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Abstract. Microarray experiments normally produce data sets with multiple 
missing expression values, due to various experimental problems. Unfortunately, 
many algorithms for gene expression analysis require a complete matrix of gene 
expression values as input. Therefore, effective missing value estimation 
methods are needed to minimize the effect of incomplete data during analysis of 
gene expression data using these algorithms. In this paper, missing values in 
different microarray data sets are estimated using different partition-based 
clustering algorithms to emphasize the fact that clustering based methods are 
also useful tool for prediction of missing values. However, clustering approaches 
have not been yet highlighted to predict missing values in gene expression data. 
The estimation accuracy of different clustering methods are compared with the 
widely used KNNimpute and SKNNimpute methods on various microarray data 
sets with different rate of missing entries. The experimental results show the 
effectiveness of clustering based methods compared to other existing methods in 
terms of Root Mean Square error. 
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1   Introduction 

Recent advancement of microarray technologies has made the experimental study of 
gene expression data faster and more efficient. Microarray techniques, such as DNA 
chip and high density oligonucleotide chip are powerful biotechnologies as they are 
able to record the expression levels of thousands of genes simultaneously [1].  

The data generated in a set of microarray experiments are usually gathered in a 
matrix with genes in rows and experimental conditions in columns. Frequently, these 
matrices contain missing values (MVs). This is due to the occurrence of imperfections 
during the microarray experiment (e.g. insufficient resolution, spotting problems, 
deposition of dust or scratches on the slide, hybridization failures etc.) that create 
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suspected values, which are usually thrown away and set as missing [2]. In large-scale 
studies involving thousands to tens of genes and dozens to hundreds of experiments, 
the problem of missing values may be severe. Virtually every experiment contains 
some missing entries and more than 90% of genes are effected. The presence of 
missing gene expression values constitutes a problem for downstream data analysis, 
since many of the methods employed, such as principal component analysis [3] or 
singular value decomposition [4] (e.g. classification and model-based clustering 
techniques) require complete matrices . Due to economic reasons or biological sample 
availability, repeating the microarray experiments in order to obtain a complete gene 
expression matrix is usually not feasible and also analysis results can be influenced by 
the estimation of replacing the missing values. Thus, in order to minimize the effect 
of missing values on analysis and avoid improper analysis, missing value estimation 
is an important preprocess. 

Generally, the procedures for dealing with the randomly present missing data can 
be grouped into three categories [5], [2]: (1) Ignorance-based procedures: This is the 
most trivial approach to deal with data sets when the proportion of complete data is 
small, but the elimination brings a loss of information; (2) Model-based procedures: 
This is a missing data recovery method, which defines a model for the partially 
missing data. However, the complexity of the method prevents the applications of 
large data sets; (3) Imputation-based procedures: This is the type of missing data 
substitution methods, which fill the missing values by certain means of 
approximation. Statistical imputation belongs to this category, where the missing 
values are substituted by a statistically inspired value that has a high likelihood for the 
true occurrence, for example the mean values computed from the set of non-missing 
data records. 

There are several simple ways to deal with missing values such as deleting genes 
with missing values from further analysis, filling the missing entires with zeroes, or 
imputing missing values of the average expression level for the gene (’row average’) 
[2] etc. Two advanced estimation methods for missing value estimation in microarray 
data have been proposed by Troyankaya et al. [5]; a weighted K-nearest neighbor 
method (KNNimpute) and a singular value decomposition method (SVDimpute). 
KNNimpute method is proposed as a robust and sensitive method for missing value 
estimation. It uses the KNN procedure to select genes, and uses weighted linear 
combinations to predict missing values. Recently, there is an estimation method called 
sequential K-nearest neighbor method (SKNNimpute) [6] for microarray data. This 
imputes missing values sequentially from the gene having least missing values and 
uses the imputed value for the latter imputation. Efficiencies of KNNimpute and 
SKNNimpute are better than the above mentioned simple methods in terms of missing 
value prediction error on non time series or noisy data. SVDimpute that takes all gene 
profile correlation information into consideration yields best results on time series 
data with low noise levels. However, estimation abilities of KNNimpute and 
SKNNimpute depend on the important model parameter K-value, the number of gene 
neighbor used to estimate the missing value. The parameter is usually specified by the 
user, which requires the user have some domain knowledge. There is no theoretical 
way, however, to determine these parameters appropriately. Several other methods 
have also been developed to estimate missing values. Bayesian principal component 
analysis (BPCA) [7] is shown to perform exceptionally well [8], [9]. However, BPCA 
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is a sophisticated method that is highly dependent on the number of principal axes [8]. 
The fixed-rank approximation algorithm (FRAA) proposed by Friedland et al. [10] 
carries out the estimation of all missing entries in the gene expression data matrix 
simultaneously based on the singular value decomposition (SVD) method. Local 
least-squares imputation (LLSimpute) by Kim et al. [11] exploits the local similarity 
structures in the data and uses the least-squares optimization method to find the 
missing values that are represented as a linear combination of similar genes. 
However, the prediction error generated using these methods still impacts on the 
performance of statistical and machine learning algorithms including class prediction, 
class discovery, and differential gene identification algorithms [12]. There is, thus, 
considerable potential to develop new techniques that will provide minimal prediction 
errors for different types of microarray data including both time and non-time series 
sequences. 

Current research demonstrates that if the correlation/similarity between genes is 
exploited then missing value prediction error can be reduced significantly [13] in gene 
expression data. Cluster analysis [14], which partitions the given data set into distinct 
subgroups, is also applied to predict missing values in microarray data. Intuitively, 
objects in a cluster are more similar to each other than those belonging to different 
clusters. In this sense, objects in a cluster are more correlated with each other, whereas 
objects in different clusters are less correlated. As it can partitions different objects into 
groups, based on some similarity/dissimilarity criterion, it can also be used to discover 
structures based on similarity/dissimilarity in gene expression data without providing 
any interpretation. After clustering, missing values present in a gene can be predicted 
more accurately from other similar genes belonging to the same cluster. 

In this paper, prediction accuracies are given for estimation of missing values in 
microarray gene expression data with respect to RMS error, using different partition 
based clustering algorithms. The effectiveness of the partition-based clustering 
methods, along with a comparison with SKNN and KNN imputation methods, is 
demonstrated on three microarray data sets. 

2   Different Partition-Based Clustering Algorithms for Estimaion 
of Missing Values 

In this section different partition-based clustering algorithms are described and then a 
new imputation method has been demonstrated to predict missing values in 
microarray gene expression data. 

2.1   Notation 

Throughout this paper, microarray data are represented by matrices with rows 
corresponding to genes and columns to experimental conditions. In particular, G 
represents original data matrix (with real MVs), while S is a complete gene 
expression matrix without any missing values with N genes and E experiments (with 
N >> E) after preprocessing G. In this S matrix, data are randomly deleted to create 
test data matrix T. X represents a set containing N number of genes. Every gene 
contains E number of attributes. 
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2.2   c-Means Clustering Algorithm 

The algorithm proceeds by partitioning N number of objects into c nonempty subsets. 
During each partition, the centroids or means of the clusters are computed. This 
process iterates until the criterion function converges. Typically, the square-error 
criterion is used, defined as 

                                   (1) 

The main steps of the c-means algorithm [15] are as follows: 

1) Arbitrarily choose c number of object from X and they are assigned in mi, i = 1 to c 
as initial cluster means. 
2) Assign each data object xk to the cluster Ui for the closest mean. 
3) Compute new mean for each cluster using 

                                        (2) 

where |Ui| is the number of objects in cluster Ui. 
4) Iterate until criterion function converges, i.e., there are no more new assignments. 

2.3   Fuzzy c-Means (FCM) Clustering Algorithm 

This is a fuzzification of the c-means clustering algorithm. It partitions a set of N 
objects {xk} into c clusters by minimizing the objective function 

                                 (3) 

where 1 ≤ p < 1 is the fuzzifier, mi is the ith cluster center, μik Є [0, 1] is the 
membership of the kth pattern and ||.|| is the distance norm, such that 

                                       (4) 

and 

                                         (5) 

dik = ||xk − mi||
2, subject to   and   
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The algorithm [16] proceeds as follows: 

1) Pick the initial means mi, i = 1, · · · , c. choose value for fuzzifier p and threshold ε. 
Set the iteration counter t = 1. 
2) Repeat Steps 3-4, by incrementing t, until |μik(t) − μik(t − 1)| > ε. 
3) Compute μik by eqn. (5) for c clusters and N data objects. 
4) Update means mi by eqn. (4). 

2.4   Possibilistic c-Means (PCM) Clustering Algorithm 

It partitions a set of N objects {xk} into c clusters by minimizing the objective 
function 

               (6) 

where 1 ≤ q < 1 is the fuzzifier, mi is the ith cluster center, tik Є[0, 1] is the typical 
membership of the kth pattern, ηi are suitable positive integers and ||.|| is the distance 
norm, such that 

                                         (7) 

and  

                                         (8) 

and 

                                        (9) 

here typically K is chosen to be 1. The main steps of the PCM algorithm [17] are as 
follows: 

1) Pick the initial means mi, i = 1, · · · , c. choose value for fuzzifier p and threshold ε. 
Set the iteration counter it = 1. 
2) Repeat Steps 3-4, by incrementing it, until |tik(it) − tik(it − 1)| > ε. 
3) Compute tik by eqn. (8) for c clusters and N data objects. 
4) Update means mi by eqn. (7). 

2.5   Fuzzy-Possibilistic c-Means (FPCM) Clustering Algorithm 

It partitions a set of N objects {xk} into c clusters by minimizing the objective 
function 
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                       (10) 

subject to the constraints p > 1, q > 1, 0 ≤  μik, tik ≤ 1, and 

                                           (12) 

and 

                                               (12) 

and 

                                   (13) 

here μik is the fuzzy membership value given in eqn. (5) and tik is the typical or 
possibilistic membership value given in eqn.(8), p and q are fuzzifiers. 

The main steps of the FPCM algorithm [18] are as follows: 

1) Pick the initial means mi, i = 1, · · · , c. choose value for fuzzifier p, q and threshold 
ε. Set the iteration counter it = 1. 
2) Repeat Steps 3-4, by incrementing it, until |μik(it) + tik(it) − μik(it − 1) + tik(it − 1)|  
> ε. 
3) Compute μik by eqn. (5) and tik by eqn. (8) for c clusters and N data objects. 
4) Update means mi by eqn. (13). 

2.6   Imputation of Missing Values 

Initially, all missing values in T are replaced by the estimation given by row (gene) 
averages to obtain a complete matrix. Specially, this step of gene average substitution, 
performed in all clustering methods, provides the possibility of contributing the 
maximum number of genes for estimating the missing values. Then any one of the 
above mentioned clustering algorithms are executed on this complete matrix. The 
missing values are imputed by making use of the weighted mean of the values of the 
corresponding attribute over all clusters. The weighting factors are the membership 
degrees uik of a gene xk to the ith cluster. The missing gene expression value xkj is 
imputed by: 

                                        (14) 
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where uik is the membership value of kth gene in the ith cluster. vij represents value of jth 
attribute of mean of ith cluster and l is the fuzzifier. For hard c-mean clustering 
membership values are either 0 or 1. 

The main steps of the imputation algorithm is as follows: 

1) Initially all missing values in T are replaced by the estimation given by row (gene) 
averages for obtaining a complete matrix. 
2) Apply any one of the above mentioned clustering algorithm to cluster genes. 
3) Estimate missing values by using eqn.(14) with the means obtained from clustering 
result. 
4) Repeat steps 1 and 2 for different number of clusters. 

3   Experimental Results 

The above mentioned different partition-based clustering algorithms are compared 
with the previously developed KNNimpute and SKNNimpute methods by imputation 
of microarray data. Data sets used in this work are selected from publically available 
microarray data. Three microarray data sets are used: cluster analysis and display of 
genome-wide expression patterns (data 1) [19], Genomic expression programs in the 
response of yeast cells to environmental changes (data 2) [20] and the transcriptional 
program in the response of human fibroblast to serum (data 3)[21]. The metric used to 
assess the accuracy of estimation is Root Mean Squared (RMS) error which is 
calculated as follows: 

                            (15) 

where Rh is the real value, Ih is the imputed value, and n is the number of missing 
values. 

Before any further process, each data set is preprocessed for the evaluation, by 
removing rows and columns containing missing expression values greater than 50% 
and rest are replaced by row average values, yielding complete matrices. For every 
data set between 1 and 20% of the data are deleted at random to create test data set. 
Each method is then used to recover the introduced missing values for each data set, 
and the estimated values are compared to those in the original data set. 

Every clustering method is executed for c = 5 to 50, where c is the number of 
clusters. The experiments show that for c > 50 the clustering results detoriates. The 
value of fuzzifier is varied from 1.2 to 2. For every clustering method best result (i.e. 
minimum RMS error) is taken for different values of fuzzifier as well as for different 
values of number of clusters (c).The result is shown for different rate of missing 
entries present in every data set. 

The efficiency of different partition-based clustering methods mentioned here are 
compared with the KNNimpute and the SKNNimpute methods by applying them to 
three microarray data sets with different missing rates. Both KNNimpute and 
SKNNimpute methods require the value of k which is the number of nearest 
neighbors used in imputation. When k is between 5 and 20, they have given good  
performances. Accordingly, minimal RMS errors of these two methods are shown by 
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varying k between 5 to 20 in every data set with different rates of missing values. In 
Table 1, prediction accuracies of different clustering methods are shown for different 
number of clusters. In Table 2, only best results are shown for data 2 and Data 3 using 
different clustering algorithms. 

In figure 1, it is found that c-mean has given best results compared to all other 
partition-based clustering algorithms mentioned here and also with respect to 
KNNimpute and SKNNimpute methods for all different rates of missing entries in 
data 1 and data 2. FCM, PCM, and FPCM clustering methods also have given better 
results with respect to KNNimpute and SKNNimpute methods for all cases in data 1 
and data 2. For data 3, FCM gives best results for all rates of missing. The other 
clustering methods have also given better results compared to KNNimpute and 
SKNNimpute methods for data 3. 

Table 1. Comparative Performance Analysis of Different Clustering Methods on Data 1 

 

Table 2. Best Performance of Different Clustering Methods on Data 2 and Data 3 
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Fig. 1. Comparison of accuracy of Different clustering methods with KNNimpute and 
SKNNimpute methods for three types of data sets over 1 to 20% data missing. The accuracies 
are evaluated by RMS error. 
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4   Conclusion 

In this paper, the performance accuracy of different partition-based clustering 
algorithms for missing value estimation in microarray data sets are compared with 
KNNimpute and SKNNimpute methods. The experimental results show that in all 
cases clustering methods have given better results than KNNimpute and SKNNimpute 
methods in terms of RMS error. So, it can be concluded that clustering methods are 
also very effective for missing value estimation in microarray gene expression data. 
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