
Lecture Notes in Computer Science 6850
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

FoLLI Publications on Logic, Language and Information

Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Valentin Goranko, Technical University, Lynbgy, Denmark

Erich Grädel, RWTH Aachen University, Germany

Michael Moortgat, Utrecht University, The Netherlands

Subline Area Editors

Nick Bezhanishvili, Imperial College London, UK

Anuj Dawar, University of Cambridge, UK

Philippe de Groote, Inria-Lorraine, Nancy, France

Gerhard Jäger, University of Tübingen, Germany

Fenrong Liu, Tsinghua University, Beijing, China

Eric Pacuit, Tilburg University, The Netherlands

Ruy de Queiroz, Universidade Federal de Pernambuco, Brazil

Ram Ramanujam, Institute of Mathematical Sciences, Chennai, India

Richard Moot Christian Retoré

The Logic of
Categorial Grammars
A Deductive Account of
Natural Language Syntax and Semantics

13

Authors

Richard Moot
CNRS
LaBRI
Domaine Universitaire, 351, Cours de la Libération Bat A30
33405 Talence Cedex, France
E-mail: richard.moot@labri.fr

Christian Retoré
Université de Bordeaux
LaBRI
Domaine Universitaire, 351, Cours de la Libération Bat A30
33405 Talence Cedex, France
E-mail: christian.retore@labri.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31554-1 e-ISBN 978-3-642-31555-8
DOI 10.1007/978-3-642-31555-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012940852

CR Subject Classification (1998): F.3, F.4, I.2.3, I.2, F.1, F.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Voor Tessa
À Antoine, Mathilde et Garance

Pour le moment, la linguistique générale m’apparaı̂t comme un système de
géométrie. On aboutit à des théorèmes qu’il faut démontrer.

de Saussure (1911)
in Godel (1957)

I think it is correct to say that the difference between the structural linguist and the
formal logician is one of stress and degree rather than of kind.

Bar-Hillel (1954)

The correct way to use the insights and techniques of logic is in formulating a
general theory of linguistic structure.

Chomsky (1955)

La logique contemporaine est robuste et élégante. Mais elle est aussi maigre. Les
logiciens contemporains sont tout à fait conscients de ce fait, et ils s’efforcent
d’engraisser un peu la bête. Aristote et sa théorie des catégories auront peut-être
toujours quelques conseils à offrir.

Barnes (2005)

Preface

Audience

This book is intended for students (from the third year) in computer science, formal
linguistics, and mathematical logic as well as for colleagues interested in categorial
grammars and their logical foundations. Though the logical viewpoint of categorial
grammars is well-established, until now there has been no textbook available to
students and researchers who want to discover all the main results for categorial
grammars. It is the goal of this book to fill this gap.

The book has few formal prerequisites; nevertheless, notions of mathematical
logic will help.

In addition, some familiarity with proof theory and the typed λ -calculus will
help, and for readers who feel they need additional background we recommend
(Girard et al, 1988; Girard, 2011), and (Girard, 1995, 2011) for more details on
linear logic.

Occasionally, we will assume the reader knows what context-free grammar is,
and is aware of their elementary properties such as Chomsky and Greibach normal
forms. If some background on formal language theory is needed, we recommend
(Hopcroft and Ullman, 1979; Harrison, 1978)

Finally, for some background in linguistics, we recommend (Akmajian et al,
2001).

Nevertheless we have made every effort to make this book as self-contained as
possible, and none of this additional background knowledge is strictly mandatory.

The exercises at the end of every chapter, sometimes with hints, should help the
reader assimilate the new notions and check that they are well understood.

Contents

These lecture notes present categorial grammars as deductive systems, in the ap-
proach called parsing-as-deduction, and we include detailed proofs of their main
properties. We provide background and motivation for all results, modern proofs of
many of the classical results for categorial grammars, together with our own results,
in particular on proof nets.

VIII Preface

Chapter 1: Our book starts with AB grammars (Ajdukiewicz-Bar-Hillel) also called
classical categorial grammars, basic Lambek grammars. . . We establish their
correspondence with context-free grammars, and briefly present their learnabil-
ity properties.

Chapter 2: Lambek’s syntactic calculus is at the center of this book, and despite
all the years it is still a pleasure to read Lambek’s original article (Lambek,
1958), written with an elegance which is rarely encountered. In this chapter,
we present the correspondence between Lambek grammars and context-free
grammars following Pentus, (Pentus, 1993b), and study the structure of the
parse-structures/deductions: normalization, sub formula property, decidability,
interpolation.

Chapter 3: Here, we turn our attention to one of the important applications of cate-
gorial grammar: how to automatically turn a syntactic analysis, that is a deduc-
tion, into a lambda term, which combined with lexical lambda terms, produces
a logical formula corresponding to the meaning of the analyzed sentence. As we
will see, the answer to this question is very simple and builds upon a fundamen-
tal result from logic and lambda-calculus: the Curry–Howard isomorphism. We
also discuss several applications of this correspondence in the context of Mon-
tague semantics.

Chapter 4: The non-associative Lambek calculus NL is a variant of the Lambek
calculus where the objects of study are trees of formulas instead of lists of
formulas. We also discuss Kripke models and polynomial parsing algorithms
for NL.

Chapter 5: The multimodal Lambek calculus extends the non-associative Lambek
calculus by introducing controlled versions of the structural rules of associa-
tivity and commutativity to the logic. Some illustrative examples show how
multimodality allows us to move beyond context-free languages.

Chapter 6: In this chapter, we present proof nets for the Lambek calculus, graphs
that better describe a deduction than the usual trees, since no two proof nets
correspond to the same linguistic analysis. They also enable different parsing
techniques, and they can even be used to measure the complexity of human
processing.

Chapter 7: In the final chapter, we combine ideas from Chaps. 5 and 6 to give
proof nets for the multimodal Lambek calculus, emphasizing their usefulness
for parsing categorial grammars. We also discuss Grail, an implementation of
multimodal grammars based on proof nets.

How to Read This Book

As with most books, the simplest way to read this one is from start to finish. How-
ever, to help the reader who is eager to get to one of the later chapters as soon as
possible or the teacher who has only time for a limited amount of course material,
Fig. 0.1 gives a list of chapter dependencies.

The “main track” is listed on the left of the figure: and it represents the minimal
dependencies required to continue to the next chapter. Having read the core sections,

Preface IX

Core

Chapter 1
AB grammars
Sections 1.1–1.5

Learning
Section 1.6

Chapter 2
Lambek calculus
Sections 2.1–2.8

Models, Context-
freeness
Sections 2.9–2.12

Chapter 3
Semantics
Sections 3.1–3.3

Selected applica-
tions
Sections 3.4–3.8

Chapter 4
NL
Sections 4.1–4.3

Models, Complex-
ity
Sections 4.4–4.6

Chapter 5
Multimodal CG
Sections 5.1–5.3

Models
Sections 5.4–5.6

Chapter 6
Proof nets
Sections 6.1–6.5

Processing and
Semantics
Sections 6.6–6.7

Chapter 7
Multimodal
Proof nets
Section 7.1

Grail and Wide-
Coverage Parsing
Section 7.2

Fig. 0.1. Chapter dependencies

in the gray-shaded box, the reader can continue reading in a number of ways: either
continue onward to the chapter on Montague Semantics or jump directly to the non-
associative Lambek calculus or to the proof net chapter. It should be noted that this
main track is rather restricted and that many fundamental results are found in the
“optional” track on the right of the figure — which includes important topics such as

X Preface

model theory, Pentus’s context-freeness result for the Lambek calculus and formal
learning theory, but which are sections that the reader can skip without it affecting
his comprehension of later chapters. The goal of Fig. 0.1 is to allow the eclectic
teacher, researcher, or student pick his most efficient path through the material in
this book to the topics which interest him most.

Further Reading

For further general references on the logical view of categorial grammars we recom-
mend two chapters of the Handbook of Logic and Language (van Benthem and ter
Meulen, 1997), namely (Buszkowski, 1997; Moortgat, 1997), and the revised and
extended chapter (Moortgat, 2011) in (van Benthem and ter Meulen, 2011) as well
as the article on type-logical grammar on the Stanford Encyclopedia of Philosphy
website (Moortgat, 2010).

Other recommended recent references, which are in many ways complementary
to the current textbook, are Glyn Morrill’s textbook (Morrill, 2011), which contains
a wealth of material on linguistic applications and on proof nets and processing (as
discussed briefly in our Sect. 6.6) and Richard Oehrle’s introduction to multimodal
categorial grammar (Oehrle, 2011).

Finally, let us say that our logical view of categorial grammar is not the only
one, and regarding the combinatorial view of categorial grammars we recommend
(Steedman, 1997).

Recent Advances in Categorial Grammars

Though this book discusses only the classical results, categorial grammars in the
tradition of the Lambek calculus are still an active area of research. As an indica-
tion of some recent developments, we mention only the Lambek–Grishin calculus
(Moortgat, 2009; Bernardi and Moortgat, 2010) and the Discontinous Lambek cal-
culus (Morrill, 2011; Morrill et al, 2011). The background provided by the current
book should be more than sufficient to allow the interested reader to follow these
recent developments.

In the mid-1990s, the introduction of the minimalist program moved mainstream
syntax closer to categorial grammars. Working with a formalization of minimal-
ist grammars introduced by Stabler (1997), Lecomte, Retoré and some of their
students, Amblard, Anoun, have been able to make this correspondence precise
by introducing Categorial Minimalist Grammars, within the parsing-as-deduction
paradigm, thus enriching minimalist grammars with a neat computational semantics
(Lecomte and Retoré, 1999; Lecomte, 2011).

Let us also mention a different syntactic formalism, the abstract categorial gram-
mars of de Groote (2001). They rely on the representation of trees and strings in the
simply typed lambda calculus (as opposed to using the structure of the antecedent
to represent trees and strings as we do here). Thus, it is closer to the interface be-
tween categorial syntax and semantics discussed in our chapter on Montague seman-
tics than to usual categorial grammar with parsing-as-deduction. Abstract categorial

Preface XI

grammars define interesting classes of formal languages, with hierarchies that more
or less match the ones of formal language theory, and there is a natural correspon-
dence with semantics.

History of the Book

A first version of these notes was written by Christian Retoré, for a lecture on “The
Logic of Categorial Grammars” at ESSLLI 2000. The section on categorial grammar
acquisition was added for an ACL 2001 tutorial.

Thereafter it was used and improved on various occasions including a lecture
at ESSLLI 2003, a crash course at EALING 2003 and 2008, Master lectures in
Bordeaux from 2002 to 2011, and in Verona in 2006 and 2010.

Richard Moot extended these early notes, in part for an ESSLLI 2004 course, by
adding chapters on the non-associative Lambek calculus, the multimodal Lambek
calculus and multimodal proof nets as well as by adding supplementary material
and exercises to the other chapters.

Thereafter we produced joint revisions, additions and updates of the book with
an independent chapter on Montague semantics.

Acknowledgments

Introductions are always difficult to write and we benefited from the solid advice of
Eco (1987) to guide us.

We would like to thank the editorial team at Springer for their support and en-
couragement during the long gestation period of this book — read Chap. 23 of
(Kahneman, 2011) for some thoughtful comments on estimated times until the com-
pletion of a book! — and the anonymous Springer referees for their insightful and
thorough comments.

We would like to thank our employers, CNRS and Université de Bordeaux gath-
ered in our LaBRI lab, as well as the projects supported by LaBRI, INRIA and the
Conseil Régional d’Aquitaine Grammaire du Français and Itipy. Further financial
support was provided by the ANR projects Prélude and Loci. The current collabo-
ration started with the creation of our research group SIGNES (LABRI-CNRS and
INRIA), and special thanks go to their respective directors Serge Dulucq and Claude
Puech for their support in creating the team.

Special thanks also go to our proofreaders Ivano Ciardelli and Noémie-Fleur
Sandillon-Rezer, who spotted many typos and other mistakes and suggested sev-
eral improvements and clarifications.

We would also like to thank the following colleagues, course participants
and readers for their comments on the lectures and on earlier drafts of the
current lecture notes: Anne Abeillé, Vito Michele Abrusci, Maxime Amblard,
Houda Anoun, Nicholas Asher, Christian Bassac, Denis Béchet, Nicolas Belgolo,
Claire Beyssade, Philippe Blache, Roberto Bonato, Pierre Bourreau, Joan Busquets,
Claudia Casadio, Pierre Castéran, Lionel Clément, Francis Corblin, Bruno Courcelle,
Dick Crouch, Laurence Danlos, Denis Delfitto, Alexandre Dikovsky, Luca Ducchesi,
Gaetano Fiorin, Marie-Renée Fleury, Annie Foret, Christophe Fouqueré,

XII Preface

Nissim Francez, Sean Fulop, Claire Gardent, Christoper Götze, Herman Hendriks,
Patrick Henry, Gérard Huet, Dan Klein, Greg Kobele, Joachim Lambek,
Anaı̈s Lefeuvre, Yannick Le Nir, Alda Mari, Jean-Yves Marion, Renaud Marlet,
Ralf Matthes, Chiara Melloni, Bruno Mery, Laurent Miclet, Glyn Morrill,
Philippe Muller, Reinhard Muskens, David Nicolas, Guy Perrier, Daniele Porello,
Laurent Prévot, Myriam Quatrini, Sylvain Salvati, Philippe Schlenker,
Géraud Sénizergues, Edward Stabler, Isabelle Tellier, Jacopo Terragrossa,
Marc Tommasi, Maria Vender, Willemijn Vermaat, Natalia Vinogradova,
Emilie Voisin and Gilles Zémor.

We would also like to thank the people with whom we have worked on mate-
rial included in or related to this book especially Jean-Yves Girard, Alain Lecomte
and Michael Moortgat and also Raffaella Bernardi, Philippe de Groote, François
Lamarche, Richard Oehrle, Mario Piazza, Sylvain Pogodalla, and Quintijn Puite.

Last but not least, we have a special thought for one of our commentators
who brought his enthusiasm to every ESSLLI: Paul Gochet, who passed away on
June 21, 2011.

References XIII

References

Akmajian, A., Demers, R.A., Farmer, A.K., Harnish, R.M.: Linguistics: An Introduction to
Language and Communication, 5th edn. MIT Press (2001)

Bar-Hillel, Y.: Logical syntax and semantics. Language 30(2), 230–237 (1954)
Barnes, J.: Les catégories et les Catégories. In: Bruun, O., Corti, L. (eds.) Les Catégories Et

Leur Histoire. Histoire de la philosophie, pp. 11–80. Vrin (2005)
van Benthem, J., ter Meulen, A. (eds.): Handbook of Logic and Language. North-Holland

Elsevier, Amsterdam (1997)
van Benthem, J., ter Meulen, A. (eds.): Handbook of Logic and Language, 2nd edn. North-

Holland Elsevier, Amsterdam (2011)
Bernardi, R., Moortgat, M.: Continuation semantics for the Lambek-Grishin calculus. Infor-

mation and Computation 208, 397–416 (2010)
Buszkowski, W.: Mathematical linguistics and proof theory. In: van Benthem and ter Meulen,

ch. 12, pp. 683–736 (1997)
Chomsky, N.: Logical syntax and semantics: their linguistic relevance. Language 31(1), 36–45

(1955)
Eco, U.: Come scrivere un’introduzione. L’espresso – La bustina di Minerva Ristampato in

Il secondo diario minimo, Bompiani, 1992, pp. 105–106 (1987); English translation: How
to write an introduction. In: How to Travel with a Salmon & Other Essays. Harcourt Brace
(1994)

Girard, J.Y.: Linear logic: its syntax and semantics. In: Girard, J.Y., Lafont, Y., Regnier, L.
(eds.) Advances in Linear Logic. London Mathematical Society Lecture Notes, vol. 222,
pp. 1–42. Cambridge University Press (1995)

Girard, J.Y.: The Blind Spot: Lectures on Logic. European Mathematical Society (2011)
Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in Theoretical Com-

puter Science, vol. 7. Cambridge University Press (1988)
Godel, R. (ed.): Les sources manuscrites du Cours de linguistique générale de F. de Saussure.

E. Droz (1957)
de Groote, P.: Abstract categorial grammars. In: Proceedings of the 39th Annual Meeting of

the Association for Computational Linguistics, ACL 2001. ACL, Toulouse (2001)
Harrison, M.A.: Introduction to Formal Language Theory. Addison Wesley (1978)
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation.

Addison-Wesley, Reading (1979)
Kahneman, D.: Thinking, Fast and Slow. Farrar, Straus and Giroux (2011)
Lambek, J.: The mathematics of sentence structure. American Mathematical Monthly,

154–170 (1958)
Lecomte, A.: Meaning, Logic and Ludics. Imperial College Press (2011)
Lecomte, A., Retoré, C.: Towards a minimal logic for minimalist grammars: a transforma-

tional use of Lambek calculus. In: Formal Grammar, FG 1999, pp. 83–92. FoLLI (1999)
Moortgat, M.: Categorial type logics. In: van Benthem and ter Meulen, ch. 2, pp. 93–177

(1997)
Moortgat, M.: Symmetric categorial grammar. Journal of Philosophical Logic 38(6), 681–710

(2009)
Moortgat, M.: Typelogical grammar. Stanford Encyclopedia of Philosohpy Website (2010),

http://plato.stanford.edu/entries/typelogical-grammar/

Moortgat, M.: Categorial type logics. In: van Benthem and ter Meulen, ch. 2, pp. 95–179
(2011)

http://plato.stanford.edu/entries/typelogical-grammar/

XIV Preface

Morrill, G.: Categorial Grammar: Logical Syntax, Semantics, and Processing. Oxford Uni-
versity Press (2011)

Morrill, G., Valentı́n, O., Fadda, M.: The displacement calculus. Journal of Logic, Language
and Information 20(1), 1–48 (2011)

Oehrle, R.T.: Multi-modal type-logical grammar. In: Borsley, R., Börjars, K. (eds.) Non-
transformational Syntax: Formal and Explicit Models of Grammar, ch. 6, pp. 225–267.
Wiley-Blackwell (2011)

Pentus, M.: Lambek grammars are context-free. In: Logic in Computer Science. IEEE Com-
puter Society Press (1993)

Stabler, E.P.: Derivational Minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS (LNAI),
vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

Steedman, M.: Surface structure and interpretation. Linguistic Inquiry Monographs, vol. 30.
MIT Press, Cambridge (1997)

Contents

Preface . VII
References . XIII

1 Classical Categorial Grammars: AB Grammars 1
1.1 Semantic Categories and Ajdukiewicz Fractions 1
1.2 Classical Categorial Grammars or AB Grammars 2
1.3 AB Grammars and Context-Free Grammars . 6

1.3.1 Context-Free Grammars . 6
1.3.2 From Context-Free Grammars to AB Grammars 7
1.3.3 From AB Grammars to Context-Free Grammars 8

1.4 Parsing AB Grammars . 8
1.5 Limitations of AB Grammars . 9
1.6 Learning AB Grammars . 9

1.6.1 Grammatical Inference for Categorial Grammars 10
1.6.2 Unification and AB Grammars . 10
1.6.3 The RG Algorithm . 11
1.6.4 Other Cases . 15

1.7 Concluding Remarks . 16
Exercises for Chapter 1 . 18
References . 21

2 A Logic for Categorial Grammars: Lambek’s Syntactic Calculus 23
2.1 Lambek’s Syntactic Calculus and Lambek Grammars 23
2.2 Natural Deduction for the Lambek Calculus . 24

2.2.1 In Prawitz Style . 24
2.2.2 In Gentzen Style . 27

2.3 Sequent Calculus . 28
2.4 Equivalence of Sequent Calculus and Natural Deduction 31

2.4.1 From Natural Deduction to Sequent Calculus 31
2.4.2 From Sequent Calculus to Natural Deduction 31

2.5 The Empty Sequence . 33
2.6 Normalization of Natural Deduction . 33

XVI Contents

2.6.1 Normalization for the Product-Free Lambek Calculus 34
2.6.2 Decidability of Natural Deduction . 37
2.6.3 Normalization and Lambek Calculus with Product 39

2.7 Cut-Elimination for the Sequent Calculus . 39
2.8 Decidability . 43
2.9 Models for the Lambek Calculus and Completeness 44

2.9.1 Residuated Semi-groups . 44
2.9.2 The Free Group Model . 45
2.9.3 L Is Sound and Complete w.r.t. Residuated Semi-groups . . . 46
2.9.4 L Is Sound and Complete w.r.t. (Free) Semi-group

Models . 47
2.10 Interpolation . 48
2.11 Lambek Grammars and Context-Free Grammars 52

2.11.1 From Context-Free Grammars to Lambek Grammars 53
2.11.2 A Property of the Free Group . 53
2.11.3 Interpolation for Thin Sequents . 55
2.11.4 From Lambek Grammars to Context-Free Grammars 57

2.12 Concluding Remarks . 58
Exercises for Chapter 2 . 60
References . 62

3 Lambek Calculus and Montague Grammar . 65
3.1 Introduction . 65
3.2 Logic and Lambda Calculus . 66

3.2.1 Typed Lambda Calculus and Intuitionistic Propositional
Calculus . 66

3.2.2 First Order Logic, Mono and Multisorted 69
3.2.3 Second Order and Higher Order Logic 71
3.2.4 Lambda Terms and Logical Formulae 72

3.3 From Categorial Analysis to Montague Semantic Analysis 74
3.4 Some Typical Examples . 76
3.5 Determiners, Quantifiers and Type Raising . 84
3.6 Lambek Calculus and Discourse Representation Theory 86
3.7 A Word about Intensional Logic . 93
3.8 Concluding Remarks . 95
Exercises for Chapter 3 . 96
References . 98

4 The Non-associative Lambek Calculus . 101
4.1 Introduction . 101
4.2 Proof Theory . 102

4.2.1 Sequent Calculus . 103
4.2.2 Arguments against Associativity . 105
4.2.3 Cut Elimination for the NL Sequent Calculus 107
4.2.4 Natural Deduction . 110

Contents XVII

4.3 Structural Rules . 111
4.4 Combinator Calculi for NL . 113

4.4.1 Alternative Axiomatic Presentations . 114
4.4.2 Equivalence between the Axiomatic Representation

and Sequent Calculus . 116
4.5 Model Theory . 120

4.5.1 Soundness and Completeness . 122
4.5.2 Adding Structural Rules . 126

4.6 Polynomial Complexity . 129
4.6.1 Complexity . 129
4.6.2 De Groote’s Context Calculus SC . 130
4.6.3 A Theorem Proving Algorithm . 139
4.6.4 NL without Product . 140

4.7 Concluding Remarks . 143
Exercises for Chapter 4 . 144
References . 147

5 The Multimodal Lambek Calculus . 149
5.1 Combining Different Calculi . 149

5.1.1 Multimodal Structural Rules . 151
5.2 Unary Connectives . 160

5.2.1 The Unary Connectives of Linear Logic 160
5.2.2 Unary Residuation . 162
5.2.3 Structural Rules . 165
5.2.4 The General Form of Structural Rules 170
5.2.5 Cut Elimination . 172

5.3 Natural Deduction . 175
5.4 Axiomatic Presentation . 178
5.5 Model Theory . 180

5.5.1 Completeness for Weak Sahlqvist Postulates 183
5.6 Concluding Remarks . 184
Exercises for Chapter 5 . 185
References . 190

6 Lambek Calculus and Linear Logic: Proof Nets as Parse
Structures . 193
6.1 The Formula Language of Categorial Grammar and of Linear

Logic . 193
6.1.1 The Formula Language of Multiplicative Linear Logic 193
6.1.2 Reduced Linear Language (Negative Normal Form) 195
6.1.3 Relating Categories and Linear Logic Formulae:

Polarities . 195
6.2 Two Sided Calculi . 197

6.2.1 Properties of the Linear Two Sided Sequent Calculus 197
6.2.2 The Intuitionistic Two Sided Calculus LPε 199
6.2.3 Proofs as Parse Structures: Too Many of Them 201

XVIII Contents

6.3 A One Sided Calculus for Linear Logic: MLL 201
6.3.1 Variants . 202
6.3.2 The Intuitionistic Restriction in One Sided Calculi 203

6.4 Proof Nets: Concise and Expressive Proofs . 206
6.4.1 Proof Nets for MLL . 207
6.4.2 Sequent Calculus and Proof Nets . 211
6.4.3 Intuitionistic Proof Nets . 214
6.4.4 Cyclic Proof Nets . 215
6.4.5 Proof Nets for the Lambek Calculus — With or Without

Empty Antecedent . 218
6.4.6 Cut Elimination for Proof Nets . 221
6.4.7 Cuts and Non-commutative Proof Nets 223
6.4.8 Basic Properties of Graphs and Proof Nets 225

6.5 Parsing as Proof Net Construction . 227
6.6 Proof Nets and Human Processing . 229
6.7 Semantic Uses of Proof Nets . 231
6.8 Concluding Remarks . 233
Exercises for Chapter 6 . 234
References . 236

7 Proof Nets for the Multimodal Lambek Calculus: From Theory
to a Wide-Coverage Categorial Parser . 239

7.1 Multimodal Proof Nets . 239
7.1.1 Two Sided Proof Nets . 240
7.1.2 Multimodal Proof Structures and Abstract Proof

Structures . 245
7.1.3 Proof Nets and Contractions . 255
7.1.4 Sequent Calculus and Multimodal Proof Nets 262

7.2 Grail: Parsing with Multimodal Proof Nets . 271
7.2.1 Interactive Parsing . 272
7.2.2 Pruning the Search Space . 279
7.2.3 Wide-Coverage Parsing . 283

7.3 Concluding Remarks . 293
Exercises for Chapter 7 . 294
References . 296

Index . 299

1

Classical Categorial Grammars:
AB Grammars

Summary. This first chapter deals with material from the late fifties and early sixties, but
which nevertheless introduces the design of categorial grammars, which are lexcalized gram-
mars, as opposed to the phrase structure grammars like context-free grammars that were
introduced afterwards.

Although the success of phrase structure grammars went far beyond that of categorial
grammars, their lexicalization was in fact an attractive feature, another one being their con-
nection to logical semantics.

We end with more recent results: a learning algorithm for categorial grammars, which was
proved to converge at the end of the nineties. Having a learning algorithm for a class of gram-
mars which can describe (small parts of) natural language is, we think, quite an important
feature of categorial grammars. It comes from their lexicalization and logical formulation,
which will be further studied in the next chapter.

1.1 Semantic Categories and Ajdukiewicz Fractions

Though many of the ideas behind categorial grammars can be traced to the work
of Husserl, Frege and Russell, we begin this introduction to categorial grammars
with the work of Ajdukiewiz. For the history of categorial grammars, we refer the
reader to (Casadio, 1988; Morrill, 2007). In 1935 Ajdukiewicz defined a calculus of
fractions to test the correctness of logical statements (Ajdukiewicz, 1935):

The discovery of antinomies, and the method of their resolution have
made problems of linguistic syntax the most important problems of logic
(provided this word is understood in a sense that also includes meta-
theoretical considerations). Among these problems that of syntactic con-
nection is of the greatest importance for logic. It is concerned with the
specification of the conditions under which a word pattern constituted of
meaningful words, forms an expression which itself has a unified meaning
(constituted, to be sure, by the meaning of the single words belonging to it).
A word pattern of this kind is called syntactically connected.

R. Moot and C. Retoré: The Logic of Categorial Grammars 2012, LNCS 6850, pp. 1–22, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 1 AB Grammars

His paper deals with both the formal language of logic and natural language, but is
actually more concerned with the language of propositional and predicate logic.

If one applies this index symbolism to ordinary language, the semantic
categories which we have assumed (in accordance with Leśniewski) will not
always suffice, since ordinary languages are richer in semantic categories.

Each word (or lexical entry) is provided with an index1 which is a category. Cate-
gories are defined inductively as follows:

Basic categories. The two primitive types n (for entities or individuals or first order
terms) and s (for propositions or truth values) are categories

Fractions. Whenever N is a category and D1, . . . ,Dp is a sequence or multiset of
categories, then N

D1···Dp
is itself a category. These complex categories are called

functor categories or fractions.

If we formalize the definitions in his article, syntactically connected expressions and
their exponents2 are recursively defined as follows:

• a word or lexical entry is syntactically connected, and its exponent is its index.
• given

– n syntactically connected expressions d1, . . . ,dn of respective exponents
D1, . . . ,Dn

– an expression f of exponent N
D1···Dn

the expression f d1 · · ·dn (or any permutation of it) is syntactically connected and
has exponent N.

This in particular entails that sequences of fractions reduce to a single index using
the usual simplifications for fractions. It should be observed that in this “commu-
tative setting” the simplification procedure of the fractions is not that simple if the
bracketing corresponding to subexpressions is not given. As Ajdukiewicz is mainly
concerned with the language of logic where one can use the Polish notation, word
order is not really a problem for him.

1.2 Classical Categorial Grammars or AB Grammars

In 1953, that is a bit before Chomsky introduced his hierarchy of Phrase Structure
Grammars (Chomsky, 1955), Bar-Hillel defines bidirectional categorial grammars
(Bar-Hillel, 1953), refining Ajdukiewicz types to take constituent order into account.
Therefore, his grammars are more adequate for modeling natural language, where

1 Ajdukiewicz uses the word “index” interchangeably with the word “category”.
2 Ajdukiewicz uses the word “exponent” to mean the result category of an expression af-

ter reduction rules. For example, the exponent of s
n n is s, which should be reminiscent

of the simplification of a fraction which is multiplied by its denominator in elementary
mathematics: A

B ×B simplifying to A.

1.2 Classical Categorial Grammars or AB Grammars 3

word order is crucial. We will use Lambek’s notation for types (Lambek, 1958),
following Bar-Hillel in his later work on categorial grammars.

In the literature, these grammars are called AB grammars, classical categorial
grammars or basic categorial grammars.

Types or fractions are defined as follows:

L ::= P | (L\L) | (L/L)

where P is the set of primitive types, which we will also call atomic types or basic
categories, which usually contains S (for sentences) np (for noun phrases) and n (for
nouns), and may include pp (for prepositional phrase) in f (for infinitives) etc.

We will often omit the outer brackets when this does not lead to confusion and
write np \ S instead of (np \ S) and (np \ S)/np instead of ((np \ S)/np).

A note on the terminology used throughout this book (and much of the literature
on categorial grammars): we often use the terms category, formula and (syntactic)
type interchangeably. Since we will discuss semantic types only in Chapter 3, un-
less otherwise indicated, the word ‘type’ will mean syntactic type (or category or
formula, that is a member of L).

It is usual to talk about a formula of type B\A or A/B as a functor, the formula
B as its argument and the formula A as its result. Speaking colloquially, we will
say a formula B \A or A /B (the functor) selects a B (the argument) to form an A
(the result). As we will see in Chapter 3, talking about functions and arguments is
not just a convenient way to refer to syntactic combinations, the function/argument
distinction has direct semantic import. Finally, types of the form A \A or A /A are
often called modifiers or A-modifiers. They take an argument of type A to produce a
result of the same type.

The grammar is defined by a lexicon, that is a function Lex which maps words or
terminals to finite sets of types (a set of types is needed, since in natural language
a single word may admit various constructions: “eat” may ask for an object or not,
for instance).

An expression, that is a sequence of words or terminals w1 · · ·wn, is of type u
whenever there exists for each wi a type ti in Lex(wi) such that t1 · · · tn −→ u with
the following reduction patterns:

∀u,v ∈ L
u (u \ v)−→ v (\e)

(v/u) u−→ v (/e)

These rules are called elimination rules, or simplifications, or modus ponens.
An application of an elimination rule is defined as for context-free grammars:

inside a sequence of types, we replace the left-hand side of an elimination rule by
its right-hand side, in other words, if Γ and Γ ′ are lists of types then applications of
the elimination rules rewrite Γ u u\v Γ ′ to Γ v Γ ′ (for \e) and Γ v/u u Γ ′ to Γ v Γ ′
(for /e). These rule applications should be compared to the “rewrites immediately”
relation for context-free grammars which we will discuss below on page 6.

These rules provide the symbols \ and / with an intuitive meaning: an expression
y is of type A\B whenever it needs an expression a of type A on its left to obtain an

4 1 AB Grammars

expression ay of type B; symmetrically, an expression z is of type B/A whenever it
needs an expression a of type A on its right to obtain an expression za of type B;

The set of sentences or the language generated by the grammar is the set of word
sequences of type S.

The derivation tree is simply a binary tree whose leaves are the types ti and whose
nodes are labeled by rules /e and \e.

Example 1.1 (A Tiny AB Grammar)
Consider the following lexicon:

Word Type(s) Translation
cosa (S / (S /np)) what

guarda (S / in f) he/she watches
passare (in f /np) passing by

il (np /n) the
treno n train

The sentence ‘guarda passare il treno’ (he/she watches the train passing by) belongs
to the generated language:

(S / in f) (in f /np) (np /n) n
−→ (S / in f) (in f /np) np
−→ (S / in f) in f
−→ S

(1.1)

The derivation tree for this analysis can be written as:

/e

(S / in f) /e

(in f /np) /e

(np /n) n

(1.2)

A final way of presenting the same analysis is shown below. Compared to the anal-
ysis above, it is written upside-down. It uses explicit Lex rules and gives the result
category of each rule application.

guarda
Lex

S / in f

passare
Lex

in f /np

il
Lex

np /n

treno
Lex

n
/e

np
/e

in f
/e

S

(1.3)

1.2 Classical Categorial Grammars or AB Grammars 5

Though derivation 1.3 appears more detailed, it is actually equivalent to
derivation 1.2: the rule name and the daughter categories suffice to deduce the result
category in a bottom-up way, from the leaves to the root node. Derivation 1.3 cor-
responds to the natural deduction derivations we will see in Section 2.2.1. Deriva-
tion 1.2 corresponds to the derivation format used for the learning algorithms in
Section 1.6. Finally, the flat structure of derivation 1.1 is close to the derivations of
context-free grammars, a point we will explore further in the next section.

Returning to the lexicon above, we remark that the sentence ‘cosa guarda pas-
sare’ (what is he/she looking passing by?) does not belong to the generated lan-
guage: indeed the sequence

(S / (S /np)) (S / in f) (in f /np)

does not contain anything that could be reduced.

It should be observed that AB grammars are lexicalized: that is to say, the gram-
mar consists of the following two components:

1. a universal set of rules which is common to all languages (“universal grammar”
in the terminology of (Chomsky, 1995); for AB grammars these are just the two
reduction patterns \e and /e above)

2. a lexicon, which is responsible for all differences between individual languages.

As such, the universal grammar — and its formal properties — becomes an object
of study in itself. This lexicalist view is coherent with many modern linguistic theo-
ries, like the minimalist program of Chomsky (Chomsky, 1995) (language variation
is only lexical), and with some formalisms for computational linguistics, like (Lex-
icalized) Tree Adjoining Grammars (Joshi et al, 1975; Joshi and Schabes, 1997) or
Head-Driven Phrase Structure Grammars (Pereira and Shieber, 1987; Pollard and
Sag, 1994).

Another observation is that the rules are like modus ponens, but in a logic where
contraction and weakening are not allowed, and where the order of the hypothesis
is taken into account (see Girard, 1995, for a clear and intuitive introduction to
the structural rules seen from the perspective of linear logic). The relation between
categorial grammars and (linear) logic will be a major theme of this book.

Let us state one of the first results on categorial grammars known as the Gaifman
theorem of (Bar-Hillel et al, 1963) which is more or less equivalent to the existence
of a Greibach normal form for context-free grammars:

Proposition 1.2. Every AB grammar is equivalent to an AB grammar containing
only types of the form

p (p /q) ((p /q)/ r)

where p, q, r stand for primitive types.

Proof. This theorem is an immediate consequence of Propositions 1.11 and 1.10 to
be proved below using the well-known Greibach normal form theorem (Greibach,
1965). ��

6 1 AB Grammars

1.3 AB Grammars and Context-Free Grammars

1.3.1 Context-Free Grammars

Context-Free Grammars (CFGs) were introduced in (Chomsky, 1955) and a good
introduction is provided in (Hopcroft and Ullman, 1979); we use the following stan-
dard notation:

• M∗ stands for the set of finite sequences over the set M.
• M+ stands for the set of finite non empty sequences over the set M.
• ε stands for the empty sequence of M∗.

Definition 1.3 (Context-free grammar). A context-free grammar is defined by:

[Non Terminals] a set NT of symbols called non terminals, one of them being the
start symbol S.

[Terminals] set T of symbols, disjoint from NT , called terminals (or words accord-
ing to the linguistic viewpoint)

[Production rules] a finite set of production rules of the form X −→W with X ∈ NT
and W ∈ (T ∪NT)∗

We say a a context-free grammar is lexicalized if each production rule contains a
member of T on its right hand side.

A sequence V ∈ (T ∪NT)∗ is said to rewrite immediately into a sequence W ∈
(T ∪NT)∗ whenever there exists W ′,W ′′,W ′′′ ∈ (T ∪NT)∗ and a non terminal X
such that

• V =W ′X W ′′′
• X −→W ′′ is a production rule.
• W =W ′W ′′W ′′′

The relation −→ is defined over sequences in (T ∪NT)∗ as the transitive closure
of “rewrites immediately into”. The language generated by a CFG is the smallest
subset of T ∗ containing the sequences into which S rewrites.

Two grammars which generate the same languages are said to be weakly
equivalent.

Whenever a non-terminal N rewrites into a sequence of terminals and non termi-
nals X1, . . . ,Xn it is possible (as linguists often do) to denote the derivation tree by a
term T representing this derivation tree as follows:

• a non terminal or a terminal is a derivation tree and its yield is itself.
• if T1, . . . ,Tn are derivation trees of X1, . . . ,Xn and if X −→ X1 · · ·Xn is a rule of

the grammar then [X T1, . . . ,Tn] is a derivation tree labeled X and its yield is the
concatenation of the yields of T1, . . . ,Tn.

Obviously a sequence of terminals a1 · · ·an is in the language if and only if there
exists a derivation tree labeled S the yield of which is a1 · · ·an. We denote by ε the
empty sequence.

Two grammars which generate the same derivation trees are said to be strongly
equivalent.

1.3 AB Grammars and Context-Free Grammars 7

Definition 1.4. A CFG is said to be ε-free whenever ε does not belong to the gen-
erated language.

It is not difficult to decide whether a CFG is ε-free or not, and if it is not ε-free, the
grammar can be written with the production rules of an ε-free CFG, together with
the rule: S −→ ε .

Definition 1.5 (Chomsky normal form). A CFG is said to be in Chomsky normal
from whenever its production rules are of the form X −→Y Z or of the form X −→ a,
with X ,Y,Z ∈ NT and a ∈ T .

Proposition 1.6. Any ε-free CFG can be transformed into a weakly equivalent CFG
in Chomsky normal form and this transformation can be performed in polynomial
time (see Chomsky, 1963; Hopcroft and Ullman, 1979).

Definition 1.7 (Greibach normal form). A CFG is said to be in Greibach normal
form whenever its production rules are of the form: X −→ aX1 · · · Xn with a ∈ T ,
X ,X1, . . . ,Xn ∈ NT . It is said to be in strong Greibach normal form whenever n≤ 2.

Proposition 1.8. Any ε-free CFG can be turned into a CFG in (strong) Greibach
normal form, and these transformations can be performed in polynomial time (see
Greibach, 1965; Harrison, 1978).

Transforming a CFG into its Greibach normal form is a way of lexicalizing this
grammar, since each rule of a grammar in Greibach normal form contains a terminal.
While the derivation trees of a CFG and the ones of its Chomsky normal form are
closely related, the derivation trees of the Greibach normal from of a CFG can be
very different from the derivation trees of the original CFG: to lexicalize a CFG
while preserving the analyses, one has to move to TAGs (Schabes and Waters, 1993;
Joshi and Schabes, 1997).

1.3.2 From Context-Free Grammars to AB Grammars

The relationship between CFG and AB grammars was the subject of a detailed in-
vestigation in the early sixties (Bar-Hillel et al, 1963).

Proposition 1.9. Every ε-free Context-Free Grammar in Greibach normal form is
equivalent to an AB categorial grammar.

Proof. Let us consider the following AB grammar:

• Its words are the terminals of the CFG.
• Its primitive types are the non terminals of the CFG.
• Lex(a), the finite set of types associated with a terminal a contains the for-

mulae ((· · · ((X /Xn) /Xn−1) / · · ·) /X2) /X1 such that there are non terminals
X ,X1, . . . ,Xn such that X −→ aX1 · · ·Xn is a production rule.

It is then easily observed that the derivation trees of both grammars are
isomorphic. ��

8 1 AB Grammars

Proposition 1.10. Each ε-free context-free grammar is weakly equivalent to an AB
grammar containing only types of the form X or X /Y or (X /Y)/Z.

Proof. Here we provide the reader with a simple “modern proof” using the exis-
tence of a Greibach normal from: indeed the Gaifman theorem first published in
(Bar-Hillel et al, 1963) was proved before the existence of Greibach normal form
for CFGs (Greibach, 1965), and these two theorems are actually more or less
equivalent.

According to Proposition 1.8, any context-free grammar can be turned into a
weakly equivalent CFG in strong Greibach normal form. As can be observed from
the construction of an equivalent AB grammar in the previous proof, if the CFG
is in strong Greibach normal form that is if rules are of the form: X −→ aX1 · · ·Xn

with 0≤ n≤ 2, then the corresponding AB grammar only uses types of the form X ,
X /X1, (X /X2)/X1. ��

1.3.3 From AB Grammars to Context-Free Grammars

Proposition 1.11. Every AB grammar is strongly equivalent to a CFG in Chomsky
normal form.

Proof. Let G be the CFG defined by:

• Terminals T are the words of the AB grammar.
• Non Terminals NT are all the subtypes of the types appearing in the lexicon of

the AB grammar — a type is considered to be a subtype of itself.
• The production rules are of two kinds:

– X −→ a whenever X ∈ Lex(a)
– X −→ (X /Z) Z and X −→ Z (Z \X) for all X ,Z ∈ NT — keep in mind that

from the CFG viewpoint (Z \X) and (X /Z) are both non terminal symbols.

This defines a CFG because the lexicon is finite, so there are only finitely many sub-
types of types in the lexicon, hence finitely many production rules. The derivation
trees in both formalisms are isomorphic. ��

1.4 Parsing AB Grammars

Theorem 1.12. A sentence of n words can be analyzed using an AB grammar in
O(n3) time using O(n2) space.

Proof. (easy exercise) Following the relation between AB grammars and CFGs in
Chomsky normal form, it is not difficult to adapt the Cocke Kasami Younger algo-
rithm (see e.g. Sikkel and Nijholt, 1997) to AB grammars. ��

1.6 Learning AB Grammars 9

1.5 Limitations of AB Grammars

In an AB grammar one is not able to derive (t / v) from (t /u) and (u /v). Consider
for instance the Italian sentence ‘Cosa guarda passare?’ we’ve seen in Example 1.1.
One is not able to derive it with the simple type assignments given there. We would
need transitivity of / to obtain it:

(S / (S /np)) (S / in f) (in f /np)
(trans.)−→ (S / (S /np)) (S /np) −→ S

We would also like to model the behavior of an object relative pronoun like
that/whom, by providing it with the type (n \ n)/(S / np) but unfortunately this too
requires transitivity — unless a transitive verb also has the type np \ (S /np), but it
is rather unusual to analyze English verbs as combining first with their subjects and
then with their objects, and, in our view, it is rather unnatural to require the verb to
have different types when combining with a subject relative pronoun (n\n)/(np\S)
and when combining with an object relative pronoun (n \ n)/(S /np).

On the mathematical side, one would like to interpret categories by subsets of
a free monoid (the intended one being sequences of words), so that the subset of
sequences of type S are precisely the correct sentences. This is indeed impossible:
one may view the elimination rules as modus ponens, but then what is lacking are
introduction rules to get completeness of the calculus with respect to this natural
monoidal interpretation. This is solved by the Lambek calculus which we will study
in the next chapter.

1.6 Learning AB Grammars

We will end our study of AB grammars with an interesting property: they enjoy good
learning algorithms from positive examples, at least when examples are structured.
This learning question is important for the following two reasons:

• It models, although very roughly, the process of language acquisition and more
precisely of syntax acquisition (Gleitman and Newport, 1995; Pinker, 1995) ex-
tensively discussed in generative linguistics; indeed, it is the main justification
for the existence of a universal grammar see e.g. (Chomsky, 1995).
– The similarity with natural language acquisition by human beings, is that

we only learn from positive examples, and that structure is needed for the
language learner.

– The main difference is that the sequence of languages which converges to the
target language is increasing — meaning the learner starts with a set of rules
which generate a subset of the target language, seen as a set of sentences,
and generalizes this set of rules step by step — while in natural language
acquisition the sequence of languages is decreasing — meaning the learner
starts with a set of rules which generate a superset of the target language and
constrains this set of rules.

10 1 AB Grammars

• This learning algorithm provides a method for the automated construction of
a grammar (that is a lexicon) from a corpus, which also can be viewed as an
automated method for completing an existing grammar/lexicon.

1.6.1 Grammatical Inference for Categorial Grammars

Learning (also called grammatical inference) from positive examples is the follow-
ing problem: define a function Learn from finite sets of positive examples to gram-
mars of a given class G , such that:

• Given a grammar G of the class G and an enumeration s1,s2, . . . of the sen-
tences G generates, letting Exi = {s1, . . . ,si}, there exists an N such that for all
n≥ N the grammar Learn(Exn) is constant and exactly generates the sentences
produced by G.

• The following is not mandatory, but one usually asks for this extra property: for
every set of sentences Ex the grammar Learn(Ex) generates all the examples in
Ex

This definition is the so-called identification in the limit introduced by Gold in 1967
(Gold, 1967). The grammars we are to consider are of course AB grammars, but
what will the positive examples be? In our definition the term “sentence” is left
vague. Actually we shall use this definition not with mere sequences of words, but
we will rather consider the derivation trees produced by the grammar, and so our ex-
amples will be derivation trees in which the types of the words are absent: this is not
absolutely unrealistic, because the learner of a language has access to some infor-
mation related to the syntactic structure of the sentences like prosody or semantics;
nevertheless it is unrealistic, because the complete syntactic structure is not fully
known.

The lexicalization of categorial grammars is extremely helpful for this learning
question: indeed we have no rules to learn, but only the types of the words to guess.
Observe that we need to bound the number of types per word; otherwise each new
occurrence of a word may lead to the introduction of a new type for this word, and
this process cannot converge.

As this presentation is just meant to give an idea of learning algorithms, we
only present here the simplest case of learning from structures: the algorithm RG
of Buszkowski and Penn. The AB grammars considered are rigid, that is to say
there is exactly one type per word.

1.6.2 Unification and AB Grammars

The algorithm makes use of type-unification, and this kind of technique is quite
common in grammatical inference (see Nicolas, 1999), so let us briefly define it and
explain its relation to AB grammars. First, we will consider an extended formula
language for AB which has a countable number of type variables, we will use x, y,
x1, x2, . . ., y1, y2, . . . to denote type variables. These variables will play much the

1.6 Learning AB Grammars 11

same role as the atomic formulas, with the exception that we can substitute formulas
for type variables. Given a substitution σ ′, a function from variables to types, we
can extend σ ′ to a substitution σ , a function from types to types as follows (in the
definition below, x denotes any type variable in the formula language).

σ(S) = S

σ(x) =

{
σ ′(x) if σ ′(x) is defined

x otherwise
σ(A\B) = σ(A)\σ(B)
σ(B/A) = σ(B)/σ(A)

Given a substitution σ , we can apply it to the lexicon of an AB grammar. If a sen-
tence is generated by an AB grammar defined by a lexicon Lex then it is also gen-
erated by the AB grammar defined by the lexicon σ(Lex).3

A substitution is said to unify a set of types T if for all types A,B in T one has
σ(A) = σ(B). For such kinds of formulae, whenever a unifier exists, there exists a
most general unifier (mgu) that is a unifier σu such for every unifier τ there exists a
substitution στ such that τ = στ ◦σu.

The relation between two rigid AB grammars with respective lexicons Lex and
Lex′ defined by there exists a substitution σ such that Lex′ = σ(Lex) defines an
order which is a complete lattice, and the supremum of a family corresponds to the
least general grammar generating all the trees of all the grammars in the family.

1.6.3 The RG Algorithm

We present here the RG algorithm (learning Rigid Grammars) introduced by
W. Buszkowski and G. Penn in (Buszkowski, 1987; Buszkowski and Penn, 1990)
and which has been further studied by M. Kanazawa (Kanazawa, 1998).

To illustrate this algorithm, let us take a small set of positive examples:

(1.4) [\e [/e
a man] swims]

(1.5) [\e [/e
a fish][\e swims fast]]

Typing. As the examples are assumed to be correct sentences, we know the root
should be labeled by the type S which is the only type fixed in advance, a
constant.

Each time there is a \e (resp. /e) node labeled y, we know the argument node,
the one on the left (resp. on the right) should be x while the function node the
one on the right (resp. on the left) should be x\ y (resp. y/x)

So by assigning a new variable to each argument node we have typed the
whole tree, and so words have been provided with a type (involving the added
variables and S).

3 This is a slight abuse of notation, but its intended meaning should be clear: we apply the
substitution σ to the elements of the range of the function Lex, so, for any word w, if
Lex(w) is { f1, . . . fn} then σ(Lex)(w) is {σ(f1), . . . ,σ(fn)}.

12 1 AB Grammars

We can do so on our examples; to denote the resulting type, we add it on top
of the opening bracket.

(1.6) [S/e
[x2
\e

a:(x2 / x1) man:x1] swims:(x2 \ S)]

(1.7) [S\e
[y2
/e

a:(y2 / y3) fish:y3][
(y2\S)
\e

swims:y1 fast:(y1 \ (y2 \ S))]]

Unification. The previous steps give us several types per word. For instance the
examples above yield:

Example 1.13
word type1 type2

a: x2 / x1 y2 / y3

fast: y1 \ (y2 \ S)
man: x1

fish: y3

swims: x2 \ S y1

We now have to unify the set of types associated with a single word, and the
output of the algorithm is the grammar/lexicon in which every words gets the
single type which unifies the original types, collected from each occurrence of
a word in each example. If these sets of types can be unified, then the result of
this substitution is a rigid grammar which generates all the examples, and can
be shown to be the least general grammar to generate these examples.
In our example, unification succeeds and leads the most general unifier σu de-
fined as follows:

Example 1.14
σu(x1) = z1

σu(x2) = z2

σu(y1) = z2 \ S
σu(y2) = z2

σu(y3) = z1

which yields the rigid grammar/lexicon:

Example 1.15
a: z2 / z1

fast: (z2 \ S)\ (z2 \ S)
man: z1

fish: z1

swims: z2 \ S

Convergence of the RG Algorithm

This algorithm converges in the sense we defined above, as shown by (Kanazawa,
1998). The technique also applies to learning rigid Lambek grammars from natural
deduction trees (Bonato, 2000) and we follow his presentation.

1.6 Learning AB Grammars 13

For the proof of convergence, we make use of the following notions and nota-
tional conventions:

G⊂G′. This reflexive relation between G and G′ holds whenever every lexical type
assignment a : T in G is in G′ as well — in particular when G′ is rigid, so is G,
and both grammars are identical. Note that this is just the normal subset relation
for each of the words in the lexicon G′: LexG(a)⊂ LexG′(a) for every a in the
lexicon of G′, with LexG(a) non-empty. Keep in mind that in what follows we
will also use the subset relation symbol to signify inclusion of the generated
languages; the intended meaning should always be clear from the context.

size of a grammar. The size of a grammar is simply the sum of the sizes of the
occurrences of types in the lexicon, where the size of a type is its number of
occurrences of base categories (variables or S).

G � G′. This reflexive relation between G and G′ holds when there exists a substi-
tution σ such that σ(G)⊂G′ which does not identify different types of a given
word, but this is always the case when the grammar is rigid.

FA-structure. An FA-structure is a binary tree whose leaves are labeled with words
(terminals) and internal nodes with names of the rules, namely /e and \e. An
analysis in an AB grammar, once the types are erased, is an FA structure, and,
conversely, for every type T , every FA structure can be labeled with types in
order to obtain an analysis of the sequence of words as having category T —
that’s what the typing algorithm does, with T = S. The positive examples we
are using for the RG learning algorithm, see Examples 1.4 and 1.5, are FA-
structures.

FL(G). Given a grammar G, FL(G) is the tree language consisting of all the FA-
structures with root S derived from G.

GF(D). Given a set of FA-structures D, GF(D) is the lexicon obtained by collect-
ing the types of each word in the various examples of D — as in Example 1.13
above.

RG(D). Given a set of examples D, RG(D) is, whenever it exists, the rigid gram-
mar/lexicon obtained by applying the most general unifier to GF(D) — as in
Example 1.15 above.

Proposition 1.16. Given a grammar G, the number of grammars H such that H �G
is finite.

Proof. There are only finitely many grammars which are included in G, since G is
a finite set of assignments. Whenever σ(H) = K for some substitution σ the size of
H is smaller or equal to the size of K, and, up to renaming, there are only finitely
many grammars smaller than a given grammar.

By definition, if H � G then there exist K ⊂ G and a substitution σ such that
σ(H) = K. Because there are only finitely many K such that K ⊂ G, and for every
K there are only finitely many H for which there could exist a substitution σ with
σ(H) = K we conclude that there are only finitely many H such that H � G. ��

14 1 AB Grammars

Proposition 1.17. If G � G′ then FL(G)⊂ FL(G′).

Proof. G � G′ means that there exists σ such that σ(G) ⊂ G′. Let T be an FA-
structure in FL(G), hence T comes from an analysis A of a sequence of words
m1 · · ·mn. If we apply σ to A we obtain an analysis of the same sequence of words
in G′. Indeed for a word whose assignment is T in G we have the assignment σ(T)
which is its assignment in G′, and the types obtained inside the tree match the rules
since σ(A\B) = σ(A)\σ(B) and σ(A/B) = σ(A)/σ(B) So σ(A) is an analysis in
G′ of m1 · · ·mn. Hence, by definition, the FA-structure underlying σ(A) is in FL(G′),
and this underlying FA-structure is σ(T). ��
Proposition 1.18. If GF(D)� G then D⊂ FL(G).

Proof. By construction of GF(D), we have D⊂ FL(GF(D)). In addition, because
of Proposition 1.17, we have FL(GF(D))⊂ FL(G). ��
Proposition 1.19. If RG(D) exists then D⊂ FL(RG(D)).

Proof. By definition RG(D) = σu(GF(D)) where σu is the most general unifier of
all the types of each word. So we have GF(D) � RG(D), and applying Proposi-
tion 1.18 with G = RG(D) we obtain D⊂ FL(RG(D)). ��
Proposition 1.20. If D⊂ FL(G) then GF(D)� G.

Proof. By construction of GF(D), there is exactly one occurrence of a given type
variable x in a tree of D typed as done in the example. Now, viewing the same
tree as a tree of FL(G) at the place corresponding to x there is a type label, say T .
Doing so for every type variable, we can define a substitution by σ(x) = T for all
type variables x: indeed because x occurs once, such a substitution is well defined.
When this substitution is applied to GF(D) it yields a grammar which only contains
assignments from G — by applying the substitution to the whole tree, it remains a
well-typed tree, and in particular the types on the leaves must coincide. ��
Proposition 1.21. When D⊂ FL(G) with G a rigid grammar, the grammar RG(D)
exists and RG(D)� G.

Proof. By Proposition 1.20 we have GF(D) � G, so there exists a substitution σ
such that σ(GF(D))⊂ G.

As G is rigid, σ unifies all the types of each word. Hence there exists a unifier of
all the types of each word, and RG(D) exists.

RG(D) is defined as the application of most general unifier σu to GF(D). By the
definition of a most general unifier, which works as usual even though we unify sets
of types, there exists a substitution τ such that σ = τ ◦σu.

Hence τ(RG(D)) = τ(σu(GF(D))) = σ(GF(D))⊂ G;
thus τ(RG(D))⊂ G, hence RG(D)� G. ��
Proposition 1.22. If D ⊂ D′ ⊂ FL(G) with G a rigid grammar then RG(D) �
RG(D′)� G.

1.6 Learning AB Grammars 15

Proof. Because of Proposition 1.21 both RG(D) and RG(D′) exist. We have D⊂D′
and D′ ⊂ FL(RG(D′)), so D⊂ FL(RG(D′)); hence, by Proposition 1.21 applied to
D and G = RG(D′) (a rigid grammar) we have RG(D)� RG(D′). ��
Theorem 1.23. The algorithm RG for learning rigid AB grammars converges in the
sense of Gold (see Section 1.6.1).

Proof. Take Di, i∈ω an increasing sequence of sets of examples in FL(G) enumer-
ating FL(G), in other words ∪i∈ω Di = FL(G):

D1 ⊂ D2 ⊂ ·· ·Di ⊂ Di+1 · · · ⊂ FL(G)

Because of Proposition 1.21 for every i ∈ ω RG(Di) exists and because of Proposi-
tion 1.22 these grammars define an increasing sequence of grammars w.r.t. � which
by Proposition 1.21 is bounded by G:

RG(D1)� RG(D2)� · · ·RG(Di)� RG(Di+1) · · ·� G

As they are only finitely many grammars below G w.r.t. � (Proposition 1.16) this
sequence is stationary after a certain rank, say N, that is, for all n ≥ N RG(Dn) =
RG(DN).

We have FL(RG(DN)) = FL(G):

FL(RG(DN)) ⊃ FL(G) Let T be an FA-structure of FL(G). Since ∪i∈ωDi =
FL(G) there exists a p such that T ∈ FL(Dp).
• If p<N, because Dp⊂DN , T∈DN , and by Proposition 1.19 T∈FL(RG(DN)).
• If p ≥ N, we have RG(Dp) = RG(DN) since the sequence of grammars is

stationary after N. By Proposition 1.19 we have Dp ⊂ FL(RG(Dp)) hence
T ∈ FL(RG(DN)) = FL(RG(Dp)).

In all cases, T ∈ FL(RG(DN)).
FL(RG(DN))⊂ FL(G) Since RG(DN)� G, by Proposition 1.17 we have

FL(RG(DN))⊂ FL(G) ��

1.6.4 Other Cases

The learning problem covered by the RG algorithm is very simple and restricted.
Firstly, the class of grammars we are learning is quite limited:

1. They are AB grammars and not richer categorial grammars.
2. They are rigid, that is each word has only a single type of syntactic behavior.

This limitation is not too difficult to overcome: different occurrences of the same
word corresponding to different syntactic behaviors can be distinguished. This
is sound when the occurrences correspond to words which are really different,
such as that as a demonstrative and that as a complementizer, but it is less
convincing when the word is the same like the transitive use of eat (I ate an
apple.) and the absolutive use of eat (I already ate).

16 1 AB Grammars

Secondly, we are using input structures which are not so easy to obtain, and which
are probably too close to the output that we are looking for:

3. Parse structures (or FA structures) are much too precise; instead of having the
complete tree structure labeled by rule applications, it would make more sense
to have an unlabeled tree structure, partial information about the tree structure
of the sentence or even just strings as input to the learning algorithms.

The base algorithm that we presented can be adapted in order to go beyond the
limitations enumerated above.

1. A first extension is to learn Lambek grammars, which are discussed in the next
chapter, from parse structures. Bonato (2000) shows that Lambek grammars
are learnable from parse structures. The same learning mechanism works for
minimalist grammars when they are viewed as categorial grammars, though
with some complications (Bonato and Retoré, 2001). A strong generalization of
these results has been proved: reversible regular tree languages (and dependency
grammars too) are learnable from positive examples (Besombes and Marion,
2001).

2. An orthogonal extension is to consider k-valued grammars: in this later case,
one has to try to unify types in all possible manners in order to have less than k
types per word. This has was studied by Kanazawa (Kanazawa, 1998).

3. Regarding the input structures, the simplest generalization is to consider unla-
beled trees: then one has to try all possible labeling with \e and /e. Going even
further one can learn from unstructured sentences that are simply sequences of
words: once again this is done by considering all possible structures on such
sentences. This extension was investigated by Kanazawa (Kanazawa, 1998).

Each of these extensions increases the complexity of the algorithm considerably, as
one can imagine, but nevertheless the existence of learning algorithms for categorial
grammars is a good property which is shared by few other formalisms for natural
language syntax.

1.7 Concluding Remarks

In this chapter, we introduced the core of categorial grammars, AB-grammars, com-
mon to the logical and combinatorial approaches. The salient features that distin-
guish this kind of grammar from phrase structure grammar are the following:

• A finite set of rules acting on categories, which do not depend on the particular
language (this one of the reasons for learnability).

• The lexicon, which associates each word with a category describing its syntactic
behaviour.

• As opposed to non-terminals, categories themselves have an internal struc-
ture which encodes how a word of this category interacts with words of other
categories.

1.7 Concluding Remarks 17

These differences explain the learnability in the sense of Gold for various restricted
classes of categorial grammars.

The class of languages generated by AB-grammars is the same as the class of
languages generated by Lambek grammars, though it is less simple in AB-grammars
to give a simple account for syntactic constructions like (peripheral) extraction (as
we have seen for our Example 1.1 with cosa guarda passare).

In the forthcoming chapters, we therefore develop a connection with logic: cate-
gories are formulas and rules are deduction rules, following an idea of Lambek. This
also gives a correspondence with semantics, which already works (in a restricted
way) for AB-grammars.

18 1 AB Grammars

Exercises for Chapter 1

Exercise 1.1. Define an AB grammar for anbn

Exercise 1.2. Define an AB grammar which generates the language of
well-bracketed expressions such as ((())())

Exercise 1.3. Consider the following context-free grammar.

S→∧SS | ¬S | p | q | r

It generates formulae in a minimal logical language containing only the propositions
p, q and r, the unary logical symbol ¬ and the binary logical symbol ∧. It has the
property that it generates expressions in Polish prefix notation. For example, ¬∧
¬p¬q is an expression generated by this grammar corresponding to the more usual
infix notation ¬(¬p∧¬q), which would be generated by the context-free grammar
below.

S→ (S∧S) | ¬S | p | q | r

An advantage of Polish prefix notation is that it does not require any brackets,
though people not used to it tend to find it hard to read.

1. Give an AB lexicon which generates the language of the Polish prefix context-
free grammar at the start of this exercise.

2. Give a lexicon which generates the language of the infix notation context-free
grammar. Hint: assign types to the brackets as well as to the logical symbols.

Exercise 1.4. Consider the following AB lexicon for English:

Word Type(s)
Amy np
Ben np

Chris np
London np

some (np /n)
all (np /n)

a (np /n)
students n

homework n
dislikes ((np \ S)/np)
visited ((np \ S)/np)

went ((np \ S)/ pp)
to (pp /np)

1. Create, for each of the types in the above lexicon, a derivation which uses this
type. Try to find some odd or ungrammatical sentences which are derivable
using the above lexicon.

Exercises for Chapter 1 19

2. Extend the lexicon above in such a way that the following sentences become
derivable. Show your lexicon is correct by providing derivations of all sen-
tences.

a) All intelligent students do their homework.
b) No lazy students do their homework.
c) Amy returned from Paris.
d) Amy returned from Paris yesterday.
e) Amy just returned from Paris.
f) Ben considers Chris boring.
g) Chris dislikes all students who listen to Mozart.

3. In sentences 2c and 2d from the previous exercise, (at least) two type assign-
ments are possible for the constituent “from Paris”: one where the constituent
is assigned the type pp and one where it is assigned the type (np\s)\(np\s).
Give a derivation for 2c and 2d corresponding to each of these solutions. How
could you argue in favor of one or of the other type assignment?

4. Extend the above lexicon to derive the following sentences.

a) Ben and Amy visited Paris.
b) Ben visited and disliked London.
c) Amy went to England and visited London.
d) Amy went to Paris and to London.
e) All students and professors like the new library.
f) Chris read all new and interesting books.

What can you say about the different types assigned to “and”?
5. How would you analyze the following sentence?

a) All students who Amy likes listen to Mozart.

Exercise 1.5. The following exercise is inspired by a remark from Quine (1961).
Natural language expressions permit (derivational) ambiguities which are not present
in the tiny logical language of the previous exercise.

We have, for example that “Amy and Ben or Chris” is ambiguous between “(Amy
and Ben) or Chris” and “Amy and (Ben or Chris)”. The words “both” and “either”
can help disambiguate between the two readings.

(1.8) Amy and Ben or Chris
(1.9) Both Amy and Ben or Chris
(1.10) Amy and either Ben or Chris

1. Give lexical entries for all words above and verify that there are two ways of
deriving Sentence 1.8 above, but only one way to derive Sentence 1.9 and 1.10.
Hint: assign atomic formulas b and e to “both” and “either” respectively.

2. Which of the two readings for Sentence 1.8 corresponds to Sentence 1.9 and
which reading corresponds to Sentence 1.10?

3. Comment on the similarities between the solutions you provided here and your
solution to Exercise 1.3.2.

20 1 AB Grammars

Exercise 1.6. Give the context-free grammar which corresponds the lexicon of
Exercise 1.4.

Exercise 1.7. Consider the following context-free grammar, which is already in
Greibach normal form.

S→ aA
S→ bB
S→ aSA
S→ bSB
A→ a
B→ b

1. What is the language generated by this grammar?
2. Transform the grammar into an AB grammar.

References 21

References

Ajdukiewicz, K.: Die syntaktische Konnexität. Studia Philosophica 1, 1–27 (1935); English
translation in McCall, 207–231 (1967)

Bar-Hillel, Y.: A quasi arithmetical notation for syntactic description. Language 29, 47–58
(1953)

Bar-Hillel, Y., Gaifman, C., Shamir, E.: On categorial and phrase-structure grammars. Bul-
letin of the Research Council of Israel F(9), 1–16 (1963)

Besombes, J., Marion, J.Y.: Identification of reversible dependency tree languages. In:
Popelı́nský and Nepil, pp. 11–22 (2001)

Bonato, R.: Uno studio sull’apprendibilità delle grammatiche di Lambek rigide — a study on
learnability for rigid Lambek grammars. Tesi di Laurea & Mémoire de D.E.A. Università
di Verona & Université Rennes 1 (2000)

Bonato, R., Retoré, C.: Learning rigid Lambek grammars and minimalist grammars from
structured sentences. In: Popelı́nský and Nepil, pp. 23–34 (2001)

Buszkowski, W.: Discovery procedures for categorial grammars. In: van Benthem, J., Klein,
E. (eds.) Categories, Polymorphism and Unification. Universiteit van Amsterdam (1987)

Buszkowski, W., Penn, G.: Categorial grammars determined from linguistic data by unifica-
tion. Studia Logica 49, 431–454 (1990)

Casadio, C.: Semantic categories and the development of categorial grammars. In: Oehrle,
R.T., Bach, E., Wheeler, D. (eds.) Categorial Grammars and Natural Language Structures,
pp. 95–124. Reidel, Dordrecht (1988)

Chomsky, N.: The logical structure of linguistic theory (1955); revised 1956 version pub-
lished in part by Plenum Press (1975); University of Chicago Press (1985)

Chomsky, N.: Formal properties of grammars. In: Handbook of Mathematical Psychology,
vol. 2, pp. 323–418. Wiley, New-York (1963)

Chomsky, N.: The minimalist program. MIT Press, Cambridge (1995)
Girard, J.Y.: Linear logic: its syntax and semantics. In: Girard, J.Y., Lafont, Y., Regnier, L.

(eds.) Advances in Linear Logic. London Mathematical Society Lecture Notes, vol. 222,
pp. 1–42. Cambridge University Press (1995)

Gleitman, L., Liberman, M. (eds.): An invitation to cognitive sciences, Language, vol. 1. MIT
Press (1995)

Gleitman, L., Newport, E.: The invention of language by children: Environmental and
biological influences on the acquisition of language. In: Gleitman and Liberman, ch. 1,
pp. 1–24 (1995)

Gold, E.M.: Language identification in the limit. Information and Control 10, 447–474 (1967)
Greibach, S.A.: A new normal-form theorem for context-free phrase structure grammars.

Journal of the ACM 12(1), 42–52 (1965)
Harrison, M.A.: Introduction to Formal Language Theory. Addison Wesley (1978)
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation.

Addison-Wesley, Reading (1979)
Joshi, A., Schabes, Y.: Tree adjoining grammars. In: Rozenberg and Salomaa, ch. 2 (1997)
Joshi, A., Levy, L., Takahashi, M.: Tree adjunct grammar. Journal of Computer and System

Sciences 10, 136–163 (1975)
Kanazawa, M.: Learnable classes of categorial grammars. Studies in Logic, Language and

Information. FoLLI & CSLI, distributed by Cambridge University Press (1998)
Lambek, J.: The mathematics of sentence structure. American Mathematical Monthly,

154–170 (1958)
McCall, S. (ed.): Polish Logic, 1920-1939. Oxford University Press (1967)

22 1 AB Grammars

Morrill, G.: A chronicle of type logical grammar: 1935-1994. Research on Language and
Computation 5(3), 359–386 (2007)

Nicolas, J.: Grammatical inference as unification. Rapport de Recherche RR-3632, INRIA
(1999), http://www.inria.fr/

Pereira, F.C.N., Shieber, S.M.: Prolog and Natural-Language Analysis. CSLI Lecture Notes,
vol. 10. University of Chicago Press, Chicago (1987)

Pinker, S.: Language acquisition. In: Gleitman and Liberman, ch. 6, pp. 135–182 (1995)
Pollard, C., Sag, I.A.: Head-Driven Phrase Structure Grammar. Center for the Study of Lan-

guage and Information, Stanford (1994) (distributed by Cambridge University Press)
Popelı̀nskỳ, L., Nepil, M. (eds.): Proceedings of the third workshop on Learning Language

in Logic. LLL 2001, FI MU Report series, FI-MU-RS-2001-08. Faculty of Informatics –
Masaryk University, Strabourg (2001)

Quine, W.V.: Logic as a source of syntactical insights. In: Jakobson, R. (ed.) Proceedings
of the Symposia in Applied Mathematics, Structure of Language and its Mathematical
Aspects, vol. XII, pp. 1–5. American Mathematical Society (1961)

Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)
Schabes, Y., Waters, R.C.: Lexicalized context-free grammars. In: Proceedings of the 21st

Annual Meeting of the Association for Computational Linguistics, Columbus, Ohio, pp.
121–129 (1993)

Sikkel, K., Nijholt, A.: Parsing of context-free languages. In: Rozenberg and Salomaa, ch. 2
(1997)

http://www.inria.fr/

2

A Logic for Categorial Grammars:
Lambek’s Syntactic Calculus

Summary. Our second chapter is a rather complete study of the Lambek calculus, which
enables a completely logical treatment of categorial grammar.

We first present its syntax in full detail, both with sequent calculus and natural deduction,
and explain the relationship between these two presentations. Then we turn our attention to
the normal forms for such proofs. Normalization and its dual namely interpolation are not
only pleasant mathematical properties; they also are key properties for the correspondence
between Lambek grammars and more familiar phrase structure grammars; we give a detailed
proof of the theorem of Pentus establishing the weak equivalence between context-free gram-
mars and Lambek grammars.

In addition, we prove completeness for the Lambek calculus with respect to linguistically
natural models: in these models categories are interpreted as subsets of a free monoid (eg. as
strings of words or lexical items). Providing such a simple and natural interpretation provides
another strong justification for the categorial approach.

2.1 Lambek’s Syntactic Calculus and Lambek Grammars

We now turn our attention to the Lambek calculus (L) and Lambek grammars (LCG)
which were introduced in the seminal paper (Lambek, 1958): we strongly recom-
mend this paper to the reader.

The limitations of AB grammars, and the endless quest for new rules (composi-
tion, type raising, Geach laws, etc.) is a way to explain the interest of the Lambek
calculus. Another is to place AB-grammar into a richer and more natural mathemat-
ical formalism.

A controversial but more interesting justification is the following: syntax is
driven by resource consumption, which is neatly handled by resource conscious
logics — the Lambek calculus being the first such logic. This viewpoint is not
that far from Chomsky’s minimalist program (Chomsky, 1995) as discussed in
(Retoré and Stabler, 2004).

Lambek (categorial) grammars — or LCGs — are defined in a way very simi-
lar to AB grammars. A lexicon Lex provides each word with one or several types,
constructed from the usual primitive types P= {S,np,n, pp, . . .}— sentences, noun

R. Moot and C. Retoré: The Logic of Categorial Grammars 2012, LNCS 6850, pp. 23–63, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

24 2 Lambek’s Syntactic Calculus

phrases, nouns, prepositional phrases... Types are more or less the same as the ones
of AB grammars: the only difference is that Lambek types allow for a (non commu-
tative) product or conjunction denoted by •:

Lp ::= P | (Lp\Lp) | (Lp/Lp) | (Lp •Lp)

When introducing AB grammars, we already explained the intuitive meaning of
A\B and B/A: an expression is of type A\B (resp. B/A) when it is looking for an
expression of type A on its left (resp. right) to form a compound expression of type
B. An expression of type A followed by an expression B is of type A •B, and product
is related to \ and / by the following relations:

A\ (B\X) = (B •A)\X (X /A)/B = X / (B •A)

These relations look like currying, but beware of the order, which is required by the
behavior of \ and /: in the left equation both types require a sequence ab on their
left, and in the second equation both types require a sequence ba on their right (with
a,b of respective types A,B).

Recall that for AB grammars a sequence of words w1 · · ·wn, is of type u whenever
there exists for each wi a type ti in Lex(wi) such that t1 · · · tn−→ u with the following
reduction patterns:

∀u,v ∈ Lp
u (u \ v)−→ v (\e)

(v/u) u−→ v (/e)

Here the logical aspect of these rules — they look like modus ponens — will be
emphasized by adding other rules, so that \ and / will really be implications (and
• will be their associated conjunction). Accordingly −→ will be written �, and our
first objective is to define this logical calculus: for the time being we only know the
modus ponens of the non commutative implications \ and /. Therefore we simply
replace−→with � to obtain the following definition: a sequence of words (or termi-
nals) w1 · · ·wn is of type u whenever there exists for each wi a type ti in Lex(wi) such
that t1 · · · tn � u, where � is the deductive relation of the Lambek calculus which is
defined in the next two sections. The generated language or the set of correct sen-
tences is the set of sequences of type S.

2.2 Natural Deduction for the Lambek Calculus

To the best of our knowledge, natural deduction for Lambek has mainly been studied
by van Benthem (van Benthem, 1991), one of the first papers being (van Benthem,
1987).

2.2.1 In Prawitz Style

The simplest way to define product the free Lambek calculus is probably natural
deduction in a tree-like setting as shown below (we will have more to say about the
requirement that the \i and /i rules require at least two free hypotheses in Section 2.5).

2.2 Natural Deduction for the Lambek Calculus 25

this rule requires at least two free hyp.

A leftmost free hyp.
. . . [A]

···
B \i binding A

A\B

Δ···
A

Γ···
A\B \e
B

this rule requires at least two free hyp.

A rightmost free hyp.
. [A] . . .

···
B

/i binding A
B/A

Γ···
B/A

Δ···
A
/e

B

These deductions clearly extend the derivation trees of AB grammars. AB simplifi-
cation or elimination rules are two of the rules of the system, the rules \e and /e; the
other two being the corresponding introduction rules. The fact that these rules are
special cases of the rules for intuitionistic logic confirms that the fraction symbols
\ and / can be viewed as implications.

It should be observed that as opposed to natural deduction for intuitionistic logic,
there is no need to specify which hypothesis A is cancelled by an /i or \i introduction
rule. Indeed in the first case it is the leftmost free hypothesis, and in the second
case it is the rightmost free hypothesis. As a consequence the formal structure of a
deduction is a plain (binary/unary) tree with leaves labeled with formulae and with
nodes labelled by rules: binary nodes are labelled with either /e or \e and unary
nodes with either /i or \i. Such a plain tree is enough to reconstruct the deduction,
i.e. which hypothesis are free or not and which hypothesis is cancelled by which
rule. This remark is the basis of the study of Tiede (2001); we can see the parse
structures or proofs of a Lambek grammar as natural deduction trees, and study
these trees as tree languages (Gécseg and Steinby, 1997).

Product

Lambek calculus admits a product which is related to the implications by the usual
currying rules given above (or, alternatively, by the residuation rules discussed in
Section 2.9.1). The product is often skipped in the natural deduction presentation of
the Lambek calculus. There is no need to do so, but it is true that these rules are less
natural, because of the order on hypotheses: Δ should occur in the place previously
occupied by the cancelled (consecutive) A and B hypotheses of the rule.

26 2 Lambek’s Syntactic Calculus

Δ···
A

Γ···
B
•i

A •B

Δ···
A •B

no free hyp. between A and B

. . . [A]α [B]α . . .
···
C
•e(α) binding A and B

C

The main problem is that in order to apply the product elimination rule there should
be no free hypothesis in between the two cancelled assumptions, A and B, and that
the order of the premises after the rule is no longer the left-to-right order, but rather
has the formulas Δ occurring at the place of the eliminated A and B formulas. An-
other problem is that, as we shall see, proof-normalization or rather the subformula
property is more problematic with the product.

Also observe that there can be several consecutive free A and B hypotheses, so
that a labeling (the label α in the rule above) is needed to link specific occurrences of
cancelled hypotheses to the instance of the •e rule: natural deductions are no longer
plain trees.

Natural deduction rules of this form were first introduced by Abramsky (1993)
for multiplicative linear logic, but in this commutative case the problem of the order
of hypotheses disappears.

Example 2.1. As an example in Prawitz Style natural deduction, we give a proof of
“Kevin talks to himself” below.

Kevin
Lex

np

talks
Lex

(np \ S)/ pp

to
Lex

pp /np [np]
/e

pp
/e

np \ S
/i

(np \ S)/np

himself
Lex

((np \ S)/np)\ (np \ S) \e
np \ S \e

S

As already discussed in Example 1.1, the Lex rule used in the proof above is simply
an indication that the conclusion formula F of the rule is an element of Lex(w) for
the premise w; that is, F is a formula that the lexicon Lex assigns to the word w.

The type for “himself” is assigned a category which selects a transitive verb to
its left to produce an intransitive verb (as we will see in Example 3.2 in the next
chapter, there are good semantic reasons for this type assignment).

Seen from the lexical types, the introduction of the np hypothesis is the only
step which may not be immediately obvious: it is the type assigned to “himself”,
which, having a verb phrase (np \ S) missing an np as its argument, introduces an
np hypothesis. Section 2.6.2 will give a proof search algorithm for (product-free)
natural deduction.

2.2 Natural Deduction for the Lambek Calculus 27

Exercises 2.2, 2.6, 2.8 and 2.9 at the end of this chapter will help you get familiar
with finding natural deduction proofs for Lambek grammars.

2.2.2 In Gentzen Style

It is sometimes convenient to give a Gentzen style presentation of natural deduc-
tion, which specifies at each node what the free hypotheses are; this formulation is
possibly clearer, in particular when formulating the rules for the product formulae.
Figure 2.1 lists the rules in the calculus.

Γ � A Δ � A\B
\e

Γ ,Δ � B

A,Γ � C
\i Γ �= ε

Γ � A\C

Δ � B/A Γ � A
/e

Δ ,Γ � B

Γ ,A � C
/i Γ �= ε

Γ � C /A

Δ � A •B Γ ,A,B,Γ ′ � C
•e

Γ ,Δ ,Γ ′ � C

Δ � A Γ � B
•i

Δ ,Γ � A •B

axiom
A � A

Fig. 2.1. Gentzen style natural deduction rules for the Lambek calculus

Nevertheless this presentation defines exactly the same logical calculus as the
natural deduction rules in tree-like format given above: the proofs of the two systems
are isomorphic.

A small note about the notation used in the calculus: the statements of the calcu-
lus are expressions of the form A1, . . . ,An � C (sequents), with a comma-separated
list of formulae (the antecedent, or the hypotheses of the statement) on the left hand
side of the turnstile and a single formula on the right hand side (the succedent or the
conclusion of the statement). Variables Γ ,Δ , . . . range over (possibly empty) lists
of formulae which we will call contexts, so we can write a sequent as Γ � C, or a
sequent containing a formula A as Γ ,A,Δ � C.

We will call the sequents above the horizontal line of a rule its premises and the
single sequent below the horizontal line its conclusion. When given a proof, we will
call the conclusion of the last rule the end-sequent.

Although we use sequents, this calculus is by no means a sequent calculus: there
are no left rules, no cut rule, and the notion of normal proof (for having the subfor-
mula property) is completely different — as we will see in Sections 2.6 and 2.7.

28 2 Lambek’s Syntactic Calculus

Example 2.2 (Our Italian Lexicon Revisited)
Here we take up again our small example of an Italian lexicon:

Word Type(s)
cosa (S / (S /np))

guarda (S / inf)
passare (inf/np)

il (np /n)
treno n

Remember that the sentence ‘Cosa guarda passare’ could not be analyzed in AB
grammars, because the transitivity of / was not a rule of AB grammars. Let us show
that it can be analyzed with the Lambek calculus (we use Natural Deduction in
Gentzen style):

(S / (S /np)) � (S / (S /np))

(S / inf) � (S / inf)

(inf/np) � (inf/np) np � np
/e

(inf/np),np � inf
/e

(S / inf),(inf/np),np � S
/i

(S / inf),(inf/np) � S /np
/e

(S / (S /np)),(S / inf),(inf/np) � S

This example relies on composition for /, which is not provable in AB grammars.
Composition is established by first hypothesizing an np which is then abstracted
by an introduction rule: to make a comparison with Chomsky’s theories (Chomsky,
1957, 1995) this hypothetical np corresponds to a trace and the introduction rule to
movement.

In the Lambek calculus, we can construct sentences with object relatives such
as whom/that having the type (n \ n) / (S / np) — which could not be done in AB
grammars, as shown in Section 1.5 — and without a need to assign np \ (S / np)
to transitive verbs. Indeed, we can derive np \ (S /np) from the “normal” transitive
verb type (np \ S) / np, since we can rearrange brackets in the Lambek calculus:
(a \ b) / c � a \ (b / c), etc. This treatment of peripheral extraction is one of the
attractive features of the Lambek calculus. Exercise 2.7 asks you to give proofs of
more complicated cases of extraction.

Finally it is easily verified that one has x � (z / x) \ z and x � z / (x \ z) for all
categories x and z. As we will see in the next chapter, this is interesting from a
semantic viewpoint: an np (an individual) can be viewed as a (S/np)\S or S/(np\
S) (a function form one-place predicates to truth values, that is the set of all the
properties of this individual).

2.3 Sequent Calculus

Figure 2.2 shows the rules of the Lambek calculus in Sequent Calculus, as given in the
original paper (Lambek, 1958). Although it also handles expressions A1, . . . ,An � C,

2.3 Sequent Calculus 29

Γ ,B,Γ ′ � C Δ � A
\h

Γ ,Δ ,A\B,Γ ′ � C

A,Γ � C
\i Γ �= ε

Γ � A\C

Γ ,B,Γ ′ � C Δ � A
/h

Γ ,B/A,Δ ,Γ ′ � C

Γ ,A � C
/i Γ �= ε

Γ � C /A

Γ ,A,B,Γ ′ � C
•h

Γ ,A •B,Γ ′ � C

Δ � A Γ � B
•i

Δ ,Γ � A •B

Γ � A Δ1,A,Δ2 � B
cut

Δ1,Γ ,Δ2 � B
axiom

A � A

Fig. 2.2. Sequent calculus rule for the Lambek calculus

let us insist that it is different from Natural Deduction in sequent style given above:
for instance the modus ponens or elimination rules of AB grammars are not rules
of this system (they are just derivable) and the notion of a normal proof is rather
different (though (Girard et al, 1988) rightly remark there is a “moral equivalence”
between the two).

A note on the names of the rules: we will use rule name \h, /h and •h (for \, /
and • used as a hypothesis) and \i, /i, •i (for the introduction rules for \, / and •)
instead of the frequently used L\, L/ and L• (for the connectives on the left-hand
side of the turnstile) and R\, R/ and R• (for the connectives on the right-hand side
of the turnstile). Our notation emphasizes that fact that the \i rule is shared between
the sequent calculus and natural deduction, and that the difference between sequent
calculus and natural deduction is whether we add the \e, /e and •e rules — as we
do for natural deduction — or the \h, /h and •h rules — as we do for the sequent
calculus.

For a sequent calculus rule (or an instantiation of a rule as we find in an actual
proof) it is normal to talk about the main formula of the rules for the logical con-
nectives: the main formula is the formula with the connective introduced by the rule
as its main connective; so the main formula of the •h and •i rule is the formula A •B.
We will call its direct subformulae, that is the formulae A and B, the active formulae
of the rule (or the rule application).

Here is an obvious proposition (Exercise 2.3 at the end of this chapter asks you
to prove this yourself).

Proposition 2.3. Every axiom A� A can be derived from axioms p � p, with p being
a primitive type (and the proof does not use the cut rule).

30 2 Lambek’s Syntactic Calculus

Definition 2.4 (Polarity). The polarity of an occurrence of a propositional variable
p in a formula is defined as usual:
• p is positive in p
• if p is positive in A, then

– p is positive in X •A, A •X, X \A, A/X
– p is negative in A\X, X /A

• if p is negative in A, then
– p is negative in X •A, A •X, X \A, A/X
– p is positive in A\X, X /A

The polarity of an occurrence of a propositional variable p in a sequent Γ � C is:

• if p is in C, the polarity of p in C
• if p is in a formula G of Γ , the opposite of the polarity of p in G.

Example 2.5. Polarity is an important notion, which will return in Chapter 6. In a
sequent

a /b,(a /b)\ (d / c) � (d / c)

a occurs positively in a /b but negatively in ((a /b)\ (d / c)

If a proof only uses atomic axioms (this is always possible, as said above) ie. p � p
with p a primitive type, then one can follow these two occurrences of p, one being
negative and the other positive and none of the rules changes the polarity of an
occurrence of a primitive type. The two occurrences of p either lead to a cut formula
(the formula which disappears from the conclusion of the cut rule) or to the end-
sequent. Now observe that the cut rule cancels a formula in positive position (on
the right) with the same formula in negative position (on the left), so that the same
number of positive and negative occurrences of p disappear. Consequently:

Proposition 2.6. Each propositional variable has exactly the same number of posi-
tive and negative occurrences in a provable sequent.

Some authors call Proposition 2.6 the count check or count invariant (van Benthem,
1986; Moortgat, 1988; Roorda, 1991) and it can be used to eliminate sequents which
fail to satisfy the condition of Proposition 2.6 at little computational cost.

Example 2.7. Here is an example of a proof in sequent calculus, corresponding to
the analysis of ‘Cosa guarda passare’ already given in natural deduction format in
Example 2.2. It is somewhat less natural, but has other advantages, like an easier
subformula property.

S � S

S � S inf � inf
/h

S / inf, inf � S np � np
/h

S / inf, inf/np,np � S
/i

S / inf, inf/np � S /np
/h

(S / (S /np)),S / inf, inf/np � S

2.4 Equivalence of Sequent Calculus and Natural Deduction 31

2.4 Equivalence of Sequent Calculus and Natural Deduction

As we will see, this equivalence is absolutely clear as far as provability is concerned.
In fact there is a correspondence for proofs as well, but it is not a straightforward
isomorphism (Girard et al, 1988).

As the introduction rules are common to both formalisms, we just need to mimic
elimination rules �e in sequent calculus and left rules �h in natural deduction (for
� ∈ {\,/,•}), and by induction on the height of the proofs the equivalence of both
formalisms follows. This section is an easy adaptation of the results in (Girard et al,
1988) for intuitionistic logic.

2.4.1 From Natural Deduction to Sequent Calculus

It is possible to do “better” than the translation we provide here; indeed, when the
natural deduction is normal, one can manage to obtain a cut-free proof, and this
better translation is implicitly used when one uses proof nets for λ -calculus see e.g.
(Girard, 1987; de Groote and Retoré, 1996)

Replace: with:

Δ � A Γ � A\B \e
Δ ,Γ � B Γ � A\B

Δ � A
ax

B � B \h
Δ ,A\B � B

cut
Δ ,Γ � B

Γ � B/A Δ � A
/eΓ ,Δ � B Γ � B/A

Δ � A
ax

B � B
/h

B/A,Δ � B
cut

Γ ,Δ � B

Γ � A •B Δ ,A,B,Θ � C
•e

Δ ,Γ ,Θ � C
Γ � A •B

Δ ,A,B,Θ � C
•h

Δ ,A •B,Θ � C
cut

Δ ,Γ ,Θ � C

2.4.2 From Sequent Calculus to Natural Deduction

By induction on the height of a sequent calculus proof, let us see that it can be turned
into a natural deduction. As above, we will not exhibit a translation from cut free
proofs to normal deductions, although it is possible.

32 2 Lambek’s Syntactic Calculus

• If the proof consists in an axiom, its translation is obvious.
• If the proof ends with an introduction rule, \i, /i or •i by induction hypothesis

we have a deduction of the premise(s) and as these rules also exist in natural
deduction and the translation is obvious.

• If the proof ends with an \h rule:

··· γ
Γ ,B,Γ ′ � C

··· δ
Δ � A \h

Γ ,Δ ,A\B,Γ ′ � C

then by induction hypothesis we have two natural deduction proofs, γ∗ of
Γ ,B,Γ ′ � C and δ ∗ of Δ � A and a translation of the whole proof is:

Γ

Δ··· δ ∗

A A\B \e
B Γ ′··· γ∗

C
• If the proof ends with /h we proceed symmetrically.
• If the proof ends with •h:

··· γ
Γ ,A,B,Γ ′ � C

•h
Γ ,A •B,Γ ′ � C

by induction hypothesis we have a proof γ∗ of Γ ,A,B,Γ ′ � C and a translation
is the following:

A •B

Γ A B Γ ′··· γ∗

C
•e

C
• If the proof ends with a cut:

··· γ
Γ � X

··· δ
Δ ,X ,Δ ′ � C

cut
C

by induction hypothesis we have two natural deductions γ∗of Γ � X and δ ∗ of
Δ ,X ,Δ ′ � C and a translation is:

Γ··· γ∗

Δ X Δ ′··· δ ∗

C

2.6 Normalization of Natural Deduction 33

2.5 The Empty Sequence

In the formulation of the introduction rules, we have required that the antecedent
contains at least two formulae: therefore the antecedent is never empty after an
application of an introduction rule. By case inspection we see that this guarantees
that the antecedent of a sequent (the sequence on the left of �) never is empty in a
proof.

This is justified by the intended meaning of the connectives. Indeed by assigning
the type A \B to a word or an expression e, we mean that an expression a of type
A is required before e to obtain an expression ae of type B. This would fail without
the ”no empty sequence” requirement.

To explain this, let L1 be the calculus L without this restriction. Indeed, assume
A is a tautology of L1, i.e. �L1 A (*); now let Γ be a sequence of type A\B, that is
Γ �L1 A \B (**). Then from (*) and (**) we can infer by \e the sequent Γ �L1 B
without any sequence preceding Γ . This can actually happen in natural language;
indeed some expression, including all modifiers do have such a tautology type, like
X \X .

For instance, a natural type for English adjectives is n / n and thus very gets
the type (n / n) / (n / n): when applied to an adjective on its right, one obtains an
adjective phrase. Without the exclusion of the empty sequence, one is able to analyze
in L1 the expression “a very book” as a noun phrase: indeed the adjective following
very can be provided by the empty sequence, since n / n is derivable in L1. Let
us give the proof in L1 using Prawitz-style natural deduction (the rules Lex, with
premise w and conclusion formula A, are axioms indicating that A is in Lex(w)):

a
Lex

np /n

very
Lex

(n /n)/ (n /n)

[n]α
/i−α

n /n
/e

n /n

book
Lex

n
/e

n
/e

np

One may wonder why such a requirement was not needed for AB grammars. As
AB grammars contain only elimination rules, no hypotheses are cancelled during a
derivation, and since there are hypotheses at the beginning of every sub-analysis (the
types of the words in the analyzed sequence) there always is at least one hypothesis.

2.6 Normalization of Natural Deduction

This section is also an easy adaptation of similar results presented in (Girard et al,
1988). Throughout this section, we will mostly be concerned with the product free
case, a brief discussion about why normalization is more complicated in the pres-
ence of the product is found in Section 2.6.3.

34 2 Lambek’s Syntactic Calculus

2.6.1 Normalization for the Product-Free Lambek Calculus

A natural deduction is said to be normal whenever it does not contain an introduction
rule followed by an elimination rule. There are two such possible configurations:

. [A]α . . .··· δ ′

B
/i−α

B/A

Δ··· δ
A
/e

B

Δ··· δ
A

. . . [A]α··· δ ′

B \i−α
A\B \e

B

Remember that we call implication formulas B /A and A \B functors and the for-
mulas A their arguments.

Now, whenever such a configuration appears, it can be reduced as follows:

1. find the hypothesis A which has been cancelled in the proof δ ′ of B under some
hypotheses including A

2. replace this hypothesis with the proof δ of A

So the configurations above reduce to:

Δ··· δ
. . .A . . .··· δ ′

B

Δ··· δ
. . .A . . .··· δ ′

B

Proposition 2.8. Natural deduction for L without product enjoys strong normaliza-
tion, that is there are no infinite reduction sequences.

Proof. Observe that the size of the proof decreases in each reduction step. ��
The proof of strong normalization is so simple because each introduction rule binds
exactly one formula A and therefore we never copy nor delete the proof δ , ie. con-
traction and weakening are not valid in the Lambek calculus. In intuitionistic logic
— where the introduction rule for the implication can discharge any number of hy-
potheses of the formula A — strong normalization is valid as well, but the proof is
a bit more delicate (see Girard et al, 1988, Chapters 4 and 6 for details).

Proposition 2.9. Normalization is a locally confluent process. In other words, if a
proof d reduces, in one step, to two different proofs e and f then there exists a proof
g such the both e and f reduce, in some number of steps, to g.

Proof. If a proof d contains two redexes, they correspond to two elimination rules
e′ and e′′ between sub-proofs corresponding to a functor f ′ applied to an argument
a′ and to a functor f ′′ applied to an argument a′′. One of the following case applies:

• e′′ is in a′
• e′′ is in f ′

2.6 Normalization of Natural Deduction 35

• e′ is in a′′
• e′ is in f ′′
• e′ and e′′ can not be compared.

Assume we reduce e′. The redex e′′ which is not reduced possesses a unique trace
ē′′ in the reduced proof d′. Symmetrically if we reduce e′′ the redex e′ which is not
reduced possesses a unique trace ē” in d′′. If in d′ we reduce ē′′ we obtain a proof
d′′′ but if in d′′ we reduce ē′ we also obtain d′′′. ��
We will now show, by an easy induction on the proofs, that whenever a natural de-
duction is normal (that is without such configuration) each formula is a subformula
of a free hypothesis or of the conclusion. More precisely. In order to establish this,
let us introduce the notion of principal branch.

Let us call a principal branch leading to F a sequence H0, . . . ,Hn =F of formulae
of a natural deduction tree such that:

• H0 is a free hypothesis
• Hi is the principal premise — the one carrying the eliminated symbol — of an

elimination rule whose conclusion is Hi+1

• Hn is F

Proposition 2.10. Let d be a normal natural deduction (without product), then:

1. if d ends with an elimination then there is a principal branch leading to its
conclusion

2. each formula in d is the subformula of a free hypothesis or of the conclusion

Proof. By induction on d.

[axiom] If d is an axiom, (1) and (2) hold.
[\i introduction] (1) holds by vacuity. Assume d is made out of d′ by the intro-

duction \i rule: by induction hypothesis each formula in d′ is a subformula of
A,Γ (the free hypotheses under which B is proved) or a subformula of B; so
it is true that each formula in d is a subformula of Γ ,A \B, since A and B are
subformulae of A\B.

[\e elimination] Assume d is an elimination rule \e applied to:
• d′ with conclusion A and free hypotheses Γ
• d′′ with conclusion A\B and free hypotheses Δ
(1) Since d is normal the last rule of d′′ is an elimination: indeed, if it were an
introduction rule then it would be a \i introduction making a redex with the final
elimination in d. As d′′ ends with an elimination, by induction hypothesis, there
is a principal branch leading from H0 in Δ to A \B, so d contains a principal
branch leading to its conclusion B.
(2) By induction hypothesis
• all formulae in d′ are subformula of A or Γ (the free hypotheses under which

A is proved)
• all formulae in d′′ are subformulae of Δ ,A\B.

36 2 Lambek’s Syntactic Calculus

Because of the principal branch of d′ leading to A \B, the conclusion A \B of
d′ is a subformula of some H0 in Δ . Thus each formulae in d is a subformula of
Γ ,Δ hence of Γ ,Δ ,B

[/i introduction] as \i introduction.
[/e elimination] as \e elimination ��

Here is a proposition of (Cohen, 1967) that we shall use to prove that every context-
free grammar is weakly equivalent to a Lambek grammar.

The order o(A) of a formula A is the number of alternating implications, defined
formally as follows.

Definition 2.11. The order of a formula A is defined as follows.

o(p) = 0 when p is an atomic type
o(A\B) = max(o(A)+ 1,o(B))
o(B/A) = max(o(A)+ 1,o(B))

Thus, the order of (np \ S)/np is 1, but the order of S / (np \ S) is two.

Proposition 2.12. A provable sequent A1, . . . ,An � p of the product free Lambek cal-
culus with o(Ai)≤ 1 and p a primitive type (and therefore of order zero) is provable
with \e and /e only — in other words AB derivations and L derivations coincide
when types are of order at most one.

Proof. If A1, . . . ,An � p is provable, then it has a normal proof. We claim that this
normal proof must contain only \e and /e. We proceed by contradiction, so we
assume that the normal deduction contains an introduction rule, and so there is a
lowest introduction rule — one without any introduction rule below.

Let us consider an arbitrary lowest introduction I.

• If the chosen lowest introduction I is an \i introduction leading from y to b \ y.
This introduction cannot be the last rule, because the conclusion is a primitive
type p. So this rule is followed by a an elimination rule E , and there are three
possibilities:
– If b \ y is the principal premise of the elimination rule E , then the rule E is

an \e elimination rule other premise b; we then have a redex I,E and this
conflicts with the deduction being normal.

– If b \ y is not the principal premise of the elimination rule E , then E is ei-
ther an \e elimination rule with principal premise being (b \ y) \ z or an /e
elimination rule with principal premise z / (b \ y). In both cases the prin-
cipal premise is of order at least two. This conflicts with d enjoying the
subformula property which is forced by d being normal (previous Proposi-
tion 2.10).

• If the chosen lowest introduction I is an /i rule, the argument is symmetrical.

Therefore there is no lowest introduction, hence no introduction at all. ��

2.6 Normalization of Natural Deduction 37

2.6.2 Decidability of Natural Deduction

We can use the principal branch property and Proposition 2.10 to show that natural
deduction in the product free Lambek calculus is decidable (we will prove the classic
result of decidability for the Lambek calculus with product using cut elimination for
the sequent calculus in Section 2.8). In order to do so, we first need to introduce
some notation to facilitate talking about left and right arguments of a formula.

Given a formula C, and a sequence of length p of pairs consisting of a letter εi

(where εi ∈ {l,r}) and a formula Gi we denote by

C[(ε1,G1), . . . ,(εp,Gp)]

the formula defined as follows:

if p = 0 C[] =C
if εi = l C[(ε1,G1), . . . ,(εp−1,Gp−1),(εp,Gp)] =Gp \C[(ε1,G1), . . . ,(εp−1,Gp−1)]
if εi = r C[(ε1,G1), . . . ,(εp−1,Gp−1),(εp,Gp)] =C[(ε1,G1), . . . ,(εp−1,Gp−1)]/Gp

Figure 2.3 shows an example of a formula with its arguments in list-of-pairs form
and its step-by-step conversion to the corresponding formula in standard Lambek
calculus notation: note how G1 is the most deeply embedded argument of C and
therefore an element of the first pair on the list.

C[(r,G1),(l,G2),(r,G3),(l,G4)] =
G4 \C[(r,G1),(l,G2),(r,G3)] =
G4 \ (C[(r,G1),(l,G2)]/G3) =
G4 \ (G2 \C[(r,G1)])/G3) =
G4 \ (G2 \ (C[]/G1))/G3) =

G4 \ (G2 \ (C /G1))/G3)

Fig. 2.3. Example of C[(ε1,G1), . . . ,(εp,Gp)]

Similarly, assume we are given a proof d of Δ �C[(ε1,G1),(ε2,G2), . . . ,(εp,Gp)]
— in what follows, d will just be an axiom C[. . .] � C[. . .] — and n proofs di of
Γi � Gi. Let us call l1, l2, ..., ll (resp. r1,r2, ...,rp−l) the subsequence of indices (hence
it’s an increasing sequence) such that εi = l (resp. εi = r).

We write d[(ε1,d1), . . . ,(εp,dp)] for the following proof of

Γl1 ,Γl2 , . . . ,Γll ,Δ ,Γrp−l ,Γrp−l−1 , . . . ,Γr1 � C

if p = 0 d[] = d
if εi = l d[(ε1,d1), . . . ,(εi−1,di−1),(εi,di)] = \e(di,d[(ε1,d1), . . . ,(εi−1,di−1)]).
if εi = r d[(ε1,d1), . . . ,(εi−1,di−1),(εi,di)] = /e(d[(ε1,d1), . . . ,(εi−1,di−1)],di).

38 2 Lambek’s Syntactic Calculus

Γ2··· d2

G2

Γ4··· d4

G4

Δ···
C[(r,G1),(l,G2),(r,G3),(l,G4)]

=
G4 \ ((G2 \ (C /G1))/G3) \e
(G2 \ (C /G1))/G3

Γ3··· d3

G3
/e

G2 \ (C /G1) \e
C /G1

Γ1··· d1

G1
/e

C

Fig. 2.4. Example: d[(r,d1),(l,d2),(r,d3),(l,d4)] proving Γ2,Γ4,Δ ,Γ3,Γ1

Corollary 2.13. Whenever a proof d of

H1, . . . ,Hn � C

is normal and the last rule of the proof is an elimination rule, there exists an Hi0
which is equal to C[(ε1,G1), . . . ,(εp,Gp)] and subproofs di of Γi � Gi such that d is
d[(ε1,d1), . . . ,(εp,dp)].

Proof. Immediate from Proposition 2.10 ��
Consequently, with the above notations li and r j , H1, . . . ,Hi0−1 = Γl1 ,Γl2 , . . . ,Γll and
Hi0+1, . . . ,Hn = Γrp−l ,Γrp−l−1 , . . . ,Γr1 .

Let us prove, by induction on the number of connectives and atoms that Γ � C is
provable in the Lambek calculus is a decidable question. Because of normalization,
if there exists a proof, then there exists a normal proof.

If the (normal) proof ends with an introduction rule, C must be B /A (or A \B)
and proving Γ � B/A is equivalent to prove Γ ,A � B (resp. A,Γ � B) which is, by
induction hypothesis, a decidable question.

Otherwise, the proof ends with an elimination rule. Because of Corollary 2.13
proving Γ � C is equivalent to prove a finite number of smaller sequents Γi � Gi

which are obtained as follows: for all hypotheses Hi0 in Γ which are of the form
C[(ε1,G1), . . . ,(εp,Gp)], with l times εi = l and r times εi = r, and for all parti-
tions of the context H1, . . . ,Hi0−1 into l consecutive parts Γl1 ,Γl2 , . . . ,Γll , and for all
partitions of the context Hi0+1, . . . ,Hn into r consecutive parts Γrp−l ,Γrp−l−1, . . . ,Γr1

consider the sequent Γi � Gi, which has lesser atoms and connectives and therefore
allows us to apply the induction hypothesis.

The above method also provides a decision procedure. The procedure, though
simple, is actually rather effective — the only non-deterministic parts are the se-
lection of a formula C[. . .] corresponding to the conclusion C and partitioning the
context for the subproofs. We will improve upon it only in Chapter 6.

2.7 Cut-Elimination for the Sequent Calculus 39

The natural deduction decision procedure discussed in this section is also rather
close to so-called normal form sequent proofs, which are sequent proofs with some
procedural restrictions as proposed by König (1989); Hepple (1990); Hendriks (1993)
(compare the figure on page 210 of Hendriks, 1993, with our proof search algo-
rithm above), though the correctness of natural deduction proof search is, in our
opinion, quite a bit easier to prove using standard proof-theoretic notions such as
principal branches. Hepple (1990), in the final section of his article, is the only one
to make some brief remarks about a possible connection to natural deduction theorem
proving.

2.6.3 Normalization and Lambek Calculus with Product

We have to introduce commutative conversions for the product, otherwise is is pos-
sible that a normal proof does not satisfy the subformula property:

A � A B � B
•i

A,B � A •B D � D
•i

A,B,D � (A •B) •D
/i

A,B � (A •B) •D/D A •B � A •B
•e

A •B � (A •B) •D/D D � D
/e

A •B,D � (A •B) •D

Let us mention that this can be achieved by adding some “commutative conversions”
which basically amount to putting product elimination rules as high as possible (just
after the cancelled hypotheses A and B have met), and then rearranging the sub-trees
made of product elimination rules with a kind of associativity so that the eliminated
product never is the conclusion of another product elimination. Proving this result
in full detail is a rather lengthy and technical exercise and is not (in our opinion)
very insightful: this kind of result can also be deduced, though indirectly, from the
correspondence with the sequent calculus.

2.7 Cut-Elimination for the Sequent Calculus

Cut elimination is the process under which a proof is turned into a proof of the same
sequent without any cut rule — in other words, the cut rule is redundant.

Cut elimination is one of the fundamental properties of classical and intuitionistic
logic, first proved by Gentzen (1934), see e.g. (Girard et al, 1988) for a modern proof
and discussion. For L, it was originally proved in (Lambek, 1958).

40 2 Lambek’s Syntactic Calculus

Cut elimination has an important consequence, which we state before proving cut
elimination:

Proposition 2.14. In a cut-free proof of A1, . . . ,An � An+1 every formula of every
sequent is a subformula of some formula Ai (1≤ i≤ n+ 1).

Proof. By case inspection it is easily observed that every rule of the sequent calculus
except the cut rule satisfies the property that every formula in its premise sequent(s)
is a subformula of some formula in its conclusion sequent. ��
We give a syntactic proof of cut elimination (while models could be used as well):
it is lengthy, tedious and without surprises, but one has to see this kind of proof at
least once.

We begin by defining two notions on which we will base the induction. The
degree of a cut and the depth of a cut.

Definition 2.15. The degree of a formula A, written d(A) (or simply d if the formula
is clear from the context), is the depth of its subformula tree.

d(p) = 1 when p is a primitive type
d(A •B) = max(d(A),d(B))+ 1
d(A\B) = max(d(A),d(B))+ 1
d(B/A) = max(d(A),d(B))+ 1

The degree of a cut is the degree of the cut formula which disappears after applica-
tion of the rule.

Definition 2.16. Let A by a formula which is eliminated by the application of a cut
rule c. Let left(A) be the rule which introduces the formula occurrence A on the
subproof which ends in the left premise of the cut rule and let right(A) be the rule
which introduces the formula occurrence A in the subproof which ends at the right
premise of the cut rule. The depth of a cut formula A, written r(A) (or r if the cut
formula is clear from the context), is the number of rules between left(A) and c plus
the number of rules between right(A) and c.

We show how to remove a single cut of smallest depth, reducing the total number of
cut rules by one at each iteration until the proof is cut-free.

We select one of the cut rules with smallest depth and remove it as follows. We
proceed by induction on (d,r) with (d,r)< (d′,r′) if d < d′ or d = d′ ∧r < r′ where
r is the depth of the cut rule, and d the maximal degree of a cut, assumed to be 0
when there is no cut.

··· γ

Ra

Γ � X

··· δ

R f

Δ ,X ,Δ ′ � C
cut d

Δ ,Γ ,Δ ′ � C

2.7 Cut-Elimination for the Sequent Calculus 41

Notice that because the last rule is a cut of smallest depth, neither Ra nor R f is a cut
rule and neither γ nor δ contain cut rules.

Before exploring all possible values for Ra and R f , we will first give an overview
of the general classes of the reductions; each pair of rules will fall into at least one
of the following classes.

1. One of Ra or R f is an axiom: both the cut and the axiom are suppressed.
2. Ra does not create the cut-formula, — so Ra �= •i,\i,/i. In this case it is possible

to apply Ra after the cut. We can apply the induction hypothesis to the proof(s)
with Ra and the cut rule reversed — since the depth r of the cut rule is less than
the depth of the cut rule before reduction — and turn it into a cut-free proof.

3. If R f does not create the cut formula, we proceed symmetrically.
4. If both Ra and R f create the cut formula, then this cut of degree d is replaced

by two cuts of strictly smaller degree. Hence, the maximal degree of a cut is
strictly smaller (as the last rule was the only cut) and by induction hypothesis
we are done.

We only describe the cases for \ because the ones for / are strictly symmetrical.

1 Ra or R f is an axiom The final cut can be suppressed.

X � X

··· δ
Γ ,X ,Δ � C

cut
Γ ,X ,Δ � C

reduces to
··· δ

Γ ,X ,Δ � C

2 Ra does not create X , the cut formula
Ra Before reduction After reduction

•h

··· γ
Γ ,A,B,Γ ′ � X

•h
Γ ,A •B,Γ ′ � X

··· δ
Δ ,X ,Δ ′ � C

cut d
Δ ,Γ ,A •B,Γ ′,Δ ′ � C

··· γ
Γ ,A,B,Γ ′ � X

··· δ
Δ ,X ,Δ ′ � C

cut d
Δ ,Γ ,A,B,Γ ′,Δ ′ � C

•h
Δ ,Γ ,A •B,Γ ′,Δ ′ � C

\h

··· δ
Δ ,B,Δ ′′ � X

··· δ ′

Δ ′ � A
\h

Δ ,Δ ′,A\B,Δ ′′ � X

··· γ
Γ ,X ,Γ ′ � C

cut d
Γ ,Δ ,Δ ′,A\B,Δ ′′,Γ ′ � C

··· δ
Δ ,B,Δ ′′ � X

··· γ
Γ ,X ,Γ ′ � C

cut d
Γ ,Δ ,B,Δ ′′,Γ ′ � C

··· δ ′

Δ ′ � A
\h

Γ ,Δ ,Δ ′,A\B,Δ ′′,Γ ′ � C

42 2 Lambek’s Syntactic Calculus

3 R f does not create X , the cut formula
R f Before reduction After reduction

•h

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,X ,Γ ′,A,B,Γ ′′ � C

•h
Γ ,X ,Γ ′,A •B,Γ ′′ � C

cut d
Γ ,Δ ,Γ ′,A •B,Γ ′′ � C

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,X ,Γ ′,A,B,Γ ′′ � C

cut d
Γ ,Δ ,Γ ′,A,B,Γ ′′ � C

•h
Γ ,Δ ,Γ ′,A •B,Γ ′′ � C

•h

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,A,B,Γ ′,X ,Γ ′′ � C

•h
Γ ,A •B,Γ ′,X ,Γ ′′ � C

cut d
Γ ,A •B,Γ ′,ΔΓ ′′ � C

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,X ,Γ ′,A,B,Γ ′′ � C

cut d
Γ ,Δ ,Γ ′,A,B,Γ ′′ � C

•h
Γ ,Δ ,Γ ′,A •B,Γ ′′ � C

\h

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,B,Γ ′′′ � C

·
·
·

γ ′

Γ ′,X ,Γ ′′ � A
\h

Γ ,Γ ′,X ,Γ ′′,A\B,Γ ′′′ � C
cut d

Γ ,Γ ′,Δ ,Γ ′′,A\B,Γ ′′′ � C

·
·
·

γ
Γ ,B,Γ ′′′ � C

·
·
·

δ
Δ � X

·
·
·

γ ′

Γ ′,X ,Γ ′′ � A
cutd

Γ ′,Δ ,Γ ′′ � A
\h

Γ ,Γ ′,Δ ,Γ ′′,A\B,Γ ′′′ � C

\h

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,B,Γ ′,X ,Γ ′′ � C

·
·
·

θ
Θ � A

\h
Γ ,Θ ,A\B,Γ ′,X ,Γ ′′ � C

cut d
Γ ,Θ ,A\B,Γ ′,Δ ,Γ ′′ � C

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,B,Γ ′,X ,Γ ′′ � C

cut d
Γ ,B,Γ ′,Δ ,Γ ′′ � C

·
·
·

θ
Θ � A

\h
Γ ,Θ ,A\B,Γ ′,Δ ,Γ ′′ � C

•i

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,X ,Γ ′ � A

·
·
·

θ
Θ � B

•i
Γ ,X ,Γ ′,Θ � A •B

cut d
Γ ,Δ ,Γ ′,Θ � A •B

·
·
·

δ
Δ � X

·
·
·

γ
Γ ,X ,Γ ′ � A

cut d
Γ ,Δ ,Γ ′ � A

·
·
·

θ
Θ � B

•i
Γ ,Δ ,Γ ′,Θ � A •B

•i

·
·
·

δ
Δ � X

·
·
·

γ
Γ � A

·
·
·

θ
Θ ,X ,Θ ′ � B

•i
Γ ,Θ ,X ,Θ ′ � A •B

cut d
Γ ,Θ ,Δ ,Θ ′ � A •B

·
·
·

γ
Γ � A

·
·
·

δ
Δ � X

·
·
·

θ
Θ ,X ,Θ ′ � B

cut d
Θ ,Δ ,Θ ′ � B

•i
Γ ,Θ ,Δ ,Θ ′ � A •B

\i

·
·
·

δ
Δ � X

·
·
·

γ
A,Γ ,X ,Γ ′ � B

\i
Γ ,X ,Γ ′ � A\B

cut d
Γ ,Δ ,Γ ′ � A\B

·
·
·

δ
Δ � X

·
·
·

γ
A,Γ ,X ,Γ ′ � B

cut d
A,Γ ,Δ ,Γ ′ � B

\i
Γ ,Δ ,Γ ′ � A\B

2.8 Decidability 43

4 Both Ra and R f create the cut-formula
Before reduction After reduction

•

··· δ
Δ � U

··· θ
Θ � V

•i
Δ ,Θ � U •V

··· γ
Γ ,U,V,Γ ′ � C

•h
Γ ,U •V,Γ ′ � C

cut d
Γ ,Δ ,Θ ,Γ ′ � C

··· δ
Δ � U

··· θ
Θ � V

··· γ
Γ ,U,V,Γ ′ � C

cut < d
Γ ,U,Θ ,Γ ′ � C

cut < d
Γ ,Δ ,Θ ,Γ ′ � C

\

··· δ
U,Δ � V

\i
Δ � U \V

··· γ
Γ ,V,Γ ′ � C

··· θ
Θ � U

\h
Γ ,Θ ,U \V,Γ ′ � C

cut d
Γ ,Θ ,Δ ,Γ ′ � C

··· θ
Θ � U

··· δ
U,Δ � V

cut < d
Θ ,Δ � V

··· γ
Γ ,V,Γ ′ � C

cut < d
Γ ,Θ ,Δ ,Γ ′ � C

To be fully complete one should check that whenever the original proof contains no
sequent with an empty antecedent, so does the cut free proof we inductively defined.

Now let us summarize what we have proved in this section:

Theorem 2.17. Every proof of a given sequent Γ � C can be turned into a cut free
proof of the same sequent — all formulae in the cut-free proof being subformulae of
the sequent Γ � C.

When we compare normalization for natural deduction to cut elimination for the se-
quent calculus, we saw in Section 2.6.3 that natural deduction required commutative
conversions only for the product formulas whereas the “commutative conversions”
of the sequent calculus, which are items 2 and 3 of the case analysis for cut elimi-
nation above, make up a rather large part of the proof.

2.8 Decidability

One may wonder why we wanted to have normal or cut free proofs since the compu-
tational process of cut elimination or normalization is of little interest for categorial
grammars.

What is nevertheless very interesting about such a result is that instead of look-
ing for any proof when we want, for instance to parse and analyze a sentence, we
can restrict our search space to these canonical proofs, either normal deductions or
cut-free proofs. As we have seen, cut elimination (or normalization for natural de-
duction) entails the subformula property and this makes it quite easy to show that
the calculus is decidable:

Proposition 2.18. There is an algorithm which decides whether a sequent is deriv-
able in L.

44 2 Lambek’s Syntactic Calculus

Proof. Assume we want to prove a sequent. Since the cut rule is not needed, we
have finitely many rules to try, each of these rules requiring us to prove one or two
smaller sequents which, since they contain only subformulae of the sequent we want
to prove, are also in finite number. ��
Though sequent proof search is decidable, it is rather less efficient than the natural
deduction algorithm we presented for the product-free calculus in Section 2.6.2. In
particular, there can be many sequent calculus proofs which correspond to a single
natural deduction proof and these different sequent calculus proofs differ only for
‘bureaucratic’ reasons. So though both normal natural deduction proofs and cut-free
sequent proofs are canonical proofs in their respective calculi, there are many more
of these canonical proofs in the sequent calculus than there are in natural deduction.

This problem of sequent calculus proof search is often called spurious ambigu-
ity. On the other hand, the product formulas are unproblematic for cut-free sequent
proof search. We will return to these issues in Chapter 6, were we will introduce
proof nets for the Lambek calculus and show how they both handle product formu-
las unproblematically and make the problem of spurious ambiguity disappear.

2.9 Models for the Lambek Calculus and Completeness

We now turn our attention towards models for the Lambek calculus. As we have
seen that as far as provability is concerned, cut-free sequent calculus, sequent cal-
culus and natural deduction are equivalent, we are going to use the most adequate
formalism to establish properties of models with respect to the deductive system.

These models have been first investigated in (Buszkowski, 1982) and our presen-
tation follows (Buszkowski, 1997).

As we have said Lambek calculus prohibits the empty sequence, and we will
present models for L with this restriction. Let us nevertheless say that all these
results can be adapted by adding a unit to residuated semi-groups and to semi-groups
— replacing the word “semi-group” with the word “monoid”.

2.9.1 Residuated Semi-groups

Let us call a residuated semi-group, a structure (M,◦,\\,//,�) where

• M is a set.
• ◦ is an associative composition over M — (M,◦) is a semi-group.
• \\ and // are binary composition laws on M.
• � is an order on M.

which satisfies the following property:

(RSG) The following order relations are equivalent:

a � (c//b)

(a ◦ b) � c

b � (a \\ c)

2.9 Models for the Lambek Calculus and Completeness 45

Proposition 2.19. In a residuated semi-group (M,◦,\\,//,�), for all a,b,x,y ∈M
one has:

1. a � b ⇒ (a ◦ x)� (b ◦ x)
2. a � b ⇒ (x◦ a)� (x◦ b)

3.

⎛
⎝a � b

and
x � y

⎞
⎠ ⇒ (a ◦ x)� (b ◦ y)

In other words, a residuated semi-group is in particular an ordered semi-group.

Proof. (1) From (b ◦ x)� (b ◦ x) (� is an order) (RSG) yields b � ((b ◦ x)// x) ; if
we assume a � b by transitivity of � we have a � ((b◦ x)//x) which by (RSG)
yields (a ◦ x)� (b ◦ x).

(2) From (x ◦ b) � (x ◦ b) (� is an order) (RSG) yields b � (x \\ (x ◦ b)) ; if we
assume a � b by transitivity of � we have a � (x \\ (x ◦ b)) which by (RSG)
yields (x◦ a)� (x◦ b).

(3) The assumption a � b yields (a ◦ x)� (b ◦ x) (*) by (1). The assumption x � y
yields (b ◦ x) � (b ◦ y) (**) by (2). By transitivity of �, (*) and (**) yields
(a ◦ x)� (b ◦ y). ��

Given a residuated semi-group, an interpretation [.] is a map from primitive types to
elements in M, which extends to types and sequences of types in the obvious way:

[A,B] = [A]◦ [B] [A\B] = [A]\\ [B]
[A •B] = [A]◦ [B] [B/A] = [B]// [A]

A sequent Γ � C is said to be valid in a residuated semi-group whenever [Γ]� [C].

2.9.2 The Free Group Model

A particular case of residuated semi-group is the free group over primitive types. It
will be especially important in Section 2.11. The free group interpretation for L is

• a particular residuated semi-group where
– (M, ·) is the free group over the propositional variables,
– a \\b is a−1b
– b //a is ba−1

– a � b is a = b (the discrete order)
One easily observes that the three equalities

ab = c a = cb−1 b = a−1c

are equivalent — so (RSG) holds.
• a standard interpretation defined by [p] = p

Because of the soundness of L w.r.t. residuated semi-groups (next proposition) when-
ever a sequent Γ � C is provable one has [Γ] = [C] in the free group. The free group
model is of course not complete: indeed it interprets � by a symmetrical relation
(=) while � is not symmetrical: n � s/ (n \ s) is provable but not s/ (n \ s) � n.

46 2 Lambek’s Syntactic Calculus

2.9.3 L Is Sound and Complete w.r.t. Residuated Semi-groups

Proposition 2.20. A provable sequent is valid in every residuated semi-group, for
every interpretation of the primitive types.

Proof. We proceed by induction on the natural deduction proof.

• If the proof consists in an axiom X � X then the result is true: [X]� [X] whatever
the semi-group or the interpretation is.

• If the last rule is the introduction rule \i:

A,Γ � C \i Γ �= ε
Γ � A\C

by induction hypothesis we have [A]◦ [Γ] � [C], thus, by (RSG) we have [Γ] �
([A]\\ [C]), so the sequent Γ � A\C is valid as well.

If the last rule is the introduction rule /i we proceed as for \i.
If the last rule is the elimination rule \e:

Γ � A Δ � A\B \e
Γ ,Δ � B

then by induction hypothesis we know that [Γ]� [A], and using Proposition 2.19
we can conclude [Γ]◦ [Δ] � [A]◦ [Δ] (1); we also have [Δ]� [A]\\ [B] — hence
by (RSG) ([A]◦ [Δ])� [B] (2). Therefore from (1) and (2) we obtain,

[Γ ,Δ] = [Γ]◦ [Δ] � (1) [A]◦ [Δ] � (2) [B]

• If the last rule is the elimination rule /e we proceed as for /i.
• If the last rule is the product elimination rule •e

Γ � A •B Δ ,A,B,Δ ′ � C
•e

Δ ,Γ ,Δ ′ � C

By induction hypothesis we know that [Γ]� [A •B] = [A]◦ [B], and, using Propo-
sition 2.19 we obtain [Δ] ◦ [Γ] ◦ [Δ ′] � [Δ] ◦ [A] ◦ [B] ◦ [Δ ′]. We also know that
[Δ ,A,B,Δ ′] = [Δ]◦ [A]◦ [B]◦ [Δ ′]� [C]. We therefore have

[Δ ,Γ ,Δ ′] = [Δ]◦ [Γ]◦ [Δ ′]� [Δ]◦ [A]◦ [B]◦ [Δ ′]� [C]

• If the last rule is the product introduction rule •i by induction hypothesis we
know that [Δ]� [A] and that [Δ ′]� [B]; consequently

[Δ ,Δ ′] = [Δ]◦ [Δ ′]� [A]◦ [B] = [A•B] ��

2.9 Models for the Lambek Calculus and Completeness 47

Proposition 2.21. A sequent which is valid in every residuated semi-group is
derivable.

Proof. Let F be the set of formulae and let M = F/ �� be the quotient of formulae
by the equivalence relation ��; this relation �� is defined by A �� B whenever A � B
and B � A; it is symmetrical, it is reflexive by the axiom rule and the cut rule ensures
it is transitive.

Is is easily observed that \, /, • and � can be defined over equivalence classes,
that is: whenever A �� A′ and B �� B′ one has (A�B) �� (A′ �B′), for � ∈ {\,/,•}.
So let us define ◦,\\,// as the corresponding operations over equivalence classes of
��: A�� ◦B�� = (A •B)��, A�� \\B�� = (A\B)�� and B�� //A�� = (B/A)�� Finally
let � be � which can also be defined for equivalence classes: if A �� A′ and B �� B′
then A � B is equivalent to A′ � B′.

The property (RSG) is satisfied i.e. (A�� ◦ B��) � C�� is equivalent to A�� �

(C�� //B��) and to A�� � (B�� \\C��). Indeed A � A and B � B lead to A,B � A •B;
thus from A •B � C one obtains A,B � C which yields A � C /B by /i and B � A\C
by \i; from B � A\C (resp. A � B/C) using A � A (resp. B � B) one obtains A,B �C
by \e (resp. by /e) and A •B\C by •h.

Now let us consider the interpretation [p] = p�� for every primitive type. Then
for every formula [A] = A��.

To say that a sequent H1, . . . ,Hn � A is valid in this model under this interpretation
is to say that [H1, . . . ,Hn]� [A]. Therefore H1 • · · · •Hn � A is provable which entails
that H1, . . . ,Hn � A is provable as well — indeed from H1 • · · · •Hn � A one obtains �
H1 • · · · •Hn \A (*); then by n rules •i on the axioms Hi � Hi one obtains H1, . . . ,Hn �
H1 • · · · •Hn (**) and an application of •e to (*) and (**) yields H1, . . . ,Hn � A. ��

2.9.4 L Is Sound and Complete w.r.t. (Free) Semi-group Models

A more interesting class of models is provided by semi-groups. Indeed, the interpre-
tation of a category should be the set of the words and expressions of this category,
shouldn’t it?

So, given a semi-group (W, .) that is a set W endowed with an associative com-
position “.” one can define a residuated semi-group as follows:

• M = 2W

• A◦B = {ab | a ∈ A and b ∈ B}
• A\\B = {z | ∀a ∈ A az ∈ B}
• B//A = {z | ∀a ∈ A za ∈ B}
• A � B whenever A⊂ B (as sets).

It is easily seen that this structure really is a residuated semi-group:

• ◦ is associative:

(A◦B)◦C = {abc | a ∈ A and b ∈ B and c ∈C}= A◦ (B◦C)

48 2 Lambek’s Syntactic Calculus

• ⊂ is an order on 2W

(RSG) The following statements are clearly equivalent:

(A◦B)⊂C : ∀a ∈ A ∀b ∈ B ab ∈C
A⊂ (C //B) : ∀a ∈ A a ∈ (C //B)
B⊂ (A\\C) : ∀b ∈ B b ∈ (A\\C)

The free semi-group models are particularly interesting, since there are no equa-
tions between sequences of words. The following proposition may be understood as
stating that L is the logic of free semi-groups:

Proposition 2.22. Product free L is complete over free semi-group models.

Proof. Take as semi-group the finite non empty sequences of formulae F+, endowed
with concatenation (A1, . . . ,An) · (B1, . . . ,Bp) = A1, . . . ,An,B1, . . . ,Bp.

For a primitive type p define [p] by {Γ | Γ � p}.
Let us first verify that for every formula F , the set of finite sequences [F] de-

fined inductively from the [p]’s by the definition of \\ and // is precisely Ctx(F) =
{Δ | Δ � F}. We proceed by induction on F . Is F if some primitive type, it is true
by definition. Now assume that [G] = Ctx(G) and [H] = Ctx(H) and let us verify
that [G\H] =Ctx(G\H) — the case for H /G being symmetrical.

Ctx(G\H)⊂ [G\H] Let Δ be a sequence such that Δ ∈ Ctx(G \H) that is Δ �
G \H (1) and let us see that for every Θ ∈ [G] we have Θ ,Δ ∈ [H] — which
entails Δ ∈ [G \H]. By induction hypothesis we have Ctx(G) = [G] so Θ � G
(2). From (1) and (2) we obtain Θ ,Δ � H, so Θ ,Δ ∈Ctx(H). Since by induction
hypothesis Ctx(H)= [H] we have Θ ,Δ ∈ [H]. As this holds for every Θ we have
Δ ∈ [G\H].

[G\H]⊂Ctx(G\H) Let Δ be a sequence such that Δ ∈ [G\H]. Let us show that
Δ � G \H. Since G � G we have G ∈ Ctx(G) and by induction hypothesis
G ∈ [G]. By the definition of [G \H] we thus have G,Δ ∈ [H] and, since by
induction hypothesis we have [H] = Ctx(H) we obtain G,Δ � H. Now, by the
\i introduction rule we obtain Δ � G\H, that is Δ ∈Ctx(G\H).

If a sequent A1, . . . ,An �C is valid in this model under this interpretation, what does
it mean? We have [A1]◦ · · ·◦ [An]⊂ [C] and as Ai ∈ [Ai] we have A1, . . . ,An ∈ [C] that
is A1, . . . ,An � C. ��
Next follows a very difficult result due to Pentus (Pentus, 1993a), that we state
without giving the proof.

Proposition 2.23. L with product is also complete w.r.t. free semi-groups models.

2.10 Interpolation

This section presents the interpolation theorem for the Lambek calculus, which ap-
peared in the thesis of Roorda (Roorda, 1991).

2.10 Interpolation 49

Interpolation is somehow the converse of cut elimination. The interest of cut free
proofs is that they obey the subformula property. The usual interest of interpolation,
say for classical or intuitionistic logic is to be able to factor equal sub-proofs in a
given proof. In the Lambek calculus where contraction is prohibited, nothing like
this can happen. So the interest is very different, let us explain it in a few words.

Assume we are able to formulate the calculus with a set of axioms, and only the
cut rule: viewing � as −→ (in the opposite direction) the calculus is nothing but a
set of context-free production rules — the cut rule is the substitution rule often left
implicit in phrase structure grammars.

Indeed a production rule X −→ X1 · · ·Xn corresponds to an axiom X1, . . . ,Xn � X
and the cut rule simply states that if we have been able to derive

W −→V1 · · ·Vk T U1 · · ·Ul

T −→ Z1 · · ·Zj

then we are able to derive

W −→V1 · · ·Vk Z1 · · ·Zj U1 · · ·Ul .

Now observe that for a given Lambek grammar because of cut elimination we know
that the types appearing in any syntactic analysis are all subformulae of the con-
clusion sequent: indeed a syntactic analysis is a proof of t1, . . . , tn � S with all ti in
the lexicon. Can we derive any syntactic analysis from a finite number of provable
sequents by means of the cut rule only? As we shall see in the next section, this is
possible and consequently Lambek grammars are weakly equivalent to context-free
grammars.

Given a formula or a sequence of formulae Δ and a primitive type p we denote
by ρp(Δ) the number of occurrences of p in Δ .

Proposition 2.24. Let Γ ,Δ ,Θ � C be a provable sequent in L, with Δ �= ε . There
exists an interpolant of Δ that is a formula I such that:

1. Δ � I
2. Γ , I,Θ � C
3. ρp(I)≤ ρp(Δ) for every primitive type p
4. ρp(I)≤ ρp(Γ ,Θ ,C) for every primitive type p

Proof. We proceed by induction on the size of a cut free proof of Γ ,Δ ,Θ � C —
there are many cases in this proof, according to the nature of the last rule, and to the
respective position of the created formula and Δ .

axiom X � X

If the proof is an axiom, then Δ is a formula X and I = X obviously works:

1. X � X
2. X � X
3. ρp(X) = ρp(X)
4. ρp(X) = ρp(ε,ε,X)

50 2 Lambek’s Syntactic Calculus

Π � X Φ � Y
•i

Π ,Φ � X •Y

• Π = Π ′,Δ ,Π ′′ — so Γ = Π ′ and Θ = Π ′′,Φ .
By induction hypothesis we have an interpolant I for Δ in Π ′,Δ ,Π ′′ � X , let us
see it is an interpolant for Δ in Π ′,Δ ,Π ′′,Φ � X •Y .

1. We already have Δ � I
2. From Π ′, I,Π ′′ � X and Φ � Y , we have Π ′, I,Π ′′,Φ � X •Y .
3. We already have ρp(I)≤ ρp(Δ).
4. From ρp(I)≤ ρp(Π ′,Π ′′,X) we obtain ρp(I)≤ ρp(Π ′,Π ′′,Φ,X ,Y).

• Φ = Φ ′,Δ ,Φ ′′ — so Γ = Π ,Φ ′ and Θ = Φ ′′.
Symmetrical to the previous case.

• Π = Π ′,Δ ′ Φ = Δ ′′,Φ ′′ and Δ = Δ ′,Δ ′′ — so Γ = Π ′ and Θ = Φ ′′.
By induction hypothesis we have an interpolant I′ for Δ ′ in Π ′,Δ ′ � X and
an interpolant I′′ for Δ ′′ in Δ ′′,Φ ′′ � X . Then I = I′ • I′′ is an interpolant for
Δ = Δ ′,Δ ′′ in Π ′,Δ ′,Δ ′′,Φ ′′ � X •Y .
1. From Δ ′ � I′ and Δ ′′ � I′′ we obtain Δ ′,Δ ′′ � X •Y by •i.
2. From Π ′, I′ � X and I′′,Φ ′′ � Y we have Π ′, I′, I′′,Φ ′′ � X •Y by •i and finally

Π ′, I′ • I′′,Φ ′′ � X •Y by •h
3. From ρp(I′)≤ ρp(Π ′,X) and ρp(I′′)≤ ρp(Φ ′′,Y) we get ρp(I′ •I′′) = ρp(I′)

+ρp(I′′)≤ ρp(Π ′,X)+ρp(Φ ′′,Y) = ρp(Π ′,Φ ′′,X ,Y) = ρp(Π ′,Φ ′′,X •Y).
4. From ρp(I′) ≤ ρp(Δ ′) and ρp(I′′) ≤ ρp(Δ ′′) we get ρp(I′ • I′′) = ρp(I′)+

ρp(I′′)≤ ρp(Δ ′,Δ ′′) = ρp(Δ).

Π ,X ,Y,Φ � C
•h

Π ,X •Y,Φ � C

Let Δ ′ be defined as follows: if Δ contains X •Y then Δ ′ = Δ [X •Y := X ,Y], oth-
erwise Δ ′ = Δ . Let I be an interpolant for Δ ′ in Π ,X ,Y,Φ � C. Then I is itself an
interpolant for Δ in Π ,X •Y,Φ � C.

1. From Δ ′ � I we have Δ � I (possibly using •h).
2. From Π ,X •Y,Φ[Δ ′ := I] � C we get Π ,X •Y,Φ[Δ := I] � C.
3. From ρp(Δ) = ρp(Δ ′) we obtain ρp(I)≤ ρp(Δ)
4. Since ρp((Π ,X •Y,Φ)[Δ ′ := ε],C)= ρp((Π ,X •Y,Φ)[Δ := ε],C) we have ρp(I)
≤ ρp((Π ,X •Y,Φ)[Δ := ε],C).

X ,Γ ,Δ ,Θ � Y \i
Γ ,Δ ,Θ � X \Y

By induction hypothesis we have an interpolant I for Δ in A,Γ ,Δ ,Θ � B. It is an
interpolant for Δ in Γ ,Δ ,Θ � X \Y as well.

1. We already have Δ � I.
2. From X ,Γ , I,Θ � Y we obtain Γ , I,Θ � X \Y by \i.

2.10 Interpolation 51

3. We already have ρp(I)≤ ρp(Δ).
4. We have: ρp(I)≤ ρp(X ,Γ ,Θ ,Y) = ρp(Γ ,Θ ,X \Y).

Π � X Φ,Y,Ψ � C \h
Φ,Π ,X \Y,Ψ � C

• Δ is included into Π Let I be an interpolant for Δ in the premise containing it.
Then I is an interpolant for Δ in Φ,Π ,X \Y,Ψ � C.
1. We already have Δ � I
2. From Π [Δ := I] � X and Φ,Y,Ψ � C, by \h we obtain Φ,Π [Δ := I],X \

Y,Ψ � C
3. We already have ρp(I)≤ ρp(Δ).
4. From ρp(I) ≤ ρp(Π [Δ := ε],X) we have ρp(I) ≤ ρp(Φ,Π [Δ := ε],X \

Y,Ψ ,C)
• Δ is included in Φ (resp. Ψ) Let I be an interpolant for Δ in the premise con-

taining it. Then I is an interpolant for Δ in Φ,Π ,X \Y,Ψ � C.
1. We already have Δ � I
2. From Φ[Δ := I],Y,Ψ � C (resp. Φ,Y,Ψ [Δ := I] � C) and Π � X , by \h we

obtain Φ[Δ := I],Π ,X \Y,Ψ � C (resp. Φ,Π ,X \Y,Ψ [Δ := I] � C)
3. We already have ρp(I)≤ ρp(Δ).
4. From ρp(I)≤ ρp(Φ[Δ := ε],Y,Ψ ,C) (resp. ρp(I)≤ ρp(Φ,Y,Ψ [Δ := ε],C))

we have ρp(I)≤ ρp(Φ[Δ := ε],Π ,X \Y,Ψ ,C) (resp. ρp(I)≤ ρp(Φ,Π ,X \
Y,Ψ [Δ := ε],C)).

• Δ = Δ ′,Δ ′′ and Φ = Φ ′,Δ ′ and Π = Δ ′′,Π ′′.
Let I′ be an interpolant for Δ ′ in Φ ′,Δ ′,Y,Ψ �C, and let I′′ be an interpolant for
Δ ′′ in Δ ′′,Π ′′ � X . Then I = I′ • I′′ is an interpolant for Δ ′,Δ ′′ in Φ ′,Δ ′,Δ ′′,Π ′′,
X \Y,Ψ � C.
1. From Δ ′ � I′ and Δ ′′ � I′′ we have Δ ′,Δ ′′ � I′ • I′′ by •i.
2. From I′′,Π ′′ � X and Φ ′, I′,Y,Ψ � C we have Φ ′, I′, I′′,X \Y,Ψ � C by \h

and Φ ′, I′ • I′′,X \Y,Ψ � C by •i.
3. We have ρp(I′ • I′′) = ρp(I′)+ρp(I′′) ≤ ρp(Δ ′)+ρp(Δ ′′) = ρp(Δ).
4. We have ρp(I′ • I′′) = ρp(I′) + ρp(I′′) ≤ ρp(Φ ′,Y,Ψ ,C) + ρp(Π ′′,X) =

ρp(Φ ′,Π ′′,X \Y,Ψ ,C).
• Δ = Φ ′′,Π ,X \Y,Ψ ′ with Φ = Φ ′,Φ ′′ and Ψ =Ψ ′,Ψ ′′.

Let I be an interpolant for Φ ′′,Y,Ψ ′ in Φ ′,Φ ′′,Y,Ψ ′,Ψ ′′ � C. Then I is itself
interpolant for Φ ′′,Π ,X \Y,Ψ ′ in Φ ′,Φ ′′,Π ,X \Y,Ψ ′,Φ ′′ � C.
1. From Φ ′′,Y,Ψ ′ � I and Π � X we have Φ ′′,Π ,X \Y,Ψ ′ � I by \h.
2. We already have Φ ′, I,Ψ ′′ � C.
3. We already have ρp(I)≤ ρp(Φ ′,Ψ ′′,C)
4. We have ρp(I)≤ ρp(Φ ′′,Y,Ψ ′)≤ ρp(Φ ′′,Π ,X \Y,Ψ ′).

• Δ = Π ′′,X \Y,Ψ ′ with Π = Π ′,Π ′′ and Ψ =Ψ ′,Ψ ′′.
Let I′ be and interpolant for Π ′ in Π ′,Π ′′ � X and let I′′ be an interpolant for
Y,Ψ ′ in Φ,Y,Ψ ′,Ψ ′′ � C. Then I′ \ I′′ is an interpolant for Δ = Π ′′,X \Y,Ψ ′ in
Φ,Π ′,Π ′′,X \Y,Ψ ′,Ψ ′′ � C.

52 2 Lambek’s Syntactic Calculus

1. From I′,Π ′′ � X and Y,Ψ ′ � I′′ we have I′,Π ′′,X \Y,Ψ ′ � I′′ by \h and
Π ′′,X \Y,Ψ ′ � I′ \ I′′ by \i.

2. From Φ, I′′,Ψ ′′ � C and Π ′ � I′ we have Φ,Π ′, I′ \ I′′,Ψ ′′ � C.
3. We have ρp(I′ \ I′′)≤ ρp(Π ′′,X)+ρp(Y,Ψ ′) = ρp(Π ′′,X \Y,Ψ ′)
4. We have ρp(I′ \ I′′)≤ ρp(Π ′)+ρp(Φ,Ψ ′′,C) = ρp(Φ,Π ′,Ψ ′′,C)

This ends the proof because /i and /e are symmetrical to \i and \e. ��

2.11 Lambek Grammars and Context-Free Grammars

At the beginning of this section we shall see that context-free grammars translate
into weakly equivalent Lambek grammars (Cohen, 1967): this is non trivial but un-
surprising, and this section is in fact devoted to prove the converse, known as the
Chomsky conjecture, stated in 1963 (Chomsky, 1963, p. 413) and proved by Pentus
(Pentus, 1993b, 1997): Languages generated by Lambek grammars are context-free
languages. This result was already suggested in the previous section on interpola-
tion: if we are able to derive all sequents corresponding to syntactic analyses from a
finite set of sequents by the cut rule only, then Lambek grammars are context-free.

Let us define the size |A| of a formula A by its number of primitive types. We are
going to show that given an integer m there exists a finite set AX(m) of provable se-
quents such that all provable sequent containing only formulae of size smaller than
m are derivable from sequents in AX(m) by means of the cut rule only. This easily
entails that Lambek grammars are context-free. Note that the restriction on the size
of formulas is essential, since Zielonka (1981, 1989) shows that the Lambek calcu-
lus in general (without this size restriction) does not permit a formulation consisting
of a finite number of sequents AX and the cut rule.

Even though Lambek grammars generate only context-free languages, they have
a number of pleasant properties — in addition to their logical foundations — which
make them interesting objects of study:

• they are lexicalized,
• they offer a pleasant interface with semantics (as we will see in Chapter 3),
• they permit an elegant treatment of peripheral extraction (as we have seen in

Example 2.2, for example). To the best of our knowledge, among the grammar
formalisms which generate context-free languages, only the Lambek calculus
(and some closely related formalisms) have such a simple and elegant treatment
of peripheral extraction.

• finally, let us say that while the derivation trees of a context-free grammars
constitute a regular tree language (Thatcher, 1967; Gécseg and Steinby, 1997)
the derivation trees (natural deduction trees) of a Lambek grammar can consti-
tute a tree language which is not regular (Tiede, 2001): Kanazawa and Salvati
(2009) show that the natural deduction trees of a Lambek grammar correspond
to tree languages generated by hyperedge replacement grammars (Engelfriet,
1997; Engelfriet and Maneth, 2000). In other words, if we are interested in trees
rather than strings, Lambek grammars are more expressive than context-free
grammars.

2.11 Lambek Grammars and Context-Free Grammars 53

There are basically two ingredients for the Pentus proof that Lambek grammars
are context-free. One is interpolation and we already explained its relevance to this
question. The other is a property of the free group to be applied to the free group
model of Section 2.9.2 on page 45. This property is needed to find, in a sequent
where all formulae have sizes lower than m, two (or more) consecutive formulae
whose interpolant also has a size less than m — this is of course to be used for the
final induction.

We mainly follow (Pentus, 1993b), and borrow a few things from (Pentus, 1997;
Buszkowski, 1997).

2.11.1 From Context-Free Grammars to Lambek Grammars

It is natural to think that every AB grammar corresponds to a Lambek grammar,
because the Lambek calculus includes the AB elimination rules and is therefore at
least as expressive as AB grammars. In fact this result — although not as difficult as
the result we will prove in the remainder of this section, where we will show how to
translate Lambek grammars to context-free grammars — is not completely trivial:
not all theorems of L are also theorems of AB, so we need to be careful about using
an AB grammar as a Lambek grammar.

By Proposition 1.2 from Chapter 1, we know that any AB grammar is weakly
equivalent to an AB grammar containing only types of order at most 1. Now, by
Proposition 2.12 a sequent A1, . . . ,An � S with o(Ai)≤ 1 is provable with AB elim-
ination rules if and only if it is provable in L. Consequently the language generated
by an AB grammar with types of order at most 1 coincides with the language gen-
erated by the Lambek grammar with the same lexicon.

Using the weak equivalence between AB grammars and context-free grammars
(Propositions 1.11 and 1.10) we have the result of (Cohen, 1967):

Proposition 2.25. Every ε-free context-free grammar is weakly equivalent to a
Lambek grammar.

2.11.2 A Property of the Free Group

Let w be an element of the free group; then ‖w‖ stands for the length of the reduced
word corresponding to w — e.g. ‖cb−1a−1abc‖= 2.

This lemma, which is needed for a refinement of interpolation, only concerns the
free group. It had actually been proved before in (Nivat, 1971) and was reproved in
(Autebert et al, 1984).

Proposition 2.26. The two following properties of the free group hold:

1. Let u,v,w be elements of the free group; if ‖u‖< ‖uv‖ and ‖uv‖ ≥ ‖uvw‖ then
‖vw‖ ≤max(‖v‖,‖w‖).

54 2 Lambek’s Syntactic Calculus

2. Let ui i = 1, . . . ,n+1 be elements of the free group with u1 · · · · ·un+1 = 1. Then
there exists k ≤ n such that

‖ukuk+1‖ ≤max(‖uk‖,‖uk+1‖)

Proof. The first part is actually a lemma for the second part.

Proof of 1 We proceed by reductio ad absurdum, so we assume that
a. ‖u‖< ‖uv‖
b. ‖uv‖ ≥ ‖uvw‖
c. ‖vw‖> ‖v‖
d. ‖vw‖> ‖w‖

There exists three reduced words x,y,z such that
• u = xy−1 v = yz uv = xz
• xy−1 yz xz are reduced.
From (a) we have ‖x‖+‖y‖< ‖x‖+‖z‖ so ‖y‖< ‖z‖ and therefore ‖y‖< 1

2‖v‖
(*).
Similarly there exists three reduced words x′,y′,z′ such that
• v = x′y′ w = y′−1z′ vw = x′z′
• x′y′ y′−1z′ x′z′ are reduced.
From (c) we have ‖y′‖+‖z′‖< ‖x′‖+‖z′‖ so ‖y′‖< ‖x′‖ and therefore ‖y′‖<
1
2‖v‖ (**)
From v = yz = x′y′ with ‖y‖ < 1

2‖v‖ (*) and ‖y′‖ < 1
2‖v‖ (**), there exists a

non empty a such that
• z = ay′ x′ = ya v = yay′
• ay′ ya yay′ are reduced
So we have uvw = xy−1yay′y′−1z′ = xaz′ — as xa and az′ are reduced, xaz′ is
reduced as well. From (b) we have

‖uvw‖= ‖xaz′‖ ≤ ‖xay′‖= ‖xz‖= ‖uv‖
and therefore ‖z′‖ ≤ ‖y′‖.
Since from d we have ‖x′z′‖> ‖x′y′‖ so ‖z′‖> ‖y′‖, there is a contradiction.

Proof of 2 Let k be the first index such that ‖u1 · · ·uk‖ ≥ ‖u1 · · ·ukuk+1‖.
If k = 1 ‖u1‖ ≥ ‖u1u2‖ then max(‖u1‖,‖u2‖)≥ ‖u1‖ ≥ ‖u1u2‖.
Otherwise, let

u = u1 · · ·uk−1 v = uk w = uk+1

we have
‖u‖= ‖u1 · · ·uk−1‖< ‖uv‖= ‖u1 · · ·uk−1uk‖

and
‖uv‖= ‖u1 · · ·uk−1uk‖ ≥ ‖uvw‖= ‖u1 · · ·ukuk+1‖

so applying the first part (1) of this proposition we obtain

‖ukuk+1‖≤max(‖uk‖,‖uk+1‖) ��

2.11 Lambek Grammars and Context-Free Grammars 55

2.11.3 Interpolation for Thin Sequents

A sequent Γ � C is said to be thin whenever it is provable and for all p, ρp(Γ ,C) is
at most 2 — where ρp(Θ) is the number of occurrences of a primitive type p in Θ .
Notice that by Proposition 2.6 which says that a provable sequent contains as many
positive and negative occurrences of a primitive type, ρp(Γ ,A) is either 0 or 2.

Here is a proposition which is very representative of multiplicative calculi, in
which formulas can be neither contracted or weakened:

Proposition 2.27. Each provable sequent may be obtained from a thin sequent by
substituting primitive types with primitive types.

Proof. Given a cut free proof d with only primitive axioms of a sequent Γ � C,
number the axioms and replace each axiom p � p by pi � pi where i is the number
of the axiom, and also replace all the traces of this occurrence of p in the proof with
pi. Clearly the result is itself a proof of a sequent Γ ′ � C′, which contains exactly
two or zero occurrences of each primitive type, and which gives back Γ � C when
each pi is substituted with p. ��
Proposition 2.28. Let Γ ,Δ ,Θ � C be a thin sequent. Then there exists a formula B
such that:

1. Δ � B is thin
2. Γ ,B,Θ � C is thin
3. |B|= ‖[Δ]‖— the number of primitive types in B is the size of the interpretation

of Δ in the free group (see Section 2.9.2 on page 45).

Proof. p stands for any primitive type,
Let B be an interpolant of Δ which exists by Theorem 2.24. We then have:

a. Δ � B is provable
b. Γ ,B,Θ � C is provable
c. ρp(B)≤min(ρp(Γ ,Θ ,C),ρp(Δ))

Let Us First Prove 1. As the sequent Γ ,Δ ,Θ � C is thin,

ρp(Γ ,Δ ,Θ ,C) = ρp(Γ ,Θ ,C)+ρp(Δ)

is either 0 or 2; so by c ρp(B) is either 0 or 1, and we have

ρp(Δ ,B) = ρp(Δ)+ρp(B)≤ ρp(Γ ,Δ ,Θ ,C)+ρp(B)≤ 2+ 1

Since Δ � B is provable (a), ρp(Δ ,B) is even, and thus ρp(Δ ,B) ≤ 2. So, being
provable, Δ � B is thin.

Now Let Us Prove 2. Similarly,

ρp(Γ ,B,Θ ,C) = ρp(Γ ,Θ ,C)+ρp(B)≤ ρp(Γ ,Δ ,Θ ,C)+ρp(B)≤ 2+ 1

Since Γ ,B,Θ � C is provable (b) ρp(Γ ,B,Θ ,C) is even, so ρp(Γ ,B,Θ ,C) ≤ 2 So,
being provable, Γ ,B,Θ � C is thin.

56 2 Lambek’s Syntactic Calculus

Finally Let Us Prove 3

• if p does not occur in Δ then p does neither occur in [Δ] nor in B, by c.
• if p occurs once in Δ then it occurs once in [Δ] too — it cannot cancel with

another occurrence of p; as Δ � B is thin it also occurs once in B — it occurs
twice in Δ � B and once in Δ so it occurs once in B.

• if p occurs twice in Δ then it does not occur in Γ ,Θ ,C; therefore it does not
occur in B by (c). The soundness of the interpretation in the free group entails
[Γ ,Δ ,Θ] = [C] that is [Δ] = [Γ]−1[C][Θ]−1 As p does not occur in Γ ,Θ ,C, there
is no occurrence of p in [Γ]−1[C][Θ]−1 and therefore no occurrence of p in [Δ]

So for every primitive type, and whatever its number of occurrences in Δ is, there
are exactly as many occurrences of p in B and in [Δ], so the number of primitive
types in B and in [Δ] are equal: |B|= ‖[Δ]‖. ��
Proposition 2.29. Let A1, . . . ,An � An+1 be a thin sequent with |Ai| ≤m; then either:

• there exists an index k and a type B with |B| ≤m such that the following sequents
are thin:

A1, . . . ,Ak−1,B,Ak+2, . . . ,An � An+1

Ak,Ak+1 � B
• there exists a type B with |B| ≤ m such that the following sequents are thin:

B,An � An+1

A1, . . . ,An−1 � B

Proof. Let ui = [Ai] for 1 ≤ i ≤ n and un+1 = [C]−1. Interpreting the provability in
the free group we obtain: u1 · · ·unun+1 = 1 By Lemma 2.26 there exists an index
k ≤ n for which ‖ukuk+1‖ ≤max(‖uk‖,‖uk+1‖)≤m.

• If k < n, we apply Proposition 2.28 with
Δ = Ak,Ak+1,
Γ = A1, . . . ,Ak−1

Θ = Ak+2, . . . ,An.
So the sequents

A1, . . . ,Ak−1,B,Ak+2, . . . ,An � An+1

Ak,Ak+1 � B
are thin, and

|B|= ‖[Ak,Ak+1]‖= ‖ukuk+1‖ ≤ m

• If k = n, we apply Proposition 2.28 with
Γ = ε ,
Δ = A1, . . . ,An−1

Θ = An.
So the sequents A1, . . . ,An � B and B,An � B are thin.

Since [A1, . . . ,An−1,An] = [C]
we have |B|= ‖[A1, . . . ,An−1]‖= ‖[C][An]

−1‖

2.11 Lambek Grammars and Context-Free Grammars 57

therefore

|B|= ‖[C][An]
−1‖= ‖([An][C]

−1)−1‖= ‖(unun+1)
−1‖= ‖unun+1‖≤m ��

2.11.4 From Lambek Grammars to Context-Free Grammars

Proposition 2.30. If a sequent A1, . . . ,An � An+1 with each |Ai| ≤m is provable in L,
then it is provable from provable sequents U,V � X or U � X with |U |, |V |, |X | ≤ m
by means of the cut rule only.

Proof. We proceed by induction on n. If n ≤ 2 then there is nothing to prove.
Otherwise, let A′1, . . . ,A

′
n � A′n+1 be a corresponding thin sequent obtained as in

Proposition 2.27 — using a different primitive type for each axiom in the proof of
A1, . . . ,An � An+1. Thus there exists a substitution σ replacing primitive types with
primitive types and preserving provability such that σ(A′) = A.

As the substitution replaces primitive types with primitive types, we also have
|A′i| ≤ m. By Proposition 2.29 there exists a formula B′ with |B′| ≤ m such that
either:

• A′1, . . . ,A
′
k−1,B

′,A′k+2, . . . ,A
′
n � A′n+1

A′k,A
′
k+2 � B′

are thin, and therefore provable.
Let B = σ(B′), so B has at most m primitive types as well; applying the

substitution we obtain two provable sequents

A1, . . . ,Ak−1,B,Ak+2, . . . ,An � An+1

Ak,Ak+1 � B.

By induction hypothesis

A1, . . . ,Ak−1,B,Ak+2, . . . ,An � An+1 (∗)

is provable from provable sequents U,V � X or U � X with |U |, |V |, |X | ≤ m by
means of the cut rule only.

Notice that Ak,Ak+1 � B (∗∗) is of the form U,V � X with |U |, |V |, |X | ≤m.
A cut rule between the proof of (∗) and (∗∗) yields a proof of

A1, . . . ,An � An+1

from provable sequents U,V � X or U � X with |U |, |V |, |X | ≤ m by means of
the cut rule only.

• B′,A′n � A′n+1 and A1, . . . ,An−1 � B are thin and therefore provable.
Let B = σ(B′), so |B| ≤ m; applying the substitution we obtain two provable
sequents

B,An � An+1

A1, . . . ,An−1 � B.

58 2 Lambek’s Syntactic Calculus

By induction hypothesis

A1, . . . ,An−1,B � An+1 (+)

is provable from provable sequents U,V � X or U � X with U,V,X having at
most m primitive types by means of the cut rule only.

Notice that B,An � An+1 (++) is of the form U,V � X with |U |, |V |, |X | ≤m.
A cut rule between the proof of (+) and (++) yields a proof of

A1, . . . ,An � An+1

from provable sequents U,V � X or U � X with |U |, |V |, |X | ≤ m by means of
the cut rule only. ��

Theorem 2.31. Let Lex be the lexicon of a Lambek grammar GL, and let and let m
the maximal number of primitive types in a formula of the lexicon. Then the lan-
guage L(GL) generated by GL is the same as the language L(GC) generated by the
following context-free grammar GC:

• Terminals: terminals (words) of GL

• Non-Terminals: all formulae A with |A| ≤ m
• Start symbol S, the one of GL

• X −→ a whenever X ∈ Lex(a)
• X −→ A whenever A � X is provable in L
• X −→ AB whenever A,B � X is provable in L

Observe that the rules are in finite number, because there are finitely many sequents
U,V � X or U � X when U,V,X contains at most m primitive types — hence there
are only finitely many provable such sequents.

Proof. Assume a1 · · ·an ∈ L(GC). Hence there exist types Xi ∈ Lex(ai) such that
S −→ X1 · · ·Xn. The derivation in the CFG GC can be turned into a derivation in L
using only the cut rule (reversing−→ into �), therefore a1 · · ·an ∈ L(GL).

Assume now that a1 · · ·an ∈ L(GL). Hence there exist types Xi ∈ Lex(ai) such
that X1, . . . ,Xn � S. By Proposition 2.30 such a sequent is provable by means of the
sequents corresponding to production rules, and of the cut rule only. By induction
on the size of the cut-only proof, it is easily seen that the proof corresponds to a
derivation in the CFG GC. If the proof is reduced to a proper axiom, than this axiom
is itself a production rule. If the last rule is a cut, say between Γ ,B,Θ �C and Δ � B,
then by induction hypothesis we have B−→Δ and C−→Γ BΘ hence C−→Γ Δ Θ .
Thus, if a1 · · ·an ∈ L(GL), we have S−→X1 · · ·Xn with Xi ∈Lex(Ai); as Xi ∈ Lex(ai)
we have S −→ a1 · · ·an. ��

2.12 Concluding Remarks

This concludes our chapter on the Lambek calculus. We have given proofs of many
of the classic results (cut elimination, soundness and completeness, equivalence of

2.12 Concluding Remarks 59

Lambek grammars and context-free grammars). In the following chapters, we dis-
cuss some variants of the Lambek calculus.

Since complexity is not one of the major themes of the current book, we have
decided not to include a recent proof of NP-completeness of the Lambek calculus
(Pentus, 2006) in this chapter, although Section 4.6.1 gives a very brief overview of
the known complexity results for the Lambek calculus and some of it variants.

In the next chapter we will see another aspect of the Lambek calculus, which is
its direct link with natural language semantics in the style of Montague.

60 2 Lambek’s Syntactic Calculus

Exercises for Chapter 2

Exercise 2.1. Give sequent calculus derivations for each of the following sequents.

1. (A\B)/A � A\ (B/A)
2. A/B � (A/C)/ (B/C)
3. (A •B)\C � B\ (A\C)
4. B\ (A\C) � (A •B)\C
5. (B/A)\B � ((A\B)/A)\ (A\B)

Exercise 2.2. Give natural deduction derivations for each of the sequents of the pre-
vious exercise.

Exercise 2.3. Prove Proposition 2.3 on page 29.

Exercise 2.4. Definition 2.11 on page 36 defines the order of formulae. Calculate
the order of the following formulae.

1. np /n
2. ((np \ S)/ pp)/np
3. (S /np)\ S
4. ((np \ S)/np)\ (np \ S)
5. ((n /n)/ (n /n))/ ((n /n)/ (n /n))

Exercise 2.5. Prove Proposition 2.6 on page 30.

Exercise 2.6. Using the following lexicon, find two different normal derivations in
natural deduction for “Someone loves everyone” and “Someone is missing”

Word Type(s)
someone (S / (np \ S))
everyone ((S / np)\ S)

loves ((np \ S)/np)
is missing ((S / (np \ S))\ S)

gave (((np \ S)/ pp)/np)
a book np

to pp /np

Exercise 2.7. Following Carpenter (1996, Section 6.3), look at the following
lexicon.

Word Type(s)
kid n

who ((n \ n)/(S /np))
Kelly np
Terry np

Robin np
likes ((np \ S)/np)

believes ((np \ S)/S)
knows ((np \ S)/S)

Exercises for Chapter 2 61

Give natural deduction derivations showing that the lexicon above allows us to show
that all of the following expressions are of type n.

(2.1) kid who Kelly likes.
(2.2) kid who Kelly believes Terry likes.
(2.3) kid who Kelly believes Terry knows Robin likes.

Exercise 2.8. Extend the lexicon from Exercise 2.6 with types for “every” and “a”,
as well as for “child” and “toy” in such a way that “every child loves a toy” obtains
exactly two natural deduction derivations.

Exercise 2.9. Using the lexicon from Exercise 2.6, give two natural deduction
derivations for “Someone gave a book to everyone” .

Exercise 2.10. Section 2.6.2 gives a decision procedure for natural deduction
without product. Use this decision procedure to find all proofs for the sequent of
Example 2.1 on page 26. How many proofs are there? What is their relation to the
natural deduction proof shown in Example 2.1?

62 2 Lambek’s Syntactic Calculus

References

Abramsky, S.: Computational interpretations of linear logic. Theoretical Computer Sci-
ence 111, 3–57 (1993)

Autebert, J.M., Boasson, L., Sénizergues, G.: Langages de parenthèses, langages n.t.s. et
homomorphismes inverses. RAIRO Informatique Théorique 18(4), 327–344 (1984)

van Benthem, J.: Categorial grammar. In: Essays in Logical Semantics, ch. 7, pp. 123–150.
Reidel, Dordrecht (1986)

van Benthem, J.: Categorial grammars and lambda calculus. In: Skordev, D. (ed.) Mathemat-
ical Logic and its Applications. Plenum Press (1987)

van Benthem, J.: Language in Action: Categories, Lambdas and Dynamic Logic. Sudies in
logic and the foundation of mathematics, vol. 130. North-Holland, Amsterdam (1991)

Buszkowski, W.: Compatibility of a categorial grammar with an asssociated category system.
Zeitschrift für Matematische Logik und Grundlagen der Mathematik 28, 229–238 (1982)

Buszkowski, W.: Mathematical linguistics and proof theory. In: van Benthem, J., ter Meulen,
A. (eds.) Handbook of Logic and Language, ch. 12, pp. 683–736. North-Holland Elsevier,
Amsterdam (1997)

Carpenter, B.: Lectures on Type-Logical Semantics. MIT Press, Cambridge (1996)
Chomsky, N.: Syntactic structures. Janua linguarum. Mouton, The Hague (1957)
Chomsky, N.: Formal properties of grammars. In: Handbook of Mathematical Psychology,

vol. 2, pp. 323–418. Wiley, New-York (1963)
Chomsky, N.: The minimalist program. MIT Press, Cambridge (1995)
Cohen, J.M.: The equivalence of two concepts of categorial grammars. Information and Con-

trol 10, 475–484 (1967)
Engelfriet, J.: Context-free graph grammars. In: Rosenberg, G., Salomaa, A. (eds.) Handbook

of Formal Languages 3: Beyond Words, pp. 125–213. Springer, New York (1997)
Engelfriet, J., Maneth, S.: Tree Languages Generated by Context-Free Graph Grammars. In:

Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764,
pp. 15–29. Springer, Heidelberg (2000)

Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 3, ch. 1. Springer, Berlin (1997)

Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39,
176–210, 405–431 (1934)

Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)
Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in Theoretical Com-

puter Science, vol. 7. Cambridge University Press (1988)
de Groote, P., Retoré, C.: Semantic readings of proof nets. In: Kruijff, G.J., Morrill, G.,

Oehrle, D. (eds.) Formal Grammar, pp. 57–70. FoLLI, Prague (1996)
Hendriks, H.: Studied flexibility: Categories and types in syntax and semantics. PhD thesis,

University of Amsterdam, ILLC Dissertation Series (1993)
Hepple, M.: Normal form theorem proving for the Lambek calculus. In: Proceedings of COL-

ING 1990, Helsinki, pp. 173–178 (1990)
Kanazawa, M., Salvati, S.: On the derivations of lambek grammars (2009) (unpublished

manuscript)
König, E.: Parsing as natural deduction. In: Proceedings of the Annual Meeting of the Asso-

ciation for Computational Linguistics, pp. 272–297 (1989)
Lambek, J.: The mathematics of sentence structure. American Mathematical Monthly,

154–170 (1958)

References 63

Moortgat, M.: Categorial Investigations: Logical and Linguistic Aspects of The Lambek Cal-
culus. Foris, Dordrecht (1988)

Nivat, M.: Congruences de thue et t-langages. Studia Scientiarum Mathematicarum Hungar-
ica 6, 243–249 (1971)

Pentus, M.: Lambek calculus is L-complete. Tech. Rep. LP-93-14, Institute for Logic, Lan-
guage and Computation, Universiteit van Amsterdam (1993a)

Pentus, M.: Lambek grammars are context-free. In: Logic in Computer Science. IEEE Com-
puter Society Press (1993b)

Pentus, M.: Product-free Lambek calculus and context-free grammars. Journal of Symbolic
Logic 62(2), 648–660 (1997)

Pentus, M.: Lambek calculus is NP-complete. Theoretical Computer Science 357(1),
186–201 (2006)

Retoré, C., Stabler, E.: Generative grammar in resource logics. Research on Language and
Computation 2(1), 3–25 (2004)

Roorda, D.: Resource logic: proof theoretical investigations. PhD thesis, FWI, Universiteit
van Amsterdam (1991)

Thatcher, J.W.: Characterizing derivation trees of context free grammars through a general-
ization of finite automata theory. Journal of Computer and System Sciences 1, 317–322
(1967)

Tiede, H.-J.: Lambek Calculus Proofs and Tree Automata. In: Moortgat, M. (ed.) LACL 1998.
LNCS (LNAI), vol. 2014, pp. 251–265. Springer, Heidelberg (2001)

Zielonka, W.: Axiomatizability of the Adjukiewicz-Lambek calculus by means of cancel-
lation schemes. Zeitschrift für Matematische Logik und Grundlagen der Mathematik
27(13-14), 215–224 (1981)

Zielonka, W.: A simple and general method of solving the finite axiomatizability problems
for Lambek’s syntactic calculi. Studia Logica 48(1), 35–39 (1989)

3

Lambek Calculus and Montague Grammar

Summary. This chapter discusses one of the important advantages of using (Lambek) cat-
egorial grammars: the straightforward correspondence between Lambek calculus proofs and
derivations in Montague-style semantics, which extends straightforwardly to modern theories
like DRT. In order to keep the exposition simple, we will only briefly discuss the intensional
operators of Montague.

3.1 Introduction

The Lambek calculus is a lexicalized formalism: that is, the Lambek calculus con-
sists of a universal set of deduction rules — the logical properties of which we have
studied in detail in the previous chapter — and to obtain a Lambek grammar we
only add a lexicon, a function Lex which assigns a finite set of types to each word.

Now we will turn our attention to its relation to Montague semantics, intro-
duced in (Montague, 1970a,b, 1973) which is a very important feature of categorial
grammars.

We do not intend to give a lecture on Montague semantics, which is a large
research topic in itself — the reader interested in this topic is referred to
(Dowty et al, 1981; Gamut, 1991; Partee and Hendriks, 2011) for general introduc-
tions, and to (Carpenter, 1996) for many more applications of the Lambek
calculus and Montague grammar to different semantic phenomena — but only to
illustrate Montague semantics viewed from the perspective of the Lambek calcu-
lus. Montague semantics is also a controversial view of semantics. Indeed it has
nothing fancy to say about mental representation or the organization of concepts as
for instance in (Jackendoff, 1995) or (Pustejovsky, 1995) (though we believe that
Montague grammar is at least compatible with a more comprehensive cognitive the-
ory of meaning): the semantics of a sentence is given by formulae of (higher-order)
predicate calculus, possibly of intensional logic, and the elementary expression are
interpreted by logical constants: the word “Paul” is interpreted by the logical con-
stant Paul and the word “car” by the logical constant car (or equivalently, as is
more usual in Montague semantics, λ xe.car(x)). Nevertheless it enables a neat and

R. Moot and C. Retoré: The Logic of Categorial Grammars 2012, LNCS 6850, pp. 65–99, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

66 3 Lambek Calculus and Montague Grammar

computational treatment of (co)reference and of quantifiers and this is an important
step towards modeling meaning computationally.1 Interpreting sentences in a log-
ical syntax also allows us to model entailment: a set of sentences s1, . . . ,sn entails
another sentence s if and only is the truth of all of the sentences s1, . . . ,sn implies
the truth of s. If all of the sentences are interpreted as logical formulae, then this
semantic notion of entailment corresponds to the logical notion of entailment, that
is to s1, . . . ,sn � s where ‘�’ is the logical entailment relation of the logic we use for
our interpretation.2

Although Montague himself thought that one should forget about whatever lies
between the sentence and its interpretation in possible world semantics, we shall
choose a more intermediate level, which could be called the “syntax of semantics”,
as the endpoint of our semantic interpretation: the logical formula itself. We agree
with Montague and others that the intermediate steps, being unobservable, are dif-
ficult to study (or even to substantiate). The logical form is already less observable
than the sentence, though tools like entailment allow us to reason about properties
these logical forms must have.

3.2 Logic and Lambda Calculus

We will first give an extremely brief introduction to the typed lambda calculus, then
see how to model logical formulae in typed lambda calculus.

3.2.1 Typed Lambda Calculus and Intuitionistic Propositional Calculus

We do not pretend to include here a presentation of the typed lambda calculus,
many of them exist (Krivine, 1990; Seldin and Hindley, 1980; Girard et al, 1988)
but we provide a brief reminder of the minimal background necessary to follow
a presentation of Montague semantics. There are at least two unrelated ways to
consider the relation between the typed lambda calculus and logic:

[Church]. Typed lambda terms as logical formulae disregarding their truth and
provability. Provided the type systems includes a type e for entities (also called
individuals) and one, t, for truth values (or propositions), constants for logi-
cal connectives and constants for the predicates, functions and constants, every
closed formula correspond to a normal lambda term of type t, and conversely,
every closed normal lambda term (with constants as indicated) of type t corre-
sponds to a formula (this will be made precise in next section).

1 We consider these phenomena part of semantics. However, in generative grammar, they
are considered part of syntax. For a good introduction to semantics from the point of view
of generative grammar, see (Heim and Kratzer, 1997).

2 There are, of course, many caveats to using logical entailment to model semantic entail-
ment: semantic entailment depends, in many cases, on complex world knowledge and
there has been much debate about the difference between the logical implication “A⇒ B”
and the construction “if A then B” in natural language.

3.2 Logic and Lambda Calculus 67

[Curry-Howard]. Typed lambda terms as proofs in intuitionistic logic. Any proof in
the pure implicative propositional logic of C under the assumptions H1, . . . ,Hn

with propositional variables in P can be identified with a lambda term (not nec-
essarily normal) of type C with free variables of type H1, . . . ,Hn.

When studied from the context of a non proof-theoretic syntax, Montague semantics
is only concerned with the first point of view, since it computes logical formulae.
Here we shall also consider the second viewpoint, because the starting point for our
calculations are the syntactic analyses in type logical grammars (Lambek grammars,
multimodal categorial grammars, etc.), which are proofs, and which we convert into
lambda terms that are proofs as well, though they are proofs which represent logical
formulae.

Historically, the first viewpoint was introduced by Church in order to give a
proper account of substitution in Hilbert-style deductive systems. The second one,
which appears later, is the viewpoint responsible for typed functional programming
languages such as ML, CaML, Haskell, etc. One may wonder about the connection
between the two viewpoints, if any. It is actually a tiny one: what is a formula a
proof of? A formula is a proof of its own correctness, and there is no relation with a
proof of the formula itself! We are to see this tiny connection at work.

Definition 3.1 (Types). From a (finite) set of basic types P, also called atomic types,
we define the set of types as follows.

T ::= P | (T → T)

Types which are not basic types are called compound types.

For instance, if a,b ∈ P then a→ ((a→ b)→ b) is a type. Note that some authors
write 〈a,〈〈a,b〉,b〉〉; using 〈X ,Y 〉 when we write X → Y .

To represent formulae we require that P contains the type t for truth values and
the type e for individuals (in case one wishes to represent a multisorted logic with
sorts e1, . . . ,en these sorts should be in P).

Any type T ∈ T , be it atomic or compound, is given a countable set of variables
of this type. Each of these variables, written as xi : T or xT

i , is a term of type T with
free variable xi. Types may be provided with a finite or countable set of constants of
this type. They behave much like free variables, with the exception that they cannot
be bound. A term t of type T is written t : T or tT . We will switch between these
two notations for terms and variables freely throughout this chapter.

• Variables: if x is a variable of type T written x : T , then x is a term of type T with
one free occurrence of the variable x. The only subterm of x is x.

• Constant: if k is a constant of type T written k : T , then k is a term of type T
without free variables. The only subterm of k is k itself.

• Abstraction: if t is term of type T with the free variables V , and if x is a variable
of type U then w = λ xU .t is a term of type U → T with free variables F \{x} the
free occurrences of x : U in t are bound in w by the initial λ xU . Occurrences of
other free variables remain free. The subterms of w are w and the subterms of t.

68 3 Lambek Calculus and Montague Grammar

• Application: if t is a term of type U →V with free variables F and if u is a term of
typeU with free variables G then w = (t(u)) it a term of typeV with free variables
F ∪G. Any free occurrence of a free variable in t or in u is free in (t(u)), but
observe there might be free variables common to t and u. The subterms of w are
w itself, the subterms of t and the subterms of u.

An occurrence of a variable x which is not a free occurrence of this variable x is a
bound variable and therefore it is associated with its λ x binder.

We use implicit right bracketing for types: a→b→c = a→(b→c), which goes
with implicit left bracketing for λ -terms: w v u = (w v) u.

Let w = t[u] be a term with the subterm u = λ x t ′, and let z be a variable not oc-
curring in w. Then w′ = t[λ z t ′[x := z]] is a term which is said to be alpha equivalent
to w. All operations defined on lambda terms are defined up to alpha equivalence,
that is up to the renaming of free variables.3

The notation t[x := u], where t is a term, x a variable and u a lambda term of the
same type as x, represents the term obtained from t by replacing all free occurrences
of x by the lambda term u. Note that we may need to substitute u into a term t ′ alpha
equivalent to t to make sure all free variables of u are free variables of t[x := u]. For
example, (λ y. f (x,y))[x := y] is not equal to λ y. f (y,y), where the free occurrence
y is accidentally bound, but — after alpha conversion to (λ z. f (x,z))[x := y] — to
λ z. f (y,z).

A one-step beta reduction is defined by: (λ x t) u
β�1 t[x := u] and it preserves

the typing. Such a step of beta reduction may also take place in a subterm of a term.

Finally beta reduction can be iterated: beta reduction, written
β� is the reflexive,

transitive closure of the one-step beta reduction.
One should know the following results:

• Beta reduction is confluent, one also says Church-Rosser, that is to say if a term
t beta reduces to two terms t ′ and t ′′ then there exists a term w such that t ′ and
t ′′ both beta reduce to w.

• There is no infinite path of beta reduction in the typed lambda calculus (strong
normalization).

• As a consequence of the first two points: every typed lambda term has a unique
normal form, which is reached no matter how the beta reductions are performed.

One may also consider eta expansion, which is defined as follows, for a term t
without free occurrence of x:

tA→B η� λ xA (t(x))

It will be useful to consider β -normal η-long forms Huet (1976) which are defined
using the auxiliary notion of atomic forms:

• Variables are atomic forms.
• (M N) is an atomic form when M : A → B is an atomic form and N : A is in

β -normal η-long form.

3 Basically, alpha equivalence says that x �→ 2x is the same function as z �→ 2z.

3.2 Logic and Lambda Calculus 69

• Atomic terms whose type is a base type are β -normal η-long forms.
• λ xA t is a β -normal η-long form whenever t is.

Every term as a unique β -normal η-long form, which is obtained by beta reduction
and then some eta expansion steps. Roughly speaking every term of type A → B
without arguments is of the form λ xA t with t : B (the beta-normal eta-long form
requires replacing an f : A→ B without argument with (λ xA (f x)) : A→ B.

Observe that a λ -term consists of λ -abstractions, λ x1 · · ·λ xn, 1≤ i≤ n (possibly
none when i = 0) and then one subterm f which is successively applied to several
arguments, λ -terms t1, . . . tp (possibly none when p = 0). If the lambda term is nor-
mal, f cannot be a λ -abstraction. If it were, f = λ x0 u, because the term is normal,
then there would be no application of f (p=0) but in this case the λ y should be
considered as λ xn+1. Hence f is either a constant or a variable.

3.2.2 First Order Logic, Mono and Multisorted

First order logic has a single sort of individuals denoted here, as in Montague’s work
by e (entities) — Church call this type ι . Here we shall consider several sorts ei with
1≤ i≤ N the standard first-order case being N = 1.

Let us define functional types as eq1 → (eq2 → (....→ eqsq
→ eq0)) (in case sq = 0

this type is eq0)) and relational types as eq1 → (eq2 → (....→ eqsq
→ t)) (in case

sq = 0, this type is t) .
To define a multisorted language one needs several sets of symbols which are

assumed to be at most countable and possibly empty:

• Constants: for each sort α = eq0 we have a set of constants aα
n of sort α .

• Variables: for each sort α = eq0 we have a set of variables xα
n of sort α .

• Function symbols: for every functional type φ = eq1 → (eq2 → (....→ eqsq
→

eq0)) we have a countable set of function symbols f φ
q of this type φ .4

• Relational symbols: for every relational type ψ = eq1 → (eq2 → (....→ eqsq
→

t)) we have a countable set of relational symbols Rψ
k of this type ψ . Propositional

constants, if any, are viewed as relational symbols with sq = 0 i.e. with ψ = t.

We first need to define terms:

• A constant aα
n is a term of sort α .

• A variable xα
n is a term of sort α .

• If fq is function symbol of type φ = eq1 → (eq2 → (....→ eqsq
→ eq0)) and if ti

for i = 1, . . . ,sq are terms of respective sorts eqi then fq(t1, . . . , tsq) is a term of
sort eq0 .

• Nothing else is a term. Terms without variables are called closed terms; every
occurrence of a variable in a term is a free occurrence.

4 Constants can be viewed as function symbols with sq = 0 i.e. with φ = eq0 for some q0,
but as we shall often use languages with constants and without proper symbol we do not
use this generalization.

70 3 Lambek Calculus and Montague Grammar

Then atomic formulae are defined as follows: if R is a relational symbol of type
ψ = eq1 → (eq2 → (....→ eqsq

→ t)) and if ti for 1≤ i≤ sq terms of respective sorts
eqi , then the following is an atomic formula:

R(t1, . . . , tsq)

The free variables in an atomic formula are the free variables in the terms.
Next we can define formulae

• An atomic formula is a formula.
• If F is a formula, so is ¬F .
• If F and G are two formulae so are F ∧G, F ∨G, F ⇒ G.
• If F is a formula, and if x is a variable of some sort ei then ∀x : ei.F and ∃x : ei.F

are formulae.
• Nothing else is a formula.

Models for multisorted logic

The intended models for many-sorted logic with N sorts (ei)1≤i≤N are defined by a
partition of a set ē into N classes ēi. In order to define the model, we shall need an
interpretation I as well as an assignment A which maps every free variable into an
object of ēi.

An interpretation is fully defined by

• an element of ēi for every constant of sort ei.
• a function f̄q from ēq1 × . . .× ēqsq

�→ ēq0 for each function symbol fq of type
φ = eq1 → (eq2 → (....→ eqsq

→ eq0)), that is a function from sq elements of the
model (each of the appropriate sort ēqi) to an element ēq0 .

• a subset R̄ of ēq1 × . . .× ēqsq
for each relational symbol R of type ψ = eq1 →

(eq2 → (....→ eqsq
→ t)), that is a set of tuples with sq elements of the model

(each of sort ēqi) for which the relation R is true.

An assignment A is a map from variables to elements in the corresponding set:
A(x) ∈ ēi whenever x is of sort ei.

An interpretation together with an assignment maps terms of sort ei to the set ēi

as follows: constants of sort ei are mapped to elements in ēi by the interpretation,
variables of sort ei are mapped to elements in ēi by the assignment, and, after that,
if fq is function symbol of type φ = eq1 → (eq2 → (....→ eqsq

→ eq0)) and if ti
for i = 1, . . . ,sq are terms of respective sorts eqi which the interpretation and the
assignment map to ēqi then the interpretation of fq(t1, . . . , tsq) which is in ēq0 is
simply f̄q(ē1, . . . , ēsq).

Given an interpretation I and an assignment A, formulae are interpreted as usual
taking sorts into account:

• An atomic formula R(t1, . . . , tsq) with R a relational symbol of type ψ = eq1 →
(eq2 → (....→ eqsq

→ t)) and ti for 1 ≤ i ≤ sq terms of respective sorts eqi , is
true whenever (ēq1× ēq2× . . .× ēqsq

) is in R̄.

3.2 Logic and Lambda Calculus 71

• If F1 and F2 are two formulae and � is a connective, the truth of the formula
F1 �F2 and ¬F1 is given by the usual truth tables.

• If F is a formula, and if F is true for the interpretation I and for some assignment
A′ which coincides with A except, possibly, for the variable x of sort ei (i.e. A′(x)
may differ from A(x)) then ∃xF is true with interpretation I and assignment A.

• If F is a formula, and if F is true for the interpretation I and for all assignments
A′ which coincides with A except, possibly, for the variable x of sort ei (i.e.
A′(x) �= A(x)) then ∀x.F is true with interpretation I and assignment A.

We will not have a lot more to say about these models in this book, but we hope that
it helps to give a clearer picture about multisorted logic.

3.2.3 Second Order and Higher Order Logic

Multisorted second order logic is a rather simple extension of the logic above: for
each type ψ = eq1 → (eq2 → (....→ eqsq

→ t)) in addition to the relational symbols
one has relational variables. Terms are defined as above and are called first order
terms. Atomic formulae are defined as above, except that R can also be a relational
variable. Hence the main difference is that one may quantify, existentially and uni-
versally, over relational variables: given a formula F and a relational variable X
of type ψ = eq1 → (eq2 → (....→ eqsq

→ t)) the expressions ∀X .F and ∃X .F are
formulae. The cleanest way to treat quantifiers over relational variables of different
types is to treat them as different symbols.

Higher order logic is more complex to define in a standard logical syntax than in
the lambda calculus. Usually, one skips function symbols and higher order function
symbols, since they are not really necessary: they are particular cases of predicates.
However it is non standard to have heterogenous higher order variables, ranging
over objects with distinct status and quantification over those: e.g. it would be weird,
although not impossible, to quantify over variables of relation between relations and
individuals.

Intended models of such logic, which are usually called principal models, are as
expected: a relational variable X of type ψ = eq1 → (eq2 → (....→ eqsq

→ t)) is
interpreted as any subset of ēq1× ēq2× . . .× ēqsq

. The formula ∀X .F (resp. ∃X .F) is
true whenever it is true for any (resp. some) interpretation of the X as a subset of f
ēq1× ēq2× . . .× ēqsq

.
Nevertheless, we need to remember here that there is no completeness result with

respect to such principal models, even for the simplest case, second order logic.
Completeness can be stated as: every non-contradictory set of formulae admits a
model. Compactness says that when any finite subset of a set of formulae admits a
model, so does the whole set. Clearly, completeness implies compactness. Indeed,
if a set of formulae does not admit a model then it proves “false”. But a proof is
finite, hence if there is a proof of “false” from the set of formulae T then a finite
number of the formulae of T is enough to prove “false”. Hence if no finite subset of
T contains a contradiction, then neither does T , and therefore T has a model. Now
consider the following closed formulae Fn (n≥ 1) : ∃x1 · · ·∃xn∧n

i=1∧i
j=1xi �= x j and

72 3 Lambek Calculus and Montague Grammar

F0 : ∀X(,) X is an injective application ⇒ X is surjective5 then clearly every finite
subset S of Fi, i ∈ N has a principal model (assuming N is the largest integer such
that FN ∈ S, take a set {ai | i = 1, . . . ,N}), but there cannot be a set which is finite
and with at least n elements for all n.6

For second order logic, the reader is referred to van Dalen (1983).

3.2.4 Lambda Terms and Logical Formulae

Assume that the base types are ei 1≤ i≤ N and t and that the only constants are

• The logical constants:
– ¬ of type t→ t
– ⇒,∧,∨ of type t→ (t→ t)
– for every with i 1≤ i≤ n, two constants ∀i and ∃i of type (ei → t)→ t

• The language constants:
– Rq of type eq1 → (eq2 → (....→ eqsq

→ t))
– fq of type eq1 → (eq2 → (....→ eqsq

→ eq0))
• For second order logic, we need second order variables (relational variables) and

quantifiers:
– Xq of type (eq1 → (eq2 → (....→ eqsq

→ t))) = τq

– ∀2
τq

: ((τq → t)→ t) and ∃2
tq : ((τq → t)→ t)

Note that the logical connectives and quantifiers are treated simply as constants of
the lambda calculus, so a first-order logic formula

∀x.(f (x)⇒ g(x)) (3.1)

will be written as.

∀(λ x((⇒ f (x)) g(x))) (3.2)

Gamut (1991, Section 4.4.3) calls treating quantifiers the way we do in this chap-
ter (exemplified by lambda-term 3.2 above) the categorematic way of introducing
quantifiers (as opposed to the syncategorematic shown as formula 3.1 above). In-
troducing lambda-terms categorematically has the advantage that we do not need
to modify our notions of free and bound variables, since only the λ operator binds
variables. So instead of binding a variable x in a formula (as a syncategorematic
quantifier does) we have a categorematic quantifier which takes a term of type ei→ t
as an argument, which, because it is eta-expanded, is of the form λ xei .yt for some y,

5 This can be formulated as follows:

• X defines an application: (∀x.∃y.X(x,y))∧ (∀x.∀y.∀y′.(X(x,y)∧X(x,y′))⇒ y = y′)
• X is injective ∀x.∀x′.∀y.(X(x,y)∧X(x′,y))⇒ x = x′
• X is surjective: (∀y.∃x.X(x,y))

6 Completeness and a compactness can be obtained but with non principal models in which
n-ary relations are allowed to vary among sub-boolean algebras of powersets.

3.2 Logic and Lambda Calculus 73

with the lambda operator taking care of binding the variable x in y. However, in the
interest of readability, we will often write ∀x.y instead of ∀(λ x y) and x⇒ y instead
of ((⇒ x) y).

We can show by induction that every eta-expanded normal λ -term of type ei with
free variables xk of type eik corresponds to a term whose free variables are the xk of
sort eik .

Because the λ -term is normal and of type ei it does not start with a λ , it is either

• a variable x of type ei corresponding to the term x : ei of multisorted logic (the
free variable of the λ -term corresponds to the variable of the term),

• a constant fq (in this case sq = 0) of type ei corresponding to the term f : ei of
multisorted logic (no free variable in the λ -term and none in the logical term),

• some function fq applied to sq arguments ti of type eqi (because of the result type
ei, it cannot be another kind of constant since they cannot yield ei when applied
to some arguments, and f must be provided with all its arguments to obtain this
ei). The arguments ti are themselves λ -terms of type eqi ,and they correspond, by
induction hypothesis, to logical terms t�i of sort eqi , with the same variables as
the free variables of the λ -term. The logical term, in this case is fq(t�1 , . . . , t�sq

)

and its free variables are the same as those of the λ -term.

Now let us prove that every λ -term of type t in beta normal eta long form corre-
sponds to a formula, with the same free variables as the formula.

Because the λ -term is normal and of type t, we note that it does not start with a
λ and that it cannot be of the form fq, because this would imply a result type ei. We
proceed by case analysis on the form of the λ -term.

• the λ -term is some Rq or Xq applied to sq arguments ti of type eqi . The argu-
ments ti are λ -terms of type eqi ,and they correspond, by induction hypothesis,
to logical terms t�i of sort eqi , with the same variables as the free variables of the
λ -term . The logical formula, in this case is Rq(t�1 , . . . , t�sq

) and its free variables
are the same as those of the λ -term .

• a binary logical constant ∗ applied to two λ -terms (otherwise the result would
not be of type t) t1 and t2 of type t: by induction hypothesis each of these cor-
responds to a formula whose free variables are those of the λ -term. The corre-
sponding formula is t�1 ∗ t�2 .

• a unary logical constant ¬ applied to a λ -term (otherwise the result would not
be of type t) t1 of type t: by induction hypothesis each of these corresponds
to a formula whose free variables are those of the λ -term. The corresponding
formula is ¬t�1 .

• ∀i (resp. ∃i) of type (ei → t)→ t applied to a term u of type ei → t. Because
the λ -term is β -normal η-long, u = λ x : ei v with v : t and v having an extra
free variable, namely x : ei. The free variable of ∀i(λ x : ei v) say y1, . . . ,yl are
the ones of v : t minus x : ei. By induction hypothesis, v : t corresponds to a
formula v� with free variables x : ei and y1, . . . ,yl . The formula corresponding
to the complete λ -term is simply ∀x : eiv� (resp. ∃x : eiv�), its free variable are
he ones of the λ -term , namely y1, . . . ,yl .

74 3 Lambek Calculus and Montague Grammar

• If there are second order variables and quantifiers, it can be one of them, applied
to a term. The quantifier ∀2

tq : ((τq → t)→ t) (resp. ∃2
τq

: ((τq → t)→ t) is ap-
plied to a term of type (τq → t). Because term are in β η normal form, the term
maybe assumed to be λ X τq .u with u : t. By induction hypothesis, u corresponds
to a second order formula u�, as one more free predicate variable X and the
corresponding formula is ∀X : τq u� (resp. ∃X : τq u�).

3.3 From Categorial Analysis to Montague Semantic Analysis

Let us come back to the relation between Montague semantics and categorial gram-
mars. This relation, which was emphasized in particular by van Benthem
(van Benthem, 1991) (see also Hendriks, 1993, for a systematic study of this re-
lation), is a consequence of the following fact: simply typed λ -terms, which repre-
sent formulae of predicate calculus and neatly handle substitution, are very close
to proofs in the Lambek calculus, which are the syntactic analyses of Lambek
grammars. Indeed, via the Curry-Howard isomorphism (see e.g. Girard et al, 1988)
simply typed λ -terms are proofs in intuitionistic logic, which extends the Lambek
calculus. Indeed, reading a\b and b/a as a→b (intuitionistic implication) each rule
of the Lambek calculus is a rule of intuitionistic logic.7 Assume our Lambek gram-
mar uses the primitive types: np, n, S. First let us define a morphism from syntactic
types to semantic types: these semantic types are formulae are define from two types
e (entities) and t (truth values or propositions) with the intuitionistic implication→
as their only connective:

types ::= e | t | (types→types)

Thus a common noun like chair or an intransitive verb like sleep have the type e→t
(the set of entities which are chairs or who sleep) a transitive verb like takes is a two
place predicate of type e→(e→t) (the pairs of entities such that the first one takes
the second one) etc.

Thus we can define a morphism from syntactic types to semantic types.

(Syntactic type)∗ = Semantic type
S∗ = t a sentence is a proposition

np∗ = e a noun phrase is an entity
n∗ = e→t a noun is a subset of the set of entities

(a \ b)∗ = (b /a)∗ = a∗ → b∗ extends ()∗ to all syntactic types

7 We will ignore the product formula a • b in this chapter, though this is just to keep the
exposition of the lambda-calculus simple. The Curry-Howard isomorphism for the impli-
cation/conjunction fragment of intuitionistic logic is discussed in detail in (Girard et al,
1988) and carries over to the Lambek calculus without problems (see Abramsky, 1993;
Moortgat, 1997, for two different solutions).

3.3 From Categorial Analysis to Montague Semantic Analysis 75

The lexicon associates to each syntactic type tk ∈ Lex(m) of a word m a λ -term τk

whose type is precisely t∗k , the semantic counterpart of the syntactic type tk.
As discussed in Section 3.2.4, we need constants for the usual logical operations

like quantification, conjunction etc.:

Constant Type
∃ (e→t)→t
∀ (e→t)→t
∧ t→(t→t)
∨ t→(t→t)
⇒ t→(t→t)

and proper constants for the denotation of the words in the lexicon:

likes λ xλ y (likes x) y x : e, y : e, likes : e→(e→t)
<< likes >> is a two-place predicate

Pierre λ P (P Pierre) P : e→t, Pierre : e
<< Pierre >> is viewed as the set of properties

which hold for the entity Pierre

These constants can include intensionality operators ˆ and ˇ (Gamut, 1991) which
we will discuss briefly in Section 3.7.

Given

• a syntactic analysis of m1, . . . ,mn in the Lambek calculus, that is a proof D of
t1, . . . , tm � S and

• the semantics of each word m1,. . . , mn, that are λ -terms τi : t∗i ,

we obtain the semantics of the sentence by the following algorithm:

1. Replace every syntactic type in D with its semantic counterpart; since intuition-
istic logic extends the Lambek calculus the result D∗ of this operation is a proof
in intuitionistic logic of t∗1 , . . . , t

∗
n � t = S∗.

2. Via the Curry-Howard isomorphism, this proof in intuitionistic logic can be
viewed as a simply typed λ -term D∗

λ which contains one free variable xi of type
t∗i per word mi.

3. Replace in D∗
λ . each variable xi by the λ -term τi — whose type is also type t∗i ,

so this is a correct substitution.
4. Reduce the resulting λ -term: this provides the semantics of the sentence (an-

other syntactic analysis of the same sentence can lead to a different semantics).

We use natural deduction, because natural deduction is closer to λ -terms, but com-
puting λ -terms from sequent calculus proofs is possible too, though this essentially
corresponds to translating the sequent proof into natural deduction, as we have done
in Section 2.4.2. Even though we remarked in Section 2.2.1 that it was unnecessary

76 3 Lambek Calculus and Montague Grammar

in the Lambek calculus to mark the hypothesis of the /i and \i rules, we will coin-
dex hypotheses and introduction rules throughout this chapter: intuitionistic proofs
require us to mark which hypotheses correspond to which introduction rules, and
since we translate Lambek proofs to intuitionistic proofs, indicating explicitly in
both logics which hypotheses are withdrawn will make the translation from Lam-
bek calculus proofs to intuitionistic proofs more transparent. For the same reason,
we will use the→e rule both with the principal branch on the left (for the translation
of a /e rule) and with the principal branch on the right (for the translation of a \e

rule): the context of the rule application always allows us to determine the principal
branch of the rule unambiguously.

3.4 Some Typical Examples

Example 3.2. Consider the following lexicon:

word syntactic type u
semantic type u∗
semantics: λ -term of type u∗
xv means that the variable or constant x is of type v

some (S / (np \ S))/n
(e→t)→((e→t)→t)
λ Pe→t λ Qe→t (∃(e→t)→t (λ xe(∧t→(t→t)(P x)(Q x))))

statements n
e→t
λ xe(statemente→t x)

speak about (np \ S)/np
e→(e→t)
λ ye λ xe ((speak aboute→(e→t) x) y)

themselves ((np \ S)/np)\ (np \ S)
(e→(e→t))→(e→t)
λ Pe→(e→t) λ xe ((P x) x)

Let us first show that “Some statements speak about themselves” belongs to the lan-
guage generated by this lexicon. So let us prove (in natural deduction) the following:

(S / (np \ S))/n , n , (np \ S)/np , ((np \ S)/np)\ (np \ S)� S

using the abbreviations So (some) Sta (statements) SpA (speak about) Re f l (themselves)
for the syntactic types.

So � (S/(np\S))/n Sta � n
/e

So,Sta � (S/(np\S))
SpA � (np\S)/np Re f l � ((np\S)/np)\(np\S) \e

SpA,Re f l � (np\S)
/e

So,Sta,SpA,Re f l � S

3.4 Some Typical Examples 77

Using the homomorphism from syntactic types to semantic types we obtain the
following intuitionistic deduction, where So∗, Sta∗, SpA∗, Re f l∗ are abbreviations for
the semantic types respectively associated with the syntactic types: So, Sta, SpA, Re f l.

So
∗ � (e→t)→(e→t)→t Sta

∗ � e→t →e
So
∗,Sta

∗ � (e→t)→t

SpA
∗ � e→e→t Re f l

∗ � (e→e→t)→e→t →e
SpA

∗,Re f l
∗ � e→t →e

So
∗,Sta

∗,SpA
∗,Re f l

∗ � t

The λ -term representing this deduction simply is

((some statements) (themselves speak about)) of type t

where some, statements, themselves, speak about are variables with respective types
So∗, Sta∗, Re f l∗, SpA∗. Let us replace these variables with the semantic λ -terms (of the
same type) which are given in the lexicon. We obtain the following λ -term of type t
(written on two lines) that we reduce:

((
λ Pe→t λ Qe→t (∃(e→t)→t (λ xe(∧(P x)(Q x))))

)(
λ xe(statemente→t x)

))
((

λ Pe→(e→t) λ xe ((P x)x)
)(

λ ye λ xe ((speak aboute→(e→t) x)y)
))

↓ β

(
λ Qe→t (∃(e→t)→t (λ xe(∧t→(t→t)(statemente→t x)(Q x))))

)(
λ xe ((speak aboute→(e→t) x)x)

)
↓ β

(∃(e→t)→t (λ xe(∧(statemente→t x)((speak aboute→(e→t) x)x)))
)

This term represent the following formula of predicate calculus (in a more pleasant
format):

∃x : e (statement(x) ∧ speak about(x,x))

This is the semantics of the analyzed sentence.

Example 3.3 (Sorts and Adverbs). The following example illustrates the use of a
multisorted logic with sorts h (human beings) v (events) — and possibly others —
and the possible treatment of higher order predicate by reification.

(3.3) Michele works hard.

When properties likes “works” can be the argument of a higher order predicate like
the adverb “hard” it is common to introduce an event variable to designate ”work” to
which we apply the adverb “hard”, thereby avoiding the need for to analyze “hard”

78 3 Lambek Calculus and Montague Grammar

as a property of a property. In this case, the event variable should be bound, hence,
one should translate the syntactic type S by v→ t, rather than by t, and at the end
of the computation an existential quantifier over events should be applied to event
variables.

word syntactic type u
semantic type u∗
semantics: λ -term of type u∗
xv means that the variable or constant x is of type v

Michele np
h
Mh

works np \ S
h→(v→ t)
λ uh (worksh→(v→t) u)

hard (np \ S)\ (np \ S)
(h→(v→t))→(h→(v→t))
λ Ph→(v→t) λ xh λ ev(∧((P e)x)(hardv→te))

Here is the syntactic analysis of the sentence:

np

(np \ S) (np \ S)\ (np \ S) \e
(np \ S) \e

S

This Lambek proof can be turned into an intuitionistic proof:

h

(h→ (v→ S)) (h→ (v→ S))→ (h→ (v→ S))→e
(h→ (v→ S))→e

(v→ S)

The lambda term issued from the syntactic analysis is ((H W) M), and after inserting
the lambda terms provided by the lexicon it becomes

((
λ Ph→(v→t) λ xh λ ev(∧((P e) x)(hardv→t e))

)(
λ uhλ iv ((worksh→(v→t) u) i)

))
Mh

(
λ xh λ ev((∧(((

(
λ uhλ iv ((worksh→(v→t) u) i)

)
x)) e)(hardv→te)))

)
Mh

(
λ xh λ ev((∧(((worksh→(v→t)x)) e))(hardv→te))

)
Mh

λ ev((∧(((worksh→(v→t)Mh)) e))(hardv→t e))

3.4 Some Typical Examples 79

In this reified vision, in order to obtain a logical formula, it is common to consider,
once the sentence or discourse has been analyzed, the existential closure of the re-
sult. Hence the semantic representation becomes

∃(v→t)→t
(

λ ev((∧(((worksh→(v→t)Mh)) e))(hardv→t e))
)

which, in standard notation is

∃e : event works(e,Mh)∧hard(e)
There is a slightly different analysis — without reification but using a higher order
predicate — of the same sentence. The lexicon is as follows:

word syntactic type u
semantic type u∗
semantics: λ -term of type u∗
xv means that the variable or constant x is of type v

Michele np
h
Mh

works np \ S
h→t
λ uh (worksh→t u)

hard (np \ S)\ (np \ S)
(h→t)→(h→t))
λ Ph→t (hard(h→t)→(h→t)P)

The syntactic analysis is just the same, yielding a term ((H W) M). If one inserts
the new semantic lambda terms, one obtains:(

λ Ph→t (hard(h→t)→(h→t)P)
)
(λ uh (worksh→t u)) Mh

(hard(h→t)→(h→t)(λ u.(worksh→t u)) Mh

which can be written in higher order logic as:

(hard(works))(M)

Example 3.4 (Relative pronouns and relative clauses)
The semantic effect of the pronoun is to introduce a conjunction between the relative
clause of type e→ t and the common noun it is attached to e→ t. We will use French
because it makes a neater distinction between the relative pronoun acting as a subject
(qui) and relative pronouns acting as an object (que).

(3.4) Un
A

enfant
child

qui
who

courait
ran

est tombé.
fell.

‘A child who ran fell.’

80 3 Lambek Calculus and Montague Grammar

Such an example should be structured as follows:
∃ x ((child(x) ∧ past run(x)) ∧ (past fall(x))
The existential quantifier is correctly applied to the conjunction of two predicates:

the restriction ((child(x) ∧ past run(x)) and the predicate fall(x).
The lexicon should look as follows.

word syntactic type u
semantic type u∗
semantics: λ -term of type u∗
xv means that the variable or constant x is of type v

courait np \ S
e→ t
λ xe(past run(x))

est tombé np \ S
e→ t
λ xe(past f all(x))

enfant n
e→ t
λ xe (child(x))

qui (n \ n)/(np \ S)
(e→ t)→ (e→ t)→ (e→ t)
λ Pe→tλ Qe→t(λ xe∧ (Px)(Qx))

un (S / (np \ S))/n
(e→ t)→ (e→ t)→ t
λ Pe→tλ Qe→t∃(λ xe∧ (Px)(Qx))

The syntactic analysis is

(S / (np \ S))/n

n

(n \ n)/(np \ S) np \ S
/e

n \ n \e
n
/e

(S / (np \ S)) np \ S \e
S

The corresponding proof with semantic types instead is:

(e→ t)→ ((e→ t)→ t)

(e→ t)

(e→ t)→ (e→ t)→ (e→ t) e→ t →e
(e→ t)→ (e→ t)→e

(e→ t)→e
((e→ t)→ t) e→ t →e

t

3.4 Some Typical Examples 81

The corresponding lambda term is un ((qui courait) enfant) est tombé when one
inserts the lexical lambda terms it yields:

((λ Pe→tλ Qe→t∃(λ x:e∧ (Px)(Qx))
((λ Pe→tλ Qe→t(λ xe∧ (P x) (Q x))λ xe (past run(x)))λ xe (child(x))))

λ xe (past f all(x)))
This reduces to:

(λPe→tλQe→t∃(λxe∧(P x) (Q x))(λxe(∧(past run(x))child(x)))(λxe (past f all(x))))

an finally to:

∃(λ xe(∧(∧(past run(x) child(x)) (past f all(x))))

In other words:

∃x(past run(x)∧ child(x)∧ past f all(x))

Example 3.5 (Quantifier scope). A classical example is scope ambiguity in a sen-
tence like

(3.5) Every child ate a pizza.

word syntactic type u
semantic type u∗
semantics: λ -term of type u∗
xv means that the variable or constant x is of type v

every (S / (np \ S))/n (subject)
((S / np)\ S)/n (object)
(e→t)→((e→t)→t)
λ Pe→t λ Qe→t (∀(e→t)→t (λ xe(⇒t→(t→t) (P x)(Q x))))

a ((S / np)\ S)/n (object)
(S / (np \ S))/n (subject)
(e→t)→((e→t)→t)
λ Pe→t λ Qe→t (∃(e→t)→t (λ xe(∧t→(t→t)(P x)(Q x))))

child n
e→t
λ xe(childe→t x)

pizza n
e→t
λ xe(pizzae→t x)

ate (np \ S)/np
e→(e→t)
λ ye λ xe ((atee→(e→t) x)y)

82 3 Lambek Calculus and Montague Grammar

There are two possible syntactic analyses that will lead to the two different
readings. Let us completely compute the first analysis and the first semantic
representation.
One of the two possible syntactic analyses is:
∃∀
(S / (np \ S))/n n

/e
(S / (np \ S))

(np \ S)/np [np]1
/e

(np \ S)
/e

S
/i(1)

S /np

((S /np)\ S)/n n \e
(S /np)\ S \e

S

The corresponding semantic analysis is the following:
∃∀

every
(e→t)→(e→t)→t

child
(e→t) →e

(e→t)→t

ate
e→e→t

o
[e]1 →e

e→t →e
t →i(1)

e→t

a
(e→t)→(e→t)→t

pizza
(e→t) →e

(e→t)→t →e
t

The corresponding lambda terms is:
∃∀= (a pizza)(λ oe(every child)(ate o))
where words have to be replaced with the corresponding lambda terms.
Let us first compute the following lambda terms
(a pizza)

= (λPe→t λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(P x)(Q x)))))(λ ze(pizzae→t z))
= (λQe→t (∃(e→t)→t (λxe(∧t→(t→t)((λ ze(pizzae→t z)) x)(Q x)))))
= (λQe→t (∃(e→t)→t (λxe(∧t→(t→t)((pizzae→t x)))(Q x))))

(every child)
= (λPe→t λQe→t (∀(e→t)→t (λxe(⇒t→(t→t) (P x)(Q x)))))(λue(childe→t u))
= (λQe→t (∀(e→t)→t (λxe(⇒t→(t→t) ((λue(childe→t u)) x)(Q x)))))
= (λQe→t (∀(e→t)→t (λxe(⇒t→(t→t) (childe→t x)(Q x)))))

(every child)(ate o) =
(λQe→t (∀(e→t)→t (λwe(⇒t→(t→t) (childe→t w)(Q w)))))((λye λxe ((atee→(e→t) x) y)) o)
= (λQe→t (∀(e→t)→t (λwe(⇒t→(t→t) (childe→t w)(Q w)))))(λxe ((atee→(e→t) x) o))
= ∀(e→t)→t (λwe(⇒t→(t→t) (childe→t w)((λxe ((atee→(e→t) x) o)) w)))
= ∀(e→t)→t (λwe(⇒t→(t→t) (childe→t w)(((atee→(e→t) w) o))))

(a pizza)(λo (every child)(ate o))
= (λQe→t (∃(e→t)→t (λxe(∧t→(t→t)((pizzae→t x)))(Q x))))

(λo∀(e→t)→t (λwe(⇒t→(t→t) (childe→t w)(((atee→(e→t) w) o)))))
= (∃(e→t)→t (λxe(∧t→(t→t)((pizzae→t x)))

((λo∀(e→t)→t (λwe(⇒t→(t→t) (childe→t w)(((atee→(e→t) w) o))))) x)))

3.4 Some Typical Examples 83

= (∃(e→t)→t (λxe(∧t→(t→t)((pizzae→t x)))
(∀(e→t)→t (λwe(⇒t→(t→t) (childe→t w)((atee→(e→t) w) x))))))

that one usually writes:

∃x. pizza(x)∧∀w. (child(w)⇒ ate(w,x))

The other possible syntactic analysis is:
∀∃

(S / (np \ S))/n n
/e

(S / (np \ S))

[np]1
(np \ S)/np [np]2

/e
(np \ S) \e

S
/i(2)

S /np

((S /np)\ S)/n n \e
(S /np)\ S \e

S \i(1)
np \ S

/e
S

It corresponds to the following analysis:
∀∃

every
(e→t)→(e→t)→t

child
(e→t) →e

(e→t)→t

s
[e]1

ate
e→e→t

o
[e]2 →e

e→t →e
t →i(2)

e→t

a
(e→t)→(e→t)→t

pizza
(e→t) →e

(e→t)→t →e
t →i(1)

e→t →e
t

This proof corresponds to the lambda term

∀∃= (every child)(λ s. (a pizza)(λ o ((ate o) s)))

where the words are to be replaced with the lambda terms from the lexicon and that
we are going to reduce.

Let us compute the following lambda terms, using the terms we computed before
for (a pizza) and (every child).

(a pizza)(λ o ((ate o) s))
= (λ Qe→t (∃(e→t)→t (λ xe(∧t→(t→t)((pizzae→t x)))(Q x))))
(λ o (((λ ye λ xe ((atee→(e→t) x) y)) o) s)))
= (λ Qe→t (∃(e→t)→t (λ xe(∧t→(t→t)((pizzae→t x)))(Q x))))(λ o ((atee→(e→t) s) o))
= (∃(e→t)→t (λ xe(∧t→(t→t)((pizzae→t x)))((λ o ((atee→(e→t) s) o)) x)))
= (∃(e→t)→t (λ xe(∧t→(t→t)((pizzae→t x)))((atee→(e→t) s) x)))

84 3 Lambek Calculus and Montague Grammar

∀∃= (every child)(λ s. (a pizza)(λ o ((ate o) s)))
= (λ Qe→t (∀(e→t)→t (λ ue(⇒t→(t→t) (childe→t u)(Q u)))))
(λ s. (∃(e→t)→t (λ xe(∧t→(t→t)((pizzae→t x)))((atee→(e→t) s) x))))
= (∀(e→t)→t (λ ue(⇒t→(t→t) (childe→t u)
((λ s. (∃(e→t)→t (λ xe(∧t→(t→t)((pizzae→t x)))((atee→(e→t) s) x)))) u)))))

= (∀(e→t)→t (λ ue(⇒t→(t→t) (childe→t u)
(∃(e→t)→t (λ xe. (∧t→(t→t)((pizzae→t x)))((atee→(e→t) u) x))))))

which is usually written as:

∀u. child(u)⇒∃.x pizza(x)∧ate(u,x)

3.5 Determiners, Quantifiers and Type Raising

So far we did not interpret the definite article. To be simple, one can use Hilbert’s
τ : (e → t)→ e which, given a predicate Pe→t picks up an element satisfying P.
As a definite article needs to be first introduced it would be better to replace logic
in the lambda calculus by Discourse Representation Theory (DRT) in the lambda
calculus. DRT correctly handles many puzzles concerning discourse referents. We
discuss this compositional version of DRT, as well as several motivating examples,
in Section 3.6.

Hitherto we stuck to a strict correspondence (often called homomorphism) be-
tween syntactic categories and semantic types. As we have seen, this complicates
the syntactic categories for quantifiers and determiners somewhat, since they de-
pend on the syntactic position. Why should the syntactic category of someone be
different in Someone forgot his wallet. and in I met someone? Here, we will discuss
alternative semantic solutions, which also have their own drawbacks.

Systematic Type Raising

The first alternative is to translate np into (e→ t)→ t rather than into e. Thus the
semantics of “Peter” is λ Pe→t. P(peter) The advantage of this solution is that that
quantifiers have the same syntactic category no matter where they appear. Determin-
ers will therefore get a lifted type: since “the cat”, of syntactic type np should be,
of semantic type (e→ t)→ t, the determiner “the”, of syntactic type np /n, should
be of type (e→ t)→ ((e→ t)→ t) and the term should be λ Pe→tλ Qe→tQ(τ(P)).
As a consequence, the semantic types of verbs become more complicated: “sleeps”,
of syntactic type np \ S, should be of semantic type ((e → t)→ t)→ t with term
λ R(e→t)→tR(λ xesleeps(x)), so we simplify the syntactic types but complicate the
semantic types and, consequently, the lambda terms.

A problem of this approach is that we no longer generate two distinct readings for
“every child ate a pizza”: in Example 3.5 we obtained two proofs for this sentence,
each of which corresponded to a different semantic reading. The use of systematic
type raising would require us to find another way to generate the two readings;

3.5 Determiners, Quantifiers and Type Raising 85

one possibility would be to assign to different lambda-terms to the verb, but the
treatment of quantifier scope as verbal polysemy seems hardly appropriate.

Substituting terms for terms rather than terms for variables

The second alternative, which also provides the same syntactic category for quan-
tifiers wherever they appear in the sentence, is to change the way we substitute the
lexical lambda terms: as we have used it before, a Lambek calculus derivation cor-
responds to a lambda-term with a free variable w for each of the hypotheses and we
replace these free variables by lexical lambda terms of the same type. We can make
this replacement operation a bit more complicated by allowing the replacement of
any lambda term of the correct type provided that its only free variable is the lexical
variable w. Let us take a simple example:

word syntactic type u
semantic type u∗
semantics: λ -term of type u∗
xv means that the variable or constant x is of type v

everyone np
((e→t)→t)
λ Qe→t (∀(e→t)→t (λ xe(Q x)))

sleeps (np \ S)
(e→t)
λ xe (sleepe→t x)

(3.6) Everyone sleeps

Note the type clash between the syntactic type np, corresponding to the semantic
type e, and the semantic type ((e→t)→t) which is assigned to it in the lexicon. This
sentence can be analyzed by a non normal proof in the Lambek calculus, with a
subproof of conclusion (S / (np \ S)) and a single free variable (or hypothesis) np
(observe that it is not an analysis in AB grammars because of the introduction rule).

np [np \ S]1 \e
S

/i
S / (np \ S) np \ S

/e
S

The semantic translation of this proof is:

e [e→ t]1 →e
t →i

(e→ t)→ t e→ t →e
t

86 3 Lambek Calculus and Montague Grammar

The corresponding lambda term is (λ Pe→t P(everyone))(e→t)→tsleep and the first
part only has everyone as a free variable. With the relaxed rule, one can replace
the whole subterm by the semantic lambda term associated with everyone,

λ Qe→t (∀(e→t)→t (λ xe(Q x)))

thus obtaining as the semantics of the sentence the expression:

(λ Qe→t (∀(e→t)→t (λ xe(Q x))))(λ xe (sleepe→t x))

which reduces to.
(∀(e→t)→t (λ xe(sleep x))))

Because this analysis forces us to consider non normal proofs with a subproof of the
semantic type, it is not very satisfactory.

To have a single syntactic category for quantifiers wherever they are located, and
to handle discourses referents properly, one may go for categorial minimalist gram-
mars, with lambda-mu DRT for computing the semantics (Amblard et al, 2010), but
this is goes beyond the scope (!) of the present book.

We will give another solution for unifying the two type assignments in Sec-
tion 5.1.1.

3.6 Lambek Calculus and Discourse Representation Theory

Though the link between the Lambek calculus and Montague grammar is traditional
and well-known, a lot of modern research has been done in what is called dynamic
semantics. Dynamic semantics takes into account the context of an utterance and
models how this utterance changes the context. One of the typical applications of
this point of view is the semantics of anaphors: anaphors, like “he” or “she” must —
in a coherent discourse — refer to a previously introduced individual, as indicated
by the following example discourse.

(3.7) The president of the board/A friend from Amsterdam/Thomas arrived
yesterday.

(3.8) I’ll meet him for lunch today.

Here the first sentence is interpreted as adding a new element to the context8, corre-
sponding to “the president of the board”, “a friend from Amsterdam” or “Thomas”.
In each of these cases it is possible for the second sentence to refer back to this
previously introduced entity by means of the pronoun “him”.

On the other hand, it is well-known that we cannot just refer back to any noun
phrase or quantifier of the preceding discourse, as indicated by the following dis-
course (“#” denotes the sentence is incoherent in the given discourse).

8 We stay, for the moment, deliberately vague as to the nature of the context and the elements
in it. We will give a more concrete interpretation in what follows.

3.6 Lambek Calculus and Discourse Representation Theory 87

(3.9) Four of my friends/nobody/everyone arrived yesterday.
(3.10) # I’ll meet him for lunch today.

Here none of the expressions “four of my friends”, “nobody” or “everyone” can
be referred to by the pronoun “him” and a theory of anaphoric reference needs to
explain this. Though the contrast between plural and singular explains at least part
of the difference, it does not explain all of it: neither “him” nor “them” can refer to
“nobody”.

As another set of examples (after van Eijck and Kamp, 2011), look at the follow-
ing contrast.

(3.11) Someone didn’t smile.
(3.12) He had a terrible headache.

(3.13) Not everyone smiled.
(3.14) # He had a terrible headache.

Though from a truth-conditional point of view “Someone didn’t smile” and “Not
everyone smiled” are logically equivalent, they are clearly different in terms of the
anaphoric possibilities they allow, as shown by the second sentence of each of the
two minimal discourses above.

As one final example, let’s return to Example 3.5, repeated as the first sentence
below.

(3.15) Every child ate a pizza.
(3.16) It had lots of ham and mozzarella.

In this case, continuing the discourse with the second sentence forces us to give the
first sentence the interpretation where there is a single pizza which was eaten by all
the children.

One very successful theory of dynamic semantics which gives an account
of all these and many more phenomena is Discourse Representation Theory
(Kamp and Reyle, 1993). The basic objects of Discourse Representation Theory
(DRT) are Discourse Representation Structures. Dynamic semantics and Discourse
Representation Theory are both fields with a long history and a large volume of re-
search and this short section cannot really do more than give a flavor of some of the
very basic ideas. For a more detailed treatment of these subjects, the reader is re-
ferred to (Kamp and Reyle, 1993; Muskens et al, 2011; van Eijck and Kamp, 2011;
Kamp et al, 2011).

Figure 3.1 shows two examples Discourse Representation Structures (DRSs).
It shows the two readings of “Every child ate a pizza” which we computed for

Example 3.5 in DRS form. Each DRS is drawn as a box, divided into two parts by
a horizontal line. Above the line, there is a list of variables which are called the
discourse referents. The set of discourse referents is sometimes called the universe
of the DRS. Below the line are the conditions of the DRS: these can be predicates,
like pizza(x) but also complex conditions, which recursively contain other DRSs.
In the example there is an implication ⇒ between two DRSs, with the obvious

88 3 Lambek Calculus and Montague Grammar

x

pizza(x)

w

child(w)
⇒

ate(w,x)

u

child(u)
⇒

x

pizza(x)

ate(u,x)

Fig. 3.1. Two example Discourse Representation Structures corresponding to the two readings
of Example 3.5

intended meaning that if the DRS on the left of the arrow evaluates to true then the
DRS on the right of the arrow evaluates to true. The intuitive meaning of a DRS is
that the discourse referents are existentially quantified variables (and, by duality, the
discourse referents on the left hand side of an implication are universally quantified).

Definition 3.6 (DRS). A discourse representation structure is a pair 〈V,C〉 such that
V is a set of variables and C is a set of conditions.

A condition is either an atomic condition, a predicate p(x0, . . . ,xn) where all the
xi are discourse referents (we treat x= y, often called anaphoric link, as a two-place
predicate which is interpreted as the identity relation) or a complex condition: if K1

and K2 are DRSs then K1 ⇒ K2, K1∨K2 and ¬K1 are DRS conditions.

One of the crucial notions is the notion of accessibility of discourse referents: if
we add a sentence containing an anaphoric pronoun, such as “he”, “she” or “it” to
a DRS, we need to link it to an accessible discourse referent. We say a discourse
referent x is accessible from DRS K if:

1. x is a member of the universe of K,
2. K is a DRS which occurs as a condition ¬K, K∨K1, K1∨K, K⇒K1 or K1 ⇒K

in a DRS Kp and x is accessible from Kp,
3. K is a DRS which occurs as a condition K1 ⇒ K and x is accessible from K1.

So, intuitively, from a DRS K we can “see” all discourse referents which occur in
a DRS which contains K or which occur to the left of an implication from K. If xi

is an accessible discourse referent occurring in an atomic condition p(x0, . . . ,xn) we
will call xi bound9; if not, we will call xi free. A DRS without free variables is called
a proper DRS.

Given this definition of accessibility, we see that for the example DRSs of
Figure 3.1, the outermost level of the leftmost DRS has only the discourse refer-
ent x which is accessible in the “outer” DRS, whereas w is accessible for the DRS
to the left of the implication and both w and x are accessible DRS to the right of the
implication. The rightmost DRS has no discourse referents accessible at the outer
level, u is accessible in the DRS left of the arrow and both u and x are accessible
right of the arrow.

9 It is possible to distinguish between two types of bound occurrences
(see van Eijck and Kamp, 2011, for further details and discussion), however, in
order to keep the current discussion simple, we will not do so here.

3.6 Lambek Calculus and Discourse Representation Theory 89

As a slight abuse of notation, we will write x =? for an unresolved anaphoric
link, indicating that we need to substitute an accessible discourse referent for ‘?’
before we can interpret the DRS. In other words, the actual resolution of anaphora,
though subject to syntactic constraints, is handled in the semantics. The alternative
is to handle binding in the syntax, by coindexing an anaphor and its antecedent, then
ensuring in the translation that expressions labeled by the same index are translated
by the same variable (see Muskens, 1996, for example). We will have a bit more to
say on this topic when we talk about the semantics assigned to “he”.

A useful operation on two DRSs K1 and K2 is the merge operation. The idea
behind the merge operation is that we add the information of K2 to the information
of K1 to obtain a new DRS K. We can see K1 as the DRS corresponding to the
preceding discourse, K2 as the DRS corresponding to the sentences which have just
been uttered and their merge K as the DRS corresponding to the resulting discourse.
Defining merge is easy when the universes of K1 and K2 are disjoint and none of
the conditions of either DRS contains free variables. However, this seems much too
restrictive. In order to give an appropriate account of binding phenomena, we allow
the discourse referents of K1 to bind the variables of the conditions in K2, but not
vice versa and we rename the variables in the universe of K2 in order to avoid naming
conflicts with variables of the universe K1, as indicated by the following definition
(this is not the only possibility; see van Eijck and Kamp, 2011, for a discussion of
different strategies for defining merge).

Definition 3.7 (Merge). Let K1 and K2 be two Discourse Representation Structures
with variables x1, . . . ,xn and y1, . . . ,yn respectively. We define the merge of K1 and
K2, written K1⊕K2 as follows

• we replace all free variables xi of K1 which are identical to one of the yi of K2

by unused variables vi, obtaining a new DRS K′1,
• we replace all bound variables yi of K2 which are identical to one of the xi of K1

by unused variables zi, obtaining a new DRS K′2,
• K1⊕K2 is defined as the union of the discourse referents of K′1 with the discourse

referents of K′2 and the union of the conditions of K′1 with the conditions of K′2.

Note that the merge of two DRSs is always defined and unique up to variable re-
naming, but asymmetric: discourse referents of K1 can bind variable occurrences
of conditions of K2 (and this is, of course, the essence of anaphoric reference) but
discourse referents of K2 can never bind conditions of K1; free variables of K1 will
be free variables of K1⊕K2 by definition.

The relation between Discourse Representation Structures and first-order logic is
rather transparent, as shown by the following translations.

Definition 3.8. We define two translations: one from first-order logic — where we
restrict the translation to formulae which use a different variable for each quanti-
fier and to formulae for which no free variable uses the same variable name as a
quantified variable — to Discourse Representation Structures, shown in Table 3.1
and one from Discourse Representation Structures to first-order logic, shown in

90 3 Lambek Calculus and Montague Grammar

Table 3.2. Since Discourse Representation Structures and conditions are defined by
mutual recursion, the translation from DRSs and conditions is defined by two mu-
tually recursive function d (from DRSs to formulas of first-order logic) and c (from
DRS conditions to formulas of first-order logic) as well.

Table 3.1. Translating first-order formulae into Discourse Representation Structures

‖∃x.F‖ = x ⊕‖F‖

‖∀x.F‖ =

x ⇒ ‖F‖

‖F1 ∧F2‖ = ‖F1‖⊕‖F2‖

‖F1 ⇒ F2‖ =

‖F1‖ ⇒ ‖F2‖

‖F1 ∨F2‖ =

‖F1‖ ∨ ‖F2‖

‖¬F‖ =

¬ ‖F‖

‖P‖ =

P

Table 3.2. Translation functions d from Discourse Representations structures to first-order
formulae and c from DRS conditions to first-order formulae

d(〈[x0, . . . ,xn], [C1, . . . ,Cm]〉) = ∃x0, . . . ,xn.c(C1)∧ . . .c(Cm)

c(p(x0, . . . ,xn)) = p(x0, . . . ,xn)
c(D1 ∨D2) = d(D1)∨d(D2)

c(〈[x0, . . . ,xn], [C1, . . . ,Cm]〉 ⇒ D) = ∀x0, . . . ,xn(c(C1), . . . ,c(Cm)⇒ d(D))
c(¬D) = ¬d(D)

Muskens (1994, 1996) shows that DRT semantics is fully compatible with both
Montague semantics and the Lambek calculus, and that the combination of both ap-
proaches into a unified theory based on the simply typed lambda calculus allows us
to use the strong points of both formalisms. For example, as pointed out by Muskens
(1996), the combined calculus handles the interaction of anaphors with coordination

3.6 Lambek Calculus and Discourse Representation Theory 91

rather easily. In addition, this combination of Montague grammar and DRT, being
based on the simply type lambda calculus, can easily handle DRT semantics within
the Lambek calculus (as shown by Muskens, 1994).

The essential idea is very simple: we replace all terms of type t by DRSs, which
are of type i→ (i→ t), where i is an information state: a function which assigns each
discourse referent in the universe of the DRS an element of the domain.” by ”a func-
tion which assigns each discourse referent in the universe of the DRS an element of
the domain (there is an additional subtlety: Muskens has a type distinction between
discourse referents and entities; however, for ease of exposition we will only use the
type entity in our discussion). Given that the discourse we have processed before
the current sentence may have already assigned some values to discourse referents,
what a sentence does is update this information — possibly adding new discourse
referents and discarding old ones. The interpretation of the conditions of the DRS
must therefore be a term of type i→ t, a function which given an information state i
— that is, an assignment to the variables in the universe of the DRS — returns true
or false; when occurring inside a DRS this term is therefore applied to the current
context i to give a term of type t. So the intuition behind the semantics of a DRS
in this calculus is that a DRS is interpreted as a relation between input context ci

and an output context co, such that all the variables x0, . . . ,xn are added to co (there
are different opinions about what to do if any of the xi is already assigned a value
in the assignment ci, we will only assume here that in the context which follows xi

is treated just like a free variable) and that all the conditions C0, . . . ,Cn are true for
the assignment co. In case there is no assignment co satisfying all Ci then the DRS
evaluates to false, otherwise it evaluates to true. If we make the intuitions of this
paragraph formally precise, we can — as shown in Muskens (1996, Section III.2)
— treat the DRSs as abbreviations for terms which manipulate contexts directly. In
what follows, we follow the simpler strategy where boxes are simply objects of type
i → (i → t) and conditions are terms of type t — ie. the application of a term of
type i→ t applied to the current context c. This choice means that the accessibility
relation and context updates are handled at the level of the DRSs and not at the level
of the lambda terms. Though the solution of coding the accessibility in the lambda
terms is rather neat, the current solution produces lambda-terms which convert to
Discourse Representation Structures and therefore permits a more transparent com-
parison with DRS semantics.

In what follows, to simplify the notation of types, we will often abbreviate the
type i → (i → t) as σ . The new constants of DRS semantics have the following
types.

Constant Type Simplified type
¬ (i→i→t)→t σ→t
⇒, ∨ (i→i→t)→(i→i→t)→t σ→σ→t
⊕ (i→i→t)→(i→i→t)→(i→i→t) σ→σ→σ

Example 3.9. Translating the lexicon of Example 3.5 to a DRS lexicon gives us the
following.

92 3 Lambek Calculus and Montague Grammar

word syntactic type u
semantic type u∗
semantics: λ -term of type u∗
xv means that the variable or constant x is of type v

every (S / (np \ S))/n (subject)
((S /np)\ S)/n (object)
(e→σ)→((e→σ)→σ)

λ Pe→σ λ Qe→σ

(((⇒(σ→σ→t) ((⊕σ→σ→σ x) (P x))) (Q x))

a ((S /np)\ S)/n (object)
(S / (np \ S))/n (subject)
(e→σ)→((e→σ)→σ)

λ Pe→σ λ Qe→σ ((⊕σ→σ→σ ((⊕σ→σ→σ x) (P x))) (Q x))

child n
e→σ
λ xe

childe→t(x)

pizza n
e→σ
λ xe

pizzae→t(x)

ate (np \ S)/np
e→(e→σ)

λ ye λ xe

atee→e→t(x,y)

Leon S / (np \ S) (subject)
(S /np)\ S (object)
(e→σ)→σ
λ Pe→σ ((⊕σ→σ→σ x

Leon(x)
)(P x))

he S / (np \ S)
(e→σ)→σ
λ Pe→σ ((⊕σ→σ→σ x

x =?
)(P x))

Apart from the fact that we have replaced type t by type σ , the types of the
lambda-terms have remained them same. Words like “pizza” and “child” are now
functions from entities to DRSs with the condition pizza(x) (resp. child(x)). The
interesting cases are the quantifiers “a” and “every”: “every” is a function from

3.7 A Word about Intensional Logic 93

two properties P and Q — that is, two functions from entities to DRSs — to a
DRS. The resulting DRS will have a single complex condition of the form K1 ⇒
K2, where the left hand side K1 will be the merge of a DRS containing only the
unused discourse referent x with the DRS (Px) and the right hand side K2 will be the
DRS (Qx). The DRS introducing the unused discourse referent x will therefore bind
the occurrences of x in both K1 and K2. The existential quantifier “a” will simply
merge a DRS containing an unused discourse referent x with the DRSs obtained by
applying properties P and Q to x.

While the above lexicon corresponds rather closely for quantifiers and common
nouns, we need to change the way we analyze noun phrases a bit. Before, we as-
signed proper names the syntactic type np, corresponding to the semantic type e.
However, in the standard DRS account of names, we want a name Name to intro-
duce both a discourse referent x corresponding to this name into the universe of the
DRS10 and an atomic condition of the form Name(x). When we lift the np type to
S/(np\S), the semantic type becomes (e→σ)→σ and we can introduce a discourse
referent x, with the condition that Name(x), to the universe as shown above.

As for the pronoun “he”, it introduces a new discourse referent x, but introduces
an anaphoric link as well, requiring this discourse referent to be bound to one of the
accessible discourse referents — which we can decide only in the context of a larger
DRS, of course. As we said at the beginning of the chapter, many authors consider
finding the reference for x to be a question of syntax, typically noted by coindexing
the pronoun “he” with a noun phrase elsewhere in the discourse. Here, we will treat
the resolution of the anaphor to be a semantic problem (though subject to various
well-known syntactic constraints). The lexical entry, with the condition x =? notes
this unresolved anaphor, indicating it needs to be resolved in order for the final DRS
in which it occurs to make sense.

3.7 A Word about Intensional Logic

Let us briefly explain how the method we give for computing semantic represen-
tations straightforwardly extends to the intensionality operators popularized in se-
mantics by Montague and his followers.

It is quite common to consider Kripke models which can be referred to within
the syntax itself with type s for worlds and with the ˆ and ˇ operators. Possible
worlds are just common classical models, with an accessibility relation between
them, usually a partial order. Phenomena whose truth in a given world depend on
truth in other worlds are said to be intensional. For instance, to say that A is possible
(resp. necessary) at world w means that for some (resp. every) world w′ accessible
from w we have that A is true in w′.

One is thus able to model modalities and to deal with opaque contexts like be-
lief verbs. For instance, if “Max believes that Chomsky is a computer scientist” is

10 Actually, names should be added to the outermost DRS. However, will ignore this com-
plication here.

94 3 Lambek Calculus and Montague Grammar

true, than we cannot infer that Chomsky is a computer scientist. It actually has lit-
tle to do with the truth of the believed sentence. A common interpretation is that in
any possible world where the beliefs of “Max” are true, “Chomsky” happens to be
a computer scientist. In intensional logic, we therefore distinguish between the truth
value of a proposition and the proposition itself: we will interpret a proposition as a
set of worlds, a term of type s→ t: the set of worlds in which the proposition is true.
Its truth value is therefore this term of type s→ t applied to the current world w.

In order to provide an account of intensional phenomena, the syntax of the lambda
calculus is commonly enriched with two operators ˆ : s→ a and ˇ : (s→ a)→ a
where s is the type for the (indices of the) possible worlds with ˇ ˆ u reducing to u.

Gallin (1975) proposes to translate the intensional operators in a two sorted logic
with two types s and e (in addition to t), with the particularity that there is only a
single variable of type s. It is possible to see ˆ ta, of type s→ a, as an abbreviation of
λ wsta and ˇ ts→a, of type a, as an abbreviation of (ts→a ws) (see also Gamut, 1991;
Morrill, 1994). According to Gallin’s translation, ˇ ˆ u becomes (λ ws u)w which re-
duces to u by beta reduction. Its inverse ˆ ˇ u corresponds to λ ws(uw), which reduces
to u only if there are no free occurrences of w in u.

We have not yet talked about how to add terms with intensional types to our lex-
icon. There are several strategies for doing this: the simplest method is to change
the type map, the morphism “.∗” from syntactic types to semantic types, and let it
introduce type s. For example, we can replace the basic type t by s→ t, in other
words, we replace truth values by propositions, as proposed by Montague (1970a)
van Benthem (see also 1991, chaper 12), we will call this the Montague/EFL type
map — compare this to Muskens’ strategy for interpreting Discourse Represen-
tation Structures in type theory as discussed in Section 3.6, which replaces truth
values t by state changes i→ i→ t. The Montague/EFL map produces S∗ = s→ t
and n∗ = e → s→ t. As another possibility, we can change the type map for the
complex types and leave the translations of the atomic types unchanged, translating
(a \ b)∗ and (b / a)∗ as (s→ a∗)→ b∗, as proposed by Montague (1973) (see also
Gamut, 1991; Hendriks, 1993), we will call this the Montague/PTQ type map. This
second map replaces individuals (of type e) by individual concepts: functions from
possible worlds to entities. This allows expressions such as “the president of France”
and “the temperature” to have different denotations in different worlds (Montague
requires proper names to always refer to the same individual by means of a meaning
postulate).

So according to van Montague’s EFL type map, “believes that” of syntactic type
((np \ S)/S) would be of semantic type (s→ t)→ e→ s→ t, whereas according
to Montague’s PTQ type map, it would be (s→ t)→ (s→ e)→ t.

A final strategy is to add new connectives which are interpreted intensionally
by the type map. Morrill (1990) (see also Morrill, 2011, Chapter 8) proposes an
extension of the Lambek calculus which adds a modal connective ‘�’, using the
logical rules of S4 for this modal operator11, where (�a)∗ is mapped to s→ a∗.

11 Not to be confused with the ‘�’ connective of Section 5.2.2, but close to the ‘!’ connective
of Section 5.2.1, which is an S4 modality as well. Morrill (1994, Chapter 5) proposes to
use an S5 modality instead.

3.8 Concluding Remarks 95

In Morrill’s calculus, the introduction rule for this modal operator corresponds to ˆ
and the elimination rule to ˇ , adapting an idea from van Benthem (1986). In Morrill’s
intensional system “believes that” is assigned syntactic type�((np\S)/�S) , which
corresponds to the semantic type s→ (s→ t)→ e→ t. Note how we mark explicitly
that the sentential argument of believes is intensional by assigning it the syntactic
type �S.

Let us conclude this very brief indication of the relation between intensional
logic and categorial grammars by giving the lexical lambda terms corresponding to
“believes that” for each of the three semantic types we have seen.

Montague/EFL (s→ t)→ e→ s→ t λ ps→tλ xe ˆbelieve(x, p)
Montague/PTQ (s→ t)→ (s→ e)→ t λ ps→tλ ys→e believe(ˇy, p)
Morrill s→ (s→ t)→ e→ t ˆλ ps→tλ xe believe(x, p)

3.8 Concluding Remarks

Though we have touched only very briefly on many of the topics which we have
discussed in this chapter, they include many of the “classic” topics in semantics:
generalized quantifiers, intensionality, anaphora and Discourse Representation The-
ory. Carpenter (1996) discusses many more. So while the idea of combining Mon-
tague semantics and the Lambek calculus is very simple, its applications cover a
wide range of semantically interesting phenomena.

Montague grammar and Discourse Representation Semantics are active and inde-
pendent fields and we recommend (Portner and Partee, 2002; Partee and Hendriks,
2011; van Eijck and Kamp, 2011) as a starting point for the reader interesed in
exploring these topics further.

96 3 Lambek Calculus and Montague Grammar

Exercises for Chapter 3

Exercise 3.1. Reduce/expand the following lambda-terms into β normal η long
form.

1. f e→(e→t)

2. (λ xe→t f (e→t)→(e→t)x)ye→t

3. ((λ xeλ ye f e→(e→t)(x,y)) (he→e(y))) ce

4. (λ ye f e→(e→t)(y,y))((λ xege→(e→e)(x,x)) ce)
5. (λ xe f e→(e→t)ye)(ge→eze)

Exercise 3.2. Compute the types corresponding to the following formulae.

1. n /n
2. (n \ n)/n
3. (n \ n)\ (S /np)
4. ((np \ S)/np)\ (np \ S)

Exercise 3.3. Using the terms and types described in the paragraph on Systematic
Type Raising in Section 3.5 on page 84, derive “the cat sleeps” and calculate its
lambda term.

Exercise 3.4. Assign a lambda-term to “is” of syntactic type (np\S)/(n/n) in such
a way that “Leon is vegetarian” will produce a semantics equivalent to vegetarian(L).

Similarly, give a lambda-term to “is” of syntactic type (np\S)/np in such a way
that “Leon is a vegetarian” will produce a semantics equivalent to vegetarian(L).
Use the standard semantics for “a” and assign “vegetarian” the syntactic type n.
Justify your answer.

Hint: assume a constant “=” of type e → e → t which evaluates “= (x,y)” (or
x = y in more convenient infix notation) to true iff x and y have the same denotation.

Exercise 3.5. For the semantics of adjectives, they are often classed into different
groups according to the inference patterns they allow. Look at the following exam-
ples, all of which are of syntactic type n.

(3.17) vegetarian assassin
(3.18) efficient assassin
(3.19) alleged assassin

Example sentence 3.17 is an example of what is often called an intersective ad-
jective. It is intersective because a vegetarian assassin is someone who is both a
vegetarian and an assassin.

Example sentence 3.18 is different: suppose Leon is not just an efficient assassin
but also an amateur gardener. If we know Leon is an efficient assassin, we want to
be able to infer that Leon is an assassin. However, we do not want to conclude that
he is an efficient gardener (an assassin’s life may not leave him with enough time to
water his plants....).

Exercises for Chapter 3 97

For the final example sentence, if someone is an “alleged assassin”, then he may
or may not be an assassin.

Using the same syntactic type n / n for all adjectives, assign semantic terms of
the right type to each word. Verify that the three different inference patterns hold for
the different lambda-terms.

Note: strictly speaking, inferences are between sentences. However, the notion
extends rather naturally to other expressions (Keenan and Faltz, 1985). If you have
trouble convincing yourself that the given inference patterns hold, use your solution
for Exercise 3.4 and prefix the nouns and adjectives with “Leon is a” (resp. “Leon
is”).

Exercise 3.6. Extend the lexicon of Example 3.5 with the appropriate syntactic
types and lambda-terms for the generalized quantifiers “at least two” (for the current
example, treat it as a single word at least two) and “no”. Add simple lexical entries
for “pizzas” and “children”.

Compute the lambda-terms which correspond to the following two sentences.

(3.20) Every child ate at least two pizzas.
(3.21) No child ate at least two pizzas.

Comment on the difference between the subject wide scope and object wide scope
readings. Is one reading more plausible than another?

Exercise 3.7. Give a lexicon which assigns “John” the syntactic type np, the word
“and” an instantiation of the scheme (X \X)/X for some X .

(3.22) Every man and every child .
(3.23) Every man and child
(3.24) John and every child

Exercise 3.8. Following Example 3.4, assign formulas and lambda terms of the cor-
rect semantic types to the lexicon in order to derive the following sentence.

(3.25) Chaque
Every

chat
cat

que
that

je
I

connais
know

dort
sleeps

beaucoup.
a lot.

‘Every cat I know sleeps a lot.’

Exercise 3.9. Use the lexicon of Example 3.9 to compute the DRSs corresponding
to the two readings of “every child ate a pizza”

Exercise 3.10. Extend the lexicon of Example 3.9 in order to treat the following two
example sentences from (Muskens, 1996).

(3.26) A cat catches a fish and eats it.
(3.27) # A cat catches no fish and eats it.

Compute the DRSs for both sentences and resolve the anaphor for “it”. Make sure
that your semantics for “no” — though it must introduce a discourse referent, of
course — does not introduce a discourse referent which can corefer with “it”

98 3 Lambek Calculus and Montague Grammar

References

Abramsky, S.: Computational interpretations of linear logic. Theoretical Computer Sci-
ence 111, 3–57 (1993)

Amblard, M., Lecomte, A., Retoré, C.: Categorial minimalist grammars: From generative
syntax to logical form. In: van Benthem, J., Moortgat, M. (eds.) Linguistic Analysis —
Festschrift for Joachim Lambek. Linguistic Analysis, vol. 36, pp. 273–306 (2010)

van Benthem, J.: Categorial grammar. In: Essays in Logical Semantics, ch. 7, pp. 123–150.
Reidel, Dordrecht (1986)

van Benthem, J.: Language in Action: Categories, Lambdas and Dynamic Logic. Sudies in
logic and the foundation of mathematics, vol. 130. North-Holland, Amsterdam (1991)

van Benthem, J., ter Meulen, A. (eds.): Handbook of Logic and Language, 2nd edn. North-
Holland Elsevier, Amsterdam (2011)

Carpenter, B.: Lectures on Type-Logical Semantics. MIT Press, Cambridge (1996)
van Dalen, D.: Logic and Structure, 4th edn., Universitext. Springer (1983)
Dowty, D., Wall, R.E., Peters, S.: Introduction to Montague Semantics. In: Classic Titles in

Linguistics. Springer (1981)
van Eijck, J., Kamp, H.: Representing discourse in context. In: Van Benthem and ter Meulen,

ch. 3, pp. 181–252 (2011)
Gallin, D.: Intensional and Higher-Order Logic: With Applications to Montague Semantics.

Elsevier (1975)
Gamut, L.T.F.: Logic, Language and Meaning, vol. 2. The University of Chicago Press (1991)
Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in Theoretical Com-

puter Science, vol. 7. Cambridge University Press (1988)
Heim, I., Kratzer, A.: Semantics in generative grammar. Blackwell textbooks in linguistics.

Blackwell, Oxford (1997)
Hendriks, H.: Studied flexibility: Categories and types in syntax and semantics. PhD thesis,

University of Amsterdam, ILLC Dissertation Series (1993)
Huet, G.: Résolution d’équations dans des langages d’ordre 1,2,...,ω . PhD thesis, Université

Paris VII (1976)
Jackendoff, R.: The Architecture of the Language Faculty. Linguistic Inquiry Monographs,

vol. 28. MIT Press, Cambridge (1995)
Kamp, H., Reyle, U.: From Discourse to Logic. D. Reidel, Dordrecht (1993)
Kamp, H., van Genabith, J., Reyle, U.: Discourse representation theory. In: Gabbay, D., Guen-

thner, F. (eds.) Handbook of Philosophical Logic, vol. 15, pp. 125–394. Springer (2011)
Keenan, E., Faltz, L.: Boolean Semantics for Natural Language, Synthese Language Library,

vol. 23. D. Reidel (1985)
Krivine, J.L.: Lambda Calcul — Types et Modèles. Etudes et Recherches en Informatique,

Masson, Paris (1990)
Montague, R.: English as a formal language. In: Visentini, B. (ed.) Linguaggi nella società e

nella tecnica (1970a); reprinted as Chapter 6 of Thomason (1974)
Montague, R.: Universal grammar. Theoria 36, 373–398 (1970b); reprinted as Chapter 7 of

Thomason (1974)
Montague, R.: The proper treatment of quantification in ordinary English. In: Hintikka, J.,

Moravcsik, J., Suppes, P. (eds.) Approaches to Natural Language: Proceedings of the 1970
Stanford Workshop on Grammar and Semantics. Reidel, Dordrecht (1973); reprinted as
Chapter 8 of Thomason (1974)

Moortgat, M.: Categorial type logics. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of
Logic and Language, ch. 2, pp. 93–177. North-Holland Elsevier, Amsterdam (1997)

References 99

Morrill, G.: Intensionality and boundedness. Linguistics and Philosophy 13(6), 699–726
(1990)

Morrill, G.: Type Logical Grammar. Kluwer Academic Publishers, Dordrecht (1994)
Morrill, G.: Categorial Grammar: Logical Syntax, Semantics, and Processing. Oxford Uni-

versity Press (2011)
Muskens, R.: Categorial Grammar and Discourse Representation Theory. In: Proceedings of

COLING 1994, Kyoto, pp. 508–514 (1994)
Muskens, R.: Combining Montague Semantics and Discourse Representation. Linguistics

and Philosophy 19, 143–186 (1996)
Muskens, R., van Benthem, J., Visser, A.: Dynamics. In: Van Benthem and ter Meulen, ch.

10, pp. 587–688 (2011)
Partee, B., Hendriks, H.: Montague Grammar. In: Van Benthem and ter Meulen, ch. 1,

pp. 3–94 (2011)
Portner, P., Partee, B.H. (eds.): Formal Semantics: The Essential Readings. Blackwell Pub-

lishers (2002)
Pustejovsky, J.: The generative lexicon. MIT Press (1995)
Seldin, J.P., Hindley, J.R.: To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus

and Formalism. Academic Press (1980)
Thomason, R. (ed.): Formal Philosophy: Selected papers of Richard Montague. Yale Univer-

sity Press (1974)

4

The Non-associative Lambek Calculus

Summary. In this chapter we will look at NL, the non-associative Lambek calculus, which
was introduced by Lambek a few years after the Syntactic Calculus, L. The Gentzen-style
presentation of the Lambek calculus uses a list of formulae as antecedents, whereas NL uses
binary branching trees instead.

We will start this chapter with a brief introduction of the sequent calculus for NL, then
illustrate why non-associativity is sometime desirable by presenting some ungrammatical
sentences which — though derivable in L — are underivable in NL.

We will then revisit some of the results of L from the perspective of the non-associative
calculus NL: we will reprove cut elimination for NL and present a natural deduction version
of the calculus.

In addition, we will give a new type of model for Lambek calculi in the form of Kripke
models, for which we prove soundness and completeness. We will also show how we can add
an explicit rule of associativity to NL to obtain an alternative formulation of L and see how
this corresponds to a constraint on the Kripke models.

Perhaps surprisingly, dropping the structural rule of associativity makes a big computa-
tional difference: whereas the Lambek calculus has been shown to be NP complete by Pentus,
the non-associative Lambek calculus has a polynomial time decision algorithm. We will finish
our investigation of NL by presenting the polynomial time algorithms of Aarts & Trautwein
and of de Groote.

4.1 Introduction

The non-associative Lambek calculus NL is obtained from the Lambek calculus by
dropping the (implicit) rule of associativity. Instead of using lists of formulae as
antecedents, like we did for L, NL uses binary branching trees of formulae.

Since in many linguistic frameworks, the basic units of linguistic description
are considered to be trees — notably in the Chomskyan tradition (Chomsky, 1982,
1995; Stabler, 1997) but also in several alternative frameworks such as tree adjoin-
ing grammars (Joshi and Schabes, 1997) or HPSG (Pollard and Sag, 1994), where

R. Moot and C. Retoré: The Logic of Categorial Grammars 2012, LNCS 6850, pp. 101–147, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

102 4 The Non-associative Lambek Calculus

the daughters feature encodes the tree information — it makes sense to investigate
the non-associative Lambek calculus and see if it offers any advantages over the
Lambek calculus.

4.2 Proof Theory

In order not to overburden the notation, we will use the same symbols for the con-
nectives of NL as for L. Unless otherwise indicated in the text, the formulae we will
talk about in this chapter will be the formulae of NL.

Lp ::= P | (Lp\Lp) | (Lp/Lp) | (Lp •Lp)

In L, the antecedent of a sequent was a (non-empty) list of formulae, which had
the convenience of making the rule of associativity implicit. For NL, we want to
drop this implicit rule of associativity and this means using a binary-branching tree,
with formulae as its leaves, as antecedents. We will call these binary-branching trees
antecedent terms.

Definition 4.1. The antecedent terms A are defined as follows.

A ::= Lp | (A ,A)

So for example (np,np\S) and (((a,b/c),d),e) are antecedent terms (if the atomic
formulae include np and S in the first case and a, b, c, d and e in the second).

In the following Γ ,Δ will denote antecedent terms.
We define some basic functions which transform the tree-structured antecedent

terms to lists (simply by removing the brackets) and to multisets (keeping only the
formulae and the number of occurrences of each formula, but forgetting the order).

Definition 4.2. Let Γ be an antecedent term, the yield of Γ is a list which is obtained
as follows.

yield(F) = F if F is a formula
yield(Γ ,Δ) = yield(Γ),yield(Δ)

The comma is deliberately overloaded here, so that yield transforms an NL an-
tecedent term into a valid (and non-empty) L list.

Definition 4.3. Let Γ be an antecedent term, the multiset of formulae of Γ is defined
by the function formulae(Γ) as follows.

formulae(F) = {F} if F is a formula
formulae(Γ ,Δ) = formulae(Γ) ∪ formulae(Δ)

where ∪ is the multiset union operation.

So formulae((np,np\S)) = {np,np\S} and formulae(((a,b),(c,(b,a))))
= {a,a,b,b,c}.

4.2 Proof Theory 103

For the definition of the sequent rules, it is necessary to refer to contexts, which
are defined as follows.

Definition 4.4. A context is defined as follows.

C ::= [] | (C ,A) | (A ,C)

where A is an antecedent term according to Definition 4.1.

A context is an antecedent term with a single occurrence of a ‘hole’ denoted by ‘[]’;
seen this way, the inductive definition defines a path to the hole, with the three cases
corresponding to ‘here’, ‘on the left branch’ and ‘on the right branch’ respectively.

We will write Γ [], Δ [] to denote contexts.

Definition 4.5. The substitution of an antecedent term Δ in a context Γ [], subst(Γ [],
Δ) (which we will normally write simply as Γ [Δ]) is defined as follows.

subst([],Δ) = Δ
subst((Γ ,Γ ′[]),Δ) = (Γ ,subst(Γ ′[],Δ))
subst((Γ [],Γ ′),Δ) = (subst(Γ [],Δ),Γ ′)

Note that the substitution of an antecedent term into a context produces a valid
antecedent term. We can define the substitution of a context Δ [] in a context Γ []
analogously to Definition 4.5 above, which gives a context Γ [Δ []] after substitution.

4.2.1 Sequent Calculus

We now have everything in place for giving the sequent calculus formulation of NL,
which is shown in Figure 4.1.

Γ [B] � C Δ � A
\h

Γ [(Δ ,A\B)] � C

(A,Γ) � C
\i

Γ � A\C

Γ [B] � C Δ � A
/h

Γ [(B/A,Δ)] � C

(Γ ,A) � C
/i

Γ � C /A

Γ [(A,B)] � C
•h

Γ [A •B] � C

Δ � A Γ � B
•i

(Δ ,Γ) � A •B

Γ � A Δ [A] � B
cut

Δ [Γ] � B
axiom

A � A

Fig. 4.1. Sequent calculus rule for NL, the non-associative Lambek calculus

104 4 The Non-associative Lambek Calculus

NL does not allow empty antecedent derivations, which we have identified as
undesirable in Section 2.5: the antecedent term Γ in the \i and the /i rules is non-
empty according to Definition 4.1.

When talking about the derivability of a sequent in the non-associative Lambek
calculus, we can ask two different questions:

1. Given a list of formulae L and a goal formula C, for which antecedent terms Γ
such that yield(Γ) = L, is Γ � C derivable?

2. Given an antecedent term Γ and a goal formula C, is Γ � C derivable?

That is, when we look at sequent proof search, do we consider the structure of
the antecedent term to be part of the output of the proof search algorithm (as in
option 1 above) or as part of its input (as in option 2). In other words, do we compute
the brackets of the antecedent terms or just verify them? In what follows, unless
otherwise noted — for example in Section 4.6 — when talking about parsing or
proof search, we will consider the input of the parsing or proof search algorithm to
be a list of formulae (or a list of words, when using a lexicon which assigns sets of
formulae to these words). When there is a need to emphasize that the structure of the
antecedent term of a sequent is unknown, we will write the sequent as A1, . . . ,An �
C, just like we did for Lambek calculus sequents.

If we define the yield of an antecedent term of the form Γ [Δ] (for some Δ) to
be Γ ,yield(Δ),Γ ′ (with Γ ′ an unused antecedent term variable), then it is easy to
verify that the following proposition holds.

Proposition 4.6. If R is an NL sequent rule and Γ1, . . . ,Γn are the antecedent terms
mentioned in R then replacing each Γi by yield(Γi) will give an L sequent rule.

Corollary 4.7. If Γ � A is derivable in NL then yield(Γ) � A is derivable in L.

The inverse does not hold however: some characteristic theorems of L are underiv-
able in NL.

Example 4.8. An example is the transitivity of /, as shown by the following failed
derivation.

(A,C) � A B/C � B
/h

((A/B,B/C),C) � A
/i

(A/B,B/C) � A/C

Note how the parentheses prevent application of the /h rule to B/C and C, as they
are not sisters in the tree. Showing a failed proof attempt is not that same as showing
underivability of a sequent, however! We need to show that all proof attempts fail.
Exercise 4.1 asks you to verify by means of an exhaustive proof search that the
sequent of this example has no proof in NL.

4.2 Proof Theory 105

Showing non-derivability by exhaustive enumeration of proof attempts can be te-
dious and error-prone. We will see methods requiring less bookkeeping to show
underivability in Section 4.6 and in Chapter 7. In Section 4.5.2 we will see an-
other method to show a sequent is not derivable: the construction of a
countermodel.

The count check of Proposition 2.6 is useful but incomplete. For example (A /
B,B /C) � A /C satisfies the count check, but — as we have seen above — it is
underivable nonetheless.

4.2.2 Arguments against Associativity

As an illustration of why associativity is sometimes undesirable, look at the follow-
ing lexicon (after Lambek (1961)).

Word Type(s)
the np /n

Hulk n
is (np \ s)/(n /n)

incredible n /n
green n /n

Using this lexicon, both NL and L allow us the derive the following phrases.

(4.1) The Hulk is green.
(4.2) The Hulk is incredible.

However, L allows us the derive the following ungrammatical phrase as well.

(4.3) ∗ The Hulk is green incredible.

Exercise 4.3 at the end of this chapter asks you to show the non-derivability of

n /n,n /n � n /n

in NL and to show that only the valid example sentences above are derivable in NL,
whereas the invalid sentence 4.3 is derivable in L.

There is another type of example to show that associativity can lead to some very
strange sentences. In order to present this argument, we need some introduction to
the use of so-called polymorphic types, which can be used to conjoin expression
which are assigned different formulae, as demonstrated by the examples below (Ex-
ercise 1.4.4 gives several other examples).

(4.4) Bill left the party and returned home.
(4.5) Bill gave flowers to Mary and a toy to the children.

106 4 The Non-associative Lambek Calculus

Example 4.4 above shows that “left the party” and “returned home”, both expres-
sions of type np \ S, can be conjoined. This means that “and” can be assigned the
formula ((np\S)\(np\S))/(np\S), as well as many other instances of the general
scheme (X \X)/X .1

Example 4.5 shows that the items conjoined can be complex expressions such as
“flowers to Mary” and “a toy to the children”, which in the context of a formula
assignment of ((np\S)/ pp)/np to “gave” makes “flowers to Mary” an expression
of type np • pp.

Now, with these examples in mind, look at the following sentence.

(4.6) *The mother of and Bill thought John arrived.

This sentence, as Paul Dekker was the first to notice, is not only clearly ungram-
matical, but also — though this may seem surprising (and even shocking!) at first
glance — derivable in L: there is an instantiation of the polymorphic type scheme
(X \X) /X for “and” which makes the sentence derivable in the Lambek calculus:
both “the mother of” and “Bill thought” can be shown to be of type (S/(np\S))/np
using the following lexicon, which is without surprises,

Word Type(s)
Bill np

John np
the np /n

mother n / pp
of pp /np

thought ((np \ S)/S)
arrived np \ S

as shown by the following two natural deduction proofs in the associative Lambek
calculus (using the Prawitz-style rules of Section 2.2.1 and the rule Lex to indicate
the conclusion of the rule is a lexical entry for the word which serves as its premise)

the
Lex

np /n

mother
Lex

n / pp

of
Lex

pp /np [np]1
/e

pp
/e

n
/e

np [np \ S]2 \e
S

/i2
S / (np \ S)

/i1
(S / (np \ S))/np

1 This scheme corresponds to a quantification over formulas and it would be more correct
to write ∀X .(X \X) /X . Though a natural extension of L, the resulting calculus is unde-
cidable, so this extension is not as innocent as it may appear (see Emms, 1993, 1995).

4.2 Proof Theory 107

Bill
Lex

np

thought
Lex

(np \ S)/S

[np]1 [np \ S]2 \e
S
/e

np \ S \e
S

/i2
S / (np \ S)

/i1
(S / (np \ S))/np

Neither proof can be transformed into a valid NL proof.
In some cases, however, the absence of associativity excludes some grammatical

sentences as well. For example, the elegant treatment of peripheral extraction, as
exemplified by the Italian sentence from Example 2.2 and the sentences of Exer-
cise 2.7, is invalid in NL. Exercises 4.5 and 4.6 at the end of this chapter ask you to
prove this. Similar remarks can be made about the quantifier scope ambiguities of
the previous chapter (see Example 3.5). Exercise 4.9 asks you to verify that the type
for object quantifiers in L cannot be used for NL.

So, summing up, we have seen that in some cases — in combination with co-
ordination of in combination with the most natural type assignments for the verb
“to be” and adjectives — it is desirable to restrict associativity, whereas in other
cases — in the case of quantifier scope and of peripheral extraction — the easiest
solution would be to permit associativity. In the next chapter, we will see how to
combine an associative and a non-associative logic into one system. For the rest of
this chapter, we will study the non-associative calculus (though, as a preamble to
this, we will show in Section 4.3 how to add structural rules to NL and recover L).

4.2.3 Cut Elimination for the NL Sequent Calculus

In order to verify that cut elimination is valid for NL, following (Lambek, 1961;
Kandulski, 1988), we revisit the different cases of the proof for L and verify that the
bracketing is respected. This is just a simple exercise, but something we need to do
to verify our logic is formulated correctly.

Remember that we are in the following general case for a cut rule of depth r and
degree d and that we are looking at a cut rule of smallest depth in the proof.

··· γ

Ra

Γ � D

··· δ

R f

Δ [D] � C
cut d

Δ [Γ] � C

We look at rule R f and Ra. Since this is the rule with the smallest depth in the proof,
there are no other cut rules in either γ or δ . We look at the other cases, which are the
same as before: 1) at least one of the rules is an axiom, 2) Ra is not the rule which

108 4 The Non-associative Lambek Calculus

creates the cut formula, 3) R f is not the rule which creates the cut formula or 4) both
Ra and R f create the cut formula.

1. If at least one of the rules is an axiom, we can remove the cut as follows.

D � D

··· δ
Γ [D] � C

cut
Γ [D] � C

reduces to
··· δ

Γ [D] � C

2. If Ra does not create the cut formula D, then we move the rule up past Ra. We
know Ra must have been one of \h, /h, •h, since an introduction rule would have
necessarily introduced the cut formula. The table below lists the different cases
(the implications are symmetric, so only \ is shown).

2 Ra does not create D, the cut formula
Ra Before reduction After reduction

•h

··· γ
Δ [(A,B)] � D

•h
Δ [A •B] � D

··· δ
Γ [D] � C

cut d
Γ [Δ [A •B]] � C

··· γ
Δ [(A,B)] � D

··· δ
Γ [D] � C

cut d
Γ [Δ [(A,B)]] � C

•h
Γ [Δ [A •B]] � C

\h

··· δ
Δ ′[B] � D

··· δ ′

Δ � A
\h

Δ ′[(Δ ,A\B)] � D

··· γ
Γ [D] � C

cut d
Γ [Δ ′[(Δ ,A\B)]] � C

··· δ
Δ ′[B] � D

··· γ
Γ [D] � C

cut d
Γ [Δ ′[B]] � C

··· δ ′

Δ � A
\h

Γ [Δ ′[(Δ ,A\B)]] � C

3. If R f does not create the cut formula, then we move the rule up past R f . There
are rather many cases to consider.

For the left rules \h, /h, •h, since the cut formula is not the main formula of
the rule, the cut formula is a formula in Γ [] (in the case of \h and /h it can be a
formula of Θ as well, hence the alternative case in the cut elimination below),
which is already a context. Instead of introducing a new type of context with
two distinguished formulae — D and the main formula of the rule — we simply
indicate that D is a formula in Γ [] and write Γ {D:=Δ}[] for the context Γ [] where
D has been replaced by Δ in the reductions for \h and •h (the reduction for /h is
symmetric to the reduction for \h and has been omitted).

4.2 Proof Theory 109

3 R f does not create D, the cut formula
R f Before reduction After reduction

•h
··· δ

Δ � D

··· γ
Γ [(A,B)] � C

•h
Γ [A •B] � C

cut d
Γ {D:=Δ}[A •B] � C

··· δ
Δ � D

··· γ
Γ [(A,B)] � C

cut d
Γ {D:=Δ}[(A,B)] � C

•h
Γ {D:=Δ}[A •B] � C

\h

··· δ
Δ � D

··· γ
Γ [B] � C

··· θ
Θ � A

\h
Γ [(Θ ,A\B)] � C

cut d
Γ {D:=Δ}[(Θ ,A\B)] � C

··· δ
Δ � D

··· γ
Γ [B] � C

cut d
Γ {D:=Δ}[B] � C

··· θ
Θ � A

\h
Γ {D:=Δ}[(Θ ,A\B)] � C

\h

··· δ
Δ � D

··· γ
Γ [B] � C

··· θ
Θ [D] � A

\h
Γ [(Θ [D],A\B)] � C

cut d
Γ [(Θ [Δ],A\B)] � C

··· γ
Γ [B] � C

··· δ
Δ � D

··· θ
Θ [D] � A

cut d
Θ [Δ] � A

\h
Γ [(Θ [Δ],A\B)] � C

•i
··· δ

Δ � D

··· γ
Γ [D] � A

··· θ
Θ � B

•i
(Γ [D],Θ) � A •B

cut d
(Γ [Δ],Θ) � A •B

··· δ
Δ � D

··· γ
Γ [D] � A

cut d
Γ [Δ] � A

··· θ
Θ � B

•i
(Γ [Δ],Θ) � A •B

•i
··· δ

Δ � D

··· γ
Γ � A

··· θ
Θ [D] � B

•i
(Γ ,Θ [D]) � A •B

cut d
(Γ ,Θ [Δ]) � A •B

··· γ
Γ � A

··· δ
Δ � D

··· θ
Θ [D] � B

cut d
Θ [Δ] � B

•i
(Γ ,Θ [Δ]) � A •B

\i

··· δ
Δ � D

··· γ
(A,Γ [D]) � B

\i
Γ [D] � A\B

cut d
Γ [Δ] � A\B

··· δ
Δ � D

··· γ
(A,Γ [D]) � B

cut d
(A,Γ [Δ]) � B

\i
Γ [Δ] � A\B

110 4 The Non-associative Lambek Calculus

4. Finally, in the crucial case, both rules introduce the cut formula d and we replace
it by two cuts of lesser degree.

4 Both Ra and R f create the cut-formula
Before reduction After reduction

•

··· δ
Δ � A

··· θ
Θ � B

•i
(Δ ,Θ) � A •B

··· γ
Γ [(A,B)] � C

•h
Γ [(A •B)] � C

cut d
Γ [(Δ ,Θ)] � C

··· δ
Δ � A

··· θ
Θ � B

··· γ
Γ [(A,B)] � C

cut < d
Γ [(A,Θ)] � C

cut < d
Γ [(Δ ,Θ)] � C

\

··· δ
(A,Δ) � B

\i
Δ � A\B

··· γ
Γ [B] � C

··· θ
Θ � A

\h
Γ [(Θ ,A\B)] � C

cut d
Γ [(Θ ,Δ)] � C

··· θ
Θ � A

··· δ
(A,Δ) � B

cut < d
(Θ ,Δ) � B

··· γ
Γ [B] � C

cut < d
Γ [(Θ ,Δ)] � C

4.2.4 Natural Deduction

Like L, NL permits a natural deduction formulation. However, given that for NL
it no longer suffices to demand that the hypothesis which is withdrawn by the in-
troduction rules is the leftmost or rightmost hypothesis, the more explicit Gentzen

Γ � A Δ � A\B
\e

(Γ ,Δ) � B

(A,Γ) � C
\i

Γ � A\C

Δ � B/A Γ � A
/e

(Δ ,Γ) � B

(Γ ,A) � C
/i

Γ � C /A

Δ � A •B Γ [(A,B)] � C
•e

Γ [Δ] � C

Δ � A Γ � B
•i

(Δ ,Γ) � A •B

axiom
A � A

Fig. 4.2. Natural deduction rules for NL

4.3 Structural Rules 111

style formulation introduced in Section 2.2.2 is preferred. Figure 4.2 shows the nat-
ural deduction rules for NL.

Again, with the exception of the parentheses in the current rules, the natural de-
duction rules for NL are the same as those of L.

4.3 Structural Rules

From NL we can recover L simply by adding the two structural rules of associa-
tivity, shown in Figure 4.3 on the left and middle, to the logic. By adding com-
mutativity as well, as shown below to the right, two new logics become available:
adding just commutativity to NL gives us the non-associative Lambek calculus with
permutation NLP, whereas adding both associativity and commutativity gives the
Lambek-van Benthem calculus LP.

Γ [(Δ1,(Δ2,Δ3))] � C
ass1

Γ [((Δ1,Δ2),Δ3)] � C

Γ [((Δ1,Δ2),Δ3)] � C
ass2

Γ [(Δ1,(Δ2,Δ3))] � C

Γ [(Δ2,Δ1)] � C
com

Γ [(Δ1,Δ2)] � C

Fig. 4.3. The structural rules of associativity and commutativity

Figure 4.4 lists the four possible combinations of the structural rules and the
corresponding logics.

/0

NL

NLP {com}L{ass}

LP

{ass,com}

Fig. 4.4. The four logics NL, L, NLP and LP

We’ve already talked about the differences between NL and L and the benefits of
both systems. A consequence of adding commutativity to our logic is that we can no
longer distinguish between the two implications. The natural deduction proof below
shows one direction, the other direction is symmetric.

112 4 The Non-associative Lambek Calculus

axiom
A/B � A/B

axiom
B � B

/e
(A/B,B) � A

com
(B,A/B) � A \i
A/B � B\A

An example of where this property would be useful is for the treatment of English
adverbs: some adverbs like ‘completely’ and ‘carefully’ can appear both before and
after the verb phrase. The following two pairs of sentences, for example, should all
be derivable.

(4.7) Loren carefully read Neuromancer.
(4.8) Loren read Neuromancer carefully.
(4.9) Stewart completely destroyed his credibility.
(4.10) Stewart destroyed his credibility completely.

The following lexicon allows us to derive example sentences 4.8 and 4.10 in NL. It
assigns the formula (np \ S)\ (np \ S) to the adverbs, which allows them to appear
to the right of a verb phrase np \ S. We can add additional lexical entries to allow
us to derive sentences 4.7 and 4.9 as well: the formula (np \ S) / (np \ S) will do
exactly that. So there is a trade-off to be made: do we add additional lexical entries,
or do we try to generalize by adding structural rules? There is no easy answer to this
question: both a small lexicon and a small set of structural rules are desirable.

Word Type(s)
Loren np

Stewart np
Neuromancer np

credibility n
his np /n

read (np \ S)/np
destroyed (np \ S)/np
carefully (np \ S)\ (np \ S)

completely (np \ S)\ (np \ S)

In this case, using NLP to model the behavior of adverbs and reduce the size of
the lexicon has a serious drawback: it also permits the derivation of a number of
ungrammatical sentences, like the following.

(4.11) ∗ Loren Neuromancer read.
(4.12) ∗ Destroyed credibility his Stewart.

These derivations are made possible, simply by the fact that NLP allows us to change
the order of any two sister formulae in the tree.

LP, which has associativity as well as commutativity, allows us to reorder and
rebracket our antecedent formulae in any way we want. While this would allow us

4.4 Combinator Calculi for NL 113

to treat languages which have (nearly) free word order, like Latin, even in these
languages word order is not completely free. For example, Latin sentences tend to
have the preposition occurring closely before its argument noun phrase.

What we would like is to have some sort of controlled access to the structural
rules of associativity and commutativity. We will see a number of solutions to this
problem in the next chapter.

4.4 Combinator Calculi for NL

In this section, we will look at three combinator calculi for NL and show that all
three are equivalent to the sequent calculus for NL. This has two goals: first, in
Section 4.5 we will use one of these calculi for our soundness and completeness
result with respect to the Kripke models for NL, and second, we will use one of the
other calculi to give a polynomial algorithm in Section 4.6.

The first combinator calculus (Došen, 1988, 1989, 1992) consists of a set of ax-
ioms (identity, application and its dual “co-application”) and a set of rules (mono-
tonicity for all connectives and transitivity) as shown in Figure 4.5.

Axioms

(Id)
A � A

(Appl\)
A • (A\B) � B

(Appl/)
(B/A) •A � B

(Co-appl\)
A � B\ (B •A)

(Co-appl/)
A � (A •B)/B

Rules

A � B C � D
(Mon•)

A •C � B •D

A � B C � D
(Mon\)

B\C � A\D

A � B C � D
(Mon/)

C /B � D/A

A � B B � C
(Trans)

A � C

Fig. 4.5. Došen’s axiomatic or combinator presentation of NL

The axiomatic calculus is a bit more tricky to use than either the sequent calculus
or natural deduction (try Exercise 4.11 at the end of the chapter to get an idea).
This is because the transitivity rule (Trans) plays a role similar to the cut rule in
the sequent calculus, but, unlike for the sequent calculus, where the cut rule can be
eliminated, the transitivity rule is a necessary component of the axiomatic calculus
and finding the intermediate B formula for this rule is not always easy.

114 4 The Non-associative Lambek Calculus

4.4.1 Alternative Axiomatic Presentations

Though not directly relevant to the soundness and completeness proofs which fol-
low, it is worthwhile to spend some time discussing two alternative axiomatic pre-
sentations of NL, one proposed by Lambek (1988), which is useful to reinforce the
links with what we have seen in Chapter 2 — notably the principle of residuation
— and one proposed by Moortgat and Oehrle (1999), which is a system without the
transitivity rules and which we will use in Section 4.6 to prove that we can find NL
derivations in polynomial time. Note that when we speak about the axiomatic cal-
culus without further qualification we will mean Došen’s formulation of Figure 4.5.

Figure 4.6 shows Lambek’s formulation. The only rules in this calculus, besides
the (Axiom) and (Trans) rules are the residuation rules. We will sometimes call this
calculus the residuation-based calculus.

Axiom

(Id)
A � A

Rules

B � A\C
(Res\•)

A •B � C

A •B � C
(Res•\)

B � A\C

A � C /B
(Res/•)

A •B � C

A •B � C
(Res•/)

A � C /B

A � B B � C
(Trans)

A � C

Fig. 4.6. Lambek’s residuation-based combinatorial presentation

Figure 4.7 shows Moortgat and Oehrle’s calculus: it has the application and co-
application axioms of the Došen presentation and the residuation rules of the Lam-
bek presentation. This formulation has the important advantage that the (Trans) rule
is admissible, making the calculus more appropriate for proof search, as we will
show in Section 4.6.

Axiom

(Id)
A � A

Rules

A � B C � D
(Mon•)

A •C � B •D

A � B C � D
(Mon\)

B\C � A\D

A � B C � D
(Mon/)

C /B � D/A

B � A\C
(Res\•)

A •B � C

A •B � C
(Res•\)

B � A\C

A � C /B
(Res/•)

A •B � C

A •B � C
(Res•/)

A � C /B

Fig. 4.7. Moortgat & Oehrle’s presentation using residuation and monotonicity

4.4 Combinator Calculi for NL 115

Lemma 4.9. Došen’s combinator calculus (Figure 4.5) and Lambek’s combination
calculus (Figure 4.6) are equivalent.

Proof. This is fairly easy to see. We show that the different Res rules are derived
rules of the first calculus and that the Appl and Co-appl axioms and the monotonicity
rules are derivable in the second calculus.

=⇒

We show the Res rules are derivable in Došen’s axiomatic calculus. We show only
the cases for \, those for / are symmetric.

(Id)
A � A

···
B � A\C

(Mon•)
A •B � A • (A\C)

(Appl\)
A • (A\C) � C

(Trans)
A •B � C

(Coappl\)
B � A\ (A •B)

(Id)
A � A

···
A •B � C

(Mon\)
A\ (A •B) � A\C

(Trans)
B � A\C

⇐=

We first show that Appl\ and Co-appl\ are derivable. The cases for / are again
symmetric.

(Id)
A\B � A\B

(Res\•)
A • (A\B) � B

(Id)
B •A � B •A

(Res•\)
A � B\ (B •A)

To conclude, we show that the monotonicity rules are derived rules of the residuation
calculus. We only show (Mon•) and (Mon\), the case for (Mon/) is symmetric to
the case for (Mon\).

···
A � B

···
C � D

(Id)
B •D � B •D

(Res•\)
D � B\ (B •D)

(Trans)
C � B\ (B •D)

(Res\•)
B •C � B •D

(Res•/)
B � (B •D)/C

(Trans)
A � (B •D)/C

(Res/•)
A •C � B •D

116 4 The Non-associative Lambek Calculus

···
A � B

(Id)
B\C � B\C

(Res\•)
B • (B\C) � C

(Res•/)
B � C / (B\C)

(Trans)
A � C / (B\C)

(Res/•)
A • (B\C) � C

···
C � D

(Trans)
A • (B\C) � D

(Res•\)
B\C � A\D

This completes the equivalence proof of the two combinator calculi. ��
For the equivalence of the third calculus, it is a simple corollary of the proof of
Lemma 4.9 and of Lemma 4.14 in the next section (though see Moortgat and Oehrle,
1999, for a direct proof).

Corollary 4.10. All derivable sequents of the monotonicity-residuation calculus of
Moortgat and Oehrle shown in Figure 4.7 are derivable sequents of the two other
calculi as well.

Proof. Since by Lemma 4.9 the two other calculi are equivalent, it suffices to show
that the residuation calculus generates all theorems of the residuation-monotonicity
calculus. By the proof of Lemma 4.9, the monotonicity rules are admissible in the
residuation calculus, therefore all theorems of Moortgat and Oehrle’s calculus are
theorems of Lambek’s calculus. ��

4.4.2 Equivalence between the Axiomatic Representation and Sequent
Calculus

Since the axiomatic formulation of NL doesn’t have the commas and parentheses
we used to construct antecedent terms in NL, we introduce a simple translation from
antecedent terms of NL to formulae, which replaces all commas by products.

Definition 4.11. Let A be an antecedent term, we define the function ‖A ‖•, which
translates an antecedent term into a formula, as follows.
‖Lp‖• = Lp
‖(A ,A)‖• = ‖A ‖• • ‖A ‖•

Before starting the equivalence proof, we first prove a useful substitution lemma,
which shows how we can replace a term B by a less general term A in a context Γ .
This lemma is an easy combination of rules (Mon•) and (Trans). The intuition be-
hind the Lemma is that it allows us to strengthen the transitivity rule into something
which corresponds to (the translation of) the cut rule.

4.4 Combinator Calculi for NL 117

Lemma 4.12. If ‖Γ [B]‖• � C and A � B then ‖Γ [A]‖• � C

Proof. Assume A � B and ‖Γ [B]‖• � C. In order to prove ‖Γ [A]‖• � C, it suffices
to show that A � B implies ‖Γ [A]‖• � ‖Γ [B]‖•, since this allows us to combine the
hypotheses as follows.

‖Γ [A]‖• � ‖Γ [B]‖• ‖Γ [B]‖• � C
(Trans)‖Γ [A]‖• � C

Induction of the length l of the unique path in Γ [A] to A (which is of course the same
as the path in Γ [B] to B).

If l = 0 then the context is empty and we have Γ [A] = A, Γ [B] = B and therefore
we can conclude that A � B implies ‖Γ [A]‖• � ‖Γ [B]‖• because they are identical.

If l > 0 then, since Γ is not the empty context, Γ is either of the form (Δ [B],Δ ′)
or of the form (Δ ′,Δ [B]).

If the first case ‖(Δ [B],Δ ′)‖• = ‖Δ [B]‖• • ‖Δ ′‖•. Given that we know by induc-
tion hypothesis that ‖Δ [A]‖• � ‖Δ [B]‖•, we can simply apply the monotonicity rule
for the product formula as follows.

··· IH

‖Δ [A]‖• � ‖Δ [B]‖• (Id)‖Δ ′‖• � ‖Δ ′‖•
(Mon•)‖(Δ [A],Δ ′)‖• � ‖(Δ [B],Δ ′)‖•

The case where Γ is of the form (Δ ′,Δ [B]) is symmetric. ��
Lemma 4.13. Γ � A is derivable in the sequent calculus iff ‖Γ ‖• � A is derivable
in the axiomatic representation.

Proof

=⇒

We proceed by induction on the length l of the sequent calculus proof.
If l = 1 the sequent calculus proof contains a single axiom rule and the axiomatic

proof is the same, justified by axiom (Id).
If l > 1 then induction hypothesis gives us an axiomatic proof of length l−1 and

depending on the last rule, we extend it as follows.

(•h) Note that ‖Γ [(A,B)]‖• is equal to ‖Γ [A •B]‖•, so the axiomatic proof we have
by induction hypothesis for ‖Γ [(A,B)]‖• is a proof of ‖Γ [A •B]‖• as well.

(•i) Induction hypothesis gives us an axiomatic proof of ‖Δ‖• � A and an axiomatic
proof of ‖Γ ‖• � B, which we can combine into a proof of ‖(Δ ,Γ)‖• � A •B as
shown below (“Def ‖.‖•” is not a rule of the calculus, but simply denotes the two
antecedent terms translate to the same formula according to Definition 4.11).

118 4 The Non-associative Lambek Calculus

··· IH

‖Δ‖• � A

··· IH

‖Γ ‖• � B
(Mon•)‖Δ‖• • ‖Γ ‖• � A •B

(Def ‖.‖•)‖(Δ ,Γ)‖• � A •B

(\h) Induction hypothesis gives us an axiomatic proof of ‖Γ [B]‖• � C and of
‖Δ‖• � A. We need to show that ‖Γ [(Δ ,A\B)]‖• � C.

With ‖Δ‖• � A (induction hypothesis) and A\B � A\B (Id) we apply rule
(Mon•) to obtain ‖Δ‖• •A\B � A •(A\B). Using axiom (Appl\) and the transi-
tivity rule (Trans) we obtain ‖Δ‖• •A \B � B. Combining this with the other
induction hypothesis ‖Γ [B]‖• � C using Lemma 4.12 gives us ‖Γ [(Δ • (A \
B))]‖• � C which is equivalent to ‖Γ [(Δ ,A\B)]‖• � C.

The proof schema below displays the different steps used.
··· IH

‖Δ‖• � A
(Id)

A\B � A\B
(Mon•)‖Δ‖• •A\B � A • (A\B)

(Appl\)
A • (A\B) � B

(Trans)‖Δ‖• •A\B � B
(Def‖.‖•)‖Δ •A\B‖• � B

···
‖Γ [B]‖•

IH
� C

Lem 4.12‖Γ [Δ •A\B]‖• � C
(Def‖.‖•)‖Γ [(Δ ,A\B)]‖• � C

(\i) Induction hypothesis gives us an axiomatic proof of ‖(A,Γ)‖• � C, which
is equal to A • ‖Γ ‖• � C. Using the axiom (Id) to obtain A � A we apply rule
(Mon\) to obtain A\(A•‖Γ ‖•)� A\C. Now we use axiom (Co-appl\) to obtain
‖Γ ‖• � A\ (A •‖Γ‖•). We combine this with the previous statement using rule
(Trans) to obtain ‖Γ ‖• � A\C.

The proof schema below shows the different steps.

(Co-appl\)‖Γ ‖• � A\ (A •‖Γ ‖•)

(Id)
A � A

··· IH

‖(A,Γ)‖• � C
(Def‖.‖•)

A •‖Γ ‖• � C
(Mon\)

A\ (A •‖Γ ‖•) � A\C
(Trans)‖Γ ‖• � A\C

(/h), (/i) Symmetric to the cases for (\h) and (\i).
(cut) Induction hypothesis give us a proof of ‖Γ ‖• � A and of ‖Δ [A]‖• � B. We

apply Lemma 4.12 directly to obtain ‖Δ [Γ]‖• � B.

⇐=

This part of the proof is easy, since all rules and axioms have simple proofs in the
sequent calculus.

4.4 Combinator Calculi for NL 119

(Mon•)
··· IH

A � B

··· IH
C � D

•h
(A,C) � B •D

•i
A •C � B •D

(Mon\)
··· IH

A � B

··· IH
C � D \h

(A,B\C) � D \i
B\C � A\D

(Trans)
··· IH

A � B

··· IH
B � C

cut
A � C

This completes the equivalence proof of the sequent and the combinator
calculus. ��
Lemma 4.14. The residuation-monotonicity calculus of Figure 4.7 is equivalent to
the cut-free sequent calculus of NL.

Proof. We only need to prove that if δ is a cut free NL sequent derivation of Γ � C,
then there is a residuation-monotonicity (ResMon) derivation δ ′ of ‖Γ ‖• � C which
does not use the rule (Trans). The other direction is a direct consequence Corol-
lary 4.10, which shows derivability in the residuation-monotonicity calculus implies
derivability in the Došen-style axiomatic calculus, and Lemma 4.13, which shows
derivability in the axiomatic calculus implies derivability in the sequent calculus for
NL.

We prove the lemma by induction on the length l of δ . If l = 1, the we have an
axiom rule in the sequent calculus and the (Id) rule in the axiomatic calculus.

If l > 1 we do a case analysis on the last rule of the proof.
The only cases which require a little work are when the last rule is \h or /h. We

only sketch the basic idea for the case of \h here, Exercise 4.12 and 4.14 ask you to
give a more formal proof. By induction hypothesis, we have an axiomatic proof of
‖Γ [B]‖• � C. Now, using a series of Res•/ and Res•\ rules, we can obtain a proof
of B � D, where D has C as a subformula inside a number of \ and / connectives,
then we can apply the monotonicity rule for \ followed by the residuation rule to
change \ into •, after which we “put back” the context Γ [] around the antecedent, by
using Res/• and Res\• to obtain ‖Γ [(Δ ,A \B)]‖• � C. This gives us the following
schematic proof.

120 4 The Non-associative Lambek Calculus

··· IH

‖Γ [B]‖• � C··· Res•/,Res•\
B � D

··· IH

‖Δ‖• � A
Mon\

A\B � ‖Δ‖• \D
Res\•‖Δ‖• • A\B � D··· Res/•,Res\•

‖Γ [(Δ ,A\B)]‖• � C

The case for /h is symmetric.
The other cases are easily checked. In case the last rule is \i, we can simulate it

using Res•\ as follows.

··· IH

‖(A,Γ)‖• � B
Def‖.‖•

A •‖Γ ‖• � B
Res•\‖Γ ‖• � A\B

Given that ‖Γ (A,B)‖• is equal to ‖Γ [A •B]‖•, the rule •h is trivial.
Finally, the rule •i corresponds to an application of the monotonicity rule for the

product as follows.

··· IH

‖Δ‖• � A

··· IH

‖Γ ‖• � B
Mon•‖Δ‖• • ‖Γ ‖• � A •B
Def‖.‖•‖(Δ ,Γ)‖• � A •B

��

4.5 Model Theory

We have seen group models for the Lambek calculus in the previous chapter. Even
though it is possible to adapt these models to the non-associative Lambek calcu-
lus, we will introduce a different kind of models for the non-associative Lambek
calculus in this chapter: Kripke models. This is another important group of models
for the Lambek calculus and they have the advantage of easily accommodating the
multimodal extensions to NL we will see in the next chapter.

Kripke models were originally introduced for modal logics and they used pos-
sible worlds and a binary accessibility relation R2 between worlds to give models

4.5 Model Theory 121

for logical necessity and possibility (for many other applications and a very good
general overview of modal logics, see Blackburn et al, 2001).

For our current purposes, however, our ‘worlds’ are simply the linguistic struc-
tures we use: formulae and their (structured) combinations. In the following text we
will use the words ‘world’ and ‘linguistic resource’ interchangeably.

We use a ternary accessibility relation R3 to “merge” these formulae and struc-
tures: R3abc holds between a b and c if and only if resource a is the result of merging
resource b and resource c. We can represent R3abc in the form of a picture as shown
below.

a

b c

We intend to interpret this ternary relation in such a way that if, for example, b
is in the interpretation of np and c is in the interpretation of np\S then we want to
conclude that there exists a world a such that a is in the interpretation of S.

Though it is often useful to draw the accessibility relation as a tree-like structure,
as shown above, it is important to remember that the structures we define using
this ternary relation do not necessarily represent trees. In particular, if we want to
interpret R3abc as saying that a is the mother of its daughters b and c, we have to
keep in mind that unicity of this mother for a given b and c is not necessary, or, more
precisely, the formula ∀a∀b∀c∀d.(R3abc∧R3dbc)→ d = a does not hold. However,
to make the intuitions behind the use of the accessibility relation R3 clear, we will
sometime refer to a trio of nodes a, b, c such that R3abc using the vocabulary of
binary trees, saying the a is the parent of b and c or that b is the left sister of c.

Before giving the definitions of the connectives, we first give some standard def-
initions in modal logic: frames, models, etc. In what follows, we will assume the set
of atomic formulae P to be fixed.

Definition 4.15. A Kripke frame F is a pair 〈W,R3〉 where W is a non-empty set of
worlds and R3 is a ternary accessibility relation over triples of elements from W.

Definition 4.16. A Kripke model M is a triple 〈W,R3,V 〉 where 〈W,R3〉 is a Kripke
frame and where V is an evaluation function from elements of P to subsets of W . We
say that 〈W,R3〉 is the underlying frame of M.

The following definitions are also standard.

Definition 4.17. A sequent A � B is true in a model M at world a — we will write
M,a |= (A � B) — in case if M,a |= A then M,a |= B as well.

122 4 The Non-associative Lambek Calculus

A sequent A � B is true in a model M — we will write M |= (A � B) — iff it is true
at all worlds in that model.

A sequent A � B is valid on a frame F — we will write F |= (A � B) — iff it is
true at all worlds and under all valuations of that frame.

The notion of Kripke frame is often useful when we want to study properties of the
accessibility relation without considering the assignments of the atomic formulae.
We will return to this point in Section 4.5.2, where we see that adding structural
rules to NL corresponds to restricting the frame we use for interpreting the logic.

As is clear from Definition 4.16, a Kripke model is simply a Kripke frame with
an evaluation which maps atomic formulae to sets of worlds in our model, so, for
example, it would tell us at which worlds the atomic formula np is true and at which
worlds the atomic formula S is true. The interpretation of the atomic formulae can
vary from one model to another.

So, though the interpretation of the atomic formulae is fixed by the model, the
interpretation of the complex formulae defined as follows.

M,a |= p iff a ∈V (p)
M,a |= A •B iff ∃b∃c(R3abc & M,b |= A & M,c |= B)
M,a |= A\B iff ∀b∀c((R3cba & M,b |= A) ⇒ M,c |= B)
M,a |= A/B iff ∀b∀c((R3cab & M,b |= A) ⇒ M,c |= B)

Again, the picture below helps us to better see the different worlds, the formulae
which hold at them and the way they are related by the accessibility relation.

A •B

A B

a

b c

B

A A\B

c

b a

A

A/B B

c

a b

Seen this way, the semantics of the connectives is quite close to their intuitive mean-
ings: if A •B holds at world a then this world is the merger by R3abc of two worlds
b and c such that A holds at world b and B holds at world c. Similarly, if A/B holds
at world a then for any world b which is “to the right” of a via R3cab and which
is in the interpretation of B, then the world c, which represents the “parent” or the
merger of a and b, is in the interpretation of A.

4.5.1 Soundness and Completeness

Lemma 4.18 (Soundness). If A � B is derivable then for all models M and for all
words a, M,a |= (A � B).

4.5 Model Theory 123

Proof. Soundness is relatively simple. We prove by induction on the depth of the
axiomatic proof of A � B that for all models M and worlds a, whenever M,a |= A
then M,a |= B. This is just a matter of writing out the definitions for the different
connectives.

First, we look at the axioms.

(Id) Axiom (Id) is a simple tautology.
(Appl\) Suppose we obtained A • (A\B) � B by application of axiom (Appl\). In

that case, we need to prove that for every world a such that M,a |= A • (A\B),
B is true at world a in M as well. Given the definition of the product, this means
there are worlds b and c such that R3abc and M,b |= A and M,c |= A \B. The
picture below on the left shows these three worlds and their relation.
We can then unfold the definition of A \B at world c, obtaining that for every
world d and e such that R3edc and M,d |= A, M,e |= B as well. But if this holds
for any worlds, then it also holds for d = b, for which we already knew that
M,b |= A and for world e = a, which means R3edc holds by virtue of being
equal to R3abc. M,b |= A and R3abc together then imply M,a |= B which we
needed to prove.

The picture below shows the unfolding of the product formula on the left,
then the unfolding of the implication in the middle and finally the composed
figure on the right.

A • (A\B)

A A\B

a

b c

B

A A\B

e

d c

A • (A\B),B

A A\B

a,e

b,d c

(Appl/) Symmetric.
(Co-appl\) If we obtained A � B\ (B •A) as an instantiation of axiom (Co-appl\),

we verify that for every model M and world a, if M,a |= A then M,a |= B\ (B •
A), that is, we verify that for all worlds b and c such that R3cba and M,b |= B
we have M,c |= B •A. Take any worlds b and c such that R3cba and M,b |= B.
We need to show that M,c |= B •A. In other words, we need to show that there
exists a d and an e such that R3cde and M,d |= B and M,e |= A. Take b = d
and a = e, then R3cde = R3cba, M,b |= B and M,a |= A all hold by assumption.
Therefore, we have shown that if M,a |= A then M,a |= B\ (B •A).

(Co-appl/) Symmetric.

Next for the rules. For rules (Mon•), (Mon\) and (Mon/) we know by induction
hypothesis that for all models M and worlds a, if M,a |= A then M,a |= B and if
M,a |=C then M,a |= D.

124 4 The Non-associative Lambek Calculus

(Mon•) For rule (Mon•) we have to show that for every model M and world a if
M,a |= A •C then M,a |= B •D. Take an arbitrary world and model satisfying
M,a |= A •C. The definition of A •C tells us there are worlds b and c such that
R3abc, M,b |= A and M,c |= C. Induction hypothesis gives us that M,b |= B
and M,c |= D and then, given that we already knew R3abc we can apply the
definition of the product in the opposite direction to obtain M,a |= B •D.

(Mon\) We have to show that for every model M and world a, if M,a |= B \C
then M,a |= A \D. Given that M,a |= B \C we know that for all worlds b and
c if R3cba and M,b |= B then M,c |=C. But induction hypothesis also gives us
M,b |= A and M,c |= D for all b and c, allowing us to apply the definition of \
again to obtain M,a |= A\D.

(Mon/) Symmetric.
(Trans) Induction hypothesis gives us that for all models M and worlds a, if M,a |=

A then M,a |= B and if M,a |= B then M,a |=C. We just have to show that for
every model M and every world a if M,a |= A then M,a |=C. Suppose M,a |=A.
By induction hypothesis we know that M,a |= A implies M,a |= B. Induction
hypothesis also gives us that M,a |= B implies M,a |=C, which is all we needed
to show. ��

For the completeness result, we first define a canonical model for NL and prove a
strong result: the Truth Lemma which states that truth in this model corresponds ex-
actly with provability in the axiomatic calculus. This means that for any underivable
statement A � B, our canonical model will be a countermodel but also that for any
statement A � B which is true in the canonical model, A � B is derivable.

Definition 4.19. The canonical model M = 〈W,R3,V 〉 for NL is defined as follows:

• W is the set of all formulae,
• R3abc iff a � b •c, and
• a ∈V (p) iff a � p.

Let’s look at the different clauses for the canonical model in a bit more detail. First,
the worlds of the canonical model are just the formulae of NL. Second, the acces-
sibility relation is linked directly to the derivability relation of the product formula.
Finally, for all atomic formulae p and all formulae (worlds) a such that a � p we
have a ∈ V (p). In other words, V (p) is true at world p and at all words a such that
we can derive p from a.

Lemma 4.20. The Truth Lemma, M ,a |= A iff a � A

Proof.

⇐=

Soundness is a simple corollary of Lemma 4.18 which proves the stronger claim
that for any model M and word a we have M,a |= A implies a � A.

4.5 Model Theory 125

=⇒

For the completeness part we show that if M ,a |= A then a � A. In other words,
when a |= A is true in the canonical model for formulae a and A, then there is a
derivation of a � A in the axiomatic calculus of Figure 4.5 as well. We prove the
completeness part of the Truth Lemma by induction on A.

[A = p] For atomic formulae p the definition of |= for M gives us a � p directly,
by construction.

[A = B •C] A is of the form B •C. Assume that a is a world such that M ,a |= B •C.
By the definition of M,a |= B •C there are worlds b and c such that R3abc where
M ,b |= B and M ,c |= C. Given that B and C are subformulae of A, we can
apply the induction hypothesis and obtain proofs b � B and c � C. Using rule
(Mon•) we obtain

b •c � B •C

But, given that R3abc, the definition of R3 in the canonical frame gives us.

a � b •c

Finally, using the transitivity rule (Trans) we obtain

a � B •C

as required.
[A = B \C] Assume that a is a world such that M ,a |= B \C, we have to show

a � B \C. Given that M ,a |= B \C this means that for all e and f if R3e f a
and M , f |= B then M ,e |=C. Choose e = B •a and f = B. The picture below
summarizes the worlds we have named so far and their relations.

= B •a

= B |= B\C

e

f a

Now we can use the fact that the derivability of B •a � B •a (which is equal to
e � f •a) and the definition of R3 in the canonical frame give us R3e f a.
Given that M , f |= B and R3e f a are satisfied, the definition of B \C gives us
M ,e |=C, with e = B •a. By induction hypothesis, we have a proof of B •a �C.
We can transform this proof into a proof of a � B\C as follows.

126 4 The Non-associative Lambek Calculus

(Co-appl\)
a � B\ (B •a)

(Id)
B � B

··· IH
B •a � C

(Mon\)
B\ (B •a) � B\C

(Trans)
a � B\C

[A =C /B] Symmetric. ��
Corollary 4.21. An important corollary of the Truth Lemma is that the canonical
model M is the most general model for NL, that is, for every model M if M |=A � B
then M |= A � B.

Proof. The corollary has a very easy proof by contraposition. We show that if there
is a model M such that M � A � B then M � A � B. But if the statement A � B has
a countermodel then A � B (the sequent is underivable), which by the Truth Lemma
means M � A � B. ��
Theorem 4.22. NL is sound and complete with respect to all models.

Proof. Soundness was proved as Lemma 4.18 and with the Truth Lemma in place,
the completeness proof is trivial.

For completeness, we need to show that if a statement A � B is true in all models,
then A � B is derivable. But if A � B is true in all models, then it is true in the
canonical model as well, so we have M |= (A � B). In other words, for any world a
we have that if M ,a |= A then M ,a |= B (1). If this holds for any world a then in
particular for world A, and since A � A is derivable, by the Truth Lemma we have
M ,A |= A and therefore M ,A |= B, by (1). Now by the Truth Lemma M ,A |= B
implies that A � B is derivable. ��

4.5.2 Adding Structural Rules

An interesting benefit of the current formulation is that, like in modal logic, we can
add restrictions to our frame to change the properties of the connectives in our logic.
This branch of modal logic is called correspondence theory: a well-know example
is that the modal logic S4 corresponds to the reflexive, transitive frames. Chapter 3
of Blackburn et al (2001) gives a detailed overview of correspondence theory for
modal logic.

Many of the standard techniques which apply to frames for modal logics can
be adapted to categorial grammars. In this section we will be interested in finding
first-order formulae which express constraints on modal frames (see Došen, 1992;
Kurtonina, 1995, 1998). Kurtonina (1995, 1998) shows that first-order constraints
allow us to define a large class of categorial logics; we will return to her results
briefly in Section 5.5.1.

For now, we will only treat the structural rules of associativity and commutativity,
as we have seen them in Section 4.3.

The structural rules for associativity and commutativity can be added to our mod-
els by adding the following restrictions on the accessibility relation R3.

4.5 Model Theory 127

∀a∀b∀c.(R3abc⇒ R3acb) (com)
∀a∀b∀c∀d∀ f .((R3a f d & R3 f bc)⇒∃e.(R3abe & R3ecd)) (ass1)
∀a∀b∀c∀d∀e.((R3abe & R3ecd)⇒∃ f .(R3a f d & R3 f bc)) (ass2)

If we want to add several of these constraints to the accessibility relation, this cor-
responds simply to adding the conjunction of the corresponding formula as a frame
constraint.

As usual, these principles are best shown in picture form, as done in Figure 4.8.

a

b c

→com

a

c b

a

b e

c d

←ass1

→ass2

a

f d

b c

Fig. 4.8. Visual representation of the constraints on the accessibility relation R3 correspond-
ing to associativity and commutativity

These frame constraints correspond to adding the following axioms to the ax-
iomatic calculus for NL.

A •B � B •A (com)
A • (B •C) � (A •B) •C (ass1)
(A •B) •C � A • (B •C) (ass2)

Now, the following is easy to see.

Proposition 4.23. The axiomatic calculus with a subset of the additional axioms
{ (comm), (ass1), (ass2)} corresponds to the sequent calculus with the additional
structural rules of the same name (these are shown in Figure 4.3)

Proof. This is an easy extension of Lemma 4.13. We show only the case for (ass1),
the other cases are similar.

128 4 The Non-associative Lambek Calculus

Showing that A •(B •C) � (A •B) •C is derivable in the sequent calculus using the
structural rule (ass1) of Figure 4.3 (repeated below) is trivial.

Γ [((Δ1,Δ2),Δ3)] � D
(ass1)

Γ [(Δ1,(Δ2,Δ3))] � D

Now, for the inverse direction, we only need to treat the new case (the rest of
the proof follows from Lemma 4.13). Suppose we have an axiomatic proof of
‖Γ [((Δ1,Δ2),Δ3)]‖• � D, then we need to show we can transform it into an ax-
iomatic proof of ‖Γ [(Δ1,(Δ2,Δ3))]‖• � D. By the definition of ‖.‖•, this is equiva-
lent to showing we can transform a proof of ‖Γ [(Δ1 •Δ2) •Δ3]‖• � D into a proof of
‖Γ [Δ1 • (Δ2 •Δ3)]‖• � D.

According to Lemma 4.12, whenever ‖Γ [F]‖• � D and E � F are derivable in
the axiomatic calculus, then ‖Γ [E]‖• � D is derivable as well. Taking E = ‖Δ1‖• •
(‖Δ2‖• • ‖Δ3‖•) and F = (‖Δ1‖• • ‖Δ2‖•) • ‖Δ3‖•, makes E � F an instantiation of
the axiom (ass1) and gives us ‖Γ [(Δ1 •Δ2)•Δ3]‖• � D implies ‖Γ [Δ1 •(Δ2 •Δ3)]‖• �
D as required. ��
Lemma 4.24. Let F be a frame and FO be the first-order formula expressing one of
the frame constraints { (com), (ass1), (ass2) } and A � B the corresponding sequent.
F satisfies FO if and only if F |= (A � B).

Proof
We verify only the case for (com), the cases for associativity are similar.

For (com) this means we need to show that F satisfies ∀a∀b∀c.(R3abc⇒ R3acb)
iff F |= (A •B � B •A).

=⇒

We need to show that if F satisfies the frame constraint, then F satisfies A •B � B •A
as well. Let M be any model 〈W,R3,V 〉 such that its underlying frame F = 〈W,R3〉
satisfies the constraint ∀a∀b∀c.(R3abc ⇒ R3acb) and let d be any world in this
model. Suppose M,d |= A •B. We need to show that M,d |= B •A. If M,d |= A •B
then writing out the definition of the valuation for A •B we conclude that there are
worlds e and f in the model such that R3de f , M,e |= A and M, f |= B. Applying the
frame constraint with a = d, b = e and c = f gives us R3d f e. Therefore, at world d
the following are true: R3d f e, M,e |= A and M, f |= B. This means that M,d |= B •A
as required.

⇐=

We prove the other direction by contraposition. Suppose our frame does not sat-
isfy the frame constraint, that is F satisfies its negation, ∃c∃a∃b.(R3cab & ¬R3cba).
In other words, there are worlds a, b and c such that R3cab but not R3cba. Given
this frame F , we can construct a countermodel by giving a valuation v making
A •B � B •A invalid: set v(A) = {a}, v(B) = {b}. We claim that M,c |= A •B but
that M,c � B • A. In order to show that A • B is true at c, we need to show that

4.6 Polynomial Complexity 129

∃x∃y.R3cxy & M,x |= A & M,y |= B. Choosing x = a and y = b makes this statement
true by our chosen validation. What remains to be done is show that M,c � B•A, that
is ¬∃x∃y.(R3cxy & M,x |= B & M,y |= A). We prove this by contradiction: suppose
there are x and y which satisfy the three conjuncts. Since M,x |= B and M,y |= A our
valuation forces x = b and y = a. This means R3cba must hold as well, contradicting
¬R3cba from our assumption that F does not satisfy the frame constraint. ��
The important point of this section is that Kripke models give fairly easy soundness
and completeness results not just for the non-associative Lambek calculus but also
— with the appropriate frame constraints, for the Lambek calculus L — as well as
for the commutative versions both calculi, NLP and LP.

4.6 Polynomial Complexity

In this section, we will talk about the complexity of parsing sentences and proving
theorems for the non-associative Lambek calculus. It is important in this context
to distinguish between the complexity of theorem proving and the complexity of
parsing: theorem proving asks the question whether a given sequent is derivable in a
calculus, whereas parsing asks the question of whether, given a sentence w1, . . . ,wn

and a lexicon Lex mapping words to formulas, there is a sequence f1, . . . fn such that
each fi ∈ Lex(wi) and an antecedent term Γ with yield f1, . . . , fn such that Γ � S is
derivable. From this, it is easy to see that parsing is at least as difficult as theorem
proving.

4.6.1 Complexity

Before talking about NL, we will very briefly discuss some of the known results for
other Lambek calculi: the associative Lambek calculus L and the associative, com-
mutative Lambek-van Benthem calculus LP. We have a rather complete picture of
the complexity of the different Lambek calculi NL, L and LP, both with the product
• and without it.

Figure 4.9 summarizes the results. For LP, its relationship with linear logic, which
we will discuss in more detail in Chapter 6, makes it possible to apply the complex-
ity results for the multiplicative fragment of linear logic (Kanovich, 1994) directly
to LP to obtain NP completeness results, both for the logic which contains only im-
plication and for the logic with implication and conjunction. NP-completeness for
the Lambek calculus with product was proved by Pentus (2006); Savateev (2009)
showed that NP-completeness holds even in the case without the product formula.
All these results are for theorem proving, but it is easy to see that the parsing prob-
lem has the same complexity: given that parsing is at least as difficult as theorem
proving and that theorem proving is NP complete, we only need to show that parsing
is in NP to show NP-completeness and it is as easy to verify whether or not a parse
is successful as it it to verify whether or not a proof is valid.

130 4 The Non-associative Lambek Calculus

Though L and LP are NP complete both for parsing and for theorem proving,
there are polynomial algorithms for NL. However, there is an important difference
between NL with product, for which we show theorem proving is polynomial and
product-free NL, for which parsing is polynomial. We will discuss these polynomial
algorithms in what follows.

Polynomial NP complete

NL\/

Aarts and Trautwein (1995)

NL\/•

de Groote (1999)

L\/

Savateev (2009)

L\/•

Pentus (2006)

LP\/

LP\/•

Kanovich (1994)

Kanovich (1994)

Fig. 4.9. The complexity of different variants of the Lambek calculus

4.6.2 De Groote’s Context Calculus SC

Philippe de Groote has shown that theorem proving for NL takes polynomial time
(de Groote, 1999), generalizing an earlier result from Aarts and Trautwein (1995)
for product-free NL which we will discuss in Section 4.6.4. In this section, we will
first present de Groote’s result and then talk about the special case without product.

The context calculus SC is defined using two-formula sequents and contexts
which are defined as follows.

Definition 4.25. A formula with a hole or a context is defined as follows:

F [] ::= [] |F []\Lp | Lp\F [] |F []/Lp | Lp/F [] |F [] •Lp | Lp •F []

Though similar in spirit to the definition of context in the beginning of this chap-
ter (Definition 4.4), where a context is an antecedent term with a hole as opposed
to a formula with a hole here, the two notions are of course distinct. We will use
Γ [],Δ [],Θ [], . . . to range over contexts. Γ [A] is the formula obtained by filling the
hole in Γ [] by A.

The context calculus SC is shown in Figure 4.10.
As can be seen in the rules, we need to distinguish between positive and negative

contexts. The context rules • /N and • \N should be compared — modulo some
manipulation of contexts — to the (Appl) axioms of the axiomatic presentation of
Figure 4.5 on page 113, the / •P and \•P rules correspond to the (Co-appl) axioms,
whereas the /\P and \ /P rules correspond to the type lifting rules.

4.6 Polynomial Complexity 131

Sequent Rules

axiom
A � A

A � B C � D
•mon

A •C � B •D

A � B C � D
\mon

B\C � A\D

A � B C � D
/mon

A/D � B/C

A � B �N Γ []
contN

Γ [A] � B

A � B �P Γ []
contP

A � Γ [B]

Negative Context Rules

[]N
�N []

A � B �N Γ [] �N Δ []
•\N

�N (A •Γ [(B\Δ [])])

A � B �N Γ [] �N Δ []
•/N

�N (Γ [(Δ []/B)] •A)

Positive Context Rules

[]P
�P []

A � B �P Γ [] �P Δ []
\•P

�P (A\Γ [(B •Δ [])])

A � B �P Γ [] �P Δ []
/ •P

�P (Γ [(Δ [] •B)]/A)

B � A �N Γ [] �P Δ []
/\P

�P (A/Γ [(Δ []\B)])

B � A �N Γ [] �P Δ []
\/P

�P (Γ [(B/Δ [])]\A)

Fig. 4.10. The context calculus SC from de Groote (1999)

Before analyzing the complexity of proof search in the calculus SC, we first need
to show that it is equivalent to NL. That is. we need to show that SC derives all
and only the theorems of NL. To do this, we follow the structure of the proof of
de Groote (1999) and first introduce some auxiliary notions.

Definition 4.26. A negative context Γ [] is correct iff A � B implies Γ [A] � B.
A positive context Δ [] is correct iff A � B implies A � Δ [B].

The following lemma shows that we can “nest” contexts.

132 4 The Non-associative Lambek Calculus

Lemma 4.27. If �N Γ [] and �N Δ [] are derivable using the negative context rules,
then �N Γ [Δ []] is derivable as well.

If �P Γ [] and �P Δ [] are derivable using the positive context rules, then �P Γ [Δ []]
is derivable as well.

Proof. Both parts of the lemma are proved by a simple induction on �N Γ [] resp.
�P Γ []. ��
For the completeness proof, it is useful to restrict the SC derivation into those that
have a certain form.

Definition 4.28. An SC derivation is normal if the following conditions are satisfied.

1. The rule axiom is restricted to atomic formulae.
2. No rule contN or contP has an axiom []N resp. []P as its right premise.
3. No rule contN or contP has another rule contN or contP as its left premise.

Lemma 4.29. Every SC derivation can be transformed into a normal SC derivation.

Proof. Condition 1 corresponds to the possibility to restrict NL to atomic axioms.
In the calculus SC, the proof is even easier than in the sequent calculus, and follows
directly from the monotonicity rules for the three connectives of the calculus.

Condition 2 is trivial as well. If the right premise on a cont rule is a context
axiom, then the context is empty and the conclusion of the rule is equal to the left
premise and the cont rule can be eliminated from the proof.

Condition 3, finally, is a direct corollary of Lemma 4.27. ��
Lemma 4.30. SC is equivalent to the monotonicity-residuation presentation of NL
shown in Figure 4.7 on page 114.

Proof. We show that a sequent is derivable in the context calculus SC if and only if
the corresponding sequent is derivable in the combinatorial presentation ResMon.
Our work is made easier by the fact that the two calculi share the monotonicity and
axiom rules.

=⇒

We show by induction on the length of the SC proof of A� B that there is a derivation
in the residuation-monotonicity calculus of A � B as well.

The axiom rule and the three mon rules are identical to the Id and monotonicity
rules of the residuation-monotonicity calculus.

The negative and positive context rules are valid by the definition of correct con-
texts.

So, what remains to be shown is that the context rules allow us to derive only
correct contexts.

4.6 Polynomial Complexity 133

Negative contexts
For a negative context Γ [], being correct means that if A � B, then Γ [A] � B.

• If �N Γ [] is obtained by the axiom for negative contexts []N, the result holds
trivially.

• If �N Θ [] is obtained by the • \N rule, then Θ is of the form A •Γ [(B\Δ [])]
and, by induction hypothesis, we have a ResMon proof of A � B and we
know that Γ [] and Δ [] are correct negative contexts. We need to show that
Θ [] is a correct negative context as well, that is, if C � D then A •Γ [(B \
Δ [C])] � D.

Now, if C � D, then, given that Δ [] is a correct negative context by
induction hypothesis, we can conclude C � Δ [D]. C � Δ [D] and A � B
(induction hypothesis) together allow us to conclude B \Δ [C] � A \D by
(Mon\). This, together with the fact that Γ [] is a correct positive context, al-
lows us to conclude Γ [(B\Δ [C])] � A\D, followed by (Res\•) to conclude
A •Γ [(B\Δ [C])] � D as required.

··· IH
A � B

C � D
Δ [] correct

Δ [C] � D
(Mon\)

B\Δ [C] � A\D
Γ [] correct

Γ [(B\Δ [C])] � A\D
(Res\•)

A •Γ [(B\Δ [C])] � D

• The case for •/N is symmetric.

Positive contexts
If Δ [] is a positive context such that �P Δ [] and A � B is derivable in ResMon,
then A � Δ [B] is derivable in ResMon as well. We use induction on the proof of
�P Δ [].

• If �P Δ [] is obtained by the axiom for negative contexts []P, the result holds
trivially.

• If �P Θ [] is obtained by the \•P rule, then Θ [] is of the form A\Γ [(B •Δ [])],
we know by induction hypothesis that Γ [] and Δ [] are correct positive con-
texts and that A � B is derivable. In order to show that Θ [] is a correct con-
text, we need to show that if C � D then C � A\Γ [(B •Δ [D])]. Given that we
know by induction hypothesis that Δ [] is a correct positive context, C � D
allows us to conclude C � Δ [D], which together with A � B (induction hy-
pothesis) gives us A •C � B •Δ [D] using Mon•. Given that Γ [] is a correct
positive context as well, this allows us to conclude A •C � Γ [(B •Δ [D])]. Fi-
nally, the residuation rule Res•\ allows us to conclude C � A\Γ [(B •Δ [D])]
as required. The figure below summarizes the proof.

134 4 The Non-associative Lambek Calculus

··· IH
A � B

C � D
Δ [] correct

C � Δ [D]
Mon•

A •C � B •Δ [D]
Γ [] correct

A •C � Γ [(B •Δ [D])]
Res•\

C � A\Γ [(B •Δ [D])]

• The case for / •P is symmetric.
• In case �P Θ [] is obtained by the /\P rule, Θ [] is of the form A/Γ [(Δ []\B)]

and we need to show that Θ [] is a correct positive context, that is, if C � D,
then C � A/Γ [(Δ [D]\B)] given that Γ [] is a correct negative context, Δ [] is
a correct positive context and B � A, all by induction hypothesis.

If C � D and if Δ [] is a valid positive context, then C � Δ [D], which
together with B � A and mon\ gives Δ [D]\B �C\A. This, together with the
fact that Γ [] is a correct negative context, allows us to conclude Γ [(Δ [D] \
B)] � C \A. From this, using Res\• we can conclude C •Γ [(Δ [D] \B)] � A
and finally, using Res•/, C � A/Γ [(Δ [D]\B)] as required.

C � D
Δ [] correct

C � Δ [D]

··· IH
B � A

mon\
Δ [D]\B � C \A

Γ [] correct
Γ [(Δ [D]\B)] � C \A

Res\•
C •Γ [(Δ [D]\B)] � A

Res•/
C � A/Γ [(Δ [D]\B)]

• The case for \ /P is symmetric.

⇐=

Assume we have a ResMon derivation of A � B, we show by induction on the length
of the proof that there is a corresponding normal SC derivation.

We proceed by a case analysis on the last rule of the proof. The only cases which
need some work are the four Res rules.

(Res\•) Suppose the last rule in the ResMon derivation is the Res\• rule.

B � A\C
(Res\•)

A •B � C

By induction hypothesis, we know there is a normal SC derivation δ of B �
A\C. Looking at the form of the rules, only the three following rules can have
produced the sequent B � A\C: mon\, contP or contN . For the two cont rules, a
further case analysis is necessary.

4.6 Polynomial Complexity 135

(mon\) If the last rule of the normal SC derivation was the monotonicity rule
for \, then we are in the following situation

··· δ1

A � B

··· δ2

D � C
mon\

B\D � A\C

We can combine proofs δ1 and δ2 to produce a proof of A • (B \D) � C as
follows.

··· δ2

D � C

··· δ1

A � B
[]N�N []

[]N�N []

�N A • (B\ [])
contN

A • (B\D) � C

Though this new proof is not necessarily normal (the last rule of δ2 may
be contN), we can transform it into a normal proof by Lemma 4.29, which
completes this case.

(contN) If the last rule of the SC derivation is contN , then we are schematically
in the following situation.

··· δ1

B � A\C

··· δ2

�N Γ []
contN

Γ [B] � A\C

We do a further case analysis on the last rule of δ1: it can be either mon\ or
contP (contN and axiom are excluded because the proof is normal).
• If the last rule is contP, the proof is of the following form

··· δ ′1
A � B

··· δ ′′1
�P Δ []

contP
A � Δ [B]

··· δ2

�N Γ []
contN

Γ [A] � Δ [B]

and we simply swap the contN and contP rules as follows,

··· δ ′1
A � B

··· δ2

�N Γ []
contN

Γ [A] � B

··· δ ′′1
�P Δ []

contP
Γ [A] � Δ [B]

normalize the resulting derivation if necessary and apply the appropriate
case for contP below.

136 4 The Non-associative Lambek Calculus

• If the last rule of δ1 is mon\, then we are in the following situation

··· δ ′1
A � B

··· δ ′′1
D � C

mon\
B\D � A\C

··· δ2

�N Γ []
contN

Γ [B\D] � A\C

and need to prove A •Γ [B\D] � C, which we can do as follows.

··· δ ′′1
D � C

··· δ ′1
A � B

··· δ2

�N Γ []
[]N�N []
• \N�N A •Γ [(B\ [])]

contN
A •Γ [B\D] � C

(contP) If the last rule of the SC derivation is contP, then since the positive
context Γ [] will have \ as its main connective, derivation of the positive
context Γ [] will have as its last rule either \ •P or \ /P. We will consider
each case in turn.
• In the first case, we are in are in the following situation

··· δ1

B � C

··· δ2

A � D

··· δ3

�P Γ []

··· δ4

�P Δ [] \ •P�P A\Γ [(D •Δ [])]
contP

B � A\Γ [(D •Δ [C])]

and we need to prove A •B � Γ [(D•Δ [C])], which we can do as follows.

··· δ2

A � D

··· δ1

B � C

··· δ4

�P Δ []
contP

B � Δ [C]
mon•

A •B � D •Δ [C]

··· δ3

�P Γ []
contP

A •B � Γ [(D •Δ [C])]

• In the second case, we have contP followed by \ / P and are in the
following situation.

··· δ1

B � A

··· δ2

D � C

··· δ3

�N Γ []

··· δ4

�P Δ [] \ /P�P Γ [(D/Δ [])]\C
contP

B � Γ [(D/Δ [A])]\C

4.6 Polynomial Complexity 137

We need to give a proof of Γ [(D /Δ [A])] •B � C, which we can do as
follows.

··· δ2

D � C

··· δ1

B � C

··· δ4

�P Δ []
contP

B � Δ [A]

··· δ3

�N Γ []
[]N�N []
•/N�N Γ [([]/Δ [A]) •B

contN
Γ [(D/Δ [A])] •B � C

(Res/•) Symmetric to the case for Res\•
(Res•\) We need to show that whenever we have a normal proof δ of A •B � C,

we can transform it into a proof of B � A\C. We do a case analysis on the last
rule of δ as before. The only rules which can have applied to form a sequent
A •B � C are the monotonicity rule for the product, the positive context rule and
the negative context rule, with the context rules requiring a further case analysis.
We treat the cases in the indicated order.

(•mon) In case the last rule was •mon, we have a proof of the following form.

··· δ1

A � C

··· δ2

B � D
•mon

A •B � C •D

We can combine the subproofs into a proof of B � A\ (C •D) as follows.

··· δ2

B � D

··· δ1

A � C
[]P�P []

[]P�P [] \ •P�P A\ (C • [])
contP

B � A\ (C •D)

(contP) If the last rule of the proof is contP, then we are in the following
situation.

··· δ1

A •B � C

··· δ2

�P Δ []
contP

A •B � Δ [C]

We do a further case analysis on the last rule of the subproof δ1, which can
be either •mon or contN (contP is excluded because the proof is normal).
We treat both subcases.
• If the last rule of δ1 is •mon, then the proof looks as follows.

138 4 The Non-associative Lambek Calculus

··· δ ′1
A � C

··· δ ′′1
B � D

•mon
A •B � C •D

··· δ2

�P Δ []
contP

A •B � Δ [C •D]

We need to combine the subproofs to create a proof of B � A\Γ [C •D],
which we can do as follows.

··· δ ′′1
B � D

··· δ ′1
A � C

··· δ2

�P Δ []
[]P�P [] \ •P�P A\Δ [(C • [])]

contP
B � A\Δ [C •D]

• If the last rule of δ1 is contN , then the proof looks as follows.

··· δ ′1
A � B

··· δ ′′1
�N Γ []

contN
Γ [A] � B

··· δ2

�P Δ []
contP

Γ [A] � Δ [B]

and we swap the contP and contN rules, similar to the way in which we
treated the situation in the Res\ • section of the proof, as follows

··· δ ′1
A � B

··· δ2

�P Δ []
contP

A � Δ [B]

··· δ ′′1
�N Γ []

contN
Γ [A] � Δ [B]

normalize, then continue with case contN described below.
(contN) For the case contN , we know the negative context must have • as its

outermost symbol. This means only rules • \N and \ •N can apply.
• Suppose our proof ends with the combination • \N, contN as shown

below

··· δ1

D � C

··· δ2

A � B

··· δ3

�N Γ []

··· δ4

�N Δ []
• \N�N A •Γ [(B\Δ [])]

contN
A •Γ [(B\Δ [D])] � C

then we can transform it into a proof of Γ [(B\Δ [D])]� A\C as follows.

4.6 Polynomial Complexity 139

··· δ2

A � B

··· δ1

D � C

··· δ4

�N Δ []
contN

Δ [D] � C
Mon\

B\Δ [D] � A\C

··· δ3

�N Γ []
contN

Γ [(B\Δ [D])] � A\C

• Finally, suppose our proof ends with the combination •/N, contN . This
means the proof ends as follows.

··· δ1

A � C

··· δ2

B � D

··· δ3

�N Γ []

··· δ4

�N Δ []
•/N�N Γ [(Δ []/D)] •B

contN
Γ [(Δ [A]/D)] •B � C

We transform it, as required, into a proof of B � Γ [(Δ [A] /D)] \C as
follows.

··· δ2

B � D

··· δ1

A � C

··· δ4

�N Δ
contN

Δ [A] � C

··· δ3

�N Γ []
[]P�P [] \ /P�P Γ [(Δ [A]/ [])]\C

contP
B � Γ [(Δ [A]/D)]\C

(Res•/) Symmetric to the case for Res•\ ��

4.6.3 A Theorem Proving Algorithm

Now that we have established the equivalence of the context calculus SC with the
combinator presentation of NL, we will take some time to give a very rough upper
bound on the complexity of proof search for SC.

We first define the size of formulae, contexts and sequents. This corresponds
simply to the number of symbols other than ‘(’ and ‘)’ we use to write it down. The
context marker ‘[]’ is counted as a single symbol.

Definition 4.31. Let F be a formula or a context, the size of F is defined as follows.

size([]) = 1
size(p) = 1

size(A •B) = size(A)+ size(B)+ 1
size(A\B) = size(A)+ size(B)+ 1
size(A/B) = size(A)+ size(B)+ 1

The size of a sequent A � B is defined as size(A)+ size(B).

140 4 The Non-associative Lambek Calculus

By inspection of the rules, it is clear that in any SC proof of a sequent A � B, the
formulae and the contexts which can appear in the proof are all subformulae or
subcontexts of the sequent A � B.

Now for a given sequent A � B of size n, the number of subformulae is bounded
by n and the number of subcontexts is bounded by n2: if we write the sequent as
a tree, this tree will have n nodes. Apart from the root node, which corresponds to
the sequent symbol, each node in the tree corresponds to a subformula and each
pair of nodes such that the second node is a descendant of this first corresponds to a
context.

So a proof search algorithm will require O(n2) space to store all contexts and
pairs of formulae which can appear in an SC proof. The following is a very naive
tabular search algorithm which decides whether or not a sequent A � B is derivable.
It is not difficult to make the algorithm a bit smarter, for example by taking into
account the polarities of formulae and contexts and by storing only sequents and
contexts which have an equal number of positive and negative occurrences of all
atomic formulae.

1. Given a sequent A � B, store all pairs of subformulae and all subcontexts of
A � B.

2. Mark all instantiations of the axioms and all empty contexts as derivable.
3. For each rule which has all its premises marked as derivable but which does not

have its conclusion sequent/context marked as derivable, mark its conclusion
sequent or its conclusion context as derivable.

4. Repeat step 3 until no further derivable sequents/contexts are added.
5. Answer “yes” if the sequent A � B is marked as derivable and “no” otherwise.

For each rule, except the contN and contP rules, the size of the conclusion is equal to
the size of its premises plus two. This gives us a maximum of 1

2 n rule applications
other than cont to produce a sequent of size n. In addition, in a normal proof there are
never two consecutive contN rules and never two consecutive contP rules, bounding
the number of cont rules by two thirds of the total number of rules, giving us a
maximum of 3

2 n iterations of step 3 of the algorithm. Now there are at most O(n2)
sequents and contexts which are marked as derivable and 11 rules (all rules except
the three axioms) for which we have to verify if:

1. this context is one of its premises,
2. the other premises are marked as derivable,
3. the conclusion is in the search space but not yet marked as derivable.

All of the above steps take O(1). So we can conclude that it takes O(3
2 n∗11∗n2) =

O(n3) steps to decide whether or not a given sequent is derivable using the context
calculus.

4.6.4 NL without Product

Aarts and Trautwein (1995) have given an earlier proof of polynomial parsing for
product-free NL. Figure 4.11 shows the calculus proposed by Aarts and Trautwein.

4.6 Polynomial Complexity 141

Γ ,B,Γ ′ � D C � A
\′hΓ ,C,A\B,Γ ′ � D

Γ ,B,Γ ′ � D C � A
/′h

Γ ,B/A,C,Γ ′ � D

A � B C � D
\lift

A � (D/B)\C

A � B C � D
/lift

A � D/ (B\C)

A � B C � D
\mon

B\C � A\D

A � B C � D
/mon

A/D � B/C

axiom
A � A

Fig. 4.11. Calculus for product-free NL (from Aarts and Trautwein (1995))

A remarkable feature of this calculus is that, as is clear from the formulation of the
\′h and /′h rules, it works using lists of formulae: it does not require the bracketing
of the antecedent term as its input and, given a parse in the calculus of Aarts and
Trautwein, we can easily extract the antecedent term simply by adding parentheses
around the two formulae for each application of an \′h and /′h rule.

From the perspective of the context calculus we have seen in the previous section,
the product-free calculus corresponds to the following restriction on formulae

C ::= (C •C)
∣∣∣ F

F ::= P
∣∣∣ F \F

∣∣∣ F /F

with sequents being of the form C � F . C is simply an antecedent term written using
product formulae instead of parentheses and comma’s in order to make the compar-
ison with SC more evident. So the resulting calculus still has product formulae, but
only on the outside (not inside the scope of one of the implications).

Keeping this formula restriction in mind when looking at the rules for the calculus
SC (Figure 4.10 on page 131), we notice the following:

• the •mon rule can never apply, since we cannot have a product formula as the
succedent,

• neither the \•P nor the /•P rule can apply, since they necessarily have a product
formula as a subformula of an implication

• for the • \N and the •/N rules, the context Δ [] must be empty, since a negative
context always has a product formula as its main connective and Δ [] occurs as a
subformula of an implication

142 4 The Non-associative Lambek Calculus

Sequent Rules

axiom
A � A

A � B C � D
\mon

B\C � A\D

A � B C � D
/mon

A/D � B/C

A � B �N Γ []
contN

Γ [A] � B

A � B �P Γ []
contP

A � Γ [B]

Negative Context Rules

[]N
�N []

A � B �N Γ []
•\N

�N (A •Γ [(B\ [])])
A � B �N Γ []

•/N
�N (Γ [([]/B)] •A)

Positive Context Rules

[]P
�P []

B � A �P Δ []
/\P

�P (A/ (Δ []\B))

B � A �N�P Δ []
\/P

�P ((B/Δ [])\A)

Fig. 4.12. The context calculus SC from Figure 4.10 on page 131 with product formulae
occurring only on the outside

• for the \/P and /\P rules, the negative context Γ [] must be empty by the same
reasoning.

If we take all of these restrictions into account, the reduced calculus SC for NL
without product is shown in Figure 4.12.

In order to show the equivalence of the two systems, we only need to show the
following:

1. the positive context rules correspond to \lift and /lift,
2. the negative context rules correspond to \′h and /′h.

Item 1 is trivial; item 2 is easy to see once we realize that the two calculi work in
the opposite direction: in de Groote’s SC, the argument of the implication which is
reduced first is always one of the outermost formulae A of the sequent, whereas in

4.7 Concluding Remarks 143

Aarts and Trautwein’s calculus the argument which is reduced first is always of of
the innermost arguments C.

From the Aarts and Trautwein calculus, it is rather easy to see that (product-free)
NL generates only context-free languages. Using a strategy similar to the one used
for parsing AB grammars in Section 1.4, we can generate a context-free grammar
which has all words in the lexicon as terminal symbols, all formulas in our grammar
as non-terminal symbols and which has as its rules:

• a rule F → w if F ∈ Lex(w),
• all instances of the proof rules in Aarts and Trautwein’s calculus which the for-

mulas in the lexicon allow, eg. if (S/(np\S))\S is a member of Lex(is missing),
then the following rules will be generated.

((S / (np \ S))\ S)→ is missing
(np \ S)→ ((S / (np \ S))\ S)
S→ (S / (np \ S)) ((S / (np \ S))\ S)
S→ np (np \ S)

Though the lift and mon rules mean that the resulting context-free grammar is not in
Chomsky Normal Form (the second rule shown above is an example), we can apply
the standard conversion to obtain a context-free grammar in Chomsky Normal Form
and apply the Cocke Kasami Younger algorithm to parse the resulting grammar.

Kandulski (1988) shows that NL with product generates only context-free lan-
guages as well.

4.7 Concluding Remarks

This completes our overview of NL. Compared to the Lambek calculus, it offers
both advantages and disadvantages: there are some cases where associativity is un-
desirable, but other cases where it seems necessary. From a computational point of
view, parsing NL grammars is simpler than parsing L grammars (though Pentus’
result (Pentus, 1997), which we treated in detail in Section 2.11, shows that for
a fixed L grammar, we can convert it to a context-free grammar and benefit from
polynomial parsing).

The next chapter shows how we can combine NL and L into a single logic, to
obtain a multimodal grammar. In addition to allowing us to specify lexically whether
or not we want associativity to apply, multimodal grammars allow us to give an
account of phenomena which do not have a satisfactory treatment in context-free
grammars.

144 4 The Non-associative Lambek Calculus

Exercises for Chapter 4

Exercise 4.1. Verify yourself that any proof attempt of the sequent (A/B,B/C) �
A /C which starts with a rule application other than the /i rule produces a sequent
which is invalid according to Proposition 2.6. In other words, show that for each of
these rule applications there is a subproof where the number of positive occurrences
of one of the formulae A, B and C is not equal to the number of negative occurrences.
In the derivation shown in Example 4.8 on page 104, the two failing subsequents
(A,C)� A has negative occurrence of C and no positive occurrences, whereas B/C �
B has one positive occurrence of C and no negative occurrences.

Exercise 4.2. Which of the following sequents — all derivable in L — are derivable
in NL as well?

1. A/B � (A/C)/ (B/C)
2. A � B/ (A\B)
3. (A/B) •B � A
4. A\ (B\C) � (B •A)\C

Give a proof of all derivable sequents and show in case of underivability how all
proof attempts fail.

Exercise 4.3. Using the lexicon in Section 4.2.2 on page 105, derive sentences 4.1
and 4.2 in NL and sentence 4.3 in L.

Exercise 4.4. In Section 2.5, we have seen that L requires us to state explicitly that
none of the antecedents are empty. Take the following lexicon.

Word Type(s)
very (n /n)/ (n /n)

interesting n /n
book n

Show that in NL “very interesting book” is derivable as an expression of type n, but
“very book” isn’t.

Exercise 4.5. The Italian lexicon we’ve seen in Example 2.2 — the relevant part is
repeated below —

Word Type(s)
cosa (S / (S /np))

guarda (S / in f)
passare (in f /np)

allows us to derive “cosa guarda passare” in L. Show that this sentence is underiv-
able in NL.

Exercises for Chapter 4 145

Exercise 4.6. Exercise 4.5 has shown that we cannot treat peripheral extraction in
the same simple and elegant way we used for the Lambek calculus. Give a type
assignment to cosa in the previous exercise which makes to sentence “cose guarda
passare” derivable. Comment on this type assignment. Would it allow you to treat
the sentences of Exercise 2.7?

Exercise 4.7. Example 4.5 “Bill gave flowers to Mary and a toy to the children” (on
page 105) is not derivable in NL under the type assignment of ((np \ S) / pp) / np
to “gave”. Give a type assignment to “gave” and a type assignment to “and” which
is an instantiation of (X \X)/X which allow us to derive Example 4.5 in NL.

Exercise 4.8. In Section 4.3 we have seen the following patterns of adverbs.

(4.13) Loren carefully read Neuromancer.
(4.14) Loren read Neuromancer carefully.
(4.15) Stewart completely destroyed his credibility.
(4.16) Stewart destroyed his credibility completely.

together with the lexicon repeated below.

Word Type(s)
Loren np

Stewart np
Neuromancer np

credibility n
his np /n

read (np \ S)/np
destroyed (np \ S)/np
carefully (np \ S)\ (np \ S)

completely (np \ S)\ (np \ S)

1. Give natural deduction proofs for sentences 4.14 and 4.16 in NL.
2. Give natural deduction proofs for sentences 4.13 and 4.15 in NLP.

Exercise 4.9. We have seen in Exercise 2.6 that the sentences “Someone loves ev-
eryone” and “Someone is missing” both have two normal form natural deduction
derivations in L. The lexicon is repeated below. How many normal form natural
deduction derivations does each of these sentences have in NL?

Word Type(s)
someone (S / (np \ S))

loves ((np \ S)/np)
is missing ((S / (np \ S))\ S)
everyone ((S /np)\ S)

Comment on the difference.

146 4 The Non-associative Lambek Calculus

Exercise 4.10. Associativity corresponds to a set of two separate rules. There are
some cases where it suffices to have only one of the two rules. A canonical example
are cases of what is often called right node raising. The sentence below is a typical
example.

(4.17) Loren loved but Stewart hated Neuromancer.

“loved” and “hated” are both transitive verbs and “Neuromancer” is the objet of
both of them. This is another case of polymorphic coordination, of which we have
already seen examples in Exercise 1.4.4 and Section 4.2.1: “but”, like’ “and” can
be assigned the formula (X \X) /X for several instantiations of X . We have seen
several examples in Exercise 1.4.4.

1. What is the instantiation of X which is appropriate for the sentence above?
2. Which of the two associativity rules do we need to derive the sentence?

Exercise 4.11. To familiarize yourself with the axiomatic calculus, prove A � B /
(A\B). Though this statement has a trivial proof in the sequent calculus as well as
in natural deduction, you’ll find that it requires a bit more effort here.

Exercise 4.12. Prove the following lemma for the residuation calculus of Figure 4.6
on page 114 without using the (Trans) rule.

Lemma 4.13. If from A � C we can derive B � C, then from Γ [A] � C we can derive
Γ [B] � C.

Exercise 4.14. Reprove the case for \h of Lemma 4.14 (on page 119) using
Lemma 4.13 you proved for Exercise 4.12.

Exercise 4.15. Find all different proofs of the sequent

S / (np \ S),(S /(np \ S))\ S � S

using both de Groote’s context calculus SC, as shown on Figure 4.10 on page 131,
and Aarts and Trautwein’s calculus, shown on Figure 4.11 on page 141.

Exercise 4.16. Prove the example sequent (from de Groote, 1999)

a � (c/ ((a •b)\ c))/b

in the context calculus SC from Figure 4.10.

References 147

References

Aarts, E., Trautwein, K.: Non-associative Lambek categorial grammar in polynomial time.
Mathematical Logic Quarterly 41, 476–484 (1995)

Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Com-
puter Science, vol. 53. Cambridge University Press (2001)

Chomsky, N.: Some concepts and consequences of the theory of Government and Binding.
MIT Press, Cambridge (1982)

Chomsky, N.: The minimalist program. MIT Press, Cambridge (1995)
Došen, K.: Sequent-systems and groupoid models I. Studia Logica 47(4), 353–385 (1988)
Došen, K.: Sequent-systems and groupoid models II. Studia Logica 48(1), 41–65 (1989)
Došen, K.: A brief survey of frames for the Lambek calculus. Zeitschrift für Mathematische

Logic und Grundlagen der Mathematik 38, 179–187 (1992)
Emms, M.: Parsing with polymorphism. In: Proceedings of the Sixth Conference of the Eu-

ropean Association of Computational Linguistics, pp. 120–129 (1993)
Emms, M.: An undecidability result for polymorphic Lambek calculus. In: Dekker, P.,

Stokhof, M. (eds.) Proceedings 10th Amsterdam Colloquium, pp. 539–549 (1995)
de Groote, P.: The Non-associative Lambek Calculus with Product in Polynomial Time. In:

Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 128–139. Springer,
Heidelberg (1999)

Joshi, A., Schabes, Y.: Tree adjoining grammars. In: Rozenberg, G., Salomaa, A. (eds.) Hand-
book of Formal Languages, vol. 3, ch. 2. Springer, Berlin (1997)

Kandulski, M.: The equivalence of nonassociative Lambek categorial grammars and context
free grammars. Zeitschrift für Mathematische Logic und Grundlagen der Mathematik 34,
41–52 (1988)

Kanovich, M.: The complexity of horn fragments of linear logic. Ann. Pure Appl. Logic 69(2-
3), 195–241 (1994)

Kurtonina, N.: Frames and labels. A modal analysis of categorial inference. PhD thesis, OTS
Utrecht, ILLC Amsterdam (1995)

Kurtonina, N.: Categorial inference and modal logic. Journal of Logic, Language and Infor-
mation 7(4), 399–411 (1998)

Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure of Language
and its Mathematical Aspects, pp. 166–178. American Mathematical Society (1961)

Lambek, J.: Categorial and categorical grammars. In: Oehrle, R.T., Bach, E., Wheeler, D.
(eds.) Categorial Grammars and Natural Language Structures. Reidel, Dordrecht (1988)

Moortgat, M., Oehrle, R.T.: Proof nets for the grammatical base logic. In: Abrusci, V.M.,
Casadio, C., Sandri, G. (eds.) Dynamic Perspectives in Logic and Linguistics. Cooperativa
Libraria Universitaria Editrice Bologna (1999)

Pentus, M.: Product-free Lambek calculus and context-free grammars. Journal of Symbolic
Logic 62(2), 648–660 (1997)

Pentus, M.: Lambek calculus is NP-complete. Theoretical Computer Science 357(1),
186–201 (2006)

Pollard, C., Sag, I.A.: Head-Driven Phrase Structure Grammar. Center for the Study of Lan-
guage and Information, Stanford (1994) (distributed by Cambridge University Press)

Savateev, Y.: Product-Free Lambek Calculus Is NP-Complete. In: Artemov, S., Nerode, A.
(eds.) LFCS 2009. LNCS, vol. 5407, pp. 380–394. Springer, Heidelberg (2008)

Stabler, E.P.: Derivational Minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS (LNAI),
vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

5

The Multimodal Lambek Calculus

Summary. The multimodal Lambek calculus extends the (non-associative) Lambek calculus
in two ways. First, it provides a way of mixing different resource management possibilities
— for example associative and non-associative or commutative and non-commutative —
without collapse, that is to say that associativity can be valid for certain formulae but not
for others. Second, it introduces unary connectives, which introduce new derivability patterns
and which provide us with another way to lexically anchor the structural rules of associativity
and commutativity.

Since the multimodal extensions of the Lambek calculus have been motivated by the desire
to give a better linguistic treatment of some grammatical phenomena, some of these linguistic
analyses will be discussed as examples illustrating the use of the multimodal extensions.

5.1 Combining Different Calculi

While we discussed different calculi L, NL, NLP, LP in the previous chapters, none
of them — taken by itself — is very suited for linguistic analysis. For example, as
we have seen in Section 2.11, L generates only context-free languages and Shieber
(1985) argues that linguistic phenomena like Swiss verb clusters are not context-
free.

The fundamental idea of the multimodal Lambek calculus is that we use different
families of connectives, which we will distinguish by means of indices or modes.
Each family of connectives has it own structural punctuation. This logic was first
introduced by Oehrle and Zhang (1989); Moortgat and Morrill (1991) and later ex-
tended by Moortgat and Oehrle (1993, 1994) and by Hepple (1993). The interest
of this setup is that this allows us to have different structural rules which apply to
different modes and thereby use each of the different calculi where it is most advan-
tageous.

Formulae for the multimodal Lambek calculus are a simple extension of the for-
mulae of L we have seen before. Given a set of primitive formulae P and for all
elements i from the set of indices I (this set of indices I is defined by the grammar,
though often implicitly), the set of multimodal formulae is defined as follows.

R. Moot and C. Retoré: The Logic of Categorial Grammars 2012, LNCS 6850, pp. 149–191, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

150 5 The Multimodal Lambek Calculus

Lp ::= P | (Lp\i Lp) | (Lp/i Lp) | (Lp •i Lp)

Definition 5.1. Multimodal antecedent terms A are like the antecedent terms for
NL with the addition of mode information. We now have, for every mode i in the
set of modes I a different pair of parentheses, which we distinguish by the mode
information which is written as a superscript on the closing parenthesis.

A ::= Lp | (A ,A)i

As useful way of looking at multimodal antecedent terms is to see them as binary
branching trees — with formulas as its leaves, just like for NL antecedent terms —
but where, in addition, each internal node of the tree is labeled with an element of
the set I. So where NL had unlabeled binary branching trees as antecedent terms,
by multimodal antecedent terms are labeled binary branching trees. These labels
do not correspond to the classic np and s of phrase structure trees (we can already
derive that constituents are of the corresponding types) but to additional information
orthogonal to these types.

Figure 5.1 shows the logical rules for the multimodal Lambek calculus; each
mode i ∈ I has its own set of logical rules, though they all follow the same rule
scheme.

Γ [B] � C Δ � A
\h

Γ [(Δ ,A\i B)i] � C

(A,Γ)i � C
\i

Γ � A\i C

Γ [B] � C Δ � A
/h

Γ [(B/i A,Δ)i] � C

(Γ ,A)i � C
/i

Γ � C /i A

Γ [(A,B)i] � C
•h

Γ [A •i B] � C

Δ � A Γ � B
•i

(Δ ,Γ)i � A •i B

Γ � A Δ [A] � B
cut

Δ [Γ] � B
axiom

A � A

Fig. 5.1. Binary logical rules for the sequent calculus for the multimodal Lambek calculus

Note how these rules are just the rules of NL with mode information added to the
logical rules, where in each case the logical connective and the structural punctua-
tion share the same index.

As for NL, when we talk about the derivability of a sequent A1, . . . ,An � C we
will in general mean: is there an antecedent term Γ with yield A1, . . . ,An such that
Γ � C is derivable? Though this is often left implicit, we will often need a slightly

5.1 Combining Different Calculi 151

more restricted variant of this condition in the multimodal Lambek calculus. Each
grammar defines not only a set I of modes but also a set E ⊆ I of external modes
and when we look for a derivation of a sequent, we want to find an antecedent term
Γ containing only external modes such that Γ � C is derivable. Modes in I \E are
called internal modes, they are modes which are only used for grammar-internal
calculations, or — to use a different metaphor — we can see them as a type of
features which must be checked, as is done in minimalist grammars (Chomsky,
1995; Vermaat, 2004).

So the motivation for allowing only certain modes to appear in the antecedent
term of the end-sequent is either to force certain structural rules to apply or,
inversely, to prevent them from applying. We will see why this is useful in
Example 5.2.

5.1.1 Multimodal Structural Rules

Modally Licensed Structural Rules and Inclusion Rules

Using a multimodal system allows us to reintroduce the structural rules of
Section 4.5.2, but now indexed in such a way that they apply only to certain modes:
in other words, the mode information on the formulae — which comes from the lex-
icon — licenses the application of structural rules. This gives us a combined logic,
containing all the different systems we have seen before, with the lexicon indicating
where the different structural rules can apply.

System Mode Structural Rules
NL n –
L a Associativity
NLP nc Commutativity
LP c Associativity, Commutativity

This gives us the following set of structural rules shown in Figure 5.2 for the four
modes n, a, nc, c. The complete calculus also includes instances of the logical rules
in Figure 5.1 for each of these four modes.

In addition to having these mode-indexed structural rules, it is often useful
to have inclusion rules which relate different modes to each other. Here,
Moortgat and Oehrle (1993) and Hepple (1993); de Groote (1996) differ in the di-
rection of the inclusions. As shown by the inclusion rules in Figure 5.1, we follow
Moortgat and Oehrle. Given these inclusions, we have the following relations be-
tween the implications.

···
(a /c b,b)c � a

inclc,a
(a /c b,b)a � a

/h
a /c b � a /a b

???

(a /a b,b)c � a
/h

a /a b � a /c b

152 5 The Multimodal Lambek Calculus

Associativity for a, c Commutativity for nc, c

Γ [(Δ1,(Δ2,Δ3)
a)a] � C

ass1a
Γ [((Δ1,Δ2)

a,Δ3)
a] � C

Γ [((Δ1,Δ2)
a,Δ3)

a] � C
ass2a

Γ [(Δ1,(Δ2,Δ3)
a)a] � C

Γ [(Δ2,Δ1)
nc] � C

comnc
Γ [(Δ1,Δ2)

nc] � C

Γ [(Δ1,(Δ2,Δ3)
c)c] � C

ass1c
Γ [((Δ1,Δ2)

i,Δ3)
c] � C

Γ [((Δ1,Δ2)
c,Δ3)

c] � C
ass2c

Γ [(Δ1,(Δ2,Δ3)
c)c] � C

Γ [(Δ2,Δ1)
c] � C

comc
Γ [(Δ1,Δ2)

c] � C

Inclusion rules

Γ [(Δ1,Δ2)
a] � C

incla,n
Γ [(Δ1,Δ2)

n] � C

Γ [(Δ1,Δ2)
nc] � C

inclnc,n
Γ [(Δ1,Δ2)

n] � C

Γ [(Δ1,Δ2)
c] � C

inclc,a
Γ [(Δ1,Δ2)

a] � C

Γ [(Δ1,Δ2)
c] � C

inclc,nc
Γ [(Δ1,Δ2)

nc] � C

Fig. 5.2. Structural rules for a mixed calculus containing NL, L, NLP and LP as subsystems

In the partial derivation shown above on the left, we can — reading from the bottom
upwards — use the inclusion rule to change mode a into c and then we can continue
the derivation using the /h rule now that we have obtained the correct mode. On
the right, this strategy is not possible: we obtain an a implication in a c context and
at this point no rules apply to the sequent, the /h rule being blocked by the fact
that the mode of the implication does not correspond to the mode of the structural
punctuation.

The interpretation of the inclusions in this way is that an a/c b formula can select
its b argument both to the right as well as to the left and we can therefore derive
a /a b, which selects its argument just to its right, from it.

Interaction Rules

In addition to having modally licensed structural rules and inclusion rules, the last
type of structural rules are structural rules of interaction, which open up new pos-
sibilities when two different modes appear together. We will illustrate this by two
well-known examples, one due to Morrill (1994, 1995) and another due to
Moortgat and Oehrle (1993, 1994).

Wrapping

As a first example, Morrill (1994, 1995) has proposed the set of “wrapping” struc-
tural rules shown in Figure 5.3, for a multimodal Lambek calculus containing an
associative mode a, a non-associative mode n and a “wrapping” mode w. Morrill’s

5.1 Combining Different Calculi 153

formulation of the calculus includes rules for an identity element ε for the associa-
tive mode a, where ε corresponds to the empty antecedent term. For the reasons we
discussed in Section 2.5, ε , (ε,ε)a, . . . (ie. any antecedent term equivalent to ε) are
not valid antecedent terms, though Morrill admits (ε,ε)n as a valid antecedent term,
which allows us to derive (ε,ε)n � A/w A.

In this calculus, we have I = {a,n,w} and E = {a,n}. In other words, the end-
sequent can contain only the associative and the non-associative mode, but not the
wrapping mode w.

ε is the identity element for a

Γ [(Δ ,ε)a] � C
εr

Γ [Δ] � C

Γ [Δ] � C
εr

Γ [(Δ ,ε)a] � C

Γ [(ε,Δ)a] � C
εl

Γ [Δ] � C

Γ [Δ] � C
εl

Γ [(ε,Δ)a] � C

Associativity rules for a

Γ [(Δ1,(Δ2,Δ3)
a)a] � C

ass
Γ [((Δ1,Δ2)

a,Δ3)
a] � C

Γ [((Δ1,Δ2)
a,Δ3)

a] � C
ass

Γ [(Δ1,(Δ2,Δ3)
a)a] � C

Wrapping rules

Γ [((Δ1,Δ2)
a,Δ3)

a] � C
wrap

Γ [((Δ1,Δ3)
n,Δ2)

w] � C

Γ [((Δ1,Δ3)
n,Δ2)

w] � C
wrap

Γ [((Δ1,Δ2)
a,Δ3)

a] � C

Fig. 5.3. The set of wrapping structural rules from Morrill (1994)

The key to the calculus are the two wrapping rules. Figure 5.4 shows them in tree
form. Read right-to-left, they allow us to “move out” a subcontext Δ2 when it occurs
between two other contexts Δ1 and Δ3 in the associative mode a, leaving behind this
pair of contexts in the non-associative mode n. The other rule allows us to move Δ2

back to its original position. In a sense, we can see the non-associative mode n as
serving as a kind of marker saying that material can wrap or insert itself between
the two direct daughter antecedent terms of the mode.

Example 5.2. Morrill gives several interesting applications of the wrapping oper-
ator. One of them is their use for generalized quantifiers, which we discussed in
Chapter 3. We will see another in Exercise 5.4 at the end of this chapter.

In Chapter 3, we have used type assignments S / (np \ S) and (S / np) \ S for
generalized quantifiers. Besides the fact that we need to use a different type for
subject generalized quantifiers and for object generalized quantifiers, this analysis
suffers from the problem that the quantifiers can only take their correct scope if
they occur either in the leftmost or in the rightmost position of the sentence they
occur in.

One of the classic examples of a generalized quantifier which can take scope
from the middle of the sentence it occurs in is the following.

154 5 The Multimodal Lambek Calculus

w

n Δ2

Δ1 Δ3

←Wrap

→Wrap

a

a Δ3

Δ1 Δ2

Fig. 5.4. Wrapping structural rules

(5.1) Bond believes someone left.

This sentences has two readings, a ‘de dicto’ reading where Bond believes there
exists a person such that he left. This reading is true, for example, when Bond has
counted the number of persons at two instances and inferred that there is one person
missing. So this sentence can be true without Bond believing of any specific person
that he left. In this sentence, the existential quantifier has scope only over the sen-
tence “someone left”. The ‘de re’ reading represents the other possibility. It would
be true if it is the case that Bond is watching a specific person, say Blofeld, and
then seeing him slip out the back door. In this reading, the existential quantifier has
scope over the entire sentence. This last reading is not available with either of the
type assignments for generalized quantifiers for the Lambek calculus.

The wrapping structural rules of Figure 5.3 allow us to handle cases where a
generalized quantifier appears in the middle of the sentence. The lexicon below
gives a wrapping analysis of generalized quantifiers.

Word Type(s)
Bond np

believes (np \a S)/a S
someone (S /w np)\w S

left np \a S

Apart from the type assigned to “someone”, this lexicon contains no surprises. The
idea behind the generalized quantifier type (S /w np)\w S is that it wraps out of the
structure to take its scope at the S level (using the wrap and \h rule), then wraps its
np subformula back to the original position of the generalized quantifier (using the
/i rule followed by the wrap rule).

The two partial sequent proofs (the final part of the proofs has been left as an easy
exercise) below show this type in action by providing a proof for each of the two dif-
ferent readings of the sentence. The first proof shows the reading where “someone”
has wide scope. We use the wrap structural rule — with Δ1 = “Bond believes”, Δ2

= “someone” and Δ3 = “left” — to move the generalized quantifier to the rightmost
position, where it is the rightmost daughter of a w bracket. This means it is in the
correct configuration to apply the \h rule for mode w. Then we use the /i rule for

5.1 Combining Different Calculi 155

mode w to add an np with mode w to the right of the antecedent term. This is the
correct configuration to wrap the np back to the position which was first occupied
by the (S /w np) \w S formula. The non-associative mode n can be interpreted as a
pair of terms Γ1, Γ3 which allows another term Γ2 to wrap between them. The inter-
play between the /i and the \h rule for mode w ensures that the np is inserted at the
same place as the original generalized quantifier formula.

···
(((np,(np \a S)/a S)a,np)a,np \a S)a � S

wrap
(((np,(np \a S)/a S)a,np \a S)n,np)w � S

/i
((np,(np \a S)/a S)a,np \a S)n � S /w np

axiom
S � S \h

(((np,(np \a S)/a S)a,np \a S)n,(S /w np)\w S)w � S
wrap

(((np,(np \a S)/a S)a,(S /w np)\w S)a,np \a S)a � S

The second proof is the reading where the generalized quantifier ”someone” has
scope over the subordinate clause only. This is clear in the proof below since we
need to derive (S/w np)\w S,np\a S as being of type S. Given that we have only two
formulae in the antecedent, we cannot apply the wrap structural rule. However, we
can apply the rules for the identity element to add the empty context ε to the left of
the generalized quantifier type. After that, we can wrap the quantifier to the outside
and apply the combination /i, \h to put the formula np in the place of the quantifier.
Wrapping the np to the subject position, then eliminating the empty context leaves
us with the sequent (np,np \a S)a � S to prove.

···
(np,np \a S)a � S

···
(np,np \a S)a � S

εl
((ε,np)a,np \a S)a � S

wrap
((ε,np \a S)n,np)w � S

/i
(ε,np \a S)n � S /w np

axiom
S � S \h

((ε,np \a S)n,(S /w np)\w S)w � S
wrap

((ε,(S /w np)\w S)a,np \a S)a � S
εl

((S /w np)\w S,np \a S)a � S
/h

(np,((np \a S)/a S)a,((S /w np)\w S,np \a S)a)a)a � S

The reason for disallowing mode w to appear in the end-sequent by declaring it
internal is the following: the end-sequent above is of the right form for the wrap
structural rule, which allows us to continue the above proof to produce the sequent.

(np,((np \a S)/a S)a,((S /w np)\w S,np \a S)a)a)a � S
wrap

(np,((S /w np)\w S,np \a S)a)n(np \a S)/a S)w � S

156 5 The Multimodal Lambek Calculus

However, this sequent would correspond to the ungrammatical sentence “∗Bond
someone left believes”. Disallowing mode w in the end-sequent prevents this gram-
mar from generating this (and many other) ungrammatical sentences.

Mixed associativity and mixed commutativity

Figures 5.5 and 5.6 shows the structural rules from Moortgat and Oehrle (1993,
1994). In the rule descriptions below, we will interpret mode 0 as the basic, contin-
uous composition and modes 1 to 4 as different types of discontinuous composition
modes. These modes are organized along two parameters:

1. whether the moving constituent is on the left branch (modes 2 and 4) or on the
right branch (modes 1 and 3) of the discontinuous mode,

2. whether the moving constituent moves up towards the root of the tree (modes 1
and 2) or down towards its leaves (modes 3 and 4).

Figure 5.5 shows the structural rules for when the moving element is on the right
branch and Figure 5.6 shows the structural rules for the left branch. Each set of
structural rules consists of a pair of rules (this pair of rules is in the same row in
both figures) which sees modes i and j interacting.

The left branch rules in Figure 5.6 show — in the top row and reading the rules
from top to bottom — that Δ1 is on the left branch of mode 2. If this context of mode
2 is dominated by a context of mode 0, there are two cases to consider: one where
mode 2 occurs as the left daughter of mode 0 (rule MA, for mixed associativity) and
one where mode 2 occurs as its right daughter (rule MC, for mixed commutativity).
In both cases, Δ1 can move one step up towards to root, while staying on the left
branch of mode 2. For the mixed associativity rule, Δ2 and Δ3 form a new constituent
after application of the rule; for the mixed commutativity rule, this means that Δ2

now occurs to the left of Δ1, changing the order of the constituents.
The names used for the rules are somewhat complex, but this is just done to al-

low us to distinguish between the different possibilities by means of the notation:
MXY Zi j signifies whether the rule is a mixed associativity X = A or mixed commu-
tativity rule X = C, whether the moving element is on the left branch Y = l or on
the right branch Y = r and whether the rule is one of extraction Z = e or infixation
Z = i. Finally i and j denote the two modes for which the structural rule is defined,
with the continuous mode mentioned first and the discontinuous mode second. This
naming convention allows us to refer to the different instantiations of the mixed
associativity and mixed commutativity rule scheme in a compact way.

The reader is advised to keep in mind that though the different versions of these
rules are often simply called MA and MC, the names used for these rules can vary
between different authors. The same is true for the different modes: the use of one
continuous mode 0 and four discontinuous modes 1 to 4 is just a matter of listing the
possibilities; in practice, authors use just one or two of these available possibilities
and choose an index for the mode which does not necessarily correspond to those
used here.

5.1 Combining Different Calculi 157

Γ [(Δ1,(Δ2,Δ3)
1)0] � C

MAre0,1
Γ [((Δ1,Δ2)

0,Δ3)
1] � C

Γ [((Δ1,Δ3)
1,Δ2)

0] � C
MCre0,1

Γ [((Δ1,Δ2)
0,Δ3)

1] � C

Γ [((Δ1,Δ2)
0,Δ3)

3] � C
MAri0,3

Γ [(Δ1,(Δ2,Δ3)
3)0] � C

Γ [((Δ1,Δ2)
0,Δ3)

3] � C
MCri0,3

Γ [((Δ1,Δ3)
3,Δ2)

0] � C

Fig. 5.5. The structural rules for mixed associativity and mixed commutativity (right branch)

Γ [((Δ1,Δ2)
2,Δ3)

0] � C
MAle0,2

Γ [(Δ1,(Δ2,Δ3)
0)2] � C

Γ [(Δ2,(Δ1,Δ3)
2)0] � C

MCle0,2
Γ [(Δ1,(Δ2,Δ3)

0)2] � C

Γ [(Δ1,(Δ2,Δ3)
0)4] � C

MAli0,4
Γ [((Δ1,Δ2)

4,Δ3)
0] � C

Γ [(Δ1,(Δ2,Δ3)
0)4] � C

MCli0,4
Γ [(Δ2,(Δ1,Δ3)

4)0] � C

Fig. 5.6. The structural rules for mixed associativity and mixed commutativity (left branch)

Figure 5.8 shows the rules in a more easily readable tree format. In the context of
the figure, the two rules of mixed associativity and mixed commutativity for mode
0 and mode 2 correspond to setting j = 2 in the figure and looking at the MCle0,2

and MAle0,2 arrows: the arrows moving from the leftmost tree to the center tree and
from the rightmost tree to the center tree respectively.

Another way of looking at the left branch extraction pattern is that they allow the
following inference pattern (under the condition that there is a path in Γ to (B,Δ)2

that passes only through binary mode 0).

Γ [(B,Δ)2] � A··· δ
(B,Γ [Δ])2 � A \i
Γ [Δ] � B\2 A

We can move the B formula up through the context Γ — using the MCle0,2 and
MAle0,2 structural rules — until it is on the left branch of the antecedent term and
has Γ [Δ] as its sister. As noted by Vermaat (2004, 2005), the derivation pattern
above corresponds rather naturally to the move operation which has been proposed
for minimalist grammars (Chomsky, 1995).

The left branch infixation rules, shown in the bottom row of Figure 5.6 and the
arrows MCli0,4 and MAli0,4 of Figure 5.8 (when setting j = 4; these are the arrows
moving from the tree in the center outwards to the left and right), allow us to move
an antecedent term Δ1 down when it is on the left of mode 4 and when there is a
mode 0 to the right of it. This structural rule is non-deterministic: the structural rules
allow us to choose whether to move Δ1 to the left, where it becomes the left sister
of Δ2 or to the right, where it becomes the left sister of Δ3.

158 5 The Multimodal Lambek Calculus

0

j Δ2

Δ1 Δ3

←MCr i0, j

→MCre0, j

j

0 Δ3

Δ1 Δ2

←MAre0, j

→MAr i0, j

0

Δ1 j

Δ2 Δ3

Fig. 5.7. Trees corresponding to the structural rules for right branch extraction/infixation

0

Δ2 j

Δ1 Δ3

←MCl i0, j

→MCl e0, j

j

Δ1 0

Δ2 Δ3

←MAl e0, j

→MAl i0, j

0

j Δ3

Δ1 Δ2

Fig. 5.8. Trees corresponding to the structural rules for left branch extraction/infixation

A deterministic version of these infixation rules exists: if we replace mode 0 by
two different modes l (left) and r (right) then the mode information will decide if Δ1

moves to the left with Δ2 (MA, the arrow pointing to the right) or to the right with Δ3

(MC, the arrow pointing to the left). We can see the modes l and r as coding a path
to a node in the tree. In (Moortgat and Morrill, 1991), these “paths” represent the
heads of phrases and are not linked to any infixation rules. A set of structural rules
using extraction and infixation using modes to specify paths has been proposed by
Moortgat (1996a) to give an account of quantifier scope. The deterministic infixation
rules will feature in Exercise 5.8 at the end of this chapter.

The right branch extraction and infixation rules Figure 5.5 (Figure 5.7 shows
them in tree form) are left-to-right symmetric to the left branch rules: they allow us
to move an antecedent term Δ3 which is on the right branch of a discontinuous mode
either up towards the root of the tree (the extraction rules, which correspond to the
arrows pointing towards the center in Figure 5.7) or down towards the leaves (the
infixation rules, which correspond to the arrows pointing from the center outwards
in the same figure).

We will see a variation of these rules in Section 5.2.3, where instead of two binary
modes interacting, we will have a unary mode interacting with a binary mode. The
general form of the structural rules we will consider is presented in Section 5.2.4.

5.1 Combining Different Calculi 159

Example 5.3 (Dutch verb clusters I)
Using these new structural rules, we will make a first step towards giving a
treatment of verb clusters in Dutch subordinate clauses, following the analysis of
Moortgat and Oehrle (1994).

The following examples illustrate a very simply case of this phenomenon (more
complex cases can be found in Exercise 5.9).

(5.2) (dat)
(that)

Marie
Mary

Jan
John

plaagt.
teases.

‘(that) Mary teases John.’
(5.3) (dat)

(that)
Marie
Mary

Jan
John

wil
wants

plagen.
to tease.

‘(that) Mary wants to tease John.’

As shown in Sentence 5.2, the verb “plaagt” — when it occurs in a subordinate
clause — selects its object “Jan” to its left. What is interesting is that in Sentence 5.3,
the infinitive “plagen” selects its object to the left, but now the auxiliary verb “wil”
is placed between the infinitive and its object.

Moortgat and Oehrle use two modes of composition, in our notation these are: 0
which corresponds to regular phrasal adjunction and 4 which corresponds to what
they call head adjunction: it is the mode which allows a constituent on its left branch
to descend downwards to the leaves of the antecedent term. According to the termi-
nology we have used in this section, these are the left branch infixation rules MCli0,4
and MAli0,4 of Figure 5.8 (for j = 4). Look at the following lexicon.

Word Type(s) Translation
Marie np Mary

Jan np John
wil (np \0 S)/4 inf wants

plagen np \0 inf to tease

The type assignment to the auxiliary verb “wil” selects in infinitival phrase to its
right, but does so using the head adjunction mode 4. This means that if we derive
“wil Jan plagen”, where “plagen” selects its object to the left and “wil” selects the
resulting infinitive to its right to form an S, we are in the situation shown in the
middle of Figure 5.8 with Δ1 = (np \0 S) /4 inf “wil”, Δ2 = np “Jan” and Δ3 =
np \0 inf “plagen”. The mixed commutativity rule MCli0,4 allows us to reconfigure
this tree into “Jan wil plagen” as shown in the following proof.

axiom
np � np

axiom
S � S \h

(np,np \0 S)0 � S
axiom

inf � inf
/h

(np,((np \0 S)/4 in f , in f)4)0 � S
axiom

np � np \h
(np,((np \0 S)/4 in f ,(np,np \0 in f)0)4)0 � S

MC0,4
(np,(np,((np \0 S)/4 in f ,np \0 in f)4)0)0 � S

160 5 The Multimodal Lambek Calculus

Observe, however, that we can now also derive ‘(dat) Marie wil Jan plagen’ by
simply omitting the last rule of the proof. In the next section, we will see how
additional tools allow us to require that the verbs in the verb cluster are adjacent.

5.2 Unary Connectives

In this section we will look at two different ways of adding unary connectives to
L and NL. We will start by looking at unary connectives which are inspired by
those of linear logic, but where in linear logic they are used to add the structural
rules of weakening and contraction in a controlled way, here they are used to add
commutativity in a controlled way. After that, we will introduce a second way of
looking at the unary connectives which are based on unary residuation. Finally, we
will look at the new possibilities for structural rules these new connectives give us.

5.2.1 The Unary Connectives of Linear Logic

The unary connectives or exponentials were first introduced by Girard (1987) for
linear logic. They allow a controlled use of the structural rules of weakening and
contraction. Inspired by this example, extensions of the Lambek calculus using the
exponentials to control access to the structural rule of commutativity were soon
introduced, for example in (Morrill et al, 1990; Barry et al, 1991).

The logical rules for introducing a unary connective ! permitting permutation in
L are shown in Figure 5.9.

The notation !Γ in the rule !i means: every formula in the antecedent Γ has !
as its principal connective. The intuition behind this rule is that if we can derive C
using only assumptions which have a special property (in this case, being able to
move around) then we can also derive !C. The rule !h simply states that if we can
derive something using a formula A as a hypothesis, then we can derive it using a
formula !A as a hypothesis as well.

We have two rules for permutation, one for movement to the left, the other
for movement to the right, though we could consider these separately, as done in
(Morrill et al, 1990). The other rules are unchanged from those of the Lambek
calculus.

Example 5.4 (Medial extraction). The permute modality allows us to treat some
phenomena which are difficult to handle in the Lambek calculus. An example is
medial extraction. By assigning the word ‘which’ the types (n \ n) / (np \ S) and
(n\n)/ (S /np) we can derive examples 5.4, where the extracted np is the leftmost
constituent of the subordinate clause, and 5.5, where it is the rightmost constituent.
However, adding a sentential modifier to 5.5 as in sentence 5.6 will make the result-
ing sentence underivable unless we add another type for ‘which’ to the lexicon.

(5.4) book which []np fell.
(5.5) book which John read []np.
(5.6) book which John read []np yesterday.

5.2 Unary Connectives 161

Γ ,B,Γ ′ � C Δ � A
\h

Γ ,Δ ,A\B,Γ ′ � C

A,Γ � C
\i Γ �= ε

Γ � A\C

Γ ,B,Γ ′ � C Δ � A
/h

Γ ,B/A,Δ ,Γ ′ � C

Γ ,A � C
/i Γ �= ε

Γ � C /A

Γ ,A,B,Γ ′ � C
•h

Γ ,A •B,Γ ′ � C

Δ � A Γ � B
•i

Δ ,Γ � A •B

Γ ,A,Γ ′ � C
!h

Γ , !A,Γ ′ � C

!Γ � C
!i

!Γ �!C

Γ , !A,B,Γ ′ � C
!p

Γ ,B, !A,Γ ′ � C

Γ ,B, !A,Γ ′ � C
!p

Γ , !A,B,Γ ′ � C

Γ � A Δ1,A,Δ2 � B
cut

Δ1,Γ ,Δ2 � B
axiom

A � A

Fig. 5.9. Logical rules for L!, L with the linear logic modality “!”

By refining the type for ‘which’ to (n\n)/(S/!np), as in the lexicon below — where
the S/!np argument intuitively means “a sentence missing a noun phrase anywhere”
— we can derive all of the examples above.

Word Type(s)
book n

which (n \ n)/(S/!np)
John np
Mary np

fell np \ S
read (np \ S)/np
gave ((np \ S)/np)/np

yesterday S \ S

We give only the derivation of sentence 5.6. The other derivations are easy exercises.

162 5 The Multimodal Lambek Calculus

axiom
n � n

axiom
n � n \h

n,n \ n � n

axiom
np � np

axiom
S � S \h

np,np \ S � S
axiom

np � np
/h

np,(np \ S)/np,np � S
axiom

S � S \h
np,(np \ S)/np,np,S \ S � S

!h
np,(np \ S)/np, !np,S \ S � S

!p
np,(np \ S)/np,S \ S, !np � S

/i
np,(np \ S)/np,S \ S � S/!np

/h
n,(n \ n)/(S/!np),np,(np \ S)/np,S \ S � n

5.2.2 Unary Residuation

Moortgat (1995); Kurtonina and Moortgat (1997) propose a different way of intro-
ducing unary operators to the Lambek calculus. Their proposal uses a pair of unary
connectives ‘�’ and ‘�’ which have their own structural punctuation. 1 The logical
rules either remove or introduce this structural punctuation, similar to the logical
rules for the binary connectives.

For all j in the set of unary modes J and all i in the set of binary modes I, the
formulae for NL� are the following.

Lp ::= P | � jLp | � jLp | (Lp\i Lp) | (Lp/i Lp) | (Lp •i Lp)

The definition of antecedent term now has a unary punctuation, written as 〈.〉 j — the
visual similarity with the � should help distinguish them from the round brackets
which correspond to •.

Definition 5.5. The antecedent terms of the multimodal Lambek calculus with unary
residuated connectives are defined as follows. Lp is a formula, i is a binary mode in
I, j is a unary mode in J.

A ::= Lp | 〈A 〉 j | (A ,A)i

With the extensions to the definitions of antecedent terms and formulae in place,
Figure 5.10 presents the sequent calculus for NL�.

As a useful intuition, we can see �A (and the structural punctuation 〈.〉) as an
abbreviation for A •d and �A as an abbreviation for A/d for some atomic formula
d (to simplify notation, we will often drop the indices and write � and � instead
of �i and �i). For readers familiar with (minimal) tense logic (Prior, 1967), we can
also see � as the future possibility operator F (‘it will be the case, at some future
time’) and � as the past necessity operator H (‘it has always been the case’) (this is

1 In the literature, the connective �A is often written as �↓A.

5.2 Unary Connectives 163

Γ [B] � C Δ � A
\h

Γ [(Δ ,A\i B)i] � C

(A,Γ)i � C
\i

Γ � A\i C

Γ [B] � C Δ � A
/h

Γ [(B/i A,Δ)i] � C

(Γ ,A)i � C
/iΓ � C /i A

Γ [(A,B)i] � C
•h

Γ [A •i B] � C

Δ � A Γ � B
•i

(Δ ,Γ)i � A •i B

Γ [A] � C
�h

Γ [〈� jA〉 j] � C

〈Γ 〉 j � C
�i

Γ � � jC

Γ [〈A〉 j] � C
�h

Γ [� jA] � C

Γ � C
�i〈Γ 〉 j � � jC

Γ � A Δ [A] � B
cut

Δ [Γ] � B
axiom

A � A

Fig. 5.10. Sequent calculus for NL�

of course not the intended interpretation, though, as we will see in Section 5.5, the
semantics of the connectives is essentially the same as those of temporal logic; see
Kurtonina (1995, 1998) for more on the relation between categorial grammar and
tense logic).

Looking back at the rules, it is easy to verify that we can still restrict the axiom
rule to the atomic formulas, as indicated by the following proposition.

Proposition 5.6. Every axiom A� A can be derived from axioms p � p, with p being
a primitive type (and the proof does not use the cut rule).

In addition, there are already some interesting derivability patterns available in the
system without structural rules. For example we have

��A � A � ��A

with the derivations shown below.

164 5 The Multimodal Lambek Calculus

axiom
A � A

�h〈�A〉 � A
�h

��A � A

axiom
A � A

�i〈A〉 � �A
�i

A � ��A

Neither of these derivations should be surprising given the two intuitions we have
indicated above: if we see �A as A •d and �A as A / b then ��A corresponds to
(A / d) •d and we have (A /d) •d � A. Similarly, we can see A � ��A as A � (A •
d)/d. On the other hand, the temporal interpretation gives as that ��A corresponds
to FHA, ie. at some point in the future it will be the case that A has always been
true in the past, but if this is true, then A is true now as well. Now suppose A is true
‘now’. Then, at any point in the past, it has been the case that there was a point in the
future — namely ‘now’ — such that A held, or A implies HFA2, which corresponds
to A � ��A. Though they should be used with care, both intuitions can be valuable.

So the unary modes permit some simple derivability patterns, of which we have
seen two so far. However, the relations between different unary prefixes don’t end
there. Figure 5.11 shows the relations between unary prefixes with equal numbers
of diamonds and boxes up to length four (the formulae ����A and ����A are
not shown in the figure; these formulae are the topic of Exercise 5.12). We can in-
crease the complexity of the graph by augmenting the length of the prefix (with each
increase augmenting the number of non-equivalent prefixes), but for most applica-
tions, the graph of Figure 5.11 suffices.

An important linguistic application of the unary modalities is their use as
linguistic features (Heylen, 1999), but they have also been used for negative polar-
ity items (Bernardi, 2002), quantifier scope (Bernardi and Moot, 2003) and clitics
(Moot and Retoré, 2006).

Example 5.7 (English case). In English, the pronouns ‘he’ and ‘she’ can only oc-
cur in subject position, whereas the pronouns ‘him’ and ‘her’ can only occur in
non-subject positions. Proper nouns, like ‘Mary’ can occur in either position. The
examples below illustrate this.

(5.7) he likes Mary.
(5.8) ∗ her likes Mary.
(5.9) ∗Mary likes he.
(5.10) Mary likes her.

The following lexicon distinguishes between English pronouns in nominative (mode
n) and accusative case (mode a).

Word Type(s)
he �n�nnp

her �a�anp
Mary np
likes (�n�nnp \ S)/�a�anp

2 A→ HFA is one of the axioms of minimal tense logic. FHA → A is easily derived from
the minimal tense logic axiom A→ GPA.

5.2 Unary Connectives 165

The verb selects a subject in nominative case and an object in accusative case. Note
how the assignment of � j� jnp to both arguments of the verb permits a proper noun
like ‘Mary’, which retains its simple np type, to play the role of subject as well as
object by means of the derivability relation np � � j� jnp.

�
� ��

� ��
�

����A

��A

����A A ����A

��A

����A

Fig. 5.11. Derivability relations between different formulae using the unary logical rules

5.2.3 Structural Rules

The unary connectives extend the possibilities for the structural rules in several
ways. First of all, we can introduce structural rules which change the properties
of the unary connectives (the names T and 4 for these rules correspond to the ax-
ioms of the same name in modal logic; it is easy to verify that structural rule T for
unary mode j allows us to derive � jA � A and that structural rule 4 allows us to
derive � jA � � j� jA).

Γ [〈Δ〉 j] � C
T

Γ [Δ] � C

Γ [〈Δ〉 j] � C
4

Γ [〈〈Δ〉 j〉 j] � C

Secondly, we can have interaction rules which tell us how the unary structural con-
nectives distribute over the binary ones, either moving to the left, the right or both
branches (the K rule corresponds to the axiom of the same name in modal logic, K1
and K2 modify K by moving the unary structural connective j to only one of the
two daughters of a binary structural connective i).

166 5 The Multimodal Lambek Calculus

Γ [(〈Δ1〉 j,〈Δ2〉 j)i] � C
K

Γ [〈(Δ1,Δ2)
i〉 j] � C

Γ [(〈Δ1〉 j,Δ2)
i] � C

K1
Γ [〈(Δ1,Δ2)

i〉 j] � C

Γ [(Δ1,〈Δ2〉 j)i] � C
K2

Γ [〈(Δ1,Δ2)
i〉 j] � C

Modal logicians may be surprised that K is not a valid principle in the base logic.
The reason is of course that — as we have seen in the previous chapter — the
binary connectives are modal operators themselves. It is easily verified that all proof
attempts of K fail in NL� without structural rules. If we want K to be valid, we need
to add it explicitly in the form of a structural rule.

Note that adding the K, T and 4 structural rules together will give us the logical
rules for the exponentials of linear logic and that they allow us to derive the char-
acteristic axioms of the modal logic S4: that is, for all formulae A we can derive
�A � A, �A � ��A and �(A\B) � �A\�B.

In practice, the T and 4 structural rules are never used in multimodal categorial
grammars. Moortgat (1997, definition 4.13) (Moortgat, 2011, definition 2.4.10) re-
marks that we can simulate �t4A (where t4 is a mode having access to T and 4
but not K) by �0�0A, where 0 is a mode to which neither T nor 4 applies. This
translation makes use of the derivability of �0�0A � A to replace �tuA � A (Ex-
ercise 5.13 at the end of this chapter asks you to demonstrate that this translation
behaves correctly in other respects as well).

To finish the discussion about the T and 4 structural rules, the difference between
external and internal modes should again be emphasized. Remember that when we
want to decide whether or not a list of formulae A1, . . . ,An derives a formula C, the
real question is rather: what antecedent term Γ , which contains a subset E ⊆ I of the
total modes I and which has A1, . . . ,An as its yield, allows us to derive Γ � C. We
need to decide for the unary modes as well if we allow them to appear in Γ , selecting
a subset E1 of J to be external modes. To illustrate why this is important, look at
the following simply example: if we want to decide whether A � �0A is derivable
for �0 without any structural rules, then there exists an antecedent term 〈A〉0, such
that 〈A〉0 � �0A is derivable. Or, in other words, if unary mode 0 is external (that
is, 0 ∈ E1), then — since we allow ourselves to add unary parentheses 0 whenever
needed — T becomes derivable even without any structural rules.

Example 5.8 (Dutch verb clusters II)
The unary modalities give us the tools we need to refine our analysis of Dutch verb
clusters to require that the verbs in the cluster occur adjacently. In addition to the
two binary modes 4 for head adjunction and 0 for phrasal adjunction, we use two
unary modes 0 for phrasal heads and 1 for lexical heads. The revised lexicon is
shown below.

5.2 Unary Connectives 167

Word Type(s) Translation
Marie np Mary

Jan np John
wil �1((np \0 S)/4 in f) wants to

plagen �1(np \0 in f) tease

Note how the only difference between the previous lexicon is that the two verbs now
have �1 as their main connective to indicate they are lexical heads.

The additional structural rules we need are the following.

Γ [(Δ1,〈Δ2〉0)0] � C
K2

Γ [〈(Δ1,Δ2)
0〉0] � C

Γ [(〈Δ1〉1,〈Δ2〉1)4] � C
K

Γ [〈(Δ1,Δ2)
4〉1] � C

Γ [〈Δ〉1] � C
I

Γ [〈Δ〉0] � C

The K2 rule searches the phrasal head. Given that Dutch subordinate clauses are
verb-final, it searches the head on the right branch. The I rule says that every lexical
head is a phrasal head as well. Finally, the K rule states that we can combine two
adjacent lexical heads together into a complex head. The K rule will force the verbs
to appear in a single cluster and the K2 rule will require that it occurs clause-finally.

We can see these structural rules in action in the proof below.

···
(np,(np,((np \0 S)/4 in f ,np \0 inf)4)0)0 � S

�h
(np,(np,((np \0 S)/4 inf,〈�1(np \0 in f))〉1)4)0)0 � S

�h
(np,(np,(〈�1((np \0 S)/4 in f)〉1,〈�1(np \0 inf)〉1)4)0)0 � S

K
(np,(np,〈(�1((np \0 S)/4 inf),�1(np \0 inf))4〉1)0)0 � S

I
(np,(np,〈(�1((np \0 S)/4 inf),�1(np \0 inf))4)〉0)0)0 � S

K2
(np,〈(np,(�1((np \0 S)/4 inf),�1(np \0 inf))4))0〉0)0 � S

K2〈(np,(np,(�1((np \0 S)/4 inf),�1(np \0 inf))4)0)0〉0 � S
�i

(np,(np,(�1((np \0 S)/4 inf),�1(np \0 inf))4)0)0 � �0S

We can continue the proof above as shown in Example 5.3 and derive the correct
word order as before.

Licensing and Restricting Structural Rules with Unary Modes

Another application of the unary modalities is in the form of modally licensed struc-
tural rules. This is the application we have seen for the linear logic unary connectives
and it applies equally well here. Figure 5.12 shows the structural rules for mixed as-
sociativity and mixed commutativity we have seen in Figure 5.5, but this time the

168 5 The Multimodal Lambek Calculus

structural rules are licensed by a unary mode 〈.〉1. Figure 5.13 shows the structural
rules in the form of trees.

If we translate (Γ ,Δ)1 as (Γ ,〈Δ〉1)0, the two packages of structural rules from
Figure 5.5 and Figure 5.12 clearly behave the same. The structural rules which use
the unary mode permit us to model the same “right branch” extraction we have
seen in Section 5.1.1, but it is easy to add an additional structural rule of modally
licensed commutativity (shown at the bottom of Figure 5.12) which moves the
unary mode from a left branch to a right branch and the combination of these three
rules therefore allows extraction from anywhere inside a context of binary modes 0
(what would be the problem of adding a version of Com to the rules of Figures 5.5
and 5.6?).

So the modally licensed structural rules can either implement right branch ex-
traction, using the top row of Figure 5.12 (the structural rules MA�1 and MC�1) or
extraction from anywhere inside an antecedent term built from binary mode 0, using
all three rules of the figure (MA�1, MC�1 and Com�1).

Γ [(Δ1,(Δ2,〈Δ3〉1)0)0] � C
MA�1

Γ [((Δ1,Δ2)
0,〈Δ3〉1)0] � C

Γ [((Δ1,〈Δ3〉1)0,Δ2)
0] � C

MC�1
Γ [((Δ1,Δ2)

0,〈Δ3〉1)0] � C

Γ [(〈Δ2〉1,Δ1)
0] � C

Com�1
Γ [(Δ1,〈Δ2〉1)0] � C

Fig. 5.12. Mixed associativity and mixed commutativity licensed by �1 (top row) and com-
mutativity for �1 (bottom row)

0

0 Δ2

Δ1 j

Δ3

←MC�r i0, j

→MC�re0, j

0

0 j

Δ3Δ1 Δ2

←MA�re0, j

→MA�r i0, j

0

Δ1 0

Δ2 j

Δ3

Fig. 5.13. Trees corresponding to the structural rules for right branch extraction/infixation
licensed by a unary mode

5.2 Unary Connectives 169

The structural rules for left branch extraction and infixation are symmetric; they
correspond to replacing (Γ ,Δ) j by (〈Γ 〉 j ,Δ)0 in Figures 5.6 and 5.8 or to taking the
left-to-right mirror image of the trees in Figure 5.13.

Example 5.9 (Medial extraction II). With all this in place, we can revisit Exam-
ple 5.4, which treated medial extraction in English.

Replacing !np by �1�1np as discussed above gives us the following lexicon.

Word Type(s)
book n

which (n \0 n)/0 (S /0 �1�1np)
John np

fell np \0 S
read (np \0 S)/0 np

yesterday S \0 S

This lexicon, together with the structural rules of Figure 5.12 allows us to derive the
medial extraction cases of Example 5.4. The structural rules allow us to extract from
right branches only and is thus more restricted than full commutativity. However, as
Moortgat (1999) argues, this is actually a point in favor of the current analysis and
the differences between left branch and right branch extraction explain some differ-
ences in extraction between English and Dutch. For example, given that a preposi-
tion is assigned the formula pp /np, right branch extraction (as used in Moortgat’s
analysis of English) allows us to extract noun phrases from prepositional phrases,
whereas left branch extraction (used in Moortgat’s analysis of Dutch) does not.

The derivation below shows how “which John read yesterday” is of type n \0 n.
The derivation starts with the hypothesis rule for /, which requires us to prove that
“John read yesterday” is of type S /0 �1�1np. We introduce �1�1np on the right
branch using the /i rule, then introduce the unary brackets by means of the �h

rule. This produces the correct configuration to apply the structural rules; we move
the np past the adverb and to the object position of the verb using the MC and MA
rules respectively. Finally, we eliminate the structural bracketing and finish the proof
using the \h and /h rules (not displayed in the proof, but an easy exercise).

axiom
n \0 n � n \0 n

···
((np,((np \ S)/np,np)0)0,S \0 S)0 � S � S

�h
((np,((np \0 S)/0 np,〈�1np〉1)0)0,S \0 S)0 � S � S

MA�
(((np,(np \0 S)/0 np)0,〈�1np〉1)0,S \0 S)0 � S

MC�
(((np,(np \0 S)/0 np)0,S \0 S)0,〈�1np〉1)0 � S

�h
(((np,(np \0 S)/0 np)0,S \0 S)0,�1�1np)0 � S

/i
((np,(np \0 S)/0 np)0,S \0 S)0 � S /0 �1�1np

/h
(((n \0 n)/0 (S /0 �1�1np),(np,(np \0 S)/0 np)0)0,S \0 S)0 � n \0 n

170 5 The Multimodal Lambek Calculus

In addition to using the unary modes to license structural rules, we can also use them
to impose constraints on the application of structural rules. So, for example, while
the sequent

(A/a B,B/a C) � A/a C

is derivable assuming associativity for mode a, replacing the succedent formula A/a
C by �0A /a C makes the sequent underivable, as shown by the following partial
proof.

???

(〈(A/a B,B/a C)a〉0,C)a � A
/i〈(A/a B,B/a C)a〉0 � A/a C
�i

(A/a B,B/a C)a � �0(A/a C)

The �i rule puts a pair of unary brackets around the antecedent term. Applying the
/i rule afterwards adds a C formula to the antecedent. Crucially, the unary brack-
ets block the associativity rule (which would be applicable in its absence) thereby
making the sequent underivable.

Kurtonina and Moortgat (1997) show that this type of result can be fully gener-
alized: from any of the base logics (NL, L, NLP and LP) we can:

• recover a weaker logic by using a systematic translation which adds unary modal-
ities to constrain structural rule applications,

• recover a stronger logic by using a systematic translation which adds unary
modalities to license the application of structural rules normally unavailable in
this logic.

Exercise 5.6 gives an example of how this type of result can be used to implement
some well-known constraints from linguistics.

5.2.4 The General Form of Structural Rules

After these examples, it is time to define formally what are the structural rules which
are allowed in the multimodal Lambek calculus.

Before we give the definition, we first present a slight generalization of context.
A context, according to Definition 4.4, is an antecedent term with a single hole.
We generalize this notion of context (as an antecedent term with a single hole) to
a context with n holes with the additional requirement that the only leaves of the
context are holes and that these holes occur in the indicated left-to-right order.

5.2 Unary Connectives 171

Definition 5.10. A generalized context Ξ [] is defined as follows.

C ::= [] | 〈C 〉 j | (C ,C)i

The arity of a generalized context is equal to the number of holes it contains.
For a context Ξ [] of arity n, we denote the simultaneous substitution of n an-

tecedent terms Γ1, . . . ,Γn in left-to-right order by Ξ [Γ1, . . . ,Γn]. Since this fills all
holes of Ξ [] by antecedent terms, the result of this simultaneous substitution is an
antecedent term.

Now, given the definitions above and given two contexts Ξ [] and Ξ ′[], where Ξ [] is
a non-empty context of arity n, Ξ ′[] is a context of the same arity n, and given a
permutation π of n, we define the general structural rule schema as follows.

Γ [Ξ [Δ1, . . . ,Δn]] � C
SR

Γ [Ξ ′[Δπ1 , . . . ,Δπn]] � C

Example 5.11. To illustrate the above definitions, let’s look at an instantiation of this
schema.

Define the two generalized contexts as Ξ [] = ([],([], [])0)4, which has arity 3,
and Ξ ′[] = ([],([], [])4)0 which has the same arity as required and the permutation π
which assigns π1 = 2,π2 = 1,π3 = 3. Performing simultaneous substitution for both
Ξ [Δ1,Δ2,Δ3] and Ξ ′[Δπ1 ,Δπ2 ,Δπ3] =Ξ ′[Δ2,Δ1,Δ3] gives us the following structural
rule.

Γ [(Δ1,(Δ2,Δ3)
0)4] � C

MCr,4
Γ [(Δ2,(Δ1,Δ3)

4)0] � C

It is often convenient to restrict the size of Ξ ′[] to be equal to or strictly less than
the size of Ξ []. We will call a set of structural rules satisfying this condition non-
increasing. Since both contexts have the same number of leaves, both have the same
number of binary brackets by definition. So requiring the size of the contexts to
be non-increasing amounts to saying that the number of unary branches cannot
increase. As shown in (Moot, 2002), this requirement makes the calculus decid-
able: it is PSPACE complete and generates exactly the context-sensitive languages.
Finding interesting classes of structural rules generating more restricted classes of
languages — such as the so-called mildly context-sensitive languages — and with
better computational complexity remains an interesting open question (though see
Moot, 2008a,b, for some partial answers).

172 5 The Multimodal Lambek Calculus

To conclude, the general form of structural rules is defined by replacing a context
with n leaves by another context with a permutation of these leaves. These condi-
tions on the structural rules prohibit the copying or deletion of material. Though
some authors have added rules which do not respect these conditions to the Lambek
calculus (notably Jäger, 2001, 2005, who adds a restricted form of contraction to the
Lambek calculus to treat anaphora) we will consider only the logics without. Do-
ing so has several advantages: first of all, as anyone who has seen a cut elimination
proof of classical or intuitionistic logic knows, it keeps the cut elimination proof
simple, secondly, it allows us to stay within the multiplicative fragment of linear
logic (Danos and Regnier, 1989), a fragment which, as we will see in Chapters 6
and 7, has a particularly elegant proof theory.

5.2.5 Cut Elimination

To show that the new additions to the sequent calculus, the structural rules and the
unary connectives, still give a calculus which satisfies cut elimination, we verify the
new cases, following (Moortgat, 1996b).

The cut elimination theorem should by now be familiar (if not refer to Section 2.7
for L and Section 4.2.3 for NL). We look at proofs where all axioms are atomic and
we look at the cut rule which is of the lowest depth, which will be of the following
schematic form.

··· γ

Ra

Γ � D

··· δ

R f

Δ [D] � C
cut d

Δ [Γ] � C

Remember that the structural rules only reorder the formulae and that for each for-
mula in the conclusion of a structural rule we can find exactly one formula in the
premise of this structural rule which corresponds to it (and vice versa). This means
that the multiset of formulae does not change when we apply a structural rule and
therefore that we do not have to consider the cases where a formula is introduced by
a structural rule (which would correspond to a structural rule which operates like the
structural rule of weakening) or cases where a formula is copied by a structural rule
(which would correspond to a structural rule like contraction). Though it is unprob-
lematic to handle contraction and or weakening for a cut elimination proof, their
absence makes the structural rules easy to handle in the cut elimination proof.

1. If at least one of the rules is an axiom, we can remove the cut as before.

A � A

··· δ
Γ [D] � C

cut
Γ [D] � C

reduces to
··· δ

Γ [D] � C

5.2 Unary Connectives 173

2. If Ra does not produce the cut formula, we proceed by case analysis as before.
In addition to rules \h, /h and •h which we have seen before, rules �h, �h and
one of the structural rules SR can apply.

2 Ra does not create D, the cut formula
Ra Before reduction After reduction

SR

··· δ
Δ � D

SR
Δ ′ � D

··· γ
Γ [D] � C

cutd
Γ [Δ ′] � C

··· δ
Δ � D

··· γ
Γ [D] � C

cutd
Γ [Δ] � C

SR
Γ [Δ ′] � C

�h

··· δ

Δ [〈A〉 j] � D
�h

Δ [� jA] � D

··· γ
Γ [D] � C

cut d
Γ [Δ [� jA]] � C

··· δ

Δ [〈A〉 j] � D

··· γ
Γ [D] � C

cut d
Γ [Δ [〈A〉 j]] � D

�h
Γ [Δ [� jA]] � C

�h

··· δ
Δ [A] � D

�h
Δ [〈� jA〉 j] � D

···
Γ [D] � C]

cutd
Γ [Δ [〈� jA〉 j]] � C

··· δ
Δ [A] � D

···
Γ [D] � C]

cutd
Γ [Δ [A]] � C

�h
Γ [Δ [〈� jA〉 j]] � C

As indicated above, the structural rules keep the formulas in the antecedent
(seen as a multiset) constant and therefore do not require special attention.

Note that if we want to be really precise, we have to verify that the previous
cases are unaffected by the use of modes. However, since all these rules have the
same general form of where Ra, which before reduction is applied in a context
Δ [], is after reduction applied in a larger context Γ [Δ []] this condition is trivially
satisfied.

3. If R f does not product the cut formula, we check all new rules.
For the structural rule, we know that if Γ contains a distinguished subfor-

mula D before application of the structural rule, then we can find its image D
after application of the structural rule by the conditions on the structural rules.

For the �h and the �h rule we will again denote by Γ {D:=Δ}[] the context
Γ [] with the cut formula D replaced by Δ .

174 5 The Multimodal Lambek Calculus

3 R f does not create D, the cut formula
R f Before reduction After reduction

SR
··· δ

Δ � D

··· γ
Γ [D] � C

SR
Γ ′[D] � C

cutd
Γ ′[Δ]

··· δ
Δ � D

··· γ
Γ [D] � C

cutd
Γ [Δ] � C

SR
Γ ′[Δ]

�h

··· δ
Δ � D

··· γ
Γ [〈A〉 j] � C

�h
Γ [� jA] � C

cut d
Γ {D:=Δ}[Δ [� jA]] � C

··· δ
Δ � D

··· γ
Γ [〈A〉 j] � C

cut d
Γ {D:=Δ}[〈A〉 j] � C

�h
Γ {D:=Δ}[� jA] � C

�h

··· δ
Δ � D

··· γ
Γ [A] � C

�h
Γ [〈� jA〉 j] � C

cut d
Γ {D:=Δ}[Δ [〈� jA〉 j]] � C

··· δ
Δ � D

··· γ
Γ [A] � C

cut d
Γ {D:=Δ}[A] � C

�h
Γ {D:=Δ}[〈� jA〉 j] � C

�i

··· δ
Δ � D

··· γ
Γ � C

�i〈Γ [D]〉 j � � jC
cutd

〈Γ [Δ]〉 j � � jC

··· δ
Δ � D

··· γ
Γ [D] � C

cutd
Γ [Δ] � C

�i〈Γ [Δ]〉 j � � jC

�i

··· δ
Δ � D

··· γ

〈Γ [D]〉 j � C
�i

Γ [D] � � jC
cutd

Γ [Δ] � � jC

··· δ
Δ � D

··· γ

〈Γ [D]〉 j � C
cutd

〈Γ [Δ]〉 j � C
�i

Γ [Δ] � � jC

Again we should verify that the binary connectives can still be converted as
before with the addition of the mode information, but this is easily done.

4. Finally, we verify that when both Ra and R f create the cut formula we can
replace the cut by one or two cuts of lesser degree. We verify all cases except /,
which is symmetric to \.

5.3 Natural Deduction 175

4 Both Ra and R f create the cut-formula
Before reduction After reduction

•

··· δ
Δ � A

··· θ
Θ � B

•i
(Δ ,Θ)i � A •i B

··· γ

Γ [(A,B)i] � C
•h

Γ [(A •i B)] � C
cut d

Γ [(Δ ,Θ)i] � C

··· δ
Δ � A

··· θ
Θ � B

··· γ

Γ [(A,B)i] � C
cut < d

Γ [(A,Θ)i] � C
cut < d

Γ [(Δ ,Θ)i] � C

\

··· δ

(A,Δ)i � B
\i

Δ � A\B

··· γ
Γ [B] � C

··· θ
Θ � A

\h
Γ [(Θ ,A\i B)i] � C

cut d
Γ [(Θ ,Δ)i] � C

··· θ
Θ � A

··· δ

(A,Δ)i � B
cut < d

(Θ ,Δ) � B

··· γ
Γ [B] � C

cut < d
Γ [(Θ ,Δ)i] � C

�

··· δ
Δ � A

�i〈Δ 〉 j � � jA

··· γ

Γ [〈A〉 j] � C
�h

Γ [� jA] � C
cut d

Γ [〈Δ 〉 j] � C

··· δ
Δ � A

··· γ

Γ [〈A〉 j] � C
cut < d

Γ [〈Δ 〉 j] � C

�

··· δ

〈Δ 〉i � B
�i

Δ � �B

··· γ
Γ [B] � C

�h
Γ [(〈�B〉 j] � C

cut d
Γ [(〈Δ 〉 j] � C

··· δ
〈Δ 〉 j � B

··· γ
Γ [B] � C

cut < d
Γ [(〈Δ 〉 j] � C

This completes our case analysis.

5.3 Natural Deduction

The multimodal Lambek calculus has a natural deduction calculus as well. Fig-
ure 5.14 shows the rules. The structural rules for natural deduction are the same as
those of the sequent calculus.

Because of the similarity between the •e rule and the �e rule, it is slightly less
natural for the unary connectives. For example, normalization requires commuta-
tive conversions like we need for the Lambek calculus with product (Section 2.6.3).

176 5 The Multimodal Lambek Calculus

Though it might be argued that linguistic applications of • in the Lambek calculus
are rather limited, the � connective plays a vital role in the applications we have
seen, which makes the inconvenience of its natural deduction rules a more serious
problem. We will see a solution which combines the good properties of natural
deduction and sequent calculus in Chapter 7.

Γ � A Δ � A\i B
\e

(Γ ,Δ)i � B

(A,Γ)i � C
\i

Γ � A\i C

Δ � B/i A Γ � A
/e

(Δ ,Γ)i � B

(Γ ,A)i � C
/i

Γ � C /i A

Δ � A •i B Γ [(A,B)i] � C
•e

Γ [Δ] � C

Δ � A Γ � B
•i

(Δ ,Γ)i � A •i B

Γ � � jB
�e〈Γ 〉 j � B

〈Γ 〉 j � C
�i

Γ � � jC

Δ � � jA Γ [〈A〉 j] � C
�e

Γ [Δ] � C

Γ � A
�i〈Γ 〉 j � � jA

axiom
A � A

Fig. 5.14. Natural deduction rules for the multimodal Lambek calculus

Example 5.12. The sequent proof shown in Example 5.9 (on page 169) corresponds
to the natural deduction proof shown below. Note that in order to save some space,
we have replaced the formulas in the antecedent by the first letter of the correspond-
ing word, as indicated by the table below

Lex(which) = w = (n \ n)/(S /�1�1np)
Lex(John) = j = np
Lex(read) = r = (np \0 S)/0 np
Lex(yesterday) = y = S /0 S

These are of course the same lexical entries as those in Example 5.9.

5.3 Natural Deduction 177

w � (n \0 n)/0 (S /0 �1�1np)

�1�1np � �1�1np

j � np

r � (np \0 S)/0 np

�1np � �1np
�e〈�1np〉1 � np
/e

(r,〈�1np〉1)0 � np \0 S \e
(j,(r,〈�1np〉1)0)0 � S y � S \0 S \e

((j,(r,〈�1np〉1)0)0,y)0 � S
MA�

(((j,r)0,〈�1np〉1)0,y)0 � S
MC�

(((j,r)0,y)0,〈�1np〉1)0 � S
�e

(((j,r)0,y)0,�1�1np)0 � S
/i

((j,r)0,y)0 � S /0 �1�1np

(w,((j,r)0,y)0)0 � n \ n

To start the proof, we use the �1np � �1np axiom followed by the �e rule, which
gives us the sequent 〈�1np〉1 � np, which we can use as a normal np to derive “John
read 〈�1np〉1 yesterday” as being of type S, after which we can apply the structural
rules like we did in the sequent calculus derivation to derive “John read yesterday”
of type S /0 �1�1np. The only slight complication is the �e rule.

Equivalence between the natural deduction calculus and the sequent calculus is
again easily established. We only show the unary cases. As for the binary rules,
both calculi share the introduction rules, so we only need to show that the elimina-
tion rules are equivalent to the hypothesis rules.

Natural Deduction to Sequent Calculus

Replace: with:

Γ � �C
�e〈Γ 〉 j � C Γ � �C

ax
C � C

�h〈� jC〉 j � C
cut〈Γ 〉 j � C

Δ � � jA Γ [〈A〉 j] � C
�e

Γ [Δ] � C
Δ � � jA

Γ [〈A〉 j] � C
�h

Γ [� jA] � C
cut

Γ [Δ] � C

Sequent Calculus to Natural Deduction

If the proof ends with a �h rule:

··· γ
Γ [A] � C

�h
Γ [〈� jA〉 j] � C

178 5 The Multimodal Lambek Calculus

then by induction hypothesis we have a natural deduction proof, γ∗ of Γ [A] � C
which we extend as follows.

Replace: with:

axiom
A � A··· γ∗

Γ [A] � C

axiom
� jA � � jA

�e〈� jA〉 � A
··· γ∗

Γ [〈� jA〉 j] � C

If the proof ends with a �h rule:

··· γ
Γ [〈A〉 j] � C

�h
Γ [� jA] � C

then by induction hypothesis we have a natural deduction proof, γ∗ of Γ [〈A〉 j] � C
which we extend as follows.

axiom
� jA � � jA

··· γ∗

Γ [〈A〉 j] � C
�e

Γ [� jA] � C

5.4 Axiomatic Presentation

As a prelude to our section on model theory we will present an axiomatic presenta-
tion for the unary connectives in the style of the axiomatic presentation of NL which
we saw in Section 4.4.

The axiomatic presentation is a simple extension of the axiomatic presentation of
NL.

We add two new axioms and two new rules. The new calculus is displayed in
Figure 5.15. There are two new axioms, (Unit) and (Co-unit), which are the unary
equivalents of application and co-applications and two new monotonicity rules (one
for each of the new connectives).

We need to add a new case to the translation from antecedent terms to formulae
and verify this does not affect the proof of the Substitution Lemma, Lemma 4.12.
Both are trivial.

Definition 5.13. We define the function ‖.‖• from NL� antecedent terms to NL�
formulae as follows.

‖Lp‖• = Lp
‖〈A 〉‖• =�‖A ‖•
‖(A ,A)‖• = ‖A ‖• • ‖A ‖•

5.4 Axiomatic Presentation 179

Axioms

(Id)
A � A

(Unit)
��A � A

(Co-unit)
A � ��A

(Appl\)
A • (A\B) � B

(Appl/)
(B/A) •A � B

(Co-appl\)
A � B\ (B •A)

(Co-appl/)
A � (A •B)/B

Rules

A � B
(Mon�)

�A � �B

A � B
(Mon�)

�A � �B

A � B C � D
(Mon•)

A •C � B •D

A � B C � D
(Mon\)

B\C � A\D

A � B C � D
(Mon/)

C /B � D/A

A � B B � C
(Trans)

A � C

Fig. 5.15. Axiomatic or combinator presentation of NL�

Lemma 5.14. If ‖Γ [B]‖• � C and A � B then ‖Γ [A]‖• � C

Proof. The inductive case for � is a direct consequence of rule (Mon�). ��
Lemma 5.15. The axiomatic presentation of NL� is equivalent to the sequent cal-
culus presentation of NL�.

Proof. The proof for the binary connectives is unchanged from the proof of
Lemma 4.13. We verify only the new cases.

The translation from axiomatic proofs to sequent proofs is trivial. The two new
axioms are derived as follows

axiom
A � A

�h〈�A〉 � A
�h

��A � A

axiom
A � A

�i〈A〉 � �A
�i

A � ��A

and the two new rules

···
A � A

�i〈A〉 � �A
�h

�A � �A

···
A � A

�h〈�A〉 � A
�i

�A � �A

180 5 The Multimodal Lambek Calculus

For the translation from sequent proofs to axiomatic proofs, the rule �h is the
identity function and the rule for �i corresponds directly to monotonicity rule
(Mon�) in the axiomatic calculus.

The rule �h is an application of the Substitution Lemma with the axiom ��A �
A (Unit). This leaves only the rule �i, for which we have to prove that given an
axiomatic proof of �A �C we can produce an axiomatic proof of A � �C.

The following proof does exactly that.

(Co-unit)
A � ��A

···
�A � C

(Mon�)
��A � �C

(Trans)
A � �C

This completes our analysis of the new cases. ��

5.5 Model Theory

As we have seen in Section 4.5, NL has Kripke models which use a ternary
accessibility relation R3 (which models the relation of two resources with their
composition) for which we can establish soundness and completeness by means
of a canonical model construction. As was first shown in Kurtonina and Moortgat
(1997), this construction extends quite naturally to the unary connectives � and � ,
which are interpreted by means of a binary accessibility relation R2.

The interpretation of the complex formulae is given below.

M ,a |= A •B ⇐⇒ ∃b∃c(R3abc & M ,b |= A & M ,c |= B)
M ,a |= A\B ⇐⇒ ∀b∀c(R3cba & M ,b |= A ⇒ M ,c |= B)
M ,a |= A/B ⇐⇒ ∀b∀c(R3cab & M ,b |= A ⇒ M ,c |= B)
M ,a |=�A ⇐⇒ ∃b(R2ab & M ,b |= A)
M ,a |=�A ⇐⇒ ∀b(R2ba ⇒ M ,b |= A)

Only the cases for � and � are new. Note that the interpretation of the unary con-
nectives corresponds to the future possibility and past necessity operations if we
interpret R2ab as a occurs before b (even though this is not the intended interpreta-
tion in the current context).

Lemma 5.16 (Soundness). If A � B is derivable then for all models M and worlds
a, M,a |= (A � B)

Proof. We show that whenever there is an axiomatic proof p of A � B, then M,a |=A
implies M,a |= B. This is again a trivial verification, which we prove by induction
on the depth d of p.

If d = 0 then the proof consists of just an axiom. We verify only the new cases
(Unit) and (Co-unit).

5.5 Model Theory 181

(Unit) Suppose M,b |= ��A. We need to show that M,b |= A. Spelling out the
definition of M,b |=��A gives us ∃c(R2bc & M,c |=�A), which according to
the interpretation of �A gives ∃c(R2bc & ∀d(R2dc ⇒ M,d |= A)). Let c be an
arbitrary word and choose world b for d. This means that R2bc and (R2bc ⇒
M,b |= A). Combining these two gives us M,b |= A.

(Co-unit) Suppose M,b |= A. We need to show that M,b |= ��A. Writing out
the evaluation of M,b |= ��A gives us ∀c(R2cb ⇒ M,c |= �A), which
we can spell out further by evaluating �A, which produces ∀c(R2cb ⇒
∃d(R2cd & M,d |= A)). In other words, we have to show that in any world c
such that R2cb there exists a world d such that R2cd and A is true at world d.
Now take an arbitrary world c such that R2cb and take b as value for d. World
b satisfies R2cb and satisfies M,b |= A by our initial hypothesis. Therefore, any
world such that M,b |= A also satisfies M,b |=��A.

If d > 0 we verify the new rules (Mon�) and (Mon�). We know by induction hy-
pothesis that for all M and all c, if M,c |= A then M,c |= B.

(Mon�) We need to show that for all M and d, if M,d |=�A then M,d |=�B. Sup-
pose M,d |=�A. This means that there exists an e such that R2de and M,e |= A.
By induction hypothesis M,e |= A implies M,e |= B, and given that there exists
an e such that R2de and M,e |= B, we can conclude M,d |=�B.

(Mon�) We need to show that for all M and d, if M,d |= �A then M,d |= �B.
Suppose M,d |=�A. This means that for all e such that R2ed we have M,e |= A.
By applying the induction hypothesis, we can conclude that for all e such that
R2ed, M,e |= B, which means that M,d |=�B as required. ��

For the completeness proof, we extend the canonical model construction for NL to
NL�. A canonical model for NL� is a canonical model for NL with the addition
of a binary accessibility relation R2. The interpretation clause for R2 links R2 to �,
just as the clause for R3 links it to •.

Definition 5.17. A canonical model M = 〈W,R2,R3V 〉 for NL� is defined as fol-
lows:

• W is the set of all formulae,
• R3abc iff a � b •c, and
• R2ab iff a � �b, and
• a |= p iff a ∈V (p).

Lemma 5.18. The Truth Lemma, M ,a |= A iff a � A

The proof of the Truth Lemma is a simple extension of the Truth Lemma for NL
which we proved as Lemma 4.20. We treat only the new cases.

182 5 The Multimodal Lambek Calculus

Proof

⇐=

Given that the canonical model is a model, soundness is a direct consequence of
Lemma 5.16.

=⇒

For the completeness part we show that if M ,a |= A then a � A, which we prove by
induction on A.

�A Suppose M ,b |=�A. We need to show that b � �A. Given that M ,b |= �A,
the definition of M ,b |= �A gives us that there exists a c such that R2bc and
M ,c |= A. We can apply the induction hypothesis to M ,c |= A to obtain an
axiomatic proof c � A, which we can extend by rule (Mon�) to a proof of
�c � �A. The definition of R2bc in the canonical model gives us b � �c, which
we can combine with the proof of �c � �A using the transitivity rule (Trans)
to obtain a proof of b � �A as required.

�A Suppose M ,b |=�A. This means that for all c such that R2cb we have M ,c |=
A. Now, take c =�b. Given that c ��b we know by the definition of R2 in the
canonical model that R2cb and therefore M ,c |= A or, equivalently, M ,�b |=
A. Given that A is a subformula of �A we can apply the induction hypothesis to
obtain an axiomatic proof of �b � A. We can transform this proof into a proof
of b � �A as follows.

(Co-unit)
b � ��b

···
�b � A

(Mon�)
��b � �A

(Trans)
b � �A

This completes our analysis of the new cases and our soundness proof. ��
Theorem 5.19. NL� is sound and complete with respect to all models.

Proof. We proved soundness in Lemma 5.16. As before, completeness is a simple
consequence of the Truth Lemma and is proved in exactly the same way. We need to
show that if a for every model M, M |= (A � B) then A � B is derivable. If this holds
for every model, then it holds in particular for the canonical model M , which by the
definition of M |= (A � B) means that for all worlds a, if M ,a |= A then M ,a |= B.
If this is true for all a, the it is true for A as well. Since by the Truth Lemma we have
that M ,A |= A (since A � A is derivable), we can therefore conclude M ,A |= B
which by application of the Truth Lemma means that A � B is derivable. ��

5.5 Model Theory 183

5.5.1 Completeness for Weak Sahlqvist Postulates

We have given a soundness and completeness result for NL� and general Kripke
frames. In Section 4.5, we have seen that it is possible to add frame constraints
corresponding to associativity and to commutativity. In this chapter, we will dis-
cuss the results of Kurtonina (1995, 1998) who extends modal logic’s Sahlqvist-van
Benthem strategy to give a general translation of a class of postulates into frame con-
straints in such a way that NL with the addition of one of these postulates is sound
and complete with respect to a canonical model which satisfies the corresponding
frame constraint.

Definition 5.20. A canonical model

M = 〈W,
⋃
j∈J

R2
i ,
⋃
i∈I

R3
i ,V 〉

for the multimodal version of NL� is defined as follows:

• W is the set of all formulae,
• For each i ∈ I, R3

i abc iff a � b •i c, and
• For each j ∈ J, R2

j ab iff a � � jb, and
• a |= p iff a ∈V (p).

M ,a |= A •i B ⇐⇒ ∃b∃c(R3
i abc & M ,b |= A & M ,c |= B)

M ,a |= A\i B ⇐⇒ ∀b∀c(R3
i cba & M ,b |= A ⇒ M ,c |= B)

M ,a |= A/i B ⇐⇒ ∀b∀c(R3
i cab & M ,b |= A ⇒ M ,c |= B)

M ,a |=� jA ⇐⇒ ∃b(R2
j ab & M ,b |= A)

M ,a |=� jA ⇐⇒ ∀b(R2
j ba ⇒ M ,b |= A)

Definition 5.21. A weak Sahlqvist axiom is a statement of the form A � B such that

• A is a formula using only the connectives • and �,
• none of the atomic subformulae of A occurs more than once,
• B is a formula using only the connectives • and � and which contains at least

one occurrence of either • or �.
• all atomic subformulae of B are atomic subformulae of A.

The definition of weak Sahlqvist axiom allows more structural rules than the class
of structural rules we defined in Section 5.2.4. Since we required the context Ξ []
to be non-empty, they are a proper subset of the weak Sahlqvist rules (and there-
fore benefit from the soundness and completeness result below). In particular, the
definition above allows,

• multiple occurrences of atomic subformulae in B,
• atomic subformulae of A which are not atomic subformulae of B,

184 5 The Multimodal Lambek Calculus

thereby permitting axioms like the following

p � p •co p
p •wk q � p

which would correspond to the following structural rules.

Γ [(Δ ,Δ)co] � C
Co

Γ [Δ] � C

Γ [Δ1] � C
Wk

Γ [(Δ1,Δ2)
wk] � C

Readers familiar with sequent calculus for classical or intuitionistic logic will im-
mediately recognize these structural rules as versions of contraction and weakening.

Kurtonina’s result is therefore stronger than we need in the current context. The
main theorem, which we only state without proof (detailed proofs can be found in
Kurtonina, 1995, 1998) is the following.

Theorem 5.22. If A � B is a weak Sahlqvist axiom then:

• there is a first-order frame constraint FO which corresponds to A � B, such that
for any frame F, F satisfies FO if and only if F |= (A � B)

• MFO is a canonical model over frames satisfying FO.
• NL�+A � B is sound and complete with respect to this canonical model MFO

5.6 Concluding Remarks

We have seen the multimodal Lambek calculus and shown how it provides us with
a flexible logic which is able to treat a wide range of linguistic phenomena. The
class of structural rules allowed is rather large, which is both an advantage and a
drawback: it is an advantage, since it gives us a lot of expressive power and gives us
several options for giving an analysis of linguistic facts. It is a drawback since this
makes it hard to choose how to model certain facts and since it gives us a rather high
computational complexity — though it could be argued that PSPACE complete for
non-increasing structural rules is not a lot worse than NP complete for the structural
rules of associativity only.

So the big open question for multimodal categorial grammars is to find the “right”
combination of structural rules both from the point of view of being able to make
the relevant linguistic generalizations and from the point of view of computational
complexity.

Vermaat (2005) makes a good case for using the mixed associativity and mixed
commutativity structural rules of Figure 5.12 as the universal set of structural rules
and gives a cross-linguistic account of wh extraction using this package of structural
rules (Example 5.9 gives a very simple example of wh extraction). For the moment,
we leave it as an important open question whether or not other structural rules are
needed in our universal grammar.

Exercises for Chapter 5 185

Exercises for Chapter 5

Exercise 5.1. Use the multimodal calculus with modes n, a, nc and c and the struc-
tural rules shown in Figure 5.2 on page 152 to verify that (A/a B,B/a C)a � A/a C
is derivable but (A/n B,B/n C)n � A/n C is not.

Similarly, verify that A/c B � B\c A is derivable, but A/a B � B\a A is not.

Exercise 5.2. Return to Exercise 4.8 on page 145 and give a multimodal lexicon
(using the structural rules of Figure 5.2 on page 152) which handles all and only the
correct sentences, using only one formula assignment per word.

Motivate your choice of modes for each lexical entry.

Exercise 5.3. The placement of adverbs is often rather free. Look at the following
sequence of sentences (take from Dowty, 1997).

(5.11) Supposedly someone has been eating the cake.
(5.12) Someone supposedly has been eating the cake.
(5.13) Someone has supposedly been eating the cake.
(5.14) Someone has been supposedly eating the cake.
(5.15) Someone has been eating the cake, supposedly.

The adverb “supposedly” can occur at most places in the sentence (a similar obser-
vation is made by Morrill, 1994).

Give lexical entries for all words in the sentence; in particular, give a single lex-
ical entry to “supposedly” which generates all sentences above. What are the struc-
tural rules required to assure this?

More difficult: how can we assure we generate only the correct permutations of
“supposedly”?

Exercise 5.4. Pied-piping is the linguistic phenomenon where a relativizer — such
as “which”, which we’ve seen in the previous exercise and in Examples 5.4 and 5.9,
for example — can allow additional material to be fronted. Morrill (1994) gives the
following example of the phenomenon.

(5.16) the contract which John talked about []np

(5.17) the contract about which John talked []pp

Sentence 5.16 gives the configuration without pied-piping. “which” selects for a
sentence missing an np to its right. This is the “basic” type for a relativizer, of
which we have seen examples before.

The difference between Sentence 5.16 and Sentence 5.17 is that the preposition
“about” has moved to the position before the relativizer “which”.

Morrill (1994), using the wrapping structural rules we have seen in Figure 5.3 on
page 153, proposes the following lexicon for Sentence 5.17

186 5 The Multimodal Lambek Calculus

Word Type(s)
the np /a n

contract n
about pp /a np
which (pp /w np)\w ((n \a n)/a (S /a pp))
John np

talked (np \a S)/a pp

• using the lexicon above and the structural rules of Figure 5.3, show that “about
which John talked” is an expression of type n \a n.

Exercise 5.5. In Combinatory Categorial Grammars (Steedman, 1997), the follow-
ing rule of “mixed composition” is assumed.

A/B,C \B � C \A

• Show that this sequent is underivable in the Lambek calculus.
• Show that given the structural rules of Figure 5.6, the following sequent is

derivable in a multimodal Lambek calculus (interestingly, modern CCG
analyses have adopted the ideas of the multimodal Lambek calculus and “in-
dex” their categories in a way very similar to the multimodal sequent shown
below).

(A/B0,C \2 B)0 � C \2 A

Exercise 5.6. One of the observations of Ross (1967) is that extraction, as we have
seen it in Example 5.9 on page 169, is subject to certain constraints.

Kurtonina and Moortgat (1997) give the following examples as motivation for
their use of unary connectives to constrain derivability (in his section 7.8, Morrill
(1994) gives a similar analysis). They correspond to the constraints of Ross: we
cannot extract from inside a coordination (as shown by example sentences 1 and
2) unless the same element is extracted from all conjuncts (sentence 3). These con-
straints are called the “coordinate structure constraint” and its exception is called
the “across-the-board constraint”.

(5.18) ∗the book that Melville wrote Moby Dick and John read []np.
(5.19) ∗the book that Melville wrote []np and John read Moby Dick.
(5.20) the book that Melville wrote []np and John read []np.

As we have seen in Section 4.2.2 (and before that in Exercise 4), in categorial gram-
mars we assign words like “and” the formula (X \0 X)/0 X , where X is instantiated
by another formula.

Exercises for Chapter 5 187

• Show that given the analysis of extraction of Example 5.9, there are instantia-
tions of X which make all three example sentences above derivable.

• Show that if we follow Kurtonina and Moortgat (1997) and change the type
of the coordinator to (X \0 �0X) /0 X , then sentences 1 and 2 above become
underivable, whereas sentence 3 will stay derivable.

Exercise 5.7. Give an alternative solution for treating medial extraction (as dis-
cussed in Example 5.4 on page 160 using the structural rules of mixed associativity
and mixed commutativity between a mode 0 one of the modes 1,2,3,4 discussed in
Section 5.1.1. Use the lexicon below, adding only the formula for “which”.

Word Type(s)
book n

which ???
John np

fell np \0 S
read (np \0 S)/0 np

yesterday S \0 S

Take special care of

• which combination of mixed associativity and mixed commutativity you need
(look at Figures 5.5 and 5.6 (page 157),

• the inclusion between modes to assure derivability.

Exercise 5.8. Example 5.3 provides a first step towards the treatment of Dutch verb
clusters. While talking about the left branch extraction and infixation structural rules
of Figure 5.6 on page 157, the possibility of using a deterministic version of the
infixation rules is briefly mentioned. One way of implementing this idea is shown
below.

Γ [(Δ1,(Δ2,Δ3)
l)4] � C

MAl,4
Γ [((Δ1,Δ2)

4,Δ3)
l] � C

Γ [(Δ1,(Δ2,Δ3)
r)4] � C

MCr,4
Γ [(Δ2,(Δ1,Δ3)

4)r] � C

Modify the Dutch lexicon from Example 5.3, repeated below

Word Type(s) Translation
Marie np Mary

Jan np John
wil (np \0 S)/4 inf wants

plagen np \0 inf to tease

in such a way that “(dat) Jan Marie wil plagen” is derivable using these new struc-
tural rules. Are any other word orders derivable using your type assignments?

188 5 The Multimodal Lambek Calculus

Exercise 5.9. Revisiting the Dutch verb clusters as they have been treated in Ex-
ample 5.8, show that, using the structural rules of Example 5.8 and the following
extended lexicon

Word Type(s) Translation
ik np I

Marie np Mary
Henk np Henk

de np /n the
nijlpaarden n hippopotami

zag �1((np \0 (np \0 S))/4 in f) saw
helpen �1((np \0 in f)/4 in f) to help
voeren �1(np \0 in f) to feed

derives the famous “hippopotami” sentences shown below.

(5.21) (dat)
(that)

ik
I

Marie
Mary

de
the

nijlpaarden
hippopotami

zag
saw

voeren.
feed.

‘(that) I saw Mary feed the hippopotami.’
(5.22) (dat)

(that)
ik
I

Henk
Henk

Marie
Mary

de
the

nijlpaarden
hippopotami

zag
saw

helpen
help

voeren.
feed.

‘(that) I saw Henk help Mary feed the hippopotami.’

Make sure in your analyses that “Henk” is the object of “see”, “Marie” is the object
of “help” and “the hippopotami” is the object of “feed”.

Exercise 5.10. Prove Proposition 5.6 on page 163.

Exercise 5.11. Give derivations for the remaining related pairs in Figure 5.11 on
page 165.

Exercise 5.12. The formulae ����A and ����A are not portrayed in the Fig-
ure 5.11 on page 165. Show that these formulae are equivalent to ��A and ��A
respectively by proving the more general results of ���A being equivalent to �A
and of ���A being equivalent to �A.

Exercise 5.13. Inspired by a remark from Moortgat (2011, definition 2.4.10),
we propose the following translation of multimodal formulae formed using the
single unary mode t4, to which the postulates T and 4 of modal logic apply, to
multimodal formulae formed using the single unary mode 0 to which neither T
nor 4 applies.

Exercises for Chapter 5 189

‖p‖ = p
‖A •i B‖ = ‖A‖ •i ‖B‖
‖A\i B‖ = ‖A‖ \i ‖B‖
‖A/i B‖ = ‖A‖ /i ‖B‖
‖�t4A‖ = �0�0‖A‖
‖�t4A| = �0�0‖A‖

Remember that the T and 4 postulates for �t4 and �t4 are the following.

�t4A � A
�t4A � �t4�t4A
A � �t4A
�t4�t4A � �t4A

• Prove that the translations of the above sequents using the function ‖.‖ defined
in this exercise are all theorems of NL�.

• Look back to Figure 5.11 on page 165. Where this is possible, use the inverse of
‖.‖ to translate the formulae in the figure to formulae using �t4 and �t4. Do the
derivability relations between the formula correspond to the expected derivabil-
ity relations among formulae using the T and 4 modal postulates? Justify your
answer.

• Where would the formulae �t4�t4�t4A and �t4�t4�t4A “fit” in Figure 5.11?
That is, from which formulae in the figure are these two formulae derivable and
which formulae in the figure are derivable from these two formulae? Give proofs
of all relations that you can find.

• Look at the following seven formulae:

A,

�t4A,�t4A,

�t4�t4,�t4�t4A,

�t4�t4�t4A,�t4�t4�t4A

Show that for each formula B which consists of a formula A prefixed with any
number of �t4 and �t4 is equivalent to one of these seven formulae.
Hint: show that prefixing either �t4 or �t4 to one of the formulae produces a
formula equivalent to another of these formulae.

Exercise 5.14. For Example 5.7 on page 164, show how — with the lexicon given
in the example — sentences 5.7 and 5.10 are derivable but sentences 5.8 and 5.10
are not.

Exercise 5.15. How can we treat the difference between nominative and accusative
case in English using only a single unary modality? You might wish to look back to
Figure 5.11 to find appropriate formulae for nominative and accusative noun phrases
as well as for a type which can serve as either.

190 5 The Multimodal Lambek Calculus

References

Barry, G., Hepple, M., Leslie, N., Morrill, G.: Proof figures and structural operators for cate-
gorial grammar. In: Proceedings of EACL 1995, Berlin, pp. 198–203 (1991)

Bernardi, R.: Reasoning with polarity in categorial type logic. PhD thesis, Utrecht Institute
of Linguistics OTS, Utrecht University (2002)

Bernardi, R., Moot, R.: Generalized quantifiers in declarative and interrogative sentences.
Logic Journal of the IGPL 11(4), 419–434 (2003)

Chomsky, N.: The minimalist program. MIT Press, Cambridge (1995)
Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Mathematical Logic 28,

181–203 (1989)
Dowty, D.: Non constituent coordination, wrapping and multimodal categorial grammars:

Syntactic form as logical form. Tech. rep., Ohio State University (1997); expanded draft
of an August 1996 paper from the International Congress of Logic, Methodology and
Philosophy of Science, downloaded from the author’s website (March 17, 2011)

Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)
de Groote, P.: Partially commutative linear logic: sequent calculus and phase semantics. In:

Abrusci, V.M., Casadio, C. (eds.) Third Roma Workshop: Proofs and Linguistics Cate-
gories – Applications of Logic to the Analysis and Implementation of Natural Language,
pp. 199–208. CLUEB, Bologna (1996)

Hepple, M.: A general framework for hybrid substructural categorial logics. Tech. rep., Insti-
tute for Research in Cognitive Science, University of Pennsylvania (1993)

Heylen, D.: Types and sorts – resource logic for feature checking. PhD thesis, Universiteit
Utrecht (1999)

Jäger, G.: Anaphora and Quantification in Categorial Grammar. In: Moortgat, M. (ed.) LACL
1998. LNCS (LNAI), vol. 2014, pp. 70–90. Springer, Heidelberg (2001)

Jäger, G.: Anaphora and Type Logical Grammar, Trends in Logic – Studia Logic Library,
vol. 24. Springer (2005)

Kurtonina, N.: Frames and labels. A modal analysis of categorial inference. PhD thesis, OTS
Utrecht, ILLC Amsterdam (1995)

Kurtonina, N.: Categorial inference and modal logic. Journal of Logic, Language and Infor-
mation 7(4), 399–411 (1998)

Kurtonina, N., Moortgat, M.: Structural control. In: Blackburn, P., de Rijke, M. (eds.) Speci-
fying Syntactic Structures, pp. 75–113. CSLI, Stanford (1997)

Moortgat, M.: Multimodal linguistic inference. Bulletin of the IPGL Special Issue (1995)
Kempson, R. (ed.)

Moortgat, M.: In situ binding: A modal analysis. In: Dekker, P., Stokhof, M. (eds.) Proceed-
ings 10th Amsterdam Colloquium, pp. 539–549. ILLC, Amsterdam (1996a)

Moortgat, M.: Multimodal linguistic inference. Journal of Logic, Language and Informa-
tion 5(3-4), 349–385 (1996b)

Moortgat, M.: Categorial type logics. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of
Logic and Language, ch. 2, pp. 93–177. North-Holland Elsevier, Amsterdam (1997)

Moortgat, M.: Constants of grammatical reasoning. In: Bouma, G., Hinrichs, E., Kruijff, G.J.,
Oehrle, R.T. (eds.) Constraints and Resources in Natural Language Syntax and Semantics,
pp. 195–219. CSLI, Stanford (1999)

Moortgat, M.: Categorial type logics. In: van Benthem, J., ter Meulen, A. (eds.) Handbook
of Logic and Language, 2nd edn., ch. 2, pp. 95–179. North-Holland Elsevier, Amsterdam
(2011)

References 191

Moortgat, M., Morrill, G.: Heads and phrases: Type calculus for dependency and constituent
structure. Tech. rep., Research Institute for Language and Speech (OTS), Utrecht (1991)

Moortgat, M., Oehrle, R.T.: Logical parameters and linguistic variation. In: Fifth European
Summer School in Logic, Language and Information, Lisbon. Lecture notes on categorial
grammar (1993)

Moortgat, M., Oehrle, R.T.: Adjacency, dependency and order. In: Proceedings 9th Amster-
dam Colloquium, pp. 447–466 (1994)

Moot, R.: Proof nets for linguistic analysis. PhD thesis, Utrecht Institute of Linguistics OTS,
Utrecht University (2002)

Moot, R.: Lambek grammars and hyperedge replacement grammars. Tech. rep., LaBRI,
CNRS (2008a)

Moot, R.: Lambek grammars, tree adjoining grammars and hyperedge replacement gram-
mars. In: Gardent, C., Sarkar, A. (eds.) Proceedings of TAG+9, The Ninth International
Workshop on Tree Adjoining Grammars and Related Formalisms, pp. 65–72 (2008)

Moot, R., Retoré, C.: Les indices pronominaux du français dans les grammaires catégorielles.
Lingvisticae Investigationes 29(1), 137–146 (2006)

Morrill, G.: Type Logical Grammar. Kluwer Academic Publishers, Dordrecht (1994)
Morrill, G.: Discontinuity in categorial grammar. Linguistics and Philosophy 18(2), 175–219

(1995)
Morrill, G., Leslie, N., Hepple, M., Barry, G.: Categorial deductions and structural operations.

In: Barry, G., Morrill, G. (eds.) Studies in Categorial Grammar, Edinburgh Working Papers
in Cognitive Science, vol. 5, pp. 1–21. Centre for Cognitive Science (1990)

Oehrle, R., Zhang, S.: Lambek calculus and preposing of embedded subjects. Chicago Lin-
guistics Society 25 (1989)

Prior, A.: Past, Present and Future. Oxford University Press (1967)
Ross, J.R.: Constraints on variables in syntax. PhD thesis, Massachusets Institute of Technol-

ogy (1967)
Shieber, S.: Evidence against the context-freeness of natural language. Linguistics & Philos-

ophy 8, 333–343 (1985)
Steedman, M.: Surface structure and interpretation. Linguistic Inquiry Monographs, vol. 30.

MIT Press, Cambridge (1997)
Vermaat, W.: The minimalist move operation in a deductive perspective. Journal of Language

and Computation 2(1), 69–85 (2004); Special Issue on Resource Logics and Minimalist
Grammars

Vermaat, W.: The logic of variation. A cross-linguistic account of wh-question formation.
PhD thesis, Utrecht Institute of Linguistics OTS, Utrecht University (2005)

6

Lambek Calculus and Linear Logic:
Proof Nets as Parse Structures

Summary. This chapter, a large part of which is a translation of (Retoré, 1996), deals with
the connection between Lambek categorial grammar and linear logic, the main objective be-
ing the presentation of proof nets which are excellent parse structures, because they identify
linguistically equivalent analyses of a given sentence.

This graphical notation for proofs that are parse structures in categorial grammar is a not a
mere variation for convenience. On a technical ground, it avoids the so-called spurious ambi-
guity problem of categorial grammars (the fact that we can find many different proofs/parse
structures for what corresponds to a single analysis or lambda term). Conceptually, this proof
syntax is a justification of the use of the expression parsing as deduction often associated with
categorial grammar. Indeed proof nets only distinguish between proofs which correspond to
different syntactic analyses.

We first give a rather complete presentation of the correspondence between the Lambek
calculus and variants of multiplicative linear logic, since the Lambek calculus can be defined
as non-commutative intuitionistic multiplicative linear logic without empty antecedents.

Next we define proof nets and establish their correspondence with the more traditional se-
quent calculus, present parsing as proof net construction and present some recent descriptions
of non commutative proof nets.

As an evidence of their linguistic relevance, we explain how they provide a formal account
of some performance questions, like the complexity of the processing of several intricate
syntactic constructs, like center embedded relatives, garden path phenomena and preferred
readings.

6.1 The Formula Language of Categorial Grammar
and of Linear Logic

6.1.1 The Formula Language of Multiplicative Linear Logic

Let us recall the language of the Lambek calculus:

Lp ::= P | (Lp •Lp) | (Lp/Lp) | (Lp\Lp)

R. Moot and C. Retoré: The Logic of Categorial Grammars 2012, LNCS 6850, pp. 193–238, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

194 6 Lambek Calculus, Linear Logic and Proof Nets

As we have seen in the previous chapters \ and / are implications, and the product
• is a conjunction. All these connectives are linear logic connectives, but are rather
denoted by: ◦−,−◦,⊗ in the linear logic community.

Lambek calculus \ / •
Linear logic −◦ ◦− ⊗

Multiplicative linear logic is a classical calculus which extends the Lambek calculus
by a negation denoted by (. . .)⊥ (the orthogonal of . . .) together with the symmetries
induced by a classical negation: the familiar De Morgan identities of classical logic.

To be precise, Multiplicative Linear Logic extends the Lambek calculus without
the non empty antecedent requirement, and allows for permutation (hypotheses can
be permuted). In order to have a single involutive negation and two distinct implica-
tions ◦− and −◦, one must restrict the allowed permutations to cyclic permutations.
In the absence of any form of permutation, there have to be two negations (Abrusci,
1991, 1995).

Because of the De Morgan identities, there will be a disjunction℘ (par, standing
for in parallel with) corresponding to the conjunction⊗. As we are especially inter-
ested in having a non commutative conjunction, the disjunction, by duality, will be
non commutative as well.

Such a disjunction and a classical negation allow the implication A\B to be de-
fined as A⊥℘B and the implication B /A to be defined as B℘A⊥ — just like it is
possible to define A⇒ B as ¬A∨B in classical logic. Notice that the non commu-
tativity of the disjunction is necessary if we want to be able to distinguish between
these two implications.

In the Lambek calculus, one has the following equivalence: (C /B)/A≡C / (A •
B) : indeed (C /B) /A is a formula which requires an A and then a B to obtain C,
and C / (A •B) is a formula which requires an A followed by a B, to obtain a C. The
formula (C/B)/A can be written as C℘B⊥℘A⊥ using the (associative) disjunction
and the formulaC/(A•B) as C℘(A⊗B)⊥. Therefore if there is a classical extension
of the Lambek calculus then negation has to swap the components of a disjunction
(and of a conjunction, by duality).

Linear logic, when seen as a classical extension of the Lambek calculus, has the
following language:

Li+ ::= P | Li⊥+ | (Li+℘Li+) | (Li+⊗Li+) | (Li+ \Li+) | (Li+ /Li+)

and enjoys the elimination of double negation and the De Morgan identities, as
shown below.

(A⊥)⊥ ≡ A (A℘B)⊥ ≡ B⊥⊗A⊥ (A⊗B)⊥ ≡ B⊥℘A⊥

6.1 The Formula Language of Categorial Grammar and of Linear Logic 195

6.1.2 Reduced Linear Language (Negative Normal Form)

For every formula X in Li+ there exists a unique equivalent formula +X such that
negation only applies to propositional variables, and its only connectives are con-
junction and disjunction. In some books, the analogous of +X for classical logic is
called its negative normal form. The formula +X is obtained by replacing its impli-
cation by its definition as a disjunction, and then applying De Morgan identities as
rewriting rules from left to right, and, finally by cancelling double negations. Notice
that, unlike disjunctive normal form and conjunctive normal form, this form does
not require distributivity of ℘ w.r.t. ⊗ or ⊗ w.r.t. ℘ — these distributivity identities
do not hold in linear logic.1

So every formula in Li+ is equivalent to a formula +X in Li, where Li is:

Li ::= N | Li℘Li | Li⊗Li where N= P∪P⊥ is the set of atoms.

Observe that if F ∈ Li then +F = F .
Let us denote by−F the unique formula in Li equivalent to (F)⊥ ∈ Li+ —−F =

+(F⊥). Given +F , −F is obtained by replacing every propositional variable in
+F with its negation, every conjunction by a disjunction, every disjunction by a
conjunction, and finally by reversing the left to right order of the result.

Given F = (α⊥℘β)⊗ γ⊥ one first obtains F ′ = (α ⊗ β⊥)℘γ , which yields
F⊥ ≡ −F = γ℘(β⊥⊗α) by rewriting F ′ from right to left.

6.1.3 Relating Categories and Linear Logic Formulae: Polarities

Since Lp is a sublanguage of Li+, for every formula L in Lp there exists a unique for-
mula +L in Li which is equivalent to L and a unique formula−L which is equivalent
to L⊥. These two maps from Lp to Li can be inductively defined as follows:

L α ∈ P L = M •N L = M \N L = N /M

+L α +M⊗+N −M℘+N +N℘−M
−L α⊥ −N℘−M −N⊗+M +M⊗−N

Example 6.1

L +L −L

np np np⊥ noun phrase

np/n np⊥℘n n⊥⊗np determiner

n n n⊥ common noun

n\n n⊥℘n n⊥⊗n right adjective

(n\n)/ (n\n) (n⊥℘n)℘(n⊥⊗n) (n⊥℘n)⊗ (n⊥⊗n) left modifier for
right adjectives

β \ ((α /β)\α) β⊥℘((β ⊗α⊥)℘α) (α⊥⊗ (α ℘β⊥))⊗β) type raising

1 Though the classical distributivities, such as the equivalences A∧(B∨C)↔ (A∧B)∨(A∧
C) and A∨ (B∧C)↔ (A∨B)∧ (A∨C) which are required for disjunctive and conjunctive
normal form do not hold between tensor and par, we do have some weaker implications,
eg. A∧ (B∨C)→ (A∧B)∨C, or written using tensor and par: A⊗ (B℘C) � (A⊗B)℘C.

196 6 Lambek Calculus, Linear Logic and Proof Nets

Let us consider the following sets of formulae, which enable us to recognize,
among linear formulae the ones which are Lambek formulae or the negation of
Lambek formulae.

Li◦ = {F ∈ Li/∃L ∈ Lp +L = F} : positive linear formulae
Li• = {F ∈ Li/∃L ∈ Lp −L = F} : negative linear formulae
Li◦ ∪Li• : intuitionistic or polarized linear formulae

We then have:

F ∈ Li• ⇔ −F ∈ Li◦ and F ∈ Li◦ ⇔ −F ∈ Li•

Li◦ ∪Li• �= Li — for instance α ℘β �∈ Li◦ ∪Li•
Li• ∩Li◦ = /0 — because of the following proposition:

Proposition 6.2. The sets of formulae Li◦ and Li• are inductively defined by:

[
Li◦ ::= P | (Li◦ ⊗Li◦) | (Li•℘Li◦) | (Li◦℘Li•)
Li• ::= P⊥ | (Li•℘Li•) | (Li◦ ⊗Li•) | (Li• ⊗Li◦)

The maps + and − are bijections from Lp to Li◦ and Li• respectively.

If (. . .)◦Lp denotes the inverse bijection of +, from Li◦ to Lp and if (. . .)•Lp denotes the
inverse bijection of − from Li• to Lp. Then these two maps are inductively defined
as follows:

F∈Li◦ α∈P (G∈Li◦)⊗ (H∈Li◦) (G∈Li•)℘(H∈Li◦) (G∈Li◦)℘(H∈Li•)
F◦Lp α G◦Lp⊗H◦

Lp G•Lp \H◦
Lp G◦Lp /H•

Lp

F∈Li• α⊥∈P⊥ (G∈Li•)℘(H∈Li•) (G∈Li◦)⊗ (H∈Li•) (G∈Li•)⊗ (H∈Li◦)
F•Lp α H•

Lp⊗G•Lp H•
Lp /G◦Lp H◦

Lp \G•Lp

The inductive definition of Li◦ and Li• yields an easy decision procedure to check
whether a formula F is in Li◦ or Li• — if so, all subformulae of F are in Li◦ or in
Li•: replace every propositional variable with ◦ and every negation of a propositional
variable with • and compute using ℘ and ⊗ as the following operations on �,◦,• :

℘ � ◦ •
� � � �
◦ � � ◦
• � ◦ •

⊗ � ◦ •
� � � �
◦ � ◦ •
• � • �

6.2 Two Sided Calculi 197

The result of this simple computation is used as follows:

• � whenever the formula is neither in Li◦ nor in Li•

• ◦ whenever the formula is in Li◦
• • whenever the formula is in Li•

Example 6.3

F computation conclusion F◦Lp F•Lp
(α⊥℘β)℘α (•℘◦)℘◦= ◦℘◦= � F �∈ Li◦∪Li• undefined undefined

(α⊥℘β)℘α⊥ (•℘◦)℘•= ◦℘•= ◦ F ∈ Li◦ (α \β)/α undefined

(α⊥℘β)⊗α⊥ (•℘◦)⊗•= ◦⊗•= • F ∈ Li• undefined α / (α \β)

6.2 Two Sided Calculi

Here is the two sided linear calculus MLL+ for all connectives of the language Li+.
In the Section 6.3.1, we shall see how it embeds the Lambek calculus.

Exchange
Γ ,A,B,Δ �Ψ

(x)h
Γ ,B,A,Δ �Ψ

Θ � Γ ,A,B,Δ
(x)i

Θ � Γ ,B,A,Δ

Axiom ax
A ∈ Li+A � A

Γ � A,Δ ⊥
h

A⊥,Γ � Δ
Negation

A,Γ � Δ ⊥
i

Γ � A⊥,Δ

Γ ,A �Θ B,Γ ′ �Θ ′
℘h

Γ ,A℘B,Γ ′ � Θ ,Θ ′ Disjunction
Θ � Γ ,A,B,Δ

℘h
Θ � Γ ,A℘B,Δ

Logical
rules

Γ ,A,B,Δ �Ψ
⊗h

Γ ,A⊗B,Δ �Ψ
Conjunction

Θ � Φ ,A Θ ′ � B,Φ ′
⊗i

Θ ,Θ ′ � Φ ,A⊗B,Φ ′

Γ � Φ ,A Γ ′,B,Δ ′ �Ψ ′
\hΓ ′,Γ ,A\B,Δ ′ � Φ ,Ψ ′

Implications

A,Γ � C,Φ
\i

Γ � A\C,Φ

Γ � Φ ,A Γ ′,B,Δ ′ �Ψ ′
/h

Γ ′,B/A,Γ ,Δ ′ � Φ ,Ψ ′
Γ ,A � Φ ,C

/i
Γ � Φ ,C /A

198 6 Lambek Calculus, Linear Logic and Proof Nets

6.2.1 Properties of the Linear Two Sided Sequent Calculus

Cut Elimination

We left out the cut rule on purpose. There are two ways to formulate the cut rule in
a classical calculus:

Θ � Φ,A A,Θ ′ �Ψ ′
cut

Θ ,Θ ′ � Φ,Ψ ′
Θ � Φ,A Θ ′ � A⊥,Φ ′

cut
Θ ,Θ ′ � Φ,Φ ′

As in the Lambek calculus, this rule is redundant, and the proof is more or less the
same. As a consequence, the subformula property also holds for this calculus.

De Morgan Identities and Double Negation Elimination

As we claimed before, these identities hold for linear logic. For instance:

A � A ⊥
i

A⊥,A � ⊥
i

A � (A⊥)⊥

A � A ⊥
i� A⊥,A ⊥

i
(A⊥)⊥ � A

Restriction to Atomic Axioms

As for the Lambek calculus, an easy induction on A, shows that every axiom A � A
can be derived from axioms α � α , where α is a propositional variable, without
using the exchange rule. For instance let us show that A � A with A = α ℘β⊥ can
be derived from the axioms α � α and β � β :

ax
α � α

ax
β � β ⊥

h
β ,β⊥ � ⊥

i
β⊥ � β⊥

℘hα ℘β⊥ � α,β⊥
℘iα℘β⊥ � α ℘β⊥

Equality of the Two Implications

In this calculus, the implication A \B can be viewed as a shorthand for A⊥℘B,
while A /B is a shorthand for B℘A⊥. Indeed the rules for the implications can be
derived when implications are defined this way. Furthermore, in the presence of a
full exchange rule, one has: A\B≡ B/A.

6.2 Two Sided Calculi 199

Γ � A ⊥
h

Γ ,A⊥ � Δ ′,B,Γ ′ � Θ ′
℘hΔ ′,Γ ,A⊥℘B,Γ ′ �Θ ′

Γ ,A � B ⊥
h

Γ � A⊥,B
℘i

Γ � A⊥℘B

ax
B � B

ax
A⊥ � A⊥

℘h
B℘A⊥ � B,A⊥

(x)i
B℘A⊥ � A⊥,B

℘i
B℘A⊥ � A⊥℘B ≡

B/A � A\B

ax
A⊥ � A⊥

ax
B � B

℘h
A⊥℘B � A⊥,B

(x)i
A⊥℘B � B,A⊥

℘i
A⊥℘B � B℘A⊥ ≡

A\B � B/A

Negation and Symmetrical Rules

If one considers formulae up to De Morgan identities, then right rules are enough.
For instance the rule℘h can be simulated by the rule⊗i as shown in the following

derivation.

Γ ,A �Θ ⊥
i

Γ � A⊥,Θ

B,Γ ′ �Θ ′
⊥

i
Γ ′ � B⊥,Θ ′

⊗i
Γ ,Γ ′ � Θ ,A⊥⊗B⊥,Θ ′

(x)h and⊥h
[A℘B≡ (A⊥⊗B⊥)⊥],Γ ′,Γ � Θ ′,Θ

(x)h
Γ , [B℘A≡ (A⊥⊗B⊥)⊥],Γ ′ � Θ ′,Θ

In order to avoid the exchange rule, one has to consider a more subtle sequent cal-
culus like the one of (Abrusci, 1991, p. 1415) but identifying the two negations —
this actually forces a restricted form of the exchange rule known as cyclic exchange,
that we shall present later on.

6.2.2 The Intuitionistic Two Sided Calculus LPε

The calculus LPε , that is Lambek calculus with permutation and empty antecedents
is exactly intuitionistic multiplicative linear logic. This calculus is obtained from
MLL+ by forcing sequents to always have exactly one formula on the right hand
side.

By inspection of the rules, it is clear that restricting the right hand side of the
sequent to one formula means that we can no longer formulate the rules for negation.
Therefore the natural language for LPε is Lp. The rules are obtained from the ones
of MLL+ in Section 6.2, by replacing the sequences of formulae denoted by Φ and
Φ ′ by the empty sequence, and the sequences of formulae denoted by Ψ and Ψ ′ by
a single formula F or F ′. This yields the following rules:

200 6 Lambek Calculus, Linear Logic and Proof Nets

Exchange
Γ ,A,B,Δ � F

(x)h
Γ ,B,A,Δ � F

Axiom ax
A ∈ LpA � A

Γ ,A,B,Δ � F ⊗h
Γ ,A⊗B,Δ � F

Conjunction
Θ � A Θ ′ � B ⊗h

Θ ,Θ ′ � A⊗B

Logical rules
Γ � A Γ ′,B,Δ ′ � F ′ \hΓ ′,Γ ,A\B,Δ ′ � F ′

Implications

A,Γ � C \i
Γ � A\C

Γ � A Γ ′,B,Δ ′ � F ′
/hΓ ′,B/A,Γ ,Δ ′ � F ′

Γ ,A � C
/iΓ � C /A

This calculus LPε and its variants are studied in a slightly different perspective
in (van Benthem, 1991), and is also the basis of works on the semantics of LFG in
a series of articles like (Dalrymple et al, 1995).

This calculus allows for several variants according to the presence or absence
of the exchange rule, or the allowance or prohibition of sequents with an empty
antecedent, that is: the sequence of formulae Π is not empty when the rule \i or /i
is applied or, equivalently, every sequent in a proof has a non empty antecedent.

This last restriction is harmless from a logical viewpoint, i.e. preserves cut-eli-
mination, but is essential for a grammatical use of the Lambek calculus, as we have
seen in Section 2.5. Let us give another example of an incorrect analysis due to
empty antecedents:

Example 6.4. Look at the following small lexicon.

Word Type(s) Translation
exemple n example

simple n \ n simple
très (n \ n)/(n \ n) very
un np /n a

ax
n � n

/iε � n /n

ax
n � n

ax
np � np

/h
np/n,n � np

ax
n � n \h

np /n,n,n \ n � np
/h

np /n, n, (n \ n)/(n \ n) � np
un exemple très

6.3 A One Sided Calculus for Linear Logic: MLL 201

6.2.3 Proofs as Parse Structures: Too Many of Them

When we look at parsing a Lambek grammar, then, given that the Lambek calcu-
lus is a logic, a parse for a Lambek grammar is a proof in the Lambek calculus.
However, sequent calculus proof search, which is one way of implementing pars-
ing for the Lambek calculus is problematic: it is easy to find several proofs which
should correspond to the same parse structure, but which nevertheless are distinct.
For instance, with the previous lexicon, the following sequent calculus proofs are
different

Example 6.5

ax
n � n

ax
n � n

\h
n,n\n � n

\i
n\n � n\n

ax
n � n

ax
n � n

\h
n,n\n � n

ax
np � np

/h
np/ n,n,n\n � np

/h
np/n, n, (n\n)/ (n\n), n\n � np
un exemple très simple

Example 6.6

ax
n � n

ax
n � n

\h
n,n\n � n

\i
n\n � n\n

ax
n � n

ax
np � np

/h
np/n,n � np

ax
n � n

\h
np/ n,n,n\n � np

/h
np/n, n, (n\n)/ (n\n), n\n � np
un exemple très simple

In the two proofs above the order of the \h and /h rules is reversed, but both rules
have the same formula occurrences as their active and main formulae; the only way
the two proofs differ is in the way the context variables of the rules are instantiated.

This problem, that there can be many proofs of what we would want to be the
same parse is sometimes called the spurious ambiguity problem. Natural deduction
is a bit better in this respect, though, as we have seen in Section 2.6.3 problems of
multiple derivations corresponding to a single parse exist for the product formula.
One of the main objective of this chapter is to find a notion of proof that yields one
proof per parse structure; this is a key motivation for proof nets, to be introduced in
Section 6.4: proof nets will solve the problem of multiple equivalent proofs which
exists for the sequent calculus and, unlike natural deduction, will treat the product
formulae as easily as the other connectives.

6.3 A One Sided Calculus for Linear Logic: MLL

As we have seen in the paragraph 6.1.2 for every formula X of Li+ there exists a
unique formula +X of Li which is equivalent to it by De Morgan identities, and as

202 6 Lambek Calculus, Linear Logic and Proof Nets

explained in paragraph 6.2.1, right rules can be simulated by left rules. Therefore,
if one considers formulae up to De Morgan identities then the following one sided
sequent calculus, defined as follows, is enough:

Exchange
� Γ ,A

(cx)� A,Γ

� Γ ,A,B
(tx)� Γ ,B,A

Axiom ax
α ∈ P� α,α⊥

Logical
rules

� Γ ,A,B,Δ
℘� Γ ,A℘B,Δ

� Γ ,A � B,Γ ′ ⊗� Γ ,A⊗B,Γ ′

The exchange rule (x)h of MLL+ has been split into two rules (tx) (transposition
exchange) and (cx) (cyclic exchange). Therefore (x)h is derivable but, this formula-
tion allows to consider the calculus NC-MLL of (Yetter, 1990), which only has the
(cx) exchange, but not the (tx) exchange.

The simple calculus MLL whose language is Li, proves exactly the same sequents
as the bigger two sided calculus MLL+ :

Proposition 6.7. Let A1, . . . ,An,B1, . . . ,Bp be formulae in Li+; then one has:

(A1, . . . ,An �MLL+ B1, . . . ,Bp) ⇔ (�MLL −An, . . . ,−A1,+B1, . . . ,+Bp)

For the converse implication, notice that given a formula F ∈ Li there usually exist
several formulae X ∈ Li+ such that +X = F or −X = F.

6.3.1 Variants

We are about to introduce several variants of MLL according to the following re-
strictions:

INTUI intuitionistic calculi
in two sided presentation: one formula in the right hand side of every sequent
in one sided presentation: only polarized formulae (formulae of Li◦ ∪Li•)2

NC non commutative calculi
in two sided presentation: no exchange at all
in one sided presentation: cyclic exchange (cx) only (no transposition ex-

change (tx))

2 Note that by Proposition 6.8 of the next section, we do not have to require explicitly that
there is only one formula in Li◦.

6.3 A One Sided Calculus for Linear Logic: MLL 203

ε -FREE no empty antecedent
in two sided presentation: no empty antecedent, at least one formula on the left

hand side of every sequent
in one sided presentation: at least two formulae in every sequent

The names for these calculi somehow differ in the categorial tradition and in the
linear logic community, for instance, calculi without empty antecedents are never
considered in linear logic and, though classical calculi are sometimes discussed in
the categorial tradition (see, for example, Lambek, 1993; de Groote and Lamarche,
2002), there are, to the best of our knowledge, no linguistic applications of formulas
not in Li◦ ∪Li•. For linear calculi, the restriction which corresponds to forbidding
empty antecedents will be denoted by (· · ·)∗. Conversely, for categorial grammar
and Lambek calculus, allowing for empty antecedents will be denoted by (· · ·)ε .
The non-commutative restriction of a linear calculus will be denoted by a prefix
NC, and the commutative extension of a Lambek style calculus will be denoted by
a suffix P

Because of these two communities, we have two names for the intuitionistic cal-
culi, and we hope it will not confuse the reader. Table 6.1 lists all the different sys-
tems, together with their different names and the restrictions which apply to them.
Figure 6.1 portrays the relations between the logics by means of a commutative
diagram. All these restrictions will appear again for describing the proof nets corre-
sponding to each calculus.

Although this might be surprising we are able to provide a one sided formulation
for intuitionistic calculi. So we will use the linear name · · ·MLL for one sided calculi
and the categorial name L · · · for two sided calculi.

Table 6.1. The different logical systems and their properties

INTUI NC ε -FREE Linear name Categorial name

yes yes yes NC-IMLL∗ L

yes yes no NC-IMLL Lε

yes no yes IMLL∗ LP

yes no no IMLL LPε

no yes yes NC-MLL∗
no yes no NC-MLL

no no yes MLL∗
no no no MLL

one sided two sided

6.3.2 The Intuitionistic Restriction in One Sided Calculi

The two sided intuitionistic calculus LPε is a proper restriction of its classical coun-
terpart MLL. For instance, if we look at the formula F = (β ℘α)℘(α⊥⊗β⊥) one

204 6 Lambek Calculus, Linear Logic and Proof Nets

Intuitionistic

MLL MLL∗

LPε
IMLL IMLL∗NC-MLL∗NC-MLL

Lε
NC-IMLL∗

L

restrictionrestriction

calculi

restriction

LP

NC-IMLL

No empty antecedentNon commutative Intuitionistic

Fig. 6.1. Commutative diagram listing the relations between the different logics

has �MLL F but there is no formula G equivalent to F such that �LPε
G. Actually,

this restriction is only a restriction of the language, which we have already studied
in Section 6.1.3. Indeed, it is only because there is no formula in Lp equivalent to F ,
i.e. because F �∈ Li• ∪Li◦ that F is not a theorem of IMLL. More precisely we have
the following result.

Proposition 6.8. If ∀i ∈ [1,n] Ai ∈ Li• ∪Li◦ then

(�MLL A1, . . . ,An) ⇔ (�IMLL A1, . . . ,An)

and whenever these properties hold, then exactly one formula of the sequent is in
Li◦, all others being in Li•. This also holds for the variants NC-MLL and NC-IMLL.

6.3 A One Sided Calculus for Linear Logic: MLL 205

Proof. Easy induction on the proofs. ��
Proposition 6.8 was first studied by van de Wiele in the typed case and then taken up
by Bellin and Scott (1994) and by Danos and Regnier (Danos, 1990; Regnier, 1992)
in the untyped case. This property has lead Lamarche to an interesting theory of
intuitionistic proof nets (Lamarche, 1994) which is orthogonal to our presentation.

From the previous proposition we easily deduce the correspondence between one
sided intuitionistic calculi and the two sided intuitionistic calculi:

Proposition 6.9. If �MLL F1, . . . ,Fn, with ∀i ∈ [1,n] Fi ∈ Li• ∪Li◦, then:

• there exists a unique index i0 ∈ [1,n] such that Fi0 ∈ Li◦ and for every other index
i ∈ [1,n] we have Fi ∈ Li• because of the Proposition 6.8

• because of Section 6.1.3, every formula F⊥i with i �= i0 is equivalent to a unique
formula (Fi)

•
Lp ∈ Lp, while Fi0 is equivalent to a unique formula (Fi0)

◦
Lp

• (Fi0−1)
•
Lp,(Fi0−2)

•
Lp, . . . ,(F1)

•
Lp,(Fn)

•
Lp, . . . ,(Fi0+1)

•
L �LPε

(Fi0)
◦
Lp

Conversely, (X1, . . . ,Xn �LPε
Y) ⇒ (�MLL,IMLL −Xn, . . . ,−X1,+Y).

If one replaces MLL with NC-MLL (resp. NC-MLL∗) and LPε with Lε (resp. L)
the result also holds (As announced in the commutative diagram of Figure 6.1, the
restrictions INTUI,NC and ε -FREE commute).

For these non commutative variants NC-MLL, NC-MLL∗, Lε and L, with a re-
stricted exchange rule, one has to abide by the order between formulae: this order
is reversed when formulae move from one side of the sequent’s turnstile to the other.

Proof. The “conversely” is obvious.
The direct implication is shown by induction on the proof. For the proof to work

in the non commutative case, the rule (tx) is only used for the translation of the (x)h

rule of IMLL. Here is, for instance, the translation of the /h.
Assume that the sequences of formulae involved in /h are Γ = G1, . . . ,Gn, Γ ′ =

G′1, . . . ,G
′
k, Δ ′ = D′1, . . . ,D

′
l . Here is the NC-MLL proof which simulates the rule /h

of Lε — remember that +A⊗−B =−(A\B) (c.f. Section 6.1.3):

� −Gn, . . . ,−G1,+A

� −D′l , . . . ,−D′1,−B,−G′k, . . . ,−G′1,+C′
l(EC)� −B,−G′k, . . . ,−G′1,+C′,−D′l , . . . ,−D′1 ⊗� −Gn, . . . ,−G1,+A⊗−B,−G′k, . . . ,−G′1,+C′,−D′l , . . . ,−D′1

l(EC)� −D′l , . . . ,−D′1,−Gn, . . . ,−G1,+A⊗−B,−G′k, . . . ,−G′1,+C′
= ��� −D′l , . . . ,−D′1,−Gn, . . . ,−G1,−(A\B),−G′k, . . . ,−G′1,+C′

Let us provide the NC-MLL translation of the proofs or parse structures given in
examples 6.5 and 6.6 :

206 6 Lambek Calculus, Linear Logic and Proof Nets

Example 6.10

ax� n,n⊥
ax� n,n⊥ ⊗� n,n⊥⊗n,n⊥

CX� n⊥⊗n,n⊥,n
℘� n⊥⊗n,n⊥℘n

ax� n,n⊥
ax� n,n⊥ ⊗� n,n⊥⊗n,n⊥

CX� n⊥⊗n,n⊥,n ⊗� n⊥⊗n,(n⊥℘n)⊗ (n⊥⊗n),n⊥,n
ax� np⊥,np ⊗

� n⊥⊗n, (n⊥℘n)⊗ (n⊥⊗n), n⊥, n⊗np⊥, np
simple très exemple un

n \ n (n \ n)/(n \ n) n np /n

Example 6.11

ax� n,n⊥
ax� n,n⊥ ⊗� n,n⊥⊗n,n⊥

CX� n⊥⊗n,n⊥,n
℘� n⊥⊗n,n⊥℘n

ax� n,n⊥
ax� np,np⊥ ⊗� n⊥,n⊗np⊥,np

CX� n⊗np⊥,np,n⊥
ax� n,n⊥ ⊗� n⊗np⊥,np,n⊥⊗n,n⊥

2×CX� n⊥⊗n,n⊥,n⊗np⊥,np ⊗
� n⊥⊗n, (n⊥℘n)⊗ (n⊥⊗n), n⊥, n⊗np⊥, np
simple très exemple un

n \ n (n \ n)/(n \ n) n np /n

6.4 Proof Nets: Concise and Expressive Proofs

We now turn our attention to proof nets; they are for linear logic what natural de-
ductions (or typed lambda terms) are for intuitionistic logic, in the sense that the
contexts are not copied at each step of the proof.

From a logical viewpoint, they are much more compact than sequent calculus
proofs: well-formedness is a global condition but easy (and fast) to verify, and cut-
elimination is a local and efficient process. But their main advantage is that they
are a better representation of proofs. Indeed, many sequent calculus proofs which
only differ in the order of application of the rules convert to the same proof net. For
example, the two proofs given in the Examples 6.10 and 6.11 will yield the same
proof net. It should be noticed that when these proofs are viewed as a representation
of syntactic analyses in the Lambek calculus (they correspond to the parses of Ex-
amples 6.5 and 6.6. in a Lambek grammar), they both describe the same linguistic
analysis, so it is really a good feature of proof nets that we are able to describe this
analysis by a single object.

6.4 Proof Nets: Concise and Expressive Proofs 207

6.4.1 Proof Nets for MLL

R&B Graphs

A matching in a graph is a subset of the set of edges such that no two edges of the
matching are adjacent. The matching is said to be perfect whenever each vertex of
the graph is incident to an edge of the matching – because it is a matching, each
vertex is incident to exactly one edge of the matching.

Definition 6.12 (R&B graphs). A R&B graph is an edge colored graph, whose edges
either are of color B (blue or bold), or R (red or regular), such that the B edges define
a perfect matching of the graph.

B edges correspond to formulae and R edges to connectives. The recognition, among
all such graphs, of the ones which are proofs, will involve the notion of alternate
elementary path.

Definition 6.13 (æ paths and cycles). An æ path in a R&B graph is an alternating
elementary path, that is a path the edges of which are alternatively in B and in R

which does not use twice the same edge — as B edges are a matching, this is equiv-
alent to the property that the path does not contain the same vertex twice (except,
possibly the first and last vertices that might be the same). More precisely, an æ path
is a finite sequence of edges (ai)i∈[1,n] such that:

i �= j =⇒ ai �= a j #(ai∩ai+1) = 1
ai ∈ B=⇒ ai+1 ∈ R ai ∈ R=⇒ ai+1 ∈ B

An æ cycle is an æ path of even length, whose end vertices are equal.

Prenets

Definition 6.14 (Prenets or proof structures, links). Prenets are R&B graphs built
from basic R&B graphs called links, which are shown in Figure 6.2 (where α denotes
an atomic formula) in such a way that each formula is the conclusion of exactly one
link and the premise of at most one link. Formulae that are not the premise of a link
are called conclusions of the prenet.

Definition 6.15 (R&B subformula tree). Given a formula C, its R&B subformula
tree T (C) is a R&B graph defined inductively as follows.

• If C = α is a propositional variable then T (C) is: α
• given T (A) and T (B), T (A⊗B) and T (A℘B) are defined as follows.

T (A⊗B) : A⊗B

A B

T (B)T (A)

⊗

T (A℘B) : A℘B

℘
A

T (A) T (B)

B

208 6 Lambek Calculus, Linear Logic and Proof Nets

Links

Name Graph Premises Conclusions

Axiom
α⊥ α

none

α and α⊥

Times
BA

A⊗B

⊗
A and B

A⊗B

Par

A℘B

A B
℘

A and B

A℘B

Fig. 6.2. Links for constructing prenets

Beware that the R&B subformula tree of a formula C is not, from a graph theoretical
point of view, a tree: indeed, every Times link contains a cycle. We nevertheless
chose this name because it is very similar to the subformula tree, and because of the
fact that w.r.t. the æ paths, the only paths we shall use, the R&B subformulae trees are
acyclic.

The vertices corresponding to propositional variables in a subformula tree will
be called leaves of the subformula tree.

Definition 6.16 (prenet with conclusions Γ). Given a sequence of formulae Γ , a
prenet Π with conclusions Γ consists of:

• the R&B subformula trees of the formulae in Γ
• a set of B edges joining dual leaves, called axioms, such that each leaf is incident

to exactly one axiom.

The structure of a prenet is the following.

R&B trees of Γ

Γ

Axioms of Π

Notice that the order between formulae of Γ or their subformula trees is not part of
the structure, but because of the labeling of the vertices, R&B subformula trees make
a distinction between their right and left subtrees.

6.4 Proof Nets: Concise and Expressive Proofs 209

The examples below — Example 6.17 to 6.23 — give some examples of prenets.
Note that not all of these prenets correspond to sequent proofs: we will see how to
distinguish the correct prenets, the proof nets, from the other prenets below.

Example 6.17 Example 6.18

⊗
n⊥n

⊗
n⊥ n

n⊥⊗n n⊗n⊥

n⊥n
℘ ℘

n⊥℘n n⊥℘n

nn⊥

Example 6.19 Example 6.20

n n
⊗ ℘

n⊥

n⊥⊗n n℘n⊥

n⊥ n
⊗ ℘

n⊥

n℘n

nn⊥

n⊥⊗n⊥

Example 6.21

⊗

n n⊥ n n⊥ n sn⊥

n⊗ sn⊥

℘ ⊗ ⊗
sn

(n⊥℘n)⊗ (n⊥⊗ n)

n⊥

Example 6.22

⊗

n n⊥ n n⊥ n n⊥ n npnp⊥

(n⊥℘n)⊗ (n⊥⊗n)

n⊗np⊥n⊥⊗n

n⊥
⊗ ℘ ⊗ ⊗

210 6 Lambek Calculus, Linear Logic and Proof Nets

Example 6.23

⊗

n⊥ n npnp⊥

n⊗np⊥

⊗
n n⊥ n n⊥ n

n⊥⊗n

n⊥

(n⊥℘n)⊗ (n⊥⊗n)

⊗ ℘ ⊗

Proof Nets

Definition 6.24 (proof net). A proof net is a prenet satisfying the following
properties:

ØÆ there is no æ cycle.
SAT there exists an æ path between any two vertices.

To facilitate a comparison with the well-known presentation of proof nets according
to (Danos and Regnier, 1989; Girard, 1995), we will introduce the Danos-Regnier
correctness condition, which is stated using correction graphs of prenets, defined as
follows.

Definition 6.25 (correction graph). From a prenet we obtain a correction graph
by rewriting the logical links as follows.

℘
→

℘
→or

⊗
→

Note that there are two ways of rewriting the par links, which means that for a prenet
with p par links there are 2p correction graphs. In addition, correction graphs only
have a single type of edges (all edges are B edges) so correction graphs really are
graphs (ie. a set of vertices and a set of edges connecting these vertices).

6.4 Proof Nets: Concise and Expressive Proofs 211

Definition 6.26 (Danos and Regnier (1989)). A prenet is a proof net iff all its cor-
rection graphs are acyclic and connected.

Compared to the Danos and Regnier presentation of proof nets, the property ØÆ

corresponds to the acyclicity of all correction graphs and the property SAT to their
connectedness (see Fleury and Retoré, 1994; Retoré, 1996). The advantage of the
current representation of proof nets is that the correctness condition can be verified
by inspection of only a single graph.

The following result of (Retoré, 1996; Retoré, 2003) shows that verifying the
correctness of prenets is rather easy from an algorithmic point of view — recently
some linear algorithms have been provided on the Danos-Regnier presentation of
proof nets, and they certainly can be adapted to our formalism (Guerrini, 1999,
2011; Murawski and Ong, 2000).

Proposition 6.27. Given a prenet with n vertices, their exists an algorithm which
decides in n2 steps whether the prenet is a proof net.

Among the examples of prenets given above, only 6.19, 6.20, 6.21, 6.22 and 6.23
are proof nets. The prenet 6.17 contains an æ cycle, and the prenet 6.18 does not
contain any æ path between the left most leaves n⊥ and n.

6.4.2 Sequent Calculus and Proof Nets

The following proposition gives a precise account of the correspondence between
proof nets and sequent calculus proofs, and its proofs shows how sequent calculus
proofs are mapped onto proof nets. The converse correspondence relies on graph
theoretical properties, and we refer the reader to (Retoré, 1996; Retoré, 2003).

Theorem 6.28. Every sequent calculus proof in MLL of a sequent� A1, . . . ,An trans-
lates into a proof net with conclusions A1, . . . ,An. Conversely, every proof net with
conclusions A1, . . . ,An corresponds to at least one sequent calculus proof in MLL
of � A1, . . . ,An in NC-MLL — every such proof is called a sequentialisation of the
proof net.

Proof. As said above, we limit ourselves to the first part of this statement.
The translation from sequent calculus proofs to proof nets is defined inductively.

As the exchange rule has no effect on proof nets, since for the time being we have
no order on the conclusions, we simply skip it. The effect of this rule would be to
produce crossings of axiom links, but up to now this is not part of our description of
a proof net. For instance, the Examples 6.22 and 6.23 shown above are considered to
be the same proof net: the three rightmost conclusions of Example 6.22 (n⊥, n⊗np⊥
and np) are the three leftmost conclusions of Example 6.23 but they are connected
in exactly the same way both to each other and to the rest of the prenet.

212 6 Lambek Calculus, Linear Logic and Proof Nets

Proof ∂ in MLL Corresponding proof net ∂ �

ax� α⊥,α
α⊥ α

··· ∂1

� Γ ,A,B
℘� Γ ,A℘B

A

A℘B

B

Γ

∂ �
1

··· ∂1

� Γ ,A

··· ∂2

� B,Γ ′⊗� Γ ,A⊗B,Γ ′
A B

Γ Γ ′

A⊗B

∂ �
1 ∂ �

2

It is easily checked by induction that the prenet corresponding to a sequent calculus
proof are proof nets: no æ cycle can appear during the construction, and the fact that
there always exists an æ path between any two vertices is also preserved during the
construction. ��
Using this inductive definition, the proofs of Example 6.10 and 6.11, both yield
the proof net of Example 6.22, so a single proof net corresponds to a single parse
structure.

Rules and links are in a one-to-one correspondence (that is, ax with Axiom, ℘
with Par and ⊗ with Tensor), and the last logical rule in the sequent calculus proof
correspond to a final link in the prenet — a link which is the root of one of the
subformula trees — while the converse does not hold. We nevertheless have the
following property, that will be useful later on:

Proposition 6.29. Let Π be a proof net such that:

• all conclusions of Π are the conclusions of Times or Axioms links
• there is at least one Times link, that is Π is not a single Axiom

then at least one of the final Times links is splitting, that is each of the two premise
B edges is a bridge — an edge the suppression of which increases the number of
connected components.

6.4 Proof Nets: Concise and Expressive Proofs 213

Proof. As we have a proof net, at least one sequent calculus proof translates into it.
The final rule of the sequent calculus correspond to a final link, so is a Times link.
From the translation given above, both the premise B edges of this link are bridges
of the graph. ��
Observe that not all final Times links are splitting. For instance in the example 6.22
the final Times n⊥⊗n is not splitting, and can not be the translation of the final rule
of a corresponding sequent calculus proof. The final Times links (n⊥℘n)⊗(n⊥⊗n)
and n⊗np⊥ are splitting Times links, and this is supported by the sequentialisations
given in examples 6.10 and 6.11.

We can generalize the notion of splitting Times link to a hereditary splitting
Times link as follows (Retoré, 1993).

Proposition 6.30. Let Π be a proof net and, as in Proposition 6.29, let all conclu-
sions of Π be the conclusions of Times and Axiom links with the number of Times
links being at least one. Π has a hereditary splitting Times link T ; that is

• T is a splitting Times link, and therefore removing T from Π splits the proof net
into two proof nets Π1 and Π2

• For each of the premises P1 and P2 of T , if Pi is the conclusion of a tensor link
Ti then Ti is a hereditary splitting Times link in Πi. Note that, since we know
for both Π1 and Π2 that all conclusions are either the conclusions of Axiom or
of Tensor links, it makes sense to talk about hereditary splitting Tensor links of
these subnets.

Proof. First, we remark that if one of the Πi has a hereditary splitting Times link
T ′i �= Ti, then T ′i is a hereditary splitting Times link of Π . For suppose T ′i were
not a hereditary splitting Times link of Π , this would mean that there would be a
path from two of the “leaves” of the tensor tree with T ′i as its root passing through
T which contradicts T being a splitting tensor link. The figure below illustrates the
situation. Note that T is a splitting tensor but (because of Ti) not a hereditary splitting
tensor although T ′i is a hereditary splitting tensor.

⊗

⊗

⊗

⊗

T T ′i

Ti

We proceed by induction on the number of tensor links in the proof net. Let T be
a splitting tensor link of Π .

214 6 Lambek Calculus, Linear Logic and Proof Nets

If none of the premises of T is the conclusion of a Times link, then T is hereditary
splitting and we are done.

If one of the two premises of T , say P1 is the conclusion of a Times link T1 then,
by induction hypothesis T1 has a hereditary splitting Times link T ′1. If T ′1 �= T1 then
T ′1 is a hereditary splitting Times link of Π according to the remark at the start of
the proof. Otherwise T1 is a hereditary splitting Times link in Π1. We therefore look
at the other premise P2 of T . If it is not the conclusion of a tensor link, then we are
done. However, if it is the conclusion of a Times link T2 we proceed as before: we
know by induction hypothesis that Π2 has a hereditary splitting Times link T ′2. If
T ′2 is not equal to T2 then T ′2 is a hereditary splitting Times link of Π . But if T ′2 is
a hereditary splitting Times link of Π2 then T is a hereditary splitting Times link
of Π . ��

A minimal representation of prenets and proof nets

To define a prenet or a proof net Π it is enough to give its conclusions and the
pairs of propositional variables which are linked by an axiom link. These pairs can
be depicted by a 2-permutation σΠ — that is a permutation such that σ2

Π = Id
and ∀x σΠ (x) �= x — defined on the set of occurrences of atoms in the sequence
of conclusions. This representation will become necessary when we will deal with
proof nets for the Lambek calculus, that are parse structures for Lambek categorial
grammars.

Up to now, representing the conclusions by a graph is needed to check whether
a prenet is a proof net (Girard, 1987; Danos and Regnier, 1989; Asperti, 1991; As-
perti and Dore, 1994; Métayer, 1993). This graph can be minimized in more ab-
stract representation (Retoré, 2003). There exists an alternative criterion relying on
denotational semantics (Retoré, 1997) which does not need such a graph, but, un-
fortunately, checking the correctness becomes exponential.

Let us give the description of the examples 6.22 and 6.19 by means of
2-permutations.

Example 6.31

Proof Net Π Example 6.22 Example 6.19

Conclusions of Π n⊥⊗n (n⊥℘n)⊗ (n⊥⊗n) n⊥ n⊗np⊥ np n⊥⊗n n℘n⊥

Atom occurrences x n⊥1 n2 n⊥3 n4 n⊥5 n6 n⊥7 n8 np⊥9 np10 n⊥1 n2 n3 n⊥4
σΠ (x) n4 n⊥3 n2 n⊥1 n8 n⊥7 n6 n⊥5 np10 np⊥9 n3 n⊥4 n⊥1 n2

6.4.3 Intuitionistic Proof Nets

Definition 6.32. An intuitionistic proof net with conclusions F1, . . . ,Fn is a proof net
satisfying:

INTUI: ∀i ∈ [1,n] Fi ∈ Li◦ ∪Li•.
For instance the example 6.20 is not an intuitionistic proof net since n℘n �∈ Li•∪Li◦.

6.4 Proof Nets: Concise and Expressive Proofs 215

Theorem 6.33. Every sequent calculus proof A1, . . . ,An � B in IMLL translates into
an intuitionistic proof net with conclusions−An, . . . ,−A1,+B.

Conversely, let Π a proof net with conclusions F1, . . . ,Fn ∈ Li. Then there exists
a unique index i0 in [1,n] such that Fi0 ∈ Li◦ and Fi ∈ Li•, for i �= i0, and Π is the
translation of a proof in IMLL of

(Fi0−1)
•
Lp,(Fi0−2)

•
Lp, . . . ,(F1)

•
Lp,(Fn)

•
Lp, . . . ,(Fi0+1)

•
Lp � (Xi0)

◦
Lp

Proof. The first part is obvious.
For the converse, we first have to justify the existence of i0. This existence is

justified by Theorem 6.28 (it shows that Π is the translation of proof of MLL) and
proposition 6.8 (which shows that a proof in MLL with all its conclusions in Li• ∪Li◦
has exactly one conclusion in Li◦ and all the others in Li•). Once the existence of
i0 is established, the result follows from proposition 6.9, which shows that given a
sequentialisation of Π in MLL, with conclusions � F1, . . . ,Fn (with Fi0 in Li◦ and all
the others in Li•) corresponds to a proof in IMLL of

(Fi0−1)
•
Lp,(Fi0−2)

•
Lp, . . . ,(F1)

•
Lp,(Fn)

•
Lp, . . . ,(Fi0+1)

•
Lp � (Xi0)

◦
Lp ��

6.4.4 Cyclic Proof Nets

We now turn our attention towards proof nets for NC-MLL. These are proof nets
which can be drawn in the plane without intersecting axioms, keeping the same
design and up-down orientation for links. This condition is strictly stronger than
being a planar graph (because we ask for the links to be drawn respecting left-right
and up-down as shown in the figures). Consequently we shall present this condition
without any reference to an embedding of the graph in the plane, but by means
of a 2-permutation (bracketings from formal language theory would work just the
same). This restriction, combined with the restriction for intuitionistic proof nets
from the previous paragraph, will give us a characterization of proof nets for the
Lambek calculus, and therefore give us a way to parse phrases and sentences with
proof nets.

Cyclic Permutations and Compatibility of a 2-Permutation

A permutation ψ over a set E with n elements is said to be cyclic whenever:

∀x,y ∈ E ∃k ∈ [0,n− 1] y = ψk(x) (with ψ0(x) = x)

such a permutation ψ can be described by an expression:

� x;ψ(x);ψ(ψ(x)); · · · ;ψn−1(x)�

Given x,y ∈ E , and an index k ∈ [0,n−1] such that y = ψk(x), we write [x,y] for the
set {z | ∃ j ∈ [0,k] z = ψ j(x)}; similarly [x,y[is defined as {z | ∃ j ∈ [0,k[z =
ψ j(x)} etc.

216 6 Lambek Calculus, Linear Logic and Proof Nets

Given a set E endowed with a cyclic permutation ψ and a 2-permutation σ we
can give an algebraic account of the following geometric fact: if we place the points
of E on a circle following the cyclic order ψ , the chords joining x and σ(x) do
not intersect any other chord — in other words, σ is a correct bracketing, w.r.t. the
cyclic order ψ over E .

Definition 6.34. A 2-permutation σ of E is said to be compatible with a cyclic per-
mutation ψ of E whenever ∀x,y ∈ E x ∈ [y,σ(y)]⇒ σ(x) ∈ [y,σ(y)].

For instance the 2-permutation σΠ of the example 6.31 (n⊥1 ,n3),(n2,n⊥4) is not com-
patible with the cyclic permutation�n⊥1 ;n2;n3;n⊥4 �. Indeed, n2∈ [n⊥1 ,σΠ (n⊥1)=n3]
while σΠ (n2) = n⊥4 �∈ [n⊥1 ,n3].

In the following definition the Ei’s should be viewed as the conclusions of a proof
net Π , endowed with the cyclic permutation ΨΠ . The induced cyclic permutation is
the cyclic permutation induced on the atoms — thus, viewing σ of the previous
definition as the axioms of Π , we are able to express that axioms do not intersect.

Definition 6.35. Let � E1; · · · ;En � be a cyclic permutation of M = {E1, . . . ,En}
where each Ei is a sequence of symbols a1

i ,a
2
i , . . . ,a

ji
i . The cyclic permutation in-

duced by Ψ over the disjoint sum of the symbols of the Ei’s is the cyclic permutation
defined by:

� a1
1;a2

1; · · · ;a j1
1 ;a1

2;a2
2; · · · ;a j2

2 ; · · · ;a1
n;a2

n; · · · ;a jn
n �

In order to characterize the proof nets for the Lambek calculus we shall need the
following proposition:

Proposition 6.36. Let Ψ be a cyclic permutation over a finite set M of n sequences
of symbols M = E1, . . . ,En. Let ψ be the cyclic permutation induced on E =⊕Ei, as
in definition 6.35. Let σ be a 2-permutation of E, compatible with ψ , as in definition
6.34. Let Σ be the following (symmetric) relation over M: EiΣE j whenever there
exists xi ∈ Ei such that σ(xi) ∈ E j. Let Σ∗ be the transitive closure of Σ ; if Σ∗ has
exactly two equivalence classes G and D , then there exist G ∈ G and D ∈ D such
that: G = [G,D[and D = [D,G[.

Proof. By induction on #E + n.
If one of the class contains only one element, the result is obvious — this neces-

sarily happens when a class has a single element, for instance when n = 2.
There exists z such that ψ(z) = σ(z) Let z be a point such that #]z,σ(z)[has the
smallest number of elements, and let us show that #]z,σ(z)[= 0 — hence ψ(z) =
σ(z). Assume that there exists y ∈]z,σ(z)[; since σ is compatible with ψ , σ(y) ∈
]z,σ(z)[. Thus one of the two intervals]y,σ(y)[or]σ(y),σ(σ(y)) = y[is a subset
of]z,σ(z)[, and since none of them contains y, they have strictly less elements than
#]z,σ(z)[, contradiction.

Let z be an element such that ψ(z) = σ(z) and let i be the index such that z ∈ Ei.
Three cases can happen:

6.4 Proof Nets: Concise and Expressive Proofs 217

σ(z) ∈ Ei and Ei = z,σ(z) In this case, Ei is the only element in its equivalence
class, and the result is clear.

σ(z) ∈ Ei and Ei = . . . ,z,σ(z), . . . In this case, replace Ei with Ei \ {z,σ(z)}, re-
strict σ and ψ to E \{z,σ(z)}. The induction hypothesis apply, and since Σ∗ remains
unchanged, the D and G provided by the induction hypothesis are solutions for the
original problem.

σ(z) �∈ Ei. In this case σ(z) is the first symbol of Ei+1 =Ψ(Ei). Let us consider
the following reduction problem:

let Ψ ′ be the cyclic permutation � E1; . . . ;Ei−1;Ei(i+1);Ei+2; . . . ;En � where
Ei(i+1) is the sequence of symbols Ei,E j

Observe that E , ψ and σ remains unchanged, and therefore σ is compatible with
ψ . Since EiΣEi+1 the equivalence relation Σ ′∗ for this reduction problem also has
exactly two classes.

Hence we are faced with a similar problem with #M′ = n− 1. The induction
hypothesis yields G′ and D′ such that G ′ = [G′,D′[and D ′ = [D,G′[. A solution to
the original problem is given by G = G′ and D = D′ —- if G′ (resp. D′) is Ei(i+1),
then G (resp. D) should be Ei. ��

Cyclic Proof Nets

Definition 6.37. A cyclic prenet with conclusionsΨ :� A1; · · · ;An � is a prenet with
conclusions A1, . . . ,An endowed with the cyclic permutationΨΠ :� A1, . . . ,An �. We
write Ψ at

Π for the cyclic permutation induced byΨΠ on the atoms ofΨ — in the sense
of the definition 6.35.

Definition 6.38. A cyclic prenet with conclusion Ψ :� A1, · · · ,An � is a cyclic proof
net if and only if it is a proof net with conclusion A1, . . . ,An (the conditions ØÆ and
SATare satisfied) and:

NC: σΠ is compatible with Ψ at
Π

For instance the example 6.19 is not a cyclic proof net. Indeed,ΨΠ =� n⊥1 ⊗n2;n3℘
n⊥4 � (there are only two conclusions, so there is only one possible cyclic permuta-
tion), and Ψat

Π = � n⊥1 ;n2;n3;n⊥4 �, while the 2-permutation σΠ of its axiom links,
given in example 6.31, is not compatible with Ψ at

Π — as we have seen after the
definition 6.34.

The proof nets of the examples 6.20, 6.21, 6.22 and 6.23 are cyclic proof nets.

Theorem 6.39. Every sequent calculus proof of � A1, . . . ,An in NC-MLL translates
into a cyclic proof net with conclusions � A1; · · · ;An �.

Conversely, every cyclic proof net with conclusion n � A1; · · · ;An � is the trans-
lation of at least a sequent calculus proof of � A1, . . . ,An in NC-MLL.

Proof. The first part is rather simple to establish by induction on the sequent calcu-
lus proof. Nevertheless one should take care of the compatibility of Ψat

Π with σΠ ;
to do so, one should place atoms on a circle, and draw axiom links as chords of

218 6 Lambek Calculus, Linear Logic and Proof Nets

this circle, and draw R&B subformula trees outside the circle. Observe that the cyclic
exchange (cx) corresponds to the equality of the proof nets.

The converse is proved by induction on the number of links of the proof net Π .
As it is a proof net, Proposition 6.29 applies.

If Π is an axiom � α,α⊥ �= � α,α⊥ � a sequentialisation is provided by the
axiom � α,α⊥ of NC-MLL.

If Π has a final Par link Ai = A℘A′, let us consider Π ′ the proof net obtained
from Π by suppressing this final Par link and endowed with the cyclic permutation
� A1; . . . ;Ai−1;A;A′;Ai+1; · · ·An �. The proof net Π ′ is a cyclic proof net as well,
since Ψ at

Π ′ = Ψat
Π and σΠ ′ = σΠ . By induction hypothesis there exists a sequent

calculus proof in NC-MLL corresponding to Π ′, and applying a ℘ rule to this proof
yields a sequentialisation of Π .

Otherwise, by Lemma 6.29, Π has a splitting Times, say Ai = A⊗ A′. Sup-
pressing this final link yields two proof nets ΠA and ΠA′ with conclusions ΓA =
Ai1 , . . . ,Aip ,A and ΓA′ = A j1 , . . . ,A jq ,A

′ with {i1, . . . , ip, j1, . . . , jq} = [1,n] \ {i}.
Consider the prenet Π ′=ΠA∪ΠA′ and endow its conclusions with the cyclic permu-
tation � A1; · · · ;Ai−1;A;A′;Ai+1; · · · ;An �. Since Ψ at

Π ′ =Ψat
Π and σΠ ′ = σΠ , the 2-

permutation σΠ ′ is compatible with Ψat
Π ′ . Let Σ be the (symmetric) relation between

the conclusions of Π ′ defined by: ∃x ∈C σΠ (x) ∈C′ — in other words, this relation
holds whenever Π contains an axiom with a conclusion in C and the other in C′.
The link A⊗B is splitting in Π , means that Σ∗ has exactly two equivalence classes
ΓA and ΓA′ . Because of Proposition 6.36 the cyclic permutation of the conclusions
of Π ′ can be written as � Ai1 ; · · · ,Aip ;A;A′,A j1 ; · · · ;A jq �. Thus ΠA (resp. ΠA′) en-
dowed with the cyclic permutation � Ai1 ; · · · ,Aip ;A � (resp. � A′,A j1 ; · · · ;A jq �) is
a cyclic proof net. Indeed ΠA is a proof net and since σΠA and Ψat

ΠA
are the restric-

tions to ΓA of σΠ and Ψat
Π compatibility is preserved — the same argument works

for ΠA′ .
Therefore, by induction hypothesis we have two sequent calculus proofs in

NC-MLL with conclusions � Ai1 ; · · · ,Aip ;A and � A′;A j1 ; · · · ;A jq corresponding
to ΠA and Π ′

A. Applying the rule ⊗ of NC-MLL yields a proof with conclusion
� ΓA,A⊗B,ΓB corresponding to Π . ��
For instance the proofs of the examples 6.10 and 6.11 correspond to the cyclic
proof net of the example 6.22, which is equal to the proof net of the example
6.23. Indeed expressions � n⊥ ⊗ n;(n⊥℘n)⊗ (n⊥ ⊗ n);n⊥;n⊗ np⊥;np � and �

n⊥;n⊗np⊥;np;n⊥⊗n;(n⊥℘n)⊗(n⊥⊗n)� denotes the same cyclic permutation.

6.4.5 Proof Nets for the Lambek Calculus — With or Without Empty
Antecedent

In order to characterize the proof nets of the Lambek calculus L, which exclude
sequents with empty antecedents, we need the following proposition. It involves the
notion of a sub-prenet and subproof net: a sub-prenet (sub proof net) is a subgraph
of a prenet (proof net) which is itself a prenet (proof net). A sub-prenet of a proof
net is not always a proof net: it is possible that SAT does not hold in the sub-prenet
(but ØÆ holds).

6.4 Proof Nets: Concise and Expressive Proofs 219

Proposition 6.40. Let Π be a proof net; the following statements are all equivalent:

1. Every sub-prenet of Π has at least two conclusions. (ε -FREE)
2. Every sub proof net of Π has at least two conclusions.
3. Every sequentialisation of Π contains only sequents with at least two conclu-

sions.
4. There exists a sequentialisation of Π which contains only sequents with at least

two conclusions.

Proof. Implications 1⇒ 2, 2⇒ 3 and 3⇒ 4 are straightforward.
4⇒ 1 is shown by induction on the number of links in Π , which is equal to the

number of axioms and logical rules of every sequentialisation of Π . Let us consider
a sequentialisation Π ∗ of Π , such that every sequent of it contains at least two
formulae. We can assume the last rule of Π ∗ is not an exchange rule: indeed the
same proof without this exchange rule is also a sequentialisation of Π , with all
sequents having at least two formulae.

If the last rule of Π ∗ is an axiom, Π ∗ consists of this axiom, which contains two
formulae. In this case Π is an axiom, whose only sub-prenet is itself, which has two
conclusions.

If that rule of Π ∗ is a two premise rule, applied to two proofs Π ′∗ and Π ′′∗, the
corresponding link of Π is a splitting Times link: Π is obtained from two smaller
proof nets Π ′ and Π ′′ connected by this Times link. The two proofs Π ′∗ and Π ′′∗
are possible sequentialisations for Π ′ and Π ′′ and these proofs also have sequents
with at least two formulae. Thus the induction hypothesis can be applied to Π ′ and
Π ′′: every sub-prenet of Π ′ or of Π ′′ has at least two conclusions. The intersection
of a sub-prenet sΠ of Π , with Π ′ (resp. Π ′′) is a sub-prenet of Π ′ (resp. Π ′′) which
has p > 1 (resp. q > 1) conclusions. If the Times link is part of sΠ then the number
of conclusions of sΠ is p+ q− 1 > 1, and otherwise the number of conclusion of
sΠ is p+ q > 1. Thus, in any case Π satisfies ε -FREE.

If the last rule of Π ∗ is a one premise rule applied to some proof Π ′∗, the cor-
responding link of Π is a final Par link. Let Π ′ be the proof net obtained from Π
by removing this final Par link; it is a proof net with strictly less links, which has
a sequentialisation Π ′∗ with sequents with more than one conclusions. Hence, by
induction hypothesis every sub-prenet of Π ′ has at least two conclusions. Given a
sub-prenet sΠ of Π , its intersection sΠ ′ with Π ′ has at least two conclusions. It is
impossible that sΠ ′ has only the two conclusions X and Y . Indeed we know that Π
has at least two conclusions, hence it has another conclusion Z in addition to X℘Y .
Since Π is a proof net it is connected, and there exists a path joining sΠ ′ to Z con-
clusion, and this path can be assumed to lie outside sΠ ′ — by cutting the part inside
sΠ ′. So there exists an edge of Π , incident to sΠ ′ starting this path. This edge can
neither be the R edge below X , nor the one below Y , since any path starting by one
of these edges has to enter again sΠ ′. But the only way to leave a sub-prenet is from
one of its conclusions: therefore sΠ ′ has a conclusion which is neither X nor Y . Let
p be the number of conclusions of sΠ ′. If X and Y are among the p conclusions of
sΠ ′, then sΠ ′ has another conclusion and p > 2. Therefore, either sΠ has p > 2

220 6 Lambek Calculus, Linear Logic and Proof Nets

conclusions (when X℘Y is not one of its conclusions), or sΠ has p−1 > 1 conclu-
sions (when X ℘Y is one of its conclusions). If X or Y is not a conclusion of sΠ ′,
then X ℘Y is not a conclusion of sΠ , and sΠ and sΠ ′ have the same number of
conclusions p > 1.

In any case sΠ has at least two conclusions. ��
Definition 6.41. A Lambek proof net of conclusion ΨΠ = � F1; · · · ;Fn � is an intu-
itionistic cyclic proof net, i.e. a prenet satisfying

ØÆ: there is no æ cycle alternate elementary cycle.
SAT: There always exists an æ path between any two vertices.
INTUI: Every conclusion Fi is in Li• ∪Li◦.
NC: σΠ is compatible with Ψ at

Π — the axioms of Π do not intersect.

A Lambek proof net is said to be without empty antecedent if, moreover:

ε -FREE: Every subprenet of Π has at least two conclusions.

Among the four equivalent statements given above, we have chosen the first one,
because subprenets are easier to define. It is enough to chose a set of vertices of
the proof net, and to close it by subformula and axiom links, without verifying
SAT or ØÆ. When NC and ØÆ hold, this amounts to the following fact: for every
subformula G of a conclusion, the first and last atom of G are never linked by an
axiom. If G = H⊗H ′ then this holds, and if G = H ℘H ′, this exactly means that
there is no sub-net with a single conclusion.

Theorem 6.42. Every sequent calculus proof with conclusion A1, . . . ,An � B in Lε
(resp. L) translates into a Lambek proof net (resp. a Lambek proof net without empty
antecedent) with conclusions �−An; · · · ,−A1;+B �.

Conversely, let Π be a Lambek proof net (resp. a Lambek proof net without empty
antecedent) with conclusions � F1; . . . ;Fn �. and let i0 be the unique index in [1,n]
such that Fi0 ∈ Li◦ and Fi ∈ Li•, for i �= i0. The proof net Π is the translation of at
least a sequent calculus proof in Lε (resp. L) of

(Fi0−1)
•
L,(Fi0−2)

•
Lp, . . . ,(F1)

•
Lp,(Fn)

•
Lp, . . . ,(Fi0+1)

•
Lp � (Fi0)

◦
Lp

Proof. The first part is a straightforward induction on the sequent calculus proof in
Lε (resp. L).

For the second part, we know from Proposition 6.39 that there is a sequential-
isation corresponding to Π in NC-MLL, with conclusion � F1, · · · ,Fn. Because of
Proposition 6.9, this sequent calculus proof in NC-MLL corresponds to a proof of

(Fi0−1)
•
L,(Fi0−2)

•
Lp, . . . ,(F1)

•
Lp,(Fn)

•
Lp, . . . ,(Fi0+1)

•
Lp � (Fi0)

◦
Lp

in Lε . Using 1⇒ 3 of Proposition 6.40, it is easily seen that whenever Π is a Lambek
proof net without empty antecedent, the sequentialisation in Lε is in fact in L, i.e. it
does not contain sequents with only one formula. ��

6.4 Proof Nets: Concise and Expressive Proofs 221

Among our proof net examples, only Examples 6.21, 6.22 and 6.23 are Lambek
proof nets. Example 6.22 corresponds to the parse structures 6.5 and 6.6: we thus
got rid of spurious ambiguity — a classical drawback of sequent proof search for
categorial grammars, which provides too many proofs/parse structures for a single
analysis. One advantage of working with cyclic permutation is that Examples 6.22
and 6.23 are equal. Example 6.21 is not a Lambek proof net without empty an-
tecedent: indeed it contains a sub-net whose only conclusion is n⊥℘n. It corre-
sponds to the Example 6.4 in Lε .

6.4.6 Cut Elimination for Proof Nets

We have deliberately excluded the cut links from our discussion of proof nets so
far. We will present two versions of the cut link, the first is a simple connection
of a formula with its negation. The second is a special kind of tensor link with the
constant “Cut” as its conclusion. This second formulation has the advantage that we
can treat the cut link just as a tensor link in sequentialisation proofs.

Name Graph Premises Conclusions

Cut
A A⊥ A and A⊥

none

Cut⊗

⊗

Cut

A A⊥

A and A⊥
the special constant “Cut”

Cut elimination for proof nets is very simple — at least in the commutative case,
we will discuss why cut elimination is more diffcult for non-commutative calculi in
the next section. The base case occurs when the cut link is connected to an axiom
link. In this case we are in the following situation.

Π1

Π2

A A⊥ A

Π1

Π2

A

We know that Π1 and Π2 must be disjoint, since the vertices of Π1 and Π2 are
connected by the path passing through the cut and the axiom link and we know
that the complete proof net does not have an alternate elementary cycle. We can
eliminate the cut as shown in the figure above on the right: we remove both the
cut and the axiom link and the resulting structure satisfies ØÆ and SAT because the
unreduced structure did.

222 6 Lambek Calculus, Linear Logic and Proof Nets

In case the cut link is connected to a complex formula, we must be in the situation
shown below on the left.

Π1 Π2 Π3

A⊥ B⊥

A⊥℘B⊥ B⊗A

B A℘ ⊗ A⊥ AB⊥ B

Π1 Π2 Π3

That is, given that we have a proof net on the left hand side of the figure, Π2

and Π3 are connected by the tensor link which is shown in the figure and therefore
not connected elsewhere and Π1 is connected to Π2 and Π3 by means of the paths
shown in the figure and therefore not by any other paths.

We can replace the cut link by two cut links on the subformulas as shown in the
figure above on the right. It is easy to see that the resulting structure is again a proof
net. The path from A (and the formulas of Π3) to B (and the formulas of Π2) which
used to be connected directly through the Times link now goes through Π1, but all
other paths have been shortened.

It is also easy to see that cut elimination is confluent.

Lemma 6.43. Let Π be a proof net with cuts with possible cuts Ki, K⊥i such that
all conclusions are polarized and with one output conclusion, then all Ki, K⊥i are
polarized.

Proof. This lemma is an easy corollary of Proposition 6.30 when we treat cut links
as tensor links Cut⊗. We assume, without loss of generality, that Π has only atomic
axiom links. Since Π is a proof net, we sequentialise as before.

If Π contains conclusions which are par links, then we can remove the par link
and the result will be a proof net, it is easy to verify that this new proof net is
still polarized since all polarized par links reduce the number of negative formulas,
but keep the number of positive formulas constant. In case there are no terminal par
links, by Proposition 6.30 there is a hereditary splitting Times link, possibly a cut. In
case it is not a cut, removing the n > 0 hereditary splitting tensors will produce n+1
disjoint proof nets Π1, . . . ,Πn. We only need to verify that all Πi are polarized. If
the conclusion of the hereditary splitting link is a postive Times link with conclusion
A⊗B, then all n Times links are positive and each Πi will have a positive conclusion
after removal of all the Times links. If it is a negative Times link, then extactly one
of the Πi, say Πk, has a positive conclusion which is already a conclusion of Π and
is therefore connected to the hereditary splitting Times by an input conclusion of
Πk. Given the form of the polarized Times links, this means that all Πi for i �= k
have a single positive conclusion.

The interesting case is when there hereditary splitting Times link is a cut link
between A and A⊥ where A and A⊥ are not necessarily polarized. However, we

6.4 Proof Nets: Concise and Expressive Proofs 223

know by induction hypothesis that all conclusions of Π are polarized. In case A is
an atomic formula, this means that A is connected by an axiom link to a formula A⊥
which is a conclusion of Π and therefore both A and A⊥ are polarized. Now suppose
A = B℘C and A⊥ = C⊥⊗B⊥: this is the only combination which is not polarized
and we show it leads to a contradiction. One step of cut elimination connects B
to B⊥ and C to C⊥. We also know that Π1, the subnet with conclusion B⊥, and
Π2, the subnet with conclusion C⊥, are both a proof nets and the the proof net
Π is polarized, that is Π has a single polarized output conclusion and all other
conclusions of Π a polarized input conclusions. Since B⊥ and C⊥ are both input
conclusions of their respective proof nets Π1 and Π2 and all other conclusions of
both proof nets were conclusions of Π this means that one of Π1 and Π2 does not
have a positive conclusion and therefore is not a polarized proof net.

6.4.7 Cuts and Non-commutative Proof Nets

There are a variety of multiplicative proof nets criteria in the usual commutative case
that are fully satisfying. But the non-commutative case is rather tricky when there
are cuts. To the best of our knowledge, only the criterion by Paul-André Melliès is
fully satisfactory (Melliès, 2004). What do we mean by ”satisfactory” for a correct-
ness criterion?

1. every sequent calculus proof should be mapped to a correct proof net, rules
corresponding to links (in particular cut-free proofs should be mapped to cut-
free proof nets)

2. every correct proof net should correspond to a sequent calculus proof links cor-
responding to rules (in particular cut-free proofs should be mapped to cut-free
proof nets)

3. sequent calculus proofs that only differ up to rule permutations should be
mapped to the same proof net

4. the criterion should be preserved under cut elimination in proof nets (not as
obvious as it may seem)

The reason why criteria are trickier in the non commutative case mainly comes from
the difference between cut links and times links. In a planar representation, a cut link
is allowed to be included in an internal face, while a times link which is a conclusion
of the proof net is not. Figure 6.3 (after Melliès, 2004, p. 294) shows an example.

As the reader can easily verify (Exercises 6.5 asks you to verify a number of
properties of this proof structure), it is a proof structure of

� (b⊥℘b)⊗ (a⊥℘a)

which, though this sequent is derivable, the proof structure shown in Figure 6.3
is not sequentialisable in a non-commutative calculus. However, it is planar and
satisfies all other conditions for proof nets (at least for proof nets which allow empty
antecedent derivations).

224 6 Lambek Calculus, Linear Logic and Proof Nets

℘ ⊗

⊗

℘℘⊗ ⊗

℘ ℘

1

2

3 4

5 6

Fig. 6.3. Proof structure which does not correspond to a non-commutative sequent proof

To see that this proof net is not sequentialisable, the only conclusions of the
proof net are the tensor link and the cut link (which, as before, we treat as a tensor
link as well for the purpose of sequentialisation). Only the cut link splits the proof
structure into two disconnected proof structures: one proof structure with conclusion
� (a⊥℘a)⊗(b⊥℘b) — which is both derivable and a substructure which is a proof
net — but the second proof structure is a proof structure of

� (b⊥⊗b)℘(a⊥⊗a),(b⊥℘b)⊗ (a⊥℘a)

which is not derivable in a non-commutative logic.
The correctness condition of Melliès (2004) (though the terminology we use is

closer to de Groote, 1999) formalizes this restriction on the conclusions. This con-
dition is, to the best of our knowledge, the only correctness condition which works
correctly for non-commutative proof nets with cut links.

Definition 6.44. Let P be a planar drawing of a proof structure. A face f of P is a
connected area enclosed by the edges of the proof structure such that the border of
f contains at least one B edge.

The faces of Figure 6.3 are shown as n . The R triangle of a Times link is not counted
as a face, though face 5 and 6 show valid three-edge faces.

Definition 6.45. A face f of a proof structure is an internal face iff it contains both
R edges of at least one Par link. A face which is not internal is called external.

Definition 6.46. A proof structure Π is a proof net iff it satisfies ØÆ, SAT and all
conclusions of Π are on the unique external face of Π .

We can see that the external face of the proof structure in Figure 6.3 is face 2 (and
not face 1 whose frontier contains both R edges of the par link connected to the cut
link). As a conquence, the proof structure is not a proof net, since its conclusion is
on the internal face 1 .

6.4 Proof Nets: Concise and Expressive Proofs 225

6.4.8 Basic Properties of Graphs and Proof Nets

This section covers some basic properties of graphs and proof nets. Notably, it
shows that, under certain conditions we can replace the acyclicity and connectedness
condition of Danos and Regnier (1989) by either an acyclicity condition or a con-
nectedness condition, using some basic properties of acyclic and connected graphs
(Bondy and Murty, 1976; Diestel, 2010). Though people have been aware of many
of these properties for a long time (eg. J. van de Wiele (1991, p.c.)), it is actually
rather hard to find in print, though Guerrini (2011) gives a clear presentation of many
of the results of this section and Morrill and Fadda (2008) independently prove that
acyclicity implies connectedness (part of Corollary 6.56 in this section).

In this section, we will often say that a prenet Π is acyclic or connected, in the
sense of Danos and Regnier (Definition 6.26) to indicate that all correction graphs
of Π are acyclic or connected.

Definition 6.47. Let G be a graph. We will use v to denote the number of its vertices
and e to denote the number of its edges.

Proposition 6.48. If G is acyclic and connected, then e = v− 1.

Proof. By induction on v. If v = 1 then e = 0, which is the only acyclic connected
graph with a single vertex.

Suppose v > 1, then G contains at least one edge m and since G is acyclic G−m
has two components G1 and G2 which are acyclic and connected and which have less
than v vertices. By induction hypothesis e1 = v1− 1 and e2 = v2− 1 and therefore,
since e = e1 + e2 + 1, we have e = (v1− 1)+ (v2− 1)+ 1 = v1 + v2− 1 and since
v = v1 + v2, we have e = v− 1 as required. ��
Proposition 6.49. If G is a graph such that e = v− 1 then G is acyclic iff G is
connected.

Proof. If G is acyclic, then it consists of a number of connected components n, each
of which, being acyclic and connected, satisfies ei = vi− 1 for 1≤ i≤ n, according
to Proposition 6.48. Therefore, for the complete graph we have e = v− n, where n
is the number of components. Since e = v− 1 by assumption, there is only a single
connected component and therefore G is connected.

If G is connected then let G′ be an acyclic, connected subgraph of G which con-
tains all vertices of G (that is, a spanning tree: to obtain G′, we delete the necessary
number of edges from G to obtain an acyclic, connected graph). Since G′ is acyclic
and connected, according to Proposition 6.48 it has v− 1 edges. But since G has
v− 1 edges by assumption, G is equal to G′ and therefore acyclic. ��
Definition 6.50. Let Π be a (cut-free) prenet. We will use c to denote its number of
conclusions, p to denote its number of par links, t to denote its number of tensor
links and a to denote its number of axiom links.

226 6 Lambek Calculus, Linear Logic and Proof Nets

The following proposition, relating the number of tensor links, par links and con-
clusions of a proof net is also rather easy to show (Exercise 7.4 asks you to prove
this proposition yourself). It was first noticed by in the early nineties and appears in
Fleury (1996).

Proposition 6.51. If Π is a proof net, then c+ p = t + 2.

Proposition 6.52. If a prenet Π is polarized and has a single positive conclusion,
then c+ p = t + 2 = a+ 1.

Proof. When we look at the construction of a prenet from the axioms down, we see
that a prenet with a axioms, without any tensor and par links, has a positive/output
conclusions and a negative/input conclusions. If Π has a single positive conclusion,
then it has c− 1 negative conclusions.

• For each par link we add, we take two (possibly disconnected) conclusions of
the prenet as its premises and introduce a new conclusion, increasing the number
of par links by one, keeping the number of positive conclusions constant, but
reducing the total number of negative conclusions by one — a polarized par link
has either two negative premises and a negative conclusion or a positive and a
negative premise and a positive conclusion.

• For each tensor link we add to the structure, on the other hand, we keep the
number of negative conclusions constant, but reduce the total number of pos-
itive conclusions — a polarized tensor link has either two positive premises
and a positive conclusion or a positive and a negative premise and a negative
conclusion.

Therefore, the only way to obtain a prenet with c− 1 negative conclusions is for
the prenet to have a− (c− 1) par links and the only way to obtain a prenet with
one positive conclusion is for the prenet to have a−1 tensor links. Therefore, every
polarized prenet with a single output conclusion has t = a−1, p= a−(c−1), which
gives c+ p = t + 2 = a+ 1. ��
Proposition 6.53. If Π is a prenet, then every correction graph G of Π has 2a+
p+ t vertices and a+ p+ 2t edges.

Proof. Since each vertex is the conclusion of exactly one link, we can simply count
the conclusions of the links in the proof nets: two for each axiom link and one for
each tensor and par link. For the edges, each correction graph replaces a tensor link
by two edges and a par link by a single edge (the axiom links stay single edges). ��
Propositions 6.54 and 6.55 follow the simple and elegant proofs of Guerrini (2011).

In Proposition 6.52, we have seen that a = t + 1 held for polarized prenets with
a unique positive conclusion. The next proposition shows that a = t + 1 holds in
general for proof nets.

6.5 Parsing as Proof Net Construction 227

Proposition 6.54. If Π is a proof net (not necessarily polarized) then a = t + 1.

Proof. Since Π is a proof net, all its correction graphs are acyclic and connected.
Therefore, according to Proposition 6.48, e = v− 1. By Proposition 6.53 all cor-
rection graphs of Π have v = 2a+ p+ t and e = a+ p+ 2t giving a+ p+ 2t =
2a+ p+ t− 1, which simplifies to a = t + 1. ��
We can now show that for any prenet Π such that a = t + 1, it suffices to check
either acyclicity or connectedness to determine whether or not Π is a proof net:
in other words a prenet with a cycle (and satisfying a = t + 1) will necessarily be
disconnected and a disconnected prenet satisfying a = t +1 will necessarily contain
a cycle.

Proposition 6.55. Let Π be a prenet with a = t +1, Π is a proof net iff Π is acyclic
and Π is a proof net iff Π is connected.

Proof. If Π is a proof net, then a = t + 1 by Proposition 6.54 and all correction
graphs are both acyclic and connected by Definition 6.26.

For the other direction, suppose Π is a prenet such that a = t + 1, then, by the
same reasoning as used for the proof of Proposition 6.54, e= v−1, which, according
to Proposition 6.49 means that acyclicity implies connectedness and vice versa. ��
By the preceding propositions, we can do even better in the intuitionistic case, where
all formulas are polarized and there is a conclusion of output polarity. In this case
a = t + 1 is satisfied by Proposition 6.52.

Corollary 6.56. If Π is polarized prenet with a single output conclusion then Π is
a proof net iff Π is acyclic and Π is a proof net iff Π is connected.

Proof. Immediate from Proposition 6.52 and Proposition 6.55 ��

6.5 Parsing as Proof Net Construction

Assume we want to analyze the noun phrase ‘un exemple très simple’, according to
the lexicon provided in Example 6.4. We need a proof in L of

np /n,n,(n \ n)/(n \ n),n \ n � np

Because of Proposition 6.42 this amounts to construct a Lambek proof net without
empty antecedent with conclusions:

� n⊥⊗n;(n⊥℘n)⊗ (n⊥⊗n);n⊥;n⊗np⊥;np �

— these ”linear types” are automatically computed as we did in Example 6.1, and
the order is inverted (see Proposition 6.9). So the lexicon automatically provides the
R&B subformula trees of the proof net shown in Figure 6.4.

228 6 Lambek Calculus, Linear Logic and Proof Nets

3 4 52 6 7 8 9 101

⊗⊗

⊗

℘
n n⊥ n n⊥ n n⊥ n npnp⊥

(n⊥℘n)⊗ (n⊥⊗n)

n⊗np⊥n⊥⊗n

n⊥
⊗

simple

très

exemple

un

n−◦n

(n−◦n)◦− (n−◦n)

n

np ◦−n

Fig. 6.4. Subformula trees of “un exemple très simple”

What is missing to obtain a proof net is σΠ , the axiom links between the
occurrences

n⊥1 ,n2,n
⊥
3 ,n4,n

⊥
5 ,n6n⊥7 ,n8,np⊥9 ,np10

They should be placed in such a way that the conditions ØÆ, SAT, INTUI, NC, ε -
FREE are met. Of course, INTUI is automatically satisfied since all conclusions be-
long to (Lp)⊥ and one (S) is in Lp

Because axioms link dual formulae there must be an axiom (np⊥9 ,np10). One
should then link the n and the n⊥, and this makes 24 possibilities. However, thanks
to the constraints expressed by ØÆ, SAT, NC and ε -FREE we almost have no choice:

(n4,n⊥5) �∈ σΠ — ØÆ, æ cycle with the Times link (n⊥3 ℘n4)⊗ (n⊥5 ⊗n6).
(n⊥5 ,n6) �∈ σΠ — ØÆ, æ cycle with the Times link between these two atoms.
(n⊥3 ,n4) �∈ σΠ — ε -FREE, sub-prenet with a single conclusion.
(n4,n⊥7) �∈ σΠ — NC this would force (n⊥5 ,n

6), which was shown to be impossible.
(n⊥1 ,n4) ∈ σΠ — only possible choice for n4.
(n2,n⊥3) ∈ σΠ — NC, because of the previous line.
(n⊥7 ,n8) �∈ σΠ — SAT, yields a disconnected prenet, since we already have

(np⊥9 ,np10) ∈ σΠ .
(n⊥5 ,n8),(n6,n⊥7) ∈ σΠ — only possible choice for these atoms, according to the

above decisions.

Hence the only possible solution is the 2-permutation σΠ given in the example 6.31:
(n⊥1 ,n4),(n2,n⊥3),(n

⊥
5 ,n8),(n6,n⊥7),(np⊥9 ,np10). It corresponds to the prenet 6.22.

Remark that though we have shown in Corollary 6.56 that it suffices to check
either connectedness or acyclicity, enforcing the two conditions together allows us
to disqualify more invalid axiom links directly (see (Moot, 2007) for discussion).

Next, one has to check that the result is a Lambek proof net, without empty an-
tecedent, and this is straightforward and quick. It corresponds to the sequent calculus
proofs given in examples 6.5 and 6.6. The identification of various sequent calculus
proofs into a single proof net leads to less possibilities when constructing the proof.

6.6 Proof Nets and Human Processing 229

A natural question is the algorithmic complexity of this parsing algorithm. For
the less constrained calculus MLL (only satisfying ØÆ and SAT) it is known to be
NP complete (Lincoln et al, 1992), but the notion of splitting Times leads to efficient
heuristics using the fact that there never can be any axiom link between the two sides
of a Times link (de Groote, 1995). This considerably reduces the search space. The
intuitionistic restriction does not lead to any improvement.

For the non commutative calculi, and in particular for the Lambek calculus, the
order constraint NC is so restrictive that one might be tempted to think that the
complexity is polynomial. However, a recent paper of Mati Pentus (Pentus, 2006)
shows that the Lambek calculus with product is NP complete as well, with the help
of a variation of the proof nets studied in this chapter. In addition, Yuri Savateev
(Savateev, 2009) has shown that NP completeness holds even for the Lambek cal-
culus without product.

Interesting work has been done on using dynamic programming techniques for
finding proof nets for the Lambek calculus. De Groote (1999) — who improves the
tabulation techniques introduced in (Morrill, 1996) — uses dynamic programming
for the placement of axiom links, defining them by a context-free grammar. Given
the results by Pentus and Savateev cited above, these strategies evidently do not give
polynomial algorithms, but they may be extended to find interesting polynomial
fragments of the Lambek calculus.

We’ll have more to say about parsing using proof nets in Section 7.2 in the
next chapter, where we talk about parsing categorial grammars using multimodal
proof nets.

6.6 Proof Nets and Human Processing

Starting with a study by Johnson (Johnson, 1998) for center embedded relatives and
then improved and extended by Morrill (Morrill, 2000, 2011), proof nets happen
to be interesting parse structure not only from a mathematical viewpoint, but also
from a linguistic viewpoint. Indeed they are able to address various performance
questions like garden paths, center embedding unacceptability, preference for lower
attachment, and heavy noun phrase shift, that can be observed when we use proof
net construction as a way to parse sentences.

We follow Morrill (Morrill, 2000) and consider the following examples:

Garden path sentences

1(a) The horse raced past the barn.
1(b) ?The horse raced past the barn fell.

2(a) The boat floated down the river.
2(b) ?The boat floated down the river sank.

3(a) The dog that knew the cat disappeared.
3(b) ?The dog that knew the cat disappeared was rescued.

230 6 Lambek Calculus, Linear Logic and Proof Nets

The (b) sentences are correct but seem incorrect. Indeed there is a natural tendency
to interpret the first part of the (b) sentences as their (a) counterparts. Hence the
correct, alternative analysis, which is a paraphrase of “The horse which was raced
past the barn fell” is difficult to obtain.

Quantifier-scope ambiguity

Here are some examples of quantifier-scope ambiguity, with the preferred reading:

I(a) Someone loves everyone. ∃∀
I(b) Everyone is loved by someone. ∀∃

II(a) Everyone loves someone. ∀∃
II(b) Someone is loved by everyone. ∃∀

So in fact the preference goes for the first quantifier having the wider scope.

Embedded relative clauses.

III(a) The dog that chased the rat barked.
III(b) The dog that chased the cat that saw the rat barked.
III(c) The dog that chased the cat that saw the rat that ate the cheese barked.

IV(a) The cheese that the rat ate stank.
IV(b) ? The cheese that the rat that the cat saw ate stank.
IV(c) ?? The cheese that the rat that the cat that the dog chased saw ate stank.

V(a) That two plus two equals four surprised Jack.
V(b) ?That that two plus two equals four surprised Jack astonished Ingrid.
V(c) ??That that that two plus two equals four surprised Jack astonished Ingrid

bothered Frank.

VI(a) Jack was surprised that two plus two equals four.
VI(b) Ingrid was astonished that Jack was surprised that two plus two equals four.
VI(c) Frank was bothered that Ingrid was astonished that Jack was surprised that

two plus two equals four.

In his paper (Morrill, 2000) Morrill provides an account of our processing prefer-
ences, based on our preference for a lower complexity profile. Given an analysis in
Lambek calculus of a sentence depicted by a proof net, we have conclusions corre-
sponding to the syntactic types of the words, and a single conclusion corresponding
to S. All these conclusions are cyclically ordered. This cyclic order is easily turned
into a linear order by choosing a conclusion and a rotation sense. Let us take the
output conclusion S as the first conclusion, and let us choose the clockwise rotation
with respect to the proof nets of the previous sections. According to the way proof
nets are drawn we thus are moving from right to left, and we successively meet S,
the type of the first word, the type of the second word, etc.

6.7 Semantic Uses of Proof Nets 231

Now let us define the complexity of a place in between two words wn and wn+1

(w0 being a fake word corresponding to S) as the number of axioms a− a⊥ which
pass over this place, and such that the a belongs to a conclusion which is, in the
linear order, before the conclusion containing a⊥.

Observe that this measure relies on the fact that Lambek calculus is an intuition-
istic or polarized calculus in which a and a⊥ are of a different nature: indeed waiting
for a category is not the same as providing a category. This measure also depends
on the fact that we chose the output S to be the first conclusion: this corresponds to
the fact that when someone starts speaking we are expecting a sentence (it could be
another category as well, but we still expect some well-formed utterance).

Now we can associate to a sentence with n words a sequence of n integers (since
S has been added there are n places) called its complexity profile.

In all examples above, the preferred reading always has the lower profile (that is
a profile which is always lower, or at least does not go as high) and sentences that
are difficult to parse have a high profile.

Here we only present one example, in Figures 6.5 and 6.6, as the others provide
excellent exercises (and drawing proof nets on the computer is painful).

word type u u⊥ for constructing the proof net
someone (subject) S / (np \ S) (np⊥℘S)⊗S⊥

(object) (S /np)\ S S⊥⊗ (S℘np⊥)
everyone (subject) S / (np \ S) (np⊥℘S)⊗S⊥

(object) (S /np)\ S S⊥⊗ (S℘np⊥)
loves: (np \ S)/np np⊗(S⊥⊗np)

To complete the example, one should compute the semantics according to the
algorithm given in Chapter 3.

6.7 Semantic Uses of Proof Nets

Once one is convinced of the relevance of proof nets for parsing, it is worth looking
at what else can be achieved with proof nets, in order to avoid translating from
one formalism into another, which can be unpleasant and algorithmically costly. A
major advantage of categorial grammars is their relation to Montague semantics, and
this link has been explored by many authors (Chapter 3 and the references therein
provide an introduction to the subject).

As intuitionistic logic can be embedded into linear logic (Girard, 1987) the al-
gorithm for computing semantic readings can be performed within linear logic. In-
deed λ -terms can be depicted as proof nets, and β -reduction (or cut-elimination)
for proof nets is extremely efficient. In particular the translation can limit the use of
replication to its strict minimum. This has been explored by de Groote and Retoré
(1996).

232 6 Lambek Calculus, Linear Logic and Proof Nets

S

S⊥S⊥

S np⊥

np

1 12

reading direction: right to left

someoneeveryone loves

someone loves everyone ∃∀

Snp⊥npS⊥

⊗

⊗⊗ ⊗

℘ ℘

Fig. 6.5. “Someone loves everyone” with wide scope for someone. The complexity profile —
read from right to left — is 1−1−2.

np

np⊥S

S⊥ S⊥

S

S⊥ np np⊥ S

someone loves everyone ∀∃

122

reading direction: right to left

someoneeveryone loves

⊗

⊗⊗ ⊗

℘ ℘

Fig. 6.6. “Someone loves everyone” with wide scope for everyone. The complexity profile
— read from right to left — is 1−2−2.

The correspondence between syntax and semantics with proof nets has been used
for generation, firstly by Merenciano and Morrill (Merenciano and Morrill, 1996).
Assuming that the semantics of a sentence is known, as well as the semantics of
the words, the problem is to reconstruct a syntactic analysis out of this information.
This mainly consists of reversing the process involved in the previous paragraph,
which is essentially cut elimination. Using a representation of cut elimination by
matrix computations (graphs can be viewed as matrices) Pogodalla has thus defined
an efficient method for generation (Pogodalla, 2000c,a,b).

6.8 Concluding Remarks 233

6.8 Concluding Remarks

This chapter has given a detailed treatment of proof nets for the associative Lambek
calculus that have been discussed in Chapter 2. A central thesis has been that proof
nets are not only interesting from a formal point of view, but also from the point
of view of the nature of a parse. Indeed, proof nets identify proofs representing the
same analysis thus avoiding the so-called spurious ambiguity problem. Therefore
proof nets can be said to implement the very idea of parsing-as-deduction.

We have also touched upon several other aspects of proof nets: its connection to
semantics and some suggestive evidence about proof net construction as a model for
human sentence processing.

The proof nets presented here naturally suggest a further radicalisation: a for-
mula can be depicted as a set of Red edges between its atoms, and the Blue edges
are the atoms and a simple correctness criterion, ”every alternate elementary cycle
contains a chord”, recognises exactly the proofs (Retoré, 2003). This way, the alge-
braic properties of the connectives, like associativity are interpreted by equality of
the formulae, hence identifying even more proofs than usual proofnets with links.
This was firstly done for commutative multiplicative linear logic, but it also works
for non commutative logic like the Lambek calculus (Pogodalla and Retoré, 2004).
In this setting as well, the cuts are a bit tricky to handle, and this is ongoing work.

234 6 Lambek Calculus, Linear Logic and Proof Nets

Exercises for Chapter 6

Exercise 6.1. Using proof nets, show whether or not the following sequents are
derivable in multiplicative linear logic.

� (a⊗ b)⊗ c,(c⊥℘b⊥)℘a⊥
� (a℘b)⊗ c,(c⊥℘b⊥)⊗ a⊥
� c⊥,((a℘a⊥)⊗b)⊗d⊥,b⊥℘(c⊗d)

Exercise 6.2. Section 6.1.3 defines a translation of Lambek calculus formulae into
linear logic formulae using polarities. For all of the following formulae F , give both
the translation +F and −F .

(np \ S)/np
(n \ n)/ (S /np)
S / (np \ S)
(S / np)\ S
((np \ S)/np)\ (np \ S)

Exercise 6.3. Proposition 6.2 on page 196 defines the sets of formulae Li◦ and Li•.
For each of the following formulae, show if they are members Li◦, members of Li•

or if they are not a member of either set of formulae.

(a⊗ b)℘c⊥
(a⊥℘b)℘c⊥
a⊥℘(b⊥℘c)
a⊗ (b⊥℘c)
a⊗ (b⊥⊗ c)

Exercise 6.4. Using Lambek calculus proof nets (refer to Definition 6.41 on
page 220), show which of the following sequents are derivable.

np � S / (np \ S)
S / (np \ S) � np
np,(np \ S)/np,np � S
np,(np \ S)/np,S / (np \ S)� S
np,(np \ S)/np,(S /np)\ S � S
S / (np \ S),(np \ S)/np,((np \ S)/np)\ (np \ S)� S

That is, translate each formula in the corresponding linear logic formula, compute
the possible axiom linking σΠ and verify that all conditions of Definition 6.41,
including ε -FREE, are satisfied.

Exercise 6.5. Look back to Figure 6.3 on page 224.

1. Verify it is a proof structure of � (b⊥℘b)⊗ (a⊥℘a) by assigning formulas to
each node in the proof structure.

2. Remove the cut link from the figure and compute the sequents corresponding to
the two substructures. Are both of these structures derivable?

Exercises for Chapter 6 235

3. Perform cut elimination on the proof structure of Figure 6.3. Can you remark
anything special about the result of cut elimination? If so, what does this mean?

4. Draw the proof structure in such a way the the external face is on the outside of
the proof structure. What — if anything — is different about this proof struc-
ture?

5. Give a correct (planar) proof structure for � (b⊥℘b)⊗ (a⊥℘a) and verify it
satisfies all constraints.

Exercise 6.6. Following Johnson and Morrill (Johnson, 1998; Morrill, 2000, 2011),
Section 6.6 states that the acceptability of sentences is related the “nesting” of axiom
links to the (Figures 6.5 and 6.6, page 232 gives an example comparison). Compute
a similar complexity profile for each of the other phenomena discussed at the be-
ginning of Section 6.6, by assigning each of them appropriate lexical formulas and
constructing the proof nets.

236 6 Lambek Calculus, Linear Logic and Proof Nets

References

Abrusci, V.M.: Phase semantics and sequent calculus for pure non-commutative classical
linear logic. Journal of Symbolic Logic 56(4), 1403–1451 (1991)

Abrusci, V.M.: Non-commutative proof nets. In: Girard, et al., pp. 271–296 (1995)
Asperti, A.: A linguistic approach to dead-lock. Tech. Rep. LIENS 91-15, Dép. Maths et Info,

Ecole Normale Supérieure, Paris (1991)
Asperti, A., Dore, G.: Yet Another Correctness Criterion for Multiplicative Linear Logic

with Mix. In: Nerode, A., Matiyasevich, Y. (eds.) LFCS 1994. LNCS, vol. 813, pp. 34–46.
Springer, Heidelberg (1994)

Bellin, G., Scott, P.J.: On the π-calculus and linear logic. Theoretical Computer Science 135,
11–65 (1994)

van Benthem, J.: Language in Action: Categories, Lambdas and Dynamic Logic. Studies in
logic and the foundation of mathematics, vol. 130. North-Holland, Amsterdam (1991)

Bondy, J.A., Murty, U.S.R.: Graph Theory and Applications. Macmillan Press (1976)
Dalrymple, M., Lamping, J., Pereira, F., Saraswat, V.: Linear logic for meaning assembly. In:

Morrill, G., Oehrle, R. (eds.) Formal Grammar, pp. 75–93. FoLLI, Barcelona (1995)
Danos, V.: La logique linéaire appliquée à l’étude de divers processus de normalisation et

principalement du λ -calcul. Thèse de Doctorat, spécialité Mathématiques, Université Paris
7 (1990)

Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Mathematical Logic 28,
181–203 (1989)

Diestel, R.: Graph Theory, 4th edn. Springer (2010)
Fleury, A.: La règle d’échange: logique linéaire multiplicative tréssée. Thèse de Doctorat,

spécialité Mathématiques, Université Paris 7 (1996)
Fleury, A., Retoré, C.: The mix rule. Mathematical Structures in Computer Science 4(2),

273–285 (1994)
Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)
Girard, J.Y.: Linear logic: its syntax and semantics. In: Girard, et al., pp. 1–42 (1995)
Girard, J.Y., Lafont, Y., Regnier, L. (eds.): Advances in Linear Logic. London Mathematical

Society Lecture Notes, vol. 222. Cambridge University Press (1995)
de Groote, P.: Linear Logic with Isabelle: Pruning the Proof Search Tree. In: Baumgartner, P.,

Posegga, J., Hähnle, R. (eds.) TABLEAUX 1995. LNCS (LNAI), vol. 918, pp. 263–277.
Springer, Heidelberg (1995)

de Groote, P.: A Dynamic Programming Approach to Categorial Deduction. In: Ganzinger,
H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 1–15. Springer, Heidelberg (1999)

de Groote, P., Lamarche, F.: Classical non-associative Lambek calculus. Studia Logica 71(3),
355–388 (2002)

de Groote, P., Retoré, C.: Semantic readings of proof nets. In: Kruijff, G.J., Morrill, G.,
Oehrle, D. (eds.) Formal Grammar, pp. 57–70. FoLLI, Prague (1996)

Guerrini, S.: Correctness of multiplicative proof nets is linear. In: 14th Symposium on Logic
in Computer Science (LICS 1999), pp. 454–463. IEEE (1999)

Guerrini, S.: A linear algorithm for MLL proof net correctness and sequentialization. Theo-
retical Computer Science 412(20), 1958–1978 (2011); Girard’s Festschrift

Johnson, M.E.: Proof nets and the complexity of processing center-embedded constructions.
Journal of Logic Language and Information Special Issue on Recent Advances in Logical
and Algebraic Approaches to Grammar 7(4), 433–447 (1998)

Lamarche, F.: Proof nets for intuitionistic linear logic: Essential nets. 35 page technical report
available by FTP from the Imperial College archives (1994)

References 237

Lambek, J.: From categorial grammar to bilinear logic. In: Došen, K., Schröder-Heister, P.
(eds.) Substructural Logics, pp. 207–237. Oxford University Press, Oxford (1993)

Lincoln, P., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for propositional linear
logic. Annals of Pure and Applied Logic 56(1-3), 239–311 (1992)

Melliès, P.A.: A topological correctness criterion for multiplicative non-commutative logic.
In: Ehrhard, T., Girard, J.Y., Ruet, P., Scott, P. (eds.) Linear Logic in Computer Science.
London Mathematical Society Lecture Note, vol. 316, ch. 8, pp. 283–321. Cambridge
University Press (2004)

Merenciano, J.M., Morrill, G.: Generation as Deduction on Labelled Proof Nets. In: Retoré,
C. (ed.) LACL 1996. LNCS (LNAI), vol. 1328, pp. 310–328. Springer, Heidelberg (1997)

Métayer, F.: Homology of proof-nets. Prépublication 39, Equipe de Logique, Université Paris
7 (1993)

Moot, R.: Filtering axiom links for proof nets. In: Kallmeyer, L., Monachesi, P., Penn, G.,
Satta, G. (eds.) Proceedings of the 12th Conference on Formal Grammar (FG 2007). CSLI
Publications, Dublin (2007) (to appear) ISSN 1935-1569

Morrill, G.: Memoisation of categorial proof nets: parallelism in categorial processing. In:
Abrusci, V.M., Casadio, C. (eds.) Third Roma Workshop: Proofs and Linguistics Cate-
gories – Applications of Logic to the Analysis and Implementation of Natural Language.
CLUEB, Bologna (1996)

Morrill, G.: Incremental processing and acceptability. Computational Linguistics 26(3),
319–338 (2000); preliminary version: UPC Report de Recerca LSI-98-46-R (1998)

Morrill, G.: Categorial Grammar: Logical Syntax, Semantics, and Processing. Oxford Uni-
versity Press (2011)

Morrill, G., Fadda, M.: Proof nets for basic discontinuous Lambek calculus. Journal of Logic
and Computation 18(2), 239–256 (2008)

Murawski, A., Ong, C.H.: Dominator trees and fast verification of proof nets. In: 15th Sym-
posium on Logic in Computer Science (LICS 2000), pp. 181–191. IEEE (2000)

Pentus, M.: Lambek calculus is NP-complete. Theoretical Computer Science 357(1),
186–201 (2006)

Pogodalla, S.: Generation in the Lambek calculus framework: an approach with semantic
proof nets. In: Proceedings of NAACL 2000 (2000a)

Pogodalla, S.: Generation, Lambek calculus, montague’s semantics and semantic proof nets.
In: Proceedings of Coling 2000 (2000b)

Pogodalla, S.: Generation with semantic proof nets. Research Report 3878, INRIA (2000c),
http://hal.inria.fr/docs/00/07/27/75/PDF/RR-3878.pdf

Pogodalla, S., Retoré, C.: Handsome non-commutative proof-nets: perfect matchings, series-
parallel orders and hamiltonian circuits. Tech. Rep. RR-5409, INRIA, presented at Cate-
gorial Grammars (2004); to appear in the Journal of Applied Logic

Regnier, L.: Lambda calcul et réseaux. Thèse de doctorat, spécialité mathématiques, Univer-
sité Paris 7 (1992)

Retoré, C.: Réseaux et séquents ordonnés. Thèse de Doctorat, spécialité Mathématiques, Uni-
versité Paris 7 (1993)

Retoré, C.: Calcul de Lambek et logique linéaire. Traitement Automatique des Langues 37(2),
39–70 (1996)

Retoré, C.: Perfect matchings and series-parallel graphs: multiplicative proof nets as R&B-
graphs. In: Girard, J.Y., Okada, M., Scedrov, A. (eds.) Linear 1996. Electronic Notes in
Theoretical Science, vol. 3. Elsevier (1996)

Retoré, C.: A semantic characterisation of the correctness of a proof net. Mathematical Struc-
tures in Computer Science 7(5), 445–452 (1997)

http://hal.inria.fr/docs/00/07/27/75/PDF/RR-3878.pdf

238 6 Lambek Calculus, Linear Logic and Proof Nets

Retoré, C.: Handsome proof-nets: perfect matchings and cographs. Theoretical Computer
Science 294(3), 473–488 (2003), complete version RR-3652, http://hal.inria.fr/
docs/00/07/30/20/PDF/RR-3652.pdf

Savateev, Y.: Product-Free Lambek Calculus Is NP-Complete. In: Artemov, S., Nerode, A.
(eds.) LFCS 2009. LNCS, vol. 5407, pp. 380–394. Springer, Heidelberg (2008)

Yetter, D.N.: Quantales and (non-commutative) linear logic. Journal of Symbolic Logic 55,
41–64 (1990)

http://hal.inria.fr/docs/00/07/30/20/PDF/RR-3652.pdf
http://hal.inria.fr/docs/00/07/30/20/PDF/RR-3652.pdf

7

Proof Nets for the Multimodal Lambek Calculus:
From Theory to a Wide-Coverage Categorial Parser

Summary. In this chapter, we will extend the proof nets of the previous chapter to the multi-
modal Lambek calculus discussed in Chapter 5. This means incorporating non-associativity,
mode information, unary connectives and structural rules in the proof nets. Fortunately, we
will see that there is a single proof net calculus which can handle all these extensions together.
The resulting proof nets will be two sided and have a more procedural correctness condition
in the form of graph contractions. This correctness condition will also have a modular nature,
due to the fact that different grammars may allow different classes of structural rules. These
multimodal proof nets form the basis of an implementation and we will discuss the Grail
theorem prover in Section 7.2.

7.1 Multimodal Proof Nets

In Chapter 5 we have seen that multimodal categorial grammars extend the non-
associative Lambek calculus NL with mode information: different modes of com-
position can be combined in one logic and different structural rules can apply to
each of these modes and their combinations. In addition, the multimodal calculus
introduces unary connectives (and corresponding structural rules).

These additions and restrictions to the Lambek calculus complicate the theory of
proof nets for multimodal categorial grammars a bit: we need a modular correctness
condition, which can adapt itself to the set of structural rules and modes which are
available in the logic. We will arrive at a multimodal proof net calculus in two steps:
first, following Danos (1990); Puite (1998, 2001), we will introduce two sided proof
nets: proof nets which have hypotheses in addition to conclusions. This doubles the
number of links a prenet can have: each connective now has a link for when it occurs
as a hypothesis and a link for when it occurs as a conclusion.

Then, following Moot and Puite (2002), we will introduce links for multimodal
prenets and introduce a correctness condition based on graph contractions (a spe-
cial case of the graph contractions of Danos (1990) for multiplicative linear logic).

R. Moot and C. Retoré: The Logic of Categorial Grammars 2012, LNCS 6850, pp. 239–297, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

240 7 Proof Nets for the Multimodal Lambek Calculus

Contractions will permit us to eliminate an appropriately connected pairs of links
— each pair consisting of one par link and one tensor link — whereas the structural
rules will correspond to additional graph rewrite rules in the proof net calculus.

Having introduced multimodal proof nets, we will prove the calculus so defined is
equivalent to the sequent calculus formulation of the multimodal Lambek calculus in
Section 7.1.4. In addition to the theoretical interest of the calculus, this multimodal
proof net calculus is also the basis of an implementation: the Grail theorem prover,
which will be discussed in Section 7.2.

7.1.1 Two Sided Proof Nets

As we have seen in Sections 6.2 and 6.3, linear logic allows both a one sided and
a two sided sequent calculus. Up till now, it has been convenient to use proof nets
which corresponded to the one sided sequent calculus: it reduces the number of rules
and therefore the number of cases to treat in the equivalence proofs.

In this section, we will briefly look at two sided proof nets for multiplicative
intuitionistic linear logic. Though this will multiply the number of rules (and the
number of different types of links in the proof structures), it will be a step closer to
the multimodal proof nets of the following sections. We will also remark that these
two sided proof nets are rather close to natural deduction proofs.

Figure 7.1 shows the links for one sided proof nets. These are the same links as
those of Definition 6.14 on page 207, with the addition of the cut link discussed in
Sections 6.4.6 and 6.4.7. The cut link simply allows us to connect — by means of
a R (regular, red) link — a formula to its negation. Alternatively, we can see the cut
link as a special sort of tensor link with a special symbol “cut” as its conclusion: this
is convenient when we want to prove sequentialisation of a sequent with cut links.

A⊥ A

A⊥A

⊗

A⊗B

A B

℘

A℘B

A B

Axiom Cut

Times Par

Fig. 7.1. Links for one sided proof nets

The cut links allow us to make the connection between the one sided and the two
sided proof net calculus more clear. Figure 7.2 shows (in the middle of the figure)
the two links for A/B: one which has A/B as its hypothesis and another which has

7.1 Multimodal Proof Nets 241

A /B as its conclusion. One the left hand side, we can see the partial prenets for
A℘B⊥ which correspond to the links in the middle of the figure. As usual, the links
are displayed with their hypotheses above the link and their conclusions beneath it
and the left-to-right order of the hypotheses and the conclusions is important. As
can be seen in the figure, hypotheses are connected to the rest of the graph by a R

(regular or red) edge and conclusions are connected by a B (bold or blue) edge. We
should immediately note two differences with the one sided links from Figure 7.1.
First, a logical link can have multiple conclusions (in the one sided case only the
axiom link has two conclusions). Second, the main formula is no longer necessarily
the conclusion of the link: it can be one of its premises as well.

℘

A℘B⊥

A BB⊥

℘

A/B

B

A

≈
. . . [B]···

A
/i

A/B

⊗
B AA⊥

A℘B⊥
B⊗A⊥

⊗

A

A/B B

≈ A/B B
/e

A

Fig. 7.2. Links for A/B = A℘B⊥

Inspecting the links of Figure 7.2, we see that in both cases, viewed from the
outside, the new link in the middle of the figure and the partial prenet on the left are
indistinguishable.

In the case for the link and the partial prenet which have A/B as their conclusion
(both are on the top row of Figure 7.2), the two graphs are isomorphic: it is even the
case that a tour along the outside of the graph will visit the nodes in the same cyclic
order.

For the link and the partial prenet which have A/B as a hypothesis (both are on
the bottom row of Figure 7.2), the link in the middle is slightly simpler. However,
for the paths which pass through both structures, this doesn’t make a difference:
both graphs have an alternate elementary path from A/B to B which starts and ends
at a R edge, both graphs have an alternate elementary path from A to A /B which
starts with a B edge and ends in a R edge and both graphs have a path from A to B
which starts with a B edge and ends in a R edge. In addition, a tour along the outside
of both graphs will pass the external nodes in the same cyclic order.

242 7 Proof Nets for the Multimodal Lambek Calculus

For an A℘B⊥ conclusion, the link corresponds to a combination of a par link
and an axiom link. However, since B is not necessarily an atomic formula, this can
be a complex axiom, in which case B will be the main formula (and hypothesis) of
another link.

B B⊥

℘

B⊥℘A

A

℘

B\A

B

A

≈
[B] . . .···

A
\i

B\A

⊗
BA A⊥

B⊥℘A
A⊥⊗B

⊗

A

B B\A

≈ B B\A
\e

A

Fig. 7.3. Links for B\A = B⊥℘A

Another thing which is worth pointing out is that this proof net representation
is very close to natural deduction (compare Figure 7.2 to the similar figures in Ap-
pendix B.5 of Girard et al (1988)). Figure 7.2 shows the natural deduction rules next
to the corresponding proof net links, in the rightmost columns. The correspondence
between the introduction rule and the link for an A/B conclusion is more clear when
we remind ourselves of the role which is played by the B formula in the natural de-
duction rule: we use a single B hypothesis to prove an A after which we withdraw
this B to infer A/B. In a natural deduction proof the link between the B formula and
the corresponding introduction rule is normally indicated in some way (by assigning
a unique label to both the rule and the B hypothesis which is withdrawn, for exam-
ple), in the proof net we simply connect the B hypothesis directly to B conclusion of
the rule. This makes the up-down symmetry between the hypothesis and conclusion
rule more evident than it is in natural deduction. We will see this symmetry even
more clearly in the next section when we look at multimodal links.

Figure 7.3 shows the symmetric case for B \A = B⊥℘A, with — as before —
the partial prenets on the left of the figure, the new links in the middle and the
corresponding natural deduction rules on the right.

The case for the product formula is slightly different. Figure 7.4 shows the links
for the product formula. The link for the conclusion is identical to the link for the
product formula in Figure 7.1. However, the link for A⊗B as a hypothesis does
not correspond as clearly to the natural deduction rule shown to its left. The fact

7.1 Multimodal Proof Nets 243

that a link in a proof net can have multiple conclusions in the current formulation
helps to make the symmetry between the link for A⊗B as a hypothesis and A⊗B as
a conclusion more clear than its asymmetric natural deduction counterpart allows.
In addition, unlike the natural deduction rule (see Section 2.2.1), the hypotheses of
a proof structure containing the hypothesis link for the product formula are in the
right order: with the hypotheses Δ of A⊗B occurring between the hypotheses Γ1 to
the left of A and Γ2 to the right of B.

⊗

A⊗B

A B

⊗

A⊗B

A B

= A B
•i

A •B

℘
BA B⊥ B⊥

A⊗B
B⊥℘A⊥

≈ ℘

A B

A⊗B

A •B

. . . [A] [B] . . .···
C
•e

C

Fig. 7.4. Links for A⊗B

We will finish this informal introduction with an example of a proof structure
using the new links. Figure 7.5 revisits our Italian lexicon from Example 2.2 and
shows the lexical formulae for “cosa guarda passare” along with the partial proof
structures on the right.

The important point to make about this figure is that we no longer use axiom links
to turn a partial proof structure into a proof structure, but that we identify nodes with
are hypotheses with nodes which are conclusions. Another way to look at this is that
the axiom links are already “incorporated” in Figure 7.5, but with each axiom link
connected at only one of its ends; this means that we still have to attach the other
end.

One solution to resolving this node identification problem correctly is by the S
hypothesis from “cosa” with the S conclusion from “guarda”, the inf hypothesis
from “guarda” with the inf conclusion from “passare” and the np hypothesis from
“passare” with the np conclusion from “cosa”. This produces the proof structure on
the right of Figure 7.5.

It is easy to verify that the resulting proof structure satisfies the following con-
ditions of Definition 6.41 on page 220 (which defines proof nets for the Lambek
calculus).

244 7 Proof Nets for the Multimodal Lambek Calculus

℘

np

S

⊗

S

S/ (S/np)
cosa

⊗

S

S/ inf inf

⊗

inf

inf /np np

guarda

passare

℘
⊗

S

S/ (S/np)
cosa

⊗
S/ inf

⊗
inf/np

guarda

passare

Fig. 7.5. “Cosa guarda passare” as a partial proof structure (left) and as a proof structure
(right)

• ØÆ: it does not contain an alternate elementary cycle
• SAT: it contains an alternate elementary path between any two vertices
• INTUI: all links are intuitionistic (this is true by construction)

and is therefore a proof net in the sense of intuitionistic linear logic. The planarity
condition NC is a bit harder to verify in the current proof net: it corresponds roughly
to the fact that the left-to-right order of the words (the hypotheses corresponding to
“cosa guarda passare”) is correct, in combination with the fact that the np formula
of the par link is connected to the rightmost formula of the tree which has the S
formula of this same par link as its root, much as the natural deduction rule for /i
would verify the position of the np formula.

Condition ε -FREE, which requires every subnet to have at least two conclusions,
correspond in the two-side calculus to the condition that every subnet has at least
one hypothesis.

Rather than proving these results more formally, we will move to the multimodal
case, which generalizes the proof nets introduced here in such a way that we can in-
corporate non-associativity, unary connectives and structural rules in a single proof
net calculus.

7.1 Multimodal Proof Nets 245

7.1.2 Multimodal Proof Structures and Abstract Proof Structures

Now that we have given an informal introduction to two sided proof nets and
sketched its relation with the proof nets for linear logic we have seen before, we
can introduce the proof nets for multimodal categorial grammars more formally.

The proof nets we have seen for linear logic and the Lambek calculus and proof
search using proof nets are a three-step process, which operates schematically as
follows.

1. We translate the formulae of the sequent into trees labeled with formulae and/or
logical connectives. Some authors call the resulting structure a proof frame.

2. From this proof frame, we create a proof structure by linking atomic formulae
of opposite polarity.

3. Finally, we check whether or not the proof structure is a proof net by looking
only at properties of the underlying graph.

In this section we will follow the same three-step process for multimodal proof nets.
We will give links and formula unfoldings for multimodal formulae, then turn these
formula decomposition trees into proof structures and finally define proof nets for
the multimodal calculus. These proof nets are essentially a notational variant of
those used by Moot and Puite (2002) and those used by the Grail theorem prover we
will discuss in Section 7.2.

Definition 7.1. A link for a multimodal proof structure is a tuple 〈type, mode, Prem,
Concl, Main〉, such that.

[type] is either ⊗ or ℘; if type = ⊗ we will call the link a tensor link, if type = ℘
we will call the link a par link.

[mode] is the mode of the link (either equal to an i ∈ I or to a j ∈ J)
[Prem] is a list of vertices which are the premises of the link.
[Concl] is a list of vertices which are the conclusions of the link.
[Main] specifies the (optional) main vertex of the link, it is either the special con-

stant nil — in which case we will say the link does not have a main vertex — or
a member of the concatenation of Prem and Concl, in which case we will call
this vertex the main vertex of the link and the other vertices the active vertices
of the link.

We will say the vertices of the link are the union of the vertices in Prem and the
vertices in Concl.

Definition 7.2. A typed link for a multimodal proof structure is a tuple 〈l, f 〉 such
that l is a link and f is a (total) function from the vertices of l (that is, the members
of Prem and Concl) to multimodal formulae.

The definition of links and typed links above are a natural extension of the links
which we have seen for linear logic. Once we drop the restriction that links have a
unique conclusion which coincides with the main formula of the link, then — since
a link already had a sequence of premises — it is natural to allow a link to have a

246 7 Proof Nets for the Multimodal Lambek Calculus

sequence of conclusions as well (we will only consides lists with one or two mem-
bers here). In addition, the vertex of the link which corresponds to the main formula
must now be explicitly designated. Finally, the addition of mode information to a
link corresponds to multimodality in an very direct way. The possibility for links
without main formulae and vertices which are not labeled by formulae are part of
the definition in order to enable us to use the same definition of link for the underly-
ing, more graph-like structures on which we will define our correctness condition.

Graphically, we will use the following conventions to portray a link:

• tensor links are displayed with an open circle in the center, par links with a filled
circle,

• the hypotheses are displayed, from left to right, above the central circle of the
link,

• the conclusions are displayed, from left to right, below the central circle of the
link,

• the vertices v of typed links are displayed as the formula A = f (v) which labels
the vertex; when we want to talk about formula occurrences, we will display the
formula as An where n is the unique identifier of the vertex in the graph (we will
use integers in what follows) which is labeled by A,

• if the link is a par link, we will indicate the main vertex by an arrow from the
central circle to the main vertex.

These graphical conventions are slightly different from those used in
(Moot and Puite, 2002), where all links are drawn with an arrow arriving at the
main vertex (not just the par links, but the tensor links as well) and with arrows
leaving from the active vertices.

Definition 7.3. A multimodal proof structure (or prenet) is a tuple 〈V,L, f 〉 such that

V is the set of vertices of the proof structure.
L is the set of links of the proof structure.
f is a (total) function from V to multimodal formulae.

• each typed link 〈l, fl〉 such that l ∈ L and fl corresponds to the restriction of f
to the vertices of l corresponds to one of the typed links of Table 7.1,

• each vertex is the premise of at most one link,
• each vertex is the conclusion of at most one link.

We will call a vertex h which is not the conclusion of any link a hypothesis of the
proof structure.

We will call a vertex c which is not the premise of any link a conclusion of the
proof structure.

When Γ is the multiset of formulas which are assigned by f to the hypotheses of
the proof structure and Δ is the multiset of formulas which are assigned by f to the
conclusions of the proof structure, we will say it is a proof structure of Γ � Δ .

7.1 Multimodal Proof Nets 247

Since a vertex in a proof structure is the premise of at most one link and the conclu-
sion of at most one link, it is connected to at most two links and if it is connected to
two links, it is the premise of one and the conclusion of another. If we take into ac-
count the fact that a formula is either a main formula of its link or an active formula,
this gives us a natural division of the vertices (and the formulae by which they are
labeled) into four classes:

1. cut vertices are the main vertex of two links,
2. axiom vertices are not the main vertex of any link,
3. positive vertices are the main vertex of exactly one link, and the conclusion of

this link,
4. negative vertices are the main vertex of exactly one link, and the premise of this

link.

Cut and axiom vertices will correspond to a cut or axiom rule on the formula with
which this vertex is labeled. In a sense, axiom and cut vertices are both positive and
negative: an axiom is positive to the link of which it is a premise and negative to
the link of which it is a conclusion (ie. it is “negative at the top and positive at the
bottom”) and inversely for the cut vertices (which would be “positive at the top and
negative at the bottom”).

Definition 7.4. Given a formula C and a polarity O ∈ {P,N} we define its subfor-
mula tree, which is a proof structure with C as one of its conclusions (if its polarity
is positive) or as one of its hypotheses (if its polarity is negative) according to Defi-
nition 7.3, inductively as follows.

• if C is an atomic formula, its subformula tree is C, that is a proof structure
without links, with a single vertex v, with f (v) =C and with C both a conclusion
and a hypothesis of the proof structure (since there are no links, this is the only
possibility).

• for a complex formula C of polarity O, Table 7.1 shows — for each connective
and polarity — how to combine the proof structures which correspond to the
direct subformula(s) of C into a subformula tree of C. In particular:
– if C is of the form � jA or � jA and if O(A) is the subformula tree corre-

sponding to A, then O(C) is obtained by extending the subformula tree with
a unary branch as shown in Table 7.1. C is a conclusion (resp. hypothesis)
of the new proof structure as required.

– if C = A•B and if O(A) is the subformula tree corresponding to A and O(B)
is the subformula tree corresponding to B, then O(C) is subformula tree
combining O(A) and O(B) by a binary branch for •i of polarity O as shown
in Table 7.1. Again C is a hypothesis (resp. conclusion) of the new proof
structure as required.

– if C = B \A or C = A /B, O(A) is the subformula tree corresponding to A
and O′(B) is the subformula tree of the opposite polarity of O corresponding
to B then we combine the two subtrees as shown the corresponding /i or \i

column in Table 7.1. Again, the fact that C is a hypothesis/conclusion of the
new proof structure is easily verified.

248 7 Proof Nets for the Multimodal Lambek Calculus

Table 7.1. Logical links for the multimodal Lambek calculus

•i \i /i � j � j

+
P

A•i B

A B

i

P(A) P(B)

i

A

B B\iA

P(A)

N(B)

i

A

A/iB B

P(A)

N(B)

A

� jA

j

P(A)

j

� jA

A

P(A)

−
N

i

A•iB

A B

N(A) N(B)

A

B B\iA

i

P(B)

N(A)

A

A/iB B

i

P(B)

N(A)

j

A

� jA

N(A)

� jA

A

j

N(A)

Table 7.1 summarizes the available links for all combinations of polarity–main
connective and indicates the polarities of the active vertices of the link.

As can be seen from Table 7.1 positive formulae grow upwards (with an down-
ward growing branch for the negative subformula in the case of the implications),
whereas negative formulae grow downwards (with a upward growing branch for the
positive subformula of an implication).

Example 7.5. Given that left/right and up/down have a specific meaning and given
that the formula tree grows both upward and downward, we sometimes need to
“stretch” the links a bit to avoid overlap when we draw the subformula tree
graphically.

Figure 7.6 shows the negative unfoldings of the formula S /0 (np \0 S) and of the
formula (n \0 n)/0 (S /�1�1np). For those interested in seeing the proof structure
on the left of Figure 7.6 as it corresponds to the definitions, Figure 7.7 shows it
in full formal detail. As the information in Figure 7.7 can be easily read off from
the more graphical depiction of the proof structures, we will prefer the graphical
representation in what follows.

Definition 7.4 guarantees that each formula decomposition tree is already a proof
structure. For example, the formula decomposition tree of S/0 (np\0 S) in Figure 7.6
is a proof structure with hypotheses S and S /0 (np\0 S) and with conclusions S and

7.1 Multimodal Proof Nets 249

S

S/0 (np\0 S)

0

np\0 S

0

S

np

n\0 n

(n\0 n)/0 (S/�1�1np) S/�1�1np

0

n

n

0

0

S

�1�1np

1

�1np

np

1

Fig. 7.6. Negative unfoldings of S/0 (np\0 S) and (n\0 n)/0 (S/�1�1np)

V = {1,2,3,4,5}, L = {l1, l2}
The function f is defined as follows:

f (1) = S
f (2) = np
f (3) = np\0 S
f (4) = S/0 (np\0 S)
f (5) = S

The links l1 and l2 are defined as follows:

l1 = 〈℘,0, [1], [2,3],3〉
l2 = 〈⊗,0, [4,3], [5],4〉

Fig. 7.7. Formal representation of the proof structure on the left of Figure 7.6

np. Similarly, the subformula tree of (n \0 n) /0 (S /0 �1�1np) is a proof structure
with hypotheses (n \0 n)/0 (S /0 �1�1np), n and S and with conclusions n and np.

We want to establish a correspondence between sequents Γ � C and proof struc-
tures of Γ �C, that is to say proof structures which have as their only hypotheses the
formulae of Γ and as their only conclusion the formula C. This means that when we
look at a proof structure which is the negative unfolding of a number of antecedent
formulae A1, . . .An and the positive unfolding of a formula C we need to construct a
proof structure which has exactly the formulae A1, . . .An as hypotheses and exactly
the formula C as its conclusion. So in the formula unfolding of S /0 (np \0 S) of
Figure 7.6, we want the S premise of the par link in the lexical proof structure to
be the conclusion of another link of the proof structure we are constructing and we
want the S and np conclusions of the lexical proof structure to be premises of other
links in a larger proof structure.

To make this more clear, the negative unfolding of n, (n\0 n)/0 (S/�1�1np), np
and (np\0 S)/0 np are shown together with the positive unfolding of n in Figure 7.8.

250 7 Proof Nets for the Multimodal Lambek Calculus

n1

n\0 n

(n\0 n)/0 (S/�1�1np) S/�1�1np

0

n2

n3

0

0

S9

�1�1np

1

�1np

np5

1

np6

np\0 S

(np\0 S)/0 np np8

0

S10

np7

0

n4

beacon

which

Galahad

saw

Goal

Fig. 7.8. Negative unfoldings of n, (n\0 n)/0 (S/0�1�1np), np and (np\0 S)/0 np, positive
unfolding of n

The atomic formulae of the proof structure are subscripted with a unique integer to
make it easier to refer to them in the following discussion.

Some words from the lexicon which correspond the given formulae are indicated
in a square box above each of the unfolded formulae. In addition the succedent
formula n is indicated by a square box marked “Goal” below it. The proof structures
above correspond (up to the choice of lexical items) to the lexicon and example
sentence of Example 5.9 on page 169, which motivates and explains the current
formula assignments.

Using the lexical unfoldings above, we want to construct a proof structure of the
following sequent.

n,(n \0 n)/0 (S /�1�1np),np,(np \0 S)/0 np � n

Or, in other words we want to construct a proof structure which has exactly the
hypotheses which have a word from the lexicon above them and which has as its
conclusion the formula with “Goal” underneath it.

There are several possible ways to do this: we can connect the negative axiom n1

(a conclusion of the proof structure of Figure 7.8) to either the positive atom n3 or
to the positive atom n4 (both hypotheses of Figure 7.8), then connect the conclusion
n2 to n4 (in case n3 was chosen for n1) or n3 (in case n4 was chosen for n1). There is
a similar choice for the negative atoms np5 and np6 and the positive atoms np7 and
np8. For the S formulae, S9− S10 is the only solution.

We will return to the issue of how to choose which atomic formulae to connect
in Section 7.2, where we will discuss parsing with multimodal proof nets. For now,
we will simply choose n1−n3, n2−n4, np6−np7, np5−np8 and S9−S10 to obtain
the proof structure shown in Figure 7.9.

This proof structure has only the formulae from the antecedent and succedent
of the sequent as its hypotheses (resp. as its only conclusion). All other formulae
are connected to two links, once as a premise (the link “above” it) and once as a

7.1 Multimodal Proof Nets 251

n\0 n

(n\0 n)/0 (S/�1�1np) S/�1�1np

0

n

n

0

0

1

�1np

�1�1np

1

np\0 S

(np\0 S)/0 np np

0

S

np

0

beacon

which

saw

Galahad

Goal

Fig. 7.9. Proof structure of n,(n\0 n)/0 (S/0 �1�1np),np,(np\0 S)/0 np � n

conclusion (the link “below” it; note that the formula �1�1np is considered to be
below par link for \, which is why the line connecting it to the link is drawn as
arriving at the formula from above).

As we have seen at the end of Section 7.1.1, the axiom links of the proof nets of
one sided linear logic — which are links connecting positive and negative atomic
formulae — have become identifications of vertices labeled by the same formula
provided that one of the vertices is the conclusion of its link or the proof structure
(i.e. is a positive atomic formula) and the other is the premise of its link or the proof
structure (i.e. is a negative atomic formula). Formally, this corresponds to replacing
all references to a vertex y by those of another vertex x: this makes sense only if
f (x) = f (y) (both vertices are labeled with the same formula) and, if the result of
the substitution is to satisfy the conditions on proof structures, then at most one of
x and y was the premise of a link before the substitution and at most one of x and y

252 7 Proof Nets for the Multimodal Lambek Calculus

(which, in addition, is not the premise of a link) was the conclusion of a link before
the substitution.

Readers familiar with tree adjoining grammars will have remarked that the iden-
tification of atomic formulas looks a lot like the substitution operation used for tree
adjoining grammars. This connection has been exploited to give an simple transla-
tion from tree adjoining grammars to multimodal proof nets which also models the
adjunction operation (Moot, 2002, 2008b).

So we have seen the formula unfolding and the axiom linking step of proof nets
for multimodal categorial grammars, the only thing we still need to do is explain
how to decide which of the proof structures we can construct this way are actually
proof nets.

As before, the correctness condition is stated graph-theoretically as conditions
on the underlying graph of a proof structure. In the current case, the correctness
condition is stated on a structure which removes some of the information in the
proof structure and which we call an abstract proof structure.

Definition 7.6. A multimodal abstract proof structure is a tuple 〈V,L,h,c〉 such that.

V is the set of vertices of the proof structure.
L is the set of links of the proof structure.
h is a (partial) function from V to multimodal formulae, such that h assigns a for-

mula to a vertex v iff v is a hypothesis of the abstract proof structure.
c is a (partial) function from V to multimodal formulae, such that c assigns a for-

mula to a vertex v iff v is a conclusion of the abstract proof structure.

In addition, an abstract proof structure satisfies the following conditions.

• each vertex is the premise of at most one link,
• each vertex is the conclusion of at most one link.

We will call a vertex which is not the conclusion of any link a hypothesis of the proof
structure.

We will call a vertex which is not the premise of any link a conclusion of the proof
structure.

So an abstract proof structure assigns formulae only to its hypotheses and conclu-
sions; these formula labels serve only to keep track of which formula occurrences
correspond to the formulae of the antecedent and to the goal formulae of the corre-
sponding sequent. In addition, as we will see below, tensor links no longer have a
distinguished main vertex. We define a forgetful mapping from proof structures to
abstract proof structures as follows.

Definition 7.7. Let Π be a proof structure, the underlying abstract proof structure
α(Π) is defined as follows.

• h is the restriction of f to the hypotheses of the proof structure.
• c is the restriction of f to the conclusions of the proof structure.

7.1 Multimodal Proof Nets 253

• if l is a par link of Π , then the same l is a par link of α(Π) as well, if l is a
tensor link of Π then the corresponding tensor link l′ of α(Π) is the link l, but
with the main vertex replaced by the constant nil.

The abstract proof structure which corresponds to the proof structure of Figure 7.9
is shown in Figure 7.10.

�

�
(n\0n)/0(S/�1�1np)

�

0

�
n

�n

0

0

�

1

�

�

1

�

�(np\0S)/0np �

0

�np

0

beacon

which

saw

Galahad

Goal

Fig. 7.10. Abstract proof structure of the proof structure of Figure 7.9

As the figure shows, abstract proof structures are displayed slightly differently
than the corresponding proof structures. Vertices which do not have a formula as-
signed to them are displayed as a simple dot “�”. A formula assigned as a hypothesis
to a vertex is displayed above this dot, whereas a formula assigned as a conclusion
to a vertex is displayed below it. The table below lists the possibilities.

254 7 Proof Nets for the Multimodal Lambek Calculus

h(v) = undefined H undefined H
c(v) = undefined undefined C C

vertex � �H �
C

�H
C

For a vertex which is assigned both a hypothesis and a conclusions, the two formulae
can be distinct, as is shown in the rightmost column above.

Definition 7.8. A tensor tree is a connected, acyclic abstract proof structure without
par links.

There is an obvious bijection between tensor trees and sequents of the multimodal
Lambek calculus. As shown in Figure 7.11, we can translate an antecedent term
Γ of a sequent Γ � C into a tensor tree without conclusion formula; labeling the
conclusion vertex of the resulting tree with the formula C will give a tensor tree of
Γ � C.

‖F‖ = �F

‖〈Γ 〉 j‖ = �

�

j

Γ

‖(Γ ,Δ)i‖ =

�

� �

i

Γ Δ

Fig. 7.11. Translating antecedent terms to tensor trees

It is easy to see too that this translation can be inverted and that we can transform
a tensor tree into a sequent by the cases shown in Figure 7.11. The case without
tensor links is trivial. Given that T is acyclic and connected and that each tensor link
has only a single conclusion vertex, there is a unique node which is the conclusion
vertex of T , we use the formula assigned as a conclusion to T as conclusion of the

7.1 Multimodal Proof Nets 255

sequent, and use the cases shown on the right of Figure 7.11 to transform the tree
without the conclusion label into an antecedent term.

In what follows, we will often implicitly convert a tensor tree into a sequent and
vice versa to simplify our discussion.

7.1.3 Proof Nets and Contractions

Definition 7.9. A proof structure for a multimodal categorial grammar without
structural rules is a proof net if and only if its underlying abstract proof structure
contracts to a tensor tree using the graph contractions of Figure 7.12.

�

� �H

i

i

�
C

�
C

� �

i

i

�H

�

�H �

i

i

�
C

�

�
C

i

i

�H �H

�

i

i

�
C

[\] [•] [/] [�] [�]

Fig. 7.12. Graph contractions

The contractions replace a connected pair of a tensor link and a par link by a
single node.

�H
C

Both links and the internal nodes (those which do not have a label H or C in the
graph) are removed and the two external nodes labeled H and C are identified. In the
figure, the labels H and C serve to distinguish the nodes. If node H is a hypothesis
of the proof structure before contraction, it will still be a hypothesis of the proof
structure after contraction and it will be labeled by the same formula. Similarly, C
if it was a conclusion before the contraction, it will still be a conclusion and it will
be labeled by the same formula after the contraction.

It is useful to see all contractions as instances of the same schema: a tensor and
a par link are connected at all vertices except the vertex with the arrow, respecting
left-right and inversing up-down.

Figure 7.13 shows how we can derive the sequent np � (S/0 np)\0 S in the proof
net calculus using the contractions of Figure 7.12. On the left, we see the only
possible proof structure of np � (S/0 np)\0 S, with the corresponding abstract proof

256 7 Proof Nets for the Multimodal Lambek Calculus

S/0 np np

0

0

S

(S/0 np)\0 S

�

� �np

0

0

�
(S/0np)\0S

�
np

(S/0np)\0S

Fig. 7.13. Graph contractions: example

structure in the middle. This abstract proof structure is of the correct form for the
[\] contraction, the result of which is shown on the right of the figure.

While proof nets according to Definition 7.9 are equivalent to the sequent cal-
culus, we want to prove a stronger theorem, which allows us to add an arbitrary
number of structural rules to the calculus.

However, we first observe a property of the contraction calculus. As shown in
Figure 7.14, the contractions for the unary connectives can diverge: that is, some
contractions can lead us into blind alleys. In other words, the contractions are not
confluent. In the figure, the proof structure, which is simply the identity for �0�0A,
contracts to a tensor tree using the topmost branch but contracts to an abstract proof

�0a

�0�0a

0

0

a

�0a

0

0

�0�0a

�

�
�0�0a

0

0

�

�

0

0

��0�0a

�

�
�0�0a

0

0

��0�0a

�

�
�0�0a

0

0

�

��0�0a

��0�0a

�0�0a

Fig. 7.14. Divergence of contractions

7.1 Multimodal Proof Nets 257

structure which is not a tensor tree (and to which no further contractions apply) in
the bottom branch. So, though the existence of the first branch guarantees that the
proof structure is a proof net, we need to explore all branches if we want to conclude
a proof structure is not a proof net: discovering that one branch does not convert to
a tensor tree does not allow us to conclude anything about whether or not the proof
structure is a proof net.

In order to add structural rules to the system, we need to add, for each structural
rule, a structural rewrite to the system. Remember that according to Section 5.2.4,
each structural rule of the multimodal Lambek calculus is of the following form
(where Ξ and Ξ ′ are contexts with n holes and π is a permutation of n).

Γ [Ξ [Δ1, . . . ,Δn]] � D
SR

Γ [Ξ ′[Δπ1 , . . . ,Δπn]] � D

which, given the correspondence between sequents and abstract proof structures,
corresponds to the graph rewrite shown in Figure 7.15.

Ξ []

�
C

����H1 �Hn

→[SR]

�
C

����
Hπ1 �Hπn

Ξ ′[]

Fig. 7.15. General form of a structural rewrite from Γ [Ξ [Δ1, . . . ,Δn] � C to
Γ [Ξ ′[Δπ1 , . . . ,Δπn] � C

That is to say, we remove tensor tree Ξ [] from the abstract proof structure, keep-
ing track of the n nodes H1, . . .Hn which were the leaves of Ξ [] and the node C which
was the root of Ξ [] and replace it by tensor tree Ξ ′[], attaching the root node of Ξ ′[]
to the node which was the root of Ξ [] and attaching the n leaves of the new tree to
the leaves of the old tensor tree as indicated by the permutation π , which gives us a
bijection between the n leaves of the two trees. So a structural rule will correspond
to replacing a tensor tree by another tensor tree together with a correspondence be-
tween the leaves of the two trees.

To make the discussion more concrete, look at the two structural rules we have
seen in Figure 5.12, repeated below.

Γ [(Δ1,(Δ2,〈Δ3〉1)0)0] � D
MA�1

Γ [((Δ1,Δ2)
0,〈Δ3〉1)0] � D

Γ [((Δ1,〈Δ3〉1)0,Δ2)
0] � D

MC�1
Γ [((Δ1,Δ2)

0,〈Δ3〉1)0] � D

258 7 Proof Nets for the Multimodal Lambek Calculus

�
C

�H1 �

0

�H2 �

0

�H3

1

→MA�1

�H1 �H2

0

�
C

� �

0

�H3

1 ←MC�1

�
C

�H1 �

0

� �H2

0

�H3

1

Fig. 7.16. The structural rules of Figure 5.12 as rewrites on abstract proof structures

Figure 7.16 shows these structural rules as rewrites on abstract proof structures.
Compare this figure with Figure 5.12 on page 168 to make the correspondence more
clear; the nodes labeled Hi correspond to the antecedent terms Δi of the structural
rule.

Definition 7.10. A proof structure for a multimodal categorial grammar with struc-
tural rules R is a proof net if and only if its underlying abstract proof structure
contracts to a tensor tree using the graph contractions of Figure 7.12 and the graph
conversions corresponding to R.

Using Definition 7.10, we can show that the abstract proof structure of Figure 7.10
on page 253 is a proof net given the structural rules of Figure 7.16. Looking at the
abstract proof structure, we see that two rules apply: either the unary contraction
for � or the structural conversion for MA�1. Selecting the structural conversion
— with H1 being the np hypothesis of the abstract proof structure corresponding to
“Galahad”, H2 corresponding to the (np\0 S)/0 np hypothesis and H3 corresponding
to the vertex which is the conclusion of the par link for � — will produce the
abstract proof structure shown in Figure 7.17. The new abstract proof structure has
the tensor tree shown in the middle of Figure 7.16 as a substructure.

Next, we apply the contraction for �, which produces the abstract proof structure
shown in Figure 7.18.

This abstract proof structure is in the right configuration for the / contraction.
When we apply it, the result is the tensor tree shown in Figure 7.19.

Given that there is a way to use the contractions and structural conversions to
produce a tensor tree, we can conclude that the proof structure of Figure 7.9 (the
proof structure we started with on page 251) is a proof net.

An important feature of the current calculus is that we compute the antecedent
term which makes our sequence of formulae derivable. In addition, if the structural
rules are non-increasing according to the definition in Section 5.2.4 then it is de-
cidable — though PSPACE complete in the worst case — to determine whether or

7.1 Multimodal Proof Nets 259

�

�(n\0n)/0(S/0�1�1np) �

0

�
n

�n

0

0

�

1

�

�

�

1

�

�np �
(np\0S)/0np

0

0

beacon

which

sawGalahad

Goal

Fig. 7.17. The abstract proof structure of Figure 7.10 after the structural rule of mixed asso-
ciativity

not a given proof structure is a proof net. In practice, though, for most of the struc-
tural rules we have seen in Chapter 5, applying the structural rules turns out to be
relatively easy. Indeed, it is useful to see the current contraction condition with its
separate structural rule component as a generic criterion, which we can specialize
according to the available structural rules to get a more specific and more efficiently
testable correctness condition. Moot and Puite (2002) give an example of such a spe-
cific correctness condition for the associative Lambek calculus. We give two other
examples below.

Example 7.11. As an example of how we can specialize the correctness condition
for specific packages of structural rules and specific grammars, Figure 7.20 shows a
specialized contraction for the mixed associativity and mixed commutativity rule of
Figure 7.16.

If the path from the root node of Δ ′[] to its portrayed leaf node consists only of
the binary mode 0, the we can — by successive applications of either the mixed
associativity or the mixed commutativity rule — “move” Ξ [] to Δ or, seen the other

260 7 Proof Nets for the Multimodal Lambek Calculus

�

�(n\0n)/0(S/0�1�1np) �

0

�
n

�n

0

0

�

�

�np �(np\0S)/0np

0

�

0

beacon

which

sawGalahad

Goal

Fig. 7.18. The abstract proof structure of Figure 7.17 after the � contraction

�

�(n\0n)/0(S/0�1�1np)

0

�
n

�n

0

�

�np �(np\0S)/0np

0

beacon

which

sawGalahad

Goal

Fig. 7.19. The abstract proof structure of Figure 7.18 after the / contraction

7.1 Multimodal Proof Nets 261

0

�

�

1

�

�

1

�

� �

0

Ξ []

Γ []

Δ

Γ []

Ξ []

Δ

�

�

→MA�,MC�

Fig. 7.20. Specialized contraction for a multimodal logic with both mixed associativity and
mixed commutativity

way around “move up” the binary mode 0 and it unary branch 1 towards the root of
Ξ []. In the case where Ξ [] is the empty context, we can simply apply the [�] and the
[/] contractions directly.

It is important to note that this specialized contraction, while correct, can replace
the corresponding structural rules only if the grammar requires the use of the struc-
tural rules only in the context shown above in the figure: if the grammar introduces
the unary mode in other contexts (for example by assigning types of the form �1A
to formulas in the lexicon) then the specialized contraction shown in Figure 7.20
will not suffice to capture all possibilities.

Example 7.12. As a second example of a specialized contraction, Figure 7.21 on
page 262 gives the [�] contraction for a unary mode 1 to which the K structural rule
applies (as in Example 5.8). The specialized contraction applies only if Ξ [] contains
only those binary modes over which the unary mode 1 distributes by means of the
K structural rule (in Example 5.8, this was mode 4).

The standard contraction for � is the special case where Ξ [] is the empty context
and there is only one leaf with a unary branch 1.

262 7 Proof Nets for the Multimodal Lambek Calculus

In short, it is often possible to give a simple characterization of the tensor tree
(antecedent term) in which a par link must occur for the contraction to apply, which
avoids the complexity of a generate-and-test algorithm (see Moot, 2008a, for more
discussion).

1

�

�

Γ []

Ξ []

�

�

1

�

�

1

���

Δ1 Δn

→[K�]

�

���

Δ1 Δn

� �

Ξ []

Γ []

Fig. 7.21. Specialized contraction for � and the K structural rule

Now that we have introduced the contractions and the structural conversions and
used them to define proof nets for the multimodal Lambek calculus with a given set
of structural rules R, we need the show that the proof nets so defined correspond
exactly to the sequent proofs of the calculus.

7.1.4 Sequent Calculus and Multimodal Proof Nets

The following theorem, which shows that the proof nets for the multimodal Lam-
bek calculus correspond exactly to the sequent proofs, was originally proved in
(Moot and Puite, 2002). We will follow the structure of the proof quite closely.

Theorem 7.13. If Γ � C is a sequent in a multimodal Lambek calculus with struc-
tural rules R, then Γ �C is derivable if and only if there is a proof net which converts
to the tensor tree Γ � C using the contraction and the structural rules R.

Proof. =⇒
We prove by induction on the length l of the sequent proof δ of Γ � C that we can
construct a proof net contracting to tensor tree Γ � C.

In case l = 0 we have an axiomatic sequent A � A. The corresponding proof
structure and abstract proof structure are shown below.

7.1 Multimodal Proof Nets 263

A → �A
A

If l > 0 we proceed by case analysis of the last rule.
If the last rule is \h

Γ [B] � C Δ � A \h
Γ [(Δ ,A\i B)i] � C

we know by induction hypothesis that there is a proof net Π1, where the under-
lying abstract proof structure A1 = α(Π1) contracts to Γ [B] � C using conversion
sequence ρ1 and a proof net Π2 where A2 = α(Π2) contracts to Δ � A using con-
version sequence ρ2. Figure 7.22 shows the two proof nets we have by induction
hypothesis.

Here and in what follows, we will use � to signify any number of conversions
(structural conversions and/or contractions) and → to signify a single named con-
version, or, in the current case, the function α which maps a proof structure to the
underlying abstract proof structure.

Π1 is a proof structure with hypothesis B (as well as all the other formulae in the
context Γ []) and conclusion C. Π2 is a proof structure with conclusion A and the
formulae of Δ as its hypotheses. Given that Π1 and Π2 are not just proof structures
but also proof nets, we know that the underlying abstract proof structures A1 and
A2 (in the middle of Figure 7.22) convert to the tensor trees Γ [B] � C and Δ � A,
displayed on the right of the same figure.

Π1

B

C

Π2

A

A1

�B

�
C

A2

�
A

Γ []

�B

�
C

Δ

�
A

→α �ρ1

→α �ρ2

Fig. 7.22. Proof structures and abstract proof structures for Γ [B] � C and Δ � A

We need to show that we can combine these two proof nets into a single proof
net of Γ [(Δ ,A\i B)i] � C.

Figure 7.23 shows how to do this. On the left we see the proof structures Π1 and
Π2 of Figure 7.22 connected using a tensor link for \. The corresponding abstract
proof structure is again shown in the middle. Now it is easy to see that the resulting

264 7 Proof Nets for the Multimodal Lambek Calculus

proof structure is a proof net as well, since the conversions ρ1 which reduce A1 to
Γ [] can apply to the new abstract proof structure, just as the conversions ρ2 which
reduce A2 to Δ . This means that we can apply the concatenation of ρ1 and ρ2 to
the resulting proof structure, which is therefore a proof net of Γ [(Δ ,A\i B)i] � C as
required.

Π1

C

B

A A\i B

i

Π2

A1

�
C

�

� �A\iB

i

A2

Γ []

�
C

�

� �A\iB

i

Δ

→α �(ρ1+ρ2)

Fig. 7.23. Proof net of Γ [(Δ ,A\i B)i] � C, constructed using the proof nets of Figure 7.22

The other tensor rules (/h, •i, �h, �i) are similar.
In what follows, we will no longer include the explicit conversion α of the initial

proof structure into an abstract proof structure as we have done for the \h case,
since the conversion from proof structure to abstract proof structure is trivial. So
when we appear to apply a conversion sequence to a proof structure, there is an
implicit conversion of the proof structure into an abstract proof structure involved.
This convention will simplify the figures and the arguments.

The case for \i is more interesting, since it clearly illustrates how the par link and
the contraction combine to function like the introduction rule.

(A,Γ)i � C \i
Γ � A\i C

Figure 7.24 shows the proof net for (A,Γ)i � C, with the initial proof structure on
the left and the abstract proof structure after contractions/conversions on the right.

We need to show we can turn the proof net of Figure 7.24 into a proof net of
Γ � A \i C. Figure 7.25 shows, on the left, the proof structure which results from
connecting the par link for \ to the proof structure on the left of Figure 7.24. We
can apply the same conversion sequence ρ to the underlying abstract proof struc-
ture to obtain the abstract proof structure shown in the middle of the figure. This
abstract proof structure is in exactly the right configuration to apply the [\] contrac-
tion, which produces the tensor tree shown on the right. As required, this is a tensor
tree of Γ � A\i C, making this a proof net of the same sequent.

7.1 Multimodal Proof Nets 265

Π

C

A

�
C

�A �

i

Γ�ρ

Fig. 7.24. Proof net for (A,Γ)i � C

Π

A

i

C

A\i C

�ρ →[\]

i

�

�
A\iC

�

� �

i

Γ

�
A\iC

Γ

Fig. 7.25. Proof net for Γ � A\i C based on the proof net from Figure 7.24

Suppose the last rule of the sequent proof is the rule \h

Γ [(A,B)i] � C \h
Γ [A •i B] � C

The induction hypothesis gives us the proof net shown in Figure 7.26. The proof
structure with A and B (and the rest of the formulae of Γ [] as hypotheses and
C as conclusion converts to a tensor tree of Γ [(A,B)i] � C using the conversion
sequence ρ .

Figure 7.27 shows how connecting a par link for • to the A and B hypotheses of
the proof structure allows us to convert the underlying abstract proof structure into
a tensor tree of Γ [A •i B] � C, making the resulting proof structure a proof net of
Γ [A •i B] � C as required.

The other par rules (/i, �h, �i) are similar; each involves adding the correspond-
ing par link to the proof net we obtain by induction hypothesis and extending the
conversion sequence by the contraction for the connective.

266 7 Proof Nets for the Multimodal Lambek Calculus

Π

C

A B

�ρ

�

�A �B

i

Γ []

�
C

Fig. 7.26. Proof net for Γ [(A,B)i] � C

Π

C

i

A •B

A B

�ρ

i

�A•iB

�

� �

i

Γ []

�
C

→[•]

�A•iB

�
C

Γ []

Fig. 7.27. Proof net for Γ [A •i B] � C based on the proof net of Figure 7.26

If the last rule of the proof is a structural rule,

Γ [Ξ [Δ1, . . . ,Δn]] � C
SR

Γ [Ξ ′[Δπ1 , . . . ,Δπn]] � C

then we know by induction hypothesis that we have a proof net of Γ [Ξ [Δ1, . . . ,Δn]]�
C. We can simply extend it to a proof net of Γ [Ξ ′[Δπ1 , . . . ,Δπn] � C by extending
the conversion sequence with the corresponding structural conversion as shown in
Figure 7.1.4. Given that each structural conversion rewrites a tensor tree into another
tensor tree, the right hand side of the figure is a tensor tree as required.

Finally, if the last rule is the Cut rule,

Γ [A] � C Δ � A
Cut

Γ [Δ] � C

then we can simply connect the proof net of Γ [A] � C to the proof net of Δ � A at
the formula A (shown in Figure 7.29). Appending the two conversion sequences ρ1

and ρ2 gives us a conversion sequence to Γ [Δ] � C as required.

7.1 Multimodal Proof Nets 267

Π

C

�ρ

Ξ []

Γ []

�

Δ1 . . .

���� �

Δn

�
C

→[SR]

�

Δπ1
. . .

���� �

Δπn

Ξ ′[]

�
C

Γ []

Fig. 7.28. Proof net for Γ [Ξ [Δ1, . . . ,Δn]]�C, extended to a proof net of Γ [Ξ ′[Δπ1 , . . . ,Δπn]�C

Π1

A

C

Π2

A

�ρ2

�ρ1

Γ []

�A

�
C

Δ

�
A

Π1

A

C

Π2

Γ []

�

�
C

Δ

�(ρ1+ρ2)

Fig. 7.29. Proof net for Γ [A] � C, Δ � A and Γ [Δ] � C⇐=

To show that every proof net — that is, every proof structure of which the abstract
proof structure converts to a tensor tree Γ � C — corresponds to a sequent proof of
Γ � C, we proceed by induction on the length l of the conversion sequence ρ .

If l = 0, then the abstract proof structure of the proof net Π is already a tensor
tree. We proceed by induction on the number of tensor links t.

If t = 0, then our proof net consists of the single vertex A which corresponds to
the axiom rule A � A.

If t > 1, then

• Suppose at least one of the leaves of the tensor tree is the main formula of its
link. Figure 7.30 shows the case of \h (the case for /h is symmetric and the case
for �h is obtained by removing Π1 and the branch to it). The proof structure
is shown on the left and the underlying abstract proof structure is shown on
the right. Since the abstract proof structure is a tree, so is the proof structure.
The sequent which corresponds to the abstract proof structure on the right is
Γ [(Δ ,A\i B)i] � C.

Since the complete proof structure is a tree, removing the tensor link and the
formula A\i B splits the proof structure into two smaller tensor trees: one which

268 7 Proof Nets for the Multimodal Lambek Calculus

Π2

Π1

B

A A\i B

i

C

Γ []

Δ

�

� �A\iB

i

C

Fig. 7.30. Proof structure with A \i B as main formula of its link and the underlying abstract
proof structure

corresponds to Δ � A and one which corresponds to Γ [B] � C. By induction hy-
pothesis, we have a sequent proof for each of these tensor trees. We can combine
these two proofs into a proof of Γ [(Δ ,A\i B)i] � C using the \h rule.

Γ [B] � C Δ � A \h
Γ [(Δ ,A\i B)i] � C

• Otherwise, none of the leaves of the tensor tree is the main formula of its link.
When we look at the possible forms of the tensor links in Table 7.1 this means
that all links are either tensor links for • or tensor links for �, including the link
which has the conclusion of the tensor tree as its conclusion.

Figure 7.31 shows the case where the tensor link for • is connected to the
conclusion of the proof structure. Given the form of the proof structure, the
underlying abstract proof structure is of the form shown in the picture on the

Π1 Π1

A •i B

A B

i

Γ Δ

�
A•iB

� �

i

Fig. 7.31. Proof structure with A •i B as main formula of its link and the underlying abstract
proof structure

7.1 Multimodal Proof Nets 269

right. Note that this is a proof net of (Γ ,Δ)i � A •i B, so we need to find a sequent
proof of (Γ ,Δ)i � A •i B.
Since the proof structure is a tree, Π1 and Π2 are disjoint and removing the
tensor link connecting them gives two proof structures: Π1 with conclusion A
and Π2 with conclusion B.
By induction hypothesis, we obtain a proof of Γ � A and of Δ � B which we can
combine into a proof of (Γ ,Δ)i � A •i B using the •i rule.

Γ � A Δ � B
•i

(Γ ,Δ)i � A •i B

This completes the case for the empty conversion sequence.
Now, suppose l > 1. We look at the last structural conversion or contraction in

the conversion sequence. We proceed by case analysis.
If the last contraction is a [\] contraction, we are in the situation shown in

Figure 7.32.

Π1

Π2

A

i

B

A\i B

C

�ρ →[\]

i

�

�

�

� �

i

Δ

Γ []

�
C

�

�
C

Δ

Γ []

Fig. 7.32. Conversion sequence with [\] as its final contraction

Figure 7.33 shows the proof net split into two new proof structures. We need
to show that both are proof nets as well, that is, we need to show that each of the
conversions in ρ is applied entirely in Π1 to form (A,Δ)i or entirely in Π2, where
it will form Γ []. Looking at the reduction sequence ρ in Figure 7.32 and reasoning
backwards from the tensor tree Γ [Δ] to the initial proof structure, we see that each
contraction replaces a point by a tensor and a par link and that each structural rule
replaces a substructure which is a tensor tree by another tensor tree which has the

270 7 Proof Nets for the Multimodal Lambek Calculus

same root and the same leaves (though not necessarily in the same order). Given that
the par link forms a “bridge” between the two parts of the structure, a connected set
of tensor links for a structural conversion must be completely on one of the two
sides of it. Similarly, each point which “explodes” into a pair of links is on one of
the two sides of the par link as well. So we conclude that it is possible to partition
ρ into two conversion sequences ρ1 and ρ2 such that ρ1 converts Π1 to (A,Δ)i � B
and ρ2 converts Π2 to Γ [A •i B] � C, as shown in Figure 7.33.

Now, given that the length of both ρ1 and ρ2 is strictly less than l and both are
proof nets, we can apply the induction hypothesis to obtain a sequent proof δ1 of
(A,Δ)i � B and a sequent proof δ2 of Γ [A\i B] � C. We need to combine these two
proofs into a proof of Γ [Δ] � C, which is done as follows.

··· δ1

(A,Δ)i � B \i
Δ � A\i B

··· δ2

Γ [A\i B] � C
Cut

Γ [Δ] � C

If the last conversion of the conversion sequence is a structural conversion. Then the
conversion sequence looks as shown in Figure 7.34.

Since the last rule is a structural conversion, the conversion still ends in a tensor
tree even with the last conversion removed. Therefore we have to show that there
is a proof net of Γ [Ξ [Δ1, . . . ,Δn]] � C with a conversion sequence of length l− 1.
This allows us to apply the induction hypothesis to obtain a sequent proof δ of
Γ [Ξ [Δ1, . . . ,Δn]] � C, which we can extend with the corresponding structural rule
as follows.

Π1

A

B

Π2

C

A\i B

�ρ1

�ρ2

�
B

�A �

i

Δ

Γ []

�
C

�A•iB

Fig. 7.33. The conversion sequence of Figure 7.32 divided among two proof nets

7.2 Grail: Parsing with Multimodal Proof Nets 271

Π

C

�ρ

Ξ []

Γ []

�

Δ1 . . .

���� �

Δn

�
C

→[SR]

�

Δπ1
. . .

���� �

Δπn

Ξ ′[]

�
C

Γ []

Fig. 7.34. Conversion sequence with a structural rule as its last conversion

··· δ
Γ [Ξ [Δ1, . . . ,Δn]] � C

SR ��
Γ [Ξ ′[Δπ1 , . . . ,Δπn] � C

As shown in (Moot and Puite, 2002), we can modify the sequentialisation part of
the proof to combine it with a cut-elimination result in such a way that the rule-to-
rule correspondence is more direct. The proof above does not give cut-free sequent
proofs, even if the initial proof net is a proof net without cut formulas. The modifi-
cation allows us to give a sequentialisation proof in such a way that:

• each link (with its corresponding contraction if it is a par link) corresponds to a
single proof rule of the same type in the sequent proof,

• each cut vertex in the proof net corresponds to a cut rule in the sequent proof,
• each axiom vertex in the proof net corresponds to an axiom rule in the sequent

proof.
• each structural conversion in the conversion sequence of the proof net corre-

sponds to a structural rule in the sequent proof.

In addition, (Moot and Puite, 2002) show that we can prove a cut elimination the-
orem directly for the multimodal proof net calculus: replacing cut formulas by cut
formulas of strictly lesser degree and thereby giving a more direct proof than we
have seen in Section 5.2.5.

7.2 Grail: Parsing with Multimodal Proof Nets

The proof nets discussed in the previous section form the basis of an implementation
of a parser for multimodal categorial grammars (Moot, 2012a). Grail is a parser
written in SWI Prolog, which uses the GraphViz macros for displaying the proof
structures. It is distributed free of charge (under the GNU Lesser General Public

272 7 Proof Nets for the Multimodal Lambek Calculus

License). A step-by-step tutorial to installing and getting used to Grail can be found
at (Moot, 2012b).

Grail allows you to design multimodal categorial grammars by specifying a lex-
icon, which assign a set of formulae (or pairs of formulae and lambda-terms, for
those interested in semantics in the tradition of Montague as discussed in Chap-
ter 3) to words and a set of structural rules for the grammar. New lexical entries can
be produced either by editing the grammar file or by using the provided user inter-
face (both are described in the tutorial, in the Sections 1 - Editing and 3 - Grammar
File Format Moot, 2012b).

The modes I of the grammar are defined implicitly: all and only the modes i
which occur either in the grammar or in the structural rules are members of I.

Grail uses abstract proof structures as its internal representation for its interme-
diate partial proofs during proof search. One of the particularities of Grail is that it
has an interactive proof mode, where Grail and the user cooperate to find a proof
of a given statement, with Grail handling bookkeeping details but also helping in
filtering out branches of the search space which can never lead to a proof.

7.2.1 Interactive Parsing

Given a sentence w1, . . . ,wn and a goal formula C parsing this sentence corresponds
to the following steps:

1. For each wk, find a formula Ak such that Ak ∈ Lex(wk),
2. Using the formula decomposition rules on the resulting sequent A1, . . . ,An � C,

unfold the sequent into a proof structure. As discussed, this proof structure will
have a number of atomic formulae as hypotheses and as conclusions in addition
to the formulae from A1, . . . ,An � C.

3. Connect atomic formulae which are hypotheses of the resulting structure to
those which are its conclusions, to obtain a proof structure which has as its
hypotheses and conclusion only the formulae of A1, . . . ,An � C.

4. Translate the resulting proof structure into an abstract proof structure.
5. Convert the abstract proof structure, using the structural rules and the contrac-

tions into a tensor tree with A1, . . . ,An as its yield.

Steps 2 and 4 are trivial and are performed automatically by Grail. We’ll have a
bit more to say about how to handle Step 1 for very large lexicons in Section 7.2.3
below. For now, we will concentrate on how the user can interact with Grail to
perform Step 3 — which connects the atomic formulae — and Step 5 — which
performs the contractions and structural rules.

Figure 7.35 shows an example of the lexical unfolding for the complex noun
“beacon which Galahad saw”, which we have already seen in Figure 7.9 on page 251.

There are some differences with the proof structure of Figure 7.9. For example,
only the atomic formulae are displayed in the structure. However, this does not result

7.2 Grail: Parsing with Multimodal Proof Nets 273

n1

�

� �

0

n5

n4

0

0

S10

�

1

�

np9

1

np11

�

� np16

0

S15

np14

0

n17

beacon

which

Galahad

saw

Goal

n17

n4

n1 n5

np16

np14

np9 np11

S10

S15

Fig. 7.35. Lexical unfolding and possible node identifications

in a loss of information: since the main formula of each link is always the vertex
which is closest to the lexical leaf, we can use this information in combination with
Table 7.1 on page 248 to compute the formulae for the unlabeled vertices. So we
can deduce, for example, that the node above np9 must be labeled �1np and that the
node above S15 and to the right of np14 must be np \0 S and therefore that the node
with the lexical leaf “saw” must be labeled (np \0 S)/0 np.

There is also the addition of an explicit table containing the possibilities for iden-
tifying the atomic formulae. The negative atomic formulae — visually, we can iden-
tify them as “hanging” from the proof structure: attached from above, but not from
below; np9, which has the unfolding of “which” above it, and np11, which has the
lexical leaf “Galahad” above it, are negative atomic formulas — are written above
the columns of this table, whereas the positive atomic formula are written left of its
rows — the positive atomic formula are visually “on top” of the rest of the structure:
attached from below, but not from above, n4 and n17 are positive atomic formulas.
All atomic formulae have a unique integer assigned to them to give a unique iden-
tifier to the different formula occurrences. A complete matching is a pairing of pos-
itive and negative atomic formulas: each negative atomic formula is matched with
exactly one positive atomic formula and each positive atomic formula is matched
with exactly one negative atomic formula.

Grail displays the table with the atomic formulae in a separate window and allows
the user to select which atomic formulae to connect. Because of the count check
(Proposition 2.6), only tables with as many rows as columns for each atomic formula
make sense, since they have as many positive (hypothesis) as negative (conclusion)

274 7 Proof Nets for the Multimodal Lambek Calculus

beacon

1

n

which

2

0

1

galahad

11

np

saw

12

0

1

n

4

0

1

s

10

0

3

np

14

0

1

np

16

2

n

17

Goal

5

n

9

np

15

s

6

2

3

3

2

3

7

1

2

1

2

8

1

13

3

2

3

1

2

1

Fig. 7.36. Grail output corresponding to Figure 7.35: the proof structure produced by
Graphviz (top) and the possible node identifications (bottom)

atomic formulae. Grail does not display proof structures which do not satisfy the
count check. By default, Grail does not show a proof structure if it has demonstrated
that — according to the specifications of the grammar — no total axiom linking is
possible for the structure. Grail allows you to override this feature, which is useful
when debugging grammars (see the Grail tutorial, Section 3 - Debugging Grammars
for details Moot, 2012b).

Figure 7.36 shows the Grail output for the example of Figure 7.35. The two fig-
ures are rather similar, but let’s take some time to remark on the differences. First,
Grail has already excluded a number of the possibilities for the axiom connections:

7.2 Grail: Parsing with Multimodal Proof Nets 275

a

1

1

b

36

2

c

47

2

8
3

7

1

68

2

3

63

1

62

2 3

10

3

5
1

4

2

3

12

3

13

2

2

3

2

3

1

3

14
3

17

3

16

1

18

2

3

19

3

24

3

31

1

22

2

3

30 1

21

2

3

35
3

26

1

25

2
3

40

3

39

1

41

2
3

44

3

28

1

27

2

333
1

42

2

3

46

3

37

13

49

3

52
3

51

1

53

2

3

54
3

59

3

66

1

57

2

3

65

1

56

2
3

70

3

61

1

60

2

3

79

3

74

1

73

2
3

81

3

48

1

71
3

2

72

1

3

82

Goal

85

3

84

1

86 2
3

87
3

77

3

76

1

1

89

2

1

1

92

3

93

2 3

3

90

2

2

3

2

1

2
1

1

2

2

1

1

2

2

1

2

1

2

1

2

1

1

2

1

2

1

2

1

2

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

Fig. 7.37. One of the proof nets corresponding to the translation of a∨¬a proposed by
Savateev (2009)

in the window shown at the bottom of the figure, only the grey buttons marked
with a pair of node numbers correspond to possible axiom connections, leaving
only a single total linking as a possibility. We will discuss how Grail performs the
calculations to arrive at this conclusion in the next section.

The Graphviz output shown at the top of Figure 7.36 does a good job of preserv-
ing the tree-like structure of the graph. However — for more cluttered graphs and
for the different graph display algorithms provided by Graphviz which do not pre-
serve the tree structure (see Figure 7.37 for an example) — there is possibly some
confusion with respect to the left and right branches (and possible even the root) of
a link. For this reason, Grail marks the left branch by 1, the right branch by 2 and
the root node by 3.

In Grail, all nodes are given a unique integer as an identifier — it corresponds
to the traversal of the formulas during the unfolding phase and has no other sig-
nificance. The negative atomic formulas are written below this integer, and the

276 7 Proof Nets for the Multimodal Lambek Calculus

positive atomic formulas above it. The words of the sentence are shown in rectangu-
lar boxes above the corresponding vertices, whereas the unique goal vertex has the
word “Goal” below its vertex number.

Without the filtering strategies in place, there are two possibilities for the n for-
mulae, two for the np formulae and one for the S formula (S10− S15). For the n
formulae, the possibilities are n1− n4, n5− n17 and n1− n17, n5− n4. For the np
formulae, the possibilities are np9−np14, np11−np16 and np9−np16, np11−np14.
The user can select any pair of atomic formulae and continue selecting until all
atomic formulae have been linked. In case any combination does not yield a proof
net, Grail will present the unexplored alternatives — if any remain — and allow the
user to select one of them. In case no other alternatives remain, the search space has
been fully explored and Grail will output a message about the number of distinct
proof nets found. Grail will also output the lambda-term semantics for the different
parses of the sentence in a LATEX file.

Since we have already shown in Section 7.1.3 that we can turn this proof structure
into a proof net given the structural rule of mixed associativity, we will now show
that this proof structure cannot be turned into a proof net without any structural
rules.

First, suppose we choose n1− n17, n4− n5 for the n atomic formulae (in either
order, whenever we choose the first, the second is the only possibility for the remain-
ing formulae). This means that the n from “beacon” is the goal formula. However,
this also means that the Goal node cannot be connected to the rest of the proof
structure and therefore that there is no way to turn the resulting proof structure into
a tree. Similarly, the n4− n5 connection produces a cycle, which we cannot remove
by further conversions and therefore, the resulting structure can never reduce to a
tensor tree. This means that n1− n4, n5− n17 is the only possibility.

Second, suppose we choose np9−np14, np11−np16 for the np nodes. This means
that whatever we do, the final tensor tree will be one which contains a substring “saw
Galahad”, because of the np11−np16 connection and because we are considering the
case without structural rules. Even with the mixed associativity and commutativity
rules of Figure 7.16 (look back to page 258), the structure is not a proof net, because
the structural rules cannot change the order of these two words with respect to each
other: the mixed associativity and mixed commutativity can “move around” only
material which is on a right branch and has the 1 unary mode. Since the np9−np14

connection has put the only unary tensor branch on the left of a 0 binary branch and
this means no structural rules can apply to the proof structure.

These arguments together show that the only remaining candidate for a proof net
are the connections n1−n4, n5−n17, np9−np16, np11−np14 and S15−S10, which
corresponds to the possible connections listed at the bottom of Figure 7.36. Perform-
ing these connections will produce the proof structure we have seen in Figure 7.9 in
Section 7.1.2.

After all atomic formulas have been connected and a total matching of the posi-
tive and negative atoms have been found, we still need to perform the contractions
to obtain a tensor tree.

7.2 Grail: Parsing with Multimodal Proof Nets 277

For the contractions, as we have seen in Figure 7.14, it can be possible that mul-
tiple contractions apply to an abstract proof structure and that some of these do not
allow us to contract the abstract proof structure to a tree. Grail interacts with the
user in these cases too. First, the contractions can be partially ordered, with some
contractions necessarily taking place before others. The arrows of the par links give
a natural order: if the arrow of a first par link “points towards” one of the tails (ie.
non-arrows, the active vertices) of another par link, then this first par link can always
be contracted before the second. In Figure 7.36 (and Figure 7.9), for example, we
can (and even have to) apply the � contraction before the / contraction. Grail com-
putes which of the contractions can be applied first and colors the corresponding
par link blue. We will call such par links active. When multiple active par links are
connected to a same tensor tree, a conflict occurs and the user can give his input. A
conflict is visible in the proof structure by a pair of par links connected to the same
tensor tree, and with the arrows of both links pointing away from this tensor tree.

Figure 7.38 shows an example. The initial abstract proof structure is partially
shown on the left of the figure. There are two active par links, the link with main
vertex 8 and the link with main vertex 33 (remember that the main vertex of a par
link has the arrow pointing towards it). Both par links are connected to the same
tensor tree with their arrows pointing away from it. Grail allows you to decide which
of the two contractions to perform. As a useful mnemonic to help us see when we
are in the right configuration to perform a contraction: a par link and a tensor link
must be connected to the same vertices by all connections which share the same
number except for the connection with the arrow. In addition both links must share
the same mode information.

As we have seen before, all connections from the central circle of the link to the
vertices are numbered 1, 2, 3. For the par link with main vertex 8, its mode is 0 and
the connection with the arrow towards vertex 8 is labeled 2. The other connection,
labeled 1, which is important to see if we can contract must therefore be connected
to a tensor link at the vertex connected to this tensor link by label 1. For both links,
following the connection with label 1 means we arrive at node 9 and therefore we
can perform the contraction of this par of links. Grail will present this choice by
allowing you to select the main vertex of the par link, vertex 8.

The second possibility is to contract the par link with main vertex 33. The path
labeled 2 leaving it arrives at vertex 34; a tensor link is connected to vertex 34 by a
path labeled 2 and the tensor link and par link are both assigned mode 0, therefore
there is another contraction possibility. Grail will present this choice by allowing
you to select the main vertex of the par link, vertex 33.

Since the final par link in the figure, with the arrow arriving at Goal node 32, is
connected to node 33, which is a single-node tensor tree with the arrow of par link
33 pointing towards it, we know that the contraction of par link 32 can (and in this
case, must) be done after contraction 33.

Figure 7.38 shows two different contraction sequences starting from the same ini-
tial abstract proof structure: the first sequence starts with the 8 contraction,
corresponding to a � and the second sequence starts with the 33 contraction, corre-

278 7 Proof Nets for the Multimodal Lambek Calculus

8

0

2

7

0

1

2

32

Goal

33

0

2

0

34

2

35

1

0

2

0

2

9

1

1

1

1

→8

32

Goal

33

0

2

7

0

1

0

34

2

35

1

0

2

2

1

1

→33

32

Goal

7

0

1

33

2

0

2

1

8

0

2

7

0

1

2

32

Goal

33

0

2

0

34

2

35

1

0

2

0

2

9

1

1

1

1

→33 →32

Fig. 7.38. Guiding the contractions in Grail: a successful sequence (left) and a failure (right)

sponding to a �. We can complete the first sequence by the 33 contraction, shown
in the figure, following by the 32 contraction to obtain a single vertex.

The second sequence produces a second conflict after the 33 contraction: we can
either apply the 8 contraction (this gives a permutation of the order of contractions of
the first sequence) or the 32 contraction. The 32 contraction leads us to a dead end:
there is one par link left, but it is on the wrong side of the remaining tensor link:
following connection 1 from the par link leads us to the Goal vertex and not to a
tensor link. As we have already discussed when presenting Figure 7.14, the order in
which we perform the contractions is important. Trying a few of these contractions

7.2 Grail: Parsing with Multimodal Proof Nets 279

by hand is a good exercise. As we will see in the next section, Grail gives some help
with this type of contractions.

After all contractions have been performed and the resulting tree contains only
external modes, Grail presents a dialog window, allowing the user to try to find
alternative proofs for the current sentence — Grail keeps track of the alternative
axiom connections which have not been tried yet — or to abandon proof search.

7.2.2 Pruning the Search Space

Having given a brief overview of the interactive component of the Grail parser,
which is a useful tool for writing and debugging grammars, we will now look at
some of the algorithms employed by Grail which are used both to help the grammar
writer but also to improve the efficiency of automatic proof search.

Grail uses several strategies to reduce the search space and to help prevent the
user from making any choices which cannot possibly lead to a proof (Moot, 2004,
2007), and these will sound familiar if you look back to some of the arguments we
have used for rejecting certain axiom connections. Figure 7.36 shows, at the bottom
of the figure, how Grail has directly disqualified as potential axioms all but one total
linking and in the previous section we discussed informally why this should be the
case. In this section, we will explain how Grail arrives at the conclusion that this is
the only possible linking.

The following definition lists an obvious translation from multimodal sequents
into sequents of linear logic.

Definition 7.14. Let Γ � C be a multimodal sequent, its translation into multiplica-
tive intuitionistic linear logic a(Γ) � f (C) is defined as follows.

a(F) = f (F)
a(〈Γ 〉 j) = a(Γ)

a((Γ ,Δ)i) = a(Γ),a(Δ)

f (p) = p
f (� jA) = f (A)
f (� jA) = f (A)

f (A •i B) = f (A)⊗ f (B)
f (A\i B) = f (A)−◦ f (B)
f (B/i A) = f (A)−◦ f (B)

Proposition 7.15. If Γ �C is a derivable multimodal sequent, using structural rules
of the form described in Section 5.2.4, then a(Γ) � f (C) is derivable in multiplica-
tive intuitionistic linear logic.

Proof. This is immediate from inspection of the rules. The rules for the unary con-
nectives translate to the identity on proofs, given that both the unary punctuation
and the unary connectives are erased. The structural rules are translated as (zero or
more) applications of the structural rule of exchange (depending on the permutation
π which is part of the definition of the structural rule). ��

280 7 Proof Nets for the Multimodal Lambek Calculus

Therefore, by contraposition, if a(Γ) � f (C) is underivable we know that Γ � C is
underivable as well. Since we know that it is easy to check whether a given proof
structure is a proof net in multiplicative linear logic — by Proposition 6.27 and the
results of Guerrini (1999); Murawski and Ong (2000), who give linear time algo-
rithms — this gives us a simple but effective test which allows us to reject multi-
modal proof structures which do not correspond to linear logic proof nets according
to the translation given above.

As a consequence, if we translate the proof structure of Figure 7.35 into its two-
sided intuitionist proof structure, the proof structure shown in Figure 7.39 (it is
possible to translate directly into the proof nets of Section 6.24 as well), then the
conditions SAT, stating that any two vertices are connected by an alternate elemen-
tary path, and ØÆ, stating that there are no alternate elementary cycles, must hold
of this proof structure.

From these conditions, we can deduce that an axiom connection between n1 and
n17 violates the SAT constraint, since there is no path from the Goal vertex to any-
where outside the path leading to the “beacon” vertex.

Similarly, an axiom connection between n4 and n5 would create a trivial alternate
elementary cycle between the two vertices just connected and this connection must
therefore be excluded as well.

A second strategy uses word order properties by assigning pairs of string posi-
tions to formulae, with the intended meaning of the leftmost position and the right-
most position of the corresponding formula (the Grail implementation allows any
number of string positions, so that it would be possible for example to assign two
pairs of positions to a single formula; for the sake of simplicity, we will only talk
about single pairs of positions). The string positions for words are assigned from
left to right, using 0,1 for the first word, 1,2 for the second and n− 1,n for the nth
word, with the goal formula being assigned 0,n. If the grammar does not contain any
structural rules which change the order of words in the string, the string positions are
propagated as shown in Figure 7.2. If X−Y are the string positions assigned to the

n1

⊗

n5

n4

⊗

np11

⊗
np16

⊗

S15

np14
n17

S10

np9beacon

which

Galahad

saw

Goal

Fig. 7.39. Two-sided proof net unfolding of Figure 7.35

7.2 Grail: Parsing with Multimodal Proof Nets 281

main formula of the link, then the string positions assigned to the active formulae
are shown in the figure. Z is always an unused variable, it corresponds to a universal
quantifier over positions, whereas f is an unused Skolem function taking all free
variables which have scope over f as its arguments. The use of a Skolem function is
necessary to get the correct interpretation of an existential quantifier over positions.

To illustrate the string position rules, consider the tensor rule for A/B. Suppose
A /B occupies the positions between X and Y and we combine it with an adjacent
formula B. The leftmost position of B must be the rightmost position of A/B, that is
Y , but the rightmost position can be any position, hence the free variable Z. The re-
sulting A will therefore start at the leftmost position of A/B and end at the rightmost
position of B, which gives X−Z as its string positions.

This is a classic strategy, variations of which have been used for categorial gram-
mar parsing at least since (Morrill, 1995). The Grail implementation is based on the
embedding of the Lambek calculus and some of its extensions into first-order linear
logic of Moot and Piazza (2001). In particular, Grail allows a grammar to define its
own string position rules for formulae, which means that Grail can assign string po-
sitions even in the case of some structural rules which change word order, a feature
which will be illustrated in the example below.

Figure 7.40 shows an example of how the string positions are propagated to the
atomic formulae. For example, “saw”, according to its position in the string, has
position 3,4. Given that “saw” combines with an np to its right, this np must have
4 as its leftmost position, though we can say nothing about its rightmost position W
except that it will be the rightmost position of the internal node of this lexical tree
— which corresponds to np \0 S — as well, so this np \0 S node will have 3,W as
its string range. Given that np \0 S still needs to combine with an np to its left, the

Table 7.2. Logical links with string position labels for the multimodal Lambek calculus

A•i B

A B

i

X−Z Z−Y

X−Y

i

A

B B\iA

X−Yf −X

f −Y

i

A

A/iB B

X−Y Y − f

X− f
A

� jA

j

X−Y

X−Y

j

� jA

A

X−Y

X−Y

i

A•iB

A B
f −YX− f

X−Y

A

B B\iA

i

Z−X X−Y

Z−Y
A

A/iB B

i

X−Y Y −Z

X−Z

j

A

� jA

X−Y

X−Y

� jA

A

j

X−Y

X−Y

282 7 Proof Nets for the Multimodal Lambek Calculus

position of this np must be V,3, making the positions of the sentence S which is a
conclusion of this lexical tree V,W .

Grail allows certain formulae, which are explicitly mentioned in the grammar,
to get a non-standard translation. This is the case for the S /0 �1�1np formula,
which, given a string position to the entire formula, passes this string position to
its S subformula, while passing the empty sequence Z,Z to its np subformula. This
models the intuition that this formula corresponds to a sentence which is missing an
np somewhere. A slightly more clever encoding could also capture the fact that this
np must occur on a right branch, however, we leave this as an exercise to the reader.

Taking al this into consideration, Figure 7.40 shows the string positions assigned
to each of the atomic variables in the example proof structure.

Each atomic connection must unify the string positions of the two atoms which
are connected. This constraint is quite powerful, and excludes, for example, a con-
nection between n1 and n17 (different rightmost positions) or a connection between
np11 and np16 (different leftmost positions). In the figure, the axiom connections
which are excluded by this condition are shown in grey.

A third filtering strategy exploits the fact that we need to find a perfect match-
ing between the set of atomic formulae which are hypotheses and the set of atomic
formulae which are conclusions. This means, for example, that when we look at
Figure 7.40 and see that the connection between n1 and n17 is excluded, then the
connection between n4 and n5 should be excluded as well. Grail implements an
algorithm by Régin (1994) to ensure that this constraint is satisfied in more compli-
cated cases as well (see Moot, 2007, for more details).

A final strategy is specifically adapted for sequences of unary connectives as we
have seen them in Section 5.2.2 (and some of the exercises). Though we have seen
in Figures 7.14 and 7.38 that the unary contractions can diverge, a simple context-
free grammar can decide whether or not a sequence of unary modes — we will call
such a sequence a unary path — can contract in a calculus without structural rules
for the unary modes. Figure 7.41 shows (on the left of the figure) how to assign a
string to a unary branch in a proof structure, starting at the conclusion and going
up until we arrive at an atom or a binary branch. The labels l j, m j and r j represent
(arrow pointing) left, mid (no arrow) and (arrow pointing) right. Turning the page 90
degrees clockwise will make the directions of the arrows of the par links correspond
to the label, and this mnemonic helps when reading the string on the page: r j should
be to the immediate right of some m j, which corresponds to the � contraction,
and l j should be to the immediate left of some m j, which correspond the the �

contraction (the contractions and the corresponding strings are shown on the right
of Figure 7.41).

If no structural rules apply to the unary mode j and the unary mode is internal
(that is, the abstract proof structure must contract to a tensor tree without unary j
branches) we can verify whether or not the unary modes contract by means of the
context-free grammar shown at the bottom of Figure 7.41.

The start symbol S of this grammar denotes the strings which correspond to an
abstract proof structure which is a unary path and which contracts to a point. The
correspondence between the contractions and the grammar is easy to see: the first

7.2 Grail: Parsing with Multimodal Proof Nets 283

2,Y

X ,Y Z,Z V,W

X ,1

0,1 2,3

V,3

4,W

0,4
n1

�

� �

0

n5

n4

0

0

S10

�

1

�

np9

1

np11

�

� np16

0

S15

np14

0

n17

beacon

which

Galahad

saw

Goal

n17

n4

n1 n5

np16

np14

np9 np11

S10

S15

Fig. 7.40. Lexical unfolding with string position pairs for the atomic formulae

rule corresponds to no contractions, the second to the � contraction and the third to
the � contraction.

Example 7.16. Calculating the string which corresponds to the abstract proof struc-
ture of Figure 7.38 on page 278 gives us l0l0m0m0r0m0. Given that there is only
a single mode we will not mention the mode subscripts in the derivation which
follows.

We can parse this string using the context-free grammar of Figure 7.41 to produce
the following context-free derivation.

S→
lSmS→
llSmSmS→
llmSmS→
llmSm→
llmmSrSm→
llmmSrm→
llmmrm

To conclude, Grail implements a number of strategies to filter out (partial) proof struc-
tures which cannot be extended to a proof net. Taken together, these algorithms are
very effective at reducing the total search space (see Moot, 2007, for an evaluation).

7.2.3 Wide-Coverage Parsing

Though we have seen, throughout this book, a number of small grammars illus-
trating different linguistic phenomena, modern computational linguistics has moved

284 7 Proof Nets for the Multimodal Lambek Calculus

A

� jA

jm j j

� jA

A

l j

j

A

� jA

r j

� jA

A

jm j

m j

r j

l j

m j

�

�
C

i

i

�H �H

�
i

i

�
C

Context-free grammar

S→ ε
S→ m jSr jS for each unary mode j
S→ l jSm jS for each unary mode j

Fig. 7.41. Converting a unary branch into a string (left, the strings corresponding to the unary
contractions (right) and the context-free grammar

beyond small grammars and has become very successful at using statistical estima-
tion techniques to analyze unseen text: we will call this wide-coverage parsing (see
Manning and Schütze, 1999, for an introduction to statistical natural language pro-
cessing). Though wide-coverage parsing was first applied to parsing descriptively
limited grammars (eg. context-free grammars), modern wide-coverage parsers have
also been developed for linguistically more refined formalisms, including categorial
grammars.

Given that it is very time-consuming to construct a large grammar (in the case
of categorial grammars, the lexicon function Lex) by hand, it is often advantageous
to start with an annotated resource (called a treebank, since it usually consists of an
annotation tree for each sentence) and convert this resource into a grammar format
we like — a categorial lexicon Lex in our case.

Since it is well-known that no matter how big our treebank and (as a conse-
quence) the resulting extracted lexicon, there will always be a number of words
which do not occur in the treebank: there are new proper names (for example, corre-
sponding to a new generation of politicians, musicians and movie stars which were
still unknown at the time of the construction of the corpus), some new verbs (like
“to google”) and some words which simply do not occur in the treebank because
they are rare or because they are in a more colloquial style rarely adopted in news-
papers (since treebanks are often based on newspaper articles). In short, even with

7.2 Grail: Parsing with Multimodal Proof Nets 285

a very large treebank and a resulting very large lexicon, we need some way of as-
signing lexical categories to unknown words. Another problem is that the size of the
extracted lexicon becomes a bottleneck for parsing.

In the rest of this section, we will talk about how to convert a French annotated
treebank into a categorial grammar, look at the entries in the extracted lexicon and
use supertagging as a solution both to the parsing with a large lexicon but also for
dealing with unknown words. We will conclude by giving an idea about how to use
this extracted grammar for semantics.

The goal of this section is to illustrate that the logical view of categorial grammars
is compatible with modern developments in computational linguistics and that the
transparent syntax-semantics interface makes it possible to give semantic structures
to unseen text as well.

Grammar Extraction

The French Treebank (Abeillé et al, 2003) is a set of newspaper articles from the
newspaper “Le Monde” (from 1989 to 1994) which has been syntactically annotated
at the Laboratoire de Linguistique Formelle at the university of Paris VII.

Figure 7.42 shows part of an annotated sentence a tree from the French Treebank,
a segment of the longer phrase 7.1 below.

(7.1) La
The

cour
court

a,
has,

d’
of

autre
other

part,
part,

atténué
reduced

le
the

montant
amount

des
of the

amendes
fines

que
that

la
the

11(sic)
11

chambre
chamber

avait
had

infligées
inflicted

aux
on the

autres
other

prévenus.
defendants.

‘The court has, on the other hand, reduced the height of the fines that the 11th chamber
had inflicted on the other defendants.’

Srel

NP
obj

PROREL

que

NP
suj

DET

la

ADJ

11

NC

chambre

VN

V

avait

VPP

infligées

PP
aobj

P+D

aux

NP

ADJ

autres

NC

prévenus

Fig. 7.42. Example tree from the Paris 7 treebank

The leaves of the annotation tree are the words from the sentence. The pretermi-
nals (ie. the nodes which have a leaf as daughter) are labeled with the Part-of-Speech
tags of the corpus: V for verb, VPP for a past participle, DET for a determiner, NC
for a common noun, P+D for a combination of a preposition plus a determiner
(“aux” in French corresponds to the combination of a proposition “à” (to) with
a determiner “les” (the, plural), as indicated by the gloss of sentence 7.1 above).

286 7 Proof Nets for the Multimodal Lambek Calculus

The other nodes in the trees are labeled by the major syntactic groups: NP for noun
phrase, PP for prepositional phrase and VN for the verb group. Finally, some of the
connections in the tree are labeled by functional roles: “la 11 chambre” is the subject
of the sentence (marked by suj), “que” is its object (obj) and “aux autres prévenus”
is a prepositional complement headed by the preposition “à” (aobj).

When we want to transform the tree of Figure 7.42 into a categorial grammar
derivation tree, we need to perform a number of steps.

1. The annotation of the trees in the corpus is rather flat, whereas we require a
binary-branching tree. This is easily remedied by adding extra branches. For ex-
ample, we group the adjective “11” and the common noun “chambre”
together.

2. We need to decide, for each binary branch in the new tree, which will be the
functor and which will be the argument: that is, do we assign the two nodes
X /Y and Y or do we assign them Y and Y \X? General rules help us make this
decision: verbs, adjectives and determiners are functors, whereas object and
subject noun phrases, and aobj prepositions are arguments.

3. We need to decide, for each argument type Y above what the corresponding
formula is. Again, there are general rules to help us here: an argument labeled
NP will correspond to the formula np, PP corresponds to pp, and the argument
of a determiner DET or a preposition plus determiner P+D will be n.

4. The annotation tree sometimes needs to be rebracketed in order to better reflect
the argument structure. For example, as shown in Figure 7.42, the prepositional
argument “aux autres prévenus” is annotated as being the argument of the verb
group. Syntactically, it is an argument of the past participle “infligées”, however,
and the syntactic tree should be restructured to reflect this.

5. The annotation tree does not annotate “traces”. This means in order to give a
relativizer like “que” (that) its correct formula assignment (See Example 5.9 in
Section 5.2.2 where we analyzed the English “which” as looking for a sentence
missing a noun phrase to its right) we need to add the extracted np to the anno-
tation tree. Since the position of the extracted np (or the np “trace”) is neither
annotated nor easily deduced from the annotation, this information needs to be
added manually.

6. Finally, since the placement of adverbs can be rather free and we do not want to
assign them a different formula for each of the different positions in which they
can occur, we replaces these by a formulas with a mode permitting movement
— much as we have done in Section 5.1.1 and Exercise 5.3.

Figure 7.43 shows the tree of Figure 7.42 with all the modifications listed above
taken into account. Steps 1 and 2 correspond rather closely to the learning algo-
rithms for AB grammars which we discussed in Section 1.6. Steps 5 and 6 move us
beyond AB grammars and give us multimodal categorial grammars as we have seen
them in Chapter 5 (there is a minor notational difference in that the “basic” contin-
uous mode is not indicated in the assigned formulas: we use \ and / as a shorthand
for \0 and /0 respectively).

7.2 Grail: Parsing with Multimodal Proof Nets 287

n\n

(n\n)/(s/�1�1np)

que

s/�1�1np

s

np

np/n

la

n

n/n

11

n

chambre

np\s

(np\s)/(np\sppart)

avait

np\sppart

(np\sppart)/ppa

((np\sppart)/ppa)/np

infligées

np

ε

ppa

ppa/n

aux

n

n/n

autres

n

prévenus

Fig. 7.43. The tree from Figure 7.42 binarized and with formula information added

Figure 7.43 is essentially a natural deduction tree (or an upside-down multimodal
proof net!) and the leaves of the tree correspond to the entries of the lexicon. Com-
pared to the atomic formulas we have seen before, there is some added detail: for
example, the formula assigned to the preposition “à” is not pp / np but ppa / np,
which allows us to distinguish between different types of prepositions when they
occur as arguments: this allows us to distinguish between verbs taking different
prepositional phrases as an argument. Similarly, in addition to the sentence type s,
there is a separate type for sppart which is used for the past participle. This allows
us to give the auxiliary verb “avait” the type (np \ s)/ (np \ sppart), that is it selects
a verb phrase headed by a past participle to its right to form a (simple) verb phrase.

Steps 4 and 5 require manual help: in total there is a rather large number of verb
clusters and relative pronouns which have to be assigned their correct types and
while some of these can be decided by means of general rules this is followed by a
rather laborious step of manual verification.

The conversion and extraction algorithm sketched above is rather standard and
versions of it have been applied to different styles of categorial grammar and to
different treebanks and languages (Moortgat and Moot, 2001; Hockenmaier and
Steedman, 2007; Moot, 2010a; Sandillon-Rezer and Moot, 2011).

The Extracted Lexicon

In order to give a better idea of the extracted lexicon, let’s look at some of the
extracted formulas from the French Treebank and several other resources: manually
annotated sentences from the French Timebank (a corpus annotated with temporal
structure, see Bittar, 2010), the Itipy corpus (a corpus of voyages in the Pyrenees
mountain range, see Asher et al, 2008; Loustau, 2008; Moot et al, 2011) and some
more recent newspaper articles from “Le Monde”.1 The total corpus consists of
13,337 sentences, 392,682 words and a total of 918 different formulas occurring in
the lexicon.

1 This choice of different corpora is rather eclectic but motivated by some of the applications
with respect to spatio-temporal semantics for the Itipy project.

288 7 Proof Nets for the Multimodal Lambek Calculus

Perhaps surprisingly, one of the most difficult words in the corpus is the comma
“,”: though the comma is ignored most of the time (73% of the total number of
occurrences) it often fulfills a role close to a coordination such as “et” (and), as can
be seen from the many instances of the type scheme (X \X) /X occurring in the
lexicon. The formula (np \ np)/(n \ n) is used for appositive constructions such as
those below.

(7.2) Force
Force

Ouvrière,
Ouvrière,

la CGT
CGT

et
and

la CFDT,
CFDT,

qui
who

avaient
had

jugé
judged

“inacceptable”
“unacceptable”

(...)
(...)

‘Force Ouvrière, CGT and CFDT (French labour unions), who considered (...)
“unacceptable”’

(7.3) (...) le
the

secrétaire
secretary

américain
American

au
of-the

Trésor,
Treasure,

M. Pierre
Mr Pierre

Bérégovoy
Bérégovoy

et
and

d’ autres
other

grand
big

argentiers,
treasurers,

soucieux
concerned

de
to

voir
see

l’
the

activité
activity

se
itself

ranimer
reanimate

(...)

‘(...) the US Secretary of the Treasury, Mr Pierre Bérégovoy and other finance
ministers, concerned with seeing the (economic) activity pick up (...)’

In both of the sentences above, the first comma is part of a conjunction “ X , Y et Z”
which are fairly common. The second comma of type (np \ np) / (n \ n) selects an
adjective to its left (both “qui avaient jugé...” and “soucieux de ...” are of type n \ n)
and a noun phrase on its left (the complex conjunction in both cases) to form a noun
phrase.

Formulas for “,”
16,927 no formula

1,978 (np\np)/ np
728 (n\n)/ n
668 (np\np)/ n
441 (s\ s)/ s
385 (np\np)/ (n\n)
344 ((np\ s)\ (np\ s))/ (np\ s)
336 ((np\ s)\np)/ np
159 (s\ s)/ np
110 (pp\ pp)/ pp
107 (n\n)/ np
93 (np\ s)/ s
69 ((np\ s)\np)/ np
... 50 other formulas

Formulas for “est” (is)
664 (np\ s)/ (np\ sppart)
633 (np\ s)/ np
538 (np\ s)/ (n\n)
301 (clr \ (np\ s))/ (clr \ (np\ sppart))
222 (np\ s)/ pp

55 (np\ s)/ (np\ sdein f)
52 ((np\ s)/ sq)/ (n\n)
50 ((np\ s)/ sq)/ pp
... 31 other formulas

Fig. 7.44. Most frequent formula assignments for “,” and “est”

7.2 Grail: Parsing with Multimodal Proof Nets 289

Looking at the types assigned to “est”, the present tense of the verb “être” (to be)
in Figure 7.44, we see it occurs most frequently as an auxiliary verb (selecting a past
participle to its right, occurring 664 times, which is 24.4% of the total number oc-
currences for “est” as a present tense verb), closely followed by its use as a transitive
verb and as a copula verb, selecting a subject and an adjective. The fourth type cor-
responds to the combination of a reflexive clitic “se” (himself/herself/themselves)
which occurs before the auxiliary verb but is an argument of the past participle —
sentence 7.4 gives an example: the lexical entry for the verb is “s’attaquer à” (to
attack) and it occurs as a past participle. There is “est” with a locative pp and fi-
nally some less common constructions corresponding more ore less to the English
sentences listed below.

(7.4) M.
Mr.

Mayor
Mayor

s’
SE-himself

est
has

attaqué
attacked

à
at

(...)
(...)

‘Mister Mayor has attacked (...)’ “est” = (clr \ (np\ s))/ (clr \ (np\ sppart))
(7.5) (...)

(...)
le
the

siège
headquarters

est
is

à
at

Dallas
Dallas

(...)
(...)

‘(...) the headquarters is in Dallas (...)’ “est” = (np\ s)/ pp

(7.6) Notre
Our

but
goal

est
is

de
to

résoudre
resolve

(...)
(...)

‘It is our goal to resolve (...)’ “est” = (np\ s)/ (np\ sdein f)
(7.7) Il

It
est
is

très
very

curieux
strange

que
that

(...)
(...)

‘It is very strange that (...)’ “est” = ((np\ s)/ sq)/ (n\n)
(7.8) C’

It
est
is

en
in

juillet
July

1988
1988

que
that

(...)
(...)

‘ It was in July 1988 that (...)’ “est” = ((np\ s)/ sq)/ pp

Supertagging

As we have seen, automatically extracting a lexicon — even after a significant
amount of cleanup and manual corrections — produces a grammar which simply
has too many formula assignments to each word to be useful for parsing anything
but the most elementary sentences: many common words (and even interpunction
symbols) are assigned a rather large number of formulas with the effect that lexical
lookup becomes an important first obstacle to parsing with extracted grammars.

A solution to this problem has been proposed by Joshi and Srinivas (1994). Since
the eighties, different methods have been used to successfully implement Part-of-
Speech taggers, which reliably assign Part-of-Speech (POS) tags such as “adjective”
and “verb” to texts using limited local information (word form, last characters of

290 7 Proof Nets for the Multimodal Lambek Calculus

the word, previous word form) (see Manning and Schütze, 1999, Chapter 10 for
an overview). Joshi and Srinivas (1994) propose to use these same techniques to
assign richer structures than POS tags to words: hence supertags. This approach
is especially interesting for lexicalized grammar formalisms — the original paper
discusses Lexicalized Tree Adjoining Grammars, however it has since been applied
to many other lexicalized grammar formalisms, including categorial grammars (see
Bangalore and Joshi, 2010, Part III for an overview).

POS tagging is useful since it gives a preliminary disambiguation of the words
in the lexicon: it would help us distinguish between the noun “est” (east) and the
present tense verb form “est” (is) based only on the local context, for example.
Supertagging is an extension of this strategy, where we disambiguate between the
list of possible formulas for a word (if it occurs frequently enough) or for its Part-
of-Speech tag (if we have seen it only a few times or not at all). Where POS-tagging
is highly successful — depending on the detail of the tagset, scores of between 97-
98% correctly assigned POS tags are common — supertagging, being inherently
more difficult, has scores between 88-92% (again depending on the level of detail
in the supertag set).

The Clark & Curran supertagger (Clark and Curran, 2004), trained on the catego-
rial grammar extracted from the French Treebank, which has a total of 918 formulas
(supertags), assigns 91.1% of unseen words their correct supertags and when as-
signing words all supertags within a factor of 0.01 of the best supertag, it assigns
98.4% of unseen words their correct supertag (Moot, 2010b). These scores are in a
range comparable to the best supertaggers.

As an example, Figure 7.45 shows part of the graphical user interface (part of
a set of tools downloadable from the Grail website) which connects Grail and the
Clark & Curran tools.

(7.9) Le
The

gouvernement
government

refuse
refuses

tout
all

commentaire
comment

sur
about

cette
this

proposition
proposal

et
and

préfère
prefers

avancer
advance

les
the

chiffres
numbers

positifs
positive

récoltés
harvested

par
by

la
the

mesure.
mesure.

‘The government refuses to comment on this proposal and prefers to advance the
positive numbers obtained by the measure.’

Fig. 7.45. Screenshot of the interface to the supertagger

7.2 Grail: Parsing with Multimodal Proof Nets 291

The figure shows the words in the sentence on the bottom row, with the POS tags
inside the rectangles above the corresponding word. So “préfère” (prefer) is assigned
the tag VER:pres (for present tense verb), whereas “tout” (all/every) is assigned
ADV (for adverb). This is actually an error of the POS tagger: “tout” should be a
determiner in the current context, however, as we will see, the supertagger will be
able to assign the correct formula np /n in spite of this. Visually, the user interface
indicates the confidence of the POS tagger in each tag, the percentage of the dark-
colored background corresponding to the confidence of the tagger (more or less the
probability with which the tagger estimates it has given the right response).

The supertagger results are shown above the words and POS tags, as a list of for-
mulas with the likelihood decreasing towards the top of the figure. The confidence of
the supertagger is indicated by the square on the left of the formula — the percent-
age with a darker background denoting (more or less) the probability with which the
supertagger estimates the word and POS tag should be assigned this supertag. Many
of the words are assigned only a single supertag: the demonstrative “cette” (this)
is assigned only np / n and even “et” (and) is assigned only the (correct) formula
((np \ s)\ (np \ s))/ (np \ s) (possibly because it estimates this as highly likely for
“et” followed by a verb).

The preposition “sur” (on/upon) is more difficult, with ppsur/np — the type for a
prepositional argument — being the first choice, followed at a short distance by the
correct type (n\ n)/ np.

The output of the supertagger serves as input to Grail, which performs proof
search with the selection of formulas chosen by the supertagger.

Semantics

In the previous paragraphs, we have briefly described how to extract a multimodal
categorial grammar from a treebank and how to use the resulting grammar for
parsing.

As we have seen in Chapter 3 however, one of the advantages of using categorial
grammar is its direct link with semantics in the style of Montague: we can transform
a categorial parse, ie. a proof in the multimodal Lambek calculus, into an intuitionis-
tic natural deduction proof, which corresponds to a lambda-term. In order for this to
work, we need a lexicon which assigns lambda-terms of the appropriate type to all
words. Here, we can use one of the points we criticized about Montague semantics
at the beginning of Chapter 3 to our advantage: an unknown noun n is simply as-
signed the lambda-term λ x.n(x) which is of the right type and this strategy extends
to verbs and to proper names as well. So the semantic types of our lexicon fall into
two general categories:

1. Words which require some special treatment: the auxiliary verbs “être” (to be)
and “avoir” (to have), the conjunction “et” (and) etc. The working hypothesis is
that these words can be listed in a lexicon,

2. A generic treatment for verbs, adjectives, nouns, etc. which assigns them a
lambda-term based on their formula only — using the word only as a constant.

292 7 Proof Nets for the Multimodal Lambek Calculus

Bos et al (2004) were the first to combine categorial grammars and Montague-style
Discourse Representation Theory as we have seen it in Section 3.6 to give wide-
coverage semantics of English. In (Moot, 2010c), similar results are obtained using
the multimodal lexicon of Moot (2010b), the Grail parser and a lexicon assigning
DRSs to French words. The current version of this semantic lexicon contains lexical
entries for over 300 words and over 200 default rules.

Figure 7.46 shows the Grail output for example sentence 7.9.
In the universe of the main DRS, there are two variables: z18 which is a discourse

referent corresponding to the government (as indicated by the topmost condition)
and d2 which is an event variable (we have seen them before in Example 3.3) of an
event which corresponds to the action “to prefer”, performed by the government z18

(indicated as “agent” of the event of “preferring”). The thing which is being pre-
ferred is an embedded DRS labeled with x4 (“advancing the positive numbers...”).
The topmost condition is an implication — corresponding to “tout” (all) — stating
that if z14 is a commentary about the proposition, then the government z18 refuses
this commentary.

All in all, even though it has been calculated automatically by Grail, the resulting
semantic representation is rather close to what we would assign by hand and we

d2 z18
gouvernement(z18)

z14 x17

commentaire(z14)
proposition(x17)
sur(z14,x17)

⇒ e0

event(e0)
refuser(e0)
agent(e0,z18)
patient(e0,z14)

préférer(d2)
event(d2)
agent(z18)
theme(x4)

x4 : e4 y7
event(e4)
avancer(e4)
agent(e4,z18)
patient(e4,y7)
positifs(y7)
chiffres(y7)

d9 y10

mesure(y10)
background(d9)
récoltér(d9)
patient(d9,y7)
agent(d9,y10)

Fig. 7.46. Grail LATEX output for sentence 7.9

7.3 Concluding Remarks 293

leave it as an interesting open question how much detail we can add to these se-
mantic representation: richer lexical semantics (as in Pustejovsky, 1995, for exam-
ple) temporal structure (Partee, 1984; Kamp and Reyle, 1993), rhetorical structure
(Asher and Lascarides, 1993), . . .

7.3 Concluding Remarks

This chapter has given a detailed treatment of proof nets for the different logics
based on the non-associative Lambek calculus that have been discussed in Chapter 5.
A central thesis has been that proof nets are not only interesting from a formal point
of view, but also from the point of view of implementation: given that proof nets
are an “economic” way of representing proofs and partial proofs, we can see them
as a way of constructing parses for the non-associative Lambek calculus and its
multimodal extensions.

We have illustrated the use of proof nets as a tool for parsers by introducing
a parser based on proof nets, the Grail theorem prover, and described some of its
features.

294 7 Proof Nets for the Multimodal Lambek Calculus

Exercises for Chapter 7

Exercise 7.1. Look at Figure 7.13 on page 256. It gives a multimodal proof net of
np � (S /0 np)\0 S . Give two other proof structures which convert to the same ab-
stract proof structure shown in the middle (“the same” means that only the hypothe-
sis and conclusion formula differ and that they are not instances of X � (Y /0 X)\0 Y
for any X or Y).

Exercise 7.2. Theorem 7.13 in Section 7.1.4 shows the equivalence of multimodal
proof nets and the sequent calculus. The sequentialisation part of the proof, which
shows that each multimodal proof net corresponds to a sequent proof, shows only
the case for the [\] contraction explicitly (in Figure 7.32 and Figure 7.33). Give
sequent proofs for proof nets whose conversion sequences end with the [•], [/], [�]
and [�] contractions.

Exercise 7.3. Draw both the positive and negative multimodal formula trees accord-
ing to Definition 7.4 on page 247 for the following formulae.

np /0 n
np \0 S
(a •1 b)/2 c
(S /w np)\w S
((np \0 S)/0 np)\0 (np \0 S)

Exercise 7.4. Prove Proposition 6.51 on page 226.

Exercise 7.5. Reprove the sentences of Exercise 5.4 using multimodal proof nets:
that is write down the negative multimodal formula trees for the lexical entries, give
the rewrite rules corresponding to the structural rules and then show each of the
proof structures can be contracted to a tensor tree.

Hint: suppose that the structural rules for the identity element of Figure 5.3 on
page 153 correspond to the following rewrites.

�
C

�H �

a

ε →εr←εr �H
C

→εl←εl

�
C

� �H

a

ε

Exercise 7.6. Reprove the grammatical sentences of Exercise 5.6 using multimodal
proof nets. In addition, prove that the sentences marked as ungrammatical are un-
derivable by showing they do not contract to a tensor tree.

This exercise uses the same structural rules as shown in Figure 7.16 of Sec-
tion 7.1.3.

Exercise 7.7. Reprove the following sentences (from Exercise 5.9) using multi-
modal proof nets.

Exercises for Chapter 7 295

(7.10) (dat)
(that)

ik
I

Marie
Mary

de
the

nijlpaarden
hippopotami

zag
saw

voeren.
feed.

‘(that) I saw Mary feed the hippopotami.’
(7.11) (dat)

(that)
ik
I

Henk
Henk

Marie
Mary

de
the

nijlpaarden
hippopotami

zag
saw

helpen
help

voeren.
feed.

‘(that) I saw Henk help Mary feed the hippopotami.’

Begin by writing down the proof structures corresponding to the lexical entries and
the graph rewrites corresponding to the structural rules, both of which are repeated
below.

Γ [(Δ1,(Δ2,Δ3)
0)4] � C

MA
Γ [((Δ1,Δ2)

4,Δ3)
0] � C

Γ [(Δ1,(Δ2,Δ3)
0)4] � C

MC
Γ [(Δ2,(Δ1,Δ3)

4)0] � C

Γ [(Δ1,〈Δ2〉0)0] � C
K2

Γ [〈(Δ1,Δ2)
0〉0] � C

Γ [(〈Δ1〉1,〈Δ2〉1)4] � C
K

Γ [〈(Δ1,Δ2)
4〉1] � C

Γ [〈Δ〉1] � C
I

Γ [〈Δ〉0] � C

Word Type(s) Translation
ik np I

Marie np Mary
Henk np Henk

de np /n the
nijlpaarden n hippopotami

zag �1((np \0 (np \0 S))/4 in f) saw
helpen �1((np \0 in f)/4 in f) to help
voeren �1(np \0 in f) to feed

Exercise 7.8. Apply the specialized contraction shown in Figure 7.20 on page 261 to
the abstract proof structure shown in Figure 7.10 on page 253. What is the resulting
abstract proof structure?

Exercise 7.9. Give, following Example 7.12 on page 261, a specialized contraction
for [�] which corresponds to the K1 structural rule and a specialize contraction
which corresponds to the K2 structural rules. Can you give a characterization of the
[�] contraction which corresponds to the combined K, I and K2 structural rules of
Exercise 7.7 above?

Exercise 7.10. Using the translation from unary formulae to strings from Figure 7.41
(in Section 7.2.2), revisit Exercise 5.13 and reprove the relations among prefixes of
the unary mode 0 using the context-free grammar at the bottom of Figure 7.41.

296 7 Proof Nets for the Multimodal Lambek Calculus

References

Abeillé, A., Clément, L., Toussenel, F.: Building a treebank for French. In: Abeillé, A. (ed.)
Treebanks: Building and Using Parsed Corpora, ch. 10, pp. 165–187. Kluwer, Dordrecht
(2003)

Asher, N., Lascarides, A.: Logics of Conversation. Cambridge University Press (1993)
Asher, N., Muller, P., Gaio, M.: Spatial entities are temporal entities too: The case of motion

verbs. In: LREC 2008 Workshop on Methodologies and Resources for Processing Spatial
Language, Marrakech (2008)

Bangalore, S., Joshi, A.K. (eds.): Supertagging: Using Complex Lexical Descriptions in Nat-
ural Language Processing. MIT Press (2010)

Bittar, A.: Building a Timebank for French: A reference corpus annotated according to the
ISO-TimeML standard. PhD thesis, Ecole Doctoral de Sciences du Language Laboratoire
Alpage (2010)

Bos, J., Clark, S., Steedman, M., Curran, J.R., Hockenmaier, J.: Wide-coverage semantic
representation from a CCG parser. In: Proceedings of the 20th International Conference on
Computational Linguistics (COLING 2004), Geneva, Switzerland, pp. 1240–1246 (2004)

Clark, S., Curran, J.R.: Parsing the WSJ using CCG and log-linear models. In: Proceedings of
the 42nd Annual Meeting of the Association for Computational Linguistics (ACL 2004),
Barcelona, Spain, pp. 104–111 (2004)

Danos, V.: La logique linéaire appliquée à l’étude de divers processus de normalisation et
principalement du λ -calcul. Thèse de Doctorat, spécialité Mathématiques, Université Paris
7 (1990)

Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in Theoretical Com-
puter Science, vol. 7. Cambridge University Press (1988)

Guerrini, S.: Correctness of multiplicative proof nets is linear. In: 14th Symposium on Logic
in Computer Science (LICS 1999), pp. 454–463. IEEE (1999)

Hockenmaier, J., Steedman, M.: CCGbank, a corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Computational Linguistics 33(3), 355–396
(2007)

Joshi, A., Srinivas, B.: Disambiguation of super parts of speech (or supertags): Almost pars-
ing. In: Proceedings of the 17th International Conference on Computational Linguistics,
Kyoto (1994)

Kamp, H., Reyle, U.: From Discourse to Logic. D. Reidel, Dordrecht (1993)
Loustau, P.: Interprétation automatique d’itinéraires dans des récits de voyages d’une infor-

mation géographique du syntagme une information géographique du discours. PhD thesis,
Université de Pau (2008)

Manning, C., Schütze, H.: Foundations of statistical natural language processing. MIT Press
(1999)

Moortgat, M., Moot, R.: CGN to Grail: Extracting a type-logical lexicon from the CGN
annotation. In: Daelemans, W. (ed.) Proceedings of CLIN 2000 (2001)

Moot, R.: Proof nets for linguistic analysis. PhD thesis, Utrecht Institute of Linguistics OTS,
Utrecht University (2002)

Moot, R.: Graph algorithms for improving type-logical proof search. In: Proceedings Cate-
gorial Grammars 2004: an Efficient Tool for Natural Language Processing (2004)

Moot, R.: Filtering axiom links for proof nets. In: Kallmeyer, L., Monachesi, P., Penn, G.,
Satta, G. (eds.) Proceedings of the 12th Conference on Formal Grammar (FG 2007). CSLI
Publications, Dublin (2007) (to appear) ISSN 1935-1569

References 297

Moot, R.: Lambek grammars and hyperedge replacement grammars. Tech. rep., LaBRI,
CNRS (2008a)

Moot, R.: Lambek grammars, tree adjoining grammars and hyperedge replacement gram-
mars. In: Gardent, C., Sarkar, A. (eds.) Proceedings of TAG+9, The Ninth International
Workshop on Tree Adjoining Grammars and Related Formalisms, pp. 65–72 (2008b)

Moot, R.: Automated extraction of type-logical supertags from the Spoken Dutch Corpus.
In: Bangalore, S., Joshi, A. (eds.) Supertagging: Using Complex Lexical Descriptions in
Natural Language Processing. MIT Press (2010a)

Moot, R.: Semi-automated extraction of a wide-coverage type-logical grammar for french. In:
Proceedings of Traitement Automatique des Langues Naturelles (TALN 2010), Montreal
(2010b)

Moot, R.: Wide-coverage french syntax and semantics using Grail. In: Proceedings of Traite-
ment Automatique des Langues Naturelles (TALN 2010), Montreal, System Demo (2010c)

Moot, R.: Main Grail website (2012a),http://www.labri.fr/perso/moot/grail3.html
Moot, R.: Grail tutorial (2012b), http://www.labri.fr/perso/moot/tutorial/
Moot, R., Piazza, M.: Linguistic applications of first order multiplicative linear logic. Journal

of Logic, Language and Information 10(2), 211–232 (2001)
Moot, R., Puite, Q.: Proof nets for the multimodal Lambek calculus. Studia Logica 71(3),

415–442 (2002)
Moot, R., Retoré, C., Prévot, L.: Discursive analysis of itineraries in an historical and regional

corpus of travels: syntax, semantics, and pragmatics in a unied type theoretical framework.
In: Constraints in Discourse, Agay-Roches Rouges (2011)

Morrill, G.: Higher order linear logic programming for categorial deduction. In: Proceed-
ings of the European Association for Computational Linguistics, EACL 1995, Dublin,
pp. 133–140 (1995)

Murawski, A., Ong, C.H.: Dominator trees and fast verification of proof nets. In: 15th Sym-
posium on Logic in Computer Science (LICS 2000), pp. 181–191. IEEE (2000)

Partee, B.: Nominal and temporal anaphora. Linguistics and Philosophy 7(3), 243–286 (1984)
Puite, Q.: Proof nets with explicit negation for multiplicative linear logic. Tech. rep., Depart-

ment of Mathematics, Utrecht University (1998), preprint 1079
Puite, Q.: Sequents and link graphs: Contraction criteria for refinements of multiplicative

linear logic. PhD thesis, Department of Mathematics, Utrecht University (2001)
Pustejovsky, J.: The generative lexicon. MIT Press (1995)
Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of

the Twelfth National Conference on Artificial Intelligence, pp. 362–367. AAAI, Seattle
(1994)

Sandillon-Rezer, N.-F., Moot, R.: Using tree Using Tree Transducers for Grammatical In-
ference. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736,
pp. 235–250. Springer, Heidelberg (2011)

Savateev, Y.: Product-Free Lambek Calculus Is NP-Complete. In: Artemov, S., Nerode, A.
(eds.) LFCS 2009. LNCS, vol. 5407, pp. 380–394. Springer, Heidelberg (2008)

http://www.labri.fr/perso/moot/grail3.html
http://www.labri.fr/perso/moot/tutorial/

Index

AB grammars, 1–17
accessibility

of discourse referents, 88
acyclicity, 211
adjective, 96

intersective, 96
subsective, 96

Ajdukiewicz fractions, 1–2
alpha equivalence, 68
alternate elementary cycle, 220
alternate elementary path, see path, alternate

elementary
anaphor, 86
anaphoric link, 88
antecedent, 27
antecedent term

empty, 153
antecedent terms

multimodal, 162
without unary connectives, 150

NL, 102
argument, 3
axiom link, 211, 217, 220, 228, 241–243,

251
axiom vertex, see vertex, axiom

basic categorial grammars, see AB
grammars

beta reduction, 68

canonical model, 124, 181, 183
case, 164
category, 3
Chomsky normal from, 7, 143

Church-Rosser, see confluence
classical categorial grammars, see AB

grammars
Cocke Kasami Younger, 8, 143
combinatory categorial grammars, X, 186
compactness

model, 71
completeness, 71
complexity

algorithmic, 59, 129, 130, 171, 229
human sentence processing, see sentence

processing
conclusions

of a rule, 27
confluence, 68, 256

local, 34
conjunctive normal form, 195
connectedness, 211
context

L, 27
NL, 103

context-free grammar, 6–8, 52–58, 143, 282
context-sensitive grammar, 171
contraction, 5, 34, 55, 184
correction graph, 210
correspondence theory, 126
count check, 30, 105, 140, 273
countermodel, 128
Curry-Howard isomorphism, VIII, 67,

74–75
currying, 24
cut elimination, 232

linear logic, 198
cut vertex, see vertex, cut

300 Index

de dicto, 154
De Morgan identities, 194
de re, 154
decidability, 43–44

natural deduction, 37–39
degree

cut, 40
definition, 40

depth
of a cut formula, 40

derivation tree, 4, 6
context-free grammar, 6

discourse referent, 87
Discourse Representation Structure, 87

conditions, 87
merge, 89
proper, 88
universe, 87

Discourse Representation Theory, 86–93,
291–293

disjunctive normal form, 195
distributivity, 195
DRS, see Discourse Representation

Structure
DRS conditions, see Discourse Representa-

tion Structure, conditions
DRT, see Discourse Representation Theory
Dutch verb clusters, 159–160, 166–167
dynamic semantics, see semantics, dynamic

elimination rule, 3, 9, 25, 29, 33
empty sequence, 6, 33
end-sequent, 27
entailment, 66
equivalence

strong, 6
weak, 6

exponent, 2
extraction, 156, 184, 186

medial, 160, 169
peripheral, 28, 52, 60, 107, 145

features, 151, 164–165
formal language theory, VII
formula

multisorted logic, 70
fractions, see type
functor, 3

garden path sentences, 229–230

generalized quantifier, 153
generation, 232
Grail, 271–293
grammar

lexicalized, 5, 65
grammatical inference, see learning
graph

matching, 207
perfect, 207

Greibach normal form, 5, 7
strong, 7

hereditary splitting Times link, 213
HPSG, 5, 101
hyperedge replacement grammar, 52

identification in the limit, 10
individual concept, 94
intensional logic, see logic, intensional
interpolation, 48–52

thin sequents, 55–57
intersective adjective, see adjective,

intersective

Kripke frame, 121
Kripke model, 121

lambda calculus, VII
typed, 66–69

Lambek calculus, 23–59, 65–95
models, 44–48

Lambek grammars, 23–24, 52–59
language acquisition, see learning
learning, 9–16
lexicon, 3, 23

automated extraction, 284
linear logic, VII, 5, 160–162, 193–232

first-order, 281
multiplicative, 26, 172, 193–244

link
prenet, 207

logic
intensional, 93

main formula
of a rule, 29

matching, see graph, matching
perfect, see graph, matching, perfect

medial extraction, see extraction, medial
merge

Index 301

Discourse Representation Structure, see
Discourse Representation Structure,
merge

mildly context-sensitive, 171
minimalist program, 5, 16, 157
modal logic, 120, 121, 126, 183
mode

external, 151, 166
internal, 151, 155, 166, 282

model
multisorted logic, 70

modus ponens, 3, 5, 9, 24, 29
Montague Grammar, 65–95, 291–293
Montague semantics, 231
movement, 28, 157

natural deduction, 5, 24–28, 31–33, 240
normalization, 33–39

negation, 194
negative normal form, 195
normalization

typed lambda calculus, 68
NP complete, 129

order, 53
definition, 36

orthogonal, 194

par, 194
active, 277

parsing, 8, 43–44, 129–143, 227–229,
271–293

wide-coverage, 283–293
parsing as deduction, 193, 233
path

alternate elementary, 207
unary, 282

perfect matching, see graph, matching,
perfect

peripheral extraction, see extraction,
peripheral

phrase structure grammar, 2
pied-piping, 185
polarity, 30, 247
polymorphism, 19, 105, 106, 146
premise

of a rule, 27
prenet, 207–210

Lambek calculus, 220
multimodal, 245–255

principal branch, 35
principal model, 71
principal premise, 35
proof

interactive, 272
proof frame, 245
proof net, 193–293
proof structure, see prenet
proof theory, VII
proper DRS, see Discourse Representation

Structure, proper

residuation, 44, 114
result, 3
rewrite immediately, 6
right node raising, 146
rigid grammar, 10

S4, 94, 126
semantics

dynamic, 86
semi-group

free, 47–48
ordered, 45
residuated, 44–47

sentence processing, 229–231
sequent calculus, 28–33

cut elimination, 39–43
sequent proof

normal form, 39
Skolem function, 281
splitting Times link, 212

hereditary, see hereditary splitting Times
link

spurious ambiguity, 44, 193, 201, 233
structural rules, 5, 111–113, 126–129,

151–160, 165–172
inclusion, 151
interaction, 152–160
modally licensed, 151
multiplicative, 172
non-increasing, 171

subformula, 220
subformula property

linear logic, 198
natural deduction, 35
sequents, 40

subformula tree, 207–208
subsective adjective, see adjective,

subsective

302 Index

substitution, 11, 67
lambda calculus, 68

succedent, 27
syntactically connected, 1

tense logic, 162
tensor tree, 254
term

closed, 69
multisorted logic, 69

theorem proving, 129
trace, 28
tree adjoining grammars, 5, 7, 101, 252, 290
tree language, 13, 16, 25, 52
treebank, 284
type, 67

AB grammars, 3
atomic, 3, 67
basic, 67
compound, 67
primitive, 3

semantic, 3, 67
syntactic, 3

type unification, 10–11

unary connectives, 160–172
underlying frame, 121
unification, 282
universal grammar, 5, 9, 184
universe, see Discourse Representation

Structure, universe

variable
bound, 68
free, 67

vertex
axiom, 247
cut, 247

weakening, 5, 34, 55, 184
wrap, 152

yield, 102

	Title

	Preface
	Contents
	Classical Categorial Grammars:
AB Grammars
	Semantic Categories and Ajdukiewicz Fractions
	Classical Categorial Grammars or AB Grammars
	AB Grammars and Context-Free Grammars
	Context-Free Grammars
	From Context-Free Grammars to AB Grammars
	From AB Grammars to Context-Free Grammars

	Parsing AB Grammars
	Limitations of AB Grammars
	Learning AB Grammars
	Grammatical Inference for Categorial Grammars
	Unification and AB Grammars
	The RG Algorithm
	Other Cases

	Concluding Remarks
	Exercises for Chapter 1
	References

	A Logic for Categorial Grammars:
Lambek’s Syntactic Calculus
	Lambek's Syntactic Calculus and Lambek Grammars
	Natural Deduction for the Lambek Calculus
	In Prawitz Style
	In Gentzen Style

	Sequent Calculus
	Equivalence of Sequent Calculus and Natural Deduction
	From Natural Deduction to Sequent Calculus
	From Sequent Calculus to Natural Deduction

	The Empty Sequence
	Normalization of Natural Deduction
	Normalization for the Product-Free Lambek Calculus
	Decidability of Natural Deduction
	Normalization and Lambek Calculus with Product

	Cut-Elimination for the Sequent Calculus
	Decidability
	Models for the Lambek Calculus and Completeness
	Residuated Semi-groups
	The Free Group Model
	L Is Sound and Complete w.r.t. Residuated Semi-groups
	L Is Sound and Complete w.r.t. (Free) Semi-group Models

	Interpolation
	Lambek Grammars and Context-Free Grammars
	From Context-Free Grammars to Lambek Grammars
	A Property of the Free Group
	Interpolation for Thin Sequents
	From Lambek Grammars to Context-Free Grammars

	Concluding Remarks
	Exercises for Chapter 2
	References

	Lambek Calculus and Montague Grammar

	Introduction
	Logic and Lambda Calculus
	Typed Lambda Calculus and Intuitionistic Propositional Calculus
	First Order Logic, Mono and Multisorted
	Second Order and Higher Order Logic
	Lambda Terms and Logical Formulae

	From Categorial Analysis to Montague Semantic Analysis
	Some Typical Examples
	Determiners, Quantifiers and Type Raising
	Lambek Calculus and Discourse Representation Theory
	A Word about Intensional Logic
	Concluding Remarks
	Exercises for Chapter 3
	References

	The Non-associative Lambek Calculus

	Introduction
	Proof Theory
	Sequent Calculus
	Arguments against Associativity
	Cut Elimination for the NL Sequent Calculus
	Natural Deduction

	Structural Rules
	Combinator Calculi for NL
	Alternative Axiomatic Presentations
	Equivalence between Axiomatic and Sequent Calculus

	Model Theory
	Soundness and Completeness
	Adding Structural Rules

	Polynomial Complexity
	Complexity
	De Groote's Context Calculus SC
	A Theorem Proving Algorithm
	NL without Product

	Concluding Remarks
	Exercises for Chapter 4
	References

	The Multimodal Lambek Calculus
	Combining Different Calculi
	Multimodal Structural Rules

	Unary Connectives
	The Unary Connectives of Linear Logic
	Unary Residuation
	Structural Rules
	The General Form of Structural Rules
	Cut Elimination

	Natural Deduction
	Axiomatic Presentation
	Model Theory
	Completeness for Weak Sahlqvist Postulates

	Concluding Remarks
	Exercises for Chapter 5
	References

	Lambek Calculus and Linear Logic:
Proof Nets as Parse Structures
	The Formula Language of Categorial Grammar and of Linear Logic
	The Formula Language of Multiplicative Linear Logic
	Reduced Linear Language (Negative Normal Form)
	Relating Categories and Linear Logic Formulae: Polarities

	Two Sided Calculi
	Properties of the Linear Two Sided Sequent Calculus
	The Intuitionistic Two Sided Calculus LPe
	Proofs as Parse Structures: Too Many of Them

	A One Sided Calculus for Linear Logic: MLL
	Variants
	The Intuitionistic Restriction in One Sided Calculi

	Proof Nets: Concise and Expressive Proofs
	Proof Nets for MLL
	Sequent Calculus and Proof Nets
	Intuitionistic Proof Nets
	Cyclic Proof Nets
	Proof Nets for the Lambek calculus
	Cut Elimination for Proof Nets
	Cuts and Non-commutative Proof Nets
	Basic Properties of Graphs and Proof Nets

	Parsing as Proof Net Construction
	Proof Nets and Human Processing
	Semantic Uses of Proof Nets
	Concluding Remarks
	Exercises for Chapter 6
	References

	Proof Nets for the Multimodal Lambek Calculus:
From Theory to a Wide-Coverage Categorial Parser
	Multimodal Proof Nets
	Two Sided Proof Nets
	Multimodal Proof Structures and Abstract Proof Structures
	Proof Nets and Contractions
	Sequent Calculus and Multimodal Proof Nets

	Grail: Parsing with Multimodal Proof Nets
	Interactive Parsing
	Pruning the Search Space
	Wide-Coverage Parsing

	Concluding Remarks
	Exercises for Chapter 7
	References

	Index

