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Abstract. In this paper we propose a data stream clustering algorithm, called
Self Organizing density based clustering over data Stream (SOStream). This al-
gorithm has several novel features. Instead of using a fixed, user defined similar-
ity threshold or a static grid, SOStream detects structure within fast evolving data
streams by automatically adapting the threshold for density-based clustering. It
also employs a novel cluster updating strategy which is inspired by competitive
learning techniques developed for Self Organizing Maps (SOMs). In addition,
SOStream has built-in online functionality to support advanced stream cluster-
ing operations including merging and fading. This makes SOStream completely
online with no separate offline components. Experiments performed on KDD
Cup’99 and artificial datasets indicate that SOStream is an effective and supe-
rior algorithm in creating clusters of higher purity while having lower space and
time requirements compared to previous stream clustering algorithms.

Keywords: Adaptive Threshold, Data Stream Clustering, Density-Based Clus-
tering, Self Organizing Maps.

1 Introduction

Data stream mining has recently captured an enormous amount of attention. Stream
mining can be defined as the process of finding complex structure within a large vol-
ume of data where the data evolves over time and arrives in an unbounded stream. A
data stream is a sequence of continuously arriving data which imposes a single pass
restriction where random access to the data is not feasible. Moreover, it is impractical
to store all the arriving data. In this case, cluster features or synopses that typically in-
clude descriptive statistics for a cluster are used. In many cases, data stream algorithms
have to observe space and time constraints. Stream clustering algorithms are used to
group events based on similarity between features. Data arriving in streams often con-
tain noise and outliers. Thus, data stream clustering should be able to detect, distinguish
and filter this data prior to clustering.

Inspired by both DBSCAN (Density-Based Spatial Clustering of Applications with
Noise) [1] and SOM (Self Organizing Maps) [2], we propose a new data stream cluster-
ing algorithm, Self Organizing density-based clustering over data Stream (SOStream).
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SOStream is a density-based clustering algorithm that can adapt its threshold to the data
stream. It uses an exponential fading function to reduce the impact of old data whose
relevance diminishes over time. SOStream has the following novel features:

– Setting a threshold manually for density-based clustering (similarity threshold, grid
size, etc.) is difficult and if this parameter is set to an unsuitable value, then the al-
gorithm will suffer from overfitting, while at the other extreme the clustering is un-
stable. SOStream addresses this problem by using a dynamically learned threshold
value for each cluster based on the idea of building neighborhoods with a minimum
number of points.

– SOStream employs a novel cluster updating strategy which is inspired by com-
petitive learning techniques developed for Self Organizing Maps (SOMs) [2] and
CURE (Clustering Using REpresentatives) [3]. CURE utilizes a unique shrinking
strategy that encouraged us to implement the same methodology for SOStream.
The micro-clusters that are formed after shrinking are used as a representative of
the global cluster. The shrinking procedure also helps to correctly identify highly-
overlapped clusters (See Figure 1). As a result, the clusters become less sensitive
to outliers.

– All aspects of SOStream (including deletion, addition, merging, and fading of clus-
ters) are performed online.

We conduct experiments using both a synthetic and the KDD Cup’99 datasets [4], and
demonstrate that SOStream outperforms the state-of-the-art algorithms MR-Stream [5]
and D-Stream [6] without the use of an offline component. Moreover, SOStream dy-
namically adapts its similarity threshold. SOStream achieves better clustering quality
in terms of cluster purity and utilizes less memory which is a key advantage for any
data stream algorithms.

Throughout this paper, we use threshold and radius interchangeably to specifically
refer to a value that is used to cluster a new point into suitable micro-cluster or to find
the neighborhood of the winning micro-cluster.

The remainder of this paper is organized in the following manner: Section 2 surveys
related work; Section 3 presents the SOStream framework; Section 4 presents results
of experiments evaluating the performance of SOStream; and Section 5 concludes the
paper.

2 Related Work

We first review the most important data stream clustering algorithms to highlight the
novel features of SOStream.

E-Stream [7] starts empty and for every new point either a new cluster is created
around the incoming data point or the point is mapped into one of the existing clusters
based on a radius threshold. Any cluster not meeting a predefined density level is con-
sidered inactive and remains isolated until achieving a desired weight. Cluster weights
decrease over time to reduce the influence of older data points. Clusters not active for a
certain time period may be deleted from the data space. Also, for each step, two clusters
may be merged because the overlap is sufficiently large (or the maximum cluster limit is
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Table 1. Features of different data stream clustering algorithms

Algorithms new cluster remove merge fade split

SOStream � � � � x
E-Stream � � � � �
CluStream � � offline x x
DenStream � � offline � x
OpticsStream � � offline � x
HPStream � � x � x
WSTREAM � � � � x
D-Stream � � offline � x
MR-Stream � � offline � x

reached) or one cluster may be split into two sub-clusters if internal data is too diverse.
The data is summarized into an α-bin histogram, and the split is made if a deep valley
between two significant peaks is found.

CluStream [8] uses an online micro-clustering component to periodically store de-
tailed summary statistics in a fast data stream while an offline macro-clustering com-
ponent uses the summary statistics in conjunction with other user input to provide the
user with a quick understanding of the clusters whenever required.

DenStream [9] maintains two lists: one with potential micro-clusters and the other
with outlier micro-clusters. As each new point arrives, an attempt is made to merge
it into one of the nearest potential micro-clusters. If the radius of the resulting micro-
cluster is larger than specified, the merge is omitted, and an attempt is made to merge
the point with the nearest outlier micro-cluster. If this resulting radius is larger than
specified, the merge is omitted and a new outlier micro-cluster is created centered at the
point. If any of the outlier micro-clusters exceeds a specified weight, they are moved
into the potential micro-clusters list.

OpticsStream [10] is an online visualization algorithm producing a map represent-
ing the clustering structure where each valley represents a cluster. It adds the ordering
technique from OPTICS [11] (not suitable for data stream) on top of a density-based
algorithm (such as DenStream) in order to manage the cluster dynamics.

HPStream [12] is an online algorithm that discovers well-defined clusters based on
a different subset of the dimensions of d-dimensional data points. For each cluster a d-
dimensional vector is maintained that indicates which of the dimensions are included for
continuous assignment of incoming data points to an appropriate cluster. The algorithm
first assigns the received streaming data point to each of the existing clusters, computes
the radii, selects the dimensions with the smallest radii, and creates a d-dimensional
vector for each cluster. Next, the Manhattan distance is computed between the incoming
data point and the centroid of each existing cluster. The winner is found by returning the
largest average distance along the included dimensions, and the radius is computed for
the winning cluster and compared to the winning distance. Then, either a new cluster
is created centered at incoming data point or the incoming data point is added to the
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winning cluster. Clusters are removed if the number of clusters exceeds the user defined
threshold or if they contain zero dimensions.

WSTREAM [13] is density-based and discovers cluster structure by maintaining a
list of rectangular windows that are incrementally adjusted over time. Each window
moves based on the centroid of the cluster which is incrementally recomputed when-
ever new data points are inserted. It incrementally contracts or expands based on the
approximated kernel density and the user defined bandwidth matrix. If two windows
overlap, the proportion of intersecting data points to the remaining points in each win-
dow is computed, and, upon meeting a user defined threshold, the windows are merged.
Periodically, the weights of the stored windows are checked, and a window is removed
if its weight is less than the defined minimum threshold (the window is considered to
be an outlier).

D-Stream [6] is density-based and works on the basis of a time step model which
starts by initializing an empty hash table grid list. An online component reads the in-
coming raw data record, and this record is mapped to the grid list or inserted into the
grid list if it does not exist. After the insertion, the characteristic vector (containing
all the information about the grid) is updated. Thus, the online component partitions
the data into many corresponding density grids forming grid clusters while the offline
component dynamically adjusts the clusters every gap time. The gap is the key decision
factor for inspecting each grid and adjusting the cluster. If the grid is empty or receives
no new value for a long period of time then it is removed.

MR-Stream [5] finds clusters at versatile granularities by recursively partitioning the
data space into well-defined cells by using a tree data structure. MR-Stream facilitates
both online and offline components. Table 1 summarizes features of these stream clus-
tering algorithms and shows those possessed by our new SOStream algorithm. Although
not contained in the SOStream algorithm presented in this paper, we have developed a
splitting function which is easily incorporated into the SOStream algorithm presented
later in this paper. This will be reported in subsequent publications.

3 SOStream Framework

A key issue for clustering stream data is the online constraint, which imposes a single
pass restriction over the incoming data points. Although many previously proposed
stream clustering algorithms have an offline component, this is neither desirable nor
necessary. In this section we introduce Self Organizing density-based clustering over
data Stream (SOStream) and highlight some of its novel features.

3.1 SOStream Overview

We assume that the data stream consists of a sequence of d-dimensional input vec-
tors where v(t) is used to indicate the input vector at time t, where t = (1, 2, 3...).
For every time step t, SOStream is represented by a set of micro-clusters M(t) =
{N1, N2, ..., Nk }, where for each cluster a tuple with three elements Ni = (ni, ri, Ci)
is stored. ni is the number of data points assigned to Ni, ri is the cluster’s radius and Ci

is the centroid. The tuple is a form of synopsis or cluster feature (CF) vector. Cluster fea-
ture vectors were introduced in the non-data stream clustering algorithm BIRCH [14].
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As these values change over time we include in the following description the time point
where needed to identify the value at a particular time. Thus, Ci(t) indicates the cen-
troid for cluster Ni at time t. SOStream uses a centroid to describe the cluster as a
d-dimensional vector. The number of clusters varies over time and depends upon the
complexity of the input data. SOStream has built-in stream clustering operations to
dynamically create, merge, and remove clusters in an online manner. In addition, an
exponential fading function can be used to gradually reduce the impact of historical
data.

SOStream uses competitive learning as introduced for SOMs where a winner influ-
ences its immediate neighborhood [2]. For each new input vector, v(t), the winning
cluster is determined by measuring the distance (e.g. Euclidean distance) between each
existing cluster centroid and the current input vector:

Nwin(t) = argmin
Ni∈M(t)

{ d(v(t), Ci), Ci ∈ Ni } (1)

If the winning cluster Nwin(t) is close enough (distance is below a dynamically deter-
mined threshold), then v(t) is placed in that cluster otherwise a new cluster is created.
Thus we assume a simple nearest neighbor algorithm is used. In our discussions we
assume that the Euclidean distance metric is used for clustering, but any distance or
similarity metric could be used. In addition, any other technique could be used to de-
termine the winning cluster. The salient feature of SOStream is the weighted density
concept described in the rest of this paper.

In the following subsections we examine the algorithm in more detail.

3.2 Density-Based Centroid

SOStream uses a centroid to identify each cluster. However the manner in which the
centroid is calculated is not just a simple arithmetic mean applied to all points, v(t),
in the cluster. The way we calculate the centroid is inspired by the technique to up-
date weights for the winning competitive node in a Kohonen Network [2]. In our case
the winner is a cluster and the weights are associated with neighboring clusters. The
centroid of a cluster is updated in several ways:

– When an input vector is added to a cluster the centroid is updated using a traditional
arithmetic mean approach.

– Centroids of clusters sufficiently close to the winning clusters have their centroids
modified to be closer to the winning cluster’s centroid. This approach is used to aid
in merging similar clusters and increasing separation between different clusters.

– Fading also adjusts the centroid values. This will be discussed later in the paper.

As the first of these techniques is straightforward, we concentrate on the second one.
As described earlier, the winning cluster is the one that is closest to the input vector.

Updates are performed to the centroids of clusters that are within the neighborhood of
the winning cluster. This brings clusters in the neighborhood of the winner closer to
the incoming data in a similar way as the neighbors of a winning competitive node in a
SOM have their weights adjusted to be closer to the winner.
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We define the neighborhood of the winner based on the idea of a MinPts distance
given by a minimum number of neighboring objects [1,9]. This distance is found by
computing the Euclidean distance from any existing clusters to the winning cluster.
Then all the distances are ordered in ascending order and the maximum of the first
MinPts minimum distinct distances is chosen and used to represent the radius of the
winning cluster. Thus, every cluster whose distance from the winning cluster is less then
the computed radius is considered to be a neighbor of the winning cluster. Note that the
efficiency of this calculation can be improved using a min heap type data structure.

Motivated by Kohonen’s work [2], we propose that the centroid Ci of each cluster
Ni that is within the neighborhood of the winning cluster Nwin is modified to resemble
the winner:

Ci(t+ 1) = Ci(t) + αβ(Cwin(t)− Ci(t)) (2)

α is a scaling factor and β is a weight which represents the amount of influence of the
winner on a cluster. We define β as

β = e
−d(Ci,Cwin)

2(r2
win

) (3)

where rwin denotes the radius of the winner. The definition of β ensures that 0 < β ≤ 1.
Next we need to prove that updating a centroid moves the cluster closer to the win-

ning cluster, i.e.

d(Ci(t+ 1), Cwin(t)) ≤ d(Ci(t), Cwin(t))

By the definition of Euclidean distance we have

d(Ci(t), Cwin(t)) =√
(v1 − z1)2 + (v2 − z2)2+, ...,+(vn − zn)2

where Ci(t) = 〈v1, v2, ..., vn〉; Cwin(t) = 〈z1, z2, ..., zn〉 and Ci(t+ 1) =
〈v′1, v′2, ..., v′n〉. If we can show that 0 < α ≤ 2 is a necessary condition for (v′i−zi)

2 ≤
(vi − zi)

2, then one can easily show that d(Ci(t + 1), Cwin(t)) ≤ d(Ci(t), Cwin(t))
when 0 < α ≤ 2 by the definition of Euclidean distance.

Given 0 ≤ α ≤ 2 then 0 ≤ αβ ≤ 2 provided that 0 < β ≤ 1, we have:

− 2 ≤ −αβ ≤ 0

− 1 ≤ 1− αβ ≤ 1

|1− αβ| ≤ 1

|vi − zi||1− αβ| ≤ |vi − zi| where (|vi − zi| > 0)

|vi − zi| ≥ |(vi − zi)(1− αβ)|
= |vi − αβvi − zi + ziαβ|
= |αβ(zi − vi) + vi − zi|
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Algorithm 1. SOStream(DS, α, MinPts)

1 SOStream← NULL;
2 foreach vt ∈DS do
3 win← minDist{ vt,M(t) };
4 if |M(t)| ≥MinPts then
5 winN ← findNeighbors(win,MinPts);
6 if d(vt, win) ≤ win.Radius then
7 updateCluster(win, vt, α, winN );
8 else
9 newCluster(vt);

10 overlap← findOverlap(win,winN);
11 if |overlap| > 0 then
12 mergeClusters(win, overlap);

13 else
14 newCluster(vt);

by Equation 2, αβ(zi − vi) + vi = v′i. Then we have:

|vi − zi| ≥ |v′i − zi|, which implies :

0 < α ≤ 2⇒ |vi − zi| ≥ |v′i − zi|
(vi − zi)

2 ≥ (v′i − zi)
2

This shows that if 0 < αβ ≤ 2 then each dimension in the modified cluster centroid
will move closer to the winner centroid.

3.3 SOStream Algorithm

We are finally ready to discuss the SOStream algorithm in more detail. Here we de-
compose SOStream into seven basic algorithms. Algorithm 1 is the main algorithm and
performs its main loop (step 2) for each input data point in the original data stream
(DS). When a new input vector is obtained, the winner cluster is identified, its neigh-
bors are found and either clusters are merged, the winning cluster is updated, or a new
cluster is created.

Algorithm 2 returns all the neighbors of the winning cluster as well as its computed
radius (threshold) at line 8. If the size of the neighborhood satisfies MinPts then, Al-
gorithm 3 is called to find clusters that overlap with the winner. For each overlapping
cluster its distance is calculated to the winning cluster. Any clusters with a distance less
than that of the merge-threshold will be merged with the winner. This process can be
triggered at regular intervals or if there is any shortage of memory.

Algorithm 5 is called to update an existing cluster. If the neighborhood of the winning
cluster does not have a sufficient number of nearest neighbors or the input data v(t) does
not lie within the radius of the winning cluster then, Algorithm 6 is called to create a
new cluster and add it to the model M(t) ← M(t) ∪ { v(t) }. Over time if this cluster
does not succeed in attracting enough neighbors, then it will fade and we can remove
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Algorithm 2. findNeighbors(win, MinPts)

1 if |M(t)| ≥ MinPts then
2 foreach Ni ∈M(t) do
3 //Determine the distance from any
4 //cluster Ni to the winner.
5 winDistN ← winDistN ∪ { d(win,Ni) };
6 Sort winDistN distances in ascending order;
7 //kDist: represent the radius (threshold) of the winning cluster.
8 kDist← winDistN[MinPts - 1];
9 win.setRadius(kDist);

10 //Find the nearest neighbors for winner.
11 foreach di ∈ winDistN do
12 if di ≤ kDist then
13 winNN ← winNN ∪ {Ni };
14 return winNN ;
15 else
16 return ∅;

Algorithm 3. findOverlap(win, winN )

1 overlap← ∅;
2 foreach Ni ∈ winN do
3 if (win.ID()! = Ni.ID()) then
4 if d(win, Ni) - (win.Radius + Ni.Radius) < 0 then
5 overlap← overlap ∪ {Ni };

6 return overlap;

it. Fading of cluster structure is used to discount the influence of historical data points.
SOStream can adapt to changes in data over time, by using a decay decreasing function
associated with each cluster:

f(t) = 2λt (4)

where, λ define the rate of decay of the weight over time and t = (tc − t0) where, tc
denote the current time and t0 is the creation time of the cluster.

SOStream uses centroid clustering to represent the cluster center and does not store
data points. The frequency count n determines the weight of each cluster. Aging is
accomplished by reducing the count over time:

ni+1 = ni2
λt (5)

SOStream checks for clusters that are fading and removes any cluster that reaches a
defined weight. See Algorithm 7. We do not explicitly show the fading function in
Algorithm 1 as its use is optional. The fading function can be explicitly called or called
at a regular time intervals which gives the flexibility and efficiency of using fading.

Algorithm 4 merges two clusters and set the new created cluster as the new win-
ner and continue to test other clusters for merge. Based on experiments we expect the
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Algorithm 4. mergeClusters(win, overlap)

1 foreach Ni ∈ overlap do
2 if d(Ni, win) < mergeThreshold then
3 //Equation 7 and 8 are used to merge two clusters.
4 merge(Ni, win);

Algorithm 5. updateCluster(win, vt, α, winN )

1 //This method incrementally update the centroid of the winner.
2 win.updateCentroid(vt);
3 //Frequency-counter is incremented.
4 win.counter++;
5 //Modify the winning neighborhood to resemble winning cluster. The method

//adjustCentroid is computed using equation 2.
6 winRadius← win.Radius;
7 foreach Ni ∈ winN do
8 widthN← (winRadius)2;
9 influence← exp(- d(Ni, win) / (2 widthN));

10 Ni.adjustCentroid(win.getCentroid(), α, influence);

number of clusters to be small (relative to the number of data points) as the merge/fade
is happening online.

3.4 Online Merging

With data stream clustering, the creation of clusters in a quick online manner may result
in many small micro-clusters. As a result, many earlier stream clustering algorithms
created special offline components to perform a merging of similar micro-clusters into
larger clusters. In SOStream, merging is efficiently performed online at each time step
as an integral part of the algorithm by only considering the neighborhood of the winning
cluster.

Centroid clustering is a well known clustering technique, where the centroid is the
mean of all the points within the cluster. In data stream, incoming data points are in-
crementally clustered with the centroid of the nearest cluster. Over time the clusters
change their original position and may result in overlapping with other clusters. As a
result, clusters may be merged into one cluster. Recall that each cluster Ni has a radius
ri associated with it. Two clusters are said to overlap if the spheres in d-dimensional
space defined by the radius of each cluster overlap. We merge clusters if they over-
lap with a distance that is less than the merge-threshold. Hence, the threshold value is
a determining factor for the number of clusters. The impact of this threshold will be
analyzed in section 4.

Merging procedure: Let S represent a set of clusters from the neighborhood of the
wining cluster S = {N1, N2, ..., Nk }. Two clusters in the neighborhood S are said to
overlap if

d(Ci, Cj)− (ri + rj) < 0 (6)
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Algorithm 6. newCluster(vt)

1 //Set vt as a centroid for the new cluster.
2 Nt+1← new Cluster(vt);
3 //Set the frequency-count to 1.
4 Nt+1.counter← 1;
5 //Initialize the radius with 0. The radius gets computed only for winning clusters.
Nt+1.Radius← 0;

6 M(t+ 1)←M(t) ∪ {Nt+1 };

Algorithm 7. fadingAll()

1 foreach Ni ∈M(t) do
2 Ni.fading(t, λ);
3 if Ni.counter < fadeThreshold then
4 remove Ni;

These clusters will be merged only if the distance between the two centroids is less than
or equal to the threshold value. By merging, a new cluster Ny is created by first, finding
the weight of each cluster and then computing the weighted centroid for the new cluster.
This is achieved by

Ny = (wiai + wjbi)/(wi + wj) (7)

where, wi, wj are the number of points within cluster Ni, Nj and ai, bi are the ith

dimension of the weighted centroids.
We compute the new cluster’s radius ry dynamically by selecting the larger of both

sums
ry = max{ d(Cy , Ci) + ri, d(Cy , Cj) + rj) }. (8)

We choose the largest radius to avoid losing any data point within the clusters.

4 Experiments

In this section we compare the performance of SOStream with two recent data stream
clustering algorithms namely, MR-Stream and D-Stream. Our experiments were per-
formed using synthetic datasets and the KDD Cup’99 dataset which was also used for
evaluation in [8,9,6,5]. SOStream is implemented in C++ and the experiments are con-
ducted on a machine with an Intel Centrino Duo 2.2 GHz processor and Linux Ubuntu
9.10 (x86 64) as the operating system. For our test we selected the input parameters α,
λ and MinPts where SOStream provided the best results. In the following subsections
we evaluate the ability of SOStream to detect clusters in evolving data streams and the
resulting cluster quality.

4.1 Synthetic Data

In this test we generate a synthetic data stream to demonstrate SOStream’s capacity of
distinguishing overlapping clusters.
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(a) (b)

Fig. 1. (a) Data points of stream with 5 overlapping clusters and (b) Show SOStream capability
to distinguish overlapped clusters. For visualizing cluster structure, we do not utilize Fading or
Merging.

We used the dataset generator described in [15]. This generator is written in Java and
we can control the density of the cluster, data size and noise (outlier) level. In Figure 1,
the synthetic dataset has 3000 data points with no noise (outliers) added. It contains five
convex-shaped clusters that overlap. It can be noted from Figure 1(b) that SOStream is
able to detect the five clusters and also we can observe that the clusters are clearly
separated. This is due to the use of CURE and SOM-like updating of centroids which
is the most significant innovation of SOStream versus previous data stream clustering
algorithms. Based on experiments we selected α = 0.1 and MinPts = 2.

4.2 Real-World Dataset

Many recent streaming algorithms, such as [8,9,6,5] have been tested with KDD CUP’99
dataset to evaluate its performance. We use the same dataset to evaluate the clustering
quality of SOStream algorithm. This dataset was developed with an effort to examine
Network Intrusion Detection System in the Air Force base network [4]. It embeds real-
istic attacks into the normal network traffic. In this dataset there are a total of 42 avail-
able attributes out of which only 34 continuous attributes were considered. We compare
SOStream with MR-Stream as it has been shown that MR-Stream outperformed D-
Stream and CluStream. We are using the same clustering quality comparison method
used by [5] which is an evaluation method that computes the average purity defined
by [9,6]:

purity =

∑K
i=1

|Nd
i |

|Ni|
K

100% (9)

where K is the number of real clusters, |Nd
i | is the number of points that dominate the

cluster label within each cluster, and |Ni| is the total number of points in each cluster.
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Fig. 2. SOStream clustering quality horizon = 1K, Stream speed = 1K. The quality Evaluation for
MR-Stream and D-Stream is retrieved from [5].

Cluster structure fades with time which means some clusters may be deleted. This will
effect the computation of purity. In order to efficiently compute the purity of the arriving
data points, a predefined window (known as horizon) is used [9].

The dataset consists of 494,000 records. Using the same experimental setup as [5],
the speed of the stream is set to 1000 points per second and the horizon is set to 1000
data points. There are approximately 500 time instances which are divided into intervals
of 25 time instances where each instance shows an average purity value. Figure 2 shows
the clustering quality comparison between SOStream, and the results of MR-Stream and
D-Stream. These three algorithms all achieve an average purity of 1 between the time
instance 196 and 320 since there is only one cluster appearing in one window. It can
also be noticed from the graph that SOStream is able to maintain a better average purity
than MR-Stream and D-Stream. The three approaches show the same pattern, this is
related to the particular data set used and not to the different methods used. The overall
average purity was above 95% for SOStream. In this experiment, the parameters used
were again α = 0.1, λ = 0.1 and MinPts = 2.

4.3 Parameter Analysis

One might consider a vector (α1, ..., αn) in order to optimize the scaling factor. Because
this paper focuses on a new stream clustering algorithm, we leave the optimization for
future work. Table 2 shows how the parameter MinPts affects the behavior of SOStream
and the average purity at different intervals of data points. For this test we used the KDD
Cup’99 dataset with scaling factor, α = 0.1. For Table 3 we changed the scaling factor
parameter to α = 0.3. On this particular test, SOStreams capability to cluster at a
perfect purity level is evident for MinPts = 3. However, in order to convey and contrast
SOStream improved performance against other stream clustering algorithms we used
an average purity measure of different MinPts. To compare SOStream, we have derived
the values for MR-Stream and D-Stream from [5]. In Table 4 the same dataset is used by
MR-Stream, D-Stream and SOStream which allows us to determine the improvement
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Table 2. Comparing average purity for differ-
ent MinPts for α = 0.1

α = 0.1

Data Points MinPts = 3 MinPts = 5 MinPts = 10 Mean
25000 0.983 0.990 0.921 0.965
75000 0.917 0.982 0.968 0.955

125000 0.907 0.973 1.000 0.960
175000 0.876 0.974 0.937 0.929
225000 0.876 0.974 0.937 0.929
275000 0.876 0.974 0.937 0.929
325000 0.876 0.974 0.937 0.929
375000 0.895 0.975 0.919 0.929
425000 0.907 0.975 0.963 0.949
475000 0.934 0.977 0.935 0.949
Mean 0.899 0.976 0.932 0.936

Table 3. Comparing average purity for differ-
ent MinPts for α = 0.3

α = 0.3

Data Points MinPts = 3 MinPts = 5 MinPts = 10 Mean
25000 0.999 0.938 0.914 0.950
75000 0.998 0.996 0.962 0.985

125000 0.998 0.997 0.890 0.961
175000 0.995 0.993 1.000 0.996
225000 0.995 0.993 1.000 0.996
275000 0.995 0.993 1.000 0.996
325000 0.995 0.993 1.000 0.996
375000 0.996 0.991 0.877 0.955
425000 0.996 0.992 0.941 0.977
475000 0.997 0.993 0.946 0.979
Mean 0.996 0.991 0.943 0.977

Table 4. Highlight the improvement SOStream compared to MR-Stream and D-Stream

Data Points
SOStream SOStream

MR-Stream
Improvement

D-Stream
Improvement

(α = 0.1) (α = 0.3) to MR-Stream% to D-Stream%
25000 0.965 0.950 0.94 2.592 0.82 15.027
75000 0.955 0.985 0.92 6.646 0.91 7.661

125000 0.960 0.961 0.96 0.000 0.95 1.182
175000 0.929 0.996 1 0 1 0
225000 0.929 0.996 1 0 1 0
275000 0.929 0.996 1 0 1 0
325000 0.929 0.996 1 0 1 0
375000 0.929 0.955 0.95 0.000 0.91 4.688
425000 0.949 0.977 1.00 -2.387 1.00 -2.387
475000 0.949 0.979 0.89 9.056 0.87 11.100
Mean 0.936 0.977 0.96 2.081 0.93 5.020

percentage between an average purity for SOStream and the results of MR-Stream and
D-Stream. Over D-Stream, SOStream improves by an average of 5.0% and over MR-
Stream it improves by 2.1%.

To test the merging threshold we used both quality evaluation and memory cost test
on the same dataset with the matching parameters. We can observe from Figure 3 that
the number of clusters residing in memory is low compared to the opposing algorithms.
However, SOStream obtained a high purity (see Figure 2). This is due to the merging
procedure that was presented earlier. From this study we have observed that a large
merge threshold value causes the clusters to collapse and may result in only one cluster.
On the other hand, a small threshold value will result in high memory cost.

4.4 Scalability and Complexity of SOStream

SOStream achieves high efficiency by storing the data structures in memory, where the
updates of the stored synopses occur frequently in order to cope with the data stream.
Using the same testing criteria as MR-Stream, we chose the high dimensional KDD
CUP99 dataset. As we mentioned earlier, the data stream contains 494000 data points
with 34 numerical attributes. We sample the memory cost every 25K records.
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Fig. 3. SOStream memory cost over the length
of the data stream. The Memory Evaluation for
MR-Stream is retrieved from [5].
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Fig. 4. SOStream execute time using high di-
mensional KDD CUP99 dataset with 34 nu-
merical attributes. The sampling data rate is
every 25K points.

To evaluate the memory usage of SOStream, we considered the total number of
clusters in the memory. As can be seen from the Figure 3, our proposed algorithm
demonstrated its low cost of memory by merging overlapping clusters which reduces
the amount of space and time. In this experiment, the parameters used are α = 0.1,
MinPts = 2, fading and merging threshold = 0.1.

Figure 3 shows the memory utilized by SOStream and MR-Stream in terms of total
number of clusters currently created. Our result indicates that SOStream utilizes less
memory than MR-Stream. Also from Figure 3 we observe that the memory utilization
profile is similar to our result. Between 0 and 200k data points, the memory utilization
increases with different clusters which depreciate the clustering purity for all three al-
gorithms. Between 200k and 350k data points, the data stream consisted mostly of one
cluster, which explains why SOStream and MR-Stream consumed almost no memory.
For both SOStream and MR-Stream the memory slightly increased between 350k and
400k data points and then, decreased around 450k.

Finally, we analyze the execution time and complexity of the SOStream. One appro-
priate data structure for Algorithm 2 is the min-heap data structure. The computation of
the radius and neighbors of the winning micro-cluster takes O(k log k). With n points,
SOStream complexity is O(nk log k), where k is the number of clusters. In the worst
case k = n. In this case SOStream is O(n2 log n). However, most data stream cluster-
ing algorithms make sure that k does not increase unbounded which reduces the more
expensive operation. Other clustering operations such as remove, update and merge take
O(k). As shown in Figure 4, the algorithm shows that the execution time for clustering
increases linearly with respect to time and number of data points.

5 Conclusion

In this paper, we proposed SOStream, which is an efficient streaming algorithm that is
capable of distinguishing overlapping cluster in an online manner. The novel features
of SOStream are the use of density based centroids, and an adaptive threshold. In addi-
tion, everything needed for stream clustering operations are included in a simple online
algorithm. Our results show that SOStream outperformed MR-Stream and D-Stream in
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terms of purity and memory utilization. We are currently working on the development of
a split clusters algorithm and creating outlier detection techniques based on SOStream.
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