

Lecture Notes in Computer Science 7371
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Nora Cuppens-Boulahia
Frédéric Cuppens
Joaquin Garcia-Alfaro (Eds.)

Data and Applications
Security
and Privacy XXVI

26th Annual IFIP WG 11.3 Conference, DBSec 2012
Paris, France, July 11-13, 2012
Proceedings

13

Volume Editors

Nora Cuppens-Boulahia
Frédéric Cuppens
Joaquin Garcia-Alfaro
Télécom Bretagne, Campus de Rennes 2
rue de la Châtaigneraie
35512 Cesson Sévigné Cedex, France
E-mail: {nora.cuppens, frederic.cuppens, joaquin.garcia} @telecom-bretagne.eu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31539-8 e-ISBN 978-3-642-31540-4
DOI 10.1007/978-3-642-31540-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012940756

CR Subject Classification (1998): C.2.0, K.6.5, C.2, D.4.6, E.3, H.4, C.3, H.2.7-8,
E.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© IFIP International Federation for Information Processing 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the 26th Annual WG 11.3
Conference on Data and Applications Security and Privacy (DBSec 2012). The
conference, hosted for the first time in Paris, France, July 11–13, 2012, offered
outstanding research contributions to the field of security and privacy in Internet-
related applications, cloud computing and information systems.

In response to the call for papers, 49 papers were submitted to the conference.
These papers were evaluated on the basis of their significance, novelty and tech-
nical quality. Each paper was reviewed by at least three members of the Program
Committee. The Program Committee meeting was held electronically with inten-
sive discussion over a period of one week. Of the papers submitted, 17 full papers
and 6 short papers were accepted for presentation at the conference. The confer-
ence program also included two invited talks by Patrick McDaniel (Pennsylvania
State University) and Leon van der Torre (University of Luxembourg).

Several trends in computer security have become prominent since the be-
ginning of the new century and are considered in the program. These include
the proliferation of intrusions that exploit new vulnerabilities, the emergence
of new security threats against security and privacy, the need to adapt exist-
ing approaches and models to handle these threats and the necessity to de-
sign new security mechanisms for cloud computing infrastructure. Reflecting
these trends, the conference includes sessions on security and privacy models,
privacy-preserving technologies, secure data management, smart card, intrusion,
malware, probabilistic attacks and cloud computing security.

The success of this conference was the result of the effort of many people. We
would especially like to thank Joaquin Garcia-Alfaro (Publication Chair), Said
Oulmakhzoune (Web Chair), Ghislaine Le Gall (Local Arrangements Chair) and
Artur Hecker (Sponsor Chair). We also thank EADS/Cassidian and the Institut
Mines Télécom for their financial support.

We gratefully acknowledge all authors who submitted papers for their efforts
in continually enhancing the standards of this conference. It is also our pleasure
to thank the members of the Program Committee and the external reviewers for
their work and support.

Last but not least, thanks to all the attendees. We hope you will enjoy reading
the proceedings.

July 2012 David Sadek
Frédéric Cuppens

Nora Cuppens-Boulahia

Organization

Executive Committee

General Chair

David Sadek Institut Mines-Télécom, France

Program Chair

Nora Cuppens-Boulahia Télécom Bretagne, France

Program Co-chair

Frédéric Cuppens Télécom Bretagne, France

Publication Chair

Joaquin Garcia-Alfaro Télécom Bretagne, France

Web Chair

Said Oulmakhzoune Télécom Bretagne, France

Local Arrangements Chair

Ghislaine Le Gall Télécom Bretagne, France

Sponsor Chair

Artur Hecker Télécom Bretagne, France

IFIP WG 11.3 Chair

Vijay Atluri Rutgers University, USA

Program Committee

Kamel Adi Université du Québec en Outaouais, Canada
Gail-Joon Ahn Arizona State University, USA
Claudio Agostino Ardagna Università degli Studi di Milano, Italy
Vijay Atluri Rutgers University, USA
Joachim Biskup Technische Universität Dortmund, Germany
Marina Blanton University of Notre Dame, USA
David Chadwick University of Kent, UK

VIII Organization

Jason Crampton Royal Holloway, UK
Frédéric Cuppens Télécom Bretagne, France
Nora Cuppens-Boulahia Télécom Bretagne, France
Mourad Debbabi Concordia University, Canada
Sabrina De Capitani

di Vimercati Università degli Studi di Milano, Italy
Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Eduardo B. Fernandez Florida Atlantic University, USA
Simone Fischer-Hübner Karlstad University, Sweden
Simon Foley University College Cork, Ireland
Sara Foresti Università degli Studi di Milano, Italy
Alban Gabillon University of French Polynesia, France
Ehud Gudes Ben-Gurion University, Israel
Ragib Hasan University of Alabama at Birmingham, USA
Sushil Jajodia George Mason University, USA
Wael Kanoun Alcatel-Lucent, France
Sokratis Katsikas University of Piraeus, Greece
Adam J. Lee University of Pittsburgh, USA
Yingjiu Li Singapore Management University, Singapore
Peng Liu The Pennsylvania State University, USA
Jorge Lobo IBM T.J. Watson Center Research, USA
Javier Lopez University of Malaga, Spain
Emil Lupu Imperial College, UK
Martin Olivier University of Pretoria, South Africa
Stefano Paraboschi Università di Bergamo, Italy
Wolter Pieters University of Twente, The Netherlands
Indrajit Ray Colorado State University, USA
Indrakshi Ray Colorado State University, USA
Kui Ren Illinois Institute of Technology, USA
Mark Ryan University of Birmingham, UK
Kouchi Sakurai Kyushu University, Japan
Pierangela Samarati Università degli Studi di Milano, Italy
Anoop Singhal NIST, USA
Traian Marius Truta Northern Kentucky University, USA
Leon van der Torre University of Luxemburg, Luxemburg
Vijay Varadharajan Macquarie University, Australia
Jaideep Vaidya Rutgers University, USA
Lingyu Wang Concordia University, Canada
Meng Yu Virginia Commonwealth University, USA
Xinwen Zhang Samsung Information Systems, USA
Jianying Zhou Institute for Infocomm Research, Singapore
Zutao Zhu Google Inc., USA

Organization IX

Additional Reviewers

Massimiliano Albanese Sergiu Bursuc
Damià Castellà-Mart́ınez Ramaswamy Chandramouli
Tom Chothia Nicholas Farnan
William Fitzgerald Nurit Gal-Oz
Xingze He Masoud Koleini
Deguang Kong Kostas Lambrinoudakis
Meixing Le Younho Lee
Min Li Jia Liu
Giovanni Livraga Luigi Logrippo
Santi Martinez-Rodriguez Dieudonne Mulamba
Takashi Nishide David Nuñez
Adam O’Neill Thao Pham
Ruben Rios Jordi Soria-Comas
Georgios Spathoulas Chunhua Su
Xiaoyan Sun Isamu Teranishi
Emre Uzun Guan Wang
Duminda Wijesekara Lei Xu
Jia Xu Shengzhi Zhang
Lei Zhang Yulong Zhang
Yufeng Zhen

Table of Contents

Invited Paper

Logics for Security and Privacy . 1
Leendert van der Torre

Access Control

A User-to-User Relationship-Based Access Control Model for Online
Social Networks . 8

Yuan Cheng, Jaehong Park, and Ravi Sandhu

Automated and Efficient Analysis of Role-Based Access Control
with Attributes . 25

Alessandro Armando and Silvio Ranise

A Unified Attribute-Based Access Control Model Covering DAC, MAC
and RBAC . 41

Xin Jin, Ram Krishnan, and Ravi Sandhu

Confidentiality and Privacy

Signature-Based Inference-Usability Confinement for Relational
Databases under Functional and Join Dependencies 56

Joachim Biskup, Sven Hartmann, Sebastian Link,
Jan-Hendrik Lochner, and Torsten Schlotmann

Privacy Consensus in Anonymization Systems via Game Theory 74
Rosa Karimi Adl, Mina Askari, Ken Barker, and
Reihaneh Safavi-Naini

Uniform Obfuscation for Location Privacy . 90
Gianluca Dini and Pericle Perazzo

Smart Cards Security (Short Papers)

Security Vulnerabilities of User Authentication Scheme Using Smart
Card . 106

Ravi Singh Pippal, Jaidhar C.D., and Shashikala Tapaswi

Secure Password-Based Remote User Authentication Scheme
with Non-tamper Resistant Smart Cards . 114

Ding Wang, Chun-guang Ma, and Peng Wu

XII Table of Contents

A Friendly Framework for Hidding fault enabled virus for Java Based
Smartcard . 122

Tiana Razafindralambo, Guillaume Bouffard, and Jean-Louis Lanet

Privacy-Preserving Technologies

Approximate Privacy-Preserving Data Mining on Vertically Partitioned
Data . 129

Robert Nix, Murat Kantarcioglu, and Keesook J. Han

Security Limitations of Using Secret Sharing for Data Outsourcing 145
Jonathan L. Dautrich and Chinya V. Ravishankar

Privacy-Preserving Subgraph Discovery . 161
Danish Mehmood, Basit Shafiq, Jaideep Vaidya, Yuan Hong,
Nabil Adam, and Vijayalakshmi Atluri

Data Management

Decentralized Semantic Threat Graphs . 177
Simon N. Foley and William M. Fitzgerald

Code Type Revealing Using Experiments Framework 193
Rami Sharon and Ehud Gudes

From MDM to DB2: A Case Study of Security Enforcement
Migration . 207

Nikolay Yakovets, Jarek Gryz, Stephanie Hazlewood, and
Paul van Run

Intrusion and Malware

XSS-Dec: A Hybrid Solution to Mitigate Cross-Site Scripting Attacks . . . 223
Smitha Sundareswaran and Anna Cinzia Squicciarini

Randomizing Smartphone Malware Profiles against Statistical Mining
Techniques . 239

Abhijith Shastry, Murat Kantarcioglu, Yan Zhou, and
Bhavani Thuraisingham

Probabilistic Attacks and Protection (Short Papers)

Layered Security Architecture for Masquerade Attack Detection 255
Hamed Saljooghinejad and Wilson Naik Bhukya

k-Anonymity-Based Horizontal Fragmentation to Preserve Privacy
in Data Outsourcing . 263

Abbas Taheri Soodejani, Mohammad Ali Hadavi, and Rasool Jalili

Table of Contents XIII

Reconstruction Attack through Classifier Analysis . 274
Sébastien Gambs, Ahmed Gmati, and Michel Hurfin

Cloud Computing

Distributed Data Federation without Disclosure of User Existence 282
Takao Takenouchi, Takahiro Kawamura, and Akihiko Ohsuga

Improving Virtualization Security by Splitting Hypervisor into Smaller
Components . 298

Wuqiong Pan, Yulong Zhang, Meng Yu, and Jiwu Jing

Enforcing Subscription-Based Authorization Policies in Cloud
Scenarios . 314

Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, and
Giovanni Livraga

Author Index . 331

Logics for Security and Privacy

Leendert van der Torre

Computer Science and Communication, University of Luxembourg, Luxembourg

Abstract. In this presentation I first review new developments of deontic logic
in computer science, then I discuss the use of dynamic epistemic deontic logic
to reason about privacy policies, and finally I discuss the use of modal logic for
access control. This presentation is based on joint work with Guillaume Aucher,
Guido Boella, Jan Broersen, Dov Gabbay and Valerio Genovese.

1 Introduction

In the past two decades, a number of logics and formal frameworks have been proposed
to model and analyse interconnected systems from the security point of view. Recently,
the increasing need to cope with distributed and complex scenarios forced researchers
in formal security to employ non-classical logics to reason about these systems. I be-
lieve that logicians have a lot to benefit from specifying and reasoning about real-world
scenarios as well as researchers in security can apply recent advances in non-classical
logics to improve their formalisms.

2 Deontic Logic in Computer Science [3]

Over the past two decades, research in deontic logic has changed due to the participa-
tion of computer science. Broersen and van der Torre [3] discuss many traditional and
new questions, centered around ten problems of deontic logic and normative reasoning
in computer science. Five of these problems were discussed as philosophical problems
in deontic logic by Hansen, Pigozzi and van der Torre [11], and five problems are ad-
dressed in particular in computer science.

Problem 1 - In what sense are obligations different from norms? Traditionally, people
wondered whether there can be a deontic logic, given that norms do not have truth
values. Nowadays, many people identify logic with reasoning, and the question is how
norms and obligations are related. Instead of saying that a set of norms is consistent,
two sets of norms are logically equivalent, a norm is implied by a set of norms, we have
to define when a normative system is coherent, two normative systems are equivalent,
or a norm is redundant in a normative system. Moreover, a new meta theory has to be
developed, and relevant meta theoretic properties have to be identified.

Problem 2 - How to reason about contrary to duty norms? A difference between norms
and other kinds of constraints is that norms can be violated, and the most discussed
challenge to normative reasoning is the formalization of the contrary-to-duty paradoxes
such as the Chisholm and Forrester paradoxes. These paradoxes receive less attention

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 1–7, 2012.
c© IFIP International Federation for Information Processing 2012

2 L. van der Torre

nowadays, also because they are not confined to contrary-to-duty reasoning but also
contain other challenges such as according to duty reasoning associated with deontic
detachment, and reasoning about time and action. But the challenge to reason about
and recovering from violations is alive and kicking.

Problem 3 - How do norms change? Though norm change has been discussed since
the early eighties, only during the last decade it has become one of the most discussed
challenges. For example, researchers in normative multiagent systems identified that it
is essential for a normative system application in computer science not only that norms
can be violated, but in addition that norms can be changed by the agents in the system.
Moreover, belief merging and its relation to judgment aggregation and social choice is
emerging only recently.

Problem 4 - What is the role of time in deontic reasoning? Norms and time have been
intimately related from the start of deontic logic, but it seems that most problems dis-
cussed in the area are not restricted to the deontic setting, but problems about temporal
reasoning in general. Also in computer science and artificial intelligence, issues like
deadlines where addressed in planning before they were addressed in deontic logic. For
practical problems, for example in computer science, we now know that temporal refer-
ences are the most elusive part of norms. However, it seems that little progress is made
in understanding the challenges in the role of time in deontic logic.

Problem 5 - How to relate various kinds of permissions? In a sense, the relation between
obligation and permission is the oldest problem in deontic logic, since Von Wright wrote
his seminal paper in 1951 after he observed a similarity between the relation between
necessity and possibility on the one hand, and obligation and permission on the other
hand. The general opinion is that there are several kinds of permission, and it is not
so easy to disentangle them. However, since permission plays a much less central role
than obligation, it has received also less attention. By itself the notion of permission is
also simpler than the notion of obligation, because permissions cannot be violated. The
main challenge is the interaction between permission and obligation. The main interest
nowadays seems to be in related legal concepts like rights and authorizations.

Problem 6 - What is the role of action in deontic reasoning? Von Wright considered his
deontic action logic as his main contribution to the field of normative reasoning, and
the first work of significance in the area was the use of dynamic deontic logic to model
obligations on actions. Moreover, this is the rst problem where the agents subject to the
norms come to the forefront, raising the questions how agents make decisions based on
norms, or how norms are interpreted. Nevertheless, it seems that only few challenges
have emerged.

Problem 7 - What is the role of constitutive norms? Constitutive norms have been used
to dene meaning postulates and intermediate concepts, to define the creation of social
reality using counts-as conditionals, to dene legal and institutional powers of agents,
to dene the way normative systems can change, to define the interpretation of norms,
and so on. However, their logical analysis has not achieved much attention. It may be
expected, however, that more attention will be given to them in the future. They play
a central role in many applications, for example in legal texts, there are often (much)
more constitutive norms than regulative norms.

Logics for Security and Privacy 3

Problem 8 - How do norms influence, solve, or control games? One of our favorite chal-
lenges is to understand the relation between norms and games. On the one hand, it is
now common to see norms as a mechanism to influence, solve, or control the interaction
among agents, in particular in the area of multiagent systems. Thus, norms are useful
tools in a wider context. Moreover, many problems of normative reasoning, such as
norm creation, norm acceptance and norm compliance can be viewed as games, and ex-
isting game theoretic theories apply in the normative context. On the other hand, games
may be seen as the foundation of deontic logic itself, defining norms as descriptions of
violation or norm creation games.

Problem 9 - How do we check norm compliance? If you want to make money with
deontic logic or normative reasoning, there is only one candidate: the challenge of norm
compliance, i.e. the development of tools for automated checking of compliance to
formalized sets of rules, laws and policies.

Problem 10 - How do norms interact with other modalities? How to represent and
reason about boid agents and knowledge-based obligations? Traditionally norms and
obligations have been studied by themselves, but nowadays the focus is on the inter-
action between them and other modalities. Some obligations hold only if you know
something, and there are obligations and permissions about what you know or belief.
For example, privacy policies are often expressed in what knowledge may be disclosed
to who. In decision making in normative settings, there may be a trade off between ful-
filling your obligations or your desires, and it may depend on your personality how you
resolve such conflicts. Some interactions, such as between obligations and intentions,
have hardly been studied thus far.

Finally, Broersen and van der Torre note that deontic logic has inherited from its philo-
sophical origins the emphasis on conceptual and semantic issues, and only a few ques-
tions have actually addressed computational issues. This in contrast to, for example,
decision theory, game theory and social choice, where new interdisciplinary disciplines
of computational decision theory, computational game theory, and computational so-
cial choice have emerged over the past years. For further information on deontic logic
in computer science, see:

http://www.deonticlogic.org

3 Dynamic Epistemic Deontic Logic for Privacy Compliance [1]

In general, privacy policies can be defined either in terms of permitted and forbidden
knowledge, or in terms of permitted and forbidden actions. For example, it may be for-
bidden to know the medical data of a person, or it may be forbidden to disclose these
data. Both of these approaches have their advantages and disadvantages. Implementing
a privacy policy based on permitted and forbidden actions is relatively easy, since we
can add a filter on the system checking the outgoing messages. Such a filter is an ex-
ample of a security monitor. If the system attempts to send a forbidden message, then
the security monitor blocks the sending of that message. However, the price to pay for
this relatively straightforward implementation is that it is difficult to determine privacy

4 L. van der Torre

policies using permitted and forbidden actions only, in the sense that it is difficult to
decide which actions are permitted or forbidden so that a piece of information is not
disclose. For example, it is a well known database problem that you may be able to find
out my identity without asking for it explicitly, for example by asking a very detailed
question (all the people who are born in Amsterdam on September 11 1986, who drive
a blue Mercedes, and who are married to a person from Paris on November 9, 2009), or
by combining a number of queries on a medical database [12]. Aucher, Boella and van
der Torre [1] are therefore interested in privacy policies expressed in terms of permitted
and forbidden knowledge.

Expressing a privacy policy in terms of permitted and forbidden knowledge is rel-
atively easy, since it lists the situations which should not occur. These situations are
typically determined by the fact that it may not be permitted to know some sensitive
information. In many cases it is more efficient or natural to specify that a given piece
of information may not be known, than explicitly forbidding the different ways of com-
municating it. The policies are more declarative, more concise and therefore easier to
understand by the user. They may also cover unforeseen sequences of actions leading
to forbidden situation. However, implementing a privacy policy based on permitted and
forbidden knowledge is relatively difficult, since the system has to reason about the re-
lation between permitted knowledge and actions. The challenge is that the exchange of
messages changes the knowledge, and the security monitor therefore needs to reason
about these changes.

To express privacy policies in terms of permitted and forbidden knowledge, we use
modal logic, since both knowledge and obligations (and permissions) are traditionally
and naturally modeled in branches of modal logic called epistemic and deontic logic
respectively. Cuppens introduced in 1993 a modal logic for a logical formalization of
secrecy [4], and together with Demolombe he developed a logic for reasoning about
confidentiality [5] and a modal logical framework for security policies [6]. The logic
models the knowledge of the users of the system, and allows the security monitor to
reason about them. It expresses formulas such as ‘the user knows the address of some-
one’, and epistemic norms, i.e. norms regulating what is permitted to know. The se-
curity monitor is able to foresee the inferences that the users can do by combining
their knowledge. For example, if the user knows street name, number, town and state
of a person, then he knows his address. Moreover, since privacy policies are speci-
fied in terms of knowledge that the recipient of information is permitted/forbidden to
have, we can represent violations. This is an advantage over privacy policy languages
modeling norms as strict constraints that cannot be violated, because in some situa-
tions it is necessary to cope with violations. These violations can be due for example
to occasional and unintentional disclosures, or to the creation of new more restrictive
norms.

The main task of a security monitor reasoning about a situation given a privacy pol-
icy is to check compliance – regardless of whether these policies are expressed in terms
of permitted and forbidden actions or permitted and forbidden knowledge. In our ap-
proach, to check compliance one has therefore to be able to derive the permitted, oblig-
atory and forbidden actions in a given context, just like a decision maker needs to know
whether his alternative actions do not violate norms and may therefore be subject to

Logics for Security and Privacy 5

sanctions. In this paper, we further distinguish between regulatory compliance and be-
havioural compliance. Regulatory compliance checks whether the permissions and obli-
gations set up by the security monitor of an organization (e.g., company, web-service
. . .) are compliant with respect to the privacy policies set up by the law/policy makers.
Behavioural compliance checks whether these very obligations and permissions are in-
deed enforced in the system by the security monitor of the organization.

Despite its strengths, the Cuppens-Demolombe logic cannot express whether the sit-
uation is (regulatory or behaviourally) compliant with respect to a privacy policy. The
problem is that the logic can define privacy policies in terms of the permitted and for-
bidden knowledge of the resulting epistemic state of the recipient of information, but
it cannot derive the permitted messages nor the obligatory messages by combining and
reasoning on this knowledge. Our modal logic addresses these problems and extends
the Cuppens-Demolombe logic with dynamic update operators inspired from the ones
of dynamic epistemic logic [13]. These dynamic operators model both the dynamics
of knowledge and of privacy policies. They can add or remove norms from the policy,
and we add constants expressing whether the system is regulatorily and behaviourally
compliant with a policy, i.e., there is no violation.

Aucher, Boella and van der Torre [1] discuss the following scenario of privacy poli-
cies. They consider a single agent (Sender) communicating information from a knowl-
edge base to another agent (Recipient), with the effect that the Recipient knows the
information. The Sender is subject to privacy policies which restrict the messages he
is permitted to send to the Recipient. The Sender is therefore a security monitor. They
illustrate the distinction between norms of transmission of information and epistemic
norms with an example:

Example 1. Consider a Sender s, e.g., a web server, which is subject to a privacy regula-
tion: he should not communicate the address a of a person to the Recipient r. We could
write this as a norm of transmission of information, regulating the sending of a mes-
sage: ¬Ps(Send a), which denotes the denial that the Sender sends message a. Instead,
in an epistemic norm perspective, this prohibition can be derived from the prohibition
for the Sender that the Recipient comes to know the address: Kra. This is expressed
by a deontic operator indexed by the Sender and having as content the ideal knowledge
Kr of the Recipient: ¬PsKra.

This distinction is bridged by modelling sending actions performed by the Sender which
update the knowledge of the Recipient.

Example 2. The action of sending the message, [Send a], expresses that the Sender
sends to the Recipient the address a. The result of this action is that the Recipient
knows a: Kra. Since Kra is not permitted by the epistemic norm ¬PsKra, the Sender
during his decision process derives that also the action [Send a] is not permitted:
¬Ps(Send a). Analogously, all other possible actions leading to the forbidden epis-
temic state Kra, if any, are prohibited too. For example, if the address is composed by
street m, numbern and town t such that (m∧n∧t)↔ a, then the sequence of messages
[Send m][Send n][Send t] leads to the forbidden epistemic state Kra.

6 L. van der Torre

4 Modal Logic for Access Control [2]

Boella et al. [2] study access control policies based on the says operator by introduc-
ing a logical framework called Fibred Security Language (FSL) which is able to deal
with features like joint responsibility between sets of principals and to identify them by
means of first-order formulas. FSL is based on a multimodal logic methodology. They
first discuss the main contributions from the expressiveness point of view, they give se-
mantics for the language (both for classical and intuitionistic fragment), they then prove
that in order to express well-known properties like speaks-for or hand-off, defined in
terms of says, they do not need second-order logic (unlike previous approaches) but a
decidable fragment of first-order logic suffices. They propose a model-driven study of
the says axiomatization by constraining the Kripke models in order to respect desirable
security properties, they study how existing access control logics can be translated into
FSL and they give completeness for the logic.

Genovese et al. [10] study the applicability of constructive conditional logics as a
general framework to define decision procedures in access control logics. They formal-
ize the assertion A says φ, whose intended meaning is that principal A says that φ, as
a conditional implication. They introduce CondACL, which is a conservative extension
of the logic ICL recently introduced by Garg and Abadi. They identify the conditional
axioms needed to capture the basic properties of the “says” operator and to provide a
proper definition of boolean principals. They provide a Kripke model semantics for the
logic and they prove that the axiomatization is sound and complete with respect to the
semantics. Moreover, they define a sound, complete, cut-free and terminating sequent
calculus for Cond ACL, which allows them to prove that the logic is decidable. They
argue for the generality of our approach by presenting canonical properties of some
further well known access control axioms. The identification of canonical properties
provides the possibility to craft access control logics that adopt any combination of
axioms for which canonical properties exist.

Genovese and Garg [9] present a new modal access control logic ACL+ to specify,
reason about and enforce access control policies. The logic includes new modalities for
permission, control, and ratification to overcome some limits of current access control
logics. They present a Hilbert-style proof system for ACL+ and a sound and complete
Kripke semantics for it. They exploit Kripke semantics to define Seq-ACL+: a sound,
complete, cut-free and terminating calculus for ACL+, proving that ACL+ is decidable.
They point at a Prolog implementation of Seq-ACL+ and discuss possible extensions
of ACL+ with axioms for subordination between principals.

The same authors [8,7] introduce also labeled sequent calculi for access control
logics.

References

1. Aucher, G., Boella, G., van der Torre, L.: A dynamic logic for privacy compliance. Artif.
Intell. Law 19(2-3), 187–231 (2011)

2. Boella, G., Gabbay, D.M., Genovese, V., van der Torre, L.: Fibred security language. Studia
Logica 92(3), 395–436 (2009)

Logics for Security and Privacy 7

3. Broersen, J., van der Torre, L.: Ten problems of deontic logic and normative reasoning in
computer science. In: ESSLLI 2010/2011 Lecture Notes in Logic and Computation (2012)

4. Cuppens, F.: A logical formalization of secrecy. In: IEEE Computer Security Foundations
Workshop CSFW 1993. IEEE Computer Society, Los Alamitos (1993)

5. Cuppens, F., Demolombe, R.: A deontic logic for reasoning about confidentiality. In: Deontic
Logic, Agency and Normative Systems, Third International Workshop on Deontic Logic in
Computer Science, DEON 1996. Springer, Berlin (1996)

6. Cuppens, F., Demolombe, R.: A Modal Logical Framework for Security Policies. In: Raś,
Z.W., Skowron, A. (eds.) ISMIS 1997. LNCS, vol. 1325, pp. 579–589. Springer, Heidelberg
(1997)

7. Garg, D., Genovese, V., Negri, S.: Countermodels from sequent calculi in multi-modal logics.
In: 27th Annual ACM/IEEE Symposium on Logics in Computer Science - LICS 2012 (2012)

8. Genovese, V., Garg, D., Rispoli, D.: Labeled sequent calculi for access control logics: Coun-
termodels, saturation and abduction. In: 25th IEEE Computer Security Foundations Sympo-
sium - CSF 2012 (2012)

9. Genovese, V., Garg, D.: New Modalities for Access Control Logics: Permission, Control and
Ratification. In: Meadows, C., Fernández-Gago, C. (eds.) STM 2011. LNCS, vol. 7170, pp.
56–71. Springer, Heidelberg (2012)

10. Genovese, V., Giordano, L., Gliozzi, V., Pozzato, G.L.: A Conditional Constructive Logic for
Access Control and Its Sequent Calculus. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX
2011. LNCS, vol. 6793, pp. 164–179. Springer, Heidelberg (2011)

11. Hansen, J., Pigozzi, G., van der Torre, L.W.N.: Ten philosophical problems in deontic logic.
In: Boella, G., van der Torre, L.W.N., Verhagen, H. (eds.) Normative Multi-agent Systems.
Dagstuhl Seminar Proceedings, vol. 07122, Internationales Begegnungs-und Forschungszen-
trum für Informatik (IBFI), Schloss Dagstuhl, Germany (2007)

12. Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems 10(5), 557–570 (2002)

13. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese library,
vol. 337. Springer, Berlin (2007)

A User-to-User Relationship-Based Access

Control Model for Online Social Networks�

Yuan Cheng, Jaehong Park, and Ravi Sandhu

Institute for Cyber Security, University of Texas at San Antonio
ycheng@cs.utsa.edu, {jae.park,ravi.sandhu}@utsa.edu

Abstract. Users and resources in online social networks (OSNs) are
interconnected via various types of relationships. In particular, user-to-
user relationships form the basis of the OSN structure, and play a sig-
nificant role in specifying and enforcing access control. Individual users
and the OSN provider should be allowed to specify which access can be
granted in terms of existing relationships. We propose a novel user-to-
user relationship-based access control (UURAC) model for OSN systems
that utilizes regular expression notation for such policy specification. We
develop a path checking algorithm to determine whether the required
relationship path between users for a given access request exists, and
provide proofs of correctness and complexity analysis for this algorithm.

Keywords: Access Control, Security, Social Networks.

1 Introduction

Access control in OSNs presents several unique characteristics different from tra-
ditional access control. In mandatory and role-based access control, a system-
wide access control policy is typically specified by the security administrator.
In discretionary access control, the resource owner defines access control policy.
However, in OSN systems, users may want to regulate access to their resources
and activities related to themselves, thus access in OSNs is subject to user-
specified policies. Other than the resource owner, some related users (e.g., user
tagged in a photo owned by another user, parent of a user) may also expect some
control on how the resource or user can be exposed. To prevent users from ac-
cessing unwanted or inappropriate contents, user-specified policies that regulate
how a user accesses information need to be considered in authorization as well.
Thus, the system needs to collect these individualized partial policies, from both
the accessing users and the target users, along with the system-specified policies
and fuse them for the overall control decision.

In OSN, access to resources is typically controlled based on the relationships
between the accessing user and the controlling user of the target found on the so-
cial graph. This type of relationship-based access control [10] takes into account
the existence of a particular relationship or a particular sequence of relationships

� This work is supported by grants from the US National Science Foundation.

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 8–24, 2012.
c© IFIP International Federation for Information Processing 2012

A User-to-User Relationship-Based Access Control Model for OSNs 9

between users and expresses access control policies in terms of such user-to-user
(U2U) relationships.

Facebook-like systems allow users to specify access control policy to related re-
sources based on topology of the social graph, by choosing options such as “pub-
lic”, “private”, “friend” or “friend of friend”. Circles in Google+ allow users to
create customized relationships. In recent years, researchers have proposed more
advanced relationship-based access control models, such as [1–9, 11]. Policies in
[1–6, 8, 9] can be composed of multiple types of relationships. [4–6] also adopt
the depth and the trust value of relationship to control the spread of informa-
tion. Although only having the “friend” relationship type, [7] provides additional
topology-based policies, such as known quantity, common friends and stranger of
more than k distance. While these works have their own advantages, one of the
common drawbacks they share is that they do not allow different relationship
types and multiple possible types on each hop.

In this paper, we propose a novel user-to-user relationship-based access control
(UURAC) model and a regular expression-based policy specification language
which enable more sophisticated and fine-grained access control in OSNs. To the
best of our knowledge, this is the first relationship-based access control model
for OSNs with such capability.

2 Motivation and Related Work

This section discusses characteristics of access control in OSNs, related works,
our approach and shows our contributions.

2.1 Characteristics of Access Control for OSNs

Below, we discuss some essential characteristics [13, 14] that need to be supported
in access control solutions for OSN systems.

Policy Individualization. OSN users may want to express their own prefer-
ences on how their own or related contents should be exposed. A system-wide
access control policy such as we find in mandatory and role-based access control,
does not meet this need. Access control in OSNs further differs from discretionary
access control in that users other than the resource owner are also allowed to
configure the policies of the related resource. In addition, users who are related
to the accessing user, e.g. parent to child, may want to control the accessing
user’s actions. Therefore, the OSN system needs to collectively utilize these in-
dividualized policies from users related to the accessing user or the target, along
with the system-specified policies for control decisions.

User and Resource as a Target. Unlike traditional user access where the
access is against target resource, activities such as poking and friend recommen-
dations are performed against other users. User as a target is particularly crucial
for access control in OSNs since policies for users can specify rules for incoming
actions as well as outgoing actions.

10 Y. Cheng, J. Park, and R. Sandhu

User Policies for Outgoing and Incoming Actions. Notification of a par-
ticular friends’ activities could be bothersome and a user may want to block it.
This type of policy is captured as incoming action policy. Also, a user may want
to control her own or other users’ activities. For example, a user may restrict her
own access from any violent contents or a parent may not want her child to invite
her coworker as a friend. This type of policy is captured as an outgoing action
policy. In OSN, it is necessary to support policies for both types of actions.

Necessity for Relationship-Based Access Control. Access control in OSNs
is mainly based on relationships among users and resources. For example, only
Alice’s direct friends can access her blogs, or only user who owns the photo or
tagged users can modify the caption of the photo. Depth is another significant
parameter, since people tend to share resources with closer users (e.g., “friend”,
or “friend of friend”).

2.2 Prior Access Control Models for OSNs

Fong et al [7] developed a formal algebraic model for access control in Facebook-
like systems. This model generalizes the Facebook-style access control mechanism
into two stages: reaching the search listing of the resource owner and accessing
the resource. The model formalizes policies for accessing resources as well as poli-
cies for search, traversal and communications. The policy vocabulary supports
expressing arbitrary topology-based properties, such as “k common friends” and
“k clique”, which are beyond what Facebook offers.

In [8], Fong proposed a formal model for social computing applications, in
which authorization decisions are based on the user-to-user relationships. This
model employs a modal logic language for policy specification. Fong et al ex-
tended the policy language and formally characterized its expressiveness power
[9]. In contrast to [7], this model allows multiple relationship types and direc-
tional relationships. Relationships and authorizations are articulated in access
contexts and context hierarchy to support sharing of relationships among con-
texts. Bruns et al [1] later improved [8, 9] by using hybrid logic to enable better
efficiency in policy evaluation and greater flexibility of atomic formulas.

Carminati et al [4–6] proposed a series of access control solutions for OSNs
where the access rules are specified by the users at their discretion. The access
requirements that the accessing user must satisfy are specified as type, depth,
and trust metrics of the user-to-user relationships between the accessing user and
the resource owner. The system features a centralized certificate authority that
asserts the validity of the relationship path, while access control enforcement is
carried out on decentralized user side.

In [2, 3], an access control model for OSNs is proposed by Carminati et al
by utilizing semantic web technologies. Unlike many other works, this model ex-
hibits different relationships between users and resources. It defines three kinds
of access policies with the Web Ontology Language (OWL) and the Semantic
Web Rule Language (SWRL), namely authorization, administration and filter-
ing policies. Similar to [2, 3], Masoumzadeh et al [12] proposed ontology-based

A User-to-User Relationship-Based Access Control Model for OSNs 11

social network access control. Their model captures delegation of authority and
empowers both users and the system to express finer-grained access control
policies.

2.3 Comparison of Access Control Models for OSNs

The first four columns of Table 1 summarize the salient characteristics of the
models discussed above. The fifth column gives these characteristics for the new
UURAC model to be defined in this paper.

Table 1. Comparison of Access Control Models for OSNs

Fong [7] Fong [8, 9] Carminati
[6]

Carminati
[2, 3]

UURAC

Relationship Category
Multiple Relationship Types � � � �
Directional Relationship � � �
U2U Relationship � � � � �
U2R Relationship �
Model Characteristics
Policy Individualization � � � � �
User & Resource as a Target (partial) �
Outgoing/Incoming Action Policy (partial) �
Relationship Composition
Relationship Depth 0 to 2 0 to n 1 to n 1 to n 0 to n
Relationship Composition f, f of f exact type

sequence
path of
same type

exact type
sequence

path pattern of
different types

All the models deal only with U2U relationships, except [2, 3] also recognize
U2R (user-to-resource) relationships explicitly. U2R relationships can be cap-
tured implicitly via U2U with the last hop being U2R. Nevertheless, we believe
that explicit treatment of U2R and R2R (resource-to-resource) relationships is
important but leave it for future work.

2.4 Our Contributions

This paper develops a novel UURAC model for OSNs, using regular expres-
sion notation. UURAC supports policy individualization, user and resource as
a target, distinction of user policies for outgoing and incoming actions, and
relationship-based access control. It incorporates greater generality of path pat-
terns in its policy specifications than prior models, including the incorporation
of inverse relationships. We also provide an effective path checking algorithm for
access control policy evaluation, along with proofs of correctness and complexity
analysis.

3 UURAC Model Foundation

In this section, we develop the foundation of UURAC including basic notations,
access control model components and social graph model.

12 Y. Cheng, J. Park, and R. Sandhu

3.1 Basic Notations

We write Σ to denote the set of relationship type specifiers, where Σ =
{σ1,σ2,. . .,σn,σ

−1
1 ,σ−12 ,. . .,σ−1n }. Each relationship type specifier σ is represented

by a character recognizable by regular expression parser. Given a relationship
type σi ∈ Σ, the inverse of the relationship is σ−1i ∈ Σ.

We differentiate the active and passive forms of an action, denoted action
and action−1, respectively. If Alice pokes Bob, the action is poke from Alice’s
viewpoint, whereas it is poke−1 from Bob’s viewpoint.

3.2 Access Control Model Components

Fig. 1. Model Components

The model comprises five categories of com-
ponents as shown in Figure 1.

Accessing User (ua) represents a human
being who performs activities. An accessing
user carries access control policies and U2U
relationships with other users.

Each Action is an abstract function initi-
ated by accessing user against target. Given
an action, we say it is action for the access-
ing user, but action−1 for the recipient user
or resource.

Target is the recipient of an action. It can
be either target user (ut) or target resource
(rt). Target user has her own policies and U2U
relationship information, both of which are used for authorization decisions. Tar-
get resource has U2R relationship (i.e., ownership) with controlling users (uc).
An accessing user must have the required U2U relationships with the controlling
user in order to access the target resource.

Access Request denotes an accessing user’s request of a certain type of
action against a target. It is modeled as a tuple < ua, action, target >, where
ua ∈ U is the accessing user, target is the user or resource that ua tries to access,
whereas action ∈ Act specifies from a finite set of supported functions in the
system the type of access the user wants to have with target. If ua requests to
interact with another user, target = ut, where ut ∈ U is the target user. If ua

tries to access a resource owned by another user uc, target is resource rt ∈ R
where R is a finite set of resources in OSN.

Fig. 2. Access Control Policy Taxonomy

Policy defines the rules according
to which authorization is regulated.
As shown in Figure 2, policies can
be categorized into user-specified and
system-specified policies, with respect
to who defines the policies. System-
specified policies (SP) are system-
wide general rules enforced by the

A User-to-User Relationship-Based Access Control Model for OSNs 13

OSN system; while user-specified policies are applied to specific users and re-
sources. Both user- and system-specified policies include policies for resources
and policies for users. Policies for resources are used to control who can ac-
cess a resource, while policies for users regulate how users can behave regard-
ing an action. User-specified policies for a resource are called target resource
policies (TRP), which are policies for incoming actions. User-specified policies
for users can be further divided into accessing user policies (AUP) and target
user policies (TUP), which correspond to user’s outgoing and incoming access
(see examples in Section 2.1), respectively. Accessing user policies, also called
outgoing action policies, are associated with the accessing user and regulate
this user’s outbound access. Target user policies, also called incoming action
policies, control how other users can access the target user. Note that system-
specified policies do not have separate policies for incoming and outgoing actions,
since the accessor and target are explicitly identified.

3.3 Modeling Social Graph

As shown in Figure 3, an OSN forms a directed labeled simple graph1 with nodes
(or vertices) representing users and edges representing user-to-user relationships.
We assume every user owns a finite set of resources and specifies access control
policies for the resources and activities related to her. If an accessing user has
the U2U relationship required in the policy, the accessing user will be granted
permission to perform the requested action against the corresponding resource
or user.

We model the social graph of an OSN as a triple G =< U,E,Σ >:

– U is a finite set of registered users in the system, represented as nodes (or vertices) on the
graph. We use the terms user and node interchangeably from now on.

– Σ = {σ1, σ2, .., σn σ−1
1 , σ−1

2 , .., σ−1
n } denotes a finite set of relationship types, where each type

specifier σ denotes a relationship type supported in the system.
– E ⊆ U × U ×Σ, denoting social graph edges, is a set of existing user relationships.

Fig. 3. A Sample Social Graph

Since not all the U2U relationships in
OSNs are mutual, we define the relation-
ships E in the system as directed. For ev-
ery σi ∈ Σ, there is σ−1i ∈ Σ representing
the inverse of relationship type σi. We do
not explicitly show the inverse relation-
ships on the social graph, but assume the
original relationship and its inverse twin
always exist simultaneously. Given a user
u ∈ U , a user v ∈ U and a relationship
type σ ∈ Σ, a relationship (u, v, σ) expresses that there exists a relationship of
type σ starting from user u and terminating at v. It always has an equivalent
form (v, u, σ−1). G =< U,E,Σ > is required to be a simple graph.

1 A simple graph has no loops (i.e., edges which start and end on the same vertex)
and no more than one edge of a given type between any two different vertices.

14 Y. Cheng, J. Park, and R. Sandhu

4 UURAC Policy Specifications

This section defines a regular expression based policy specification language, to
represent various patterns of multiple relationship types.

4.1 Path Expression Based Policy

The user relationship path in access control policies is represented by regular
expressions. The formulas are based on a set Σ of relationship type specifiers.
Each specification in this language describes a pattern of required relationship
types between the accessing user and the target/controlling user. We use three
kinds of wildcard notations that represent different occurrences of relationship
types: asterisk (*) for 0 or more, plus (+) for 1 or more and question mark(?)
for 0 or 1.

4.2 Graph Rule Specification and Grammar

An access control policy consists of a requested action, optional target resource
and a required graph rule. In particular, graph rule is defined as (start, path
rule), where start denotes the starting node of relationship path evaluation,
whereas path rule represents a collection of path specs. Each path spec consists
of a pair (path, hopcount), where path is a sequence of characters, denoting
the pattern of relationship path between two users that must be satisfied, while
hopcount limits the maximum number of edges on the path.

Typically, a user can specify one piece of policy for each action regarding a
user or a resource in the system, and the path rule in the policy is composed of
one or more path specs. Policies defined by different users for the same action
against same target are considered as separate policies. Multiple path specs can
be connected by disjunction or conjunction. For instance, a path rule (f∗, 3) ∨
(Σ∗, 5) ∨ (fc, 2), where f is friend and c is coworker, contains disjunction of
three different pieces of path specs, of which one must be satisfied in order to
grant access. Note that, there might be a case where only users who do not have
particular types of relationships with the target are allowed to access. To allow
such negative relationship-based access control, a boolean negation operator over
path specs is allowed, which implies the non-existence of the specified pair of
relationship type pattern path and hopcount limit hopcount following ¬. For
example, ¬ (fc+, 5) means the involved users should not have relationship of
pattern fc+ within depth of 5 in order to get access.

Each graph rule usually specifies a starting node, the required types of rela-
tionships between the starting node and the evaluating node, and the hopcount
limit of such relationship path. A grammar describing the syntax of such policy
language is defined in Table 2. Here, GraphRule stands for the graph rule to
be evaluated. StartingNode can be either the accessing user ua, the target user
ut or the controlling user uc, denoting the given node from which the required
relationship path begins. Path represents a sequence of type specifiers from the
starting node to the evaluating node. Path will typically be non-empty. If path is

A User-to-User Relationship-Based Access Control Model for OSNs 15

Table 2. Grammar for graph rules

GraphRule ::= “(” < StartingNode > “, ” < PathRule > “)”
PathRule ::= < PathSpecExp > | < PathSpecExp >< Connective >< PathRule >
Connective ::= ∨|∧
PathSpecExp ::= < PathSpec > |¬ < PathSpec >
PathSpec ::= “(” < Path > “, ” < HopCount > “)”|“(” < EmptySet > “, ” < Hopcount > “)”
HopCount ::= < Number >
Path ::= < TypeExp > | < TypeExp >< Path >
EmptySet ::= ∅
TypeExp ::= < TypeSpecifier > | < TypeSpecifier >< Wildcard >
StartingNode ::= ua|ut|uc

TypeSpecifier ::= σ1|σ2|..|σn|σ−1
1 |σ

−1
2 |..|σ

−1
n |Σ where Σ = {σ1, σ2, .., σn, σ

−1
1 , σ−1

2 , .., σ−1
n }

Wildcard ::= “ ∗ ”|“?”|“ + ”
Number ::= [0− 9]+

empty and hopcount = 0 we assign the special meaning of “only me”. Wildcard
captures the three wildcard characters, which facilitate specifying more power-
ful and expressive path expressions. Given a graph rule from the access control
policy, this grammar specifies how to parse the expression and to extract the
containing path pattern and hopcount from the expression.

4.3 User- and System-Specified Policy Specifications

User-specified policies specify how individual users want their resources or ser-
vices related to them to be released to other users in the system. These policies
are specific to actions against a particular resource or user. System-specified poli-
cies allow the system to specify access control on users and resources. Different
from user policies, the statements in system policies are not specific to particular
accessing user or target, but rather focus on the entire set of users or resources
(see Table 3).

Table 3. Access Control Policy Representations

Accessing User Policy < action, (start, path rule)>
Target User Policy < action−1, (start, path rule)>

Target Resource Policy < action−1, rt, (start, path rule)>
System Policy for User < action, (start, path rule)>
System Policy for Resource < action, r.type, (start, path rule)>

In accessing user policy, action denotes the requested action, whereas (start,
path rule) expresses the graph rule. Similarly, action−1 in target user policy and
target resource policy is the passive form of the corresponding action applied to
target user. Target resource policy contains an extra parameter rt, representing
the resource to be accessed.

This paper considers only U2U relationships in policy specification. In general,
there could be one or more controlling users who have certain types of U2R
relationships with the resource and possess policies for the corresponding target
resource. For simplicity, we assume the only such U2R relationship is ownership.
To access the resource, the accessing user must have the required relationships
with the controlling user. The policies associated with the controlling users are
defined on the basis of per action per resource. For instance, when querying read
access request on rt, owner(rt) returns the list of users who have ownership

16 Y. Cheng, J. Park, and R. Sandhu

with rt. Access to rt is under the authority of all the controlling users who have
read policies for rt. Note that in this paper we are not introducing the policy
administration model, so who can specify the policy is not discussed.

System-specified policies do not differentiate the active and passive forms of
an action. System policy for users carries the same format as accessing user
policy does. However, when specifying system policy for resources, one system-
wide policy for one type of access to all resources may not be fine-grained and
flexible enough. Sometimes we need to refine the scope of the resources that
applied to the policies in terms of resource types r.type. Examples of resource
type r.type are photo, blog post, status update, etc. Thus, <read, photo, (uc,
f∗, 4)> is a system policy applied to all read access to photos in the system.

4.4 Access Evaluation Procedure

Algorithm 1. AccessEvaluation(ua, action, target)

1: (Policy Collecting Phase)
2: if target = ut then
3: AUP ← ua’s policy for action, TUP ← ut’s policy for action−1, SP ← system’s policy for

action
4: else
5: uc ← owner(rt), AUP ← ua’s policy for action, TRP ← uc’s policy for action−1 on rt,

SP ← system’s policy for action, r.type
6: (Policy Evaluation Phase)
7: for all policies in AUP , TUP/TRP and SP do
8: Extract graph rules (start, path rule) from policies
9: for all graph rules extracted do
10: Determine the starting node, specified by start, where the path evaluation starts
11: Determine the evaluating node which is the other user involved in access
12: Extract path rules path rules from graph rules
13: Extract each path spec path, hopcount from path rules
14: Path-check each path spec using Algorithm 2
15: Evaluate a combined result based on conjunctive or disjunctive connectives between path

specs
16: Compose the final result from the result of each policy

Algorithm 1 specifies how the access evaluation procedure works. When an
accessing user ua requests an action against a target user ut, the system will
look up ua’s action policy, ut’s action

−1 policy and the system-specified policy
corresponding to action. When ua requests an action against a resource rt, the
system will first find out the controlling user uc via owner(rt) and retrieve all
the corresponding policies. Although each user can only specify one policy per
action per target, there might be multiple users specifying policies for the same
pair of action and target. Multiple policies might be collected in each of the three
policy sets: AUP , TUP/TRP and SP .

Example Given the following policies and social graph in Figure 3:

– Alice’s policy PAlice: < poke, (ua, (f∗, 3))> < poke−1, (ut, (f , 1))> < read, (ua, (Σ∗, 5))>
< read−1, file1, (uc, (cf∗, 4))>

– Harry’s policy PHarry : < poke, (ua, (cf∗, 5) ∨ (f∗, 5))> < poke−1 , (ut, (f∗, 2))> < read−1,
file2, (uc, ¬(p+, 2)>

– System’s policy PSys: < poke, (ua, (Σ∗, 5))> < read, photo, (ua, (Σ∗, 5))>

A User-to-User Relationship-Based Access Control Model for OSNs 17

When Alice requests to poke Harry, the system will look up the following policies:
< poke, (ua, (f∗, 3))> from PAlice, < poke−1, (ut, (f∗, 2))> from PHarry, and
< poke, (ua, (Σ∗, 5))> from PSys. When Alice requests to read photo file2
owned by Harry, the policies < read, (ua, (Σ∗, 5))> from PAlice, < read−1,
file2, (uc, ¬(p+, 2)> from PHarry, and < read, photo, (ua, (Σ∗, 5))> from
PSys will be used for authorization.

For all the policies in the policy sets, the algorithm first extracts the graph
rule (start, path rule) from each policy. Once the graph rule is extracted, the
system can determine where the path checking evaluation starts (using start),
and then extracts every path spec path, hopcount (from path rules). Then, it
runs a path-checking algorithm (see the next section) for each path spec. The
path-checking algorithm returns a boolean result for each path spec. To get
the evaluation result of a particular policy, we combine the results of all path
specs in the policy using conjunction, disjunction and negation. At last, the final
evaluation result for the access request is made by composing all the evaluation
results of the policies in the chosen policy sets.

4.5 Discussion

The existence of multi-user policies can result in decision conflicts. To resolve
this, we can adopt a disjunctive, conjunctive, or prioritized approach. When a
disjunctive approach is enabled, the satisfaction of any corresponding policy is
sufficient for granting the requested access. In a conjunctive approach, the re-
quirements of every involved policy should be satisfied in order that the access
request would be granted. In a prioritized approach, if, for example, parents’
policies get a priority over children’s policies, the parents’ policies overrule chil-
dren’s policies. While policy conflicts are inevitable in the proposed model, we
do not discuss this issue in further detail here. For simplicity we assume sys-
tem level policies are available to resolve conflicts in user-specified authorization
policies and do not consider user-specified conflict resolution policies.

One observation from user-specified policies is that action policy starts from
ua whereas action−1 policy starts from ut. This is because at the time of policy
configuration, users are not aware of who are the other participants in the action
hence cannot specify graph rule starting from the other side. When hopcount =
0 and path equals to empty, it has special meaning of “only me”. For instance,
< poke, (ua, (∅, 0))> says that ua can only poke herself, and < poke−1, (ut,
(∅, 0))> specifies ut can only be poked by herself. The above two policies give
a complementary expressive power that the regular policies do not cover, since
regular policies are simply based on existing paths and limited hopcount.

As mentioned earlier, the social graph is modeled as a simple graph. Further
we only allow simple path with no repeating nodes. Avoiding repeating nodes
on the relationship path prevents unnecessary iterations among nodes that have
been visited already and unnecessary hops on these repeating segments. On the
other hand, this “no-repeating” could be quite useful when a user wants to
expose her resource to farther users without granting access to nearer users. For
example, in a professional OSN system such as LinkedIn, a user may want to

18 Y. Cheng, J. Park, and R. Sandhu

promote her resume to users outside her current company, but does not want
her coworkers to know about it. Note that the two distinct paths denoted by
(fffc) and (fc) may co-exist between a pair of users. The path specs fffc ∧
¬fc allows the coworkers of the user’s distant friends to see the resume, while
the coworkers of the user’s direct friends (fc) are not authorized.

In general, conventional OSNs are susceptible to the multiple-persona prob-
lem, where users can always create a second persona to get default permissions.
In a default-denial system, a new persona initially has no permission to access
others, thus allowing multiple new personas from the same user is safe to the
existing users. Our approach follows the default-denial design, which means if
there is no explicit positive authorization policy specified, there is no access per-
mitted at all. Based on the default-denial assumption, negative authorizations
in our policy specifications are mainly used to further refine permissions allowed
by the positive authorizations specified (e.g., f ∗ c∧¬fc). A single negative au-
thorization without any positive authorization has the same effect as there is
no policy specified at all. Nonetheless it is possible for the coworker of a direct
friend to have a second persona that meets the criteria for coworker of a distant
friend and thereby acquires access to the resume. Without strong identities we
can only provide persona level control in such policies.

5 Path Checking Algorithm

In this section, we present the algorithms for determining if there exists a qual-
ified path between two involved users in an access request.

As mentioned, in order to grant access, relationships between the accessor and
the target/controlling user must satisfy the graph rules specified in access control
policies regarding the given request. We formulate the problem as follows: given
a social graph G, an access request < ua, action, target > and an access policy,
the system decision module explores the graph and verifies the existence of a path
between ua and target (or uc of target) matching the graph rule < start, path
rule >.

Path checking is performed by Algorithm 2, which takes as input the social
graph G, the path pattern path and the hopcount limit hopcount specified by
path spec in the policy, the starting node s specified by start and the evaluating
node t which is the other user involved, and returns a boolean value as output.
Note that path is non-empty, so this algorithm only copes with cases where
hopcount �= 0. The starting node s and the evaluating node t can be either the
accessing user or the target/controlling user, depending on the given policy. The
algorithm starts by constructing a DFA (deterministic finite automata) from the
regular expression path. The REtoDFA() function receives path as input, and
converts it to a NFA (non-deterministic finite automata) then to a DFA, by using
the well-known Thompson’s Algorithm [16] and Subset Construction Algorithm
(also known as Büchi’s Algorithm) [15], respectively.

The algorithm uses a depth-first search (DFS) to traverse the graph, because
it requires only one running DFA and, correspondingly, one pair of variables

A User-to-User Relationship-Based Access Control Model for OSNs 19

Algorithm 2. PathChecker(G, path, hopcount, s, t)

1: DFA← REtoDFA(path); currentPath← NIL; d← 0
2: stateHistory ← DFA starts at the initial state
3: if hopcount 	= 0 then
4: return DFST(s)

Algorithm 3. DFST (u)

1: if d + 1 > hopcount then
2: return FALSE
3: else
4: for all (v, σ) where (u, v, σ) in G do
5: switch
6: case 1 v ∈ currentPath
7: break
8: case 2 v /∈ currentPath and v = t and DFA with transition σ is at accepting state
9: d← d + 1; currentPath← currentPath.(u, v, σ)
10: currentState← DFA takes transition σ
11: stateHistory ← stateHistory.(currentState)
12: return TRUE
13: case 3 v /∈ currentPath and v = t and transition σ is valid for DFA but DFA with

transition σ is not at accepting state
14: break
15: case 4 v /∈ currentPath and v 	= t and transition σ is invalid for DFA
16: break
17: case 5 v /∈ currentPath and v 	= t and transition σ is valid for DFA
18: d← d+ 1; currentPath← currentPath.(u, v, σ)
19: currentState← DFA takes transition σ
20: stateHistory ← stateHistory.(currentState)
21: if (DFST(v)) then
22: return TRUE
23: else
24: break
25: if d = 0 then
26: return FALSE
27: else
28: d← d− 1; currentPath← currentPath\(u, v, σ)
29: previousState ← last element in stateHistory
30: DFA backs off the last taken transiton σ to previousState
31: stateHistory ← stateHistory\(previousState)
32: return FALSE

keeping the current status and the history of exploration in a DFS traversal.
Whereas, a breadth-first search (BFS) traversal has to maintain multiple DFAs
and multiple variables simultaneously and switch between these DFAs back and
forth constantly, which makes the costs of memory space and I/O operations
proportional to the number of nodes visited during exploration. Note that DFS
could avoid a target node for a longer time, even if the node is close to the
starting node. If the hopcount is unlimited, a DFS traversal may pursue lengthy
useless exploration. However, activities in OSN typically occur among people
with close relationships. Hence, DFS with limited hopcount fits our model.

The variable currentPath, initialized as NIL, holds the sequence of the
traversed edges between the starting node and the current node. Variable
stateHistory, initialized as the initial DFA state, keeps the history of DFA
states during algorithm execution. The main procedure starts by setting d to 0
and launches the DFS traversal function DFST (), given in Algorithm 3, from
the starting node s.

20 Y. Cheng, J. Park, and R. Sandhu

Given a node u, if d + 1 does not exceed the hopcount limit, it indicates that
traversing one step further from u is allowed. Otherwise, the algorithm returns
false and goes back to the previous node. If further traversal is allowed, then the
algorithm picks up an edge (u, v, σ) from the list of the incident edges leaving u.
If (u, v, σ) is unvisited, we get the node v on the opposite side of the edge (u, v, σ).
Nowwe have five different cases. If v is on currentPath, we will never visit v again,
because doing so creates a cycle on the path. Rather, the algorithm breaks out of
for loop, and finds the next unchecked edges of u. When v is not on currentPath
and v is the target node t and DFA taking transition σ reaches an accepting state,
we find a path between s and t matching the pattern Path. We increment d by
one, concatenate edge (u, v, σ) to currentPath, and save the current DFA state
to history. If v is the target node but DFA with transition σ is not at an accept-
ing state, then the path from s to v does not match the pattern. When v is not on
currentPath and is not the target node, there are two cases depending on whether
the transition type σ is a valid transition for DFA. If it is not, we break out of for
loop and continue to check the next unchecked edge of u. Otherwise, the algo-
rithm increments d by one, concatenates e to currentPath, moves DFA to the
next state via transition type σ, updates the DFA state history, and repeatedly
executesDFST () from node v. If the recursive function call discovers a matching
path, the previous call also returns true. Otherwise, it checks next edge of node u.

After all the outgoing edges of u have been checked, the algorithm has to step
back to the previous node of u and reset all variables to the previous values. But
if d = 0, all the outgoing edges of the starting node are checked, thus the whole
execution completes without a matching path.

In Figure 3, suppose user Harry owns a resource rt and expresses the target
resource policy as (read−1, rt, (f ∗ cf∗,3)), where read is the permitted action,
(f ∗ cf∗, 3) is the path pattern and hopcount limit. Path pattern f ∗ cf∗ means
the accessing user and Harry must be either a pair of coworkers (c) or direct or
indirect friend (f) of a pair of coworkers. Hopcount 3 constrains the distance be-
tween the two users to be within three hops. Figure 4 shows the DFA accepting the
path pattern f ∗ cf∗. If Alice requests read access to the resource owned by Harry,
the algorithm starts exploration from node H (Harry) by checking all the edges
leaving H . If it picks the edge (H,D, f) or (H,D, c) first, it will eventually find
out that there exists a satisfiable path (H,D, f), (D,E, c), (E,A, f) or (H,D, c),
(D,B, f), (B,A, f) that also moves the DFA from the starting state π0 to the ac-
cepting state π3 in three hops. (H,G, f), (G,F, f), (F,C, c), (C,A, f) alsomatches
the path pattern, but it is invalid because it takes four hops to reach node A.

Fig. 4. DFA for f ∗ cf∗

Suppose Harry specifies a target user policy for him
as (poke−1, (f+, 2)). This implies only his friends or
indirect friends can poke him. Then, Bob, Dave, Ed,
Fred and George can poke Harry because the paths
between Harry and them contain relationship f and
are within depth of two. Carol and Harry do not have
friend relationship with Harry, while Alice is too far
away from Harry.

A User-to-User Relationship-Based Access Control Model for OSNs 21

6 Conclusions and Future Work

We proposed a UURACmodel and a regular expression based policy specification
language. We provided a DFS-based path checking algorithm and established its
correctness and complexity. Correctness of the algorithm is proved by induction
on hopcount. Due to the sparseness nature of social graph, given the constraints
on relationship types and hopcount limit in policy, the complexity of the algo-
rithm can be dramatically reduced. Proofs of correctness and complexity are
given in appendix.

While this work only uses user-to-user relationships for authorization, we plan
to extend our model to exploit user-to-resource and resource-to-resource relation-
ships. To improve the expressiveness of the model, we also plan to incorporate
some predicate expressions for attribute-based control and filtering users and
relationships. Another future direction is to capture some unconventional rela-
tionships in OSNs, such as temporary relationships (i.e., vicinity) and one-to-
many relationships (i.e., network, group). Last but not least, we will be working
on implementing our approach into a prototype and doing some experiments to
analyze the approach.

References

1. Bruns, G., Fong, P.W., Siahaan, I., Huth, M.: Relationship-based access control:
its expression and enforcement through hybrid logic. In: ACM CODASPY (2012)

2. Carminati, B., Ferrari, E., Heatherly, R., Kantarcioglu, M., Thuraisingham, B.: A
semantic web based framework for social network access control. In: ACM SAC-
MAT (2009)

3. Carminati, B., Ferrari, E., Heatherly, R., Kantarcioglu, M., Thuraisingham, B.:
Semantic web-based social network access control. Computers and Security 30(2-
3) (2011); Special Issue on Access Control Methods and Technologies

4. Carminati, B., Ferrari, E., Perego, A.: Rule-Based Access Control for Social Net-
works. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops, Part
II. LNCS, vol. 4278, pp. 1734–1744. Springer, Heidelberg (2006)

5. Carminati, B., Ferrari, E., Perego, A.: A decentralized security framework for web-
based social networks. Int. Journal of Info. Security and Privacy 2(4) (2008)

6. Carminati, B., Ferrari, E., Perego, A.: Enforcing access control in web-based social
networks. ACM Trans. Inf. Syst. Secur. 13(1) (2009)

7. Fong, P.W.L., Anwar, M., Zhao, Z.: A Privacy Preservation Model for Facebook-
Style Social Network Systems. In: Backes, M., Ning, P. (eds.) ESORICS 2009.
LNCS, vol. 5789, pp. 303–320. Springer, Heidelberg (2009)

8. Fong, P.W.: Relationship-based access control: protection model and policy lan-
guage. In: ACM CODASPY (2011)

9. Fong, P.W., Siahaan, I.: Relationship-based access control policies and their policy
languages. In: ACM SACMAT (2011)

10. Gates, C.E.: Access control requirements for web 2.0 security and privacy. In: Proc.
of Workshop on Web 2.0 Security and Privacy, W2SP 2007 (2007)

11. Kruk, S.R., Grzonkowski, S., Gzella, A., Woroniecki, T., Choi, H.-C.: D-FOAF:
Distributed Identity Management with Access Rights Delegation. In: Mizoguchi,
R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 140–154.
Springer, Heidelberg (2006)

22 Y. Cheng, J. Park, and R. Sandhu

12. Masoumzadeh, A., Joshi, J.: Osnac: An ontology-based access control model for
social networking systems. In: IEEE Social Computing, SocialCom (2010)

13. Park, J., Sandhu, R., Cheng, Y.: Acon: Activity-centric access control for social
computing. In: Int. Conf. on Availability, Reliability and Security, ARES (2011)

14. Park, J., Sandhu, R., Cheng, Y.: A user-activity-centric framework for access con-
trol in online social networks. IEEE Internet Computing 15(5) (September-October
2011)

15. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3 (April 1959)

16. Thompson, K.: Programming techniques: Regular expression search algorithm.
Commun. ACM 11 (June 1968)

A Proof of Correctness

Theorem 1. Algorithm 2 will halt with true or false.

Proof. Base case (Hopcount = 1): d is initially set to 0. Each outgoing edge
from the starting node s will be examined once and only once. If taking an
edge reaches the target node t and its type matches the language Path denotes
(case 2), the algorithm returns true. If the edge type matches the prefix of an
expression in L(Path) (lines 17-24), d increments to 1 followed by a recursive
call to DFST (). The second level call will return false, since incremented d has
exceeded Hopcount. In all other cases, the examined edge is discarded and d
remains the same. Eventually, if a matching edge is not found, the algorithm
will go through every outgoing edge from s and exit with false thereafter (lines
25-26).

Induction step: Assume when Hopcount = k (k ≥ 1), Theorem 1 is true.
When Hopcount is k+1, all the (k+1)th level recursive calls will examine every
outgoing edge from the (k+1)th node on currentPath. If visiting an edge reaches
t and the updated currentPath matches L(Path), the (k+1)th level call returns
true and exits to the previous level, making all of the previous level calls all the
way back to the first level exit with true as well. If an edge falls into case 5, d is
incremented to k+2 and a (k+2)th level recursive call invokes, which will halt
with false and return to the (k + 1)th level as d has exceeded Hopcount. After
all edges are examined without returning true, the algorithm will exit with false
to the previous level. In the kth level, when Hopcount = k + 1, edges without
taking a recursive call are treated the same as they are when Hopcount = k.
Since when Hopcount = k the theorem holds, the algorithm will terminate with
true or false when Hopcount = k + 1 as well.

Lemma 1. At the start and end of each DFST () call, the DFA corresponding
to Path is at currentState reachable from the starting state π0 by transitions
corresponding to the sequence of symbols in currentPath.

Proof. The proof is straightforward. New edge is added to currentPath only
when it reaches the target node (lines 8-12) or it may possibly lead to the target

A User-to-User Relationship-Based Access Control Model for OSNs 23

node by taking a recursive DFST () call (lines 17-24). In both cases the DFA
starting from π0 will move to currentState by taking the transition regarding
the edge. Removing the last edge on currentPath after all edges leaving the
current node are checked always accompanies one step back-off of the DFA to
its previous state (lines 28-32), which can eventually take the DFA all the way
back to the starting state π0.

Theorem 2. If Algorithm 2 returns true, currentPath gives a simple path of
length less than or equal to Hopcount and the string described by currentPath
belongs to the language described by Path (L(Path)). If Algorithm 2 returns
false, there is no simple path p of length less than or equal to Hopcount such
that the string representing p belongs to L(Path).

Proof. Base case (Hopcount = 1): At first, d = 0, currentPath = NIL, and
the DFA is at the starting state π0. When d = 0, case 1 requires that the edge
being checked is a self loop which is not allowed in a simple graph. DFST () only
returns true in case 2, where edge (s, t, σ) to be added to currentPath finds the
target node t in one hop. The transition σ moves the DFA to an accepting state.
Case 5 cannot return true, because incrementing d by one will exceed Hopcount
in the recursive DFST () run. When DFST() exits with true, due to Lemma
1, currentPath, which is (s, t, σ), can move the DFA from π0 to an accepting
state π1, implying that σ ∈ L(Path). If the first DFST () call returns false (lines
29-30), the algorithm has searched all the edges leaving node s. However, these
examined edges either do not match the pattern specified by L(Path) (case 2
and 3), or may possibly match L(Path) but require more than one hop (case 5).
Hence, Theorem 2 is true when Hopcount = 1.

Induction step: Assume when Hopcount = k (k ≥ 1), Theorem 2 is true.
For the same G, Path, s and t, executions of DFST () when Hopcount = k
and k + 1 only differ after invoking the recursive DFST () call in case 5. If an
edge being checked can make the algorithm return true when Hopcount = k,
currentPath is a string of length ≤ k which is in L(Path). When Hopcount is
k + 1, the same currentPath gives the same string and is of length < k + 1,
thus making the function exit with true as well. The only difference between
Hopcount = k and Hopcount = k + 1 is that adding edges that lie in case 5 to
currentPath and incrementing d by one may not exceed the larger Hopcount
during the recursive call. If taking one of these edges leads to the target node and
its corresponding transition moves the DFA to an accepting state, the algorithm
will return true. The new currentPath gives a simple path of length k + 1 that
connects node s and t. The algorithm only returns true in these two scenarios.
In both scenarios, based on Lemma 1, the DFA can reach an accepting state by
taking the transitions corresponding to currentPath, so the string corresponding
to currentPath is in L(Path). If the algorithm returns false when Hopcount =
k, there is no simple path p of length ≤ k, where the string of symbols in p is
in L(Path). When Hopcount is k + 1, given the same G, such a path still does
not exist. By taking a recursive DFST () call in case 5, the algorithm will go
through all 5 cases again to check all the edges leaving the new node. If the
recursive call returns false, it means there is no simple path of length k + 1

24 Y. Cheng, J. Park, and R. Sandhu

with its string of symbols in L(Path). Combining the results from all k+1 level
recursive calls, there exists no simple path of length ≤ k + 1 with its string of
symbols in L(Path). Hence, Theorem 2 is true when Hopcount = k + 1.

B Complexity

In this algorithm, every possible path from s to t will be visited at most once un-
til it fails to reach t, while every outgoing edge of a visited node may be checked
multiple times during the search. In the extreme case, where every relationship
type is acceptable and the graph is a complete directed graph, the overall com-
plexity would be O(|V |Hopcount). However, users in OSNs usually connect with
a small group of users directly, thus the social graph is actually very sparse. We
define the maximum and minimum out-degree of node on the graph as dmax
and dmin, respectively. Then, the time complexity can be bounded between
O(dminHopcount) and O(dmaxHopcount). Given the constraints on the relation-
ship types and hopcount limit in the policies, the size of graph to be explored
can be dramatically reduced. The recursive DFST() call terminates as soon as
either a matching path is found or the hopcount limit is reached.

Automated and Efficient Analysis

of Role-Based Access Control with Attributes

Alessandro Armando1,2 and Silvio Ranise2

1 DIST, Università degli Studi di Genova, Italia
2 Security and Trust Unit, FBK-Irst, Trento, Italia

Abstract. We consider an extension of the Role-Based Access Control
model in which rules assign users to roles based on attributes. We con-
sider an open (allow-by-default) policy approach in which rules can assign
users negated roles thus preventing access to the permissions associated
to the role. The problems of detecting redundancies and inconsistencies
are formally stated. By expressing the conditions on the attributes in
the rules with formulae of theories that can be efficiently decided by
Satisfiability Modulo Theories (SMT) solvers, we characterize the decid-
ability and complexity of the problems of detecting redundancies and
inconsistencies. The proof of the result is constructive and based on an
algorithm that repeatedly solves SMT problems. An experimental eval-
uation with synthetic benchmark problems shows the practical viability
of our technique.

1 Introduction

Role Based Access Control (RBAC) [27] is one of the most widely adopted
model for information security. It regulates access by assigning users to roles
which, in turn, are granted permissions to perform certain operations. Despite
several advantages (e.g., reduction of the complexity of security administration),
it has been observed that RBAC suffers some inflexibility in adapting to rapidly
evolving domains in particular when there is a need to take into account dynamic
attributes to determine the permissions of a user. The problem is the explosion in
the number of roles that should be considered in order to specify the various sets
of permissions that a user may acquire depending on the values of the dynamic
attributes.

To overcome this problem, [16] proposes to add attributes to RBAC and
overviews several approaches to do this. Among these, the one called Dynamic
Roles (DRs) determines the user’s role depending on his/her attributes. The
interest of DRs is that they retain the structure of the RBAC model while pro-
viding additional flexibility to cope with attributes. A similar approach have
already been investigated in [2,3] and problems concerning redundancies in the
rules that assign users to roles and possible inconsistencies with the standard
RBAC role hierarchy are studied. Furthermore, in [4], negative roles are intro-
duced to widen the scope of applicability of the RBAC model to those situations
in which an open (allow-by-default) policy approach is adopted (i.e. access is

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 25–40, 2012.
c© IFIP International Federation for Information Processing 2012

26 A. Armando and S. Ranise

denied if there exists a corresponding negative authorization and is permitted
otherwise [26]). In this context, conflicts may arise among rules that assign users
to a role and, at the same time, to the negated role.

Clearly, simply authoring a set of rules that assign users to roles is not suf-
ficient: an organization must also be able to analyse it in order to avoid the
kind of problems sketched above. Testing, while useful, is not exhaustive and, as
organizations grow, their rule set can become very large, which places particular
burden on the quality of testing. Designers of RBAC policies with DRs would
thus benefit from complementing testing with more exhaustive and automatic,
formal analysis techniques. In this respect, the paper makes three contributions.

First, we give an abstract definition for policies with DRs that naturally ex-
tends the RBAC model (Section 2). Negative authorization (via negated roles)
can be easily accommodated in the proposed framework (Section 2.3).

Second, we provide a rule-based characterization of the association between
users’ attributes and roles (Section 2) that allows us to formally state two crucial
problems for the design of RBAC policies with DRs: detection of redundancies
(Section 2.1) and detection of conflicts (Section 2.3).

Third (Section 4.1), we show how conditions on the users’ attributes of autho-
rization rules can be expressed by theories, whose satisfiability problems can be
efficiently decided by Satisfiability Modulo Theories (SMT) solvers (Section 3)
and characterize the decidability and the complexity of the problems of detect-
ing redundancies and conflicts under natural assumptions on the theories of the
attributes (Sections 4.2 and 4.3). An experimental evaluation with a prototype
implementation of the algorithm (Figure 1) used for the decidability results on
a synthetic benchmark confirms the viability of the approach (Section 4.4).

Related work and conclusions are also discussed (Section 5). Proofs
can be found in the extended version of this paper available at
http://st.fbk.eu/SilvioRanise#Papers.

2 RBAC with Dynamic Roles

Preliminarily, we recall some basic notions concerning the RBAC model [27].
RBAC regulates access through roles. Roles in a set R associate permissions
in a set P to users in a set U by using the following two relations: UA ⊆
U × R and PA ⊆ R × P . Roles are structured hierarchically so as to permit
permission inheritance. Formally, a role hierarchy is a partial order RH on R,
where (r1, r2) ∈ RH means that r1 is more senior than r2 for r1, r2 ∈ R. A user
u is an explicit member of role r when (u, r) ∈ UA, u is an implicit member of r
if there exists r′ ∈ R such that (r′, r) ∈ RH and (u, r′) ∈ UA, and u is a member
of role r if he/she is either an implicit or explicit member of r. Given UA and
PA, a user u has permission p if there exists a role r ∈ R such that (p, r) ∈ PA
and u is a member of r. A RBAC policy is a tuple (U,R, P, UA, PA,RH).

When extending RBAC with dynamic roles, the relation UA is not given
explicitly but it is defined in terms of pairs (attribute name, attribute value). A
RBAC policy with Dynamic Roles (RBAC-DR) is a tuple (U,R, P, a,Da, sa,AR,

http://st.fbk.eu/SilvioRanise

Automated and Efficient Analysis of RBAC with Attributes 27

PA,RH) where U , R, P , PA, and RH are as in the RBAC model above, a is a
(finite) sequence of attributes, Da is a (finite) sequence of domains associated to
a, sa is a sequence of user-attribute mappings associated to a (the sequences a,
Da, and sa have equal length) such that for each a in a (written a ∈ a) sa is a

function from U to 2Da , and AR is the attribute-role relation that contains tuples
of the form (C, r) where C is a set of pairs (a, ea) with ea ∈ Da for a ∈ a and
r ∈ R. (In the following, the sub-script of Da and sa will be dropped to simplify
the notation.) Given a RBAC-DR policy (U,R, P, a,D, s,AR, PA,RH), a user
u ∈ U is an explicit member of role r ∈ R under the user-attribute mapping s iff
there exist a pair (C, r) ∈ AR and a set Su ⊆ C such that ea ∈ sa(u) for every
(a, ea) ∈ Su. The notions of “being an implicit member of a role” and “having a
permission” are defined as those of RBAC policies above.

2.1 Rule-Based Authorization Rules

The most difficult part in the design of a RBAC-DR policy is the definition of
the attribute-role relation. To do this, following [2], we use authorization rules
that associate a role to a user provided that his/her attribute values satisfy
certain conditions. Let a = a1, ..., an be a sequence of attributes, a pair (b, C) is
a condition C on a subsequence b = b1, ..., bm of a (i.e. for each bj there exists ak
such that bj = ak for j = 1, ...,m, k = 1, ..., n, and m ≤ n), also written as C(b),
where C is a sub-set ofDb1×· · ·×Dbm . A (rule-based) authorization rule is a pair
(C(b), r), also written as C(b) � r, such that C(b) is a condition and r is a role in
R. The attribute-role relation AR associated to the set AU of authorization rules
is {({(b1, e1), ..., (bm, em)}, r) | (C(b1, ..., bm) � r) ∈ AU and (e1, ..., em) ∈ C}.
By abuse of notation, a tuple (U,R, P, a,D, s, AU, PA,RH), where AU is a finite
set of authorization rules and all the other components are as in a RBAC-
DR policy, will also be called a RBAC-DR policy. Given a RBAC-DR policy
(U,R, P, a,D, s, AU, PA,RH), a user u satisfies the condition C(b1, ..., bm) of an
authorization rule in AU under the user-attribute mapping s, in symbols u, s �
C(b1, ..., bm), iff (e1, ...em) ∈ C and ej ∈ sbj (u) for j = 1, ...,m. The implicit
user-role relation IUA ⊆ U ×R is defined as IUA := {(u, r) | there exists (C �
r) ∈ AU such that u, s � C}. A user u ∈ U is a member of role r ∈ R under the
user-attribute mapping s (via the notion of attribute-role relation associated to
the set AU of authorization rules) iff (u, r) ∈ IUA.

For effectiveness, we assume the computability of (a) the user-attribute as-
signments and of (b) the membership to the conditions of the authorization rules
as well as to (c) the relations RH and PA. Requirement (a) is reasonable as the
notion of user-attribute assignment is an abstraction of the mechanism that as-
sociates users with attributes (e.g., an LDAP). Requirement (b) is necessary for
the effectiveness of the satisfaction relation �. Concerning (c), we observe that
since the sets R and P are finite in several applications, then membership to
RH and PA is obviously computable.

Example 1. We consider a refined version of the example in [2] for an on-line
entertainment store streaming movies to users. The store needs to enforce an
access control policy that is based on the user’s age and the country where

28 A. Armando and S. Ranise

the user lives that may have different regulations for considering someone as
an adult, a teen, or a child. E.g., for the legislation of Italy and France, one is
considered adult when he/she is 18 or older while in Japan the adult age is 20.

For simplicity, we assume there are only three users Alice, Bob, and Charlie.
Alice is 12 years old and lives in Italy, Bob is 39 and lives in Japan, and Charlie is
17 and lives in France. We leave unspecified the permissions, the role hierarchy,
and the role-permission assignment as we want to focus on the user-role assign-
ment based on the age and country attributes. In the corresponding RBAC-DR
policy (U,R, P, a,D, s, AU, PA,RH), we have that U := {Alice,Bob,Charlie},
R := {Adult,Teen ,Child}, a = age, country, D = N,WC where WC is an
enumerated set containing all the countries in the world, s = sage , scountry
where sage = {Alice → 12,Bob → 39,Charlie → 17}, scountry = {Alice →
Italy ,Bob → Japan ,Charlie → France}, and AU contains, among others, the
following authorization rules:

ρ1 : {(a, c) ∈ N×WC |a ≥ 20 and c ∈ {Japan , Indonesia}} � Adult ,
ρ2 : {(a, c) ∈ N×WC |a ≥ 18 and c ∈ {Italy ,France , ...}} � Adult ,
ρ3 : {(a, c) ∈ N×WC |13 ≤ a ≤ 17 and c ∈ {Italy ,France , ...}} � Teen , and
ρ4 : {(a, c) ∈ N×WC |a ≤ 12 and c ∈ {Italy ,France , ...}} � Child

that correspond to the policy informally described above (a and c abbreviate
age and country, respectively). It is not difficult to see that Bob, s � ρ1 but
Bob, s �� ρ2, that Charlie , s � ρ3 but Charlie , s �� ρi for i = 1, 2, 4, and that
Alice, s � ρ4 but Alice, s �� ρi for i = 1, 2, 3. As a consequence, we have that,
e.g., (Alice,Child) ∈ IUA, (Bob,Adult) ∈ IUA, and (Charlie , Teen) ∈ IUA. ��

2.2 Redundancies in RBAC-DR Policies

As observed in [3], for RBAC-DR policies, besides the usual role hierarchy RH ,
it is possible to define another hierarchy IRH induced by the authorization
rules in AU . We follow [3] and since IRH is defined for every possible user-
attribute mapping, we introduce the notion of RBAC-DR family of policies as a
tuple (R,P, a,D,AU, PA,RH) where its components are the same as those of a
RBAC-DR policy; in other words, a RBAC-DR family of policies is a RBAC-DR
policy where the users and the user-attribute assignment are omitted. For every
pair (ρ1, ρ2) of authorization rules in AU , ρ1 is more senior than ρ2 (in symbols,
ρ1 � ρ2) iff for every user u and every user-attribute assignment s if u, s � C1

then also u, s � C2, where Ci is the condition of ρi for i = 1, 2, i.e. when the
set of users satisfying C1 is a subset of that satisfying C2 under every possible
user-attribute mapping s. Then, we define (r1, r2) ∈ IRH , i.e. the pair (r1, r2) is
in the induced role hierarchy IRH , iff for each rule (C1 � r1) ∈ AU there exists
a rule (C2 � r2) ∈ AU such that (C1 � r1) � (C2 � r2).

The key difference between RH and IRH is that the former is designed so
that seniority among roles reflects inheritance of permissions associated to them
whereas the latter characterizes seniority according to the sets of users associated
to them by the set AU of authorization rules. It may happen that the induced
role hierarchy IRH is such that both (r, r′) ∈ IRH and (r′, r) ∈ IRH for two

Automated and Efficient Analysis of RBAC with Attributes 29

distinct roles r, r′ ∈ R, i.e. the set of users associated to r and that associated
to r′ are identical. This is so because IRH is a quasi-order (i.e. it is reflexive
and transitive) and not a partial order as RH (that is also anti-symmetric).
This implies a redundancy in the definition of IRH since the two roles r1 and
r2 can be considered equivalent as both (r1, r2) ∈ IRH and (r2, r1) ∈ IRH .
This does not necessarily imply a problem in the authorization rules but it is
desirable that designers become aware of all the redundancies in IRH (see [3]
for more on this issue). Notice that once the “more senior than” relation among
the authorization rules in AU is known, detecting redundancies in IRH becomes
obvious. As a consequence, we define the problem of computing the “more senior
than relation” over a set AU of authorization rules (MS-AU problem, for short)
as follows: given a RBAC-DR family (R,P, a,D,AU, PA,RH) of policies, the
MS-AU problem amounts to checking whether ρ1 � ρ2 for every pair ρ1 and ρ2
of authorization rules in AU . Notice that this problem is stated for a RBAC-DR
family of policies and thus must be solved regardless of the set of users and the
user-attribute mapping.

Solving the MS-AU problem allows one to eliminate the redundancies in IRH .
Formally, this amounts to first turning � into a partial order in such a way that
also IRH is so. This is a crucial pre-requisite to apply the techniques in [3] to
detect (and eliminate) any “disagreement” between RH and IRH , i.e. to identify
those situations in which the security policies encoded by the authorization rules
and the business practices captured by RH do not match. Although we do not
explore this problem further, we observe that the automated technique to solve
MS-AU problems in Section 4.2 facilitates the application of the techniques in [3].

2.3 RBAC-DR with Negative Authorization

In [4], negative authorizations are added to the RBAC-DR model by allowing
negated roles in authorization rules. The intuition is that an authorization rule
with a negative role r denies access to the permissions associated to r via the
permission-assignment relation. This characterization of negative roles allows for
the adoption of the so-called open (allow-by-default) policy semantics [13,26] in
an extension of the RBAC model, that is based on positive permissions confer-
ring the ability to do something on the holders of the permissions [27]. This is
crucial to widen the scope of applicability of the RBAC model extended with
dynamic roles to applications where the set of users is not known a priori, e.g.,
web-services. Unfortunately, as pointed out in [4], the addition of negative au-
thorizations introduces conflicts that need to be detected and then resolved.

Formally, we define the set SR = {+,−}×R of signed roles and write the pairs
(+, r) and (−, r) as +r and −r, respectively, for a role r ∈ R. We extend the
definition of authorization rule as follows: a pair C � sr is a signed authorization
rule where C is a condition and sr ∈ SR. Intuitively, a user u satisfying the
condition C of a signed authorization rule of the form C � −r under a certain
user-attribute mapping is forbidden to be assigned the role r. A RBAC-DR
policy with negative roles (RBAC-NDR) is a tuple (U,R, P, a,D, s, AU, PA,RH)
where U,R, P, a,D, s, PA and RH are as in a RBAC-DR policy and AU is a

30 A. Armando and S. Ranise

set of signed authorization rules. A RBAC-NDR family of policies is the tuple
(R,P, a,D,AU, PA,RH)

To understand the kind of conflicts that may arise from the use of signed
authorization rules, consider ρ1 := (C1 � +r) and ρ2 := (C2 � −r) such that
a user u satisfies both C1 and C2 under a certain user-attribute mapping. At
this point, we are faced with the problem of deciding whether the user u should
be assigned or not the role r. As discussed in [4], there are several strategies to
resolve the problem, e.g., by adopting a “deny-override” strategy where a user u
can be assigned a role r provided that u satisfies the condition C of a rule of the
form C � +r in AU and there is no rule in AU of the form C′ � −r such that
u satisfies the condition C′ that forbids the assignment of r to u. However, this
or alternative conflict elimination strategies may be unsatisfactory for certain
applications; see again [4] for details. Furthermore, certain conflicts may arise
from errors in the design of the authorization rules and must be identified in order
to correct them. As a consequence, we define the problem of detecting conflicts in
the set AU of signed authorization rules (CD-SAU problem, for short) as follows:
given a RBAC-NDR family (R,P, a,D,AU, PA,RH) of policies, the CD-SAU
problem amounts to checking whether for each pair (C � +r, C′ � −r) in AU ,
there is no user u satisfying both C and C′ under a user-attribute mapping s.
As for the MS-AU problem, also the CD-SAU problem is stated for a family
of policies and thus must be solved for any set of users and any user-attribute
mapping.

3 Satisfiability Modulo Theories Solving

We assume the usual syntactic (e.g., signature, variable, term, atom, literal) and
semantic (e.g., structure, truth) notions of many-sorted first-order logic with
equality (see, e.g., [10]). A constraint (clause, resp.) is a conjunction (disjunction,
resp.) of literals (i.e. atoms or their negations) and a quantifier-free formula is
an arbitrary Boolean combination of atoms.

According to [24], a theory T is a pair (Σ, C), where Σ is a signature and C is
a class of Σ-structures; the structures in C are the models of T . Given a theory
T = (Σ, C), a quantifier-free Σ-formula φ(v)—i.e. a quantifier-free formula built
out of the symbols in Σ and the variables in the sequence v—is T -satisfiable
if there exists a Σ-structure M in C and a valuation μ mapping the variables
in v to values of the domain of M such that φ(v) is true in M (in symbols,
M, μ |= φ); it is T -valid (in symbols, T |= ϕ) if M, μ |= ϕ(v) for every M ∈ C
and every valuation μ. The quantifier-free formula ϕ(v) is T -valid iff its negation
¬ϕ(v) is T -unsatisfiable. For example, if ϕ is the implication ϕ1 → ϕ2, then its
T -validity is equivalent to the T -unsatisfiability of the conjunction of ϕ1 with
the negation of ϕ2 (ϕ1 ∧ ¬ϕ2).

The satisfiability modulo the theory T (SMT (T)) problem amounts to estab-
lishing the T -satisfiability of quantifier-free Σ-formulae. Many state-of-the-art
SMT solvers, in their simplest form, tackle the SMT(T) as follows. Initially,
each atom occurring in the input quantifier-free formula ϕ is considered simply

Automated and Efficient Analysis of RBAC with Attributes 31

as a propositional letter (in other words, the theory T is forgotten). Then, the
“propositional abstraction” of ϕ is sent to a SAT solver. If this reports proposi-
tional unsatisfiability, then ϕ is also T -unsatisfiable. Otherwise, an assignment
of truth values to the atoms in ϕ is returned that makes its propositional ab-
straction true. Such an assignment can be seen as a conjunction of literals and
checked by a specialized theory solver for T that can only deal with constraints
(i.e. conjunctions of literals). If the theory solver establishes the T -satisfiability
of the constraint then ϕ is also T -satisfiable. Otherwise, the theory solver com-
putes a clause that, once added to the SAT solver, precludes the assignment of
truth values that has been considered. The SAT solver is then started again.
This process is repeated until the theory solver reports the T -satisfiability of
one assignment or all the assignments returned by the SAT solver are found T -
unsatisfiable so that also ϕ is reported to be T -unsatisfiable. Various refinements
of this basic schema have been proposed for efficiency, the interested reader is
pointed to, e.g., [28,9].

The SMT(T) problem is NP-hard as it subsumes the SAT problem. To eval-
uate the additional complexity due to the theory T , we focus on theory solvers
and consider the complexity of checking the T -satisfiability of constraints, called
the constraint T -satisfiability problem for some theories that have been found
useful for the declarative specifications of authorization policies (see, e.g., [18]).
The theory EUF of equality with uninterpreted function symbols is the theory
interpreting the symbol = as an equivalence relation that is also a congruence.
The constraint EUF -satisfiability problem is decidable and polynomial. The the-
ory ED({v1, ..., vn}, S) of the enumerated data-type S with values {v1, ..., vn} (for
n ≥ 1) is the theory whose signature consists of the sort S, the constant sym-
bols v1, ..., vn of sort S, and its class of models contains all the structures whose
domain contains exactly n distinct elements. The constraint ED-satisfiability
problem is decidable and NP-complete. Linear Arithmetic on the Rationals (In-
tegers, resp.) LAR (LAI, resp.) is the theory whose class of models is the
singleton containing the usual structure R of the Reals (Z of the integers, resp.)
and whose atoms are equalities, disequalities, and inequalities of linear polyno-
mials whose coefficients are integers and the variables take values over the Reals
(integers, resp.). The constraint satisfiability problems for LAR and LAI are
decidable, the former is polynomial and the latter is NP-complete. The theory
RDL of real difference logic is the sub-theory of LAR whose atoms are written
as x − y �	 c where �	 is an arithmetic operator, x and y are variables, and
c ∈ R. The theory IDL of integer difference logic is defined as RDL but it is a
sub-theory of LAI. Both the constraint RDL- and IDL-satisfiability problems
are decidable and polynomial. For more details about these and other theories,
see, e.g., [28,9].

Many applications require to reason about conjunctions of constraints coming
from several theories T1, ..., Tn. In this situation, it is easy to build a theory
solver by reusing those available for the theories T1, ..., Tn as follows. Let α =
α1(v1)∧· · ·∧αn(vn) be a composite constraint, i.e. αi is a literal over the signature
of Ti for i = 1, ..., n whose variables vi are disjoint with those of the other

32 A. Armando and S. Ranise

constraints. Then, α is satisfiable iff each αi is Ti-satisfiable and it is unsatisfiable
otherwise, i.e. there exists i ∈ {1, ..., n} such that αi is Ti-unsatisfiable. Thus,
if the constraint Ti-satisfiability problem is decidable and polynomial for each
i = 1, ..., n, then it is also decidable and polynomial to check the satisfiability of
composite constraints.

4 Solving the MS-AU and CD-SAU Problems

We explain how RBAC-DR and RBAC-NDR policies can be specified by using
theories and how this allows us to prove the decidability of the MS-AU and
CD-SAU problems. The proof is constructive and reduces both problems to a
sequence of SMT problems that can be efficiently solved by invoking state-of-
the-art SMT solvers.

4.1 Specifying RBAC-DR and RBAC-NDR Policies with Theories

The idea is to use quantifier-free formulae of a suitable theory to specify the
conditions of (signed) authorization rules. Formally, we assume the availability
of a theory TA = (ΣA, CA) of attributes and define a RBAC-DR policy with back-
ground theory TA of attributes as a tuple (U,R, P, a, s, AUQF , PA,RH) where
U,R, P, PA, and RH are as specified above, and the following conditions hold:
(C1) each a ∈ a is a first-order variable of sort Sa in ΣA and each sa ∈ s is a

mapping sa : U → 2S
MA
a for some MA ∈ CA (where σMA is the interpretation

in MA of the symbol σ ∈ Σ; e.g., SMA
a is a subset of the domain of MA),

(C2) for every e ∈ SMA there exists a constant c of sort Sa in ΣA such that
cMA = e for some MA ∈ CA,1 and (C3) the set AUQF contains finitely many
pairs of the form ϕ(b) � r, called syntactic authorization rules, where ϕ is a
quantifier-free formula built out of the symbols of ΣA and the variables in b,
that is a sub-sequence of a.

The crucial observation is that each quantifier-free formula ϕ(b) in a syntactic
authorization rule ϕ(b) � r in AUQF defines a condition C(b), in the sense
of Section 2.2, as follows: (e1, ..., em) ∈ C(b) iff there exists MA ∈ CA and a
valuation μ such that μ(bj) = ej ∈ SMA

bj
for j = 1, ...,m and MA, μ |= ϕ(b). In

the following, the condition C(b) associated to the quantifier-free formula ϕ(b) is
written as [[ϕ(b)]]. Thus, a RBAC-DR policy (U,R, P, a, s, AUQF , PA,RH) with
background theory TA = (ΣA, CA) of the attributes defines the following RBAC-
DR policy: (U,R, P, a,D, s, AU, PA,RH) where Da = SMA

a for each a ∈ a
and AU = {[[ϕ(b)]] � r | (ϕ(b) � r) ∈ AUQF } for some MA ∈ CA. Similar
definitions can be given for RBAC-NDR policies and RBAC-DR (RBAC-NDR)
family of policies with background theory TA of attributes.

1 This condition is not restrictive as it is always possible to add a constant ce for each
element e in the domain whose interpretation is e itself. The addition of these con-
stants does not change the set of satisfiable quantifier-free formulae (see, e.g., [10]).

Automated and Efficient Analysis of RBAC with Attributes 33

Example 2. For Example 1, we consider composite constraints from the enu-
merated data-type theory ED({Italy,France, Japan , Indonesia, ...}, C) for the
set WC of world countries and the theory IDL for the constraints on the age
(see Section 3). The attribute country is also seen as a variable of sort C and
the attribute age as a variable of sort Z. As a consequence, the syntactic autho-
rization rules corresponding to the authorization rules in Example 1 are:

ρ1 : −age ≤ −20 ∧ (country = Japan ∨ country = Indonesia) � Adult ,
ρ2 : −age ≤ −18 ∧ (country = Italy ∨ country = France ∨ · · ·) � Adult ,
ρ3 : −age ≤ −13 ∧ age ≤ 17 ∧ (country = Italy ∨ country = France ∨ · · ·) � Teen ,
ρ4 : age ≤ 12 ∧ (country = Italy ∨ country = France ∨ · · ·) � Child

Notice that country ∈ {c1, ..., cn} has been translated as
∨n

i=1 country = ci. ��
By generalizing the observations in the example, it is not difficult to see that
the language to express authorization rules introduced in [2] can be translated
to syntactic authorization rules provided that a suitable background theory of
attributes is used.

Proposition 1. Given a RBAC-DR policy (U,R, P, a, s, AUQF , PA,RH) with
background theory TA = (ΣA, CA) of the attributes. If the SMT(TA) problem is
decidable, then it is decidable to check if a user u ∈ U is a member of a role
r ∈ R.

An obvious corollary of this proposition and the fact that the membership to
RH and PA is computable is that checking whether a user is an implicit member
of a role or he/she has a permission are also decidable.

In the following, without loss of generality, we assume that (A1) any
condition of an authorization rule is TA-satisfiable but not TA-valid (i.e. its
negation is also TA-satisfiable) and (A2) the conditions of the syntactic autho-
rization rules in AUQF are constraints and not arbitrary Boolean combinations
of atoms. The two situations ruled out by assumption (A1) can be automati-
cally identified under the assumption that the SMT(TA) problem is decidable
and can be safely discarded as uninteresting: those that are TA-satisfiable never
assigns a user to a role while those that are TA-valid assigns any user to a
role (this kind of problems have been considered in the context of a similar
rule-based specification framework for access control policies [25]). To see why
assumption (A2) is without loss of generality, consider a rule ϕ � r in AUQF

where ϕ is a quantifier-free formula (and r ∈ R). Since it is possible to trans-

form ϕ into disjunctive normal form, i.e. into a formula of the form
∨d

j=1 αj

where αj is a constraint (for j = 1, ..., d and d ≥ 1), we can consider the set
AU ′QF := AUQF \ {ϕ � r} ∪ {αj � r | j = 1, ..., d}. Clearly, the user-role
assignment relations induced by AUQF and by AU ′QF are the same. By iterating
the process, we derive a set of syntactic authorization rules whose conditions are
constraints only.

4.2 The MS-AU Problem

We consider the MS-AU problem (recall its definition at the end of Section 2.2)
for RBAC-DR policies with a background theory of the attributes, i.e. given a

34 A. Armando and S. Ranise

Input: c: array[0..N-1] of constraints

r: array[0..N-1] of (signed) roles

1: S := ∅;
2: FOR i=0 TO N-2 DO

3: FOR j=i+1 TO N-1 DO

4: f1 := opposite(r[i],r[j]); f2 := related(c[i],c[j])

5: IF f2 THEN

6: IF find(i)	=find(j) THEN

7: i2j := checkTA(c[i] ∧ ¬ c[j])

8: IF i2j=unsat THEN S := S∪{(i,j,f1,f2)};
9: j2i := checkTA(c[j] ∧ ¬ c[i])

10: IF j2i=unsat THEN S := S∪{(j,i,f1,f2)};
11: IF (i2j=unsat AND j2i=unsat) THEN union(i,j)

12: ELSE S := S∪{(i,j,f1,f2),(j,i,f1,f2)};
13: ELSE S := S∪{(i,j,f1,f2)}
Fig. 1. Solving the MS-AU and CD-SAU problems

RBAC-DR family of policies (U,R, P, a, AUQF , PA,RH) with background the-
ory TA of the attribute, the MS-AU problem amounts to checking whether
ρ1 � ρ2 for every pair ρ1 and ρ2 of syntactic authorization rules in AUQF .

The key observation is that we can reduce the problem of establishing whether
ρ1 � ρ2 to an SMT(TA) problem involving the conditions of the rules ρ1 and
ρ2. Before being able to formally state this, we need to introduce the following
notion. Two rules (α1(b1) � r1) and (α2(b2) � r2) are syntactically related if
b1 ∩ b2 �= ∅ (by abuse of notation, we consider the sequence bi as a set, i = 1, 2);
otherwise, they are syntactically unrelated.

Proposition 2. Let (R,P, a,AUQF , PA,RH) be a RBAC-RD family of poli-
cies with background theory TA of the attributes and ρi = (αi(bi) � ri) be an
authorization rule in AUQF for i = 1, 2. Then, the following facts hold:

(a) if ρ1 and ρ2 are syntactically unrelated, then ρ1 �� ρ2 and ρ2 �� ρ1 and
(b) if ρ1 and ρ2 are syntactically related, then ρ1 � ρ2 iff α1(b1) → α2(b2) is

TA-valid (or, equivalently, α1(b1) ∧ ¬α2(b2) is TA-unsatisfiable).

Assuming that the SMT(TA) problem is decidable, it is possible to automatically
check whether a rule is more senior than the other by Proposition 2. This is the
idea underlying the algorithm in Figure 1 for automatically solving the MS-AU
problem. Let (R,P, a,AUQF , PA,RH) be a RBAC-RD family of policies with
background theory TA where |AUQF | = N. The input to the algorithm are two
arrays c and r such that for each rule α � r in AUQF there exists i in the
range [0..N-1] such that c[i] = α and r[i] = r (the latter will contain signed
roles only when solving CD-SAU problems, see Section 4.3 below). The variable
S ⊆ [0, N − 1]× [0, N − 1]× {true, false} × {true, false} stores increasingly pre-
cise approximations of the relation � in a sense to be made precise below. The
Boolean function related(c[i], c[j]) returns true iff the rules c[i] � r[i] and
c[j] � r[j] are syntactically related. The Boolean function opposite is the con-
stant function false so that the third component of the tuples in S is always set

Automated and Efficient Analysis of RBAC with Attributes 35

to false (this will be important only when solving CD-SAU problems, see Sec-
tion 4.3 below). The function find and the procedure union form the interface
to a union-find data structure (see, e.g., [30]) to maintain a set of equivalence
classes: find(i) returns the representant of the equivalence class to which the
rule c[i] � r[i] belongs to and union(i, j) merges the equivalence classes to
which the rules c[i] � r[i] and c[j] � r[j] belong to. The function checkTA(ϕ)
returns sat (unsat, resp.) iff the quantifier-free ΣA-formula ϕ is TA-satisfiable
(TA-unsatisfiable, resp.) and it is implemented by invoking an available solver
supporting the solution of SMT(TA) problems.

The algorithm works by enumerating pairs of rules (the two nested loops at
lines 2 and 3) to establish whether they are syntactically related (flag f2 line 4).
In case they are not, the tuple (i, j, false, false) is added to S (line 13) meaning
that the pair (i, j) of rules cannot be compared with respect to �. Otherwise,
the union-find data structure is queried (line 6) in order to establish if the rules
identified by i and j are already in the same equivalence class. If this is the case,
the tuples (i, j, false, true) and (j, i, false, true) are added to S (line 12) meaning
that both i � j and j � i. Otherwise, it is checked if i � j (line 7, by testing
if c[i] implies c[j] modulo TA or, equivalently, the conjunction of c[i] with the
negation of c[j] is TA-unsatisfiable) and the tuple (i, j, false, true) is added to S

(line 8). The same is done to establish if j � i (lines 9 and 10). If both previous
tests (lines 8 and 10) have been successful, then the two equivalence classes to
which i and j belong to are merged (line 11).

Lemma 1. Let (R,P, a,AUQF , PA,RH) be a family of RBAC-RD policies with
background theory TA of the attributes whose SMT(TA) problem is decidable and
|AUQF | = N. Then, the following facts hold after the execution of the algo-
rithm in Figure 1: (a) (i, j, false, true) ∈ S iff c[i] � r[i] � c[j] � r[j], (b)
find(i) = find(j) iff c[i] � r[i] � c[j] � r[j] and c[j] � r[j] � c[i] � r[i],
i.e. the union-find data structure stores the equivalence classes of the “more se-
nior than” relation over AUQF , and (c) the number of invocations to checkTA

is at most N(N− 1).

The cost of invoking the function opposite is constant (recall that this is a con-
stant function returning false when solving the MS-AU problem) while that
of related is linear in a by using bit-strings to represent sequences of variables
occurring in the conditions of the rules. The union-find algorithm in [30] takes
almost constant (amortized) time for invoking both the find and union op-
erations (more precisely, it takes O(A−1(N)) where A−1 is the inverse of the
Ackermann function; since for any practical values of N , A−1(N) is bounded by
5, each invocation to find and union can be considered as constant). Thus, the
complexity of the algorithm is clearly dominated by the number of invocations
to checkTA . Notice that the function is invoked on quantifier-free formulae ob-
tained by conjoining a constraint αi with the negation of a constraint ¬αj (i.e.
a clause). This allows us to characterize the complexity of the MS-AU problem.
Formally, we introduce the following notion. A theory T is convex (see, e.g., [23])
iff whenever a constraint implies a clause, it also implies one of the literals in
the clause. Examples of convex theories are EUF , ED, LAR, and RDL whose

36 A. Armando and S. Ranise

constraint satisfiability problem is polynomial (convexity of LAR derives from
the convexity of linear algebra). Instead, both LAI and its sub-theory IDL are
not convex (e.g., x ≥ 0 ∧ x ≤ 1 ∧ ¬(x �= 0 ∧ x �= 1) is LAI-unsatisfiable but
neither x ≥ 0 ∧ x ≤ 1 ∧ x = 0 nor x ≥ 0 ∧ x ≤ 1 ∧ x = 1 is LAI-unsatisfiable).
Theorem 1. If the SMT problem of the background theory TA of the attributes is
decidable, then the MS-AU problem is decidable. If furthermore TA is convex and
the constraint TA-satisfiability problem is polynomial, then the MS-AU problem
is also polynomial.

When the background theory of the attributes is EQ, LAR,RDL, or we consider
composite constraints of these theories, the MS-AU problem is decidable and
polynomial since all these theories are decidable and polynomial (see Section 3).
When the background theory of the attributes is ED, LAI, or IDL, the MS-AU
problem is decidable and NP-complete. While this is obvious for ED and LAI
(whose constraint satisfiability problem is already NP-complete), it is less so for
IDL since its constraint satisfiability problem is polynomial. Since IDL is not
convex, the problem of checking the satisfiability of a constraint with a clause
becomes NP-complete [17]. Thus, besides polynomial constraint satisfiability,
convexity is crucial to have a polynomial MS-AU problem.

4.3 The CD-SAU Problem

We consider the CD-SAU problem (recall its definition at the end of Section 2.3)
for RBAC-NDR policies with a background theory of the attributes, i.e. given a
RBAC-NDR family of policies (R,P, a,AUQF , PA,RH) with background theory
TA of the attributes, the CD-SAU problem amounts to checking whether for each
signed authorization rule α1(b1) � +r in AUQF , there is no rule α2(b2) � −r
in AUQF such that a user u satisfies both α1(b1) and α2(b2) under some user-
attribute mapping s. We say that there is a conflict between rule α1(b1) � +r
and α2(b2) � −r if there exists a user u satisfying both α1(b1) and α2(b2)
under some user-attribute mapping s. Interestingly, it is possible to distinguish
two types of conflicts depending on the fact that the rules can or cannot be
compared by the “more senior than” relation. Formally, the rules ρ1 and ρ2 are
relevant iff ρ1 � ρ2 or ρ1 � ρ2, and are irrelevant otherwise. If two rules are
syntactically unrelated, they are also irrelevant by Proposition 2 (a).

We solve the CD-SAU problem by using again the algorithm in Figure 1 where
the array r stores signed roles, the auxiliary function opposite(r[i], r[j]) returns
true iff r[i] = +r and r[j] = −r or r[i] = −r and r[j] = +r, and all the other
data structures and functions are as described in Section 4.2. As anticipated in
Section 4.2, the third component of the relation S is important and distinguishes
between relevant and irrelevant pairs of rules.

As before, the algorithm enumerates pairs of rules and establishes whether
they have signed roles +r and −r and they are syntactically related (flags f1

and f2 at line 4, respectively). In case the two rules are not syntactically related,
the tuple (i, j, f1, false) is added to S (line 13) meaning that the rules identified
by i and j are irrelevant and there is a conflict between them when f1 is true.

Automated and Efficient Analysis of RBAC with Attributes 37

Otherwise, the union-find data structure is queried (line 6) in order to establish
if the rules identified by i and j are already in the same equivalence class. If
this is the case, the tuples (i, j, f1, true) and (j, i, f1, true) are added to S (line
12) meaning than the rules identified by i and j are relevant and there is a
conflict between them when f1 is true. Otherwise, it is checked if c[i] � r[i] �
c[j] � r[j] (line 7) and the tuple (i, j, f1, true) is added to S (line 8), the same
is done to establish if c[j] � r[j] � c[i] � r[i] (lines 9 and 10): the rules are
relevant and there is a conflict between them when f1 is true. If both previous
tests (lines 8 and 10) have been successful, then the two equivalence classes to
which i and j belong to are merged (line 11).

Lemma 2. Let (R,P, a,AUQF , PA,RH) be a family of RBAC-NDR policies
with background theory TA of the attributes whose SMT(TA) problem is decidable
and |AUQF | = N. Then, after the execution of the algorithm in Figure 1 the
following holds: if (i, j, τ, true) ∈ S, then there is a conflict between rules i and
j and the two rules are relevant (irrelevant, resp.) when τ is true (false, resp.)
and the number of invocations to checkTA is at most N(N− 1).

We state the second main result of the paper.

Theorem 2. If the SMT problem of the background theory TA of the attributes
is decidable, then the CD-SAU problem is decidable. If furthermore TA is con-
vex and the constraint TA-satisfiability problem is polynomial, then the CD-SAU
problem is also polynomial.

4.4 Experiments

To test the practical viability of our techniques, we have implemented the al-
gorithm of Figure 1 in C. To implement checkTA , we have chosen Yices [31]
for its easy-to-use API, although many other state-of-the-art SMT solvers (e.g.,
Z3 [34]) can be used. We have also implemented a generator of synthetic MS-
AU problems; we expect similar performances on CD-SAU problems since the
algorithm of Figure 1 can solve also these problems with minimal variations.
The starting point is the policy of Example 1. The idea is to randomly generate
composite constraints for the conditions of the rules taken from an enumerated
data-type theory ED({v1, ..., vV }, E) and IDL: the former corresponds to the set
of countries in the world and the latter to the age of users. We randomly generate
composite constraints whose literals are e = vi, e �= vi (for i ∈ {1, ..., V }), a = k,
a > k, and a < k (for k ∈ Z) where e and a are variables of sort E and Z, respec-
tively. According to Theorem 1, the resulting MS-AU problem is NP-complete
as the constraint ED-satisfiability problem is NP-complete and that of IDL is
polynomial but IDL is not convex. Thus the invocations to checkTA can be
computationally expensive. The random generation of literals in the composite
constraints is inspired to Gorrilla [15] that is known to generate difficult problems
for many state-of-the-art SMT solvers. The method of [15] has been adapted to
satisfy assumption (A1) of Section 4.1 and to generate constraints that can be
considered as “realistic” conditions of authorization rules, i.e. roughly similar to
those in Example 2.

38 A. Armando and S. Ranise

Fig. 2. Experimental results obtained on a MacBook with Intel Core i5 2.53 GHz and 4
GB of RAM running Mac OS X 10.6.6. Timings are averages over 10 random instances

There are three inputs to the benchmark generator: the number V of values
of ED, a positive integer M bounding the constant k occurring in the arith-
metic literals, and the number N of conditions to be considered. The first two
parameters V and M have negligible influence on the performance of our imple-
mentation of the algorithm in Figure 1. As a consequence, Figure 2 shows the
plot of the time taken to solve an MS-AU problem for the last parameter, i.e.
an increasing number N of rules (ranging from 100 to 1,000).2 The behaviour of
the algorithm is clearly quadratic. This is possible because we invoke the SMT
solver only (around) 1/4 of the potential N2 calls, thanks to the notion of two
rules being syntactically unrelated (see before Proposition 2 for the definition)
and the use of the union-find data structure that provides us with a computa-
tionally cheap method to deduce the transitive chains of the “more senior than
relation.” We believe that this gives a first important evidence of the practical
viability of our technique.

5 Related Work and Discussion

The problem of combining RBAC with more flexible methods of assigning users
to roles has been considered several times (see, e.g., [21,6]). In this line of work,
to the best of our knowledge, no automated analysis technique has been pro-
posed to assist designers to detect redundancies and inconsistencies of policies
as we do here. We have presented an abstract rule-based framework for the in-
tegration of attributes in RBAC inspired to [2]. The MS-AU and the CD-SAU
problems are inspired to problems informally characterized in [3] and [4]. The
idea of using SMT solvers for their efficient solution together with their decid-
ability and complexity results are new; except for [7,5] that exploit SMT solvers
to solve administrative RBAC problems. In [32,14], techniques to solve (what
we call) CD-SAU problems by using description logic and tableaux reasoners,
respectively, are described. Neither a complexity characterization nor an exten-
sive experimental evaluation are proposed and the techniques do not support

2 The sources of the program used to perform the experiments are available at
http://st.fbk.eu/SilvioRanise#Papers.

http://st.fbk.eu/SilvioRanise

Automated and Efficient Analysis of RBAC with Attributes 39

rich background theories of the attributes as we do here. The policy specifi-
cation languages in [33,19] can express authorization policies with attributes.
They support policies that go beyond those considered in this paper but do not
propose automated techniques for detecting inconsistencies and redundancies as
we do here. Furthermore, they adopt a closed (deny-by-default) policy model
(where access is allowed if there exists a corresponding (positive) authorization
and is denied otherwise [13,26]) rather than an open (allow-by-default) policy
as we do in this paper. We leave it to future work the study of the impact of
using a closed policy model on the decidability and complexity of the MS-AU
and CD-SAU problems. We notice that our framework (including Theorems 1
and 2) can be easily extended to cope with conditions about the environment
(e.g., time of the day) as done in [33].

Several works [29,1,22,12,11,8,20] have proposed techniques to detect incon-
sistencies and redundancies in XACML or extensions of RBAC policies by lever-
aging a variety of verification engines. None of these works provides decidability
and complexity results of the analysis techniques as we do in this paper.
Acknowledgements. This work was partially supported by the “Automated Security

Analysis of Identity and Access Management Systems (SIAM)” project funded by

Provincia Autonoma di Trento in the context of the “team 2009 - Incoming” COFUND

action of the European Commission (FP7).

References

1. Adi, K., Bouzida, Y., Hattak, I., Logrippo, L., Mankovskii, S.: Typing for Conflict
Detection in Access Control Policies. In: Babin, G., Kropf, P., Weiss, M. (eds.)
MCETECH 2009. LNBIP, vol. 26, pp. 212–226. Springer, Heidelberg (2009)

2. Al-Kahtani, M., Sandhu, R.: A Model for Attribute-Based User-Role Assignment.
In: Proc. of 18th Annual Comp. Sec. App. Conf., Las Vegas, Nevada (2002)

3. Al-Kahtani, M., Sandhu, R.: Induced Role Hierarchies with Attribute-Based
RBAC. In: Proc. of 8th ACM SACMAT (2003)

4. Al-Kahtani, M., Sandhu, R.: Rule-based RBAC with negative authorization. In:
Proc. of 20th Annual Comp. Sec. App. Conf., pp. 405–415 (2004)

5. Alberti, F., Armando, A., Ranise, S.: Efficient Symbolic Automated Analysis of
Administrative Role Based Access Control Policies. In: Proc. of 6th ACM Symp.
on Info., Computer and Comm. Security, ASIACCS 2011 (2011)

6. Ardagna, C., De Capitani di Vimercati, S., Paraboschi, S., Pedrini, E., Samarati,
P., Verdicchio, M.: Expressive and Deployable Access Control in Open Web Service
Applications. IEEE Trans. on Serv. Comp. (TSC) 4(2), 96–109 (2011)

7. Armando, A., Ranise, S.: Automated Symbolic Analysis of ARBAC-Policies. In:
Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710,
pp. 17–34. Springer, Heidelberg (2011)

8. Autrel, F., Cuppens, F., Cuppens, N., Coma, C.: MotOrBAC 2: a security policy
tool. In: 3rd Conf. SARSSI, pp. 13–17 (2008)

9. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54, 69–77 (2011)

10. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, New York
(1972)

40 A. Armando and S. Ranise

11. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.: Verification and
change-impact analysis of access control policies. In: Int. Conf. on Sw Eng. (ICSE),
pp. 196–206 (2005)

12. Hughes, G., Bultan, T.: Automated Verification of Access Control Policies Using
a SAT Solver. Int. J. on Sw Tools for Tech. Trandf. (STTT) 10(6), 473–534 (2008)

13. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for
multiple access control policies. ACM Trans. DB Syst. 26, 214–260 (2001)

14. Kamoda, H., Yamaoka, M., Matsuda, S., Broda, K., Sloman, M.: Access Control
Policy Analysis Using Free Variable Tableaux. Trans. of Inform. Proc. Soc. of
Japan, 207–221 (2006)

15. Korovin, K., Voronkov, A.: GoRRiLA and Hard Reality. In: Clarke, E., Virbit-
skaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 243–250. Springer,
Heidelberg (2012)

16. Kuhn, D.R., Coyne, E.J., Weil, T.R.: Adding Attributes to Role Based Access
Control. IEEE Computer 43(6), 79–81 (2010)

17. Lahiri, S.K., Musuvathi, M.: An Efficient Decision Procedure for UTVPI Con-
straints. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 168–183.
Springer, Heidelberg (2005)

18. Li, N., Mitchell, J.C.: DATALOG with Constraints: A Foundation for Trust Man-
agement Languages. In: Dahl, V. (ed.) PADL 2003. LNCS, vol. 2562, pp. 58–73.
Springer, Heidelberg (2003)

19. Li, N., Mitchell, J.C.: RT: A Role-based Trust-management Framework. In: 3rd
DARPA Infor. Surv. Conf. and Exp. (DISCEX III), pp. 201–212 (2003)

20. Lin, D., Rao, P., Bertino, E., Li, N., Lobo, K.: EXAM: a comprehensive environ-
ment for the analysis of access control policies. IJIS 9, 253–273 (2010)

21. Lupu, E., Sloman, M.: Reconciling Role Based Management and Role Based Access
Control. In: 2nd ACM Ws. on Role Based Acc. Contr., pp. 135–142 (1997)

22. Mankai, M., Logrippo, L.: Access Control Policies: Modeling and Validation. In:
Proc. of NOTERE, pp. 85–91 (2005)

23. Nelson, C.G., Oppen, D.: Simplification by Cooperating Decision Procedures. ACM
Trans. on Programming Languages and Systems 1(2), 245–257 (1979)

24. Ranise, S., Tinelli, C.: The SMT-LIB Standard: Version 1.2,
http://goedel.cs.uiowa.edu/smtlib/papers/format-v1.2-r06.08.30.pdf

25. Ribeiro, C., Zúquete, A., Ferreira, P., Guedes, P.: Security Policy Consistency. In:
1st Ws. on Rule-Based Constr. Reas. and Progr. CoRR cs.LO/0006045 (2000)

26. Samarati, P., De Capitani di Vimercati, S.: Access Control: Policies, Models, and
Mechanisms. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171,
pp. 137–196. Springer, Heidelberg (2001)

27. Sandhu, R., Coyne, E., Feinstein, H., Youmann, C.: Role-Based Access Control
Models. IEEE Computer 2(29), 38–47 (1996)

28. Sebastiani, R.: Lazy Satisfiability Modulo Theories. Journal on Satisfiability,
Boolean Modeling and Computation, JSAT 3, 141–224 (2007)

29. Shaikh, R., Adi, K., Logrippo, L., Mankovski, S.: Inconsistency Detection Method
for Access Control Policies. In: IEEE 6th IAS, pp. 204–209 (2010)

30. Tarjan, R.E.: Efficiency of a Good But Not Linear Set Union Algorithm. Journal
of the ACM 22(2), 215–225 (1975)

31. Yices, http://yices.csl.sri.com/
32. Yu, H., Xie, Q., Che, H.: Research on Description Logic Based Conflict Detection

Methods for RB-RBAC Model. In: 4th Int. Conf. on AMT, pp. 335–339 (2006)
33. Yuan, E., Tong, J.: Attributed Based Access Control (ABAC) for Web Services.

In: Proc. of IEEE ICWS, pp. 561–569 (2005)
34. Z3, http://research.microsoft.com/en-us/um/redmond/projects/z3

http://goedel.cs.uiowa.edu/smtlib/papers/format-v1.2-r06.08.30.pdf
http://yices.csl.sri.com/
http://research.microsoft.com/en-us/um/redmond/projects/z3

A Unified Attribute-Based Access Control

Model Covering DAC, MAC and RBAC

Xin Jin1, Ram Krishnan2, and Ravi Sandhu1

1 Institute for Cyber Security & Department of Computer Science
2 Institute for Cyber Security & Dept. of Elect. and Computer Engg.

xjin@cs.utsa.edu, {ram.krishnan,ravi.sandhu}@utsa.edu

Abstract. Recently, there has been considerable interest in attribute
based access control (ABAC) to overcome the limitations of the dominant
access control models (i.e, discretionary-DAC, mandatory-MAC and role
based-RBAC) while unifying their advantages. Although some proposals
for ABAC have been published, and even implemented and standardized,
there is no consensus on precisely what is meant by ABAC or the required
features of ABAC. There is no widely accepted ABAC model as there
are for DAC, MAC and RBAC. This paper takes a step towards this
end by constructing an ABAC model that has “just sufficient” features
to be “easily and naturally” configured to do DAC, MAC and RBAC.
For this purpose we understand DAC to mean owner-controlled access
control lists, MAC to mean lattice-based access control with tranquility
and RBAC to mean flat and hierarchical RBAC. Our central contribution
is to take a first cut at establishing formal connections between the three
successful classical models and desired ABAC models.

Keywords: Attribute, XACML, DAC, MAC, RBAC, ABAC.

1 Introduction

Starting with Lampson’s access matrix in the late 1960’s, dozens of access control
models have been proposed. Only three have achieved success in practice: discre-
tionary access control (DAC) [24], mandatory access control (MAC, also known
as lattice based access control or multilevel security) [22] and role-based access
control (RBAC) [11,23]. While DAC and MAC emerged in the early 1970’s it
took another quarter century for RBAC to develop robust foundations and flour-
ish. RBAC emerged due to increasing practitioner dissatisfaction with the then
dominant DAC and MAC paradigms, inspiring academic research on RBAC.
Since then RBAC has become the dominant form of access control in practice.

Recently there has been growing practitioner concern with the limitations of
RBAC, which has been met by researchers in two different ways. On one hand re-
searchers have diligently and creatively extended RBAC in numerous directions.
Conversely there is growing appreciation that a more general model, specifically
attribute-based access control (ABAC), could encompass the demonstrated ben-
efits of DAC, MAC and RBAC while transcending their limitations. Identities,

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 41–55, 2012.
c© IFIP International Federation for Information Processing 2012

42 X. Jin, R. Krishnan, and R. Sandhu

clearances, sensitivity, roles and other properties of users, subjects and objects
can all be expressed as attributes. Languages for specifying permitted accesses
based on the values and relationships among these attributes provide policy
flexibility and customization. However, the proliferation and flexibility of pol-
icy configuration points in ABAC leads to greater difficulty in policy expression
and comprehension relative to the simplicity of DAC, MAC and RBAC. It will
require strong and comprehensive foundations for ABAC to flourish.

Intuitively, an attribute is a property expressed as a name:value pair associ-
ated with any entity in the system, including users, subjects and objects. Appro-
priate attributes can capture identities and access control lists (DAC), security
labels, clearances and classifications (MAC) and roles (RBAC). As such ABAC
supplements and subsumes rather than supplants these currently dominant mod-
els. Moreover any number of additional attributes such as location, time of day,
strength of authentication, departmental affiliation, qualification, and frequent
flyer status, can be brought into consideration within the same extensible frame-
work of attributes. Thus the proliferation of RBAC extensions might be unified
by adding appropriate attributes within a uniform framework, solving many of
these shortcomings of core RBAC. At the same time we should recognize that
ABAC with its flexibility may further confound the problem of role design and
engineering. Attribute engineering is likely to be a more complex activity, and a
price we may need to pay for added flexibility.

Much as RBAC concepts were around for decades before their formaliza-
tion [13], nascent ABAC notions have been around for a while (see related work).
The ABAC situation today is analogous to RBAC in its pre-1992 pre-RBAC and
1992-1996 early-RBAC periods [13]. Although considerable literature has been
published, there is no agreement on what ABAC means. Fundamental questions
such as components of core models lack authoritative answers, let alone a widely
accepted ABAC model.

In this paper, we take a first step towards our eventual goal of developing an
authoritative family of foundational models for attribute based access control.
We believe this goal can be achieved only by means of incremental steps that
advance our understanding. ABAC is a rich platform. Addressing it in its full
scope from the beginning is infeasible. There are simply too mnay moving parts.
A reasonable first step is to develop a formal ABAC model that is just sufficiently
expressive to capture DAC, MAC and RBAC. This provides us a well-defined
scope while ensuring that the resulting model has practical relevance. There
have been informal demonstrations, such as [8,21], of the classical models using
attributes. Our goal is to develop more complete and formal constructions.

The paper is organized as follows. We review previous work in section 2. In
section 3, we characterize the three classical models from an ABAC perspective
and informally identify the minimal features of an unifying ABAC model. In
section 4, we give an overview of the ABACα model. In section 5, we present
the formal definition of the model as well as functional specifications. In section
6, we show the configurations for DAC, MAC and RBAC in ABACα. Section 7
concludes the paper.

A Unified ABAC Model Covering DAC, MAC and RBAC 43

2 Related Work

Extensions to RBAC by combining attributes and roles have been widely studied.
[15] defines parameterized privileges to restrict access to a subset of objects.
Similar literature such as parameterized role [3,10,14], object sensitive role [12]
and attributed role [27] are also proposed. RB-RBAC model [4] use attributes
to assist automatic user-role assignment.

Several attribute based access control systems and models have been pro-
posed. The UCON model [21] focuses on usage control where authorizations are
based on the attributes of the involved components. It is attribute-based but,
rather than dealing with core ABAC concepts, it focuses on advanced access
control features such as mutable attributes, continuous enforcement, obligations
and conditions. UCON more or less assumes that an ABAC model is in place
on top of which the UCON model is constructed. [21] sketches out instantiation
of DAC, MAC and RBAC in UCON but the constructions are informal and not
complete. Informal mappings of an ABAC system into DAC, MAC and RBAC
are also described in [8]. Damiani et al [9] describe an informal framework for
attribute based access control in open environments. Bonatti et al [6,7] present
a uniform structure to logically formulate and reason about both service access
and information disclosure constraints according to related entity attributes.
Similarly, [28,29,30] develop a service negotiation framework for requesters and
providers to gradually expose their attributes. However, none of these investi-
gates their connections with DAC, MAC and RBAC. Wang et al [26] proposes
a framework that models an attribute-based access control system using logic
programming with set constraints of a computable set theory. This work mainly
focus on how set theory helps define the policy, rather than the model itself.
Flexible access control system [16,5] can specify some features of attribute based
access policies. Yuan and Tong [31] describe ABAC in the aspects of authoriza-
tion architecture and policy formulation. This work focus on enforcement level
rather than policy level of the model. Bo et al [19] mention that DAC, MAC
and RBAC is configurable through ABAC. However, neither formal model nor
details of the configurations are provided. Role-based trust management [20] is
a flexible approach for access control in distributed systems where access control
decisions are based on tracking chaining credentials. However, its core idea is
extensions to role based access control. XACML [1] and SAML [2] are access
control-related web services standards that both support attribute-based access
control. These standard languages are designed without a formal ABAC model.

3 ABACα: Covering DAC, MAC and RBAC

Our goal is to develop an ABAC model that has “just sufficient” features to be
“easily and naturally” configured to do DAC, MAC and RBAC. We recognize
these terms are qualitative, hence the quotation marks. For clarity of reference
we designate this model as ABACα and understand ABAC to denote the larger
concept. Our goal is to eventually develop a family of ABAC models, analogous

44 X. Jin, R. Krishnan, and R. Sandhu

to RBAC96 [23], which will become the de facto standard for defining, refining
and evolving ABAC. The contributions of this paper are one step towards this
goal.

We very much expect ABAC to include advanced features that go significantly
beyond ABACα, e.g., mutable attributes [21], environment attributes [31] and
connection attributes [18]. At this point it is premature to consider whether
ABACα might be the core ABAC model, an advanced model or a special case
of some model in a prospective ABAC family. Which features belong in a core
ABAC model, which belong in advanced models and which are outside the scope
of ABAC are crucial questions that researchers must eventually resolve. However,
for the moment, we deliberately limit our scope to developing ABACα.

ABACα is motivated by the fact that the three classical models have been
widely deployed and remain in active widespread use. The value of ABAC has
been perceived in benefits it provides beyond DAC, MAC and RBAC, such as
dynamic access control [25]. Nonetheless, it is of interest to develop ABACα that
captures these three without incorporating “extraneous” features. We anticipate
that ABACα will eventually fit somewhere within the yet-to-be-developed au-
thoritative family of ABAC models.

For purpose of ABACα we understand DAC to mean owner-controlled access
control lists [24], MAC to mean lattice-based access control with tranquility [22]
(i.e.,subject and object label do not change)and RBAC to mean core or flat
RBAC (RBAC0), and hierarchical RBAC (RBAC1) [11,23]. Extensions beyond
these interpretations of DAC, MAC and RBAC may or may not require ex-
tensions to ABACα, comprehensive study of which is outside the scope of this
paper.

Table 1. ABACα intrinsic requirements

Subject Object
attribute attribute Subject
values values Attribute attribute

constrained constrained Attribute functions Object modification
by creating by creating range return attributes by creating

user? subject? ordered? set value? modification? user?

DAC YES YES NO YES YES NO
MAC YES YES YES NO NO NO
RBAC0 YES NA NO YES NA YES
RBAC1 YES NA YES YES NA YES

ABACα YES YES YES YES YES YES

The intrinsic features of ABACα that follow from the above interpretation of
DAC, MAC and RBAC are highlighted in Table 1. This table recognizes three
kinds of familiar entities: users, subjects (or sessions in RBAC) and objects.
Each user, subject and object has attributes associated with it. The range of
each attribute is either atomic valued or set valued, with atomic values partially

A Unified ABAC Model Covering DAC, MAC and RBAC 45

ordered or unordered and set values ordered by subset. Let us consider each
column in turn.

Column 1. In all cases subject attribute values are constrained by attributes
of the creating user. In MAC, users can only create subjects whose clearance is
dominated by that of the user. In RBAC, subjects can only be assigned roles
assigned to or inherited by the creating user. In DAC, MAC and RBAC, the
subject’s creator is set to be the creating user. Interestingly this is the only
column with YES values for all rows.

Column 2. For object attributes in MAC a subject can only create objects with
the same or higher classification as the subject’s clearance. In DAC there is no
constraint on the access control list associated with a newly created object. It is
up to the creator’s discretion. However, we recognize that DAC has a constraint
on newly created objects in that root user usually has all access rights to ev-
ery object and the owner can not forbid this. RBAC does not speak to object
creation.

Column 3. In MAC clearances are values from a lattice of security labels. In
RBAC1 roles are partially ordered by permission inheritance. DAC and RBAC0

do not require ordered attribute values.

Column 4. In MAC the clearance attribute is atomic valued as a single label
from a lattice. In RBAC0 and RBAC1 attributes are sets of roles, and in DAC
each access control list is a set of user identities.

Column 5. In DAC the user who created an object can modify its access con-
trol lists. MAC (with tranquility) does not permit modification of an object’s
classification. RBAC0 and RBAC1 do not speak to this issue.

Column 6. Modification of subject attributes by the creating user is explicitly
permitted in RBAC0 and RBAC1 to allow dynamic activation and deactivation
of roles. DAC and MAC do not require this feature.

Each column imposes requirements on ABACα so we have YES across the
entire row. Table 1 is, of course, not a complete list of all required features to
configure the classical models, but rather highlights the salient requirements that
stem from each classical model.

4 ABACα Components

Based on the above analysis, we present a unified ABACα model informally in
this section followed by its formalization in the next section. The structure of
ABACα model is shown in Figure 1. The core components of this model are: users
(U), subjects (S), objects (O), user attributes (UA), subject attributes (SA),
object attributes (OA), permissions (P), authorization policies, and constraint
checking policies for creating and modifying subject and object attributes.

An attribute is a function which takes an entity such as a user and returns a
specific value from its range. An attribute range is given by a finite set of atomic

46 X. Jin, R. Krishnan, and R. Sandhu

Fig. 1. Unified ABAC model structure

values. An atomic valued attribute will return one value from the range, while
a set valued attribute will return a subset of the range. Each user is associ-
ated with a finite set of user attribute functions whose values are assigned by
security administrators (outside the scope of the model). These attributes rep-
resent the user properties, such as name, clearance, roles and gender. Subjects
are created by users to perform some actions in the system. For the purpose
of this paper, subjects can only be created by a user and are not allowed to
create other subjects. The creating user is the only one who can terminate a
subject. Each subject is associated with a finite set of subject attribute func-
tions which require an initial value at creation time. Subject attributes are set by
the creating user and are constrained by policies established by security archi-
tects (discussed later). For example, a subject attribute value may be inherited
from a corresponding user attribute. This is shown in Figure 1 as an arrow from
user attributes to subject attributes. Objects are resources that need to be pro-
tected. Objects are associated with a finite set of object attribute functions.
Objects may be created by a subject on behalf of its user. At creation, the ob-
ject’s attribute values may be set by the user via the subject. The values may
be constrained by the corresponding subject’s attributes. For example, the new
object may inherit values from corresponding subject attributes. In Figure 1, the
arrow from subject attributes to object attributes indicates this relationship.

Constraints are functions which return true when conditions are satisfied and
false otherwise. Security architects configure constraints via policy languages.
Constraints can apply at subject and object creation time, and subsequently at
subject and object attribute modification time.

Permissions are privileges that a user can hold on objects and exercise via
a subject. Permissions enable access of a subject to an object in a particular
mode, such as read or write. Permissions definition is dependent on specific
systems built using this model.

Authorization policy. Authorization policies are two-valued boolean func-
tions which are evaluated for each access decision. An authorization policy for
a specific permission takes a subject, an object and returns true or false based
on attribute values. More generally, access decision may be three-valued, pos-
sibly returning “don’t know” in addition to true and false. This is appropriate

A Unified ABAC Model Covering DAC, MAC and RBAC 47

Table 2. Basic sets and functions of ABACα

U, S and O represent finite sets of existing users, subjects and objects respectively.

UA, SA and OA represent finite sets of user, subject and object attribute functions
respectively. (Henceforth referred to as simply attributes.)

P represents a finite set of permissions.

For each att in UA ∪ SA ∪ OA, Range(att) represents the attribute’s range, a finite
set of atomic values.

SubCreator: S → U . For each subject SubCreator gives its creator.

attType: UA ∪ SA ∪ OA → {set, atomic}. Specifies attributes as set or atomic valued.

Each attribute function maps elements in U, S and O to atomic or set values.

∀ua ∈ UA. ua : U →
{
Range(ua) if attType(ua) = atomic

2Range(ua) if attType(ua) = set

∀sa ∈ SA. sa : S →
{
Range(sa) if attType(sa) = atomic

2Range(sa) if attType(sa) = set

∀oa ∈ OA. oa : O →
{
Range(oa) if attType(oa) = atomic

2Range(oa) if attType(oa) = set

in multi-policy systems. It suffices for our purpose to consider just two values.
Security architects are able to specify different authorization policies using the
language offered in this model.

5 Formal ABACα Model

The basic sets and functions in ABACα are given in Table 2. U is the set of
existing users and UA is a set of attribute function names for the users in U.
Each attribute function in UA maps a user in U to a specific value. This could
be atomic or set valued as determined by the type of the attribute function
(attType). We specify similar sets and functions for subjects and objects. Sub-
Creator is a distinguished attribute that maps each subject to the user who
creates it (an alternate would be to treat this attribute as a function in SA).
Finally, P is a set of permissions.

Policy Configuration Points. We define four policy configuration points as
shown in Table 3. The first is for authorization policies (item 1 in table 3). The
security architect specifies one authorization policy for each permission. The
authorization function returns true or false based on attributes of the involved
subject and object. The second configuration point is constraints for subject
attribute assignment (item 2 in table 3). The third is constraints for object
attributes assignment at the time of object creation (item 3 in table 3). The
fourth is constraints for object attribute modification after the object has been

48 X. Jin, R. Krishnan, and R. Sandhu

Table 3. Policy configuration points and languages of ABACα

1. Authorization policies.
For each p ∈ P, Authorizationp(s:S,o:O) returns true or false.
Language LAuthorization is used to define the above functions (one per permission),
where s and o are formal parameters.

2. Subject attribute assignment constraints.
Language LConstrSub is used to specify ConstrSub(u:U,s:S,saset:SASET), where u, s
and saset are formal parameters. The variable saset represents proposed attribute name
and value pairs for each subject attribute. Thus SASET is a set defined as follows:

SASET =
⋃

∀sa∈SA OneElement(SASETsa)

For each sa in SA, SASETsa =

{
{sa} × Range(sa) if attType(sa) = atomic

{sa} × 2Range(sa) if attType(sa) = set

We define OneElement to return a singleton subset from its input set.

3. Object attribute assignment constraints at object creation time.
Language LConstrObj is used to specify ConstrObj(s:S,o:O,oaset:OASET), where s,
o and oaset are formal parameters. The variable oaset represents proposed attribute
name and value pairs for each object attribute. Thus OASET is a set defined as follows:

OASET =
⋃

∀oa∈OA OneElement(OASEToa)

For each oa in OA, OASEToa =

{
{oa} × Range(oa) if attType(oa) = atomic

{oa} × 2Range(oa) if attType(oa) = set

4. Object attribute modification constraints.
Language LConstrObjMod is used to specify ConstrObjMod(s:S,o:O,oaset:OASET),
where s, o and oaset are formal parameters.

created (item 4 in table 3). Note that we have not provided a configuration
point for subject attribute modification after it has been created. For the stated
purposes in this paper, the function SubCreator captures necessary information.

Policy Configuration Languages. Each policy configuration point is ex-
pressed using a specific language. The languages specify what information is
available for the functions that configure the four points discussed above. For
example, in LConstrSub function, only attributes from the user who wants to
create the subject as well as the proposed subject attribute values are allowed.
Since all specification languages share the same format of logical structure while
differing only in the values they can use for comparison, we define a template
called Common Policy Language (CPL). CPL is not a complete language unless
terminals set and atomic are specified. It can be instantiated for specifying each
configuration point. CPL is defined in table 4.

A Unified ABAC Model Covering DAC, MAC and RBAC 49

Table 4. Definition of CPL

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | (ϕ) | ¬ ϕ | ∃ x ∈ set.ϕ | ∀ x ∈ set. ϕ | set setcompare set |
atomic ∈ set | atomic atomiccompare atomic

setcompare ::= ⊂ | ⊆ | �
atomiccompare ::= < | = | ≤

LAuthorization is a CPL instantiation for specifying authorization policies in
which set and atomic are specified as follows:

set::= setsa(s) | setoa(o)
atomic::= atomicsa(s) | atomicoa(o)
setsa ∈ {sa | sa ∈ SA ∧ attType(sa) = set }
setoa ∈ {oa | oa ∈ OA ∧ attType(oa) = set }
atomicoa ∈ {oa | oa ∈ OA ∧ attType(oa) = atomic }
atomicsa ∈ {sa | sa ∈ SA ∧ attType(sa) = atomic }

LAuthorization allows one to specify policies based only on the value of involved
subject and object. Parameters such as s and o in this and following languages
are formal parameters as introduced in table 3.

LConstrSub is a CPL instantiation for specifying ConstrSub where:
set::= setua(u) | value
atomic::= atomicua(u) | value
setua ∈ {ua | ua ∈ UA ∧ attType(ua) = set }
atomicua ∈ {ua | ua ∈ UA ∧ attType(ua)= atomic }
value ∈ {val | (sa, val) ∈ saset ∧ sa ∈ SA}

This instance is different from above because in the constraint function for sub-
ject attributes, only the attribute of user who wants to create the subject and
the proposed values for subject attributes are allowed.

LConstrObj is a CPL instantiation for specifying ConstrObj where:

set::= setsa(s) | value
atomic::= atomicsa(s) | value
setsa ∈ {sa | sa ∈ SA ∧ attType(sa) = set }
atomicsa ∈ {sa | sa ∈ SA ∧ attType(sa)= atomic }
value ∈ {val | (oa, val) ∈ oaset ∧ oa ∈ OA}

Here we use subject attributes instead of user attributes.
LConstrObjMod, used to specify ConstrObjMod, is the same as above except:

set::= setsa(s) | setoa(o) | value and atomic::= atomicsa(s) | atomicoa(o) | value.
Note that this language allows one to compare proposed new attribute values
with current attribute values of an object unlike LConstrObj.

Functional Specifications. The ABACα functional specification, as shown in
Table 5, outlines the semantics of various functions that are required for creation
and maintenance of the ABACα model components. Our intention here is to only
provide a sample set of key functions due to space limitations. The first column

50 X. Jin, R. Krishnan, and R. Sandhu

Table 5. Functional specification

Functions Conditions Updates

Administrative functions: Creation and maintenance of user and their attributes.
UASET is a set containing name and value pairs for each user attribute.

UASET =
⋃

∀ua∈UA OneElement(UASETua)

∀ua ∈ UA. UASETua =

{
{ua} × Range(ua) if attType(ua) = atomic

{ua} × 2Range(ua) if attType(ua) = set

AddUser u/∈U U′=U∪{u}
(u:NAME,uaset:UASET) forall (ua,va)∈uaset do

ua(u)=va

DeleteUser(u:NAME) u∈U S′=S\{s|SubCreator(s)=u}
/*delete all u’s subjects*/ U′=U\{u}
ModifyUserAtt u∈U forall (ua,va)∈uaset do
(u:NAME,uaset:UASET) ua(u)=va
/*delete all u’s subjects*/ S′=S\{s|SubCreator(s)=u}
System functions: User level operations.

CreateSubject u∈U ∧ s/∈S∧ S′=S∪{s};SubCreator(s)=u
(u, s:NAME,saset:SASET) ConstrSub(u, s, saset) forall (sa,va)∈saset do

sa(s)=va

DeleteSubject s∈S ∧ u∈U ∧ S′=S\{s}
(u, s:NAME) SubCreator(s)=u

ModifySubjectAtt s∈S ∧ u∈U ∧ forall (sa,va)∈saset do
(u, s:NAME,saset:SASET) SubCreator(s)=u ∧ sa(s)=va

ConstrSub(u, s, saset)

CreateObject s∈S ∧ o/∈O ∧ O′=O∪{o}
(s, o:NAME,oaset:OASET) ConstrObj(s, o, oaset) forall (oa,va)∈oaset do

oa(o)=va

ModifyObjectAtt s∈S ∧ o∈O ∧ forall (oa,va)∈oaset do
(s, o:NAME,oaset:OASET) ConstrObjMod(s, o, oaset) oa(o)=va

∀ p ∈ P. Authorizationp;
ConstrSub; ConstrObj; /*Left to be specified by security architects*/
ConstrObjMod

lists all the function names as well as required parameters. The second column
represents the conditions which need to be satisfied before the updates, which
are listed in the third column, can be executed. NAME refers to set of all names
for various entities in the system.

The first kind of functions are administrative in nature which are designed to
be invoked only by security administrators. We do not specify the authorization
conditions for administrative functions which are outside the scope of ABACα.
They mainly deal with user and user attribute management. One important is-
sue with the user management is that the subjects created by a user are forced
to be terminated whenever user attributes are modified or the user is deleted.
We understand there are various options here (discussion on this question is out

A Unified ABAC Model Covering DAC, MAC and RBAC 51

Table 6. DAC (Owner-controlled access control lists) configuration

Basic sets and functions
UA={}, SA={}, OA={reader, writer, createdby}
P={read, write}
Range(reader)=Range(writer)=Range(createdby)=U
attType(reader)=attType(writer)=set
attType(createdby)=atomic
Thus, reader: O → 2U,writer: O → 2U, createdby: O → U
The function SubCreator is defined in Table 2.
Configuration points
1. Authorization policy
Authorizationread(s:S, o:O)≡SubCreator(s)∈reader(o)
Authorizationwrite(s:S, o:O)≡SubCreator(s)∈writer(o)
2. Constraint for subject attribute is not required
Note that SubCreator is implicitly captured in function CreateSubject in Table 5.
Function ConstrSub(u:U, s:S, {}:SASET) is defined to return true.
3. Constraint for object attribute at creation time
ConstrObj(s:S, o:O, {(reader,val1), (writer,val2), (createdby,val3)}:OASET)≡
val3=SubCreator(s)
4. Constraint for object attribute at modification time
ConstrObjMod(s:S, o:O, {(reader,val1), (writer,val2), (createdby,val3)}:OASET)≡
createdby(o)=SubCreator(s)

of scope due to lack of space). The second kind of functions are system functions
which can be invoked by subjects and users. By default, the first function param-
eter is the invoker of each function. For example, CreateSubject is invoked by
user u and ModifyObjectAtt is invoked by subject s. The third kind of functions
are authorization policies and subject and object attribute constraint functions
which are left to be configured by security architects.

6 ABACα: Configuring DAC, MAC and RBAC

In this section, we show the capability of ABACα in configuring DAC, MAC and
RBAC. For this illustration, we set P={read, write}.
DAC (Table 6). Each object is associated with the same number of set-valued
attributes as that of permissions and there is a one to one semantic mapping
between them. An object attribute returns the list of users that hold the per-
mission indicated by the object attribute name. Object attribute createdby is
set to be the owner of this object.

MAC (Table 7). Each user is associated with an atomic-valued attribute
uclearance. Each subject is also associated with an atomic-valued attribute
sclearance. Each object is associatedwith an atomic-valued attribute sensitivity.
Similar to MAC, the user and subject attributes represent their clearance in the
system. The sensitivity attribute of the object represents the object’s

52 X. Jin, R. Krishnan, and R. Sandhu

Table 7. MAC configuration

Basic sets and functions
UA={uclearance}, SA={sclearance}, OA={sensitivity}
P={read,write}
Range(uclearance)=Range(sclearance)=Range(sensitivity)=L
L is a lattice defined by system.
attType(uclearance)=attType(sclearance)=attType(sensitivity)= atomic
Thus, uclearance: U → L, sclearance: S → L, sensitivity: O → L.
Configuration points
1. Authorization policies
Authorizationread(s:S, o:O)≡sensitivity(o)≤sclearance(s)
Liberal Star: Authorizationwrite(s:S, o:O)≡sclearance(s)≤sensitivity(o)
Strict Star: Authorizationwrite(s:S, o:O)≡sclearance(s)=sensitivity(o)
2. ConstrSub(u:U, s:S, {(sclearance,value)}:SASET)≡value≤uclearance(u)
3. ConstrObj(s:S, o:O, {(sensitivity, value)}:OASET)≡sclearance(s)≤value
4. ConstrObjMod(s:S, o:O, {(sensitivity, value)}:OASET) returns false.

Table 8. RBAC configurations

RBAC0 configuration
Basic sets and functions
UA={urole}, SA={srole}, OA={rrole,wrole}
P={read,write}
Range(urole)=Range(srole)=Range(rrole)=Range(wrole)=R
R is a set of atomic roles define by the system.
attType(urole)=attType(srole)=attType(rrole)=attType(wrole)=set
Thus, urole: U → 2R, srole: S → 2R, rrole: O → 2R, wrole: O → 2R

Configuration points
1. Authorization policy
Authorizationread(s:S, o:O)≡∃r∈srole(s).r∈rrole(o)
Authorizationwrite(s:S, o:O)≡∃r∈srole(s).r∈wrole(o) (same as above)
2. ConstrSub(u:U, s:S, {(srole,val1)}:SASET)≡val1⊆urole(u)
3. ConstrObj(s:S, o:O, {(rrole,val1),(wrole,val2)}:OASET) returns false.
4. ConstrObjMod(s:S, o:O, {(rrole,val1),(wrole,val2)}:OASET) returns false.

RBAC1 configuration
Basic sets and functions
The basic sets and functions are the same as RBAC0 except:
R is a partially ordered set defined by the system.
Configuration points
1. Authorization policy
Authorizationread(s:S, o:O)≡∃r1∈srole(s). ∃r2∈rrole(o).r2≤r1
Authorizationwrite(s:S, o:O)≡∃r1∈srole(s). ∃r2∈wrole(o).r2≤r1 (same as above)
2. ConstrSub(u:U, s:S, {(srole,val1)}:SASET)≡∀r1∈val1.∃r2∈urole(u).r1≤r2
3. ConstrObj(s:S, o:O, {(rrole,val1),(wrole,val2)}:OASET) returns false.
4. ConstrObjMod(s:S, o:O, {(rrole,val1),(wrole,val2)}:OASET) returns false.

A Unified ABAC Model Covering DAC, MAC and RBAC 53

classification in MAC. The 3 attributes share the same range which is represented
by a system maintained lattice L.

RBAC (Table 8). Each user and subject is associated with set-valued at-
tributes urole and srole respectively. Each object is associated with the same
number of set-valued attributes as that of permissions and there is a one to
one semantic mapping between them. Each attribute returns the role that is
assigned the permission on this specific object. For example, rrole of object obj
returns the role which is assigned the permission of reading obj. The ranges of
all attributes are the same as that of a system defined set of role names R which
are unordered for RBAC0 and partially ordered for RBAC1. Note that subjects
model sessions in RBAC.

7 Conclusion and Future Work

In this paper, we proposed a unified ABACα model and showed that it can
be used to naturally configure the three classical models. We believe the in-
sights gained in this paper will assist understanding the connections between
desired ABAC model and widely-deployed classical models. In addition, we hope
this work will inspire further research in formally designing foundational ABAC
models.

Some extensions of classical models can also be accommodated. In MAC, it is
useful to categorize subjects into different types as read only and read write for
both security and availability. The rule governing their actions can be different in
that read only subjects are allowed to read all levels of objects. While read write
subjects’ action is strictly regulated. Another example is in RBAC, certain level
of automatic permission-role assignment can be achieved by interpreting per-
missions as accessing a group of objects with the same attribute expression.
Organization based access control model (OrBAC)[17] is another example of
abstracting activities, objects and so on.

The first aspect of future work is to extend and consolidate the proposed
model. Examples are to accommodate static/dynamic separation of duty in
RBAC and subjects carrying additional attributes other than the correspond-
ing users to reflect contextual information. Security properties and expressive
power of this model are important questions for further theoretical analysis. On
the other hand, useful instances of this model with various relationships be-
tween user, subject and object attributes can be developed for specific groups
of application. For example, usable ABACα instance in organizations offer bet-
ter guidance than general ABACα. In future work, we plan to develop XACML
profiles for ABAC models as we develop them. By design XACML does not rec-
ognize user-subject mapping but assumes that subject attributes are correctly
produced from user attributes prior to making access decisions. Modeling this
process will therefore require extensions to XACML.

Acknowledgment. The authors are partially supported by grants from AFOSR
MURI and the State of Texas Emerging Technology Fund.

54 X. Jin, R. Krishnan, and R. Sandhu

References

1. OASIS, Extensible access control markup language (XACML), v2.0 (2005)

2. OASIS, Security assertion markup language (SAML), v2.0 (2005)

3. Abdallah, A.E., Khayat, E.J.: A formal model for parameterized role-based access
control. In: Formal Aspects in Security and Trust (2004)

4. Al-Kahtani, M.A., Sandhu, R.S.: A model for attribute-based user-role assignment.
In: ACSAC (2002)

5. Bertino, E., Catania, B., Ferrari, E., Perlasca, P.: A logical framework for reasoning
about access control models. In: SACMAT (2001)

6. Bonatti, P.A., Samarati, P.: Regulating service access and information release on
the web. In: ACM CCS (2000)

7. Bonatti, P.A., Samarati, P.: A uniform framework for regulating service access and
information release on the web. J. Comp. Secur. (2002)

8. Chadwick, D.W., Otenko, A., Ball, E.: Role-based access control with X.509 at-
tribute certificates. IEEE Internet Computing (2003)

9. Damiani, E., di Vimercati, S.D.C., Samarati, P.: New paradigms for access control
in open environments. In: Int. Sym. on Sig. Proc. and Info. Tech. (2005)

10. Evered, M.: Supporting parameterised roles with object-based access control. In:
HICSS (2003)

11. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Richard Kuhn, D., Chandramouli, R.:
Proposed nist standard for role-based access control. ACM Trans. Inf. Syst. Secur.
(2001)

12. Fischer, J., Marino, D., Majumdar, R., Millstein, T.: Fine-Grained Access Con-
trol with Object-Sensitive Roles. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 173–194. Springer, Heidelberg (2009)

13. Fuchs, L., Pernul, G., Sandhu, R.: Roles in information security: A survey and
classification of the research area. Comp. and Secur. (2011)

14. Ge, M., Osborn, S.L.: A design for parameterized roles. In: DBSec (2004)

15. Giuri, L., Iglio, P.: Role templates for content-based access control. In: ACM Work-
shop on RBAC (1997)

16. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for
multiple access control policies. ACM Trans. Database Syst. (2001)

17. El Kalam, A.A., Benferhat, S., Miège, A., El Baida, R., Cuppens, F., Saurel, C.,
Balbiani, P., Deswarte, Y., Trouessin, G.: Organization based access control. In:
POLICY (2003)

18. Kandala, S., Sandhu, R., Bhamidipati, V.: An attribute based framework for risk-
adaptive access control models. In: ARES (2011)

19. Lang, B., Foster, I.T., Siebenlist, F., Ananthakrishnan, R., Freeman, T.: A flexible
attribute based access control method for grid computing. J. Grid Comput. (2009)

20. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust manage-
ment framework. In: 2002 IEEE S&P (2002)

21. Park, J., Sandhu, R.: The UCONabc usage control model. ACM Trans. Inf. Syst.
Secur. (2004)

22. Sandhu, R.S.: Lattice-based access control models. IEEE Computer (1993)

23. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer (1996)

24. Sandhu, R.S., Samarati, P.: Access control: Principles and practice. IEEE Com.
Mag. (1994)

A Unified ABAC Model Covering DAC, MAC and RBAC 55

25. Schläger, C., Sojer, M., Muschall, B., Pernul, G.: Attribute-Based Authentica-
tion and Authorisation Infrastructures for E-Commerce Providers. In: Bauknecht,
K., Pröll, B., Werthner, H. (eds.) EC-Web 2006. LNCS, vol. 4082, pp. 132–141.
Springer, Heidelberg (2006)

26. Wang, L., Wijesekera, D., Jajodia, S.: A logic-based framework for attribute based
access control. In: 2nd ACM Workshop on FMSE (2004)

27. Yong, J., Bertino, E., Toleman, M., Roberts, D.: Extended RBAC with role at-
tributes. In: 10th Pacific Asia Conf. on Info. Sys. (2006)

28. Yu, T., Ma, X., Winslett, M.: Prunes: an efficient and complete strategy for auto-
mated trust negotiation over the internet. In: ACM CCS (2000)

29. Yu, T., Winslett, M., Seamons, K.E.: Interoperable strategies in automated trust
negotiation. In: ACM CCS (2001)

30. Yu, T., Winslett, M., Seamons, K.E.: Supporting structured credentials and sen-
sitive policies through interoperable strategies for automated trust negotiation.
ACM Trans. Inf. Syst. Secur. (2003)

31. Yuan, E., Tong, J.: Attributed based access control (ABAC) for web services. In:
Intl. ICWS (2005)

Signature-Based Inference-Usability Confinement
for Relational Databases under Functional and

Join Dependencies�

Joachim Biskup1, Sven Hartmann2, Sebastian Link3, Jan-Hendrik Lochner1,
and Torsten Schlotmann1

1 Fakultät für Informatik, Technische Universität Dortmund, Germany
{joachim.biskup,jan-hendrik.lochner,torsten.schlotmann}@cs.tu-dortmund.de

2 Institut für Informatik, Technische Universität Clausthal, Germany
sven.hartmann@tu-clausthal.de

3 Department of Computer Science, The University of Auckland, New Zealand
s.link@auckland.ac.nz

Abstract. Inference control of queries for relational databases confines
the information content and thus the usability of data returned to a
client, aiming to keep some pieces of information confidential as speci-
fied in a policy, in particular for the sake of privacy. In general, there
is a tradeoff between the following factors: on the one hand, the expres-
siveness offered to administrators to declare a schema, a confidential-
ity policy and assumptions about a client’s a priori knowledge; on the
other hand, the computational complexity of a provably confidentiality
preserving enforcement mechanism. We propose and investigate a new
balanced solution for a widely applicable situation: we admit relational
schemas with functional and join dependencies, which are also treated as
a priori knowledge, and select-project sentences for policies and queries;
we design an efficient signature-based enforcement mechanism that we
implement for an Oracle/SQL-system. At declaration time, the inference
signatures are compiled from an analysis of all possible crucial inferences,
and at run time they are employed like in the field of intrusion detection.

Keywords: a priori knowledge, confidentiality policy, functional depen-
dency, inference control, inference-usability confinement, interaction his-
tory, join dependency, refusal, relational database, select-project query,
inference signature, SQL, template dependency.

1 Introduction

Inference control for information systems in general and relational databases in
particular is a mechanism to confine the information content and thus the us-
ability of data made accessible to a client to whom some piece(s) of information
� This work has been partially supported by the Deutsche Forschungsgemeinschaft

under grant BI 311/12-2 and under grant SFB 876/A5 for the Collaborative Research
Center “Providing Information by Resource-Constrained Data Analysis”.

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 56–73, 2012.
c© IFIP International Federation for Information Processing 2012

Signature-Based Inference-Usability Confinement 57

should be kept confidential. Thus inference control aims at protecting infor-
mation rather than just the underlying data, as achieved by traditional access
control or simple encryption. Though protection of information is a crucial re-
quirement for many public and commercial applications, the actual enforcement
is facing great challenges arising from conceptual and computational problems.

On the conceptual side, among others the following main factors have to
be considered: a client-specific and declaratively expressed confidentiality policy
which might be balanced with availability demands; an assumption about the
client’s a priori knowledge regarding the information managed by the informa-
tion system, which will include schema information in many cases; the client’s
postulated system awareness regarding the semantics of both the underlying
information system and the monitoring control mechanism.

On the computational side, the high runtime complexity is a major concern.
In fact, the fundamental semantics of a well-designed information system can
be defined in terms of an appropriate logic. In particular, a relational database
comes along with the relational calculus for querying and some class of depen-
dencies (semantic constraints) for declaring schemas [1]. Thus, data managed
by such a system can be interpreted as sentences in the underlying first-order
logic. Accordingly, confining the usability of data comprises the task of moni-
toring all options for inferring implied (entailed) sentences from the sentences
available to a client, at any point in time while the client is interacting with
the system. Unfortunately, as well-known from the discipline of theorem prov-
ing, the computational treatment of entailment problems might be inherently
complex.

Consequently, a major research task regarding information protection is to
identify practically relevant situations that still enable a reasonably efficient en-
forcement of suitably restricted conceptual requirements. In our previous work [8]
we already introduced and theoretically analyzed the following situation as
highly promising: Using the refusal approach, where harmful correct answers
are replaced by a refusal notification denoted by mum, we protect select-project
sentences under closed (yes/no-)select-project queries evaluated for relational
database instances of a schema with functional and join dependencies. In the
present article, we present a successful elaboration of the proposed approach:

– Based on the theoretical analysis, we have designed, implemented and inves-
tigated a practical, SQL-conforming signature-based enforcement method.

– The inference signatures are compiled from an analysis of all crucial infer-
ences that are possible for the given situation, and later on monitored like
in the field of intrusion detection.

To set up a larger perspective, we observe that the conceptual requirements of
inference-usability confinement can be captured by an invariant that a control
mechanism has to guarantee for all sequences of query-response interactions.
Such an invariant might have several forms, which are equivalent under careful
formalizations [13,10]. E.g., the invariant might require that for any sentence in

58 J. Biskup et al.

the confidentiality policy, based on his current knowledge, which results from
the a priori knowledge and previous interactions, and his system awareness,

– the client cannot exclude that this sentence is not valid in the instance;
– the client does not know that this sentence is valid in the instance.

To enforce such an invariant, a control mechanism has to inspect each query
considered as an interaction request and the answer to be returned whether or
not they satisfy an adequate control condition. Clearly, a necessary control con-
dition is that the current knowledge updated with the answer will not entail any
sentence in the confidentiality policy. Unfortunately, however, this condition is
not sufficient in general, since it neglects the impact of a client’s system aware-
ness, which might enable so-called meta-inferences. Thus, in general, we have to
strengthen this condition to become sufficient, while preferably remaining to be
necessary for the sake of availability. Moreover, as far as achievable, checking a
sufficient (and necessary) control condition should be computationally feasible.

Several sufficient and “reasonably necessary” control conditions for compre-
hensive and general situations have been proposed in the past [3], which, however,
inevitably tend to be infeasible in the worst case. Moreover, dedicated narrower
situations have been investigated to find effective control conditions that are
also efficiently testable. The contribution of the present article is particularly
related to the following situations, all of which consider the refusal approach for
relational databases, assuming that the client knows the confidentiality policy.

– Situation 1. As long as decidability is achieved, any a priori knowledge,
confidentiality policy and closed (yes/no-)queries (of the relational calculus)
are admitted. For the confinement, while maintaining and employing a log file
that represents the a priori knowledge and the answers to previous queries,
we have to ensure that adding neither the correct answer to the current
query nor the negation of the correct answer will be harmful; additional
refusals for harmful negations of correct answers guarantee that an observed
“refused” answer mum cannot be traced back to its actual cause by exploiting
the system awareness [4].

– Situation 2. The a priori knowledge may only comprise a schema declaration
with functional dependencies that lead to Boyce-Codd normal form with a
unique minimal key. Confidentiality policies are restricted to select-project
sentences of a special kind referring to “facts”, and queries are restricted to
arbitrary select-project sentences. For the confinement, it suffices to ensure
that the query sentence does not “cover” any policy element [6].

– Situation 3. The a priori knowledge may only comprise a schema declaration
with functional dependencies. Confidentiality policies are restricted to select-
project sentences, whereas queries must be closed select-queries. For the
confinement, it suffices to ensure that the query sentence does not “cover”
any policy element [9].

– Situation 4. The a priori knowledge may only comprise a schema declara-
tion with functional dependencies and full join dependencies (without any
further restrictions). Confidentiality policies and queries are restricted to

Signature-Based Inference-Usability Confinement 59

select-project sentences. For the confinement, we have to ensure two condi-
tions: (1) The query sentence does not “cover” any policy element. (2) Pre-
vious positive answers together with a positive answer to the current query
do not “instantiate” any template dependency implied by the schema depen-
dencies and “covering” an element of the confidentiality policy [8]. In the
present article, we will show how this requirement can be converted into an
efficient enforcement mechanism.

Notably, Situations 2 to 4 postulate that the client’s a priori knowledge only
comprises schema declarations. Accordingly, if additional a priori knowledge was
assumed, further potential sources of inferences should be considered, and thus
the respective confinement method would have to be appropriately enhanced.

The control conditions sketched so far are devised to be used dynamically at
run time to detect current options for crucial entailments. To avoid the run-
time overhead, one might prefer a static approach [11]: We then interpret the
confidentiality policy and the a priori knowledge as constraints to be satisfied
by an alternative instance that minimally distorts the actual instance, precom-
pute a solution to such a constrained optimization problem, and let the solution
instance be queried by the client without any further control.

We might also follow a mixed approach that suitably splits the workload
among (1) some precomputations before the client is involved at all, (2) appro-
priate dynamic control operations after receiving a specific client request and
before returning an answer, and (3) some follow-up adaptation actions between
two requests [2]. The present article follows a mixed approach for the specific
relational framework of [8] described as Situation 4 above; roughly outlined, our
new signature-based enforcement mechanism consists of a two-phase protocol:

– At declaration time, we compile inference signatures as representatives of
“forbidden structures” in the sense of [8]: “instantiations” of template depen-
dencies implied by the schema dependencies and “covering” a policy element.

– At run time, we monitor these inference signatures for the actual queries.

2 Formal Framework

In this section we summarize our formal framework and restate the theorem
that justifies our signature-based enforcement mechanism, referring the reader
to [1,8] for more details. Examples can be found in the next section.

A relation schema RS = 〈R,U , Σ〉 consists of a relation symbol R, a finite
set U of attributes, and a finite set Σ of dependencies (semantic constraints).
Σ comprises either functional dependencies, assumed to be a minimal cover, or
full join dependencies, or both kinds of dependencies. An instance r is a finite
dependency-satisfying Herbrand interpretation of the schema, considering the
relation symbol as a predicate. A tuple is denoted by μ = R(a1, . . . , an) where
n = |U| and ai ∈ Const , an infinite set of constants. If μ is an element of r, we
write r |=M μ. More generally, |=M denotes the satisfaction relation between an

60 J. Biskup et al.

interpretation and a sentence. The corresponding notion of logical implication
(entailment) between sentences is denoted by |=.

Let A,B ⊆ U be attribute sets. A relation r over U satisfies the functional
dependency A → B if any two tuples that agree on the values of attributes in A
also agree on the values of the attributes in B.

Let C1, . . . , Cl ⊆ U be attribute sets such that C1 ∪ . . . ∪ Cl = U . A relation
r over U satisfies the (full) join dependency ��[C1, . . . , Cl] if whenever there are
tuples μ1, . . . , μl in r with μi[Ci ∩ Cj] = μj [Ci ∩ Cj] for 1 ≤ i, j ≤ l, there is also
a tuple μl+1 in r with μl+1[Ci] = μi[Ci] for 1 ≤ i ≤ l.

Join dependencies are a special case of template dependencies. A template
dependency TD [h1, . . . , hl|c] over U has one or more hypothesis rows h1, . . . , hl

and a conclusion row c. Each row consists of abstract symbols (best seen as
variables), one symbol per attribute in U . A symbol may appear more than once
but only for one attribute, i.e., in a typed way. For t and t′ denoting tuples or rows,
respectively, over U , ag(t, t′) := {A | A ∈ U and t(A) = t′(A)} is the agree set
of these tuples or rows, respectively. The aggregated agree sets of the conclusion
∪l

j=1ag(c, hj) form the scheme of the template dependency. A symbol occurring
in the conclusion for an attribute A in the scheme is often called “distinguished”
(free variable) and denoted by aA. Any other symbol in the template dependency
is often called “nondistinguished” (existentially quantified variable) and denoted
by bi, where each such symbol gets a different index i.

A relation r over U satisfies the template dependency TD [h1, . . . , hl|c] if
whenever there are tuples t1, . . . , tl in r with ag(hi, hj) ⊆ ag(ti, tj) for all
i, j ∈ {1, . . . , l} there is also a tuple t in r with ag(c, hi) ⊆ ag(t, ti) for i = 1, . . . , l.

A template dependency TD [h1, . . . , hl|c] is called (hypothesis-)minimal with
respect to Σ if dropping a full hypothesis row hi or replacing any symbol in a
hypothesis by a new symbol, different from all others – thus (potentially) deleting
an equality condition – would result in a template dependency that is not implied
by Σ. Moreover, a minimal template dependency is called (conclusion-)maximal
with respect to Σ if the following additionally holds: if we replace a symbol in the
conclusion row c that so far is not involved in any agree set with a hypothesis by
another symbol that already occurs in some hypothesis, then we would obtain a
template dependency that is not implied by Σ. Finally, a template dependency
enjoying both optimization properties is called a basic implication of Σ.

Queries and elements of a confidentiality policy psec, called potential se-
crets, are expressed in a fragment of the relational calculus, using a set of vari-
ables Var . This fragment is given by the language L of existential-R-sentences,
or select-project sentences which are sentences (closed formulas) of the form
(∃X1) . . . (∃Xl)R(v1, . . . , vn) with 0 ≤ l ≤ n, Xi ∈ Var , vi ∈ Const ∪ Var ,
{X1, . . . , Xl} ⊆ {v1, . . . , vn}, and vi �= vj if vi, vj ∈ Var and i �= j; these proper-
ties and the closedness imply that {X1, . . . , Xl} = {v1, . . . , vn}∩Var . For Φ ∈ L ,
we define the scheme P of Φ as the set of attributes for which a constant ap-
pears. For a sentence in L let its corresponding “generalized tuple” denote the
sentence without its prefix of existential quantifiers. In this case we think of the
variables in the generalized tuple as the null value “exists but unknown”.

Signature-Based Inference-Usability Confinement 61

A sentence (generalized tuple) Φ is defined to cover a sentence (generalized
tuple) Ψ if every constant c that appears in Ψ appears in Φ at the same position.
The following equivalence can be easily verified: Φ covers Ψ if and only if Φ |= Ψ .

Restating Theorem 2 of [8] below, we specify a “forbidden structure” an instan-
tiation of which is necessary for any violation of a policy element by exploiting
the a priori knowledge about the dependencies. Additionally, Theorem 1 of [8]
indicates that an occurrence of such a structure is also sufficient for exploiting
the dependencies. Accordingly, we obtain a necessary and “reasonably sufficient”
control condition by avoiding both an immediate violation by “covering” a po-
tential secret and an instantiated “forbidden structure”; the latter consists of an
implied template dependency whose scheme comprises the scheme of a potential
secret, while the schemes of the query answers “uniformly cover” the hypotheses.
Our mechanism will be based on that control condition.

Theorem 1 (forbidden structures, necessary for a violation by exploit-
ing the dependencies). Let RS = 〈R,U , Σ〉 be a relation schema where the
dependency set Σ consists of functional and full join dependencies, and r an
instance of RS. Let Ψ ∈ L be a potential secret with scheme P ⊆ U , and
Φ1, . . . , Φl ∈ L queries with schemes F1, . . . ,Fl such that:

1. Φi �|= Ψ , for i = 1, . . . , l, i.e., all queries do not cover the potential secret;
2. r |=M Φi, for i = 1, . . . , l, i.e., all queries are true in the instance r;
3. Σ ∪ {Φ1, . . . , Φl} |= Ψ , i.e., the answers violate the confidentiality policy.

Then there exists a nontrivial template dependency TD [h1, . . . , hl|c] implied by Σ
such that P = ∪l

j=1ag(c, hj) and ∪j∈{1,...,l}�{i}ag(hi, hj) ⊆ Fi, for i = 1, . . . , l.

3 Examples

We will outline the fundamental features of the signature-based enforcement
mechanism by means of two examples. Though only dealing with functional
dependencies specifying a key, the first example is beyond the scope of the Sit-
uations 2 and 3 sketched before and thus cannot be treated by the mechanisms
of [6,9]. The second example introduces join dependencies as a priori knowledge.

Example 1. At declaration time, we consider the following items: a relation
schema RS = 〈R,U , Σ〉 with attribute set U = {K, A, B} and dependencies
Σ = {K → A, K → B}, i.e., attribute K is the unique minimal key; an instance
r = {R(cK , cA, cB), R(c̃K , cA, cB)}, where cK , c̃K , cA and cB are constants in
Const ; and a single potential secret Ψ = (∃XK)R(XK , cA, cB). We will compile
inference signatures in four steps.
In step 1, we see that Σ entails the template dependency

td := TD [aK aA b1 , aK b2 aB | aK aA aB]
as a “forbidden structure” that must not be instantiated by the potential secret
and query answers according to the instance.
In step 2, first treating the potential secret, we find that the scheme KAB of
the template dependency td covers the scheme AB of the potential secret Ψ .

62 J. Biskup et al.

In step 3, we specialize the conclusion (aK aA aB) of td with the constants
appearing in the potential secret Ψ , yielding (aK cA cB). Then we propagate
this specialization to the hypotheses on common attributes, i.e., according to
agree sets, getting (aK cA b1) for the first hypothesis, and (aK b2 cB) for the
second hypothesis. In this way we get the instantiated template dependency

td[Ψ] := TD [aK cA b1 , aK b2 cB | aK cA cB].
In step 4, finally considering the instance r, we further uniformly instantiate the
hypotheses on the distinguished symbol aK for the further agree set ag(h1, h2) =
{K} with h1 = (aK cA b1) and h2 = (aK b2 cB) according to tuples in the
instance r. For the single tuple R(cK , cA, cB) ∈ r used twice, we get

Sig1 := TD [cK cA b1 , cK b2 cB | cK cA cB]
as an inference signature; similarly, for the tuple R(c̃K , cA, cB) ∈ r we get

Sig2 := TD [c̃K cA b1 , c̃K b2 cB | c̃K cA cB]
as another inference signature. Each of them indicates that the user must not
learn all of its hypotheses, and thus later on we can ignore its conclusion.

Once the inference signatures have been compiled at declaration time, they
have to be monitored at run time according to the queries requested by the
pertinent client. Suppose the client issues

Φ1 := R(cK , cA, cB),
Φ2 := (∃XB)R(cK , cA, XB), and
Φ3 := (∃XA)R(cK , XA, cB).

Covering the potential secret Ψ , the first query Φ1 is immediately refused.
Though the second query Φ2 does not cover Ψ , it nevertheless might contribute
to a forbidden structure together with other queries. So we consider the inference
signatures: Φ2 only covers the first hypothesis (cK cA b1) of Sig1. Observing
that Sig1 has another hypothesis still uncovered, we can determine the correct
query evaluation, yielding a positive answer (∃XB)R(cK , cA, XB) to be returned
to the client. Moreover, we have to mark the covered hypothesis as already hit.

The third query Φ3 again does not cover Ψ , but the second hypothesis
(cK b2 cB) of Sig1: independently of the correct query evaluation we have to
refuse the answer for the following reasons. If the correct answer is positive,
the knowledge about all hypotheses of the inference signature would enable the
client to directly infer the validity of the conclusion and thus of the potential
secret Ψ . If the correct answer is negative, this additional knowledge does not
directly lead to the crucial inference; however, only refusing a positive answer
would enable a meta-inference of the following kind: “the only reason for the
refusal is a positive answer, which thus is valid”.

Example 2. To further exemplify the compiling phase in some more de-
tail, we now consider the relation schema RS = 〈R,U , Σ〉 with attribute
set U = {S(ymptom), D(iagnosis), P (atient)} and two join dependencies in
Σ = {��[SD, SP],��[DS, DP]}, the instance r comprising the four tuples
R(Fever ,Cancer ,Smith), R(Fever ,Fraction ,Smith), R(Fever ,Cancer ,Miller),
and R(Fever ,Fraction ,Miller), and the confidentiality policy psec = {Ψ} con-
taining the single potential secret Ψ = (∃XS)R(XS ,Cancer ,Smith).

Signature-Based Inference-Usability Confinement 63

S D P
aS aD b1

aS b2 aP

aS aD aP

S D P
aS aD b′1
b′2 aD aP

aS aD aP

S D P
(aS, aS) (aD, aD) (b1, b

′
1)

(aS,b′
2) (aD, aD) (b1, aP)

(aS, aS) (b2,aD) (aP , b′1)

(aS,b′
2) (b2,aD) (aP , aP)

(aS, aS) (aD, aD) (aP , aP)

S D P
aS aD b1

b2 aD b3

aS b4 b5

b2 b4 aP

aS aD aP

Fig. 1. ��[SD, SP], ��[DS, DP], and their direct product as tableaus

The upper part of Figure 1 shows the dependencies as template dependencies in
graphical notation known as tableau. Intuitively, the first dependency expresses
the following: a symptom aS that both contributes to a diagnosis aD for some
patient b1, whose identity does not matter, and applies for the patient aP con-
tributes to the diagnosis aD for the patient aP as well. The meaning of the second
dependency has a similar flavor. As proved in [12], the two join dependencies
together are equivalent to their direct product exhibited in the lower part of Fig-
ure 1, both as constructed by definition and rewritten by substituting each pair
of variables by a single variable.

By Theorem 1, we have to consider all template dependencies that are implied
by Σ. However, it suffices to finally employ only the basic implications. Unfortu-
nately, so far we do not know an efficient algorithm to compute the set Σ+basic

of all basic implications, which even might be infinite. But, we can somehow suc-
cessively generate all candidates, in turn check each candidate whether it is an
implication by applying the chase procedure, see [16,12,1], and finally minimize
the hypotheses and maximize the conclusion of the implied candidates.

Figure 2 shows those elements of Σ+basic that have at most three hypotheses:
we get the two declared dependencies and two basic versions of their direct
product, obtained by deleting the third or the second hypothesis, respectively.
In step 2 of the compiling phase, we identify those dependencies in Σ+basic such
that the scheme {D(iagnosis),P(atient)} of the potential secret Ψ is contained
in the scheme of the dependency; in this example, so far the condition is always

S D P
aS aD b1

aS b2 aP

aS aD aP

S D P
aS aD b1

b2 aD aP

aS aD aP

S D P
aS aD b1

b2 aD b3

b2 b4 aP

aS aD aP

S D P
aS aD b1

aS b4 b5

b2 b4 aP

aS aD aP

Fig. 2. All basic implications of Σ having two or three hypotheses

64 J. Biskup et al.

S D P
Fever Cancer b1

Fever b2 Smith

Fever Cancer Smith

S D P
Fever Cancer b1

Fever Fraction b5

b2 Fraction Smith

Fever Cancer Smith

Fig. 3. Instantiated signatures

satisfied. Accordingly, for each element of Σ+basic determined so far, attributes
D and P in the conclusion are instantiated with the constants Cancer and Smith
occurring in Ψ . These instantiations are then propagated to the hypotheses. In
the next step 3, the hypotheses must be further instantiated according to the
instance r. We have to determine minimal sets of tuples such that all equalities
expressed in the respective template dependency are satisfied and their values
equal the values of already instantiated entries. Finally, all remaining agree sets
not considered so far are instantiated with the values of those tuples.

The instantiated template dependencies obtained so far are candidates to be-
come inference signatures. However, we do not have to retain all them. Firstly,
if an instantiated hypothesis of a candidate covers a potential secret, we can dis-
card the candidate, since in the monitoring phase a query whose answer would
reveal such a hypothesis would be refused anyway. So, in the example the instan-
tiation of the second basic implication is discarded. Secondly, if the hypotheses
of a candidate constitute a superset of the hypotheses of another candidate,
then the former candidate is redundant and can be discarded as well. So, in the
example the instantiation of the third basic implication is discarded as well.

For the given simple instance r, we do not have to consider basic implica-
tions with more than three hypotheses, and thus we finally keep the inference
signatures shown in Figure 3. However, due to the cyclic structure of the de-
pendencies in the example, there are basic implications with arbitrarily many
hypotheses. So we can extend the basic implications having three hypotheses
by a suitable fourth hypothesis, as shown in Figure 4. In fact, e.g., we can

S D P
aS aD b1

b2 aD b3

b2 b4 b5

b6 b4 aP

aS aD aP

S D P
aS aD b1

aS b4 b5

b2 b4 b6

b2 b7 aP

aS aD aP

S D P
aS aD b1

aS b4 b5

b2 b4 b6

b2 b7 b9

b8 b7 b11

b8 b10 b13

b12 b10 aP

aS aD aP

Fig. 4. Basic implications of Σ having four hypotheses and an example of a basic
implication of Σ having “many” hypotheses

Signature-Based Inference-Usability Confinement 65

generalize the structure of the fourth dependency shown in Figure 3 by extend-
ing the present “path” aS ,aS ,b4,b4 by b2,b2,b7,b7,b8,b8,b10,b10 , as exhibited by
the rightmost dependency shown in Figure 4. However, the instance r lacks suf-
ficient diversity to instantiate such a long path with different constants. But we
could employ a single element of the instance for instantiating several hypotheses
and would then obtain instantiated signatures that we already got before.

4 Compiling and Monitoring Signatures

Generalizing the example, we now present the new signature-based enforcement
mechanism as a two phase protocol.

The compiling phase takes the dependencies Σ declared in the schema, the
confidentiality policy psec, and the instance r as inputs, and proceeds as follows
to generate the set psig of all inference signatures:

1. It successively, with an increasing number of hypotheses, generates all basic
template dependencies implied by Σ, i.e.,
Σ+basic := {td | Σ |= td, td is hypothesis-minimal and conclusion-maximal},
until no further ones can exist or further ones would not lead to nonredun-
dant instantiations for the given instance r.

2. It determines all pairs (Ψ, td) with Ψ ∈ psec and td ∈ Σ+basic as generated so
far, whose components match in the sense that the scheme of Ψ is a subset of
the scheme of td, i.e., of the conclusion’s aggregated agree set ∪l

j=1ag(c, hj),
where td = TD [h1, . . . , hl|c].

3. For each such pair, the (distinguished) symbols (seen as free variables) in the
scheme of td are instantiated with the respective constants appearing in Ψ .
Then the instantiation is propagated from the conclusion to the hypotheses.
The result is denoted by td[Ψ].

4. For each td[Ψ] obtained so far, the instance r is searched for a minimal set
of tuples rtd[Ψ] that “uniformly covers” all hypotheses: (i) all equalities re-
quired by td[Ψ] are satisfied and, (ii) the tuple values equal the respective
already propagated instantiations. For each such set, the hypotheses are fur-
ther instantiated on agree sets not captured before with the respective values
found in the uniform covering. The remaining symbols are left unchanged. If
none of the hypotheses covers any of the potential secrets in psec, then the
resulting inference signature Sig(Ψ, td, rtd[Ψ]) is inserted into psig .

5. If the hypotheses of a result of step 3 or 4 constitute a superset of the
hypotheses of another result of step 3 or 4, respectively, then the former
element is discarded, since it is redundant.

Given the fullness of the join dependencies in Σ, step 1 can be based on the
chase algorithm [16] together with bounded searching for minimization and sub-
sequent maximization. Though being complex in general, the computation is
expected to be feasible in practice, since we only deal with schema items. More-
over, in practice, a database administrator will only admit “minor” deviations

66 J. Biskup et al.

from Boyce-Codd normal form having a unique key, for example, to ensure faith-
ful representation of all dependencies by relaxing Boyce-Codd normal form to
3NF or to provide support of expected queries by a dedicated denormalization.

Similarly, seeing the elements of the confidentiality policy as a declaration of
exceptions from the general default rule of permission, we expect that in many
applications steps 2 and 3 will produce only a manageable number of templates
for inference signatures. Moreover, as far as the constants occurring in these
templates achieve a high selectivity regarding the instance considered, step 4
will not substantially increase the number of final inference signature.

The monitoring phase takes a query Φ, the confidentiality policy psec, the
set psig of all inference signatures determined in the compiling phase, and the
instance r as inputs, and proceeds as follows:

1. It checks whether some Ψ ∈ psec is covered by Φ (equivalently, Ψ is entailed
by Φ, see Section 2), and if this is the case, the answer is immediately refused.

2. Otherwise, it determines all hypotheses Π occurring in psig and not marked
before such that Π is covered by Φ, and it tentatively marks them. If now for
some signature in psig all hypotheses are marked, then the answer is refused
and the tentative marking is aborted. Otherwise, the correct answer is de-
termined from r and then returned, and the tentative marking is committed
if a positive answer Φ is returned; otherwise, if ¬Φ is returned, the tentative
marking is aborted.

A straightforward implementation of the monitoring phase keeps the potential
secrets and the suitably tagged hypotheses of inference signatures in two ded-
icated relations. Given a query, these relations are searched for covered tuples
and inspected for an inference signature becoming fully marked. Approximat-
ing the computational costs of these actions for one instantiated hypothesis by a
constant, the overall runtime complexity of an execution of the monitoring phase
is at most linear in the size of the dedicated relations. In the next section we will
present how this rough design has been converted into an SQL-based prototype.

Theorem 2. Assume the Situation 4 sketched in Section 1 and analyzed in [8]:
the a priori knowledge is restricted to comprise only a schema declaration with
functional dependencies and join dependencies, and confidentiality policies and
queries are restricted to select-project sentences. Then the signature-based en-
forcement mechanism preserves confidentiality (in the sense of Section 1).

Sketch of Proof. “Negative” answers of the form ¬Φi do not contribute to a
harmful inference of a potential secret Ψ : on the one hand, the confidentiality
policy contains only positive sentences and, on the other hand, the dependencies
only generate positive conclusions from positive assumptions.

So let us assume indirectly that there is a harmful inference based on some
minimal set of positive answers {Φ1, . . . , Φm} to derive Ψ . Then, by Theorem 1
(Theorem 2 of [8]), there exists a corresponding nontrivial template depen-
dency that witnesses such an inference. In step 1 of the compiling phase, a
hypothesis-minimal and conclusion-maximal version td of this dependency is

Signature-Based Inference-Usability Confinement 67

added to Σ+basic; this version then witnesses the inference considered as well.
In the subsequent steps 2 and 3 of the compiling phase, td together with Ψ is
further processed to set up a generic signature of the form td[Ψ]. Furthermore, in
step 4 of the compiling phase, the tuples in the instance r leading to the harmful
positive answers Φ1, . . . , Φm or these answers themselves, respectively, contribute
to generate an (instantiated) inference signature of the form Sig(Ψ, td, rtd[Ψ]).

Finally, in the monitoring phase, when the last of these positive answers is
controlled, the tentative marking of this inference signature results in a marking
of all its hypotheses, and thus the answer is refused. This contradicts the as-
sumption that the positive answers Φ1, . . . , Φm are all returned to the client. �

5 A Prototype for Oracle/SQL

We implemented1 the signature-based enforcement mechanism as part of a larger
project to realize a general prototype for inference-usability confinement of reac-
tions generated by the server of a relational database management system (see
Section 9 of [3]).

This prototype has been designed as a frontend to an Oracle/(SQL)-system:
the administration interface enables officers to declare and manage client-specific
data like the postulated a priori knowledge, a required confidentiality policy, a
permitted interaction language, and the kind of distortion; the interaction inter-
face enables registered clients to send requests like queries and receive reactions.
The interaction language is uniformly based on the relational calculus as a spe-
cific version of first-order logic, which provides the foundation of the semantics
of relational databases.

Accordingly, if a client should be permitted to issue queries under a schema
RS = 〈R,U , Σ〉 but be confined by the signature-based enforcement mechanism,
then the following has to happen: the client is granted a permission to query the
current instance r; the dependencies in Σ are added to that client’s a priori
knowledge; the language L is made available to the client to submit queries; a
confidentiality policy is declared to confine the client’s permission; and refusals
are specified as the wanted kind of distortion. Additionally, a compatible enforce-
ment mechanism is selected, either automatically by an optimizer or explicitly
by an administrator. In the remainder of this section, we assume that inference
signatures are both applicable and necessary as described in Section 1.

In a first attempt, considering the general prototype to mediate access to
the underlying Oracle-system would suggest to let a wrapper translate a query
Φ ∈ L into an SQL-query during the monitoring phase. In our case, for instance,
assuming that R denotes the Oracle-table for the instance r, a closed (yes/no)-
query (∃X1) . . . (∃Xl)R(X1, . . . , Xl, cl+1, . . . , cn) would be converted into

Select Al+1, . . . , An From R Where Al+1 = cl+1 And . . . And An = cn,
1 The following exposition only outlines the implementation and slightly differs from

the presently employed version of the code, which is under ongoing development for
both improved usability and further optimization.

68 J. Biskup et al.

R Sym Dia Pat
Fever Cancer Smith
Fever Fraction Smith
Fever Cancer Miller
Fever Fraction Miller

SEC Sym Dia Pat
∗ Cancer Smith

QUE Sym Dia Pat Rea
Fever Cancer X

SIG Sym Dia Pat Id Imp Old
Fever Cancer b1 1
Fever b2 Smith 1
Fever Cancer b1 2
Fever Fraction b5 2

b2 Fraction Smith 2

Fig. 5. Oracle-tables for signature-based enforcement applied to hospital database

which returns either the empty set or a singleton with a tuple μ of the form
(Al+1 : cl+1, . . . , An : cn) over the attribute set {Al+1, . . . , An}.

However, while forwarding this query to the Oracle-system, we want the server
not only to evaluate the query but to perform the further actions on the inference
signatures described in Section 4 as well. In principle, this goal can be accom-
plished by the features of Oracle for active databases, i.e., by triggers. Since
Oracle does not provide means to define a trigger on a query directly, we instead
employ a suitable update command to an auxiliary Oracle-table QUE(RY), which
together with two further tables (which will be described below) has already been
created during the compiling phase.

– Basically, the table QUE(RY) has the attributes in U specified in the schema
for the table R and a further attribute Rea(ction), which has a three-
valued type {ref(used), pos(itive), neg(ative)}: a tuple of QUE(RY) denotes
a query as a generalized tuple combined with an indicator how to react.

Regarding Oracle-privileges, any access right the client might have before on
the Oracle-table R must be revoked, and instead the client is only granted the
Insert-right on the auxiliary table QUE(RY). The needed trigger CQE is de-
clared for insertions into the table QUE(RY), and this trigger is executed with
the access rights of the owner (administrator) of the table R. Accordingly, we
employ some kind of “right amplification”, as for example offered by the oper-
ating system UNIX by means of setting the suid-flag for an executable file: the
client only receives a privilege to initiate the query-and-control activities, as
predefined by the trigger, without being permitted to perform such activities at
his own discretion.

The trigger CQE operates on the auxiliary Oracle-table QUE(RY) and the
two further Oracle-tables (POT)SEC and SIG(NATURE) that already have
been created separated from the Oracle-table R during the compiling phase.

– The table (POT)SEC has the same attribute set U as R such that a declared
potential secret Ψ ∈ L can be represented as a generalized tuple; however,
each (originally existentially quantified) variable is uniformly replaced by a
special placeholder “ * ”.

– The table SIG(NATURE) has the attributes in U as well such that a hy-
pothesis of an inference signature can again be represented as a generalized

Signature-Based Inference-Usability Confinement 69

tuple, and three further attributes to be used as follows: the attribute Id
specifies an inference signature the represented hypothesis belongs to; the
Boolean attribute (Flag)Imp refers to a tentative marking during a current
monitoring phase; and the Boolean attribute (Flag)Old refers to a marking
already committed while controlling a preceding query.

Unfortunately, it turned out that we need the two flags, since we could not em-
ploy standard transaction functionality to freshly mark hypotheses tentatively
and finally either commit the fresh markings or abort them by a rollback in-
struction: Oracle does not offer to direct the needed transaction functionality
within trigger executions.

Figure 5 shows the Oracle-tables for the small hospital database introduced
as Example 2 in Section 3 with the instance inserted into table R, after filling
the table (POT)SEC with the declared confidentiality policy, populating the
table SIG(NATURE) with the compiled inference signatures, and forwarding
the query (∃X)R(Fever ,Cancer , X) to the table QUE(RY).

Activated by the insertion of the query into the Oracle-table QUE(RY), the
trigger CQE basically proceeds as follows:

1. The trigger extracts the query submitted by the client from QUE, constructs
an SQL-query to determine whether or not the extracted query covers an
element in SEC, executes the constructed SQL-query, and then checks the
result for emptiness: if the result is nonempty, i.e., a covering has been de-
tected, the trigger modifies the attribute Rea(ction) of the single tuple in
QUE into ref(used) (which the frontend retrieves subsequently), and the
trigger exits. The following SQL-query is constructed for the example:

Select Sym,Dia,Pat From SEC Where (Sym = Fever Or Sym = ∗)
And (Dia = Cancer Or Sym = ∗) And Pat = ∗

2. Otherwise, the trigger continues to perform the actions already described in
Section 4 by suitably employing the Oracle-tables in a similar way as in the
first step; see Figure 6 for the rough design.

6 Experimental Evaluation

To determine the runtime overhead inherently caused by the signature-based
enforcement mechanism, we measured the query processing times of the imple-
mentation described in Section 5. We started with the following observation.
Given the dependencies declared in the schema and the confidentiality policy, a
generic inference signature signifies a typical “forbidden structure”, and thus all
of them together represent all possibilities for harmfulness. Thus, we aimed at
constructing the instances to be used for runtime evaluations by varying the fol-
lowing parameters: (1) the included forbidden structures; (2) the instantiations
of included forbidden structures; and (3) the fraction of confined “exceptions”.

70 J. Biskup et al.

frontend Oracle server

 QUE

 SEC

 SIG

 R

 forward query extract query

check covering of a
 potential secret

 tentatively mark
 covered hypotheses

 check completeness
 of some signature

no

yes

no (corrrect)

yes

 retrieve
 correct answer

activate trigger

positive

 negative

 abort
markings

 commit
markings

 abort
markings

 encode and deposit
 control result

check control result;
 prepare reaction

 exit

trigger

 (refusal)

(refusal)

Fig. 6. Design of the trigger CQE to control a submitted query

Moreover, we expected an impact of the length of query sequences, since with
increasing length more markings of hypotheses will be found.

Accordingly, we measured the following query processing times: the maximum
time that occurred up to the last query of a sequence for the whole frontend and
the trigger alone, respectively; and the average time over a sequence for the
whole frontend and the trigger alone, respectively.

Discarding exceptional measurements caused by external factors and applying
suitable roundings, we depict the results for Example 2 in Table 1: We restricted
to the forbidden structures shown in Figure 2 and 4; varied the number of in-
stantiations from 1 over 10 and 100 up to 1000, in this way getting instances (by
applying the chase algorithm to satisfy the dependencies) of size from 79 tuples
up to 79000 tuples; declared for each instantiated forbidden structure just one
potential secret (as an “exception”); and formed query sequences of length from
100 up to 100000, suitably covering all relevant cases in a random way.

Signature-Based Inference-Usability Confinement 71

Table 1. Maximum and average query processing times experienced for Example 2

Processing time pro query in msec
Instantiations Instance Queries whole frontend trigger alone

size maximum average maximum average
1 79 100 22 15 10 2
10 790 1000 54 17 10 3
100 7900 10000 421 23 150 7
1000 79000 100000 711 78 580 61

The results for the particular example suggest the practical feasibility of our
approach, including scalability: a human user acting as a client will basically
not realize a query processing time in the range of a few milliseconds up to
around half a second. Of course, general practicality still has to be justified by
statistically evaluating more advanced experiments for “real-world” applications
using a more mature implementation with enhanced functionality and further
optimizations.

7 Conclusions

Summarizing and concluding, we presented a signature-based enforcement mech-
anism that satisfies confidentiality requirements that are very general and have
been considered in many contexts before, as summarized and further inves-
tigated by Halpern/O’Neill [13] and suitably extended to include policies by
Biskup/Tadros [10]. The mechanism can be seen as a variation of a security
automaton for the run time enforcement of security properties in the sense of
Ligatti/Reddy [15] and others. We demonstrated the effectiveness of the mecha-
nism for relational databases that are constrained by the large class of functional
dependencies and join dependencies, which capture a wide range of applications,
see, e.g., Abiteboul/Hull/Vianu [1].

Our mechanism differs from previously considered monitoring systems by tak-
ing advantage of the particular properties of functional dependencies and join de-
pendencies, without imposing any further restrictions on these dependencies. We
provide a proactive control functionality avoiding any confidentiality breach, in
contrast to auditing approaches as described by, e.g., Kaushik/Ramamurthy [14],
which can only detect violations after the fact.

There are several lines of further research and development, dealing with the
following issues: tools for the compiling phase, the distribution of functionality
between the two phases, the complete integration into a database management
system like Oracle, more advanced interactions like open queries, updates and
transactions, and experimental evaluations with “real-world” applications.

Regarding tools for the compiling phase, a major open problem is to design
a generally applicable algorithm to effectively and efficiently determine all ba-
sic implications up to a suitably chosen number of hypotheses for any set of
functional dependencies and join dependencies. We conjecture that properties
regarding the occurrence of cyclic structures in the hypergraph of the dependen-
cies has a major impact. The computational complexity of the compiling phase
should also be investigated.

72 J. Biskup et al.

Regarding distribution of functionality, we already designed a more dynamic
version of the signature-based enforcement mechanism. In this version, we ini-
tially keep the inference signatures generic, without instantiating them with spe-
cific values from the instance already at compile time. Rather, instantiations are
dynamically generated at run time only employing instance tuples actually re-
turned as responses to the client. This more dynamic version can be derived from
the static version detailed in this article but some subtle optimization problems
still have to be solved in a satisfactory way.

Regarding a complete integration, we first of all face problems of modifying
proprietary software, but we would also be challenged to make the added func-
tionality fully compatible with all the many services already offered. Of course,
from the point of view of both administrators and clients, in general a full inte-
gration would be advantageous: conceptually for employing uniform interfaces,
and algorithmically for avoiding the overhead raised by the communication of a
separate frontend with a server and for including the security functionality into
the scope of the server’s optimizer.

Regarding advanced interactions, on the one hand we have to suitably adapt
previous theoretical results [5,7] and, again, to exploit the features of the un-
derlying database management system as far possible. On the other hand, in
general an update of the database instance will require to update the (instanti-
ated) inference signatures as well. Clearly, both aspects would have to be suitably
combined, while also considering the optimization problems mentioned above.

Finally, regarding “real-world” applications, we would have to identify suitable
classes of applications, clarify in detail how far the assumptions underlying the
signature-based approach are actually satisfied by such applications, and then
overcome essential mismatches by additional mechanisms. However, as pointed
out in the introduction, there is an inevitable tradeoff between conceptual ex-
pressiveness and computational complexity: any extension of the work presented
in this article will be challenged to maintain an appropriate balance between the
conflicting goals.

Acknowledgments. We would like to sincerely thank Martin Bring and Jaouad
Zarouali for improving the implementation and conducting the experiments.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Biskup, J.: History-Dependent Inference Control of Queries by Dynamic Policy
Adaption. In: Li, Y. (ed.) DBSec 2011. LNCS, vol. 6818, pp. 106–121. Springer,
Heidelberg (2011)

3. Biskup, J.: Inference-usability confinement by maintaining inference-proof views
of an information system. International Journal of Computational Science and
Engineering 7(1), 17–37 (2012)

4. Biskup, J., Bonatti, P.A.: Lying versus refusal for known potential secrets. Data
Knowl. Eng. 38(2), 199–222 (2001)

Signature-Based Inference-Usability Confinement 73

5. Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a
decidable relational submodel. Ann. Math. Artif. Intell. 50(1-2), 39–77 (2007)

6. Biskup, J., Embley, D.W., Lochner, J.-H.: Reducing inference control to access
control for normalized database schemas. Inf. Process. Lett. 106(1), 8–12 (2008)

7. Biskup, J., Gogolin, C., Seiler, J., Weibert, T.: Inference-proof view update trans-
actions with forwarded refreshments. Journal of Computer Security 19, 487–529
(2011)

8. Biskup, J., Hartmann, S., Link, S., Lochner, J.-H.: Chasing after secrets in rela-
tional databases. In: Laender, A.H.F., Lakshmanan, L.V.S. (eds.) Alberto Mendel-
zon International Workshop on Foundations of Data Management, AMW 2010.
CEUR, vol. 619, pp. 13.1–13.12 (2010)

9. Biskup, J., Lochner, J.-H., Sonntag, S.: Optimization of the Controlled Evaluation
of Closed Relational Queries. In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP
AICT, vol. 297, pp. 214–225. Springer, Heidelberg (2009)

10. Biskup, J., Tadros, C.: Policy-based secrecy in the Runs & Systems Framework
and controlled query evaluation. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.)
Advances in Information and Computer Security – International Workshop on Se-
curity, IWSEC 2010, Short Papers, pp. 60–77. Information Processing Society of
Japan (2010)

11. Biskup, J., Wiese, L.: A sound and complete model-generation procedure for consis-
tent and confidentiality-preserving databases. Theoretical Computer Science 412,
4044–4072 (2011)

12. Fagin, R., Maier, D., Ullman, J.D., Yannakakis, M.: Tools for template dependen-
cies. SIAM J. Comput. 12(1), 36–59 (1983)

13. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst.
Secur. 12(1), 5.1–5.47 (2008)

14. Kaushik, R., Ramamurthy, R.: Efficient auditing for complex SQL queries. In:
Sellis, T.K., Miller, R.J., Kementsietsidis, A., Velegrakis, Y. (eds.) ACM SIGMOD
International Conference on Management of Data, SIGMOD 2011, pp. 697–708.
ACM (2011)

15. Ligatti, J., Reddy, S.: A Theory of Runtime Enforcement, with Results. In: Gritza-
lis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp.
87–100. Springer, Heidelberg (2010)

16. Sadri, F., Ullman, J.D.: Template dependencies: A large class of dependencies
in relational databases and its complete axiomatization. J. ACM 29(2), 363–372
(1982)

Privacy Consensus in Anonymization Systems
via Game Theory

Rosa Karimi Adl, Mina Askari, Ken Barker, and Reihaneh Safavi-Naini

Department of Computer Science, University of Calgary, Calgary, AB, Canada
{rkarimia,maskari,kbarker,rei}@ucalgary.ca

Abstract. Privacy protection appears as a fundamental concern when personal
data is collected, stored, and published. Several anonymization methods have
been proposed to address privacy issues in private datasets. Every anonymiza-
tion method has at least one parameter to adjust the level of privacy protection
considering some utility for the collected data. Choosing a desirable level of pri-
vacy protection is a crucial decision and so far no systematic mechanism exists
to provide directions on how to set the privacy parameter. In this paper, we model
this challenge in a game theoretic framework to find consensual privacy pro-
tection levels and recognize the characteristics of each anonymization method.
Our model can potentially be used to compare different anonymization methods
and distinguish the settings that make one anonymization method more appealing
than the others. We describe the general approach to solve such games and elab-
orate the procedure using k-anonymity as a sample anonymization method. Our
simulations of the game results in the case of k-anonymity reveals how the equi-
librium values of k depend on the number of quasi-identifiers, maximum number
of repetitive records, anonymization cost, and public’s privacy behaviour.

Keywords: Privacy Protection, Data Anonymization, Privacy/Utility Trade-off,
Privacy Parameter Setting, Game Theory, k-Anonymity.

1 Introduction

Massive data collection about individuals on the Web raises the fundamental issue of
privacy protection. A common approach to address privacy concerns is to use data
anonymization methods [1–5]. During data anonymization identifiers are removed and
data perturbation, generalization, and/or suppression methods are applied to data
records.

Data anonymization promises privacy up to a certain level specified by some privacy
parameter(s). In setting the privacy parameter, usually the amount of the expected data
utility is considered and hence the level of privacy offered by an anonymization method
is never set to the maximum. Since the risk to privacy is not completely removed, we
postulate that data providers must be informed about the amount of privacy risk involved
(represented as the privacy parameter’s value) before deciding to provide their personal
data to data collectors.

To bring data providers’ privacy opinion into the cycle of data anonymization, we
propose a game theoretic model that finds consensual privacy and utility levels by con-
sidering preferences of data providers as well as data collectors and data users. More

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 74–89, 2012.
c© IFIP International Federation for Information Processing 2012

Privacy Consensus in Anonymization Systems via Game Theory 75

specifically, we analyze the privacy/utility trade-off from the perspective of three differ-
ent parties: a data user who wants to perform data analysis on a dataset and is willing to
pay for it; a data collector who collects and provides privacy protected data to the data
user; and data providers who can choose to participate in data collection if they see it as
worthwhile. As these parties try to maximize their “profit” (payoff), the collective out-
come of the game produces the equilibria [6] in our trade-off system. In an equilibrium
state, no single player can achieve higher profits by changing their actions. Therefore,
equilibria represent shared agreements (hence the term consensus) in which none of the
players would attempt to behave differently. Using these equilibria, we are able to ex-
amine privacy trade-offs and analyze different characteristics of an anonymization tech-
nique such as the expected amount of privacy, precision, database size, and each party’s
profit. We believe that features of an anonymization technique must be inspected at
equilibrium stages to provide more reliable evaluation results. The proposed model can
be used as an evaluation framework to compare various anonymization methods from
different perspectives. This is the first attempt to use game theory to analyze trade-offs
in a private data collection system by considering preferences of data providers.

Paper Organization: The remainder of this paper is organized as follows: Section 2 dis-
cusses the related work. Section 3 describes basic definitions in game theory. Section 4
explains our game model and its ingredients. Section 5 provides a general solution to
the game. Section 6 demonstrates a sample application of our model for the case of
k-anonymity. Section 7 provides conclusions and suggests future directions.

2 Related Work

The issue of protecting individual’s privacy while collecting personal information has
motivated several research projects in literature. Our work mostly relates to anonymiza-
tion techniques such as k-anonymity [1, 2], l-diversity [3], t-closeness [4], and differ-
ential privacy [5]. Anonymization techniques provide data privacy at the cost of losing
some information. Several methods [7–11] have been proposed to evaluate the trade-off
of privacy/utility. When data usage is unspecified, similarity between the original data
and the privacy protected data is considered as information loss. The average size of
equivalence classes [7] and discernibility [8] in k-anonymity are two examples of such
generic metrics. However, most scholars have noticed that more reliable utility mea-
sures must be defined in the context of data application (e.g.,data mining and queries).
Various measures of utility such as information-gain-privacy-loss ratio [9] and cluster-
ing and partitioning based measure [12] have been proposed to determine the next gen-
eralization step within anonymization algorithms. Sramka et al. [10] developed a data
mining framework that examins the privacy/utility trade-off after the anonymization
has been done using a mining utility. Machanavajjhala et al. [11] defines an accuracy
metric for differential privacy in the context of social recommendation systems and an-
alyzes the trade-off between accuracy and privacy. The existing privacy/utility trade-off
methods all assume that a dataset already exists before choosing the privacy protection
level for it. These methods do not consider the effect of privacy protection level on data
providers’ decision and hence the volume of the collected information.

76 R.K. Adl et al.

In this work we use game theory to investigate steady levels of privacy protection
by adopting a broader view of affecting parameters. Game theory has been successfully
applied to analyze privacy issues from legal [13] and economic perspectives [14–17].
Kleinberg et al. [15] describe three scenarios modeled as coalition games [6] and use
core and shapely values to find a “fair” reward allocation method in exchange for pri-
vate information. The underlying assumption in these scenarios is that any amount of
reward compensates for the loss of privacy protection. We believe this assumption over-
simplifies the nature of privacy concerns and is not compatible with our perception of
privacy. Calzolari and Pavan [16] use game theory to explore the optimum flow of cus-
tomers’ private information between two interested firms. The perspective of their work
is possibly closest to ours but their model is substantially different from our work since
they define a privacy policy as probability of revealing detailed customers’ information
to another party. Game theory has also been used as a means to address more tech-
nical aspects of privacy such as attacks on private location data [18], implementation
of dynamic privacy [17], and questioning the assumption of honest behavior in multi-
party privacy preserving data mining [19]. Our work builds on a commonly accepted
definition of privacy among computer and social science scholars and adopts a game
theoretical approach to find steady privacy levels. The novelty of our research lies on
bringing the economic perspective to data anonymization issues and utilizing game the-
ory for the first time to address privacy/utility trade-offs in a more realistic setting.

3 Preliminaries and Assumptions

In this paper we propose a game-theoretic framework to find steady level(s) of privacy
protection for any arbitrary anonymization technique. We assume that the data providers
are informed about having their personal information collected and the data collector
is trustworthy in the sense that he fulfills his promises. Every instance of the game is
modeled according to a chosen anonymization technique. A common factor between
these techniques is a privacy parameter such as k in k-anonymity, l in l-diversity, and
1/ε in differential privacy that indicates the level of privacy protection guaranteed by the
corresponding privacy mechanism. To provide a generic game model, we use the letter δ
to denote the privacy parameter. For any chosen anonymization technique, larger values
for δ lead to higher privacy protection and lower data utility. The exact meaning of δ has
to be interpreted according to the privacy definition chosen for the game. In this section
we provide a brief overview of the game theoretic definitions used in this paper.

3.1 Sequential Game Model

Game theory is a mathematical approach to study interdependencies between individ-
ual’s decisions in strategic situations (games). A game is explained by a set of players
(decision makers), their strategies (available moves), and payoffs to each player for ev-
ery possible strategy combination of all players (strategy profile). A strategy profile is a
Nash equilibrium if none of the players can do better by changing their strategy assum-
ing that other players adhere to theirs. Nash equilibrium is commonly used to predict
stable outcomes of games and since it represents a steady state of a game [6], we use

Privacy Consensus in Anonymization Systems via Game Theory 77

the term “stable” through the rest of the paper to denote the strategies found in the equi-
librium. To capture a pre-specified order for players’ turn to move, a game tree is used
to represent a sequential game. In this tree each node is a point of choice for a player
and the branches correspond to possible actions. A sequence of actions from the root to
any intermediate node or to a leaf node is called a history or a terminal history, respec-
tively [6]. Payoff functions define Preferences of players over each terminal history. A
player’s strategy explains his decision at any point in the game that he has to move.

Since the sequential structure of extensive form games is not considered in the con-
cept of Nash equilibrium, the notion of “subgame-perfect Nash equilibrium” [6] is nor-
mally used to determine the robust steady states of such games. Every sub-tree of the
original game tree represents a subgame. A strategy profile is a subgame perfect equi-
librium if it induces a Nash equilibrium in every subgame [6]. The principle of Back-
ward induction is a common method to deduce subgame-perfect equilibria of sequential
games. Backward induction simply states that when a player has to move, he first de-
duces the consequences of every available action (how the subsequent player rationally
reacts to his decision) and chooses the action that results in the most preferred terminal
history.

The challenge of setting a desirable value for privacy parameter δ defines strategic
situation with some ordering on players’ turn to move. As a result, we model the prob-
lem as a sequential game.

4 Game Description

To define a game-theoretic model for the challenge of finding a balanced value of δ,
we must specify the decision makers (players), their preferences, and the rules of the
sequential game. The following sections explain the details of our model.

4.1 Players

Players of the game are the following three parties:

Data Providers. Data providers are individuals that decide whether to provide their
personal information at a specific privacy level δ and use the service offered by the data
collector or to reject the offer. For example the service could be a discount on some
online purchase activity or a software application offered for free. Since privacy pref-
erences of each data provider is affected by several demographic and socioeconomic
factors [20–22], it is practically infeasible to determine how much utility is gained by
each data provider for each combination of δ and incentive. In an alternative approach,
we rely on the assumption that data providers’ behavior is captured by a model based on
some observation rather than a game theoretic analysis. Our assumed model is a regres-
sion model which captures how the number of data providers increases as the values
of δ and incentive increase. Although this specific model has not been developed yet,
similar studies have been conducted to explore the effects of other parameters (such as
knowledge of privacy risks, trust, age, income level, etc.) on public’s privacy behav-
ior [20, 22, 23]. A regression model that explains the effects of δ and incentive seems
to be a natural extension to those studies. The assumed model generally considers data
providers who are interested in both privacy and incentive and is defined as:

78 R.K. Adl et al.

N = n(δ, I) = β0 + β1 h1(δ) + β2 h2(I) (1)

where N represents total number of individuals who accept the offer as a function of
δ and incentive I (in terms of a monetary value). h1 and h2 are functions of δ and I .
Parameters β0, β1, and β2 are the intercept and marginal effects of h1(δ) and h2(I) on
individual’s decision to participate in the data collection procedure. The functions h1

and h2 can be any non-decreasing functions of δ and I . This regression model does not
assume accurate knowledge about privacy risks for data providers and as this knowledge
increases, we expect to have larger β1 to reflect a higher level of privacy concerns.

By assuming a regression model, we mostly observe data providers’ behavior rather
than directly analyzing it. This assumption trims the game tree by removing the data
providers from the analysis of the game. Nevertheless, the effect of data providers’
decisions is reflected in other players’ payoff functions and paying specific attention to
their impact on the final level of privacy is one of the distinctive strengths of our work.

Data Collector. A data collector is the entity who collects a dataset of personal data and
provides it to some data users. The data collector receives offers from the data users, and
based on their needs and the expected cardinality of the collected dataset announces a
privacy level and some incentive to collect data from individuals. Once a data collector
collects a dataset of personal information, he protects the privacy of the data providers
at the consented level δ and provides the private dataset to the data user.

The data collector generally prefers to receive more money from the data user and
spend less money on the amount of incentive he pays the data providers. Consequently,
cardinality of the dataset (number of data providers) affects the payoff to the data col-
lector. A detailed formulation of data collector’s payoff is provided in Sect. 4.3.

Data User. A data user is an entity interested in accessing personal information for
some data analysis purposes. A data user prefers a dataset with higher quality (more ac-
curate query results) and higher cardinality (results with higher statistical significance).
Privacy parameter δ affects these requirements in positive and negative ways. Therefore
a data user chooses a value δ that balances the needs and initiates the game by offering
some value for parameter δ and some price, p, for each data record. We give the detailed
analysis for games with a single data user. The approach to model multiple data users
and data reuse is explained elsewhere [24].

4.2 Game Rules

We model interactions between the data collector and the data user as a sequential game
with perfect (players are aware of the actions taken by previous players) and complete
(players are aware of the available strategies and payoff functions of all other players)
information. More specifically, both players know data the provider’s behavior model.
The data user also knows the data collector’s available actions and preferences1.

The game starts with an offer from the data user to the data collector. In the offer,
the required value for privacy parameter δ and the price p (per each record) must be

1 Our assumption of complete information does not mean that the data collector and the data
user know privacy/incentive trade-off functions of each data provider because individual data
providers are not directly modeled as players in the trimmed game tree.

Privacy Consensus in Anonymization Systems via Game Theory 79

specified. We denote an offer by Of = 〈δ, p〉. Once the data collector receives the
offer he can either reject or accept it. In case of a rejection, the game terminates with
payoff zero to both the data user and the data collector. If the data collector decides
to accept then he needs to announce an incentive in exchange for collecting personal
information. Here, we assume that I represents monetary value of the incentive and its
domain is R≥0. The terminal histories of this game are either of the form (Of, I) or

Data User
Data

Collector
Data

Providers
, price Incentive

Opt-in/
Opt-out

Dataset
Cardinality

UDCUDU

Payoff to the
Data User

Payoff to the
Data Collector

(a)

Reject

Ofi=< i, pi>

0,0

Ii

UDU,UDC

Data User

Data Collector

(b)

Fig. 1. (a) The dynamics of setting a stable level for privacy protection. (b) Trimmed game tree.

(Of,Reject). At any terminal history, the number of data providers who will opt-in is
determined by plugging the values of δ and I into Eq(1). Consequently, preferences of
the data user and the data collector over all terminal histories are determined based on
the payoff function defined over cardinality of dataset and values of δ, p, and I .

The interactions and mutual effects of players’ decision are captured in Fig. 1(a).
Based on the game’s dynamics, Fig. 1(b) illustrates the game tree (triangles represent
ranges of possible offers and incentives).

4.3 Payoffs

Payoff to the Data Collector: The data collector receives some money, p, from the data
user for each data record. The total number of data records in the dataset is the same
as the number of data providers who participate in the data collection procedure and is
defined by N in Eq(1). Consequently, the income of the data collector is:

incomeDC = p N (2)
Data collection procedure, data anonymization, and storing the dataset are costly and
we denote these costs by C. Moreover, the data collector has to pay some incentive, I ,
to each data provider. As a result, the expenses to the data collector can be defined as:

expenditureDC = I N + C (3)
For simplicity of analysis we have assumed a fixed cost C for data collector. This as-
sumption can be dropped easily by defining cost as a function of the size of the dataset
and privacy level δ without any significant modification to our analysis. The payoff to
the data collector is therefore defined as:

UDC = incomeDC − expenditureDC = (p− I) N − C (4)

Payoff to the Data User: The data user wants to run some data analysis on the privacy
protected dataset T ∗. As the cardinality of this dataset increases, the dataset will have

80 R.K. Adl et al.

higher value to the data user. Let a denote the economic value of each record to the data
user, i.e., a represents the net revenue of a data record if the data user gets the record for
free. If the number of data records collected from individuals is denoted by N we can
initially define the data user’s income as a∗N . However, after anonymization the utility
of data drops due to imprecision introduced to results of the queries. We use parameter
0 ≤ Precision ≤ 1 as a coefficient of the data user’s income to show how the value of
the dataset decreases as data become less precise. The income of the data user is:

incomeDU = a N Precision (5)

To estimate the precision of query results on a private dataset, various parameters must
be considered. These parameters include the semantics of the query, the anonymization
method and algorithm used, database schema, level of privacy protection δ, number of
data records N , and etc.. For each instance of the game, all of these parameters except
for δ andN are fixed (and assumed to be a common knowledge of the game). Therefore,
Precision = prec(δ,N) is defined as a function of two variables δ and N . The main
characteristic of the Precision function is that for any fixed number of data records N ,
Precision is a decreasing function of δ 2.

If the data user pays price p per record, his expenditure is p N and therefore his
payoff can be defined as:

UDU = a N Precision− p N (6)

5 General Approach to Find Subgame Perfect Equilibria

In this section we explain the steps involved in the process of finding the game’s sub-
game perfect equilibria using backward induction [6]. In the next section, we show the
details of this process for k-anonymity as an example.

5.1 Equilibrium Strategies of Data Collector

The first step to find subgame perfect equilibria is to find the optimal actions of the
data collector in each subgame of length 1. Subgames of length 1 are represented by
subtrees at which the data collector has to move based on a history of the form (Of).
Where Of = 〈δ, p〉 is an offer made by the data user.

The data collector can estimate the expected cardinality of the dataset for each δ and
I based on Eq(1). If we plug this equation into the UDC formula from Eq(4), the data
collector’s payoff after accepting Of = 〈δ, p〉 will be:

UDC = (p− I)(β0 + β1h1(δ) + β2h2(I))−C (7)

For each offer Of = 〈δ, p〉, the values of δ and p are fixed. The data collector needs
to find the optimum I (denoted by Î) for which the function UDC attains its maximum
value. To find Î we must find the argument of the maximum:

Î = argmax
I

UDC = argmax
I

(p− I)(β0 + β1h1(δ) + β2h2(I))− C (8)

2 Notice that N is also an increasing function of δ (see Eq(1)) and therefore ∂ prec
∂ δ

is not always
greater than or equal to zero.

Privacy Consensus in Anonymization Systems via Game Theory 81

Subject to the constraint that Î ≥ 0.
If the maximum UDC , ÛDC , is greater than zero the data collector accepts the offer.

If ÛDC = 0 then the data collector will be indifferent between accepting and rejecting
and in the case where ÛDC < 0 the data collector rejects. Therefore, the data collector’s
best response, BRDC , to an offer Of = 〈δ, p〉 is:

BRDC(δ, p) =

{
Reject if (p− Î)(β0 + β1h1(δ) + β2h2(Î))− C ≤ 0

Accept with Î if (p− Î)(β0 + β1h1(δ) + β2h2(Î))− C ≥ 0
(9)

The optimum incentive Î must only be calculated when the data collector accepts the
offer. This means Î ≤ p, otherwise ÛDC < 0. Since UDC is continuous in the closed
and bounded interval [0, p] (the domain of I), according to the Extreme value theorem
[25], UDC reaches its maximum at least once and therefore Î is guaranteed to exist.

5.2 Equilibrium Strategies of Data User

The next step to find the subgame perfect equilibria is to find the most profitable action
of the data user; Knowing the data collector’s best response (Sect. 5.1) to each Of =
〈δ, p〉, what combination of δ and p maximizes the data user’s payoff? When the data
collector accepts an offer Of = 〈δ, p〉, he chooses the optimum incentive Î . Depending
on the exact function definitions used in Eq(8), if Î is unique for every combination of
δ and p, then Î can be defined as a function of δ and p (i.e., Î = î(δ, p)). Without loss of
generality, we assume that this is the case. If multiple values of I maximize UDC , the
one that also maximizes the data user’s payoff is in the equilibria of the game.

According to Sect. 5.1, if the data collector accepts the offer he starts collecting
personal information at privacy level δ with incentive Î = î(δ, p). Otherwise, no dataset
will be provided to the data user. As a result, the anticipated number of records N can
be determined as:

N = n(δ, Î) =

⎧⎨
⎩

β0 + β1h1(δ) + β2h2(Î) if ÛDC ≥ 0

0 Otherwise

(10)

Plugging the function definition of Î = î(δ, p) into Eq(10), N = n2(δ, p) becomes a
function of δ and p as well. Recall that Precision = prec(δ,N) is defined as a function
of δ and N . Since N is a function of δ and p, we can define Precision = prec2(δ, p)
as a function of δ and p as well. After substituting N and Precision with n2(δ, p) and
prec2(δ, p), the UDU function from Eq(6) becomes a function of two variables δ and
p. The most profitable strategy for the data user is to choose values of δ and p that
maximize his payoff:

〈δ̂, p̂〉 = argmax
δ,p

UDU = argmax
δ,p

(a prec2(δ, p)− p) (n2(δ, p)) (11)

By definition, the lower bounds on p and δ is zero, i.e., p ≥ 0 and δ ≥ 0. Moreover,
since Precision ≤ 1 then (a ∗ prec2(δ, p)) ≤ a. Choosing a value p > a leads
to a negative payoff to the data user and he can always do better by choosing p = 0

82 R.K. Adl et al.

(which leads to payoff zero). Therefore, the upper bound for p is a. Parameter δ is
not necessarily bounded from above. Consequently, we cannot use the Extreme value
theorem to guarantee an equilibrium.

If UDU has an absolute maximum subject to the bounds defined on δ and p, the
game has subgame perfect equilibria of the forms ((δ̂, p̂), reject) or ((δ̂, p̂), Î). The
first form occurs when the data collector cannot find any profitable amount of incentive
(regardless of δ and p chosen by the data user) and the negotiation is unsuccessful. The
second format occurs in games where there are at least one combination of δ and p of
which the data collector can make profit. The two types of equilibria provide a means to
determine whether an anonymization technique is practical or impractical given other
problem settings. If the cost of implementing an anonymization technique is too high
and the public’s trust in the method is not high enough, the game might become an
instance of unsuccessful negotiations and we have a case of impractical anonymization.

6 Game Theoretic Analysis for k-Anonymity

To demonstrate the details of the steps explained in Sect. 5, we use k-anonymity as the
anonymization technique and provide a Precision function for it. The game solution
is described and a simulation of the results is provided at the end of this section.

6.1 k-Anonymity Overview

A dataset to be released contains some sensitive attributes, identifying attributes, and
quasi-identifying attributes. Even after removing the identifying attributes, the values
of quasi-identifying attributes can be used to uniquely identify at least a single individ-
ual in the dataset via linking attacks. Every subset of tuples in dataset that share the
same values for quasi-identifiers is often referred to as an equivalence class. A released
dataset is said to satisfy k-anonymity, if for each existing combination of quasi-identifier
attribute values in the dataset, there are at least k − 1 other records in the database that
contain such a combination.

There are several methods to achieve k-anonymity. Our work is built on Mondrian
algorithm [26]. This greedy algorithm implements multidimensional recoding (with no
cell suppression) which allows finer-grained search and thus often leads to a better data
quality. In Mondrian algorithm all the identifying attributes are suppressed first. Then
records are recursively partitioned into d−dimensional rectangular boxes (equivalence
classes), where d is the number of quasi-identifiers. To partition each box, a quasi-
identifier attribute (a dimension) is selected and the median value along this attribute is
used as a binary cut to split the box into two smaller boxes. Once partitioning is done,
records in each partition are generalized so that they all share the same quasi-identifier
value, to form an equivalence class. A copy of this algorithm is provided in Fig. 3(b).

6.2 Data Providers’ Privacy Model

Based on Sect. 4.1, we assume a regression model to explain data providers’ reaction
(at an aggregate level) to each combination of privacy protection levels and incentives.

Privacy Consensus in Anonymization Systems via Game Theory 83

This model is explained in Eq(1). In k-anonymity, privacy parameter is k. Here, we con-
sider the identity function for the incentive (because of its simplicity) and logarithmic
function for parameter k. In other words :

N = n(k, I) = β0 + β1log2(k) + β2I (12)

To understand our choice of log function for h1, notice that when k-anonymity is used,
it is assumed that the probability of re-identifying an individual is 1

k . For example, when
k is 1, the probability of re-identification is 1 and the guaranteed privacy is 0. When k
becomes 2, the probability of re-identification becomes 1

2 and the amount of uncertainty
about the identity of the individual increases from 0 (log1) to 1 (log2). However, this
increase in uncertainty about the identity of individuals (privacy) is not the same as k
changes from 99 to 100 because the probability changes from 1

99 to 1
100 . For this reason

we use entropy (logk) of this uniform probability distribution (p = 1
k) as the indicator

for privacy protection.

6.3 Precision Estimate

To determine the payoff to the data user (see Eq(6)) we need a metric to calculate
Precision. A reasonable estimate on the amount of imprecision caused by anonymiza-
tion depends on the data application. We have briefly discussed the nature of impre-
cision that can be introduced to the results of any SELECT query executed against an
anonymized dataset elsewhere [24] . In this paper we provide the precision estimates
for a specific SELECT query type and consider this query as the data analysis purpose.
Our SELECT query is of the following form:

Qi ≡ SELECT sensitiveAtt FROM T∗ WHERE q = vi

In this query sensitiveAtt represents the value of sensitive attribute, T ∗ is the
anonymized dataset, q is one of the quasi-identifiers, and vi is the ith possible value for
attribute q. For example, a query Q20 can be the following:

Q20 ≡ SELECT disease FROM T∗ WHERE age = 20

Let |Qi(T)| denote cardinality of the result set of query Qi on dataset T . When Qi is
run against T ∗, the result set Qi(T

∗) contains two groups of records: a subset of them
satisfy the condition q = vi and the rest of them are just included in the result because
they are partitioned into the same equivalence class as the points with q = vi. The
latter introduce some quantity imprecision in the result. LeFevre et al. [27] introduce
an imprecision metric to find the best cuts while running the Mondrian algorithm [26]
on experimental datasets. After normalizing this metric, we define Precision as:

Precision(Qi, T
∗, T) =

|Qi(T)|
|Qi(T ∗)|

(where |Qi(T
∗)| > 0) (13)

As a result, to calculate Precision we first need to estimate |Qi(T)| and |Qi(T
∗)|. Let

Pri denote the portion of the records in the dataset that have valuevi for quasi-identifier
q. Then the expected value of |Qi(T)| is:

|Qi(T)| = Pri N (14)

Through Theorems 1 and 2 we provide an estimate for |Qi(T
∗)|. In Mondrian algo-

rithm the minimum and maximum number of records in each equivalence class are k

84 R.K. Adl et al.

and 2d(k − 1) + m, where m denotes the maximum number of records with identi-
cal values for all quasi-identifiers [26]. Since the distribution of equivalence class sizes
are not known a priori, with a simplifying assumption of uniform distribution, we can
estimate the average number of records in each equivalence class, ecAVG, as:

ecAVG =
2d(k − 1) +m+ k

2
(15)

Theorem 1. If the average size of each equivalence class is determined by Eq(15), then
the depth of the recursive calls, l, in Mondrian algorithm [26] can be estimated as:

l = log2(
2N

2d(k − 1) +m+ k
) (16)

Proof. (sketch) Mondrian algorithm starts with the original dataset as a single equiva-
lence class and chooses the median value of one of the dimensions to recursively cut
each equivalence class into two smaller ones. It stops when there is no more possible
cuts for any of the equivalence classes. For this estimate, we assume that the algorithm
stops at the point where the size of each class reaches ecAVG from Eq(15). By solving
the recursive definition, we get Eq(16). A complete proof is available [24].

Theorem 2. If N denotes the number of records in a dataset T , the cardinality of the
result set of query Qi on T ∗ can be estimated as:

|Qi(T
∗)| = (1− 1

2d
)l N (17)

where d is the number of quasi-identifiers and l is the depth of recursive calls estimated
in Theorem 1.

Proof. (sketch) The core idea of this proof is to note that during the partitioning process,
for each equivalence class if the dimension q is chosen as the cutting dimension then
half of the records in the class will be partitioned into a new class that will not be
included in the result set of Qi. Otherwise the cut does not reduce the size of the result
set. A complete proof is available [24].

Consequently, Precision is defined as:

Precision =
pri N

(1− 1
2d)

l N
=

pri

(1 − 1
2d)

l
(18)

We can also use Theorem 2 to define pri based on the parameters. In real instances of
the problem pri is independent of any specific algorithm and estimates; it is a property
of the dataset. However, since we have made some simplifying assumptions for other
estimates the assumptions should also be applied to pri to produce a meaningful esti-
mate. Theorem 2 provides an estimate on |Qi(T

∗)|. When k = 1, there are no irrelevant
records in the result set. Therefore, |Qi(T

∗
k=1)| provides an estimate on the number of

records that satisfy the condition q = vi and |Qi(T
∗
k=1)|/N can be used as an estimate

for pri.
Consequently, we can refine Equation(18) as:

Privacy Consensus in Anonymization Systems via Game Theory 85

Precision =
(1− 1

2d)
log2

2N
m+1

(1− 1
2d)

l
(19)

6.4 Subgame Perfect Equilibria

As explained in Sect. 5.1, the first step to find the game’s subgame perfect equilibria is
to determine the optimum incentive Î from Eq(8). If the data collector accepts the offer
Of = 〈k, p〉 with incentive I , his payoff will be:

UDC = (p− I)(β0 + β1log2(k) + β2I)− C (20)

Calculating the derivative of UDC with respect to I and setting it to zero reveals the
maximizing I:

dUDC

dI
= −(β0 + β1log2(k) + β2I) + β2(p− I) = 0 ⇒ Î =

β2p− β1log2(k)− β0

2β2
(21)

Î is the local maximum since the second derivative of the function is negative. The
restriction here is I ≥ 0. If Î < 0, the maximizing I will be zero. The lower bound on
I leads us to consider two separate cases:

Case 1: β2p ≥ β1log2(k) + β0- In this case the amount of incentive that maximizes
UDC is Î = β2p−β1log2(k)−β0

2β2
. Plugging Î into Eq(20) gives us the maximum payoff to

the data collector for Case 1 (denoted as Û1
DC):

Û1
DC =

β2

4
(p+

β1log2(k) + β0

β2
)2 − C (22)

The data collector will accept the offer Of = 〈k, p〉 if Û1
DC ≥ 0. In other words, the

data collector accepts if:

p+
β1log2(k)

β2
≥

√
4C

β2
− β0

β2
(23)

Case 2: β2p < β1log2(k) + β0- The optimum incentive in this case would be Î = 0.
With this incentive the maximum payoff to the data collector (denoted as Û2

DC) is:

Û2
DC = p(β0 + β1log2(k)) − C (24)

The data collector will accept this offer if Û2
DC ≥ 0. More precisely, the data collector

accepts the offer if:
p(β0 + β1log2(k)) ≥ C (25)

If the values of Î (from the two cases) are plugged into Eq(10), we can define the
cardinality of the private dataset as a piecewise function of k and p:

N =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β0+β1log2(k)+β2p
2 if β2p ≥ β1log2(k) + β0 ∧ p+ β1log2(k)

β2
≥

√
4C
β2
− β0

β2

β0 + β1log2(k) if β2p < β1log2(k) + β0 ∧ p(β0 + β1log2(k)) ≥ C

0 Otherwise
(26)

86 R.K. Adl et al.

(a) (b)

(c)

0 2000 4000 6000 8000 10000 12000 14000
0

20

40

60

80

100

(d)

(e) (f)

Fig. 2. Changes to the stable k due to an increase in: (a) the number of quasi-identifiers d; (b) the
maximum number of data providers with identical values for their quasi-identifiers m; (c) the cost
of data anonymization and storage C; (d) the number of privacy unconcerned data providers β0;
(e) the effect of privacy protection level on data providers’ decision β1; (f) the effect of incentive
on data providers’ decision β2.

If the new definition of N is plugged into the Precision function, precision becomes a
function of k and p. As a result, UDU from Eq(6) becomes a function of k and p. The
best strategy for the data user is to compute k̂ and p̂ according to Eq(11). The optimum
offer is Of = 〈δ̂, p̂〉 and this completes the process of finding perfect equilibria.

6.5 Simulation Results

If the players of the game are rational and have the required information, the equilibria
of the game would always conform to what Sect. 6.4 suggests because we used an ana-
lytical method to find the game’s equilibria. In our proposed method, a dataset does not
exist before the game is complete and the specifications of the collected dataset depend
on the parameters chosen while the game is played. Therefore, running experiments
on real databases does not provide meaningful results for this work. Alternatively, we
choose to simulate the game and visualize the results by testing multiple parameter set-
tings using MATLAB R2008a. In every setting, the effect of one of the parameters a,
C,d, m, and β is examined on the stable values of k (while the values of the rest of the
parameters are fixed to β0 = 7000, β1 = 2000, β2 = 20, a = $10, C = $20, 000,
m = 5, and d = 4). The results are shown in Fig. 2.

Privacy Consensus in Anonymization Systems via Game Theory 87

The values for a and C are randomly selected as an estimate of reasonable values
commonly used in real instances of the problem. We assumed a population size of
55,000 potential data providers and the values selected for parameters β0, β1, and β2

are chosen to reflect Westin’s privacy indexes [28]. Based on the maximum values of k
(k = 100) and p (p = a), β1 and β2 are chosen such that the effect of maximum privacy
is almost the same as maximum incentive. The value of β0 is chosen such that 17% of
the data providers fall in the privacy unconcerned category [28].

Figure 2(a) shows how stable values of k increase as the number of quasi-identifiers
increase. To understand the reason, we have provided another diagram in Fig. 3(a)
which illustrates the precision curves for different values of d. According to this figure,
with fewer quasi-identifiers the precision curve decreases at a higher rate. Therefore, as
the number of quasi-identifiers increase, offering larger values for k becomes a better
option for the data user since it can increase the size of the dataset without severely
affecting data quality.

In Fig. 2(b) we can see the effect of m (maximum number of data providers with
identical quasi-identifier values) on the stable values of k. We have chosen the values
of m from {1, ..., 30}. As the value of m increases the stable value of k increases. To
understand this counter-intuitive result, notice that as m increases less generalization
will be needed to group the tuples in equivalence classes of size k. Therefore, compared
to the cases with smaller m, the same precision can be achieved with higher values of
k. Larger values of k attract more data providers without largely affecting the precision
of query results and consequently, the data user can make more profit in this case.

The effects of anonymization, and maintenance cost (C) on stable values of k are
illustrated in Fig. 2(c). Based on the settings chosen for other parameters, after a certain
point the cost becomes too high for condition of the Eq(25) to be satisfied and case 1
(from Sect. 6.4) happens. In this case, the data collector is receiving a payment high
enough to announce non-zero incentives. This incentive convinces several privacy con-
cerned data providers to participate even with a low privacy protection level. As a result,
the data user simply asks for no privacy protection since he is confident that enough data
providers will participate to receive the incentive. Finally, after a certain value for C, the
game reaches a point (demonstrated by a shaded rectangle) where no combination of
〈k, p〉 can be found that is acceptable by the data collector and UDU ≥ 0. This situation
represents an instance of impractical anonymization.

Figures 2(d), 2(e), and 2(f) represent the effects of data providers’ privacy attitude
on stable values of k. According to Fig. 2(d) as the number of privacy unconcerned
group (data providers who provide their personal information without any privacy or
incentive) increase, the data user can receive larger volume of data without asking for
sanitized dataset. By increasing the value of β1 we model a privacy aware population.
As can be seen in Fig. 2(e), when privacy has more significant impact on data providers’
decisions, data will be sanitized with larger values of k. In Fig. 2(f) we showed how the
value of β2 impacts stable values of k. If β2 is less than a certain level then it mostly
affects the price of information and not the level of privacy protection. However if the
weight of incentive on data providers’ privacy decisions becomes heavier than a certain
point, case 1 (refer to Sect. 6.4) happens and the data user can maximize his benefit by
just increasing the price and asking for no privacy. These diagrams show how public’s
privacy awareness can force the firms to protect privacy of data providers.

88 R.K. Adl et al.

(a)

Anonymize(partition)
if (no allowable multidimensional cut for partition)

return φ : partition → summary
else

dim ← choose dimension()
fs ← frequency set(partition, dim)
splitV al ← find median(fs)
lhs ← {t ∈ partition : t.dim ≤ splitV al}
rhs ← {t ∈ partition : t.dim > splitV al}
return Anonymize(rhs) ∪ Anonymize(lhs)

(b)

Fig. 3. (a) Precision curves for different number of quasi-identifiers d. The value of m is fixed by
5. (b) Mondrian Algorithm.

7 Conclusions and Future Work

In this paper we modeled the process of private data collection as a sequential game
to achieve consensus on the level of privacy protection. We explained the general ap-
proach to solve the game and as an example provided the details of game analysis for
k-anonymity. Players of the game are a data user, a data collector, and a group of data
providers. We use the method of backward induction to explore the game’s subgame
perfect equilibria. Equilibria of the game suggest stable values of the privacy parameter
that are unlikely to be changed when other parties move according to their equilibria
strategies. For the k-anonymity case, we found the stable values of k and showed that
these values are related to number of quasi-identifiers, maximum number of identical
tuples (in their quasi-identifier values), cost of data sanitization and storage, and coef-
ficients of public’s privacy behavior model. Our results illustrate the significant impact
of the number of quasi-identifiers on the decision about the value of k.

We are plannig to analyze other privacy definitions such as l-diversity [3] and differ-
ential privacy [5] and for each privacy definition, distinguish the settings which make it
the most profitable option to the players of the game. We are also planning to improve
the model by dropping the assumption about the amount of information available to the
data collector and data user. Our goal is to design a new evaluation framework that uses
our game theoretic model to compare different anonymization methods and distinguish
the settings that make one anonymization method more appealing than another.

References

1. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing informa-
tion (abstract). In: PODS, p. 188. ACM Press (1998)

2. Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on Uncer-
tainty, Fuzziness and Knowledge-Based Systems 10(5), 557–570 (2002)

3. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: Privacy
beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 24 pages (2007)

4. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-
diversity. In: ICDE 2007, pp. 106–115 (2007)

5. Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006, Part II. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

Privacy Consensus in Anonymization Systems via Game Theory 89

6. Osborne, M.J.: 8,9,16. In: An Introduction to Game Theory. Oxford University Press, USA
(2003)

7. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Workload-aware anonymization. In: KDD, pp.
277–286 (2006)

8. Bayardo Jr., R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In: ICDE, pp.
217–228 (2005)

9. Fung, B.C.M., Wang, K., Yu, P.S.: Top-down specialization for information and privacy
preservation. In: ICDE, pp. 205–216 (2005)

10. Sramka, M., Safavi-Naini, R., Denzinger, J., Askari, M.: A practice-oriented framework
for measuring privacy and utility in data sanitization systems. In: EDBT/ICDT Workshops
(2010)

11. Machanavajjhala, A., Korolova, A., Sarma, A.D.: Personalized social recommendations -
accurate or private? CoRR abs/1105.4254 (2011)

12. Loukides, G., Shao, J.: Data utility and privacy protection trade-off in k-anonymisation. In:
PAIS 2008, pp. 36–45. ACM (2008)

13. Anderson, H.E.: The privacy gambit: Toward a game theoretic approach to international data
protection. bepress Legal Series (2006)

14. Böhme, R., Koble, S., Dresden, T.U.: On the viability of privacy-enhancing technologies in
a self-regulated business-to-consumer market: Will privacy remain a luxury good? In: WEIS
2007 (2007)

15. Kleinberg, J., Papadimitriou, C.H., Raghavan, P.: On the value of private information. In:
TARK 2001, pp. 249–257. Morgan Kaufmann Publishers Inc. (2001)

16. Calzolari, G., Pavan, A.: Optimal design of privacy policies. Technical report, Gremaq, Uni-
versity of Toulouse (2001)

17. Preibusch, S.: Implementing Privacy Negotiations in E-Commerce. In: Zhou, X., Li, J.,
Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 604–615.
Springer, Heidelberg (2006)

18. Gianini, G., Damiani, E.: A Game-Theoretical Approach to Data-Privacy Protection from
Context-Based Inference Attacks: A Location-Privacy Protection Case Study. In: Jonker, W.,
Petković, M. (eds.) SDM 2008. LNCS, vol. 5159, pp. 133–150. Springer, Heidelberg (2008)

19. Kargupta, H., Das, K., Liu, K.: Multi-party, Privacy-Preserving Distributed Data Mining Us-
ing a Game Theoretic Framework. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R.,
Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp.
523–531. Springer, Heidelberg (2007)

20. Acquisti, A., Grossklags, J.: Privacy and rationality in individual decision making. IEEE
Security & Privacy 3(1), 26–33 (2005)

21. Culnan, M.J., Armstrong, P.K.: Information privacy concerns, procedural fairness, and im-
personal trust: An empirical investigation. Organization Science 10, 104–115 (1999)

22. Singer, E., Mathiowetz, N.A., Couper, M.P.: The impact of privacy and confidentiality con-
cerns on survey participation: The case of the 1990 U.S. census. The Public Opinion Quar-
terly 57(4), 465–482 (1993)

23. Milne, G.R., Gordon, M.E.: Direct mail privacy-efficiency trade-offs within an implied social
contract framework. Journal of Public Policy & Marketing 12(2), 206–215 (1993)

24. Adl, R.K., Askari, M., Barker, K., Safavi-Naini, R.: Privacy consensus in anonymization
systems via game theory. Technical Report 2012-1021-04, University of Calgary (2012)

25. Sydsaeter, K., Hammond, P.: Mathematics for economic analysis. Prentice-Hall International
(1995)

26. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In:
ICDE 2006, p. 25. IEEE Computer Society (2006)

27. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Workload-aware anonymization techniques for
large-scale datasets. ACM Trans. Database Syst. 33, 17:1–17:47 (2008)

28. Kumaraguru, P., Cranor, L.F.: Privacy indexes: A survey of westin’s studies. ISRI Technical
Report (2005)

Uniform Obfuscation for Location Privacy

Gianluca Dini and Pericle Perazzo

University of Pisa,
Department of Information Engineering, via Diotisalvi 2,

56122 Pisa, Italy
{g.dini,p.perazzo}@iet.unipi.it

Abstract. As location-based services emerge, many people feel exposed
to high privacy threats. Privacy protection is a major challenge for such
applications. A broadly used approach is perturbation, which adds an ar-
tificial noise to positions and returns an obfuscated measurement to the
requester. Our main finding is that, unless the noise is chosen properly,
these methods do not withstand attacks based on probabilistic analysis.
In this paper, we define a strong adversary model that uses probability
calculus to de-obfuscate the location measurements. Such a model has
general applicability and can evaluate the resistance of a generic location-
obfuscation technique. We then propose UniLO, an obfuscation operator
which resists to such an adversary. We prove the resistance through for-
mal analysis. We finally compare the resistance of UniLO with respect
to other noise-based obfuscation operators.

Keywords: location-based services, privacy, obfuscation, perturbation,
uniformity.

1 Introduction

Recent years have seen the widespread diffusion of very precise localization tech-
nologies and techniques. The most known is GPS, but there are many other
examples, like Wi-Fi fingerprinting, GSM trilateration, etc. The emergence of
such technologies has brought to the development of location-based services
(LBS) [3,6,10], which rely on the knowledge of location of people or things.
The retrieval of people’s location raises several privacy concerns, as it is per-
sonal, often sensitive, information. The indiscriminate disclosure of such data
could have highly negative effects, from undesired location-based advertising to
personal safety attempts.

A classic approach to the problem is to introduce strict access-control policies
in the system [9,16]. Only some trusted (human or software) entities will be
authorized to access personal data. This access-control-based approach has a
main drawback: if the entity does not need complete (or exact) information, it
is a useless exposure of personal data. The “permit-or-deny” approach of access
control is often too rigid. Some services require more flexible techniques which
can be tailored to different user preferences.

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 90–105, 2012.
c© IFIP International Federation for Information Processing 2012

Uniform Obfuscation for Location Privacy 91

Samarati and Sweeney [18] introduced the simple concept of k-anonymity:
a system offers a k-anonymity to a subject if his identity is undistinguish-
able from (at least) k − 1 other subjects. K-anonymity is usually reached by
obfuscating data with some form of generalization. The methods based on k-
anonymity [4,10,12] offer generally a high level of privacy, because they protect
both the personal data and the subject’s identity. However, they have some
limitations:

– They do not permit the authentication of the subject and the customization
of the service. Since they cannot identify the subject, some identity-based
services like social applications or pay-services could not work.

– They are usually more complex and inefficient than methods based only on
data obfuscation. This happens because their behavior must depend on a set
of (at least) k subjects and not on a single subject only.

– They need a centralized and trusted obfuscator. In distributed architectures,
such an entity may be either not present or not trusted by all the subjects.

– They are not applicable when the density of the subjects is too low. Ob-
viously, if there are only 5 subjects in a system, they will never reach a
10-anonymity.

A simpler approach is data-only obfuscation [1,15], whose aim is not to guaran-
tee a given level of anonymity, but simply to protect the personal data. This is
done by obfuscating data before disclosing it, in a way that it is still possible
for the service provider to offer his service. Data obfuscation adds some artificial
imperfection to information. The nature of such imperfection can fall into two
categories [8]: inaccuracy, and imprecision. Inaccuracy concerns a lack of cor-
respondence with reality, whereas imprecision concerns a lack of specificity in
information. Deliberately introducing inaccuracy requires the obfuscation sys-
tem to “lie” about the observed values. This can reduce significantly the number
of assumptions the service can trust on. For this reason, the majority of obfus-
cation methods operates by adding imprecision, both by means of generalization
or perturbation [5]. Generalization replaces the information with a value range
which contains it, whereas perturbation adds random noise to it. We focus on
the perturbation method. This method is both simple and efficient, and is often
used to obfuscate data [14]. In spite of its simplicity, it requires to choose a suit-
able noise to effectively perturb data. In case of location data - and non-scalar
data in general - such a problem is not trivial and should not be underrated.
We found that if the noise is not chosen properly, perturbation will not resist to
attacks based on statistical analysis. In particular, an obfuscation operator must
offer a spacial uniformity of probability.

We present an analytical adversary model, which performs attacks based on
statistical analysis. We show how such attacks can be neutralized by the property
of uniformity. We present a metric for quantifying uniformity of an obfuscation
system, called uniformity index. We further propose UniLO, an obfuscation op-
erator for location data that introduces imprecision while maintaining accuracy.
UniLO is simple and O (1)-complex. It does not require a centralized and trusted

92 G. Dini and P. Perazzo

obfuscator and can be seamlessly added to a distributed architecture as a build-
ing block. We show how UniLO offers a better uniformity with respect to other
noise-based obfuscation operators. To the best of our knowledge, UniLO is the
first obfuscation operator which offers guarantees on uniformity.

The rest of the paper is organized as follows. Section 2 introduces some basic
concepts concerning the system model and the terminology. Section 3 formally
describes the adversary model. Section 4 presents the UniLO operator in detail
and its properties. Section 5 evaluates UniLO resistance by means of experimen-
tal results, and compares it to other obfuscation operators. Section 6 presents
some examples of location-based services that can be built on UniLO operator.
Section 7 explains some related works and analyzes differences and similarities
with UniLO techniques. Finally, the paper is concluded in Section 8.

2 System Model

In our system, a subject is an entity whose location is measured by a sensor.
A service provider is an entity that receives the subject’s location in order to
provide him with a location-based service. The subject applies an obfuscation
operator to location information, prior to releasing it to the service provider.
The obfuscation operator purposefully reduces the precision to guarantee a cer-
tain privacy level. Such a precision is defined by the subject and reflects his
requirements in terms of privacy. The more privacy the subject requires, the less
precision the obfuscation operator returns.

The subject is usually a person who has agreed to reveal - with some level
of privacy - his location to one or more service providers. The service provider
can be a human or a piece of software, depending on the kind of location-based
service. For instance, a security service in an airport or in a train station often
requires a human service provider. In contrast, in a customer-oriented service,
for example, returning the nearest restaurant to the subject, the service provider
may be a piece of software. The obfuscation operator can be applied to the data
directly by the subject. Alternatively, a central obfuscator could be provided as
well, serving several subjects at once.

For the sake of simplicity, the arguments and results we present in this paper
refer to the two-dimensional case. However, they can be extended to the three-
dimensional case in a straightforward way.

In the most general case, a location measurement is affected by an intrinsic
error that limits its precision. Such error depends on several factors including
the localization technology, the quality of the sensor, the environment conditions.
Different technologies have different degrees of precision. For instance, the 68-th
percentile of the error on a Garmin professional GPS receiver is 1.1 meters, on the
iPhone’s GPS is 8.6 meters, and on the iPhone’s Wi-Fi localization system is 88
meters [21]. This implies that the location cannot be expressed as a geographical
point but rather as a neighborhood of the actual location. We assume that
locations are always represented as planar circular areas [1,21], because it is a
good approximation for many location techniques [17]. A location measurement
(Fig. 1) can be defined as follows:

Uniform Obfuscation for Location Privacy 93

Fig. 1. Location measurement

Definition 1 (Location measurement). Let X be the actual position of the
subject. A location measurement is a circular area Am = 〈Xm, rm〉 ⊆ R2, where
Xm is the center of Am and rm is the radius, such that P {X ∈ Am} = 1 (Ac-
curacy Property).

The Accuracy Property guarantees that the location measurement actually
contains the subject, or, equivalently, that the distance XXm does not exceed
rm. The radius rm specifies the precision of the localization technology, and
we call it precision radius. Different technologies have different values for the
precision radius. If a technology has a precision radius rm, then a subject cannot
be located with a precision better than rm. We assume that rm is constant over
time. This means either that the precision does not change over time, or that
rm represents the worst-case precision.

A subject can specify his privacy preference in terms of privacy radius (rp).
If the subject specifies rp, rp > rm, as his privacy radius, then he means that
he wishes to be located with a precision not better than rp. The task of an
obfuscation operator is just to produce an obfuscated position Xp, appearing to
the provider as a measurement with precision rp, worse than rm. More formally,
the obfuscation operator has to solve the following problem:

Problem 1 (Obfuscation). Let X be the actual position of a subject, Am =
〈Xm, rm〉, be the location measurement and, finally, rp, rp > rm, be his desired
privacy radius. Transform, Am into an obfuscated measurement (also called pri-
vacy area) Ap = 〈Xp, rp〉 such that the following properties hold:

1. (Accuracy) P {X ∈ Ap} = 1
2. (Uniformity) pdf (X) : R2 → R (probability density function) as uniform as

possible over Ap.

Property 1 guarantees that the obfuscated measurement actually contains the
subject. Property 2 guarantees that the subject can be located everywhere in
Ap with an almost-uniform probability. This property is particularly important
because it prevents an adversary from determining areas that more likely contain
the subject, and thus jeopardize the user privacy requirements. We will show how
to quantify such a uniformity in Section 3.

94 G. Dini and P. Perazzo

Fig. 2. Obfuscation and shift vector

With reference to Fig. 2, in order to produce an obfuscated measurement Ap,
the obfuscation operator applies both an enlargement and a translation to the
location measurement Am. Intuitively, the operator enlarges the location mea-
surement in order to decrease its precision and thus achieve the desired privacy
level rp. However, if Am and Ap were concentric, determining the former from
the latter would be trivial once the precision radius rm is known. Therefore, the
operator randomly selects a shift vector d and translates the enlarged measure-
ment by d, i.e., Xm +d = Xp. Of course, the system has to keep the shift vector
secret.

The enlargement and translation operations must be such that, when com-
posed, the resulting obfuscation satisfies the Accuracy and Uniformity Prop-
erties. Whereas the enlargement operation is straightforward, the translation
operation is instead more subtle. As to the Accuracy Property, we state the
following:

Proposition 1. Given a location measurement Am and an obfuscation (rp,d),
the resulting obfuscated measurement Ap fulfills the Accuracy Property iff:

‖d‖ ≤ (rp − rm)

Proof. In order to guarantee the Accuracy Property, it is necessary and sufficient
that Am ⊂ Ap. Thus, with reference to Fig. 2, the distance between Xm and
Xp must not exceed the difference between the precision radius and the privacy
radius, i.e., ‖d‖ ≤ (rp − rm).

3 Adversary Model and Uniformity Index

We assume the adversary knows the obfuscated measurement Xp, the privacy
radius rp, and the precision radius rm. She aims at discovering the actual sub-
ject’s position X. Since X cannot be known with infinite precision, the result of
the attack will have a probabilistic nature.

Uniform Obfuscation for Location Privacy 95

Three kinds of information could help the adversary: (i) the probability den-
sity of the measurement error, which depends on the sensor’s characteristics,
(ii) the probability density of the shift vector, which depends on the obfuscation
operator, and (iii) the probability density of the population, which depends on
the map’s characteristics. In the following, we will consider the population’s den-
sity as irrelevant or, equivalently, uniform. This is a broadly used hypothesis in
obfuscation systems [1]. In fact, landscape non-neutrality can be faced by means
of complementary techniques, such as enlarging the privacy radius [2].

Basing on the measurement error’s density and the shift vector’s density, the
adversary computes the pdf fX (x, y) of the subject’s position. After that, she
defines a confidence goal c ∈ (0, 1] and computes the smallest area which contains
the subject with a probability c:

Definition 2 (Smallest c-confidence area).

Âc = arg min
A∈Ac

{|A|}

where:

Ac =
{
A|A ⊆ R2, P {X ∈ A} = c

}
P {X ∈ A} =

∫∫
A

fX (x, y) dxdy

and |A| indicates the size of A.

The adversary can find the smallest c-confidence area either analytically, by
algebraic calculus, or statistically, by simulating many obfuscated measurements.
Âc will cover the zones where fX (x, y) is more concentrated. It is the result of the
attack, and the adversary’s most precise c-confidence estimation of the position.
The smaller Âc is, the more precise is the adversary in locating the subject. A
good obfuscation operator should keep Âc as larger as possible for every value of
c. This is done by fulfilling the Uniformity Property. The best case occurs when
the Perfect Uniformity Property is fulfilled, defined as follows:

Definition 3 (Perfect Uniformity Property). An obfuscation operator ful-
fills the Perfect Uniformity Property iff fX (x, y) is perfectly uniform over Ap.

An obfuscation operator which fulfills such a property is ideal. It serves only for
comparisons with real operators, and it is not realizable in the general case. This
is because we cannot force a particular pdf inside Ap if we cannot control the
pdf inside Am, which depends on the measurement error.

Another way to state the Perfect Uniformity is the following:

Proposition 2. A privacy area Ap fulfills the Perfect Uniformity Property iff:

∀A ⊆ Ap, P {X ∈ A} =
|A|
|Ap| (1)

96 G. Dini and P. Perazzo

That is, each sub-area of Ap contains the subject with a probability proportional
to its size. In such a case: ∣∣∣Âc

∣∣∣ = c · |Ap| (2)

Otherwise: ∣∣∣Âc
∣∣∣ < c · |Ap| (3)

The uniformity can be quantified by means of Eq. 3, by measuring how much,
for a given c,

∣∣∣Âc
∣∣∣ gets close to c · |Ap|. We define the following uniformity index

by fixing c = 90%:

Definition 4 (Uniformity index).

unif (Ap) =

∣∣∣Â90%
∣∣∣

90% · |Ap|
The constant factor in the denominator is for normalization purposes. The uni-
formity index ranges from 0% (worst case), if the subject’s position is perfectly
predictable, to 100% (best case), if the subject’s position is perfectly uniform. A
uniformity index of 100% is necessary and sufficient for the Perfect Uniformity.

The uniformity index has a direct practical application. For example, if an
obfuscation operator produces a privacy area of 400 m2 with a uniformity index
of 80%, the subject will be sure that an adversary cannot find his position (with
90% confidence) with more precision than 80% · 90% · 400 = 288 m2. In other
words, the uniformity index is proportional to the lack of precision of the attack.

4 UniLO

UniLO operator adds to Xm a shift vector d = (μ cosφ, μ sin φ) with the fol-
lowing probability densities (Fig. 3):

f (φ) =

{
1
2π φ ∈ [0, 2π)
0 otherwise

(4)

f (μ) =

{
2μ/(rp − rm)2 μ ∈ [0, rp − rm]
0 otherwise

(5)

These equations aim at producing shift vectors with uniform spacial probability
density, and magnitude less than or equal to rp − rm. This will greatly improve
the uniformity of fX (x, y). However, remind that fX (x, y) depends even on the
measurement error’s density, over which we have no control. So it will not be
perfectly uniform in the general case. UniLO fulfills the following properties:

Accuracy Property. The privacy area always contains the subject. We give a
formal proof of this.

Uniformity Property. For rp/rm ≥ 10, the uniformity index is above 81%.
We will prove this by simulations, in Section 5.

Uniform Obfuscation for Location Privacy 97

Fig. 3. φ and μ pdf s of a UniLO vector

Perfect Uniformity Property as rm → 0. With highly precise sensors,
UniLO tends to be an ideal obfuscation operator. We give a formal proof
of this.

Theorem 1. UniLO fulfills Accuracy Property.

Proof. By construction, ‖d‖ ≤ rp − rm. Hence, from Prop. 1, Accuracy holds.

Theorem 2. As rm → 0, UniLO fulfills Perfect Uniformity Property.

Proof. If rm → 0, Am will narrow to a point, with X ≡ Xm, and the probability
density of the magnitude in Eq. 5 will become:

f (μ) =

{
2μ/r2

p μ ∈ [0, rp]
0 otherwise

(6)

Fig. 4. Generic annular sector

98 G. Dini and P. Perazzo

Initially we prove that the hypothesis of Prop. 2 is satisfied for a generic annular
sector α (Fig. 4). From Eqq. 4 and 6, and since X ≡ Xm:

P {X ∈ α} = P {Xm ∈ α}

=
∫ Φ

0

∫ μ2

μ1

2μ

r2
p

dμ
1
2π

dφ

=
Φ

2

(
μ2

2 − μ2
1

)
πr2

p

Since the sizes of α and Ap are equal to:

|α| =
Φ

2
(
μ2

2 − μ2
1

)
|Ap| = πr2

p

then:
P {X ∈ α} =

|α|
|Ap|

If the hypothesis of Prop. 2 holds for a generic annular sector, it holds even for a
composition of annular sectors, because the total size is the sum of the sizes, and
the total probability is the sum of the probabilities. Since a generic A ⊆ Ap can
be partitioned in a set of infinitesimal annular sectors, the hypothesis of Prop. 2
holds for each A ⊆ Ap. Hence, Perfect Uniformity is satisfied.

It is worth remarking that UniLO operator protects a single obfuscated posi-
tion. If the adversary can access many obfuscated positions at different times,
as it happens in tracking systems, additional protection mechanisms must be
deployed. In fact, if the subject does not move or moves slowly, the adversary
could overlap the different privacy areas, thus reducing the uncertainty. A com-
mon countermeasure is to reuse the same shift vector every time [5]. If the subject
does not move, the adversary will receive the same privacy area, and no overlap
strategy will be possible.

5 Attack Resistance Analysis

UniLO has been implemented and used to obfuscate simulated location mea-
surements. The error on the location measurements was assumed to follow a
Rayleigh distribution, as it is usually done in GPS [13]. We truncated the distri-
bution at rm = 3σ, so that no sample falls outside Am. Such truncated Rayleigh
distribution differs from the untruncated one for only 1.1% of samples. The tests
aim at evaluating the uniformity of UniLO with respect to the ratio rp/rm

(radius ratio).
Figure 5 shows the statistical distribution of X in Ap of 2.000 UniLO samples

for different values of the radius ratio. They give a first visual impression about
the uniformity of UniLO. We note that the distribution tends to be perfectly
uniform as rp/rm → ∞. The inner areas are Â90%.

We compared UniLO with other common obfuscation noises:

Uniform Obfuscation for Location Privacy 99

(a) rp/rm = 2 (b) rp/rm = 4 (c) rp/rm = 10

Fig. 5. 2.000-sample simulations

0 50 100 150 200 250 300 350 400 450 500
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

privacy radius [m]

un
ifo

rm
ity

 in
de

x

UniLO

Uniform−μ noise

Gaussian−μ noise
Rayleigh noise

Fig. 6. unif (Ap) with rm = 5 m

– A Rayleigh noise (i.e. gaussian X - gaussian Y), used for modeling 2-
dimensional measurement errors. The Rayleigh distribution is truncated at
rp − rm, in order to fulfill Accuracy Property. The σ parameter is fixed at
(rp − rm)/3.

– A gaussian-μ noise (i.e. uniform angle - gaussian magnitude), used by
Krumm to perturb GPS data [14]. The gaussian distribution is truncated
at rp − rm, in order to fulfill Accuracy Property. The σ parameter is fixed
at (rp − rm)/3.

– A uniform-μ noise (i.e. uniform angle - uniform magnitude). This is the
simplest two-dimensional noise.

Figure 6 shows the uniformity indexes of the noises. Each uniformity index es-
timation was obtained by means of 50 million samples. As we told in Section 4,
UniLO offers a uniformity index above 81% for rp/rm ≥ 10. We can see how
UniLO performs better than all the other noises for all the radius ratii. In

100 G. Dini and P. Perazzo

Fig. 7. Employee localizer screenshot

particular, gaussian-magnitude and Rayleigh-magnitude noises are particularly
bad for obfuscating. We believe this is the reason why Krumm needed a sur-
prisingly high quantity of noise (σ = 5 Km) to effectively withstand inference
attacks [14].

6 Service Examples

UniLO operator has the advantage to be transparent to the service provider,
in the sense that a privacy area has the same properties as an ordinary mea-
surement area. A software service provider designed for receiving non-obfuscated
inputs can be seamlessly adapted for receiving UniLO-obfuscated inputs. The
following subsections describe some examples of services which can be deployed
over UniLO operator.

6.1 Employee Localizer

The aim is to retrieve the instantaneous locations of a set of employees to better
coordinate work operations. Before giving their consensus, employees specify
their privacy radii. A software service provider displays the locations on the
monitor of a human operator, in the form of circles on a map. Each circle is larger
or smaller depending on the privacy radius. The privacy radius may depend
on context-based rules. For example, an employee may require a high privacy
radius when standing in some zones of the map and a small one when standing
in others. Figure 7 shows a screenshot of such a service, taken from a practical
implementation.

6.2 Find the Near Friends

This is a social application, in which the users share their obfuscated posi-
tions with their friends. Alice wants to find out which of her friends are in her

Uniform Obfuscation for Location Privacy 101

Fig. 8. Find the near friends

proximity. We define “being in the proximity of Alice” as “being at a distance
of 400 meters or less from Alice”. In this case Alice is the service provider and
her friends are the subjects. While Alice knows its own position, the locations
of her friends are obfuscated. Suppose Bob is one of Alice’s friends. Since Alice
does not know his exact location, the question “is Bob in my proximity?” will
necessarily have a probabilistic answer, like “60% yes, 40% no”.

The problem can be modeled as depicted in Fig. 8. Alice builds a circle cen-
tered on its position and with 400 meters of radius (proximity circle, A), and
computes the intersection between that circle and the privacy circle of Bob (B).
If Bob is inside this intersection, he will be in Alice’s proximity. The probability
that such an event happens is:

P {Bob is in Alice’s proximity} =
∫∫

A∩B

f (x, y) dxdy (7)

Alice can numerically compute such an integral to find out the probability. If the
privacy area of Bob can be assumed as perfectly uniform, the Eq. 7 will become:

P {Bob is in Alice’s proximity} =
|A ∩ B|
|B|

In the figure, such probability is 23%. The service provider performs this calculus
only for each friend whose Xp is nearer than rp + 400 m. The others have no
intersection, and thus 0% probability. Alice finds an answer like the following:

– Bob is in the proximity with 23% probability.
– Carol with 10% probability.
– Dave with 100% probability.
– All the others with 0% probability.

6.3 Find the Nearest Taxi

Alice calls a taxi and releases her obfuscated GPS position in order to speed-
up the procedure. The taxi company knows the positions of the available taxis.

102 G. Dini and P. Perazzo

Fig. 9. Find the nearest taxi

Then, it finds the one which is probabilistically the nearest to Alice, and forwards
the request to it. In this way, only the taxi driver needs to know Alice’s exact
position.

The problem can be modeled as depicted in Fig. 9, by means of a Voronoi
diagram. Each region of the diagram corresponds to a taxi. Let us call the taxi
drivers Bob (region B), Carol (C), Dave (D) and Edith (E). If Alice is inside B,
Bob’s will be the nearest taxi, and so on. Fortune’s algorithm [11] can compute
the Voronoi diagram in O (n log n) time, where n is the number of taxis. The
taxi company obtains the probabilities by simply integrating f (x, y) over the
intersections between the privacy area and the Voronoi regions. If the privacy
area of Alice can be assumed as perfectly uniform, the integral becomes a simple
area ratio, like in Subsection 6.2. In the figure, the taxi company will obtain the
following probabilities:

– Bob’s taxi is the nearest with 51% probability.
– Carol’s taxi with 31% probability.
– Dave’s taxi with 18% probability.
– All the others with 0% probability.

The taxi company will then forward the request to Bob.

7 Related Works

Conway and Strip published a seminal work about general-purpose database-
oriented obfuscation methods [5]. The authors introduced two obfuscation
approaches that, with some generalization, have been used until today: value
distortion, which perturbs value with a random noise; and value-class member-
ship, which partitions the whole value domain in classes, and discloses only the
class where the value is in.

Gruteser and Grunwald first approached k-anonymity problem in location-
based services. The proposed solution involves the subdivision of the map in

Uniform Obfuscation for Location Privacy 103

static quadrants with different granularities [12]. Mascetti et al. proposed an
obfuscation method that divides the map in quadrants like [12], but it does
not aim at k-anonymity [15]. It focuses only on data obfuscation and proximity
services.

Duckham and Kulik took a radically different approach, that models a map as
an adjacency graph, where the vertices represent zones of the map and the edges
the adjacency between two zones [7]. A graph modelization is more powerful
in some applications, because it can model obstacles, unreachable zones and
hardly viable passages through edge costs. The obfuscation method reveals a set
of nodes where the subject could be. Proximity services are realized by means
of Dijkstra-like algorithms. Shokri et al. took a similar approach, and involves
also the anonymization of the subjects [20]. A drawback is that a graph-based
description of the map must be available, and shared between the subjects and
the service providers. Calculating a graph model of a geographic map that is both
simple and accurate may be not trivial. Another drawback is that the proximity
services are not based on simple and efficient Voronoi diagrams (cfr. Section 6),
but they have to involve more complex Dijkstra-like algorithms.

Ardagna et al. proposed a set of obfuscation operators that perturb the lo-
cation: radius enlargement, radius restriction, center shift [1]. These operators
transform a measurement area into an obfuscated one. To the best of our knowl-
edge, this is the most similar work to our approach, but it contains relevant
differences with respect to UniLO in the initial requirements and the final re-
sults:
– The subject’s actual location could be outside the obfuscated area. This

happens in case of radius reduction or center shift operators. Thus, the ob-
fuscation introduces inaccuracy which does not allow the service provider to
offer some services, like those described in Section 6. In contrast, UniLO
always guarantees that the obfuscated area contains the subject.

– The quantity of privacy is measured by a parameter, called relevance, which
is quite unintuitive. Final users prefer parameters they can easily understand
such as the privacy radius used by UniLO. If a user specifies a privacy
radius of 100 m, then he means that he wishes to be located with a precision
not better than 100 m. Relevance has not a 1-to-1 relationship with the
privacy radius: the same relevance corresponds to a small privacy radius if
the location technology is precise, or to a larger one if is imprecise.

– The resistance against attacks relies on the fact that the system chooses the
obfuscation operators at random. However, the adversary can make proba-
bilistic hypothesis on them. This possibility is not investigated. De facto, the
adversary is assumed to be unaware of the obfuscation method. This is an
optimistic assumption, which features a form of security by obscurity that
should be avoided [19].

8 Conclusions and Future Works

We have proposed UniLO, an obfuscation operator for location data, which
adds a special random noise which maximizes probability uniformity. UniLO is

104 G. Dini and P. Perazzo

simple and O (1)-complex. We have presented an adversary model which per-
forms statistical-based attacks. We have shown that the property of uniformity
neutralizes such attacks. We have proved the resistance of UniLO in terms of
uniformity, through both formal analysis and experimental results. To the best of
our knowledge, UniLO is the first obfuscation operator which offers guarantees
on uniformity.

The work leaves space for extensions to noncircular or nonplanar location
measurements, extensions for tracking systems, and extensions to offer multiple
contemporaneous levels of privacy.

Acknowledgment. This work has been supported by the EU-funded Integrated
Project PLANET “PLAtform for the deployment and operation of heterogeneous
NETworked cooperating objects,” and the Network of Excellence CONET “Co-
operating Objects Network of Excellence.”

References

1. Ardagna, C.A., Cremonini, M., De Capitani di Vimercati, S., Samarati, P.: An
obfuscation-based approach for protecting location privacy. IEEE Transactions on
Dependable and Secure Computing 8(1), 13–27 (2011)

2. Ardagna, C.A., Cremonini, M., Gianini, G.: Landscape-aware location-privacy pro-
tection in location-based services. Journal of Systems Architecture 55(4), 243–254
(2009)

3. Barkuus, L., Dey, A.: Location-based services for mobile telephony: a study of users
privacy concerns. In: Proceedings of the INTERACT 2003, 9th IFIP TC13 Inter-
national Conference on Human-Computer Interaction, pp. 709–712 (July 2003)

4. Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Per-
vasive Computing 2(1), 46–55 (2003)

5. Conway, R., Strip, D.: Selective Partial Access to a Database. In: Proceedings of
the 1976 Annual Conference, pp. 85–89. ACM (1976)

6. D’Roza, T., Bilchev, G.: An overview of location-based services. BT Technology
Journal 21(1), 20–27 (2003)

7. Duckham, M., Kulik, L.: A Formal Model of Obfuscation and Negotiation for
Location Privacy. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE
2005. LNCS, vol. 3468, pp. 152–170. Springer, Heidelberg (2005)

8. Duckham, M., Mason, K., Stell, J., Worboys, M.: A formal approach to imperfec-
tion in geographic information. Computer, Environment and Urban Systems 25,
89–103 (1999)

9. Duri, S., Gruteser, M., Liu, X., Moskowitz, P., Perez, R., Singh, M., Tang, J.M.:
Framework for security and privacy in automotive telematics. In: Proceedings of
the 2nd International Workshop on Mobile Commerce, pp. 25–32. ACM (2002)

10. Espinoza, F., Persson, P., Sandin, A., Nyström, H., Cacciatore, E., Bylund, M.:
GeoNotes: Social and navigational aspects of location-based information systems.
Tech. Rep. T2001/08, Swedish Institute of Computer Science (SICS) (May 2001)

11. Fortune, S.: A sweepline algorithm for voronoi diagrams. In: Proceedings of the
Second Annual ACM SIGACT/SIGGRAPH Symposium on Computational Ge-
ometry, SCG 1986, pp. 313–322. ACM (1986)

Uniform Obfuscation for Location Privacy 105

12. Gruteser, M., Grunwald, D.: Anonymous Usage of Location-Based Services
Through Spatial and Temporal Cloaking. In: Proceedings of the MobiSys 2003:
1st International Conference on Mobile Systems, Applications and Services, pp.
31–42 (2003)

13. Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: Global Positioning System:
Theory and Practice. Springer (2001)

14. Krumm, J.: A survey of computational location privacy. Personal and Ubiquitous
Computing 13(6), 391–399 (2008)

15. Mascetti, S., Bettini, C., Freni, D., Wang, X.S., Jajodia, S.: Privacy-Aware Proxim-
ity Based Services. In: Proceedings of the MDM 2009: 10th International Confer-
ence on Mobile Data Management: Systems, Services and Middleware, pp. 31–40.
IEEE (2009)

16. Myles, G., Friday, A., Davies, N.: Preserving privacy in environments with location-
based applications. IEEE Pervasive Computing 2(1), 56–64 (2003)

17. Pal, A.: Localization algorithms in wireless sensor networks: Current approaches
and future challenges. Network Protocols and Algorithms 2(1), 45–74 (2010)

18. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. Tech. rep.,
Computer Science Laboratory SRI International (1998)

19. Schneier, B.: Secrecy, security, and obscurity (May 2002),
http://www.schneier.com/crypto-gram-0205.html

20. Shokri, R., Freudiger, J., Jadliwala, M., Hubaux, J.P.: A distortion-based metric
for location privacy. In: Proceedings of the 8th ACM Workshop on Privacy in the
Electronic Society, WPES 2009, pp. 21–30. ACM (2009)

21. Zandbergen, P.A.: Accuracy of iPhone locations: A comparison of assisted GPS,
WiFi and cellular positioning. Transactions in GIS 13(s1), 5–26 (2009)

http://www.schneier.com/crypto-gram-0205.html

Security Vulnerabilities of User Authentication

Scheme Using Smart Card

Ravi Singh Pippal1, Jaidhar C.D.2, and Shashikala Tapaswi1,�

1 ABV-Indian Institute of Information Technology and Management,
Gwalior-474015, India

{ravi,stapaswi}@iiitm.ac.in
2 Defence Institute of Advanced Technology, Girinagar,

Pune-411025, India
jaidharcd@diat.ac.in

Abstract. With the exponential growth of Internet users, various busi-
ness transactions take place over an insecure channel. To secure these
transactions, authentication is the primary step that needs to be passed.
To overcome the problems associated with traditional password based
authentication methods, smart card authentication schemes have been
widely used. However, most of these schemes are vulnerable to one or
the other possible attack. Recently, Yang, Jiang and Yang proposed RSA
based smart card authentication scheme. They claimed that their scheme
provides security against replay attack, password guessing attack, insider
attack and impersonation attack. This paper demonstrates that Yang et
al.’s scheme is vulnerable to impersonation attack and fails to provide
essential features to satisfy the needs of a user. Further, comparative
study of existing schemes is also presented on the basis of various secu-
rity features provided and vulnerabilities present in these schemes.

Keywords: Authentication, Cryptanalysis, Impersonation, Password,
Smart card.

1 Introduction

Remote user authentication is used to verify the legitimacy of a remote user
and it is mandatory for most of the applications like online banking, ID ver-
ification, medical services, access control and e-commerce. One among various
authentication schemes is password based authentication scheme. In traditional
password based authentication schemes, server keeps verification table securely
to verify the legitimacy of a user. However, this method is insecure since an at-
tacker may access the contents of the verification table to break down the entire
system. Lamport [1] proposed password authentication scheme to authenticate
remote users by storing the passwords in a hashed format. Nevertheless, this
scheme has a security drawback as an intruder can go through the server and
modify the contents of the verification table. To resist all possible attacks on the

� Corresponding author.

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 106–113, 2012.
c© IFIP International Federation for Information Processing 2012

Security Vulnerabilities of User Authentication Scheme Using Smart Card 107

verification tables, smart card based password authentication scheme has been
proposed. This scheme eliminates the use of verification table.

Today, authentication based on smart card is employed continuously in sev-
eral applications like cloud computing, healthcare, key exchange in IPTV broad-
casting, wireless networks, authentication in multi-server environment, wireless
sensor networks and many more. Hence, it is necessary that the authentication
scheme must be efficient as well as secure enough so that it can be utilized for
practical applications.

1.1 Contribution of This Paper

Recently, Yang et al. [20] proposed an access control scheme using smart card.
This paper demonstrates that Yang et al.’s scheme has following weaknesses:
(i) unauthorized user can easily forge a valid login request. (ii) user is not able
to choose and change the password freely. (iii) it does not provide mutual au-
thentication, session key generation and early wrong password detection. (iv) it
fails to solve time synchronization problem. Further, comparative study of ex-
isting schemes is also done on the basis of various security features provided and
vulnerabilities present in these schemes.

The remainder of this paper is organized as follows. The existing literature
related to smart card authentication schemes is explored in section 2. Section 3
describes a brief review of Yang et al.’s access control scheme using smart card.
Security flaws of Yang et al.’s scheme along with comparison of existing schemes
based on various security features and attacks are presented in section 4. Finally,
section 5 concludes the paper.

2 Literature Review

Throughout the last two decades, various smart card authentication schemes
have been proposed [2, 4, 6–9, 11–13, 15, 17, 20]. However, most of these schemes
fail to fulfill the essential requirements of users. Hwang and Li [2] presented a
remote user authentication scheme using ElGamal’s cryptosystem and claimed
that their scheme is free from maintaining verification table and able to resist
replay attack. Chan and Cheng [3] found that Hwang-Li’s scheme is vulnerable
to impersonation attack. To improve efficiency, Sun [4] suggested a remote user
authentication scheme using one way hash function. However, Hsu [5] proved that
Sun’s scheme is insecure against offline and online password guessing attacks. To
handle these flaws, Chien et al. [6] proposed remote user authentication scheme
using one-way hash function. Nevertheless, it exhibits parallel session attack [5].
To defend against insider attack and reflection attack over [6], Ku and Chen [7]
presented an improved scheme which also provides the facility to change the
password freely. But, it is found that the scheme is weak against parallel session
attack and has insecure password change phase [8]. Further improvement has
also been suggested by Yoon et al. [8]. However, the improved scheme remains
vulnerable to guessing attack, Denial-of-Service attack and impersonation attack

108 R.S. Pippal, C.D. Jaidhar, and S. Tapaswi

[9]. To remedy these drawbacks, Wang et al. [9] proposed an enhanced scheme.
Though, the scheme is weak against guessing attack, denning sacco attack and
does not offer perfect forward secrecy [10].

Das et al. [11] offered a dynamic ID based remote user authentication scheme
using one way hash function. They claimed that their scheme is secure against ID
theft and able to withstand replay attack, forgery attack, guessing attack, insider
attack and stolen verifier attack. Though, the scheme is weak against guessing
attack [12] and insider attack [12, 13]. Additionally, the scheme is password in-
dependent [13] and does not provide mutual authentication [12, 13]. To beat
these flaws, Wang et al. [13] suggested an improved scheme. However, Ahmed
et al. [14] found that the scheme does not provide security against password
guessing attack, masquerade attack and Denial-of-Service attack. An enhanced
scheme has also been given to resist password guessing attack, user masquerade
attack and server masquerade attack [15]. Nevertheless, the scheme is exposed
to password guessing attack, server masquerade attack and lack of password
backward security [16]. Song [17] proposed symmetric key cryptography based
smart card authentication scheme and claimed that the scheme is able to resist
the existing potential attacks. In addition, it provides mutual authentication and
shared session key. However, Song’s scheme fails to provide early wrong pass-
word detection [18] and perfect forward secrecy [18, 19]. Moreover, it does not
resist offline password guessing attack and insider attack [19]. All the schemes
discussed so far have their pros and cons. Recently, Yang, Jiang and Yang [20]
proposed RSA based smart card authentication scheme. The authors claimed
that their scheme has the ability to withstand existing attacks. Though, this
paper proves that Yang et al.’s scheme is exposed to impersonation attack and
does not provide essential features.

3 Review of Yang et al.’s Scheme

This section briefly reviews Yang et al.’s access control scheme using smart
card [20]. The notations used throughout this paper are summarized in Table 1.
The scheme consists of four phases: Initialization phase, Registration phase,
Login phase and Authentication phase. Three phases are shown in Fig. 1.

Table 1. Notations used in this paper

Symbols Their meaning Symbols Their meaning

Ui Remote user TA Attacker time stamp

S Authentication server φ(N) Euler’s totient function

UA Attacker H(·) Collision-resistant hash function

IDi Identity of Ui ‖ Message concatination

PWi Password generated by S ��� Secure channel

TC User time stamp −→ Insecure channel

Security Vulnerabilities of User Authentication Scheme Using Smart Card 109

Fig. 1. Yang et al.’s scheme

3.1 Initialization Phase

In this phase, server S generates the following system parameters.
N : N = p× q such that p = 2p1 + 1, q = 2q1 + 1, where p, q, p1, q1 are all

primes.
e : Secret key of the system satisfying gcd(e, φ(N)) = 1.

3.2 Registration Phase

In this phase, Ui selects IDi and submits it to S over a secure channel. Upon re-
ceiving the registration request from Ui, S selects Ri such that gcd(Ri, φ(N)) = 1
and computes di such that di × e = 1 mod(Ri × φ(N)), Ui’s password PWi =
H(IDi)

dimod(N) and delivers PWi as well as smart card over secure channel
to Ui by storing {H(·), N} into smart card memory.

3.3 Login Phase

Ui inserts the smart card to the card reader and keys in IDi and PWi. The
card reader generates a random number r, computes c1 = H(IDi)

rmod(N), t
= H(IDi ‖ TC ‖ c1), c2 = (PWi)

rtmod(N) and sends the login request M =
{IDi ‖ TC ‖ c1 ‖ t ‖ c2} to S.

3.4 Authentication Phase

Upon receiving the login requestM = {IDi ‖ TC ‖ c1 ‖ t ‖ c2}; S first checks the
validity of IDi and TC to accept/reject the login request. If true, S computes
t′ = H(IDi ‖ TC ‖ c1) and checks whether c2

e = c1
t′mod(N) holds or not. If it

holds, S accepts the login request M otherwise rejects it.

110 R.S. Pippal, C.D. Jaidhar, and S. Tapaswi

Fig. 2. Impersonation attack on Yang et al.’s scheme

4 Weaknesses Present in Yang et al.’s Scheme

This section demonstrates the security flaws in Yang et al.’s scheme under the
assumption that the attacker is able to intercept all the messages exchanged
between Ui and S. It is found that this scheme has following weak spots: (i)
vulnerable to impersonation attack, (ii) no early wrong password detection, (iii)
no mutual authentication and (iv) no session key generation. In addition, this
scheme fails to solve time synchronization problem and does not allow users to
choose and change the password freely.

4.1 Vulnerable to Impersonation Attack

First, an attacker UA intercepts the login request {IDi ‖ TC ‖ c1 ‖ t ‖ c2} trans-
mitted from user Ui to server S (as shown in Fig. 2). UA gets the current times-
tamp TA, computes tA = H(IDi ‖ TA ‖ c1) and finds a value Δt such that tA =

t×Δt. After gettingΔt, UA computes c2
′ = (c2)

Δt
mod(N) = (PWi)

r×tAmod(N)
and sends forged login request MA = {IDi ‖ TA ‖ c1 ‖ tA ‖ c′2} to S. Once the
request MA is received, S computes t′A = H(IDi ‖ TA ‖ c1) = tA and verifies

whether c′e2 = c
t′A
1 mod(N) or not which is obviously true. Hence, UA is able to

impersonate as legitimate user Ui.

4.2 No Early Wrong Password Detection

To prevent Denial-of-Service attack, password needs to be verified at the user
side prior to login request creation. In this scheme, adversary can create invalid
login request by entering wrong password which will be detected only at the
server side not at the user side. Hence, it leads to Denial-of-Service attack.

Security Vulnerabilities of User Authentication Scheme Using Smart Card 111

4.3 No Mutual Authentication

It is necessary that not only server verifies the legal users, but users also need to
verify the identity of the legal server to achieve two way secure communication.
In this scheme, only the login request is verified at the server side to verify the
legitimacy of the user. Hence, this scheme fails to provide mutual authentication.
Further, session key is used to secure the entire communication between them
and it must be changed from session to session. In this scheme, there is no session
key generation.

In timestamp-based authentication schemes, the clock of the server and all
registered user systems need to be synchronized. In addition, transmission delay
of the login request needs to be limited. However, it is inefficient from the prac-
tical point of view specially for a large network where clock synchronization is
hard to achieve. Yang et al.’s scheme fails to solve this problem. Moreover, users
are not able to choose the password as per their convenience. They must remem-
ber the password issued by the server which causes inconvenience. Further, they
are not able to change the password whenever they feel.

4.4 Performance Comparison

This paper identifies the possible attacks for existing smart card authentication
schemes. These include (i) impersonation attack (SA1), (ii) replay attack (SA2),
(iii) password guessing attack (SA3), (iv) reflection attack (SA4), (v) parallel
session attack (SA5), (vi) insider attack (SA6) and (vii) attack on password
change phase (SA7). A comparison is presented in Table 2 based on the ideas
given by different authors.

Further, essential security features that have to be offered by any authentication
scheme is also spotted out. These features include (i) user chooses the password
(SF1), (ii) user changes the password (SF2), (iii) early wrong password detection
(SF3), (iv) mutual authentication (SF4), (v) session key generation (SF5) and (vi)
free from time synchronization problem (SF6). A comparative study of existing
schemes is given in Table 3 on the basis of these security features.

Table 2. Comparison based on various security attacks

Security Attacks SA1 SA2 SA3 SA4 SA5 SA6 SA7

Hwang-Li [2] Insecure[3] Secure Secure NA NA NA NA

H. M. Sun [4] Secure Secure Insecure[5] NA NA NA NA

Chien et al. [6] Secure Secure Insecure[7] Insecure[7] Insecure[5] Insecure[7] NA

Ku-Chen [7] Insecure[9] Secure Insecure[9] Secure Insecure[8] Secure Insecure[8]

Yoon et al. [8] Insecure[9] Secure Insecure[9] Secure Secure Secure Secure

Wang et al. [9] Secure Secure Insecure[10] Secure Secure Secure Secure

Das et al. [11] Secure Secure Insecure[12] NA NA Insecure[12],[13] Insecure[14]

Wang et al. [13] Insecure[14] Secure Insecure[14] Secure Secure NA Insecure[14]

Hao-Yu [15] Secure Secure Insecure[16] Secure Secure NA Secure

R. Song [17] Secure Secure Insecure[19] Secure Secure Insecure[19] Secure

Yang et al. [20] Insecure Secure Secure NA NA NA NA

[x] As per the reference [x]

112 R.S. Pippal, C.D. Jaidhar, and S. Tapaswi

Table 3. Comparison based on various security features provided

Security Features SF1 SF2 SF3 SF4 SF5 SF6

Hwang-Li [2] No No No No No No

H. M. Sun [4] No No No No No No

Chien et al. [6] Yes No No Yes No No

Ku-Chen [7] Yes Yes No Yes No No

Yoon et al. [8] Yes Yes No Yes No No

Wang et al. [9] Yes Yes Yes Yes Yes No

Das et al. [11] Yes Yes No No No No

Wang et al. [13] No Yes No Yes No No

Hao-Yu [15] No Yes No Yes No No

R. Song [17] Yes Yes No Yes Yes No

Yang et al. [20] No No No No No No

From both of these tables, it is clear that none of these schemes offer protection
against identified attacks and fulfill the needs of a user.

5 Conclusion

Authentication is the imperative factor for any scheme that deals with the trans-
mission of secret information over a public network. This paper pointed out that
Yang et al.’s scheme has security flaws as an intruder can easily impersonate
legal users to pass the authentication phase. Moreover, it does not allow users
to choose and change the password freely which results inconvenience from the
user’s point of view. In addition, it does not provide mutual authentication,
session key generation, early wrong password detection and fails to solve time
synchronization problem. Hence, the scheme is computationally inefficient as
well as insecure for practical applications.

Furthermore, performance comparison of existing smart card authentication
schemes is also presented which shows that a lot of work has to be done in
this field to provide secure and efficient authentication scheme. Before designing
any authentication scheme, the identified security attacks must be taken into
consideration along with the requirements desired by the end users.

Acknowledgments. The authors would like to thank ABV-Indian Institute
of Information Technology and Management, Gwalior, India for providing the
academic support.

References

1. Lamport, L.: Password authentication with insecure communication. Communica-
tions of the ACM 24, 770–772 (1981)

2. Hwang, M.S., Li, L.H.: A new remote user authentication scheme using smart
cards. IEEE Transactions on Consumer Electronics 46, 28–30 (2000)

3. Chan, C.K., Cheng, L.M.: Cryptanalysis of a remote user authentication scheme
using smart cards. IEEE Transactions on Consumer Electronics 46, 992–993 (2000)

Security Vulnerabilities of User Authentication Scheme Using Smart Card 113

4. Sun, H.M.: An efficient remote user authentication scheme using smart cards. IEEE
Transactions on Consumer Electronics 46, 958–961 (2000)

5. Hsu, C.L.: Security of two remote user authentication schemes using smart cards.
IEEE Transactions on Consumer Electronics 49, 1196–1198 (2003)

6. Chien, H.Y., Jan, J.K., Tseng, Y.M.: An efficient and practical solution to remote
authentication: smart card. Computers and Security 21, 372–375 (2002)

7. Ku, W.C., Chen, S.M.: Weaknesses and improvements of an efficient password
based remote user authentication scheme using smart cards. IEEE Transactions
on Consumer Electronics 50, 204–207 (2004)

8. Yoon, E.J., Ryu, E.K., Yoo, K.Y.: Further improvement of an efficient password
based remote user authentication scheme using smart cards. IEEE Transactions on
Consumer Electronics 50, 612–614 (2004)

9. Wang, X.M., Zhang, W.F., Zhang, J.S., Khan, M.K.: Cryptanalysis and improve-
ment on two efficient remote user authentication scheme using smart cards. Com-
puter Standards and Interfaces 29, 507–512 (2007)

10. Yoon, E.J., Lee, E.J., Yoo, K.Y.: Cryptanalysis of Wang et al.’s remote user authen-
tication scheme using smart cards. In: 5th International Conference on Information
Technology: New Generations, Las Vegas, USA, pp. 575–580 (2008)

11. Das, M.L., Saxena, A., Gulati, V.P.: A dynamic ID-based remote user authentica-
tion scheme. IEEE Transactions on Consumer Electronics 50, 629–631 (2004)

12. Liao, I.E., Lee, C.C., Hwang, M.S.: Security enhancement for a dynamic ID-based
remote user authentication scheme. In: International Conference on Next Genera-
tion Web Services Practices, Seoul, Korea, pp. 437–440 (2005)

13. Wang, Y.Y., Liu, J.Y., Xiao, F.X., Dan, J.: A more efficient and secure dynamic ID-
based remote user authentication scheme. Computer Communications 32, 583–585
(2009)

14. Ahmed, M.A., Lakshmi, D.R., Sattar, S.A.: Cryptanalysis of a more efficient and
secure dynamic id-based remote user authentication scheme. International Journal
of Network Security and its Applications 1, 32–37 (2009)

15. Hao, Z., Yu, N.: A security enhanced remote password authentication scheme using
smart card. In: 2nd International Symposium on Data, Privacy and E-Commerce,
Buffalo, USA, pp. 56–60 (2010)

16. Zhang, H., Li, M.: Security vulnerabilities of an remote password authentication
scheme with smart card. In: 2011 International Conference on Consumer Electron-
ics, Communications and Networks, XianNing, China, pp. 698–701 (2011)

17. Song, R.: Advanced smart card based password authentication protocol. Computer
Standards and Interfaces 32, 321–325 (2010)

18. Pippal, R.S., Jaidhar, C.D., Tapaswi, S.: Comments on symmetric key encryp-
tion based smart card authentication scheme. In: 2nd International Conference on
Computer Technology and Development, Cairo, Egypt, pp. 482–484 (2010)

19. Horng, W.B., Lee, C.P., Peng, J.W.: Security weaknesses of Song’s advanced smart
card based password authentication protocol. In: 2010 IEEE International Confer-
ence on Progress in Informatics and Computing, Shanghai, China, pp. 477–480
(2010)

20. Yang, C., Jiang, Z., Yang, J.: Novel access control scheme with user authentication
using smart cards. In: 3rd International Joint Conference on Computational Science
and Optimization, Huangshan, China, pp. 387–389 (2010)

Secure Password-Based Remote User

Authentication Scheme with Non-tamper
Resistant Smart Cards

Ding Wang1,2,�, Chun-guang Ma1,��, and Peng Wu1

1 Harbin Engineering University, Harbin City 150001, China
2 Automobile Management Institute of PLA, Bengbu City 233011, China

wangdingg@mail.nankai.edu.cn, chunguangma@hrbeu.edu.cn

Abstract. In DBSec’11, Li et al. showed that Kim and Chung’s
password-based remote user authentication scheme is vulnerable to var-
ious attacks if the smart card is non-tamper resistant. Consequently,
an improved version was proposed and claimed that it is secure against
smart card security breach attacks. In this paper, however, we will show
that Li et al.’s scheme still cannot withstand offline password guessing
attack under the non-tamper resistance assumption of the smart card. In
addition, their scheme is also prone to denial of service attack and fails to
provide user anonymity and forward secrecy. Therefore, a robust scheme
with a brief analysis is presented to overcome the identified drawbacks.

Keywords: Cryptanalysis, Network security, Authentication protocol,
Smart card, Non-tamper resistant, User anonymity.

1 Introduction

Password-based authentication is widely used for systems that control remote
access to computer networks. In order to address some of the security and man-
agement problems that occur in traditional password authentication protocols,
research in recent decades has focused on smart card based password authenti-
cation. Since Chang and Wu [1] introduced the first remote user authentication
scheme using smart cards in 1993, there have been many smart card based au-
thentication schemes proposed. In most of the previous authentication schemes,
the smart card is assumed to be tamper-resistant, i.e., the secret information
stored in the smart card cannot be revealed. However, recent research results
have shown that the secret data stored in the smart card could be extracted by
some means, such as monitoring the power consumption [2, 3] or analyzing the
leaked information [4]. Therefore, such schemes based on the tamper resistance
assumption of the smart card are vulnerable to some types of attacks, such as
impersonation attacks, offline password guessing attacks, etc., once an adversary

� This is the extended abstract and a full version [7] of this paper is available at
http://machunguang.hrbeu.edu.cn/Research/

�� Corresponding author.

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 114–121, 2012.
c© IFIP International Federation for Information Processing 2012

Secure Password-Based Remote User Authentication Scheme 115

has obtained the secret information stored in a user’s smart card and/or just
some intermediate computational results in the smart card.

In DBSec’11, Li et al. [5] identified that Kim and Chung’s scheme [6] cannot
withstand various attacks and further proposed an enhanced remote authenti-
cation scheme. They claimed their scheme is secure and can overcome all the
identified security flaws of Kim and Chung’s scheme even if the smart card is
non-tamper resistant. In this work, however, we will demonstrate that Li et al.’s
scheme cannot withstand denial of service attack, and it is still vulnerable to of-
fline password guessing attack under their assumption. In addition, their scheme
does not provide forward secrecy and user anonymity. To conquer the identified
weaknesses, a robust authentication scheme based on the secure one-way hash
function and the well-known discrete logarithm problem is presented.

2 Review of Li et al.’s Scheme

In this section, we briefly illustrate the remote user authentication scheme pro-
posed by Li et al. [5] in DBSec 2011. Their scheme consists of four phases:
registration, login, verification and password update. For ease of presentation,
we employ some intuitive abbreviations and notations listed in Table 1.

Table 1. Notations

Symbol Description Symbol Description

Ui ith user x the secret key of remote server S
S remote server ‖ the string concatenation operation
IDi identity of user Ui h(·) collision free one-way hash function
Pi password of user Ui → a common channel
⊕ the bitwise XOR operation ⇒ a secure channel

2.1 Registration Phase

The registration phase involves the following operations:

1) User Ui chooses his/her identity IDi, password Pi, and then generates a
random number RN1.

2) Ui ⇒ S : {IDi, h(h(Pi ⊕RN1))}.
3) On receiving the registration message from Ui, the server S creates an

entry {IDi,N, h(h(Pi ⊕ RN1))} in the verification table,where N = 0 if it is
Ui’s initial registration, otherwise S set N = N + 1. Then, server S computes
C1 = h(IDi ‖ x ‖ N)⊕ h(h(Pi ⊕RN1))

4) S ⇒ Ui: A smart card containing security parameters {IDi,C1, h(·)}.
5) Upon receiving the smart card,user Ui stores RN1 into his/her smart card.

2.2 Login Phase

When Ui wants to login to S, the following operations will be performed:

116 D. Wang, C.-g. Ma, and P. Wu

1) Ui inserts his/her smart card into the card reader, and inputs IDi,Pi and
a random number RN2.

2) The smart card generates a random number RC and then computes C2 =
h(Pi ⊕ RN1),C3 = C1 ⊕ h(C2),C4 = C3 ⊕ C2,C5 = h(h(Pi ⊕ RN2)) and C6 =
EKUi(C5, RC),where KUi = h(C2 ‖ C3).

3) Ui → S : {IDi, C4, C6}.

2.3 Verification Phase

After receiving the login request from Ui, S performs the following operations:

1) The server S first checks the validity of identity IDi and then computes
C7 = h(IDi ‖ x ‖ N), C8 = C4 ⊕ C7, C9 = h(C8) , and compares C9 with the
third field of the entry corresponding to IDi in its verification table. If it equals,
S successfully authenticates Ui and computes symmetric key K ′Ui

= h(C8 ‖
C7), and obtains (C5,RC) by decrypting C6. Then, S replaces the third field
h(h(Pi ⊕ RNi)) of the entry corresponding to IDi with C5 = h((Pi ⊕ RN2)),
generates a random RS and computes K5 = h(C7 ‖ C8).

2) S → Ui : {EK5(RC,RS,C5)}.
3) On receiving the response from server S, the smart card computes the

symmetric key K ′s = h(C3 ‖ C2) and obtains (RC′, C′5) by decrypting the re-
ceived message using Ks. Then, the smart card checks whether (RC′, C′5) equals
to (RC,C5) generated in the login phase. This equivalency authenticates the
legitimacy of the server S, and smart card replaces original RN1 and C1 with
new RN2 and C3 ⊕ C5, respectively.

4) Ui → S : {h(RS)}
5) On receiving h(RS)′, the serve S compares the computed h(RS) with the

received value of h(RS)′. If they are not equal, the connection is terminated.
6) The user Ui and the server S agree on the session key SK = h(RC ⊕RS)

for securing future data communications.

2.4 Password Change Phase

The password change phase is provided to allow users to change their passwords
freely. Since the password change phase has little to do with our discussion, we
omit it here and detailed information is referred to Ref. [5].

3 Cryptanalysis of Li et al.’s Scheme

In this section we will show that Li et al.’s scheme is vulnerable to offline pass-
word guessing attack and denial of service attack. In addition, their scheme
fails to preserve user anonymity and forward secrecy. Although tamper resistant
smart card is widely assumed in the literature, such an assumption is difficult in
practice. Many researchers have shown that the secret information stored in a
smartcard can be breached [2–4]. Be aware of this threat, Li et al. intentionally
based their scheme on the assumption of non-tamper resistance of the smart
card. However, Li et al.’s scheme fails to serve its purposes.

Secure Password-Based Remote User Authentication Scheme 117

3.1 Offline Password Guessing Attack

Let us consider the following scenarios. In case a legitimate user Ui’s smart
card is stolen by an adversary A just before Ui’s jth login, and the stored
secret values such as C1 and RNj can be revealed. Then, A returns the smart
card to Ui and eavesdrops on the insecure channel. Because Ui’s identity is
transmitted in plaintext within the login request, it is not difficult for A to
identify the login request message from Ui. Once the jth login request message
{IDi, C

j
i = h(IDi ‖ x ‖ N) ⊕ h(Pi ⊕ RNi), C

j
6} is intercepted by A, an offline

password guessing attack can be launched in the following steps:

Step 1. Guesses the value of Pi to be P ∗i from the password dictionary.
Step 2. Computes T = h(h(P ∗i ⊕RNj))⊕ h(P ∗i ⊕RNj), as RNj is known. .

Step 3. Computes T ′ = C1⊕Cj
4 , as C1 has been extracted and Cj

4 has been

intercepted, where C1 = h(IDi ‖ x ‖ N) ⊕ h(h(Pi ⊕ RNj)), C
j
4 =

h(IDi ‖ x ‖ N)⊕ h(Pi ⊕RNj).
Step 4. Verifies the correctness of P ∗i by checking if T is equal to T ′.
Step 5. Repeats Steps 1, 2, 3, and 4 until the correct value of Pi is found.

After guessing the correct value of Pi, the adversary A can compute Cj
3 = C1 ⊕

h(h(Pi ⊕RNj)), C
j
2 = h(Pi ⊕RNj) and Kj

Ui
= h(Cj

2 ‖ C
j
3). Then the adversary

can obtainRCj by decrypting C
j
6 usingKj

Ui
, and getsRSj in a similar way. Hence

the malicious user can successfully compute the session key SKj = h(RCj⊕RSj)
and renders the jth session between Ui and S completely insecure.

3.2 Denial of Service Attack

A denial of service attack is an offensive action whereby the adversary could use
some methods to work upon the server so that the login requests issued by the
legitimate user will be denied by the server. In Li et at.’s scheme, an adversary
can easily launch a denial of service attack in the following steps:

Step 1. Eavesdrops over the channel, intercepts a login request {IDi, C
j
4 , C

j
6}

from Ui and blocks it, supposing it is Ui’s jth login.
Step 2. Replaces Cj

6 with an equal-sized random number R, while IDi and

Cj
4 are left unchanged.

Step 3. Sends {IDi, C
j
4 , R} instead of {IDi, C

j
4 , C

j
6} to the remote server S.

After receiving this modified message, S will perform Step V 1 and V 2 of the
verification phase without observing any abnormality, as a result, the verifier
corresponding to IDi in the verification table will be updated and the response
EKS (RC∗j , RSj , C

j∗
5) will be sent to Ui. On receiving the response from S, Ui

decrypts EKS (RC∗j , RSj, C
j∗
5) and will find (RC∗j , C

j∗
5) unequal to (RC,C5) ,

thus the session will be terminated. Thereafter, Ui’s succeeding login requests
will be denied unless he/she re-registers to S again. That is, the adversary can
easily lock the account of any legitimate user without using any cryptographic
techniques. Thus, Li et al.’s protocol is vulnerable to denial of service attack.

118 D. Wang, C.-g. Ma, and P. Wu

3.3 Failure to Achieve Forward Secrecy

Let us consider the following scenarios. Supposing the server S’s long time pri-
vate key x is leaked out by accident or intentionally stolen by an adversary
A. Once the value of x is obtained, with previously intercepted Cj

4 , C
j
6 and

EKS (RC,RS,C5) transmitted in the legitimate user Ui’s jth authentication pro-
cess, A can compute the session key of S and Ui’s jth encrypted communication
through the following method:

Step 1. Assumes N = 0.
Step 2. Computes C∗7 = h(IDi ‖ x ‖ N) and C∗8 = C∗7 ⊕ Cj

4 , where IDi is
previously obtained by eavesdropping on the insecure channel.

Step 3. Computes K∗Ui
= h(C∗8 ‖ C∗7) and K∗S = h(C∗7 ‖ C∗8).

Step 4. Decrypts Cj
6 with K∗Ui

to obtain RC∗i .
Step 5. Decrypts EKS (RC,RS,C5) with K∗S to obtain RC∗∗i .
Step 6. Verifies the correctness of N by checking if RC∗i is equal to RC∗∗i .

If they are unequal, sets N = N + 1 and goes back to Setp 2.
Step 7. Decrypts EKS (RC,RS,C5) to obtain RSi using K∗S.
Step 8. Computes SKi = h(RCi ⊕RSi).

Note that the value of N should not be very big, since the re-registration phase
is not performed frequently in practice, and thus the above procedure can be
completed in polynomial time, which results in the breach of forward secrecy.

3.4 Failure to Preserve User Anonymity

In Li et al.’s scheme, user’s identity ID is static and in plaintext form in all
the transaction sessions, an adversary can easily obtain the plaintext identity of
this communicating client once the login messages were eavesdropped. Hence,
different login request messages belonging to the same user can be traced out
and may be interlinked to derive some secret information related to the user [8].
Consequently, user anonymity is not preserved in their scheme.

4 Our Proposed Scheme

According to our analysis, three principles for designing a sound password-based
remote user authentication scheme are presented. First, user anonymity, espe-
cially in some application scenarios, (e.g., e-commence), should be preserved,
because from the identity IDi, some personal secret information may be leaked
about the user. Second, a nonce based mechanism is often a better choice than
the timestamp based design to resist replay attacks, since clock synchronization
is difficult and expensive in existing network environment, especially in wide
area networks, and these schemes employing timestamp may still suffer from re-
play attacks as the transmission delay is unpredictable in real networks. Finally,
the password change process should be performed locally without the hassle of
interaction with the remote authentication server for the sake of security, user
friendliness and efficiency. In this section, we present an improved remote user
authentication scheme against smart card security breach.

Secure Password-Based Remote User Authentication Scheme 119

4.1 Registration Phase

Let (x, y = gx mod n) denote the server S’s private key and its corresponding
public key, where x is kept secret by the server and y is stored inside each user’s
smart card. The registration phase involves the following operations:

Step R1. Ui chooses his/her identity IDi, password Pi and a random number b.
Step R2. Ui ⇒ S : {IDi, h(b ‖ Pi)}.
Step R3. On receiving the registration message from Ui, the server S computes

Ni = h(b ‖ Pi)⊕ h(x ‖ IDi) and Ai = h(IDi ‖ h(b ‖ Pi)).
Step R4. S ⇒ Ui : A smart card containing security parameters {Ni, Ai, n, g,

y, h(·)}.
Step R5. Upon receiving the smart card, Ui enters b into his smart card.

4.2 Login Phase

When Ui wants to login the system, the following operations will be performed:

Step L1. Ui inserts his/her smart card into the card reader and inputs ID∗i , P
∗
i .

Step L2. The smart card computes A∗i = h(ID∗i ‖ h(b ‖ P ∗i)) and verifies the
validity of A∗i by checking whether A∗i equals to the stored Ai. If the
verification holds, it implies ID∗i = IDi and P ∗i = Pi. Otherwise, the
session is terminated.

Step L3. The smart card chose a random number u and computes C1 = gu mod
n , Y1 = yu mod n , h(x ‖ IDi) = Ni⊕h(b ‖ Pi), CIDi = IDi⊕h(C1 ‖
Y1) and Mi = h(CIDi ‖ C1 ‖ h(x ‖ IDi)).

Step L4. Ui → S : {C1, CIDi,Mi}.

4.3 Verification Phase

After receiving the login request, the server S performs the following operations:

Step V1. The server S computes Y2 = (C1)
x mod n using its private key x, and

derives IDi = CIDi ⊕ h(C1 ‖ Y2) and M∗i = h(CIDi ‖ C1 ‖ h(x ‖
IDi)). S compares M∗i with the received value of Mi. If they are not
equal, the request is rejected. Otherwise, server S generates a random
number v and computes the session key SK = (C1)

v mod n , C2 = gv

mod n and C3 = h(SK ‖ C2 ‖ h(x ‖ IDi)).
Step V2. S → Ui : {C2, C3}.
Step V3. On receiving the reply message from the server S, Ui computes SK =

(C2)
u mod n, C∗3 = h(SK ‖ C2 ‖ h(x ‖ IDi)), and compares C∗3 with

the received C3. This equivalency authenticates the legitimacy of the
server S, and Ui goes on to compute C4 = h(C3 ‖ h(x ‖ IDi) ‖ SK).

Step V4. Ui → S : {C4}
Step V5. Upon receiving {C4} from Ui, the server S first computes C∗4 = h(C3 ‖

h(x ‖ IDi) ‖ SK) and then checks if C∗4 is equal to the received value
of C4 . If this verification holds, the server S authenticates the user Ui

and the login request is accepted else the connection is terminated.
Step V6. The user Ui and the server S agree on the common session key SK for

securing future data communications.

120 D. Wang, C.-g. Ma, and P. Wu

4.4 Password Change Phase

In this phase, we argue that the user’s smart card must have the ability to detect
the failure times. Once the number of login failure exceeds a predefined system
value, the smart card must be locked immediately to prevent the exhaustive
password guessing behavior. This phase involves the following local operations:

Step P1. Ui inserts his/her smart card into the card reader and inputs the
identity IDi and the original password Pi. The smart card computes
A∗i = h(IDi ‖ h(b ‖ Pi)) and verifies the validity of A∗i by checking
whether A∗i equals to the stored Ai. If the verification holds, it implies
the input IDi and Pi are valid. Otherwise, the smart card rejects.

Step P2. The smart card asks the cardholder to resubmit a new password Pnew
i

and computes Nnew
i = Ni ⊕ h(b ‖ Pi)⊕ h(b ‖ Pnew

i), Anew
i = h(IDi ‖

h(b ‖ Pnew
i)). Thereafter, smart card updates the values of Ni and Ai

stored in its memory with Nnew
i and Anew

i .

5 Security Analysis

In the following, we briefly analyze the enhanced security of the proposed scheme
under the assumption that the secret information stored in the smart card can
be revealed, i.e., the security parameters Ni, Ai and y can be obtained by a
malicious privileged user. A comprehensive analysis is available in [7].

(1) User anonymity: Suppose that the attacker has intercepted Ui’s au-
thentication messages {CIDi,Mi, C1, C2, C3, C4}. Then, the adversary
may try to retrieve any static parameter from these messages, but these
messages are all session-variant and indeed random strings due to the
randomness of u and/or v. Accordingly, without knowing the random
number u, the adversary will face to solve the discrete logarithm prob-
lem to retrieve the correct value of IDi from CIDi,, while IDi is the only
static element corresponding to Ui in the transmitted messages. Hence,
the proposed scheme can preserve user anonymity.

(2) Offline password guessing attack: Suppose that a malicious privi-
leged user Ui has got Uk’s smart card, and the secret information b, Nk,
Ak and y can also be revealed under our assumption of the non-tamper
resistant smart card. Even after gathering this information, the attacker
has to at least guess both IDi and Pi correctly at the same time, because
it has been demonstrated that our scheme can provide identity protec-
tion. It is impossible to guess these two parameters correctly at the same
time in polynomial time, and thus the proposed scheme can resist offline
password guessing attack with smart card security breach.

(3) Denial of service attack: Assume that an adversary A has got the
legitimate user Ui’s smart card. However, in our scheme, the smart card
computes A∗i = h(IDi ‖ h(b ‖ Pi)) and compares it with the stored value
of Ai in its memory to checks the validity of submitted IDi and Pi before

Secure Password-Based Remote User Authentication Scheme 121

the password update procedure. It is not possible for A to guess out Ui’s
identity IDi and password Pi correctly at the same time in polynomial
time. Moreover, once the number of login failure exceeds a predefined
system value, the smart card will be locked immediately. Therefore, the
proposed protocol is secure against denial of service attack.

(4) Forward secrecy: Following our scheme, the client and the server can
establish the same session key SK = (C1)

v = (C2)
u = guv mod n . Based

on the difficulty of the computational Diffie-Hellman problem, any pre-
viously generated session keys cannot be revealed without knowledge of
the ephemeral u and v. As a result, our scheme provides forward secrecy.

6 Conclusion

In this paper, we have demonstrated several attacks on Li et al.’s scheme and a
robust authentication scheme is thus proposed to remedy these identified flaws.
The security analysis demonstrates our scheme eliminates several hard security
threats that are difficult to be solved at the same time in previous scholarship.

References

1. Chang, C.C., Wu, T.C.: Remote password authentication with smart cards. IEE
Proceedings-E 138(3), 165–168 (1993)

2. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

3. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining Smart-Card Security under
the Threat of Power Analysis Attacks. IEEE Transactions on Computers 51(5), 541–
552 (2002)

4. Kasper, T., Oswald, D., Paar, C.: Side-Channel Analysis of Cryptographic RFIDs
with Analog Demodulation. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS,
vol. 7055, pp. 61–77. Springer, Heidelberg (2012)

5. Li, C.T., Lee, C.C., Liu, C.J., Lee, C.W.: A Robust Remote User Authentication
Scheme against Smart Card Security Breach. In: Li, Y. (ed.) DBSec 2011. LNCS,
vol. 6818, pp. 231–238. Springer, Heidelberg (2011)

6. Kim, S.K., Chung, M.G.: More secure remote user authentication scheme. Computer
Communications 32(6), 1018–1021 (2009)

7. Wang, D., Ma, C.G., Wu, P.: Secure Password-based Remote User Authentication
Scheme with Non-tamper Resistant Smart Cards. NSR Technical Report 2012/011
(2012), http://machunguang.hrbeu.edu.cn/Research/

8. Ma, C.G., Wang, D., Zhang, Q.M.: Cryptanalysis and Improvement of Sood et al.’s
Dynamic ID-Based Authentication Scheme. In: Ramanujam, R., Ramaswamy, S.
(eds.) ICDCIT 2012. LNCS, vol. 7154, pp. 141–152. Springer, Heidelberg (2012)

http://machunguang.hrbeu.edu.cn/Research/

A Friendly Framework for Hidding fault enabled
virus for Java Based Smartcard

Tiana Razafindralambo, Guillaume Bouffard, and Jean-Louis Lanet

Secure Smart Devices (SSD) Team
XLIM/Université de Limoges – 123 Avenue Albert Thomas, 87060 Limoges, France

aina.razafindralambo@etu.unilim.fr,
{guillaume.bouffard,jean-louis.lanet}@xlim.fr

Abstract. Smart cards are the safer device to execute cryptographic
algorithms. Applications are verified before being loaded into the card.
Recently, the idea of combined attacks to bypass byte code verification
has emerged. Indeed, correct and legitimate Java Card applications can
be dynamically modified on-card using a laser beam to become mutant
applications or fault enabled viruses. We propose a framework for manip-
ulating binary applications to design viruses for smart cards. We present
development, experimentation and an example of this kind of virus.

Keywords: Java Card, Virus, Logical Attack, Hidding Code.

1 Introduction

Nowadays, a new deployment model has been developed which has the abil-
ity to load third tier application in the SIM card through an application store
controlled by the network operator. Unfortunately, these applications are be-
ing subjected to fault attacks as it is possible to design inoffensive applications,
made hostile once hit by a laser beam. We call them fault enabled viruses. Our
contribution is twofold, first we propose an architecture as tool and we provide
a set of constraints to choose an instruction which will be subjected to a laser
attack.

2 Context

Software attacks against smart card can be classified into two categories: ill-
typed applications or well-typed applications. But the second category is again
divided into permanent well-typed applications or transient well-typed applica-
tions. In ill-typed applications [9,4] the input file has been modified in order to
illegally obtain information. Permanent well-typed application [8], relies on some
weakness of the specification. Transient well-typed applications is a new research
field [3,16,4] where an application mutes when a fault occurs. In this way, we
have fault enabled viruses. Ill-typed applications and transient well-typed ap-
plications need to apply byte code transformation engineering at the CAP file
level.

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 122–128, 2012.
c© IFIP International Federation for Information Processing 2012

A Friendly Framework for Hidding fault enabled virus 123

2.1 State of the Art

Physical Attacks. As explained by [2], a modification of the input current
may modify the execution flow as the card is not self-powered as described
in [1,10]. We also have attacks, explained by S. Skorobogatov and R. Anderson
in [15], that use the light (LED, laser, etc.) and focus on a specific part of
the chip, and the light provides enough energy in the memory-cell to change its
value. Electromagnetic attack, presented in [13] and [14], as the inducted current
provides a way to modify the memory value, and it also helps in characterizing
the chip area used during a critical operation.

LogicalAttacks. In E. Hubbers et al.’s paper [8], they presented a quick overview
of the available classical attacks and gave some counter-measures.There are differ-
ent way to get the type confusion: CAP file manipulation after the building step
to bypass an off-card Byte Code Verifier (BCV); using fault injection to bypass
the on-card one (difficult and expensive). There is also the use of the shareable
interface mechanism, but on recent cards this attack is no longer possible. And fi-
nally, we have the transaction mechanism, that consists of making a set of atomic
operations. By definition, the rollback mechanism should also deallocate any ob-
jects allocated during an aborted transaction and reset references to such objects
as null. However, the authors found some cases where the card keeps the refer-
ence to the objects allocated during transaction even after a rollback. The idea of
EMAN attack [9], explained by J. Iguchi-Cartigny et al., is to abuse the firewall
mechanism with the unchecked static instructions (as getstatic, putstatic and
invokestatic) to call malicious byte codes. In a malicious CAP file, the param-
eter of invokestatic instruction may redirect the control flow graph (CFG) of
another installed applet in the targeted smart card. At CARDIS 2011,G. Bouffard
et al. described, in [4], two methods to change the Java Card CFG. The EMAN2
attack will be further explained in the subsection 3.1.

2.2 The CAP File

As described by S. Hamadouche in [7], the CAP (Convert APplet) file format is
based on the notion of interdependent components that contain specific informa-
tion from the Java Card package. For instance, the Method component contains
the methods byte code, and the Class component contains the information on
classes such as references to their super-classes or declared methods.

3 The CapMap

3.1 Modification of a CAP File

CapMap has been developed [12] with the aim of having a handy and a friendly
way to parse and modify a CAP file. It is very useful and very convenient while
designing a logical attack to test Java Cards security. There are three steps to
modify a CAP file using the CapMap: identifying which CAP file’s components
are located in our target, getting the right set of elements, and then applying

124 T. Razafindralambo, G. Bouffard, and J.-L. Lanet

changes to the components; thanks to setters provided by the CapMap over each
CAP file elements. This is a simple example that makes the use of CapMap more
clear: it is a reference to the EMAN2 attack. We are going to use the CapMap
to particularly manipulate the instruction sstore to perform our attack. First,
we need to target our method within the Method Component, interdependent
to the other components. Element within it are indexed. A method is a set of
instructions, and an instruction is a set of byte-values. They both are indexed
in structures provided by CapMap. Secondly, to target the sstore instruction,
we are going to change its operand value. By changing the operand value we can
write in return function address as listing 1.1.

CapFi leEditable capFi l e = new CapFi leEditable () ;

capFi l e . load (MY CAP FILE) ; // Load the cap f i l e

ArrayList<MethodInfo> methods = // Get methods

capFi l e . getMethodComponent () . getMethods () ;

// Set the i n s t r u c t i on you want to r e p l ac e

methods . get (METHOD INDEX) . getBytecodes () . s e t

(SSTORE OPERAND INDEX, RETURN ADDRESS REGISTER) ;

Listing 1.1. CAP File modification with CapMap

3.2 Stack Evaluation

If the byte code of a java program is dedicated to be a fault enabled virus it
needs to avoid the software counter-measures embedded into the card. This type
of verification is performed for each method presented in the package. The type
checking ensures that no disallowed type conversion is performed. For example,
an integer cannot be converted into an object reference. A downcast can only be
performed using the checkcast instruction, and the arguments which are given
to the methods have to be compatible types. The most complicated step and
quite expensive (both time and memory), is to retrieve the type of local variables
by analyzing the byte code. It requires computing the type of each variable and
stack element for each instruction and each execution path, accepting programs
(set of instructions) where each stack element and local variable have the same
type whatever the path taken to reach an instruction. This also requires that the
stack size is the same for each instruction and for each path that can reach this
instruction. Another constraint is that the stack must never reach a maximum
size which allows checking, if we are not overflowing or underflowing the stack.
So, each time we modify a method we can verify the correctness type of the
modification. The most important thing for virus implementation is to define
the set of instructions eligible to be added to the byte array: only instructions
that are compatible with the previous instruction execution can be added to the
method. The type information associated to an instruction corresponds to the
type of the local variables and of the runtime stack before the instruction
is executed. The post conditions generated by the execution of the instruction
must be checked as pre-condition for the next instruction. This defines a set of
constraints that must be guaranteed by each byte code sequence.

A Friendly Framework for Hidding fault enabled virus 125

3.3 Constraint Solving

To design a fault enabled virus we have to hide the real operation as a part of
the operands of the preceding instruction. Thus, when the preceding instruction
is hit by the laser and transformed as a NOP instruction: its operand becomes an
instruction. Within this fault model, we need to find an instruction which needs
one operand and satisfies several constraints, or an instruction which needs two
operands. In such a case, the first operand becomes either the first instruction
of the virus, or an instruction without operand and the second operand becomes
the first instruction of the virus. We need to be able to select an instruction
that satisfies several constraints, hence we will be able to hide viruses in a well-
typed program. We try to build a sequence of instructions prog, empty at the
beginning, such that it exists an instruction ins, with an operand number greater
than one, for which the consumption of the stack is empty and the production
on the stack is lower than the maximum value of the stack. If such an instruction
exists, we can concatenate the sequence prog with the sequence virus minus
its head. Executing the new sequence prog must lead to an empty stack at the
end of execution. Unfortunately, the resulting program may be a non valid Java
program: not all sequences of byte code can be generated by a compiler. But the
certification scheme proposed by GlobalPlatform [5] do not indicate the source
code. The certification process must be done at the CAP file level.

3.4 Java Card Code Reverser

The complete process of generating a fault enabled virus needs four steps using
CapMap. Firstly, finding a sequence of instructions which hides the virus code that
satisfies a set of constraints. The resulting CAP File represents a valid Java pro-
gram in term of stack typing. Next, to evaluate the resulting cap file using an off-
card BCV is the second step. If it is rejected, it means that either stack evaluation
goeswrong, or the constraint solver failed. If the off-card BCVevaluation succeeds,
the third step is, using our Cap2Class tool to reverse the code. Finally, converting
the class file to Java file by means of existing tools, if the generated code is valid.

4 Evaluation of the Threat Capacities

4.1 Building a fault enabled virus with the CapMap

The listing 1.2 explains how to build the virus. It’s aim is to send a clear text which
has the value of an encrypted key container. Of course any analysis will reject this
code as the secret key is being sent to the external world. This code can be split
into three parts. The first one (B1) is mandatory and corresponds to the APDU
reception. The second block (B2) corresponds to the code to obfuscate and which
should only be executable once a fault occurs. It decrypts the key container and
put the value in the APDU buffer at offset 0. The last one (B3) sends the content
of the apdu buffer from offset 0 for 16 elements (a 3-DES key) to the reader. If we
can replace the B2 block by an inoffensive code, it is said to be a fault enabled smart
card virus. This code corresponds to the following byte code listed in 1.3.

126 T. Razafindralambo, G. Bouffard, and J.-L. Lanet

public void pr oc e s s (APDU apdu) {
short l o c a l S ; byte l oca lB ;

byte [] apduBuffer = apdu . g e tBu f f e r () ; // ge t the APDU bu f f e r

i f (s e l e c t i ngApp l e t ()) { return ; } B1
byte r ece i vedByte = (byte) apdu . setIncomingAndReceive () ;

−−
// any code can be p laced here

DES keys . getKey (apduBuffer , (short) 0) ; B2
−−

apdu . setOutgoingAndSend ((short) 0 ,16) ; B3
}

Listing 1.2. The unwanted code

/∗00bd∗/ L0 : a l oad 1 // apdu

/∗00 be∗/ i nvokev i r tua l 8 // g e tBu f f e r (APDU c l a s s)

/∗00c1∗/ a s to r e 4 // L4 = apduBuffer

/∗00c3∗/ a l oad 0 // t h i s=Apple t ins tance

/∗00c4∗/ i nvokev i r tua l 9 // s e l e c t i n gApp l e t ()

/∗00c7∗/ i f e q L1 // r e l :+3 (@00CA)

/∗00c9∗/ return

/∗00ca∗/ L1 : a l oad 1 // apdu B1
/∗00 cb∗/ i nvokev i r tua l 10

/∗00 ce∗/ s2b // redByte

/∗00 c f ∗/ s s t o r e 5 // L5 = redByte

−−
/∗00d6∗/ g e t f i e l d a t h i s 1 // DES keys

/∗00d8∗/ aload 4 // L4=>apdubuf f e r

/∗00da∗/ s con s t 0

/∗00db∗/ i n v ok e i n t e r f a c e nargs : 3 , index : 0 , B2
const : 3 , method : 4 // ge t key

/∗00e0∗/ pop // returned Le by t e

−−
/∗00e1∗/ a l oad 1 //L1 apdu

/∗00e2∗/ s con s t 0

/∗00e3∗/ bspush 0x0F // DES keys s i z e

/∗00e5∗/ i n v ok e i n t e r f a c e nargs : 1 , index : 0 , B3
const : 3 , meth . : 1

/∗00ea∗/ i nvokev i r tua l 11 // setOutgoingAndSend

/∗00ed∗/ return

Listing 1.3. The virus code at the byte code level

The B1 block is the preamble, a correct code that must be executed. The
B2 block corresponds to the code that must be obfuscated, and the last one B3

is the postamble. After the execution of the B1 block the state of the stack is

A Friendly Framework for Hidding fault enabled virus 127

{ref, ref, value}. By obfuscating B2 will insert an instruction before in a such
a way that constraints explained in the previous section are verified. But prior
to select an instruction, we need to link statically the B2 code fragment. The
final linking process is done inside the card and we can not rely on this process
to resolve automatically the addresses. For that purpose, we have developed an
attack, presented in [6], that provides us the way to retrieve (for most of the
current cards) the linking information. For this card, the linked address of the
getKey method is 0x023C. Then the code to hide becomes:

/∗00db∗/ i n v o k e i n t e r f a c e nargs : 3 , @023c , method : 4

/∗00e0∗/ pop // pop the return by t e o f t he method

Listing 1.4. Resolved address of the B2 block

If we consider the single fault model then one of the selectable instructions is
ifle (Ox65) . It uses a short value and its operand is an offset to the branching
instruction. The B2 code fragment to be loaded into the card is given in the
listing 1.5. If the byte at the offset 0x00D6 becomes 0x0000 (thanks to the laser
hit) the original B2 code will be executed.

/∗00d6∗/ [6 5] i f l e @0x8D // 0x8D corresponds to i n v o k e s t a t i c

/∗00d8∗/ [0 3] s c on s t 0 // corresponds to the nargs

/∗00d9∗/ [0 2] sconst m1 // corresponds to the address high

/∗00da∗/ [3 c] pop2 // corresponds to the address low

/∗00db∗/ [0 4] s c on s t 1 // corresponds to the method number

/∗00dc∗/ [3 b] pop // resynchron i zed with the o r i g i n a l code

Listing 1.5. The hiding code

4.2 Detecting a fault enabled virus with SmartCM

The starting point of this study was the development of SmartCM [11], a sim-
ulator that detects such attack, and aims to analyze the effect of a fault on a
Java Card program using different modules like the code mutation engine, the
risk analysis tool, and the mutants reducer.

5 Conclusion

We have presented in this paper a complete CAP file engineering tool to modify
each component of the CAP file in a coherent way. Within this tool, we have the
possibility to design a very efficient attack using ill-typed application but also
fault enabled viruses. It includes a stack checker to avoid embedded counter-
measures and a minimalist constraint solver to generate the hiding sequence.
We demonstrated the efficiency of the constraint solver to build a valid program
which hides a fault enabled virus. We have developed a static analyzer SmartCM
that is able to detect such a fault enabled virus. Recently, it appears that the

128 T. Razafindralambo, G. Bouffard, and J.-L. Lanet

single fault model is out of date and we must consider the possibility of a dual
fault attack as a valid hypothesis. Thus, the CapMap tool is able to build such
a second order virus by simply applying twice the process. But the constraints
for the second pass must be different, and should not reveal the hidden code.
This is a new research direction on which we are working now.

References

1. Agoyan,M., Dutertre, J.-M., Naccache, D., Robisson, B., Tria, A.:WhenClocks Fail:
On Critical Paths and Clock Faults. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny,
J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 182–193. Springer, Heidelberg (2010)

2. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault Attacks
on RSA with CRT: Concrete Results and Practical Countermeasures. In: Kaliski
Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275.
Springer, Heidelberg (2003)

3. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java Card 3.0 Combining Fault
and Logical Attacks. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.)
CARDIS 2010. LNCS, vol. 6035, pp. 148–163. Springer, Heidelberg (2010)

4. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.-L.: Combined Software and Hardware
Attacks on the Java Card Control Flow. In: Prouff, E. (ed.) CARDIS 2011. LNCS,
vol. 7079, pp. 283–296. Springer, Heidelberg (2011)

5. Global Platform: Composition Model Security Guidelines for Basic Applications
(2012)

6. Hamadouche, S., Bouffard, G., Lanet, J.L., Dorsemaine, B., Nouhant, B., Magloire,
A., Reygnaud, A.: Subverting Byte Code Linker service to characterize Java Card
API. Submitted at SAR-SSI (2012)

7. Hamadouche, S.: Étude de la sécurité d’un vérifieur de Byte Code et génération
de tests de vulnérabilité. Master’s thesis, Université de Boumerdés (2012)

8. Hubbers, E., Poll, E.: Transactions and non-atomic API calls in Java Card: speci-
fication ambiguity and strange implementation behaviours. Tech. rep., University
of Nijmegen (2004)

9. Iguchi-Cartigny, J., Lanet, J.: Developing a trojan applets in a smart card. Journal
in Computer Virology 6(4), 343–351 (2010)

10. Kömmerling, O., Kuhn, M.: Design principles for tamper-resistant smartcard pro-
cessors. In: Proceedings of the USENIXWorkshop on Smartcard Technology (1999)

11. Machemie, J.B., Mazin, C., Lanet, J.L., Cartigny, J.: SmartCM A Smart Card Fault
Injection Simulator. In: IEEE International Workshop on Information Forensics
and Security - WIFS (2011)

12. Noubissi, A., Séré, A., Iguchi-Cartigny, J., Lanet, J., Bouffard, G., Boutet, J.:
Cartes à puce: Attaques et contremesures. MajecSTIC 16(1112) (November (2009)

13. Quisquater, J., Samyde, D.: Eddy current for magnetic analysis with active sensor.
In: Proceedings of Esmart (2002)

14. Schmidt, J., Hutter, M.: Optical and em fault-attacks on crt-based rsa: Concrete
results. In: Proceedings of the Austrochip, pp. 61–67. Citeseer (2007)

15. Skorobogatov, S., Anderson, R.: Optical Fault Induction Attacks. In: Kaliski Jr.,
B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003)

16. Vetillard, E., Ferrari, A.: Combined Attacks and Countermeasures. In: Gollmann,
D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp.
133–147. Springer, Heidelberg (2010)

Approximate Privacy-Preserving Data Mining

on Vertically Partitioned Data

Robert Nix1, Murat Kantarcioglu1, and Keesook J. Han2

1 Jonsson School of Engineering and Computer Science
The University of Texas at Dallas

800 West Campbell Road
Richardson, Texas, USA

{rcn062000,muratk}@utdallas.edu
2 Air Force Research Laboratory

Information Directorate
525 Brooks Road

Rome, New York, USA
Keesook.Han@rl.af.mil

Abstract. In today’s ever-increasingly digital world, the concept of data
privacy has become more and more important. Researchers have devel-
oped many privacy-preserving technologies, particularly in the area of
data mining and data sharing. These technologies can compute exact
data mining models from private data without revealing private data, but
are generally slow. We therefore present a framework for implementing
efficient privacy-preserving secure approximations of data mining tasks.
In particular, we implement two sketching protocols for the scalar (dot)
product of two vectors which can be used as sub-protocols in larger data
mining tasks. These protocols can lead to approximations which have
high accuracy, low data leakage, and one to two orders of magnitude
improvement in efficiency. We show these accuracy and efficiency results
through extensive experimentation. We also analyze the security proper-
ties of these approximations under a security definition which, in contrast
to previous definitions, allows for very efficient approximation protocols.1

1 Introduction

Privacy is a growing concern among the world’s populace. As social networking
and cloud computing become more prevalent in today’s world, questions arise
about the safety and confidentiality of the data that people provide to such
services. In some domains, such as medicine, laws such as HIPAA and the Privacy
Act of 1979 step in to make certain that sensitive data remains private. This is
great for ordinary consumers, but can cause problems for the holders of the
data. These data holders would like to create meaningful information from the
data that they have, but privacy laws prevent them from disclosing the data

1 Approved for Public Release; Distribution Unlimited: 88ABW-2011-4946, 16-Sep
2011.

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 129–144, 2012.
c© IFIP International Federation for Information Processing 2012

130 R. Nix, M. Kantarcioglu, and K.J. Han

to others. In order to allow such collaboration between the holders of sensitive
data, privacy-preserving data mining techniques have been developed.

In privacy-preserving data mining, useful models can be created from sensitive
data without revealing the data itself. One way to do this is to perturb the data
set using anonymization or noise addition [7] and perform the computation on
that data. This approach was first pioneered by Agrawal and Srikant [3]. These
methods can suffer from low utility, since the data involved in the computation
is not the actual data being modeled. In addition, these protocols can suffer from
some security problems[18,13,21], which can lead to the retrieval of private data
from the perturbed data given.

The other way to do this is using secure multiparty computation techniques to
compute the exact data mining result, on the actual data. Secure computation
makes use of encryption schemes to keep the data secret, but relies on other
tactics, such as encrypting the function itself, or homomorphic properties of
the encryption, to perform the computation. This approach was first used by
Lindell and Pinkas [20]. These schemes generally rely on very slow public key
encryption, which results in a massive decrease in information output. The exact
computation of data mining models can take thousands of times longer when
using these public key cryptosystems.

While many functions are very difficult to compute using secure multiparty
computation, some of these functions have approximations which are much easier
to compute. This is especially true in those data mining tasks that deal with
aggregates of the data, since these aggregates can often be easily estimated.
Approximating the data mining result, however, can lead to some data leakage if
the approximation is not done very carefully. The security of approximations has
been analyzed by Feigenbaum, et al., [8], but the results of their analysis showed
that to make an approximation fully private, the process of the computation must
be substantially more complex. Sometimes, this complexity can make computing
the approximation more difficult than computing the function itself!

Here, we present another security analysis that, while allowing some small,
parameter defined data leakage, creates the opportunity to use much simpler
and less computationally expensive approximations securely. We then use this
model of security to show the security of two approximation methods for a sub-
protocol of many vertically partitioned data mining tasks: the two-party dot
product. The dot product is used in association rule mining, classification, and
other types of data mining. We prove that our approximations are secure under
our reasonable security definitions. These approximations can provide one to
two orders of magnitude improvement in terms of efficiency, while sacrificing
very little in accuracy.

1.1 Summary of Contributions

A summary of our contributions are as follows:

– We outline a practical security model for secure approximation which allows
simple protocols to be implemented securely.

Approximate Privacy-Preserving Data Mining on Vertically Partitioned Data 131

– We showcase two sketching protocols for the dot product and prove their
security under our model.

– Through experimentation, we show the practicality of these protocols in ver-
tically partitioned privacy-preserving data mining tasks. These protocols can
lead to a two order of magnitude improvement in efficiency, while sacrificing
very little in terms of accuracy.

In section 2, we summarize the current state of work in this area. Section 3
provides the standard definitions of secure approximations, and our minor alter-
ation thereof. Section 4 outlines the approximation protocols we use. Section 5
gives the proof that these simple approximation protocols are secure under our
definition of secure approximation. In section 6, we give experimental results
for different data mining tasks using the approximations. Finally, we offer our
overall conclusions and future directions in section 7.

2 Related Work

Privacy-preserving data mining (PPDM) is a vast field with hundreds of pub-
lications in many different areas. The two landmark papers by Agrawal and
Srikant [3] and Lindell and Pinkas [20] began the charge, and soon many pri-
vacy preserving techniques emerged for computing many data mining models
[16,27,5,24]. Other techniques can be found in the survey [2]. For our purposes,
we will focus on those works which are quite closely related to the work in our
paper.

There are quite a few protocols previously proposed for the secure compu-
tation of the dot product. The protocol proposed by [27] is quadratic in the
size of the vector (times a security parameter). It does, however, have some pri-
vacy concerns accoring to [11]. This same work, along with several others [6,14]
propose other protocols which are based on very slow public key cryptography.
[26] proposes a sampling-based algorithm for secure dot product computation
which relies on secure set intersection as a sub-protocol. However, the secure set
intersection problem is also nontrivial. It either relies on a secure dot product
protocol [27] (which would lead to a circular dependency with [26]), or a large
amount of extremely expensive cryptographic operations [30].

The sketching primitives used in this work have been applied to data mining in
several different capacities. [25] uses Bloom filters to do association rule mining.
However, the model employed in this framework requires a server hierarchy, in
which the association rule mining is done at the top level, and represents transac-
tions, not itemsets, as Bloom filters. The Johnson-Lindenstrauss theorem is em-
ployed for data mining by [22], however, they employ the Johnson-Lindenstrauss
theorem as the sole means of preserving privacy, whereas we are using it as part
of a process. Other works [9,31] use Johnson-Lindenstrauss projection as an
approximation tool. These, however, do not make use of the projection in a
privacy-preserving context, and are merely concerned with fast approximations.

The work of [17] presents a sketching protocol for the scalar product based on
Bloom filters. However, its experimentation and discussion of actual data mining

132 R. Nix, M. Kantarcioglu, and K.J. Han

tasks was insufficient. Our protocols perform better on real data mining tasks,
especially at high compression ratios.

3 Secure Approximations

Much has been written about secure computation, and the steps one must go
through in order to compute functions without revealing anything about the
data involved. Securely computing the approximation of a function poses another
challenge. In addition to not revealing the data through the computation process,
we must also assure that the function we use to approximate the actual function
must not reveal anything about the data! To this end, we outline a definition
of secure approximations given by [8], and then propose an alteration to this
framework. This alteration, while allowing a very small amount of data leakage,
allows for the use of very efficient approximation protocols, which can improve
the efficiency of exact secure computation by orders of magnitude.

3.1 A Secure Approximation Framework

The work of Feigenbaum, et. al. [8] gives a well-constructed and thorough defi-
nition of secure approximations. In the paper, they first define a concept called
functional privacy, then use this definition to define the notion of a secure ap-
proximation. First, we examine the definition of functional privacy, as follows:

Definition 1 Functional Privacy: Let f(x) be a deterministic, real valued func-

tion. Let f̂(x) be a (possibly randomized) function. f̂ is functionally private
with respect to f if there exists a probabilistic, expected polynomial time sam-
pling algorithm S such that for every input x ∈ X , the distribution S(f(x)) is

indistinguishable from f̂(x).
Note that the term “indistinguishable” in the definition is left intentionally

vague. This could be one of the standard models of perfect indistinguishabil-
ity, statistical indistinguishability, computational indistinguishability [23], or any
other kind of indistinguisability. In these cases, the adjective applied to the indis-
tinguishablity is also applied to the functional privacy (i.e., statistical functional
privacy for statistical indistinguishability).

Intuitively, this definition means that the result of f̂ yields no more informa-
tion about the input than the actual result of f would. Note, however, that this
does not claim that there is any relation between the two outputs, other than
the privacy requirement. This does not require that the function f̂ be a good
approximation of f . Feigenbaum, et al., therefore, also provide a definition for
approximations, which is also used in the final concept of a secure approximation.

Definition 2 P-approximation: Let P (f, f̂) be a predicate for determining the

“closeness” of two functions. A function f̂ is a P -approximation of f if P (f, f̂)
is satisfied.

Now, for this definition to be useful, we need to define a predicate P to use
for the closeness calculation. The most commonly used predicate P is the 〈ε, δ〉

Approximate Privacy-Preserving Data Mining on Vertically Partitioned Data 133

criterion, in which 〈ε, δ〉 (f, f̂) is satisfied if and only if ∀x, P r[(1 − ε)f(x) ≤
f̂(x) ≤ (1 + ε)f(x)] > 1− δ. We do not refer to any other criterion in our work,
but the definition is provided with a generic closeness predicate for the sake of
completeness.

Finally, we present the liberal definition of secure two party approximations
as outlined in Feigenbaum, et al.

Definition 3 Secure Approximation (2-parties): Let f(x1,x2) be a deterministic
function mapping the two inputs x1 and x2 to a single output. A protocol p is
a secure P -approximation protocol for f if there exists a functionally private
P -approx-imation f̂ such that the following conditions hold:

Correctness. The outputs of the protocol p for each player are in fact equal to
the same f̂(x1,x2).

Privacy. There exist probabilistic polynomial-time algorithms S1,S2 such that

{(S1(x1, f(x1,x2), f̂(x1,x2)), f̂ (x1,x2))}(x1,x2)∈X
c≡

{(viewp
1(x1,x2), output

p
2(x1,x2))}(x1,x2)∈X ,

{(f̂(x1,x2),S2(x1, f(x1,x2), f̂(x1,x2)))}(x1,x2)∈X
c≡

{(outputp1(x1,x2), view
p
2(x1,x2))}(x1,x2)∈X

where A
c≡ B means that A is computationally equivalent to B. Note that in the

above definition all instances of f̂(x1,x2) have the same value, as opposed to

being some random value from the distribution of f̂ . This limits the application
of the simulators to a single output. This definition essentially says that we have
a functionally private function f̂ which is a P -approximation of f which itself is
computed in a private manner, such that no player learns anything else about
the input data.

3.2 Our Definition

Having defined the essential notions of functional privacy, approximations, and
secure approximations, we now define another notion of functional privacy, which,
while less secure than the above model, allows for vastly more efficient approxi-
mations.

Definition 4 〈ε, δ〉-functional privacy: A function f̂ is 〈ε, δ〉-functionally pri-
vate with respect to f if there exists a polynomial time simulator S such that
Pr[|S(f(x), R) − f̂(x)| < ε] > 1 − δ, where R is a shared source of randomness

involved in the calculation of f̂ .
Intuitively, this definition allows for a non-negligible but still small acceptable

information loss of at most ε, while still otherwise retaining security. In prac-
tice, the amount of information revealed could be much smaller, but this puts
a maximum bound on the privacy of the function. In addition, we allow the
simulator access to the randomness function used in computing f̂ , which allows
the simulator to more accurately produce similar results to f̂ .

134 R. Nix, M. Kantarcioglu, and K.J. Han

The acceptable level of loss ε can vary greatly with the task at hand. For
example, if the function is to be run on the same data set several times, the
leakage from that data set would increase with each computation. Thus, for
applications with higher repetition, we would want a much smaller ε. The ε can
be adjusted by using a more accurate approximation.

In their work describing the original definition above, Feigenbaum, et al. [8]
dismissed a simple, efficient approximation protocol based on their definition
of functional privacy. This approximation was a simple random sampling based
method for approximating the hamming distance between two vectors. The claim
was that even if the computation was done entirely securely, some information
about the randomness used in the computation would be leaked into the final re-
sult. Thus, we simply explicitly allow the randomness to be used by the simulator
in our model. We feel this is realistic, as the randomness is common knowledge
to all parties in the computation.

In short, the previous definition of [8] aims to eliminate data leakage from the
approximation result. Our definition simply seeks to quantify it and reduce it to
acceptable levels. In return, we can use much simpler approximation protocols
securely. For example, the eventual secure hamming distance protocol given by
[8] has two separate protocols (one which works for high distance and one for low
distance) each of which requires several rounds of oblivious transfers between the
two parties. Under our definition, protocols can be used which use only a single
round of computation and work for any type of vector, as we will show in the
next section.

4 Scalar Product Approximation Techniques for
Distributed Data Mining

Data mining is, in essence, the creation of useful models from large amounts
of raw data. This is typically done through the application of machine learning
based model building algorithms such as association rules mining, naive bayes
classification, linear regression, or other model creation algorithms. Distributed
data mining, then, is the creation of these models from data which is distributed
(partitioned) across multiple owners. The dot product of two vectors has many
applications in vertically partitioned data mining. Many data mining algorithms
can be reduced to one or more dot products between two vectors in the vertically
partitioned case. Vertical partitioning can be defined as follows:

Let X be a data set containing tuples of the form (a1, a2, ..., ak) where each
a is an attribute of the tuple. Let S be a subset of {1, 2, ..., k}. Let XS be the
data set where the tuples contain only those attributes specified by the set S.
For example, X{1,2} would contain tuples of the form (a1, a2). The data set X
is said to be vertically partitioned across n parties if each party i has a set Si,
and the associated data XSi , and

n⋃
i=1

Si = {1, 2, ..., k}

Approximate Privacy-Preserving Data Mining on Vertically Partitioned Data 135

Fig. 1. Dot Product Approximation Concept

In previous work, it has been shown that the three algorithms we test in
this paper can in fact be reduced to the dot product of two zero-one vectors in
the vertically partioned case. These algorithms are association rules mining[17],
naive Bayes classification[28], and C4.5 decision tree classification[29].

We developed two sketching protocols for the approximation of the dot prod-
uct of two zero-one vectors. These protocols are used to provide smaller input
to an exact dot product protocol, which is then used to estimate the overall
dot product, as outlined in figure 1. First, we present a protocol based on
the Johnson-Lindenstrauss theorem [15] and the work of [1] and [19]. Then,
we present a simple sampling algorithm which is also secure under our model.
Finally, we present a proof of the security of these approximations in our security
model.

4.1 Johnson-Lindenstrauss (JL) Sketching

The Johnson-Lindenstrauss theorem [15] states that for any set of vectors, there
is a random projection of these vectors which preserves Euclidean distance within
a tolerance of ε. More formally, for a given ε, there exists a function f : Rd → Rk

such that for all u and v in a set of points,

(1− ε)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ε)||u− v||2

It is shown in that because of this property, the dot product is also preserved
within a tolerance of ε. As with any sketching scheme, the probability of being
close to the correct answer increases with the size of the sketch.

As outlined in [1] and [19], to do our random projection, we generate a k× n
matrix R, where n is the number of rows in the data set, and k is the number
of rows in the resultant sketch. Each value of this matrix has the value 1, 0, or
-1, with probabilities set by a sparisity factor s. The value 0 has a probability of
1− 1

s , and the values 1 and -1 each have a probability of 1
2s . In order to sketch a

vector a of length n, we do
√
s√
k
Ra, which will have a length of k. This preserves

the dot product to within a certain tolerance. So, to estimate the dot product

of two vectors a and b, we merely compute
√
s√
k
Ra ·

√
s√
k
Rb. Note that this will

be equal to sRa·Rb
k , and in practice, we typically omit the

√
s√
k
term from the

sketching protocol, and simply divide by the length of the sketch and multiply
by the sparsity factor after performing the dot product. This yields the same
result. This is shown below as Algorithm 4.1.

136 R. Nix, M. Kantarcioglu, and K.J. Han

According to [19], the sparsity factor s can be as high as n
logn before significant

error is introduced, and as s increases, the time and space requirements for the
sketch decrease. Nevertheless we still used relatively low sparsity factors, to show
that even in the slowest case, we still have an improvement.

Algorithm 4.1. Johnson-Lindenstrauss(JL) Dot Product Protocol

RandomMatrixGeneration(n,k):
Matrix R
for i ← 1...n do

for j ← 1...k do

Rj,i
$← { 1

2s
: −1, 1− 1

s
: 0, 1

2s
: 1}

end for
end for
return R
———————————————————————–
DotProductApproximation(Vector u,Vector v, k):
Matrix R ← RandomMatrixGeneration(|u|, k)
u′ ← Ru
v′ ← Rv
return s·SecureDotProduct(u′,v′)

k

4.2 Random Sampling

In addition to the more complicated method above, to estimate the dot product
of two vectors, one could simply select a random sample of both vectors, compute
the dot product, then multiply by a scaling factor to estimate the total dot
product. Note that this works fairly well on vectors where the distribution of
values is known, such as zero-one vectors, but can work quite poorly on arbitrary
vectors. The sampling algorithm is shown below in Algorithm 4.2.

5 Approximation Protocol Security

We now provide a proof that each of the above protocols provides a secure
approximation in the sense outlined above. We first show the

〈
2ε, δ2

〉
-functional

privacy of the protocols, then show that the protocols are secure under the liberal
definition of secure approximations.

Theorem. The protocols outlined in section 4 are both
〈
2ε, δ2

〉
-functionally

private, and meet the liberal definition for secure approximations (definition 3).

Proof:
Functional Privacy Let ε, δ be the approximation guarantees granted by the
above protocols. That is, Pr[|u·v−DotProductApproximation(u, v)| > ε] < 1−δ.
For JL, these bounds are provided by the Johnson-Lindenstrauss theorem itself,
as shown by the work of [22]. For sampling, we can use the Hoeffding inequality
[12] to establish a bound on the error:

Approximate Privacy-Preserving Data Mining on Vertically Partitioned Data 137

Algorithm 4.2. Sampling Protocol

Sketch(Vector v, samplingFactor ∈ [0...1]):
sketch ← []
for i ← 1...n do

r
$← [0...1]

if r < samplingFactor then
sketch.append(vi)

end if
end for
return sketch
———————————————————————–
DotProductApproximation(u,v,samplingFactor)
u′ ← Sketch(u)
v′ ← Sketch(v)

return SecureDotProduct(u′,v′)·|u|
|u′|

Pr[|f̂(x) − f(x)| ≥ ε] ≤ 2e−2ε
2n2

Where n is the sample size. As f̂ can be taken to be an estimate of the mean of
the product of the random variables, the Hoeffding inequality holds for the dot
product of the samples. So, we set our δ to 2e−2ε

2n2

.
Note that, with both of these approximation protocols, adjusting the size (for

JL, the matrix size, and for sampling, the sample size), allows us to adjust the ε
of the functional privacy requirement. This would allow us to adjust the ε value
to be as low as we deemed necessary for our purposes.

Now, let our simulator S(f(x), R) generate two random zero-one vectors u
and v such that f(u, v) = u · v = f(x). We then apply the randomness given to

perform a calculation of the dot product approximation β = f̂(u, v). Now, the

probability that |f(x)− f̂(x)| ≥ ε is 1− δ. The probability that |f(x)−β| ≥ ε is
also 1− δ, since f(x) = f(u, v). As these are independent events, the probability

that neither occurs is δ2. In the case this occurs, we have |f(x)− f̂(x)| ≤ ε and

|f(x)− β| ≤ ε, which means that −ε ≤ f(x)− f̂(x) ≤ ε and −ε ≤ f(x)− β ≤ ε.

Because of this, the difference between the two quantities (f(x)− f̂(x))−(f(x)−
β) = β − f̂(x) can be no more than 2ε. If our simulator returns β, then we have

shown that f̂ is
〈
2ε, δ2

〉
-functionally private with respect to f .

Secure Approximation (under Definition 3). For the approximation to be
considered secure, it must compute the same value for both players (which is
trivially true for both protocols), and be private with respect to the views of
each player. Now, consider, in each case, what each player sees. Player 1 sees
his input, a sketch of that input, and the inputs and outputs of a secure dot
product protocol. Our simulator can take that input, sketch it, and simulate the
secure dot product protocol, altering its output to be f̂(x) to player 1. Since this
output is all player 1 sees outside of the secure dot product protocol, it cannot
distinguish this from the true output. Player 2 sees the same thing, his input, a
sketch of that input, and the operations of a secure dot product protocol on the

138 R. Nix, M. Kantarcioglu, and K.J. Han

inputs. Since the subprotocol is secure, neither player can learn anything about
the inputs that the sketches would not tell them.

Having shown that the sketching protocols are 〈ε, δ〉-functionally private, and
that the computation protocol is secure under definition 3, we now claim that
the entire protocols are secure under our model. ��

6 Experiments

In order to determine the efficiency and effectiveness of the algorithms proposed,
we conducted several experiments. Each of the sketching protocols presented
were inserted into the data mining process for three different data mining tasks:
association rules mining, naive Bayes classification, and C4.5 decision tree clas-
sification. We used three separate sparsity values for JL sketching: s = 1, which
results in a matrix completely full of 1 and -1, s = 100, and s = 1000. The
efficiency of JL increases with s, and these values are much lower than what is
required to achieve good accuracy [19].

For association rules mining, we used the retail data set found at [10], which
lists transactions from an anonymous Belgian retail store. We considered three
variables in the association rules experiments: the required support, the required
confidence, and the compaction ratio of the sketching protocol. For testing the
required support, we used 2%, 3%, 4%, 5%, and 6%, while holding the confidence
constant at 70% and the compaction ratio constant at 10%. For the confidence,
we used 60%, 65%, 70%, 75%, and 80% while holding the support constant
at 4% and the compaction ratio constant at 10%. Finally, for the compaction
ratio, we used 1%, 5%, 10%, 15%, and 20%, holding the support constant at
4% and the confidence constant at 70%. For naive Bayes and C4.5 decision tree
classification, we used the Adult data set from the UC Irvine Machine Learning
Repository [4], which consists of data from the 1993 US Census. As there were
no paramaters to set for naive Bayes or the decision tree, we varied only the
compaction ratio as above. We did, however, discretize each attribute of the data
set before performing the data mining, as continuous data would not function
under our model. For each task and variable set, we ran ten separate experiments,
using different initialization values for the inherent randomness in the sketching
protocols. We employed ten-fold cross-validation for the classification tasks. The
accuracy results were then averaged over all ten trials to come up with the final
result.

6.1 Accuracy

Association Rules Mining. To assess the accuracy of the algorithms on as-
sociation rules mining, we look at both the number of false positives (that is,
the number of invalid associations returned by the algorithm) and false nega-
tives (the number of valid assocations not returned by the algorithm). For the
association rules mining, this is a better picture of the accuracy than overall ac-
curacy, since the true positives are so much rarer than the true negatives. Figure

Approximate Privacy-Preserving Data Mining on Vertically Partitioned Data 139

False Positives False Negatives

Fig. 2. Association Mining Results Varying Sketch Size

False Positives False Negatives

Fig. 3. Association Mining Results Varying Confidence

False Positives False Negatives

Fig. 4. Association Mining Results Varying Support

140 R. Nix, M. Kantarcioglu, and K.J. Han

Naive Bayes C4.5 Decision Tree

Fig. 5. Naive Bayes and C4.5 Results Varying Sketch Size

2 shows the results when we varied the compaction ratio. JL and sampling are
very similar in terms of accuracy, with a slight overall edge to JL. Note that by
the time we reach a compression ratio of 10%, no more false negatives arise in
any JL sketching (regardless of sparsity), or in the sampling protocol.

Figures 3 and 4 show the results varying the required confidence and required
support, respectively. As one might expect, there is no discernable correlation
between these variables and the accuracy of the approximation for it. A larger
error rate generally indicates that there are more itemsets near the exact re-
quired value, which means a smaller error in the dot product might result in
the incorrect rejection or acceptance of an itemset. This is especially true for a
support value of 2%, since below 2%, the number of supported itemsets increases
dramatically.

Naive Bayes Classification. Figure 5 (left side) shows the results for naive
Bayes classification. JL and sampling, again, perform quite similiarly. The ac-
curacy, as expected, increases with the sketch size. The thin black line on the
graph represents the accuracy of the naive Bayes classification on the original,
uncompacted data. The accuracy of the approximation for both JL and sampling
hovers right around the original accuracy, and in some cases performs better.
This is understandable due to the machine learning phenomenon of overfitting.
When a model is built on some data, it performs quite well on the data it was
trained with, but the model will not perform as well on test data. When this
happens, the model is said to overfit the training data. Often some noise is added
to the model to remove the overfitting problem. The approximation of the dot
product can provide such noise. Thus, the approximations can achieve higher
accuracy than the exact result.

C4.5 Decision Tree. Figure 5 (right side) shows the results for C4.5 decision
tree classification. The results are consistent with our findings in other tasks. In-
terestingly enough, the more sparse versions of JL outperformed the unabridged
(s = 1) version. This is likely due to the fact that the sparse vectors provided
slightly less distortion in the multiplication, resulting in a closer approxima-
tion for the dot product. In this case, as opposed to the naive Bayes case, the

Approximate Privacy-Preserving Data Mining on Vertically Partitioned Data 141

original tree provides a higher degree of accuracy, mainly because the C4.5 al-
gorithm implements noise introduction by pruning the tree after building it.

6.2 Efficiency

In order to gauge the efficiency of our sketching protocols, we ran several timing
experiments. The machine used was an AMD Athlon(tm) 64X2 dual core proces-
sor 4800T at 2.5 GHz with 2GB of RAM, running Windows Vista, and running
on the Java 6 Standard runtime environment update 24. As our sub-protocol
for exact dot product computation, we use the protocol of Goethals, et al [11],
as it is provably secure, and lends itself well to improvement from our sketching
protocols.

First, we ran several timing experiments computing the complete dot product
of zero-one vectors of size 1000. The average time for the computation was 105
seconds. To ensure that the algorithm scaled linearly, we then ran it on vectors of
size 2000, and the average computation time was 211 seconds. So, we determined
the time-per-element in the dot product protocol to be .105 seconds. From this
point forward, we computed the runtime of the approximate protocol in terms
of the run time of the exact protocol by counting the time not involved in
the computation of dot products, then adding it to the estimated dot product
calculation time based on the previous timing experiments. The actual formula
used was:

ti + .105s · nd · compactionRatio · n
.105s · nd · n

Where ti is the time involved in the sketching, nd is the number of dot products
performed, n is the length of the vectors involved, and compactionRatio is the
fraction of the original vector’s size which is retained by the sketching protocol.
The results for three different sketching algorithms and five different compaction
ratios are be are seen in figure 7.

In all cases, the algorithms are much faster than the exact algorithm. Because it
produces a matrix with 1 or -1 for every value, JL with s = 1 has a large amount of
pre-processing before it can apply the projection to each vector, which again, takes
time. This runtime can be improved by using the sparsity factor. We chose, how-
ever, to present the worst case, as it is still much better than the original runtime.
The association rules mining process involved the fewest number of dot products
computed. Therefore, the preprocessing and other portions of the algorithms took
up a greater percentage of the time in association rules mining. The Naive Bayes
process had orders of magnitudemore dot product calculations, so the overall time
was dominated by the number of dot product calculations necessary.

In the decision tree case, the number of dot products computed varied with
the algorithm involved. This is because we use the dot products to determine if a
node is to be split. If a split is found to be not useful, the split will not occur. The
compaction introduced enough error into the calculation that splits with very little
information gain were not even attempted, resulting in much fewer dot products
being calculated. The different algorithms all calculated far fewer dot products at
every compaction level, resulting in a much greater efficiency increase.

142 R. Nix, M. Kantarcioglu, and K.J. Han

Mining Sketching Compaction Ratio
Task Protocol 1% 5% 10% 15% 20%

Association Mining

JL(s=1) 1.23301% 5.97532% 12.06352% 17.93215% 23.90036%
JL(s=100) 1.10189% 5.50682% 11.01542% 16.62495% 22.19586%

JL(s=1000) 1.09683% 5.43911% 10.97853% 16.49222% 22.01157%
Sampling 1.07975% 5.09715% 10.08799% 15.07924% 20.08823%

Naive Bayes

JL(s=1) 1.10388% 5.50989% 11.01977% 16.52684% 22.03317%
JL(s=100) 1.09024% 5.36809% 10.86241% 16.24925% 21.25196%

JL(s=1000) 1.08882% 5.33216% 10.71943% 15.98638% 21.05157%
Sampling 1.01317% 5.01338% 10.01391% 15.01437% 20.01472%

C4.5 Decision Tree

JL(s=1) 0.20356% 0.22841% 0.65546% 1.89563% 2.72094%
JL(s=100) 0.18926% 0.19452% 0.59234% 1.71828% 2.64378%

JL(s=1000) 0.17586% 0.19623% 0.58419% 1.65025% 2.61224%
Sampling 0.02198% 0.19146% 0.80031% 1.44452% 2.53887%

Fig. 6. Efficiency Results: Percent of the Exact Algorithm Runtime

7 Conclusions

We have presented several interesting approximation techniques for the secure
compuation of the dot product of two vectors. These protocols can be applied
to many different data mining tasks, and can provide an efficiency increase to
any protocol that uses a secure dot product as a sub-protocol.

7.1 Future Work

In the future, we plan to explore the use of these dot product protocols in other
data mining tasks, such as support vector machines, neural networks, and clus-
tering. We also plan to consider carefully the notion of a secure approximation,
and determine to what extent the restrictions posed by our security model can
be relaxed.

Acknowledgements. This work was partially supported by Air Force Office of
Scientific Research MURI Grant FA9550-08-1-0265,National Institutes of Health
Grant 1R01LM009989, National Science Foundation (NSF) Grant Career-CNS-
0845803, and NSF Grants CNS-0964350, CNS-1016343. It is also based upon
work supported by the AFOSR in-house project No. 11RI01COR, the AFRL in-
house Job Order Number GGIHZORR, with AFRL/RI Information Information
Institute VFRP No. 57739-1095380-1.

References

1. Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with
binary coins. Journal of Computer and System Sciences 66(4), 671–687 (2003)

2. Aggarwal, C., Yu, P.: A general survey of privacy-preserving data mining models
and algorithms. In: Privacy-Preserving Data Mining, pp. 11–52 (2008)

Approximate Privacy-Preserving Data Mining on Vertically Partitioned Data 143

3. Agrawal, R., Srikant, R.: Privacy-preserving data mining. ACM Sigmod Record 29,
439–450 (2000)

4. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
5. Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.: Tools for privacy pre-

serving distributed data mining. ACM SIGKDD Explorations Newsletter 4(2), 28–
34 (2002)

6. Du, W., Atallah, M.: Privacy-preserving cooperative statistical analysis. In: Pro-
ceedings of the 17th Annual Computer Security Applications Conference, p. 102.
IEEE Computer Society (2001)

7. Dwork, C.: Differential Privacy: A Survey of Results. In: Agrawal, M., Du, D.-Z.,
Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008)

8. Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strausse, M., Wright, R.: Se-
cure multiparty computation of approximations. ACM Transactions on Algorithms
(TALG) 2(3), 435–472 (2006)

9. Fradkin, D., Madigan, D.: Experiments with random projections for machine learn-
ing. In: Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 517–522. ACM (2003)

10. Goethals, B.: Frequent itemset mining implementations repository (2005)
11. Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On Private Scalar Product

Computation for Privacy-Preserving Data Mining. In: Park, C.-S., Chee, S. (eds.)
ICISC 2004. LNCS, vol. 3506, pp. 104–120. Springer, Heidelberg (2005)

12. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301), 13–30 (1965)

13. Huang, Z., Du, W., Chen, B.: Deriving private information from randomized data
(2005)

14. Ioannidis, I., Grama, A., Attallah, M.: A secure protocol for computing the dot-
products in clustered and distributed environments. In: International Conference
on Parallel Processing, 2002, pp. 379–384. IEEE (2002)

15. Johnson, W., Lindenstrauss, J.: Extensions of lipschitz mappings into a hilbert
space. Contemporary Mathematics 26(189-206), 1 (1984)

16. Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association
rules on horizontally partitioned data. IEEE Transactions on Knowledge and Data
Engineering 16(9), 1026–1037 (2004)

17. Kantarcioglu, M., Nix, R., Vaidya, J.: An Efficient Approximate Protocol for
Privacy-Preserving Association Rule Mining. In: Theeramunkong, T., Kijsirikul,
B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 515–524.
Springer, Heidelberg (2009)

18. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving
properties of random data perturbation techniques. In: Third IEEE International
Conference on Data Mining, ICDM 2003, pp. 99–106. IEEE (2003)

19. Li, P., Hastie, T., Church, K.: Very sparse random projections. In: Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 287–296. ACM (2006)

20. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)

21. Liu, K., Giannella, C., Kargupta, H.: An Attacker’s View of Distance Preserv-
ing Maps for Privacy Preserving Data Mining. In: Fürnkranz, J., Scheffer, T.,
Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 297–308.
Springer, Heidelberg (2006)

144 R. Nix, M. Kantarcioglu, and K.J. Han

22. Liu, K., Kargupta, H., Ryan, J.: Random projection-based multiplicative data
perturbation for privacy preserving distributed data mining. IEEE Transactions
on Knowledge and Data Engineering, 92–106 (2006)

23. Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of applied cryptography.
CRC (1997)

24. Pinkas, B.: Cryptographic techniques for privacy-preserving data mining. ACM
SIGKDD Explorations Newsletter 4(2), 12–19 (2002)

25. Qiu, L., Li, Y., Wu, X.: Preserving privacy in association rule mining with bloom
filters. Journal of Intelligent Information Systems 29(3), 253–278 (2007)

26. Ravikumar, P., Cohen, W., Feinberg, S.: A secure protocol for computing string
distance metrics. In: Proceedings of the Workshop on Privacy and Security Aspects
of Data Mining at the International Conference on Data Mining, pp. 40–46. IEEE
(2004)

27. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically
partitioned data. In: Proceedings of the Eighth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 639–644. ACM (2002)

28. Vaidya, J., Clifton, C.: Privacy preserving naıve bayes classifier for vertically parti-
tioned data. In: 2004 SIAM International Conference on Data Mining, Lake Buena
Vista, Florida, pp. 522–526 (2004)

29. Vaidya, J., Clifton, C.: Privacy-Preserving Decision Trees over Vertically Parti-
tioned Data. In: Jajodia, S., Wijesekera, D. (eds.) Data and Applications Security
2005. LNCS, vol. 3654, pp. 139–152. Springer, Heidelberg (2005)

30. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to as-
sociation rule mining. Journal of Computer Security 13(4), 593–622 (2005)

31. Wang, W., Garofalakis, M., Ramchandran, K.: Distributed sparse random projec-
tions for refinable approximation. In: Proceedings of the 6th International Confer-
ence on Information Processing in Sensor Networks, pp. 331–339. ACM (2007)

Security Limitations of Using Secret Sharing

for Data Outsourcing

Jonathan L. Dautrich and Chinya V. Ravishankar

University of California, Riverside
{dautricj,ravi}@cs.ucr.edu

Abstract. Three recently proposed schemes use secret sharing to sup-
port privacy-preserving data outsourcing. Each secret in the database is
split into n shares, which are distributed to independent data servers.
A trusted client can use any k shares to reconstruct the secret. These
schemes claim to offer security even when k or more servers collude, as
long as certain information such as the finite field prime is known only
to the client. We present a concrete attack that refutes this claim by
demonstrating that security is lost in all three schemes when k or more
servers collude. Our attack runs on commodity hardware and recovers a
8192-bit prime and all secret values in less than an hour for k = 8.

1 Introduction

As cloud computing grows in popularity, huge amounts of data are being out-
sourced to cloud-based database service providers for storage and query man-
agement. However, some customers are unwilling or unable to entrust their raw
sensitive data to cloud providers. As a result, privacy-preserving data outsourc-
ing solutions have been developed around an honest-but-curious database server
model. In this model, the server is trusted to correctly process queries and man-
age data, but may try to use the data it manages for its own nefarious purposes.

Private outsourcing schemes keep raw data hidden while allowing the server
to correctly process queries. Queries can be issued only by a trusted client, who
has insufficient resources to manage the database locally. Most such schemes use
specialized encryption or complex mechanisms, ranging from order-preserving
encryption [1], which has limited security and high efficiency, to oblivious RAM
[2], which has provable access pattern indistinguishability but poor performance.

Three recent works [3–5] propose outsourcing schemes based on Shamir’s se-
cret sharing algorithm [6] instead of encryption. We refer to these works by their
authors’ initials, HJ [3], AAEMW [4], and TSWZ [5], and in aggregate as the
HAT schemes. The AAEMW scheme was also published in [7]. In secret sharing,
each sensitive data element, called a secret, is split into n shares, which are dis-
tributed to n data servers. To recover the secret, the client must combine shares
from at least k servers. Secret sharing has perfect information-theoretic security
when at most k − 1 of the n servers collude (exchange shares) [6].

Since secret sharing requires only k multiplications to reconstruct a secret,
proponents argue that HAT schemes are faster than encryption based schemes.

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 145–160, 2012.
c© IFIP International Federation for Information Processing 2012

146 J.L. Dautrich and C.V. Ravishankar

Other benefits of the HAT schemes include built-in redundancy, as only k of the
n servers are needed, and additive homomorphism, which allows SUM queries to
be securely processed by the server and returned to the client as a single value.
Each of the HAT schemes makes two security claims:

Claim 1. The scheme achieves perfect information-theoretic security when at
most k − 1 servers collude.

Claim 2. When k or more servers collude, the scheme still achieves adequate
security as long as certain information used by the secret sharing algorithm,
namely a prime p and a vector X, are kept private, known only to the client.

It is doubtful that the HAT schemes truly fulfill Claim 1, as they sort shares by
secret value, which certainly reveals some information about the data [8]. Fur-
ther, the AAEMW scheme [4] uses correlated coefficients in the secret sharing
algorithm instead of random ones, which also contradicts this claim. Neverthe-
less, for the purposes of this work, we assume that Claim 1 holds.

We are primarily concerned with evaluating Claim 2, which asserts that even
k or more colluding servers cannot easily recover secrets. Claim 2 is stated in
Sect. 4.5 of [3], Sect. 3 of [4], Sects. 2.2 and 6.1 of [5], and Sect. 3 of [7].

1.1 Our Contribution

Our contribution is to demonstrate that all three HAT schemes [3–5] fail to
fulfill Claim 2. We give a practical attack that can reconstruct all secrets in
the database when k servers collude, even when p and X are kept private. Our
attack assumes that the servers know, or can discover, at least k+ 2 secrets. To
limit data storage costs, k is kept small (k ≈ 10), so discovering k + 2 secrets is
feasible (see Sect. 4.2). All three HAT schemes argue that they fulfill Claim 2,
so our result provides a much-needed clarification of their security limitations.

The TSWZ scheme [5] argues that if p is known, secrets could be recovered.
However, it provides no attack description, and argues that large primes are
prohibitively expensive to recover. Our attack recovers 8192-bit primes in less
time than [5] needed to recover 32-bit primes. In fact, we can generally recover
large primes in less time than the client takes to generate them (Sect. 5.1).

In Sect. 2 we review Shamir’s secret sharing algorithm and how it is used for
private outsourcing. In Sect. 3 we give assumptions and details of our attack, and
we show how to align shares and discover secrets in Sect. 4. We give experimental
runtime results in Sect. 5, and discuss possible attack mitigations in Sect. 6. We
discuss related work in Sect. 7 and conclude with Sect. 8.

2 Data Outsourcing Using Secret Sharing

We now review Shamir’s secret sharing scheme and show how it is used for
private data outsourcing in the HAT schemes [3–5]. We use an employee table
with m records as our driving example, where queries are issued over the salary
attribute. Each salary s1, . . . , sm is a secret that is shared among the n data
servers (see Fig. 1).

Security Limitations of Using Secret Sharing for Data Outsourcing 147

Fig. 1. Secret (salary) data from an employee table is split into shares and distributed
to multiple data servers. A trusted client queries shares from the data servers and
combines them to recover the secrets.

2.1 Shamir’s Secret Sharing

Shamir’s secret sharing scheme [6] is designed to share a single secret value sj
among n servers such that shares must be obtained from any k servers in order
to reconstruct sj . The scheme’s security rests on the fact that at least k points
are needed to uniquely reconstruct a polynomial of degree k − 1. Theoretically,
the points and coefficients used in Shamir’s scheme can be taken from any field
F. However, to use the scheme on finite-precision machines, we require F to be
the finite field Fp, where p is a prime.

To share sj , we choose a prime p > sj , and k − 1 coefficients a1,j , . . . , ak−1,j
selected randomly from Fp. We then construct the following polynomial:

qj(x) = sj +

k−1∑
h=1

ah,jx
h mod p (1)

We then generate a vector X = (x1, . . . , xn) of distinct elements in Fp, and
for each data server DSi , we compute the share yi,j = qj(xi). Together, xi and
yi,j form a point (xi, yi,j) through which polynomial qj(x) passes.

Given any k such points (x1, y1,j), . . . , (xk, yk,j), we can reconstruct the poly-
nomial qj(x) using Lagrange interpolation:

qj(x) =

k∑
i=1

yi,j�i(x) mod p (2)

where �i(x) is the Lagrange basis polynomial:

�i(x) =
∏

1≤j≤k,j 	=i

(x− xj)(xi − xj)
−1 mod p (3)

and (xi − xj)
−1 is the multiplicative inverse of (xi − xj) modulo p.

The secret sj is the polynomial qj evaluated at x = 0, so we get:

sj =

k∑
i=1

yi,j�i(0) mod p (4)

148 J.L. Dautrich and C.V. Ravishankar

Given only k′ < k shares, and thus only k′ points, we cannot learn anything
about s, since for any value of s, we could construct a polynomial of degree
k − 1 that passes through all k′ points. Thus Shamir’s scheme offers perfect,
information-theoretic security against recovering sj from fewer than k shares [6].

2.2 Data Outsourcing via Secret Sharing

We now describe the mechanism used by all three HAT schemes to support
private outsourcing via secret sharing. We first choose a single prime p and a
vector X, which are the same for all secrets and will be stored locally by the
client. For each secret sj , we generate coefficients a1,j , . . . , ak−1,j , and produce a
polynomial qj(x) as in (1). We then use qj to split sj into n shares y1,j , . . . , yn,j ,
where yi,j = qj(xi), and distribute each share yi,j to server DSi , as in Fig. 1.

An important distinction is that the AAEMW scheme performs secret sharing
over the real number field R, so there is no p to choose. However, since the
scheme must run on finite precision hardware, any implementation will suffer
from roundoff error. Our attack works over R, and is efficient because the field is
already known. However, we expect that in practice, the AAEMW scheme will
switch to a finite field Fp, so we do not treat it as a special case.

When the client issues a point query for the salary sj of a particular employee,
he receives a share from each of the n servers. Using any k of these shares, he
can recover sj using the interpolation equation (4). Other query types, including
range and aggregation queries, are supported by the HAT schemes. We give some
relevant details in Sect. 2.4, but the rest can be found in [3–5].

X and p are re-used across secrets for two reasons. First, storing distinct X or
p on the client for each secret would require at least as much space as storing the
secret itself. Second, when the same X and p are used, the secret sharing scheme
has additive homomorphism. That is, if each server DSi adds shares yi,1 + yi,2,
and we interpolate using those sums, the recovered value is the sum s1 + s2.
With additive homomorphism, when the client issues a SUM query, the server
can sum the relevant shares, and return a single value to the client, instead of
returning shares separately and having the client perform the addition. Using a
different X or p for each secret breaks additive homomorphism.

2.3 Security

If X and p are public, and k or more servers collude, then the HAT schemes are
clearly insecure, as the servers could easily perform the interpolation themselves.
On the other hand, if at most k − 1 servers collude, and coefficients are chosen
independently at random from Fp, then the servers learn nothing about a secret
by examining its shares, and Claim 1 is fulfilled.

The HAT schemes state that by keepingX [3, 4] and p [5] private, they achieve
security even when k or more servers collude (Claim 2). Our attack shows that
any k colluding servers can recover all secrets in the database, even when X and
p are unknown (Sect. 3), contradicting Claim 2.

Security Limitations of Using Secret Sharing for Data Outsourcing 149

2.4 Supporting Range and Aggregation Queries

We can use the mechanisms that support range and SUM queries in the HAT
schemes to reveal the order of the shares on each server according to their corre-
sponding secret values. We then use these orders to align corresponding shares
across colluding servers, and to discover key secret values (see Sect. 4).

The AAEMW scheme [4] crafts coefficients such that the shares preserve the
order of their secrets. The HJ and TSWZ schemes [3, 5] both use a single B+ tree
to order each server’s shares and facilitate range queries. TSWZ assumes the tree
is accessible to all servers, while HJ assumes it is on a separate, non-colluding
index server. HJ obscures share order from the servers, but we can reconstruct
it by observing range queries over time (see Sect. 4.3).

3 Attack Description

We now show that the HAT schemes are insecure when k or more servers collude,
even if X and p are kept private. Our attack efficiently recovers all secret values
(salaries in Fig. 1) stored in the database, and relies on the following assumptions:

1. At least k servers collude, exchanging shares or other information.
2. The number of servers k and the number of bits b in prime p are modest:

k ≈ 13, b ≈ 213. None of the HAT schemes give recommended values for k
or b, with the exception of a brief comment in [4] alluding to 16-bit primes
originally suggested by Shamir. In practice, primes with more than 213 bits
take longer for the client to generate than for our attack to recover, and the
cost of replicating data to every server keeps k small.

3. X and p are unknown, and are the same for each secret (see Sect. 2.2).
4. Each set of k corresponding shares can be aligned. That is, the colluding

servers know which shares correspond to the same secret, without knowing
the secret itself. We can align shares if we know share orders (see Sect. 4.1).

5. At least k + 2 secrets, and which shares they correspond to, are known or
can be discovered. Since k is modest, knowing k + 2 secrets is reasonable,
especially when the number of secrets m is large (see Sect. 4.2).

In Sect. 6, we show that modifying the HAT schemes to violate these assumptions
sacrifices performance, functionality, or generality, eroding the schemes’ slight
advantages over encryption based techniques.

3.1 Recovering Secrets When p Is Known and X Is Private

As a stepping stone to our full attack, we show how to recover secrets if p is
already known. Without loss of generality, let s1, . . . , sk be known secrets, and
let DS1 , . . . ,DSk be the colluding servers. For each secret sj , we have shares
y1,j, . . . yk,j , generated by evaluating qj(x) at x1, . . . , xk, respectively. We there-

fore have a system of k2 equations of the form yi,j = sj +
∑k−1

h=1 ah,jx
h
i mod p,

as in (1). The system has k(k − 1) unknown coefficients ah,j , and k unknown

150 J.L. Dautrich and C.V. Ravishankar

xi, giving k2 equations in k2 unknowns. Thus, it would seem we can solve for
the relevant values of X, which would allow us to recover the remaining secrets.
Unfortunately, the system is non-linear, so naively solving it directly requires
expensive techniques such as Groebner basis computation [9].

Instead, we can recover the remaining secrets without solving for X. Con-
sider the following system of equations obtained by applying the interpolation
equation (4) to each of the k secrets:

y1,1�1(0) + y2,1�2(0) + · · ·+ yk,1�k(0)− s1 ≡ 0 (mod p)

y1,2�1(0) + y2,2�2(0) + · · ·+ yk,2�k(0)− s2 ≡ 0 (mod p)

... (5)

y1,k�1(0) + y2,k�2(0) + · · ·+ yk,k�k(0)− sk ≡ 0 (mod p)

If we treat each basis polynomial value �i(0) as an unknown, we get k unknowns
�1(0), . . . , �k(0), which we call bases, in k linear equations. Since we know p, we
can easily solve (5) using Gaussian elimination and back-substitution. We can
then use the bases to recover the remaining secrets in the database via (4).

We can construct (5) since we know that all shares from a given server DSi

were obtained from the same xi, and thus should be multiplied by the same base
�i(0). The client could obscure the correspondence between shares by mixing
shares among servers, but would be forced to store i with each share in order to
properly reconstruct the secret. To completely hide the correspondence, i itself
would need to be padded and encrypted, which is precisely what secret sharing
tries to avoid. Further, mixing the shares would break additive homomorphism.

3.2 Recovering p When X and p Are Private

Let b be the number of bits used to represent p. We can easily have b > 26, so
enumerating possible values for p is not practical. However, we can recover p by
exploiting known shares and the k + 2 known secrets. Our attack identifies two
composites δ1 and δ2 both divisible by p (p|δ1, p|δ2), such that the remaining
factors of δ1, δ2 are largely independent. We then take δ′ to be the greatest
common divisor of δ1 and δ2, and factor out small primes from δ′, leaving us
with δ′ = p with high probability. Once p is known, we can use the attack from
Sect. 3.1 to recover the bases and the remaining, unknown secrets.

Computing δ1, δ2. Without loss of generality, we let s1, . . . , sk+2 be the known
secrets. To compute δγ , γ ∈ {1, 2}, we consider the system of interpolation
equations for secrets sγ , . . . , sγ+k as in (5), represented by the following (k +
1)× (k + 1) matrix:⎡

⎢⎢⎢⎢⎢⎣

y1,γ y2,γ · · · yk,γ −sγ
y1,γ+1 y2,γ+1 · · · yk,γ+1 −sγ+1

...
. . .

...
y1,γ+k−1 y2,γ+k−1 · · · yk,γ+k−1 −sγ+k−1
y1,γ+k y2,γ+k · · · yk,γ+k −sγ+k

⎤
⎥⎥⎥⎥⎥⎦ (6)

Security Limitations of Using Secret Sharing for Data Outsourcing 151

Since p is unknown, we cannot compute inverses modulo p and thus cannot
divide as in standard Gaussian elimination. However, we can still convert (6) to
upper triangular (row echelon) form using only multiplications and subtractions.

We start by eliminating coefficients for �1(0) from all but the first row (j = γ).
To eliminate �1(0) from row j > γ, we multiply the contents of row γ through by
y1,j, and of row j by y1,γ , producing a common coefficient for �1(0) in both rows.
We then subtract the multiplied row γ from the multiplied row j, canceling the
coefficient for �1(0). Row 1 is left unchanged, but row j now has coefficient 0 for
�1(0), and coefficient (yi,j)(y1,γ)− (yi,γ)(y1,j) for �i(0), i ≥ 2:⎡
⎢⎢⎢⎣
y1,γ y2,γ · · · −sγ
0 (y2,γ+1)(y1,γ)− (y2,γ)(y1,γ+1) · · · (−sγ+1)(y1,γ)− (−sγ)(y1,γ+1)
...

. . .
...

0 (y2,γ+k)(y1,γ)− (y2,γ)(y1,γ+k) · · · (−sγ+k)(y1,γ)− (−sγ)(y1,γ+k)

⎤
⎥⎥⎥⎦

We then repeat the process, eliminating successive coefficients from lower rows,
until the matrix is in upper triangular form:⎡

⎢⎢⎢⎢⎢⎣

y1,γ y2,γ · · · yk,γ −sγ
0 c2,γ+1 · · · ck,γ+1 ck+1,γ+1

...
. . .

...
0 0 · · · ck,γ+k ck+1,γ+k

0 0 · · · 0 δγ

⎤
⎥⎥⎥⎥⎥⎦ (7)

We use ci,j values to denote constants. In the last row of (7), the coefficient for
every �i(0) is 0, so the row represents the equation δγ ≡ 0 (mod p). Thus, p|δγ .

Size of δ1, δ2. As coefficients for successive �i(0) are eliminated, each non-zero
cell below the ith row is set to the difference of products of two prior cell values,
doubling the number of bits required by the cell. Thus, the number of bits per
cell in (7) is given by: ⎡

⎢⎢⎢⎢⎢⎣

b b · · · b b
0 21b · · · 21b 21b
...

. . .
...

0 0 · · · 2k−1b 2k−1b
0 0 · · · 0 2kb

⎤
⎥⎥⎥⎥⎥⎦

As a result, each of δ1, δ2 has at most 2kb bits. This is closely related to the result
that in the worst case, simple integer Gaussian elimination leads to entries that
are exponential in the matrix size [10].

Recovering p from δ1, δ2. Since δ1, δ2 have 2kb bits, and p has only b bits,
it is likely that δ1, δ2 both have some prime factors larger than p, so factoring
them directly is not feasible. Instead, we take δ′ = gcd(δ1, δ2), where gcd is the
greatest common divisor function, which can be computed using the traditional
Euclidean algorithm, or more quickly using Stein’s algorithm [11].

152 J.L. Dautrich and C.V. Ravishankar

Since δ1 and δ2 were obtained using different elimination orders and sets of
secrets, they rarely share large prime factors besides p, so all other prime factors
of δ′ should be small. Thus, we can factor δ′ by explicitly dividing out all prime
factors with at most β bits, leaving behind only p, with high probability. We
know that p is larger than all shares, so to avoid dividing out p itself, we never
divide out primes that are larger than the largest known share. We have found
empirically that the probability that δ1, δ2, as computed above, share a factor

with more than β bits can be approximated by 2(k−2)/4

2β+1 k for the values of β, k
we are interested in (Sect. 5.2). Our attack fails if δ1, δ2 share such a factor, but
we can make the failure rate arbitrarily low by increasing β.

3.3 Attack Complexity

Since δ1 and δ2 are both (2kb)-bit integers, the time required to find gcd(δ1, δ2)
is in O(22kb2) [11]. As k grows, storing δ1, δ2 and computing their gcd quickly
become the dominant space and time concerns, respectively. Thus, recovering p
has space complexity O(2kb) and time complexity O(22kb2).

Recovering the bases, once p is known, has space complexity O(k2b) for storing
the matrix, and time complexity dominated either by computing O(k3) b-bit
integer multiplications during elimination, orO(k) modular inverses during back-
substitution. Clearly, these costs are dominated by the costs of recovering p. Once
p and the bases have been recovered, the time spent recovering a secret is the
same for the colluding servers as it is for the trusted client.

3.4 Example Attack for k = 2

We now demonstrate our attack on a simple dataset with m = 6 records shared
over n = k = 2 servers. We choose the 6-bit prime p = 59 and select x1 =
17, x2 = 39. We then generate secrets, coefficients, and shares as follows:

s1 = 18 a1,1 = 18 q(x1, s1) = 29 q(x2, s1) = 12

s2 = 36 a1,2 = 5 q(x1, s2) = 3 q(x2, s2) = 54

s3 = 22 a1,3 = 17 q(x1, s3) = 16 q(x2, s3) = 36

s4 = 10 a1,4 = 28 q(x1, s4) = 14 q(x2, s4) = 40

s5 = 39 a1,5 = 31 q(x1, s5) = 35 q(x2, s5) = 9

s6 = 57 a1,6 = 51 q(x1, s6) = 39 q(x2, s6) = 40

We assume s1, s2, s3, s4 are known. We first generate the matrix in (6) using
s1, s2, s3 (γ = 1), and do the following elimination to get δ1 = 307980:

⎡
⎢⎣
29 12 −18
3 54 −36
16 36 −22

⎤
⎥⎦→

⎡
⎢⎣
29 12 −18
0 1530 −990
0 852 −350

⎤
⎥⎦→

⎡
⎢⎣
29 12 −18
0 1530 −990
0 0 307980

⎤
⎥⎦

Security Limitations of Using Secret Sharing for Data Outsourcing 153

We do the same with s2, s3, s4 (γ = 2) to get δ2 = −33984:⎡
⎢⎣
3 54 −36
16 36 −22
14 40 −10

⎤
⎥⎦→

⎡
⎢⎣
3 54 −36
0 −756 510

0 −636 474

⎤
⎥⎦→

⎡
⎢⎣
3 54 −36
0 −756 510

0 0 −33984

⎤
⎥⎦

We then compute δ′ = gcd(δ1, δ2) = 2124, and factor δ′ by dividing out the
small prime factors 2 · 2 · 3 · 3, to get p = 59, as expected. Now we can recover
the bases using the following system of equations as in (5):

29�1(0) + 12�2(0)− 18 ≡ 0 (mod 59)

3�1(0) + 54�2(0)− 36 ≡ 0 (mod 59)

We eliminate �1(0) from the second equation, giving 55�2(0) ≡ 46 (mod 59). We
then compute the inverse (55)−1 (mod 59) = 44, giving �2(0) = 46·44 mod 59 =
18. We then back-substitute to get �1(0) = 42. To verify, we compute s5 and s6
using (4), giving s5 = 35 · 42 + 9 · 18 (mod 59) = 39, and s6 = 39 · 42 + 40 · 18
(mod 59) = 57, as expected.

4 Aligning Shares and Discovering Secrets

In order to mount our attack, we must be able to align shares across colluding
servers. That is, given the set of shares from each of k servers, we must be able
to identify which subsets of k shares, one from each server, were obtained from
the same polynomial qj (1), even if we do not know the secret value sj itself.
Further, we must know, or be able to discover, at least k + 2 secret values and
the subset of k shares to which they correspond. We now show how we can
satisfy these assumptions for the HAT schemes [3–5] using knowledge of share
order.

In the AAEMW [4] and TSWZ [5] schemes, the shares on each server are
explicitly, totally ordered (Sect. 2.4). The share order sorts the shares in non-
decreasing order of their corresponding secrets. If two shares are obtained from
distinct polynomials, but the same secret, they have the same relative order on
each server. In the HJ scheme [3], shares are totally ordered, but the order is
hidden from the data servers. In this case, we can infer a partial share order by
observing queries over time.

4.1 Aligning Shares

When the total share order on each data server is known, we simply align the jth
share from each server. If only a partial order is known, as in the HJ scheme, the
alignment of some shares will be ambiguous. To recover secrets for such shares,
we must either try multiple alignments, or wait for more queries to arrive, and
use them to refine the partial order and eliminate the ambiguity (see Section 4.3).

154 J.L. Dautrich and C.V. Ravishankar

4.2 Discovering k + 2 Secrets

We have shown that given k + 2 secrets and their corresponding shares, our
attack can recover all remaining secrets. This weakness is a severe limitation of
the HAT schemes, and contradicts Claim 2 (Sect. 1). In practice, k � m, where
m is the number of secrets, so assuming k + 2 known secrets is reasonable. Our
attack is independent of the mechanism used to discover these secrets.

Simple methods for learning k + 2 secrets include a known plaintext attack,
where we convince the trusted client to insert k+2 known secrets, and a known
ciphertext attack, where the client reveals at least k+2 secrets retrieved by some
small range query. Since shares are ordered according to their secret values, we
can easily identify which subsets of shares from the query go with each secret.

We can also infer secret values using share order. Consider an employee table
with secret salaries, as in Fig. 1. If at least k + 2 employees earn a well-known
minimum-wage salary, then the share order reveals that the first k+2 shares have
this known salary. Alternatively, there may be k+2 employees who anonymously
post their salaries. If we can estimate the distribution of salaries in the database,
we can guess roughly where the known salaries fall in the order, and run the
attack for nearby guesses until we get a solution with a recoverable prime and
recovered secrets that fit the expected order.

4.3 Inferring Order in the HJ Scheme

If a scheme hides the share order from the data server, share alignment and secret
discovery become harder. The HJ scheme [3] stores the share order for each data
server on a single index server that ostensibly does not collude with any data
servers. The client sends each query to the index server, and the response tells
the client which shares to request from each data server.

In the simplest case, we can align shares by observing point queries, which
return only one share from each server. If the colluding servers all observe an
isolated request for a single share at the same time, they can assume the shares
satisfy a point query, and thus that they all correspond to the same secret. Given
enough point queries, we can align enough shares to mount our attack. However,
if point queries are rare, this technique will take too long to be useful.

More generally, we can order shares on each server by observing overlapping
range queries. In the HJ scheme, a range query appears to the data server as set
of unordered share requests. Since range queries request shares that have secrets
inside a given range, we know that secrets of requested shares are contiguous.
We use this information to order shares according to their secret values.

Consider an example where a client issues two range queries to the same data
server. The first query returns shares {y1, y2}, and the second, shares {y3, y2}.
Each query is a range query, so the server knows that no secret can fall between
the secrets of y1 and y2 or of y3 and y2. Since y2 appears in both queries, the
server knows that the secret of y2 comes between the secrets of y1 and y3, but is
not sure whether the secret of y1 or of y3 is smaller. Thus, the true share order
contains either subsequence y1y2y3 or y3y2y1, and we say that the server knows
the share order of {y1, y2, y3} up to symmetry (see Fig. 2).

Security Limitations of Using Secret Sharing for Data Outsourcing 155

Fig. 2. Range queries indicate that the secrets of shares y1, y2 are contiguous, as are
those of y3, y2. Thus, the secret of y2 falls between the secrets of y1 and y3, though
either y1 or y3 may have the smallest secret.

We can extend this technique to additional range queries of varying sizes.
Given enough queries, we can reconstruct the entire share order on each server
up to symmetry. The full reconstruction algorithm uses PQ-trees [12], but is out
of scope for this paper. We can link reconstructed share orders across servers,
and thereby align shares, by observing that if a query issued to one data server
requests the jth share, then the same query must also request the jth share from
every other server. If we use the share order to discover secrets, we must make
twice as many guesses, since we still only know the order up to symmetry.

5 Attack Implementation and Experiments

We implemented our attack in Java, and ran each of our attack trials using
a single thread on a 2.4GHz Intel R© CoreTM2 Quad CPU. All trials used less
than 2GB RAM. We used two datasets. The first consists of m = 1739 maxi-
mum salaries of Riverside County (California, USA) government employees as of
February, 2012 [13]. The second is a set of m = 105 salaries generated uniformly
at random from the integer range [0, 107).

5.1 Time Measurements

Our first set of experiments measures the time required to run the full attack
as described in Sect. 3. Each experiment varies the number of servers k or the
number of bits b in the hidden prime p. The total number of servers n has no
effect on the attack runtime, so we let n = k. All times are averaged over 10
independent trials, and averages are rounded up to a 1ms minimum. In each trial,
we divide out primes with at most β = 16 bits (Sect. 3.2), and we successfully
recover p, all k bases (�i(0) values), and all m secrets.

Each plot gives the times spent by the client finding a random b-bit prime p
and creating k shares for each of the m secrets. We then plot the times spent
by the colluding servers recovering p and the k bases. We also give the time
spent recovering all m secrets, which is the same for the colluding servers as it
is for the client. From Sect. 3.3, we know that the time needed to recover p is
in O(22kb2). Thus, incrementing k or log2 b increases prime recovery time by a
factor of 4. Since k and log2 b have similar effects on prime recovery time, we
plot against log2 b instead of b on the x axis.

156 J.L. Dautrich and C.V. Ravishankar

Fig. 3. Riverside dataset times, varied b Fig. 4. Riverside dataset times, varied k

Figures 3 and 4 plot times using the Riverside dataset with fixed b = 28 and
k = 8, respectively. Figures 5 and 6 give corresponding times for the random
dataset. Times to create shares and recover secrets are proportional to m, and
so are higher for the larger, random dataset. Times to generate p, recover p, and
recover bases depend only on b and k, and so are dataset-independent.

Figures 3 and 5 show that when k is held constant, increasing b costs the
client more than it costs the colluding servers. Both prime recovery and modular
multiplication take time proportional to b2, so prime recovery time is a constant
factor of share generation time. Further, the time to choose a random b-bit prime
using the Miller-Rabin primality test is in O(b3) [14], so as b grows past 212, the
cost to generate p quickly outstrips the cost to recover it. Thus it is entirely
impractical to thwart our attack by increasing b.

In the TSWZ scheme [5], the measured time to recover a prime with less than
25 bits was over 1500 seconds. In contrast, our method recovers primes with 213

bits in under 500 seconds on comparable hardware, for k = 8. As long as k � b,
as is likely in practice, our method is far faster.

Fig. 5. Synthetic dataset times, varied b Fig. 6. Synthetic dataset times, varied k

Security Limitations of Using Secret Sharing for Data Outsourcing 157

Figures 4 and 6 show that when b is fixed, most times are in O(k), with the
exception of prime recovery time, which is in O(22k). Thus, by increasing k, the
attack can be made arbitrarily expensive at a relatively small cost to the client.
However, as we discuss in Sect. 6, even k = 10 may be impractical.

5.2 Failure Rate Measurements

Since we only factor out small primes with at most β bits (Sect. 3.2), our attack
fails if δ1, δ2 share any prime factor, other than p, that has more than β bits.
Thus, our attack’s failure rate rf is the probability that δ1/p, δ2/p share a prime
with more than β bits. Since δ1, δ2 are not independent random numbers, it is
difficult to compute rf analytically, so we measure it empirically. The results of
our experiment are shown in Fig. 7.

We found that rf is largely independent of b, but depends heavily on k and
β. To measure rf , we conducted several trials in which we generated a prime p
of b = 32 bits, and ran our attack using k + 2 randomly generated secrets. For
k = 2, we ran 106 trials, and were able to get meaningful failure rates up through
β ≈ 16. Trials with larger k were much more expensive, so we only ran 103 trials
for k = 6 and k = 10, and the results are accurate only through β ≈ 10.

From our results, we derived the approximate expression rf ≈ 2(k−2)/4

2β+1 k. We
then plotted this estimated rf in Fig. 7, denoted by est. The approximation is
adequate for the range of β we’re considering. The dependence of rf on 2−(β+1) is
expected, as the probability that a factor of β+1 bits found in one random d-bit

number is found in another random d-bit number is roughly 2d−(β+1)

2d = 2−(β+1).
The nature of the dependence on k is unclear, but it may be related to the fact
that k of the k + 1 equations used to compute δ1 are also used to compute δ2.

Using our approximation for rf , we estimate the worst-case failure rate for

our timing experiments, where β = 16 and k = 13, to be rf ≈ 2(13−2)/4

216+1 13 =
2−14.2513 ≈ 6.67× 10−4. If necessary, we can lower rf further by increasing β.

Fig. 7. Attack failure rates for varied k and β

158 J.L. Dautrich and C.V. Ravishankar

6 Attack Mitigations

We now discuss possible modifications a client can make to the HAT schemes
that may improve security. In order to mitigate our attack, a modification must
cause at least one of the attack assumptions listed in Sect. 3 to be violated.

Assumption: At Least k Servers Collude. The simplest way to thwart our attack
is to ensure that no more than k − 1 servers are able to collude. Only in such
cases can secret sharing schemes hope to achieve perfect, information-theoretic
security. However, if the number of colluding servers must be limited, secret
sharing schemes cannot be applied to the honest-but-curious server threat model
commonly used for data outsourcing [1, 2, 8, 15, 16].

Assumption: b, k Modest. In Sect. 5, we showed that increasing b costs the client
more than it costs the colluding servers, so a large b is impractical. With limited
resources, we successfully mounted attacks for k = 13 in under 500 seconds,
so k must be substantially larger (k > 20) to achieve security in practice. For
each server, the client pays a storage cost equal to that of storing his data in
plaintext. If k ≥ 10, the combined storage cost exceeds that of many encryption-
based private query techniques [1, 2, 15], so increasing k is also impractical.

Assumption: Same X , p for Each Secret. Storing a distinct X or prime p on
the client for each secret is at least as expensive as storing the secret itself. An
alternative is to use a strong, keyed hash hj to generate a distinct vector X ′ =
hj(X) for each secret sj . Using this method, each secret requires different basis
polynomials for interpolation, so mounting an attack would be much harder.
Unfortunately, it also eliminates additive homomorphism, removing support for
server-side aggregation, which is cited as a reason for adopting secret sharing.

Assumption: Corresponding Shares can be Aligned. Hiding share order from data
servers as in [3] can hinder share alignment, but if the scheme supports range
or point queries, share alignment can eventually be inferred (Sect. 4.3). Schemes
could use re-encryption or shuffling to obscure order as in [2], but the cost of
such techniques outweighs the performance advantages of secret sharing.

Assumption: k + 2 Known Secrets. It is difficult to keep all secrets hidden from
an attacker. Known plaintext/ciphertext attacks for small amounts of data are
always a threat, and if we known the real-world distribution of the secrets, we can
guess them efficiently (Sect. 4.2). The client could encrypt secrets before sharing,
but doing so adds substantial cost and eliminates additive homomorphism.

7 Related Work

Privacy-preserving data outsourcing was first formalized in [16] with the intro-
duction of the Database As a Service model. Since then, many techniques have
been proposed to support private querying [1, 2, 15, 17, 18], most based on spe-
cialized encryption techniques. For example, order-preserving encryption [1] sup-
ports efficient range queries, while [15] supports server-side aggregation through

Security Limitations of Using Secret Sharing for Data Outsourcing 159

additively homomorphic encryption. Other schemes are based on fragmentation,
where only links between sensitive and identifying data are encrypted [17, 18].

As far as we know, the schemes we discuss in this paper [3–5, 7] are the first
to use secret sharing to support private data outsourcing, though secret sharing
has been used for related problems, such as cooperative query processing [19].
Prior works, such as [8], have addressed various security issues surrounding data
outsourcing schemes, but as far as we know, ours is the first to reveal the specific
limitations of schemes based on secret sharing.

8 Conclusion

Private data outsourcing schemes based on secret sharing have been advocated
because of their slight advantages over existing encryption-based schemes. Such
advantages include security, speed, and support for server-side aggregation. All
three outsourcing schemes based on secret sharing [3–5] claim that security is
maintained even when k or more servers collude. To the contrary, we have shown
that all three schemes are highly insecure when k or more servers collude, re-
gardless of whether X and p are kept secret.

We described and implemented an attack that reconstructs all secret data
when only k+2 secrets are known initially. In less than 500 seconds, our attack
recovers a hidden 256-bit prime for k ≤ 13 servers, or an 8192-bit prime for k ≤ 8.
We discussed possible modifications to mitigate our attack and improve security,
but any such modifications sacrifice generality, performance, or functionality.

We conclude that secret sharing outsourcing schemes are not simultaneously
secure and practical in the honest-but-curious server model, where servers are
not trusted to keep data private. Such schemes should only be used when the
client is absolutely confident that at most k − 1 servers can collude.

Acknowledgements. This work was supported in part by contract number
N00014-07-C-0311 with the Office of Naval Research.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proc. ACM SIGMOD, pp. 563–574 (2004)

2. Stefanov, E., Shi, E., Song, D.: Towards practical oblivious RAM. In: Proc. NDSS
(2012)

3. Hadavi, M., Jalili, R.: Secure Data Outsourcing Based on Threshold Secret Sharing;
Towards a More Practical Solution. In: Proc. VLDB PhD Workshop, pp. 54–59
(2010)

4. Agrawal, D., El Abbadi, A., Emekci, F., Metwally, A., Wang, S.: Secure Data Man-
agement Service on Cloud Computing Infrastructures. In: Agrawal, D., Candan,
K.S., Li, W.-S. (eds.) Information and Software as Services. LNBIP, vol. 74, pp.
57–80. Springer, Heidelberg (2011)

5. Tian, X., Sha, C., Wang, X., Zhou, A.: Privacy Preserving Query Processing on
Secret Share Based Data Storage. In: Yu, J.X., Kim, M.H., Unland, R. (eds.)
DASFAA 2011, Part I. LNCS, vol. 6587, pp. 108–122. Springer, Heidelberg (2011)

160 J.L. Dautrich and C.V. Ravishankar

6. Shamir, A.: How to share a secret. Communications of the ACM, 612–613 (1979)
7. Agrawal, D., El Abbadi, A., Emekci, F., Metwally, A.: Database Management as a

Service: Challenges and Opportunities. In: Proc. ICDE Workshop on Information
and Software as Services, pp. 1709–1716 (2009)

8. Kantarcıoǧlu, M., Clifton, C.: Security Issues in Querying Encrypted Data. In:
Jajodia, S., Wijesekera, D. (eds.) Data and Applications Security 2005. LNCS,
vol. 3654, pp. 325–337. Springer, Heidelberg (2005)

9. Buchberger, B., Winkler, F.: Gröbner bases and applications. Cambridge Univer-
sity Press (1998)

10. Fang, X., Havas, G.: On the worst-case complexity of integer gaussian elimination.
In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic
Computation, pp. 28–31. ACM (1997)

11. Stein, J.: Computational problems associated with racah algebra. Journal of Com-
putational Physics 1(3), 397–405 (1967)

12. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, inter-
val graphs, and graph planarity using PQ-tree algorithms. J. Comput. System
Sci. 13(3), 335–379 (1976)

13. County of riverside class and salary listing (February 2012),
http://www.rc-hr.com/HRDivisions/Classification/tabid/200/ItemId/

2628/Default.aspx

14. Rabin, M.: Probabilistic algorithm for testing primality. Journal of Number The-
ory 12(1), 128–138 (1980)

15. Mykletun, E., Tsudik, G.: Aggregation Queries in the Database-As-a-Service
Model. In: Damiani, E., Liu, P. (eds.) Data and Applications Security 2006. LNCS,
vol. 4127, pp. 89–103. Springer, Heidelberg (2006)

16. Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over encrypted data
in the database-service-provider model. In: Proc. ACM SIGMOD, pp. 216–227
(2002)

17. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Keep a Few: Outsourcing Data While Maintaining Confidentiality.
In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 440–455.
Springer, Heidelberg (2009)

18. Nergiz, A.E., Clifton, C.: Query Processing in Private Data Outsourcing Us-
ing Anonymization. In: Li, Y. (ed.) DBSec 2011. LNCS, vol. 6818, pp. 138–153.
Springer, Heidelberg (2011)

19. Emekci, F., Agrawal, D., Abbadi, A., Gulbeden, A.: Privacy preserving query pro-
cessing using third parties. In: Proc. ICDE, p. 27. IEEE (2006)

http://www.rc-hr.com/HRDivisions/Classification/tabid/200/ItemId/2628/Default.aspx
http://www.rc-hr.com/HRDivisions/Classification/tabid/200/ItemId/2628/Default.aspx

Privacy-Preserving Subgraph Discovery

Danish Mehmood1, Basit Shafiq1,2, Jaideep Vaidya2, Yuan Hong2, Nabil Adam2,
and Vijayalakshmi Atluri2

1 Lahore University of Management Sciences, Pakistan
2 CIMIC, Rutgers University, USA

{danish.mehmood,basit}@lums.edu.pk,
{jsvaidya,yhong,adam,atluri}@cimic.rutgers.edu

Abstract. Graph structured data can be found in many domains and applications.
Analysis of such data can give valuable insights. Frequent subgraph discovery,
the problem of finding the set of subgraphs that is frequent among the underly-
ing database of graphs, has attracted a lot of recent attention. Many algorithms
have been proposed to solve this problem. However, all assume that the entire set
of graphs is centralized at a single site, which is not true in a lot of cases. Fur-
thermore, in a lot of interesting applications, the data is sensitive (for example,
drug discovery, clique detection, etc). In this paper, we address the problem of
privacy-preserving subgraph discovery. We propose a flexible approach that can
utilize any underlying frequent subgraph discovery algorithm and uses crypto-
graphic primitives to preserve privacy. The comprehensive experimental evalua-
tion validates the feasibility of our approach.

1 Introduction

Today, graph structured data is ubiquitous. All types of relationships, including, spatial,
topological, and other characteristics, can be modeled through the graph abstraction,
thus capturing different data semantics. Graph-based analysis gives valuable insights
into the data and has been successfully applied to various application domains includ-
ing protein analysis [17],chemical compound analysis [3], link analysis[12] and web
searching[15]. One of the most useful forms of analysis is to find frequent subgraphs
from a large database of graphs. This has application in many different domains in-
cluding cheminformatics (drug disovery), transportation networks, etc. Unlike standard
frequent itemset discovery, used for association rule mining in transactional databases,
frequent subgraph discovery is a much tougher problem due to underlying fundamental
problems, such as canonical labeling of graphs and subgraph isomorphism.

In recent years, this has attracted a lot of attention with many efficient algorithms
being developed to solve this problem. However, all of these algorithms assume that the
set of graphs is either public or available at a single site. In reality, in many valuable
cases, the set of graphs may be distributed between multiple parties, with each party
owning a subset of the graphs. Chemical compound databases are one such example.
Many pharmaceutical companies have local databases of pharmaceutical drugs which
can be represented as graphs. Furthermore, in a lot of interesting applications, the data is
sensitive (for example, drug discovery, clique detection, etc). Therefore, due to privacy

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 161–176, 2012.
c© IFIP International Federation for Information Processing 2012

162 D. Mehmood et al.

P P
P3G G2 G G

G5

Common
P1 P2

P3G1
G2 G3 G4 subgraph

Fig. 1. Graphs owned by three parties (P1, P2, and P3) and the subgraph present in all the graphs
of each party

and security concerns, the parties may not wish to reveal their individual graphs to
each other or to a central site. In this case, a distributed privacy-preserving algorithm
must be developed to enable mining in such cases. In this paper, we develop such an
algorithm using cryptographic primitives to preserve privacy. Our algorithm uses any
known subgraph discovery method as a subroutine, and therefore can be enhanced in the
future as well. We have implemented our approach and the comprehensive experimental
evaluation validates the feasibility of our approach.

Illustrative Example: Consider the case depicted in Figure 1, where 3 parties together
own 5 graphs (Party 1 owns 2, Party 2 owns 2, and Party 3 owns 1). Figure 1 also depicts
the common subgraph that is common to all of the five graphs. Therefore, even with a
support threshold of 5, this graph will be detected when subgraph mining is done on
the global set of graphs. Note that in this case, we assume that the graph is unlabeled
(i.e., neither nodes nor edges are labeled). However, our approach is agnostic to the
labeling - either the nodes, the edges, both, or neither could be labeled, based on the
data semantics. As long as the underlying subgraph discovery algorithm can handle
these cases, our approach will be able to take all of these requirements correctly into
account.

1.1 Problem Statement

The basic problem is to discover frequent subgraphs in a privacy-preserving way from
a set of graphs owned by different parties. This can be formalized as follows:

Definition 1. Given k parties P1, . . . , Pk, each of which own a set of graphs Si (let
S =

⋃
Si), and a global threshold δ (0 ≤ δ ≤ 1), find the set of frequent subgraphs

FS in a privacy-preserving fashion, wherein the global support of each subgraph in
FS is over δ. Thus, for each subgraph fsj ∈ FS,

∑
i support(Si, fsj) ≥ δ|S|, where

support(Si, fsj) = # graphs in Si that include fsj as a subgraph.

Note that in the definition above, we simply require that the set of frequent subgraphs
is found in a privacy-preserving fashion. Under the framework of secure multiparty
computation[24,5], this equates to not leaking any additional information to any party
beyond what can be inferred (in polynomial time) through the local input and output.

Instead of strictly following Definition 1, our protocol satisfies a relaxed form of
this definition that allows efficient computation at the expense of leaking additional

Privacy-Preserving Subgraph Discovery 163

P1

sg11

P2

sg21 sg2n

P3

sg31 sg33sg32
sg12 sg1n

P1
P2 P3

Fig. 2. Local candidate sets with respect to the example in Fig. 1

information. Below is the revised formulation with relaxed privacy requirement that the
protocol satisfies.

Definition 2. Given k parties P1, . . . , Pk, each of which own a set of graphs Si (let
S =

⋃
Si), and a global threshold δ (0 ≤ δ ≤ 1), find the set of frequent subgraphs

FS (wherein the global support of each subgraph in FS is over δ) without leaking any
additional information beyond the set of all local candidates, their support counts, and
the number of parties owning them.

2 Proposed Approach

In this section, we present our proposed approach for privacy-preserving discovery of
frequent subgraphs in the set of graphs distributed among multiple parties. The pro-
posed approach essentially involves three key steps:

1. Generation of local candidates – each party computes a candidate set of frequent
subgraphs from it local graph set.

2. Generation of a global candidate set of subgraphs – secure union of local candidates
to form a global candidate set – the global candidate set is generated by performing
secure union of the local candidate sets.

3. Removal of non-frequent subgraphs from the global candidate set – the frequency
count of each subgraph in the global candidate set is compared against a global
threshold to check if this candidate is a real result.

The overall algorithm encompassing the above steps for subgraph discovery is given
in Algorithm 1.This algorithm implements the distributed protocol involving k parties
and a coordinator site. Each party owns a local set of graphs, and N is the total number
of graphs, which is the sum of the number of graphs in the local set of all parties. The
algorithms also uses a commutative cryptography system [14] for computing secure
union and a homomorphic cryptography system [13] for computing secure sum. Corre-
spondingly, each party and coordinator site has a pair of commutative encryption and
decryption keys; a public homomorphic encryption key which is shared among all the
parties and coordinator; a private homomorphic decryption key derived from the public
key. In addition, the algorithm requires the user to specify the support threshold (sT),
which is the percentage of total graphs in which the computed subgraphs are present.
The user also specifies the minimum size of these subgraphs that need to be computed.
This minimum size is specified in terms of the number of nodes (Nodemin) and number
of edges (Edgemin).

164 D. Mehmood et al.

Algorithm 1. SubgraphDiscovery
Require: k parties (P1, . . . , Pk) each owning a set of graphs and a coordinator site Coord

Require: Pi owns the graph set, GS(i) = G
(i)
1 , . . . , G

(i)
m

Require: N = |GS(1)|+ . . .+ |GS(k)|
Require: E

(i)
C , D

(i)
C Commutative encryption and decryption keys of party Pi

Require: EH A public Homomorphic encryption key
Require: D

(i)
H Homomorphic decryption key of party Pi

Require: sT , support threshold, percentage of total graphs in which the resulting subgraph(s)
is/are present

Require: Nodemin, minimum number of nodes in each of the subgraphs
Require: Edgemin, minimum number of edges in each of the subgraphs
Ensure: FSG, frequent subgraph set
1: {STEP 1: Generation of Local Candidates}
2: At each party Pi:
3: {select an appropriate support threshold, s(i)T . This threshold value is used to find a set of

candidate frequent subgraphs from the set of local graphs GS(i)}
4: {select an appropriate support threshold, s(i)T . This threshold value is used to find a set of

candidate frequent subgraphs from the set of local graphs GS(i)}
5: LocalCand(i) ← filter(gSpan(GS(i), s

(i)
T , Nodemin, Edgemin)) {run the gSpan algo-

rithm locally to find the candidate frequent subgraphs from the local graph set. The filter
function ensures that only those subgraphs that a party is comfortable with are included in
the local candidate set.}

6: {STEP 2: Generation of Global Candidate Set}
7: m(i) ← Encrypt(LocalCand(i), E

(i)
C). {The encryption method treats LocalCand(i) as

a string so that the resulting cipher text m(i) does not reveal the structure of any of the local
graphs.}

8: send m(i) to Coord for secure union
9: At Coord:

10: FSG ← {}
11: receive m(i) from each party Pi

12: M ← ⋃k
i=1 m

(i)

13: GlobalCand ← SecureUnion(M)
14: {STEP 3: Removal of Non-frequent Subgraphs}
15: send GlobalCand to each party Pi

16: At each party Pi:
17: create an array Ecount(i) with length equal to the length of GlobalCand and initialize all

the elements of Ecount(i) to random encryption of 0 using the homomorphic encryption key
EH

18: for each subgraph sgj ∈ GlobalCand do

19: for each local graph Gx ∈ GS(i) do

20: if sgj is present in Gx then

21: h1
enc ← HomomorphicEncrypt(1, r, EH) {Random encryption of 1 using ho-

momorphic encryption key EH)}
22: Ecount(i)[j] ← Ecount(i)[j] ∗ h1

enc

23: end if

24: end for

25: end for

26: send Ecount(i) to Coord for secure sum
27: At Coord:
28: receive Ecount(i) from each party Pi

29: Count ← SecureSum(Ecount(1), . . . , Ecount(k))
30: for each subgraph sgj ∈ GlobalCand do

31: if Count[j] ≥ sT ∗N then

32: FSG ← FSG
⋃

sgj
33: end if

34: end for

35: return FSG

Privacy-Preserving Subgraph Discovery 165

Algorithm 2. SecureUnion(M)
Require: k parties (P1, . . . , Pk) and a coordinator site Coord

Require: E
(i)
C , D

(i)
C Commutative encryption and decryption keys of party Pi

1: At Coord:
2: EM ← {}
3: GlobalCand ← {}
4: {Commutaive encryption of M by all parties}
5: for each m(i) ∈ M do
6: q ← m(i) {m(i) is received from Pi}
7: for j = 1 . . . k do
8: if j 	= i then
9: shuffle and send q to party Pj for commutative encryption with its key E

(j)
C

10: receive eq from Pj

11: q ← eq
12: end if
13: end for
14: EM = EM

⋃{q}
15: end for
16: send commutative encryption complete signal
17: At each party Pi:
18: while commutative encryption complete signal is not received from Coord do
19: receive q from Coord
20: send eq ← Encrypt(q,E

(i)
C) to Coord {eq is encryption of q with the ommutative

encryption key E
(i)
C }

21: end while
22: {Decryption of EM by all parties}
23: for each em ∈ EM do
24: q ← em
25: for j = 1 . . . k do
26: send dq to party Pj for decryption with its key D

(j)
C

27: receive dq from Pj

28: q ← dq
29: end for
30: GlobalCand = GlobalCand

⋃{q}
31: end for
32: send decryption complete signal
33: remove duplicate elements (subgraphs) from GlobalCand
34: return GlobalCand
35: At each party Pi:
36: while decryption complete signal is not received from Coord do
37: receive q from Coord
38: send dq ← Decrypt(q,D

(i)
C) to Coord {dq is decryption of q with the Commutative

decryption key D
(i)
C }

39: end while

166 D. Mehmood et al.

Algorithm 3. SecureSUM(Ecount(1), . . . , Ecount(k))
Require: Threshold-based homomorphic crypto system
Require: EH A public Homomorphic encryption key
Require: D

(i)
H Homomorphic decryption key of party Pi and DCoord

H Homomorphic decryption
key of Coord

Require: T , Threshold for homomorphic decryption (No. of parties needed for decryption)
1: At Coord:
2: Create an array Ecnt with length equal to the length of GlobalCand and initialize all the

elements of Ecnt to random encryption of 0 using the homomorphic encryption key EH

3: for i = 1 . . . length(Ecnt) do
4: for j = 1 . . . k do
5: Ecnt[i] ← Ecnt[i] ∗ Ecount(j)[i]
6: end for
7: end for
8: Collaboratively decrypt Ecnt with T parties to get actual frequency count of each subgraph
9: return Decrypted Ecnt

Below we discuss each of the above three steps and how these steps are implemented
in the Subgraph discovery algorithm.

2.1 Generation of Local Candidates

This step of generation of local candidates is implemented in lines 1 - 4 of Algorithm 1.
For generation of local candidates, each party runs the frequent subgraph mining algo-
rithm. For frequent subgraph mining, we use the gSpan algorithm [23]. Our approach is
agnostic to the underlying frequent subgraph mining algorithm. We chose gSpan since
it was easily available and reasonably efficient. gSpan takes a collection of graphs and
a minimum support threshold as input and computes all the subgraphs whose frequency
is greater than or equal to the given threshold. In addition, we constrain the minimum
size of subgraphs to avoid retrieving trivial subgraphs. For this, we use the (Nodemin)
and (edgemin) parameters which are defined globally by the user.

Note that a filter function is applied to the output of gSpan to ensure that only
those subgraphs that a party is comfortable with are included in its local candidate
set. This improves the privacy protection. For computing the local candidate set, the
support threshold needs to be closer to the global support threshold (sT) or smaller
to reduce the number of frequent sub-graphs that are missed from the final solution.
Clearly, if a local support threshold corresponding to one graph only (i.e., a subgraph is
present in only one of the local graph) is used, there will not be any miss. However, this
significantly increases the computational overhead as there will be too many subgraphs
in the local candidate set. We analyze this trade-off between performance and accuracy
in our experiments discussed in Section 4.2.

Fig. 2 depicts the set of local candidates computed locally by each of the three par-
ties P1, P2, and P3 using their local set of graphs discussed in the Introduction and
illustrated in Figure 1. In this Figure, the minimum size of the subgraphs are restricted
to 4 nodes and 3 edges.

Privacy-Preserving Subgraph Discovery 167

2.2 Generation of a Global Candidate Set

This step of generation of a global candidate set of frequent subgraphs is implemented
in lines 5 - 12 of Algorithm 1. Essentially, the global candidate set is the union of the
local candidate sets computed by each party in Step 1. However, due to privacy require-
ments this union needs to be computed in a secure manner without revealing which
candidate subgraph comes from which party. We employ a commutative encryption-
based approach for computing the secure union of the local candidate sets.

An encryption algorithm is commutative if plain text data item enciphered with mul-
tiple encryption keys in any arbitrary order will have the same enciphered text.Formally,
an encryption algorithm is commutative if the following two equations hold for any
given encryption keys K1, . . . ,Kn ∈ K , any data item to be encrypted m ∈ M , and
any permutations of i, j : ∀m1,m2 ∈M such that m1 �= m2:

EKi1
(...EKin

(m)...) = EKj1
(...EKjn

(m)...) (1)

and for any given k, ε < 1/2k

Pr(EKi1
(...EKin

(m1)...) = EKj1
(...EKjn

(m2)...)) < ε (2)

Pohlig-Hellman [14] is one example of a commutative encryption scheme (based
on the discrete logarithm problem). This or any other commutative encryption scheme
would work well for our purposes.

The basic idea of computing the secure union using the commutative encryption pro-
tocol is that each subgraph in every local candidate set is encrypted by all the parties us-
ing their commutative encryption keys. Then all these encrypted subgraphs are put into
a global candidate set with their order shuffled. However, the elements in the encrypted
global candidate set would have duplicates that need to be removed for the global can-
didate set to the union of all the local candidate sets. The encryption method used in the
proposed approach treats each element in the local candidate set as a string so that the
resulting cipher text mask the structural information of each local subgraph. Without
knowing the structural information, duplicate subgraphs in the encrypted global candi-
date set cannot be removed. The following substeps elaborate on the proposed commu-
tative encryption-based strategy for computing the secure union of local candidate set
to form the global candidate set.

Substep 1. Each party Pi represents its local candidate set into a string and applies its
commutative encryption key E

(i)
C on the resulting string. This encrypted local candidate

set is then sent to Coord for secure union. (Lines 5 and 6 of Algorithm 1)

Substep 2. The Coord receives the encrypted local candidate set from each party and
routes each candidate set to all other parties for commutative encryption. When all the
local candidate sets are encrypted by all parties, the Coord combines them into one
global encrypted set (Lines 7 - 11 of Algorithm 1 and lines 1 - 16 of Algorithm 2).

Substep 3. The encrypted global candidate set is sent by the coordinator to each party
for decryption. Each party upon receiving the encrypted global candidate set shuffles
its order and then applies its commutative decryption key. After all parties have applied

168 D. Mehmood et al.

their decryption keys, the structural information in the global candidate set is restored.
After this the duplicate subgraphs in the global candidate set are removed (lines 17 - 39
of Algorithm 2)). For duplicate removal, we perform a pairwise comparison between
the subgraphs in the global candidate set using gSpan.

This strategy computes the global candidate set without revealing private information
about the local subgraphs of any party to other parties – specifically, which subgraphs
belong to which party. This is because during the commutative encryption substeps
(substeps 1 and 2), the local candidate set of each party is encrypted by the encryption
key of the party owning the graph. During the decryption phase all the local subgraphs
are merged into one set with their order shuffled. Therefore, inferring which subgraph
belongs to which party based on its position in the global candidate set is also not
possible. The drawback of removing duplicates after decryption is that the coordinator
would know how many parties have a given subgraph present in their graphs. We discuss
this issue further in Section 3.

2.3 Removal of Non-frequent Subgraphs

The global candidate set is the union of the local candidate set. As discussed in Section
2.1 the support threshold for generation of subgraphs in the local candidate set may
be smaller than the global support threshold. Therefore, all those subgraphs that do
not satisfy the global threshold need to be removed from the global candidate set. This
requires computing the frequency count (number of graphs in which a given subgraph is
present) for each subgraph. This frequency count also needs to be computed in a secure
and distributed manner as there is no global set of graphs and all the graphs are with
their owner parties.

The step of removal of non-frequent subgraphs from the global candidate set is im-
plemented in lines 13 - 33 of Algorithm 1. intuitively in this step, each party Pi com-
putes the frequency count of each subgraph in the global set with respect to its local
graph set GS

(i)
i (lines 17 - 24 of Algorithm 1). This frequency count is stored in a vec-

tor which is sent to the coordinator. The coordinator after receiving the frequency count
vector from all parties computes the sum for each subgraph in the global candidate set.
If this sum is less than the given global support threshold, the corresponding subgraph
is removed from the global candidate set (lines 22 - 33 of Algorithm 1).

For secure computation and summation of the frequency counts, we employ an ad-
ditive homomorphic cryptosystem such as the Paillier cryptosystem [13]. An additive
homomorphic encryption is semantically-secure public-key encryption which has the
additional property that given any two encryptions E(A) and E(B), there exists an en-
cryptionE(A+B) such that E(A)∗E(B) = E(A+B), where * denotes multiplication
operator.

Following this homomorphic encryption property, each party initializes its frequency
count vector by putting a random homomorphic encryption of ’0’ in each element of
its frequency count vector (line 16 of Algorithm 1). When computing the frequency
count of each subgraph in the nested for loop of lines 17 - 24 of Algorithm 1, if a match
is found the party increments the value of the corresponding element of the frequency
count vector by ’1’. This is done by multiplying the value of such element with a random
homomorphic encryption of ’1’ (line 21 of Algorithm 1). Similarly, the coordinator

Privacy-Preserving Subgraph Discovery 169

employs a secure sum protocol to compute the sum of the frequency count vectors
received from each party and employs threshold based decryption to decrypt the values
of the global count for each subgraph. The reason for using threshold-based decryption
strategy is to prevent a single party (coordinator) to decrypt the values in the frequency
count vector received from each party. Threshold-based decryption with threshold of T
requires T parties to collaboratively decrypt the encrypted values.

3 Complexity and Security Analysis

We now analyze the computation and communication complexity of our algorithms as
well as the security provided through our approach.

3.1 Computation Cost

The computation cost of the distributed algorithm is actually comparable to the cost
incurred in the centralized case. The main cost is incurred due to three steps, the local
calls to the gSpan algorithm to find the local candidates, the commutative encryption
based protocol to find the global candidate set, and the second round of local calls to
the gSpan algorithm to find the frequency count of each candidate subgraph. Compared
to these steps, the cost of the secure sum to find the global frequencies is negligible and
can be ignored. Let us now consider the cost of each step.

Essentially, in the first step, even though each party invokes gSpan independently,
it does so, only over the local set of graphs. Therefore the total computation cost is
comparable to the cost of running gSpan over the entire set of graphs in a centralized
case. In the second step, the secure union protocol is used to create a global candidate
set. Essentially, each candidate subgraph is represented by a string, which is encrypted
by all the parties, and then decrypted after merging into a combined set. Thus, assuming
a total of l candidate graphs in the global set, the total cost is that of O(kl) encryptions
and decryptions. In the third step, gSpan is run over each pair of candidate subgraph,
and local graph. Thus, gSpan is invoked l|S| times, where |S| is the total number of
graphs. Note that each invocation of gSpan in step 3 takes much less time than in step
1 as only two graphs are being compared.

3.2 Communication Cost

Communication between the parties only occurs when the local candidates are merged
into a global set and sent to all of the parties, and in the final frequency determination
phase. For the secure union, there are a total of O(kl) messages, for encryption and
decryption. For the secure sum, it is the same with O(kl) messages being exchanged.

3.3 Security Analysis

Consider Algorithm 1. Step 1 is completely local, so no private information is disclosed.
In step 2, the global candidate set is generated from the set of local candidates. Encryp-
tion is used to obscure the link between the candidates and the party generating them.
The Secure Union protocol is used to securely combine the candidate sets. Assuming

170 D. Mehmood et al.

that this protocol is secure, nothing is leaked through the combination process, though
all parties will learn the global candidate set (and can therefore identify candidates that
do not belong to them, though they cannot identify which party the candidates come
from). Note that, in reality, the secure union does leak some additional information. In
the secure union (Algorithm 2), after merging local sub-graphs, duplicate sub-graphs
are removed. However, the duplicates are removed after decryption. Therefore, the co-
ordinator would know the number of parties that support each candidate sub-graph. In
the extreme case where all parties support a particular subgraph, the coordinator would
now know that the particular subgraph is frequent for all parties (though it still would
not know which local subgraphs does it belong to for each party, as long as there are at
least 3 parties).

In step 3, the non-frequent subgraphs are removed. For this, the support count of
each of the candidate subgraphs is computed using the secure sum algorithm. Assum-
ing this is secure, nothing is leaked, except for the support count (though, again, it is
not clear which graphs contributed to this support count). In total, the overall process
simply leaks the set of global candidates to all parties (along with the number of parties
supporting each candidate, though only to the coordinator), as well as the frequency
count (again, only to the coordinator).

Assuming that this additional information is given to the simulator, we can prove that
the algorithm does not leak anything further. The question is whether this constitutes
too much information. Let us consider each independently. Our algorithm leaks the set
of global candidates, from which the final set of frequent subgraphs is picked. However,
since each party locally mines its frequent subgraphs in step 1, it can easily refrain from
including any of the subgraphs that it is uncomfortable with. This makes it difficult
for any party to learn the entire graph or any unique / identifying subgraph of other
parties. In the case of the frequency counts, if these are considered sensitive, it can be
easily handled through the use of a simple add and compare[18] protocol that can check
whether the global count of the candidate is above the threshold or not. Such a protocol
can easily be implemented through the VIFF system1.

Given a large set of graphs, this extra information can be considered to be accept-
able and worth allowing, given the gain in efficiency that is obtained, as compared to
generic secure multiparty computation techniques which would leak no information but
be extremely slow.

4 Experimental Evaluation

4.1 Implementation Details

In this section we cover the details of our implementation of the privacy-preserving
subgraph discovery algorithm on modern hardware and present experimental results
demonstrating the usability of this algorithm.

The general model of privacy preserving subgraph is as follows. The coordinator
initiates a request for subgraph discovery. The coordinator could be a separate entity
or one of the graph owner parties. There is one global coordinating class/interface that

1 http://viff.dk/

Privacy-Preserving Subgraph Discovery 171

Coordinator P
1

P
2

Pk

Initiate subgraph discovery
process

Inter Group
communication for
secure union of
candidate subgraph
computed locally

Inter Group
Communication for
computing the
frequency count of
each candidate in
the global set using
secure sum
protocol

send global set of candidate
subgraphs

Fig. 3. Basic Interaction Diagram

provides access to the subgraph discovery functionality. We call this the RmtMain in-
terface. However, since this interface is present at a user site, the class implementing
it should have access to no private information about the graphs of other parties. The
class implementing this is the SiteCoordinator class which is initialized with the
appropriate site information. There is another interface called, RmtSlave interfaces.
All other parties that are involved in the sub-graph discovery process are treated as slave
sites. The coordinator site coordinates with the slave sites to perform the required action.

Figure 3 demonstrates the basic interaction diagram. Java RMI is used to implement
the distributed protocol between all of the sites.

We used Pohlig-Hellman encryption scheme [14] for implementing commutative
encryption and Paillier Crypto system [13] for implementing Homomorphic encryption.

4.2 Experimental Evaluation

We now present experimental results demonstrating the usability of the proposed al-
gorithms. We ran our experiments on two real graph datasets [23]: i) Chemical 340;
ii) Compound 422. The Chemical 340 dataset 340 chemical compounds, 24 different
atoms, 66 atom types, and 4 types of bonds. The average graph size in this dataset is
27 nodes and 28 edges. The largest graph in this dataset has 214 nodes and 214 edges.
The Compound 422 dataset has 422 graphs with average graph size of 40 nodes and 42
edges. The largest graph in this dataset has 189 nodes and 196 edges.

Figure 4 shows the computation time and accuracy results of the
SubgraphDiscovery algorithm for the Chemical 340 and Compound 422 datasets.
The global threshold was set to 12% for both data sets. For the Chemical 340 dataset,
the minimum size of the frequent subgraph was set to 5 nodes and 5 edges. The
total number of frequent subgraphs in the Chemical 340 dataset satisfying the global
threshold and minimum graph size requirements was 550. For the Compound 422
dataset, the minimum size of the frequent subgraph was also set to 5 nodes and 5
edges. In addition, we also constrain the maximum size to be 7 nodes and 7 edges.
The total number of frequent subgraphs in the Compound 422 dataset satisfying the
global threshold and minimum graph size requirements was 562. The graphs in both
datasets were randomly distributed among three sites with each site having almost
equal number of graphs.

172 D. Mehmood et al.

Compound 422
Dataset Total graphs = 422; Average graph size = (40 nodes, 42 edges); Largest

graph size = (189 nodes, 196 edges)
Frequent
Subgraphs

Size (Nodemin=5, Edgemin edges=5; Nodemax=7, Edgemax edges=7); Global
Threshold = 12%; Number of frequent subgraphs = 562

Sites Randomly distributed among 3 sites with each site having equal number
of graphs

No. Local
Threshold

(%age)

Average
subgraphs per

site

Step 1
Time
(sec)

Step 2
Time
(sec)

Step 3
Time
(sec)

Total
Time
(sec)

Accuracy

(%age)
1 9 728 14 3768 661 4433 100
2 12 571 13 2739 513 3265 100
3 15 442 12 2094 437 2543 95.20
4 18 351 14 1631 341 1986 78.29

Chemical 340
Dataset Total graphs = 340; Average graph size = (27 nodes, 28 edges); Largest

graph size = (214 nodes, 214 edges)
Frequent
Subgraphs

Size(Nodemin=5, Edgemin=5); Global Threshold = 12%; Number of
frequent subgraphs = 550

Sites Randomly distributed among 3 sites with each site having equal number
of graphs

No. Local
Threshold

(%age)

Average
subgraphs per

site

Step 1
Time
(sec)

Step 2
Time
(sec)

Step 3
Time
(sec)

Total
Time
(sec)

Accuracy

(%age)
1 9 1308 23 8,871 1,537 10,423 100
2 13 513 14 2,761 458 3,233 99.82
3 15 393 12 2,087 359 2,458 95.82
4 18 264 11 1336 249 1,596 71.09
5 19 203 10 1008 205 1,223 58.55
6 22 120 11 578 151 740 33.82

Fig. 4. Computation time and accuracy vs. local threshold for Chemical 340 and Compound 422
datasets

Figure 4 shows the computation time and accuracy results against different local
threshold values. Note that the running time depends much more on the local thresh-
old level rather than the global threshold level, since the local threshold determines the
number of candidates which in turn determines the time taken by steps 2 and 3. For
both datasets, the computation time decreases as the local threshold value increases.
This is because increasing the local threshold results in smaller number of local candi-
date subgraphs and consequently the size of the global candidate set decreases. Also,
it is obvious from the results that the computation overhead of step 2 (Generation of
global candidate set) dominates all other steps. This step involves encryption of the
local candidate set, computing secure union, and removing duplicates.

As expected the accuracy is much higher for local threshold values that are closer to
the global threshold or smaller. For example in both datasets, local threshold value of
9% yields 100% accuracy.

The appropriate local threshold is set by the parties in order to generate a reasonable
set of candidates. From the security perspective, higher thresholds are better than lower.
Therefore one possibility is to start from high threshold and progressively lower it to get
an interesting set of results. This incremental computation does not incur any additional

Privacy-Preserving Subgraph Discovery 173

Chemical 340 - multiple sites
Dataset Total graphs = 340; Average graph size = (27 nodes, 28

edges); Largest graph size = (214 nodes, 214 edges);
Randomly distributed among sites.

Frequent
Subgraphs

Size(Nodemin=5, Edgemin=5); Global Threshold = 20%;
Local Threshold = 20%; Number of frequent subgraphs =
134

Sites Average
subgraphs

per site

Step 1
Time
(sec)

Step 2
Time
(sec)

Step 3
Time
(sec)

Total
Time
(sec)

Accuracy

(%age)
3 171 10 830 188 1028 100
4 263 13 2455 336 2804 100
5 284 16 4188 605 4809 100

Fig. 5. Computation time and accuracy vs. number of sites

privacy loss since the results obtained at a higher threshold level are a subset of the
results obtained at a lower threshold.

Figure 5 compares the computation time results for the Chemical 340 dataset dis-
tributed among 3, 4, and 5 sites. For this experiment both local and global threshold was
set to 20%. The computation time increases with the number of sites. This is mainly due
to the increase in number of messages for commutative encryption and decryption in
step 2. Moreover, as the number of sites increases the coordinator has to interact with
more sites for receiving the frequency count vector and summing them up for removal
of non-frequent subgraphs (step 3).

5 Related Work

Privacy-Preserving Data Mining (PPDM). The Work in PPDM has followed two
major directions: i) randomization/perturbation; and ii) secure multiparty computation.

In the perturbation approach data is locally perturbed by adding “noise” before mining
is done. For example, if we add a random number chosen from a Gaussian distribution to
the real data value, the data miner no longer knows the exact value. However, important
statistics on the collection (e.g., average) will be preserved. Agrawal and Srikant [2] in-
troduced this notion as PPDM to the data mining community. Zhu and Lei [25] study the
problem of optimal randomization for privacy-preserving data mining and demonstrate
the construction of optimal randomization schemes for density estimation.

The alternative approach of using cryptographic techniques to protect privacy was
first utilized for the construction of decision trees by Lindell and Pinkas[11]. Later,
these techniques were utilized in many subfields of data mining, e.g. association rule
mining [21], clustering[8], classification [4,19,22], outlier detection [20] and regression
[9,16]. Our work presents a secure method for frequent subgraph mining, which also
follows the same line of research.

All of the cryptographic work falls under the theoretical framework of Secure Mul-
tiparty Computation [24,5].

174 D. Mehmood et al.

Frequent Subgraph Discovery. The graph mining techniques, in general, can be cat-
egorized into two categories:i) apriori-based approaches and pattern-growth based ap-
proaches.

In the first category, the apriori-based approaches follow the idea of apriori algorithm
in frequent pattern mining for itemsets [1] – all the subgraphs of a discovered frequent
subgraph are also frequent. AGM (apriori-based graph mining) [7], FSG (frequent sub-
graph discovery) [10] and PM (path mining) [6] enumerate candidate subgraphs using
vertices, edges and edge-disjoint paths respectively. Specifically, AGM [7] discovers
frequent subgraphs that occur above the percentage threshold of all graphs and uses a
canonical representation of subgraphs for improving the efficiency of checking the sub-
graph isomorphism. FSG [10] generates candidates with the edges which is shown in the
adjacency matrix. The class of subgraphs discovered to connected subgraphs has been
limited, and several heuristics have been proposed in [10] to improve the efficiency of
computing the subgraph support. Meanwhile, the efficiency of generating pattern can-
didates is also guaranteed. Similar to AGM and FSG, PM [6] also generates candidate
subgraph patterns using breadth-first enumeration. Nevertheless, this approach utilizes
edge-disjoint paths to generate candidate patterns which reduces the number of itera-
tions while still maintaining the completeness of the search space.

In the second category, the algorithm of gSpan (graph-based Substructure pattern
mining) [23] discovers frequent subgraphs without candidate generation. It encodes the
tree representation of graphs rather than the adjacency matrix using depth-first search
code which provides a lexicographical order for searching the candidate patterns (sub-
graphs). gSpan algorithm performs efficiently not only on reducing the runtime cost but
also saving memory space.

6 Conclusions and Future Work

In this paper, we have looked at the problem of finding frequent sub-graphs from a
large distributed set of graphs in a privacy-preserving fashion. Our algorithm is flexi-
ble and can use any underlying subgraph discovery approach as a subroutine. We have
implemented our approach and the experimental evaluation shows that our approach is
effective and allows a trade-off between utility and computation time. While we con-
ducted the experimental evaluation with pharmaceutical data that have relatively small
graph size, we plan to follow on with experiments on social network data. In the future,
we also plan to consider the case of a single global graph, which is distributed between
multiple parties (this happens in many cases such as transactions shared between finan-
cial organizations, call graphs, etc.) Here, you can find local frequent substructures as
described in our paper, however, the inter-edges cause a problem. This could perhaps be
solved using the graph duality restructuring approach (by building the dual of the graph,
with nodes becoming edges, and vice versa). We plan to explore this in the future.

Acknowledgements. The work of Mehmood and Shafiq is supported in part by the
LUMS Departmental Research Grant. The work of Vaidya is supported in part by the
National Science Foundation under Grant No. CNS-0746943. The work of Atluri is
supported through the IR/D by the National Science Foundation.

Privacy-Preserving Subgraph Discovery 175

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the
20th International Conference on Very Large Data Bases, September 12-15, pp. 487–499.
VLDB, Santiago (1994),
http://www.vldb.org/dblp/db/conf/vldb/vldb94-487.html

2. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of the 2000 ACM
SIGMOD Conference on Management of Data, May 14-19, pp. 439–450. ACM, Dallas
(2000),
http://doi.acm.org/10.1145/342009.335438

3. Chittimoori, R.N., Holder, L.B., Cook, D.J.: Applying the subdue substructure discovery
system to the chemical toxicity domain. In: Proceedings of the Twelfth International Florida
Artificial Intelligence Research Society Conference, pp. 90–94. AAAI Press (1999),
http://dl.acm.org/citation.cfm?id=646812.707494

4. Du, W., Zhan, Z.: Building decision tree classifier on private data. In: Clifton, C., Estivill-
Castro, V. (eds.) IEEE International Conference on Data Mining Workshop on Privacy, Secu-
rity, and Data Mining, December 9, vol. 14, pp. 1–8. Australian Computer Society, Maebashi
City (2002), http://crpit.com/Vol14.html

5. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game - a completeness
theorem for protocols with honest majority. In: Proceedings of the 19th ACM Symposium
on the Theory of Computing, pp. 218–229. ACM, New York (1987),
http://doi.acm.org/10.1145/28395.28420

6. Gudes, E., Shimony, S.E., Vanetik, N.: Discovering frequent graph patterns using disjoint
paths. IEEE Trans. on Knowl. and Data Eng. 18, 1441–1456 (2006),
http://dx.doi.org/10.1109/TKDE.2006.173

7. Inokuchi, A., Washio, T., Motoda, H.: Complete mining of frequent patterns from graphs:
Mining graph data. Mach. Learn. 50, 321–354 (2003),
http://dl.acm.org/citation.cfm?id=608108.608123

8. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering over ar-
bitrarily partitioned data. In: Proceedings of the 2005 ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, August 21-24, pp. 593–599. ACM, Chicago
(2005)

9. Karr, A.F., Lin, X., Sanil, A.P., Reiter, J.P.: Secure regressions on distributed databases. Jour-
nal of Computational and Graphical Statistics 14, 263–279 (2005)

10. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Cercone, N., Lin, T.Y., Wu,
X. (eds.) ICDM, pp. 313–320. IEEE Computer Society (2001)

11. Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of Cryptology 15(3), 177–
206 (2002)

12. Mukherjee, M.: Graph-based data mining for social network analysis. In: Proceedings of the
ACM KDD Workshop on Link Analysis and Group Detection (2004)

13. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg
(1999)

14. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over GF(p)
and its cryptographic significance. IEEE Transactions on Information Theory IT-24, 106–110
(1978)

15. Rakhshan, A., Holder, L.B., Cook, D.J.: Structural web search engine. International Journal
on Artificial Intelligence Tools 13(1), 27–44 (2004)

http://www.vldb.org/dblp/db/conf/vldb/vldb94-487.html
http://doi.acm.org/10.1145/342009.335438
http://dl.acm.org/citation.cfm?id=646812.707494
http://crpit.com/Vol14.html
http://doi.acm.org/10.1145/28395.28420
http://dx.doi.org/10.1109/TKDE.2006.173
http://dl.acm.org/citation.cfm?id=608108.608123

176 D. Mehmood et al.

16. Sanil, A.P., Karr, A.F., Lin, X., Reiter, J.P.: Privacy preserving regression modelling via dis-
tributed computation. In: KDD 2004: Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 677–682. ACM Press, New York
(2004)

17. Su, S., Cook, D.J., Holder, L.B.: Application of knowledge discovery to molecular biology:
Identifying structural regularities in proteins. In: Pacific Symposium on Biocomputing, pp.
190–201 (1999)

18. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically partitioned data.
In: The Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, August 24-27, pp. 206–215. ACM, Washington, DC (2003),
http://doi.acm.org/10.1145/956750.956776

19. Vaidya, J., Clifton, C.: Privacy preserving naı̈ve bayes classifier for vertically partitioned
data. In: 2004 SIAM International Conference on Data Mining, April 22-24, pp. 522–526.
SIAM, Philadelphia (2004)

20. Vaidya, J., Clifton, C.: Privacy-preserving outlier detection. In: Proceedings of the Fourth
IEEE International Conference on Data Mining (ICDM 2004), November 1-4, pp. 233–240.
IEEE Computer Society Press, Los Alamitos (2004)

21. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to association rule
mining. Journal of Computer Security 13(4), 593–622 (2005)

22. Vaidya, J., Clifton, C., Kantarcioglu, M., Patterson, A.S.: Privacy-preserving decision trees
over vertically partitioned data. ACM Trans. Knowl. Discov. Data 2(3), 1–27 (2008)

23. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: ICDM, pp. 721–724
(2002)

24. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the 27th IEEE Sym-
posium on Foundations of Computer Science, pp. 162–167. IEEE Computer Society, Los
Alamitos (1986)

25. Zhu, Y., Liu, L.: Optimal randomization for privacy preserving data mining. In: KDD 2004:
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 761–766. ACM Press, New York (2004)

http://doi.acm.org/10.1145/956750.956776

Decentralized Semantic Threat Graphs

Simon N. Foley and William M. Fitzgerald

Cork Constraint Computation Centre,
Computer Science Department, University College Cork, Ireland

s.foley@cs.ucc.ie, wfitzgerald@4c.ucc.ie

Abstract. Threat knowledge-bases such as those maintained by MITRE
and NIST provide a basis with which to mitigate known threats to an
enterprise. These centralised knowledge-bases assume a global and uni-
form level of trust for all threat and countermeasure knowledge. However,
in practice these knowledge-bases are composed of threats and counter-
measures that originate from a number of threat providers, for example
Bugtraq. As a consequence, threat knowledge consumers may only wish
to trust knowledge about threats and countermeasures that have been
provided by a particular provider or set of providers. In this paper, a trust
management approach is taken with respect to threat knowledge-bases.
This provides a basis with which to decentralize and delegate trust for
knowledge about threats and their mitigation to one or more providers.
Threat knowledge-bases are encoded as Semantic Threat Graphs. An
ontology-based delegation scheme is proposed to manage trust across a
model of distributed Semantic Threat Graph knowledge-bases.

Keywords: Decentralized Threat Management, Security Configuration.

1 Introduction

Threat management is a process used to help implement a security configuration
that mitigates known enterprise (security) threats. Centralised threat knowledge-
bases, such as NIST’s National Vulnerability Database (NVD) [1] are an integral
part of the threat management process. However, in practice threat knowledge-
bases are composed of threats, vulnerabilities and countermeasures that originate
from multiple providers, for example US-Cert [2], Bugtraq [3] and/or vendors
(such as Cisco and Microsoft). As a consequence, threat knowledge may only
be trusted if it has been asserted by a particular provider or set of providers.
For example, a consumer of the NVD may only want to trust knowledge about
software buffer-overflow vulnerabilities that have been asserted by Bugtraq and
corresponding countermeasures asserted by Microsoft. However, access to a cen-
tralised threat knowledge-base implies a global or uniform level of trust for all
knowledge about threats, vulnerability and countermeasures indiscriminately.

This paper adopts a trust management approach with respect to threat
knowledge-bases. The advantages are twofold. The first is that it provides a basis
with which a consumer may delegate authority to trusted providers for knowl-
edge about threats, vulnerabilities and countermeasures. Secondly, it provides

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 177–192, 2012.
c© IFIP International Federation for Information Processing 2012

178 S.N. Foley and W.M. Fitzgerald

a basis to decentralize a threat knowledge-base where trusted threat knowledge
may reside with the originating provider and/or be distributed across other
trusted provider threat knowledge-bases.

Threat Trees/Graphs, such as [20, 28, 29], are used to represent, structure
and analyse what is known about threats and their countermeasures. In this
paper, threat knowledge-bases are encoded as Semantic Threat Graphs [20].
We argue that using an ontology-based framework provides a natural approach
to constructing, reasoning about and managing decentralized Semantic Threat
Graphs. An ontology provides a conceptual model of a domain of interest. It pro-
vides a framework for distributed and extensible structured knowledge founded
on formal logic [7]. In recent years, research in computer security has seen an in-
crease in the use of ontologies. For example, ontologies have been applied to the
areas of information security (common security vocabulary) [24], security man-
agement (threats, vulnerabilities and countermeasures) [17], access control [15],
policy management [25] and trust management [33]. The decentralized Semantic
Threat Graphs (ontology fragments) are implemented in OWL-DL, a language
subset of OWL which is a W3C standard that includes Description Logic rea-
soning semantics [30].

Distributed fragments of Semantic Threat Graphs that are naturally compos-
able under the open-world assumption, provide a unified view of the threat-based
domain. Ontologies provide for separation of concerns, whereby consumers and
providers of threat-based knowledge can be separately developed, with reasoning
and deployment over their composition done locally. It also means that informa-
tion about new threats, vulnerabilities and countermeasures can be incorporated
as new facts within existing Semantic Threat Graph knowledge-bases.

The paper is outlined as follows. Section 2 provides an overview of Descrip-
tion Logic. Section 3 outlines the Semantic Threat Graphs model and an en-
coding of standards of best practice for threat mitigation. Section 4 describes
the delegation scheme used to manage trust across a model of distributed threat
knowledge-bases. A model for decentralized Semantic Threat Graphs is pre-
sented in Section 5. Section 6 provides use case scenarios that demonstrate how
the approach may work in practice. Related research is discussed in Section 7.

2 Description Logic and Knowledge-Bases

The Description Logic SHOIN (D) is a decidable portion of First Order Logic
that can be used to represent and reason about application knowledge and is
commonly implemented as OWL-DL [7]. Knowledge is described in terms of
concepts about individuals and their relationships. For example, suppose that
concept DOS describes denial of service threats and concept TCPcntr describes
TCP-stack based countermeasures such as syn-cookie and syn-cache, then the
concept

(∃1mitigates.DOS) � TCPcntr

can be considered to characterize TCPcntr countermeasure concepts that miti-
gate denial of service threats. In this case mitigates is a property that has been

Decentralized Semantic Threat Graphs 179

defined between DOS threats and countermeasures. For example, the individual
countermeasure syn-cache is related (property mitigates) to the individual DOS
threat syn-flood. A Description Logic concept corresponds to a unary predicate;
intuitively, it represents a set, and concept conjunction (�) and disjunction (�)
provide set intersection and union, respectively. A Description Logic property
(role) corresponds to a binary predicate. The concept (∃≥1 p.φ) defines individ-
uals related to at least one individual of concept φ via property p.

A knowledge-base comprises a terminological component, hereafter referred to
as its TBox, and an assertional component (its ABox). In addition to describing
concepts, a TBox may define concept and property relationships. These are given
as axioms of the form φ1 � φ2, given concepts φ1 and φ2 and where subsumption
� can be interpreted as subset. For example, the TBox containing the concepts
from the previous paragraph could include the axiom DOS � Threat, indicating
that denial of service is a kind of threat. Property subsumption axioms may
similarly be defined, which we also represent as φ1 � φ2 if no ambiguity arises.

3 Semantic Threat Graphs

Semantic Threat Graphs [20], a variation of the traditional Threat/Attack Tree,
are encoded within an ontology-based framework. Figure 1 provides an abstract
model for Semantic Threat Graphs and identifies the key concepts and relation-
ships.

Enterprise IT assets are represented as individuals of the Asset concept. An
asset may have one or more hasWeakness ’s (property relationship) that relate to
individuals categorised in the Vulnerability concept. Individuals of the Vulnera-
bility concept are exploitable (exploitedBy) by a threat or set of threats (Threat
concept). As a consequence, an asset that has a vulnerability is, therefore, also
threatenedBy a corresponding Threat. A countermeasure mitigates particular
vulnerabilities. Countermeasures are deemed to be kinds-of assets and thus are
defined as a subConceptOf Asset.

Semantic Threat Graphs can be used to encode standards and best prac-
tices for threat mitigation using firewalls [20]. Mis-configured firewall security
configurations have the potential to expose both internal servers and the fire-
walls themselves to threats. For example, consider the following scenario where
a webServer is susceptible to a threatSynFlood attack via the vulWebTCPConnOverflow
weakness. An individual vulWebTCPConnOverflow is representative of a weakness in
the TCP stack where it is possible exceed the maximum number of socket con-
nections permitted by the TCP protocol due to a syn flood attack [32]. An ipta-
bles rule, represented as individual iptrSynThresholdWeb, mitigates the vulnerability
vulWebTCPConnOverflow on the Web server (webServer). Note that we use human-
interpretable names (in a typewriter font) for individuals in the ontology as
a way of suggesting their meaning. For example, individual iptrSynThresholdWeb
represents an iptables rule (iptr) that limits TCP syn packet connections to
the Web server (SynThresholdWeb).

The Semantic Threat Graph model presented in Figure 1 can be further re-
fined with sub-concepts. For example, the Threat concept can define a

180 S.N. Foley and W.M. Fitzgerald

Threat Vulnerability

Asset Countermeasure

exploits

exploitedBy

hasWeakness

isW
eaknessOf

is
T
h
re
a
te
n
ed
B
y

th
re
a
te
n
s

m
it
ig
a
te
d
B
y m

itiga
tes

subConceptOf

implements

protects

Fig. 1. Abstract Semantic Threat Graph Model

Threat

STRIDEThreat

Spoofing Tampering Repudiation InfoDisclosure DenialofService ElevationOfPrivilege

RFCThreat

RFC3330Threat

NISTThreat

NIST80041Threat

RFC1918Threat

Fig. 2. Fragment of Threat Hierarchy

number of sub-concepts in accordance with best practice, such as the Microsoft
STRIDE standard whereby threats are categorised as (Figure 2): Spoofing iden-
tity, Tampering with data, Repudiation, Information disclosure, Denial of ser-
vice and Elevation of privilege [23]. A similar hierarchy is adopted for the cor-
responding vulnerability and countermeasure concepts.

A best practice standard is a high-level document, written in natural language
(typically English text), that defines a set of recommended best practices (coun-
termeasures) to protect sensitive and critical system resources. Best practice
standards for network access control, including NIST for secure Web-servers [34]
and Internet RFCs for anti-bogon (RFC3330) are encoded as Semantic Threat
Graphs (ontologies). How these best practice standards are encoded in terms of
Semantic Threat Graphs is described in [20]. For example, Table 1 provides a Se-
mantic Threat Graph interpretation for part of the NIST-800-41 standard [35] for
firewall configuration. FBP-1 recommends that (spoofed) packets arriving on an
external interface claiming to have originated from either of the three RFC1918
reserved internal IP address ranges should be dropped. Such traffic indicates a
denial of service attack typically involving the TCP syn flag. Therefore, Threat

Decentralized Semantic Threat Graphs 181

Table 1. Ontology Extract for NIST-800-41: Guidelines on Firewalls & Firewall Policy

ID Recommendation Description

FBP-1 Deny “Inbound or Outbound traffic from a system using a source address that falls within the address ranges
set aside in RFC1918 as being reserved for private networks” [35].
Threat Vulnerability Countermeasure
threatInbound192.168.0.0/16SrcIPPkt vulUnAuthenInbound192.168.0.0/16PktToFW iptrDropIn192.168.0.0/16SrcIPPktInputChain
threatOutbound192.168.0.0/16SrcIPPktvulUnAuthenOutbound192.168.0.0/16PktFromFW iptrDropOut192.168.0.0/16SrcIPPktOutputChain
threatInbound192.168.0.0/16SrcIPPkt vulUnAuthenInbound192.168.0.0/16PktToHost iptrDropIn192.168.0.0/16SrcIPPktForwardChain
threatOutbound192.168.0.0/16SrcIPPktvulUnAuthenOutbound192.168.0.0/16PktFromHostiptrDropOut192.168.0.0/16SrcIPPktForwardChain
threatInbound10.0.0.0/8SrcIPPkt vulUnAuthenInbound10.0.0.0/8PktToFW iptrDropIn10.0.0.0/8SrcIPPktInputChain
threatOutbound10.0.0.0/8SrcIPPkt vulUnAuthenOutbound10.0.0.0/8PktFromFW iptrDropOut10.0.0.0/8SrcIPPktOutputChain
threatInbound10.0.0.0/8SrcIPPkt vulUnAuthenInbound10.0.0.0/8PktToHost iptrDropIn10.0.0.0/8SrcIPPktForwardChain
threatOutbound10.0.0.0/8SrcIPPkt vulUnAuthenOutbound10.0.0.0/8PktFromHost iptrDropOut10.0.0.0/8SrcIPPktForwardChain
threatInbound172.16.0.0/12SrcIPPkt vulUnAuthenInbound172.16.0.0/12PktToFW iptrDropIn172.16.0.0/12SrcIPPktInputChain
threatOutbound172.16.0.0/12SrcIPPkt vulUnAuthenOutbound172.16.0.0/12PktFromFW iptrDropOut172.16.0.0/12SrcIPPktOutputChain
threatInbound172.16.0.0/12SrcIPPkt vulUnAuthenInbound172.16.0.0/12PktToHost iptrDropIn172.16.0.0/12SrcIPPktForwardChain
threatOutbound172.16.0.0/12SrcIPPkt vulUnAuthenOutbound172.16.0.0/12PktFromHost iptrDropOut172.16.0.0/12SrcIPPktForwardChain

ID Recommendation Description

FBP-2 Deny “Inbound traffic containing ICMP (Internet Control Message Protocol) traffic” [35].
Threat Vulnerability Countermeasure
threatICMPNetworkScan vulInfoDisclosureICMPReplyPktFromFW iptrDropInICMPPktInputChain
threatICMPNetworkScan vulInfoDisclosureICMPReplyPktFromHost iptrDropInICMPPktForwardChain

individual threatInbound192.168.0.0/16SrcIPPkt, is asserted to be a member of sub-
concepts Spoofing, DenialOfService and RFC1918Threat. Figure 2 illustrates a
partial hierarchy of threats.

4 Knowledge Delegation as Subsumption

A (distributed) system may comprise of a number of separately managed knowl-
edge bases. Each knowledge-base is assumed to have a unique name that indi-
cates its controlling/owning principal. We assume that each atomic concept (or
property) φ syntactically embeds the name (φ)N of the principal that describes
the concept (or property). For example, a TBox owned by principal A includes
a concept A:DOS where (A:DOS)N = A. A principal P has jurisdiction over any
concept (or property) φ if (φ)N = P ; this means that P is considered to be the
original authority on φ.

Note that while a TBox may contain concepts originating from different prin-
cipals, all concepts referenced in a concept expression are required to have the
same name. For example, (A:Threat� A:DOS)N = A. This ensures a consistent
interpretation for our syntatic approach to referencing (the originator of) con-
cepts. Future research will consider how a permission-naming logic such as [21]
can be used to provide a consistent treatment for the originators of a concept
such as (A:Threat� B:DOS).

Principals may make public assertions about terminological knowledge. A
public assertion P |≈(φ1 � φ2) is a statement by principal P about concept (or
property) subsumption. For example, A |≈(B:DOS � A:Threat) is an assertion
by A that its concept of threat includes B’s concept of denial of service. These
ontology mappings can be used to implement delegation of jurisdiction. Given
(φ1)

N = Q and (φ2)
N = P then P |≈(φ1 � φ2) is an assertion by P that it

trusts Q when it describes φ1 to the extent that Q’s concept of φ1 can be con-
sidered as a kind of φ2 concept over which P ’s has jurisdiction. For example,

182 S.N. Foley and W.M. Fitzgerald

suppose that principal B provides a vulnerability reporting service, then asser-
tions A |≈(B:DOS � A:DOS) and A |≈(B:mitigates � A:mitigates) mean that
A trusts B’s mitigation knowledge for denial of service attacks.

Transitive subsumption in SHOIN (D) can be used to reason over chains
of delegation statements. For example, public assertion B |≈(C:mitigates �
B:mitigates) indicates that the vulnerability reporting service B trusts mitiga-
tion recommendations provided by a software developer C. Continuing the ex-
ample, principal A can use these public assertions to deduce that C:mitigates�
A:mitigates and thus be happy to trust mitigation recommendations from the
software developer.

The following rule defines the conditions under which an arbitrary principal
may import, into its TBox, a public assertion (delegation) from P .

P |≈(φ1 � φ2); (φ2)
N = P

import φ1 � φ2 into TBox

This does not extend the semantics of SHOIN (D), rather, it is a syntactic treat-
ment whereby delegation statements translate to concept axioms that can in turn
be reasoned over within SHOIN (D). This treatment is easily modeled within
OWL-DL. The URI of an OWL-DL document provides its principal/namespace.
A public assertion P |≈(φ1 � φ2) is an ontology document that is trusted to
originate from the namespace of P : this trust can be achieved by P signing the
document. The ontology-import constructor owl:imports is used to import a
public assertion that is confirmed to come from a from another namespace.

The assertional component of a knowledge base, hereafter referred to as its
ABox, contains assertions about named concept individuals. A concept asser-
tion φ(i), indicates that named individual i is a member of concept φ; a role
(property) assertion p(i, j) indicates that named individual i is related to named
individual j under property p. For example, ABox assertion DOS(syn-flood)
describes that individual syn-flood is a DOS threat and ABox role assertion
mitigates(syn-cache,syn-flood) describes that the syn-cache countermea-
sure mitigates a syn-flood threat.

We use a similar naming scheme for individuals whereby (i)N indicates a
principal/namespace syntactically embedded in the identifier of the individual i.
Principals may make public assertions about individuals. A public assertion
P |∼φ(i) is a statement by P that named individual i is a member of concept
φ. A principal may not make public assertions about ABox knowledge (concept
and individual) that is not under its jurisdiction. However, a principal may use
subsumption to infer ABox knowledge that is effectively under the jurisdiction
of others. The following rule defines the conditions under which an arbitrary
principal may import, into its ABox, a public assertion from P about a named
individual i and concept φ.

P |∼φ(i); (φ)N = (i)N = P

import φ(i) into ABox

A similar rule can be defined for public ABox property assertions.

Decentralized Semantic Threat Graphs 183

Continuing the above example, B |∼(B:DOS(B:syn-flood)) is a statement by
the vulnerability reporting service B that B:syn-flood is a B:DOS threat. On
importing this ABox assertion and the TBox assertion A |≈(B:DOS � A:DOS),
it is possible for A to deduce A:DOS(B:syn-flood), that is, B:syn-flood is an
A:DOS threat.

These public ABox assertions are a syntactic treatment that do not extend
SHOIN (D). In practice, OWL-DL individuals include reference to their names-
pace (principal) and a public ABox assertion P |∼φ(i) is an ontology document
that has been signed by its originator P and a valid φ(i) can be imported into
another ontology using the owl:imports constructor.

In general, a public TBox assertion P |≈(φ1 � φ2) is effectively a delegation
certificate that can be understood as a statement P |≈(φ2 ⊃ φ1) in a delegation
logic such as [4], where φ1 and φ2 are unary (or binary) predicates that refer to
static principals (φ1)

N and (φ2)
N , respectively. A public ABox assertion P |∼φ(i)

is a signed value of type φ that can be effectively considered to be a form of a
signed permission that cannot be forged by another principal that does not hold
jurisdiction.

Note that for ease of presentation, delegation of trust is assumed transi-
tive. Non-transitive trust can be incorporated into the model, for example, by
adding a SPKI-style [16] delegation-bit to delegation certificates. Alternatively,
a KeyNote-style [12] Action Authorizers concept could be added to the ontology
to constrain the delegation.

5 Delegation in Semantic Threat Graphs

A decentralized Semantic Threat Graph (STG) uses subsumption to model the
delegation of jurisdiction over (potentially distributed) fragments of a Seman-
tic Threat Graph. These fragments can include concepts such as V ulnerability,
Threat and Countermeasure, assertions about membership of these concepts
and assertions about properties between the concepts. In this section, we outline
how the delegation involving these fragments is encoded using subsumption; Sec-
tion 6 will provide complete examples of decentralized Semantic Threat Graphs.

STG Concept Delegation. Subsumption is used to define delegation of Threat,
V ulnerability and Countermeasure concepts between principals. For example,

Y |≈X :DenialOfService � Y :Threat

defines that principal Y trusts principal X , concerning the identification (nam-
ing) of denial of service attacks. Suppose that X in turn asserts

X |∼X :DenialOfService(X :threatSynFlood)

that is, X :threatSynFlood is a DenialOfService individual, as identified by X . In
this case, as a result of the delegation by subsumption above, principal Y can
safely deduce that

Y :Threat(X :threatSynFlood)

184 S.N. Foley and W.M. Fitzgerald

that is, X :threatSynFlood can be identified as an individual of Y ’s Threat con-
cept. Similar assertions can be made about other Semantic Threat concepts
including V ulnerability and Countermeasure.

STG Property Delegation. Like concepts, properties can be hierarchical, and over
which, principals may make jurisdiction assertions. For example, the property
delegation

Y |≈X :exploits � Y :exploits

is a statement by Y that it is willing to trust properties from the knowledge-
base of X that relate how vulnerabilities are exploited by threats. For example,
suppose that principal X asserts

X |∼X :exploits(X :threatSynFlood, X :vulWebTCPConnMax)

then principal Y , trusting X ’s assertions on exploits (X :exploits � Y :exploits)
can infer the following statements in its knowledge base.

Y :Threat(X :threatSynFlood), Y :Vulnerability(X :vulWebTCPConnMax),
Y :exploits(X :threatSynFlood, X :vulWebTCPConnMax)

STG Property Restriction Delegation. Restrictions (‘quantifier’ and ‘hasValue’)
can be applied to properties and are used to constrain an individual’s mem-
bership to a specific concept. A property restriction effectively describes an
anonymous or unnamed concept that contains all the individuals that satisfy
the restriction. For example, principal Y asserts

Y |≈(∃≥1X :exploits.X :V ulnerability � Y :Threat)

meaning that threat individuals that are members of an unnamed threat concept
∃≥1 X : exploits.X : V ulnerability defined within principal X ’s knowledge-base
are considered as trusted individuals of concept Y : Threat in principal Y ’s
knowledge-base.

A ‘hasValue’ restriction, denoted by ", describes a set of individuals that
are members of an anonymous concept (domain) that are related to a specific
individual along the range of a given property. For example, in

Y |≈X :exploits " X :vulWebTCPConnMax � Y :Threat

Y asserts that it trusts principal X ’s knowledge about threats that exploit
the X : vulWebTCPConnMax. Therefore, threat is X : threatSynFlood is considered
a threat (a member of concept Y : Threat) within principal Y ’s knowledge-
base. Note, concept X : exploits " X : vulWebTCPConnMax is a sub-concept of the
∃≥1 X :exploits.X :V ulnerability.

6 Decentralized Semantic Threat Graphs: Use Cases

In this section, a series of examples are presented in order to demonstrate how
decentralized Semantic Threat Graphs may work in practice and in which we

Decentralized Semantic Threat Graphs 185

Compliance
AgencyCompany Vendor

Compliance
AgencyCompany Vendor

Company Vendor
Compliance

Agency

Use Case 1

Use Case 2

Use Case 3

trusts trusts

trusts trusts

trusts trusts

trusts

trusts

trusts

trusts

Fig. 3. Example Delegation Usage Patterns

identify some potential business usage patterns (Figure 3). We believe this to
be an improvement over the current centralised approach where trust between
different providers is not discriminated.

Knowledge about threats, vulnerabilities and countermeasures while originat-
ing from a number of providers, is typically managed within centralised threat
knowledge-bases such as NIST’s National Vulnerability Database (NVD) [1]. The
advantage of decentralising a threat knowledge-base means that threat knowl-
edge may reside with the originating provider and/or be distributed across other
trusted third party providers. A disadvantage of a centralised approach is that it
implies on the part of a consumer a global level of trust for all threat knowledge
indiscriminately. However, a consumer may only wish to trust threat knowl-
edge that has been provided by a particular provider or set of providers. For
example, a consumer of the NVD may only want to trust knowledge about
network-based Denial of Service threats that have been provided by US-Cert
and corresponding (firewall) countermeasures provided by Redhat. The advan-
tage of a trust management approach is that it provides a basis with which a
consumer may delegate authority to trusted providers for threat knowledge. In
practice, providers/producers construct fragments of Semantic Threat Graphs
and consumers make assertions about the conditions under which they trust the
fragments provided by providers. These are defined as a combination of STG
Concept, Property and Property Restriction delegation assertions described in
the previous section.

Use Case 1. A company (for example, ACME Inc.) having a consumer role, del-
egates jurisdiction for knowledge about threats, vulnerabilities and countermea-
sures to one or more trusted compliance agencies (for example, NIST) having a
role of a provider. A compliance agency, having a consumer role in this instance,
in turn delegates jurisdiction for knowledge about threats, vulnerabilities and

186 S.N. Foley and W.M. Fitzgerald

countermeasures to one or more trusted vendors (for example Redhat). A ven-
dor (provider) may then notify the company with respect to Semantic Threat
Graph knowledge it has jurisdiction over. The company can import these STG
assertions into its knowledge-base and use the knowledge during reasoning. For
example, principal ACME asserts:

NIST :NIST80041Threat � ACME :Threat

NIST :NIST80041Vulnerability � ACME :Vulnerability

NIST :NIST80041Countermeasure � ACME :Countermeasure

NIST :exploits � ACME :exploits

NIST :mitigates � ACME :mitigates

indicating that it trusts countermeasure recommendations made by NIST re-
garding threats and vulnerabilities that are to be mitigated in order to be be
compliant with NIST-800-41 [35] firewall best practice. Note that, when no am-
biguity can arise, we drop the turnstile notation “|≈” and “|∼” and infer the
principal from the statement.

Principal NIST, in turn, asserts:

NIST :Spoofing � NIST :NIST80041Threat

NIST :UnAuthPkt � NIST :NIST80041Vulnerability

RH :Spoofing � NIST :Spoofing

RH :UnAuthPkt � NIST :UnAuthPkt

RH :IptablesRule � NIST :NIST80041Countermeasure

RH :exploits � NIST :exploits

RH :mitigates � NIST :mitigates

indicating that principal RH (Redhat vendor) is trusted to specify Linux ipta-
bles firewall countermeasures used to mitigate spoofing threats and associated
vulnerabilities. Intuitively, the NIST compliance agency has outsourced the in-
stantiation of spoof-based threats and recommended firewall countermeasures to
Redhat. Note, the delegation statement made by NIST also includes additional
knowledge about its threat and vulnerability hierarchy. For example concept
NIST :Spoofing is a subsumed by concept NIST :NIST80041Threat.

Delegation chains (transitive subsumption) constructed in terms of concept
and property subsumption can be reasoned over within OWL-DL to establish if
received ABox statements are to be trusted and imported. For example, Redhat
(principal RH) asserts the following anti-bogon IP spoofing threat information:

RH :Spoofing(RH :threatInbound192.168.0.0/16SrcIPPkt),
RH :UnAuthPkt(RH :vulUnAuthenInbound192.168.0.0/16PktToHost),
RH :IptablesRule(RH :iptrDropIn192.168.0.0/16SrcIPPktForwardChain),
RH :exploits(RH :threatInbound192.168.0.0/16SrcIPPkt,

RH :vulUnAuthenInbound192.168.0.0/16PktToHost),
RH :mitigates(RH :iptrDropIn192.168.0.0/16SrcIPPktForwardChain,

RH :vulUnAuthenInbound192.168.0.0/16PktToHost)

Decentralized Semantic Threat Graphs 187

On receipt of this ABox statement principal ACME has no prior trust relation-
ship with RH . However, given the set of known delegation statements, ACME
can form the following delegation (trust) chains.

RH :Spoofing � NIST :Spoofing � NIST :NIST80041Threat � ACME :Threat
RH :UnAuthPkt � NIST :UnAuthPkt � NIST :NIST80041Vul � ACME :Vulnerability
RH :IptablesRule � NIST :NIST80041Countermeasure � ACME :Countermeasure
RH :exploits � NIST :exploits � ACME :exploits
RH :mitigates � NIST :mitigates � ACME :exploits

As a consequence, ACME can deduce that the ABox mitigation knowledge re-
ceived from RH is trusted. It then becomes possible for ACME to deduce a new
concept hierarchy within its local Semantic Threat Graph knowledge-base, for
example:

RH :Spoofing � NIST :Spoofing � NIST :NIST80041Threat � ACME :Threat

in addition to the following inferred concept membership and property relations:

ACME :Threat(RH :threatInbound192.168.0.0/16SrcIPPkt),
ACME :Vulnerability(RH :vulUnAuthenInbound192.168.0.0/16PktToHost),
ACME :Countermeasure(RH :iptrDropIn192.168.0.0/16SrcIPPktForwardChain),
ACME :exploits(RH :threatInbound192.168.0.0/16SrcIPPkt,

RH :vulUnAuthenInbound192.168.0.0/16PktToHost),
ACME :mitigates(RH :iptrDropIn192.168.0.0/16SrcIPPktForwardChain,

RH :vulUnAuthenInbound192.168.0.0/16PktToHost)

Use Case 2. As in the previous use case, a company may delegate jurisdiction
for knowledge about threats, vulnerabilities and countermeasures to one or more
trusted compliance agencies. However, rather than a compliance agency delegat-
ing jurisdiction over threats, vulnerabilities and countermeasures as a collection
to one or more vendors such as Redhat or Cisco, it may instead decide to delegate
certain fragments (for example threats) to one or more additional compliance
agencies and other fragments (for example countermeasures) to one or more
vendors. Vendors in turn may also trust one or more compliance agencies.

In this example, ACME makes the same TBox statement for delegation of
jurisdiction to NIST defined in the previous scenario. Principal NIST dele-
gates jurisdiction to CVE (compliance agency) for knowledge about NIST-800-41
spoofing threats and vulnerabilities only.

NIST :Spoofing � NIST :NIST80041Threat

NIST :UnAuthPkt � NIST :NIST80041Vulnerability

CVE :Spoofing � NIST :Spoofing

CVE :UnAuthPkt � NIST :UnAuthPkt

CVE :exploits � NIST :exploits

188 S.N. Foley and W.M. Fitzgerald

Principal NIST also asserts the following delegation statement stating that prin-
cipal RH is trusted for NIST-800-41 based iptables firewall countermeasures.

RH : iptablesRule � NIST :NIST80041Countermeasure

RH :mitigates � NIST :mitigates

Note, trust is not bidirectional. Given that RH has not been given jurisdiction
over relevant threats and vulnerabilities with which to make iptables recommen-
dations, it must also delegate jurisdiction to NIST for this knowledge.

NIST :Spoofing � RH :Spoofing

NIST :UnAuthPkt � RH :UnAuthPkt

NIST :exploits � RH :exploits

Principal RH receives the following ABox statements from CVE for which it has
no prior trust relationship.

CVE :Spoofing(CVE :threatInbound192.168.0.0/16SrcIPPkt),
CVE :UnAuthPkt(CV E :vulUnAuthenInbound192.168.0.0/16PktToHost),
CVE :exploits(CV E :threatInbound192.168.0.0/16SrcIPPkt,

CVE :vulUnAuthenInbound192.168.0.0/16PktToHost)

Principal RH can form a chain of trust based on its trust for NIST and NIST’s
trust for CVE. As a consequence, RH can define a suitable iptables rule (coun-
termeasure) that mitigates the vulnerability of unauthenticated 192.168.0.0/16
subnet packets exploited by spoofed packets of the same source IP range.

RH :IptablesRule(RH :iptrDropIn192.168.0.0/16SrcIPPktForwardChain),
RH :mitigates(RH :iptrDropIn192.168.0.0/16SrcIPPktForwardChain,

CVE :vulUnAuthenInbound192.168.0.0/16PktToHost)

Principal ACME in turn receives the following ABox statements from RH for
which it has no prior trust relationship.

RH :Spoofing(CVE :threatInbound192.168.0.0/16SrcIPPkt),
RH :UnAuthPkt(CVE :vulUnAuthenInbound192.168.0.0/16PktToHost),
RH :IptablesRule(RH :iptrDropIn192.168.0.0/16SrcIPPktForwardChain),
RH :exploits(CVE :threatInbound192.168.0.0/16SrcIPPkt,

CVE :vulUnAuthenInbound192.168.0.0/16PktToHost),
RH :mitigates(RH :iptrDropIn192.168.0.0/16SrcIPPktForwardChain,

CVE :vulUnAuthenInbound192.168.0.0/16PktToHost)

Principal ACME can form a chain of trust based on its trust for NIST and
NIST’s trust for CVE and RH . For example:

CVE :Spoofing � NIST :Spoofing � NIST :NIST80041Threat � ACME :Threat
CVE :UnAuthPkt � NIST :UnAuthPkt � NIST :NIST80041Vul � ACME :Vulnerability
RH :IptablesRule � NIST :NIST80041Countermeasure � ACME :Countermeasure

Decentralized Semantic Threat Graphs 189

Use Case 3. This scenario is a variation of use case 2. A company may trust
one or more vendors for Semantic Threat Graph ABox statements where each
vendor may in turn trust other vendors and/or compliance agencies for ABox
Semantic Threat Graph statements. For reasons of space, we do not provide
example TBox delegation statements and Abox statements.

7 Related Research

The delegation scheme proposed in this paper is based on managing trust
across a model of distributed knowledge-bases. While the model is simple, it
closely resembles the OWL-DL approach to modular ontologies [22] using the
owl:imports constructor with a URI based namespace. Future research will
explore representing and reasoning about distributed trust in other modular De-
scription Logic languages such as [14, 36]. The TBox intensional reasoning pro-
vided by existing OWL-DL reasoners is relatively scalable, however, extensional
reasoning is poor for medium to large-sized ABoxes.

A large body of research results exist on Trust Management and decentralized
authorization systems, for example, [9,13,16,27]. However, there has been little
consideration regarding how it might be applied to managing trust relationships
across knowledge-bases, which is considered in this paper. In [31], a centralised
reference ontology is developed to represent trust requirements. Agarwal and
Rudolph [5] present an ontology for SPKI/SDSI certificates. In [5] SPKI names
are represented as concept names while public keys are represented as individ-
uals. However, once the ontology is constructed any reasoning over delegation
chains for the purpose of compliance checking is performed outside of the ontol-
ogy framework.

Trust Management systems typically describe policy and authorization in
terms of discrete permissions and/or assertions. In this paper, authority (about
STGs) is defined in terms of Description Logic concepts. Description Logic has
been used to describe and reason about RBAC [18] and XACML policies [26] with
subsumption providing role/authorization hierarchies, but do not consider the
jurisdiction that principals may have over the ontologies in their local knowledge-
bases. Semantic SPKI [6] uses subsumption to define SDSI local name bindings,
however an external certificate discovery algorithm implements name reduction.
In our paper, public keys are used to uniquely identify principals and their name
spaces. Future work will extend this to support SDSI naming, based on the logic
described in [21].

The requirements of Distributed Semantic Threat Graphs determined our
particular use of Trust Management and effectively corresponds to a conven-
tional compliance check [13]: for a given delegation network, is a principal trusted
for some action? This check returns a binary answer and we believe that the
model could be extended to support forms of quantitative trust, by incorporating
KeyNote-style [12] compliance values or weights [11, 19] in the delegation state-
ments. We also assume that trust is monotonic, for example, it is safe to rely
on a Semantic Threat Graph delegation chain provided by a vendor since the

190 S.N. Foley and W.M. Fitzgerald

model does not permit other principals to make conflicting assertions about con-
cepts that originated from the vendor’s namespace. Supporting non-monotonic
trust, including inter-policy-conflicts such as [10], is non-trivial and effectively
requires synchronization of the distributed ABox/TBoxes. Providing support for
distributed ontologies is an active research topic [8]. The extent to which these
other forms of reasoning over the distributed ontology are applicable, and could
be supported by extending our current model, is a topic for future research.

8 Conclusion

In this paper, a trust management approach is proposed to decentralize and
delegate knowledge for threats and their mitigation (encoded as Semantic Threat
Graphs) to one or more trusted providers. That is, the ability to trust-manage
the (delegation) relationships that may exist between the providers.

The ontology-based delegation scheme used subsumption to model the delega-
tion of jurisdiction over (potentially distributed) fragments of a Semantic Threat
Graph. This paper extends the model from [20] — which did not consider the
possibility that threat catalogues may originate from different trusted providers
— to a decentralized trust model.

In this paper, the Semantic Threat Graphs knowledge-bases comprised of
knowledge about standards and best practices for threat mitigation using fire-
walls. The applicability of the (centralised) approach of encoding numerous best-
practices is demonstrated in [20]. We argue that the effort of decentralizing this
cataloging exercise is comparable. Future work will consider constructing Se-
mantic Threat Graphs from additional threat knowledge-bases such as NVD.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their valuable feedback. This research has been supported by Science
Foundation Ireland grant 08/SRC/11403.

References

1. http://www.nist.gov/

2. http://www.us-cert.gov/

3. http://www.securityfocus.com

4. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control
in distributed systems. ACM Trans. Program. Lang. Syst. 15, 706–734 (1993),
http://doi.acm.org/10.1145/155183.155225

5. Agarwal, S., Rudolph, S.: Semantic Description of Behavior and Trustworthy Cre-
dentials of Web Services. In: 6th International Semantic Web Conference, Busan,
Korea (November 2007)

6. Agudo, I., Lopez, J., Montenegro, J.A.: Enabling attribute delegation in ubiquitous
environments. Mobile Netw. Appl., 1–13 (July 2008),
http://www.springerlink.com/content/q845pp64672m3586/

7. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press (March 2003)

http://www.nist.gov/
http://www.us-cert.gov/
http://www.securityfocus.com
http://doi.acm.org/10.1145/155183.155225
http://www.springerlink.com/content/q845pp64672m3586/

Decentralized Semantic Threat Graphs 191

8. Bao, J., Voutsadakis, G., Slutzki, G., Honavar, V.: Package-Based Description Log-
ics. In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies.
LNCS, vol. 5445, pp. 349–371. Springer, Heidelberg (2009)

9. Becker, M., Fournet, C., Gordon, A.: Design and semantics of a decentralized
authorization language. In: 20th IEEE Computer Security Foundations Symposium
(January 2007)

10. Bertino, E., Jajodia, S., Samarati, P.: Supporting multiple access control policies
in database systems. In: Proceedings of the 1996 IEEE Conference on Security and
Privacy, SP 1996, pp. 94–107. IEEE Computer Society, Washington, DC (1996),
http://dl.acm.org/citation.cfm?id=1947337.1947353

11. Bistarelli, S., Martinelli, F., Santini, F.: A Semantic Foundation for Trust Man-
agement Languages with Weights: An Application to the RT Family. In: Rong, C.,
Jaatun, M.G., Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060,
pp. 481–495. Springer, Heidelberg (2008)

12. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.D.: The keynote trust-
management system, version 2 (September 1999)

13. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proceed-
ings of the IEEE Symposium on Research in Security and Privacy, pp. 164–173.
IEEE Computer Society Press, Oakland (1996)

14. Borgida, A., Serafini, L.: Distributed Description Logics: Directed Domain Cor-
respondences in Federated Information Sources. In: Meersman, R., et al. (eds.)
CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS, vol. 2519, pp. 36–53. Springer,
Heidelberg (2002)

15. Cuppens-Boulahia, N., Cuppens, F., de Vergara, J.E.L., Guerra, J., Debar, H.,
Vazquez, E.: An Ontology-Based Approach to React to Network Attacks. In: 3rd
International Conference on Risk and Security of Internet and Systems (CRiSIS),
Tozeur, Tunisia (October 2008)

16. Ellison, C., Frantz, B., Lampson, B., Rivest, R.L., Thomas, B., Ylonen, T.: SPKI
certificate theory (September 1999)

17. Fenz, S., Goluch, G., Ekelhart, A., Riedl, B., Weippl, E.R.: Information Security
Fortification by Ontological Mapping of the ISOIEC 27001 Standard. In: 13th Pa-
cific Rim International Symposium on Dependable Computing (PRDC), Australia
(December 2007)

18. Finin, T., Joshi, A., Kagal, L., Niu, J., Sandhu, R., Winsborough, W.H., Thu-
raisingham, B.: ROWLBAC - Representing Role Based Access Control in OWL.
In: 13th Symposium on Access Control Models and Technologies, Colorado, USA
(June 2008)

19. Foley, S.N., Mac Adams, W., O’Sullivan, B.: Aggregating Trust Using Triangu-
lar Norms in the KeyNote Trust Management System. In: Cuellar, J., Lopez,
J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710, pp. 100–115.
Springer, Heidelberg (2011)

20. Foley, S.N., Fitzgerald, W.M.: Management of Security Policy Configuration using
a Semantic Threat Graph Approach. Journal of Computer Security (JCS) 19(3)
(2011)

21. Foley, S.N., Abdi, S.: Avoiding Delegation Subterfuge Using Linked Local Per-
mission Names. In: Barthe, G., Datta, A., Etalle, S. (eds.) FAST 2011. LNCS,
vol. 7140, pp. 100–114. Springer, Heidelberg (2012)

22. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular Resuse of Ontologies:
Theory and Practice. Journal of Artificial Intelligence Research 31 (February 2008)

23. Hernan, S., Lambert, S., Ostwald, T., Shostack, A.: Uncover Security Design Flaws
Using The STRIDE Approach, http://microsoft.com/

http://dl.acm.org/citation.cfm?id=1947337.1947353
http://microsoft.com/

192 S.N. Foley and W.M. Fitzgerald

24. Herzog, A., Shahmehri, N., Duma, C.: An Ontology of Information Security. Inter-
national Journal of Information Security and Privacy (IJISP) 1(4) (2007)

25. Kodeswaran, P.A., Kodeswaran, S.B., Joshi, A., Finin, T.: Enforcing Security in
Semantics Driven Policy Based Networks. In: 24th International Conference on
Data Engineering Workshops, Secure Semantic Web, Cancun, Mexico (April 2008)

26. Kolovski, V., Hendler, J., Parsia, B.: Analyzing web access control policies. In:
Proceedings of the 16th International Conference on World Wide Web, WWW
2007, pp. 677–686. ACM, New York (2007),
http://doi.acm.org/10.1145/1242572.1242664

27. Li, N., Winsborough, W., Mitchell, J.: Distributed credential chain discovery in
trustmanagement. Journal of Computer Security 11(3), 35–86 (2003)

28. Ray, I., Poolsapassit, N.: Using Attack Trees to Identify Malicious Attacks from
Authorized Insiders. In: De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D.
(eds.) ESORICS 2005. LNCS, vol. 3679, pp. 231–246. Springer, Heidelberg (2005)

29. Schneier, B.: Secrets and Lies Digital Security in Networked World. Wiley Pub-
lishing (2004)

30. Smith, M.K., Welty, C., McGuinness, D.L.: OWL Web Ontology Language Guide.
W3C Recommendation, Technical Report (2004)

31. Squicciarini, A.C., Bertino, E., Ferrari, E., Ray, I.: Achieving Privacy in Trust Ne-
gotiations with an Ontology-Based Approach. IEEE Transactions on Dependable
and Secure Computing 3(1) (2006)

32. Stevens, R.: Unix Network Programming, Networking API’s: Sockets and XTI, 2nd
edn., vol. 1. Prentice Hall (1998)

33. Thuraisingham, B.: Building Trustworthy Semantic Webs. AUERBACH (2007)
34. Tracy, M., Jansen, W., Scarfone, K., Winograd, T.: Guidelines on Securing Public

Web Servers: Recommendations of the National Institute of Standards and Tech-
nology. NIST Special Publication 800-44, Version 2 (September 2009)

35. Wack, J., Cutler, K., Pole, J.: Guidelines on Firewalls and Firewall Policy: Recom-
mendations of the National Institute of Standards and Technology. NIST-800-41
(2002)

36. Wang, Y., Haase, P., Bao, J.: A survey of formalisms for modular ontologies. In:
International Joint Conference on Artificial Intelligence (IJCAI 2007) Workshop
(2007)

http://doi.acm.org/10.1145/1242572.1242664

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 193–206, 2012.
© IFIP International Federation for Information Processing 2012

Code Type Revealing Using Experiments
Framework

Rami Sharon1 and Ehud Gudes2

1 The Open University, Ra'anana, Israel
Sharon.Rami@gmail.com

2 Ben-Gurion University, Beer-Sheva, Israel
ehud@cs.bgu.ac.il

Abstract. Identifying the type of a code, whether in a file or byte stream, is a
challenge that many software companies are facing. Many applications, security
and others, base their behavior on the type of code they receive as an input.

Today’s traditional identification methods rely on file extensions, magic
numbers, propriety headers and trailers or specific type identifying rules. All
these are vulnerable to content tampering and discovering it requires investing
long and tedious working hours of professionals. This study is aimed to find a
method of identifying the best settings to automatically create type signatures
that will effectively overcome the content manipulation problem.

In this paper we lay out a framework for creating type signatures based on
byte N-Grams. The framework allows setting various parameters such as N-
Gram sizes and windows, selecting statistical tests and defining rules for score
calculations. The framework serves as a test lab that allows finding the right pa-
rameters to satisfy a predefined threshold of type identification accuracy. We
demonstrate the framework using basic settings that achieved an F-Measure
success rate of 0.996 on 1400 test files.

Keywords: File Type, Content type revealing framework, Code type, Byte
N-Gram statistical analysis.

1 Introduction

In today’s connected environment, most businesses increasingly rely on the Internet
as a source of information and a platform for communication and Electronic com-
merce. One of the main motivating factors driving the increased use of the net is the
ability to use technologies based on active content such as Active-x, Java applets,
Java Script and Executable files, in order to implement Web Based Applications. The
flexibility of these technologies convey great benefits, but at the same time, allow
using Web based applications as Malware carriers, capable of harming the organiza-
tion by damaging its infrastructures, stealing information or performing other illegal
activities.

One of the most difficult parts of the attack is to penetrate and infuse the code into
the system. Attackers develop new approaches to disguise the true nature of the
penetrating file, if by using naive methods such as changing File Extensions or by

194 R. Sharon and E. Gudes

manipulating file content such as the file header. Recent research in this area was
undertaken in order to find efficient ways to identify the true nature of a code in a file,
without relying on external characteristics. One of the most common methods applied
for this purpose is the analysis of the N-Grams, which are variable sequences of bytes
(usually consecutive but not necessarily), present in the file [1, 2, 8].

The main contribution of this paper is a new Framework, called CTR – Code Type
Revealing, that enable in a convenient manner the finding of the most efficient para-
meters (such as N-Gram size, Statistical classifier and other qualifiers), for the crea-
tion of characteristic signatures for different file types. The CTR Framework serves as
an infrastructure for automatic creation of a signature for every file type, based on
training data constructed from files of that type. Moreover, the CTR Framework can
scan unknown files and determine their type based on that signature. Experiments that
were made using the CTR Framework, presented very good results with 1394 files out
of 1400 that were correctly identified. This is when taking into consideration closely
related files, such as EXE and DLL, as one type. The F-Measure value, based on these
tests, was 0.996.

The rest of this paper is structured as follows. In Section 2 we discuss related work,
in section 3 we describe the CTR framework and in Section 4 the results of the evalu-
ation. Section 5 is the summary.

2 Related Work

Using statistical measures on the content of a file has been investigated as a text
classification technique, and later on was used to explore new methods for type classi-
fication and malware detection. Some of these techniques are based on statistical
measurements and analysis of N-Gram distribution. McDaniel and Heydari [1] focus
their early paper on automatic methods of creating file signatures, called file type
“fingerprints”. They suggest three algorithms based on 1-gram frequency distribution.
The first algorithm created a fingerprint using training data of files from the same
type. The second algorithm used similar methods but based the fingerprint on cross
correlation between byte pairs. The third one simply tested the file header and trailer
for repeating patterns and their correlation strength. The first algorithm achieved a
success rate of 27.5%, which is not far from a random guess. The second one did a
better job (45.83%) but performed much slower. The third algorithm did much better
(95.83%) but is much more vulnerable to content manipulation. Wei-Jen Li et al. [2]
continued this approach and claimed reaching better results by refining the finger-
prints using a set of centroids, which were carefully selected by using clustering me-
thods to find the minimum set that provides good enough performance. Overall, the
results were improved compared to [1]. Karresand and Shahmehri [3] continued with
developing a similar method using Centroids with the goal of identifying file type
based on binary data fragments. The Centroids were based on the Mean and Standard
Deviation of byte frequency distribution. Later they extended their work, introducing
the interesting concept of ‘Rate of Change’ between consecutive bytes [4].The calcu-
lation of the distance to the Centroid were made using two methods, 1-norm (also
known as Manhattan Distance) and the frequency distribution of the Rate of Change
of the fragment to be identified. The results were not conclusive. JPEG files achieved
the best results, gaining more than 86.8%, but with 20% of False Positives. For other

 Code Type Revealing Using Experiments Framework 195

types the results were much worse. For instance, executable file gained 45% - 85%
with up to 35% of FP.

Kolter et al. [5] suggested the use of fixed length N-Grams to identify malicious
content in executable files. They translated binary content to textual representation
and extracted 4-Grams of known malicious and benign binaries, resulting in about
255M unique 4-Grams. A number of classification methods have been used, such as
Naive Bayes, Support Vector Machines (SVM) and Decision Trees, which yielded the
best results. Dash et al. [6] Continued this approach and introduced the use of variable
length N-Grams to identify malicious code. They claimed better performance over
fixed size N-Grams due to essential data loss of significant longer N-Grams. Indeed,
the results indicate less errors of type I (FP). Irfan et al. [7] suggest two approaches
for type identification. First approach uses the cosine similarity for byte frequency
comparison; the second is divide-and-conquer approach to group similar files, based
on repeating byte patterns, regardless of their type. The results were not conclusive
and the later approach improved the classification accuracy of some types, while get-
ting worse results on others, comparing to methods not using divide-and-conquer
approach. Moskovitch et al. [8] deal with methods of identifying malicious code
based on concepts taken from text categorization. They introduce the class imbalance
problem, which basically arises when the classes (in this case, benign and malicious
code classes) are not balanced so that most inspected objects belong to one larger
class, while other classes remain much smaller. This may result, in some extreme
cases, in mistakenly labeling all data as member of the larger class. The results
showed that when selecting about 10% of malicious code in the test data, which close-
ly represent real life according to the authors, they achieved over 95% accuracy when
using 16.7% of malicious code in the training data. The overall conclusion was that
10% - 40% of malicious code in the training data will provide optimal results in a true
life distribution.

As was shown in the cited papers, different file types may require different para-
meters of analyzing the file content, and the framework discussed next is based on
this approach.

3 Identifying File Type by Its Content

The challenge that we are facing, is to find an automatic procedure to create type
identifiers, called signatures, which will be accurate enough and resistant to content
manipulation up to some degree.

We can deduce, based on previous work, that there is some correlation between the
type of a file and its content. To be more precise, we can find a direct link, very strong
in some cases and weaker in others, between repeating N-Grams and the type. The
problem is that the general N-grams method has several parameters (e.g. the size N)
and they are not equivalent for the different file types.

The aim of this paper is to describe the CRT framework, acting as an experiments
lab, which will allow performing experiments on automatic type signatures creation,
while changing settings such as N-Gram size, Window size, Statistical measures,
Score calculation rules and others. In this section we describe the idea and the archi-
tecture of the framework. In the following section we present an implementation of
the idea, which will serve as a proof of concept, and the results of our tests.

196 R. Sharon and E. Gudes

3.1 Implementation

The Framework makes use of the N-Gram Statistics Package (NSP) [9]. The package,
which was developed by Pedersen et al., is a suite of Perl utilities, aimed to analyze
N-Grams in text files. It collects information on the appearance of N-Grams and al-
lows running association tests such as Fisher’s exact test and log likelihood ratio on
the collected data. Since the Framework goal is to analyze files of any type, binary or
text, a preliminary step was added to translate files content to their hexadecimal tex-
tual representation.

3.2 The CTR Framework Architecture

The Framework consist of 2 paths, Signature creating and File test paths, which are
schematically presented in Figure 1. The right side flow describes the Signature crea-
tion path based on training data files, while the left one describes the test flow. Both
paths use the same preparation procedure, which is the "Count N-grams and Calculate
statistics" step (see 3.3). We next describe each step in the two paths.

Fig. 1. Framework Workflow

Sample
Source Files

Sample
Counted
N-Grams

Count N-Grams and
calculate statistics

for each training File

Test Data
Counted
N-Grams

Test Source
Files

Consolidate
N-Grams
from Files

Compare
Consolidations

Create
Signature

Type
Signature

Test Files

Test Results

Score Rules

Consolidated
Intermediate

Files

Create
Signature

Column Set

 Code Type Revealing Using Experiments Framework 197

3.3 Count N-Grams and Calculate Statistics

This step is common to both paths. The input for the step is a folder containing files.
In case of signature creation path, the files will be training data, representing a type.
In the case of the test path, the folder contains files of unknown type. The step ac-
cepts, as an input, the following parameters:

1. N-Gram Size. The size of N-Grams, which will be collected.
2. Window Size. Allows extracting non-contiguous N-Grams. For instance, in case of

N-Gram with size 2 and Window with size 3 for bytes XYZ, the extracted N-
Grams will be XY, XZ, YZ. Window size should be greater or equal to the N-
Gram size.

3. N-Gram Threshold. Allows settings the minimum support of the N-Grams that will
be counted.

4. Statistical measures, e.g. Fisher’s exact test, Log-likelihood, Chi-squared test etc.

Fig. 2. N-Gram Count file

The result of the step is a set of files, one for each source file, containing a list of
extracted N-Grams, together with the collected statistics on each.

A sample output is presented in Figure 2. The first few lines describe the settings,
such as N-Gram size (3-Gram, in this case) and required statistics measures. Follow-
ing are column headers and the data. Each data line presents an N-Gram, followed by
the results for the statistic calculation (percentage appearance in the file, in this case)
and quantity information on the number of N-Grams that were found in the file. For
each N-Gram that was found, the first frequency value states the number of occur-
rences that the N-Gram appears in the file. The following columns list the number of
times that each subset of the N-Gram appeared in its current position. For instance,
inspecting the marked line in Figure 2 reveals that ‘000000’ appeared 8563 times in
the file, ‘00’ appeared 17770 times on the left hand side, 17771 times in the middle

198 R. Sharon and E. Gudes

and 17772 times on the right hand side. Also, ‘0000’ appeared 11103 times on the left
hand side, and so on.

3.4 Create Signature Path

3.4.1 Consolidate N-Grams from Files
In this step, result files from the Count N-Grams step are collected and consolidated
into one summary file per type. The step accepts, as an input, a file describing the
columns to be collected from the N-Grams count files, together with some statistical
measures that should be made on them. These measures can be Minimum and Maxi-
mum value, Standard Deviation etc. The step accepts, the following parameters:

1. Files Threshold. This value set the threshold, in percentage, of files that should
contain an N-Gram, in order for it to be counted as part of the signature.

2. Type Name. This value assigns the type to a summary file.

Fig. 3. Type Consolidation Summary File

A sample output is presented in Figure 3. The type is specified on the first line.
Lines, following the column headings, list N-Grams, together with their relevant col-
lected statistics. The second column presents the number of files, the N-Gram was
found in and the third column presents this value in percentage of files. Next values
present the collected columns for the Count N-Gram step, with statistical measures.
For instance, the fourth column presents the Mean of the percentage value, taken from
the second column in Figure 2, and the fifth column presents the Standard Deviation
of this value.

3.4.2 Create Signature
A Signature can be constructed using two methods. One uses consolidation files as a
direct input for the step. The second one allows comparing consolidation files, in
order to eliminate N-Grams that repeat in more types then a predefined threshold.

 Code Type Revealing Using Experiments Framework 199

Both methods accept a list of data columns to be collected from consolidation files. In
case of choosing the ‘Compare Consolidation’ method, a threshold value should be
added. For instance, if N-Gram 00<>00<>00 appears in 5 different types and the thre-
shold is 4, it will not be included in the Signature. This feature was designed to get
more unique type signatures.

Fig. 4. Signature Sample File

A sample of a signature file is shown in Figure 4. It contains the signature informa-
tion for all types. The first line on each section states the type on the first column and
the maximum available score for it on the second column. Following lines list the N-
Grams, together with their collected information. This information includes, in the
second and third columns, the number of files and percentage that the N-Gram ap-
pears in. The fourth column contain the statistics collected from the consolidated files
(see 3.4.1), separated by a ‘^’ sign. In Figure 4, the min and max N-Grams appearance
was collected. In the first row, for instance, the N-Gram 6e<>74<>65 appeared in
each training file between 1 and 547 times.

3.5 Test Files Path

In this path, we use the type signatures to test files and estimate their type. Tested
files are processed through the count N-Grams step (see 3.3), which was also applied
on training data. It is important to emphasize that, in order to get reliable results, the
Count N-Grams step should be set with the same setting as used in the signature path.

The step accepts, as an input, the list of files to be tested, the signature file and a
Score rules file.

200 R. Sharon and E. Gudes

3.5.1 Score Rules File
The score rules file is assembled from Rules, containing sequential Conditions. Each
Rule applies to a specific file type. A Condition, within the rule, determines the score
that a found N-Gram will contribute to the final score of a file, in case that the condi-
tion will be found to be true. Conditions are ordered and the first Condition that will
be found as true will be applied.

Following is a sample set of two conditions in a rule:

For a specific N-Gram
 Condition 1:

 If the N-Gram was found X times in the file, where
X >= ‘Min times in the signature’ and X <= ‘Max times
in the signature’

 Grant it the score Y.
 Condition 2:

If the N-Gram was found X times in the file, where
X > ‘Max times in the signature’

 Grant it the score Z.

According to these sample conditions, if an N-Gram was found in a file between the
min and max times, defined by the signature, it will add Y to the total score, other-
wise, if it will be found more than the max, it will add Z to the total score. These
Rules and the order between the conditions, which is important, can be created by
setting preliminary Rules, creating a signature and using it on test data. Then, repeat-
ing this step again and again, using different settings, until the results accuracy is
acceptable. Section 3.6 discusses this issue further. Since an N-Gram may be missing
from some type training files because of the file threshold, a factor of N-Gram contri-
bution weight is taken into consideration. It is calculated based on the percentage of
files, the N-Gram was found in. The following algorithm describes the contribution of
a specific N-Gram to the score:

For each r Rules
 If r. Type matches current type
 For each c r. Conditions
 If c is true

 Add S = (c. Score NGram weight) to the file
 type total score

 Break

S is the score that this N-Gram contributes to the total score of the file for the type.
The total score that will be granted to a file for the type is based on the formula: = ∑∑

Where Si is the score for N-Gram i and Wi is its weight.

 Code Type Revealing Using Experiments Framework 201

Fig. 5. Test Sample Output file

A test output sample file is shown in Figure 5. The first column list all test files.
Second one presents the best guess, meaning, types that received the best score. Fol-
lowing are one column per type, and the score that the file received for it.

3.6 Methodology

In this section we describe the methodology that can be used by the researcher, when
creating a new type signature. The methodology can also be adopted by an automatic
process. Following are the methodology steps. These steps should be processed for
each type separately.

1. Set an accuracy threshold, which serves as an indication for success, when
achieved.

2. Choose training and test files from reliable sources. All training set files must be of
the same type, which the signature is created for. More files in the training set will
result in a smaller and more accurate signature since each additional file in the set
may lack of some N-Grams, which otherwise, could be part of the signature. This
means that the removed N-Gram could negatively affected the accuracy of the sig-
nature. Test set should contain files from different types with existing signatures,
in order to identify FP and FN errors.

3. For each set of parameters, run the following steps:
(a) Choose settings, not tested before, such as N-Gram size, Window size, Statis-

tical measures and Score Rules. For better performance, start from easy
settings. e.g., start from smaller N value for the N-Gram size, choose simple
statistical measures (min and max for example) before using complex ones etc.

(b) Create a signature.
(c) Run Tests.
(d) If results exceeds success threshold then stop.

The methodology is very simple and should be justified. Generally, if we take all
possible options for N-Gram size, window size, possible score rules syntax, parame-
ters of score rules and statistical measures and run an exhaustive test, it will take
exponential time. One can use a Genetic algorithm for generating a close to best
configuration, but as can be seen from Sections 4.2 and 4.3 below, the above simple
methodology gave very good results. It’s quite easy to replace it with a genetic algo-
rithm or another learning method.

202 R. Sharon and E. Gudes

4 Experiments

We performed the Experiments with very basic tests settings. The goal was to demon-
strate the strength of the process, while keeping it simple. All experiments were done
on Windows, although the framework does not enforce specific OS. Performance was
not taken into consideration, since the framework is not considered to be part of a
runtime or production environment, but further development of the test file path, us-
ing C# on .NET environment, yielded an average of 70ms scan time for a 0.5MB size
file on an i5 core Desktop, which is a quite small overhead.

4.1 Data

Test and training files of 6 different types were collected from a few sources, such as
a repository of tested benign files of known types, files resided on a well-protected PC
and Google. In order to reduce the chance of random guesses, we collected a large set,
containing a total of 3920 files. Collected files distribution is listed in table 1.

Table 1. Files Used for Experiments

Total
Files

Test
Files

Training
Files

File
Type

700 200 500 EXE

1199 699 500 DLL

682 182 500 DOCX

419 19 400 PDF

755 255 500 RTF

165 45 120 ZIP

3920 1400 2520 Total

4.2 Tests Settings

For the first experiment we used 3-Grams, with the same window size. No statistical
measures were collected, except for N-Grams Minimum and Maximum distribution
information. Although the Framework allows different settings for different file types,
the experiment reported here used the same settings for all types for simplicity. The
following simple score rule was applied to all types:

If an N-Gram was found then
 If it appeared between Min and Max Times
 Grant the score 100
 Else
 Grant the score 80.
Else
 Grant the score 0.

 Code Type Revealing Using Experiments Framework 203

In order to maintain strong signatures, we set the training files percentage threshold,
which defines the min percentage of files that an N-Gram should appear in (see 3.4.1,
1), to a value that will assure at least 100 N-Grams in a signature. We succeeded in
keeping this rule of thumb for all types except zip files, which seems to have less N-
Grams in common due to high entropy of bytes sequences in compressed files. Table
2 lists the threshold for different types.

Table 2. Files Percentage Threshold

Threshold Type

99% DLL

79% PDF

94% EXE

55% ZIP

84% RTF

100% DOCX

4.3 Results for the First Experiment

Tests were two-folded. The first part was a K-Fold Cross Validation with K = 5.
Training files for each type were split into 5 subsets. For each subset, a signature was
made from the other 4 and the subset was used as a test set. This step was done on all
types except zip, due to the small number of available zip files. DOCX files received
the best scores, all in the range between 95 and 100 out of 100, while 92% of the
DOCX files received the perfect score 100. RTF files received the worst results. In
one subset case, about 33% of the files scored in the range 40 and 49 out of 100 and
17% scored in the range between 50 and 59. But nevertheless, in the actual tests, RTF
files detection rate reached 100% success with no FP and FN (see Table 3). This can
be explained if we understand that the score does not stand by itself and should be
compared to other types score for the tested file, i.e., RTF files received low scores
for the type RTF, but much lower for other types, so they were recognized as RTF.

In the second part, file scanning was made on test files, based on signatures that
were created using all training data. A total of 1400 test files from all 6 different types
were used. 1293 files, which are about 92%, were accurately recognized.

When closely inspecting the remaining 8% files, an interesting picture is raised as
shown in Figure 6.

A total of 97 files, which are about 90% of non-matched files, are EXE files that
were mistakenly identified as DLL files (one file was also identified as PDF). 5 DLL
files (4%) were identified as EXE files. Also, MU_ file, which is a compressed file,
was recognized as ZIP. Since DLL and EXE files are executable files with very simi-
lar characteristics, we can consider them as executable files. This changes the picture
entirely and leaves us with 6 non-recognized files out of 1440, which is about 0.4%
error. We also calculated the F-Measure values for the results in order to get a sense
of the Precision and Recall. The results are presented in Table 3.

204 R. Sharon and E. Gudes

Fig. 6. No Match File and their distribution

Table 3. Results Precision, Recall and F-Measure

Type Files TP FP FN Precision Recall F-Measure
DOCX 182 182 0 0 1 1 1
RTF 255 255 0 0 1 1 1
PDF 19 19 3 0 0.864 1 0.927
DLL 699 693 97 6 0.877 0.991 0.931
EXE 200 99 5 101 0.952 0.495 0.651
ZIP 45 45 3 0 0.938 1 0.968
Total 1400 1293 108 107 0.923 0.924 0.923

Exec. 899 894 0 6 1 0.993 0.997
Total
Exec.

1400 1394 6 6 0.996 0.996 0.996

As can be seen, DOCX and RTF achieved the best results, scoring perfect F-

Measure value of 1. PDF, DLL and ZIP files also did well, scoring 0.931-0.968. EXE
files gained a poor Recall value of 0.651, but when taking DLL and EXE files as Ex-
ecutable files, the gained Precision is 1 and Recall is 0.993, resulting in an F-Measure
value of 0.997.

Overall, in the latter case, the total F-Measure for all 1400 files is 0.996.

4.4 Improving Accuracy

As can be seen in the previous section, when isolating the EXE type, the settings of
the first experiment gained poor results, with an F-Measure value of 0.651. Since the
result revealed that, in most miss-identifications, EXE files were recognized as DLL
and vice versa, we performed two additional experiments, one using 4-Gram and the
another using 5-Gram, only for the DLL and EXE types. N-Gram sizes for the rest of
the types were left unchanged (3). Also, other settings for the experiment were left

 Code Type Revealing Using Experiments Framework 205

unchanged. The precision, recall and F-Measure for the EXE type for the different N-
Gram sizes are presented in Table 4.

Table 4. EXE Precision, Recall and F-Measure for different N-Gram sizes

N-Gram
Size

Files TP FP FN Precision Recall F-Measure

3 200 99 5 101 0.952 0.495 0.651
4 200 108 7 92 0.939 0.54 0.686
5 200 132 8 68 0.943 0.66 0.777

As can be seen clearly, with the increasing of the N-Gram size, the accuracy of the

Framework improved when identifying EXE files. This experiment demonstrates the
strength of the Framework in finding the best settings for signature creation.

From these experiments we can identify few factors that contribute to the results
accuracy:

• The increasing accuracy when improving the score rules.
• Grouping of file types with a similar structure into categories. As shown, categoriz-

ing may contribute for increased accuracy.
• Threshold values, which set the ground rules to determine if an N-Gram will be

counted for the signature.

4.5 Identifying Tampered Files

One of the challenges, the Framework is facing, is the ability to correctly identify
tampered files. For instance, in many file types, the first few bytes (magic numbers)
are used to identify the file type. These can be easily manipulated to obfuscate the
type of the file. In order to test the ability of the Framework to overcome this chal-
lenge, we performed another experiment.

We randomly picked 24 files, which were correctly identified in the first experi-
ment. The file list contained 4 files from each of the 6 different types. The first 10
bytes of each file were set to zero (0). An attempt to open these files, using the rele-
vant application completed with a failure, as expected. The 4-Gram experiment set-
tings were used for the experiment.

All 24 files were correctly identified by the Framework. This result demonstrates
the strength of the method used by the Framework to overcome common cases of file
content tampering. More complex forms of content tampering, which affect the whole
content of the file, will be dealt with in a future work. Furthermore, the tests were
performed on six file types and it is possible that the identification accuracy may be
reduced when adding more type signatures. This may be overcome by removing mu-
tual N-Grams of many different type signatures and will be investigated in the future.

5 Conclusions

This paper presents the CTR framework, which is a general framework for revealing
the true type of various files. Using very simple settings, the framework demonstrated
promising results, successfully identifying 1394 out of 1400 files and achieving

206 R. Sharon and E. Gudes

F-Measure value of 0.996, when taking EXE and DLL files into account as executable
files. There is no need of prior knowledge or manual process of finding patterns in file
structures. The process can be done automatically without any human intervention.

Not all tested types achieved the same signature strength. While DOCX files have
many repetitive patterns, strong structure characteristics and similarities, ZIP files, for
example, demonstrated very weak signature with small number of descriptive N-
Grams. Investigation of additional file types using the CTR framework is planned in
future work.

File content tampering is still an option, but it is much harder since the signature
usually covers large amount of N-Grams and the scan is made on full content, or at
least large portion of the file. This was clearly shown by the results in 4.5.

In future work we intend to use the framework as a basis for identifying anomalies
in files, in order to mark them as suspicious or benign. Also, we will explore new
directions in text classification, trying to identify content language or identify data
leakage.

References

[1] McDaniel, M., Heydari, M.H.: Content Based File Type Detection Algorithms. In: Pro-
ceedings for the 36th Hawaii International Conference on System Sciences (2002)

[2] Li, W.-J., Stolfo, S.J., Herzog, B.: Fileprints: Identifying File Types by n-gram Analysis.
In: 2005 IEEE Workshop on Information Assurance, West Point, NY (2005)

[3] Karresand, M., Shahmehri, N.: Oscar – File Type Identification of Binary Data in Disk
Clusters and RAM Pages. In: Fischer-Hübner, S., Rannenberg, K., Yngström, L.,
Lindskog, S. (eds.) Security and Privacy in Dynamic Environment. IFIP, vol. 206, pp.
413–424. Springer, Boston (2006)

[4] Karresand, M., Shahmehri, N.: File Type Identification of Data Fragments by Their Binary
Structure. In: Proceedings of the 2006 IEEE Workshop on Information Assurance United
States Military Academy, West Point, NY (2006)

[5] Kolter, J.Z., Maloof, M.A.: Learning to Detect Malicious Executables in the Wild. In:
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (2004)

[6] Dash, K.S., Dubba, S.R.K., Pujari, K.A.: New Malicious Code Detection Using Variable
Length n-grams. In: Algorithms, Architectures and Information Systems Security, ch. 14,
pp. 307–323. World Scientific (2008)

[7] Irfan, A., Kyung, L., Hyunjung, S., ManPyo, H.: Content-Based File-type Identification
Using Cosine Similarity and a Divide-and-Conquer Approach. IETE Technical Re-
view 27(4) (July 2010)

[8] Moskovitch, R., et al.: Unknown malcode detection and the imbalance problem. Journal in
Computer Virology 5(4), 295–308 (2009)

[9] Pedersen, T., Banerjee, S., Purandare, A., McInnes, B.T., Liu, Y.: NSP - Ngram Statistics
Package (2009)

From MDM to DB2:

A Case Study of Security Enforcement
Migration

Nikolay Yakovets1, Jarek Gryz1, Stephanie Hazlewood2, and Paul van Run2

1 Department of Computer Science and Engineering, York University, Canada
Centre for Advanced Studies, IBM Canada

{hush,jarek}@cse.yorku.ca
2 IBM Canada

{stephanie,pvanrun}@ca.ibm.com

Abstract. This work presents a case study of a migration of attribute-
based access control enforcement from the application to the database
tier. The proposed migration aims to improve the security and simplify
the audit of the enterprise system by enforcing information protection
principles of the least privileges and the least common mechanism. We
explore the challenges of such migration and implement it in an indus-
trial setting in a context of master data management where data secu-
rity, privacy and audit are subject to regulatory compliance. Based on
our implementation, we propose a general, standards-driven migration
methodology.

Keywords: Master Data Management, Enterprise Security, Attribute-
Based Access Control, Database Security, XACML, DB2.

1 Introduction

Today’s enterprise data is complex and heterogeneous, and users who access
it are diverse and belong to multiple domains. The access control models have
evolved to fit these requirements. Traditional discretionary (DAC, [1]) and manda-
tory (MAC, [2]) access control models have been replaced by role-based access
control (RBAC, [3]) and, more recently, attribute-based access control (ABAC,
[4]). Unlike DAC, MAC and RBAC, the ABAC model defines permissions based
on just about any security relevant characteristics of requesters, actions, re-
sources, and environment, known as attributes.

The lack of native ABAC support by conventional DBMS has motivated many
enterprise developers to implement access control checks at the application tier,
bypassing the native database access control. In such architecture, the database
connection is established on behalf of the application and is able to access the
entire database, while application program logic itself is used to limit the privi-
leges of the end-user. While this approach allows enforcement of more complex
and flexible attribute-based policies, it also introduces several problems. First,

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 207–222, 2012.
c© IFIP International Federation for Information Processing 2012

208 N. Yakovets et al.

because the database connection is at an elevated privilege, the enterprise sys-
tem is prone to privilege escalation attacks [5], such as SQL injection [6]. Second,
since the database is not aware of the identity of an end-user issuing the request,
it may be difficult for application developers to provide the end-to-end audit
trail which is essential to comply with regulations such as SOX [7], PCI [8], and
HIPAA [9].

In this paper, we describe how to perform a migration of an existing enterprise
security enforcement from the application tier to the database tier. In other words,
we would like to be able to securely enforce the enterprise security policies at the
database,while retaining the flexibility of theirmanagement at the application.We
see several benefits of such database-level enterprise security enforcement. First, it
helps protecting the enterprise system fromprivilege escalation attacks by comply-
ing with information protection principles of the least privileges and the least com-
mon mechanism [10]. Further, the placement of security controls on the database
allows for full end-to-end audit trail as the identity of an end-user is not hidden
behind a common authorization ID of an application layer.

We consider our approach in an industrial setting in a context of master data
management (MDM) [11]. A wide variety of MDM solutions are available on
the market today from major vendors such as IBM, Oracle, Microsoft and SAP.
Such systems aim to provide a centralized environment for maintaining the mas-
ter data about customers, suppliers, products and services. Master data plays
an important role in both operational and analytical aspects of the organization
operation. However, it is also a tempting target for attackers as it is captured
by combining, cleansing and enriching highly confidential data across various
data sources in the organization. Further, master data also contains personally
identifiable information, making MDM solutions subject to regulatory compli-
ance. Since the proposed migration aims to improve the security and simplify
the compliance of the enterprise system, we believe it may be useful, in the first
place, in the MDM domain.

In collaboration with IBM Centre for Advanced Studies, we used IBM Info-
Sphere Master Data Management Server (in short, MDM Server) as an imple-
mentation platform. MDM Server is a large scale industrial-grade MDM solution
that enforces attribute-based security policies at the application tier while stor-
ing the master data in the relational database. This enabled us to implement
the proposed migration in MDM Server to prove the feasibility and practical
usefulness of our approach.

Lastly, we believe that our MDM Server migration experience may be helpful
in similar migration projects in a variety of enterprise applications outside of
MDM. To facilitate the implementation of such projects, we propose a general
migration methodology that is standards-driven and vendor-independent.

The rest of the paper is organized as follows. Section 2 describes the challenges
of the proposed migration, and Section 3 describes our industrial implementa-
tion. Section 4 discusses the lessons we learned, and Section 5 presents a general
migration methodology. Section 6 discusses some of the related works, and Sec-
tion 7 concludes.

From MDM to DB2: A Case Study of Security Enforcement Migration 209

2 Challenges

The proposed migration aims to place the security enforcement on the database,
while keeping the security administration at the application. This comes with
several challenges as both end-user identities and security policies need to be
timely and efficiently propagated from the application tier down to the database.
The following subsections provide more detail.

2.1 Identity Propagation

Request processing often involves the propagation of end-user’s identity from
one enforcement point to another within the enterprise environment. For exam-
ple, consider a case where end-user is authenticated at a client tier. Then the
identity is sent to an application tier for its own authorization and auditing. The
application in turn generates the requests to query a back-end database poten-
tially using yet another identity that is suitable to access a relational database
on end-user’s behalf.

The scenarios of such identity propagation differ by a degree of knowledge that
the relational database has about the end-users. For example, an end-user may
be mapped to a system identity - or the identity that is used to represent the
application tier. This many-to-one mapping greatly simplifies the deployment
topology, but effectively places all of the security controls such as authorization
and audit on the application tier, as the relational database has no knowledge
about the identity of the end-user.

On the other hand, an end-user may be mapped to a functional identity which
can represent user’s role or group in the organization. This many-to-many map-
ping allows placing some of the security controls on the relational database
for the price of complicating the deployment topology. In this case, however,
the database still does not know who exactly the end-user is. Therefore full
end-to-end audit trail is impossible which can cause problems with regulatory
compliance.

Lastly, an end-user may be mapped to her corresponding identity in the
database. This one-to-one mapping allows the database perform authorization
and audit using end-user’s identity. This scenario requires the most difficult
deployment topology, but allows placing most of the security controls on the
relational database. Since this allows for full end-to-end audit trail, it greatly
simplifies regulatory compliance of the enterprise system.

The proposed migration involves shifting from many-to-one to one-to-one
identity mapping during the enterprise request processing. What makes this
challenging is that the complication of the deployment topology that comes with
one-to-one mapping is undesirable. Moreover, the identity propagation mecha-
nism would require an identity provisioning component responsible for keeping
identities in the database consistent with identities administered at the applica-
tion. An optimal solution for handling the identity propagation would need to
solve the above problems.

210 N. Yakovets et al.

2.2 Policy Propagation

Application-to-database policy propagation is challenging because the underly-
ing security mechanisms at the application are conceptually different from those
at the database. Application-level authorization engine can use either proprietary
or standards-driven approach such as OASIS XACML [12] to specify, distribute
and enforce high-level attribute-based security policies. The flexibility of such
policies comes from the ability to define the security rules based on attributes
of users, resources and environment. For example, a single rule might permit
access for all professors in the department of computer science to files pertaining
to courses offered in that department. The access decision is made during the
request execution time when the rule attributes are retrieved: the authorization
IDs of current CS professors and table names of currently offered CS courses.

Relational database low-level security enforcement mechanisms are based on
the assignment of privileges to users or roles. The privileges can be granted or
revoked on complete tables and views. For example, a single database autho-
rization might permit access for professor JohnDoe to table CS101. Clearly, such
discretionary database policies are less expressive than attribute-based applica-
tion policies.

The proposed migration would involve linking the security mechanisms at
the application and at the database. A consistent mapping should be estab-
lished between the security policies, such that the database privileges conform
to semantics specified by permissions in the application. Mapping of a single
application policy would require the understanding how application-level users
and resources identified by their attributes translate to database-level authoriza-
tion IDs and tables. Mapping of multiple application policies would require the
understanding of policy combining and conflict resolution algorithms that are
used at the application.

It is important to realize that updates to application security policies or to
user and resource attributes may alter the established policy mapping in a non-
trivial way. Some of the database permissions would need to be granted, while
others would need to be revoked. The solution for policy propagation would
need to provide the mechanism that will efficiently maintain the consistent rela-
tionship between the database permissions and the policies administered in the
application.

3 Implementation

In this section we show how the proposed migration can be implemented in
an industrial setting in MDM Server. MDM Server is a large scale enterprise
application that runs on WebSphere Application Server (WebSphere) and uses
IBM DB2 relational database (DB2) to store master data. First, we describe
how the identity of an end-user of MDM Server can be efficiently propagated
from WebSphere down to DB2. Next, we talk about how the attribute-based
MDM Server security policies can be mapped to discretionary DB2 permissions.

From MDM to DB2: A Case Study of Security Enforcement Migration 211

Finally, we show how to efficiently maintain the consistency of DB2 permissions
when MDM Server policies or attributes are updated.

3.1 MDM Server Identity Propagation and DB2 Trusted Context

In MDM Server access control checks are implemented at the application tier,
and the application itself is able to access the whole master database by us-
ing an administrative system identity. The goal of our migration is to place
most of the security controls on DB2, instead of relying on MDM Server to
perform the security checks. To make an access decision, the database needs to
know the identity of an end-user issuing the request that is effectively “masked”
by the administrative system identity of the MDM Server application. One way
to solve this problem is to modify the MDM Server application logic in such a
way that each database connection is established using the end-user’s identity
who issued the request instead of the administrative system identity. However,
this approach would involve the significant modification of the MDM Server
code base, which is undesirable. Another, more efficient approach is to plug in
a Java Authentication and Authorization Service (JAAS) login module to prop-
agate the end-user identity to the database server. This approach maintains
the end-user identity, but does not support connection pooling that is normally
leveraged by MDM Server when many-to-one administrative system identity is
used.

In our implementation, we utilize trusted connections instead of the manual
mapping or a JAAS mapping. Trusted connections support client identity propa-
gation and can also use connection pooling to reduce the performance penalty of
closing and reopening connections with a different identity. Trusted connections
leverage the DB2 trusted context object. The DB2 trusted context is an object
that the database administrator defines and that contains a system authorization
ID and a set of trust attributes. The trust attributes identify characteristics of
a connection that are required for the connection to be considered trusted. The
relationship between a database connection and a trusted context is established
when the connection to the DB2 server is created. After a trusted context is
defined, and an initial trusted connection to the DB2 database server is made,
the application server can use that database connection from a different user
without a full re-authentication. The database authenticates the end-user and
then verifies the user authorization to access the database prior to allowing any
database requests to be processed on behalf of that user.

When software stack is set up for use of the trusted context, the authorization
of the end-user requests is carried out as follows. First, end-user is authenticated
to MDM Client 1 , and her identity is sent over to WebSphere which is runnung
MDM Server 2 . WebSphere initially establishes the connection to DB2 using
underpriviliged “connection-only” user 3 . However, on query execution time,
the user identity is switched to the end-user who executes the query 4 . There-
fore, the query is executed and audit trail is logged at DB2 with the identity of
the end-user 5 .

212 N. Yakovets et al.

Fig. 1. Identity Propagation in MDM Server

To provision one-to-one identity propagation, database-level authorization IDs
should be kept consistent with identity information stored in MDM Server ac-
cording to the established one-to-one mapping. We solve this problem by using
an LDAP [13] registry common to both MDM Server and DB2. Thus, the use
of a trusted context and a centralized user registry allows us to establish an effi-
cient one-to-one identity propagation that does not complicate the deployment
topology of the enterprise system.

3.2 MDM Server Policy Propagation

To establish application-to-database policy propagation in MDM Server we need
to provide a consistent mapping between MDM application security policies and
their DB2 counterpart.

In DB2, we consider object-level and content-based authorizations that are
granted as primary, secondary or public permissions. Such discretionary per-
missions are represented as access control lists (ACLs), where each object is
associated with a list of subjects coupled with a set of actions they can per-
form on the object. The object, in this case, can be a table or a view, while the
subjects are DB2 users (authorization IDs), user groups, user roles and public
(all users). The access operations that subjects are allowed to invoke on objects
are SQL operations that can be executed on tables: select, insert, delete, and
update.

On the other hand, at the application tier, we have MDM entitlements, which
are managed by Rules of Visibility and Persistency Entitlements components
of MDM Server. In an entitlement, an accessor, which may be a user or a user
group, is entitled to take an action, for example adding, updating, or viewing,
on set of business objects or their elements which are identified by the data
association resource attribute in the entitlement.

To establish a policy mapping, one should understand the semantics of MDM
entitlements in the context of master data stored in the relational database.

From MDM to DB2: A Case Study of Security Enforcement Migration 213

In MDM, business objects map to database tables and elements that further
refine those business objects correspond to the columns of its underpinning
database tables. To enable full end-to-end audit, we establish one-to-one map-
ping between MDM accessors and database users and groups. Finally, MDM
data actions are mapped to DB2 data manipulation operations (i.e. update,
select, insert and delete).

For example, consider a pair of MDM entitlements shown in Fig. 2. First en-
titlement permits a particular student to view resources with attribute Data As-
sociation = {Course, Grades}. Second entitlement permits all professors updating
resources attributed to Grades only. Through corresponding associated objects,
COURSE database table is assigned Data Association = {Course, Grades}, and
GRADES table has Data Association = {Grades}. According to our policy map-
ping, the first entitlement is associated with DB2 authorizations 1 , 2 and 3 ,
while 4 and 5 are associated with the second entitlement.

Fig. 2. Policy Mapping in MDM Server

To accommodate the propagation of MDM entitlements down to DB2 we
modify MDM Server application logic by introducing Policy Propagation Point
(PPP) component (shown in Fig. 3). Policy propagation is carried out in three
steps. First step performs entitlement parsing: PPP interacts with existing MDM
Server components (we logically group them as MDM Policy Administration
Point (PAP)) to obtain the list of current entitlements. Each fetched entitlement
is described by an accessor, a data action and a data association attribute.

Second step performs attribute extraction: PPP interacts with another group
of MDM Server components (Policy Information Point (PIP)) to extract the
resources that correspond to the attribute values of the parsed entitlements. In
this step, data associations are associated with the list of associated objects they
contain.

214 N. Yakovets et al.

Third, and last, step builds DB2 authorizations and sends them to the
database. For each associated object in an entitlement a single DB2 permis-
sion is generated in accordance to the established policy mapping. An accessor
is mapped to a DB2 user or a group, a data action is mapped to a DB2 data
manipulation operation and, lastly, an associated object is mapped to a DB2
table. The generated DB2 permissions are combined according to MDM Server
policy combining and conflict resolution algorithms. In MDM Server a union
approach between the entitlements is assumed (i.e. if a user belongs to a group
which is allowed to see a data then, even though that user belongs to the other
groups that are not allowed to see that data, the access will still be granted).
No conflict resolution is required because the entitlements can only be granted
and cannot be restricted (i.e., there are no negative entitlements) and the default
policy is to restrict access unless it is specifically granted. Since DB2 employs
the same policy combining and conflict resolution, we combine the generated
DB2 permissions simply by issuing them directly to the database.

For each generated database permission, PPP logs all relevant information into
the propagation log. This log contains, for each DB2 authorization, the reference
to its parent entitlement, accessor, data action, data association and associated
object. Information about the status of each DB2 authorization, whether it was
issued to the database or was found duplicate, is also stored in this log. For
example, for MDM entitlements that are shown in Fig. 2, PPP will generate and
log five DB2 authorizations, however, only four of them will be issued to the
database as one of the authorizations is a duplicate (assuming that no autho-
rizations were issued for other MDM entitlements before).

Our solution also maintains the consistent relationship between MDM entitle-
ments and DB2 permissions in case when either entitlements or their attributes
are updated. A näıve approach to handle this problem would involve manual

Fig. 3. Policy Propagation in MDM Server

From MDM to DB2: A Case Study of Security Enforcement Migration 215

periodical rebuilding of all DB2 permissions. Our incremental propagation ap-
proach aims to rebuild only a subset of DB2 permissions that is affected by the
entitlement or the attribute update.

All administrative MDM transactions that deal with entitlements and their
attributes are handled by MDM component called Security Transaction Handler
(STH) (shown in Fig. 3). We modify this component in such a way that whenever
it receives a transaction that deals with either entitlements or their attributes,
it triggers PPP to immediately update the affected database permissions.

To illustrate how incremental propagation works consider the following exam-
ple. Suppose that security administrator updates the data association attribute
of the associated object BObj so that it no longer belongs to Grades (Fig. 2).
STH notifies PPP that BObj has been updated. Then, PPP extracts from the
transaction log all old DB2 permissions that were built from BObj. In this case,
those are 1 and 5 . Next, PPP checks the propagation log to see if there are
unissued permissions that are duplicate to 1 and 5 and were not affected by
the update. In this example, it finds permission 3 . Therefore, only 5 is revoked
and 3 is unmarked as being duplicate. Finally, PPP interacts with PIP and PAP
to generate and issue to the database any new permissions resulted from the
update.

4 Discussion

In this section we discuss the lessons that we learned from the implementation
of the proposed security enforcement migration in MDM Server.

4.1 Integration Footprint

Industrial-scale enterprise applications have hundreds of thousands, sometimes
even millions lines of source code. Due its large size a significant recoding of an
initial implementation in order to integrate the proposed security enforcement
migration is not feasible.

Our identity propagation implementation relies on trusted connections and
trusted context features of DB2 and WebSphere. Trusted connections support
client identity propagation and can also use connection pooling to reduce the
performance penalty of closing and reopening connections with a different iden-
tity. Moreover, when WebSphere and DB2 are configured for use of trusted con-
nections, WebSphere, seamlessly for the enterprise application, will propagate
end-user identity to DB2 through the trusted data source. Therefore, the exist-
ing application code that uses WebSphere APIs to interact with DB2 through
configured data sources does not need any modification. Thus, given a properly
configured software stack, almost no initial code modifications are needed to
implement the identity propagation in our approach, and it also doesn’t incur
noticeable performance degradation.

Our policy propagation mechanism is encapsulated in a single additional mod-
ule which integrates seamlessly into the existing application security core archi-
tecture. It reuses existing application interfaces to obtain enterprise security

216 N. Yakovets et al.

policies and attributes. Minor modifications to the initial code base were needed
to enable propagation triggering mechanisms in existing application components.

Therefore, our approach has a small integration footprint on the existing code
base, which makes it feasible to implement in a large-scale industrial-grade en-
terprise application such as MDM Server.

4.2 Policy Granularity

We can classify attribute-based security policies into two types based on the
granularity of the data to which they apply. Specifically, if policy describes object-
level authorizations, i.e. its resources are mapped to whole database tables, then
we call such policy coarse-grained. For example, coarse-grained policy allows
students to see all course grades, when course grades are contained in one, or
several, database tables. On the other hand, if a policy describes content-based
authorizations, i.e. its resources are mapped to specific rows of a table, then we
call such policy fine-grained. For example, fine-grained policy allows students to
see only their own grades that are contained in specific tuples of a course grades
database table.

In our approach, we compile coarse-grained application policies into a set of
database permissions. However, a different approach is needed to handle those
application policies that are fine-grained, since individual tuples cannot be spec-
ified as objects in database authorizations. In theory, SQL standard provides a
way to deal with fine-grained access control through view creation. For example,
it is possible to create views for specific users, which allow those users access to
only selected tuples of table. However, this approach is not scalable, and essen-
tially impractical in systems with thousands or millions of users, since it would
require millions of views to be manually created by a policy administrator.

For this reason, for the past several years, there have been much research on al-
ternative solutions for fine-grained access control for databases. Implementations
include query rewriting [14], parameterized view creation [15,16] and extensions
to SQL [17–19]. Hippocratic databases use meta data stored in the database to
make access decisions and are able to enforce cell-level policies. However, neither
of those implementations are part of current publicly available commercial SQL
servers.

The only currently publicly available implementation of fine-grained database
access control (FGAC) is Oracle Virtual Private Database (VPD). This approach
is based on Truman Models [15] and attaches predicates to user submitted queries
to enforce row-level policies. However, in our implementation, we were limited
to IBM software stack and thus were unable to use Oracle VPD. Use of Oracle
VPD by switching to Oracle software stack, or a similar IBM offering when it
becomes available, to map and synchronize fine-grained policies is a natural next
step in our work.

4.3 Security vs. Performance

One of the aspects of policy propagation is the amount of time it takes the change
in the enterprise policy, its attribute or attribute relationship to propagate from

From MDM to DB2: A Case Study of Security Enforcement Migration 217

the application to the database tier. If this time interval is relatively long, then
the system security may be compromised. This time period is called the window
of access vulnerability [20] which is caused by policy or attribute updates.

The duration of the window of vulnerability is determined by the implemen-
tation of policy synchronization engine. Generally, updates to database policies
can be either immediate or deferred. In the immediate mode, whenever enter-
prise policies are updated, the updates to corresponding database policies are
handled with the highest priority with no or relatively short delay. On the other
hand, in the deferred mode, the updates to database policies are handled with
lower priority and, therefore, the delay can be longer. The trade-off between im-
mediate and deferred modes is the performance overhead imposed by the policy
synchronization on the enterprise system.

In MDM domain, the confidential nature of master data has required us to
handle the policy propagation in the immediate mode, however the implemented
mechanism can be configured to operate in the deferred mode in order to help
security administrators achieve a balance between security and performance of
the system.

4.4 Mapping Correctness

It is important to establish application-to-database security policy mapping cor-
rectly, such that the permissions that are given in the database as a result of
the policy propagation are indeed the permissions intended by a security ad-
ministrator who defined them in the application. The understanding of privacy
semantics of the application security policies is required in order to establish the
correct mapping. Specifically, one needs to know both: how to map the individual
policies and how to correctly combine them later.

In order to map the individual attribute-based policy to a set of database au-
thorizations one needs to understand how application-level accessors, resources
and data actions correspond to database users, database objects (such as tables
and views) and SQL operations. Next, to combine the database authorizations
that were produced by the compilation, one needs to use the policy combin-
ing and conflict resolution algorithms that were attached to the corresponding
individual application-level policies.

In our implementation, policy combining was performed according to the
union approach between MDM entitlements and MDM default no-access pol-
icy, hence no conflict resolution was required. Therefore, in MDM Server, it was
sufficient to verify the mapping of individual application policies (which was cor-
rect given the object-relational design of MDM Server) in order to establish the
correctness of the application-to-database policy mapping.

4.5 End-to-End Audit

An audit trail [11] is a process of secure recording of key system events and who
initiated them in a chronological log. Auditing is used to reconstruct who-did-
what after the fact. Typically, for a complete picture of a transaction on a data,

218 N. Yakovets et al.

audit information must be collected at every enterprise system component along
the transaction path - it is called an end-to-end trail. The ability of an enter-
prise system to provide end-to-end auditing facilities is essential for regulatory
compliance.

When the enterprise security is enforced at the application tier, the requests
to a database are made using a system identity - the identity that is used to
represent the application layer, instead of the end-user identity. Since the end-
user identity is not sent to the database it may be problematic to provide an
audit trail at the database tier.

Following the proposed migration, the end-user identity is propagated down to
the database tier and all the database requests required to perform a transaction
are made using this propagated identity. This allows us to easily reconstruct
the events after the fact by using native database auditing facilities instead of
programming the application logic to collect the audit trail.

5 Migration Methodology

As we mentioned before, many application developers today choose to bypass
database-level access control due to the lack of a native database ABAC sup-
port. Therefore, we believe that there are many enterprise applications out there
which may benefit from our proposed application-to-database security enforce-
ment migration.

Based on our case study, we propose a sound, methodological approach by
which organizations can tackle migration projects. To keep our methodology as
general as possible, we base it on a well-known industry standard for specify-
ing and managing attribute-based policies - OASIS XACML. In addition to the
policy language specification, XACML standard includes the description of the
policy management architecture and its data flows (presented in Fig.4a). In our
methodology, we propose the necessary changes to XACML reference architec-
ture in order to accomodate the proposed migration and enable database-level
enterprise security enforcement (Fig.4b).

We believe that ideal migration plan should be broken down into three phases.
Known as analysis, implementation and integration, we define these phases in
detail below.

In the analysis phase one should identify if consistent mapping can be estab-
lished between enterprise attribute-based policies that are consumed by the PDP
at the application tier and identity or role-based policies that are consumed by
security mechanisms at the relational database. Similar to the migration in MDM
Server, this phase might include establishing relations between enterprise data
actions and database permission types, enterprise resources (such as business
objects, their associations and hierarchies) and database tables, columns and
rows, enterprise accessors (such as users, user groups, roles and role hierarchies)
and database users, groups and roles.

Then, the core of the PPP is implemented. Given the attribute-based poli-
cies, enterprise accessors and resources that correspond to the policy attributes,

From MDM to DB2: A Case Study of Security Enforcement Migration 219

Fig. 4. Extended XACML Architecture

this component performs policy compilation and incremental updates accord-
ing to the established mapping. It is important to realize that MDM Server’s
fairly straightforward and coarse-grained policy mapping and lack of negative
authorizations allowed for relatively unproblematic implementation. However,
finer-grained policies and presence of negative authorizations may considerably
complicate this phase as necessary inconsistency and conflict resolution would
have to be implemented.

Finally, the implemented engine is integrated into the enterprise system. Sim-
ilar to the migration in MDM Server, two optimizations might be performed in
order to keep the integration footprint small. First, PIP and PAP interfaces that
supplied PDPwith enterprise policies and evaluated the attributes are reused with
PPP. Second, subject identity propagation is implemented with the help of a novel
trusted context feature of an underlying software stack. Such feature are already
supported by IBM and Oracle application servers and relational databases, with
more vendors surely to follow. Finally, existing PIP and PAP aremodified to enable
PPP notificationmechanisms necessary for timely incremental policy propagation.

The proposed migration has the following business benefits. First, it ensures
better data protection in the enterprise as it eliminates the risks that are as-
sociated with using common application layer’s authorization ID by providing
an additional layer of security at the database tier. Second, by complying with
the least common mechanism principle of protection of information in computer
systems our migration eases end-to-end enterprise audit and, consequently, it

220 N. Yakovets et al.

eases the organization’s regulatory compliance. Finally, it may lower the overall
transaction processing times due to efficiency of the database-tier security engine
when compared to the application-tier one.

6 Related Work

In this section we discuss the related works in the areas of enterprise access
control systems and attribute-based database access control techniques.

Enterprise access control enforcement has been interpreted in several efforts.
Tivoli Access Manager [21] developed by IBM attempts to decouple the au-
thorization logic from the application logic to allow security policy externaliza-
tion by using a proxy that sits in front of the application server. IBM Tivoli
Security Policy Manager [22] and Axiomatics Policy Server [23] build on that
work by enabling enterprise architects to centrally define, manage and enforce
XACML security policies for applications and data resources within the enter-
prise. Ladon [24] is Java-based API that enforces access control policies written
in XACML by rewriting incoming SQL queries. However, in these products, the
security policies are still enforced at the application level and inherit all disad-
vantages of this approach.

Little work has been done on the database-level attribute-based policy verifi-
cation. Our work follows the recent work [20] which aims to compile attribute-
based XACML policies into ACLs that are supported by conventional databases.
The authors develop a toy prototype based on MySQL relational database to
show that such compilation significantly improves attribute-based database ac-
cess time with a price of reasonable off-line compilation time. Inspired by this
work, we realized that such compilation can be used to provide an enhanced
security, end-to-end audit and simplified compliance in many existing enter-
prise systems. Our work builds on this observation by describing the secu-
rity enforcement migration in existing industrial-grade system and providing
standards-driven migration methodology based on the enterprise software stack
that enables database-level attribute-based policy enforcement in existing enter-
prise systems.

7 Conclusions

In this work, we presented a case study of migration of access control enforcement
from the application to the database tier. This migration aims to overcome the
security and audit concerns that are associated with the application-tier security
mechanisms in an existing enterprise application. We considered our approach in
the context of master data management where data security, privacy and audit
are subject to regulatory compliance. We implemented the proposed migration in
an industrial-grade MDM system to prove the applicability and usefulness of our
idea. Finally, we proposed a general standards-driven and vendor-independent
methodology that is designed to tackle similar security enforcement migration
projects.

From MDM to DB2: A Case Study of Security Enforcement Migration 221

The proposed migration has two positive effects on the overall security and
regulatory compliance of the enterprise system. First, our approach enhances the
security by eliminating the vulnerability to privilege escalation attacks. Second,
our approach eases the enterprise end-to-end audit by enabling native database-
tier auditing facilities. Further, our approach has a small integration footprint by
effectively reusing existing enterprise security components and novel features of
an underlying software stack. Our reference model seamlessly integrates into the
existing enterprise security architecture by requiring only minor modifications
to the initial enterprise system code base, which makes it feasible to implement
in a large-scale enterprise application.

There are two areas of further interest to us in this project. First, as we
mentioned in Section 4.2, our approach handles only coarse-grained table-level
policies. This is caused by the limitations of an underlying relational database,
which in our case was IBM DB2. In the future, we plan to experiment with Ora-
cle software stack to extend the policy propagation engine to handle fine-grained
access control (FGAC). We envision that this can dramatically improve the en-
terprise transaction processing times since the selectivity of FGAC-transformed
query is higher than that of the original query due to introduction of policy
related predicates. Second, we plan to perform an evaluation of our approach in
an actual production enterprise environment. The organization of the protected
data and its accessors and the patterns in which the policies or their attributes
are changed would help us understand the real effects our approach has on the
enterprise system. This information will be invaluable in determining further
optimizations to our engine.

References

1. Scott Graham, G., Denning, P.J.: Protection: Principles and Practice. In: Pro-
ceedings of the Spring Joint Computer Conference, AFIPS 1972, May 16-18, pp.
417–429. ACM, New York (1972)

2. Jajodia, S., Sandhu, R.: Toward a Multilevel Secure Relational Data Model. SIG-
MOD Rec. 20, 50–59 (1991)

3. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based Access Con-
trol Models. Computer 29(2), 38–47 (1996)

4. Wang, L., Wijesekera, D., Jajodia, S.: A Logic-based Framework for Attribute
Based Access Control. In: Proceedings of the 2004 ACM Workshop on Formal
Methods in Security Engineering, FMSE 2004, pp. 45–55 (2004)

5. Pfleeger, C.P., Pfleeger, S.L., Safari Tech Books Online: Security in Computing,
vol. 604. Prentice Hall (2007)

6. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering Code-injection Attacks with
Instruction-set Randomization. In: Proceedings of the 10th ACM Conference on
Computer and Communications Security, pp. 272–280. ACM (2003)

7. United States Code. Sarbanes-Oxley Act of 2002, PL 107-204, 116 Stat 745 (2002)
8. Security Standards Council. PCI DSS v2.0 (2010)
9. Allender, M.: HIPAA compliance in the OR. Aorn Journal (2002)

10. Saltzer, J.H., Schroeder, M.D.: The Protection of Information in Computer Sys-
tems. Proceedings of the IEEE 63(9), 1278–1308 (1975)

222 N. Yakovets et al.

11. Dreibelbis, A., Hechler, E., Milman, I., Oberhofer, M., van Run, P., Wolfson, D.:
Enterprise Master Data Management: An SOA Approach to Managing Core Infor-
mation. IBM Press (2008)

12. Organization for the Advancement of Structured Information Standards (OASIS),
http://www.oasis-open.org/

13. Zeilenga, K., et al.: Lightweight directory access protocol (ldap): Technical speci-
fication road map. Technical report, RFC 4510 (June 2006)

14. Franzoni, S., Mazzoleni, P., Valtolina, S., Bertino, E.: Towards a Fine-Grained
Access Control Model and Mechanisms for Semantic Databases. In: IEEE Interna-
tional Conference on Web Services, ICWS 2007, pp. 993–1000 (2007)

15. Rizvi, S., Mendelzon, A., Sudarshan, S., Roy, P.: Extending Query Rewriting Tech-
niques for Fine-grained Access Control. In: Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2004, pp. 551–562
(2004)

16. Roichman, A., Gudes, E.: Fine-grained access control to web databases. In: Pro-
ceedings of the 12th ACM Symposium on Access Control Models and Technologies,
SACMAT 2007, pp. 31–40 (2007)

17. Stoller, S.D.: Trust Management and Trust Negotiation in an Extension of SQL.
In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 186–200.
Springer, Heidelberg (2009)

18. De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati, P.: Trust man-
agement services in relational databases. In: Proceedings of the 2nd ACM Sympo-
sium on Information, Computer and Communications Security, pp. 149–160. ACM
(2007)

19. Chaudhuri, S., Dutta, T., Sudarshan, S.: Fine grained authorization through pred-
icated grants. In: IEEE 23rd International Conference on Data Engineering, ICDE
2007, pp. 1174–1183. IEEE (2007)

20. Jahid, S., Gunter, C.A., Hoque, I., Okhravi, H.: MyABDAC: Compiling XACML
Policies for Attribute-based Database Access Control. In: Proceedings of the First
ACM Conference on Data and Application Security and Privacy, pp. 97–108. ACM
(2011)

21. Karjoth, G.: Access Control with IBM Tivoli Access Manager. ACM Transactions
on Information and System Security (TISSEC) 6(2), 232–257 (2003)

22. IBM. Tivoli Security Policy Manager (2011),
http://www-01.ibm.com/software/tivoli/products/security-policy-mgr/

23. Axiomatics. Axiomatics Policy Server (2011),
http://www.axiomatics.com/products/axiomatics-policy-server.html

24. SourceForge. Ladon - XACML enforcement for DB2 (2009),
http://xacmlpep4db2.sourceforge.net/

http://www.oasis-open.org/
http://www-01.ibm.com/software/tivoli/products/security-policy-mgr/
http://www.axiomatics.com/products/axiomatics-policy-server.html
http://xacmlpep4db2.sourceforge.net/

XSS-Dec: A Hybrid Solution to Mitigate Cross-Site
Scripting Attacks

Smitha Sundareswaran and Anna Cinzia Squicciarini

College of Information Sciences and Technology
The Pennsylvania State University
{sus263,acs20}@psu.edu

Abstract. Cross-site scripting attacks represent one of the major security threats
in today’s Web applications. Current approaches to mitigate cross-site script-
ing vulnerabilities rely on either server-based or client-based defense mecha-
nisms. Although effective for many attacks, server-side protection mechanisms
may leave the client vulnerable if the server is not well patched. On the other
hand, client-based mechanisms may incur a significant overhead on the client
system. In this work, we present a hybrid client-server solution that combines the
benefits of both architectures. Our Proxy-based solution leverages the strengths of
both anomaly detection and control flow analysis to provide accurate detection.
We demonstrate the feasibility and accuracy of our approach through extended
testing using real-world cross-site scripting exploits.

1 Introduction

Some of the most well-known and significant vulnerabilities of a Web application are
related to cross-site scripting (XSS) [15]. XSS vulnerabilities enable an attacker to in-
ject malicious code into Web pages from trusted Web servers. Typically, when the client
receives the document, it cannot distinguish between the legitimate content provided by
the Web application and the malicious payload inserted by the attacker. Since the mali-
cious content is handled as the content from the trusted servers, it has the privileges to
access the victim users’ private data or take unauthorized actions on the user’s behalf.

XSS vulnerabilities have been analyzed by a number of researchers and practitioners.
One of the most common defense mechanism currently deployed consists of input val-
idation at the server-end, wherein the untrusted input is processed by a filtering module
that looks for scripting commands or meta-characters in untrusted inputs. The filtering
module then filters any such content before these inputs get processed by the Web appli-
cation. However, proper input validation is challenging; XSS attacks can be crafted so
as to bypass the input sanitization steps. Further, input validation adds a significant bur-
den on the server end, and leaves clients defenseless in case of unprotected sites. Con-
sequently, recent efforts have shifted their attention on client-end solutions, to protect
client systems against servers that failed to filter untrusted content [13]. Unfortunately,
neither one of these approaches are able to withstand against all forms of XSS attacks.
For example, server-side solutions require good control and knowledge of the server’s
source code, and therefore fare well with attacks that target servers, or that a reflected

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 223–238, 2012.
c© IFIP International Federation for Information Processing 2012

224 S. Sundareswaran and A.C. Squicciarini

off Web servers [11,8,4]. Client-side solutions instead are most effective against attacks
that are perpetrated through attacks which malicious code is contained in the client side
page [13,3]. In this paper, we propose a novel approach to combine the benefits of both
server-side and client-side defense mechanisms. We leverage the information obtained
from both the client and the server-side using a simple, yet effective, security-by-Proxy
approach. Our design allows us to uphold users’ browsing activities while thoroughly
monitoring the sites’ vulnerabilities before any attack is carried out. Specifically, the
Proxy develops an anomaly-based detection mechanism, enriched with detailed con-
trol flow analysis. These two techniques combined together enable early detection of
subtle attacks that may involve obfuscation attempts. In addition, control flow analysis
helps us validate any redirections and minimizes the leakage of the victim’s information
through malicious links.

The architecture includes a Plug-in on the client-end. The Plug-in is responsible for
ensuring that any Web site visited by the user is checked by the Proxy. Based on the
input of the Proxy, the Plug-in also deploys the actual protection. In either case, we
effectively stop the attack from being successfully carried out and affect the user’s sys-
tem. The Plug-in is carefully designed so as to maintain limited amount of information
of the user’s browsing history.

We extensively test our solution over a large number of actual XSS vulnerabilities.
Our evaluation results show not only that we are able to protect against all types of XSS
attacks, but also that our approach is efficient and does not impose a significant burden
either on the client or on the server. In summary, the key benefits of our solution are:

1. User Friendly. Our approach does not require any significant level of human in-
volvement. It is based on a simple Plug-in that interacts with the user to inform him
of possible attacks and stop them from being carried out.

2. High Accuracy. Our approach can detect all known types of XSS script injections,
by providing different levels of protection, that include selectively blocking portions
of the sites being infected and preventing the site from being accessed.

3. Acceptable Overheads. Our approach does not impose any burden on Web appli-
cation performances. The overhead at the client-side is minimal, most of the compu-
tation is carried out by a Proxy. The Proxy is also very efficient, and therefore it can
be used to protect multiple users at the same time.

The rest of the paper is organized as follows. Next section provides an overview of XSS
attacks. Section 3 provides an overview of our solution, the XSS-Dec. In Section 4 we
describe the Proxy’s architecture. In Section 5, we discuss the Plug-in. In Section 6 we
present our evaluation results. Section 7 analyzes existing body of work in this area,
and Section 8 concludes the paper.

2 XSS Attacks and Common Solutions

XSS attacks are a class of code injection attacks caused by the server’s lack of input
validation and are typically the result of insecure execution of JavaScript, although non-
JavaScript vectors, such as Java, ActiveX, or even HTML, may also be used to mount
the attack. XSS attacks can be segregated into the following classes:

XSS-Dec: A Hybrid Solution to Mitigate Cross-Site Scripting Attacks 225

DOM-based attacks: The attacker sends a specially crafted URL to the victim, altering
the DOM structure of the Web page once it’s loaded in the browser. The actual source
code is not changed. It is often launched using the document.location DOM and
then used to populate the page with dynamically generated content.
Reflected XSS attacks: The attack code is “reflected” from a Web server. The attacker
inserts malicious JavaScript into some form, which typically reflects the string back to
the trusted site, using the content inserted to generate a response on the fly. The attack
code, which is treated as belonging to the same domain as the rest of the site, is then
executed. This is the most common form of attack.
Stored XSS attacks: In this type of attack (also known as HTML injection attack), the
payload is stored by the system, and may later be embedded by the vulnerable system
in an HTML page provided to a victim. The attack is carried out when a victim visits
this page, or the part of the page on which the payload is stored.

Usually, to prevent untrusted code from gaining access to content on other domains,
protection mechanisms such as sandboxing are applied or the same origin policy is en-
forced. However, XSS attacks bypass the same origin policy to gain access to objects
stored on different domains by luring the victim to download or execute malicious code
from a trusted site. Beyond sandboxing, the most commonly employed defense against
XSS attacks is input validation [3,19,8,11]. This approach uses a server-side filtering
module that searches scripting command or meta-characters in untrusted input, and fil-
ters any such content. If the server fails to filter the input, however, the client is left
defenseless. Other popular input validation techniques include dynamic tainting and
untrusted information tracking. As highlighted by some recent work, these solutions
correctly track whether a filter routine is called before untrusted information is output,
but they do not reason about the correctness of employed filters, and fail to consider
the Web application output [4]. Further, there are many scenarios where filtering is dif-
ficult to carry out correctly, especially when content-rich HTML is used. For example,
attacks that are launched by scripts located at multiple locations in a Web application
may succeed. A single filter function may not be sufficient if it looks for scripting com-
mands, as injected input may be split across the output statements. In this case, every
character in the HTML character set is legal, which implies that the filter cannot reject
any individual character that may result in script content. Unauthorized scripts can be
obfuscated by entering it within pre-existing execution environments, allowing it to es-
cape the filters. That is, the attacker may embed an environment variable in between two
existing tags. Hence, one should check the alteration of the execution flow to identify
such hidden attacks.

3 Our Approach: The XSS-Dec

Among the most popular techniques for Web vulnerabilities, anomaly detection and
control flow analysis have gained popularity in the recent years. When considered alone,
neither approach is however sufficient for effective detection of XSS attacks. First, the
complexity of XSS attacks prohibits any approach that solely relies on anomaly detec-
tion [17]. Anomaly detection is in fact unable to detect most XSS subtle attacks, that
are often deployed by exploiting obfuscation techniques. For example, XSS attacks are

226 S. Sundareswaran and A.C. Squicciarini

Fig. 1. XSS-Dec main flow

written using JavaScript or ActionScript, where the output of the script is dynamic in
nature, thus obfuscating the attack. Second, control flow analysis is effective for detect-
ing subtle attacks, but it is very inefficient for real time detection [10] as it is slow and
results in a high number of false positives. Real time detection is important with XSS
attacks since the output of the attack script is often developed on the fly.

In order to overcome these limitations, we have devised a hybrid solution that
combines the benefits of control flow analysis and anomaly detection to protect client
systems against XSS attacks. Specifically, we suggest a security-by-Proxy solution, re-
ferred to as XSS-Dec. XSS-Dec relies on a Proxy component for vulnerability analysis
and detection. The Proxy acts as a middle-man between the servers of the sites visited
by the client, and a client-side Plug-in. This design upholds users’ browsing activities
while thoroughly monitoring the sites’ vulnerabilities before any attack is carried out.

An overview of the XSS-Dec main functionality is reported in Figure 1. As shown,
a first bootstrapping step is executed at time t0. The server (or servers, if more than
one is in fact connected to the Proxy) sends the encrypted copies of the source files
of its Web pages to the Proxy. Subsequently, as the source of a Web site is updated or
changed at the server end, more updates are sent to the Proxy by the server (possibly
before the newer site is launched to the public). We assume that the Web sites’ source
codes collected by the Proxy at this point of time are valid, that is, there has been no
chance for an attacker to insert any malicious script. The Proxy generates an abstract
and accurate representation of the site, using control flow analysis, and stores it for
later use. When the user starts browsing (at any point of time t1, t1 > t0), the client-
side Plug-in deploys the actual defense mechanism. Precisely, the Plug-in keeps a local
record of the pages visited by the user. Further, it communicates to the Proxy the client
input and the source code of the Web -page as it appears to the client. Upon receiving
the client-end input, which is again encoded using control flow techniques, the Proxy
detects whether there exists any features indicative of malicious code or script, at time
t2, using both anomaly-based and signature-based detection.

XSS-Dec: A Hybrid Solution to Mitigate Cross-Site Scripting Attacks 227

Using signature-based detection, the Proxy searches and extracts features, which it
uses to calculate the likelihood of an actual attack taking place. This attack likelihood
is used to drive the Plug-in to either work pro-actively by blocking certain user actions
and sites, or reactively by waiting for the attack to actually take place before notifying
the user. This information regarding the attacks is sent back to the Plug-in at time t2.
The Plug-in, using the information obtained from the Proxy, deploys the actual defense
mechanism, by either stopping the attack or preventing it from being executed (time t3).

Note that the server and client side representations of the page being compared are
different: the server source code is free of any injected malicious code, while the input
received from the client-side may include malicious content.Although the client’s actual
input actions may differ from those simulate on the server side, injection of malicious
scripts always result in a particular set of code features, like certain HTML tags being
manifested in a compromised site. These features are the ones analyzed by the Proxy.

It is worth noting that our security-by-Proxy design assumes that the Proxy is resis-
tant to basic attacks. The servers of the sites frequented by the client are assumed to
be semi-trusted, and able to send to the Proxy non-corrupted data. That is, we trust the
server to send the source code of its Web sites to the Proxy before the malicious scripts
are injected. In line with current solutions based on client systems (e.g. [13]), we also
assume that the Plug-in is not compromised.

4 The Proxy

The core algorithms behind our defense mechanism reside at the Proxy. The Proxy
is composed of two logically distinct modules, Calculator and Analyser. These two
modules serve the complementary tasks of analysis and detection.

4.1 The Calculator

The Calculator is in charge of computing a normalized and detailed view of the server’s
pages’ content. The source code for both client and server’s pages are modeled through
a control flow graph (CFG), for accurate and efficient computation. The CFG is an ab-
stract representation of the source code of the Web page, including any possible redirec-
tions for the URLs contained in it, and execution paths for active components, such as
JavaScript or Flash components. In the context of our system, the CFG is represented
as a directed graph. The nodes represent either HTML tags or actual program state-
ments and variables. The edges represent the paths of execution, while the directions
are dictated by the loops and the conditions present in the code.

CFGs have been often successfully used in static analysis [13,5]. However, given the
complexity of certain pages, CFGs can be computationally expensive to generate, and
hard to navigate. This makes it very difficult to construct the dynamic CFGs for such
pages on the fly, which is essential to identify the possible malicious effects of any code
that has been added to the page. Our challenge is then to compute CFGs that are both
accurate and efficient for the scope of our detection. To cope with these limitations, we
construct different types of CFGs, based on the specific Web page structure and of its
content, as specified below.

228 S. Sundareswaran and A.C. Squicciarini

1. Page with no active components: If a page has no active components, its CFG is de-
rived from the control flow information available from the design model of the Web
page such as its HTML or XML [18]. Specifically, the Abstract Syntax Tree (AST)
[18] is first created, and then any flow information between the nodes is added. In
what follows, this CFG is also referred to as model-based.

2. Pages with active components: If a page has a lot of active components, the CFG is
again derived from the control flow information available from the design model of
the Web page, and it is then augmented with the control flow information available
from the actual code about active nodes. In particular, Flash-based elements and
JavaScript components are expanded to uncover potentially obfuscated attack code.
That is, when a 〈script〉 tag, or a 〈∗.swf〉 file is encountered in a node of the model-
based CFG, the node is further expanded based on the component’s source code (i.e.,
the JavaScript, or the ActionScript respectively), and a new sub-CFG is obtained.
The new CFG is constructed by representing each command in ActionScript in the
code as a node. The flow from one statement to the next is given by directed edges.
Notice that for the construction of this sub-CFG (i.e. the one containing expanded
active nodes), we do not consider the user’s inputs. Instead, we construct all possible
execution paths based on all the possible inputs. Therefore, the CFG shows the call
relations at the basic block level, while also containing all the possible nodes and
edges. An example of a portion of an enriched CFG is given in Fig 2.

3. JavaScript Rich Pages: If active components are only JavaScripts, a simpler form of
CFG is generated, to save both space and time complexity. Instead of generating the
augmented dynamic control flow graph as described above, the JavaScript elements
are rendered as augmented ASTs. The grouping parentheses (such as 〈script〉 tag,
or a 〈∗.swf〉) are still left implicit in the tree structure, and the syntactic representa-
tion of any conditional nodes are represented using branches, but the call relation-
ships at the block level are still explicitly shown. Therefore in the augmented AST,
the nodes are used to represent the commands in the code like in a simple AST, the
loops are simply represented by if-then clauses with a given set of steps repeated in
between. Any goto statements are also simplified to if-then-else clauses. Any user
actions that can alter the loop (e.g. open a new page, click a link, move mouse over
some objects of the page) are represented on the edges.

4. Access Restricted Pages: The CFG for a site which is access restricted (requires a
login to gain access to portions of the site), is developed using a different method-
ology. Clearly, the site structure and corresponding CFG depend on whether the
CFGs are built before or after the user’s login. Further, the CFG for each user will
be different as users may have customized Web spaces within the site. In case of
such access-restricted sites, only the CFG before login remains the same across all
users. The Calculator can easily obtain the CFG for this portion of the site. This
CFG is very important, as any injected code on this page can potentially allow the
attacker to take over the user accounts. Yet, damaging script can be injected in the
pages after login too. To compute the CFG of user-restricted portions of the sites,
the Calculator logs in using a test account. Intuitively, this CFG will not contain
user-specific information. It is however still useful for attack analysis, in that it gives
the actual structure of the pages of the site, thus allowing the Proxy to detect any
attacks that are launched by modifying the structure of the site. In particular, it helps

XSS-Dec: A Hybrid Solution to Mitigate Cross-Site Scripting Attacks 229

Fig. 2. Portion of the model-based CFG for the Yahoo site

detect any changes to the DOM structure and is therefore useful in detecting Per-
sistent or DOM-based vulnerabilities. However, it cannot detect non-persistent vul-
nerabilities, which form the most common type of XSS attacks. This is because all
the non-persistent vulnerabilities are exploited by data injected in the user-specific
pages when the site is a login-based site. To detect the non-persistent vulnerabilities,
we depend on the feature extraction capabilities of the Analyzer as explained next.
If the Analyzer encounters a JavaScript or ActionScript environment, it requests the
Calculator to compute the sub-CFG for that particular portion of the site, to detect
possible malicious code injected within these environments.

4.2 The Analyzer

The Analyzer has two main tasks. First, it extracts features indicative of potential ex-
ploits. Second, it estimates the likelihood of the attacks being carried out.

Feature Extraction: The Analyzer, upon obtaining a client-side CFG, compares the
client-side and the server-side CFGs to extract relevant features that may be indicative
of attacks. In the following, we provide a broad classification of the features searched
by the Analyzer. The features refer to non-access restricted sites, and are presented in
the order of the severity of the attack.

(1) Redirection to a site not contained in the server-side CFG: If a CFG generated
at the client contains a redirection to some site not contained in the server-side
CFG, it likely means the user will be redirected to a site unknown to the original
server. This feature, which is the most common and strongest indicator of an XSS
attack, is often observed in DOM-based attacks [7].

(2) SQL Injection Via XSS: A script capable of inserting input on behalf of the user
is potentially indicative of an attack. Specifically, if the script is added to the site
without any actual action or permission from the user, and therefore appears to
the client-side CF , it may denote a SQL Injection attack. The SQL statements are
used to commit changes to the database on the victim’s behalf. Given below is an
example of the code:

230 S. Sundareswaran and A.C. Squicciarini

< TableID = “TNAME”>
< / Table >
< Script Language = “JavaScript” src = “addjscript.js”>
< Script Language = “JavaScript”>
sql(“insert+ TNAME+ values(‘Victim‘, ‘pwnd‘, ‘again‘)”);
< /Script>

This script attempts to insert the values “Victim”, “pwnd” and “again” into the ta-
ble named TNAME. Using such statements, the attacker can change the passwords
or other information of the victim.
To identify potentially malicious actions, the Proxy specifically monitors for server-
side database actions being committed through SQL commands such as “UP-
DATE”, “DELETE” etc. That is, it scans the JavaScript and ActionScript for any
embedded SQL queries as in the above example. The Proxy also checks the CFG
for all possible SQL commands including “SELECT”, so as to identify a large
range of attacks. This feature occurs often, though not exclusively, in stored at-
tacks [20].

(3) JavaScript based manipulation on the client-side CFG: If the client side CFG
includes nodes with <submit> and < META > tags, forms may be submitted on
the user’s behalf, or cookies may be manipulated without the user’s knowledge.
Although each of these tags can occur for legitimate purposes in non-malicious
JavaScript, when combined with any of the other features (especially redirection
to a site contained on the server-side), these tags are typically representative of an
attack. This feature is most often observed with reflected XSS attacks [7].

(4) Text changed from original server site to the site rendered at the client: Dif-
ferences in the way text is rendered on the client’s browser versus the way it was
stored on the server-side are also to be treated as a warning sign. To check for
any changes, the Proxy looks for alterations in the text formatting tags such as the
<header> tags, the <para> tags, the use of bold or emphasis tags, etc. In this
way, the Proxy can detect subtle attacks, where the attacker simply changes the
way a Web site looks with intentions of slander or misrepresentation. Text ma-
nipulation can be carried out by any type of XSS attack, but is most commonly
observed with DOM-based and reflected XSS attacks [16].

For access restricted sites, extracting the features of a latent attack is more complicated,
as comparing the client-side and the server side-side CFGs is not sufficient. This is
because the server-side CFG is derived using login information different from the login
of the user being monitored. The CFG at the server side, while structurally similar, does
not contain the actual information contained in the client-side CFG. For instance, the
server-side CFG for a GMail page is constructed using a login different from the login
used by the user, and therefore it has the same UML structure as the client-side CFG,
but it will differ with respect to the exact content in the CFG.

For such sites, the Analyzer exploits the similar CFG structure of the two versions
of the site to identify if the basic representation of the page is altered. In this way, text
changes to non-user generated texts such as logos can be detected in the same way
as it was for non-access restricted sites. Further, the SQL Injection feature also does
not change, as identifying SQL statements which cause actions to be committed on the

XSS-Dec: A Hybrid Solution to Mitigate Cross-Site Scripting Attacks 231

user’s behalf can be detected without the need for comparing the client-side and the
server-side CFGs. Yet, the attacker can still inject the malicious script in those portions
of the page that are actually user-specific. Referring again to our GMail example, the
attacker would insert a URL for redirection in the actual mail content. To address this,
the Analyzer checks whether any of the URLs that appear in the user-specific portions of
the page link to a potentially malicious page. JavaScript manipulations are also hard to
extract for access restricted pages, as the manipulation of the JavaScript can take place
within pre-existing environments, which occur only on the user specific portion of the
page. For example, the attacker can inject malicious scripts between two < META >
tags present in the user’s profile on a Facebook page for a link to his personal Web
site. Since these < META > tags will vary for each user’s Web site, there is no way of
identifying whether any code has been injected between them by simply comparing the
client-side and the server-side CFGs. Therefore, the Analyzer requests the Calculator to
derive the CFG for the user specific parts of the page. Based on this input, the Analyzer
checks for any possible malicious execution paths.

Attack Analysis. The Analyzer, upon detecting one or more of these features, com-
putes the likelihood (denoted as α) of an actual attack. Each of the features is assigned
a weight. The weight is set to correlate with the amount of past security-relevant infor-
mation about the feature including the frequency of mentioning in incident reports. For
example, the most common condition observed in XSS attacks is redirection or some
sort of URL submission [7]. Therefore, the feature of redirection to a site not contained
in the server-side CFG is to be assigned a high weight. α is simply calculated using the
weighted sum: α =

∑|F |
f=1 wf ∗nf . In the equation, wf represents weight of the feature

f , and nf indicates the number of times the feature has occurred on the page. |F | is the
cardinality of all possible features the Proxy analyses. The equation can be extended to
capture additional features, and strings which may be injected by the attacker. For ex-
ample, a combination of features or a specific pattern of extracted features can be given
an additional weight, or an additional attack string can be considered in the equation.
For simplicity, however we stick to the formula specified above. As shown in Section
6, it is sufficient to guarantee a very good detection rate.

α is matched against anomaly based thresholds. We consider two threshold levels, a
detection threshold and a prevention threshold. These thresholds are dynamic thresholds
in that they are constructed based on the actual set of features which is extracted from
a page. The detection threshold is indicative of a suspected attack, in that a number of
limited features are verified true. It is therefore set based on the total number of features
that have been extracted for a given page, and the lowest weight found in the set of
features extracted. Using the lowest weight found ensures that the evidence presented
to the Plug-in is just enough to register some suspicious but not necessarily harmful
activity. The second threshold, which is is instead higher, models cases where there is
enough evidence (in terms of features occurrence and importance) to believe that the
attack is in fact imminent. This threshold is referred to as prevention threshold as it
triggers mechanisms to prevent an attack, upon being passed. It is, also set using the
total number of features extracted. However, it is based on the highest weight feature
that has been extracted for the given page thus making it higher than the detection
threshold. For example, page X may contain added redirections to URLs, JavaScript

232 S. Sundareswaran and A.C. Squicciarini

manipulations and text changes from the original page on the server, while page Y may
contain redirections, SQL Injections via XSS and JavaScript manipulations. The highest
weight extracted for both page X and page Y is the same. However, the lowest weight
extracted for page X is the weight associated with text changes, and the one extracted
for page Y is the weight associated with JavaScript manipulations.

5 The Client-Side Plug-In

The client-side Plug-in is in charge of providing the Proxy with information about the
pages the user is visiting, encoded as a CFG. Further, it deploys protection mechanisms
against latent or ongoing attacks, upon being notified by the Proxy.

To complete these tasks, the Plug-in has two main modules: the Auditor and the De-
tector. The Auditor obtains information from the Proxy about all the possible attacks
on an open page, while the Detector is in charge of stopping or preventing the identi-
fied vulnerabilities from being carried out. In order to help identify the possible attack
vectors of an open page, the Auditor keeps a record of the pages visited by the user,
and calculates a model-based CFG for each of such pages. Once created, each CFG is
stored in an encrypted form. The CFG is subsequently updated or replaced as needed,
according to any changes of the page’s code, due to script injections or server-side mod-
ifications. The Plug-in sends the latest encrypted CFG to the Proxy, every time the user
visits the page, as soon as it is opened on the browser.

The other module of the Plug-in is the Detector. The Detector is the component
obtaining instructions from the Proxy if the features detected are deemed indicative of a
potential attack. Precisely, it receives information about the possible attacks in the form
of the attack likelihood α and the specific features extracted by the Analyzer. Each of
the features results in a particular type of anomaly. The anomalies consist of execution
of a script on a site to which the user has been redirected, personal information of the
user being sent to a remote system, and actions such as submission of forms taking
place without any corresponding input on the user’s part. The first two anomalies are
often observed in case of redirection and JavaScript based manipulation, while the third
one is often observed with SQL Injection via XSS.

The Detector monitors the client machine for any of such anomaly using dedicated
modules. Each module corresponds to a specific monitoring activity and is activated if
the Proxy verifies the feature they implement. Specifically, the module checks for spe-
cific user actions which actually start the attack based on the features it has detected. If
one of the extracted attack features consists of unwanted redirections (see feature (1) in
Section 4.2) and the estimated likelihood is high, the Detector prevents the user from
being redirected to the targeted page. Otherwise, (i.e. likelihood is below the prevention
threshold) the Plug-in simply pops up an alert box to the user when the link is opened.
In case an attack presents one or more features (i.e. feature (2), (3) and (4)) beyond redi-
rection, and has an estimated high likelihood value, the Detector prevents the malicious
script from being executed. Specifically, it does not render a portion of the page or an
entire page and displays an error message to the user. In case of a low likelihood value,
it simply pops up an alert to the user before rendering the malicious content. Intuitively,

XSS-Dec: A Hybrid Solution to Mitigate Cross-Site Scripting Attacks 233

stopping ongoing attacks is less desirable as preventing them. As shown in the next
section, the XSS-Dec is efficient enough to stop the attack before any major damage of
the client system.

6 Evaluation

We deployed and thoroughly tested a running prototype of the XSS-Dec. Before dis-
cussing our evaluation, we briefly describe the prototype developed.

6.1 XSS-Dec Prototype

The Plug-in was developed by logically distinguishing the Auditor from the Detector.
Both components were implemented primarily in JavaScript, to guarantee portability.
The Auditor uses a separate JavaScript component to construct the CFG based on the
HTML and DOM structure of the page. Each of the possible user actions are edges’
labels. In case the node contains a URL (i.e., a href tag) to some other site or page,
this node becomes the second node of the CFG of that page. To reduce the risk of
interceptions of the user’s browsing history, the Plug-in sends the CFG in an encrypted
form. In the current prototype, the Plug-in uses Merkle hash trees [14] for easy graph
comparison and reduced graph size. Alternatively, we could serialize the tree and rely
on more traditional encryption schemes.

The Detector is organized into four JavaScript modules, one for each of the features
possibly extracted by the Proxy. Each module is activated if the Proxy verified true the
corresponding feature they implement.

The prototype of the Proxy also has two modules. Both are implemented using Java
and JavaScript components. Specifically, the Calculator uses JavaScript to build the
nodes for the model-based CFG. Java components are then used to expand the active
nodes, i.e. the nodes containing JavaScript or Flash elements. The resulting enriched
CFG is built as a serialized tree using the TreeMap Java class. The Calculator stores
a number of CFGs of the pages being most often visited by end users. This simplifies
both CFG analysis and comparison with Plug-in-received CFGs. The stored CFGs are
updated as the pages’ content is notified to have changed.

6.2 Experimental Evaluation

The goal of our evaluation was two-fold. First, we aimed at estimating the accuracy
of our solution in detecting XSS attacks. Second, we estimated the overhead incurred
with our protection mechanism. Estimating the Proxy overhead allows us to make some
initial considerations on the scalability of our solution. The Plug-in was tested from a
Dell Latitude D630 Laptop, with 2G Ram and a Intel(R) Core(TM)2 Duo CPU T7500@
2.20GHz processor. The Proxy was run from an Apache server hosted on the same
machine, to maintain a conservative estimate of the system efficiency. The server was
running the Apache Web server (version 2.2) and PHP version 5.3.3. Apache was con-
figured to serve requests using threads through its worker module. Our tests do not

234 S. Sundareswaran and A.C. Squicciarini

account for any network delays, and are carried out without conducting any fine-tuning
or training.

Detection Accuracy
Experimental Settings. Using a trial-and-error approach, we defined two simple
anomaly threshold values for assessing whether an attack was latent or not. We express
the features’ weights of equation in Section 4.2 by means of totally ordered integers,
ranging from 1 to k, where k ≤ |TF |, and |TF | is the possible total number of features
(4, in our case). Given a set of extracted features F = {f1, . . . , fn}, we compute the
prevention threshold as follows: Thigh=|F |+wfmax , where wfmax is the highest weight
among all the weights of the extracted features. |F | represents the total number of fea-
tures extracted (regardless of their actual weight). If a same feature appears more than
once, it is counted as a new feature, therefore increasing the overall probability of an
attack. Intuitively, from this equation, we can determine whether the feature of highest
weight is significant enough to influence α to a point where an attack is most likely to
happen. Our detection threshold, referred to as Tlow is computed in a similar fashion of
Thigh: Tlow = |F | + wfmin and wfmin is the lowest weight assigned to the features in
{f1, . . . , fn}, n > 1. When Tlow < α < Thigh, the Proxy suspects an attack. It sends
a warning message to the client Plug-in, providing details about the warning features
verified true. When α > Thigh, the Proxy deems that the likelihood of an attack is very
high.

Methodology. We evaluated our system on several real-world, publicly available Web
applications and on simulated environments. We recorded the number of false positives
generated when testing the application with attack-free data and the number of attacks
correctly detected when testing the application with malicious traffic. In detecting the
attacks we tracked whether they were detected at the time of prevention (i.e. α was
above Thigh) or detection (i.e. α was above Tlow).

Overall, we ran the XSS-Dec system for a total of 100 pages, in a non-deterministic
order. 20 of them were hand-evaluated real-world clean pages. The remaining pages
were constructed by us, and contained one or more XSS vulnerabilities. The clean
pages were selected from popular Web sites with active components, like MSN, Ya-
hoo, Google, social networking and forum sites. The vulnerable pages were created
using the real-world XSS vulnerabilities reported in the security mailing list, Bugtraq
[2]. We deployed the given vulnerabilities in similar sites than those listed as vulner-
able, and injected the malicious script in the variables described. We constructed 80
sites, and tested 80 different vulnerabilities. Each of these sites hosting the malicious
files had benign components. The actual attack code varied for each try, so as to create
polymorphic attack code. To create the variations of the attack code, we introduced ran-
dom NOP blocks in each attack to introduce random delays. Further, we combined one
or more attacks with each other, i.e. some vulnerabilities were tested multiple times.
Also, the page invoking the malicious content was different for each try. The elements
we included in each page consisted of one or more of the following: images, videos,
audio components, other benign JARs carried in applets but not embedded in images,
text documents, hyperlinks, Java components, JavaScript components, forms, zip files,
Microsoft Office Open XML documents, XPI files,benign SWFs and simple games.

XSS-Dec: A Hybrid Solution to Mitigate Cross-Site Scripting Attacks 235

Table 1. Evaluation Results

Attack Type Detected Prevented False Positive False Negative Total Attacks
Normal XSS 0 All 0 0 15
Image XSS 0 All 0 0 13

HTML entities 0 All 0 0 12
Style-Sheet based XSS 0 All 0 0 13

Flash-Based XSS 5 3 0 2 13
XSS in pre-existing environments 0 All 3 0 14

Results. Table 1 summarizes our results organized according to the classification in the
Rsnake Cheat Sheet [7]. The results reported in the table group the different 80 attacks
according to the location of the attack vector. As shown, XSS-Dec stopped all but 2
attacks. Both were Flash-Based. Out of the stopped attacks, 94% of them were pre-
vented before being carried out. The remaining 6.2% were stopped at detection time.
We reported 3 false positives. A false positive occurred when an attack was detected in
a part of the page where there was no attack code.We noticed that false positives were
detected on the forums of users sharing coding tips on JavaScript. The code displayed
on the pages as part of the discussions was considered as an injection by the XSS-Dec.
To improve the false positives on forums, we plan on adding string checking to the
Proxy as part of our future work. String checking will help differentiate between the
code being discussed in the forums and some malicious script. The sites that were not
prevented but only detected were typically sites with a huge number of Flash compo-
nents. Flash components enable the attacker to hide the consequences of the redirections
due to script injection, reducing the overall likelihood of the attack being prevented by
the Proxy. We expect that training the model would mitigate these issues. Below, we
summarize our results for three of the most challenging categories of attacks: In case
of Flash-Based attacks, our approach prevents most of these attacks by not execut-
ing the Flash file. For those attacks that are only detected, the file is executed but the
user is alerted as soon as some malicious activity is seen on the client end. In case of
Cookie stealing XSS attacks, our approach specifically monitors for manipulation of the
〈META〉 tags to reset the cookies, and detects all possible instances of this vulnerability.
For XSS attacks where the vectors are injected into pre-existing elements (e.g. between
pre-existing 〈script〉 and 〈/script〉 tags), our approach monitors for manipulation
of JavaScript and we achieve a 100% prevention rate.

Performance Evaluation
We computed the average time for the most resource consuming activities of our system,
i.e. constructing the CFGs and extracting features. Our tests show that the average time
for constructing a CFG of level 40 with no dynamic components is 3.25 seconds, and
for constructing the CFG with 50% dynamic components is 3.39 seconds. The time
grows linearly with respect to the size of the CFG. For these tests, we used CFGs of
increasing complexity from 10 to 80 nodes, each corresponding to real sites. The CFGs
of level 80 correspond to popular sites, with a large number of active components (3/4
of the nodes), such as Youtube and Bigfish. The complexity of the CFGs increased as
the ratio of active nodes to inactive nodes increased. For the simpler CFGs, the ratio of
active nodes to inactive node was 1:4, while for the more complex CFGs, the ratio was

236 S. Sundareswaran and A.C. Squicciarini

greater than 3:4. The highest complexity for a CFG of level 80 was 83% of the nodes
were active nodes. The time taken for constructing the CFG of level 80, with 83% active
nodes was 4.183 seconds, while the time taken to calculate the least complex CFG was
3.2432 seconds. This makes the overhead for the most complex CFG compared to the
least complex CFG less than 1 second different. We notice that while this time is not
negiglible, CFGs are only calculated periodically, and cached for efficient reuse.

The time for extracting features on an average for a CFG of level 40 is 2 seconds, while
the maximum time for a level 80 CFG is 2.673 seconds. Since the CFGs are computed at
the Proxy, these results confirm that the Proxy is indeed scalable. In real-world settings,
the Proxy would be hosted on a dedicated server with larger processing power than our
system. Further, we notice that since most of the pages maintain a similar structure the
Proxy can improve the size of the cached directory of model-based CFGs, for similar
Web sites. This would likely improve the performance substantially. Finally, the Proxy
in the real world would not be running in parallel with the Plug-in as was the case for
our system.

7 Related Work

XSS attacks have been identified as a threat since the 1990s. Since then, various solu-
tions to detect and prevent these attacks have been explored. Traditional solutions focus
on sanitizing the input at the server side, but recently client side approaches have also
been proposed. There also exist Proxy-based solutions which aim to protect Web appli-
cations by analyzing the HTTP requests. Despite these efforts, XSS attacks still remain
on the top of Web security attacks in the OWASP lists [15].

Server-side solutions or Proxy-based solutions are commonly used for Web -based
attacks, since they enable users’ inputs sanitization [3,19,11,22]. In particular, Scott and
colleagues proposed an interesting Proxy-based solution [19]. The Proxy is similar to an
application firewall; it enforces pre-written security policies. Their proposed mechanism
requires that all Web applications patch themselves to prevent an XSS attack. In case a
Web application is not patched, the end user is left defenseless. Our focus, on the other
hand, is how to ensure that any malicious script does not affect the user. Consequently, it
does not require any patching from either the user or the server. Similar to the above is a
commercial product called AppShield [1]. AppShield also inspects the HTTP messages
to prevent application level attacks. While it is similar to our system in inspecting the
HTML of the pages outbound from the server, it does not specifically look for any code
injection. Hence, Appshield can recognize attacks based on the (proprietary) rules that
it uses to validate the HTTP requests. Wurzinger also propose a proxy-based solution to
detect HTML responses and any injected scripts [23]. To identify malicious scripts, any
legitimate script calls in the original web page are changed into unparsable identifiers
called script IDs. Therefore, if any unparsed script is found, it is assumed ti be indicatory
of an attack. This system focuses on stored and reflected XSS but not on DOM Based
attacks. Further, the parsing of a script may be a significant bottleneck of the system.

Bisht et al. [4], propose to remove any server side script in the output of a Web appli-
cation, when the script is not originally inserted by the application itself. This approach
is complementary to ours in that we focus on preventing the attacks at the client-end,

XSS-Dec: A Hybrid Solution to Mitigate Cross-Site Scripting Attacks 237

rather than relying on servers’ filters only. Further, as any other server-based solution,
Bisht’s approach relies on the server ability to patch and remove server side scripts. The
fact that a solution focusing on protecting the servers may leave end-users vulnerable
has inspired some interesting client-oriented solutions. One of these is the Noxes sys-
tem, proposed by Kirda et al [13]. Noxes is a Web firewall aiming at protecting the client
from XSS attacks. Noxes’ detection is based on the analysis of the server-side scripts.
In XSS-Dec, we also use server-side scripts. However, our detection of code injection
relies on a detailed comparison of the server-side scripts with client-side scripts. Kirda
and colleagues instead choose to rely on validating the HTTP referrer headers. The
HTTP headers, however, do not represent a useful indicator in case the attacks come
from trusted sites. Further, the information leaked via embedded URLs is contained by
limiting the information sent through each.

We borrowed the idea of using control flow analysis from some recent interesting
work [9,21,5,6]. The Swaddler system [9], for example, focuses on detecting any vio-
lations in the workflow of a stateful application or input violations by users. We differ
from this work both in scope and in the detection mechanism: our focus is on script
injections rather than state violations. Further, our solution accounts for both stateful
and stateless applications. Bonfante et al. in [5] used control flow graphs for extracting
malware signatures. The authors present a system for extracting signatures of malware
by using CFGs composed at the assembly language instruction set level. While simi-
lar to our approach in spirit, our CFGs are derived based on high level languages. We
employed control-flow analysis in our previous work, the DeCore [21]. The DeCore is
aimed at detecting content repurposing attacks, from the client-side end, and therefore
focuses on a different set of attacks. Close to the notion of control flow analysis is script
analysis, which has been leveraged to detect XSS vulnerabilities. A specific example of
this approach is the Pixy tool proposed by Jovanovic et al.[12]. We take a complemen-
tary approach, in that we analyze JavaScript, ActionScript and HTML. Further, the Pixy
tool relies on taint analysis of the data whereas we leverage the notion of control flow
analysis by using CFGs. The CFGs allows the XSS-Dec to detect any malicious script
injection using any type of script, while the taint analysis in the Pixy tool helps detect
any input violation.

8 Conclusion

In this paper, we presented XSS-Dec, a security-by-Proxy approach to protect end-users
against XSS attacks. Our solution combines the benefits of both server-side and client-
side protection mechanisms. We leverage the information obtained from both the client
and the server-side to provide an anomaly based detection approach complemented by
control flow analysis. In the future, we will study whether a server can use the Proxy
features without having the server’s sending pages beforehand. Finally, we will test the
scalability of the XSS-Dec in distributed settings.

References

1. Appshield, Sanctum Inc. (2004)
2. Security focus-bugtraq (2010), http://www.securityfocus.com/archive/1

http://www.securityfocus.com/archive/1

238 S. Sundareswaran and A.C. Squicciarini

3. Bates, D., Barth, A., Jackson, C.: Regular expressions considered harmful in client-side XSS
filters. In: 19th International Conference on World Wide Web, WWW 2010, pp. 91–100.
ACM (2010)

4. Bisht, P., Venkatakrishnan, V.N.: XSS-GUARD: Precise Dynamic Prevention of Cross-
Site Scripting Attacks. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 23–43.
Springer, Heidelberg (2008)

5. Bonfante, G., Kaczmarek, M., Marion, J.-Y.: Control Flow Graphs as Malware Signatures. In:
International Workshop on the Theory of Computer Viruses, TCV 2007, Nancy, France (2007)

6. Chen, S., Meseguer, J., Sasse, R., Wang, H.J., Wang, Y.-M.: A systematic approach to un-
cover security flaws in gui logic. In: IEEE Symposium on Security and Privacy, pp. 71–85.
IEEE Computer Society (2007)

7. ComputerWeekly.com. Hackers broaden reach of cross-site scripting attacks (2007)
8. Cook, S.: A Web developer’s guide to cross-site scripting. t. r, SANS institute (2003)
9. Cova, M., Balzarotti, D., Felmetsger, V., Vigna, G.: Swaddler: An Approach for the Anomaly-

Based Detection of State Violations in Web Applications. In: Kruegel, C., Lippmann, R.,
Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 63–86. Springer, Heidelberg (2007)

10. Earl, C., Might, M., Horn, D.V.: Pushdown control-flow analysis of higher-order programs.
In: The 2010 Workshop on Scheme and Functional Programming (2010)

11. Gundy, M.V., Chen, H.: Noncespaces: Using randomization to enforce information flow
tracking and thwart cross-site scripting attacks. In: Annual Network & Distributed System
Security Symposium (2009)

12. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A static analysis tool for detecting web appli-
cation vulnerabilities. In: IEEE Symposium on Security and Privacy, pp. 258–263. IEEE
Computer Society (2006)

13. Kirda, E., Kruegel, C., Vigna, G., Jovanovic, N.: Noxes: a client-side solution for mitigating
cross-site scripting attacks. In: 2006 ACM Symposium on Applied Computing, SAC 2006,
pp. 330–337. ACM (2006)

14. Munoz, J.L., Forne, J., Esparza, O., Soriano, M.: Certificate revocation system implementa-
tion based on the merkle hash tree. International Journal of Information Security 2, 110–124
(2004), 10.1007/s10207-003-0026-4

15. OWASP. Top 10 2010 - the open web application security project (2007),
http://www.owasp.org

16. OWASP. DOM based XSS (2011),
https://www.owasp.org/index.php/DOM_Based_XSS

17. Raman, P.: JaSpin: JavaScript Based Anomaly Detection of Cross-Site Scripting Attacks.
Master’s thesis, Carleton University, Ottawa, Ontario (2008)

18. Schwartz, N.: Steering clear of triples: Deriving the control flow graph directly from the
Abstract Syntax Tree in C programs. Technical report, New York, NY, USA (1998)

19. Scott, D., Sharp, R.: Abstracting application-level web security. In: Proceedings of the 11th
International Conference on World Wide Web, pp. 396–407. ACM (2002)

20. SpiderLabs. Analysis of lizamoon: Stored XSS via SQL injection (2011),
http://blog.spiderlabs.com/2011/04/
analysis-of-lizamoon-stored-xss-via-sql-injection.html

21. Sundareswaran, S., Squicciarini, A.C.: DeCore: Detecting Content Repurposing Attacks on
Clients’ Systems. In: Jajodia, S., Zhou, J. (eds.) SecureComm 2010. LNICST, vol. 50, pp.
199–216. Springer, Heidelberg (2010)

22. Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities. In: 30th Inter-
national Conference on Software Engineering, pp. 171–180. ACM (2008)

23. Wurzinger, P., Platzer, C., Ludl, C., Kirda, E., Kruegel, C.: Swap: Mitigating XSS attacks
using a reverse proxy. In: Proceedings of the 2009 ICSE Workshop on Software Engineering
for Secure Systems, IWSESS 2009, pp. 33–39. IEEE Computer Society, Washington, DC
(2009)

http://www.owasp.org
https://www.owasp.org/index.php/DOM_Based_XSS
http://blog.spiderlabs.com/2011/04/analysis-of-lizamoon-stored-xss-via-sql-injection.html
http://blog.spiderlabs.com/2011/04/analysis-of-lizamoon-stored-xss-via-sql-injection.html

Randomizing Smartphone Malware Profiles

against Statistical Mining Techniques

Abhijith Shastry, Murat Kantarcioglu, Yan Zhou, and Bhavani Thuraisingham

Computer Science Department
University of Texas at Dallas

Richardson, TX 75080
{abhijiths,muratk,yan.zhou2,bxt043000}@utdallas.edu

Abstract. The growing use of smartphones opens up new opportunities
for malware activities such as eavesdropping on phone calls, reading e-
mail and call-logs, and tracking callers’ locations. Statistical data mining
techniques have been shown to be applicable to detect smartphone mal-
ware. In this paper, we demonstrate that statistical mining techniques
are prone to attacks that lead to random smartphone malware behavior.
We show that with randomized profiles, statistical mining techniques can
be easily foiled. Six in-house proof-of-concept malware programs are de-
veloped on the Android platform for this study. The malware programs
are designed to perform privacy intrusion, information theft, and denial
of service attacks. By simulating and tuning the frequency and interval
of attacks, we aim to answer the following questions: 1) Can statistical
mining algorithms detect smartphone malware by monitoring the statis-
tics of smartphone usage? 2) Are data mining algorithms robust against
malware with random profiles? 3) Can simple consolidation of random
profiles over a fixed time frame prepare a higher quality data source for
existing algorithms?

1 Introduction

Compared to conventional mobile phones, smartphones are built to support more
advanced computing needs modern custom software demands. An unpleasant
byproduct of the ongoing smartphone revolution is its invitation to malicious
exploits. As smartphone software grows more complex, more malware programs
will be created to attempt to exploit specific weaknesses in smartphone soft-
ware [4,6]. Smartphones of end users all together constitute a large portion of
the powerful mobile network. Having access to the enormous amount of personal
information on this network is a great incentive for the adversary to attack the
smartphone mobile world.

Malicious activities on mobile phones are often carried out through lightweight
applications, scrupulously avoiding detection while leaving little trace for mal-
ware analysis. Over the years many malware detection techniques have been
proposed. These techniques can be roughly divided into two groups: static anal-
ysis and dynamic analysis. Static analysis techniques discover implications of

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 239–254, 2012.
c© IFIP International Federation for Information Processing 2012

240 A. Shastry et al.

unusual program activities directly from the source code. Although static anal-
ysis is a critical component in program analysis, its ability to cope with highly
dynamic malware is unsatisfactory. A number of obfuscation techniques have
been shown to easily foil techniques that rely solely on static analysis [14]. Dy-
namic analysis (also known as behavioral analysis) identifies security holes by
executing a program and closely monitoring its activities [24]. Information such
as system calls, network access, and files and memory modifications is collected
from the operating system at runtime [18]. Since the actual behavior of a pro-
gram is monitored, threats from dynamic tactics such as obfuscation are not
as severe in dynamic analysis. However, dynamic analysis can not guarantee a
malicious payload is always activated every time the host program is executed.

We follow a similar perspective of dynamic analysis by analyzing real-time col-
lections of statistics of smartphone usage. Metrics of real-time usage are recorded
for analysis. We choose the Android platform in our study. Android is open source
and apparently has a solid customer base given that many devices are using this
platform. For the convenience of security analysis on this platform, we developed
custom parameterized malware programs on the Android platform. These mal-
ware programs can target the victim for the purpose of denial of service attacks,
information stealing, and privacy intrusion. Our second contribution is the empir-
ical analysis of the weaknesses of data mining techniques against mobile malware.
We demonstrate that a malware program with unpredictable attacking strategies
is more resilient to commonly used data mining techniques.

The rest of the paper is organized as follows. Section 2 presents the related
work in the field of malware detection. Malware detection techniques developed
for general-purpose use and those designed specifically for mobile phones are
discussed in this section. Section 3 presents six malware programs and their
tuning parameters. Section 4 discusses the experimental setup and the data
collected for analysis. Experimental results are also presented. Conclusions are
presented in Section 5.

2 Related Work

We first give a broad overview of malware detection techniques in general since
those techniques share common roots with techniques specifically developed for
smartphone malware. In the second part of this section, we discuss work directly
related to mobile malware detection.

2.1 Malware Detection Technique

Techniques used for malware detection can be categorized broadly into two cate-
gories: anomaly-based detection and signature-based detection. Anomaly-based
detection techniques use the knowledge of what constitutes normal behavior to
decide the maliciousness of a program. For example, a rule-based system decides
whether a program is benign or malicious based on a pre-defined set of rules.
Signature-based detection, on the other hand, makes use of static characteri-
zation of known malicious software [24]. Detection techniques generally follow

Smart Phone Malware Attacks 241

three different approaches: static, dynamic, or hybrid analysis. A static approach
typically attempts to detect malware without executing the program under in-
spection, while a dynamic approach attempts to detect malicious behavior during
program execution or after program execution. Thus the dynamic approach is
often referred to as behavior based analysis. Hybrid techniques leverage the ad-
vantages of the previous two approaches by combining them as described in [17].

Lee and Stolfo [11] propose to use association rules and frequent episodes in
intrusion detection systems. The association rules and frequent episodes can be
collectively referred to as a rule set. Rule sets are created for various security-
critical aspects of the target host. These rule sets serve as the knowledge of what
activities are considered as normal on the host.

Hofmeyr et al. [8] propose a technique that monitors system call sequences
in order to detect maliciousness. Initially profiles representing the normal be-
havior of a system are developed. The behavior is characterized by sequences of
system calls. Hamming distance is used to determine how closely a system call
sequence resembles another. Thresholds are used to determine whether a process
is anomalous. Okazaki et al. [15] also propose a detection method based on the
frequency of system calls.

Static anomaly-based detection techniques use the characteristics of the file
structure of the program to identify malicious code. A major advantage of static
anomaly-based detection is that it is possible to detect malware without hav-
ing to execute the program containing the malware. Stolfo et al. [21] describe
fileprint (n-gram) analysis as a means for detecting malware. Many other existing
anomaly-based malware detection mechanisms use a hybrid approach [17].

2.2 Malware Detection in Mobile Phones

Malware detection techniques developed for use on the computer platform cannot
be directly used in a mobile environment due to limited resources and processing
capabilities of a mobile phone. Many anomaly-based and signature-based detec-
tion techniques, mostly using a dynamic approach, have been proposed to detect
malware on mobile phones.

Zhou et al. [23] present permission-based behavioral footprinting and heuristic-
based filtering techniques for identifying both known and unknown malware in
the Android family. They first filter out Android apps based on the permis-
sions required to grant wrongdoings on the phone, and then define suspicious
behaviors of malicious apps and use them to detect zero-day malware.

Yap and Ewe [22] propose a behavior checker solution that detects malicious
activities in a mobile system. A proof of concept scenario using a Nokia mobile
phone on the Symbian operating system is provided. Bose et al. [1] propose a be-
havioral detection framework that employs a temporal logic approach to detect
malicious activities over time. An efficient representation of malware behaviors is
proposed based on a key observation that the logical ordering of an application’s
actions over time often reveals malicious intent even when each action alone may
appear harmless.

242 A. Shastry et al.

Kim et al. propose a detection mechanism based on power signatures [10]. The
technique can detect and analyze previously unknown energy depletion threads
based on a collection of power signatures. Moreau et al. [13] use artificial Neural
Networks (ANNs) to detect anomalous behavior indicating a fraudulent use of
the operator services. An example of such behavior is unusually high call rate.
Cheng et al. [3] propose SmartSiren, a virus detection and alert system for smart-
phones. SmartSiren was evaluated by detecting SMS viruses by monitoring the
amount of SMSs sent by a single device.

Schmidt et al. [19] extract features representing device state from a smart-
phone running the Symbian OS. These extracted features are used for anomaly
detection to distinguish between normal and abnormal behavior. The processing
of the extracted features was performed on a remote server. Dixon and Mishra [5]
propose a rootkit and malware detection mechanism for smartphones in which
processing is performed on a computer which is connected to the mobile device.
An implementation on the Android platform is also provided.

Shabtai et al. propose a behavioral malware detection framework for android
devices [20]. The framework includes a host-based malware detection system
that continuously monitors various features and events obtained from the mobile
devices, and then applies machine learning anomaly detectors to classify the
collected data as benign or malicious. They develop four malicious applications
on the Android platform and evaluate the proposed framework. They show that
such a behavioral malware detection scheme is able to detect unknown malware
programs.

3 Malware Setup

We developed six different parameterized malware programs on the Android
platform. These malware programs perform privacy intrusion, information theft
attacks, and denial of service attacks. By varying the parameters of the malware
programs, different profiles of the same malware can be generated. Moreover, the
parameters themselves can be randomized (with an expected mean value) rather
than being a fixed value. By randomizing the parameters, interesting malware
profiles can be prepared for further analysis.

We assume that either through a direct installation or an indirect installation
(through the payload of a benign application), the victim’s mobile phone is in-
fected with the developed malware. All malware programs were developed and
tested on a Samsung Captivate smartphone running on the Android platform.
One important thing to know about the Android framework is that applications
run in sand boxes (virtual machines), and therefore do not impact other ap-
plications in the system. Moreover, all permissions required by the application
running on the Android platform (such as Internet access, microphone access)
have to be declared, which is prompted to the user when the application is in-
stalled. Again the assumption we are leaning on allows us to get away from any
practical difficulties of installing the developed malware programs in a furtive
manner.

Smart Phone Malware Attacks 243

3.1 Call Recorder

The Call Recorder malware performs eavesdropping on incoming and outgoing
phone calls. Both incoming and outgoing calls are recorded. The recorded file
is kept locally on the phone. A configuration option is provided to upload the
recorded file to a server. This malware attempts to compromise the privacy of
the person using the infected mobile phone. Parameters of this malware include:

– MAX DURATION—maximum duration a phone call is recorded
– MAX FILESIZE—maximum size of the recorded file
– NUM SKIPPED CALLS—specifying that only every (n+1)th phone call is

recorded, where n is the value of NUM SKIPPED CALLS.
– INTERVAL RECORD—specifying the length of every recording (after each

sleep) during a phone call
– INTERVAL SLEEP—specifying the duration in which the malware sleeps

(stops recording)
– SHOULD UPLOAD—uploading the recorded content to a server
– DELETE LOCAL—deleting the local copy of the recording output

3.2 DoS Malware

Dos Malware performs a Denial of Service (DoS) attack. Upon loading this ap-
plication, it spawns many threads. Each thread performs a large number of mul-
tiplications between two randomly generated numbers. As the number of threads
increases, the phone starts becoming unresponsive. When the number of threads
spawned is above 200, the phone hangs and has to be rebooted. Thus, this mal-
ware paralyzes the device by driving the CPU beyond its limit. Parameters of
this malware are:

– MAX THREADS—number of threads spawned by the malware
– NUM MULTIPLICATIONS—number of multiplications performed by each

thread
– INTERVAL RESTART—duration after which all the spawned threads are

killed before new ones are spawned
– INTERVAL SLEEP—duration in which the malware sleeps before new

threads are spawned

3.3 Mass Uploader

As the name suggests, this malicious application uploads the contents of the
memory device of the mobile phone to a server. Thus, it is designed to steal infor-
mation from the device. Other than uploading, this malware can also download
content from a server. When this application is started, it begins the process of
uploading and downloading content to/from a server. Parameters of this malware
are:

– UPLOAD/DOWNLOAD BW—the upload/download bandwidth limits for
the malicious application

244 A. Shastry et al.

– UPLOAD/DOWNLOAD INTERVAL—the duration after which an
upload/download is performed by the malicious application

– UPLOAD/DOWNLOAD INTER LIM—specifying the limit of the amount
of data sent (burst) in one upload/download attempt

Note that memory private to an application is protected by linux permissions
on Android. Therefore normally other service cannot access it. We assume a
root exploit has enabled the application to elevate to root and steal sensitive
data.

3.4 Smart Recorder

Smart Recorder performs eavesdropping on incoming and outgoing phone calls
from specific phone numbers. These specific phone numbers are read from a
server whenever a phone call is made. The specific phone numbers can be changed
at run time. After recording a phone call, the recorded file is uploaded to a server.
This malware gives the attacker more control over the recorded phone conver-
sations. Specific phone calls can be targeted as the attacker tries to compromise
the privacy of the person using the infected mobile phone. Parameters of this
malware are:

– MAX DURATION—maximum duration that the phone call is recorded.
– MAX FILESIZE—maximum size of the recorded file
– INTERVAL RECORD—length of every recording (after each sleep) during

a phone call
– INTERVAL SLEEP—duration in which the malware sleeps (stops recording)

3.5 Spy Camera

Spy Camera can spy on the unsuspecting user by taking snap shots from the
mobile phone camera every few seconds. These snapshots can be uploaded to
a server. Thus, this malware compromises the privacy of the user. When the
malware takes a snap from the mobile phone, the user is not notified in any way
(by sound or other notifications) that a picture has been taken from the mobile
phone camera. Parameters of this malware are:

– SNAP INTERVAL—duration after which a snap is taken from the camera
on board the mobile device and stored locally on the phone

– PIC DSAMPLE RATIO—specifying the down sample ratio that impacts the
quality of the pictures taken form the camera

– PIC COMP QUALITY—specifying the amount of compression the raw im-
age is subjected to before saving the image

– SHOULD UPLOAD—uploading the picture to a server
– DELETE LOCAL—deleting the local copy of the pictures taken

Smart Phone Malware Attacks 245

3.6 Spy Recorder

Spy Recorder can remotely turn on the microphone of the mobile phone and start
recording any voice input. The recording is initiated and terminated by a phone
call from a specific number that a spy has registered. The microphone is turned
on when a phone call from a specific number is made to the victim’s phone.
The call is automatically rejected afterwards. Similarly, making another phone
call from a specific number will turn off the microphone. The entire process
is completed without the user’s attention. This spyware can be used to record
conversations duration important meetings. The recorded file can be stored on
the mobile device for later retrieval or can be uploaded to a server. Parameters
of this malware are:

– MAX DURATION—maximum duration that the conversation is recorded
– MAX FILESIZE—maximum size of the recorded file
– INTERVAL RECORD—length of every recording (after each sleep) during

a phone call
– INTERVAL SLEEP—duration in which the malware sleeps (stops recording)
– SHOULD UPLOAD—uploading recorded conversation to a server
– DELETE LOCAL—deleting the local copy of the recorded conversation

4 Experimental Analysis

We now discuss the experiments in which we investigate the weaknesses of com-
mon data mining detection techniques. We present metrics characterizing the
behavior of an application and the data sets used in the experiments data. We
also discuss the data mining tools used in our experiments and the evaluation
metrics.

4.1 Run-Time Behavior Metrics

The run-time behavior of a program can be defined using the statistics of usage
of a smartphone. In our experiments, we record the run-time behavior of an
application as a set of pre-defined features while the application is running. The
collected feature sets are the data source for the data mining techniques later.

The features used in this study characterize the typical behavior of an appli-
cation. They include various metrics, such as CPU consumption, network traffic,
memory usage, and battery (power) consumption. Table 1 lists all the features
that need to be recorded in real-time. A light-weight utility program was de-
veloped for collecting these features every five seconds and storing them in a
database on the mobile phone. This application runs as a service in the back-
ground.

Whenever an application is running, the feature extraction utility collects
the features from the running application. Once the features are collected, the
next step involves training a classifier on the collected feature vectors. After the
classifier is trained, dynamic decisions can be made for a running application by

246 A. Shastry et al.

Table 1. List of features extracted

Feature Category Feature

CPU
cpu totutil, cpu totproccount, cpu userproccount
cpu load avg1min, cpu load avg5min, cpu load avg15min

Memory

mem tot, mem free, mem buffer
mem cached, mem active, mem inactive
mem dirty, mem writeback, mem pageanon
mem mapped, mem anon, mem file

Battery
btr lvl rem, btr status, btr temp
btr volt, btr lvl change

Network

net cell upd tx pkts, net cell upd tx bytes
net cell upd rx pkts, net cell upd rx bytes
net wifi upd tx pkts, net wifi upd tx bytes
net wifi upd rx pkts, net wifi upd rx bytes

the classifier using the new collection of the features of the running application.
Proper actions can be performed after detection, such as notifying the user when
the classifier flags an application as malicious.

4.2 Data Sets

We developed a feature extractor application for collecting data. It runs as a
background service on the Android phone. Features of the benign and malicious
applications are collected from the Android OS while they are running. Using the
feature extractor application, we create data sets from 20 benign applications and
6 malware programs over a period of 10 minutes, resulting 120 feature vectors
per application. 10 of the benign applications were tools and the other 10 were
games. The applications used in our experiments are listed in Table 2.

Features from malware programs were collected when no limits (such as band-
width, CPU usage) were imposed on the malware programs. This malware pro-
file is referred to as the general profile. In addition, features of malware programs
with randomized profiles were also collected. For each malware program, five dif-
ferent randomized profiles were created. Thus the entire data set consists of feature

Table 2. Applications used in the experiments

Malicious Benign (tools) Benign (games)

Call Recorder MusicPlayer AngryBirds
DoS Malware Phone AirControlLite
Mass Uploader Browser SmartTacToe
Smart Recorder Calculator Snake
Spy Camera Youtube Minesweeper
Spy Recorder Calendar 3DBowling

Clock Solitaire
Contacts RacingMoto
Market DragonFly
Memo DragRacing

Smart Phone Malware Attacks 247

vectors from 20 benign applications, 6 malware programs, and 30 randomized pro-
files of malware programs, in the total of 56 applications. Each of the randomized
profile varies from the other with respect to the amount of randomization, i.e.,
the amount of deviation from the mean value of a parameter. For example, Randx
refers to a profile in which the variance from the mean value of the parameters is x.

4.3 Data Mining Tools

Five data mining algorithms in WEKA [7] are selected to build the classifiers
in our study. The algorithms are: decision tree (DT), logistic regression (LR),
näıve Bayes (NB), artificial neural network (ANN), and support vector machine
(SVM). Classifiers typically operate in two phases: training and testing. During
the training phase, a classifier is trained on input vectors with proper class
values. The classifier then builds a model that generalizes on data in the entire
domain. After the training phase, the classifier can be used to make predictions
for unseen instances, and it is known as the test phase.

Decision trees are tree-structured predictive models used in many application
domains of Machine Learning. Many different types of decision trees exist. In
our study we built a decision tree model using the C4.5 algorithm [16].

Logistic Regression is a type of predictive model that can be used when the
target variable is a categorical variable with two categories and thus is suitable
for our study. During the training phase, the logistic regression algorithm builds
a model that is similar to fitting a polynomial to a set of data values. This model
is then used to predict class labels during the test phase.

A näıve Bayes classifier is a probabilistic classifier based on the Bayes theo-
rem with strong (näıve) independence assumptions. During the training phase,
a model is built which is described by a set of probabilities. An important lim-
itation of this classifier is that input features must all be discretized. It cannot
directly handle continuous values. Continuous valued features can be handled
using a mixture of Gaussians [12].

A neural network classifier builds a graph model that consists of a set of
inter-connecting artificial neurons in its training phase. The neural network [12]
exploits patterns in data by modeling complex relationships between the input
and the target output. Typically, training neural network models takes more
time than that for other models.

A standard support vector machine (SVM) algorithm builds a predictive
model by constructing a high-dimensional hyper-plane that discriminates be-
tween two categories of data. Given a set of training examples, a hyper-plane
that maximizes the distance to the closest training examples on either side is
chosen as the optimal separating hyper-plane. The SVM methods have demon-
strated great success in many application domains since it was first introduced
to the machine learning research community [2].

4.4 Evaluation

The following standard metrics were used to measure the performance of the
selected data mining algorithms:

248 A. Shastry et al.

1. True Positive Rate (TPR): Proportion of positive instances (feature vectors
of malicious applications) classified correctly.

2. False Positive Rate (FPR): Proportion of negative instances (feature vectors
of benign applications) misclassified.

3. Total Accuracy: Proportion of absolutely correctly classified instances, either
positive or negative.

4. Receiver Operating Characteristic (ROC) - Area Under Curve (AUC): The
ROC curve is a graphical representation of the trade-off between the TPR
and FPR for every possible detection cut-off. AUC is the area under this
curve.

4.5 Experiments

We now describe in detail two separate experiments we have performed on the
datasets of the benign and malicious applications. We also discuss the experi-
mental results and their implications.

Experiment 1. The first experiment evaluates the performance of the five
data mining techniques when the adversary does not spread out the attacks in
an unpredictable manner. Table 3 shows the 10-fold cross validation results when
the data set consisted of the 20 benign applications and 6 malware programs.
Four out of the five algorithms work fairly well with a classification accuracy
of more than 95%. Näıve Bayes turned out to be a disappointing exception.
Violation of the independence assumption in the data may be the main reason
that hampers the performance of the näıve Bayes classifier. This experiment
implies that statistical analysis in these data mining algorithms is in general
applicable when an attack is not disseminated.

Table 3. 10-fold cross validation results on the 20 benign applications and 6 malware
programs

Classifier Accuracy TPR FPR AUC

DT 99.615 0.988 0.001 0.992

LR 99.231 0.988 0.006 0.995

NB 82.692 0.303 0.016 0.788

ANN 99.808 0.996 0.001 0.999

SVM 95.416 0.832 0.009 0.911

Table 4 and Table 5 present the cross validation results when the data set
consists of 10 out of the 20 genuine applications and the 6 malware programs.
The genuine applications chosen in Table 4 and Table 5 are tools and games,
respectively. All classifiers except näıve Bayes perform well with respect to the
cross validation results. When games are used in the data sets instead of tools,
the classification accuracy is slightly better for four classifiers. This result is
consistent with the observation made in a similar experiment in [20].

Smart Phone Malware Attacks 249

Table 4. 10-fold cross validation results on 10 benign applications (tools) and 6 mal-
ware programs.

Classifier Accuracy TPR FPR AUC

DT 99.531 0.993 0.003 0.996

LR 99.167 0.989 0.007 0.996

NB 71.563 0.292 0.030 0.849

ANN 99.792 0.997 0.002 1.000

SVM 98.698 0.986 0.0125 0.987

Table 5. 10-fold cross validation results on 10 benign applications (games) and 6
malware programs.

Classifier Accuracy TPR FPR AUC

DT 99.948 0.999 0.000 0.999

LR 99.271 0.994 0.008 0.995

NB 74.688 0.339 0.008 0.829

ANN 99.948 1.000 0.000 1.000

SVM 93.490 0.840 0.008 0.916

Experiment 2. This experiment demonstrates the performance of the five data
mining algorithms on a non-randomized malware profile (marked as General
in the following plots) and five randomized malware profiles, namely Rand0,
Rand5, Rand25, Rand50, and Rand75. Each randomized profile is generated by
varying the parameters of each malware program as described earlier. Through
this experiment, we hope to answer the two questions we raised earlier:

– Are data mining algorithms robust against malware with random attacking
activities?

– Can simple consolidation of activities over a fixed time frame prepare a
higher quality data source for existing algorithms?

To answer the second question, we experimented on datasets in which instances
are consolidated by sequentially averaging over n consecutive samples we have
extracted in Experiment 1, where n =1, 5, 10, and 50, marked as 5sec, 25sec,
50sec, and 250sec interval respectively in the figures. Figures 1 illustrates the
average classification accuracy over all five classifiers on 6x6 training-test data
pairs. The training data consists of all the genuine applications and the malware
programs with each of the six profiles shown as a label on the x-axis. Each
cluster in a plot shows the average classification accuracy on six test sets—the
same datasets of six different profiles {General, Rand0, Rand5, Rand25, Rand50,
Rand75}, labeled with specific bar patterns as shown in the figures.

Due to space limitations, we do not show the figures of the classification
accuracy of each individual algorithm. In general, none of the classifiers was
able to consistently outperform the others as the training and test data varies
according to different random profile configurations. The decision tree algorithm
performs best on datasets of all six profiles when the training data is extracted

250 A. Shastry et al.

Fig. 1. Average Accuracy over all algorithms on 5sec data profiles

from the Rand75 profile and instances are formed by averaging 50 consecutive
samples in each 250-second interval. Logistic regression performs best when the
training data comes from the Rand25 profile and all instances in each data
set is formed by averaging 10 consecutive samples in each 50-second interval.
Näıve Bayes performs best with the training data of the Rand50 profile and
instances are formed by averaging 50 consecutive samples. ANN performs best
with training data of the Rand75 profile and samples of every 5-second interval.
SVM performs best with training data of the Rand75 profile and instances are
formed by averaging 50 consecutive samples. As can be seen, behavioral analysis
may become very difficult when malware exhibits random behavior. Figure 2
shows the classification accuracy of each algorithm averaged over the 6x6 profile
pairs.

Other key observations are: 1.) When the training set consists of benign appli-
cations and general malware programs while the test set consists of randomized
profiles of malware programs, the classification accuracy is very poor irrespec-
tive of the classifiers. In most cases the classification accuracy is below 70%. This
has important implications that a behavioral analysis-based malware detection
scheme will fail when the training set consists of just general malware programs;
2.) Another observation is that when training set includes a randomized malware
profile say, Rand-x and tests are carried out on another randomized malware pro-
file, say Rand-y, classification accuracy is good when x is close to y, in general.
For instance, using the decision tree classifier, training on the Rand50 profile
and testing on the Rand75 profile gives a classification accuracy of around 86%.
Some anomalies exist to this trend such as training on a Rand75 profile using a
decision tree classifier.

Figures 3— 5 illustrate performance change as instances are formed by aver-
aging samples in longer durations. As can be observed in Figure 3, the majority
of performance change is positive when we average the samples every 25 sec-

Smart Phone Malware Attacks 251

Fig. 2. Mean Accuracy of each algorithm on all data profiles

onds. This implies the mean point of a few consecutive samples serves better
as an instance in the data set. Further consolidation using longer durations of
50 seconds and 250 seconds do not appear to improve the performance further
except for the Rand50 profile. For individual algorithms, we observe significant
performance improvement from the decision tree and näıve Bayes classifiers.
The Logistic Regression, Artificial Neural Network, and Support Vector Machine
classifiers all experienced an initial increase followed by slight decreases in clas-
sification accuracy as instances are formed over a longer duration. SVM is the
most consistent one among the five classifiers. In general, sample consolidation
does seem to improve classifier performance.

Fig. 3. Average Accuracy% change over all algorithms on 25sec data profiles

252 A. Shastry et al.

Fig. 4. Average Accuracy% over all algorithms on 50sec data profiles

Fig. 5. Average Accuracy% over all algorithms on 250sec data profiles

5 Conclusions

We developed six custom parameterized malware programs on the Android plat-
form. These malware programs can perform a variety of malicious activities on
the victim’s smartphone. We demonstrate that, although a data mining algo-
rithm can be very successful when the training and the test data follow sim-
ilar distributions, its performance is unsatisfactory on randomized profiles of
the same malware programs. Therefore it is necessary to search for solutions
that can better handle random behavioral patterns of malware programs. We
also demonstrate that simple consolidation may effectively improve classifica-
tion performance. In the future, we plan to expand the datasets by developing

Smart Phone Malware Attacks 253

additional malware applications and including real-world malware, and more-
over, search for reliable ways to improve detection in a volatile environment
using adversarial classification techniques [9]. We also plan to compare data
mining techniques with existing practical techniques for malware detection such
as permission-based filtering and behavioral footprint matching methods [23].

Acknowledgments. This work was partially supported by Air Force Office of
Scientific Research MURI Grant FA9550-08-1-0265,National Institutes of Health
Grant 1R01LM009989, National Science Foundation (NSF) Grant Career-CNS-
0845803, and NSF Grants CNS-0964350, CNS-1016343.

References

1. Bose, A., Hu, X., Shin, K.G., Park, T.: Behavioral detection of malware on mobile
handsets. In: Proceeding of the 6th International Conference on Mobile Systems,
Applications, and Services, MobiSys 2008, pp. 225–238. ACM, New York (2008)

2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: Proceedings of the 5th Annual ACM Workshop on Computational
Learning Theory, pp. 144–152. ACM Press (1992)

3. Cheng, J., Wong, S.H., Yang, H., Lu, S.: Smartsiren: virus detection and alert
for smartphones. In: Proceedings of the 5th International Conference on Mobile
Systems, Applications and Services, MobiSys 2007, pp. 258–271. ACM, New York
(2007)

4. Christodorescu, M., Jhacomputer, S.: Testing malware detectors. In: Proceedings
of the 2004 ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2004, pp. 34–44. ACM Press (2004)

5. Dixon, B., Mishra, S.: On rootkit and malware detection in smartphones. In: 2010
International Conference on Dependable Systems and Networks Workshops (DSN-
W), June 28-July 1, pp. 162–163 (2010)

6. Gary McGraw, G.M.: Attacking malicious code: a report to the infosec research
council. IEEE Software, 33–41 (2000), magazine article

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)

8. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of
system calls. J. Comput. Secur. 6, 151–180 (1998)

9. Kantarcioglu, M., Xi, B., Clifton, C.: Classifier evaluation and attribute selection
against active adversaries. Data Min. Knowl. Discov. 22, 291–335 (2011)

10. Kim, H., Smith, J., Shin, K.G.: Detecting energy-greedy anomalies and mobile
malware variants. In: Proceeding of the 6th International Conference on Mobile
Systems, Applications, and Services, MobiSys 2008, pp. 239–252. ACM, New York
(2008)

11. Lee, W., Stolfo, S.J.: Data mining approaches for intrusion detection. In: Proceed-
ings of the 7th Conference on USENIX Security Symposium, vol. 7, p. 6. USENIX
Association, Berkeley (1998)

12. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
13. Moreau, Y., Shawe-taylor, P.B.J., Stoermann, C., Ag, S., Vodafone, C.C.: Novel

techniques for fraud detection in mobile telecommunication networks. In: ACTS
Mobile Summit (1997)

254 A. Shastry et al.

14. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Twenty-Third Annual Computer Security Applications Conference, ACSAC
2007, pp. 421–430 (2007)

15. Okazaki, Y., Sato, I., Goto, S.: A new intrusion detection method based on process
profiling. In: Proceedings of the 2002 Symposium on Applications and the Internet,
SAINT 2002, pp. 82–90 (2002)

16. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., San Francisco (1993)

17. Rabek, J.C., Khazan, R.I., Lewandowski, S.M., Cunningham, R.K.: Detection of
injected, dynamically generated, and obfuscated malicious code. In: Proceedings
of the 2003 ACM Workshop on Rapid Malcode, WORM 2003, pp. 76–82. ACM,
New York (2003)

18. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and Classification
of Malware Behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp.
108–125. Springer, Heidelberg (2008)

19. Schmidt, A., Schmidt, H., Clausen, J., Camtepe, A., Albayrak, S.: Enhancing se-
curity of linux-based android devices. Image Rochester NY (2008)

20. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: ”Andromaly”: a be-
havioral malware detection framework for android devices. Journal of Intelligent
Information Systems, 1–30 (2011)

21. Stolfo, S.J., Wang, K., Li, W.-J.: Worms 2005 columbia ids lab fileprint analysis
for malware detection 1. In: 6th IEEE Information Assurance Workshop (2005)

22. Yap, T.S., Ewe, H.T.: A Mobile Phone Malicious Software Detection Model with
Behavior Checker. In: Shimojo, S., Ichii, S., Ling, T.-W., Song, K.-H. (eds.) HSI
2005. LNCS, vol. 3597, pp. 57–65. Springer, Heidelberg (2005)

23. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting
malicious apps in official and alternative android markets. In: Proceedings of the
19th Network and Distributed System Security Symposium, NDSS 2012 (2012)

24. Zolkipli, M.F., Jantan, A.: Malware behavior analysis: Learning and understanding
current malware threats. In: International Conference on Network Applications,
Protocols and Services, pp. 218–221 (2010)

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 255–262, 2012.
© IFIP International Federation for Information Processing 2012

Layered Security Architecture for Masquerade Attack
Detection

Hamed Saljooghinejad and Wilson Naik Bhukya

Department of Computer and Information Science,
University of Hyderabad, Hyderabad, India
hamed.saljooghinejad@gmail.com,

naikcs@uohyd.ernet.in

Abstract. Masquerade attack refers to an attack that uses a fake identity, to gain
unauthorized access to personal computer information through legitimate access
identification. Automatic discovery of masqueraders is sometimes undertaken
by detecting significant departures from normal user behavior. If a user's
normal profile deviates from their original behavior, it could potentially signal
an ongoing masquerade attack. In this paper we proposed a new framework to
capture data in a comprehensive manner by collecting data in different layers
across multiple applications. Our approach generates feature vectors which
contain the output gained from analysis across multiple layers such as Window
Data, Mouse Data, Keyboard Data, Command Line Data, File Access Data and
Authentication Data. We evaluated our approach by several experiments with a
significant number of participants. Our experimental results show better
detection rates with acceptable false positives which none of the earlier
approaches has achieved this level of accuracy so far.

Keywords: Masquerade Detection, Intrusion Detection System, Anomaly
Detection, User Profiling.

1 Introduction

Masquerade attacks are ranked second on the top five lists of electronic crimes
perpetrated after viruses, worms or other malicious code attacks. The most common
information, which can be used to detect masquerade attacks, is contained within the
actions a masquerader performs. This set of actions is known as a behavioral profile.
Behavior is not something that can be easily stolen. Masquerade detection techniques
are based on the premise that when a masquerader attacks the system he will
sufficiently deviate from the user’s behavior and thus can be recognized using
machine learning techniques [9]. In this paper we demonstrate an approach for
detecting masqueraders in an efficient manner. We show how multiple layers of user
data records together can construct a meaningful behavioral profile in order to have
better detection results. The paper is organized as follows: next section introduces the
related works on masquerade detection. Then, we describe architecture for the layered
approach, which is followed by the experimental designs including data collection,
feature extraction, learning and classification phases. Results of several experiments
and conclusion are presented in last sections.

256 H. Saljooghinejad and W.N. Bhukya

2 Background and Related Work

Masquerade detection was done by observing the command line data and watching a
user’s behavior and then finding anomalies in their usage. In the category of the
command line approaches, the initial activity was done by Schonlau et al. [6] which
collected a dataset of Unix command line data from 50 users called the SEA dataset
for testing and comparing and was used with different intrusion detection techniques.
This research utilized different statistical techniques on the dataset and then compared
the results. The NaïveBayes classifier was first applied on Schonlau’s dataset by Roy
A. Maxion [7]. They extended their previous work by applying the NaïveBayes
classifier on Greenberg’s enriched command line data [8]. Kim [5] applied SVM with
a voting engine on SEA, 1v49 and Greenberg datasets.

However command line data detection mechanisms could not truly detect
masquerade attacks in the modern graphical user interface (GUI) systems like
windows and variants of Unix like Linux or Mac OSx. Today working with GUI
systems is more common and the study of their different aspects is crucial. GUI based
data is mostly related to data which comes from the interaction between the user and
their mouse and keyboard. Poursa[12] considered Analysis of mouse data which was
taken from users who worked with browsers. This approach has its disadvantages
mainly because their work focused on the browser data, even though users may be
working with applications other than browsers. Later works then focused on
comprehensive GUI behavior. For this purpose, [1] developed an active system logger
by using C# on a Windows XP System. This logger examined GUI event data
captured from users and then useful parameters are extracted to construct the feature
vectors. This profiling method, while good, comes with the disadvantage that they
only implemented it for Microsoft GUI systems with much of the focus set only on
mouse usage. Moreover, their detection rate was not impressive. [2] designed a logger
in the KDE environment. The disadvantages of their work were that they collected
data only from a single window and did not consider the complexity of profiling multi
applications. It was [4] who later showed the advantages of user profiling across
multiple applications. Other activity regarding GUI based detections can be found in
[3] which does not use mouse movements or keystroke dynamics but rather profiles
how the user manipulates the windows, icons and menus. They do not appear to
consider time as a factor, which is crucial for intrusion analysis.

3 Our Layered Approach

We propose a new approach for detecting a masquerader in a system. A layered
approach is introduced to collect comprehensive data across multiple applications.
Fig.1 shows an overview of the architecture which will be discussed in this paper. As
it is shown, the training phase is based on collecting the genuine user data from which
a behavioral profile will be created for each user and started with an event logger tool
which is designed and implemented to collects all events during a session. Then a
feature extraction tool is designed to generate the useful features. It constructs feature

 Layered Security Architecture for Masquerade Attack Detection 257

vectors which are generated from different layers; namely layer-1 as GUI data
contains window data, mouse data, keyboard data, layer-2 as command line data,
layer-3 as file access data and layer-4 as authentication data. This will then be used in
the detection phase. In the detection phase the new user profile will be generated from
the new user records and compared to the genuine profile. Any significant deviation
between them can be recognized as an attack. This task can be possible with the help
of a binary classifier which we can call the detection engine. We took the help of two
well known classifiers for this task namely SVM and NaïveBayes. More details
regarding the experiment will be addressed in later sections.

Fig. 1. Architecture of the Layered Approach

4 Data Collection and Calculation of Features

In the absence of a real-world data set for the study of masquerade attacks, we
developed our own data collection project. In this section we described the data
collection and feature extraction phases. For collecting the data our own logger was
developed to collect the information from system. Since we needed data passing
through Window Manager, we chose C as the programming language using X library
which helped us communicate with Window Manager for capturing the events. The
details of each event were logged to a file for processing in the next phase. The
collected event details include identification of the window, the name of that window
and time of occurrence along with different attributes of that particular event. At the
preprocessing phase, by analyzing and observing the impact of each feature on
detection rate and false positive rates, it was concluded that the following features
were to be considered in the training phase. The features are generated from 6
categories including window data, keyboard data, mouse data as GUI data, command
line data, file access data and authentication data as below:

258 H. Saljooghinejad and W.N. Bhukya

4.1 Window Data(9features)

Users in the GUI environment try to interact with a particular window such as
Maximizing, Minimizing, Opening, Closing and switching between windows. In total
9 features were extracted. Here is a window event sample:

 Event Occurred at: Tue Feb 8 10:03:13 2011
 WID=65011715-WName=Openoffice msg:The active window changed

from previous WID=69206091- Wname=Firefox

Window Coordination and Size (4). The average number of times that the user
changes the x, y coordinates of a window or width or height of it per user session.
Window Maximize, Minimize (4). The average number of times that the user
minimizes, maximizes, restores from the minimized or maximized position of a
window per user session.
Window Switching (1). The average number of times that a user switches between
different windows per user session.

4.2 Mouse Data(6featurs)

In this category mouse-related user activities like mouse click, mouse right click,
mouse movement, etc. were captured for every application. In total 6 features were
extracted. Here is a mouse event sample:

 Event Occurred at: Tue Feb 8 09:58:22 2011
 WID=650117—WName=Firefox--msg:Mouse left button clicked

Mouse Enter and Exit (2). The average number of times that the mouse enters to a
window or exit from a window for each application per user session.
Mouse Clicks (2). The average number of left and right mouse clicks for each
application per user session.
Mouse Scroll Up and Down (2). The average number of times that the mouse scrolls
up or scroll down for each application per user session.

4.3 Keyboard Data(5features)

All the keyboard events are logged and stored separately for each application. The
different keyboard events are key press, key release, and shortcut key (Ctrl, Alt, shift
modifiers). In total 5 features were extracted. Here is a keyboard event sample:

 Event Occurred at: Tue Feb 8 10:00:33 2011
 WID=692060--WName=Firefox--msg:Shortcut key Pressed—Ctrl+z

Key Pressed (1). The average number of keys pressed in each application per user
session.
Shortcut Key Pressed (1). The average number of shortcut keys pressed in each
application per user session.
Ctrl, Alt, Shift Modifier (3). The average number of times that Ctrl, Alt or Shift
modifiers pressed for each application per user session.

 Layered Security Architecture for Masquerade Attack Detection 259

4.4 Command Line Data(2features)

All the commands which are entered in command prompt are logged. They are
divided into 2 major categories, Normal and Critical. Normal commands are those
which are harmless and can be used with normal user privileges such as ls, clear, cd,
etc. Critical commands are those used by administrators and contain any commands
that are critical for the system and need root privileges such as su, sudo, etc.

Normal and Critical Commands (2). Number of normal and critical commands that
the user enters to the command prompt.

4.5 File Access Data(38 features)

In this layer, users' accesses to crucial files were logged. Attackers usually try to
access the victim's data. Analyzing this pattern of behavior can be helpful in order to
determine when such an act is being conducted by a masquerader within the system.
For example attackers try to access password files to obtain the users' password.
Another example can be seen by the attempt to access log files by the attacker in
order to delete any evidence they may have left behind. We used the Auditd tool to
log the user access to specific files or folders. It is part of the Linux kernel auditing
toolkit and captures auditing trails created by the kernel auditing facility from
/proc/audit. Using the feature extraction tool, data was preprocessed and a total of 38
features are created. The first 19 features are successful attempts to access specific
files or folders and the rest of them are features regarding failed access.

Successful and Unsuccessful Access (38). Number of successful attempts to access
particular files and folders include password file, log folder, etc folder, var folder,
home directory, proc and bin folder as well as the number of unsuccessful attempts.

4.6 Authentication Data(2features)

Normal users rarely perform actions of administrative domain, so when unusual
numbers of authentication occur, it can be suspected as malicious activity. From this 2
features are extracted, the first one is the total number of authentication request and
the second one is the total number of failed authentication request.
Successful and Unsuccessful Authentication (2). Number of successful and
unsuccessful authentications.

5 Learning and Classification

We collected the data from 16 distinct users who were the students of a particular
course in our department. For each user an account was created on a shared computer
in our lab and they were given an individual choice of operating conditions and
applications. The data collection phase took about two months and the data was
collected for multiple sessions, each lasting about 10 minutes. Roughly 3140 minutes
of user data was collected and profiled which was significant due to the considerable
number of users.

260 H. Saljooghinejad and W.N. Bhukya

The dataset contains the different number of sessions for different users including 2
users with 21 sessions, 10 users with 20 sessions, 3 users with 19 sessions, and 1 user
with 15 sessions as it is shown in table 1. This data was fed into the parsing engine to
sanitize and extract features for each application per session. The methodology to
train and test the data is explained below.

Table 1. Data Sets Description

Users No of Sessions (each 10minutes)
A,B 2*21

C,D,E,F,G,H,I,J,K,L 10*20
M,N,O 3*19

P 1*15
Sum 314 (3140 minutes)

- The Collected feature vectors were then divided into different training and test

sets. From these, the training sessions were used for the learning phase and for the test
phase due to the lack of real masquerade records the other user’s records were treated
as non genuine or as masquerade records. Obviously if the real masquerade data was
available, the anomaly detection would be easier due to the fact that masqueraders
tend to put more effort into changing the system state than a normal user would.

- We started with the proportion of 50 percent for the training set vs. 50 percent of
the testing set. To show the effect that the number of training sets has in relation to
accuracy we repeated the experiments, increasing the proportion of the training set by
5 percent for each case. In total 8 different cases were constructed and it ended up
with proportion of 85 percent for the training set and 15 percent for the testing set.
Results show a better performance, with an increase in the number of training sets.

- The Collected feature vectors were divided into different training and test
sessions per user. We defined a binary classification problem for our data due to the
fact that users should be tagged as positive (genuine) or negative (masquerader). SVM
[10] [11] and NaïveBayes [14] classifiers are used to classify the data and measure the
detection rate, false positive and false negative rates. We used the Weka tool [13] to
perform the classification. For improving the performance of classifiers we used the
SMOTE filter [15].

6 Results and Discussion

We evaluated the performance of our approach with different experimentations as
explained in previous section. Our best result was the detection rate of 97.5% with a
false positive rate of 10.18% and false negative rate of 1.5% for SVM. Following
sections explain more about the results and comparison between different approaches.

6.1 Detection Rate Evaluation by Different Number of Training and Test Sets

Table 2 shows the average detection rate for different numbers of training sets and
test sets using different classifiers. In all cases the detection accuracy of SVM is far
better than the other classifier. We can also see an improvement in detection rate by
increasing the number of training sets.

 Layered Security Architecture for Masquerade Attack Detection 261

Table 2. Average Detection Rate with Different Training and Test sets Size

Classifiers 50%Train
50%Test

55%Train
45%Test

60%Train
40%Test

65%Train
35%Test

70%Train
30%Test

75%Train
25%Test

80%Train
20%Test

85%Train
15%Test

SVM 95.83 96.02 96.59 96.55 96.92 96.89 97.05 97.55
NaïveBayes 91.06 91.2 91.51 91.65 91.61 91.83 91.28 91.34

6.2 ROC Score Evaluation by Different Number of Training and Test Sets

A receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot of
the sensitivity, or true positive rate vs. false positive rate with equivalent value
between 0 and 1. 1 means we have 100% detection rate with 0 false positive and 0
false negative. ROC analysis provides tools to select the optimal classifier. We
calculated the average ROC scores for different numbers of training and test sets. For
each user the ROC score is calculated and we then computed the average ROC for
each classifier. Table 3 shows the better performance of SVM for our approach.
Concretely SVM is famous for its use in this type of problem because it is a maximal-
margin classifier as compared to NaïveBayes which is probabilistic and it has been
known to be highly effective in text classification and providing better classification
results with less training data.

Table 3. Average ROC Score with Different Number of Train and Test sets Size

Classifiers 50%Train
50%Test

55%Train
45%Test

60%Train
40%Test

65%Train
35%Test

70%Train
30%Test

75%Train
25%Test

80%Train
20%Test

85%Train
15%Test

SVM 0.894 0.905 0.914 0.914 0.919 0.924 0.932 0.941
NaïveBayes 0.848 0.851 0.861 0.863 0.868 0.883 0.895 0.902

6.3 Comparison With Other Approaches

To show the advantages of the layered approach, a brief comparison between the
detection rate of our approach vs. the previous research works is been shown. As
indicted in table 4, layered approach shows better detection rate than other methods
either GUI [1] [2] [4] or Command line [5] [7] [8] approaches.

Table 2. Comparison of detection rate results achieved by different approaches

Metrics Layered
Approach

GUI Data Command Line Data

[1] [2] [4] [7]/[8] [5] [5]

Number of Users/Dataset used 16 3 8 3 Greenburg Greenburg SEA/1vs49
Detection Rate 97.55 91.41 94.88 91.7 70.9/82.1 87.3 80.1/94.8

7 Conclusion

In this paper, we described and developed a new framework for constructing
comprehensive feature vectors in different layers for the improvement of masquerade
detection accuracy. After capturing the events of a user we went through
preprocessing and then extracted relevant features for each application to then

262 H. Saljooghinejad and W.N. Bhukya

construct the relevant feature vectors. We considered six different layers to collect the
data, consisting of window data, mouse data, keyboard data, command line data, file
access data and authentication data. These feature vectors are classified for
masquerade detection using two classifiers namely SVM and NaïveBayes. Our
experiments show that this layered approach is well classified using SVM and thus
provides better masquerade detection capabilities than single layer approaches.
Moreover we observed the impact of increasing the number of training sets which led
to an improvement of the detection rate.

References

1. Garg, A., Rahalkar, R., Upadhyaya: Profiling Users in GUI Based Systems for
Masquerade Detection. In: Proc. of 2006 IEEE Information Assurance Workshop (IAW),
New York (2006)

2. Bhukya, W., Kommuru, S., Negi, A.: Masquerade Detection Based Upon GUI User
Profiling in Linux Systems. In: Cervesato, I. (ed.) ASIAN 2007. LNCS, vol. 4846, pp.
228–239. Springer, Heidelberg (2007)

3. Imsand, E.S., Hamilton Jr., J.A.: GUI Usage Analysis for Masquerade Detection. In:
Proceedings of 2007 IEEE, Information Assurance Workshop (IAW 2007), New York
(2007)

4. Saljooghinejad, H., Rathore, W.N.: Multi Application User Profiling for Masquerade
Attack Detection. In: Abraham, A., Lloret Mauri, J., Buford, J.F., Suzuki, J., Thampi, S.M.
(eds.) ACC 2011, Part II. CCIS, vol. 191, pp. 676–684. Springer, Heidelberg (2011)

5. Kim, H.S., Cha, S.D.: Empirical evaluation of svm-based masquerade detection using
Unix commands. Computers and Security 24(2), 160–168 (2005)

6. Schonlau, M., DuMouchel, W., Ju, W.-H., Karr, A.F., Theus, M., Vardi, Y.: Computer
Intrusion: Detecting Masquerades. Statistical Science 16, 58–74 (2001)

7. Maxion, R.A., Townsend, T.N.: Masquerade Detection Using Truncated Command Lines.
In: Proceedings of Int. Conf. on Dependable System & Networks (DSN 2002), pp. 219–
228 (2002)

8. Maxion, R.A.: Masquerade Detection Using Enriched Command Lines. In: Proceedings of
Int. Conference on Dependable Systems and Networks (DSN 2003), CA (June 2003)

9. Lane, T., Brodley, C.E.: An Application of Machine Learning to Anomaly Detection. In:
Proceedings of 20th National Information System Security Conf., vol. 1, pp. 366–380
(1997)

10. Joachims, T.: Text Categorization with SVM: Learning with Many Relevant Features. In:
Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer,
Heidelberg (1998)

11. Joachims, T.: Transductive Inference for Text Classification Using Support Vector
Machines. In: Proc. European Conf. Machine Learning (ECML 1999), June 27-30 (1999)

12. Pusara, M., Brodley, C.: User Re-authentication via mouse movements. In: Proceedings of
the ACM Workshop on Visualization and Data Mining for Computer Security, USA
(2004)

13. http://www.cs.waikato.ac.nz/ml/weka/
14. McCallum, A., Nigam, K.: A comparison of event models for naivebayes text

classification. In: Learning for Text Categorization, AAAI Workshop, Wisconsin, July 27,
pp. 41–48 (1998)

15. Chawla, N.V., Hall, L.O., Bowyer, K.W.: SMOTE: Synthetic Minority Oversampling
Technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 263–273, 2012.
© IFIP International Federation for Information Processing 2012

k-Anonymity-Based Horizontal Fragmentation
to Preserve Privacy in Data Outsourcing

Abbas Taheri Soodejani, Mohammad Ali Hadavi, and Rasool Jalili

Data and Network Security Laboratory,
 Department of Computer Engineering, Sharif University of Technology
{a.taheri@cert.,mhadavi@ce.,jalili@}sharif.edu

Abstract. This paper proposes a horizontal fragmentation method to preserve
privacy in data outsourcing. The basic idea is to identify sensitive tuples,
anonymize them based on a privacy model and store them at the external server.
The remaining non-sensitive tuples are also stored at the server side. While our
method departs from using encryption, it outsources all the data to the server;
the two important goals that existing methods are unable to achieve simulta-
neously. The main application of the method is for scenarios where encrypting
or not outsourcing sensitive data may not guarantee the privacy.

Keywords: Data outsourcing, privacy, horizontal fragmentation, k-anonymity.

1 Introduction

In fragmentation-based approach, some data columns are separated from each other to
hide their sensitive associations, called vertical fragmentation; and also some sensitive
tuples are separated from non-sensitive tuples, called horizontal fragmentation.

From the owner involvement in data storage view, fragmentation-based methods
fall into two categories: (1) Partial-outsourcing methods [1-3], which store a portion
of data at the owner side, (2) Full-outsourcing methods [4-6], which completely
outsource the data to the external server. Partial-outsourcing methods get involved the
owner in data storage and consequently data management, which is largely in contra-
diction with the goal of outsourcing, i.e., outsourcing data management. On the other
hand, full-outsourcing methods outsource all data exploiting data encryption. Conse-
quently, they suffer from the same disadvantages as the encryption-based approach.

Our method is based on horizontal fragmentation. The main idea is to identify and
k-anonymize the sensitive tuples. Anonymized tuples are stored as a fragment and
non-sensitive tuples are stored as a logically separate fragment, both at the server side.

This paper proposes a full-outsourcing method that unlike the existing full-
outsourcing methods does not use encryption but anonymization to provide privacy.
The method is appropriate for scenarios that even encrypting or even not outsourcing
the sensitive data cannot guarantee the privacy. In addition, our method inherits some
benefits of the horizontal fragmentation in [2] such as is consistency with database
normalization techniques, content-aware fragmentation, introducing a logical formal-
ism for our fragmentation and controlling inference using data dependencies.

264 A.T. Soodejani, M.A. Hadavi, and R. Jalili

The rest of this paper is organized as follows. Section 2 introduces the basic con-
cepts and definitions. Section 3 presents an algorithm for our fragmentation method.
Finally, section 4 concludes the paper.

2 Basic Concepts

Our view of relational databases is the formalism of first-order predicate logic with
equality. We describe how to formalize some relational concepts with this formalism.
Relational instance: we view an instance I of a relational database schema as a set

of expressions of the form R(a1, a2, ... , an), where R is an n-ary relation name in

and the ai’s are constants. Such expressions are called ground tuples.

Illness Treatment Info
Name Disease

Name Medicine

Name DoB ZIP
Andy Hypertension Andy Med A Andy 1981/01/03 94142
Alice Obesity Alice Med B Alice 1953/10/07 86342
Bob Aids David Med C Bob 1952/02/12 79232

David Heart disease Bob Med D David 1999/01/20 20688
Linda Cholera Bob Med E Linda 1989/01/03 94139
Sara Flu Tom Med X Sara 2000/01/20 40496
Tom Viral disease Tom Med Y Tom 1970/11/01 23567

Fig. 1. An instance (I) of a database schema

EXAMPLE 1. Consider the database instance I in Figure 1 (our running example
throughout the paper). The schema is = {Illness, Treatment, Info}, consisting of

three relations. The instance I of is a set of ground tuples Illness(Andy, Hyperten-

sion), Treatment(Andy, Med A), Info(Andy, 1981/01/03 , 94142), and the rest.

Database Dependency: Database dependencies are domain-specific declarations
reflecting the intended meaning of the stored data in a database. Along with the defi-
nition of a schema , a set of data dependencies is defined that consists of tuple-

generating dependencies (TGDs) and equality-generating dependencies (EGDs).

Definition 1 (Tuple-generating dependency). A tuple-generating dependency (TGD)
is a closed formula of the form ∀ (ϕ() ⟶ ∃ ψ(,)), where and are vectors
of variables; ϕ() is a (possibly empty) conjunction of atomic formulas, all with va-
riables among the variables in ; ψ(,) is a conjunction of atomic formulas, all with
variables among the variables in and .

Definition 2 (Equality-generating dependency). An equality-generating dependency
(EGD) is a closed formula of the form ∀ (ϕ() ⟶ ψ()), where is a vector of
variables; ϕ() is a conjunction of atomic formulas, all with variables among the
variables in ; ψ() is a conjunction of formulas of the form = ´, where and
´are distinct variables in .

k-Anonymity-Based Horizontal Fragmentation to Preserve Privacy in Data Outsourcing 265

For a dependency, we call ϕ the body and ψ the head of dependency, respectively.
EXAMPLE 2. In our example, set of dependencies can contain the following for-

mulas: d1: ∀n, d (Illness(n, d) ⟶ ∃b, z Info(n, b, z))
d2: ∀n, m (Treatment(n, m) ⟶ ∃d Illness(n, d))
d3: ∀n (Treatment(n, Med D) ∧ Treatment(n, Med E) ⟶ Illness(n, Aids))
d4: ∀n, d, z, d´, z´ (Info(n, d, z) ∧ Info(n, d´, z´) ⟶ (d = d´ ∧ z = z´))

The TGD d1 states that if a person is ill, his/her personal information must be availa-
ble; that is, for each tuple for a person, say ‘n’, in the relation Illness, there must be a
tuple for him/her in the relation Info. The TGD d2 states that if a person takes a medi-
cine, there must be a disease s/he contracted. The TGD d3 states that if someone takes
two medicines ‘Med D’ and ‘Med E’, s/he is certainly contracted disease ‘Aids’. The
EGD d4, states that personal information of each person is unique.

For a database schema , a set of dependencies , and an instance I of , there must

not exist a dependency d ∊ that is violated by I. The meaning of dependency viola-

tion is captured by Definition 3.

Definition 3 (Dependency violation). Let I be a database instance. The dependency
d is said to be violated by I if:

• There exists a vector of constants such that the instantiation of the body ϕ()[/] of variables with constants holds in I: I ⊨ ϕ()[/]
• but the instantiated head ∃ ψ(,) of variables with constants is false in I: I ⊭ ψ(,)[/] if d is a TGD (similarly, ψ() is false in I: I ⊭ ψ()[/] if d is

an EGD).

In other words, a dependency d is said to be violated if there exists a set of ground
tuples in I from which the body of d can be instantiated but no tuples exist in I that the
head of d can be fully instantiated from.

If the instance I violates some dependencies in , a procedure called Chase [7, 8] is

run on I. Running the chase on I, fixes the violated dependencies. In other words, the
result of the chase is an instance, called chased instance, that satisfies all dependencies in
. We refer the reader to [2, 9] for more details about the chase procedure.

2.1 Syntax of Privacy Constraints

Data owner’s privacy requirements are modeled through privacy constraints:
Definition 4 (Privacy constraint). Given a database schema = {R1, R2, ... , Rm}, a

privacy constraint c is a closed formula of the form ∃ α(), where is a vector of
variables; α() is a conjunction of positive atomic formulas, all with variables among
the variables in and constants from the domains of attributes.

In the above definition, α() is a conjunction of partial instantiation of Ri’s in .

Definition 4 states that if there exist tuples in the database instance that yield an

266 A.T. Soodejani, M.A. Hadavi, and R. Jalili

instantiation of the formula α(), then there is a privacy violation, we say a sensitive
knowledge is disclosed. The set of tuples that violate a privacy constraint is called the
violation set denoted by V. Note that we restrict the syntax of privacy constraints to
formulas without negation and with only conjunction as logical connective.

EXAMPLE 3. For the database schema in our example, the set of privacy con-

straints, denoted by , may contain the following formulas:

c1: ∃n Illness(n, Aids)
c2: ∃d Illness(Sara, d)
c3: ∃n, n´ (Illness(n, Cholera) Treatment(n´, Med X) Treatment (n´, Med Y))

where c1 states that if there exists a tuple with value ‘Aids’ for attribute Disease, a
privacy violation occur. In this case, the name of the person who contracted Aids is
the sensitive knowledge. Similar interpretation holds for c2. The constraint c3 states
that if there exist three tuples, one from relation Illness with name ‘n’ and disease
‘Cholera’ and the other two from relation Treatment with the same name ‘n´’ but one
with medicine ‘Med X’ and the other with medicine ‘Med Y’, then these tuples to-
gether violate the privacy. Here, the sensitive knowledge is a sensitive association
between n and n´, e.g., n´ will be contracted Cholera (say, because Cholera is an
infectious disease and all persons in the database live in the same place).
2.2 k-Anonymity

In some scenarios, encrypting or not outsourcing sensitive data may not guarantee the
privacy. For example, consider a healthcare database of patients’ records. Let the
records of the patients that contracted Aids be sensitive. To provide privacy, one may
encrypt or not outsource the records of the patients with disease Aids. Alice has dis-
ease Aids, hence she has a record in the database. The attacker Bob knows that Alice
has a disease but not exactly which kind of disease. He also knows that records with
disease Aids are sensitive. He examines the data and observes that there is no record
for Alice in the database. Therefore, he can infer that Alice has disease Aids. There
are other scenarios that encrypting or suppressing data do not guarantee the privacy.
In these scenarios, we exploit the k-anonymity concept to provide privacy.

Our method, inspired from the k-anonymity concept [10], aims to provide privacy
of degree k. To this aim, some fake tuples is produced in a way that for each sensitive
knowledge at least k - 1 sensitive but fake knowledge can be inferred from database
instance. Thus, the probability of a sensitive knowledge being real is equal to or less
than 1/k.

Let c be a violated constraint and V be its violation set. To provide privacy with
degree k for c, we produce k - 1 (possibly overlapping) violation sets, all violating the
same constraint c. Thus, for c, we have k violation sets and the sensitive knowledge
of c is anonymized with k - 1 fake knowledge.

For the sake of simplicity, for each violated constraint we assume that the number
of sensitive tuples in its violation set is one (generalizing the concepts to violation sets
with more than one tuple is straightforward). Also, we assume that the sensitive

k-Anonymity-Based Horizontal Fragmentation to Preserve Privacy in Data Outsourcing 267

knowledge is the value of an attribute S, called sensitive attribute. With this assump-
tion, the k-anonymity concept in our method is captured by the following principle:

Definition 5 (k-anonymity principle). For a violation set of a constraint c with sen-
sitive attribute S, there must be at least k - 1 fake violation sets all instantiated from c,
and the set of k violation sets contains at least k distinct values for attribute S.

EXAMPLE 4. Two tuples Illness(Bob, Aids) and Illness(Sara, Flu) violate the con-
straints c1 and c2, respectively, from Example 3. Let the attribute Name for c1 and
Disease for c2 be the sensitive attributes. We produce tuples Illness(Jim, Aids) and
Illness(Sara, Influenza) to 2-anonymize these two violation sets, respectively.
2.3 Syntax of Anonymization Rules

As mentioned in the previous section, the sensitive knowledge inferable from those
tuples violating a privacy constraint should be anonymized. For each privacy con-
straint we define an anonymization rule that states which attribute or combination of
attributes (that are sensitive) in which tuples should be anonymized.

Definition 6 (Anonymization rule). An anonymization rule for a privacy constraint c

of the form ∃ α(), is a formula of the form ∃ α() ∃ β(), where and α()
are those defined in Definition 4; is a (possibly empty) vector of variables; β() is a
conjunction of positive formulas all with free variables, bounded variables, and con-
stants; and k is the k-anonymity parameter.

In Definition 6, α() and β() are called the body and head of the rule, respective-
ly. According to the head we determine which tuples and, more specifically, which
attributes should be anonymized. The above formula states that if there exist tuples
that instantiate the body α(), consequently violating a constraint, then there must
exist k - 1 fake instantiations for the head β(). In fact, for a violated constraint, we
apply an anonymization rule to achieve the k-anonymity principle in Definition 5. In β(), constants are values of the attributes, such as name, that their values can identify
a sensitive knowledge; free variables represent a set of attributes, such as disease, that
their values are sensitive; and bounded variables represent the attributes that have no
role in the identification and have no association with the sensitive knowledge.

EXAMPLE 5. The set of anonymization rules, denoted by , corresponding to the

privacy constraints in Example 3 contains the following rules:

r1: ∃n Illness(n, Aids) IllnessFS(n, Aids)

r2: ∃d Illness(Sara, d) IllnessFS(Sara, d)

r3: ∃n, n´ (Illness(n, Cholera) Treatment(n´, Med X) Treatment(n´, Med Y))
 (TreatmentFS(n´, Med X) TreatmentFS(n´, Med Y))

Relation names above with subscripted FS indicate relations in the fragment FS. The
rule r1 states that to anonymize a tuple that instantiates Illness(n, Aids), violating

268 A.T. Soodejani, M.A. Hadavi, and R. Jalili

c1, k - 1 fake tuples should be produced that are instantiations of IllnessFS(n, Aids). In
the set of k - 1 fake tuples, the attribute Disease should take the value ‘Aids’ and the
attribute Name should be anonymized by taking k - 1 distinct values. Similar interpre-
tation holds for r2. The rule r3 states that if there exist tuples that instantiate c3, the
sensitive knowledge can be anonymized by generating 2(k - 1) fake tuples; k - 1 tuples
that instantiate TreatmentFS(n´, Med X), and k - 1 tuples that instantiate
TreatmentFS(n´, Med Y). For the attribute Name in the latter k - 1 tuples, we use the
same values used in the former k - 1 tuples.
3 Fragmentation

In this section, we first define the requirements of a correct horizontal fragmentation.
Then, we introduce an algorithm to produce a correct fragmentation.

3.1 Fragmentation Correctness

A fragmentation is correct if it satisfies three requirements: completeness, non-
redundancy, and privacy. The completeness requirement states that we must be able
to reconstruct the original database instance from its corresponding fragments. The
non-redundancy requirement states that the fragments should not have common tuples
and/or attributes (depending on the fragmentation method). The privacy requirement
states that the fragmentation must satisfy the privacy constraints so that no sensitive
knowledge can be inferred from the fragments. The completeness and privacy are two
mandatory requirements that any fragmentation method must satisfy them, while the
non-redundancy requirement can be considered optional as it is not applicable to all
methods. We define fragmentation correctness in our method as follows:

Definition 7 (Fragmentation correctness). Let be a database schema with a set of

dependencies . Let be a set of privacy constraints and k be the k-anonymity pa-

rameter. Also let = {FNS, FS} be a fragmentation for instance I of , where FS and

FNS are sensitive and non-sensitive fragments, respectively. is a correct fragmenta-

tion with respect to iff both the following conditions hold:

1. I ∩ (FNS ∪ FS) = I (Completeness requirement),
2. ∀ci ∊ : (FNS ∪ FS) ∪ ⊭ ci, otherwise P(ci) ≤ 1/k (Privacy requirement).

According to Definition 7, a fragmentation is complete if taking the union of the
fragments and removing the fake tuples, yields the original instance I. Also, it pre-
serves privacy if applying the dependencies, as deduction rules, to the tuples in FNS
and FS, as ground tuples, does not imply a privacy constraint. Otherwise, the probabil-
ity of the knowledge inferable from the constraint should be equal to or less than 1/k.

k-Anonymity-Based Horizontal Fragmentation to Preserve Privacy in Data Outsourcing 269

3.2 k-Anonymity-Based Horizontal Fragmentation Algorithm

Based on Definition 7, we present an algorithm that produces a correct fragmentation.
The general scheme of our method is showed in Figure 2. First, we identify those
tuples in I that instantiate some privacy constraints (step 1). These tuples are called
explicitly sensitive tuples and move them to FS (step 2). We also identify the tuples in
I that do not explicitly violate any constraint but implicitly violate some constraints,
i.e., by applying dependencies. These tuples are called implicitly sensitive tuples and
move them to FS (step 2). By this step, all explicitly and implicitly sensitive tuples are
moved to FS but there may be some tuples that can be used to gain extra information
about the sensitive tuples. Consider the tuples that their existence depends only on the
existence of other tuples, i.e., produced by only applying dependencies to other tuples.
These tuples are called dangling tuples and move them to FS (step 2). After step 2, all
remaining tuples in I are non-sensitive (because all sensitive tuples have been moved
to FS) and move them to FNS (step 3). For the explicitly sensitive tuples in step 1, we
produce some fake tuples (k - 1 violation sets) to k-anonymize their respective sensi-
tive knowledge and place them in FS (step 4). In addition to the fake violation sets,
some other fake tuples is produced and placed in FS (step 4), c.f. Section 3.3. Subse-
quently, we chase FS to satisfy all dependencies (step 5, not shown in Figure 2).

Fig. 2. General scheme of the proposed method

For each sensitive tuple in step 2 a metadata, e.g., a tuple id, is produced and
placed in FS along with that tuple (step 2´). These metadata are also stored at the
owner side and used to recognize the real tuples in the future accesses to FS.

3.3 Cascading Tuples

Consider tuples t1, t2, … , tn, where tuple tn is generated by applying dependency dn-1
to tuple tn-1 and tn-1 itself is generated by applying dependency dn-2 to tuple tn-2, … ,
finally tuple t2 is generated by applying dependency d1 to tuple t1. We call this phe-
nomenon cascading tuples. Let tuple tn be explicitly sensitive. Therefore, tuples
t1, t2, … , tn-1 are implicitly sensitive. According to the previous section, tn is
anonymized with some fake tuples and moved to FS. Tuples t1, t2, … , tn-1 are also
moved to FS. The attacker observes that t1, t2, … , tn-1 are not explicitly sensitive but
they are in FS and if dependencies d1, d2, … , dn-1 be applied consecutively to these
tuples, then tn will be generated. Thus, s/he infers that t1, t2, … , tn-1 are implicitly
sensitive tuples and consequently real tuples. Based on this observation, s/he infers

Sensitive tuples
identification

k-Anonymization

(3)Non-sensitive tuples

(1) Explicitly sensitive tuples

(4) Fake tuples

Owner Side Server Side

FNS

FS

Database instance (I)

(2) Sensitive tuples

Metadata

(2') Metadata

270 A.T. Soodejani, M.A. Hadavi, and R. Jalili

that tn is also a real tuple with probability 1 that is greater than value 1/k in Definition
7, violating the privacy requirement. To thwart this inference, we propose the follow-
ing solution:

For a set ∑ of TGDs we construct a directed graph, called dependency graph, de-
noted by DG, as follows:

• For each TGD ∀ (ϕ() ⟶ ∃ ψ(,)): for the set of atoms a1, a1, … , an in ϕ,

add a new node to DG, if it does not already exist.
• For each TGD ∀ (ϕ() ⟶ ∃ ψ(,)): add an edge from the node correspond-

ing to ϕ to the node that contain atom b of ψ.

Let tn be anonymized with k - 1 fake tuples f1, f2, … , fk-1. For each fi
(i=1, …, k - 1) we find a node in DG from which fi can be instantiated. Then, proceed
downwards to a leaf node and instantiate with fake values (values from domains of
attributes) all the nodes on the path to that leaf. In this way, the probability of the
tuples f1, f2, … , fk-1, and tn and their respective implicitly sensitive tuples being real, is
equal to or less than 1/k. Therefore, for each explicitly sensitive real tuple we produce
some fake tuples in the above way to prevent from inferences about the real tuples.

3.4 k-Anonymity-Based Horizontal Fragmentation Algorithm

The proposed algorithm consists of the following steps:

Step 1. Initially, fragments FS and FNS are empty. A temporary set fake_tuples is con-
sidered that will contain the fake tuples used to anonymize the sensitive tuples.

Step 2. The purpose of this step is to identify the explicitly sensitive tuples and move
them to FS. For each constraint α()[/] in , we identify vectors of constants

such that the instantiation α()[/] of variables with constants holds in the in-
put instance I, i.e., I ⊨ ϕ()[/]. This implies that I explicitly violates the constraint
(as a result, a sensitive knowledge can be inferred from I). To prevent this explicit
inference, we remove from I and move to FS the tuples participating in the instantia-
tion of () ⁄ , i.e., the violation set of the constraint. Also, we anonymize these
tuples with some fake tuples. The fake tuples are moved to fake_tuples.

Step 3. The purpose of this step is to identify the implicitly sensitive and dangling
tuples and move them to FS. By removing the explicitly sensitive tuples from I, some
dependencies may be violated by I, helping the attacker to gain extra information
about the sensitive tuples. To prevent this, for each TGD ∀ (ϕ() ⟶ ∃ ψ(,)) we
identify those tuples of constants , such that the instantiations () ⁄ and ψ(,)[/ , /] of variables , with constants , hold in the union of the input
instance and sensitive fragment. If both of the body and head are only in I or only in
FS, no inference can be done. Otherwise, the following inferences may be possible:

Inference type 1: The TGD body is in I and the TGD head is in FS:
I ⊨ ϕ()[/], I ⊭ ψ(,)[/ , /], FS ⊨ ψ(,)[/ , /]

k-Anonymity-Based Horizontal Fragmentation to Preserve Privacy in Data Outsourcing 271

In this case, an attacker can apply the TGD, produce its head, and implicitly infer
about some sensitive tuples, i.e., the head of TGD, in FS. To prevent this implicit infe-
rence, all parts of the TGD body must be moved to FS.

Inference type 2: The TGD body is in FS and the head is in I:
FS ⊨ ϕ()[/] , FS ⊭ ψ(,)[/ , /], I ⊨ ψ(,)[/ , /]

In this case, an attacker observes that there exist some tuples that are generated by the
TGD in I but the tuples in the TGD body are missing in I (dangling tuples), because
they are moved to FS. To prevent this inference, all parts of the TGD head must be
moved to FS.

Inference type 3: Some parts of the body are in I and some parts of the head are in
FS: I ∪ FS ⊨ ϕ()[/], I ∪ FS ⊨ ψ(,)[/ , /]

This case is a general type of the two previous types. In this case, all parts of the body
and all parts of the head that are in I must be moved to FS.
If any tuple is moved to FS in this step, we will repeat this step until there exists no
tuple that can be used for one or more of the above three types of inferences.

Step 4. By this step, there is no tuple in I that can be used for inference. Now, we
move the remaining tuples, i.e., non-sensitive tuples, to FNS.

Step 5. We add the fake tuples produced in Step 1, i.e., tuples in fake_tuples, to FS.
The newly added tuples may cause FS violating some dependencies. In this case, we
chase FS with the dependencies and produce a chased fragment satisfying all depen-
dencies. In the newly generated tuples, we replace the “labeled nulls” (see [9]) with
some fake values (values from domains of attributes). This prevents the attacker from
knowing that they are produced from some fake tuples.

Step 6. Finally, fragmentation consisting of FS and FNS is returned as the result of

the fragmentation algorithm.

Illness_FNS Treatment_FNS Info_FNS

Name Disease

Name Medicine

Name DoB ZIP
Andy Hypertension Andy Med A Andy 1981/01/03 94142
Alice Obesity Alice Med B Alice 1953/10/07 86342
David Heart disease David Med C David 1999/01/20 20688
Linda Cholera Linda 1989/01/03 94139

Illness_FS Treatment_FS Info_FS

Name Disease

Name Medicine

Name DoB ZIP
Bob Aids Bob Med D Bob 1952/02/12 79232
Jim Aids Bob Med E Sara 2000/01/20 40496
Sara Influenza Tom Med X Tom 1970/11/01 23567
Sara Flu Tom Med Y Jim 1959/02/15 78452
Tom Viral disease Mary Med X Mary 1972/04/03 63234
Mary Viral disease Mary Med Y

Fig. 3. A fragmentation for instance I in Figure 1

272 A.T. Soodejani, M.A. Hadavi, and R. Jalili

EXAMPLE 6. Consider the instance I, the set of dependencies , the set of privacy

constraints , and the set of anonymization rules , from Examples 1-5, respectively. We

fragmented I using our algorithm. The result is shown in Figure 3. Attribute values in
bold represent the tuples produced for cascading tuples. Attribute values in italic
represent the labeled nulls replaced with fake values; the chase applied the dependency d3 to the fake tuple Illness(Jim, Aids) and generated Info(Jim, labeled_null1, la-
beled_null2) and replaced them with values 1959/02/15 and 78452, respectively.

4 Conclusion

We presented a horizontal fragmentation that outsources all data but do not use en-
cryption to provide privacy. Also, an algorithm presented that produces a correct
fragmentation. The main application of the method is for scenarios where even en-
crypting or suppressing the sensitive data cannot guarantee the privacy.

Several issues remain: our method, to achieve k-anonymity, produces k - 1 fake
violation sets for each violated constraint. This may result in high storage and band-
width overheads for large volumes of sensitive data and large values of k. The
adoption of other ways, such as a probabilistic approach, to provide privacy with de-
gree k but with less than k - 1 fake violation sets, can be investigated as a future work.
In this paper, we employed a version of the chase, called standard chase, which put
some restrictions on the dependencies and constrains, such as being positive and con-
junctive. Investigating the applicability of other versions of the chase in the method
can be studied further. The anonymity principle of our method has some similarities
to the l-diversity privacy model [11]. Investigating other privacy models, such as
t-closeness [12], to provide a stronger privacy model for the proposed method can be
valuable.

References

1. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Enforcing Confidentiality Constraints on Sensitive Databases with Lightweight Trusted
Clients. In: Gudes, E., Vaidya, J. (eds.) Data and Applications Security 2009. LNCS,
vol. 5645, pp. 225–239. Springer, Heidelberg (2009)

2. Wiese, L.: Horizontal Fragmentation for Data Outsourcing with Formula-Based Confiden-
tiality Constraints. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010. LNCS,
vol. 6434, pp. 101–116. Springer, Heidelberg (2010)

3. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Keep a Few: Outsourcing Data While Maintaining Confidentiality. In: Backes, M.,
Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 440–455. Springer, Heidelberg
(2009)

4. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Combining fragmentation and encryption to protect privacy in data storage. ACM
Transactions on Information and System Security 13, 1–33 (2010)

k-Anonymity-Based Horizontal Fragmentation to Preserve Privacy in Data Outsourcing 273

5. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-molina, H., Kenthapadi, K., Motwani, R.,
Srivastava, U., Thomas, D., Xu, Y.: Two can keep a secret: A distributed architecture for
secure database services. In: Second Biennial Conference on Innovative Data Systems Re-
search, pp. 186–199 (2005)

6. Foresti, S.: Preserving privacy in data outsourcing. Springer-Verlag New York Inc. (2011)
7. Beeri, C., Vardi, M.Y.: A Proof Procedure for Data Dependencies. J. ACM 31, 718–741

(1984)
8. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM

Trans. Database Syst. 4, 455–469 (1979)
9. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query ans-

wering. Theoretical Computer Science 336, 89–124 (2005)
10. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing infor-

mation (abstract). In: Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, p. 188. ACM, Seattle (1998)

11. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: Privacy
beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1, 3 (2007)

12. Ninghui, L., Tiancheng, L., Venkatasubramanian, S.: t-Closeness: Privacy Beyond k-
Anonymity and l-Diversity. In: 23rd International Conference on Data Engineering, pp.
106–115 (2007)

Reconstruction Attack through

Classifier Analysis

Sébastien Gambs1,2, Ahmed Gmati1, and Michel Hurfin2

1 Université de Rennes 1,
Institut de Recherche en Informatique et Systèmes Aléatoires,

Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes Cedex, France
{sebastien.gambs,ahmed.gmati}@irisa.fr

2 Institut National de Recherche en Informatique et en Automatique,
INRIA Rennes - Bretagne Atlantique, France

michel.hurfin@inria.fr

Abstract. In this paper, we introduce a novel inference attack that
we coin as the reconstruction attack whose objective is to reconstruct
a probabilistic version of the original dataset on which a classifier was
learnt from the description of this classifier and possibly some auxiliary
information. In a nutshell, the reconstruction attack exploits the struc-
ture of the classifier in order to derive a probabilistic version of dataset
on which this model has been trained. Moreover, we propose a general
framework that can be used to assess the success of a reconstruction at-
tack in terms of a novel distance between the reconstructed and original
datasets. In case of multiple releases of classifiers, we also give a strategy
that can be used to merge the different reconstructed datasets into a
single coherent one that is closer to the original dataset than any of the
simple reconstructed datasets. Finally, we give an instantiation of this
reconstruction attack on a decision tree classifier that was learnt using
the algorithm C4.5 and evaluate experimentally its efficiency. The results
of this experimentation demonstrate that the proposed attack is able to
reconstruct a significant part of the original dataset, thus highlighting
the need to develop new learning algorithms whose output is specifically
tailored to mitigate the success of this type of attack.

Keywords: Privacy, Data Mining, Inference Attacks, Decision Trees.

1 Introduction

Data mining and Privacy may seem a priori to have two antagonist goals: Data
Mining is interested in discovering knowledge hidden within the data whereas
Privacy seeks to preserve the confidentiality of personal information. The main
challenge is to find how to extract useful knowledge while at the same time
preserving the privacy of sensitive information. Privacy-Preserving Data Mining
(PPDM) [14,1,3] addresses this challenge through the design of data mining
algorithms providing privacy guarantees while still ensuring a good level of utility
on the output of the learning algorithm.

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 274–281, 2012.
c© IFIP International Federation for Information Processing 2012

Reconstruction Attack through Classifier Analysis 275

In this work, we take a first step in this direction by introducing an inference
attack that we coined as the reconstruction attack. The main objective of this
attack is to reconstruct a probabilistic version of the original dataset on which
a classifier was learnt from the description of this classifier and possibly some
auxiliary information. We propose a general framework that can be used to as-
sess the success of a reconstruction attack in terms of a novel distance between
the reconstructed and original datasets. In case of multiple releases of classifiers,
we also give a strategy that can be used to merge the different reconstructed
datasets into a single one that is closer to the original dataset than any of the
simple reconstructed datasets. Finally, we give an instantiation of this recon-
struction attack on a decision tree classifier that was learnt using the algorithm
C4.5 and evaluate experimentally its efficiency. The results of this experimen-
tation demonstrate that the proposed attack is able to reconstruct a significant
part of the original dataset, thus highlighting the need to develop new learning
algorithms whose output is specifically tailored to mitigate the success of this
type of attack.

The outline of the paper is as follows. First, in Section 2, we describe the
notion decision tree that is necessary to understand our paper and we review
related work on inference attacks. In Section 3, we introduce the concept of
reconstruction attack together with the framework necessary to analyze and
reason on the success of this attack. Afterwards, in Section 4, we describe an
instantiation of a reconstruction attack on decision tree classifier and evaluate
its efficiency on a real dataset. Finally, we conclude in Section 5 by proposing
new avenues of research extending the current work.

2 Background and Related Work

Decision tree. Decision tree is a predictive method widely used in data mining
for classification tasks, which describes a dataset in the form of a top-down
taxonomy [4]. Usually, the input given to a decision tree induction algorithm is
a dataset D composed of n data points, each described by a set of d attributes
A = {A1, A2, A3, . . . , Ad}. One of these attributes is a special attribute Ac,
called the class attribute. The output of the induction algorithm is a rooted
tree in which each node is a test on one (or several) attribute(s) partitioning
the dataset into two disjoint subsets (i.e., depending on the result of the test,
the walk through the tree continues either by following the right or the left
branch if the tree is binary). Moreover in a rooted tree, the root is a node
without parent and leaves are nodes without children. The decision tree model
outputted by the induction algorithm can be used as a classifier C for the class
attribute Ac that can predict the class attribute of a new data point x? given
the description of its non-class attributes. The construction of a decision tree is
usually done in a top-down manner by first setting the root to be a test on the
attribute that is the most discriminative according to some splitting criterion
that varies across different tree induction algorithms. The path from the root
to a leaf is unique and it characterizes a group of individuals at the same time

276 S. Gambs, A. Gmati, and M. Hurfin

by the class at the leaf but also by the path followed. In his seminal work, Ross
Quinlan has introduced in 1986 an induction tree algorithm called ID3 (Iterative
Dichotomiser 3) [11]. Subsequently, Quinlan has developed an extension to this
algorithm called C4.5 [12], which incorporates several extensions such as the
possibility to handle continuous attributes or missing attribute values. However,
both C4.5 and ID3 rely on the notion of information gain, which is directly based
on the Shannon entropy [13], as a splitting criterion.

Inference attacks. An inference attack is a data mining process by which an
adversary that has access to some public information or the output of some
computation depending on the personal information of individuals (plus pos-
sibly some auxiliary information) can deduce private information about these
individuals that was not explicitly present in the data and that was normally
supposed to be protected. In the context of PPDM, a classification attack [8] and
regression attack [9] working on decision trees were proposed by Li and Sarkar.
The main objective of these two attacks is to reconstruct the attribute class of
some of the individuals that were present in the dataset on which the decision
tree has been trained. This can be seen as a special case of the reconstruction at-
tack that we propose in this work that aims at reconstructing not only the class
attribute of a data point but also the other attributes. It was also shown by Kifer
that the knowledge of the data distribution (which is sometimes public) can help
the adversary to cause a privacy breach. More precisely, Kifer has introduced
the deFinetti attack [5] that aims at building a classifier predicting the sensitive
attribute corresponding to a set of non-sensitive attributes. Finally, we refer the
reader to [7] for a study evaluating the usefulness of some privacy-preserving
techniques for preventing inference attacks.

3 Reconstruction Attack

3.1 Reconstruction Problem

In our setting, the adversary can observe a classifier C that has been computed
by running a learning algorithm on the original dataset Dorig. The main ob-
jective of the adversary is to conduct a reconstruction attack that reconstruct
a probabilistic version of this dataset, called Drec, from the description of the
classifier C (and possibly some auxiliary information Aux) that is as close as
possible from the original dataset Dorig according to a distance metric Dist that
we defined later.

Definition 1 (Probabilistic dataset). A probabilistic dataset D is composed
of n data points {x1, . . . , xn} such that each datapoint x corresponds to a set of
d attributes A = {A1, A2, A3, . . . , Ad}. Each attribute Ak has a domain of defi-
nition Vk that includes all the possible values of this attribute if this attribute is
categorical or corresponds to an interval [min,max] if the attribute is numerical.
The knowledge about a particular attribute is modeled by a probability distribution
over all the possible values of this attribute. If a particular value of the attribute

Reconstruction Attack through Classifier Analysis 277

gathers all the probability mass (i.e., its value is perfectly determined), then the
attribute is said to be deterministic. By extension, a probabilistic dataset whose
attributes are all deterministic (i.e., the knowledge about the dataset is perfect)
is called a deterministic dataset.

In this work, we assume that the original dataset Dorig is deterministic in the
sense that it contains no uncertainty about the value of a particular attribute
and no missing values. From this dataset Dorig, a classifier C is learnt and the
adversary will reconstruct a probabilistic dataset Drec. For the sake of simplicity
in this paper, we also assume that the adversary has no prior knowledge about
some attributes being more likely than others. Therefore, if for a particular
attribute Ak of a datapoint x, the adversary hesitates between two different
possibles values then both values are equally probable for him (i.e., uniform
prior). In the same manner, if the adversary knows that the value of a particular
attribute belongs to a restricted interval [a, b] then no value within this interval
seems more probable to him than other. Finally, in the situation in which the
adversary has absolutely no information about the value of a particular attribute,
we use the symbol “∗” to denote this absence of knowledge (i.e., Ak = ∗ if the
adversary has no knowledge about the value of the kth, attribute or even x = ∗
if the adversary has no information at all about a particular data point).

3.2 Evaluating the Quality of the Reconstruction

In order to evaluate the quality of the reconstruction, we define a distance be-
tween two datasets that quantifies how close these two datasets are. We assume
that the two datasets are of same size and that before the computation of this
distance they have been aligned in the sense that each data point of one dataset
has been paired with one (and only one) data point of the other dataset.

Definition 2 (Distance between probabilistic datasets). Let D and D′ be
two probabilistic datasets each containing n data points (i.e., respectively D =
{x1, . . . , xn} and D′ = {x′1, . . . , x′n}) such that each datapoint x corresponds to
a set of d attributes A = {A1, A2, A3, . . . , Ad}. The distance between these two
datasets Dist(D1, D2) is defined as

Dist(D1, D2) =
1

nd

n∑
i=1

d∑
k=1

H(Vk(x
′
i) ∪ Vk(xi))

H(Vk)
, (1)

for which Vk(x
′
i) ∪ Vk(xi) corresponds to the union of the values for the kth

attribute of xi and x′i, Vk is all the possible values of this kth attribute (or all the
discretized values in case of an interval) and H denotes the Shannon entropy.

Basically, this distance quantifies for each data point and each attribute, the
uncertainty that remains about the particular value of an attribute if the two
knowledges are pooled together. In particular, this distance is normalized and
will be equal to zero if and only if it is computed between two copies of the

278 S. Gambs, A. Gmati, and M. Hurfin

same deterministic dataset (e.g., Dist(Dorig,Dorig)= 0). On the other extreme,
let D∗ be a probabilistic dataset in which the adversary is totally ignorant of
all the attributes of all the data points (i.e., ∀k such that 1 ≤ k ≤ d, ∀i such
that 1 ≤ i ≤ n, Vk(xi) = ∗). In this situation, Dist(D∗,D∗)= 1 as the distance

simplifies to Dist(D∗, D∗) =
1

nd

∑n
i=1

∑d
k=1

H(|Vk|)
H(|Vk|)

=
nd

nd
. For a reconstructed

dataset Drec, the computation of the distance between this dataset and itself
returns a value between 0 and 1 that quantifies the level of uncertainty (or
conversely the amount of information) in this dataset.

While Definition 2 is generic enough to quantify the distance between two
probabilistic datasets, in our context we will mainly use it to compute the dis-
tance between the probabilistic dataset Drec and the deterministic dataset Dorig.
More precisely, we will use the value of Dist(Drec,Dorig) as the measure of success
of a reconstruction attack.

3.3 Continuous Release of Information

In this work, we are also interested in the situation in which a classifier is re-
leased on a regular basis (i.e., not just once), after the additions of new data
points to the dataset. We now define the notion of compatibility between two
probabilistic datasets, which is in a sense also a measure of distance between
these two datasets.

Definition 3 (Compatibility between probabilistic datasets). Let D and
D′ be two probabilistic datasets each containing n data points (i.e., respectively
D = {x1, . . . , xn} and D′ = {x′1, . . . , x′n}) such that each datapoint x corresponds
to a set of d attributes A = {A1, A2, A3, . . . , Ad}. The compatibility between
these two datasets Comp(D1, D2) is defined as

Comp(D1, D2) =
1

nd

n∑
i=1

d∑
k=1

H(Vk(x
′
i) ∩ Vk(xi))

H(Vk)
, (2)

for which Vk(x
′
i)∩Vk(xi) corresponds to the intersection of the values for the kth

attribute of xi and x′i, Vk is all the possible values of this kth attribute (or all the
discretized values in case of an interval) and H denotes the Shannon entropy.

Note that the formula of the compatibility between two datasets is the same
as for the distance with the exception of using the intersection rather than the
union when pooling together two different knowledges about the possible values
of the kth attribute of a data point x. The main objective of the compatibility is
to measure how much the uncertainty is reduced by combining the two different
datasets into one. Suppose for instance, that D and D′ are respectively the
reconstruction obtained by performing a reconstruction attack on two different
classifiers C and C′. .

Merging reconstructed data sets. Let us consider that a first classifier C has been
generated at some point in the past. Later, in the future, new records have been

Reconstruction Attack through Classifier Analysis 279

added to the dataset and another classifier C′ is learnt on this updated version
of the dataset. We assume that an adversary can observe the two classifiers C
and C′ and apply a reconstruction attack on C and C′ to build respectively two
probabilistic datasets D and D′. In order to merge these two datasets D and D′
To merge the two probabilistic datasets D and D′ into one single probabilistic
dataset, denoted Drec, the adversary can adopt the following strategy.

1. Apply the reconstruction attack on the classifiers C and C′ to obtain re-
spectively the reconstructed datasets D and D′ (we assume without loss of
generality that the size of D′ is smaller or equal to the size of D).

2. Pad D′ with extra data points that have perfect uncertainty (i.e., x = ∗)
until the size of D′ is the same as the size of D.

3. Apply the Hungarian algorithm [6,10] in order to align D and D′. Defining
an alignment amounts to sort one of the datasets such that the ith record xi

of D corresponds to the ith record x′i of D′. The Hungarian method solves
the alignment problem and finds the optimal solution that maximizes the
compatibility Comp(D , D′) between two sets of n data points.

4. Merge D and D′ into a single reconstructed dataset Drec by using the
alignment computed in the previous step. For each attribute Ak, the domain
of definition the merged point is made of the intersection of Vk(x) ∩ Vk(x

′)
if this intersection is non-empty and set to the default value ∗ otherwise.

5. Compute the distance metric Dist(Drec,Dorig) for evaluating the success of
the reconstruction attack.

4 Reconstruction Attack on Decision Tree

Let C be a classifier that has been computed by running a C4.5 algorithm on
the original dataset Dorig. This decision tree classifier is the input of our recon-
struction algorithm. For each branch of the tree, the sequence of tests composing
this branch form the description of probabilistic data points that will be recon-
structed out of this branch. The reconstruction algorithms follows a branch either
in a top-down manner and refines progressively the domain of definition Vk(x)
for each attribute Ak of a probabilistic data point x until the leaf is reached.
As we have run a version of C4.5 in which each leaf also contains the number
of data points for each class, we can add the corresponding number of proba-
bilistic data points of each class with the refined description to the probabilistic
dataset D under construction. The algorithm explores all the branches of tree
to reconstruct the whole probabilistic dataset D.

To evaluate the success of this reconstruction attack on a decision tree clas-
sifier, we have run an experiment on the “Adult” dataset from UCI Machine
Learning Repository [2]. This dataset is composed of d = 14 attributes such as
age or marital status, including the income attribute, which is either “> 50K”
or “<= 50” and that we have used as class attribute during the construction
of the decision tree. To construct the C4.5 classifiers, we have used the WEKA
software [15]. Moreover, for each attribute Ak, we have computed its domain of

280 S. Gambs, A. Gmati, and M. Hurfin

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160 180 200

D
is

ta
nc

es

t

d(Drec(200);Dorig)

d(Drec(t);Dorig)

Fig. 1. Distance between a reconstructed dataset D′ and Dorig when the reconstruction
attack is run on a decision tree learnt on a number of data points varying between 1
and 200 (the size of Dorig)

definition Vk, which is defined by the finite set of possible values. For continu-
ous attribute such as age, the extremal values observed the complete database
were used to determine the minimal and maximal possible values. The exper-
imentations were performed in a random subset of 200 records of the original
“Adult” dataset and not on the complete database. We denote this subset of
200 records by Dorig and the reconstruction attack aims at reconstructing this
particular dataset. The metric Dist is used to evaluate the success of the recon-
struction attack. The smaller this distance, the more accurate the reconstruction
is. Figure 1 displays the result of our experiments obtained when computing the
distance between a reconstructed learnt on a dataset whose number of points
varies between 1 to 200. Not surprisingly, we can see from these results that a
reconstruction attack performed on a classifier that contains more information
about the original dataset leads to a reconstruction that is more accurate (i.e.,
closer to the original dataset).

We have also conducted several experiments in which two reconstructed
datasets learnt from classifiers released at different time where merged using
the algorithm described in Section 3.3. Our main finding is that it is possible
to obtain a limited gain in the order of 0.01 or 0.02 when combining the two
datasets (we leave the details of these experiments for the full version of the
paper due to lack of space).

5 Conclusion

In this paper, we have introduced the concept of reconstruction attack whose aim
is to reconstruct a probabilistic version of the original dataset from the descrip-
tion of a classifier. We have also proposed a novel distance based on information
entropy that measures the closeness between the original and the reconstructed

Reconstruction Attack through Classifier Analysis 281

datasets and can be used to assess the success of the attack. Moreover, we have
design a specific instance of a reconstruction attack and demonstrate his effi-
ciency on a real dataset coming from the UCI repository. The current work is
only the first step towards the development of a framework for evaluating the
impact of releasing a classifier for the privacy of the dataset. As future works,
we want to design reconstruction attack for other types of classifiers such as
neural networks or ensemble methods such as boosting. We also want to develop
a method for merging several reconstructed datasets into a single coherent one
in case of multiple releases.

References

1. Aggarwal, C.C., Yu, P.S. (eds.): Privacy-Preserving Data Mining - Models and
Algorithms. Advances in Database Systems, vol. 34. Springer (2008)

2. Asuncion, A., Frank, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

3. Bertino, E., Lin, D., Jiang, W.: A survey of quantification of privacy preserving
data mining algorithms. In: Aggarwal, Yu (eds.) [1], pp. 183–205

4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New
York (2001)

5. Kifer, D.: Attacks on privacy and definetti’s theorem. In: Çetintemel, U., Zdonik,
S.B., Kossmann, D., Tatbul, N. (eds.) SIGMOD Conf., pp. 127–138. ACM (2009)

6. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research
Logistics Quarterly 2, 83–97 (1955)

7. Li, C., Shirani-Mehr, H., Yang, X.: Protecting Individual Information Against In-
ference Attacks in Data Publishing. In: Kotagiri, R., Radha Krishna, P., Mohania,
M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 422–433.
Springer, Heidelberg (2007)

8. Li, X.B., Sarkar, S.: Against classification attacks: A decision tree pruning approach
to privacy protection in data mining. Operations Research 57(6), 1496–1509 (2009)

9. Li, X.B., Sarkar, S.: Protecting privacy against regression attacks in predictive
data mining. In: Galletta, D.F., Liang, T.P. (eds.) ICIS, pp. 1–15. Association for
Information Systems (2011)

10. Munkres, J.: Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics 5, 32–38 (1957)

11. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)
12. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
13. Shannon, C.E.: A mathematical theory of communication. The Bell Systems Tech-

nical Journal 27, 379–423, 623–656 (1948)
14. Verykios, V.S., Bertino, E., Fovino, I.N., Provenza, L.P., Saygin, Y., Theodoridis,

Y.: State-of-the-art in privacy preserving data mining. SIGMOD Record 33(1),
50–57 (2004)

15. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann (1999)

http://archive.ics.uci.edu/ml

Distributed Data Federation without Disclosure

of User Existence

Takao Takenouchi1,2, Takahiro Kawamura2, and Akihiko Ohsuga2

1 Knowledge Discovery Research Laboratories, NEC Corporation
takenouchi@bu.jp.nec.com

2 Graduate School of Information Systems,
The University of Electro-Communications

Abstract. Service providers collect user’s personal information rele-
vant to their businesses. Personal information stored by different service
providers is expected to be combined to make new services. However,
specific user records risk being identified from the combined personal
information, and the user’s sensitive information may be revealed. Also,
personal information collected by a service provider must not be dis-
closed to other service providers because of security issues. Thus, several
researchers have been investigating distributed anonymization protocols,
which combine the personal information stored by the providers and san-
itize it to ensure an anonymity policy with minimum disclosure. However,
when providers have different sets of the users, there is a problem that
the existence of users in either service provider may be revealed. This
paper introduces a new notion, δ-max-site-presence, which indicates the
probability of the existence of users being revealed in a distributed en-
vironment and a new distributed anonymization protocol for hiding the
existence of users. Our evaluation results show that the proposed pro-
tocol can anonymize users in accordance with the policy of hiding their
existence and user anonymity without too much information loss.

Keywords: Distributed Anonymization, Privacy Preserving Data Pub-
lishing, k-anonymity.

1 Introduction

Service providers have recently started providing applications on cloud plat-
forms, on which they collect vast amounts of users’ personal information for
their businesses. Personal information stored by different service providers is ex-
pected to be combined to make new services. For example, we expect a usage case
in which an online video service (Provider A) and a finance company (Provider
B) cooperate. In this case, Provider A has the information of the video titles
rented by its customers and the times they watch them, and Provider B has
the information of the customers’ incomes. They then combine the three types
of information and send it all to an advertising agency (Provider C) that per-
forms segmentation analyses for targeting advertisements. In this case, Provider
C will find three clusters: “daytime viewers”, “high-income nighttime viewers”,

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 282–297, 2012.
c© IFIP International Federation for Information Processing 2012

Distributed Data Federation without Disclosure of User Existence 283

Provider C

(Data Consumer)

Provider A

(Data Holder)

Provider B

(Data Holder)

personal info.

Application B’s

personal info.

Application A’s Distributed Anonymization

Protocol

Joined-anonymized tablePolicy Policy

Fig. 1. Agents and distributed anonymization protocol for data federation

and “low-income nighttime viewers”. However, if Provider C cannot obtain the
income information, they will find only two clusters: “daytime viewers” and
“nighttime viewers”.

Although combining the personal information will generate new beneficial in-
formation, it may cause two problems. First, a specific user record could be
identified from the combination of personal information, and the user’s sensitive
information may be revealed. Second, personal information stored by a service
provider must not be disclosed to other service providers, because the personal
information on cloud platforms is managed separately and protected by a se-
curity policy. Also, because the personal information is an asset of the service
providers, the providers need to combine it with minimum disclosure.

Thus, several researchers have been investigating distributed anonymization
protocols [4], which combine the personal information stored by different providers
and sanitize it to ensure an anonymity policy with minimum disclosure. We ex-
pect that distributed anonymization protocols will be used for data federations
between the applications of the service providers on a cloud platform. By using dis-
tributed anonymization protocols, the providers can create a joined-anonymized
table, which is a combination of the tables of Providers A and B that is sanitized
while ensuring the anonymity policy, and send it to other providers (Fig. 1).

However, when the service providers have different sets of users, there is a
problem that the existence of a user in the data of each service provider may be
revealed. The information of the existence of a user is sensitive information for
that user. For example, if a user’s information is stored by a financial service,
then some people may guess that the user has debts.

In this paper, we consider the problem of revealing the existence of a user on
each provider in distributed anonymization. This problem occurs when the at-
tributes of the personal information are vertically partitioned, which means that
the providers have different attributes of the user, and the providers have differ-
ent sets of users. This paper consists of two main contributions. First, this paper
propose a new notion, named δ-max-site-presence, which indicates the proba-
bility of the existence of the users being revealed in a distributed environment.
This is an extension of an existing notion, named δ-presence, which indicates
the probability of the existence of a user being revealed in a local environment.
Second, this paper introduces a new distributed anonymization protocol that
hides the existence of a user in each database.

The rest of this paper is organized as follows. In Section 2, we discuss re-
lated works. Section 3 describes distributed anonymization and the problems of

284 T. Takenouchi, T. Kawamura, and A. Ohsuga

hiding the users’ existence. Section 4 proposes the new notion, named δ-max-
site-presence. In Section 5, we propose a new anonymization protocol that hides
the existence. Next, we evaluate the utility of the proposed protocol in Section
6 and evaluate the security in Section 7. Then, in Section 8, we conclude the
paper in Section 8.

2 Related Works

Anonymization is a method to sanitize personal information to prevent a specific
user being identified. In this paper, we named a set of attributes that may
uniquely identify a user quasi-identifier. Also, we named the attributes that users
would not like to be revealed sensitive attributes. There is a well-known notion,
named k-anonymity [12,13], which indicates the anonymity of a user in a table.
If a table satisfies the condition that the number of records identified by each
value of the quasi-identifier is at least k, then the table satisfies k-anonymity.

Distributed anonymization is a method to join and anonymize the table stored
by some providers [4]. Distributed anonymization can be categorized into two
types: vertically partitioned data and horizontally partitioned data. Vertically
partitioned data means that each provider has different types of attributes from
the other provider. On the other hand, horizontally partitioned data means that
each provider has different users from the other provider.

There are some distributed anonymization methods in vertically partitioned
data [10,14,6]. Mohammed et al. [10,14] used the top-down approach and some
secure computation protocols [9,15] in order to join the tables in multiple
providers. The top-down approach is an algorithm to specialize a value qid of a
quasi-identifier in the tables step by step. At the start, all qids in the tables are
generalized as top level, such as “*”. The term specialize here means dividing a
group identified by a qid into two groups on a division point. After the division,
the set of the identifiers of the users of the two divided groups is sent to the
other provider. Then, the providers continue dividing the tables as long as the
tables satisfy k-anonymity. Finally, the providers join the divided tables in order
to create the joined-anonymized table. Some secure computation protocols are
used in order to calculate a heuristic function which decides the division point.
By using secure computation protocols, the providers can calculate the heuris-
tic function without sharing of the providers’ local data. Jiang and Clifton [6]
used the bottom-up approach to join the tables in multiple providers. In this
approach, all providers anonymize their tables locally and join with each other
by checking anonymity securely by using cryptographic technology.

Jurczyk and Xiong [7] proposed horizontal distributed anonymization. They
mentioned a new privacy problem in which the location of a data holder is
revealed by differences in providers’ data types. They used some secure com-
putations and extended Mondrian[8], which is a well-known top-down approach
algorithm. They also proposed a new notion, named �-site-diversity.

Also, there is a method to hide the existence of a user in a local environment.
Nergiz et al. [11] proposed δ-presence and the algorithm in order to satisfy

Distributed Data Federation without Disclosure of User Existence 285

this. However, this algorithm is not for a distributed environment. Therefore,
we propose a new notion, named δ-max-site-presence, and a new distributed
anonymization protocol for a distributed environment.

3 Problem of Distributed Anonymization Protocol

3.1 Distributed Anonymization

In this paper, we assumed that Providers A and B have vertically partitioned
tables TA and TB and create joined-anonymized table T ∗:

TA(UID,QIDA) , TB(UID,QIDB, SA) , T ∗(QIDA, QIDB, SA)

where QIDA, QIDB is the quasi-identifier, SA is a sensitive attribute, and UID
is a common identifier of a user in Providers A and B. TA and TB are joined by
UID and anonymized into table T ∗. Also, UID is a unique identifier of the record
in TA and TB. In distributed anonymization, a joined-anonymized table should
be created with minimum disclosure of personal information. This is because the
providers in real-world businesses have difficulty fully trusting each other.

3.2 Problem of Revealing the Existence of a User

Existing distributed anonymization protocols assume that the sets of the users in
Providers A and B are the same [4,10,7,6]. In other words, each user who exists
in Provider A also exists in Provider B. However, in the future, many providers
are expected to federate with each other. Therefore, it is necessary to support
the case in which the sets of the users in Providers A and B are not the same.
However, if we use existing distributed anonymization protocols in these cases,
the joined-anonymized table problem and the UID sending problem will occur.

In the joined-anonymized table problem, a provider can infer the existence
of a user in the other provider by comparing the table of the first provider
and the joined-anonymized table. For example, let us assume a case in which
Provider A has Table 1(a) as TA, Provider B has Table 1(b) as TB, and the
joined-anonymized table T ∗ is divided on 50K of income like Table 1(c). In this
case, the number of records where income <50K in T ∗ (Table 1(c)) is two, and
also the number of records where income <50K in TA is two: User 1 and User
2. Thus, Provider A can infer that Users 1 and 2 must exist in T ∗ (Table 1(c)).
Furthermore, because T ∗ contains a common user who exists both on TA and
TB, Provider A can certainly infer that Users 1 and 2 also exist in Provider B.
In contrast, if T ∗ is divided on 60K like Table 1(d), Provider A can infer only
that two of Users 1, 2, and 3 exist in Provider B.

In the UID sending problem, the existence of a user in a provider is revealed
to the other provider when UIDs are sent. For example, if a provider sends the
UIDs that exist in the provider to the other provider, then the receiving provider
can easily infer that the received UIDs must exist in the sending provider. Also, if
providers calculate common users beforehand, the existence of a user is revealed.

286 T. Takenouchi, T. Kawamura, and A. Ohsuga

Table 1. Example of the joined-anonymized table problem

income time title

<50K 16:00- X movie

<50K 16:00- Ysports

50K<= -15:59 X movie

50K<= -15:59 Ysports

UID income

User 1 30K

User 2 40K

User 3 55K

User 5 60K

User 6 65K

User 8 70K

(a) Provider A () (b) Provider B () (c) Joined-anonymized

table () with

disclosure of the existence

income time title

<60K 16:00- X movie

<60K 16:00- Ysports

60K<= -15:59 X movie

60K<= -15:59 Ysports

A
T

B
T

*

T

(d) Joined-anonymized

table () without

disclosure of the existence
UID time title

User 1 16:00 X movie

User 2 17:00 Ysports

User 4 17:30 X movie

User 5 16:30 Ysports

User 6 15:00 X movie

User 7 12:00 Ysports

User 9 14:00 Ysports

User 10 14:30 X movie

*

T

4 Proposed Notion: δ-max-site-presence

This section proposes a new notion that indicates the probability of the dis-
closure of the existence of a user in order to solve the joined-anonymized table
problem. There is a existing notion, named δ-presence[11], which indicates the
probability of the disclosure of the existence of a user by comparing two ta-
bles in a centralized environment. Thus, by applying δ-presence to a distributed
environment, we propose a new notion, named δ-max-site-presence.

Let us assume that there are Tables T1 and T2, which is subset of records of
T1. Let |T | be the number of records in Table T . Nergiz et al. [11] define the

probability that a record in T1 also exists in T2 is |T2|
|T1| . We apply this definition

of the probability of the existence of a user being disclosed to a distributed
environment. For example, we assumed that Provider A’s TA is Table 1(a),
Provider B’s Table TB is Table 1(b), and the joined-anonymized table is Table
1(d). In this case, the number of records of income <60K in TA is three: Users
1, 2, and 3. Moreover, the number of records of income <60K in T ∗(Table 1(d))
is two. According to the definition mentioned above, the probability that Users
1, 2, and 3 in TA exist in TB is 2

3 . Furthermore, because T ∗ is created from a
common user in TA and TB, the probability that Users 1, 2, and 3 in Provider
A also exist in Provider B is 2

3 .
We define a new notion that indicates the probability of the existence of a

user in a provider as δ-max-site-presence.

Definition 1. (δ-max-site-presence) Let TA and TB be the tables stored by
Providers A and B. Note that TA and TB have different attributes. Also, let
T ∗ be the joined-anonymized table, T ∗n be the table that consists of attributes of
Provider n ∈ {A,B}, and valuesn be the set of values of any set of attributes
in T ∗n . We represent T [v] as the table that consists of records that are identified
by value v in the table T . Then, we define that T ∗ satisfies δ-max-site-presence
if the probability of the existence of all users in other providers being disclosed
from the view of Providers A and B is less than δ as follows:

|T ∗[vn,i]|
|Tn[vn,i]|

≤ δ ∀vn,i ∈ valuesn ∀n ∈ {A,B} (1)

Distributed Data Federation without Disclosure of User Existence 287

For example, in Table 1(d), the valuesA is the set of { <60K, 60K≤ }. In this
example, let us consider <60K. When vA,i is <60K, the number of records of
income <60K in Table 1(d) is two. This means |T ∗[vA,i]| = 2. Also, the number of
records of income <60K in Table 1(a) is three. This means |TA[vA,i]| = 3. Also,
let us consider valuesB. The valuesB is the set of {(16:00-,X movie),(16:00-
,Y sports),(-15:59,X movie),(-15:59,Y sports)}. When vB,i is (16:00-,X movie),
the number of records of (16:00-,X movie) in Table 1(d) is one. This means
|T ∗[vB,i]| = 1. Also, the number of records of (16:00-,X movie) in Table 1(a) is
two. This means |TB[vB,i]| = 2. Thus, Table 1(d) satisfies 2

3 -max-site-presence.

5 Proposed Protocol: Dummy User Protocol

This section proposes a new distributed anonymization protocol named Dummy
user protocol, which does not disclose the existence of a user. The proposed pro-
tocol is designed to create T ∗ that has as much detailed information as possible
and satisfies the following requirements:

Requirement 1. T ∗ must satisfy k-anonymity and δ-max-site-presence.
Requirement 2. The disclosed information that is more detailed than T ∗ should

be minimized.

In addition, every provider behaves semi-honestly. In this trust model, the
provider who has received the messages of the protocols will analyze them to
gain new knowledge, but the provider must follow the protocol. We assume that
the providers partly trust each other in the real-world business. Therefore, we
think this trust model is reasonable.

5.1 Dummy User Protocol

To solve the UID sending problem (Section 3.2), we introduce dummy user and
propose Dummy user protocol. In this protocol, a provider treats the users who
do not exist in the provider as if they actually did. In addition, we call the users
who really exist in the provider existing users. By using the dummy user, it
will be difficult for a provider to distinguish whether the received UID is of an
existing or a dummy user.

As the same as the work of Jurczyk and Xiong [7], Dummy user protocol is
based on Mondrian [8], which is widely used as a top-down approach algorithm,
and consists of two sub protocols: Dividing protocol and Joining protocol. First,
Providers A and B execute Dividing protocol to create an internal anonymized
table T ∗n(n ∈ {A,B}) locally (Fig. 2(a)). After that, Provider C executes Join-
ing protocol to obtain the joined-anonymized table T ∗ by joining the T ∗n that
Provider n has. Table 2 shows an example of T ∗n and T ∗. The combination of in-
come and watching time is a quasi-identifier and the title is a sensitive attribute.

Dividing Protocol: Step 1 At the first step, Providers A and B assign dummy
users in their tables. We assume that each provider knows the parent population

288 T. Takenouchi, T. Kawamura, and A. Ohsuga

Send # of users after division

A B

Initialize and

assign dummy user

Split recursively

*

n
T

Delete dummy users

Step

1

Step

2

Step

3

(a) Overview of Dividing protocol

Select max

normalized range

Calculate # of dummy

users after division

Select the best candidate

Calculate # of users in

Provider n after division

Verify k-anonymity

(c) Protocol for heuristic function(b) Protocol for verification

Dividing

provider

Nondividing

provider

secure comp.

secure comp.

set cardinality

threshold

Verify –max-site-presenceδ

set cardinality

set cardinality

threshold

comparison

set cardinality

secure k-nn

*

n
T

Dividing

provider

Nondividing

provider

Fig. 2. Protocol sequences of Dividing protocol

function split(Up: a set of UIDs including dummy user’s UIDs)
1: update the dummy values of all dummy users in Up

2: point ⇐ decide division point by the heuristic function
3: verify k-anonymity and δ-max-site-presence of the dividing on the point
4: if the verification is failed then
5: give up the split of Up

6: endif
7: if the point is on my side then
8: divide my T ∗

n on the point, and send the UIDs to the nondividing provider
9: else
10: receive the UIDs from the dividing provider, and divide my T ∗

n

11: endif
12: Uhi, Ulow ⇐ UIDs after the dividing, call split(Uhi), split(Ulow) recursively

Fig. 3. Algorithm of Step 2 of Dividing protocol

U beforehand. Here, let UA be the set of the existing users in Provider A, UB

be the set of the existing users in Provider B, and UO be the set of the users
who do not exist in Providers A or B. Then, U can represent that U = UA ∪
UB ∪ UO (UO �= φ, UA ∩ UB �= φ). This assumption is satisfied if Providers A
and B use the same centralized authentication systems like Facebook Connect.
In this case, all users registered in the authentication provider are the parent
population U . Then, Provider A assigns U − UA as a dummy user of Provider
A, and Provider B assigns U − UB as dummy user of Provider B.

Next, Providers A and B initialize T ∗n by generalizing all values in T ∗n into
top state (Table 2(a)(b)(Initial)). The internal anonymized tables are T ∗A (GID,
userIDs, QIDA), T

∗
B (GID, userIDs, QIDB, userCounts). GID is a sequentially

assigned identifier of a record of the T ∗n . userIDs is a set of UIDs in a record of
the T ∗n . userCounts is the count of common users in userIDs for each value of
the sensitive attribute. userCounts is calculated after all dividing is finished.

Dividing Protocol: Step 2 Providers A and B execute a split function that
divides T ∗A and T ∗B by communicating with each other (Fig. 3). First, Providers

Distributed Data Federation without Disclosure of User Existence 289

A and B assign the qid for a dummy user. We call these values dummy values.
To make it difficult to distinguish between a dummy user and a existing user
in a provider from the view of the other provider, the providers assign dummy
values in accordance with the distribution of the existing users’ qids.

Next, the providers decide the division point by using the heuristic function
(Section 5.2). After that, the providers verify whether the T ∗ that is divided on
the division point satisfies k-anonymity and δ-max-site-presence(Fig. 2(b)). In
this verification, the providers use cardinality protocols and cardinality threshold
protocols of secure set intersection[3]. The cardinality protocols can calculate
the number of the intersections of two private sets, and the cardinality threshold
protocols can compare the number of the intersections and a given number.

To verify the k-anonymity, the providers use a cardinality threshold protocol
and check whether the number of the common users in the divided group is
larger than k. The input parameters are two sets: the set of UIDs of the existing
users in the group after division by the dividing provider, who has an attribute of
the dividing point, and the set of UIDs of the existing users in the group before
division by the other provider (nondividing provider).

To verify the δ-max-site-presence, the providers use a cardinality protocol and
cardinality threshold protocol. By using these protocols, the providers check the
following conditional formula for each Provider n (n ∈ {A,B}) :

|T ∗[vn,i]| ≤ δ ∗ |Tn[vn,i]| ∀vn,i ∈ valuesn (2)

When Provider n is a nondividing provider, Provider n cannot calculate |Tn[vn,i]|
locally, because the nondividing provider does not know the groups after division.
Therefore, the provider uses the cardinality protocol. The input parameters are
the set of UIDs of the group after division by the dividing provider and the
set of the existing users’ UIDs of the group before division by the nondividing
provider. Then, the nondividing provider obtains |Tn[vn,i]|. Thus, the providers
can calculate δ ∗ |Tn[vn,i]| locally. Then, the providers verify the conditional
formula (2) by using the cardinality threshold protocol that has the same inputs
as verifying k-anonymity.

After that, if T ∗ satisfies k-anonymity and δ-max-site-presence, the dividing
providers divide T ∗n . Table 2(a)(b)(First division) list the results of the first divi-
sion. In these divisions, the division point is 19:00 of watching time in Provider
B. In this case, Provider B divides T ∗B on the division point locally and then
sends the UIDs of the groups before and after division to Provider A. Then,
Provider A divides T ∗A along with the received UIDs.

Finally, the providers call the split function recursively with the groups after
division. Table 2(a)(b)(Second division) list the results of the second division.
In this case, the second division point is 40K of income in Provider A.

Dividing Protocol: Step 3 After finishing all dividing, Provider B calculates
userCounts by using the cardinality protocol. Provider B obtains the number
of common users for each sensitive value s of each record of T ∗B. The inputs
parameters are the set of the existing users’ UIDs from Provider A and the set

290 T. Takenouchi, T. Kawamura, and A. Ohsuga

Table 2. Internal anonymized table T ∗
A,T

∗
B and joined-anonymized table T ∗

GID userIDs income

1 User 1-15 *

GID userIDs time userCounts

1 User 1-15 0:00-23:59 -

(a) Provider A’s internal

anonymized table ()

GID userIDs income

2 User 1-10 *

3 User 11-15 *

GID userIDs time userCounts

2 User 1-10 0:00-18:59 -

3 User 11-15 19:00-24:00 -

GID userIDs income

4 User 1-5 <40K

5 User 6-10 40K<=

3 User 11-15 *

GID userIDs time userCounts

4 User 1-5 0:00-18:59
X movie: 1

Y sports: 1

5 User 6-10 0:00-18:59
X movie: 1

Y sports: 1

3 User 11-15 19:00-23:59
X movie: 1

Y sports: 1

income time title

<40K 0:00-18:59 X movie

<40K 0:00-18:59 Y sports

40K<= 0:00-18:59 X movie

40K<= 0:00-18:59 Y sports

* 19:00-23:59 X movie

* 19:00-23:59 Y sports

(c) Joined-anonymized

table ()

I
n
itia

l
F
irs

t

d
iv
is
io
n

S
e
c
o
n
d

d
iv
is
io
n

(b) Provider B’s internal

anonymized table ()
*

B
T

*

A
T

*

T

of UIDs of the users who exist in and have s from Provider B. As an example of
the records of Users 1-5 in Table 2(b)(Second division), the number of common
users who watched X movie is one.

Joining Protocol. Finally, Provider C, who wants to obtain a T ∗, requests
Providers n to obtain cleaned T ∗n . Before sending T ∗n , Provider n delete userIDs
of T ∗n . Also, to prevent inference from sequential GIDs, Provider A shuffles the
GIDs and sends the interaction of shuffled GIDs to Provide B. Provide B updates
the GIDs in accordance with the interaction. After that, the providers send
cleaned T ∗n to Provide C. Provider C joins the cleaned T ∗n by GID to acquire a
joined-anonymized table T ∗ (Table 2(c)).

5.2 Heuristic Function for Dummy User Protocol

This section proposes a new heuristic function to decide a division point for
Dummy user protocol. The heuristic function of the Mondrian algorithm [8]
selects the attribute that has the longest normalized range and selects the median
of the selected attribute. In order that Dummy user protocol satisfies δ-max-site-
presence additionally, we take an approach to extend the heuristic function of
Mondrian. We consider that it is effective that the divided groups uniformly
have dummy users. As an example of Table 1(c), which is the case of dividing on
50K of income, the dummy users are not uniformly allocated across the divided
groups. In contrast, in the case of dividing on 60K of income (Table 1(d)), the
dummy users are uniformly allocated.

Therefore, we introduce an entropy of dummy users (Dummy Entropy,DE)
in Provider n across the divided groups:

DE(c, n) = −
∑

Ui∈Uhi,Ulow

|dummy(n, Ui)|
|Ui|

log(
|dummy(n, Ui)|

|Ui|
) (3)

Distributed Data Federation without Disclosure of User Existence 291

where c is a candidate of dividing points that divide a group Up into the upper
group Uhi and the lower group Ulow, and dummy(n, Ui) is the set of UIDs of the
dummy users of Provider n in the group Ui.

By using this DE, we define the heuristic function for Dummy user protocol.
First, the same as Mondrian, the function selects the attribute that has the
longest normalized range. Then, for each candidate ci of the selected attribute,
the function calculates the following score S:

S(ci) = α(
−L(ci)

maxxj∈X(L(xj))
) + (1− α)

1

2

∑
n∈{A,B}

(
DE(ci, n)

maxxj∈X(DE(xj , n))
) (4)

L(ci) =
∑
xj∈X

|xj − ci| (5)

where α(0 ≤ α ≤ 1) is the weight parameter to adjust the effect of DE, and L is
the sum of the distance between the value of ci and each xi, which is a value of
the selected attribute. Note that if we set α=1, then S will be maximized when
ci is median because the median is the value that minimizes the L. This means
that the function selects the median the same way as Mondrian when α=1.

Then the function selects the ci whose score S is the maximum as the division
point. The division point is expected to divide a group into two groups across
which the dummy users are allocated uniformly. As a result, the T ∗n may be
divided many times.

Secure Computation. The providers use three kinds of secure computations
at some intermediate calculations in the function(Fig. 2(c)). First, the providers
compare the normalized ranges that the providers calculate locally by secure
comparison[15] protocol and decide a dividing provider.

Next, the providers calculate DE locally. However, nondividing provider can-
not calculate |dummy(n, Ui)| (the number of the dummy users in the group after
division) because the provider does not know the groups after division of the can-
didate. Thus, the nondividing provider use the cardinality protocol of the secure
set intersection to obtain |dummy(n, Ui)|. Also, |Ui| (the number of the UIDs
in the group after division) is necessary to calculate DE too, thus the dividing
provider sends |Ui| to the nondividing provider. As a result of these processes,
the providers can calculate DE locally. Note that neither |dummy(n, Ui)| nor
|Ui| contain the attribute value of the candidate of division point or UIDs. For
example, when Provider A is the provider of the candidate ci, Provider B can
obtain the number of the UIDs of the group after dividing on candidate ci but
cannot obtain the attribute value or UIDs of the ci.

Finally, the providers use secure k-nearest neighbor protocol[16] in order to
decide the ci that maximizes the score S. The dividing provider obtains the
attribute value of the division point. As mentioned above, the providers can
decide the division point without disclosing the attribute values or the existence
of a user.

292 T. Takenouchi, T. Kawamura, and A. Ohsuga

91
100 101

183 193
487

2677

14400

84

N/A 0.95 0.9 0.85 0.8 0.75 0.7 0.65

95
99 109

165 193
335

1808

14400

84

14400

10

100

1000

10000

100000

N/A 0.95 0.75 0.7 0.65 0.6 0.55 0.5

Proposed Method

Existing Method

94 94 117 143
190

1400

5316

14400

84

N/A 0.95 0.55 0.5 0.45 0.4 0.35 0.3

(a) Dummy user = 1200 (b) Dummy user = 600 (c) Dummy user =2400δ δ δ

D
M

[u
n
it
：
1
0
0
]

Fig. 4. Dummy user protocol vs Mondrian

6 Experimental Evaluation

We implemented a prototype of Dummy user protocol and evaluated it. The
prototype was implemented in Java 1.6. It works in test architecture in which the
providers are distributed virtually and communicate with each other virtually.
We use an “Adult” data set in UCI Repository [2]. Furthermore, we divide the
“Adult” data set the same way as Mohammed et al. [10].

Adult is almost 30K lines of data with 14 types of attributes and one class of
data, income class (50K< or not). Also, we treat all records of “Adult” as a user
set U and select the groups from the top: the users who exist in both (UA∩UB),
the users who exist only in Providers A or B ((UA−UA∩UB), (UB−UA∩UB)),
and the remaining users who exist in neither (UO). In our experiment, we fixed
the number of UA ∩ UB at 1200 and changed the number of UA − UA ∩ UB and
UB − UA ∩ UB from 600 to 12000. The evaluation results are average values of
the results of 20 experiments.

The same as the evaluation of δ-presence[11], we use the Discernibility Metric
(DM)[1] as the indicator of our evaluation. DM measures information loss. Thus,
the lower the loss, the better. By letting qids be the set of values of the quasi-
identifier of T ∗, DM can be calculated as follows:

DM =
∑

qi∈qids
|T ∗[qi]|2 (6)

For example, if 1200 records are divided into 150 8-record groups, DM = 82 ×
150 = 9600. Because data mining is the process of discovering rough patterns
from data, we consider that even if a table is divided into 8-record groups, the
table is useful for data mining.

6.1 Comparison with Mondrian Algorithm

δ-max-site-presence. In order to evaluate Dummy user protocol, we compare
Dummy user protocol and extended Mondrian, which is a simple distributed
anonymization protocol extended from Mondrian, in order to compare fairly.

Distributed Data Federation without Disclosure of User Existence 293

α

D
M

[u
n

it
 ：

1
0

0
0

]

124

28

156

255
214 193 168 168 168 168 168 167 167

720

10

100

1000

0
.0

0

0
.0

1

0
.1

0

0
.2

0

0
.3

0

0
.5

0

0
.7

0

0
.8

0

0
.9

0

0
.9

9

1
.0

0

Dummy user = 600

Dummy user = 3600

Fig. 5. DM in several α

94 97
130 196 355

1328

14400

57 58 76 98 118

353

2037

10

100

1000

10000

100000

0.9 0.8 0.7 0.65 0.6 0.55 0.5 0.45

Proposed Method (Distributed)

Existing Method (Centralized)

δ

D
M

[u
n

it
 ：

1
0

0
]

Fig. 6. Distributed vs. centralized

The extended Mondrian divides when satisfying not only k-anonymity but also δ-
max-site-presence and outputs the table that contains the record of the common
users.

First, we evaluated DM when the number of the dummy users existing only
in Provider A or B is 2400, k = 2 and δ = {0.95, · · · , 0.5}. Fig. 4(a) shows DMs
of the proposed method(Dummy user protocol) and existing method(extended
Mondrian). Moreover, the weight α is set at 0.5 in order to make the effect of
DE half.

These results show that when we make the method ignore δ-max-site-presence,
the information loss of the existing method has slightly lower than that of the
proposed method. On the other hand, when we set δ = {0.95, · · · , 0.5} to hide
the existence of a user, the information loss of the proposed method is lower than
that of the existing method. When δ = {0.95, · · · , 0.75}, the results of proposed
method are especially reasonable because the DM is almost 10, 000. This is
because adding the dummy entropy into the heuristic function and the update
of the dummy values enable the selection of a suitable division point that can
hide the existence. As a result, the proposed method can reduce the information
loss without disclosing the existence of users. However, when the δ is set at near
0.6, DM gets worse rapidly. This is because the proposed method cannot find a
more effective division point.

Number of Dummy Users. Next, we changed the number of dummy users
and evaluated DM. Figure 4(b) and (c) show the results of the evaluation when
the number of dummy users is decreased to 600 and increased to 2400.

The results show that when the number of the dummy users is increased to
2400, DM can be kept at a low value from δ = 0.95 to δ = 0.5. In contrast,
when it is decreased to 600, DM gets worse at nearby δ = 0.75. This is because
the selected division point cannot satisfy δ-max-site-presence and the dividing
is stopped. Note that, if the number of the dummy users increases to 12000,
DM can be kept at a low value even if δ = 0.3. According to the results above,
increasing the number of the dummy users effectively hides user presence.

Weight α. In order to find the best weight α, we changed α and evaluated DM.
Fig. 5 shows the results of DM when the numbers of the dummy users are 600
and 3600. We set the δ at 0.75 and 0.3 along with the number of the dummy

294 T. Takenouchi, T. Kawamura, and A. Ohsuga

users. These results show that when there are many dummy users, it is better
to set α at a larger value in order to weaken the effect of the DE. On the other
hand, when there are few dummy users, it is better to set α at a smaller value.
This is because when there are few dummy users, the density of the dummy users
is likely to not be uniform and it’s hard to satisfy δ-max-site-presence. Therefore,
it is better to strengthen the effect of the DE. According to the above results,
α should be set on the basis of the number of the dummy users.

6.2 Comparison with Centralized Algorithm

Also, we compared the proposed method for a distributed environment and the
existing method for a centralized environment, named MPALM [11]. MPALM is
an algorithm that is also extended from Mondrian to hide the existence of a user
in an anonymized table. The big difference is that the existing method hides only
one side of the existence, but the proposed method hides both sides. Thus, to
evaluate them fairly, we create data in which the numbers of the dummy users
who exist only in Provider {A,B} is {1200, 0} respectively.

Fig. 6 shows DM of the proposed method and the existing method in the case
of varying δ. These results show that DM of the proposed method gets worse
rapidly at nearby δ = 0.6. On the other hand, DM of the existing method is kept
lower. This is because the algorithm of the proposed method selects the division
point by calculating the heuristic function. On the other hand, the algorithm
of the existing method selects it by trying to divide the anonymized table and
check the indicators of the users’ existence. This means that existing methods can
retry division many times, so the existing methods can make the information loss
lower than the proposed method. If the existing algorithm is used in a distributed
environment, the user’s existence will be disclosed by knowing whether the table
in the existing algorithm can be divided or not. However, when δ ≥ 0.7, the
DM of the proposed method is almost the same as that of the existing method.
According to the results mentioned above, the proposed method can obtain the
same utility as the existing centralized method when δ is not very small.

Finally, according to all results mentioned above, we can conclude that the
proposed method can hide the existence of a user and anonymize personal in-
formation in distributed environments with little information loss.

7 Security Evaluation

In this section, we evaluate the security of the proposed protocol. If the providers
cannot know more information than that we expect to be leaked, then we say
that the protocol is secure. First, we will prove that Provider n (n ∈ {A,B})
cannot learn any more information than T ∗n and two types of the intermediate
information. Next, we will show that even if these types of the information of a
provider are known by the other provider, the privacy risk is low.

Our proof will show that, given Tn, T
∗
n and the two types of the intermediate

information, the simulator S can simulate all messages that Provider n receives

Distributed Data Federation without Disclosure of User Existence 295

during the execution of Dividing protocol in Dummy user protocol. Since the
simulated messages do not contain any more information than that given, clearly
Provider n cannot learn any more than the given information[7,5]. Also, our proof
will use composition theorem[5], because the proposed protocol uses some secure
computations such as a secure set intersection. When a protocol F is composed
of smaller secure functionalities f1 . . . fn, the composition theorem states that if
the protocol F in hybrid model where the f1 . . . fn are replaced with protocols
that use a trusted third party (TTP) is secure, then the protocol F is secure. In
our proof, we show that the simulator S can simulate the messages of Dividing
protocol in the hybrid model. After that, we show that Dividing protocol is
secure by using composition theorem.

Theorem 1. Provider n ∈ {A,B} cannot learn any more information than T ∗n
and Intermediates 1 and 2 from the messages of Dividing protocol of Dummy
user protocol.

– Intermediate 1: For the candidates of the other provider of Provider n, the
number of the UIDs and the dummy users in the group after division (Note
that UIDs are not revealed)

– Intermediate 2: For the canceled division points, the provider of the divi-
sion point, the attribute value of the division point (only if Provider n is the
dividing provider), the number of the existing users in the group after division
in the nondividing provider (only if Provider n is the nondividing provider),
and the reason for the cancellation (k-anonymity or δ-max-site-presence)

Proof. We will show that simulator Sn can simulate the message received by
Provider n ∈ {A,B} from Tn, T

∗
n and Intermediates 1 and 2. First, we show

the messages received by Provider A can be simulated from TA, T
∗
A and Inter-

mediates 1 and 2. SA analyzes the dividing sequence by using GID, which is
assigned sequentially, in T ∗A. (e.g. in Table 2(a)(Second division) group GID = 2
is divided into the groups GID = 4 and GID = 5.) Also, by comparing the two
divided records, SA can infer the dividing provider and UIDs of the group after
division. In addition, if the dividing provider is Provider A, SA can easily infer
the attribute value of the division point. (e.g. in Table 2(a)(Second division)
Users 1-10 are divided on 40K of income in Provider A into Users 1-5 and Users
6-10.) We call the result of this analysis an analyzed sequence.

Then, SA starts the simulation by using the analyzed sequence. In Dividing
protocol, the communication is performed in Steps 2 and 3 (Fig. 2(a)). In Step
2, the communication is performed during the calculation of the heuristic func-
tion(Fig. 2(c)), the verification(Fig. 2(b)), and sending of the UIDs. First, SA

simulates the message at the first division. The messages of the calculation the
heuristic function are three: (1) the provider of the dividing point (both providers
received), (2) the number of the UIDs and the dummy users in the group after
division of the candidate (the nondividing provider received), and (3) the at-
tribute value of the division point (the dividing provider received). SA learns (1)
and (3) from the analyzed sequence, and (2) from Intermediate 1. Thus, SA can
simulate the messages that Provider A receives. After that, SA learns whether

296 T. Takenouchi, T. Kawamura, and A. Ohsuga

the division continues or not by checking the analyzed sequence. If the division
continues, then SA simulates the message of the verification as correct. Also, if
the division is on Provider B, SA simulates the sending of the UIDs by using
the analyzed sequence. After that, SA performs the above function recursively
in terms of the divided groups.

If the division does not continue, then SA simulates the message of the vali-
dation as correct and simulates the messages of the calculation of the heuristic
function the same way as described above by using Intermediates 1 and 2. Inter-
mediate 2 contains all intermediate information of the cancelled division. After
that, SA simulates the message of the validation as incorrect by using Interme-
diate 2. As mentioned above, SA performs these processes recursively, and the
messages can be simulated.

Next, we show the message received by Provider B can be simulated from
TB, T

∗
B, and Intermediates 1 and 2. In Step 2, SB can simulate the same way as

described above. In Step 3, Provider B receives userCount. Because userCount
is contained in T ∗B, SB can simulate it.

As mentioned above, Sn can simulate all messages of Dividing protocol in the
hybrid model. Also, by using composition theorem, if Dividing protocol is secure
in the hybrid model, then the protocol is secure. Therefore, Provider n ∈ {A,B}
cannot learn any more information than T ∗n and Intermediates 1 and 2 from the
message of Dividing protocol of Dummy user protocol. ��

Because T ∗n has no attribute value of the provider other than Provider n, T ∗n is
not very sensitive. Also, Intermediates 1 and 2 are statistic information, which
does not include UID. Thus, it is difficult to reveal the sensitive attributes or
the existence of a user from the T ∗n and Intermediates 1 and 2. Furthermore,
the T ∗n and Intermediates 1 and 2 are known by Providers A and B but not C.
We assumed there is some kind of contract between Providers A and B in the
real-world business. Therefore, we consider that the privacy risk is low.

8 Conclusion and Future Works

We showed that there is a problem of the existence of a user in the data of
different service providers being revealed when the providers have different sets
of users. To solve the problem, we proposed δ-max-site-presence, which indi-
cates the probability of the existence of a user being revealed in distributed
environment, and Dummy user protocol. Our evaluation results show that the
proposed protocol can anonymize users in accordance with the policy of hiding
users’ existence and user anonymity with little information loss.

In the future, we plan to calculate computation and communication costs.
Also, we hope to evaluate the proposed protocol by using the real data. In
addition, we plan to improve the heuristic function to make it more efficient and
extend the protocol to support multiple sites.

Distributed Data Federation without Disclosure of User Existence 297

References

1. Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In:
Proc. ICDE 2005, pp. 217–228. IEEE (2005)

2. Blake, C.L., Merz, C.J.: Uci repository of machine learning databases (1998),
http://archive.ics.uci.edu/ml/

3. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set In-
tersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 1–19. Springer, Heidelberg (2004)

4. Fung, B., Wang, K., Fu, A., Yu, P.: Privacy-Preserving Data Publishing: Concepts
and Techniques, ch. 11-12. CRC Press (2010)

5. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press (2004)

6. Jiang, W., Clifton, C.: Privacy-Preserving Distributed k-Anonymity. In: Jajodia,
S., Wijesekera, D. (eds.) Data and Applications Security 2005. LNCS, vol. 3654,
pp. 166–177. Springer, Heidelberg (2005)

7. Jurczyk, P., Xiong, L.: Distributed Anonymization: Achieving Privacy for Both
Data Subjects and Data Providers. In: Gudes, E., Vaidya, J. (eds.) Data and
Applications Security 2009. LNCS, vol. 5645, pp. 191–207. Springer, Heidelberg
(2009)

8. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-
anonymity. In: Proc. ICDE 2006, p. 25. IEEE (2006)

9. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data
mining. Journal of Privacy and Confidentiality 1, 59–98 (2009)

10. Mohammed, N., Fung, B.C.M., Wang, K., Hung, P.C.K.: Privacy-preserving data
mashup. In: Proc. EDBT 2009, pp. 228–239. ACM (2009)

11. Nergiz, M.E., Atzori, M., Clifton, C.: Hiding the presence of individuals from shared
databases. In: Proc. SIGMOD 2007, pp. 665–676. ACM (2007)

12. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans-
actions on Knowledge and Data Engineering 13, 1010–1027 (2001)

13. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst. 10, 557–570 (2002)

14. Wang, K., Fung, B.C.M., Dong, G.: Integrating Private Databases for Data Anal-
ysis. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y., Chen, H.,
Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 171–182. Springer, Heidelberg
(2005)

15. Yao, A.C.: Protocols for secure computations. In: Proc. SFCS 1982, pp. 160–164.
IEEE Computer Society (1982)

16. Zhan, J., Chang, L., Matwin, S.: Privacy preserving k-nearest neighbor classifica-
tion. International Journal of Network Security (2005)

http://archive.ics.uci.edu/ml/

Improving Virtualization Security by Splitting

Hypervisor into Smaller Components

Wuqiong Pan1,2,�, Yulong Zhang2, Meng Yu2, and Jiwu Jing1

1 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

{wqpan,jing}@lois.cn
2 Department of Computer Science, Virginia Commonwealth University,

Richmond, VA, 23284 USA
{wpan,zhangy44,myu}@vcu.edu

Abstract. In cloud computing, the security of infrastructure is deter-
mined by hypervisor (or Virtual Machine Monitor, VMM) designs.
Unfortunately, in recent years, many attacks have been developed to com-
promise the hypervisor, taking over all virtual machines running above
the hypervisor. Due to the functions a hypervisor provides, it is very hard
to reduce its size. Including a big hypervisor in the Trusted Computing
Base (TCB) is not acceptable for a secure system design. Several secure,
small, and innovative hypervisor designs, e.g., TrustVisor, CloudVisor,
etc., have been proposed to solve the problem. However, these designs
either have reduced functionalities or pose strong restrictions to the vir-
tual machines. In this paper, we propose an innovative hypervisor design
that splits hypervisor’s functions into a small enough component in the
TCB, and other components to provide full functionalities. Our design
can significantly reduce the TCB size without sacrificing functionalities.
Our experiments also show acceptable costs of our design.

Keywords: VMM, Hypervisor, Cloud computing, TCB.

1 Introduction

Virtualization techniques allow multiple operating systems (OSs) to run concur-
rently on a host computer. By sharing hardware, resource utilization can greatly
be improved. Virtualization is also the key technology of cloud computing. Some
software, such as Xen [1], can provide hardware virtualization by adding a new
software layer called hypervisor beneath all Virtual Machines (VMs). A hyper-
visor emulates independent hardware resources for every VM. Both Intel and
AMD have developed new extensions [2,3] for hardware based virtualization,
which can simplify hypervisor designs.

In cloud computing, legal users and attackers may share the same physical
server. Thus, it is important to isolate VMs from each other. In a virtualization

� This work was done while the first author worked at Virginia Commonwealth
University.

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 298–313, 2012.
c© IFIP International Federation for Information Processing 2012

SplitVisor - Design and Implementation 299

architecture, the hypervisor is responsible for isolation. In current hypervisor
designs, it also emulates the hardware and provides other security functions for
VMs. Many researchers argued that the current hypervisor designs include too
many functions [4,5]. For an example, Xen has about 270k lines of codes (LOC),
which is difficulty to implement without bugs. Unfortunately, many vulnerabili-
ties in hypervisor have already been discovered [6,7,8,9,10,11].

To address the problem, a lot of efforts [4,5,12,13,14,15,16] have been made to
improve the isolation. Among these work, Overshadow [12] provides fine-grained
isolation which protects applications from a compromised OS. SecureME [13] has
the same function and can defend against hardware attacks by using a secure
processor substrate. Bastion [15] defines a struct of module and protects it from
hardware attacks. Overshadow, SecureME and Briston can provide fine-gained
isolation for applications or modules. These work add new functions to the hy-
pervisor. As a result, the size of the hypervisor is increased. Therefore, the added
codes increase the size of TCB and they may introduce new vulnerabilities as
well.

In contrast, some efforts try to reduce the number of functions provided by a
hypervisor to make the hypervisor, thus TCB, smaller. For examples, SICE [14]
provides hardware isolation for one workload on a core by using the System Man-
agement Mode (SMM) of x86 processors. NoHype [4,5] eliminates the hypervisor
attack surface by removing the hypervisor after booting the guest VMs. NoHype
pre-allocate resources for a VM before the boot procedure. CloudVisor [16] can
protect VMs from a compromised hypervisor by adding an additional hypervisor
layer. These new designs also introduce some restrictions. For examples, both
SICE and Nohype have the limit of one protected workload, or VM per core on
multi-core processors. Also, NoHype does not support dynamic resources alloca-
tion. CloudVisor does not allow hypervisor to access VM pages and it becomes
a big burden for CloudVisor to determine which pages of the guest VMs can be
accessed by the master hypervisor.

Moreover, the security problem of shared management domain (or hypervisor
in CloudVisor) are not completely eliminated in afore mentioned designs. For
examples, in NoHype design, the attackers can attack the management VM.
Although the management OS may be well configured by cloud provider, an OS
is usually considered more vulnerable to attacks than a hypervisor. In CloudVisor
design, a new hypervisor is used to intercept all communications between the
master hypervisor and VMs. Even though the attack surface is smaller, once the
master hypervisor is compromised, all VMs can still be affected.

In this paper, we propose a split hypervisor architecture, called SplitVisor,
which has a small TCB and does not limit the functions of a hypervisor. Our
architecture leverages nested virtualization [17,18]. In our design, every VM has
its own hypervisor, called GuestVisor. Users can customize the GuestVisor. A
SplitVisor is underneath all GuestVisors and VMs. The SplitVisor is responsible
for isolation, which is the only part in TCB.

Table 1 shows the comparison of the proposed architecture and existing ones.
SplitVisor, CloudVisor and SICE are the only ones which have a small TCB. All

300 W. Pan et al.

of them sacrifice some of hypervisor functions except SplitVisor. SplitVisor is
the only one which has a stable TCB, which means that the TCB need little or
even none of change when adding new functions to hypervisor. All others need to
modify the TCB if they add new functions to the hypervisor. A stable TCB can
greatly reduce the verification costs when upgrading secure software. SplitVisor,
CloudVisor, and SICE can defend against attacks from a compromised hypervi-
sor. The security of SICE is ensured by the SMM mode of x86 processors while
the security of SplitVisor and CloudVisor are ensured by a nested architecture.
CloudVisor can block a hypervisor from accessing its VMs’ data. The protected
units of these work are also different. Only SplitVisor, CloudVisor, and Nohype
have a VM as the unit of protection. Other work either have applications [12,13],
or hardware [19,20,21,22], as the unit of protection, which are out of the scope
of this paper. These protections are still compatible with SplitVisor design.

Table 1. Comparison of different designs

TCB Stability1 Functions Hypervisor2 VM3 Protection Assertion HD4

SplitVisor small
√

full
√ √

VM
√

CloudVisor [16] small partial
√

VM
√

SICE [14] small partial
√ √

region
√

NoHype [4,5] large partial VM
Overshadow [12] large full application
Bastion [15] large full module

√

SecureME [13] large full application
√

XOM [19,20] large full region
√

AEGIS [21] large full region
√

AISE [22] large full region
√

The main contributions of our work include:

– A small and stable TCB. Both GuestVisors and the management OS are not
in the TCB. They cannot access other VMs. Most of functions can be added
to GuestVisors without modifying the TCB.

– Supporting full-functions. Unlike other architectures which have a small
TCB, SplitVisor does not eliminate any functions from hypervisors.

– Allowing users to verify the execution environment. Users can get the asser-
tion of the environment.

The rest of this paper is organized as follows. Section 2 discusses our goals
and shows the whole architecture of SplitVisor. Section 3 describes SplitVisor
in booting, memory management, scheduling and some other details. Section 4
compares SplitVisor with other recent work. Section 5 shows the related work
in isolation. Section 6 gives an conclusion of the paper.

1 A TCB design is stable if the TCB needs little or even none of changes when adding
new functions to the hypervisor.

2 Attacks can be confined to the hypervisor when the hypervisor is compromised.
3 VMs are protected when the hypervisor is compromised.
4 Hardware level attacks, such as memory tapping [23], can be handled.

SplitVisor - Design and Implementation 301

2 Overview

2.1 Design Principles

Cloud services are usually provided using virtualization techniques. The exam-
ples are Amazon EC2 [24], Eucalyptus [25], FlexiScale [26], Nimbus [27], and
RackSpace [28]. In order to attract more cloud users, they continuously improve
their products by adding more and more functions to the platform. As the result,
the size of TCB, the hypervisor, also increases prominently. Table 2 shows the
TCB size of Xen from version 2.0 to version 4.0 [1].

Table 2. Xen TCB size (by Lines of Code)

Hypervisor Kernel of Domain 0 Tools TCB

Xen 2.0 45k 4,136k 26k 4,027k

Xen 3.0 121k 4,807k 143k 5,071k

Xen 4.0 270k 7,560k 647k 8,477k

In the table, the size of Xen 4.0 hypervisor is six times as large as that of Xen
2.0. Although Xen 2.0 is more secure in term of hypervisor size, Xen 4.0 is more
attractive to users because of the new features, such as Xen access control, I/O
optimization, and Memory page sharing. Domain 0 and tools are also parts of
the TCB in Xen in addition to the hypervisor, because they can access the data
of all VMs. For an example, the xm tool can dump the memory of a VM.

A possible way to reduce the size of TCB is to remove Domain 0 and Xen
tools from the TCB, which requires disabling some functions, or encrypting data
to prevent accesses from Domain 0. However, this will limit the functionalities of
Xen. Cloud providers usually try to provide as many functions as them can. But
for a particular user, he may only need a small set of the functions. In SplitVisor,
every user can choose a GuestVisor which serves as the current hypervisor. The
user can choose a hypervisor with the necessary functions, then he will not suffer
vulnerabilities of the unneeded functions. Although the GuestVisor still can be
attacked by its own VM, the attack will not affect other GuestVisors and VMs.
The isolation is ensured by the SplitVisor. Thus, the SplitVisor should have a
small code base to ensure its security.

2.2 Assumptions

Our assumptions are described as follows.

Adversaries: We assume that the attackers can easily control a VM. For an
example, the attackers can buy a VM. The attackers can invade a management
OS and a rich-functions hypervisor. They can send any instructions in the name
of the hypervisor. The attackers can also sniff I/O and steal users’ OS images.
We assume that the attackers cannot physically access the machines. The data

302 W. Pan et al.

centers are usually protected by well-trained guards. The cloud providers have
no motivation to use malicious hardware. Using malicious hardware easily leaves
evidence, which definitely ruins cloud providers’ reputation. The cloud providers
are usually famous companies, while cloud clients are usually small companies.
They are not competitors in most cases.

Security Guarantees: The main goal of SplitVisor is to provide isolated en-
vironments for VMs. SplitVisor directly provides CPU isolation and memory
isolation for VMs. Other security attributes can be achieved based on these two
attributes. SplitVisor allows users to verify its TCB. Users can get evidence that
their OSs run in the expected environment.

Non-guaranteed Goals: SplitVisor cannot guarantee the availability of a par-
ticular VM. If a VM cannot get CPU time slices from the management software,
the VM will be blocked, but this is easily discovered by outside.

SplitVisor is not designed to defend against side-channel attacks. Xen provides
Chinese Wall (CHWALL) policy, which can control the set of VMs on the same
machine. Well-defined CHWALL policy can reduce side-channel attacks [29].
Besides hypervisor level policies, some applications also have built-in mechanisms
to reduce side-channel attacks [30].

2.3 Architecture

Both Intel and AMD have added new extensions to support the hypervisor layer,
like Intel’s Virtualization Technology for x86 (VT-x) and AMD’s Secure Virtual
Machine (SVM). With the new extensions, the Intel processors have two oper-
ation modes: virtual-machine extension (VMX) root mode and VMX non-root
mode. In general, a hypervisor will run in VMX root mode and a guest OS
will run in VMX non-root mode. The control information of VMX transition is
stored in a data structure called virtual-machine structure (VMCS). A VMCS
includes almost all environment parameters of a guest OS, such as registers.

SplitVisor has two types of components that belong to one hypervisor before:
GuestVisors and a SplitVisor, as shown in Fig 1. The SplitVisor runs in VMX
root mode, while both the GuestVisors and VMs run in VMX non-root mode.
Both GuestVisors and VMs have VMCSs. A GuestVisor’s VMCS is controlled
by the SplitVisor, and a VM’s VMCS is controlled by a GuestVisor. Most re-
quests from a guest OS are handled by the GuestVisor under it. A GuestVisor
is responsible for the execution environment of a guest OS. If a user wants to
add some functions into the current hypervisor layer, he can add them into
the GuestVisor. The isolation among all GuestVisors and VMs is ensured by
the SplitVisor. All VMX transition instructions are executed in the SplitVisor.
The SplitVisor is also responsible for memory isolation.

The features of the SplitVisor, a GuestVisor and a VM are shown in Table 3.
The SplitVisor does not provide a complete virtualized running environment to
a GuestVisor. A GuestVisor knows that it is not running on the bare hardware.
A VM runs in a virtualized environment emulated by a GuestVisor. A VM can
be para-virtualized or full-virtualized.

SplitVisor - Design and Implementation 303

Fig. 1. SplitVisor architecture

Table 3. Units in SplitVisor

Unit Functions Transparency

SplitVisor VMX transition, memory isolation -

GuestVisor OS execution environment, extra functions Not support

VM Running OS Both para- and full- virtualization

Security Analysis: If a GuestVisor is compromised, the SplitVisor will ensure
other GuestVisors and VMs are not affected. In other words, the isolation is
ensured. But the VM of the compromised GuestVisor is not protected.

3 Design Details

3.1 Secure Boot

The boot process of a computer is the first step to set up a secure environment
for guest OS. In our design, the only trusted component is the SplitVisor. The
secure boot process is described as follows.

First, verify the SplitVisor. Users can verify the SplitVisor, which is supported
by a Trusted Platform Module (TPM) [31]. A TPM is an secure chip which can
help to protect the integrity of the boot process and the SplitVisor. Users can
also obtain the SplitVisor’s public key with the help of the TPM.

Second, make a new image. The binary codes of both user’s VM and GuestVisor
should be provided by users. Users must encrypt all or part of the codes with
a symmetric key. The symmetric key should be encrypted by the SplitVisor’s
public key, so the SplitVisor can decrypt it. All the plain text should be signed
to protect against unauthorized modification. The total data sent to cloud server
includes the following: encrypted image, encrypted symmetric key, plain data,
signature over everything, and the public key certificate of the user (signer).

Third, prepare the environment of a GuestVisor. When the SplitVisor receives
the above data from users. It will decrypt all data and verify the signature. If the
verification goes through, the SplitVisor will set up the running environment for

304 W. Pan et al.

a GuestVisor. The allocation of memory and CPU is decided by the management
software. The boot process of VM is controlled by the GuestVisor.

Fourth, authentication between the user and the guest OS. In traditional login,
only OS verifies users. In cloud computing, we need two-way authentication,
because attackers can run a malicious system, and try to trick user to login.
Users can put the key in guest OS before sending it to cloud providers. When
guest OS boots up in remote server, they can authenticate each other based on
the key. All communication after that also should be protected by the key.

Boot Process of the Management VM: The management VM is the one
we should boot first. The boot process is a little different at the first step and
the second step. Cloud providers should get the public key of the TPM through
some public channels. The making of the management VM’s image is the same
as that of others. However, the image must be stored in a disk, or other storage
devices which can be easily read by a SplitVisor. All the memory except the
SplitVisor’s, CPUs and devices are belonged to the management VM at first. It
will assign the resources to other VMs in the future execution.

Security Analysis: Without the authentication key, a malicious OS cannot
cheat users. Attackers cannot get the key which is encrypted in the second step.
If attackers do not crack the key but modify the image, it will be detected when
verifying signatures in the third step.

3.2 Memory Management

Both Intel and AMD have extended two layer address translation to three layer
address translation, called Extended Page-Table (EPT) and nested paging. The
page table (PT) specified by CR3 is still responsible for translating virtual frame
number (VFN) to physical frame number (PFN). A new table called EPT for Intel
is responsible for translating PFN to machine frame number (MFN). The address
of EPT is specified by EPTP, a VMCS field. The three layer model is shown in
Fig 2 to compare our SplitVisor design and the current hypervisor design.

The SplitVisor will set up a default EPT for a GuestVisor. The SplitVisor
assigns all allowed memory page to the GuestVisor at the beginning. The range
of PFN is fixed, for an example, it always starts from 0. For further processing,
SplitVisor will allow GuestVisor to read its own EPT.

After a GuestVisor is booted, it will prepare the environment for a VM. Firstly,
GuestVisor sets up an EPT for the VM. The GuestVisor can get the addresses
of its MFNs by reading its own EPT. It can keep some MFNs for its own use,
and assign others to VM. Finally, GuestVisor write the address of VM’s EPT to
VM’s VMCS.

When a VM is booted, SplitVisor will check its EPT to see if all the MFNs
are from the GuestVisor. So a user cannot access others’ MFN by booting VM.
After the checking, the SplitVisor marks the EPT page as read-only.

A GuestVisor has two means to manipulate the address translation of a VM.
One is to modify the VM’s EPT, another is to modify the VM’s PT. Modifying
the PT is the same as shadow paging. Modifying the EPT is the same as that we

SplitVisor - Design and Implementation 305

Fig. 2. Comparison of the current hypervisor design (top) and SplitVisor design (bot-
tom) in terms of address translation

support EPT functions between a GuestVisor and a VM. The only difference is
that a VM’s EPT is marked as read-only by the SplitVisor. Any modification of
the VM’s EPT will cause a VM exit. The SplitVisor will check the modification
and do it for the GuestVisor.

The SplitVisor allows a GuestVisor to transfer its memory to other GuestVi-
sors, but the request must be originated by the GuestVisor who owns the mem-
ory. The SplitVisor un-maps the pages from the GuestVisor’s and VM’s EPT,
and maps them to another GuestVisor. Then the SplitVisor adds all the pages
to the EPT of the second GuestVisor, and the second GuestVisor can decide
how to use it. Memory sharing is similar to memory transferring except some
flags of the memory pages are different.

There is a trade off about whether the management software should be al-
lowed to forcibly receive other VMs’ memory. If it is allowed, the SplitVisor can
reset the received pages to zero when they are remapped. But the management
software can still observe the action of a GuestVisor when different pages are
received. It will introduce a way to attack the GuestVisor and VMs. Therefore,
our SplitVisor design does not allow it. In this situation, the GuestVisor may do
not want to give up its memory even if it does not need it. We can charge more
to the GuestVisor’s owner, it is fair since the user pays more when using more
resources. A problem of this strategy is that we cannot receive GuestVisor’s
memory when it is crashed. It is difficulty to know the crash for the SplitVisor.
The SplitVisor can try to migrate the GuestVisor. If the GuestVisor does not
respond , it is crashed. Then SplitVisor can reallocate its memory.

306 W. Pan et al.

Table 4 shows the comparison of memory management in different designs. In
CloudVisor design, VM management is implemented in a modified hypervisor
above the bottom layer called CloudVisor. In SplitVisor design, VM manage-
ment, memory transferring and memory sharing are controlled by GuestVisors.
Thus, the GuestVisors have corresponding privileges to manage VMs. The only
work of the SplitVisor is to check the page access permissions. Xen implements
all functions in the hypervisor. If Xen wants to add new functions, it has to
modify the hypervisor.

Table 4. Comparison of Memory Designs - Where The Functions Are Implemented

Function SplitVisor CloudVisor Xen

Memory isolation SplitVisor CloudVisor Hypervisor

VM management GuestVisor Hypervisor Hypervisor

Memory transferring, sharing GuestVisor CloudVisor Hypervisor

3.3 Scheduling and VMCS

The transition from the root mode to the non-root mode is calledVM entry, while
the opposite is called VM exit. The transitions are controlled by a VMCS. The
SplitVisor creates a default VMCS for a GuestVisor and controls the scheduling
of GuestVisors. A GuestVisor controls the scheduling of the VM running above
it. For an example, A GuestVisor may provide many VCPUs to the VM for
special purpose. All the VCPUs are managed by the GuestVisor.

Every time a GuestVisor gets a time slice, the SplitVisor will switch into the
GuestVisor first. The GuestVisor decides on which VCPU to start and switches
back to the SplitVisor, then the SplitVisor switches into the VM. Before switch-
ing into the VM, the SplitVisor must modify the VM’ VMCS. Some fields in
the VMCS should be rewritten by the SplitVisor, such as host registers, which
determine the CPU status when returning from the VM. The rewriting should
be done every time entering the VM, because the GuestVisor may modify the
VMCS.

The SplitVisor does not handle VM exits of a VM. It transfers all VM exits
to the GuestVisor except timer and some I/O interrupts. Operations causing
VM exits are specified by a VMCS. A GuestVisor can configure VM exits by
modifying a VM’s VMCS. For an example, if a GuestVisor wants to intercept
VM’s system calls, it just modifies control filed of the 80h interrupt.

Table 5 shows the comparison of different scheduling designs. VCPU manage-
ment is implemented in the hypervisor of CloudVisor, which gives the hypervisor
opportunities to attack VMs. Xen implements all functions in the hypervisor.
A problem of scheduling is who can get the next time slice. If a scheduling al-
gorithm is implemented in the management software, the attackers can deny
the service of a VM if they controls the management software. If the scheduling

SplitVisor - Design and Implementation 307

algorithm is implemented in the SplitVisor, its parameters cannot be changed
dynamically. Xen implements the algorithm in the hypervisor, but the parame-
ters can be modified in the management software. The security level is the same
as the one implemented in the management software. The implementation in
SplitVisor can be determined case by case. For an example, in Amazon EC2
the time sharing of VMs is predefined. For such situations, the scheduling algo-
rithm can be implemented in the SplitVisor. Otherwise, it can be implemented
in management software.

Table 5. Comparison of Scheduling Designs - Where The Functions Are Implemented

Function SplitVisor CloudVisor Xen

VCPUs management GuestVisor Hypervisor Hypervisor

(GuestVisor) hypervisor’s VMCS SplitVisor CloudVisor -

VM’s VMCS GuestVisor Hypervisor Hypervisor

3.4 Interrupt and Device Management

In order to meet the needs of cloud computing, some device manufactures added
virtualization support to their products, as mentioned in [4]. If a device can
support virtualization by itself, every VM can get its own devices. For such
situations, the SplitVisor can simply distribute the interrupts and I/O ports to
each GuestVisor.

If devices do not support virtualization, all VMs have to share the devices. It
can be implemented by front-backend drivers. The SplitVisor assign the devices
to one GuestVisor. All request are handled by the special GuestVisor. From the
SplitVisor’s perspective, some GuestVisors have shared memory with the special
GuestVisor, and the SplitVisor does not need to emulate the devices.

3.5 Functions of a GuestVisor

Most functions of the current hypervisors are implemented in the GuestVisor.
The GuestVisor is the key to reduce the size of TCB. We list the possible func-
tions of GuestVisor in this section. Different versions of GuestVisors, from light
weight ones to the ones with full functionalities, can be provided to the user as
options.

I/O Encryption. The GuestVisor that controls devices may be controlled by
attackers. The attackers can sniff the I/O data which pass through the devices.
Some applications already have built-in mechanisms to protected I/O, such as
Bitlocker and SSL. It is hard to decide whether I/O protection should be imple-
mented in the hypervisor. It is more secure to be implemented in the hypervi-
sor, while more flexible in the application. The SplitVisor leaves the decisions to

308 W. Pan et al.

users. If users want to implement I/O protection in the hypervisor, they can add
the new function in the GuestVisor.

VM Life-Cycle Management. Some VM life-cycle functions, such as shut-
ting down a VM, should be implemented in the GuestVisor. When a VM is
shutting down, the GuestVisor needs to follow the boot preparation procedure
as described in Section 3.1. Also, the GuestVisor writes all data to disk or send
them to the management software. The same thing should be done when tak-
ing a snapshot of a VM. The management of snapshots is also the GuestVisor’s
responsibility.

Another important work of the GuestVisor is VM migration. The GuestVisor
verifies the new server and creates a new VM image on the target server. All the
steps described in secure boot in Section 3.1 should be done again.

Privileged Instructions. Privileged instructions cannot be executed in a VM.
In SplitVisor, they are handled by the GuestVisor. If an instruction, e.g., a hyper
call, has some arguments in the VM’s memory, the GuestVisor can directly read
it. In CloudVisor, things are more complex. CloudVisor must fetches page table
entries and the arguments for the hypervisor, in the meanwhile the CloudVisor
must make sure that no sensitive information is leaked to the hypervisor. The
CloudVisor must know the exactly meaning of the instructions. Some work [13]
may add new instructions, so it is a big burden to the CloudVisor.

Fine-Gained Isolation. Some architectures [12,13] provide fine-gained isola-
tion. They can provide a secure environment for applications even in a malicious
OS. The function is implemented in the hypervisor, which intercepts the com-
munication between applications and OS. In SplitVisor, it can be implemented
in the GuestVisor.

Monitoring and Virus Detection. It is much more secure to implement
monitoring and virus detection in the hypervisor. When an OS is under the at-
tackers’ control, all traditional virus detections are useless. The virus detection
must be reliable, because it can access VMs’ memory. But virus detection soft-
ware are usually large, it is not suitable to be added to the TCB. In SplitVisor,
it can be implemented in the GuestVisor. It is not possible to be added in other
architecture without increasing the size of TCB. The monitoring software is the
same as virus detection software.

Virtual TPM. A GuestVisor can emulate some devices for VMs, such as a
virtual TPM. The TPM is an important device for software protection.

Table 6 summarizes the functions of the GuestVisors. All the functions are
implemented in the hypervisor of Xen, as a part of TCB. It is more secure that
SplitVisor can implement them out of the TCB. Other functions can be imple-
mented in the GuestVisor as long as they do not violate the isolation restriction.

SplitVisor - Design and Implementation 309

Table 6. Comparison of different designs - Where The Functions Are Implemented

Functions SplitVisor CloudVisor Xen

I/O encryption GuestVisor CloudVisor Hypervisor

VM life cycle GuestVisor CloudVisor Hypervisor

Privileged instructions GuestVisor CloudVisor, hypervisor Hypervisor

Fine-gained Isolation GuestVisor None Hypervisor

Monitor and virus detection GuestVisor None Hypervisor

Virtual TPM GuestVisor None Hypervisor

4 Performance Evaluation

4.1 Memory Overhead

The memory overhead of SplitVisor is mainly caused by the GuestVisor. In
general, users only need a small part of all functions. The GuestVisor is in users’
memory space. If a users wants to save memory space, the user can choose a
simple GuestVisor with less functions.

Xen occupies 64 MB memory. The GuestVisor has similar size. The memory of
a typical VM is shown in Table 7, which is from Amazon EC2 [24]. The memory
overhead is from 0.4% - 3.8%.

Table 7. Memory Overhead

VM type VM GuestVisor Overhead

Small Instance 1.7 GB 64 MB 3.8%

Large Instance 7.5 GB 64 MB 0.9%

Extra Large Instance 15 GB 64 MB 0.4%

4.2 CPU and I/O Overhead

When running a VM, some privileged instructions and interrupts will cause VM
exits, which introduces the major CPU and I/O overhead of SplitVisor when
comparing with other approaches. In current hypervisor design, VM exits are
delivered to and handled by the hypervisor. In SplitVisor, VM exits are trans-
ferred twice, from the SplitVisor to a GuestVisor. We firstly compare SplitVisor
with other two-layer-hypervisor architectures: CloudVisor and nested hypervi-
sor [17]. The upper part of Fig. 3 shows the process of VM exits in SplitVisor
and CloudVisor. The labels in the figure indicate what messages are delivered.
In CloudVisor, the hypervisor cannot access the memory of a VM. CloudVisor
encrypts all the data from a VM to the hypervisor. In SplitVisor, all the memory
of a VM are mapped in a GuestVisor, so the GuestVisor can easily deal with the
VM’s memory. The nested hypervisor provides full virtual environment for every

310 W. Pan et al.

level, where the L1 hypervisor does not know that it is in a virtual machine. So
the L1 hypervisor may execute some privileged instructions which traps to the
L0 hypervisor. The L0 hypervisor emulates hardware for L1 the hypervisor. The
SplitVisor does not aim at providing a virtual environment for GuestVisors. A
GuestVisor is aware of virtualization. The lower part of Fig. 3 shows the process
of VM exits in SplitVisor and nested hypervisor. When a VM exit occurs in a
VM (L2), it is delivered to a GuestVisor (L1). A GuestVisor usually handles the
VM exit by itself, while an L1 hypervisor may cause many new VM exits.

Fig. 3. Process of VM exit

A GuestVisor can control what can be intercepted by modifying a VM’s
VMCS. In our experiments, we assume that a GuestVisor intercepts the same
VM exits as Xen. Then SplitVisor needs twice as many VM exits as Xen does.
We choose SPECjbb2005 [32] as the benchmark program. We run SPECjbb2005
in Xen HVM with different numbers of JVMs. Then we count the number of
VM exits and estimate the running time in SplitVisor. The results are shown in
Fig 4. The average overhead is about 4.3%.

5 Related Work

Research similar to ours can be classified into several categories.

Hardware Level Protection: Some work, such as XOM [19,20], AEGIS [21]
and AISE [22], can defend against hardware attacks. They use a specially de-
signed CPU to defend against memory tampering. In these architecture, CPU
encrypts all data that goes out of the CPU, and decrypts what are loaded into
CPU. CPU maintains a hash tree that ensures data integrity. These work can
protect all software from hardware based attacks, but do not address security
problems inside the software.

Application Protection: Many vulnerabilities have been discovered in OSs.
Many techniques, such as Overshadow [12,33] and SecureME [13], protect ap-
plications from a malicious OS. These work leverage the hypervisor to prevent

SplitVisor - Design and Implementation 311

Fig. 4. CPU and I/O Overhead

the OS from directly accessing applications’ memory and intercept the commu-
nication between the OS and applications. Bastion [15] provides module-level
protection. Similar to application-level protection, entering into a module and
going out of a module are intercepted by the hypervisor.

Hypervisor Protection: Hypervisor is the most important part in a virtualiza-
tion architecture. TPM and other hardware protections [19,20,21,22] can verify
the integrity of software when a hypervisor is loaded. HyperSentry [34] can verify
the integrity dynamically. HyperSafe [35] can verify the integrity of control-flow
of hypervisor execution. These work mainly focus on detecting attacks, instead of
building a secure hypervisor. NoHype [4,5] cuts off the communication between
hypervisor and VM after VM is booted. However, it cannot defend against the
attacks from the management VM. So NoHype still has a large TCB.

VM Protection: The best way to protect a VM is to protect the hypervisor. If
a hypervisor works correctly, the VM can be well protected by the hypervisor.
Some work can provide protection without the help of a hypervisor. SICE [14]
implements the protection mechanism in the SMM. Even if a hypervisor is mali-
cious, a VM can be protected by SICE. Currently, SICE has a limit of protecting
at most one VM on each core.

The turtles project [17] shows the architecture of nested hypervisors, which
allows running hypervisors above a hypervisor. CloudVisor [16] leverages this
architecture to protect VMs. In these designs, the orignial hypervisor is not
at the highest level. All communications between a hypervisor and VMs must
be verified by the CloudVisor, and the hypervisor cannot directly access VMs’
memory. CloudVisor does not provide the protection of the hypervisor, because
all requests from VM are forwarded to the hypervisor.

6 Conclusion

Existing virtualization architectures usually have either rich functions or a small
TCB, but not both. In this paper, we propose an innovative virtualization

312 W. Pan et al.

architecture, SplitVisor, to support both. SplitVisor has a two-layer-virtualization
structure: a SplitVisor and GuestVisors. The SplitVisor is responsible for iso-
lation between different users’ VMs. A GuestVisor is responsible for emulating
hardware for VMs. A GuestVisor is not required to reside in the TCB, so the
TCB of SplitVisor is small. SplitVisor allows users to choose their own hyper-
visors. It cannot be achieved in single hypervisor designs where all VMs share
the same hypervisor. The TCB of SplitVisor is stable because we do not add
new functions to the SplitVisor, but to the GuestVisors. This also offers the
opportunity to store the TCB in firmware or to optimize it with hardware.

Acknowledgement. This work was supported in part by NSF Grants CNS-
1100221 and CNS-0905153.

References

1. “Xen hypervisor project”, http://www.xen.org/products/xenhyp.html

2. Neiger, G., Santoni, A., Leung, F., Rodgers, D., Uhlig, R.: Intel virtualization tech-
nology: Hardware support for efficient processor virtualization. Intel Technology
Journal 10(3), 167–177 (2006)

3. AMD. Secure virtual machine architecture reference manual

4. Keller, E., Szefer, J., Rexford, J., Lee, R.: Nohype: virtualized cloud infrastruc-
ture without the virtualization. In: Proceedings of the 37th Annual International
Symposium on Computer Architecture, pp. 350–361. ACM (2010)

5. Szefer, J., Keller, E., Lee, R., Rexford, J.: Eliminating the hypervisor attack surface
for a more secure cloud. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security, pp. 401–412. ACM (2011)

6. Kortchinsky, K.: Hacking 3d (and breaking out of vmware). BlackHat USA (2009)

7. Cve-2007-4993: Xen guest root can escape to domain 0 through pygrub (2007),
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4993

8. Cve-2007-5497: Vulnerability in xenserver could result in privilege escalation and
arbitrary code executionr (2007),
http://support.citrix.com/article/CTX118766

9. Wojtczuk, R.: Subverting the xen hypervisor. BlackHat USA (2008)

10. Cve-2008-2100: Vmware buffer overflows in vix api let local users execute arbitrary
code in host os (2008),
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2100

11. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud!
exploring information leakage in third-party compute clouds. Computer and Com-
munications Security (2009)

12. Chen, X., Garfinkel, T., Lewis, E., Subrahmanyam, P., Waldspurger, C., Boneh, D.,
Dwoskin, J., Ports, D.: Overshadow: a virtualization-based approach to retrofitting
protection in commodity operating systems. In: ACM SIGARCH Computer Archi-
tecture News, vol. 36, pp. 2–13. ACM (2008)

13. Chhabra, S., Rogers, B., Solihin, Y., Prvulovic, X., Chen, M., Garfinkel, T., Lewis,
E., Subrahmanyam, P., Waldspurger, C., Boneh, D., Dwoskin, J., Ports, D.: Se-
cureme: a hardware-software approach to full system security. In: Proceedings of
the International Conference on Supercomputing, pp. 108–119. ACM (2011)

http://www.xen.org/products/xenhyp.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4993
http://support.citrix.com/article/CTX118766
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2100

SplitVisor - Design and Implementation 313

14. Zhang, X., Azab, A., Ning, P.: Sice: A hardware-level strongly isolated computing
environment for x86 multi-core platforms. In: 18th ACM Conference on Computer
and Communications Security (2011)

15. Champagne, D., Lee, R.: Scalable architectural support for trusted software. In:
2010 IEEE 16th International Symposium on High Performance Computer Archi-
tecture (HPCA), pp. 1–12. IEEE (2010)

16. Zhang, F., Chen, J., Chen, H., Zang, B.: Cloudvisor: retrofitting protection of
virtual machines in multi-tenant cloud with nested virtualization. In: Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, pp. 203–
216. ACM (2011)

17. Ben-Yehuda, M., Day, M., Dubitzky, Z., Factor, M., Har’El, N., Gordon, A.,
Liguori, A., Wasserman, O., Yassour, B.: The turtles project: Design and implemen-
tation of nested virtualization. In: 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Vancouver, British Columbia, Canada, pp.
423–436 (October 2010)

18. Goldberg, R.: Architecture of virtual machines. In: Proceedings of the Workshop
on Virtual Computer Systems, pp. 74–112. ACM (1973)

19. Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., Horowitz,
M.: Architectural support for copy and tamper resistant software. ACM SIGPLAN
Notices 35(11), 168–177 (2000)

20. Lie, D., Thekkath, C., Horowitz, M.: Implementing an untrusted operating system
on trusted hardware. ACM SIGOPS Operating Systems Review 37(5), 178–192
(2003)

21. Suh, G., Clarke, D., Gassend, B., Van Dijk, M., Devadas, S.: Aegis: architecture
for tamper-evident and tamper-resistant processing. In: Proceedings of the 17th
Annual International Conference on Supercomputing, pp. 160–171. ACM (2003)

22. Chhabra, S., Rogers, B., Solihin, Y., Prvulovic, M.: Making secure processors os-
and performance-friendly. ACM Transactions on Architecture and Code Optimiza-
tion (TACO) 5(4), 16 (2009)

23. Huang, A.: Hacking the Xbox: an introduction to reverse engineering. No Starch
Pr. (2003)

24. Amazon elastic compute cloud, http://aws.amazon.com/
25. Eucalyptus cloud computing software, http://www.eucalyptus.com/
26. Flexiscale cloud computing services, http://www.flexiscale.com/
27. Nimbus platform, http://www.nimbusproject.org/
28. Rackspace hosting, http://www.rackspace.com/
29. Xen users’ manual v3.3, http://www.xen.org/products/xenhyp.html
30. Witteman, M., Oostdijk, M.: Secure application programming in the presence of

side channel attacks. In: RSA Conference, vol. 2008 (2008)
31. Tpm main specification, http://www.trustedcomputinggroup.org/
32. Specjbb2005 (java server benchmark), http://www.spec.org/jbb2005/
33. Yang, J., Shin, K.: Using hypervisor to provide data secrecy for user applications

on a per-page basis. In: Proceedings of the Fourth ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments, pp. 71–80. ACM (2008)

34. Azab, A., Ning, P., Wang, Z., Jiang, X., Zhang, X., Skalsky, N.: Hypersentry:
Enabling stealthy in-context measurement of hypervisor integrity. In: Proceedings
of the 17th ACM Conference on Computer and Communications Security, pp. 38–
49. ACM (2010)

35. Wang, Z., Jiang, X.: Hypersafe: A lightweight approach to provide lifetime hyper-
visor control-flow integrity. In: 2010 IEEE Symposium on Security and Privacy,
pp. 380–395. IEEE (2010)

http://aws.amazon.com/
http://www.eucalyptus.com/
http://www.flexiscale.com/
http://www.nimbusproject.org/
http://www.rackspace.com/
http://www.xen.org/products/xenhyp.html
http://www.trustedcomputinggroup.org/
http://www.spec.org/jbb2005/

Enforcing Subscription-Based

Authorization Policies in Cloud Scenarios

Sabrina De Capitani di Vimercati1, Sara Foresti1,
Sushil Jajodia2, and Giovanni Livraga1

1 Università degli Studi di Milano, 26013 Crema, Italy
firstname.lastname@unimi.it

2 George Mason University, Fairfax, VA 22030-4444, USA
jajodia@gmu.edu

Abstract. The rapid advances in the Information and Communication
Technologies have brought to the development of on-demand high qual-
ity applications and services allowing users to easily access resources
anywhere anytime. Users can pay for a service and access the resources
made available during their subscriptions until the subscribed periods
expire. Users are then forced to download such resources if they want to
access them also after the subscribed periods. To avoid this burden to
the users, we propose the adoption of a subscription-based access control
policy that combines a flexible key derivation structure with selective en-
cryption. The publication of new resources as well as the management of
subscriptions are accommodated by adapting the key derivation struc-
ture in a transparent way for the users.

Keywords: access control, subscription-based policies, data
outsourcing.

1 Introduction

The advances in the Information and Communication Technologies (ICTs) have
driven the users into the Globalization era, where the techniques for processing,
storing, and accessing information have radically changed. New emerging com-
puting paradigms (e.g., data outsourcing and cloud computing) offer enormous
advantages to both users and organizations. Users can now subscribe to a variety
of services, and access them anywhere anytime: at home from their laptop, on
the train from their tablet, or while waiting in a queue from their smartphone.
Organizations are more and more resorting to external elastic storage and com-
putational services for creating and running business over the Internet in new
ways. Organizations can then provide large-scale cloud data services widely ac-
cessible to a variety of users, possibly restricting access to resources on the basis
of users’ subscriptions. These services can be offered at affordable prices, thanks
to the use of external cloud storage servers for the management of data. As a
side effect of this trend, security requirements are becoming more complex since
cloud storage servers are typically trusted neither to access the resources content
nor to restrict access to the services according to users’ subscriptions.

N. Cuppens-Boulahia et al. (Eds.): DBSec 2012, LNCS 7371, pp. 314–329, 2012.
c© IFIP International Federation for Information Processing 2012

Enforcing Subscription-Based Authorization Policies in Cloud Scenarios 315

Emerging approaches in the data outsourcing scenario regulate access to re-
sources through selective encryption, meaning that they translate the privilege
to access a resource into the knowledge of the key used to encrypt the resource
itself (e.g., [10]). These approaches, however, while representing important steps
towards the support of flexible access control solutions in data outsourcing, are
still in their infancy. In fact, they cannot easily support a scenario where both the
set of users who can access a resource and the set of resources change frequently
over time, due to new subscriptions and the publication of new resources. Also
access control solutions developed for publish/subscribe systems (e.g., [11,20]),
which may seem to have some similarities with the publication scenario we con-
sider, are not suitable since they have been developed for a different problem.
We take into account scenarios where users pay for a service and then can freely
access the resources made available during their subscriptions. In this context, to
access resources also after the expiration of their subscriptions, users can down-
load the resources for which they are authorized to their local machine. Our
proposal aims at avoiding this burden to the users allowing them to maintain
the right to access such resources without the worry that they will lose this right
after the expiration of their subscriptions. For instance, users who have pur-
chased an annual subscription for 2012 for a magazine should be able to access
all and only the issues of the magazine published in 2012, and should be able to
access them even after December 31, 2012. We therefore propose an approach
that takes advantage of selective encryption to guarantee that users who sub-
scribe for a service can access all and only the resources published during their
subscriptions, while allowing the resources to self-enforce the subscription-based
restrictions. Before being stored on the cloud storage server, the resources are
encrypted, and a key derivation structure is built to guarantee that they can
be decrypted only by authorized users. The key derivation structure is updated
whenever new resources are published, new subscriptions are received, or users
withdraw from their subscriptions.

The remainder of this paper is organized as follows. Section 2 describes the
considered scenario and the protection requirements that the access control sys-
tem should satisfy. Section 3 formalizes the concept of subscription-based policy.
Section 4 presents our techniques for enforcing a subscription-based policy. Sec-
tion 5 illustrates how the system publishes resources and manages subscriptions.
Section 6 discusses related work. Finally, Section 7 reports our conclusions.

2 Scenario, Protection Requirements, and Motivation

We consider a scenario where a resource provider uses an external cloud storage
server for storing its resources, thus taking advantage of the cost savings
that the cloud storage server can provide. The resource provider periodically
publishes new resources that should be able to self-enforce restrictions on who
can access them and should not be accessible to the cloud storage server. Users
can subscribe to the services offered by the resource provider for different pe-
riods of time, and can withdraw from a subscription at any time. We assume that

316 S. De Capitani di Vimercati et al.

users are trusted, that is, they do not redistribute resources they can access to
unauthorized users.

In the considered scenario, accesses to resources should be regulated by a
subscription-based access control policy according to which users are authorized
to access all and only the resources that have been published by the resource
provider during their subscribed periods. A peculiarity of our scenario is that
user authorizations remain valid also after the expiration of their subscriptions.
The subscription-based access control policy takes then into consideration both
the subscriptions of the users and the time when resources have been published.
Existing solutions result limited for our scenario. We can classify such existing
solutions in two main categories.

– Account-based . Traditional access control solutions (e.g., [17]), including
those emerging in the data outsourcing scenario (e.g., [10]), are based on
the assumption that when users leave the system their authorizations ter-
minate and they cannot access the resources anymore. Furthermore, access
control solutions for data outsourcing cannot easily support a dynamic sce-
nario where resources are continuously created, and new users can join the
system and old users can leave the system at any time.

– Time-based . Temporal-based access control solutions (e.g., [4]) enforce time
restrictions in a way that is different from what we need. In fact, these
solutions consider a scenario where resources are stored and managed by
the party who creates them, and assume that authorizations apply only to
specific time intervals and/or that authorizations can be applied following a
periodic pattern (e.g., a user can access a file only during the working days
from 8:00 a.m. to 5:00 p.m.).

We then put forward the idea of using the same principles at the basis of the
access control solutions developed for the data outsourcing scenario (which en-
crypt resources for protecting their confidentiality from the storage server and
adopt key derivation techniques for efficiently combining authorization-based
access control and cryptographic protection) to enforce a subscription-based ac-
cess control policy without delegating it to the cloud storage server. Our solution
should guarantee the correct enforcement of the subscription-based access con-
trol policy (i.e., users should be able to access the resources made available dur-
ing their subscribed periods also after the expiration of their subscriptions) and
the forward and backward protection requirements. Forward protection means
that users cannot access resources published before the beginning of their sub-
scriptions (e.g, users who subscribe to a magazine for 2012 cannot access the
issues of the magazine published before January 1, 2012). Backward protection
means that users cannot access resources published after the expiration of their
subscriptions (e.g., users who subscribe to a magazine for 2012 cannot access
the issues of the magazine published during 2013). Like for the data outsourc-
ing scenario, with our solution the published resources are encrypted so that
they self-enforce the subscription-based access restrictions. In addition to the
correct enforcement of the subscription-based policy and the satisfaction of the

Enforcing Subscription-Based Authorization Policies in Cloud Scenarios 317

forward and backward protection requirements mentioned above, our solution
should avoid re-encryption of resources and re-distribution of keys whenever
users subscribe to services or withdraw from their subscriptions.

3 Subscription-Based Policy

A resource provider offers a set P of services to which users can subscribe.
Each service p∈P consists in a period of publication of resources, and each user
subscribing to service p can access all the resources published for p during her
subscription. We denote with U and R the set of users subscribed to service p
and the set of published resources for p, respectively. For simplicity, but without
loss of generality, we focus on the management of accesses to a single service.
We also note that, although in this paper we consider time-based subscriptions,
our approach can be easily adapted to other scenarios where subscriptions to a
service can be defined on the basis of different criteria (e.g., topic of interest,
geographical region).

Given a time domain (T S,≤), with T S a set of time instants and ≤ a total
order relationship on T S [5], the resource provider assigns to each resource r∈R
a timestamp r.t in T S that represents the time when the resource has been
published. The resource provider may combine contiguous time instants into time
windows, defined on arbitrary granularities, forming a time hierarchy. Intuitively,
these time windows represent the periods of time for which the resource provider
allows users to subscribe to the service offered. Formally, a time hierarchy HT
is a pair (T,#), where T is a set of time windows, and # is a partial order
relationship over T. A time window Ti in T is a pair [tsi ,t

e
i] of time instants and

represents the set of time instants t∈T S such that tsi≤t≤tei . Given two time
windows Ti and Tj in T, Ti dominates Tj , denoted Ti#Tj, if t

s
i≤tsj and tej≤tei

(i.e., the time instants in Tj represent a subset of the time instants in Ti). The
leaves of the time hierarchy correspond to time instants in T S, which can be seen
as time windows with ts=te. The time hierarchy can be graphically represented
as a directed acyclic graph with vertices representing time windows in T and
edges representing direct dominance relationships. For simplicity, but without
loss of generality, in this paper we assume HT to be a tree. As an example,
consider resource provider Condé Nast, monthly publishing magazine Glamour
and offering the possibility to buy subscriptions for a month (single issue), a
trimester, a semester, or a year. Figure 1 illustrates the time hierarchy defined
by the resource provider. For the sake of readability, in the figure we denote
leaves with the time instant they represent. Each user u∈U can subscribe to the
service offered by the resource provider for an arbitrary set, denoted u.S, of time
windows in HT (i.e., u.S⊆T).

The timestamps assigned to resources along with the user subscriptions es-
tablish the set of resources that each user can access: user u∈U can access re-
source r∈R if she subscribed for a time window including r.t. Formally, the
subscription-based policy regulating access to the resources is defined as follows.

318 S. De Capitani di Vimercati et al.

Fig. 1. An example of time hierarchy

Definition 1 (Subscription-based policy). Let HT (T,#) be a time hierarchy
defined on time domain (T S,≤), U be a set of users with u.S⊆T for all u∈U ,
and R be a set of resources with r.t∈T S for all r∈R. The subscription-based
policy A on U and R grants u∈U access to r∈R iff ∃[ts,te] ∈u.S s.t. ts≤r.t≤te.

Example 1. Suppose that three issues of magazine Glamour have been pub-
lished with timestamp Jan’12, Feb’12, and Mar’12, respectively (i.e., R={Glam-
01,Glam-02,Glam-03}). Assume now that two users U={Alice, Barbara} sub-
scribe to the magazine for the first trimester of 2012 ([Jan’12,Mar’12]), and for
the first issue of the year ([Jan’12,Jan’12]), respectively. The subscription-based
policy grants Alice access to all the issues of the magazine in R, while it grants
Barbara access only to the first issue Glam-01.

4 Graph Modeling of the Subscription-Based Policy

We propose to enforce the subscription-based policy by combining selective en-
cryption [10] with a key derivation technique that uses a key derivation structure
based on public tokens [1]. Given two keys ki and kj in a set K of keys, token
di,j=kj⊕h(ki,lj), with lj a public label associated with kj , ⊕ the bitwise xor op-
erator, and h a deterministic cryptographic function, permits to derive kj from
the knowledge of ki and label lj. The derivation relationship between keys can
be either direct , via a single token, or indirect , via a chain of tokens. Our idea
consists in defining a key derivation structure so that each resource is encrypted
only once with a single key, and each user receives only one key from which
she can derive all and only the keys used for encrypting the resources that she
can access according to the subscription-based policy. To fix ideas and make the
discussion clear, we consider the system at a specific point in time when some
resources have been published and some users have subscribed to the service
offered by the resource provider. We first discuss how resources are encrypted
and then describe how to model users’ subscriptions.

The techniques developed for enforcing an access control policy in the data
outsourcing scenario build a key derivation structure on the basis of the sets of

Enforcing Subscription-Based Authorization Policies in Cloud Scenarios 319

users that can access resources. In our scenario, such sets of users vary frequently
over time, and therefore it is not convenient to exploit them for building the key
derivation structure. We then use the time hierarchyHT defined by the resource
provider as a key derivation structure where each time window is associated with
a key, and each edge corresponds to a token. The timestamp associated with a
published resource, therefore, identifies the time window in the time hierarchy
representing the key used to encrypt the resource itself. The keys associated
with time windows including more than a time instant (i.e., internal vertices)
are not used for encrypting resources, but only for derivation purposes. Clearly,
not all the time windows in the time hierarchy are necessary for enforcing the
subscription-based policy, but only those corresponding to the timestamps of
published resources along with all the time windows dominating them. For in-
stance, with respect to Example 1, the time windows that must be represented in
the key derivation structure are Jan’12, Feb’12, and Mar’12, which are the times-
tamps of the three published resources, and all the time windows dominating
them in the time hierarchy in Figure 1, that is, [Jan’12,Mar’12], [Jan’12,Jun’12],
and [Jan’12,Dec’12]. In this way, from the knowledge, for example, of the key
associated with [Jan’12,Mar’12] we can derive the keys used for encrypting all
the resources published during the first trimester of 2012.

For each user in the system, the resource provider generates a new key and
communicates it to the user. With this unique key, the user should be able to
access all and only the resources for which she is authorized according to her
subscriptions. The idea is to “hook the user” through a token on each time
window T for which she subscribed. In this way, the user can adopt her key to
directly derive the key associated with time window T. From this key she can
directly or indirectly derive the keys used to encrypt all and only the resources
whose timestamp is included in T. For instance, according to the subscriptions
in Example 1, Alice can access all the resources published in the first trimester
of 2012. The resource provider then creates a token from Alice’s key to the
key associated with [Jan’12,Mar’12]. By construction, all resources published
in Jan’12, Feb’12, and Mar’12 will be encrypted with a key derivable from the
key associated with [Jan’12,Mar’12], which Alice can derive. Note that it may
happen that a user subscribes for a time window for which no resource has been
published (e.g., a user subscribes to a magazine for April’12 and the issue of April
has not been published yet). The key derivation structure must then include also
the time windows representing users’ subscriptions, along with their ancestors
in HT . The resulting key derivation structure, which we call user and resource
graph, can be formally defined as follows.

Definition 2 (User and resource graph). Let HT (T,#) be a time hierarchy
on time domain (T S,≤), U be a set of users with u.S⊆T for all u∈U , and R be
a set of resources with r.t∈T S for all r∈R. A user and resource graph over U ,
R, and HT is a graph G(V,E), with:

– V = Tr ∪ Ts ∪ Tp ∪ U , with Tr=
⋃

r∈R[r.t, r.t], Ts=
⋃

u∈Uu.S, and
Tp= {T ∈ T | ∃T′ ∈ Ts ∪ Tr such that T#T′}

320 S. De Capitani di Vimercati et al.

Id Enc Resource
1 E(Glam-01,v4.k)
2 E(Glam-02,v5.k)
3 E(Glam-03,v6.k)

(b)

From To Token
v1 v2 v2.k⊕h(v1.k,v2.l)
v2 v3 v3.k⊕h(v2.k,v3.l)
v3 v4 v4.k⊕h(v3.k,v4.l)
v3 v5 v5.k⊕h(v3.k,v5.l)
v3 v6 v6.k⊕h(v3.k,v6.l)
v10 v3 v3.k⊕h(v10.k,v3.l)
v11 v4 v4.k⊕h(v11.k,v4.l)

(a) (c)

Fig. 2. An example of user and resource graph (a), published resources (b), and token
catalog (c)

– E = {(u,T) | u∈U ∧ T∈V\U ∧ T∈u.S} ∪
{(Ti,Tj) | Ti,Tj∈V\U ∧ Ti#Tj ∧ (�Tz∈V\U , Ti#Tz#Tj ∧ Tz �=Ti �=Tj)}

The vertices in the user and resource graph represent the keys of the system,
while the edges represent the tokens in the token catalog D stored at the external
cloud storage server together with the encrypted resources.

Example 2. Consider the time hierarchy in Figure 1 and the subscription-based
policy in Example 1. Figure 2(a) shows the corresponding user and resource
graph, where dotted triangles represent subtrees of the time hierarchy that are
not associated with a vertex in the graph. For the sake of clarity, the figure also
reports the published resources, represented as ovals connected with the vertices
in the graph representing their timestamp and whose keys are used to encrypt
them. Figure 2(b) shows the encrypted resources stored at the external cloud
storage server, with Id the resource identifier and Enc Resource the encrypted
resource (E(r, k) denotes the encryption of r with k), and Figure 2(c) illustrates
the token catalog resulting from the user and resource graph in Figure 2(a).

The user and resource graph in Definition 2 guarantees the correct enforcement
of the subscription-based policy since each user can decrypt all and only the
resources with a timestamp included in at least one of the time windows in the
user’s subscriptions. This is formalized by the following theorem, whose proof is
omitted from the paper for space constraints.

Theorem 1 (Correct enforcement of subscription-based policy). Let
HT (T,#) be a time hierarchy on time domain (T S,≤), U be a set of users with

Enforcing Subscription-Based Authorization Policies in Cloud Scenarios 321

PUBLISH RESOURCE(r)
1: R := R ∪ {r}
2: v := Get Vertex([r.t,r.t]) /* retrieve the vertex representing the timestamp of the resource */
3: Encrypt(r,v.k)
4: publish the encrypted resource

GET VERTEX(T)
5: if T∈V then /* T already belongs to G */
6: let v∈V be the vertex with v=T
7: return(v)
8: generate vertex v := T
9: generate encryption key v.k
10: generate public label v.l
11: V := V ∪ {v} /* insert the vertex into the user and resource graph */
12: let Ti∈T: Ti�T ∧ �Tj : Ti�Tj�T, Tj 	=Ti 	=T /* determine the direct ancestor of T in HT */
13: if Ti 	=null then
14: vi := Get Vertex(Ti) /* retrieve the vertex in G that represents Ti */
15: E := E ∪ {(vi,v)} /* insert the edge connecting Ti to T in G */
16: D := D ∪ {v.k⊕h(vi.k,v.l)} /* publish the corresponding token */
17: return(v)

Fig. 3. Pseudocodes of procedure Publish Resource and function Get Vertex

u.S⊆T for all u∈U , and R be a set of resources with r.t∈T S for all r∈R. The
user and resource graph G(V,E) correctly enforces a subscription-based policy A
on U and R when ∀u∈U , ∀r∈R:

∃[ts,te] ∈u.S s.t. ts≤r.t≤te ⇐⇒ 〈u,[r.t,r.t]〉 is a path in G.

5 Management of Resources and Subscriptions

Whenever there is a change in the subscription-based policy (e.g., a new resource
is published, a user subscribes to a service for a specific time window, or a user
decides to withdraw from a subscription), the user and resource graph has to be
updated accordingly. In the following, we discuss how changes to the policy can
be managed in a transparent way for the users.

5.1 Resource Publishing

At initialization time, the user and resource graph is empty (no key is necessary
for resource encryption) and it is dynamically built as resources are published.
Figure 3 illustrates the pseudocode of procedure Publish Resource that the
resource provider calls whenever it needs to publish a resource. The procedure
takes a resource r as input and publishes its encrypted representation. The
procedure first calls function Get Vertex on time window T=[r.t,r.t] (line 2).
This function checks whether the vertex representing [r.t,r.t] is in the user and
resource graph, since its key has to be used for encrypting r. If such a vertex
exists, the function returns it (lines 5-7). Otherwise, the function first creates a
vertex v representing T, along with the corresponding encryption key v.k and
public label v.l, and inserts v into the set V of vertices of the user and resource

322 S. De Capitani di Vimercati et al.

Id Enc Resource
1 E(Glam-01,v4.k)
2 E(Glam-02,v5.k)
3 E(Glam-03,v6.k)
4 E(Glam-04,v8.k) ∗
5 E(Glam-05,v9.k) ∗

(b)

From To Token
v1 v2 v2.k⊕h(v1.k,v2.l)
v2 v3 v3.k⊕h(v2.k,v3.l)
v2 v7 v7.k⊕h(v2.k,v7.l) ∗
v3 v4 v4.k⊕h(v3.k,v4.l)
v3 v5 v5.k⊕h(v3.k,v5.l)
v3 v6 v6.k⊕h(v3.k,v6.l)
v7 v8 v8.k⊕h(v7.k,v8.l) ∗
v7 v9 v9.k⊕h(v7.k,v9.l) ∗
v10 v3 v3.k⊕h(v10.k,v3.l)
v11 v4 v4.k⊕h(v11.k,v4.l)

(a) (c)

Fig. 4. User and resource graph (a), published resources (b), and token catalog after
Glam-04 and Glam-05 are published (c)

graph (lines 8-11). To guarantee that the time window Ti directly dominating
T in the time hierarchy is represented in the user and resource graph, function
Get Vertex recursively calls itself on Ti, obtaining the vertex vi representing Ti

in the graph (lines 12-14). The function inserts into G edge (vi,v) and publishes
the corresponding token (lines 15-16). We note that the recursive nature of func-
tion Get Vertex guarantees that all the ancestors of T in HT are represented
by a vertex in the user and resource graph, and that each vertex is connected
to all its direct descendants represented in the graph. The function then returns
vertex v representing [r.t,r.t] (line 17). Finally, procedure Publish Resource
encrypts r with v.k and publishes the resulting encrypted resource
(lines 3-4).

Example 3. Consider the user and resource graph, published resources, and to-
ken catalog in Figure 2 and assume that Condé Nast publishes the fourth issue of
Glamour in April’12. The resource provider calls procedure Publish Resource
on resourceGlam-04 that in turn calls function Get Vertex on [Apr’12,Apr’12].
The function inserts vertex v8 representing [Apr’12,Apr’12] and its direct an-
cestor v7 representing [Apr’12,Jun’12]. Procedure Publish Resource then en-
cryptsGlam-04 with the key of vertex v8. Assume now that Condé Nast publishes
the fifth issue of Glamour in May’12, calling procedure Publish Resource
on resource Glam-05. Function Get Vertex inserts vertex v9 representing
[May’12,May’12] and directly connects it to [Apr’12,Jun’12], since it is already
included in the graph. Resource Glam-05 is encrypted with the key of vertex v9.
Figure 4 illustrates the resulting user and resource graph, published resources,
and token catalog, where new resources and tokens are denoted with a ∗.

Enforcing Subscription-Based Authorization Policies in Cloud Scenarios 323

SUBSCRIBE(u,T)
1: if u 	∈ U then /* u is a new user in the system */
2: U := U ∪ {u}
3: generate vertex vu := u
4: generate encryption key vu .k
5: generate public label vu .l
6: V := V ∪{vu}
7: else let vu∈V be the vertex with vu = u
8: u.S := u.S ∪ {T}
9: vT := Get Vertex(T)
10: E := E ∪ {(vu ,vT)}
11: D := D ∪ {vT .k⊕h(vu .k,vT .l)}
12: let Ti∈T: Ti�T ∧ (�Tj : Ti�Tj�T, Tj 	=Ti 	=T) /* determine the direct ancestor of T in HT */
13: T′ := {Tj∈u.S | Ti�Tj ∧ (�Tz∈T: Ti�Tz�Tj , Ti 	=Tz 	=Tj)}
14: if

⋃
Tj∈T ′Tj=Ti then

15: u.S:= u.S \ T′
16: E := E \ {(vi,vj) | vi=u ∧ vj=Tj , Tj∈T′}
17: D := D \ {vj .k⊕h(vi.k,vj .l) | vi=u ∧ vj=Tj , Tj∈T′}
18: Subscribe(u,Ti)

Fig. 5. Pseudocode of procedure Subscribe

5.2 New Subscription

Both new and existing users can subscribe to a service for a time window at
any point in time (i.e., before the beginning, during, or even after the expiration
of the window). Figure 5 illustrates procedure Subscribe that manages new
subscriptions. The procedure takes a user u and a time window T as input and
works as follows. If u is a new user, the procedure creates a vertex vu repre-
senting u, her encryption key vu .k, and public label vu .l (lines 1-6). Otherwise,
the procedure identifies the vertex vu representing the user in G (line 7). The
procedure then inserts T into u.S, calls function Get Vertex on T so that the
vertex vT representing T and its ancestors are possibly added to the graph, and
inserts edge (vu ,vT) in the user and resource graph, publishing the corresponding
token (lines 8-11). Through this token, the user can directly derive from her key
the key of the time window to which she is subscribing.

To keep the number of tokens under control, the procedure verifies whether
the set u.S of subscriptions includes all the time windows directly dominated by
Ti that in turn directly dominates T in HT (e.g., a user may be subscribed for
three issues of a magazine that correspond to a trimester). In this case, instead
of maintaining a token from u to all the direct descendants of Ti, it is possible to
replace them with a single token from vertex u to Ti. To this purpose, procedure
Subscribe identifies the direct ancestor Ti of the time window T to which u
is subscribing and checks if u.S includes all the descendants Tj , . . . , Tl of Ti

(lines 12-14). In this case, it removes Tj, . . . , Tl from u.S, the edges connecting
vu to the vertices representing them, and the corresponding tokens (lines 15-
17). The procedure then recursively calls itself to subscribe u to Ti to possibly
propagate up in the graph this factorization (line 18).

Example 4. Consider the user and resource graph, published resources, and
token catalog in Figure 4, and assume that Alice renews her subscription to

324 S. De Capitani di Vimercati et al.

Id Enc Resource
1 E(Glam-01,v4.k)
2 E(Glam-02,v5.k)
3 E(Glam-03,v6.k)
4 E(Glam-04,v8.k)
5 E(Glam-05,v9.k)

(b)

From To Token
v1 v2 v2.k⊕h(v1.k,v2.l)
v2 v3 v3.k⊕h(v2.k,v3.l)
v2 v7 v7.k⊕h(v2.k,v7.l)
v3 v4 v4.k⊕h(v3.k,v4.l)
v3 v5 v5.k⊕h(v3.k,v5.l)
v3 v6 v6.k⊕h(v3.k,v6.l)
v7 v8 v8.k⊕h(v7.k,v8.l)
v7 v9 v9.k⊕h(v7.k,v9.l)
v10 v3 v3.k⊕h(v10.k,v3.l)
v10 v2 v2.k⊕h(v10.k,v2.l) ∗
v11 v4 v4.k⊕h(v11.k,v4.l)

(a) (c)

Fig. 6. User and resource graph (a), published resources (b), and token catalog after
Alice subscribes for [Apr’12,Jun’12] (c)

Glamour for trimester [Apr’12,Jun’12]. Since both Alice and [Apr’12,Jun’12] are
already in the graph (vertices v10 and v7, respectively), procedure Subscribe
only inserts edge (v10,v7) and publishes the corresponding token. Renewing
her subscription, Alice is now subscribed for the first semester of year 2012.
Procedure Subscribe factorizes the two subscriptions for [Jan’12,Mar’12] and
[Apr’12,Jun’12] in a unique subscription for [Jan’12,Jun’12]. Figure 6 illustrates
the resulting user and resource graph, published resources, and token catalog
(removed tokens are crossed out). Assume now that Carol joins the system and
subscribes for [Apr’12,Jun’12]. Procedure Subscribe first inserts vertex v12 rep-
resenting Carol in the graph, and communicates her the corresponding key. It
then inserts edge (v12,v7) in the graph. Figure 7 illustrates the resulting user
and resource graph, published resources, and token catalog.

5.3 Withdrawal from a Subscription

As our system provides high flexibility in defining the time windows available
for subscription, withdrawal from a subscription represents an exception in the
working of the system and must be managed as a special case. In fact, no action
is needed when a subscription naturally expires. When a user withdraws from a
subscription for time window [ts,te], starting from time instant t, the resource
provider must guarantee that: i) she cannot access the resources with timestamp
in (t,te] (backward protection), and ii) she continues to access the resources with
timestamp in [ts,t]. For instance, consider Example 4. In May’12 Alice could
decide to withdraw from her subscription for the first semester of year 2012. In
this case, she should not be able to decrypt the issue of June of the magazine,
while she will continue to access the issues of January, February, March, April,
and May. Clearly, a user can withdraw from her subscription at time t only

Enforcing Subscription-Based Authorization Policies in Cloud Scenarios 325

Id Enc Resource
1 E(Glam-01,v4.k)
2 E(Glam-02,v5.k)
3 E(Glam-03,v6.k)
4 E(Glam-04,v8.k)
5 E(Glam-05,v9.k)

(b)

From To Token
v1 v2 v2.k⊕h(v1.k,v2.l)
v2 v3 v3.k⊕h(v2.k,v3.l)
v2 v7 v7.k⊕h(v2.k,v7.l)
v3 v4 v4.k⊕h(v3.k,v4.l)
v3 v5 v5.k⊕h(v3.k,v5.l)
v3 v6 v6.k⊕h(v3.k,v6.l)
v7 v8 v8.k⊕h(v7.k,v8.l)
v7 v9 v9.k⊕h(v7.k,v9.l)
v10 v2 v2.k⊕h(v10.k,v2.l)
v11 v4 v4.k⊕h(v11.k,v4.l)
v12 v7 v7.k⊕h(v12.k,v7.l) ∗

(a) (c)

Fig. 7. User and resource graph (a), published resources (b), and token catalog after
Carol subscribes for [Apr’12,Jun’12] (c)

if no resource with timestamp in (t,te] has been published yet, since otherwise
she could have accessed it before withdrawal. To guarantee that withdrawals
are transparent for all the users and cause a limited overhead to the resource
provider, our approach avoids re-keying and re-encryption operations.

Figure 8 illustrates procedure Withdraw Subscription, which takes a user
u and a time instant t as input, and updates the user and resource graph. The
procedure first identifies the vertex vu representing the user in G and the time
window [ts,te] in u.S that includes t (lines 1-2). If such a time window does not
exist or if at least a resource with timestamp in (t,te] has been published, the
procedure terminates notifying the problem to the resource provider (line 3).
Otherwise, procedure Withdraw Subscription removes the subscription by
first substituting [ts,te] with [ts,t] in u.S (line 4). Since user u already knows the
keys of the vertices along the path from vertex [ts,te] to t if they are represented
in the user and resource graph, the resource provider must guarantee that all
the resources with a timestamp following t will be encrypted with a key that
is not derivable from the keys along this path. To this purpose, the procedure
updates the time window [tsi ,t

e
i] that each of these vertices represents by setting

tei to t, creates a new set of vertices representing the time windows that has been
changed, and connects them in a path of the user and resource graph. Also, the
procedure inserts an edge between each new vertex [tsi ,t

e
i] to vertex [tsi ,t] since

[tsi ,t
e
i] clearly dominates [tsi ,t]. Finally, for each user u such that [tsi ,t

e
i]∈u.S, the

procedure substitutes the token (and corresponding edge) between u and [tsi ,t]
(i.e., the vertex that represented [tsi ,t

e
i] before the change performed by procedure

Withdraw Subscription) with the token (and corresponding edge) between u
and the new vertex representing [tsi ,t

e
i], to preserve her ability to derive all the

keys of the time windows dominated by [tsi ,t
e
i].

326 S. De Capitani di Vimercati et al.

WITHDRAW SUBSCRIPTION(u,t)
1: let vu∈V be the vertex with vu = u
2: let T=[ts,te]∈u.S s.t. ts≤t≤te
3: if T=null ∨ (∃r∈R s.t. t<r.t≤te) then exit
4: u.S := u.S\{T} ∪ {[ts,t]} /* update the time window in user subscriptions */
5: let vT∈V be the vertex with vT = T
6: while te 	=t ∧ ts 	=te ∧ T∈V do /* visit the path from T to [t,t] */
7: Tnew := [ts,te]
8: vT := [ts,t] /* update the label of the vertex */
9: vnew := Get Vertex(Tnew) /* create a vertex representing Tnew */
10: E := E ∪ {(vnew,vT)} /* [ts,te] dominates [ts,t] */
11: D := D ∪ {vT .k⊕h(vnew.k,vT .l)}
12: for each (vu,vT) s.t. vu∈U\{u} do /* update users’ subscriptions */
13: E := E ∪ {(vu,vnew)} \ {(vu,vT)}
14: D := D ∪ {vnew.k⊕h(vu.k,vnew.l)} \ {vT .k⊕h(vu.k,vT .l)}
15: let T=[ts,te]∈T s.t. Tnew�T ∧ ts≤t≤te ∧ �Tj : Tnew�Tj�T, Tj 	=Tnew 	=T
16: let vT∈V be the vertex with vT = T

Fig. 8. Pseudocode of procedure Withdraw Subscription

Note that the keys along the path from T to t, whose time windows have been
updated by procedure Withdraw Subscription, are not affected. Therefore,
users who have already computed these keys can still use their local copy. The
number of additional vertices and edges in the user and resource graph is limited
and is at most h-1 and 2(h-1), respectively, where h is the height of the time
hierarchy. The number of updated edges is |U|-1 in the worst case.

Example 5. Consider the user and resource graph, published resources, and to-
ken catalog in Figure 7, and assume that Alice withdraws from her subscription
in May’12. Procedure Withdraw Subscription updates her subscription for
[Jan’12,Jun’12] to [Jan’12,May’12], and visits the path from vertex v2 (repre-
senting [Jan’12,Jun’12]) to the vertex representing [May’12,May’12]. First, it
visits vertex v2, updates its time window to [Jan’12,May’12], creates a new ver-
tex v′2 for time window [Jan’12,Jun’12], and inserts edge (v′2,v2) in the user and
resource graph. The procedure executes the same operations when visiting v7.
Since Carol should still be able to access all the issues of Glamour published in
[Apr’12,Jun’12], the procedure substitutes edge (v12,v7) with edge (v12,v

′
7). From

her key Alice can derive, after this update, the keys used to encrypt the issues
published in [Jan’12,May’12], while Carol can still derive keys used to encrypt
issues published in [Apr’12,Jun’12]. Figure 9 illustrates the user and resource
graph, published resources, and token catalog after Alice’s withdrawal.

5.4 Correctness

The procedures described in this section correctly enforce changes to the
subscription-based policy. This is formally stated by the following theorem,
whose proof is omitted from the paper for space constraints.

Theorem 2 (Correct enforcement of policy updates). Let HT (T,#) be a
time hierarchy on time domain (T S,≤), U be a set of users with u.S⊆T for all

Enforcing Subscription-Based Authorization Policies in Cloud Scenarios 327

Id Enc Resource
1 E(Glam-01,v4.k)
2 E(Glam-02,v5.k)
3 E(Glam-03,v6.k)
4 E(Glam-04,v8.k)
5 E(Glam-05,v9.k)

(b)

From To Token
v1 v2 v2.k⊕h(v1.k,v2.l)
v1 v′

2 v′
2.k⊕h(v1.k,v

′
2.l)

v2 v3 v3.k⊕h(v2.k,v3.l)
v2 v7 v7.k⊕h(v2.k,v7.l)
v′
2 v2 v2.k⊕h(v′

2.k,v2l) ∗
v′
2 v′

7 v′
7.k⊕h(v

′
2.k,v

′
7.l) ∗

v3 v4 v4.k⊕h(v3.k,v4.l)
v3 v5 v5.k⊕h(v3.k,v5.l)
v3 v6 v6.k⊕h(v3.k,v6.l)
v7 v8 v8.k⊕h(v7.k,v8.l)
v7 v9 v9.k⊕h(v7.k,v9.l)
v′
7 v7 v7.k⊕h(v′

7.k,v7.l) ∗
v10 v2 v2.k⊕h(v10.k,v2.l)
v11 v4 v4.k⊕h(v11.k,v4.l)
v12 v7 v7.k⊕h(v12.k,v7.l)
v12 v′

7 v′
7.k⊕h(v12.k,v′

7.l) ∗
(a) (c)

Fig. 9. User and resource graph (a), published resources (b), and token catalog after
Alice withdraws from her subscription in May’12 (c)

u∈U , R be a set of resources with r.t∈T S for all r∈R, and G(V,E) be the user
and resource graph over U , R, and HT .

1. Procedure Publish Resource(r) generates a user and resource graph that
correctly enforces the subscription-based policy on U and R∪{r}.

2. Procedure Subscribe(u,T) generates a user and resource graph that correctly
enforces the subscription-based policy on U∪{u} and R, with u.S∪{T}.

3. Procedure Withdraw Subscription(u,t) generates a user and resource
graph that correctly enforces the subscription-based policy on U and R, with
u.S\{[ts,te]}∪{[ts,t]}.

6 Related Work

Previous work close to ours is in the area of data outsourcing [18], where
many approaches focused on efficient query evaluation at the external server
(e.g., [8,12,21]), and on guaranteeing data integrity and authenticity (e.g., [15]).
Recent works have also addressed access control enforcement (e.g., [10,14,23]), but
these approaches are not suited for the scenario considered in this paper, as they
assume the sets of users, resources, and authorizations not to change frequently.

The problem of enforcing access control policies with time-based restrictions
has been widely studied (e.g., [4,19]). However, these works restrict access to
resources depending on the time when the access is requested. Recently, time-
based access control restrictions have been enforced also in the data outsourcing

328 S. De Capitani di Vimercati et al.

scenario, by integrating them in the key derivation process (e.g., [2,3,7]). The
solutions in [2,3] allow users to derive encryption keys only within the time win-
dows for which they are authorized. The approach in [7] proposes instead a more
general model for enforcing any interval-based restriction (e.g., time and space).
These solutions mainly focus on the security of key derivation and on minimiz-
ing the number of edges in the key derivation graph. Our proposal is instead
aimed at correctly enforcing a subscription-based policy and at guaranteeing
transparency for users in subscription management and resource publishing.

Our work may bring some resemblance with access control in pub-
lish/subscribe systems, characterized by a set of users who publish events, a
set of users who subscribe to the system declaring their interests, and a service
responsible to deliver published events to the users whose interests match with
the event attributes [11,20]. However, in publish/subscribe systems the access
control policy depends on some properties related to the events. Also, pub-
lish/subscribe systems typically rely on a trusted party that can access events
and enforce access restrictions.

Another related but different line of work addresses the problem of en-
forcing time-based restrictions to users when accessing broadcasting services
(e.g., [6,22]). These approaches are not applicable in our scenario where we as-
sume to publish persistent resources as opposed to data streams.

7 Conclusions

We proposed an approach for effectively restricting access to published resources
based on the subscriptions of the users to a service. Our solution is based on
selective encryption so that the encrypted resources self-enforce the subscription-
based restrictions. A key derivation structure is also used for easily enforcing
changes in the subscription-based policy due to the addition of new users and
resources, and to the withdrawal of users from their subscriptions.

Acknowledgements. We would like to thank Pierangela Samarati for dis-
cussions, suggestions, and comments. This work was partially supported by
the Italian Ministry of Research within the PRIN 2008 project “PEPPER”
(2008SY2PH4). The work of Sushil Jajodia was partially supported by the Na-
tional Science Foundation under grants CCF-1037987 and CT-20013A.

References

1. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key
management for access hierarchies. ACM TISSEC 12(3), 18:1–18:43 (2009)

2. Atallah, M.J., Blanton, M., Frikken, K.B.: Incorporating Temporal Capabilities
in Existing Key Management Schemes. In: Biskup, J., López, J. (eds.) ESORICS
2007. LNCS, vol. 4734, pp. 515–530. Springer, Heidelberg (2007)

3. Ateniese, G., De Santis, A., Ferrara, A.L., Masucci, B.: Provably-secure time-bound
hierarchical key assignment schemes. Journal of Cryptology 25(2), 243–270 (2012)

Enforcing Subscription-Based Authorization Policies in Cloud Scenarios 329

4. Bertino, E., Bettini, C., Ferrari, E., Samarati, P.: An access control model support-
ing periodicity constraints and temporal reasoning. ACM TODS 23(3), 231–285
(1998)

5. Bettini, C., Dyreson, C.E., Evans, W.S., Snodgrass, R.T., Wang, X.S.: A Glos-
sary of Time Granularity Concepts. In: Etzion, O., Jajodia, S., Sripada, S. (eds.)
Dagstuhl Seminar 1997. LNCS, vol. 1399, pp. 406–413. Springer, Heidelberg (1998)

6. Blanton, M., Frikken, K.B.: Efficient Multi-dimensional Key Management in
Broadcast Services. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 424–440. Springer, Heidelberg (2010)

7. Crampton, J.: Practical and efficient cryptographic enforcement of interval-based
access control policies. ACM TISSEC 14(1), 14:1–14:30 (2011)

8. Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Balancing confidentiality and efficiency in untrusted relational DBMSs. In: Proc.
of CCS 2003, Washington, DC, USA (October 2003)

9. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
A data outsourcing architecture combining cryptography and access control. In:
Proc. of CSAW 2007, Fairfax, VA, USA (November 2007)

10. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Encryption policies for regulating access to outsourced data. ACM TODS 35(2),
12:1–12:46 (2010)

11. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.: The many faces of pub-
lish/subscribe. ACM CSUR 35(2), 114–131 (2003)

12. Hacigümüs, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data
in the database-service-provider model. In: Proc. of the SIGMOD 2002, Madison,
WI, USA (June 2002)

13. Jhawar, R., Piuri, V., Santambrogio, M.D.: A comprehensive conceptual system-
level approach to fault tolerance in cloud computing. In: Proc. of IEEE SysCon
2012, Vancouver, BC, Canada (March 2012)

14. Miklau, G., Suciu, D.: Controlling access to published data using cryptography. In:
Proc. of VLDB 2003, Berlin, Germany (September 2003)

15. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. ACM TOS 2(2), 107–138 (2006)

16. Preda, S., Cuppens-Boulahia, N., Cuppens, F., Toutain, L.: Architecture-aware
adaptive deployment of contextual security policies. In: Proc. of ARES 2010,
Krakow, Poland (2010)

17. Samarati, P., De Capitani di Vimercati, S.: Access Control: Policies, Models, and
Mechanisms. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171,
pp. 137–196. Springer, Heidelberg (2001)

18. Samarati, P., De Capitani di Vimercati, S.: Data protection in outsourcing scenarios:
Issues and directions. In: Proc. of ASIACCS 2010, Beijing, China (April 2010)

19. Toahchoodee, M., Ray, I.: On the formalization and analysis of a spatio-temporal
role-based access control model. JCS 19(3), 399–452 (2011)

20. Wang, C., Carzaniga, A., Evans, D., Wolf, A.: Security issues and requirements for
internet-scale publish-subscribe systems. In: Proc. of HICSS 2002, Big Island, HI,
USA (January 2002)

21. Wang, H., Lakshmanan, L.V.S.: Efficient secure query evaluation over encrypted
XML databases. In: Proc. of VLDB 2006, Seoul, Korea (September 2006)

22. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs.
IEEE/ACM TON 8(1), 16–30 (2000)

23. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: Proc. of INFOCOM 2010, San Diego,
CA, USA (March 2010)

Author Index

Adam, Nabil 161
Armando, Alessandro 25
Askari, Mina 74
Atluri, Vijayalakshmi 161

Barker, Ken 74
Bhukya, Wilson Naik 255
Biskup, Joachim 56
Bouffard, Guillaume 122

C.D., Jaidhar 106
Cheng, Yuan 8

Dautrich, Jonathan L. 145
De Capitani di Vimercati, Sabrina 314
Dini, Gianluca 90

Fitzgerald, William M. 177
Foley, Simon N. 177
Foresti, Sara 314

Gambs, Sébastien 274
Gmati, Ahmed 274
Gryz, Jarek 207
Gudes, Ehud 193

Hadavi, Mohammad Ali 263
Han, Keesook J. 129
Hartmann, Sven 56
Hazlewood, Stephanie 207
Hong, Yuan 161
Hurfin, Michel 274

Jajodia, Sushil 314
Jalili, Rasool 263
Jin, Xin 41
Jing, Jiwu 298

Kantarcioglu, Murat 129, 239
Karimi Adl, Rosa 74
Kawamura, Takahiro 282
Krishnan, Ram 41

Lanet, Jean-Louis 122
Link, Sebastian 56

Livraga, Giovanni 314
Lochner, Jan-Hendrik 56

Ma, Chun-guang 114
Mehmood, Danish 161

Nix, Robert 129

Ohsuga, Akihiko 282

Pan, Wuqiong 298
Park, Jaehong 8
Perazzo, Pericle 90
Pippal, Ravi Singh 106

Ranise, Silvio 25
Ravishankar, Chinya V. 145
Razafindralambo, Tiana 122

Safavi-Naini, Reihaneh 74
Saljooghinejad, Hamed 255
Sandhu, Ravi 8, 41
Schlotmann, Torsten 56
Shafiq, Basit 161
Sharon, Rami 193
Shastry, Abhijith 239
Soodejani, Abbas Taheri 263
Squicciarini, Anna Cinzia 223
Sundareswaran, Smitha 223

Takenouchi, Takao 282
Tapaswi, Shashikala 106
Thuraisingham, Bhavani 239

Vaidya, Jaideep 161
van der Torre, Leendert 1
van Run, Paul 207

Wang, Ding 114
Wu, Peng 114

Yakovets, Nikolay 207
Yu, Meng 298

Zhang, Yulong 298
Zhou, Yan 239

	Title
	Preface
	Organization
	Table of Contents
	Invited Paper
	Logics for Security and Privacy
	Introduction
	Deontic Logic in Computer Science broersen:esslli11
	Dynamic Epistemic Deontic Logic for Privacy Compliance aucher:jail11
	Modal Logic for Access Control DBLP:journals/sLogica/BoellaGGT09
	References

	Access Control
	A User-to-User Relationship-Based Access Control Model for Online Social Networks
	Introduction
	Motivation and Related Work
	Characteristics of Access Control for OSNs
	Prior Access Control Models for OSNs
	Comparison of Access Control Models for OSNs
	Our Contributions

	UURAC Model Foundation
	Basic Notations
	Access Control Model Components
	Modeling Social Graph

	UURAC Policy Specifications
	Path Expression Based Policy
	Graph Rule Specification and Grammar
	User- and System-Specified Policy Specifications
	Access Evaluation Procedure
	Discussion

	Path Checking Algorithm
	Conclusions and Future Work
	References

	Automated and Efficient Analysis of Role-Based Access Control with Attributes
	Introduction
	RBAC with Dynamic Roles
	Rule-Based Authorization Rules
	Redundancies in RBAC-DR Policies
	RBAC-DR with Negative Authorization

	Satisfiability Modulo Theories Solving
	Solving the MS-AU and CD-SAU Problems
	Specifying RBAC-DR and RBAC-NDR Policies with Theories
	The MS-AU Problem
	The CD-SAU Problem
	Experiments

	Related Work and Discussion
	References

	A Unified Attribute-Based Access Control Model Covering DAC, MAC and RBAC
	Introduction
	Related Work
	ABAC: Covering DAC, MAC and RBAC
	ABAC Components
	Formal ABAC Model
	ABAC: Configuring DAC, MAC and RBAC
	Conclusion and Future Work
	References

	Confidentiality and Privacy
	Signature-Based Inference-Usability Confinement for Relational Databases under Functional and Join Dependencies
	Introduction
	Formal Framework
	Examples
	Compiling and Monitoring Signatures
	A Prototype for Oracle/SQL
	Experimental Evaluation
	Conclusions
	References

	Privacy Consensus in Anonymization Systems via Game Theory
	Introduction
	Related Work
	Preliminaries and Assumptions
	Sequential Game Model

	Game Description
	Players
	Game Rules
	Payoffs

	General Approach to Find Subgame Perfect Equilibria
	Equilibrium Strategies of Data Collector
	Equilibrium Strategies of Data User

	Game Theoretic Analysis for k-Anonymity
	k-Anonymity Overview
	Data Providers' Privacy Model
	Precision Estimate
	Subgame Perfect Equilibria
	Simulation Results

	Conclusions and Future Work
	References

	Uniform Obfuscation for Location Privacy
	Introduction
	System Model
	Adversary Model and Uniformity Index
	UniLO
	Attack Resistance Analysis
	Service Examples
	Employee Localizer
	Find the Near Friends
	Find the Nearest Taxi

	Related Works
	Conclusions and Future Works
	References

	Smart Cards Security (Short Papers)
	Security Vulnerabilities of User Authentication Scheme Using Smart Card
	Introduction
	Contribution of This Paper

	Literature Review
	Review of Yang et al.'s Scheme
	Initialization Phase
	Registration Phase
	Login Phase
	Authentication Phase

	Weaknesses Present in Yang et al.'s Scheme
	Vulnerable to Impersonation Attack
	No Early Wrong Password Detection
	No Mutual Authentication
	Performance Comparison

	Conclusion
	References

	Secure Password-Based Remote User Authentication Scheme with Non-tamper Resistant Smart Cards
	Introduction
	Review of Li et al.'s Scheme
	Registration Phase
	Login Phase
	Verification Phase
	Password Change Phase

	Cryptanalysis of Li et al.'s Scheme
	Offline Password Guessing Attack
	Denial of Service Attack
	Failure to Achieve Forward Secrecy
	Failure to Preserve User Anonymity

	Our Proposed Scheme
	Registration Phase
	Login Phase
	Verification Phase
	Password Change Phase

	Security Analysis
	Conclusion
	References

	A Friendly Framework for Hidding fault enabled virus for Java Based Smartcard
	Introduction
	Context
	State of the Art
	The CAP File

	The CapMap
	Modification of a CAP File
	Stack Evaluation
	Constraint Solving
	Java Card Code Reverser

	Evaluation of the Threat Capacities
	Building a fault enabled virus with the CapMap
	Detecting a fault enabled virus with SmartCM

	Conclusion
	References

	Privacy-Preserving Technologies
	Approximate Privacy-Preserving Data Mining on Vertically Partitioned Data
	Introduction
	Summary of Contributions

	Related Work
	Secure Approximations
	A Secure Approximation Framework
	Our Definition

	Scalar Product Approximation Techniques for Distributed Data Mining
	Johnson-Lindenstrauss (JL) Sketching
	Random Sampling

	Approximation Protocol Security
	Experiments
	Accuracy
	Efficiency

	Conclusions
	Future Work

	References

	Security Limitations of Using Secret Sharing for Data Outsourcing
	Introduction
	Our Contribution

	Data Outsourcing Using Secret Sharing
	Shamir's Secret Sharing
	Data Outsourcing via Secret Sharing
	Security
	Supporting Range and Aggregation Queries

	Attack Description
	Recovering Secrets When p Is Known and X X X X Is Private
	Recovering p When X X X X and p Are Private
	Attack Complexity
	Example Attack for k = 2

	Aligning Shares and Discovering Secrets
	Aligning Shares
	Discovering k+2 Secrets
	Inferring Order in the HJ Scheme

	Attack Implementation and Experiments
	Time Measurements
	Failure Rate Measurements

	Attack Mitigations
	Related Work
	Conclusion
	References

	Privacy-Preserving Subgraph Discovery
	Introduction
	Problem Statement

	Proposed Approach
	Generation of Local Candidates
	Generation of a Global Candidate Set
	Removal of Non-frequent Subgraphs

	Complexity and Security Analysis
	Computation Cost
	Communication Cost
	Security Analysis

	Experimental Evaluation
	Implementation Details
	Experimental Evaluation

	Related Work
	Conclusions and Future Work
	References

	Data Management
	Decentralized Semantic Threat Graphs
	Introduction
	Description Logic and Knowledge-Bases
	Semantic Threat Graphs
	Knowledge Delegation as Subsumption
	Delegation in Semantic Threat Graphs
	Decentralized Semantic Threat Graphs: Use Cases
	Related Research
	Conclusion
	References

	Code Type Revealing Using Experiments Framework
	Introduction
	Related Work
	Identifying File Type by Its Content
	Implementation
	The CTR Framework Architecture
	Count N-Grams and Calculate Statistics
	Create Signature Path
	Test Files Path
	Methodology

	Experiments
	Data
	Tests Settings
	Results for the First Experiment
	Improving Accuracy
	Identifying Tampered Files

	Conclusions
	References

	From MDM to DB2: A Case Study of Security Enforcement Migration
	Introduction
	Challenges
	Identity Propagation
	Policy Propagation

	Implementation
	MDM Server Identity Propagation and DB2 Trusted Context
	MDM Server Policy Propagation

	Discussion
	Integration Footprint
	Policy Granularity
	Security vs. Performance
	Mapping Correctness
	End-to-End Audit

	Migration Methodology
	Related Work
	Conclusions
	References

	Intrusion and Malware
	XSS-Dec: A Hybrid Solution to Mitigate Cross-Site Scripting Attacks
	Introduction
	XSS Attacks and Common Solutions
	Our Approach: The XSS-Dec
	The Proxy
	The Calculator
	The Analyzer

	The Client-Side Plug-In
	Evaluation
	XSS-Dec Prototype
	Experimental Evaluation

	Related Work
	Conclusion
	References

	Randomizing Smartphone Malware Profiles against Statistical Mining Techniques
	Introduction
	Related Work
	Malware Detection Technique
	Malware Detection in Mobile Phones

	Malware Setup
	Call Recorder
	DoS Malware
	Mass Uploader
	Smart Recorder
	Spy Camera
	Spy Recorder

	Experimental Analysis
	Run-Time Behavior Metrics
	Data Sets
	Data Mining Tools
	Evaluation
	Experiments

	Conclusions
	References

	Probabilistic Attacks and Protection (Short Papers)
	Layered Security Architecture for Masquerade Attack Detection
	Introduction
	Background and Related Work
	Our Layered Approach
	Data Collection and Calculation of Features
	Window Data(9features)
	Mouse Data(6featurs)
	Keyboard Data(5features)
	Command Line Data(2features)
	File Access Data(38 features)
	Authentication Data(2features)

	Learning and Classification
	Results and Discussion
	Detection Rate Evaluation by Different Number of Training and Test Sets
	ROC Score Evaluation by Different Number of Training and Test Sets
	Comparison With Other Approaches

	Conclusion
	References

	k-Anonymity-Based Horizontal Fragmentation to Preserve Privacy in Data Outsourcing
	Introduction
	Basic Concepts
	Syntax of Privacy Constraints
	k-Anonymity
	Syntax of Anonymization Rules

	Fragmentation
	Fragmentation Correctness
	k-Anonymity-Based Horizontal Fragmentation Algorithm
	Cascading Tuples
	k-Anonymity-Based Horizontal Fragmentation Algorithm

	Conclusion
	References

	Reconstruction Attack through Classifier Analysis
	Introduction
	Background and Related Work
	Reconstruction Attack
	Reconstruction Problem
	Evaluating the Quality of the Reconstruction
	Continuous Release of Information

	Reconstruction Attack on Decision Tree
	Conclusion
	References

	Cloud Computing
	Distributed Data Federation without Disclosure of User Existence
	Introduction
	Related Works
	Problem of Distributed Anonymization Protocol
	Distributed Anonymization
	Problem of Revealing the Existence of a User

	Proposed Notion: -max-site-presence
	Proposed Protocol: Dummy User Protocol
	Dummy User Protocol
	Heuristic Function for Dummy User Protocol

	Experimental Evaluation
	Comparison with Mondrian Algorithm
	Comparison with Centralized Algorithm

	Security Evaluation
	Conclusion and Future Works
	References

	Improving Virtualization Security by Splitting Hypervisor into Smaller Components
	Introduction
	Overview
	Design Principles
	Assumptions
	Architecture

	Design Details
	Secure Boot
	Memory Management
	Scheduling and VMCS
	Interrupt and Device Management
	Functions of a GuestVisor

	Performance Evaluation
	Memory Overhead
	CPU and I/O Overhead

	Related Work
	Conclusion
	References

	Enforcing Subscription-Based Authorization Policies in Cloud Scenarios
	Introduction
	Scenario, Protection Requirements, and Motivation
	Subscription-Based Policy
	Graph Modeling of the Subscription-Based Policy
	Management of Resources and Subscriptions
	Resource Publishing
	New Subscription
	Withdrawal from a Subscription
	Correctness

	Related Work
	Conclusions
	References

	Author Index

