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A Logic for Categorial Grammars:
Lambek’s Syntactic Calculus

Summary. Our second chapter is a rather complete study of the Lambek calculus, which
enables a completely logical treatment of categorial grammar.

We first present its syntax in full detail, both with sequent calculus and natural deduction,
and explain the relationship between these two presentations. Then we turn our attention to
the normal forms for such proofs. Normalization and its dual namely interpolation are not
only pleasant mathematical properties; they also are key properties for the correspondence
between Lambek grammars and more familiar phrase structure grammars; we give a detailed
proof of the theorem of Pentus establishing the weak equivalence between context-free gram-
mars and Lambek grammars.

In addition, we prove completeness for the Lambek calculus with respect to linguistically
natural models: in these models categories are interpreted as subsets of a free monoid (eg. as
strings of words or lexical items). Providing such a simple and natural interpretation provides
another strong justification for the categorial approach.

2.1 Lambek’s Syntactic Calculus and Lambek Grammars

We now turn our attention to the Lambek calculus (L) and Lambek grammars (LCG)
which were introduced in the seminal paper (Lambek, 1958): we strongly recom-
mend this paper to the reader.

The limitations of AB grammars, and the endless quest for new rules (composi-
tion, type raising, Geach laws, etc.) is a way to explain the interest of the Lambek
calculus. Another is to place AB-grammar into a richer and more natural mathemat-
ical formalism.

A controversial but more interesting justification is the following: syntax is
driven by resource consumption, which is neatly handled by resource conscious
logics — the Lambek calculus being the first such logic. This viewpoint is not
that far from Chomsky’s minimalist program (Chomsky, 1995) as discussed in
(Retoré and Stabler, 2004).

Lambek (categorial) grammars — or LCGs — are defined in a way very simi-
lar to AB grammars. A lexicon Lex provides each word with one or several types,
constructed from the usual primitive types P= {S,np,n, pp, . . .}— sentences, noun
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phrases, nouns, prepositional phrases... Types are more or less the same as the ones
of AB grammars: the only difference is that Lambek types allow for a (non commu-
tative) product or conjunction denoted by •:

Lp ::= P | (Lp\Lp) | (Lp/Lp) | (Lp •Lp)

When introducing AB grammars, we already explained the intuitive meaning of
A\B and B/A: an expression is of type A\B (resp. B/A) when it is looking for an
expression of type A on its left (resp. right) to form a compound expression of type
B. An expression of type A followed by an expression B is of type A •B, and product
is related to \ and / by the following relations:

A\ (B\X) = (B •A)\X (X /A)/B = X / (B •A)

These relations look like currying, but beware of the order, which is required by the
behavior of \ and /: in the left equation both types require a sequence ab on their
left, and in the second equation both types require a sequence ba on their right (with
a,b of respective types A,B).

Recall that for AB grammars a sequence of words w1 · · ·wn, is of type u whenever
there exists for each wi a type ti in Lex(wi) such that t1 · · · tn−→ u with the following
reduction patterns:

∀u,v ∈ Lp
u (u \ v)−→ v (\e)

(v/u) u−→ v (/e)

Here the logical aspect of these rules — they look like modus ponens — will be
emphasized by adding other rules, so that \ and / will really be implications (and
• will be their associated conjunction). Accordingly −→ will be written �, and our
first objective is to define this logical calculus: for the time being we only know the
modus ponens of the non commutative implications \ and /. Therefore we simply
replace−→with � to obtain the following definition: a sequence of words (or termi-
nals) w1 · · ·wn is of type u whenever there exists for each wi a type ti in Lex(wi) such
that t1 · · · tn � u, where � is the deductive relation of the Lambek calculus which is
defined in the next two sections. The generated language or the set of correct sen-
tences is the set of sequences of type S.

2.2 Natural Deduction for the Lambek Calculus

To the best of our knowledge, natural deduction for Lambek has mainly been studied
by van Benthem (van Benthem, 1991), one of the first papers being (van Benthem,
1987).

2.2.1 In Prawitz Style

The simplest way to define product the free Lambek calculus is probably natural
deduction in a tree-like setting as shown below (we will have more to say about the
requirement that the \i and /i rules require at least two free hypotheses in Section 2.5).
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this rule requires at least two free hyp.

A leftmost free hyp.
. . . [A] . . . . . .

···
B \i binding A

A\B

Δ···
A

Γ···
A\B \e
B

this rule requires at least two free hyp.

A rightmost free hyp.
. . . . . . [A] . . .

···
B

/i binding A
B/A

Γ···
B/A

Δ···
A
/e

B

These deductions clearly extend the derivation trees of AB grammars. AB simplifi-
cation or elimination rules are two of the rules of the system, the rules \e and /e; the
other two being the corresponding introduction rules. The fact that these rules are
special cases of the rules for intuitionistic logic confirms that the fraction symbols
\ and / can be viewed as implications.

It should be observed that as opposed to natural deduction for intuitionistic logic,
there is no need to specify which hypothesis A is cancelled by an /i or \i introduction
rule. Indeed in the first case it is the leftmost free hypothesis, and in the second
case it is the rightmost free hypothesis. As a consequence the formal structure of a
deduction is a plain (binary/unary) tree with leaves labeled with formulae and with
nodes labelled by rules: binary nodes are labelled with either /e or \e and unary
nodes with either /i or \i. Such a plain tree is enough to reconstruct the deduction,
i.e. which hypothesis are free or not and which hypothesis is cancelled by which
rule. This remark is the basis of the study of Tiede (2001); we can see the parse
structures or proofs of a Lambek grammar as natural deduction trees, and study
these trees as tree languages (Gécseg and Steinby, 1997).

Product

Lambek calculus admits a product which is related to the implications by the usual
currying rules given above (or, alternatively, by the residuation rules discussed in
Section 2.9.1). The product is often skipped in the natural deduction presentation of
the Lambek calculus. There is no need to do so, but it is true that these rules are less
natural, because of the order on hypotheses: Δ should occur in the place previously
occupied by the cancelled (consecutive) A and B hypotheses of the rule.



26 2 Lambek’s Syntactic Calculus

Δ···
A

Γ···
B
•i

A •B

Δ···
A •B

no free hyp. between A and B

. . . [A]α [B]α . . .
···
C
•e(α) binding A and B

C

The main problem is that in order to apply the product elimination rule there should
be no free hypothesis in between the two cancelled assumptions, A and B, and that
the order of the premises after the rule is no longer the left-to-right order, but rather
has the formulas Δ occurring at the place of the eliminated A and B formulas. An-
other problem is that, as we shall see, proof-normalization or rather the subformula
property is more problematic with the product.

Also observe that there can be several consecutive free A and B hypotheses, so
that a labeling (the label α in the rule above) is needed to link specific occurrences of
cancelled hypotheses to the instance of the •e rule: natural deductions are no longer
plain trees.

Natural deduction rules of this form were first introduced by Abramsky (1993)
for multiplicative linear logic, but in this commutative case the problem of the order
of hypotheses disappears.

Example 2.1. As an example in Prawitz Style natural deduction, we give a proof of
“Kevin talks to himself” below.

Kevin
Lex

np

talks
Lex

(np \ S)/ pp

to
Lex

pp /np [np]
/e

pp
/e

np \ S
/i

(np \ S)/np

himself
Lex

((np \ S)/np)\ (np \ S) \e
np \ S \e

S

As already discussed in Example 1.1, the Lex rule used in the proof above is simply
an indication that the conclusion formula F of the rule is an element of Lex(w) for
the premise w; that is, F is a formula that the lexicon Lex assigns to the word w.

The type for “himself” is assigned a category which selects a transitive verb to
its left to produce an intransitive verb (as we will see in Example 3.2 in the next
chapter, there are good semantic reasons for this type assignment).

Seen from the lexical types, the introduction of the np hypothesis is the only
step which may not be immediately obvious: it is the type assigned to “himself”,
which, having a verb phrase (np \ S) missing an np as its argument, introduces an
np hypothesis. Section 2.6.2 will give a proof search algorithm for (product-free)
natural deduction.
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Exercises 2.2, 2.6, 2.8 and 2.9 at the end of this chapter will help you get familiar
with finding natural deduction proofs for Lambek grammars.

2.2.2 In Gentzen Style

It is sometimes convenient to give a Gentzen style presentation of natural deduc-
tion, which specifies at each node what the free hypotheses are; this formulation is
possibly clearer, in particular when formulating the rules for the product formulae.
Figure 2.1 lists the rules in the calculus.

Γ � A Δ � A\B
\e

Γ ,Δ � B

A,Γ � C
\i Γ �= ε

Γ � A\C

Δ � B/A Γ � A
/e

Δ ,Γ � B

Γ ,A � C
/i Γ �= ε

Γ � C /A

Δ � A •B Γ ,A,B,Γ ′ � C
•e

Γ ,Δ ,Γ ′ � C

Δ � A Γ � B
•i

Δ ,Γ � A •B

axiom
A � A

Fig. 2.1. Gentzen style natural deduction rules for the Lambek calculus

Nevertheless this presentation defines exactly the same logical calculus as the
natural deduction rules in tree-like format given above: the proofs of the two systems
are isomorphic.

A small note about the notation used in the calculus: the statements of the calcu-
lus are expressions of the form A1, . . . ,An � C (sequents), with a comma-separated
list of formulae (the antecedent, or the hypotheses of the statement) on the left hand
side of the turnstile and a single formula on the right hand side (the succedent or the
conclusion of the statement). Variables Γ ,Δ , . . . range over (possibly empty) lists
of formulae which we will call contexts, so we can write a sequent as Γ � C, or a
sequent containing a formula A as Γ ,A,Δ � C.

We will call the sequents above the horizontal line of a rule its premises and the
single sequent below the horizontal line its conclusion. When given a proof, we will
call the conclusion of the last rule the end-sequent.

Although we use sequents, this calculus is by no means a sequent calculus: there
are no left rules, no cut rule, and the notion of normal proof (for having the subfor-
mula property) is completely different — as we will see in Sections 2.6 and 2.7.



28 2 Lambek’s Syntactic Calculus

Example 2.2 (Our Italian Lexicon Revisited)
Here we take up again our small example of an Italian lexicon:

Word Type(s)
cosa (S / (S /np))

guarda (S / inf)
passare (inf/np)

il (np /n)
treno n

Remember that the sentence ‘Cosa guarda passare’ could not be analyzed in AB
grammars, because the transitivity of / was not a rule of AB grammars. Let us show
that it can be analyzed with the Lambek calculus (we use Natural Deduction in
Gentzen style):

(S / (S /np)) � (S / (S /np))

(S / inf) � (S / inf)

(inf/np) � (inf/np) np � np
/e

(inf/np),np � inf
/e

(S / inf),(inf/np),np � S
/i

(S / inf),(inf/np) � S /np
/e

(S / (S /np)),(S / inf),(inf/np) � S

This example relies on composition for /, which is not provable in AB grammars.
Composition is established by first hypothesizing an np which is then abstracted
by an introduction rule: to make a comparison with Chomsky’s theories (Chomsky,
1957, 1995) this hypothetical np corresponds to a trace and the introduction rule to
movement.

In the Lambek calculus, we can construct sentences with object relatives such
as whom/that having the type (n \ n) / (S / np) — which could not be done in AB
grammars, as shown in Section 1.5 — and without a need to assign np \ (S / np)
to transitive verbs. Indeed, we can derive np \ (S /np) from the “normal” transitive
verb type (np \ S) / np, since we can rearrange brackets in the Lambek calculus:
(a \ b) / c � a \ (b / c), etc. This treatment of peripheral extraction is one of the
attractive features of the Lambek calculus. Exercise 2.7 asks you to give proofs of
more complicated cases of extraction.

Finally it is easily verified that one has x � (z / x) \ z and x � z / (x \ z) for all
categories x and z. As we will see in the next chapter, this is interesting from a
semantic viewpoint: an np (an individual) can be viewed as a (S/np)\S or S/(np\
S) (a function form one-place predicates to truth values, that is the set of all the
properties of this individual).

2.3 Sequent Calculus

Figure 2.2 shows the rules of the Lambek calculus in Sequent Calculus, as given in the
original paper (Lambek, 1958). Although it also handles expressions A1, . . . ,An � C,
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Γ ,B,Γ ′ � C Δ � A
\h

Γ ,Δ ,A\B,Γ ′ � C

A,Γ � C
\i Γ �= ε

Γ � A\C

Γ ,B,Γ ′ � C Δ � A
/h

Γ ,B/A,Δ ,Γ ′ � C

Γ ,A � C
/i Γ �= ε

Γ � C /A

Γ ,A,B,Γ ′ � C
•h

Γ ,A •B,Γ ′ � C

Δ � A Γ � B
•i

Δ ,Γ � A •B

Γ � A Δ1,A,Δ2 � B
cut

Δ1,Γ ,Δ2 � B
axiom

A � A

Fig. 2.2. Sequent calculus rule for the Lambek calculus

let us insist that it is different from Natural Deduction in sequent style given above:
for instance the modus ponens or elimination rules of AB grammars are not rules
of this system (they are just derivable) and the notion of a normal proof is rather
different (though (Girard et al, 1988) rightly remark there is a “moral equivalence”
between the two).

A note on the names of the rules: we will use rule name \h, /h and •h (for \, /
and • used as a hypothesis) and \i, /i, •i (for the introduction rules for \, / and •)
instead of the frequently used L\, L/ and L• (for the connectives on the left-hand
side of the turnstile) and R\, R/ and R• (for the connectives on the right-hand side
of the turnstile). Our notation emphasizes that fact that the \i rule is shared between
the sequent calculus and natural deduction, and that the difference between sequent
calculus and natural deduction is whether we add the \e, /e and •e rules — as we
do for natural deduction — or the \h, /h and •h rules — as we do for the sequent
calculus.

For a sequent calculus rule (or an instantiation of a rule as we find in an actual
proof) it is normal to talk about the main formula of the rules for the logical con-
nectives: the main formula is the formula with the connective introduced by the rule
as its main connective; so the main formula of the •h and •i rule is the formula A •B.
We will call its direct subformulae, that is the formulae A and B, the active formulae
of the rule (or the rule application).

Here is an obvious proposition (Exercise 2.3 at the end of this chapter asks you
to prove this yourself).

Proposition 2.3. Every axiom A� A can be derived from axioms p � p, with p being
a primitive type (and the proof does not use the cut rule).
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Definition 2.4 (Polarity). The polarity of an occurrence of a propositional variable
p in a formula is defined as usual:
• p is positive in p
• if p is positive in A, then

– p is positive in X •A, A •X, X \A, A/X
– p is negative in A\X, X /A

• if p is negative in A, then
– p is negative in X •A, A •X, X \A, A/X
– p is positive in A\X, X /A

The polarity of an occurrence of a propositional variable p in a sequent Γ � C is:

• if p is in C, the polarity of p in C
• if p is in a formula G of Γ , the opposite of the polarity of p in G.

Example 2.5. Polarity is an important notion, which will return in Chapter 6. In a
sequent

a /b,(a /b)\ (d / c) � (d / c)

a occurs positively in a /b but negatively in ((a /b)\ (d / c)

If a proof only uses atomic axioms (this is always possible, as said above) ie. p � p
with p a primitive type, then one can follow these two occurrences of p, one being
negative and the other positive and none of the rules changes the polarity of an
occurrence of a primitive type. The two occurrences of p either lead to a cut formula
(the formula which disappears from the conclusion of the cut rule) or to the end-
sequent. Now observe that the cut rule cancels a formula in positive position (on
the right) with the same formula in negative position (on the left), so that the same
number of positive and negative occurrences of p disappear. Consequently:

Proposition 2.6. Each propositional variable has exactly the same number of posi-
tive and negative occurrences in a provable sequent.

Some authors call Proposition 2.6 the count check or count invariant (van Benthem,
1986; Moortgat, 1988; Roorda, 1991) and it can be used to eliminate sequents which
fail to satisfy the condition of Proposition 2.6 at little computational cost.

Example 2.7. Here is an example of a proof in sequent calculus, corresponding to
the analysis of ‘Cosa guarda passare’ already given in natural deduction format in
Example 2.2. It is somewhat less natural, but has other advantages, like an easier
subformula property.

S � S

S � S inf � inf
/h

S / inf, inf � S np � np
/h

S / inf, inf/np,np � S
/i

S / inf, inf/np � S /np
/h

(S / (S /np)),S / inf, inf/np � S
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2.4 Equivalence of Sequent Calculus and Natural Deduction

As we will see, this equivalence is absolutely clear as far as provability is concerned.
In fact there is a correspondence for proofs as well, but it is not a straightforward
isomorphism (Girard et al, 1988).

As the introduction rules are common to both formalisms, we just need to mimic
elimination rules �e in sequent calculus and left rules �h in natural deduction (for
� ∈ {\,/,•}), and by induction on the height of the proofs the equivalence of both
formalisms follows. This section is an easy adaptation of the results in (Girard et al,
1988) for intuitionistic logic.

2.4.1 From Natural Deduction to Sequent Calculus

It is possible to do “better” than the translation we provide here; indeed, when the
natural deduction is normal, one can manage to obtain a cut-free proof, and this
better translation is implicitly used when one uses proof nets for λ -calculus see e.g.
(Girard, 1987; de Groote and Retoré, 1996)

Replace: with:

Δ � A Γ � A\B \e
Δ ,Γ � B Γ � A\B

Δ � A
ax

B � B \h
Δ ,A\B � B

cut
Δ ,Γ � B

Γ � B/A Δ � A
/eΓ ,Δ � B Γ � B/A

Δ � A
ax

B � B
/h

B/A,Δ � B
cut

Γ ,Δ � B

Γ � A •B Δ ,A,B,Θ � C
•e

Δ ,Γ ,Θ � C
Γ � A •B

Δ ,A,B,Θ � C
•h

Δ ,A •B,Θ � C
cut

Δ ,Γ ,Θ � C

2.4.2 From Sequent Calculus to Natural Deduction

By induction on the height of a sequent calculus proof, let us see that it can be turned
into a natural deduction. As above, we will not exhibit a translation from cut free
proofs to normal deductions, although it is possible.
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• If the proof consists in an axiom, its translation is obvious.
• If the proof ends with an introduction rule, \i, /i or •i by induction hypothesis

we have a deduction of the premise(s) and as these rules also exist in natural
deduction and the translation is obvious.

• If the proof ends with an \h rule:

··· γ
Γ ,B,Γ ′ � C

··· δ
Δ � A \h

Γ ,Δ ,A\B,Γ ′ � C

then by induction hypothesis we have two natural deduction proofs, γ∗ of
Γ ,B,Γ ′ � C and δ ∗ of Δ � A and a translation of the whole proof is:

Γ

Δ··· δ ∗

A A\B \e
B Γ ′··· γ∗

C
• If the proof ends with /h we proceed symmetrically.
• If the proof ends with •h:

··· γ
Γ ,A,B,Γ ′ � C

•h
Γ ,A •B,Γ ′ � C

by induction hypothesis we have a proof γ∗ of Γ ,A,B,Γ ′ � C and a translation
is the following:

A •B

Γ A B Γ ′··· γ∗

C
•e

C
• If the proof ends with a cut:

··· γ
Γ � X

··· δ
Δ ,X ,Δ ′ � C

cut
C

by induction hypothesis we have two natural deductions γ∗of Γ � X and δ ∗ of
Δ ,X ,Δ ′ � C and a translation is:

Γ··· γ∗

Δ X Δ ′··· δ ∗

C
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2.5 The Empty Sequence

In the formulation of the introduction rules, we have required that the antecedent
contains at least two formulae: therefore the antecedent is never empty after an
application of an introduction rule. By case inspection we see that this guarantees
that the antecedent of a sequent (the sequence on the left of �) never is empty in a
proof.

This is justified by the intended meaning of the connectives. Indeed by assigning
the type A \B to a word or an expression e, we mean that an expression a of type
A is required before e to obtain an expression ae of type B. This would fail without
the ”no empty sequence” requirement.

To explain this, let L1 be the calculus L without this restriction. Indeed, assume
A is a tautology of L1, i.e. �L1 A (*); now let Γ be a sequence of type A\B, that is
Γ �L1 A \B (**). Then from (*) and (**) we can infer by \e the sequent Γ �L1 B
without any sequence preceding Γ . This can actually happen in natural language;
indeed some expression, including all modifiers do have such a tautology type, like
X \X .

For instance, a natural type for English adjectives is n / n and thus very gets
the type (n / n) / (n / n): when applied to an adjective on its right, one obtains an
adjective phrase. Without the exclusion of the empty sequence, one is able to analyze
in L1 the expression “a very book” as a noun phrase: indeed the adjective following
very can be provided by the empty sequence, since n / n is derivable in L1. Let
us give the proof in L1 using Prawitz-style natural deduction (the rules Lex, with
premise w and conclusion formula A, are axioms indicating that A is in Lex(w)):

a
Lex

np /n

very
Lex

(n /n)/ (n /n)

[n]α
/i−α

n /n
/e

n /n

book
Lex

n
/e

n
/e

np

One may wonder why such a requirement was not needed for AB grammars. As
AB grammars contain only elimination rules, no hypotheses are cancelled during a
derivation, and since there are hypotheses at the beginning of every sub-analysis (the
types of the words in the analyzed sequence) there always is at least one hypothesis.

2.6 Normalization of Natural Deduction

This section is also an easy adaptation of similar results presented in (Girard et al,
1988). Throughout this section, we will mostly be concerned with the product free
case, a brief discussion about why normalization is more complicated in the pres-
ence of the product is found in Section 2.6.3.
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2.6.1 Normalization for the Product-Free Lambek Calculus

A natural deduction is said to be normal whenever it does not contain an introduction
rule followed by an elimination rule. There are two such possible configurations:

. . . . . . [A]α . . .··· δ ′

B
/i−α

B/A

Δ··· δ
A
/e

B

Δ··· δ
A

. . . [A]α . . . . . .··· δ ′

B \i−α
A\B \e

B

Remember that we call implication formulas B /A and A \B functors and the for-
mulas A their arguments.

Now, whenever such a configuration appears, it can be reduced as follows:

1. find the hypothesis A which has been cancelled in the proof δ ′ of B under some
hypotheses including A

2. replace this hypothesis with the proof δ of A

So the configurations above reduce to:

Δ··· δ
. . .A . . .··· δ ′

B

Δ··· δ
. . .A . . .··· δ ′

B

Proposition 2.8. Natural deduction for L without product enjoys strong normaliza-
tion, that is there are no infinite reduction sequences.

Proof. Observe that the size of the proof decreases in each reduction step. ��
The proof of strong normalization is so simple because each introduction rule binds
exactly one formula A and therefore we never copy nor delete the proof δ , ie. con-
traction and weakening are not valid in the Lambek calculus. In intuitionistic logic
— where the introduction rule for the implication can discharge any number of hy-
potheses of the formula A — strong normalization is valid as well, but the proof is
a bit more delicate (see Girard et al, 1988, Chapters 4 and 6 for details).

Proposition 2.9. Normalization is a locally confluent process. In other words, if a
proof d reduces, in one step, to two different proofs e and f then there exists a proof
g such the both e and f reduce, in some number of steps, to g.

Proof. If a proof d contains two redexes, they correspond to two elimination rules
e′ and e′′ between sub-proofs corresponding to a functor f ′ applied to an argument
a′ and to a functor f ′′ applied to an argument a′′. One of the following case applies:

• e′′ is in a′
• e′′ is in f ′
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• e′ is in a′′
• e′ is in f ′′
• e′ and e′′ can not be compared.

Assume we reduce e′. The redex e′′ which is not reduced possesses a unique trace
ē′′ in the reduced proof d′. Symmetrically if we reduce e′′ the redex e′ which is not
reduced possesses a unique trace ē” in d′′. If in d′ we reduce ē′′ we obtain a proof
d′′′ but if in d′′ we reduce ē′ we also obtain d′′′. ��
We will now show, by an easy induction on the proofs, that whenever a natural de-
duction is normal (that is without such configuration) each formula is a subformula
of a free hypothesis or of the conclusion. More precisely. In order to establish this,
let us introduce the notion of principal branch.

Let us call a principal branch leading to F a sequence H0, . . . ,Hn =F of formulae
of a natural deduction tree such that:

• H0 is a free hypothesis
• Hi is the principal premise — the one carrying the eliminated symbol — of an

elimination rule whose conclusion is Hi+1

• Hn is F

Proposition 2.10. Let d be a normal natural deduction (without product), then:

1. if d ends with an elimination then there is a principal branch leading to its
conclusion

2. each formula in d is the subformula of a free hypothesis or of the conclusion

Proof. By induction on d.

[axiom] If d is an axiom, (1) and (2) hold.
[\i introduction] (1) holds by vacuity. Assume d is made out of d′ by the intro-

duction \i rule: by induction hypothesis each formula in d′ is a subformula of
A,Γ (the free hypotheses under which B is proved) or a subformula of B; so
it is true that each formula in d is a subformula of Γ ,A \B, since A and B are
subformulae of A\B.

[\e elimination] Assume d is an elimination rule \e applied to:
• d′ with conclusion A and free hypotheses Γ
• d′′ with conclusion A\B and free hypotheses Δ
(1) Since d is normal the last rule of d′′ is an elimination: indeed, if it were an
introduction rule then it would be a \i introduction making a redex with the final
elimination in d. As d′′ ends with an elimination, by induction hypothesis, there
is a principal branch leading from H0 in Δ to A \B, so d contains a principal
branch leading to its conclusion B.
(2) By induction hypothesis
• all formulae in d′ are subformula of A or Γ (the free hypotheses under which

A is proved)
• all formulae in d′′ are subformulae of Δ ,A\B.
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Because of the principal branch of d′ leading to A \B, the conclusion A \B of
d′ is a subformula of some H0 in Δ . Thus each formulae in d is a subformula of
Γ ,Δ hence of Γ ,Δ ,B

[/i introduction] as \i introduction.
[/e elimination] as \e elimination ��

Here is a proposition of (Cohen, 1967) that we shall use to prove that every context-
free grammar is weakly equivalent to a Lambek grammar.

The order o(A) of a formula A is the number of alternating implications, defined
formally as follows.

Definition 2.11. The order of a formula A is defined as follows.

o(p) = 0 when p is an atomic type
o(A\B) = max(o(A)+ 1,o(B))
o(B/A) = max(o(A)+ 1,o(B))

Thus, the order of (np \ S)/np is 1, but the order of S / (np \ S) is two.

Proposition 2.12. A provable sequent A1, . . . ,An � p of the product free Lambek cal-
culus with o(Ai)≤ 1 and p a primitive type (and therefore of order zero) is provable
with \e and /e only — in other words AB derivations and L derivations coincide
when types are of order at most one.

Proof. If A1, . . . ,An � p is provable, then it has a normal proof. We claim that this
normal proof must contain only \e and /e. We proceed by contradiction, so we
assume that the normal deduction contains an introduction rule, and so there is a
lowest introduction rule — one without any introduction rule below.

Let us consider an arbitrary lowest introduction I.

• If the chosen lowest introduction I is an \i introduction leading from y to b \ y.
This introduction cannot be the last rule, because the conclusion is a primitive
type p. So this rule is followed by a an elimination rule E , and there are three
possibilities:
– If b \ y is the principal premise of the elimination rule E , then the rule E is

an \e elimination rule other premise b; we then have a redex I,E and this
conflicts with the deduction being normal.

– If b \ y is not the principal premise of the elimination rule E , then E is ei-
ther an \e elimination rule with principal premise being (b \ y) \ z or an /e
elimination rule with principal premise z / (b \ y). In both cases the prin-
cipal premise is of order at least two. This conflicts with d enjoying the
subformula property which is forced by d being normal (previous Proposi-
tion 2.10).

• If the chosen lowest introduction I is an /i rule, the argument is symmetrical.

Therefore there is no lowest introduction, hence no introduction at all. ��
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2.6.2 Decidability of Natural Deduction

We can use the principal branch property and Proposition 2.10 to show that natural
deduction in the product free Lambek calculus is decidable (we will prove the classic
result of decidability for the Lambek calculus with product using cut elimination for
the sequent calculus in Section 2.8). In order to do so, we first need to introduce
some notation to facilitate talking about left and right arguments of a formula.

Given a formula C, and a sequence of length p of pairs consisting of a letter εi

(where εi ∈ {l,r}) and a formula Gi we denote by

C[(ε1,G1), . . . ,(εp,Gp)]

the formula defined as follows:

if p = 0 C[] =C
if εi = l C[(ε1,G1), . . . ,(εp−1,Gp−1),(εp,Gp)] =Gp \C[(ε1,G1), . . . ,(εp−1,Gp−1)]
if εi = r C[(ε1,G1), . . . ,(εp−1,Gp−1),(εp,Gp)] =C[(ε1,G1), . . . ,(εp−1,Gp−1)]/Gp

Figure 2.3 shows an example of a formula with its arguments in list-of-pairs form
and its step-by-step conversion to the corresponding formula in standard Lambek
calculus notation: note how G1 is the most deeply embedded argument of C and
therefore an element of the first pair on the list.

C[(r,G1),(l,G2),(r,G3),(l,G4)] =
G4 \C[(r,G1),(l,G2),(r,G3)] =
G4 \ (C[(r,G1),(l,G2)]/G3) =
G4 \ (G2 \C[(r,G1)])/G3) =
G4 \ (G2 \ (C[]/G1))/G3) =

G4 \ (G2 \ (C /G1))/G3)

Fig. 2.3. Example of C[(ε1,G1), . . . ,(εp,Gp)]

Similarly, assume we are given a proof d of Δ �C[(ε1,G1),(ε2,G2), . . . ,(εp,Gp)]
— in what follows, d will just be an axiom C[. . .] � C[. . .] — and n proofs di of
Γi � Gi. Let us call l1, l2, ..., ll (resp. r1,r2, ...,rp−l) the subsequence of indices (hence
it’s an increasing sequence) such that εi = l (resp. εi = r).

We write d[(ε1,d1), . . . ,(εp,dp)] for the following proof of

Γl1 ,Γl2 , . . . ,Γll ,Δ ,Γrp−l ,Γrp−l−1 , . . . ,Γr1 � C

if p = 0 d[] = d
if εi = l d[(ε1,d1), . . . ,(εi−1,di−1),(εi,di)] = \e(di,d[(ε1,d1), . . . ,(εi−1,di−1)]).
if εi = r d[(ε1,d1), . . . ,(εi−1,di−1),(εi,di)] = /e(d[(ε1,d1), . . . ,(εi−1,di−1)],di).
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Γ2··· d2

G2

Γ4··· d4

G4

Δ···
C[(r,G1),(l,G2),(r,G3),(l,G4)]

=
G4 \ ((G2 \ (C /G1))/G3) \e
(G2 \ (C /G1))/G3

Γ3··· d3

G3
/e

G2 \ (C /G1) \e
C /G1

Γ1··· d1

G1
/e

C

Fig. 2.4. Example: d[(r,d1),(l,d2),(r,d3),(l,d4)] proving Γ2,Γ4,Δ ,Γ3,Γ1

Corollary 2.13. Whenever a proof d of

H1, . . . ,Hn � C

is normal and the last rule of the proof is an elimination rule, there exists an Hi0
which is equal to C[(ε1,G1), . . . ,(εp,Gp)] and subproofs di of Γi � Gi such that d is
d[(ε1,d1), . . . ,(εp,dp)].

Proof. Immediate from Proposition 2.10 ��
Consequently, with the above notations li and r j , H1, . . . ,Hi0−1 = Γl1 ,Γl2 , . . . ,Γll and
Hi0+1, . . . ,Hn = Γrp−l ,Γrp−l−1 , . . . ,Γr1 .

Let us prove, by induction on the number of connectives and atoms that Γ � C is
provable in the Lambek calculus is a decidable question. Because of normalization,
if there exists a proof, then there exists a normal proof.

If the (normal) proof ends with an introduction rule, C must be B /A (or A \B)
and proving Γ � B/A is equivalent to prove Γ ,A � B (resp. A,Γ � B) which is, by
induction hypothesis, a decidable question.

Otherwise, the proof ends with an elimination rule. Because of Corollary 2.13
proving Γ � C is equivalent to prove a finite number of smaller sequents Γi � Gi

which are obtained as follows: for all hypotheses Hi0 in Γ which are of the form
C[(ε1,G1), . . . ,(εp,Gp)], with l times εi = l and r times εi = r, and for all parti-
tions of the context H1, . . . ,Hi0−1 into l consecutive parts Γl1 ,Γl2 , . . . ,Γll , and for all
partitions of the context Hi0+1, . . . ,Hn into r consecutive parts Γrp−l ,Γrp−l−1, . . . ,Γr1

consider the sequent Γi � Gi, which has lesser atoms and connectives and therefore
allows us to apply the induction hypothesis.

The above method also provides a decision procedure. The procedure, though
simple, is actually rather effective — the only non-deterministic parts are the se-
lection of a formula C[. . .] corresponding to the conclusion C and partitioning the
context for the subproofs. We will improve upon it only in Chapter 6.
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The natural deduction decision procedure discussed in this section is also rather
close to so-called normal form sequent proofs, which are sequent proofs with some
procedural restrictions as proposed by König (1989); Hepple (1990); Hendriks (1993)
(compare the figure on page 210 of Hendriks, 1993, with our proof search algo-
rithm above), though the correctness of natural deduction proof search is, in our
opinion, quite a bit easier to prove using standard proof-theoretic notions such as
principal branches. Hepple (1990), in the final section of his article, is the only one
to make some brief remarks about a possible connection to natural deduction theorem
proving.

2.6.3 Normalization and Lambek Calculus with Product

We have to introduce commutative conversions for the product, otherwise is is pos-
sible that a normal proof does not satisfy the subformula property:

A � A B � B
•i

A,B � A •B D � D
•i

A,B,D � (A •B) •D
/i

A,B � (A •B) •D/D A •B � A •B
•e

A •B � (A •B) •D/D D � D
/e

A •B,D � (A •B) •D

Let us mention that this can be achieved by adding some “commutative conversions”
which basically amount to putting product elimination rules as high as possible (just
after the cancelled hypotheses A and B have met), and then rearranging the sub-trees
made of product elimination rules with a kind of associativity so that the eliminated
product never is the conclusion of another product elimination. Proving this result
in full detail is a rather lengthy and technical exercise and is not (in our opinion)
very insightful: this kind of result can also be deduced, though indirectly, from the
correspondence with the sequent calculus.

2.7 Cut-Elimination for the Sequent Calculus

Cut elimination is the process under which a proof is turned into a proof of the same
sequent without any cut rule — in other words, the cut rule is redundant.

Cut elimination is one of the fundamental properties of classical and intuitionistic
logic, first proved by Gentzen (1934), see e.g. (Girard et al, 1988) for a modern proof
and discussion. For L, it was originally proved in (Lambek, 1958).
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Cut elimination has an important consequence, which we state before proving cut
elimination:

Proposition 2.14. In a cut-free proof of A1, . . . ,An � An+1 every formula of every
sequent is a subformula of some formula Ai (1≤ i≤ n+ 1).

Proof. By case inspection it is easily observed that every rule of the sequent calculus
except the cut rule satisfies the property that every formula in its premise sequent(s)
is a subformula of some formula in its conclusion sequent. ��
We give a syntactic proof of cut elimination (while models could be used as well):
it is lengthy, tedious and without surprises, but one has to see this kind of proof at
least once.

We begin by defining two notions on which we will base the induction. The
degree of a cut and the depth of a cut.

Definition 2.15. The degree of a formula A, written d(A) (or simply d if the formula
is clear from the context), is the depth of its subformula tree.

d(p) = 1 when p is a primitive type
d(A •B) = max(d(A),d(B))+ 1
d(A\B) = max(d(A),d(B))+ 1
d(B/A) = max(d(A),d(B))+ 1

The degree of a cut is the degree of the cut formula which disappears after applica-
tion of the rule.

Definition 2.16. Let A by a formula which is eliminated by the application of a cut
rule c. Let left(A) be the rule which introduces the formula occurrence A on the
subproof which ends in the left premise of the cut rule and let right(A) be the rule
which introduces the formula occurrence A in the subproof which ends at the right
premise of the cut rule. The depth of a cut formula A, written r(A) (or r if the cut
formula is clear from the context), is the number of rules between left(A) and c plus
the number of rules between right(A) and c.

We show how to remove a single cut of smallest depth, reducing the total number of
cut rules by one at each iteration until the proof is cut-free.

We select one of the cut rules with smallest depth and remove it as follows. We
proceed by induction on (d,r) with (d,r)< (d′,r′) if d < d′ or d = d′ ∧r < r′ where
r is the depth of the cut rule, and d the maximal degree of a cut, assumed to be 0
when there is no cut.

··· γ

Ra

Γ � X

··· δ

R f

Δ ,X ,Δ ′ � C
cut d

Δ ,Γ ,Δ ′ � C
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Notice that because the last rule is a cut of smallest depth, neither Ra nor R f is a cut
rule and neither γ nor δ contain cut rules.

Before exploring all possible values for Ra and R f , we will first give an overview
of the general classes of the reductions; each pair of rules will fall into at least one
of the following classes.

1. One of Ra or R f is an axiom: both the cut and the axiom are suppressed.
2. Ra does not create the cut-formula, — so Ra �= •i,\i,/i. In this case it is possible

to apply Ra after the cut. We can apply the induction hypothesis to the proof(s)
with Ra and the cut rule reversed — since the depth r of the cut rule is less than
the depth of the cut rule before reduction — and turn it into a cut-free proof.

3. If R f does not create the cut formula, we proceed symmetrically.
4. If both Ra and R f create the cut formula, then this cut of degree d is replaced

by two cuts of strictly smaller degree. Hence, the maximal degree of a cut is
strictly smaller (as the last rule was the only cut) and by induction hypothesis
we are done.

We only describe the cases for \ because the ones for / are strictly symmetrical.

1 Ra or R f is an axiom The final cut can be suppressed.

X � X

··· δ
Γ ,X ,Δ � C

cut
Γ ,X ,Δ � C

reduces to
··· δ

Γ ,X ,Δ � C

2 Ra does not create X , the cut formula
Ra Before reduction After reduction

•h

··· γ
Γ ,A,B,Γ ′ � X

•h
Γ ,A •B,Γ ′ � X

··· δ
Δ ,X ,Δ ′ � C

cut d
Δ ,Γ ,A •B,Γ ′,Δ ′ � C

··· γ
Γ ,A,B,Γ ′ � X

··· δ
Δ ,X ,Δ ′ � C

cut d
Δ ,Γ ,A,B,Γ ′,Δ ′ � C

•h
Δ ,Γ ,A •B,Γ ′,Δ ′ � C

\h

··· δ
Δ ,B,Δ ′′ � X

··· δ ′

Δ ′ � A
\h

Δ ,Δ ′,A\B,Δ ′′ � X

··· γ
Γ ,X ,Γ ′ � C

cut d
Γ ,Δ ,Δ ′,A\B,Δ ′′,Γ ′ � C

··· δ
Δ ,B,Δ ′′ � X

··· γ
Γ ,X ,Γ ′ � C

cut d
Γ ,Δ ,B,Δ ′′,Γ ′ � C

··· δ ′

Δ ′ � A
\h

Γ ,Δ ,Δ ′,A\B,Δ ′′,Γ ′ � C
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3 R f does not create X , the cut formula
R f Before reduction After reduction

•h

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,X ,Γ ′,A,B,Γ ′′ � C

•h
Γ ,X ,Γ ′,A •B,Γ ′′ � C

cut d
Γ ,Δ ,Γ ′,A •B,Γ ′′ � C

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,X ,Γ ′,A,B,Γ ′′ � C

cut d
Γ ,Δ ,Γ ′,A,B,Γ ′′ � C

•h
Γ ,Δ ,Γ ′,A •B,Γ ′′ � C

•h

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,A,B,Γ ′,X ,Γ ′′ � C

•h
Γ ,A •B,Γ ′,X ,Γ ′′ � C

cut d
Γ ,A •B,Γ ′,ΔΓ ′′ � C

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,X ,Γ ′,A,B,Γ ′′ � C

cut d
Γ ,Δ ,Γ ′,A,B,Γ ′′ � C

•h
Γ ,Δ ,Γ ′,A •B,Γ ′′ � C

\h

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,B,Γ ′′′ � C

·
·
·

γ ′

Γ ′,X ,Γ ′′ � A
\h

Γ ,Γ ′,X ,Γ ′′,A\B,Γ ′′′ � C
cut d

Γ ,Γ ′,Δ ,Γ ′′,A\B,Γ ′′′ � C

·
·
·

γ
Γ ,B,Γ ′′′ � C

·
·
·

δ
Δ � X

·
·
·

γ ′

Γ ′,X ,Γ ′′ � A
cutd

Γ ′,Δ ,Γ ′′ � A
\h

Γ ,Γ ′,Δ ,Γ ′′,A\B,Γ ′′′ � C

\h

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,B,Γ ′,X ,Γ ′′ � C

·
·
·

θ
Θ � A

\h
Γ ,Θ ,A\B,Γ ′,X ,Γ ′′ � C

cut d
Γ ,Θ ,A\B,Γ ′,Δ ,Γ ′′ � C

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,B,Γ ′,X ,Γ ′′ � C

cut d
Γ ,B,Γ ′,Δ ,Γ ′′ � C

·
·
·

θ
Θ � A

\h
Γ ,Θ ,A\B,Γ ′,Δ ,Γ ′′ � C

•i

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,X ,Γ ′ � A

·
·
·

θ
Θ � B

•i
Γ ,X ,Γ ′,Θ � A •B

cut d
Γ ,Δ ,Γ ′,Θ � A •B

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,X ,Γ ′ � A

cut d
Γ ,Δ ,Γ ′ � A

·
·
·

θ
Θ � B

•i
Γ ,Δ ,Γ ′,Θ � A •B

•i

·
·
·

δ
Δ � X

·
·
·

γ
Γ � A

·
·
·

θ
Θ ,X ,Θ ′ � B

•i
Γ ,Θ ,X ,Θ ′ � A •B

cut d
Γ ,Θ ,Δ ,Θ ′ � A •B

·
·
·

γ
Γ � A

·
·
·

δ
Δ � X

·
·
·

θ
Θ ,X ,Θ ′ � B

cut d
Θ ,Δ ,Θ ′ � B

•i
Γ ,Θ ,Δ ,Θ ′ � A •B

\i

·
·
·

δ
Δ � X

·
·
·

γ
A,Γ ,X ,Γ ′ � B

\i
Γ ,X ,Γ ′ � A\B

cut d
Γ ,Δ ,Γ ′ � A\B

·
·
·

δ
Δ � X

·
·
·

γ
A,Γ ,X ,Γ ′ � B

cut d
A,Γ ,Δ ,Γ ′ � B

\i
Γ ,Δ ,Γ ′ � A\B
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4 Both Ra and R f create the cut-formula
Before reduction After reduction

•

··· δ
Δ � U

··· θ
Θ � V

•i
Δ ,Θ � U •V

··· γ
Γ ,U,V,Γ ′ � C

•h
Γ ,U •V,Γ ′ � C

cut d
Γ ,Δ ,Θ ,Γ ′ � C

··· δ
Δ � U

··· θ
Θ � V

··· γ
Γ ,U,V,Γ ′ � C

cut < d
Γ ,U,Θ ,Γ ′ � C

cut < d
Γ ,Δ ,Θ ,Γ ′ � C

\

··· δ
U,Δ � V

\i
Δ � U \V

··· γ
Γ ,V,Γ ′ � C

··· θ
Θ � U

\h
Γ ,Θ ,U \V,Γ ′ � C

cut d
Γ ,Θ ,Δ ,Γ ′ � C

··· θ
Θ � U

··· δ
U,Δ � V

cut < d
Θ ,Δ � V

··· γ
Γ ,V,Γ ′ � C

cut < d
Γ ,Θ ,Δ ,Γ ′ � C

To be fully complete one should check that whenever the original proof contains no
sequent with an empty antecedent, so does the cut free proof we inductively defined.

Now let us summarize what we have proved in this section:

Theorem 2.17. Every proof of a given sequent Γ � C can be turned into a cut free
proof of the same sequent — all formulae in the cut-free proof being subformulae of
the sequent Γ � C.

When we compare normalization for natural deduction to cut elimination for the se-
quent calculus, we saw in Section 2.6.3 that natural deduction required commutative
conversions only for the product formulas whereas the “commutative conversions”
of the sequent calculus, which are items 2 and 3 of the case analysis for cut elimi-
nation above, make up a rather large part of the proof.

2.8 Decidability

One may wonder why we wanted to have normal or cut free proofs since the compu-
tational process of cut elimination or normalization is of little interest for categorial
grammars.

What is nevertheless very interesting about such a result is that instead of look-
ing for any proof when we want, for instance to parse and analyze a sentence, we
can restrict our search space to these canonical proofs, either normal deductions or
cut-free proofs. As we have seen, cut elimination (or normalization for natural de-
duction) entails the subformula property and this makes it quite easy to show that
the calculus is decidable:

Proposition 2.18. There is an algorithm which decides whether a sequent is deriv-
able in L.
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Proof. Assume we want to prove a sequent. Since the cut rule is not needed, we
have finitely many rules to try, each of these rules requiring us to prove one or two
smaller sequents which, since they contain only subformulae of the sequent we want
to prove, are also in finite number. ��
Though sequent proof search is decidable, it is rather less efficient than the natural
deduction algorithm we presented for the product-free calculus in Section 2.6.2. In
particular, there can be many sequent calculus proofs which correspond to a single
natural deduction proof and these different sequent calculus proofs differ only for
‘bureaucratic’ reasons. So though both normal natural deduction proofs and cut-free
sequent proofs are canonical proofs in their respective calculi, there are many more
of these canonical proofs in the sequent calculus than there are in natural deduction.

This problem of sequent calculus proof search is often called spurious ambigu-
ity. On the other hand, the product formulas are unproblematic for cut-free sequent
proof search. We will return to these issues in Chapter 6, were we will introduce
proof nets for the Lambek calculus and show how they both handle product formu-
las unproblematically and make the problem of spurious ambiguity disappear.

2.9 Models for the Lambek Calculus and Completeness

We now turn our attention towards models for the Lambek calculus. As we have
seen that as far as provability is concerned, cut-free sequent calculus, sequent cal-
culus and natural deduction are equivalent, we are going to use the most adequate
formalism to establish properties of models with respect to the deductive system.

These models have been first investigated in (Buszkowski, 1982) and our presen-
tation follows (Buszkowski, 1997).

As we have said Lambek calculus prohibits the empty sequence, and we will
present models for L with this restriction. Let us nevertheless say that all these
results can be adapted by adding a unit to residuated semi-groups and to semi-groups
— replacing the word “semi-group” with the word “monoid”.

2.9.1 Residuated Semi-groups

Let us call a residuated semi-group, a structure (M,◦,\\,//,�) where

• M is a set.
• ◦ is an associative composition over M — (M,◦) is a semi-group.
• \\ and // are binary composition laws on M.
• � is an order on M.

which satisfies the following property:

(RSG) The following order relations are equivalent:

a � (c//b)

(a ◦ b) � c

b � (a \\ c)



2.9 Models for the Lambek Calculus and Completeness 45

Proposition 2.19. In a residuated semi-group (M,◦,\\,//,�), for all a,b,x,y ∈M
one has:

1. a � b ⇒ (a ◦ x)� (b ◦ x)
2. a � b ⇒ (x◦ a)� (x◦ b)

3.

⎛
⎝a � b

and
x � y

⎞
⎠ ⇒ (a ◦ x)� (b ◦ y)

In other words, a residuated semi-group is in particular an ordered semi-group.

Proof. (1) From (b ◦ x)� (b ◦ x) (� is an order) (RSG) yields b � ((b ◦ x)// x) ; if
we assume a � b by transitivity of � we have a � ((b◦ x)//x) which by (RSG)
yields (a ◦ x)� (b ◦ x).

(2) From (x ◦ b) � (x ◦ b) (� is an order) (RSG) yields b � (x \\ (x ◦ b)) ; if we
assume a � b by transitivity of � we have a � (x \\ (x ◦ b)) which by (RSG)
yields (x◦ a)� (x◦ b).

(3) The assumption a � b yields (a ◦ x)� (b ◦ x) (*) by (1). The assumption x � y
yields (b ◦ x) � (b ◦ y) (**) by (2). By transitivity of �, (*) and (**) yields
(a ◦ x)� (b ◦ y). ��

Given a residuated semi-group, an interpretation [.] is a map from primitive types to
elements in M, which extends to types and sequences of types in the obvious way:

[A,B] = [A]◦ [B] [A\B] = [A]\\ [B]
[A •B] = [A]◦ [B] [B/A] = [B]// [A]

A sequent Γ � C is said to be valid in a residuated semi-group whenever [Γ ]� [C].

2.9.2 The Free Group Model

A particular case of residuated semi-group is the free group over primitive types. It
will be especially important in Section 2.11. The free group interpretation for L is

• a particular residuated semi-group where
– (M, ·) is the free group over the propositional variables,
– a \\b is a−1b
– b //a is ba−1

– a � b is a = b (the discrete order)
One easily observes that the three equalities

ab = c a = cb−1 b = a−1c

are equivalent — so (RSG) holds.
• a standard interpretation defined by [p] = p

Because of the soundness of L w.r.t. residuated semi-groups (next proposition) when-
ever a sequent Γ � C is provable one has [Γ ] = [C] in the free group. The free group
model is of course not complete: indeed it interprets � by a symmetrical relation
(=) while � is not symmetrical: n � s/ (n \ s) is provable but not s/ (n \ s) � n.
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2.9.3 L Is Sound and Complete w.r.t. Residuated Semi-groups

Proposition 2.20. A provable sequent is valid in every residuated semi-group, for
every interpretation of the primitive types.

Proof. We proceed by induction on the natural deduction proof.

• If the proof consists in an axiom X � X then the result is true: [X ]� [X ] whatever
the semi-group or the interpretation is.

• If the last rule is the introduction rule \i:

A,Γ � C \i Γ �= ε
Γ � A\C

by induction hypothesis we have [A]◦ [Γ ] � [C], thus, by (RSG) we have [Γ ] �
([A]\\ [C]), so the sequent Γ � A\C is valid as well.

If the last rule is the introduction rule /i we proceed as for \i.
If the last rule is the elimination rule \e:

Γ � A Δ � A\B \e
Γ ,Δ � B

then by induction hypothesis we know that [Γ ]� [A], and using Proposition 2.19
we can conclude [Γ ]◦ [Δ ] � [A]◦ [Δ ] (1); we also have [Δ ]� [A]\\ [B] — hence
by (RSG) ([A]◦ [Δ ])� [B] (2). Therefore from (1) and (2) we obtain,

[Γ ,Δ ] = [Γ ]◦ [Δ ] � (1) [A]◦ [Δ ] � (2) [B]

• If the last rule is the elimination rule /e we proceed as for /i.
• If the last rule is the product elimination rule •e

Γ � A •B Δ ,A,B,Δ ′ � C
•e

Δ ,Γ ,Δ ′ � C

By induction hypothesis we know that [Γ ]� [A •B] = [A]◦ [B], and, using Propo-
sition 2.19 we obtain [Δ ] ◦ [Γ ] ◦ [Δ ′] � [Δ ] ◦ [A] ◦ [B] ◦ [Δ ′]. We also know that
[Δ ,A,B,Δ ′] = [Δ ]◦ [A]◦ [B]◦ [Δ ′]� [C]. We therefore have

[Δ ,Γ ,Δ ′] = [Δ ]◦ [Γ ]◦ [Δ ′]� [Δ ]◦ [A]◦ [B]◦ [Δ ′]� [C]

• If the last rule is the product introduction rule •i by induction hypothesis we
know that [Δ ]� [A] and that [Δ ′]� [B]; consequently

[Δ ,Δ ′] = [Δ ]◦ [Δ ′]� [A]◦ [B] = [A•B] ��
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Proposition 2.21. A sequent which is valid in every residuated semi-group is
derivable.

Proof. Let F be the set of formulae and let M = F/ �� be the quotient of formulae
by the equivalence relation ��; this relation �� is defined by A �� B whenever A � B
and B � A; it is symmetrical, it is reflexive by the axiom rule and the cut rule ensures
it is transitive.

Is is easily observed that \, /, • and � can be defined over equivalence classes,
that is: whenever A �� A′ and B �� B′ one has (A�B) �� (A′ �B′), for � ∈ {\,/,•}.
So let us define ◦,\\,// as the corresponding operations over equivalence classes of
��: A�� ◦B�� = (A •B)��, A�� \\B�� = (A\B)�� and B�� //A�� = (B/A)�� Finally
let � be � which can also be defined for equivalence classes: if A �� A′ and B �� B′
then A � B is equivalent to A′ � B′.

The property (RSG) is satisfied i.e. (A�� ◦ B��) � C�� is equivalent to A�� �

(C�� //B��) and to A�� � (B�� \\C��). Indeed A � A and B � B lead to A,B � A •B;
thus from A •B � C one obtains A,B � C which yields A � C /B by /i and B � A\C
by \i; from B � A\C (resp. A � B/C) using A � A (resp. B � B) one obtains A,B �C
by \e (resp. by /e) and A •B\C by •h.

Now let us consider the interpretation [p] = p�� for every primitive type. Then
for every formula [A] = A��.

To say that a sequent H1, . . . ,Hn � A is valid in this model under this interpretation
is to say that [H1, . . . ,Hn]� [A]. Therefore H1 • · · · •Hn � A is provable which entails
that H1, . . . ,Hn � A is provable as well — indeed from H1 • · · · •Hn � A one obtains �
H1 • · · · •Hn \A (*); then by n rules •i on the axioms Hi � Hi one obtains H1, . . . ,Hn �
H1 • · · · •Hn (**) and an application of •e to (*) and (**) yields H1, . . . ,Hn � A. ��

2.9.4 L Is Sound and Complete w.r.t. (Free) Semi-group Models

A more interesting class of models is provided by semi-groups. Indeed, the interpre-
tation of a category should be the set of the words and expressions of this category,
shouldn’t it?

So, given a semi-group (W, .) that is a set W endowed with an associative com-
position “.” one can define a residuated semi-group as follows:

• M = 2W

• A◦B = {ab | a ∈ A and b ∈ B}
• A\\B = {z | ∀a ∈ A az ∈ B}
• B//A = {z | ∀a ∈ A za ∈ B}
• A � B whenever A⊂ B (as sets).

It is easily seen that this structure really is a residuated semi-group:

• ◦ is associative:

(A◦B)◦C = {abc | a ∈ A and b ∈ B and c ∈C}= A◦ (B◦C)
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• ⊂ is an order on 2W

(RSG) The following statements are clearly equivalent:

(A◦B)⊂C : ∀a ∈ A ∀b ∈ B ab ∈C
A⊂ (C //B) : ∀a ∈ A a ∈ (C //B)
B⊂ (A\\C) : ∀b ∈ B b ∈ (A\\C)

The free semi-group models are particularly interesting, since there are no equa-
tions between sequences of words. The following proposition may be understood as
stating that L is the logic of free semi-groups:

Proposition 2.22. Product free L is complete over free semi-group models.

Proof. Take as semi-group the finite non empty sequences of formulae F+, endowed
with concatenation (A1, . . . ,An) · (B1, . . . ,Bp) = A1, . . . ,An,B1, . . . ,Bp.

For a primitive type p define [p] by {Γ | Γ � p}.
Let us first verify that for every formula F , the set of finite sequences [F ] de-

fined inductively from the [p]’s by the definition of \\ and // is precisely Ctx(F) =
{Δ | Δ � F}. We proceed by induction on F . Is F if some primitive type, it is true
by definition. Now assume that [G] = Ctx(G) and [H] = Ctx(H) and let us verify
that [G\H] =Ctx(G\H) — the case for H /G being symmetrical.

Ctx(G\H)⊂ [G\H] Let Δ be a sequence such that Δ ∈ Ctx(G \H) that is Δ �
G \H (1) and let us see that for every Θ ∈ [G] we have Θ ,Δ ∈ [H] — which
entails Δ ∈ [G \H]. By induction hypothesis we have Ctx(G) = [G] so Θ � G
(2). From (1) and (2) we obtain Θ ,Δ � H, so Θ ,Δ ∈Ctx(H). Since by induction
hypothesis Ctx(H)= [H] we have Θ ,Δ ∈ [H]. As this holds for every Θ we have
Δ ∈ [G\H].

[G\H]⊂Ctx(G\H) Let Δ be a sequence such that Δ ∈ [G\H]. Let us show that
Δ � G \H. Since G � G we have G ∈ Ctx(G) and by induction hypothesis
G ∈ [G]. By the definition of [G \H] we thus have G,Δ ∈ [H] and, since by
induction hypothesis we have [H] = Ctx(H) we obtain G,Δ � H. Now, by the
\i introduction rule we obtain Δ � G\H, that is Δ ∈Ctx(G\H).

If a sequent A1, . . . ,An �C is valid in this model under this interpretation, what does
it mean? We have [A1]◦ · · ·◦ [An]⊂ [C] and as Ai ∈ [Ai] we have A1, . . . ,An ∈ [C] that
is A1, . . . ,An � C. ��
Next follows a very difficult result due to Pentus (Pentus, 1993a), that we state
without giving the proof.

Proposition 2.23. L with product is also complete w.r.t. free semi-groups models.

2.10 Interpolation

This section presents the interpolation theorem for the Lambek calculus, which ap-
peared in the thesis of Roorda (Roorda, 1991).
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Interpolation is somehow the converse of cut elimination. The interest of cut free
proofs is that they obey the subformula property. The usual interest of interpolation,
say for classical or intuitionistic logic is to be able to factor equal sub-proofs in a
given proof. In the Lambek calculus where contraction is prohibited, nothing like
this can happen. So the interest is very different, let us explain it in a few words.

Assume we are able to formulate the calculus with a set of axioms, and only the
cut rule: viewing � as −→ (in the opposite direction) the calculus is nothing but a
set of context-free production rules — the cut rule is the substitution rule often left
implicit in phrase structure grammars.

Indeed a production rule X −→ X1 · · ·Xn corresponds to an axiom X1, . . . ,Xn � X
and the cut rule simply states that if we have been able to derive

W −→V1 · · ·Vk T U1 · · ·Ul

T −→ Z1 · · ·Zj

then we are able to derive

W −→V1 · · ·Vk Z1 · · ·Zj U1 · · ·Ul .

Now observe that for a given Lambek grammar because of cut elimination we know
that the types appearing in any syntactic analysis are all subformulae of the con-
clusion sequent: indeed a syntactic analysis is a proof of t1, . . . , tn � S with all ti in
the lexicon. Can we derive any syntactic analysis from a finite number of provable
sequents by means of the cut rule only? As we shall see in the next section, this is
possible and consequently Lambek grammars are weakly equivalent to context-free
grammars.

Given a formula or a sequence of formulae Δ and a primitive type p we denote
by ρp(Δ) the number of occurrences of p in Δ .

Proposition 2.24. Let Γ ,Δ ,Θ � C be a provable sequent in L, with Δ �= ε . There
exists an interpolant of Δ that is a formula I such that:

1. Δ � I
2. Γ , I,Θ � C
3. ρp(I)≤ ρp(Δ) for every primitive type p
4. ρp(I)≤ ρp(Γ ,Θ ,C) for every primitive type p

Proof. We proceed by induction on the size of a cut free proof of Γ ,Δ ,Θ � C —
there are many cases in this proof, according to the nature of the last rule, and to the
respective position of the created formula and Δ .

axiom X � X

If the proof is an axiom, then Δ is a formula X and I = X obviously works:

1. X � X
2. X � X
3. ρp(X) = ρp(X)
4. ρp(X) = ρp(ε,ε,X)
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Π � X Φ � Y
•i

Π ,Φ � X •Y

• Π = Π ′,Δ ,Π ′′ — so Γ = Π ′ and Θ = Π ′′,Φ .
By induction hypothesis we have an interpolant I for Δ in Π ′,Δ ,Π ′′ � X , let us
see it is an interpolant for Δ in Π ′,Δ ,Π ′′,Φ � X •Y .

1. We already have Δ � I
2. From Π ′, I,Π ′′ � X and Φ � Y , we have Π ′, I,Π ′′,Φ � X •Y .
3. We already have ρp(I)≤ ρp(Δ).
4. From ρp(I)≤ ρp(Π ′,Π ′′,X) we obtain ρp(I)≤ ρp(Π ′,Π ′′,Φ,X ,Y ).

• Φ = Φ ′,Δ ,Φ ′′ — so Γ = Π ,Φ ′ and Θ = Φ ′′.
Symmetrical to the previous case.

• Π = Π ′,Δ ′ Φ = Δ ′′,Φ ′′ and Δ = Δ ′,Δ ′′ — so Γ = Π ′ and Θ = Φ ′′.
By induction hypothesis we have an interpolant I′ for Δ ′ in Π ′,Δ ′ � X and
an interpolant I′′ for Δ ′′ in Δ ′′,Φ ′′ � X . Then I = I′ • I′′ is an interpolant for
Δ = Δ ′,Δ ′′ in Π ′,Δ ′,Δ ′′,Φ ′′ � X •Y .
1. From Δ ′ � I′ and Δ ′′ � I′′ we obtain Δ ′,Δ ′′ � X •Y by •i.
2. From Π ′, I′ � X and I′′,Φ ′′ � Y we have Π ′, I′, I′′,Φ ′′ � X •Y by •i and finally

Π ′, I′ • I′′,Φ ′′ � X •Y by •h
3. From ρp(I′)≤ ρp(Π ′,X) and ρp(I′′)≤ ρp(Φ ′′,Y ) we get ρp(I′ •I′′) = ρp(I′)

+ρp(I′′)≤ ρp(Π ′,X)+ρp(Φ ′′,Y ) = ρp(Π ′,Φ ′′,X ,Y ) = ρp(Π ′,Φ ′′,X •Y ).
4. From ρp(I′) ≤ ρp(Δ ′) and ρp(I′′) ≤ ρp(Δ ′′) we get ρp(I′ • I′′) = ρp(I′)+

ρp(I′′)≤ ρp(Δ ′,Δ ′′) = ρp(Δ).

Π ,X ,Y,Φ � C
•h

Π ,X •Y,Φ � C

Let Δ ′ be defined as follows: if Δ contains X •Y then Δ ′ = Δ [X •Y := X ,Y ], oth-
erwise Δ ′ = Δ . Let I be an interpolant for Δ ′ in Π ,X ,Y,Φ � C. Then I is itself an
interpolant for Δ in Π ,X •Y,Φ � C.

1. From Δ ′ � I we have Δ � I (possibly using •h).
2. From Π ,X •Y,Φ[Δ ′ := I] � C we get Π ,X •Y,Φ[Δ := I] � C.
3. From ρp(Δ) = ρp(Δ ′) we obtain ρp(I)≤ ρp(Δ)
4. Since ρp((Π ,X •Y,Φ)[Δ ′ := ε],C)= ρp((Π ,X •Y,Φ)[Δ := ε],C) we have ρp(I)
≤ ρp((Π ,X •Y,Φ)[Δ := ε],C).

X ,Γ ,Δ ,Θ � Y \i
Γ ,Δ ,Θ � X \Y

By induction hypothesis we have an interpolant I for Δ in A,Γ ,Δ ,Θ � B. It is an
interpolant for Δ in Γ ,Δ ,Θ � X \Y as well.

1. We already have Δ � I.
2. From X ,Γ , I,Θ � Y we obtain Γ , I,Θ � X \Y by \i.
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3. We already have ρp(I)≤ ρp(Δ).
4. We have: ρp(I)≤ ρp(X ,Γ ,Θ ,Y ) = ρp(Γ ,Θ ,X \Y).

Π � X Φ,Y,Ψ � C \h
Φ,Π ,X \Y,Ψ � C

• Δ is included into Π Let I be an interpolant for Δ in the premise containing it.
Then I is an interpolant for Δ in Φ,Π ,X \Y,Ψ � C.
1. We already have Δ � I
2. From Π [Δ := I] � X and Φ,Y,Ψ � C, by \h we obtain Φ,Π [Δ := I],X \

Y,Ψ � C
3. We already have ρp(I)≤ ρp(Δ).
4. From ρp(I) ≤ ρp(Π [Δ := ε],X) we have ρp(I) ≤ ρp(Φ,Π [Δ := ε],X \

Y,Ψ ,C)
• Δ is included in Φ (resp. Ψ ) Let I be an interpolant for Δ in the premise con-

taining it. Then I is an interpolant for Δ in Φ,Π ,X \Y,Ψ � C.
1. We already have Δ � I
2. From Φ[Δ := I],Y,Ψ � C (resp. Φ,Y,Ψ [Δ := I] � C) and Π � X , by \h we

obtain Φ[Δ := I],Π ,X \Y,Ψ � C (resp. Φ,Π ,X \Y,Ψ [Δ := I] � C)
3. We already have ρp(I)≤ ρp(Δ).
4. From ρp(I)≤ ρp(Φ[Δ := ε],Y,Ψ ,C) (resp. ρp(I)≤ ρp(Φ,Y,Ψ [Δ := ε],C))

we have ρp(I)≤ ρp(Φ[Δ := ε],Π ,X \Y,Ψ ,C) (resp. ρp(I)≤ ρp(Φ,Π ,X \
Y,Ψ [Δ := ε],C)).

• Δ = Δ ′,Δ ′′ and Φ = Φ ′,Δ ′ and Π = Δ ′′,Π ′′.
Let I′ be an interpolant for Δ ′ in Φ ′,Δ ′,Y,Ψ �C, and let I′′ be an interpolant for
Δ ′′ in Δ ′′,Π ′′ � X . Then I = I′ • I′′ is an interpolant for Δ ′,Δ ′′ in Φ ′,Δ ′,Δ ′′,Π ′′,
X \Y,Ψ � C.
1. From Δ ′ � I′ and Δ ′′ � I′′ we have Δ ′,Δ ′′ � I′ • I′′ by •i.
2. From I′′,Π ′′ � X and Φ ′, I′,Y,Ψ � C we have Φ ′, I′, I′′,X \Y,Ψ � C by \h

and Φ ′, I′ • I′′,X \Y,Ψ � C by •i.
3. We have ρp(I′ • I′′) = ρp(I′)+ρp(I′′) ≤ ρp(Δ ′)+ρp(Δ ′′) = ρp(Δ).
4. We have ρp(I′ • I′′) = ρp(I′) + ρp(I′′) ≤ ρp(Φ ′,Y,Ψ ,C) + ρp(Π ′′,X) =

ρp(Φ ′,Π ′′,X \Y,Ψ ,C).
• Δ = Φ ′′,Π ,X \Y,Ψ ′ with Φ = Φ ′,Φ ′′ and Ψ =Ψ ′,Ψ ′′.

Let I be an interpolant for Φ ′′,Y,Ψ ′ in Φ ′,Φ ′′,Y,Ψ ′,Ψ ′′ � C. Then I is itself
interpolant for Φ ′′,Π ,X \Y,Ψ ′ in Φ ′,Φ ′′,Π ,X \Y,Ψ ′,Φ ′′ � C.
1. From Φ ′′,Y,Ψ ′ � I and Π � X we have Φ ′′,Π ,X \Y,Ψ ′ � I by \h.
2. We already have Φ ′, I,Ψ ′′ � C.
3. We already have ρp(I)≤ ρp(Φ ′,Ψ ′′,C)
4. We have ρp(I)≤ ρp(Φ ′′,Y,Ψ ′)≤ ρp(Φ ′′,Π ,X \Y,Ψ ′).

• Δ = Π ′′,X \Y,Ψ ′ with Π = Π ′,Π ′′ and Ψ =Ψ ′,Ψ ′′.
Let I′ be and interpolant for Π ′ in Π ′,Π ′′ � X and let I′′ be an interpolant for
Y,Ψ ′ in Φ,Y,Ψ ′,Ψ ′′ � C. Then I′ \ I′′ is an interpolant for Δ = Π ′′,X \Y,Ψ ′ in
Φ,Π ′,Π ′′,X \Y,Ψ ′,Ψ ′′ � C.
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1. From I′,Π ′′ � X and Y,Ψ ′ � I′′ we have I′,Π ′′,X \Y,Ψ ′ � I′′ by \h and
Π ′′,X \Y,Ψ ′ � I′ \ I′′ by \i.

2. From Φ, I′′,Ψ ′′ � C and Π ′ � I′ we have Φ,Π ′, I′ \ I′′,Ψ ′′ � C.
3. We have ρp(I′ \ I′′)≤ ρp(Π ′′,X)+ρp(Y,Ψ ′) = ρp(Π ′′,X \Y,Ψ ′)
4. We have ρp(I′ \ I′′)≤ ρp(Π ′)+ρp(Φ,Ψ ′′,C) = ρp(Φ,Π ′,Ψ ′′,C)

This ends the proof because /i and /e are symmetrical to \i and \e. ��

2.11 Lambek Grammars and Context-Free Grammars

At the beginning of this section we shall see that context-free grammars translate
into weakly equivalent Lambek grammars (Cohen, 1967): this is non trivial but un-
surprising, and this section is in fact devoted to prove the converse, known as the
Chomsky conjecture, stated in 1963 (Chomsky, 1963, p. 413) and proved by Pentus
(Pentus, 1993b, 1997): Languages generated by Lambek grammars are context-free
languages. This result was already suggested in the previous section on interpola-
tion: if we are able to derive all sequents corresponding to syntactic analyses from a
finite set of sequents by the cut rule only, then Lambek grammars are context-free.

Let us define the size |A| of a formula A by its number of primitive types. We are
going to show that given an integer m there exists a finite set AX(m) of provable se-
quents such that all provable sequent containing only formulae of size smaller than
m are derivable from sequents in AX(m) by means of the cut rule only. This easily
entails that Lambek grammars are context-free. Note that the restriction on the size
of formulas is essential, since Zielonka (1981, 1989) shows that the Lambek calcu-
lus in general (without this size restriction) does not permit a formulation consisting
of a finite number of sequents AX and the cut rule.

Even though Lambek grammars generate only context-free languages, they have
a number of pleasant properties — in addition to their logical foundations — which
make them interesting objects of study:

• they are lexicalized,
• they offer a pleasant interface with semantics (as we will see in Chapter 3),
• they permit an elegant treatment of peripheral extraction (as we have seen in

Example 2.2, for example). To the best of our knowledge, among the grammar
formalisms which generate context-free languages, only the Lambek calculus
(and some closely related formalisms) have such a simple and elegant treatment
of peripheral extraction.

• finally, let us say that while the derivation trees of a context-free grammars
constitute a regular tree language (Thatcher, 1967; Gécseg and Steinby, 1997)
the derivation trees (natural deduction trees) of a Lambek grammar can consti-
tute a tree language which is not regular (Tiede, 2001): Kanazawa and Salvati
(2009) show that the natural deduction trees of a Lambek grammar correspond
to tree languages generated by hyperedge replacement grammars (Engelfriet,
1997; Engelfriet and Maneth, 2000). In other words, if we are interested in trees
rather than strings, Lambek grammars are more expressive than context-free
grammars.
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There are basically two ingredients for the Pentus proof that Lambek grammars
are context-free. One is interpolation and we already explained its relevance to this
question. The other is a property of the free group to be applied to the free group
model of Section 2.9.2 on page 45. This property is needed to find, in a sequent
where all formulae have sizes lower than m, two (or more) consecutive formulae
whose interpolant also has a size less than m — this is of course to be used for the
final induction.

We mainly follow (Pentus, 1993b), and borrow a few things from (Pentus, 1997;
Buszkowski, 1997).

2.11.1 From Context-Free Grammars to Lambek Grammars

It is natural to think that every AB grammar corresponds to a Lambek grammar,
because the Lambek calculus includes the AB elimination rules and is therefore at
least as expressive as AB grammars. In fact this result — although not as difficult as
the result we will prove in the remainder of this section, where we will show how to
translate Lambek grammars to context-free grammars — is not completely trivial:
not all theorems of L are also theorems of AB, so we need to be careful about using
an AB grammar as a Lambek grammar.

By Proposition 1.2 from Chapter 1, we know that any AB grammar is weakly
equivalent to an AB grammar containing only types of order at most 1. Now, by
Proposition 2.12 a sequent A1, . . . ,An � S with o(Ai)≤ 1 is provable with AB elim-
ination rules if and only if it is provable in L. Consequently the language generated
by an AB grammar with types of order at most 1 coincides with the language gen-
erated by the Lambek grammar with the same lexicon.

Using the weak equivalence between AB grammars and context-free grammars
(Propositions 1.11 and 1.10) we have the result of (Cohen, 1967):

Proposition 2.25. Every ε-free context-free grammar is weakly equivalent to a
Lambek grammar.

2.11.2 A Property of the Free Group

Let w be an element of the free group; then ‖w‖ stands for the length of the reduced
word corresponding to w — e.g. ‖cb−1a−1abc‖= 2.

This lemma, which is needed for a refinement of interpolation, only concerns the
free group. It had actually been proved before in (Nivat, 1971) and was reproved in
(Autebert et al, 1984).

Proposition 2.26. The two following properties of the free group hold:

1. Let u,v,w be elements of the free group; if ‖u‖< ‖uv‖ and ‖uv‖ ≥ ‖uvw‖ then
‖vw‖ ≤max(‖v‖,‖w‖).
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2. Let ui i = 1, . . . ,n+1 be elements of the free group with u1 · · · · ·un+1 = 1. Then
there exists k ≤ n such that

‖ukuk+1‖ ≤max(‖uk‖,‖uk+1‖)

Proof. The first part is actually a lemma for the second part.

Proof of 1 We proceed by reductio ad absurdum, so we assume that
a. ‖u‖< ‖uv‖
b. ‖uv‖ ≥ ‖uvw‖
c. ‖vw‖> ‖v‖
d. ‖vw‖> ‖w‖

There exists three reduced words x,y,z such that
• u = xy−1 v = yz uv = xz
• xy−1 yz xz are reduced.
From (a) we have ‖x‖+‖y‖< ‖x‖+‖z‖ so ‖y‖< ‖z‖ and therefore ‖y‖< 1

2‖v‖
(*).
Similarly there exists three reduced words x′,y′,z′ such that
• v = x′y′ w = y′−1z′ vw = x′z′
• x′y′ y′−1z′ x′z′ are reduced.
From (c) we have ‖y′‖+‖z′‖< ‖x′‖+‖z′‖ so ‖y′‖< ‖x′‖ and therefore ‖y′‖<
1
2‖v‖ (**)
From v = yz = x′y′ with ‖y‖ < 1

2‖v‖ (*) and ‖y′‖ < 1
2‖v‖ (**), there exists a

non empty a such that
• z = ay′ x′ = ya v = yay′
• ay′ ya yay′ are reduced
So we have uvw = xy−1yay′y′−1z′ = xaz′ — as xa and az′ are reduced, xaz′ is
reduced as well. From (b) we have

‖uvw‖= ‖xaz′‖ ≤ ‖xay′‖= ‖xz‖= ‖uv‖
and therefore ‖z′‖ ≤ ‖y′‖.
Since from d we have ‖x′z′‖> ‖x′y′‖ so ‖z′‖> ‖y′‖, there is a contradiction.

Proof of 2 Let k be the first index such that ‖u1 · · ·uk‖ ≥ ‖u1 · · ·ukuk+1‖.
If k = 1 ‖u1‖ ≥ ‖u1u2‖ then max(‖u1‖,‖u2‖)≥ ‖u1‖ ≥ ‖u1u2‖.
Otherwise, let

u = u1 · · ·uk−1 v = uk w = uk+1

we have
‖u‖= ‖u1 · · ·uk−1‖< ‖uv‖= ‖u1 · · ·uk−1uk‖

and
‖uv‖= ‖u1 · · ·uk−1uk‖ ≥ ‖uvw‖= ‖u1 · · ·ukuk+1‖

so applying the first part (1) of this proposition we obtain

‖ukuk+1‖≤max(‖uk‖,‖uk+1‖) ��
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2.11.3 Interpolation for Thin Sequents

A sequent Γ � C is said to be thin whenever it is provable and for all p, ρp(Γ ,C) is
at most 2 — where ρp(Θ) is the number of occurrences of a primitive type p in Θ .
Notice that by Proposition 2.6 which says that a provable sequent contains as many
positive and negative occurrences of a primitive type, ρp(Γ ,A) is either 0 or 2.

Here is a proposition which is very representative of multiplicative calculi, in
which formulas can be neither contracted or weakened:

Proposition 2.27. Each provable sequent may be obtained from a thin sequent by
substituting primitive types with primitive types.

Proof. Given a cut free proof d with only primitive axioms of a sequent Γ � C,
number the axioms and replace each axiom p � p by pi � pi where i is the number
of the axiom, and also replace all the traces of this occurrence of p in the proof with
pi. Clearly the result is itself a proof of a sequent Γ ′ � C′, which contains exactly
two or zero occurrences of each primitive type, and which gives back Γ � C when
each pi is substituted with p. ��
Proposition 2.28. Let Γ ,Δ ,Θ � C be a thin sequent. Then there exists a formula B
such that:

1. Δ � B is thin
2. Γ ,B,Θ � C is thin
3. |B|= ‖[Δ ]‖— the number of primitive types in B is the size of the interpretation

of Δ in the free group (see Section 2.9.2 on page 45).

Proof. p stands for any primitive type,
Let B be an interpolant of Δ which exists by Theorem 2.24. We then have:

a. Δ � B is provable
b. Γ ,B,Θ � C is provable
c. ρp(B)≤min(ρp(Γ ,Θ ,C),ρp(Δ))

Let Us First Prove 1. As the sequent Γ ,Δ ,Θ � C is thin,

ρp(Γ ,Δ ,Θ ,C) = ρp(Γ ,Θ ,C)+ρp(Δ)

is either 0 or 2; so by c ρp(B) is either 0 or 1, and we have

ρp(Δ ,B) = ρp(Δ)+ρp(B)≤ ρp(Γ ,Δ ,Θ ,C)+ρp(B)≤ 2+ 1

Since Δ � B is provable (a), ρp(Δ ,B) is even, and thus ρp(Δ ,B) ≤ 2. So, being
provable, Δ � B is thin.

Now Let Us Prove 2. Similarly,

ρp(Γ ,B,Θ ,C) = ρp(Γ ,Θ ,C)+ρp(B)≤ ρp(Γ ,Δ ,Θ ,C)+ρp(B)≤ 2+ 1

Since Γ ,B,Θ � C is provable (b) ρp(Γ ,B,Θ ,C) is even, so ρp(Γ ,B,Θ ,C) ≤ 2 So,
being provable, Γ ,B,Θ � C is thin.
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Finally Let Us Prove 3

• if p does not occur in Δ then p does neither occur in [Δ ] nor in B, by c.
• if p occurs once in Δ then it occurs once in [Δ ] too — it cannot cancel with

another occurrence of p; as Δ � B is thin it also occurs once in B — it occurs
twice in Δ � B and once in Δ so it occurs once in B.

• if p occurs twice in Δ then it does not occur in Γ ,Θ ,C; therefore it does not
occur in B by (c). The soundness of the interpretation in the free group entails
[Γ ,Δ ,Θ ] = [C] that is [Δ ] = [Γ ]−1[C][Θ ]−1 As p does not occur in Γ ,Θ ,C, there
is no occurrence of p in [Γ ]−1[C][Θ ]−1 and therefore no occurrence of p in [Δ ]

So for every primitive type, and whatever its number of occurrences in Δ is, there
are exactly as many occurrences of p in B and in [Δ ], so the number of primitive
types in B and in [Δ ] are equal: |B|= ‖[Δ ]‖. ��
Proposition 2.29. Let A1, . . . ,An � An+1 be a thin sequent with |Ai| ≤m; then either:

• there exists an index k and a type B with |B| ≤m such that the following sequents
are thin:

A1, . . . ,Ak−1,B,Ak+2, . . . ,An � An+1

Ak,Ak+1 � B
• there exists a type B with |B| ≤ m such that the following sequents are thin:

B,An � An+1

A1, . . . ,An−1 � B

Proof. Let ui = [Ai] for 1 ≤ i ≤ n and un+1 = [C]−1. Interpreting the provability in
the free group we obtain: u1 · · ·unun+1 = 1 By Lemma 2.26 there exists an index
k ≤ n for which ‖ukuk+1‖ ≤max(‖uk‖,‖uk+1‖)≤m.

• If k < n, we apply Proposition 2.28 with
Δ = Ak,Ak+1,
Γ = A1, . . . ,Ak−1

Θ = Ak+2, . . . ,An.
So the sequents

A1, . . . ,Ak−1,B,Ak+2, . . . ,An � An+1

Ak,Ak+1 � B
are thin, and

|B|= ‖[Ak,Ak+1]‖= ‖ukuk+1‖ ≤ m

• If k = n, we apply Proposition 2.28 with
Γ = ε ,
Δ = A1, . . . ,An−1

Θ = An.
So the sequents A1, . . . ,An � B and B,An � B are thin.

Since [A1, . . . ,An−1,An] = [C]
we have |B|= ‖[A1, . . . ,An−1]‖= ‖[C][An]

−1‖
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therefore

|B|= ‖[C][An]
−1‖= ‖([An][C]

−1)−1‖= ‖(unun+1)
−1‖= ‖unun+1‖≤m ��

2.11.4 From Lambek Grammars to Context-Free Grammars

Proposition 2.30. If a sequent A1, . . . ,An � An+1 with each |Ai| ≤m is provable in L,
then it is provable from provable sequents U,V � X or U � X with |U |, |V |, |X | ≤ m
by means of the cut rule only.

Proof. We proceed by induction on n. If n ≤ 2 then there is nothing to prove.
Otherwise, let A′1, . . . ,A

′
n � A′n+1 be a corresponding thin sequent obtained as in

Proposition 2.27 — using a different primitive type for each axiom in the proof of
A1, . . . ,An � An+1. Thus there exists a substitution σ replacing primitive types with
primitive types and preserving provability such that σ(A′) = A.

As the substitution replaces primitive types with primitive types, we also have
|A′i| ≤ m. By Proposition 2.29 there exists a formula B′ with |B′| ≤ m such that
either:

• A′1, . . . ,A
′
k−1,B

′,A′k+2, . . . ,A
′
n � A′n+1

A′k,A
′
k+2 � B′

are thin, and therefore provable.
Let B = σ(B′), so B has at most m primitive types as well; applying the

substitution we obtain two provable sequents

A1, . . . ,Ak−1,B,Ak+2, . . . ,An � An+1

Ak,Ak+1 � B.

By induction hypothesis

A1, . . . ,Ak−1,B,Ak+2, . . . ,An � An+1 (∗)

is provable from provable sequents U,V � X or U � X with |U |, |V |, |X | ≤ m by
means of the cut rule only.

Notice that Ak,Ak+1 � B (∗∗) is of the form U,V � X with |U |, |V |, |X | ≤m.
A cut rule between the proof of (∗) and (∗∗) yields a proof of

A1, . . . ,An � An+1

from provable sequents U,V � X or U � X with |U |, |V |, |X | ≤ m by means of
the cut rule only.

• B′,A′n � A′n+1 and A1, . . . ,An−1 � B are thin and therefore provable.
Let B = σ(B′), so |B| ≤ m; applying the substitution we obtain two provable
sequents

B,An � An+1

A1, . . . ,An−1 � B.
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By induction hypothesis

A1, . . . ,An−1,B � An+1 (+)

is provable from provable sequents U,V � X or U � X with U,V,X having at
most m primitive types by means of the cut rule only.

Notice that B,An � An+1 (++) is of the form U,V � X with |U |, |V |, |X | ≤m.
A cut rule between the proof of (+) and (++) yields a proof of

A1, . . . ,An � An+1

from provable sequents U,V � X or U � X with |U |, |V |, |X | ≤ m by means of
the cut rule only. ��

Theorem 2.31. Let Lex be the lexicon of a Lambek grammar GL, and let and let m
the maximal number of primitive types in a formula of the lexicon. Then the lan-
guage L(GL) generated by GL is the same as the language L(GC) generated by the
following context-free grammar GC:

• Terminals: terminals (words) of GL

• Non-Terminals: all formulae A with |A| ≤ m
• Start symbol S, the one of GL

• X −→ a whenever X ∈ Lex(a)
• X −→ A whenever A � X is provable in L
• X −→ AB whenever A,B � X is provable in L

Observe that the rules are in finite number, because there are finitely many sequents
U,V � X or U � X when U,V,X contains at most m primitive types — hence there
are only finitely many provable such sequents.

Proof. Assume a1 · · ·an ∈ L(GC). Hence there exist types Xi ∈ Lex(ai) such that
S −→ X1 · · ·Xn. The derivation in the CFG GC can be turned into a derivation in L
using only the cut rule (reversing−→ into �), therefore a1 · · ·an ∈ L(GL).

Assume now that a1 · · ·an ∈ L(GL). Hence there exist types Xi ∈ Lex(ai) such
that X1, . . . ,Xn � S. By Proposition 2.30 such a sequent is provable by means of the
sequents corresponding to production rules, and of the cut rule only. By induction
on the size of the cut-only proof, it is easily seen that the proof corresponds to a
derivation in the CFG GC. If the proof is reduced to a proper axiom, than this axiom
is itself a production rule. If the last rule is a cut, say between Γ ,B,Θ �C and Δ � B,
then by induction hypothesis we have B−→Δ and C−→Γ BΘ hence C−→Γ Δ Θ .
Thus, if a1 · · ·an ∈ L(GL), we have S−→X1 · · ·Xn with Xi ∈Lex(Ai); as Xi ∈ Lex(ai)
we have S −→ a1 · · ·an. ��

2.12 Concluding Remarks

This concludes our chapter on the Lambek calculus. We have given proofs of many
of the classic results (cut elimination, soundness and completeness, equivalence of
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Lambek grammars and context-free grammars). In the following chapters, we dis-
cuss some variants of the Lambek calculus.

Since complexity is not one of the major themes of the current book, we have
decided not to include a recent proof of NP-completeness of the Lambek calculus
(Pentus, 2006) in this chapter, although Section 4.6.1 gives a very brief overview of
the known complexity results for the Lambek calculus and some of it variants.

In the next chapter we will see another aspect of the Lambek calculus, which is
its direct link with natural language semantics in the style of Montague.
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Exercises for Chapter 2

Exercise 2.1. Give sequent calculus derivations for each of the following sequents.

1. (A\B)/A � A\ (B/A)
2. A/B � (A/C)/ (B/C)
3. (A •B)\C � B\ (A\C)
4. B\ (A\C) � (A •B)\C
5. (B/A)\B � ((A\B)/A)\ (A\B)

Exercise 2.2. Give natural deduction derivations for each of the sequents of the pre-
vious exercise.

Exercise 2.3. Prove Proposition 2.3 on page 29.

Exercise 2.4. Definition 2.11 on page 36 defines the order of formulae. Calculate
the order of the following formulae.

1. np /n
2. ((np \ S)/ pp)/np
3. (S /np)\ S
4. ((np \ S)/np)\ (np \ S)
5. ((n /n)/ (n /n))/ ((n /n)/ (n /n))

Exercise 2.5. Prove Proposition 2.6 on page 30.

Exercise 2.6. Using the following lexicon, find two different normal derivations in
natural deduction for “Someone loves everyone” and “Someone is missing”

Word Type(s)
someone (S / (np \ S))
everyone ((S / np)\ S)

loves ((np \ S)/np)
is missing ((S / (np \ S))\ S)

gave (((np \ S)/ pp)/np)
a book np

to pp /np

Exercise 2.7. Following Carpenter (1996, Section 6.3), look at the following
lexicon.

Word Type(s)
kid n

who ((n \ n)/(S /np))
Kelly np
Terry np

Robin np
likes ((np \ S)/np)

believes ((np \ S)/S)
knows ((np \ S)/S)
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Give natural deduction derivations showing that the lexicon above allows us to show
that all of the following expressions are of type n.

(2.1) kid who Kelly likes.
(2.2) kid who Kelly believes Terry likes.
(2.3) kid who Kelly believes Terry knows Robin likes.

Exercise 2.8. Extend the lexicon from Exercise 2.6 with types for “every” and “a”,
as well as for “child” and “toy” in such a way that “every child loves a toy” obtains
exactly two natural deduction derivations.

Exercise 2.9. Using the lexicon from Exercise 2.6, give two natural deduction
derivations for “Someone gave a book to everyone” .

Exercise 2.10. Section 2.6.2 gives a decision procedure for natural deduction
without product. Use this decision procedure to find all proofs for the sequent of
Example 2.1 on page 26. How many proofs are there? What is their relation to the
natural deduction proof shown in Example 2.1?
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