⊥ � α,β⊥
℘iα℘β⊥ � α ℘β⊥

Equality of the Two Implications

In this calculus, the implication A \B can be viewed as a shorthand for A⊥℘B,
while A /B is a shorthand for B℘A⊥. Indeed the rules for the implications can be
derived when implications are defined this way. Furthermore, in the presence of a
full exchange rule, one has: A\B≡ B/A.
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Γ � A ⊥
h

Γ ,A⊥ � Δ ′,B,Γ ′ � Θ ′
℘hΔ ′,Γ ,A⊥℘B,Γ ′ �Θ ′

Γ ,A � B ⊥
h

Γ � A⊥,B
℘i

Γ � A⊥℘B

ax
B � B

ax
A⊥ � A⊥

℘h
B℘A⊥ � B,A⊥

(x)i
B℘A⊥ � A⊥,B

℘i
B℘A⊥ � A⊥℘B ≡

B/A � A\B

ax
A⊥ � A⊥

ax
B � B

℘h
A⊥℘B � A⊥,B

(x)i
A⊥℘B � B,A⊥

℘i
A⊥℘B � B℘A⊥ ≡

A\B � B/A

Negation and Symmetrical Rules

If one considers formulae up to De Morgan identities, then right rules are enough.
For instance the rule℘h can be simulated by the rule⊗i as shown in the following

derivation.

Γ ,A �Θ ⊥
i

Γ � A⊥,Θ

B,Γ ′ �Θ ′
⊥

i
Γ ′ � B⊥,Θ ′

⊗i
Γ ,Γ ′ � Θ ,A⊥⊗B⊥,Θ ′

(x)h and⊥h
[A℘B≡ (A⊥⊗B⊥)⊥],Γ ′,Γ � Θ ′,Θ

(x)h
Γ , [B℘A≡ (A⊥⊗B⊥)⊥],Γ ′ � Θ ′,Θ

In order to avoid the exchange rule, one has to consider a more subtle sequent cal-
culus like the one of (Abrusci, 1991, p. 1415) but identifying the two negations —
this actually forces a restricted form of the exchange rule known as cyclic exchange,
that we shall present later on.

6.2.2 The Intuitionistic Two Sided Calculus LPε

The calculus LPε , that is Lambek calculus with permutation and empty antecedents
is exactly intuitionistic multiplicative linear logic. This calculus is obtained from
MLL+ by forcing sequents to always have exactly one formula on the right hand
side.

By inspection of the rules, it is clear that restricting the right hand side of the
sequent to one formula means that we can no longer formulate the rules for negation.
Therefore the natural language for LPε is Lp. The rules are obtained from the ones
of MLL+ in Section 6.2, by replacing the sequences of formulae denoted by Φ and
Φ ′ by the empty sequence, and the sequences of formulae denoted by Ψ and Ψ ′ by
a single formula F or F ′. This yields the following rules:
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Exchange
Γ ,A,B,Δ � F

(x)h
Γ ,B,A,Δ � F

Axiom ax
A ∈ LpA � A

Γ ,A,B,Δ � F ⊗h
Γ ,A⊗B,Δ � F

Conjunction
Θ � A Θ ′ � B ⊗h

Θ ,Θ ′ � A⊗B

Logical rules
Γ � A Γ ′,B,Δ ′ � F ′ \hΓ ′,Γ ,A\B,Δ ′ � F ′

Implications

A,Γ � C \i
Γ � A\C

Γ � A Γ ′,B,Δ ′ � F ′
/hΓ ′,B/A,Γ ,Δ ′ � F ′

Γ ,A � C
/iΓ � C /A

This calculus LPε and its variants are studied in a slightly different perspective
in (van Benthem, 1991), and is also the basis of works on the semantics of LFG in
a series of articles like (Dalrymple et al, 1995).

This calculus allows for several variants according to the presence or absence
of the exchange rule, or the allowance or prohibition of sequents with an empty
antecedent, that is: the sequence of formulae Π is not empty when the rule \i or /i
is applied or, equivalently, every sequent in a proof has a non empty antecedent.

This last restriction is harmless from a logical viewpoint, i.e. preserves cut-eli-
mination, but is essential for a grammatical use of the Lambek calculus, as we have
seen in Section 2.5. Let us give another example of an incorrect analysis due to
empty antecedents:

Example 6.4. Look at the following small lexicon.

Word Type(s) Translation
exemple n example

simple n \ n simple
très (n \ n)/(n \ n) very
un np /n a

ax
n � n

/iε � n /n

ax
n � n

ax
np � np

/h
np/n,n � np

ax
n � n \h

np /n,n,n \ n � np
/h

np /n, n, (n \ n)/(n \ n) � np
un exemple très
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6.2.3 Proofs as Parse Structures: Too Many of Them

When we look at parsing a Lambek grammar, then, given that the Lambek calcu-
lus is a logic, a parse for a Lambek grammar is a proof in the Lambek calculus.
However, sequent calculus proof search, which is one way of implementing pars-
ing for the Lambek calculus is problematic: it is easy to find several proofs which
should correspond to the same parse structure, but which nevertheless are distinct.
For instance, with the previous lexicon, the following sequent calculus proofs are
different

Example 6.5

ax
n � n

ax
n � n

\h
n,n\n � n

\i
n\n � n\n

ax
n � n

ax
n � n

\h
n,n\n � n

ax
np � np

/h
np/ n,n,n\n � np

/h
np/n, n, (n\n)/ (n\n), n\n � np
un exemple très simple

Example 6.6

ax
n � n

ax
n � n

\h
n,n\n � n

\i
n\n � n\n

ax
n � n

ax
np � np

/h
np/n,n � np

ax
n � n

\h
np/ n,n,n\n � np

/h
np/n, n, (n\n)/ (n\n), n\n � np
un exemple très simple

In the two proofs above the order of the \h and /h rules is reversed, but both rules
have the same formula occurrences as their active and main formulae; the only way
the two proofs differ is in the way the context variables of the rules are instantiated.

This problem, that there can be many proofs of what we would want to be the
same parse is sometimes called the spurious ambiguity problem. Natural deduction
is a bit better in this respect, though, as we have seen in Section 2.6.3 problems of
multiple derivations corresponding to a single parse exist for the product formula.
One of the main objective of this chapter is to find a notion of proof that yields one
proof per parse structure; this is a key motivation for proof nets, to be introduced in
Section 6.4: proof nets will solve the problem of multiple equivalent proofs which
exists for the sequent calculus and, unlike natural deduction, will treat the product
formulae as easily as the other connectives.

6.3 A One Sided Calculus for Linear Logic: MLL

As we have seen in the paragraph 6.1.2 for every formula X of Li+ there exists a
unique formula +X of Li which is equivalent to it by De Morgan identities, and as
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explained in paragraph 6.2.1, right rules can be simulated by left rules. Therefore,
if one considers formulae up to De Morgan identities then the following one sided
sequent calculus, defined as follows, is enough:

Exchange
� Γ ,A

(cx)� A,Γ

� Γ ,A,B
(tx)� Γ ,B,A

Axiom ax
α ∈ P� α,α⊥

Logical
rules

� Γ ,A,B,Δ
℘� Γ ,A℘B,Δ

� Γ ,A � B,Γ ′ ⊗� Γ ,A⊗B,Γ ′

The exchange rule (x)h of MLL+ has been split into two rules (tx) (transposition
exchange) and (cx) (cyclic exchange). Therefore (x)h is derivable but, this formula-
tion allows to consider the calculus NC-MLL of (Yetter, 1990), which only has the
(cx) exchange, but not the (tx) exchange.

The simple calculus MLL whose language is Li, proves exactly the same sequents
as the bigger two sided calculus MLL+ :

Proposition 6.7. Let A1, . . . ,An,B1, . . . ,Bp be formulae in Li+; then one has:

(A1, . . . ,An �MLL+ B1, . . . ,Bp) ⇔ (�MLL −An, . . . ,−A1,+B1, . . . ,+Bp)

For the converse implication, notice that given a formula F ∈ Li there usually exist
several formulae X ∈ Li+ such that +X = F or −X = F.

6.3.1 Variants

We are about to introduce several variants of MLL according to the following re-
strictions:

INTUI intuitionistic calculi
in two sided presentation: one formula in the right hand side of every sequent
in one sided presentation: only polarized formulae (formulae of Li◦ ∪Li•)2

NC non commutative calculi
in two sided presentation: no exchange at all
in one sided presentation: cyclic exchange (cx) only (no transposition ex-

change (tx))

2 Note that by Proposition 6.8 of the next section, we do not have to require explicitly that
there is only one formula in Li◦.
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ε -FREE no empty antecedent
in two sided presentation: no empty antecedent, at least one formula on the left

hand side of every sequent
in one sided presentation: at least two formulae in every sequent

The names for these calculi somehow differ in the categorial tradition and in the
linear logic community, for instance, calculi without empty antecedents are never
considered in linear logic and, though classical calculi are sometimes discussed in
the categorial tradition (see, for example, Lambek, 1993; de Groote and Lamarche,
2002), there are, to the best of our knowledge, no linguistic applications of formulas
not in Li◦ ∪Li•. For linear calculi, the restriction which corresponds to forbidding
empty antecedents will be denoted by (· · ·)∗. Conversely, for categorial grammar
and Lambek calculus, allowing for empty antecedents will be denoted by (· · · )ε .
The non-commutative restriction of a linear calculus will be denoted by a prefix
NC, and the commutative extension of a Lambek style calculus will be denoted by
a suffix P

Because of these two communities, we have two names for the intuitionistic cal-
culi, and we hope it will not confuse the reader. Table 6.1 lists all the different sys-
tems, together with their different names and the restrictions which apply to them.
Figure 6.1 portrays the relations between the logics by means of a commutative
diagram. All these restrictions will appear again for describing the proof nets corre-
sponding to each calculus.

Although this might be surprising we are able to provide a one sided formulation
for intuitionistic calculi. So we will use the linear name · · ·MLL for one sided calculi
and the categorial name L · · · for two sided calculi.

Table 6.1. The different logical systems and their properties

INTUI NC ε -FREE Linear name Categorial name

yes yes yes NC-IMLL∗ L

yes yes no NC-IMLL Lε

yes no yes IMLL∗ LP

yes no no IMLL LPε

no yes yes NC-MLL∗
no yes no NC-MLL

no no yes MLL∗
no no no MLL

one sided two sided

6.3.2 The Intuitionistic Restriction in One Sided Calculi

The two sided intuitionistic calculus LPε is a proper restriction of its classical coun-
terpart MLL. For instance, if we look at the formula F = (β ℘α)℘(α⊥⊗β⊥) one
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Intuitionistic

MLL MLL∗

LPε
IMLL IMLL∗NC-MLL∗NC-MLL

Lε
NC-IMLL∗

L

restrictionrestriction

calculi

restriction

LP

NC-IMLL

No empty antecedentNon commutative Intuitionistic

Fig. 6.1. Commutative diagram listing the relations between the different logics

has �MLL F but there is no formula G equivalent to F such that �LPε
G. Actually,

this restriction is only a restriction of the language, which we have already studied
in Section 6.1.3. Indeed, it is only because there is no formula in Lp equivalent to F ,
i.e. because F �∈ Li• ∪Li◦ that F is not a theorem of IMLL. More precisely we have
the following result.

Proposition 6.8. If ∀i ∈ [1,n] Ai ∈ Li• ∪Li◦ then

(�MLL A1, . . . ,An) ⇔ (�IMLL A1, . . . ,An)

and whenever these properties hold, then exactly one formula of the sequent is in
Li◦, all others being in Li•. This also holds for the variants NC-MLL and NC-IMLL.
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Proof. Easy induction on the proofs. ��
Proposition 6.8 was first studied by van de Wiele in the typed case and then taken up
by Bellin and Scott (1994) and by Danos and Regnier (Danos, 1990; Regnier, 1992)
in the untyped case. This property has lead Lamarche to an interesting theory of
intuitionistic proof nets (Lamarche, 1994) which is orthogonal to our presentation.

From the previous proposition we easily deduce the correspondence between one
sided intuitionistic calculi and the two sided intuitionistic calculi:

Proposition 6.9. If �MLL F1, . . . ,Fn, with ∀i ∈ [1,n] Fi ∈ Li• ∪Li◦, then:

• there exists a unique index i0 ∈ [1,n] such that Fi0 ∈ Li◦ and for every other index
i ∈ [1,n] we have Fi ∈ Li• because of the Proposition 6.8

• because of Section 6.1.3, every formula F⊥i with i �= i0 is equivalent to a unique
formula (Fi)

•
Lp ∈ Lp, while Fi0 is equivalent to a unique formula (Fi0)

◦
Lp

• (Fi0−1)
•
Lp,(Fi0−2)

•
Lp, . . . ,(F1)

•
Lp,(Fn)

•
Lp, . . . ,(Fi0+1)

•
L �LPε

(Fi0)
◦
Lp

Conversely, (X1, . . . ,Xn �LPε
Y ) ⇒ (�MLL,IMLL −Xn, . . . ,−X1,+Y ).

If one replaces MLL with NC-MLL (resp. NC-MLL∗) and LPε with Lε (resp. L)
the result also holds (As announced in the commutative diagram of Figure 6.1, the
restrictions INTUI,NC and ε -FREE commute).

For these non commutative variants NC-MLL, NC-MLL∗, Lε and L, with a re-
stricted exchange rule, one has to abide by the order between formulae: this order
is reversed when formulae move from one side of the sequent’s turnstile to the other.

Proof. The “conversely” is obvious.
The direct implication is shown by induction on the proof. For the proof to work

in the non commutative case, the rule (tx) is only used for the translation of the (x)h

rule of IMLL. Here is, for instance, the translation of the /h.
Assume that the sequences of formulae involved in /h are Γ = G1, . . . ,Gn, Γ ′ =

G′1, . . . ,G
′
k, Δ ′ = D′1, . . . ,D

′
l . Here is the NC-MLL proof which simulates the rule /h

of Lε — remember that +A⊗−B =−(A\B) (c.f. Section 6.1.3):

� −Gn, . . . ,−G1,+A

� −D′l , . . . ,−D′1,−B,−G′k, . . . ,−G′1,+C′
l(EC)� −B,−G′k, . . . ,−G′1,+C′,−D′l , . . . ,−D′1 ⊗� −Gn, . . . ,−G1,+A⊗−B,−G′k, . . . ,−G′1,+C′,−D′l , . . . ,−D′1

l(EC)� −D′l , . . . ,−D′1,−Gn, . . . ,−G1,+A⊗−B,−G′k, . . . ,−G′1,+C′
= ��� −D′l , . . . ,−D′1,−Gn, . . . ,−G1,−(A\B),−G′k, . . . ,−G′1,+C′

Let us provide the NC-MLL translation of the proofs or parse structures given in
examples 6.5 and 6.6 :
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Example 6.10

ax� n,n⊥
ax� n,n⊥ ⊗� n,n⊥⊗n,n⊥

CX� n⊥⊗n,n⊥,n
℘� n⊥⊗n,n⊥℘n

ax� n,n⊥
ax� n,n⊥ ⊗� n,n⊥⊗n,n⊥

CX� n⊥⊗n,n⊥,n ⊗� n⊥⊗n,(n⊥℘n)⊗ (n⊥⊗n),n⊥,n
ax� np⊥,np ⊗

� n⊥⊗n, (n⊥℘n)⊗ (n⊥⊗n), n⊥, n⊗np⊥, np
simple très exemple un

n \ n (n \ n)/(n \ n) n np /n

Example 6.11

ax� n,n⊥
ax� n,n⊥ ⊗� n,n⊥⊗n,n⊥

CX� n⊥⊗n,n⊥,n
℘� n⊥⊗n,n⊥℘n

ax� n,n⊥
ax� np,np⊥ ⊗� n⊥,n⊗np⊥,np

CX� n⊗np⊥,np,n⊥
ax� n,n⊥ ⊗� n⊗np⊥,np,n⊥⊗n,n⊥

2×CX� n⊥⊗n,n⊥,n⊗np⊥,np ⊗
� n⊥⊗n, (n⊥℘n)⊗ (n⊥⊗n), n⊥, n⊗np⊥, np
simple très exemple un

n \ n (n \ n)/(n \ n) n np /n

6.4 Proof Nets: Concise and Expressive Proofs

We now turn our attention to proof nets; they are for linear logic what natural de-
ductions (or typed lambda terms) are for intuitionistic logic, in the sense that the
contexts are not copied at each step of the proof.

From a logical viewpoint, they are much more compact than sequent calculus
proofs: well-formedness is a global condition but easy (and fast) to verify, and cut-
elimination is a local and efficient process. But their main advantage is that they
are a better representation of proofs. Indeed, many sequent calculus proofs which
only differ in the order of application of the rules convert to the same proof net. For
example, the two proofs given in the Examples 6.10 and 6.11 will yield the same
proof net. It should be noticed that when these proofs are viewed as a representation
of syntactic analyses in the Lambek calculus (they correspond to the parses of Ex-
amples 6.5 and 6.6. in a Lambek grammar), they both describe the same linguistic
analysis, so it is really a good feature of proof nets that we are able to describe this
analysis by a single object.
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6.4.1 Proof Nets for MLL

R&B Graphs

A matching in a graph is a subset of the set of edges such that no two edges of the
matching are adjacent. The matching is said to be perfect whenever each vertex of
the graph is incident to an edge of the matching – because it is a matching, each
vertex is incident to exactly one edge of the matching.

Definition 6.12 (R&B graphs). A R&B graph is an edge colored graph, whose edges
either are of color B (blue or bold), or R (red or regular), such that the B edges define
a perfect matching of the graph.

B edges correspond to formulae and R edges to connectives. The recognition, among
all such graphs, of the ones which are proofs, will involve the notion of alternate
elementary path.

Definition 6.13 (æ paths and cycles). An æ path in a R&B graph is an alternating
elementary path, that is a path the edges of which are alternatively in B and in R

which does not use twice the same edge — as B edges are a matching, this is equiv-
alent to the property that the path does not contain the same vertex twice (except,
possibly the first and last vertices that might be the same). More precisely, an æ path
is a finite sequence of edges (ai)i∈[1,n] such that:

i �= j =⇒ ai �= a j #(ai∩ai+1) = 1
ai ∈ B=⇒ ai+1 ∈ R ai ∈ R=⇒ ai+1 ∈ B

An æ cycle is an æ path of even length, whose end vertices are equal.

Prenets

Definition 6.14 (Prenets or proof structures, links). Prenets are R&B graphs built
from basic R&B graphs called links, which are shown in Figure 6.2 (where α denotes
an atomic formula) in such a way that each formula is the conclusion of exactly one
link and the premise of at most one link. Formulae that are not the premise of a link
are called conclusions of the prenet.

Definition 6.15 (R&B subformula tree). Given a formula C, its R&B subformula
tree T (C) is a R&B graph defined inductively as follows.

• If C = α is a propositional variable then T (C) is: α
• given T (A) and T (B), T (A⊗B) and T (A℘B) are defined as follows.

T (A⊗B) : A⊗B

A B

T (B)T (A)

⊗

T (A℘B) : A℘B

℘
A

T (A) T (B)

B
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Links

Name Graph Premises Conclusions

Axiom
α⊥ α

none

α and α⊥

Times
BA

A⊗B

⊗
A and B

A⊗B

Par

A℘B

A B
℘

A and B

A℘B

Fig. 6.2. Links for constructing prenets

Beware that the R&B subformula tree of a formula C is not, from a graph theoretical
point of view, a tree: indeed, every Times link contains a cycle. We nevertheless
chose this name because it is very similar to the subformula tree, and because of the
fact that w.r.t. the æ paths, the only paths we shall use, the R&B subformulae trees are
acyclic.

The vertices corresponding to propositional variables in a subformula tree will
be called leaves of the subformula tree.

Definition 6.16 (prenet with conclusions Γ ). Given a sequence of formulae Γ , a
prenet Π with conclusions Γ consists of:

• the R&B subformula trees of the formulae in Γ
• a set of B edges joining dual leaves, called axioms, such that each leaf is incident

to exactly one axiom.

The structure of a prenet is the following.

R&B trees of Γ

Γ

Axioms of Π

Notice that the order between formulae of Γ or their subformula trees is not part of
the structure, but because of the labeling of the vertices, R&B subformula trees make
a distinction between their right and left subtrees.
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The examples below — Example 6.17 to 6.23 — give some examples of prenets.
Note that not all of these prenets correspond to sequent proofs: we will see how to
distinguish the correct prenets, the proof nets, from the other prenets below.

Example 6.17 Example 6.18

⊗
n⊥n

⊗
n⊥ n

n⊥⊗n n⊗n⊥

n⊥n
℘ ℘

n⊥℘n n⊥℘n

nn⊥

Example 6.19 Example 6.20

n n
⊗ ℘

n⊥

n⊥⊗n n℘n⊥

n⊥ n
⊗ ℘

n⊥

n℘n

nn⊥

n⊥⊗n⊥

Example 6.21

⊗

n n⊥ n n⊥ n sn⊥

n⊗ sn⊥

℘ ⊗ ⊗
sn

(n⊥℘n)⊗ (n⊥⊗ n)

n⊥

Example 6.22

⊗

n n⊥ n n⊥ n n⊥ n npnp⊥

(n⊥℘n)⊗ (n⊥⊗n)

n⊗np⊥n⊥⊗n

n⊥
⊗ ℘ ⊗ ⊗
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Example 6.23

⊗

n⊥ n npnp⊥

n⊗np⊥

⊗
n n⊥ n n⊥ n

n⊥⊗n

n⊥

(n⊥℘n)⊗ (n⊥⊗n)

⊗ ℘ ⊗

Proof Nets

Definition 6.24 (proof net). A proof net is a prenet satisfying the following
properties:

ØÆ there is no æ cycle.
SAT there exists an æ path between any two vertices.

To facilitate a comparison with the well-known presentation of proof nets according
to (Danos and Regnier, 1989; Girard, 1995), we will introduce the Danos-Regnier
correctness condition, which is stated using correction graphs of prenets, defined as
follows.

Definition 6.25 (correction graph). From a prenet we obtain a correction graph
by rewriting the logical links as follows.

℘
→

℘
→or

⊗
→

Note that there are two ways of rewriting the par links, which means that for a prenet
with p par links there are 2p correction graphs. In addition, correction graphs only
have a single type of edges (all edges are B edges) so correction graphs really are
graphs (ie. a set of vertices and a set of edges connecting these vertices).



6.4 Proof Nets: Concise and Expressive Proofs 211

Definition 6.26 (Danos and Regnier (1989)). A prenet is a proof net iff all its cor-
rection graphs are acyclic and connected.

Compared to the Danos and Regnier presentation of proof nets, the property ØÆ

corresponds to the acyclicity of all correction graphs and the property SAT to their
connectedness (see Fleury and Retoré, 1994; Retoré, 1996). The advantage of the
current representation of proof nets is that the correctness condition can be verified
by inspection of only a single graph.

The following result of (Retoré, 1996; Retoré, 2003) shows that verifying the
correctness of prenets is rather easy from an algorithmic point of view — recently
some linear algorithms have been provided on the Danos-Regnier presentation of
proof nets, and they certainly can be adapted to our formalism (Guerrini, 1999,
2011; Murawski and Ong, 2000).

Proposition 6.27. Given a prenet with n vertices, their exists an algorithm which
decides in n2 steps whether the prenet is a proof net.

Among the examples of prenets given above, only 6.19, 6.20, 6.21, 6.22 and 6.23
are proof nets. The prenet 6.17 contains an æ cycle, and the prenet 6.18 does not
contain any æ path between the left most leaves n⊥ and n.

6.4.2 Sequent Calculus and Proof Nets

The following proposition gives a precise account of the correspondence between
proof nets and sequent calculus proofs, and its proofs shows how sequent calculus
proofs are mapped onto proof nets. The converse correspondence relies on graph
theoretical properties, and we refer the reader to (Retoré, 1996; Retoré, 2003).

Theorem 6.28. Every sequent calculus proof in MLL of a sequent� A1, . . . ,An trans-
lates into a proof net with conclusions A1, . . . ,An. Conversely, every proof net with
conclusions A1, . . . ,An corresponds to at least one sequent calculus proof in MLL
of � A1, . . . ,An in NC-MLL — every such proof is called a sequentialisation of the
proof net.

Proof. As said above, we limit ourselves to the first part of this statement.
The translation from sequent calculus proofs to proof nets is defined inductively.

As the exchange rule has no effect on proof nets, since for the time being we have
no order on the conclusions, we simply skip it. The effect of this rule would be to
produce crossings of axiom links, but up to now this is not part of our description of
a proof net. For instance, the Examples 6.22 and 6.23 shown above are considered to
be the same proof net: the three rightmost conclusions of Example 6.22 (n⊥, n⊗np⊥
and np) are the three leftmost conclusions of Example 6.23 but they are connected
in exactly the same way both to each other and to the rest of the prenet.
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Proof ∂ in MLL Corresponding proof net ∂ �

ax� α⊥,α
α⊥ α

··· ∂1

� Γ ,A,B
℘� Γ ,A℘B

A

A℘B

B

Γ

∂ �
1

··· ∂1

� Γ ,A

··· ∂2

� B,Γ ′⊗� Γ ,A⊗B,Γ ′
A B

Γ Γ ′

A⊗B

∂ �
1 ∂ �

2

It is easily checked by induction that the prenet corresponding to a sequent calculus
proof are proof nets: no æ cycle can appear during the construction, and the fact that
there always exists an æ path between any two vertices is also preserved during the
construction. ��
Using this inductive definition, the proofs of Example 6.10 and 6.11, both yield
the proof net of Example 6.22, so a single proof net corresponds to a single parse
structure.

Rules and links are in a one-to-one correspondence (that is, ax with Axiom, ℘
with Par and ⊗ with Tensor), and the last logical rule in the sequent calculus proof
correspond to a final link in the prenet — a link which is the root of one of the
subformula trees — while the converse does not hold. We nevertheless have the
following property, that will be useful later on:

Proposition 6.29. Let Π be a proof net such that:

• all conclusions of Π are the conclusions of Times or Axioms links
• there is at least one Times link, that is Π is not a single Axiom

then at least one of the final Times links is splitting, that is each of the two premise
B edges is a bridge — an edge the suppression of which increases the number of
connected components.
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Proof. As we have a proof net, at least one sequent calculus proof translates into it.
The final rule of the sequent calculus correspond to a final link, so is a Times link.
From the translation given above, both the premise B edges of this link are bridges
of the graph. ��
Observe that not all final Times links are splitting. For instance in the example 6.22
the final Times n⊥⊗n is not splitting, and can not be the translation of the final rule
of a corresponding sequent calculus proof. The final Times links (n⊥℘n)⊗(n⊥⊗n)
and n⊗np⊥ are splitting Times links, and this is supported by the sequentialisations
given in examples 6.10 and 6.11.

We can generalize the notion of splitting Times link to a hereditary splitting
Times link as follows (Retoré, 1993).

Proposition 6.30. Let Π be a proof net and, as in Proposition 6.29, let all conclu-
sions of Π be the conclusions of Times and Axiom links with the number of Times
links being at least one. Π has a hereditary splitting Times link T ; that is

• T is a splitting Times link, and therefore removing T from Π splits the proof net
into two proof nets Π1 and Π2

• For each of the premises P1 and P2 of T , if Pi is the conclusion of a tensor link
Ti then Ti is a hereditary splitting Times link in Πi. Note that, since we know
for both Π1 and Π2 that all conclusions are either the conclusions of Axiom or
of Tensor links, it makes sense to talk about hereditary splitting Tensor links of
these subnets.

Proof. First, we remark that if one of the Πi has a hereditary splitting Times link
T ′i �= Ti, then T ′i is a hereditary splitting Times link of Π . For suppose T ′i were
not a hereditary splitting Times link of Π , this would mean that there would be a
path from two of the “leaves” of the tensor tree with T ′i as its root passing through
T which contradicts T being a splitting tensor link. The figure below illustrates the
situation. Note that T is a splitting tensor but (because of Ti) not a hereditary splitting
tensor although T ′i is a hereditary splitting tensor.

⊗

⊗

⊗

⊗

T T ′i

Ti

We proceed by induction on the number of tensor links in the proof net. Let T be
a splitting tensor link of Π .
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If none of the premises of T is the conclusion of a Times link, then T is hereditary
splitting and we are done.

If one of the two premises of T , say P1 is the conclusion of a Times link T1 then,
by induction hypothesis T1 has a hereditary splitting Times link T ′1. If T ′1 �= T1 then
T ′1 is a hereditary splitting Times link of Π according to the remark at the start of
the proof. Otherwise T1 is a hereditary splitting Times link in Π1. We therefore look
at the other premise P2 of T . If it is not the conclusion of a tensor link, then we are
done. However, if it is the conclusion of a Times link T2 we proceed as before: we
know by induction hypothesis that Π2 has a hereditary splitting Times link T ′2. If
T ′2 is not equal to T2 then T ′2 is a hereditary splitting Times link of Π . But if T ′2 is
a hereditary splitting Times link of Π2 then T is a hereditary splitting Times link
of Π . ��

A minimal representation of prenets and proof nets

To define a prenet or a proof net Π it is enough to give its conclusions and the
pairs of propositional variables which are linked by an axiom link. These pairs can
be depicted by a 2-permutation σΠ — that is a permutation such that σ2

Π = Id
and ∀x σΠ (x) �= x — defined on the set of occurrences of atoms in the sequence
of conclusions. This representation will become necessary when we will deal with
proof nets for the Lambek calculus, that are parse structures for Lambek categorial
grammars.

Up to now, representing the conclusions by a graph is needed to check whether
a prenet is a proof net (Girard, 1987; Danos and Regnier, 1989; Asperti, 1991; As-
perti and Dore, 1994; Métayer, 1993). This graph can be minimized in more ab-
stract representation (Retoré, 2003). There exists an alternative criterion relying on
denotational semantics (Retoré, 1997) which does not need such a graph, but, un-
fortunately, checking the correctness becomes exponential.

Let us give the description of the examples 6.22 and 6.19 by means of
2-permutations.

Example 6.31

Proof Net Π Example 6.22 Example 6.19

Conclusions of Π n⊥⊗n (n⊥℘n)⊗ (n⊥⊗n) n⊥ n⊗np⊥ np n⊥⊗n n℘n⊥

Atom occurrences x n⊥1 n2 n⊥3 n4 n⊥5 n6 n⊥7 n8 np⊥9 np10 n⊥1 n2 n3 n⊥4
σΠ (x) n4 n⊥3 n2 n⊥1 n8 n⊥7 n6 n⊥5 np10 np⊥9 n3 n⊥4 n⊥1 n2

6.4.3 Intuitionistic Proof Nets

Definition 6.32. An intuitionistic proof net with conclusions F1, . . . ,Fn is a proof net
satisfying:

INTUI: ∀i ∈ [1,n] Fi ∈ Li◦ ∪Li•.
For instance the example 6.20 is not an intuitionistic proof net since n℘n �∈ Li•∪Li◦.
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Theorem 6.33. Every sequent calculus proof A1, . . . ,An � B in IMLL translates into
an intuitionistic proof net with conclusions−An, . . . ,−A1,+B.

Conversely, let Π a proof net with conclusions F1, . . . ,Fn ∈ Li. Then there exists
a unique index i0 in [1,n] such that Fi0 ∈ Li◦ and Fi ∈ Li•, for i �= i0, and Π is the
translation of a proof in IMLL of

(Fi0−1)
•
Lp,(Fi0−2)

•
Lp, . . . ,(F1)

•
Lp,(Fn)

•
Lp, . . . ,(Fi0+1)

•
Lp � (Xi0)

◦
Lp

Proof. The first part is obvious.
For the converse, we first have to justify the existence of i0. This existence is

justified by Theorem 6.28 (it shows that Π is the translation of proof of MLL) and
proposition 6.8 (which shows that a proof in MLL with all its conclusions in Li• ∪Li◦
has exactly one conclusion in Li◦ and all the others in Li•). Once the existence of
i0 is established, the result follows from proposition 6.9, which shows that given a
sequentialisation of Π in MLL, with conclusions � F1, . . . ,Fn (with Fi0 in Li◦ and all
the others in Li•) corresponds to a proof in IMLL of

(Fi0−1)
•
Lp,(Fi0−2)

•
Lp, . . . ,(F1)

•
Lp,(Fn)

•
Lp, . . . ,(Fi0+1)

•
Lp � (Xi0)

◦
Lp ��

6.4.4 Cyclic Proof Nets

We now turn our attention towards proof nets for NC-MLL. These are proof nets
which can be drawn in the plane without intersecting axioms, keeping the same
design and up-down orientation for links. This condition is strictly stronger than
being a planar graph (because we ask for the links to be drawn respecting left-right
and up-down as shown in the figures). Consequently we shall present this condition
without any reference to an embedding of the graph in the plane, but by means
of a 2-permutation (bracketings from formal language theory would work just the
same). This restriction, combined with the restriction for intuitionistic proof nets
from the previous paragraph, will give us a characterization of proof nets for the
Lambek calculus, and therefore give us a way to parse phrases and sentences with
proof nets.

Cyclic Permutations and Compatibility of a 2-Permutation

A permutation ψ over a set E with n elements is said to be cyclic whenever:

∀x,y ∈ E ∃k ∈ [0,n− 1] y = ψk(x) (with ψ0(x) = x)

such a permutation ψ can be described by an expression:

� x;ψ(x);ψ(ψ(x)); · · · ;ψn−1(x)�

Given x,y ∈ E , and an index k ∈ [0,n−1] such that y = ψk(x), we write [x,y] for the
set {z | ∃ j ∈ [0,k] z = ψ j(x)}; similarly [x,y[ is defined as {z | ∃ j ∈ [0,k[ z =
ψ j(x)} etc.
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Given a set E endowed with a cyclic permutation ψ and a 2-permutation σ we
can give an algebraic account of the following geometric fact: if we place the points
of E on a circle following the cyclic order ψ , the chords joining x and σ(x) do
not intersect any other chord — in other words, σ is a correct bracketing, w.r.t. the
cyclic order ψ over E .

Definition 6.34. A 2-permutation σ of E is said to be compatible with a cyclic per-
mutation ψ of E whenever ∀x,y ∈ E x ∈ [y,σ(y)]⇒ σ(x) ∈ [y,σ(y)].

For instance the 2-permutation σΠ of the example 6.31 (n⊥1 ,n3),(n2,n⊥4 ) is not com-
patible with the cyclic permutation�n⊥1 ;n2;n3;n⊥4 �. Indeed, n2∈ [n⊥1 ,σΠ (n⊥1 )=n3]
while σΠ (n2) = n⊥4 �∈ [n⊥1 ,n3].

In the following definition the Ei’s should be viewed as the conclusions of a proof
net Π , endowed with the cyclic permutation ΨΠ . The induced cyclic permutation is
the cyclic permutation induced on the atoms — thus, viewing σ of the previous
definition as the axioms of Π , we are able to express that axioms do not intersect.

Definition 6.35. Let � E1; · · · ;En � be a cyclic permutation of M = {E1, . . . ,En}
where each Ei is a sequence of symbols a1

i ,a
2
i , . . . ,a

ji
i . The cyclic permutation in-

duced by Ψ over the disjoint sum of the symbols of the Ei’s is the cyclic permutation
defined by:

� a1
1;a2

1; · · · ;a j1
1 ;a1

2;a2
2; · · · ;a j2

2 ; · · · ;a1
n;a2

n; · · · ;a jn
n �

In order to characterize the proof nets for the Lambek calculus we shall need the
following proposition:

Proposition 6.36. Let Ψ be a cyclic permutation over a finite set M of n sequences
of symbols M = E1, . . . ,En. Let ψ be the cyclic permutation induced on E =⊕Ei, as
in definition 6.35. Let σ be a 2-permutation of E, compatible with ψ , as in definition
6.34. Let Σ be the following (symmetric) relation over M: EiΣE j whenever there
exists xi ∈ Ei such that σ(xi) ∈ E j. Let Σ∗ be the transitive closure of Σ ; if Σ∗ has
exactly two equivalence classes G and D , then there exist G ∈ G and D ∈ D such
that: G = [G,D[ and D = [D,G[.

Proof. By induction on #E + n.
If one of the class contains only one element, the result is obvious — this neces-

sarily happens when a class has a single element, for instance when n = 2.
There exists z such that ψ(z) = σ(z) Let z be a point such that #]z,σ(z)[ has the
smallest number of elements, and let us show that #]z,σ(z)[= 0 — hence ψ(z) =
σ(z). Assume that there exists y ∈]z,σ(z)[; since σ is compatible with ψ , σ(y) ∈
]z,σ(z)[. Thus one of the two intervals ]y,σ(y)[ or ]σ(y),σ(σ(y)) = y[ is a subset
of ]z,σ(z)[, and since none of them contains y, they have strictly less elements than
#]z,σ(z)[, contradiction.

Let z be an element such that ψ(z) = σ(z) and let i be the index such that z ∈ Ei.
Three cases can happen:
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σ(z) ∈ Ei and Ei = z,σ(z) In this case, Ei is the only element in its equivalence
class, and the result is clear.

σ(z) ∈ Ei and Ei = . . . ,z,σ(z), . . . In this case, replace Ei with Ei \ {z,σ(z)}, re-
strict σ and ψ to E \{z,σ(z)}. The induction hypothesis apply, and since Σ∗ remains
unchanged, the D and G provided by the induction hypothesis are solutions for the
original problem.

σ(z) �∈ Ei. In this case σ(z) is the first symbol of Ei+1 =Ψ(Ei). Let us consider
the following reduction problem:

let Ψ ′ be the cyclic permutation � E1; . . . ;Ei−1;Ei(i+1);Ei+2; . . . ;En � where
Ei(i+1) is the sequence of symbols Ei,E j

Observe that E , ψ and σ remains unchanged, and therefore σ is compatible with
ψ . Since EiΣEi+1 the equivalence relation Σ ′∗ for this reduction problem also has
exactly two classes.

Hence we are faced with a similar problem with #M′ = n− 1. The induction
hypothesis yields G′ and D′ such that G ′ = [G′,D′[ and D ′ = [D,G′[. A solution to
the original problem is given by G = G′ and D = D′ —- if G′ (resp. D′) is Ei(i+1),
then G (resp. D) should be Ei. ��

Cyclic Proof Nets

Definition 6.37. A cyclic prenet with conclusionsΨ :� A1; · · · ;An � is a prenet with
conclusions A1, . . . ,An endowed with the cyclic permutationΨΠ :� A1, . . . ,An �. We
write Ψ at

Π for the cyclic permutation induced byΨΠ on the atoms ofΨ — in the sense
of the definition 6.35.

Definition 6.38. A cyclic prenet with conclusion Ψ :� A1, · · · ,An � is a cyclic proof
net if and only if it is a proof net with conclusion A1, . . . ,An (the conditions ØÆ and
SATare satisfied) and:

NC: σΠ is compatible with Ψ at
Π

For instance the example 6.19 is not a cyclic proof net. Indeed,ΨΠ =� n⊥1 ⊗n2;n3℘
n⊥4 � (there are only two conclusions, so there is only one possible cyclic permuta-
tion), and Ψat

Π = � n⊥1 ;n2;n3;n⊥4 �, while the 2-permutation σΠ of its axiom links,
given in example 6.31, is not compatible with Ψ at

Π — as we have seen after the
definition 6.34.

The proof nets of the examples 6.20, 6.21, 6.22 and 6.23 are cyclic proof nets.

Theorem 6.39. Every sequent calculus proof of � A1, . . . ,An in NC-MLL translates
into a cyclic proof net with conclusions � A1; · · · ;An �.

Conversely, every cyclic proof net with conclusion n � A1; · · · ;An � is the trans-
lation of at least a sequent calculus proof of � A1, . . . ,An in NC-MLL.

Proof. The first part is rather simple to establish by induction on the sequent calcu-
lus proof. Nevertheless one should take care of the compatibility of Ψat

Π with σΠ ;
to do so, one should place atoms on a circle, and draw axiom links as chords of
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this circle, and draw R&B subformula trees outside the circle. Observe that the cyclic
exchange (cx) corresponds to the equality of the proof nets.

The converse is proved by induction on the number of links of the proof net Π .
As it is a proof net, Proposition 6.29 applies.

If Π is an axiom � α,α⊥ �= � α,α⊥ � a sequentialisation is provided by the
axiom � α,α⊥ of NC-MLL.

If Π has a final Par link Ai = A℘A′, let us consider Π ′ the proof net obtained
from Π by suppressing this final Par link and endowed with the cyclic permutation
� A1; . . . ;Ai−1;A;A′;Ai+1; · · ·An �. The proof net Π ′ is a cyclic proof net as well,
since Ψ at

Π ′ = Ψat
Π and σΠ ′ = σΠ . By induction hypothesis there exists a sequent

calculus proof in NC-MLL corresponding to Π ′, and applying a ℘ rule to this proof
yields a sequentialisation of Π .

Otherwise, by Lemma 6.29, Π has a splitting Times, say Ai = A⊗ A′. Sup-
pressing this final link yields two proof nets ΠA and ΠA′ with conclusions ΓA =
Ai1 , . . . ,Aip ,A and ΓA′ = A j1 , . . . ,A jq ,A

′ with {i1, . . . , ip, j1, . . . , jq} = [1,n] \ {i}.
Consider the prenet Π ′=ΠA∪ΠA′ and endow its conclusions with the cyclic permu-
tation � A1; · · · ;Ai−1;A;A′;Ai+1; · · · ;An �. Since Ψ at

Π ′ =Ψat
Π and σΠ ′ = σΠ , the 2-

permutation σΠ ′ is compatible with Ψat
Π ′ . Let Σ be the (symmetric) relation between

the conclusions of Π ′ defined by: ∃x ∈C σΠ (x) ∈C′ — in other words, this relation
holds whenever Π contains an axiom with a conclusion in C and the other in C′.
The link A⊗B is splitting in Π , means that Σ∗ has exactly two equivalence classes
ΓA and ΓA′ . Because of Proposition 6.36 the cyclic permutation of the conclusions
of Π ′ can be written as � Ai1 ; · · · ,Aip ;A;A′,A j1 ; · · · ;A jq �. Thus ΠA (resp. ΠA′) en-
dowed with the cyclic permutation � Ai1 ; · · · ,Aip ;A � (resp. � A′,A j1 ; · · · ;A jq �) is
a cyclic proof net. Indeed ΠA is a proof net and since σΠA and Ψat

ΠA
are the restric-

tions to ΓA of σΠ and Ψat
Π compatibility is preserved — the same argument works

for ΠA′ .
Therefore, by induction hypothesis we have two sequent calculus proofs in

NC-MLL with conclusions � Ai1 ; · · · ,Aip ;A and � A′;A j1 ; · · · ;A jq corresponding
to ΠA and Π ′

A. Applying the rule ⊗ of NC-MLL yields a proof with conclusion
� ΓA,A⊗B,ΓB corresponding to Π . ��
For instance the proofs of the examples 6.10 and 6.11 correspond to the cyclic
proof net of the example 6.22, which is equal to the proof net of the example
6.23. Indeed expressions � n⊥ ⊗ n;(n⊥℘n)⊗ (n⊥ ⊗ n);n⊥;n⊗ np⊥;np � and �

n⊥;n⊗np⊥;np;n⊥⊗n;(n⊥℘n)⊗(n⊥⊗n)� denotes the same cyclic permutation.

6.4.5 Proof Nets for the Lambek Calculus — With or Without Empty
Antecedent

In order to characterize the proof nets of the Lambek calculus L, which exclude
sequents with empty antecedents, we need the following proposition. It involves the
notion of a sub-prenet and subproof net: a sub-prenet (sub proof net) is a subgraph
of a prenet (proof net) which is itself a prenet (proof net). A sub-prenet of a proof
net is not always a proof net: it is possible that SAT does not hold in the sub-prenet
(but ØÆ holds).
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Proposition 6.40. Let Π be a proof net; the following statements are all equivalent:

1. Every sub-prenet of Π has at least two conclusions. (ε -FREE)
2. Every sub proof net of Π has at least two conclusions.
3. Every sequentialisation of Π contains only sequents with at least two conclu-

sions.
4. There exists a sequentialisation of Π which contains only sequents with at least

two conclusions.

Proof. Implications 1⇒ 2, 2⇒ 3 and 3⇒ 4 are straightforward.
4⇒ 1 is shown by induction on the number of links in Π , which is equal to the

number of axioms and logical rules of every sequentialisation of Π . Let us consider
a sequentialisation Π ∗ of Π , such that every sequent of it contains at least two
formulae. We can assume the last rule of Π ∗ is not an exchange rule: indeed the
same proof without this exchange rule is also a sequentialisation of Π , with all
sequents having at least two formulae.

If the last rule of Π ∗ is an axiom, Π ∗ consists of this axiom, which contains two
formulae. In this case Π is an axiom, whose only sub-prenet is itself, which has two
conclusions.

If that rule of Π ∗ is a two premise rule, applied to two proofs Π ′∗ and Π ′′∗, the
corresponding link of Π is a splitting Times link: Π is obtained from two smaller
proof nets Π ′ and Π ′′ connected by this Times link. The two proofs Π ′∗ and Π ′′∗
are possible sequentialisations for Π ′ and Π ′′ and these proofs also have sequents
with at least two formulae. Thus the induction hypothesis can be applied to Π ′ and
Π ′′: every sub-prenet of Π ′ or of Π ′′ has at least two conclusions. The intersection
of a sub-prenet sΠ of Π , with Π ′ (resp. Π ′′) is a sub-prenet of Π ′ (resp. Π ′′) which
has p > 1 (resp. q > 1) conclusions. If the Times link is part of sΠ then the number
of conclusions of sΠ is p+ q− 1 > 1, and otherwise the number of conclusion of
sΠ is p+ q > 1. Thus, in any case Π satisfies ε -FREE.

If the last rule of Π ∗ is a one premise rule applied to some proof Π ′∗, the cor-
responding link of Π is a final Par link. Let Π ′ be the proof net obtained from Π
by removing this final Par link; it is a proof net with strictly less links, which has
a sequentialisation Π ′∗ with sequents with more than one conclusions. Hence, by
induction hypothesis every sub-prenet of Π ′ has at least two conclusions. Given a
sub-prenet sΠ of Π , its intersection sΠ ′ with Π ′ has at least two conclusions. It is
impossible that sΠ ′ has only the two conclusions X and Y . Indeed we know that Π
has at least two conclusions, hence it has another conclusion Z in addition to X℘Y .
Since Π is a proof net it is connected, and there exists a path joining sΠ ′ to Z con-
clusion, and this path can be assumed to lie outside sΠ ′ — by cutting the part inside
sΠ ′. So there exists an edge of Π , incident to sΠ ′ starting this path. This edge can
neither be the R edge below X , nor the one below Y , since any path starting by one
of these edges has to enter again sΠ ′. But the only way to leave a sub-prenet is from
one of its conclusions: therefore sΠ ′ has a conclusion which is neither X nor Y . Let
p be the number of conclusions of sΠ ′. If X and Y are among the p conclusions of
sΠ ′, then sΠ ′ has another conclusion and p > 2. Therefore, either sΠ has p > 2
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conclusions (when X℘Y is not one of its conclusions), or sΠ has p−1 > 1 conclu-
sions (when X ℘Y is one of its conclusions). If X or Y is not a conclusion of sΠ ′,
then X ℘Y is not a conclusion of sΠ , and sΠ and sΠ ′ have the same number of
conclusions p > 1.

In any case sΠ has at least two conclusions. ��
Definition 6.41. A Lambek proof net of conclusion ΨΠ = � F1; · · · ;Fn � is an intu-
itionistic cyclic proof net, i.e. a prenet satisfying

ØÆ: there is no æ cycle alternate elementary cycle.
SAT: There always exists an æ path between any two vertices.
INTUI: Every conclusion Fi is in Li• ∪Li◦.
NC: σΠ is compatible with Ψ at

Π — the axioms of Π do not intersect.

A Lambek proof net is said to be without empty antecedent if, moreover:

ε -FREE: Every subprenet of Π has at least two conclusions.

Among the four equivalent statements given above, we have chosen the first one,
because subprenets are easier to define. It is enough to chose a set of vertices of
the proof net, and to close it by subformula and axiom links, without verifying
SAT or ØÆ. When NC and ØÆ hold, this amounts to the following fact: for every
subformula G of a conclusion, the first and last atom of G are never linked by an
axiom. If G = H⊗H ′ then this holds, and if G = H ℘H ′, this exactly means that
there is no sub-net with a single conclusion.

Theorem 6.42. Every sequent calculus proof with conclusion A1, . . . ,An � B in Lε
(resp. L) translates into a Lambek proof net (resp. a Lambek proof net without empty
antecedent) with conclusions �−An; · · · ,−A1;+B �.

Conversely, let Π be a Lambek proof net (resp. a Lambek proof net without empty
antecedent) with conclusions � F1; . . . ;Fn �. and let i0 be the unique index in [1,n]
such that Fi0 ∈ Li◦ and Fi ∈ Li•, for i �= i0. The proof net Π is the translation of at
least a sequent calculus proof in Lε (resp. L) of

(Fi0−1)
•
L,(Fi0−2)

•
Lp, . . . ,(F1)

•
Lp,(Fn)

•
Lp, . . . ,(Fi0+1)

•
Lp � (Fi0)

◦
Lp

Proof. The first part is a straightforward induction on the sequent calculus proof in
Lε (resp. L).

For the second part, we know from Proposition 6.39 that there is a sequential-
isation corresponding to Π in NC-MLL, with conclusion � F1, · · · ,Fn. Because of
Proposition 6.9, this sequent calculus proof in NC-MLL corresponds to a proof of

(Fi0−1)
•
L,(Fi0−2)

•
Lp, . . . ,(F1)

•
Lp,(Fn)

•
Lp, . . . ,(Fi0+1)

•
Lp � (Fi0)

◦
Lp

in Lε . Using 1⇒ 3 of Proposition 6.40, it is easily seen that whenever Π is a Lambek
proof net without empty antecedent, the sequentialisation in Lε is in fact in L, i.e. it
does not contain sequents with only one formula. ��



6.4 Proof Nets: Concise and Expressive Proofs 221

Among our proof net examples, only Examples 6.21, 6.22 and 6.23 are Lambek
proof nets. Example 6.22 corresponds to the parse structures 6.5 and 6.6: we thus
got rid of spurious ambiguity — a classical drawback of sequent proof search for
categorial grammars, which provides too many proofs/parse structures for a single
analysis. One advantage of working with cyclic permutation is that Examples 6.22
and 6.23 are equal. Example 6.21 is not a Lambek proof net without empty an-
tecedent: indeed it contains a sub-net whose only conclusion is n⊥℘n. It corre-
sponds to the Example 6.4 in Lε .

6.4.6 Cut Elimination for Proof Nets

We have deliberately excluded the cut links from our discussion of proof nets so
far. We will present two versions of the cut link, the first is a simple connection
of a formula with its negation. The second is a special kind of tensor link with the
constant “Cut” as its conclusion. This second formulation has the advantage that we
can treat the cut link just as a tensor link in sequentialisation proofs.

Name Graph Premises Conclusions

Cut
A A⊥ A and A⊥

none

Cut⊗

⊗

Cut

A A⊥

A and A⊥
the special constant “Cut”

Cut elimination for proof nets is very simple — at least in the commutative case,
we will discuss why cut elimination is more diffcult for non-commutative calculi in
the next section. The base case occurs when the cut link is connected to an axiom
link. In this case we are in the following situation.

Π1

Π2

A A⊥ A

Π1

Π2

A

We know that Π1 and Π2 must be disjoint, since the vertices of Π1 and Π2 are
connected by the path passing through the cut and the axiom link and we know
that the complete proof net does not have an alternate elementary cycle. We can
eliminate the cut as shown in the figure above on the right: we remove both the
cut and the axiom link and the resulting structure satisfies ØÆ and SAT because the
unreduced structure did.
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In case the cut link is connected to a complex formula, we must be in the situation
shown below on the left.

Π1 Π2 Π3

A⊥ B⊥

A⊥℘B⊥ B⊗A

B A℘ ⊗ A⊥ AB⊥ B

Π1 Π2 Π3

That is, given that we have a proof net on the left hand side of the figure, Π2

and Π3 are connected by the tensor link which is shown in the figure and therefore
not connected elsewhere and Π1 is connected to Π2 and Π3 by means of the paths
shown in the figure and therefore not by any other paths.

We can replace the cut link by two cut links on the subformulas as shown in the
figure above on the right. It is easy to see that the resulting structure is again a proof
net. The path from A (and the formulas of Π3) to B (and the formulas of Π2) which
used to be connected directly through the Times link now goes through Π1, but all
other paths have been shortened.

It is also easy to see that cut elimination is confluent.

Lemma 6.43. Let Π be a proof net with cuts with possible cuts Ki, K⊥i such that
all conclusions are polarized and with one output conclusion, then all Ki, K⊥i are
polarized.

Proof. This lemma is an easy corollary of Proposition 6.30 when we treat cut links
as tensor links Cut⊗. We assume, without loss of generality, that Π has only atomic
axiom links. Since Π is a proof net, we sequentialise as before.

If Π contains conclusions which are par links, then we can remove the par link
and the result will be a proof net, it is easy to verify that this new proof net is
still polarized since all polarized par links reduce the number of negative formulas,
but keep the number of positive formulas constant. In case there are no terminal par
links, by Proposition 6.30 there is a hereditary splitting Times link, possibly a cut. In
case it is not a cut, removing the n > 0 hereditary splitting tensors will produce n+1
disjoint proof nets Π1, . . . ,Πn. We only need to verify that all Πi are polarized. If
the conclusion of the hereditary splitting link is a postive Times link with conclusion
A⊗B, then all n Times links are positive and each Πi will have a positive conclusion
after removal of all the Times links. If it is a negative Times link, then extactly one
of the Πi, say Πk, has a positive conclusion which is already a conclusion of Π and
is therefore connected to the hereditary splitting Times by an input conclusion of
Πk. Given the form of the polarized Times links, this means that all Πi for i �= k
have a single positive conclusion.

The interesting case is when there hereditary splitting Times link is a cut link
between A and A⊥ where A and A⊥ are not necessarily polarized. However, we
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know by induction hypothesis that all conclusions of Π are polarized. In case A is
an atomic formula, this means that A is connected by an axiom link to a formula A⊥
which is a conclusion of Π and therefore both A and A⊥ are polarized. Now suppose
A = B℘C and A⊥ = C⊥⊗B⊥: this is the only combination which is not polarized
and we show it leads to a contradiction. One step of cut elimination connects B
to B⊥ and C to C⊥. We also know that Π1, the subnet with conclusion B⊥, and
Π2, the subnet with conclusion C⊥, are both a proof nets and the the proof net
Π is polarized, that is Π has a single polarized output conclusion and all other
conclusions of Π a polarized input conclusions. Since B⊥ and C⊥ are both input
conclusions of their respective proof nets Π1 and Π2 and all other conclusions of
both proof nets were conclusions of Π this means that one of Π1 and Π2 does not
have a positive conclusion and therefore is not a polarized proof net.

6.4.7 Cuts and Non-commutative Proof Nets

There are a variety of multiplicative proof nets criteria in the usual commutative case
that are fully satisfying. But the non-commutative case is rather tricky when there
are cuts. To the best of our knowledge, only the criterion by Paul-André Melliès is
fully satisfactory (Melliès, 2004). What do we mean by ”satisfactory” for a correct-
ness criterion?

1. every sequent calculus proof should be mapped to a correct proof net, rules
corresponding to links (in particular cut-free proofs should be mapped to cut-
free proof nets)

2. every correct proof net should correspond to a sequent calculus proof links cor-
responding to rules (in particular cut-free proofs should be mapped to cut-free
proof nets)

3. sequent calculus proofs that only differ up to rule permutations should be
mapped to the same proof net

4. the criterion should be preserved under cut elimination in proof nets (not as
obvious as it may seem)

The reason why criteria are trickier in the non commutative case mainly comes from
the difference between cut links and times links. In a planar representation, a cut link
is allowed to be included in an internal face, while a times link which is a conclusion
of the proof net is not. Figure 6.3 (after Melliès, 2004, p. 294) shows an example.

As the reader can easily verify (Exercises 6.5 asks you to verify a number of
properties of this proof structure), it is a proof structure of

� (b⊥℘b)⊗ (a⊥℘a)

which, though this sequent is derivable, the proof structure shown in Figure 6.3
is not sequentialisable in a non-commutative calculus. However, it is planar and
satisfies all other conditions for proof nets (at least for proof nets which allow empty
antecedent derivations).
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℘ ⊗

⊗

℘℘⊗ ⊗

℘ ℘

1

2

3 4

5 6

Fig. 6.3. Proof structure which does not correspond to a non-commutative sequent proof

To see that this proof net is not sequentialisable, the only conclusions of the
proof net are the tensor link and the cut link (which, as before, we treat as a tensor
link as well for the purpose of sequentialisation). Only the cut link splits the proof
structure into two disconnected proof structures: one proof structure with conclusion
� (a⊥℘a)⊗(b⊥℘b) — which is both derivable and a substructure which is a proof
net — but the second proof structure is a proof structure of

� (b⊥⊗b)℘(a⊥⊗a),(b⊥℘b)⊗ (a⊥℘a)

which is not derivable in a non-commutative logic.
The correctness condition of Melliès (2004) (though the terminology we use is

closer to de Groote, 1999) formalizes this restriction on the conclusions. This con-
dition is, to the best of our knowledge, the only correctness condition which works
correctly for non-commutative proof nets with cut links.

Definition 6.44. Let P be a planar drawing of a proof structure. A face f of P is a
connected area enclosed by the edges of the proof structure such that the border of
f contains at least one B edge.

The faces of Figure 6.3 are shown as n . The R triangle of a Times link is not counted
as a face, though face 5 and 6 show valid three-edge faces.

Definition 6.45. A face f of a proof structure is an internal face iff it contains both
R edges of at least one Par link. A face which is not internal is called external.

Definition 6.46. A proof structure Π is a proof net iff it satisfies ØÆ, SAT and all
conclusions of Π are on the unique external face of Π .

We can see that the external face of the proof structure in Figure 6.3 is face 2 (and
not face 1 whose frontier contains both R edges of the par link connected to the cut
link). As a conquence, the proof structure is not a proof net, since its conclusion is
on the internal face 1 .
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6.4.8 Basic Properties of Graphs and Proof Nets

This section covers some basic properties of graphs and proof nets. Notably, it
shows that, under certain conditions we can replace the acyclicity and connectedness
condition of Danos and Regnier (1989) by either an acyclicity condition or a con-
nectedness condition, using some basic properties of acyclic and connected graphs
(Bondy and Murty, 1976; Diestel, 2010). Though people have been aware of many
of these properties for a long time (eg. J. van de Wiele (1991, p.c.)), it is actually
rather hard to find in print, though Guerrini (2011) gives a clear presentation of many
of the results of this section and Morrill and Fadda (2008) independently prove that
acyclicity implies connectedness (part of Corollary 6.56 in this section).

In this section, we will often say that a prenet Π is acyclic or connected, in the
sense of Danos and Regnier (Definition 6.26) to indicate that all correction graphs
of Π are acyclic or connected.

Definition 6.47. Let G be a graph. We will use v to denote the number of its vertices
and e to denote the number of its edges.

Proposition 6.48. If G is acyclic and connected, then e = v− 1.

Proof. By induction on v. If v = 1 then e = 0, which is the only acyclic connected
graph with a single vertex.

Suppose v > 1, then G contains at least one edge m and since G is acyclic G−m
has two components G1 and G2 which are acyclic and connected and which have less
than v vertices. By induction hypothesis e1 = v1− 1 and e2 = v2− 1 and therefore,
since e = e1 + e2 + 1, we have e = (v1− 1)+ (v2− 1)+ 1 = v1 + v2− 1 and since
v = v1 + v2, we have e = v− 1 as required. ��
Proposition 6.49. If G is a graph such that e = v− 1 then G is acyclic iff G is
connected.

Proof. If G is acyclic, then it consists of a number of connected components n, each
of which, being acyclic and connected, satisfies ei = vi− 1 for 1≤ i≤ n, according
to Proposition 6.48. Therefore, for the complete graph we have e = v− n, where n
is the number of components. Since e = v− 1 by assumption, there is only a single
connected component and therefore G is connected.

If G is connected then let G′ be an acyclic, connected subgraph of G which con-
tains all vertices of G (that is, a spanning tree: to obtain G′, we delete the necessary
number of edges from G to obtain an acyclic, connected graph). Since G′ is acyclic
and connected, according to Proposition 6.48 it has v− 1 edges. But since G has
v− 1 edges by assumption, G is equal to G′ and therefore acyclic. ��
Definition 6.50. Let Π be a (cut-free) prenet. We will use c to denote its number of
conclusions, p to denote its number of par links, t to denote its number of tensor
links and a to denote its number of axiom links.
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The following proposition, relating the number of tensor links, par links and con-
clusions of a proof net is also rather easy to show (Exercise 7.4 asks you to prove
this proposition yourself). It was first noticed by in the early nineties and appears in
Fleury (1996).

Proposition 6.51. If Π is a proof net, then c+ p = t + 2.

Proposition 6.52. If a prenet Π is polarized and has a single positive conclusion,
then c+ p = t + 2 = a+ 1.

Proof. When we look at the construction of a prenet from the axioms down, we see
that a prenet with a axioms, without any tensor and par links, has a positive/output
conclusions and a negative/input conclusions. If Π has a single positive conclusion,
then it has c− 1 negative conclusions.

• For each par link we add, we take two (possibly disconnected) conclusions of
the prenet as its premises and introduce a new conclusion, increasing the number
of par links by one, keeping the number of positive conclusions constant, but
reducing the total number of negative conclusions by one — a polarized par link
has either two negative premises and a negative conclusion or a positive and a
negative premise and a positive conclusion.

• For each tensor link we add to the structure, on the other hand, we keep the
number of negative conclusions constant, but reduce the total number of pos-
itive conclusions — a polarized tensor link has either two positive premises
and a positive conclusion or a positive and a negative premise and a negative
conclusion.

Therefore, the only way to obtain a prenet with c− 1 negative conclusions is for
the prenet to have a− (c− 1) par links and the only way to obtain a prenet with
one positive conclusion is for the prenet to have a−1 tensor links. Therefore, every
polarized prenet with a single output conclusion has t = a−1, p= a−(c−1), which
gives c+ p = t + 2 = a+ 1. ��
Proposition 6.53. If Π is a prenet, then every correction graph G of Π has 2a+
p+ t vertices and a+ p+ 2t edges.

Proof. Since each vertex is the conclusion of exactly one link, we can simply count
the conclusions of the links in the proof nets: two for each axiom link and one for
each tensor and par link. For the edges, each correction graph replaces a tensor link
by two edges and a par link by a single edge (the axiom links stay single edges). ��
Propositions 6.54 and 6.55 follow the simple and elegant proofs of Guerrini (2011).

In Proposition 6.52, we have seen that a = t + 1 held for polarized prenets with
a unique positive conclusion. The next proposition shows that a = t + 1 holds in
general for proof nets.
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Proposition 6.54. If Π is a proof net (not necessarily polarized) then a = t + 1.

Proof. Since Π is a proof net, all its correction graphs are acyclic and connected.
Therefore, according to Proposition 6.48, e = v− 1. By Proposition 6.53 all cor-
rection graphs of Π have v = 2a+ p+ t and e = a+ p+ 2t giving a+ p+ 2t =
2a+ p+ t− 1, which simplifies to a = t + 1. ��
We can now show that for any prenet Π such that a = t + 1, it suffices to check
either acyclicity or connectedness to determine whether or not Π is a proof net:
in other words a prenet with a cycle (and satisfying a = t + 1) will necessarily be
disconnected and a disconnected prenet satisfying a = t +1 will necessarily contain
a cycle.

Proposition 6.55. Let Π be a prenet with a = t +1, Π is a proof net iff Π is acyclic
and Π is a proof net iff Π is connected.

Proof. If Π is a proof net, then a = t + 1 by Proposition 6.54 and all correction
graphs are both acyclic and connected by Definition 6.26.

For the other direction, suppose Π is a prenet such that a = t + 1, then, by the
same reasoning as used for the proof of Proposition 6.54, e= v−1, which, according
to Proposition 6.49 means that acyclicity implies connectedness and vice versa. ��
By the preceding propositions, we can do even better in the intuitionistic case, where
all formulas are polarized and there is a conclusion of output polarity. In this case
a = t + 1 is satisfied by Proposition 6.52.

Corollary 6.56. If Π is polarized prenet with a single output conclusion then Π is
a proof net iff Π is acyclic and Π is a proof net iff Π is connected.

Proof. Immediate from Proposition 6.52 and Proposition 6.55 ��

6.5 Parsing as Proof Net Construction

Assume we want to analyze the noun phrase ‘un exemple très simple’, according to
the lexicon provided in Example 6.4. We need a proof in L of

np /n,n,(n \ n)/(n \ n),n \ n � np

Because of Proposition 6.42 this amounts to construct a Lambek proof net without
empty antecedent with conclusions:

� n⊥⊗n;(n⊥℘n)⊗ (n⊥⊗n);n⊥;n⊗np⊥;np �

— these ”linear types” are automatically computed as we did in Example 6.1, and
the order is inverted (see Proposition 6.9). So the lexicon automatically provides the
R&B subformula trees of the proof net shown in Figure 6.4.
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Fig. 6.4. Subformula trees of “un exemple très simple”

What is missing to obtain a proof net is σΠ , the axiom links between the
occurrences

n⊥1 ,n2,n
⊥
3 ,n4,n

⊥
5 ,n6n⊥7 ,n8,np⊥9 ,np10

They should be placed in such a way that the conditions ØÆ, SAT, INTUI, NC, ε -
FREE are met. Of course, INTUI is automatically satisfied since all conclusions be-
long to (Lp)⊥ and one (S) is in Lp

Because axioms link dual formulae there must be an axiom (np⊥9 ,np10). One
should then link the n and the n⊥, and this makes 24 possibilities. However, thanks
to the constraints expressed by ØÆ, SAT, NC and ε -FREE we almost have no choice:

(n4,n⊥5 ) �∈ σΠ — ØÆ, æ cycle with the Times link (n⊥3 ℘n4)⊗ (n⊥5 ⊗n6).
(n⊥5 ,n6) �∈ σΠ — ØÆ, æ cycle with the Times link between these two atoms.
(n⊥3 ,n4) �∈ σΠ — ε -FREE, sub-prenet with a single conclusion.
(n4,n⊥7 ) �∈ σΠ — NC this would force (n⊥5 ,n

6), which was shown to be impossible.
(n⊥1 ,n4) ∈ σΠ — only possible choice for n4.
(n2,n⊥3 ) ∈ σΠ — NC, because of the previous line.
(n⊥7 ,n8) �∈ σΠ — SAT, yields a disconnected prenet, since we already have

(np⊥9 ,np10) ∈ σΠ .
(n⊥5 ,n8),(n6,n⊥7 ) ∈ σΠ — only possible choice for these atoms, according to the

above decisions.

Hence the only possible solution is the 2-permutation σΠ given in the example 6.31:
(n⊥1 ,n4),(n2,n⊥3 ),(n

⊥
5 ,n8),(n6,n⊥7 ),(np⊥9 ,np10). It corresponds to the prenet 6.22.

Remark that though we have shown in Corollary 6.56 that it suffices to check
either connectedness or acyclicity, enforcing the two conditions together allows us
to disqualify more invalid axiom links directly (see (Moot, 2007) for discussion).

Next, one has to check that the result is a Lambek proof net, without empty an-
tecedent, and this is straightforward and quick. It corresponds to the sequent calculus
proofs given in examples 6.5 and 6.6. The identification of various sequent calculus
proofs into a single proof net leads to less possibilities when constructing the proof.
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A natural question is the algorithmic complexity of this parsing algorithm. For
the less constrained calculus MLL (only satisfying ØÆ and SAT) it is known to be
NP complete (Lincoln et al, 1992), but the notion of splitting Times leads to efficient
heuristics using the fact that there never can be any axiom link between the two sides
of a Times link (de Groote, 1995). This considerably reduces the search space. The
intuitionistic restriction does not lead to any improvement.

For the non commutative calculi, and in particular for the Lambek calculus, the
order constraint NC is so restrictive that one might be tempted to think that the
complexity is polynomial. However, a recent paper of Mati Pentus (Pentus, 2006)
shows that the Lambek calculus with product is NP complete as well, with the help
of a variation of the proof nets studied in this chapter. In addition, Yuri Savateev
(Savateev, 2009) has shown that NP completeness holds even for the Lambek cal-
culus without product.

Interesting work has been done on using dynamic programming techniques for
finding proof nets for the Lambek calculus. De Groote (1999) — who improves the
tabulation techniques introduced in (Morrill, 1996) — uses dynamic programming
for the placement of axiom links, defining them by a context-free grammar. Given
the results by Pentus and Savateev cited above, these strategies evidently do not give
polynomial algorithms, but they may be extended to find interesting polynomial
fragments of the Lambek calculus.

We’ll have more to say about parsing using proof nets in Section 7.2 in the
next chapter, where we talk about parsing categorial grammars using multimodal
proof nets.

6.6 Proof Nets and Human Processing

Starting with a study by Johnson (Johnson, 1998) for center embedded relatives and
then improved and extended by Morrill (Morrill, 2000, 2011), proof nets happen
to be interesting parse structure not only from a mathematical viewpoint, but also
from a linguistic viewpoint. Indeed they are able to address various performance
questions like garden paths, center embedding unacceptability, preference for lower
attachment, and heavy noun phrase shift, that can be observed when we use proof
net construction as a way to parse sentences.

We follow Morrill (Morrill, 2000) and consider the following examples:

Garden path sentences

1(a) The horse raced past the barn.
1(b) ?The horse raced past the barn fell.

2(a) The boat floated down the river.
2(b) ?The boat floated down the river sank.

3(a) The dog that knew the cat disappeared.
3(b) ?The dog that knew the cat disappeared was rescued.
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The (b) sentences are correct but seem incorrect. Indeed there is a natural tendency
to interpret the first part of the (b) sentences as their (a) counterparts. Hence the
correct, alternative analysis, which is a paraphrase of “The horse which was raced
past the barn fell” is difficult to obtain.

Quantifier-scope ambiguity

Here are some examples of quantifier-scope ambiguity, with the preferred reading:

I(a) Someone loves everyone. ∃∀
I(b) Everyone is loved by someone. ∀∃

II(a) Everyone loves someone. ∀∃
II(b) Someone is loved by everyone. ∃∀

So in fact the preference goes for the first quantifier having the wider scope.

Embedded relative clauses.

III(a) The dog that chased the rat barked.
III(b) The dog that chased the cat that saw the rat barked.
III(c) The dog that chased the cat that saw the rat that ate the cheese barked.

IV(a) The cheese that the rat ate stank.
IV(b) ? The cheese that the rat that the cat saw ate stank.
IV(c) ?? The cheese that the rat that the cat that the dog chased saw ate stank.

V(a) That two plus two equals four surprised Jack.
V(b) ?That that two plus two equals four surprised Jack astonished Ingrid.
V(c) ??That that that two plus two equals four surprised Jack astonished Ingrid

bothered Frank.

VI(a) Jack was surprised that two plus two equals four.
VI(b) Ingrid was astonished that Jack was surprised that two plus two equals four.
VI(c) Frank was bothered that Ingrid was astonished that Jack was surprised that

two plus two equals four.

In his paper (Morrill, 2000) Morrill provides an account of our processing prefer-
ences, based on our preference for a lower complexity profile. Given an analysis in
Lambek calculus of a sentence depicted by a proof net, we have conclusions corre-
sponding to the syntactic types of the words, and a single conclusion corresponding
to S. All these conclusions are cyclically ordered. This cyclic order is easily turned
into a linear order by choosing a conclusion and a rotation sense. Let us take the
output conclusion S as the first conclusion, and let us choose the clockwise rotation
with respect to the proof nets of the previous sections. According to the way proof
nets are drawn we thus are moving from right to left, and we successively meet S,
the type of the first word, the type of the second word, etc.
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Now let us define the complexity of a place in between two words wn and wn+1

(w0 being a fake word corresponding to S) as the number of axioms a− a⊥ which
pass over this place, and such that the a belongs to a conclusion which is, in the
linear order, before the conclusion containing a⊥.

Observe that this measure relies on the fact that Lambek calculus is an intuition-
istic or polarized calculus in which a and a⊥ are of a different nature: indeed waiting
for a category is not the same as providing a category. This measure also depends
on the fact that we chose the output S to be the first conclusion: this corresponds to
the fact that when someone starts speaking we are expecting a sentence (it could be
another category as well, but we still expect some well-formed utterance).

Now we can associate to a sentence with n words a sequence of n integers (since
S has been added there are n places) called its complexity profile.

In all examples above, the preferred reading always has the lower profile (that is
a profile which is always lower, or at least does not go as high) and sentences that
are difficult to parse have a high profile.

Here we only present one example, in Figures 6.5 and 6.6, as the others provide
excellent exercises (and drawing proof nets on the computer is painful).

word type u u⊥ for constructing the proof net
someone (subject) S / (np \ S) (np⊥℘S)⊗S⊥

(object) (S /np)\ S S⊥⊗ (S℘np⊥)
everyone (subject) S / (np \ S) (np⊥℘S)⊗S⊥

(object) (S /np)\ S S⊥⊗ (S℘np⊥)
loves: (np \ S)/np np⊗(S⊥⊗np)

To complete the example, one should compute the semantics according to the
algorithm given in Chapter 3.

6.7 Semantic Uses of Proof Nets

Once one is convinced of the relevance of proof nets for parsing, it is worth looking
at what else can be achieved with proof nets, in order to avoid translating from
one formalism into another, which can be unpleasant and algorithmically costly. A
major advantage of categorial grammars is their relation to Montague semantics, and
this link has been explored by many authors (Chapter 3 and the references therein
provide an introduction to the subject).

As intuitionistic logic can be embedded into linear logic (Girard, 1987) the al-
gorithm for computing semantic readings can be performed within linear logic. In-
deed λ -terms can be depicted as proof nets, and β -reduction (or cut-elimination)
for proof nets is extremely efficient. In particular the translation can limit the use of
replication to its strict minimum. This has been explored by de Groote and Retoré
(1996).
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reading direction: right to left

someoneeveryone loves

someone loves everyone ∃∀

Snp⊥npS⊥

⊗
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℘ ℘

Fig. 6.5. “Someone loves everyone” with wide scope for someone. The complexity profile —
read from right to left — is 1−1−2.

np
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122

reading direction: right to left
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⊗⊗ ⊗

℘ ℘

Fig. 6.6. “Someone loves everyone” with wide scope for everyone. The complexity profile
— read from right to left — is 1−2−2.

The correspondence between syntax and semantics with proof nets has been used
for generation, firstly by Merenciano and Morrill (Merenciano and Morrill, 1996).
Assuming that the semantics of a sentence is known, as well as the semantics of
the words, the problem is to reconstruct a syntactic analysis out of this information.
This mainly consists of reversing the process involved in the previous paragraph,
which is essentially cut elimination. Using a representation of cut elimination by
matrix computations (graphs can be viewed as matrices) Pogodalla has thus defined
an efficient method for generation (Pogodalla, 2000c,a,b).
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6.8 Concluding Remarks

This chapter has given a detailed treatment of proof nets for the associative Lambek
calculus that have been discussed in Chapter 2. A central thesis has been that proof
nets are not only interesting from a formal point of view, but also from the point
of view of the nature of a parse. Indeed, proof nets identify proofs representing the
same analysis thus avoiding the so-called spurious ambiguity problem. Therefore
proof nets can be said to implement the very idea of parsing-as-deduction.

We have also touched upon several other aspects of proof nets: its connection to
semantics and some suggestive evidence about proof net construction as a model for
human sentence processing.

The proof nets presented here naturally suggest a further radicalisation: a for-
mula can be depicted as a set of Red edges between its atoms, and the Blue edges
are the atoms and a simple correctness criterion, ”every alternate elementary cycle
contains a chord”, recognises exactly the proofs (Retoré, 2003). This way, the alge-
braic properties of the connectives, like associativity are interpreted by equality of
the formulae, hence identifying even more proofs than usual proofnets with links.
This was firstly done for commutative multiplicative linear logic, but it also works
for non commutative logic like the Lambek calculus (Pogodalla and Retoré, 2004).
In this setting as well, the cuts are a bit tricky to handle, and this is ongoing work.
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Exercises for Chapter 6

Exercise 6.1. Using proof nets, show whether or not the following sequents are
derivable in multiplicative linear logic.

� (a⊗ b)⊗ c,(c⊥℘b⊥)℘a⊥
� (a℘b)⊗ c,(c⊥℘b⊥)⊗ a⊥
� c⊥,((a℘a⊥)⊗b)⊗d⊥,b⊥℘(c⊗d)

Exercise 6.2. Section 6.1.3 defines a translation of Lambek calculus formulae into
linear logic formulae using polarities. For all of the following formulae F , give both
the translation +F and −F .

(np \ S)/np
(n \ n)/ (S /np)
S / (np \ S)
(S / np)\ S
((np \ S)/np)\ (np \ S)

Exercise 6.3. Proposition 6.2 on page 196 defines the sets of formulae Li◦ and Li•.
For each of the following formulae, show if they are members Li◦, members of Li•

or if they are not a member of either set of formulae.

(a⊗ b)℘c⊥
(a⊥℘b)℘c⊥
a⊥℘(b⊥℘c)
a⊗ (b⊥℘c)
a⊗ (b⊥⊗ c)

Exercise 6.4. Using Lambek calculus proof nets (refer to Definition 6.41 on
page 220), show which of the following sequents are derivable.

np � S / (np \ S)
S / (np \ S) � np
np,(np \ S)/np,np � S
np,(np \ S)/np,S / (np \ S)� S
np,(np \ S)/np,(S /np)\ S � S
S / (np \ S),(np \ S)/np,((np \ S)/np)\ (np \ S)� S

That is, translate each formula in the corresponding linear logic formula, compute
the possible axiom linking σΠ and verify that all conditions of Definition 6.41,
including ε -FREE, are satisfied.

Exercise 6.5. Look back to Figure 6.3 on page 224.

1. Verify it is a proof structure of � (b⊥℘b)⊗ (a⊥℘a) by assigning formulas to
each node in the proof structure.

2. Remove the cut link from the figure and compute the sequents corresponding to
the two substructures. Are both of these structures derivable?
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3. Perform cut elimination on the proof structure of Figure 6.3. Can you remark
anything special about the result of cut elimination? If so, what does this mean?

4. Draw the proof structure in such a way the the external face is on the outside of
the proof structure. What — if anything — is different about this proof struc-
ture?

5. Give a correct (planar) proof structure for � (b⊥℘b)⊗ (a⊥℘a) and verify it
satisfies all constraints.

Exercise 6.6. Following Johnson and Morrill (Johnson, 1998; Morrill, 2000, 2011),
Section 6.6 states that the acceptability of sentences is related the “nesting” of axiom
links to the (Figures 6.5 and 6.6, page 232 gives an example comparison). Compute
a similar complexity profile for each of the other phenomena discussed at the be-
ginning of Section 6.6, by assigning each of them appropriate lexical formulas and
constructing the proof nets.
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Fleury, A., Retoré, C.: The mix rule. Mathematical Structures in Computer Science 4(2),

273–285 (1994)
Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)
Girard, J.Y.: Linear logic: its syntax and semantics. In: Girard, et al., pp. 1–42 (1995)
Girard, J.Y., Lafont, Y., Regnier, L. (eds.): Advances in Linear Logic. London Mathematical

Society Lecture Notes, vol. 222. Cambridge University Press (1995)
de Groote, P.: Linear Logic with Isabelle: Pruning the Proof Search Tree. In: Baumgartner, P.,
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Pogodalla, S., Retoré, C.: Handsome non-commutative proof-nets: perfect matchings, series-
parallel orders and hamiltonian circuits. Tech. Rep. RR-5409, INRIA, presented at Cate-
gorial Grammars (2004); to appear in the Journal of Applied Logic

Regnier, L.: Lambda calcul et réseaux. Thèse de doctorat, spécialité mathématiques, Univer-
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Retoré, C.: Calcul de Lambek et logique linéaire. Traitement Automatique des Langues 37(2),
39–70 (1996)
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