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Preface

The eighth event of the International Conference on Machine Learning and
Data Mining (MLDM) was held in Berlin (www.mldm.de) under the umbrella of
the World Congress on “The Frontiers in Intelligent Data and Signal Analysis,
DSA 2012”.

For this edition the Program Committee received 212 submissions. After the
peer-review process, we accepted 71 high-quality papers for oral presentation,
from which 51 are included in this proceedings book. The topics range from the-
oretical topics for classification, clustering, association rule and pattern mining
to specific data mining methods for the different multimedia data types such as
image mining, text mining, video mining and Web mining. Extended versions of
selected papers will appear in thelInternational Journal Transactions on Machine
Learning and Data Mining (www.ibai-publishing.org/journal/mldm).

Eight papers were selected for poster presentations and are published in the
MLDM Poster Proceedings by ibai-publishing (www.ibai-publishing.org).

A tutorial on Data Mining, a tutorial on Case-Based Reasoning, a tutorial on
Intelligent Image Interpreation and Computer Vision in Medicine, Biotechnology,
Chemistry and Food Industry and a tutorial on Standardization in Immunoflu-
orescence were held before the conference.

We were pleased to give out the best paper award for the fourth time this
year (www.mldm.de). The final decision was made by the Best Paper Award
Committee based on the presentation by the authors and the discussion with
the auditorium. The ceremony took place at the end of the conference. This
prize is sponsored by ibai solutions (www.ibai-solutions.de), one of the leading
companies in data mining for marketing, Web mining and e-commerce.

The conference was rounded up by an outlook of new challenging topics in
machine learning and data mining before the Best Paper Award ceremony.

We would like to thank the members of the Institute of Applied Computer
Sciences, Leipzig, Germany (www.ibai-institut.de), who handled the conference
as secretariat. We appreciate the help and understanding of the editorial staff at
Springer Verlag, and in particular Alfred Hofmann, who supported the publica-
tion of these proceedings in the LNAI series.

Last, but not least, we wish to thank all the speakers and participants who
contributed to the success of the conference. See you in 2013 in New York to the
next World Congress on “The Frontiers in Intelligent Data and Signal Analysis,
DSA2013” (www.worldcongressdsa.com) will be held in New York, in 2013, com-
bining under its roof the following three events: International Conferences Ma-
chine Learning and Data Mining (MLDM), the Industrial Conference on Data
Mining (ICDM), and the International Conference on Mass Data Analysis of Sig-
nals and Images in Medicine, Biotechnology, Chemistry and Food Industry (MDA).

July 2012 Petra Perner
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Bayesian Approach to the Concept Drift
in the Pattern Recognition Problems

Pavel Turkov!, Olga Krasotkina', and Vadim Mott]?

! Tula State University, 92 Lenina Ave., Tula, 300600 Russia
2 Computing Center of the Russian Academy of Science, 40 Vavilov St.,
Moscow, 119333 Russia

Abstract. We can face with the pattern recognition problems where the
influence of hidden context leads to more or less radical changes in the
target concept. This paper proposes the mathematical and algorithmic
framework for the concept drift in the pattern recognition problems. The
probabilistic basis described in this paper is based on the Bayesian ap-
proach to the estimation of decision rule parameters. The pattern recog-
nition procedure derived from this approach uses the general principle
of the dynamic programming and has linear computational complexity
in contrast to polynomial computational complexity in general kind of
pattern recognition procedure.

1 Introduction

As a rule in the pattern recognition problem the properties of the regarded
concept are supposed to be constant during the learning process. However, we can
face with other problems where some hidden context occurs. So such problems
exist in case of the data-handling procedure extended in time The influence of
this context leads to more or less radical changes in the target concept. In data
mining this situation is known as concept drift. In this case the classical pattern
recognition methods are inapplicable.

There are some methods for pattern recognition problem under concept drift
[1]. A certain quantity of such methods include a single classifier. Usually these
methods use a sliding window to choose a group of new instances to train a
model, a group size called window length (size). In different methods during the
learning procedure this parameter can be constant, for example FLORA [2], or
vary, then such method contains drift detection mechanism, e.g. ADWIN [3].

Another group is the ensemble-based methods. They have become very pop-
ular lately since they have a low error in comparison with single classifier meth-
ods. Learned on the training data the set of classifiers are combined as voting
or weight voting. Ensemble-based approaches can be constructed in two ways:
given new data,

1. retrain the old ensemble members on new data, e.g. Accuracy Weighted
Ensemble (AWE) [];

P. Perner (Ed.): MLDM 2012, LNAI 7376, pp. 1-[[0] 2012.
© Springer-Verlag Berlin Heidelberg 2012



2 P. Turkov, O. Krasotkina, and V. Mottl

2. drop one worst classifier of ensemble and add a new classifier learned on
incoming data, such as a streaming ensemble algorithm (SEA) [5].

In general, we can note that the existing algorithms with a single classifier are
more or less heuristic and a certain set of this heuristics is determined by the
specificity of the current task. On the other hand, ensemble-based methods are
sometimes too difficult. Also the accurate mathematical statement of concept
drift doesn’t exist. We propose the probabilistic basis for the problem of con-
cept drift. This basis results from Bayesian approach to the pattern recognition
problem. The method received from this approach uses the general principle
of the dynamic programming procedure and has the computation complexity
proportional to the length of the training sequence.

The remainder of the paper is organized as follows. In Section 2, we present
the problem description in terms of the Bayesian approach. Section 3 gives the
method based on the dynamic programming procedure for estimation of the
decision rule. The experimental results of the method application by the model
data set are described in Section 4. Section 5 concludes the paper.

2 Bayesian Approach to the Problem of Concept Drift
for the Pattern Recognition Problem

Let every instance of the universe w € {2 be presented by a point in the linear
feature space x(w) = (z'(w),...,2"(w)) € R™, and its hidden membership in
one of two classes be determined by an index value of the class y(w) € {1, —1}.
We will proceed from the classical approach to the training problem [7] based
on treating the model of the universe in the form of a discriminant function.
Such function is defined as a hyperplane having a priori unknown direction
vector a and threshold b: f(x(w)) = alx + b is primary > 0 if y(w) = 1,
and < 0 if y(w) = —1. But this problem statement doesn’t take into account
the presence of concept drift. The drift of the target concept indicates some
changes in the universe and consequently our modeling hyperplane must be
changed too. Therefore let the behavior of the universe with concept drift be
described by time-varying hiperplane f; (x(w)) = al'x + b; where a; and b, are
the unknown time functions. So every instance w € {2 is considered only together
with the indication of time point when this instance was presented (w,t). As a
result the training set represents as the set of triplet {(Xt e R", Yy, t)}z;l,
(Xt,Y:) = {(xx,q, yk7t)}]k\’;1 - a subset of instances, entered in time point ¢.

In such definition the problem of learning turns into the analysis problem of
two-component time series, as it is needed to estimate the hidden component
(a¢, by) by the observable component (X, Y:). This is the standard problem
of time series analysis, the specific character of which consists in the supposed
model of connection between hidden and observable components. N. Wiener in
[9] introduced classification for the estimation problems of hidden component.
According to this classification we can distinguish two types of the learning
problems.
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Filtering problem of the training set. Let a new object appear at the time mo-
ment T when the feature vectors and class-membership indices of the previous
are already registered {(X;, Y, t)}thl including the current moment 7. Tt is
required to recurrently estimate the parameters of the discriminant hyperplane
(ar,br) at each time moment T' immediately in the process of observation.

Interpolation problem of the training set. Let the training time series be com-

pletely registered in some time interval {(Xt, Y., t)}thl before its processing
starts. It is required to estimate the time-varying parameters of the discriminant
hyperplane in the entire observation interval {(at, bt)}tT=1

Let us formulate the probabilistic description of the problem. Let @(x; |
Yit, a, b)) with y, = £1 be two parametric family of probability densities in
the joint feature space X; x --- x X,, associated with discriminant hyperplane
athj,t + b, > 0 and concentrated predominantly on opposite sides of it. We shall
consider that the improper densities

2

by (xjelar, b)) = exp |— ", (1 —yje(a) %0 + br)) (1)

202
express the assumption that the random feature vectors of both classes of objects
are uniformly distributed along the separating hyperplane with the parameter
o, controlling the probability of incorrect location.

For all training instances X; and their class labels Y; obtained in the time
point ¢ the joint distribution density function is:

Ny
D(X¢|Ye, ar, b) = H by, (x5]at, be).

=1

As there isn’t any a priori information about values a;, b; we will suppose that at
the zero time moment a priori distributions of the separating hyperplane param-
eters are uniform. So it means that the distributions are constant on all number
axis and consequently its integral isn’t equal to one. Such density functions are
called improper [11].

The key element of the proposed Bayesian approach to the concept drift [10] is
treating the time-varying parameters of hyperplane as hidden processes assumed
a priori to possess Markov property

la,b
6., (fla.b) hf1ab)

==
f=a'x+bh

|
—
o4

Fig. 1. Probability density functions along direction vector a
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a; = qar1 + &, M (&) =0,M(&¢;) =dl, (2)
by = b1 +vie, M (1) =0, M(v}) =d,
g=vV1-d,0<g<1,
where variances d and d’ determine the assumed hidden dynamics of the con-
cept. The &, and v, are the white noises with zero mathematical expectations.
Equation (2]) determines, actually, the state-space model of the dynamic system,
whereas ([{) plays the role of its observation model.

The a priori distribution density of the hidden sequence of hyperplane param-
eters will be:

T
U(ay, bt =2,...,T) = [[ (s, brlas—1,b:-1)

i—2
Yi(ag, belag_1,bi—1) oc N(ag|v/1 — day_1, dD)N(bs|bs_1,d') =

:dn/Z(;ﬂ)nm exp <21d(at —V1—da;_1)"(a, — V1 - dat1)> .
grol-osr)

So we have defined, first, the conditional a priori distribution of the hidden
sequence of hyperplane parameters ¥(a;, b, t = 2,T) and, second, the condi-
tional distribution of the training sample &(X;|Y, as, by). It is clear that the a
posteriori distribution density of the hidden sequence of direction vectors and
thresholds will be proportional to product:

P(at, bt|Yt7t = 2, ‘e ,T) X W(at, bt,t = 2,T)¢(Xt|Yt, ag, bt,t = 2,T) (3)

It appears natural to take the maximum point of this a posteriori density as the
sequence of time-varying hyperplane parameters in the model:

(&g, by) = argm%XP(at,bﬂY,t =2,....T)=

= argmax¥(as,by, t = 2, T)D(Xy|Yy,a, b, t =2,T)

at,0¢

Theorem 1. The mazimum point of the a priori density (3) by a, b is the
minimum point of the criterion:

T N,
Jr(ag, b, t =0,...,7) = min {Z Z Cy (1fyj(athj+bt))2+

ag,be,,t=1,....T )
t=1j=N¢_1+1
(4)

T

T
+cll tz:;(at - \/1 - dat71)T(at - \/1 —da;_1) + 22/ Z(bt _ bt1)2:|

t=2

where Ny = 0.
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T N,
The first term >, > Cy (1 —y;(af x; + by)) ? of the criterion stands for the
t=1j=N¢_1+1

T
approximation of observation ;. As the second (11 S (ay — V1 —da;_1)T(a; —
=2

V1 —da;_1) and third 9 d, Z (by — bs_1)? terms are responsible for overall time-

volatility of direction vector and threshold.

The criterion ({) is pair-wise separable, i.e. representing a sum of private
functions every of which depends on the variables connected with one or two
time points in their increasing order. Let us introduce the following notation for
the criterion ():

J(z1,. . yzr) = ) (20— 29)  Qulze — 7)) + ()

o~
l
—

(Zt - AZt_l)TU(Zt - AZt_l)

+
] =

t=2
where
a, al
Zt_{bt} Zt*(Qt Qt) Q: Z gj
K J=Ni-1
Nt X
Q= > Cygjgf;gj—{yj,j}
£ Yj
J=Ni—1
L0...00 Vi—-d 0 ... 0 0
05...00 0 Vi-d... 0 0
U=|1:10 01 [5A= : S ;
00...50 0 0 ...V1-d 0
00...0 0 0 ... 0 Vi-da

3 Dynamic Programming Procedure for the Estimation
of the Decision Rule Parameters under Concept Drift

For the parameters estimation we use the general principle of dynamic pro-
gramming, based on the concept of a sequence of Bellman functions Jy(z;) =

min  Jy([z5]L_1), [2s € Z,])'Z}, connected with partial criteria
20,52t —1

JZl,..., ZCS Zg +Z'Ys Zs_ 17Zs (6)

Bellman functions are recurrently evaluated for t = 1,...,T by the fundamental
property of Bellman function

Ji(zt) = Ce(ze) + glifll [’Yt(ztflvzt) + jtfl(ztfl) ) (7)
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which is called the direct recurrence relation. The function sequence starts from
the first function: .J;(z;) = Ci(z1). The optimal value of the last variable is
directly calculated as
Zr = arg rrzlin jT(zT)
T

Search of other optimal values is carried out in the reverse order by the following
expression:

Ze-1 = Z-1(2) = argmin |y (z-1, %) + Jt—l(Zt—l)} (®)
where recurrence relations z;_1(Z;) are determined and stored when the Bellman
functions were calculated in the forward order. The procedure described above
is the classical dynamic programming procedure called the “forward then back”
procedure [12].

In the case of quadratic functions (¢(z;) and v¢(z¢—1,2z:) all Bellman functions
are quadratic too and consequently can be written as

Ji(ze) = (z¢ — 2)T Qu(2ze — %) + G- 9)

Then the “forward” procedure consists in the reccurent recalculation of the
quadratic form parameters Qq, Z;, ¢;. The value z; from the last Bellman func-
tion is equal the optimal value of the last variable: zp = ;.

Apply items mentioned above by the parameters estimation for the problem
with concept drift (). For this rewrited expression (Bl) in the form (@) use the
following symbols:

Celzr) = (70 — 2))" Qu(z: — 2)
’Yt(Zt—th) = (Zt - AZt—l)TU(Zt - AZt—1)~

It is clear that this functions are quadratic and therefore the Bellman functions
for our problem are determined in the form ([@). On the other hand the Bellman
function for the time moment ¢ can be evaluated by the direct recurrence relation
([@). Thus by t = 1 Bellman function parameters have a trivial view: z; =
z0; Q1 = Qq; ¢ = 0. Later they are recurrently recounted for the t = 2,...,T:

Q:=Qi (AUA+QH)_1U+Qt (10)
Z; = Q;l {(AUA + Qt—l)_l AUQ; 171 + Q.z)

The required hyperplane parameters in the time moment T are determined the
optimal value of the last variable zr = zp. With regard to the proposed classi-
fication of the learning problems this optimal parameters are the solution of the
filtering problem. Other optimal values zi,2s,...,Z7—1 are easily found in the
reverse order by using backward recurrence relation

21 = (AUA+ Qi) (AUZ + Q2

So we find the solutions of the interpolation problem.
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4 Experimental Evaluation

4.1 “Ground-Truth” Experiments

To verify the proposed method we used the synthetic data which can be pre-
sented in the form of two normal distributions. The class labels in these data
were equidistributed and take values from the set {—1, 1}. The two instance fea-
tures generated from the normal distribution for each class. In the zero moment
these distributions had the equal variation 1 and mathematical expectation 3.5
and 6.5 respectively. The distance between the centers of distributions was se-
lected according to the 3-sigma rule. With time the centers of distributions were
changed, namely, rotated around the origin of coordinates in the two-dimensional
feature space. The training set was comprised by the instances generated for 50
consecutive time moments of 100 instances each. For the test we created the
sample with 2000 instances in the next 51st time moment. After learning ac-
cording to the proposed method the resulting decision rule was applied to the
testing instances and the per cent of erroneously classified instances in each class
was calculated. The selection of method parameters was realized by the error
value on the test sample.

In the Table [l the experimental results are demonstrated by the different
values of variations d and d’ in the criterion {@]). As the results given in the table
show, for the method parameters close to 0 the resulting decision rule classified
all instances as belonging to the only class. In this case the very large penalty in
the criterion doesn’t allow the decision rule to adapt to the toward changes in
the data description. Another extreme case was under d = 1;d’ = 1. Then the
reverse situation occurred, when the classifier easily forgot the old information
about instances. Since we used the most favorable structure of data the error is
rather small. The last row of the Table [Il describes the results by the optimal
values of parameters.

To compare, the decision rule being trained on all model sample at once
by the classical SVM method has the classification error 0.099% for the —1-
class and 13.653% for the +1-class. Even in this simple model experiment the
SVM results show that the pattern recognition methods aren’t applicable in the
problems under concept drift. So the proposed method works in the problem
under concept drift and demonstrates the good results on the model data.

Table 1. The experimental results: model dataset

Values of vari- Classification er- Classification er-
ations d and ror of class —1, % ror of class +1, %

d/

d—0;d =0 0 — 100
d=1;d =1 1.0092 3.1257
d=1-10"%; 11,0801 2,846

d =1-10"%
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4.2 Case Study: “Spam” E-Mail Problem

The object of the experimental study in this paper is the problem of filtering
e-mails. The behavior of advertisement distributors is improving and as a result
the spam filter should adapt to the behavior of spammers. Consequently, we
come to problem of construction of the time-dependent decision rule.

We took the SPAM E-mail Database [I3] from the repository UCI as the
dataset. These data contain 4601 instances (e-mails) each of which is character-
ized 58 features. The last feature is nominal and describes the instance belonging
to one of two classes: spam or non-spam. The values of other features are con-
tinuous and indicate the frequency of occurrence for particular elements (words
or characters) in letter text or measure the length of sequences of consecutive
capital letters. Junk e-mails are 39.4% (1813 instances) of all dataset.

To carry out the experiments there have been selected 3600 instances (4 groups
of 900 instances each) from this database. The testing set was comprised by other
1001 instances. We standardized features before the experiments. To compare
the obtained results we used some algorithms of concept drift realized in the
software environment Massive Online Analysis (MOA) [14]:

— 0zaBagASHT - bagging using the Adaptive-Size Hoeffding Trees [15]. When
the tree size exceeds the maximun size value there restarts building of the
tree from a new root. The main parameter of this algorithm is a number of
models in the bag. For the choice of its optimal value we made some trial
experiments on the SPAM E-mail Database (results are shown in the Table
) and choose this value by the minimum of the classification error.

Table 2. Classification error depending on the number of models in the bag for
0OzaBagASHT

Number of models 6 8 10 12 14 16 18
Error, % 39,461 30,569 30,07 31,768 28,871 30,869 25,774
Number of models 20 22 24 26 28 30
Error, % 30,17 30,17 22,278 31,469 32,468 31,169

— OzaBagAdwin - bagging using ADWIN [I5]. ADWIN is a change detector
and estimator that solves the problem of tracking the average of a stream of
bits or real-valued numbers in a well-specified way. The model in the bag is a
decision tree for streaming data with adaptive Naive Bayes classification at
leaves. As well as in the previous case we chose the optimal number of models
after experiment set (results are shown in the Table B]) by the minimum of
the classification error.

— SingleClassifierDrift - single classifier with drift detection method EDDM [16].
Decision tree for streaming data with adaptive Naive Bayes classification at
leaves was selected as a classifier for training.

— AdaHoeffdingOptionTree - adaptive decision option tree for streaming data
with adaptive Naive Bayes classification at leaves. We set the maximum
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Table 3. Classification error depending on the number of models in the bag for
OzaBagAdwin

Number of models 6 8 10 12 14 16
Error, % 22,278 23,278 22877 23,776 26,773 22977
Number of models 18 20 22 24 26
Error, % 20,879 22,078 22,677 22,278 24,177

number of options paths per node as 50 (the influence of this parameter on
the error isn’t detected).

— LimAttClassifier - the ensemble combining restricted hoeffding trees using
stacking [I7]. It produces a classification model based on the ensemble of
restricted decision trees, where each tree is built from a distinct subset of
the attributes. The overall model is formed by combining the log-odds of the
predicted class probabilities of these trees using sigmoid perceptrons, with
one perceptron per class. The minimum of the classification error was got
under the following options: when one Adwin detects change, replaced the
worst classifier; the number of attributes to use per model was 2.

— NormDistClassifierDrift - the method proposed by us in the previous part.
The parameters C = C_1 = C1,d,d" were chosen after the trial tests with
their different values by the minimum of error: C = 1;d = 1078;d’ = 1078,

The final results given in the Table ] show the proposed algorithm turned out
to be a bit better on spam dataset than other algorithms.

Table 4. The experimental results: SPAM E-mail Database

Values of variations d Classification

and d’ error, %
OzaBagASHT 22,278
OzaBagAdwin 20,879
SingleClassifierDrift 39.361
AdaHoeffdingOptionTree 23.876
LimAttClassifier 29,271

NormDistClassifierDrift 14,785

5 Conclusion

This paper proposed the strictly probabilistic basis for the problem of concept
drift. This basis results from Bayesian approach to the pattern recognition prob-
lem. The method received from this approach used the general principle of the
dynamic programming. On the “ground-truth” data this method demonstrates
the required results. In the experiment on the spam e-mail database our method
showed the acceptable error. It proves that the proposed method is applicable
to the problem of concept drift for the pattern recognition problem.
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Abstract. Consider a multi-relational database, to be used for clas-
sification, that contains a large number of unlabeled data. It follows
that the cost of labeling such data is prohibitive. Transductive learn-
ing, which learns from labeled as well as from unlabeled data already
known at learning time, is highly suited to address this scenario. In this
paper, we construct multi-views from a relational database, by consid-
ering different subsets of the tables as contained in a multi-relational
database. These views are used to boost the classification of examples
in a co-training schema. The automatically generated views allow us to
overcome the independence problem that negatively affect the perfor-
mance of co-training methods. Our experimental evaluation empirically
shows that co-training is beneficial in the transductive learning setting
when mining multi-relational data and that our approach works well with
only a small amount of labeled data.

Keywords: Transductive learning, Co-training, Multi-relational classi-
fication.

1 Introduction

Increasingly, sets of structured data including relational databases, spatial data
and biological data, amongst others, are available for mining. In these settings,
using supervised learning methods often becomes impractical, due to the high
costs associated with labeling the data. To this end, during recent years, there
has been a growing interest in learning algorithms capable of utilizing both
labeled and unlabeled data for prediction tasks. In the literature, two main
settings have been proposed to exploit the information contained in both labeled
and unlabeled data, namely the semi-supervised setting and the transductive
paradigm. The former is based on the principle of inductive learning, where the
learned function is used to make predictions, both on currently known and future
observations. Transductive learning, on the other hand, makes predictions for the
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set of unlabeled data that is already known at learning time, which simplifies
the learning task. Another strength of transductive learning is that it allows the
examples in the training (and working) set to be mutually dependent.

Research further suggests that such structured (or semi-structured) data
repositories often consist of subsets that provide us with different, complemen-
tary viewpoints of the dataset. That is, the data may be analyzed by exploring
multiple complementary views, which each brings additional information regard-
ing the problem domain. For example, during social network analysis, a contact
may be viewed by considering: links to the person, textual content of the web-
page, meta-data, multimedia content, and so on. In a relational database, these
units of analysis may naturally be modeled as a set of tables 17, . .., T}, such that
each table T; describes a specific type of object involved in the units of analysis,
while foreign key constraints explicitly model the relationships between objects.
Multi-view learning, which concerns the selection of multiple independent views
to be used for classification, is based on this observation.

When the number of unlabeled data is high, it follows that multi-view learn-
ing may be successfully combined with a transductive learning approach. To
this end, we introduce the CoTReC (Co-training for Transductive Relational
Classification) method, which is inspired by the above-mentioned principle of
multi-view learning. Our method differs from the standard setting, since these
views are mutually independent and are constructed from separate subsets of
the dataset. In our approach, as a first step, we create a number of uncorrelated
training and working views. Next, during co-training, the transductive learner
proceeds to build a model and to predict the class value of the working set views
as accurately as possible. Our approach requires only a small amount of labeled
data, in order to construct accurate models.

The use of co-training is motivated by the need of improving the accuracy of
weak transductive classifiers. This weakness is due to the low number of labeled
examples that transductive algorithms are required to work with. In fact, with
co-training, we augment the training set of a classifier learned from a database
view by using predictions of unlabeled examples from the classifiers learned on
the other views. This is performed with an iterative learning process [2].

This paper is organized as follows. Section [2introduces the related work. This
is followed, in Section [3] with a discussion of the CoTReC approach. Section @
presents experiments, while Section [B] concludes this paper.

2 Related Work

This section introduces related research concerning transductive learning, multi-
view learning and co-training.
2.1 Transductive Learning

Transductive learning has been investigated in classical data mining for SVMs
([8] [1]), for k-NN classifiers ([12]) and even for general classifiers ([16]).
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However, more recently, transductive learning has been also investigated in
multi-relational data mining, which aims to discover useful patterns across mul-
tiple relations (tables) in a relational database [9]. Krogel and Scheffer ([I5])
investigated a transformation (known as propositionalization) of a relational de-
scription of gene interaction data into a classical double-entry table, and then
study transduction with the well-known transductive support vector machines.
Taskar et al. ([25]) built a generative probabilistic model that captures interac-
tions between examples, some of which have class labels, while others do not.
However, given sufficient data, a discriminative model generally provides signifi-
cant improvements in classification accuracy over generative models. Malerba et
al. [I9] proposed a relational classification algorithm that works in a transduc-
tive setting and employs a probabilistic classification approach. The transductive
learning strategy iterates on a k-NN based re-classification of labeled and unla-
beled examples, in order to identify borderline examples, and uses the relational
probabilistic classifier Mr-SBC to bootstrap the transductive algorithm.

2.2 Multi-view Learning

Multi-view learning concerns the learning from multiple independent sets of fea-
tures, i.e. views, of the data. This framework has been applied to real-world
applications such as information extraction [2], face recognition [I8] and locat-
ing users in a WiFi environment [23], amongst others. In essence, multi-view
learning utilizes experiential inputs to explore diverse representations so that an
increasingly variety of problems may be recognized, formulated and solved. In
this way, the strengths of each view are amplified and the weaknesses are allevi-
ated. This allows for cooperation, knowledge sharing and knowledge fusion.

Formally, a multi-view problem with n views may be seen as n uncorrelated or
weakly dependent features sets [9]. Here, the correlation estimates the departure
of two variables (views) from independence. If we consider two views as being
correlated, it implies that knowing the first view helps in predicting the second.
On the other hand, if knowing the first brings no (or little) knowledge about the
second, the correlation coefficient should be near to zero.

Intuitively, multi-view learning is well suited for relational data mining.
Within the relational database context, it follows that such sets of disjoint fea-
tures are typically contained in multiple relations. That is, a relational database
schema, as designed by a domain expert, usually groups attributes into relations
(or entities in an extended entity-relationship (EER) diagram) with very close
semantic meaning. Interested readers are referred to [9] for a detailed discussion
of a multi-view learning methodology within the relational database setting.

2.3 Co-training

The iterative co-training framework was originally introduced in [2]. The idea is
to split the set of predictor attributes X into two disjoint subsets X1 and X2.
Each labeled example (z,y) is viewed as (z1, 22, y) where z1 contains the values
of the attributes in X1 and 22 the values of the attributes in X2. Then, two
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classifiers f1(-) and fa2(-) (where fi; : X1 — Y and f3 : X2 — V) are learned
by bootstrapping one another with labels for the unlabeled data. Intuitively, the
initial classifiers f; and fo are learned over a small sample and the iterative
bootstrap takes unlabeled examples (z1, 22) for which f; is confident, but fs is
not (or vice-versa) and using the reliable classification to label such examples
for the learning algorithm on fo (or f1), while improving the other classifier.

Two assumptions are made in co-training: i) (Compatibility assumption) The
example distribution is compatible with the classifier f : X — Y. That is, ei-
ther attribute set suffices to learn the target f(-) such that for each example
z: fi(x) = fa(x) = f(x). 4) (Conditionally independence assumption) The pre-
dictor attributes in X1 and the predictor attributes in X2 are conditionally
independent given the class label. Formally, P(z1|f(x),22) = P(z1|f(x)) and
P(z2|f(x),z1) = P(x2|f(x)). While assumption 4) justifies an iterative ap-
proach, assumption ) can be significantly weakened while still permitting the
use of unlabelled data to iteratively boost weak classifiers. Accordingly, several
studies [21] [14] have shown that co-training may improve classifier performance
even when the assumptions are violated to some extent.

The iterative co-training approach has been successfully applied to several
learning problems, including named entity classification [5], text classification
[22] and image classification [I7]. Most of these works extract the multiple views
by trying to meet empirically the co-training assumptions (or weakening of them)
on the training domain. However, unlike the work presented in this paper, these
techniques do not address the problem of extracting multiple views from data
spanned in multiple tables of a relational database by trying to meet the com-
patibility and conditionally independence assumptions.

3 The CoTReC Method

Let D be a set of units of analysis (examples) whose description is spread in
multiple tables of a relational database. Examples can be labeled according to
an unknown target function whose range is a finite set Y = {C,...,Cr}. The
transductive classification problem is formalized as follows: Given a training set
TS C D, and a working set WS = D — T'S with unknown target values. The
problem is to predict the class value of each example in the working set WS
which is as accurate as possible. The learner receives full information (including
labels) for the examples in T'S and partial information (without labels) for the
examples in WS and is required to predict the class only of the examples in WS.

The use of the co-training framework to solve this problem is illustrated in
Algorithm [II The algorithm takes as input n training and working views] and
returns the set of labeled working examples. In the while loop, the algorithm
iterates by bootstrapping the data labeling on the different views. In particular,
it classifies examples in each view and identifies the examples for which the clas-
sification is reliable. These examples are added to the other training views (see

! Training and Working views are defined according to the same schema, but are used
on the training and working database, respectively.
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Algorithm [I], lines 16-18) for subsequent iterations. The associated label is iden-
tified according to the Bayesian Optimal Classifier [20] that permits to combine
the effect of (possibly multiple) reliable classifications of the same example (see
Algorithm [ lines 13-14). Formally, it is defined as:
BOC(e,Y" h1,...,hn,a1,...,a,) = argmax Z P(clhj) x a; (1)
ceY” j=1

ooy T

where Y” C Y is a subset of the set of labels, P(c|h;) is equal to one if the clas-
sifier h; associates the example e with the label ¢, 0 otherwise and a; estimates
the probability P(h;|A;) and is computed as the accuracy of the classifier h; on
the training view A; (see Algorithm[I] line 9). The classifier h; may utilize one
of many available propositional classification algorithms.

It is noteworthy that decisions on the classifications are propagated coher-
ently through the training views (and added to L). Once a stopping criterion is
satisfied, the Bayesian Optimal Classifier is used in order to classify the remain-
ing unlabeled examples according to the classifiers learned on training views
obtained after the last iteration (see Algorithm [ lines 25-38).

Three stopping criteria are considered in the algorithm, that is, all the exam-
ples have been classified; no example is added to the training views during the
last iteration; a maximum number of iterations (M AX ITERS) is reached.

Two issues remain to be discussed: i) how views are constructed and i) how
the reliable classifications are identified. These issues are discussed in the next.

3.1 Constructing Multi-views from Relational Data

In a relational setting, there is a database R, which consists of a target table
Tiarget and a set of background relations {T;}7. The target relation Tiorge: has
a target variable Y. That is, each tuple in this table (target tuple) is associated
with a class label which belongs to Y. Typically, the relational classification task
is to find a function F (x) which maps each target tuple x to the category set Y

Y = F(SU, Tl---n7 Ttarget)a T E Ttarget (2)

This relational classification task may be mapped to a multi-view learning
problem, as follows. Join paths link the target relation with the other relations
in the relational database, through following foreign key links. That is, foreign
key attributes link to primary keys of other tables: this link specifies a join
between two tables, and a foreign key attribute of table T referencing table
T is denoted as 1.7} rey. Each one of these paths provides a complementary,
potentially information-rich view of the target concept to be learned.

The next section discusses the multi-view construction process which corre-
sponds to the first four steps of the MRC multi-view learner reported in [9].

Multi-View Construction. Algorithm [ highlights the steps we following
when constructing the multiple views. As shown in Algorithm Bl the method
initially propagates and aggregates information to form multiple views from a



16 M. Ceci et al.

Algorithm 1. CoTReC

Require: Ai,..., A, training views, Wi, ..., W, working views.
Ensure: L working examples associated with labels
1. L+ ©;

2: while no stopping criterion is satisfied do

3: foralli=1,...,ndo

4: Train the classifier h; on the training view A;;

5: Classify all the examples in W; according to the classifier h;;

6: Compute the ranked of the class predicted by h; for each example in W;
T Sort the examples in W; by reliability in decreasing order;

8 T; < the reliability threshold for W;;

9: a; < accuracy of the classifier h; on the training view A;;
10: end for
11: for all:=1,...,n do
12: for all e € W; with reliability greater than 7; do
13: Y' «{ceY|3jel,...,n], hj(e) = c with reliability greater than T} };
14: label < BOC(e,Y' h1,...,hn,a1,...,ans)
15: for all j=1,...,ndo
16: if i #j then
17: Aj; = Aj; U{(e,label)};
18: end if
19: W; =W; — {e};
20: end for
21: L =L U{(e,label)};
22: end for
23:  end for

24: end while

25: for alli=1,...,n do

26:  Train the classifier h; on the training set A;;

27: Classify all the examples in W; according to the classifier h;;
28:  a; < accuracy of the classifier h; on the training view A;;
29: end for

30: for allt=1,...,ndo

31: for all e € W; do

32: label < BOC(e,Y,h1,...,hn,a1,...,an)
33: forallj=1,...,n do

34: W; = W; — {e};

35: end for

36: L =LU{(e,label)};

37:  end for

38: end for

39: RETURN L

relational database. Subsequently, the view validation step identifies a subset of
uncorrelated views. This set of views may subsequently be used in a transductive
learning setting, to co-train classifiers.

1) Information Propagation Stage: The Information Propagation Stage con-
structs training data sets for use by a number of view learners. The original
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Algorithm 2. Multi-view Construction Algorithm

Require: A database = {Tiarget, T1,T2, -+ ,Tn}, a view learner £, a meta learner
M, and a view validation data 7T, from .

1: Propagate and aggregate information in ¥, forming candidate view set
{le’ T ,Vdn}§

2: Remove candidate views with view learners’ accuracy less than 50% from

{V}, -V}, forming view set v’

Generate a vahdatlon data set T using T and V

Select a view feature set A~ from T

Let validated view set V = 0);

for each view V¥ (V' ¢ V') which has at least one attribute in A" do

V.add(V?);
end for
RETURN V.

relational database is used as input and the process starts from the target table.
Our approach was inspired by the so-called tuple id propagation, as introduced in
CrossMine [26], which is a technique for performing virtual joins between tables.
The target and background relations are linked together through their foreign
keys, which are identified by means of the tuple identifiers. In SQL, this is done
by an equi-join of the tables over the values of the key identifiers.

2) Aggregation Stage: The Aggregation Stage summarizes the information em-
bedded in the tuples associated with one to many relationships (i.e., one target
tuple is associated with multiple entities in a background relation) by converting
them into one row. This procedure is applied to each of the data sets constructed
during the Information Propagation Stage. To achieve this objective, aggregation
functions are applied. By applying the basic aggregation functions in SQL, new
features are created to summarize information stored in the multiple tuples. For
nominal attributes, we employ the count function. For numeric values, the count,
sum, average, mazximum, minimum and standard deviation are calculated.

3) Multiple Views Construction Stage: In the third phase of the algorithm, the
Multiple Views Construction Stage constructs various hypotheses on the target
concept, based on the multiple training data sets given by the Aggregation Stage.
To this end, view learners such as decision trees or support vector machines
(SVMs) are used in order to learn the target concept from each view of the
database separately. In this stage, a number of view learners are trained.

4) View Validation Stage: All view learners constructed in the Multiple Views
Construction Stage are then evaluated in the View Validation Stage. This pro-
cessing is needed to ensure that they are, indeed, able to learn the target concept.
In addition, strongly uncorrelated view learners are preferred. The aim of this
stage is to maintain only views that are able to accurately predict the class.

As a first step, we discard all views that perform worse than random guess-
ing. We eliminate all views with an error rate lower than 50%. Research suggests
that disjoint views are preferred by multi-view learning, due to the inherent phi-
losophy of diverse viewpoints [6/5J9]. Following this line of thought, we employ
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a Correlation-based View Validation (CVV) algorithm that uses the heuristic
goodness, from test theory, as utilized by the CFS subset feature selection ap-
proach of Hall [I0]. The heuristic ’goodness’ of a subset of features [10] is:

C = KRop/\JK + K(K - 1)Ry; 3)

where C is the heuristic ’‘goodness’ of a selected feature subset. K is the number
of features in the selected subset. R.s calculates the average feature-to-class
correlation, and Ry stands for the average feature-to-feature dependence.

We adopt the Symmetrical Uncertainty (U) [9] to calculate Ry and R;y. This
measure is a modified version of the information gain measure which compen-
sates for information gain’s bias toward attributes with more values.

The Symmetrical uncertainty is defined as follows:

Given features X and Y,

InfoGain }

HO) 4 H(x)| e HO) = - > py) log(p(y)).

U=2.0x {
yey

In summary, during view validation, each view is called upon to give a prediction
of the target class, against a validation data set. Different subsets of the views
are then ranked, according to their C' values and the subset with the highest
rankings is kept. These views are then used as the input to CoTReC.

3.2 Reliability Measures

In order to identify reliable classifications, it is necessary to use measures that
quantify how reliable the classification is. Indeed, many classification algorithms
return confidence measures (see, for example naive Bayes, k-NN and SVM clas-
sifiers). However, such measures are algorithm-dependent and cannot be used
in a general framework. Several algorithm-independent reliability measures have
been proposed in the literature. In [4], twelve reliability measures are compared
by concluding that no measure, independently considered, can be robust enough
in measuring the reliability of any class in any domain. On the basis of this
consideration, authors proposed to learn a decision tree which aggregates basic
measures by obtaining a robust piecewise reliability measure. Delany et al. [7], on
the other hand, propose three reliability measures that are domain-independent,
monotonic in terms of the reliability and do not require a training phase.

In this paper, we employ the results of both these studies. In particular, from
[4], we use the idea of combining several reliability measures, while from [7] we
identify the algorithm and domain-independent measures to be combined. Recall
that we aim to evaluate the reliability of the label predicted for an example e,
by considering labels associated to examples in the k-nearest neighborhood.

As basic reliability measures, we select the following three measures:

k
AvgNUN I (e, k) =Y _ IndexOf NUN;(e) (4)

i=1
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Zle sim(e, NLN;(e))

SR(e k)=
() Zle sim(e, NUN;(e))
¥ sim(t, NNy(e)) - 1(t, NNy(e))

SRK(e, k)= _ "~
>izy sim(t, NNi(e)) - (1 = 1(¢, NNi(e)))

where:

— NN;(e): the i-th nearest neighbor of e,

— NLN;(e): the i-th nearest like (same label) neighbor of e,

— NUN;(e): the i-th nearest unlike (different label) neighbor of e,

— IndexOfNUN;(e) is the index of NN;(e). The index is the ordinal ranking
of the example in the list of nearest neighbors,

— sim(a,b) is the similarity between examples a and b,

— 1(a,b) = 1 if label(a) = label(b) ; 0 otherwise .

These measures are used as follows. AvgNUN (e, k) measures how close e is
to the first k& nearest unlike neighbors (NUNs); SR(e, k) measures the ratio of
the similarity between e and its first & nearest like neighbors (NLNs) and the
similarity between e and its first k NUNs; SRK (e, k) is similar to SR(-,-) except
that, it considers only the first k examples, independent from the class label.
The similarity function sim(a,b) has range in [0,1] and is computed in a
standard way. In particular, we use Manhattan distance for continuous predictor
attributes and the Hamming distance for discrete ones. More formally:

m(d) (a,b) +mP)dP)(a,b)

sim(a,b) =1— mi©) + m(D)

(7)

where m(©) (m(P)) is the number of continuous (discrete) predictor attributes
in the view and d“)(a,b) (dP)(a,b)) is the Euclidean or the Manhattan (Ham-
ming) distance computed on continuous (discrete) attributes. Each continuous
attribute is normalized through a linear scaling into [0, 1]. This guarantees that
sim(a, b) belongs to [0,1] and attributes uniformly contribute to sim(a,b).

The aggregated reliability measure ARM (e, k) is computed by averaging nor-
malized values of AugNUNI(e, k), SR(e, k) and SRK (e, k), as suggested in [4].
Again, the normalization is performed on the interval [0, 1]:

ARM (e, k) = ;(AvgNUNI’(e, k) + SR(e,k) + SRK'(e,k))  (8)

where AvgNUNI'(e, k), SR'(e, k) and SRK'(e, k) are the normalized versions
of AvygNUNI (e, k), SR(e, k) and SRK (e, k), respectively. With a single relia-
bility value we can rank confidences in decreasing order and then select the top
examples for which ARM (e, k) is greater than the reliability threshold T;. This
threshold is empirically identified at each iteration, for each view.
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3.3 Computing Reliability Thresholds

In the CoTReC algorithm, we use the ARM (e, k) computed for each training
example to compute reliability thresholds. We identify the reliability threshold
that allows us to maximize the AUC (Area under the ROC curve) of a threshold-
based classifier Gy that solves the following two classes classification problem:
(+) the label of a training example is correctly predicted according to h;; (=)
the label of a training example is incorrectly predicted according to h;-
Algorithmically, for each candidate threshold 6, the AUC of the classifier Gy
that classifies as (4) examples in A; for which ACM (e, k) > 6 and classifies as
(—) examples in A; for which ACM (e, k) < 6 is computed. The set of candidate
thresholds ©; is computed by ranking examples in A; according to ACM (e, k)
and by considering the middle values of reliabilities of two consecutive examples.
Therefore, each threshold T; is computed as:

T; = argmax AUC(Gy, A;) (9)
€O

The advantages of this solution are: i) thresholds are local to each view for each
iteration and i) thresholds are computed on the current training set.

3.4 Implementation Considerations

With a naive implementation, at each iteration, for each view, it is necessary
to compute the similarities between the training examples and all the examples.
These similarities are used both for computing reliability thresholds and decid-
ing which working examples can be considered as reliably classified. The cost of
computing similarities, in the worst case, is O(l4 X (Ia +1lw) x MAX ITERS),
where [ 4 is the total number of training examples and Iy is the total number of
working examples. In our implementation, we do not recompute the same simi-
larities from one iteration to the next. Moreover, we organize examples according
to an r-tree structure in order to compute similarities between close examples in
logarithmic time. In this way, at the first iteration, we compute similarities with
a time complexity O(log(la) x log(la+lw)). From the second iteration, we only
compute similarities between examples kept in the working set and examples
lastly moved in the training set.

4 Experiments

The empirical evaluation of our algorithm was carried out on three real world
datasets: PKDD 99 discovery challenge database, Mutagenesis database (which
have been both used to test several MRDM algorithms), and North West Eng-
land (NWE) Census Database. The CoTReC algorithm is evaluated on the basis
of the average accuracy on the same 10-fold cross-validation (10-CV) against each
database. For each database, the target table is first divided into 10 blocks of
nearly equal size and then a subset of tuples related to the tuples of the target
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table block is extracted by means of foreign key constraints. In this way, 10
database instances are created. For each trial, CoTReC is trained on a single
database instance and tested on the hold-out nine database instances, forming
the working set. It should be noted that the accuracies reported in this work are
thus not directly comparable to those reported in other research, which uses a
standard 10-fold CV method. This is due to our unusual experimental design,
imposed by the transductive co-training paradigm. Indeed, unlike the standard
CV approach, here one fold at a time is set aside to be used as the training
set (and not as the test set). Small training set sizes allow us to validate the
transductive approach, but may result in higher error rates as well.

4.1 Datasets

The first database that we consider is the PKDD 99 discovery challenge database
[1], as introduced earlier. Recall that this database concerns the task of deter-
mining whether a client will default on his loan. The database contains eight
tables. The target Loan table consists of 682 records, including a class attribute
status which indicates the status of the loan, i.e. A (finished and good), B (fin-
ished but bad), C (good but not finished), or D (bad and not finished). The
background information for each loan is stored in the relations Account, Client,
Order, Transaction, Credit Card, Disposition and Demographic. All background
relations relate to the target table through directed or undirected foreign key
chains. The aim of the learning problem is to classify if a loan is at risk or not.

The Mutagenesis database is related to the problem of identifying some mu-
tagenic compounds [24]. We have considered, similarly to most experiments on
relational data mining algorithms, the “regression friendly” dataset consisting of
188 molecules. It consists of data obtained with the molecular modeling package
QUANTA. For each compound, it contains the atoms, bonds, bonds types, atom
types, and partial charges on atoms plus indicators ind1, inda, logp, and lumo.

The NWE Census database is obtained from both census and digital map data
provided by the European project SPIN!. These data concern Greater Manch-
ester, one of the five counties of NWE. Greater Manchester is divided into 214
censual wards. Mortality rate as well as some indexes of the deprivation (Jarman
Underprivileged Area Score, Townsend Index, Carstairs Index and Department
of the Environment Index) are available at ward level. The goal of the classifi-
cation task is to predict the value of the Jarman index (low or high) deprivation
factor by exploiting the other deprivation factors, mortality rate and geograph-
ical factors, represented in some linked topographic maps. Spatial analysis is
possible thanks to the availability of vectorized boundaries of the 1998 census
wards as well as of other Ordnance Survey digital maps of NWE where urban
area (115 spatial objects), green area (9), road net (1687), rail net (805) and wa-
ter net (716) can be found. Topological non-disjoint relationships between wards
and objects in all these layers are materialized as relational tables.
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Table 1. Average number of views extracted and validated from MV.

DB PKDD 99 Mutagensis NWE
No of views 2 2 6

4.2 Experimental Results

In the experiments, we have considered four learning systems as base classifiers.
Specifically, C4.5, the RIPPER rule learner, Naive Bayes (NB), SMO classifier
[13] and 1-nearest neighbours (1-NN) which are all implemented in the Weka
system. CoTReC is run by varying k (see (§) ) among three values expressed as
a percentage (1%,2% and 3%) of the number of the examples; MAX ITERS
is set to the number of unlabeled examples stored in the working database. In
Table[Il, we report the average number of views extracted within CoTreC. Each
view provides a propositionalization of the corresponding database.

In Table[2] we report both the 10-CV average accuracies and the average num-
bers of iterations for PKDD 99 discovery challenge database and Mutagenesis
database. We have chosen these databases, since they have been used to bench-
mark several state-of-the-art muilti-relational data mining methods. Results, as
shown in Table 2] indicate that there is no distance which consistently leads to a
better classification accuracy. The accuracy of classification generally improves
by increasing the k£ value. Moreover, the classification accuracy remains high
(more than 87.5%) on PKDD 99 discovery challenge database, independently of
the base classifier. However, the best accuracy is obtained by using NB. This
trend is confirmed when analyzing the Mutagenesis database, where we observe
an higher variability of the accuracy by varying the basic classifier. For Mutage-
nesis, we observe that the best accuracies are obtained with the SMO classifier
which, however, is less stable than NB when varying k. By considering the av-
erage number of iterations, we observe that it is generally low, except for the
case of C4.5 . Here, CoTReC tends to move a small number of examples in the
training set at each iteration, since the trees do not significantly change from
one iteration to the next one. On the basis of these considerations, NB can be
reasonably considered as the classifier that better interacts with CoTReC.

To evaluate the predictive performance of the CoTReC algorithm, we com-
pared our method with the only relational transductive classifier currently avail-
able in the literature, namely the TRANSC approach [I9]. TRANSC iterates
on a k-NN based re-classification of labeled and unlabeled examples, in order
to identify class borderline examples, and uses the relational probabilistic clas-
sifier Mr-SBC [3] to bootstrap the transductive algorithm. Although similar to
CoTReC, TRANSC does not use co-training and does not exploit multi-views.
The experimental results reported in [I9] include the predictive performance of
the TRANSC method as well as the relational naive Bayesian classifier Mr-SBC
[3] against the Mutagenesis and NWE databases. We ran CoTReC against these
two databases, using the same CV partitioning as reported in [3]. We compared
the accuracy obtained by CoTReC with the best results of the TRANSC and
Mr-SBC methods against these two databases, as presented in [3]. We depict
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Table 2. PKDD 99 discovery challenge database and Mutagenesis database: Average
accuracies/iterations obtained with different k values. Column “Distance Measure”
refers to the used distance measure for continuous attributes. The average number of
iterations is approximated to the unity.

Learner Distan. PKDD 99 discovery challenge Mutagenesis
Measu. k=1% k=3% k=5% k=1% k=3% k=5%

C4.5 Buclid. 87.94% /74 87.94% /12487.94% /137 50.88% /677.51% /482.84% /6
Manha. 87.94% /129 87.94% /66 87.94% /111 53.25% /573.96% /580.47% /4
RIPPER Euclid. 87.94% /4 87.94% /4 87.94% /1 37.86% /479.88% /382.24% /2
Manha. 87.94% /1 87.94% /3 87.94% /4 43.78% /578.69% /382.24% /3

NB Euclid. 88.11% /2 88.11% /2 88.11% /2 69.23% /584.02% /374.55% /5
Manha. 88.11% /2 88.11% /2 88.11% /2 68.08% /387.57% /485.79% /6

SMO Euclid. 87.94% /9 87.94% /5 87.94% /6 60.94% /578.69% /388.16% /3
Manha. 87.94% /10 87.94% /15 87.94% /6 39.64% /778.69% /388.75% /2

I-NN Euclid. 87.62% /1 87.62% /1 87.62% /1 78.69% /178.69% /178.69% /1
Manha. 87.62% /1 87.62% /1 87.62% /1 78.69% /178.69% /178.69% /1

Table 3. Mutagenesis and NWE databases: average accuracies obtained with CoTReC,
TRANSC and Mr-SBC. CoTReC is run with NB learner as basic classifier, k=5% and
Manhattan distance.

System/DB  Mutagenesis NWE
CoTReC 85.79% 83.33%
TRANSC 82.89% 81.96%
Mr-SBC 75.08% 77.29%

the comparison results in Table Bl Results indicate that the CoTReC method
outperformed both the TRANSC and the Mr-SBC algorithms for the two tested
databases, in terms of the obtained accuracies. For example, when contrast-
ing CoTReC with the Mr-SBC method, our algorithm improved the accuracy
against the Mutagenesis and NWE databases by 10.71% and 6.04%, respectively.
Compared to the TRANSC strategy, the CoTReC algorithm was able to reduce
the predictive error against the Mutagenesis and NWE databases by 2.90% and
1.37%, respectively. This reduction is mainly due to the co-training approach.
In summary, these results show that, with only a small number of labeled
data, CoTReC can successfully construct accurate classification models, through
benefiting from the use of co-training and transductive learning paradigms.

5 Conclusions

Numerous real-world applications contain complex and heterogeneous data,
which are naturally modeled as several tables in a relational database. Often,
such data repositories consist of a small number of labeled data together with
a set of unlabeled data. In this paper, we have investigated the combination
of transductive inference with co-training for the classification task in order to
successfully mine such data. Our method exploits multi-views extracted from a
relational database in a co-training schema. Multi-views are extracted by follow-
ing the foreign key chains from relational databases and these views enable us
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to deal with the relational structure of the data. Co-training allows us to boost
the classification of examples within an iterative learning process.

The proposed classifier (CoTReC) has been compared to the TRANSC trans-
ductive relational classifier and the Mr-SBC inductive relational classifier. Re-
sults show that CoTReC outperforms both systems. As future work, we intend to
extend the empirical investigation to corroborate our intuition that transductive
inference has benefits from co-training when applied to multi-views extracted
from a relational database. Our work will further include a thorough investi-
gation of the robustness and efficiency of CoTReC against further databases.
In addition, experimental evaluation on the influence of the different confident
measures on the CoTReC approach will be conducted. We also plan to compare
our method with other state-of-the-art co-training and multi-relational learning
strategies. It would also be interesting to extend the CoTReC algorithm to other
relational data such as spatial data, deep-web data and social network data.
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Their Applications” funded by the Italian Ministry of University and Research
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Abstract. A generalized nonlinear classification model based on cross-oriented
Choquet integrals is presented. A couple of Choquet integrals are used in this
model to achieve the classification boundaries which can classify data in such
situation as one class surrounding another one in a high dimensional space. The
values of unknown parameters in the generalized model are optimally deter-
mined by a genetic algorithm based on a given training data set. Both artificial
experiments and real case studies show that this generalized nonlinear classifier
based on cross-oriented Choquet integrals improves and extends the functionali-
ty of traditional classifier based on one Choquet integral on solving the classifi-
cation problems of multi-class multi-dimensional situations.

Keywords: classification, Choquet integral, signed efficiency measure, genetic
algorithm, optimization.

1 Introduction

The Choquet Integral [1, 2] with respect to a fuzzy measure or signed fuzzy measure
[3, 4], also called efficiency measure or signed efficiency measure respectively in
literature, has been performed successfully as a nonlinear aggregation tool [5]. The
nonadditivity of the signed fuzzy measure provides an effective representation to
describe the interaction among the contributions from the predictive attributes to the
objective attribute. These properties endow the Choquet integral with the ability of
solving data classification problems. Typical works can be found in [5-7], where en-
couraging results have been presented.

However, the applicability of the classification model using only one Choquet
integral is limited. It cannot solve the classification problem such as one data class sur-
rounding with another data class. In [6], we proposed a new nonlinear classification
model based on cross-oriented Choquet integrals, where two Choquet integrals are used
to construct a quadrilateral boundary for 2-dimensional 2-class classification problems.
In that work, regularization is operated on the original data such that the projection axis
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passes through the origin, and a rotation transformation is operated to adjust the slope of
the projection axis. This model can solve the classification problems of 2-dimensional
data sets successfully. But when the problems are about 3-dimensional or high dimen-
sional data, it is difficult to get the explicit expression of rotation transformation. So, in
this work, a generalized nonlinear classification model based on cross-oriented Choquet
integral is proposed. It has the ability of solving the high dimensional classification
problems of multiple classes. Experiments both on artificial and real data sets have been
performed and partially satisfactory results are achieved.

This paper is organized as follows. In Section 2, basic mathematical knowledge for
constructing the generalized classification model is given. Section 3 and Section 4
present our generalized nonlinear classification model based on cross-oriented Cho-
quet integrals and its relevant optimization algorithm. In Section 5, artificial data and
real data from UCI Machine Learning repository [8] are exhibited to illustrate the
classification performance of our methods.

2 Signed Efficiency Measure, Choquet Integral, and
Classification

2.1  Signed Efficiency Measure

Let X ={x;, x,,---, x,,} be the set of all considered feature attributes. The collection
of all subsets of X, called the power set of X, is denoted by & (X).

Definition 1. Set function #: & (X) — (—eo, ) is called a signed efficiency
measure iff g (J) = 0. A signed efficiency measure g is called subadditive
iff W(EOF)<u(E)+u(F) whenever ENF = ; u is called superadditive iff
UEUF)>2u(E)+u(F) whenever ENF = M is called additive iff
MEVUF)=u(E)+ u(F) whenever ENF =Q.

The weights used in the weighted average method can be uniquely extended to an addi-
tive measure on’ (X) and the weighted average of observation values for all attributes
X;, X,,+--,and x, 1is just the classical Lebesgue integral of the observation values that

can be regarded as a function defined on X. When a nonadditive signed efficiency
measure is adopted, as an aggregation tool, the Lebesgue integral fails. It should be
replaced by a nonlinear integral, such as the Choquet integral defined below.

2.2 Choquet Integral

Definition 2. Let f be a real-valued function on X and u be a signed efficiency
measure on%” (X). The Choquet integral of f withrespectto x is defined by

[£du=]" (k) -pxnda+ [ uF,)de ()
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where F, ={x| f(x)=a} for ae (—oo, ).
When f and u are given, the Choquet integral can be calculated by

*

[ du =Y 17D = FODT B X 51 @)
i=1

where f(x;)=0 and (xf,x;,---,x:) is a permutation of {x,, x,,+--, x,} such that

FOD S F5) < < fx).

2.3  Classification by Choquet Integral Projections

Based on the Choquet integral, an aggregation tool which projected the feature space
onto a real axis had been established. Under the projection, each point in the feature
space becomes a value of the virtual variable.

In the feature space, a point (f(x)), f(x,), -, f(x,)) , denoted by
(fi» fos+» f,) simply, can be regarded as a function f defined on X . It
represents an observation of all feature attributes. The basic model of 2-classifications
based on the Choquet integral can be expressed as:

If I(a+bf)dﬂ2c,then f € A;otherwise feB,

where A and B are two classes. In above expression, a=(q,a,,--,a,) and
b=(b,b,,--,b,) , which balance the scales of the different dimensions, satisfy
min; a; =0 and max; b, I=1, x4 is a signed efficiency measure with u(X)=1,
and c is a real number indicating the classifying boundary. The values of all these pa-
rameters can be optimally determined by a soft computing technique, such as a genetic
algorithm.

Taking 2-dimentional data (with feature space X = {x;, x,}) belonging to 2 classes

(class A and class B) as an example. The classifying boundary is just a contour of the
function with two variables f; and f, expressed by the Choquet integral being a

constant ¢, that is,
[ta+bfydu=c, 3)

where, f; = f(x;) and f, = f(x,). The contour is a broken line showing in Fig.1.
Its vertex is on line L that has equation.

a+b f(x))=a, +b, f(x;).

The geometric meaning of b = (b;, b,) can be considered as the parameters which
determine the slope of the projection axis L, where a =(a,, a,) controls the intercept

of L from the origin. If a, = a,, the projection axis will pass through the axis.
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This contour can be extended into high-dimensional data, where the contour is a
broken hyper plane with a common vertex.

LA

v

fi

contour I(“ +bf)ydu=c

Fig. 1. A contour of the Choquet integral used as the classifying boundary

3 Generalized Classification Model by Cross-Oriented
Projection

The applicability of the classification model stated in previous section is limited. It
cannot solve the classification problem such as one data class surrounding with
another data class. In this case, two Choquet integrals with respect to signed efficien-
cy measure should be used. Relevant works have been published in [6], where the
proposed algorithm can solve the classification problems of 2-dimensional data sets
successfully. Here, a generalized nonlinear classification model by cross-oriented
projection pursuit is introduced. It can solve the classification problems of high-
dimensional data sets.

Let X ={x, x,,---, x,,} be the set of all considered feature attributes. Let & and v
be two signed efficiency measures defined on power set ¢?(X). For convenience,
u({x}), u({xy}), oy m({x, b, p({x, x0)), u({x,x3}), --- are abbreviated
by iy, t, v My s Mgz oo, and V() v}, -, v(x D,
v({x;,x5}), v({x;,x3}), --- are abbreviated by v, v,, -, V,, Vi, Vi3, -,
respectively. Assume that, HX)=v(X)=1, -0.5<u <15,

and-0.5<v; <15, where, i=12,---,n,12,13,---. Thus, the two Choquet integrals

with respect to ¢ and v form cross-oriented projections from the feature space onto a
real axis. Then a one-dimensional classification can be made on this axis. In such a
way, point f satisfying [(a+bf)du>c, and [(a+bf)dv <c, will be regarded be-

longing to one class, say A; while point f satisfying [(a+bf)du<c, or
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[(a+bf)dv>c, will be regarded belonging to another class, say B. Contour of the

classifying boundaries derived by the cross-oriented projection in 2-dimensional case
is a quadrilateral, as illustrated in Fig. 2.

The unknown parameters of the generalized classification model by cross-oriented
projection are summarized in Table 1.

£ A L

contour
I(a+b)f dv=c,

fi

contour
J.(a+b)f du=c,

Fig. 2. Nonlinear classification by cross-oriented projection pursuit

Table 1. List of unknown parameters

Parameter name Meaning Number

22

One signed efficiency measure:

s fo, o o tho, Has, ...

v One signed efficiency measure: 9
Vi, Vay ooy Vi, Vi2, Vi3, ...
Parameters to balance the scales
a=(a,ay, ..., a,)

Parameters to balance the scales

Y7

b b= (b, by, ... b) "
One dimensional vertex on
Cy projection axis L by the Choquet 1

integral with respect to 4
One dimensional vertex on

C, projection axis L by the Choquet 1
integral with respect to v
Total number 214202

We called the above-mentioned model as the generalized nonlinear classification
model based on cross-oriented Choquet integral. To reduce the number of unknown
parameters, a translation transformation and regularization are implemented on origi-
nal data sets, so that the center of class A coincides with the origin and the projection
axis L passes through the origin, as shown in Fig. 3. In this case, the vector a in the
model (Eq. (3)) can be released. Then the number of unknown parameters is reduced

02" +n-2.
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contou.

Ibf dv=c, L

v

contour
.[ bf du=c,

Fig. 3. Contour of classification boundary by be d=c, and I bf dv=c,

4 Algorithms

Since any multi-class classification problem can be decomposed as several consecu-
tive 2-class classification problems, for convenience, we discuss the algorithms of two
classes, class A and class B, in the following statements.

Assume that a rearranged (according to the class) data set
{fi1j=L2 0, +1,[,+2,---, ], +1,} is available, where f,, f,, ---, f, belong
to class A while f, ., f.,, -, f., belong to class B. Positive integers [,
and [, are large enough (not smaller than 20). Each datum f; is an ordered pair of
real numbers (f;(x,), f,(x,), =, f,(x,)), j=1,2,--+,1,+1,, and can be regarded as
a function defined on X ={x}, x,, -+, x,,}.

The algorithm consists of the following steps.

1. Finding the data centers.

Calculate the geometric center of the data for class A.
A= D
13 1 13
= (=2 fi(), =2 fi () — 2 (%)
U= U= =i
2. Regularization of the data set.

Let
8 :(gj(xl)’ gj(xz)a"'a gj(xn))

U 0= T ()= Fio ()= 72
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for j=1,2,---,1 +1,, where

k = max JZ(f,-(x»—f,-A)Z
i=1

1< j<l,

That is, finding a linear transformation to the data such that class A centers at the ori-
gin and spreads in a hyper cube [-1, 1]x[-1, 1]x---x[-1,1].

3. Determining the values of unknown parameters.

A genetic algorithm is designed to optimize the unknown parameters, where each
unknown parameter is taken as a gene in chromosome. The ranges of unknown para-
meters are summaries in Table 2.

Table 2. Ranges of unknown parameters

Parameter name Ranges
U [-0.5, 1.5]
v [-0.5, 1.5]

b -1.1]
Cy LD
(o (-1,1]

Each chromosome represents a set of the values of these parameters. Using these val-
ues, a hyper quadrangular frame expressed by the contours of two Choquet integrals can
be obtained as the classifying boundary. Any datum f;, j=1,2,--,1, is correctly

classified if [bgdu = ¢, and [bgdv < ¢, ; otherwise, it is misclassified. Similarly, any
datum f;, j=0+1, [ +2,---,1, +1,, is misclassified if [bgdu>c, and [bgdv<c, ;

otherwise, it is correctly classified. Then, based on the given data, the optimal values of
the parameters can be determined by minimizing the misclassification rate.
When there is no learning datum fj ,forsome j=1[+1, [,+2,---,1 +1,, satisfy-

ing [bgdu<c 4 » the part of boundary corresponding to [bgdu=c ,, can be omitted;
similarly, if there is no learning datum fj ,forsome j=1[+1, [, +2,---,1 +1,, satis-

fying [bgdv > c, , the part of boundary corresponding to [bgdv =¢, can be omitted.

4. Exchanging class A and B

To obtain a better result, exchange the definition of classes A and B, then redo steps 1
to 3. Compare the result with the previous one. Take the better (with smaller misclas-
sification rate) as the output.

5 Experiments

We have implemented the algorithm shown in Section 4 using Microsoft Visual C++.
To verify the classification performance of the algorithms, simulations on artificial
data and real data have been conducted.
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5.1 Simulation on Artificial Data

The 2-dimensional training data sets are generated by a random number generator in
range [0, 1]x[0, 1]. After regularization, the data set are separated into two classes by

two broken lines
[bedu=c, and [bgdv=c,,

where by, b,, u, i1y, v,,v,.¢c,, and ¢, are pre-assigned parameters. Each datum

g;=(g,;(x). 8;(xy) Is labeled with class A if [bg du>c, and [bg; dv<c,; other-

u v

wise, g; is labeled with B. Here, j=1,2,---,1,+1, and [, =1, =100. The original

data set after regularization is plotted in Fig. 4.

The data set has 100 points of class A and 100 points of class B. After regulariza-
tion, the genetic program runs for searching the classifying boundaries. The popula-
tion size of this simulation is set as 200. The number of unknown parameters is 8. At
732" generation, zero misclassification rate is achieved. Fig. 5 shows the optimized
procedure of the misclassification rate with respect to the genetic generation.

The original data and the classifying boundaries after regularization are drawn in
Fig. 6. Here, circles and stars indicate the points in class A and B, respectively. The
solid line is the projection axis to which the 2-dimensional data are projected. It
passes through the origin and with slope defined by b, /b,. The dotted broken line is

the classifying boundary derived by [bgdu =c 1 » and the dash dot broken line is the
classifying boundary derived by [bgdv=c, .
The preset parameters and the optimized parameters derived by the genetic algo-

rithm are compared in Table 3. Here, the optimized parameters almost retrieve their
preset ones.

1.5
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Fig. 4. Original data set after regularization
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Fig. 5. Misclassification rate with respect to genetic generation

o Class A
x Class B

Lo

5 -1 -0.5 0 0.5 1 15

Fig. 6. Classifying boundary derived in simulation on artificial data

Table 3. Comparison between the preset and optimized parameters

Parameter name Preset value Optimized value
7 -0.8 -0.796
b 0.2 0.161
Vi 0.5 0.479
Vi 0.8 0.776
b 0.6 0.596
b, 0.8 0.828
Cy -0.3 -0.309
C, 0.3 0.263
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5.2 Simulation on Real Data

In case study, considering real multi-class situations, we utilized the IRIS data from
UCI [8]. These data include three classes (three IRIS species: Setosa, Versicolor and
Virginica) with 50 samples each and 4-dimensional features (the length and the width
of the sepal and petal). For convenience, we denote the three classes as class 0, class 1
and class 2. This 3-class classification problem can be decomposed as 3 consecutive 2-
class classification problems: class 0 and class 1, class 0 and class 2, class 1 and class2.
From Table 1, we know that there are totally 2" +n—2=34, where n=4 for 4-
dimensional features. They are 44, 4, -, l,, Vs Vy, sV, b,b,, by by, ¢, and c,.

1. Classification of class 0 and class 1.

The genetic program for searching the classifying boundary between class 0 and class
1 runs based on the data set has 50 points of class O and 50 points of class 1. The
whole data set is used as training data set to retrieve the classifying boundaries.

Consider class 0 as the class A in the algorithm stated in Section 4. After regulariza-
tion, the genetic program runs for searching the classifying boundary. The population
size of this simulation is set as 200. In 0" generation, 200 individuals are randomly
generated as initial population. In these 200 randomly generated individuals, there exist
2 ones whose corresponding classification boundaries can classify the class O and class
1 completely. That means, we get zero misclassification rate at generation 0. The
retrieved unknown parameters of 3 individuals are listed in Table 4.

2. Classification of class 0 and class 2.

The genetic program for searching the classifying boundary between class 0 and class
2 runs based on the data set has 50 points of class 0 and 50 points of class 2. The
whole data set is used as training data set to retrieve the classifying boundaries.

Consider class 0 as the class A in the algorithm stated in Section 4. After regulari-
zation, the genetic program runs for searching the classifying boundary. The popula-
tion size of this simulation is still set as 200. In 0" generation, there exist 5 ones
whose corresponding classification boundaries can classify the class O and class 2
completely. That means, we get zero misclassification rate at generation 0" . The
retrieved unknown parameters of 7 individuals are listed in Table 5.

3. Classification of class 1 and class 2.

The genetic program for searching the classifying boundary between class 1 and class
2 runs based on the data set has 50 points of class 1 and 50 points of class 2. The
whole data set is used as training data set to retrieve the classifying boundaries.

Consider class 1 as the class A in the algorithm stated in Section 4. After regulari-
zation, the genetic program runs for searching the classifying boundary. The popula-
tion size of this simulation is set by as 200 as well. The genetic algorithm stops at
generation 4000, which is the preset maximum generation number. At the 4000"
generation, the misclassification rate is 1. That means, there is one data which cannot
be classified correctly in the training data sets.
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Then we consider class 2 as the class A in algorithm stated in Section 4. The genet-
ic algorithm stops at generation 16", where zero misclassification rate is reached.

There is one individual in generation 16™ whose corresponding classification
boundaries can classify the class 1 and class 2 completely. The retrieved unknown
parameters of this individual are listed in Table 6. Fig. 7 shows the optimized proce-
dure of the misclassification rate with respect to the genetic generation.

Obviously, the performance of the generalized nonlinear classification model based
on cross-oriented Choquet integrals and its relevant genetic algorithm is satisfactory

by the verification experiments on both artificial and real data set.

Table 4. Retrieved unknown parameters in classifiers of class 0 and class 1

Parameter Individual 1 Individual 2
o 0.0048232 -0.449075
b 1.19058 1.47242
s 0.398048 0.0638685
s 0.692307 0.164629
Us -0.158026 0.324399
Us -0.184292 -0.271003
7 -0.450792 0.937226
g 0.503475 1.14374
Uy 0.165395 1.49275
o 1.31317 1.49296
1 -0.478385 -0.339041
™ -0.143717 1.16854
3 -0.42883 0.658134
m 0.0608117 1.44526

v -0.222677 1.1743
Vs 0.253379 0.337968
Vs 0.652973 -0.493873
Vi 0.282479 -0.372947
Vs -0.349608 1.10865
Ve 1.23432 -0.45856
v 0.25334 1.24356
Vs 0.0439466 1.15741
Vo 0.983515 1.28242
Vio -0.258399 0.0530433
Vi 0.291705 1.06404
Vio -0.0326033 -0.287872
Vi3 1.45221 -0.288123
Via -0.0254469 -0.0602971
b 0.711253 -0.0340049
by -0.374262 0.0179182
b3 -0.724922 -0.935174
by 0.138267 -0.113526
Cy -0.995321 -0.589644
C, 0.431257 0.922721
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Table 5. Retrieved unknown parameters in classifiers of class 0 and class 2
Parameter Individual 1 | Individual 2 | Individual 3 | Individual4 | Individual 5
1 0.0048232 0.679669 1.46229 -0.449075 -0.305349
b 1.19058 1.46651 1.18286 1.47242 1.35059
1 0.398048 -0.445465 0.127911 0.0688685 0.887157
,u4 0.692307 0.606251 0.773051 0.164629 1.01912
Us -0.158026 -0.196814 0.462173 0.324399 -0.300904
3 -0.184292 0.73977 1.11407 -0.271003 0.327651
)7 -0.450792 -0.0619089 0.265001 0.937226 0.0408298
Us 0.503475 -0.335183 0.846153 1.14374 -0.202304
) 0.165395 1.45156 0.57368 1.49275 0.219136
Lo 1.31317 0.43558 0.0481065 1.49296 -0.316584
i -0.478385 0.671609 0.44541 -0.339041 0.88649
i -0.143717 0.909113 1.47536 1.16854 0.658876
i3 -0.42883 1.07041 0.398209 0.658134 0.712251
Hia 0.0608117 0.853584 0.0447845 1.44526 0.64552
Vi -0.222677 0.889886 1.35938 1.1743 -0.196435
|23 0.253379 -0.474606 1.4578 0.337968 0.771025
|2 0.652973 0.564477 0.833294 -0.493873 1.22056
Vy 0.282479 0.617486 -0.429183 -0.372947 1.16579
Vs -0.349608 0.0837916 0.642148 1.10865 1.429
Ve 1.23432 0.617603 -0.314279 -0.45856 -0.167072
v 0.25334 0.432854 0.845429 1.24356 1.1304
Vg 0.0439466 0.0456995 0.0412946 1.15741 0.705507
Vo 0.983515 0.696691 0.788805 1.28242 -0.317401
Vio -0.258399 0.548281 0.412069 0.0530433 1.16213
Vii 0.291705 -0.0123057 0.511328 1.06404 1.29819
Via -0.0326033 0.882966 0.784715 -0.287872 0.0131133
Vi3 1.45221 -0.294089 0.62227 -0.288123 -0.215865
Via -0.0254469 -0.239225 0.294133 -0.0602971 1.18375
b, 0.711253 0.867482 -0.673768 -0.0340049 0.417769
by -0.374262 0.445345 0.330747 0.0179182 0.491805
b3 -0.724922 -0.639646 -0.530299 -0.935174 -0.640386
by 0.138267 -0.952714 -0.532176 -0.113526 0.835031
Cy -0.995321 -0.31443 -0.355089 -0.589644 -0.151552
Cy 0.431257 0.977191 0.393777 0.922721 0.665952
Table 6. Retrieved unknown parameters in classifier of class 1 and class 2
Parameter Value Parameter Value Parameter Value
Lh -0.155727 s 1.37527 Vil 1.12347
b 0.698759 n 0.858355 Via -0.267951
)73 0.410291 Vi 0.939024 Vi3 -0.184767
L 0.69709 2 0.867304 Via 0.662568
s 0.848792 Vs 0.123789 b -0.108787
Mo 1.11531 Vy -0.14382 by -0.17422
1 1.33937 Vs 0.989996 b3 0.478004
Us 1.04216 Ve 0.715143 by 0.591394
o 0.187169 v 1.40483 Cy -0.0474166
Hio 0.568226 W 0.33452 C, 0.813631
L 0.994638 Vo 0.558908
Lo 0.793781 Vio -0.0523634
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Fig. 7. Misclassification rate with respect to genetic generation in experiments of class 1 and
class 2 of IRIS data set

6 Conclusions

Based on our previous work of nonlinear classification model based on cross-oriented
Choquet integrals, we present a more generalized model which can classify high-
dimensional data set in this paper. We stated this model and its relevant algorithm
based on 2-class classification problem for convenience. It can be extended to multi-
class multi-dimensional situations since any multi-class classification problem can be
decomposed as several consecutive 2-class classification problems. Stage of experi-
ments on both artificial and real data verify the performance of the nonlinear classifi-
cation model based on cross-oriented Choquet integrals. The classification accuracy
of IRIS data (whole data set perform both training and testing data set) is 100%. This
result is superior to those of existed classification models. Of course, more rigorous
tests, such as ten-fold validation, on other real data sets are expected to be imple-
mented in future works.
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Abstract. Identifying a good feature subset that contributes most to
the performance of Lp-norm Support Vector Machines (Lp-SVMs with
p=1or p=2)is an important task. We realize that the Lp-SVMs do
not comprehensively consider irrelevant and redundant features, because
the Lp-SVMs consider all n full-set features be important for training
while skipping other 2" — 1 possible feature subsets at the same time. In
previous work, we have studied the L1-norm SVM and applied it to the
feature selection problem. In this paper, we extend our research to the
L2-norm SVM and propose to generalize the Lp-SVMs into one general
Lp-norm Support Vector Machine (GLp-SVM) that takes into account
all 2" possible feature subsets. We represent the GLp-SVM as a mixed
0-1 nonlinear programming problem (MO1NLP). We prove that solving
the new proposed MO1INLP optimization problem results in a smaller er-
ror penalty and enlarges the margin between two support vector hyper-
planes, thus possibly giving a better generalization capability of SVMs
than solving the traditional Lp-SVMs. Moreover, by following the new
formulation we can easily control the sparsity of the GLp-SVM by adding
a linear constraint to the proposed MOINLP optimization problem. In
order to reduce the computational complexity of directly solving the
MOINLP problem, we propose to equivalently transform it into a mixed
0-1 linear programming (MO1LP) problem if p = 1 or into a mixed 0-1
quadratic programming (M01QP) problem if p = 2. The MO1LP and
MO1QP problems are then solved by using the branch and bound al-
gorithm. Experimental results obtained over the UCI, LIBSVM, UNM
and MIT Lincoln Lab datasets show that our new proposed GLp-SVM
outperforms the traditional Lp-SVMs by improving the classification ac-
curacy by more than 13.49%.

Keywords: support vector machine, feature selection, mixed 0-1

quadratic programming, branch and bound.

1 Introduction

The Lp-norm Support Vector Machines (Lp-SVMs, with p = 1 or p = 2) were
studied in many previous works and were demonstrated to be efficient in solving

P. Perner (Ed.): MLDM 2012, LNAI 7376, pp. 40-fJ] 2012.
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a broad range of different practical problems (see, for example, [1H7, [10, 111, 20—
22)). As other machine learning classifiers, the performance of Lp-SVMs strongly
depends on the quality of features from a dataset. The existence of irrelevant
and redundant features in the dataset can reduce the accuracy of Lp-SVMs. We
realize that the traditional Lp-SVMs do not comprehensively consider irrelevant
and redundant features. In fact, the Lp-SVMs consider all n full-set features
be important for training. However, there probably exist irrelevant and redun-
dant features among n full-set features. Furthermore, in many cases L2-SVM
was shown not to select any features [1]. The L1-SVM provides some relevant
features, but it cannot remove redundant features [1]. In order to improve the
performance of the Lp-SVMs by looking at important features, it is necessary to
test all 2" possible combinations of features for training. In previous work [24],
we have studied the L1-norm SVM and applied it to the feature selection prob-
lem. In this paper, we extend our research to the L2-norm SVM and propose
to generalize the Lp-SVMs into one general Lp-norm Support Vector Machine
(GLp-SVM) that takes into account all 2™ possible feature subsets.

In the formulation of the GLp-SVM, we encode the data matrix by using the
binary variables z3 (k = 1,n) for indicating the appearance of the k* feature
(rr, = 1) or the absence of the k** feature (z; = 0). Following this proposed
encoding scheme, our GLp-SVM can be represented as a mixed 0-1 nonlinear
programming problem (MOINLP). The objective function of this MOINLP is a
sum of the inverse value of margin by means of Lp-norm and the error penalty.
We prove that the minimal value of the objective function from the GLp-SVM
is not greater than the one from the traditional Lp-SVMs. As a consequence,
solving our new proposed MOINLP optimization problem results in a smaller
error penalty and enlarges the margin between two support vector hyper-planes,
thus possibly giving better generalization capability of SVM than those obtained
by solving the traditional Lp-SVMs. Moreover, by following the new general
formulation we can easily control the sparsity of the GLp-SVMs by adding the
constraint x1 + x2 + .. +x, = T, where T is the number of important features,
to the proposed MO1INLP optimization problem.

In order to reduce the computational complexity of directly solving the
MOINLP problem, we apply Chang’s method [8, [9] to equivalently transform
it into a mixed 0-1 linear programming (MO1LP) problem if p = 1 or a mixed 0-
1 quadratic programming (M01QP) problem if p = 2. The obtained MO1LP and
MO1QP problems can then be efficiently solved by using the branch and bound
algorithm. In order to validate our theoretical findings, in this paper we have
compared our new GLp-SVM with the standard L2-norm SVM [10, [11] and the
traditional L1-norm SVM proposed by Bradley and Mangasarian [1] regarding
the classification accuracy and the number of selected important features. Ex-
perimental results obtained over the UCI [12], LIBSVM [L7], UNM [19] and MIT
Lincoln Lab [18] data sets show that the new GLp-SVM gives better classifica-
tion accuracy, while in many cases selecting fewer features than the traditional
Lp-SVMs do.
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The paper is organized as follows. Section 2 formally defines a new general
formulation of Lp-SVMs (GLp-SVM). We show how to represent GLp-SVM as a
mixed 0-1 nonlinear programming problem (MO1NLP) by the encoding scheme.
In this section, we also prove that the minimal value of the objective function
from the GLp-SVM is not greater than the one from the traditional Lp-SVMs.
Section 3 describes our new search approach for globally solutions of the GLp-
SVM. We present experimental results in Section 4. The last section summarizes
our findings.

2 A General Lp-norm Support Vector Machine

Our goal is to develop a new SVM-based method capable of identifying the best
feature subset for classification. To achieve this goal, our first contribution is a
novel general formulation of the Lp-norm Support Vector Machines (Lp-SVMs).
In the standard Lp-SVMs, we are given a training data set D with m instances:
D = {(ai,ci)|ai € R",¢; € {—1,1}}™,, where a; is the i" instance that has n
features and ¢; is a class label. a; can be represented as a data vector as follows:
a; = (a1, a2, ..., Qin ), where a;; is the value of the jth feature in the instance a;.

For the two-class classification problem, a Support Vector Machine (SVM)
learns a separating hyper-plane w - a; = b that maximizes the margin distance
w2 where w = (w1, wa, ..., w,) is the weight vector and b is the bias value.

The standard form of the SVM is given below [10, [11]:

1 m

. P

Bﬂiré ) ||pr + C;fu

ci(Xjoy aijw; —b) 2 1= &,

such that {& S0i=1.m. (1)

Above, &; is slack variable, which measures the degree of misclassification of the
instance a;, and C' > 0 is the error penalty parameter; p=1or p=2.If p =1,
then we have the L1-norm support vector machine that was first proposed by
Bradley and Mangasarian [1]. If p = 2, then we have the traditional L2-norm
support vector machine [10].

From (1), we observe that the traditional Lp-norm SVMs consider all n fea-
tures be important for training. However, there probably exist irrelevant and
redundant features among n features of the dataset |14, [15]. The performance of
Lp-SVMs might be reduced because of these features. Therefore, it is necessary
to test all 2™ possible feature subsets for training the Lp-SVMs.

When the number of features n is small, we can apply the brute force method
to scan all 2" subsets. However if this number of features becomes large, a
more computational efficient method that also ensures the best feature subset is
required. In the following, we first show how to generalize the problem (1) into
a general Lp-norm SVM (GLp-SVM), which is in fact a mixed 0-1 nonlinear
programming (MO1NLP) problem. We then describe how to solve this MO1INLP
optimization problem in order to get globally optimal solutions.
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Firstly, we use the binary variables xj, (k = 1, n) for indicating the appearance
of the k" feature (x;, = 1) or the absence of the k™ feature (z; = 0) to encode
the data vector a; (i = 1,m) as follows:

a; = (@121, 222, ..., AinTn). @)
= (SUl, L2y weey xn) € {07 1}77,

With the encoding scheme (2), the problem (1) can be generalized into the
following mixed 0-1 nonlinear programming (MO1NLP) problem:

1 S
wrrguglm prHz + C’;fw
Ci(zg;l AjjW;T; — b) >1-¢,
5i207i217m;c>07 (3)
z; €{0,1},=1,n.

Proposition 1: Suppose that S1 and S2 are the minimal values of the objective
functions from (1) and (3), respectively. The following inequality is true:

52 < S1 (4)
Proof. It is obvious, since the problem (1) is a case of the problem (3) when
T = (xlax2a"7xn) = (171371) U
Remark

1. As a consequence of the Proposition 1, solving the problem (3) results in a
smaller error penalty and enlarges the margin between two support vector
hyper-planes, thus possibly giving a better generalization capability of SVM
than solving the traditional Lp-norm SVMs in (1).

2. We can even control the sparsity of the general Lp-norm SVMs by adding
the following linear constraint z; + x2 + .. + z, = T', where T' < n is the
number of important features, to the optimization problem (3).

3. Normally, we can apply popular optimization techniques, such as the branch
and bound algorithm, to directly solve a mixed 0-1 non-linear programming
problem. However, with non-linear constraints, the problem (3) becomes
even harder to solve. In the next section, we propose a new approach to
linearize the constraints in (3), thus reducing the computational complexity
of solving (3).

3 Optimizing General Lp-norm Support Vector Machine
The main idea of our new proposed method is to linearize mixed 0 — 1 terms

wj;z; in (3) applying Chang’s method. By this way, we equivalently transform
the optimization problem (3) into a mixed 0-1 linear programming (MO1LP)
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problem if p = 1 or into a mixed 0-1 quadratic programming (M01QP) problem
if p = 2. The obtained MO1LP and M01QP problems can then be efficiently
solved by using the branch and bound algorithm.

Proposition 2: A mixed 0 — 1 term wjz; from (3) can be represented by a
continuous variable z;, subject to the following linear inequalities [§, |9], where
M is a large positive value:

Zj EM(xj—l)—&-wj,
zj < M(1— ;) + wj, (5)
OSZ]‘ SM&U]

Proof
(a) If z; = 0, then (5) becomes

zi > M0 — 1)+ wj,
zi < M(1—0)+ wj,

z; 1s forced to be zero, because M is a large positive value.
(b) If x; = 1, then (5) becomes

zi > M(1—1)+wj,
2z < M(1—-1)+wj,

z; is forced to be wj, because M is a large positive value.
Therefore, the constraints on z; reduce to:

ZZ:{(), Zf l’j:(),

wj, f x; =1

which is the same as w;z; = z;.
Remark

1. All the constraints in (3) are now linear. We consider the first case when
p = 1. We define w = p—q withp = (p1,p2,....,pn) > 0,9 = (q1,92, .-, qn) > 0
and el = (1,1,...,1). The problem (3) is then equivalent to the following
problem [20]:

m
. T
min e, (p+4q)+C .

,q,§,b,@ (p q) ;51
ci( Yjy aij(pj — qj)z; —b) > 1 =&,
fi207i:17m§C>07 (6)
z; € {0,1},
Pi,q; Z 07.] = 17”-
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By applying the Proposition 2, we substitute terms p;z; and g;z; in (6)
by new variables t; and v;, respectively, satisfying linear constraints. By
doing this substitution, we in fact transform the problem (6) into a mixed
0-1 linear programming (MO1LP) problem. The total number of variables for
the MO1LP problem will be 6n+m+1, as they are b, &, x;, p;, q;, tj, z; and
vj(i = 1,..,m;j = 1,...,n). Therefore, the number of constraints on these
variables will also be a linear function of n. We propose to use the branch
and bound algorithm to solve this MO1LP problem.

2. If p = 2, then it is obvious that the optimization problem (3) is equivalent
to the following mixed 0-1 quadratic programming problem, which can be
solved by using the branch and bound algorithm:

1 2 i
min HszJrCZ&’
i=1

w,,b,x,z 2

ci( Xjy aijzg —b) =1 =&,

zj > M(z; —1) + wj,

2 < M(1 — ;) + wj, (7)
0 S Zj S Ml‘j,

gi ZO7Z:17maC>O7

z; €{0,1},5 =1,n.

4 Experiment

This section validates the capability of our new proposed general Lp-norm SVM
(GLp-SVM) in dealing with irrelevant and redundant features. In order to do
that, in this paper we only consider the linear SVMs for binary classification
problem. The goal is to compare our new GLp-SVM method with the L2-norm
SVM |[11] and the traditional L1-norm SVM proposed by Bradley and Man-
gasarian |I] regarding the number of selected features and the generalization
capability. Note that the number of selected features in context of linear SVM
for the binary classification problem is the number of nonzero elements of the
weight vector.

4.1 Experimental Settings

We conducted our experiments on various benchmark datasets from the UCI [12]
and the LIBSVM repositories |[17]. The datasets we tested are “ala”, “a2a”,
“wla”, “w2a”, “Spectf” and “Haberman”. Not only we are interested in datasets
with large numbers of features, such as “wla” that has 300 features, for the ex-
periments, but also we tested our algorithms on small datasets, such as “Haber-
man” that has only 3 features. The reason is to test the ability of our algorithms

in finding the most important features in diverse datasets.
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We also used several benchmark datasets from different fields to validate our
new algorithms. In particular, we selected datasets from (1) UNM [19] and (2)
the MIT Lincoln Lab databases [18].

Ad. 1. The University of New Mexico (UNM) provides a number of system call
datasets [19] for testing host-based intrusion detection systems (HIDSs). A HIDS
is an agent on a host that identifies intrusions or attacks to computer systems
by analyzing system calls, application logs and file system modifications [23]. In
the UNM datasets, a feature is defined as the number of occurrence of a system
call in an input sequence. Each instance in the UNM datasets, which is labeled
as as “normal” or “intrusion”, has a large number of feature values, such as
Xlock has 200 features. We used five different datasets from the UNM database:
“L-inetd”, “Login”, “PS”,“S-lpr” and “Xlock”. More detail on the numbers of
features of the datasets is given in Table 1.

Ad. 2. The datasets generated by MIT Lincoln Lab in 1998 [18] were used for
benchmarking of different intrusion detection systems. However, in this paper we
only considers two datasets for testing host-based intrusion detection systems:
“RawFriday” and “RawMonday” datasets. The numbers of features in the MIT
Lincoln Lab datasets are less than the ones from the UNM datasets. For example,
the “RawFriday” and the “RawMonday” have 53 and 54 features, respectively.

We needed to run four different algorithms on the chosen datasets: L1-norm
SVM, L2-norm SVM, GL1-norm SVM and GL2-norm SVM. In order to implement
the L2-norm SVM and the traditional L1-norm SVM, we used the Mangasarian’s
code from [16]. For implementing the new general Lp-norm SVM (GLp-SVM, p=1
and p=2), the TOMLAB tool [13] was used for solving the mixed 0-1 linear pro-
gramming problem if p = 1 and the mixed 0-1 quadratic programming problem if
p = 2. The values of the error penalty parameter C' used for the experiment were:
277,276,275 .2, ...,25 26 27 We applied 10-fold cross validation for estimating
the average classification accuracies as well as the average number of selected fea-
tures. All the best results obtained over those penalty parameters were chosen and
are given in the Table 1 and the Table 2.

4.2 Experimental Results

Table 1 shows the number of features selected by our GLp-norm SVMs and those
selected by the traditional Lp-norm SVMs. Table 2 summaries the classification
accuracies of 10 folds cross-validation of the SVMs performed on 13 datasets.

It can be observed from Table 1 that our new method GL1-norm SVM removes
dramatically irrelevant and redundant features from the full-set of features. Sur-
prisingly, in some cases the GL1-norm SVM selected only one important feature,
such as in the Xlock and RawMonday datasets. Moreover, in comparison with
other methods the GL1-SVM provided a smallest number of important features.
The GL2-norm SVM selects smaller numbers of features than the L2-norm SVM,
but larger than the L1-norm SVM.

From the Table 2, it can be seen that the GL1-norm SVM provided higher perfor-
mance than the one given by the traditional L1-norm SVM. In fact, the GL1-norm
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Table 1. Number of selected features (on average)

Data Sets

ala [17] 123
a2a [17] 123
wla [17] 300
w2a [17] 300
Spectf [12] 44
Haberman [12] 3
RawFriday [18] 53
RawMonday [18] 54
L-inetd [19] 164
Login [19] 164
PS [19] 164
S-1pr [19] 182
Xlock [19] 200
Average 144.1

105.3
107.6
266.2
270.5
44
3
33.9
26
33.5
46
22
36.9
46.8

80.1

105.3
96
266.2
270.5
33
3
33.9
26
23
30
22
36.9
46.8

76.35

64
74.9
76.7
99.9

31

2.8

8.4

1
13.5
9.6
5

3.2
13.4

31

3.5
3.8
11.1
10.2
6
1.6
1.9
1
2.4

NN N

3.7
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Full-set L2-norm SVM GL2-SVM Ll-norm SVM GL1-SVM

SVM improved the classification accuracy by more than 13.49%. This phenomenon
can be explained by the fact that L1-norm SVM is just a case of the GL1-norm SVM,
thus solving the GL1-norm SVM results a better classification accuracy than solv-
ing the traditional L1-norm SVM. Moreover, the datasets contain many irrelevant
and redundant features that negatively affect the performance of SVMs. These ex-

planations can also be applied to the case of the GL2-norm SVM and L2-norm SVM.

As shown in Table 2, GL2-norm SVM gave the best classification accuracy on av-
erage. In some cases, such as in the Xlock and RawMonday datasets, one feature is
enough to identify attacks and normal traffic.

Table 2. Classification Accuracies (on average)

Data Sets

ala [17]

a2a [17]

wla [17]

w2a [17]
Spectf [12]
Haberman [12]
RawFriday [18]
RawMonday [18]
L-inetd [19]
Login [19]

PS [19]

S-1pr [19]
Xlock [19]

Average

83.99
82.25
96.76
96.69
72.20
73.48
98.40
100
88.33
80.00
100
100
100

90.16

83.99
90.34
96.76
96.69
83.00
73.48
100
100
90.05
85.00
100
100
100

92.25

65.40
68.34
88.49
85.76
79.55
73.16
54.02
95.65
85.00
65.00
100
70
56.79

75.93

L2-norm SVM GL2-SVM Ll-norm SVM GL1-SVM

75.37
74.75
97.09
96.92
79.55
73.48
98.80
100
85.83
81.67
100
99.11
100

89.42
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5 Conclusions

We have proposed a new general Lp-norm SVM (GLp-SVM) that considers com-
prehensively irrelevant and redundant features of a dataset. The central idea was
to use binary variables for encoding the data matrix. The new GLp-SVM can
then be represented as a mixed 0-1 nonlinear programming problem (MO1INLP).
We proved that the traditional Lp-norm SVMs are a special case of our new
GLp-SVM. Therefore, solving the new proposed MOINLP optimization problem
results in a smaller error penalty and enlarges the margin between two support
vector hyper-planes, thus possibly giving better generalization capability of SVM
than solving the traditional Lp-norm SVMs problem. We also proposed to equiv-
alently transform the MO1INLP problem into a mixed 0-1 linear programming
(MO1LP) problem if p = 1 or a mixed 0-1 quadratic programming (M01QP)
problem if p = 2. The MO1LP and MO1QP problems can then be solved by
using the branch and bound algorithm. Experimental results obtained over the
UCI, the LIBSVM, the UNM and the MIT Lincoln Lab data sets show that the
new general Lp-norm SVMs gives better generalization capability, while in many
cases selecting fewer features than the traditional Lp-norm SVMs do.
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of Pivot Elements for Balanced GHT Structure
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Abstract. In general metric spaces, one of the most widely used indexing tech-
niques is the partitioning of the objects using pivot elements. The efficiency of
partitioning depends on the selection of the appropriate set of pivot elements. In
the paper, some methods are presented to improve the quality of the partitioning
in GHT structure from the viewpoint of balancing factor. The main goal of the
investigation is to determine the conditions when costs of distance computa-
tions can be reduced. We show with different tests that the proposed methods
work better than the usual random and incremental pivot search methods.

Keywords: pivot based indexing, general metric space, interval based
computation.

1 Introduction

In many application areas the objects can't be represented with appropriate feature
vectors, only the distances between the objects are known. If the distance function df()
is a metric it fulfills the following conditions:

d(x,y) =0
dlx,y) =0 x=y
d(x,y) =d(y,x)
d(x,2) +d(z,y) = d(x,y)

ey

The different application areas may have very different and complex distance
functions. For example the detection and comparison of components for sound data
objects, are relatively expensive operations. In the case of applications with huge
collection of these objects, the objects are clustered and indexed to reduce the compu-
tational costs on the collection. The most widely used indexing methods in general
metric spaces use pivot elements. The pivot element p is a distinguished object from
the object-set. The distance from an object x to p is used as the indexing key value of
x to locate the bucket containing x. Usually more than one single pivot element are
used in the algorithms.

It is known that the efficiency of indexing methods depends significantly on the
position of the pivot elements [4], thus the appropriate selection of the pivot elements
is a crucial optimization component of object management. The usual measure to
calculate the fitness of a pivot-set is the mean of distance distribution [1]:

P. Perner (Ed.): MLDM 2012, LNAI 7376, pp. 50-52] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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where N denotes the number of objects in the set, This measure is tailored to reduc-
tion of the pruning operation in the search tree. Having a nearest neighbor query
0O(q,r) where g is the query object and r is the threshold distance, a branch of the
search tree assigned to pivot element set {p;} can be excluded if for all elements x of
the subtree

|d(x,p;) —d(q,p)| > 3)

is met for some index i. As the exact calculation of the measure u is an O(N) opera-
tion, only a sampling with O(1) is used to estimate the fitness parameter value.

There are many variants of indexing trees in general metric spaces. The Genera-
lized Hyperplane Tree (GHT) [5] and Bisector Tree [6] are widely used alternatives.
These structures are binary trees where each node of the tree is assigned to a pair of
pivot elements (p,,p,). If the distance of the object to p; is smaller than the distance to
D32, then the object is assigned to the left subtree, otherwise it is sent to the right subt-
ree. According to authors, the GHT provides a better indexing structure than the usual
vantage point trees [5].

Based on the survey of [1], the following methods are usually used for pivot selec-
tion. The most simple solution is the random selection of the pivot elements. In this
approach, more tests are run and the pivot set with best parameter is selected. The
second method is the incremental selection method. In the first step of this algorithm,
a p; with optimal fitness is selected. In the next step, the pivot set is extended with p,,
yielded by a new optimization process where p; is fixed already. On this way, the
pivot set is extended incrementally to the required size. The third way is the local
optimization method. In this case, an initial pivot set is generated on some arbitrary
way. In the next step, the pivot element with worst contribution is removed from the
set and a new pivot element is selected into the set.

The work [1] analyzed the pivot selection methods from the viewpoint of subtree
pruning operation. Usually a heuristic approach is used in the applications. The core
elements of the heuristics are the following rules: the pivot elements should be far
from the other not pivot elements and they should be far from each others too. The
paper concluded that the incremental selection method provides the optimal solution
of this heuristics.

An improved pivot selection method called Sparse Spatial Selection (SSS) is pre-
sented in [2]. The SSS method generates the pivot elements dynamically when a new
outlier elements is inserted into the object pool. A new incoming element is selected
as a new pivot if it is far enough from the other pivot elements. A loss minimization
method was proposed by [8] where the loss is measured as the real distance between
the object and its nearest neighbor in the index tree.

A conceptually different approach for object indexing is the family of computation
methods based only on the distance matrix. In the AESA [4] algorithm, the distances
between every pairs of objects are known and thus every objects can be considered as
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a pivot element The method provides the best query results for small object sets but it
can't be applied to larger sets because of the O(N?) number of distance computations.

The main goal of this paper is to analyze the pivot selection methods from a differ-
ent viewpoint, namely from the viewpoint of balancing factor of the generated index
tree. The balancing factor is an important parameter of the traditional search trees too.
In the case of well-balanced tree, the cost of search operation is low and stable [9].
The another aspect of the investigation is the cost reduction of distance computations
during the selection of pivot set. The proposed method optimizes the process of pivot
selection to achieve a balanced GHT tree using a minimum number of distance calcu-
lations. The investigation addresses the split operation of a GHT node when the buck-
et gets full. In this process, two new pivot elements should be selected. As the bucket
contains only the objects of a single node, it can be assumed that the size of the object
set is limited. Based on these consideration, the presented method is a combination of
algorithms on distance matrices and direct pivot selection.

2 Distance Matrices

Let H < RV*N denotes the set of distance matrices meeting the axioms of the dis-
tance functions. Let d denote the upper triangle part of 2 and H¥ the set of these
matrices. With corresponding mapping of indexes the formula (1) can be converted
into the following form:

Vdij, dj, di € d € H*:dy + dyj —dyj 2 0
N
}[“C‘R(Z).

jr

As it can be seen the set of valid distance matrices is equal to the solution set of the
linear homogenous inequality system (2). In this formula we allow to have a zero
distance value between any objects. This difference enables the investigation of dege-
nerate cases where two objects may be overlapped, i.e. they are the same object. It
follows from this fact that if

2yEHY apeER
then
aX+pyeH"
is also met. Thus H* is a convex cone in R\2/ containing the zero element of R'\2
too.

A ray of H* for direction d € H is defined as
ad € HY, a € R*

The direction d is an extreme direction of a convex cone if it cannot be expressed as a
conic combination of directions of any rays in the cone distinct from it:
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va,b € HY a,B,y ER*,a +yd,b #yd:ad +Bb #d 6)

According to the theory of Klee [10], any closed convex set containing no lines can
be expressed as the convex hull of its extreme points and extreme rays.

Unfortunately, the extreme rays of the metric cone can't be generated directly for
larger N values as the number of extreme rays is a 0(2V 2)[1 1]. Thus, in the investi-
gation, only a subset of the cone is considered, namely the subset of distance matrices
corresponding to the points in Euclidean space. Thus the values in the generated ma-
trices correspond to the Euclidean distances between the points.

In the test generations, three main types of distribution were selected: uni-polar, bi-
polar and multi-polar distributions with uniform distribution within the clusters. As
the experiences show the efficiency of the algorithms are significantly influenced by
the characteristics of the distribution.
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Fig. 1. Distance distributions of uni-polar and bi-polar cases

3 Selection of Pivot Elements

As the main goal of the investigation is to provide a well-balanced distribution of the
objects, the efficiency criterion is measured with

min{|B,, B}

(6)
|BL| + [Bgl

'L[ =
where B; and By denote the left and right side subtrees. The value domain of u is
[0..1]. In the optimal case, the value of u is equal to 1. If u = O then all objects are
assigned to one of the child branches.

Based on the suggestions of [3], a multi-phase pivot selection method was imple-
mented. In the first phase the usual heuristic step is applied: the object pair with larg-
est intra-distance will be selected. In order to minimize the computation cost, only an
approximation is performed in the followings steps:

- random selection of an object p,
- selection of p; with d(p;,py) — maximum
- selection of p, with d(p;,p,) — maximum
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The object pair (p,,p,) is selected as initial pivots. Based on the experiences, the fit-
ness of the random selection largely depends on the object distribution. In the case of
uniform distribution it provides a relatively good result but if the distribution is bi-
polar a poor results is yielded. To improve the efficiency a local optimization process
is performed in the second phase. The main steps of this phase are the followings:

1: mumax = mu (pl,p2);
selection of p3 where mu(pl,p3) is maximum;
selection of p4 where mu(p4,p2) is maximum;
mu = max (mu(pl,p3),mu(pd,p2)):;
if mu > mumax then
mumax = mu;
replace the old pivot pair with the new one;
go back to step 1
else
terminate the procedure;
end;

In the tests, three algorithms were compared. The first algorithm is the brute force
search where for every object pair (p,,p,) the u(p,p,) value is evaluated and the best
pair is selected. This method provides a global optimum but it requires O(N°) opera-
tion as the computation of u() belongs to the O(N) complexity class. The second me-
thod is the random pivot selection method with maximum intra-distance criteria. The
third method is the proposed local optimization algorithm. In the tests, two parameters
were measured: the efficiency factor u and the execution costs z.

The test results are summarized in Table 1. The first table (Table 1a) is for the uni-
polar case, the second table (Table 1b) shows the bi-polar case with parameter value:
0.2/0.8. For the multi-polar cases, the results always lay between these values. The
Fig. 1 shows the comparison of the quality u values for the random and local search
methods for bi-polar distribution.

It can be seen from the results that the random search method work weak in the
case of bi-polar distribution and can work well in uni-polar case. The local optimum
search method provides always a good result and it requires significant less time than
the brute force algorithm.

Table 1. a
sample brute force random local optimization
size u t(s) u t(s) u t(s)

300 1 0.910 0.89 0.001 1 0.018
400 1 2.312 0.93 0.001 0.99 0.026
500 1 4.321 0.93 0.001 1 0.054
600 1 7.916 0.95 0.001 1 0.081
700 1 12.532 0.94 0.001 1 0.120
800 1 19.166 0.91 0.001 0.98 0.167
900 1 27.331 0.93 0.001 0.99 0.188
1000 1 38.182 0.94 0.001 1 0.221
1200 1 63.529 0.93 0.001 1 0.340
1400 1 105.117 0.94 0.001 0.98 0.442
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Table 2. b
sample brute force random local optimization
size u t(s) u t(s) u t(s)
300 1 0.932 0.40 0.001 1 0.017
400 1 2.212 0.36 0.001 1 0.024
500 1 4413 0.39 0.001 0.99 0.054
600 1 7.806 0.39 0.001 1 0.077
700 1 12.731 0.38 0.001 1 0.112
800 1 18.463 0.44 0.001 1 0.163
900 1 27.625 0.44 0.001 0.99 0.181
1000 1 37.458 0.42 0.001 1 0.218
1200 1 62.715 0.41 0.001 0.99 0.351
1400 1 103.563 0.41 0.001 1 0.438

time (1)
o
3

tirmedt)

a T A . . . 0 . , , . .
m 400 600 800 1000 1200 1400 m 400 600 800 1000 1200 1400
nurmber of abjacts () nurmber of abjacts ()

Fig. 2., Time cost of the brute force and local optimum search methods

4 Improvements of the Local Optimization Method

It can be seen that the execution cost of the local optimization method shows a O(NZ)
characteristic. Thus some additional modules were included into the algorithm to reduce
the cost value. The implemented reduction methods relates to the calculation of the u
value as this module has the largest cost portion within the pivot search algorithm.

The first optimization step relates to the reduction of candidate set in selection of
ps and py. In the initial version, all objects belong to the candidate set. On the other
hand, it follows from the triangle inequality that if

mink{|d(xi, X)) — d(x;j, xk)|} > d(x;,x;) @)

is satisfied then the partitioning sets of x; and x; are the same, i.e. the left (right) sub-
trees are the same for both elements. Thus if x; is already tested and x; meets the con-
dition (7) then the testing of x; can be omitted.

In the next table, the cost reduction factor of this elimination step is shown for dif-
ferent object distributions. As it can be seen this step is effective only if the



56 L. Kovacs

distribution is bi-polar. The reason of this experience is the fact: the smaller is the
relative distance dj; the higher is the chance that inequality (7) can be used for test
elimination. In the case of bi-polar distribution the chance to have large distance dif-
ferences is greater than in the case of uni-polar distribution.

Table 3.
distribution reduction factor (in percent)
average deviation
uni-polar 0.2% 0.04%
bi-polar 36.4% 5.4%

The second method for candidate set reduction is the application of sampling tech-
nique instead of full scan of the objects. In this method the p is calculated with

. minﬂB’LL |B’R|}

7 7 (8)
|B'L| + |B'R|

‘LL =
where B’ denotes subset generated by random sampling. The next table (Table 4)
summarizes the achieved accuracy at different sample sizes (reduction levels). The
table contains the accuracy error values in percentage.
The test data shows that sampling of the object distribution has some similarity
with the standard theories of determining the optimal sample size for normal distribu-
tions. For example, the Cochran's formula [12] gives the sample size as

t?-s
V=0 )
where
t : value for selected alpha level for each tail
s: estimation for variance
d: acceptable margin of error
The formula of Krejcie [13] provides a different approach:
2
-N
£ (10)

n=
d* - 4-(N-1)+ y?

where X2 denotes the Chi-square of the given confidence level. As both formulas
show, the optimal sample size depends on many factors and its value changes only
very slow for increase of N. For example the optimal sample size for N = 1000
lies between 210 and 270. In our experiment, the optimal sample size is about 140 for
N =1000.

In the computation of the u fitness value, the distances from a given object x to
both pivot objects p;, p, are considered to check which pivot is closer to x. On the
other hand, the distance value calculation can be omitted in some situations.
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Table 4.
error for set A (N=200) error for set B (N=1000)
sample average deviation average deviation
size

sqrt(N) 42% 27% 19% 16%
2 sqrt(N) 30% 21% 17% 13%
4 sqrt(N) 15% 7% 7% 6%
8 sqrt(N) 13% 8% 7% 5%
16 sqrt(N) - - 7% 5%
24 sqrt(N) - - 6% 5%

Let p;, p» denote the current pivot candidate objects. Let g denote the current object
to be tested. The test returns 1 if g is close to p;, otherwise it returns 2. It is assumed
that exists a r object for which the distances d(q,r) and d(p,,r) are already known. The
distance d(p;,q) is known also. It follows from the triangle inequalities that

|d(p2,7) —d(q,7)| < d(p2,q) < |d(pz,7) +d(q,7)] (1n

Thus if

d(p1,q) < |d(ps, 1) —d(q,7)
then

d(py,q) < d(®2,q)

If

d(py, @) > |d(py, 1) + d(g, 7))
then

d(p1,q) > d(P2,q)

Thus in this cases, the object ¢ can be assigned to the corresponding subset without
calculating the actual d(p,,¢) distance value.

5 Interval Model of Distance Calculations

The distance matrix contains (1;]) distance values, thus the generation of the matrix is

an O(N?) cost operation. As the calculation of the distance value for complex object is
a high cost operation, the reduction of the redundant distance values is also an impor-
tant optimizations step.

The first question of this research phase was to investigate how can the single
distance values restricted by the other distance values of the same object set. As the
distance value between two objects is constrained by the triangle inequalities of the
metric function, the values already in the matrix will constrain the values not already
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filled in. Every new value entered into the matrix will reduce the uncertainty on the
still empty positions.

To measure the uncertainty of the unknown distance values, an interval model is
introduced. Every distance value is given here with an interval, where the interval
determines the interval of possible values. Thus initially, when no distance is known
yet, every value is given with [0,max_dist] where max_dist denotes the largest possi-
ble value. If a distance value is set to value v, the corresponding interval contains only
one element: [v,v]. To indicate the level of value uncertainty, an ¢ measure is intro-
duced on the following way:

Zi ¢i
Pavg = "z (12)

®i = Vmax — Vmin

If a new distance value v;; is set for object pair (x;x;) , then the interval values of the
matrix elements are updated using the following algorithm:

dl = min(tavok_max(i,j),tavok_max(j,k));
d2 = max(tavok_min(i,Jj),tavok_min(j,k));
if d1 < d2 then
tavok_min(i,k) = max(d2 - dl,tavok_min(i,k));
tavok_min(k,1) = tavok_min(i,k);
end
dl = tavok_max(i,j)+tavok_max(j,k);
tavok_max(i,k) = min(tavok_max(i,k),dl);
tavok_max(k,1i) = tavok_max(i,k);

In the algorithm, favok_min denotes the array of low boundary values and favok_max
stores the upper boundary values. These rules are based on the following inequality
derived from the triangle inequality:

ld(x,7) —d(y, )| < d(x,y) < |d(x, ) +d(y,7)] (12)

In the tests, the average ¢ and the minimum ¢ values were investigated during the
generation of the distance matrix. It is clear the more values are set the less is the
uncertainty. The figures Fig. 4 - 5 show the average ¢ value for increasing number of
set values (x-axis) for both the uni-polar and the bi-polar object distributions. As the
figure demonstrates in the case of bi-polar distribution the average uncertainty is less
than in the case of uni-polar distribution.

The Fig 3 shows the minimum, not zero ¢ values of the matrix. Based on these re-
sults, it can be seen that the smallest value interval are equal to some percents of the
average distance value. Thus, if a given level of uncertainty is allowed, some of the
distance calculations can be eliminated.
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Fig. 3. Minimum uncertainty values for uni-polar and bi-polar distributions

For the case when the distance values are stored with interval values a new defini-
tion of the u fitness measure is introduced. In this approach, an object may belong to
both sides with given certainty. Let p;, p, denote the pivot objects and g denotes the
current object to be tested. Let £/ denote the event that g is closer to p; than to p, and
E2 is the event that g is closer to p, than to p;. If the d(q,p;) distance has the value
[va,, vb,] and d(q,p,) is equal to [va,,vb,], then the probability of E/ and of E2 can be
calculated with the method of geometric probability. The area of valid value pairs is a
rectangle with sides corresponding to the intervals. The set of value pairs belonging to
E?2 is a half-plane upper the line y = x.

25 07

average uncerainty
average uncertainty

133}

0 10 2 30 4 S0 B0 0 60 90 100 0 10 20 3| 40 5 60 70 80 90 100
fullness factor (%) fullness factor(%)

Fig. 4. Average uncertainty values for uni-polar distribution without interval adjustment and
with adjustment

Let p(EI) denote the probability that the i-th object belongs to the area of p,. The
pi(E2) is defined on similar way. It can be easily verified that

p(ED) + p(E2) =1

for every object.
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Fig. 5. Average uncertainty values for bi-polar distribution without interval adjustment and
with adjustment

Based on the previous definitions, the u value is calculated with

min{P;, P,}

N
P=) ) (12)

N
P, = Z pi(E2)
=1

The redefined fitness function is a generalization of the base fitness function as it
yields the same value for the strict cases when p,(E1) or p,(E2) is equal to 1. Using the
redefined fitness function, the presented pivot selection algorithm can be executed on
the interval-based distance matrix too.

P2~ I
wh2 E2|
| | E1 4

vaz

val b1 w1l

Fig. 6. Geometric probability of subtree assignment

The next table summarizes the test results for the interval-based matrix and
it shows the comparison between the strict-valued and the interval-valued matrix
approaches.
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Table S.
proportion of fitness of fitness of IV
known distances | random selec- | selection
tion
0.01% .65 0.65
3% .66 0.81
16% .62 0.96

As the result table shows, the efficiency of the interval-valued (IV) method de-
pends on the proportion of the known distances that means on the uncertainty of the
distance matrix. It yields in good fitness value if the uncertainty of the matrix is low.
The exact and formal analysis of this relationship is the goal of further investigations.
In the tests, a 16% covering rate resulted in a well balanced tree with a 0.96 balancing
factor.

6 Conclusions

The paper presented a detailed analysis of optimal pivot selection in general metric
space from the viewpoint of index tree balancing. The analysis focused on the GHT
index tree assuming that an index tree node contains a moderate number of objects. In
the investigation, two main object distributions were tested: the uni-polar and the bi-
polar distributions. The paper proposes a combined heuristic and local search optimi-
zation method for selection of pivot objects. For reduction of the search algorithm,
some novel optimization methods were introduced. One of the cost reduction methods
refers to eliminating of object tests within the calculation of balancing factor. Another
important goal is to reduce the number of distance calculations in the object set. The
dependencies between the distance values are analyzed in order to eliminate the re-
dundant distance values. Another important reduction method is the application of
interval values instead of strict values in order to manage the uncertainty of the dis-
tance values. The performed analysis and tests show that a the proposed modification
improve the efficiency of the standard methods significantly.
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10/2/KONV-2010-0001 project with support by the European Union, co-financed by
the European Social Fund.

References

1. Bustos, B., Navarro, G., Chavez, E.: Pivot selection Techniques for Proximity Searching in
Metric Spaces. Journal Pattern Recognition Letters, 2357-2366 (2003)

2. Bustos, B., Pedreira, O., Brisaboa, N.: A Dynamic Pivot Selection Technique for Similari-
ty Search. In: Proceedings of ICDE Workshop, pp. 394—400 (2008)



62

11.

12.

13.

L. Kovacs

Veltkamp, R., van Leuken, R., Typke, R.: Selecting vantage objects for similarity index-
ing. ACM Transactions on Multimedia Computing, Communications and Applications
7(3(16)) (2011)

Mico, L., Oncina, J., Vidal, E.: A new version of the nearest neighbor approximating and
eliminating search with linear preprocessing time and memory requirements. Pattern Rec-
ognition Letters 15(1), 9—17 (1994)

Uhlmann, K.: Satisfying general proximity similarity queries with metric trees. Informa-
tion Processing Letters (40), 175-179 (1991)

Kalantari, 1., McDonald, G.: A data structure and an algorithm for the nearest point prob-
lem. IEEE Transactions on Software Engineering 9(5), 631-634 (1983)

Batko, M., Gennaro, C., Zezula, P.: Similarity Grid for Searching in Metric Spaces. In:
Tiirker, C., Agosti, M., Schek, H.-J. (eds.) Peer-to-Peer, Grid, and Service-Orientation in
Digital Library Architectures. LNCS, vol. 3664, pp. 25—-44. Springer, Heidelberg (2005)
Henning, C., Latecki, J.: The choice of vantage objects for image retrieval. Pattern Recog-
nition 36(9), 2187-2196 (2003)

Sprugnoli, R.: Randomly balanced binary trees. Calcolo 17, 99-117 (1981)

Tamura, K.: A Method for Constructing the Polar Cone of a Polyhedral Cone, with Appli-
cations to Linear Multicriteria Decision Problems. Journal of Optimization Theory and
Applications 19, 547-564 (1976)

Versik, A.: Distance matrices, random metrics and Urysohn space, arXiv:math/023008v1,
MPI-2002-8 (2002)

Bartlett, J., Kotrlik, J., Higgins, C.: Organizational Research: Determining Appropriate
Sample Size in Survey Research. Information Technology Learning and Performance 19,
43-51 (2001)

Krejcie, R., Morgan, D.: Determining sample size for research activities. Educational and
Psychological Measurement 30, 607-610 (1970)



Hot Deck Methods for Imputing Missing Data
The Effects of Limiting Donor Usage

Dieter William Joenssen and Udo Bankhofer

Technische Universitit [lmenau, Fachgebiet fiir Quantitative Methoden, Ilmenau, Germany
{Dieter.Joenssen, Udo.Bankhofer}@TU-Ilmenau.de

Abstract. Missing data methods, within the data mining context, are limited in
computational complexity due to large data amounts. Amongst the computa-
tionally simple yet effective imputation methods are the hot deck procedures.
Hot deck methods impute missing values within a data matrix by using availa-
ble values from the same matrix. The object, from which these available values
are taken for imputation within another, is called the donor. The replication of
values leads to the problem, that a single donor might be selected to accommo-
date multiple recipients. The inherent risk posed by this is that too many, or
even all, missing values may be imputed with the values from a single donor.
To mitigate this risk, some hot deck variants limit the amount of times any one
donor may be selected for donating its values. This inevitably leads to the ques-
tion under which conditions such a limitation is sensible. This study aims to an-
swer this question though an extensive simulation. The results show rather clear
differences between imputations by hot deck methods in which the donor limit
was varied. In addition to these differences, influencing factors are identified
that determine whether or not a donor limit is sensible.

Keywords: Hot Deck Imputation, Missing Data, Nonresponse, Imputation,
Simulation.

1 Introduction

Missing data is a prevalent problem in many real empirical investigations. Missing
data’s sources include failures in either manual or automated data collection, where
some values are recorded while others are not. Missing data, however, may also be
induced through manual or automatic data editing, such as outlier removal [1]. Miss-
ing data that cannot be resolved though manual or automatic logic inference, for ex-
ample when data can be inferred from existing data (e.g. a missing passport number
when the respondent has no passport), must be resolved in light of the missingness
mechanism.

Rubin [2] first treated missing data indicators as random variables. Based on the
indicators’ distribution, he defined three basic mechanisms MCAR, MAR, and
NMAR. With MCAR (missing completely at random), missingness is independent of
any data values, missing or observed. Thus under MCAR, observed data represents a
subsample of the intended sample. Under MAR (missing at random), whether or not

P. Perner (Ed.): MLDM 2012, LNAI 7376, pp. 63-f75] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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data is missing depends on some observed data’s values. Finally under NMAR (not
missing at random), the missing data is dependent on the missing data’s values.

With missingness present, conventional methods cannot be simply applied to the
data without proxy. Explicit provisions must be made before or within the analysis.
The provisions, to deal with the missing data, must be chosen based on the identified
missingness mechanism. Principally, two strategies to deal with missing data in the
data mining context are appropriate: elimination and imputation. Elimination proce-
dures will eliminate objects or attributes with missing data from the analysis. These
only lead to a data set, from which accurate inferences may be made, if the missing-
ness mechanism is correctly identified as MCAR. But even if the mechanism is
MCAR, eliminating records with missing values denotes an inferior strategy, espe-
cially when many records need to be eliminated due to unfavorable missingness pat-
terns or data collection schemes (e.g. asynchronous sampling). Imputation methods
replace missing values with estimates [3-4], and can be suited under the less stringent
assumptions of MAR. Some techniques can even lead to correct inferences under the
nonignorable NMAR mechanism [5-6]. Replacing missing values with reasonable
ones not only assures all information gathered can be used, but also broadens the
spectrum of available analyses. Imputation methods differ in how they define these
reasonable values. The simplest imputation techniques replace missing values with
eligible location parameters. Beyond that, multivariate methods, such as regression or
classification methods, may be used to identify imputation values. The interested
reader may find more complete descriptions of missingness mechanisms and methods
of dealing with missing data in [5-7].

An imputation technique category appropriate for imputation in the context of min-
ing large amounts of data and large surveys, due to its computational simplicity [1],
[7-8], is hot deck imputation. Ford [12] defines a hot deck procedure as one where
missing items are replaced by using values from one or more similar records within
the same classification group. Partitioning records into disjoint, homogeneous groups
is done so selected “good” records supplying imputation values (the donors) follow
the same distribution as the “bad” records (the recipients). Due to this, and the repli-
cation property, all hot deck imputed data sets contain only plausible values, which
cannot be guaranteed by most other methods. Traditionally, a donor is chosen at ran-
dom, but other methods such as ordering by covariate when sequentially imputing
records or nearest neighbor techniques utilizing distance metrics are possible to im-
prove estimates at computational simplicities’ expense [6],[ 9].

The replication of values leads to central problem in question here. Any donor
may, fundamentally, be chosen to accommodate multiple recipients. This poses the
inherent risk that “too many” or even all missing values are imputed with the same
value or values from a single donor. Due to this, some variants of hot deck procedures
limit the amount of times any one donor may be selected for donating its values. This
inevitably leads to question under which conditions a limitation is sensible and
whether or not some appropriate limit value exists. This study aims to answer these
questions. Chapter 2 discusses current empirical and theoretical research on this topic.
Chapter 3 highlights the simulation study design while results are reported and dis-
cussed in chapter 4. A conclusion is presented and possibilities for further research
are presented in chapter 5.
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2 Review of Literature

Limiting the times a donor may be used was first investigated by Kalton and Kish
[10]. Based combinatorics, they come to the conclusion that choosing a donor from
the pool of available donors without replacement leads to a reduction in the imputa-
tion variance, the precision with which any parameter is estimated from the post im-
putation data matrix. Two possible situations arising from a hot deck imputation also
favor the donor limit implementation. First, the risk of exclusively using one donor
for all imputations is removed [11]. Second, the probability of using one donor with
an extreme value, or extreme values too often, is reduced [5], [12]. Andridge und
Little [13] argue against a donor limit implementation. They contend that imposing a
donor limit inherently reduces the ability to choose the most similar, and therefore
most appropriate, donor for imputation. Not limiting the times a donor can be chosen
may increase data quality. Thus, from a theoretical point of view, it is not clear
whether or not a donor limit has a positive or negative impact on the post-
imputation’s data quality.

Literature on this subject provides only studies that compare hot deck imputation
methods with other imputation methods. These studies include either only drawing
the donor from the donor pool with replacement [14-16] or without replacement [17].
Whether the donor is drawn with or without replacement is also relevant in the con-
text of post imputation variance estimation [9], [18]. These two cases are important or
at least considered for deriving the estimation formulas [19]. Literature reviewing the
mechanics of hot deck and other imputation methods includes [6-7], [20-21].

Based on this review of literature it becomes apparent, that the consequences of limit-
ing the usage of an object as donor have not been sufficiently examined. Missing are
especially recommendations as to under which circumstances a donor limit is sensible.

3 Simulation Design

This work aims to investigate what impact imposing a donor limit, in various forms of
hot deck methods, has on the imputed data matrix. To guide this, research questions
are formulated in the next section. In succession, factors that are believed to have an
impact on the results, and therefore are varied in a factorial design, are described in
section 3.2. The chosen quality criterion is outlined in section 3.3 while section 3.4
discusses further details of the simulation.

3.1 Research Questions

Considering possible, theoretical effects, that repeated donor usage might have, the
following four research questions will be answered with the simulation study:

1. Is a limitation on donor usage reasonable, or even essential, for successful hot deck
imputation?
2. What criteria dictate the necessity to limit donor usage?
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3. Is a necessity to limit donor usage independent of the hot deck variant used?
4. Can recommendations be made regarding a maximum possible donor usage based
on information available before imputation?

As the research questions show, an initial analysis of whether or not a donor limita-
tion has any influence on the post imputation analysis of the data. Provided that there
is an influence, this should be analyzed differentiated by the factors varied, especially
the chosen hot deck method. Beyond this, recommendations must be extracted.

3.2 Factorial Design

By considering papers where authors chose similar approaches [15], [12], [22-23] and
further deliberations, a series of factors are identified that might have an influence on
whether or not a donor limit influences imputation results. These factors are systemat-
ically varied in a complete factorial design and their effects are analyzed. The follow-
ing factors are considered:

¢ Data matrix dimension: (100x9), (350x9), (500x9), and (1750x9) as (nxm) data
matrices with n objects and m attributes are considered and the amount of objects
as a function of the amount of imputation classes.

e Variable scale: Data matrices are of mixed scale variables with each 3 binary,
ordinal and quantitative attributes. Binary variables are chosen, as any nominal va-
riable can be represented in a number of binary variables. Ordinal variables are
considered separately, either all on a five or seven point scale. The quantitative va-
riables are chosen to be normally distributed with only nonnegative numbers oc-
curring.

e Imputation class count: Imputation classes are assumed to be given prior to impu-
tation and data is generated accordingly. Factor levels are two and seven imputa-
tion classes.

e Object count per imputation class: The amount of objects characterizing each
imputation class is varied. Factor levels 50 and 250 objects per class are consi-
dered.

e Class structure: To differentiate between well- and ill-chosen imputation classes,
data is generated with a relatively strong and relatively weak class structure. Strong
class structure is achieved by having classes overlap by 5% and inner-class correla-
tion of 0.5. Weak class structure is achieved by an intra-class overlap of 30% and
no inner-class correlation.

¢ Portion of missing data: Factor levels include 5, 10, and 20% missing data points.
Every object is assured to have at least one data point available (no subject non-
response).

e Missingness mechanism: Two unsystematic mechanisms, MCAR and MAR, are
considered as well as NMAR.

e Hot deck methods: Three sequential and three simultaneous methods of imputa-
tion are considered. Sequential or simultaneous refers to whether or not the va-
riables are imputed simultaneously or sequentially. With simultaneous imputation,
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all values missing come from one donor complete in all variables. With sequential
imputation, a missing value is imputed from a donor that has a value available for
that variable but is not necessarily complete in all other variables.
These two groups can each be differentiated into three methods. First is the case
that a donor is chosen at random (SeqR and SimR) the other two are distance based
methods. The distance based methods differ in the way missing values are treated.
The first method weights the pairwise available distances (SeqDW and SimDW),
the second computes distances after performing a mean imputation on the data ma-
trix (SeqDM and SimDM). To account for variability and importance, prior to ag-
gregating the Manhattan distances, variables are weighted with the inverse of their
range.

Next to the previously mentioned factors, different donor limits are considered.
Alongside the two extreme cases, a donor limit of one and no donor usage limitation,
two further levels of donor limitation are considered. The four considered factor le-
vels are as follows:

A donor is only allowed as such once

A donor is only allowed to be chosen, at most, for 25% of all recipients
A donor is only allowed to be chosen, at most, for 50% of all recipients
A donor is allowed to be chosen for all recipients

3.3 Quality Criteria

To evaluate imputation quality, location and/or variability measures for each variable
scale type are considered [23]. Following parameters are calculated dependent on the
variable’s scale:

¢ Binary variable: relative frequency
¢ Ordinal variable: median, quartile distance
¢ Quantitative variable: mean, variance

In order to rank the differences in performance, the mean absolute relative deviation
Ap between the true value of each parameter, p,, and each post imputation estimate,

p;, are calculated for each donor limit factor level:

Ap =)

pi_pw

pw

ey

Differences in the Ap 's are compared, but due to the large amounts of data that is

generated in this simulation, statistical significance tests are not appropriate. As an
alternative to this, Cohen’s d measure of effect [24-25] is chosen. It corresponds to
the t-statistic without the sample size influence. The calculation of Cohen’s d for this
case is as follows:
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d=Apl_Ap2 (2)

2 2
St =%

2

Ap, and Ap, are calculated via (1) for two different donor limits. Sl2 and sf are the

corresponding variances in the relative deviations. The usage of absolute values for
Ap, and Ap, allows the interpretation of the sign of d. A positive sign means that the

second case of donor limitation performed better than the first, while a negative sign
indicates the first case is superior in estimating the relevant parameter. Cohen [24]
does not offer a single critical value above which an effect is nontrivial. However, he
denotes effects around 0.2 as being small and presents tables for effect values starting
at 0.1, which Frohlich und Pieter [26] also deem as critical.

3.4 Simulation Details

100 data matrices are simulated for every factor level combination of “imputation
class count”, “object count per imputation class”, “class structure”, and “ordinal vari-
able’s scale”. For every complete data matrix, the true parameters are computed. Each
of these 1600 data matrices is then subjugated to each missingness mechanism gene-
rating three different amounts of missing data. All of the matrices with missing data
are then imputed by all of the six hot deck methods. This creates 3.456 million im-
puted data matrices for which each parameter is once again is calculated, for which
the deviations from the true values are evaluated as stated above.

The missing data is generated as follows: under MCAR a set amount of values are
chosen without replacement to be missing. Under MAR, missing data is generated
MCAR using two different rates based on one binary variable’s value, which is not
subject to missingness. The different rates of missingness are either 10% higher or
lower than the rates under MCAR. NMAR modifies the MAR mechanism to also
allow missingness in the binary variable.

Further, some limits in generating missingness were instituted. To forgo possible
problems with the simultaneous imputation methods and the donor limitation to one,
it was guaranteed that at least 50% of all objects within one class were complete in all
attributes. Further all objects had at minimum one available value.

4 Results

Based on the simulation’s results, the formulated research questions are now ans-
wered. The first section answers the question on whether a limit on donor usage is
reasonable. The following section 4.2 analyzes the factors and how they influence
whether or not a donor limit is advantageous. The final section 4.3 reviews the rec-
ommendations that can be made pertaining to the levels of donor limitation.
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4.1 Donor Limitation Impact

To evaluate whether differences between donor limitation levels are, in principle,
possible, effect sizes between the cases of no and most stringent donor limitation are
considered. For each parameter, as described in section 3.3, the median effects as well
as different variability measures for all effects are available in table 1.

Table 1. Effects’ median and variability

Quantitative Ordinal Binary
variables variables variables
Mean  Variance | Median diQf;l:rr;gse f?ezlsgr:fy
Median -0,001 = -0,009 | -0,002  -0,008 -0,007
Range 0,104 2,468 0,171 2,231 3,333
Distance 90%/10%-quantiles | 0,031 0,336 0,037 0,262 0,251
Quartile difference 0,013 0,068 0,016 0,050 0,045
Standard deviation 0,013 0,280 0,017 0,249 0,325

The first conclusion that is reached, in light of these values, is that the effect sizes are
neither all negative nor all positive. This means that neither a donor usage limitation of
one or no donor usage limitation always leads to best results. Second conclusion is that
there are no nontrivial effects for the mean and median of the quantitative and the ordin-
al variables, respectively. Both parameters exhibit small measures of variability and
medians near zero. In contrast, some nontrivial effects are expected in all other parame-
ters as the variability is comparatively large. Large effects are expected to be rare as the
quartile difference is rather small in comparison to the range and 90%/10% quantile
distance. Thus one can conclude that a donor limitation has influence on the quality of
imputation, and that cases where the influence is large can be extracted.

The theoretical reduction in imputation variance through donor selection without re-
placement, as put forth by Kalton and Kish [5], is also investigated empirically at this
point. The following table 2 shows the relative frequency (in percent) in how many
cases a certain donor limit leads to the smallest variance in the parameter estimate.

Table 2. Frequency distribution of minimum imputation variance

Donor usage limitation
Evaluated parameter Once 25% 50% Unlimited
Quantitative Mean 68,52% 15,47% 7,95% 8,06%
variable Variance 6725%  15,74% 8,56% 8,45%
. Median 74,54% 11,38% 7,62% 6,46%
Ordinal q
variable Quartile 85.88%  5.71% 4,96% 3,45%
distance
Binary Relative 7836%  841% = 696% = 627%
variable frequency
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Clearly, limiting donor usage to once leads to mimimal imputation variance for
most cases and thus can be expected to lead to highest precision in parameter estima-
tion. This holds even more so for the binary and ordinal variables. Nonetheless, in
certain situations other donor limitations, or no limitation of donor usage, lead to min-
imum imputation variance.

4.2  Analysis of Donor Limit Influencing Factors

To analyze which factors varied in this study have an influence on whether or not a
donor limitation is advantageous, Cohen’s d is used. Again the effect sizes contrasting
the two extreme cases are investigated. Thus negative values mean a maximum donor
usage of one is superior to no donor usage limitation, while positive values signify the
converse. The following section first highlights possible main effects followed by
possible between factor effects on a donor limit advantage.

Analysis of Main Effects

Table 3 (below) shows a cross classification between all factors and factor levels with
all parameters that show meaningful effect sizes. Effect sizes larger than the chosen
critical effect of 0.1 are in bold.

Upon investigating the results, the first conclusion that is reached, is that, indepen-
dent of any chosen factors, there are no meaningful differences between using a donor
limit and using no donor limit in mean and median estimation. This result is congru-
ent with the previous section’s results. In contrast to this, parameters measuring va-
riability are more heavily influenced through the variation of the chosen factors. Es-
pecially data matrices with a high proportion missing data, as well as those imputed
with SimDM profit significantly from a donor limitation. Also a high amount of im-
putation classes speaks for a limit on donor usage.

The effects the data matrix’s dimensions and the object amount per imputation
class have are ambiguous. Class structure and usage any of the random hot deck pro-
cedures or SeqDW have no influence on whether a donor limit is advantageous. Fairly
conspicuous is the fact that SImDW leads to partially positive effect sizes meaning
that leaving donor usage unlimited is advantageous. This might lead to interesting
higher order effects.

Analysis of Interactions

Based on the findings in the previous section, all effects for the parameters variance,
quartile distance and relative frequency of the quantitative, ordinal and binary va-
riables respectively, stratified by the hot deck methods SimDW, SimDM and
SeqDM, are investigated for all other factors’ levels. These values are shown in
table 4 (below), with again values above 0.1 marked in bold.

As in the analysis of main effects, the table clearly shows that using SimDW in
combination with no donor limit is advantageous. All combinations with other factors,
with one exception, show positive values, even though only variance and relative
frequency exhibit nontrivial effects. Furthermore, the other two methods, SimDM and
SeqDM, show only negative values. Thus, the advantage of limiting donor usage is
strongly dependent upon the imputation method used.
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Table 3. Effect sizes for each factor

Quantitative Ordinal Binary
variables variables variables
Quartile | Relative

difference|frequency

(100x9) 0,000 -0,082 | -0,001 -0,030 | -0,034

Mean  Variance | Median

Data matrix (350x9) | 0,000 = -0,177 | -0.005 = -0,152 | -0.022
dimension (500x9) | 0,000 = -0.064 | -0.004 = -0.030 | -0,130
(1750x9) | 0,001  -0,146 | -0.006  -0,065 | -0,162

Imputation 2 0,000 | -0,068 | -0,001 | -0,029 | -0,072
class count 7 0,000 -0,147 | -0,003 = -0,115 | -0.090
Object count per 50 0,000 = -0,112 | -0.001 = -0,073 | -0.028
imputation class 250 0,000 -0,090 | -0,005 = -0,041 | -0,141

Strong 0,000 -0,092 | -0,001 -0,072 | -0,072
Weak 0,000 -0,094 | -0,001 -0,045 | -0,080
5% 0,000 -0,025 0,000 -0,013 | -0,011
10% 0,000 -0,071 0,000 -0,037 | -0,051
20% 0,000 -0,148 0,000 -0,100 | -0,129
MCAR 0,001 -0,088 | -0,001 -0,053 | -0,065

Class structure

Portion of
missing data

Missingness MAR | 0000 0,100 | 0.000 = -0.066 | -0.086
mechanism

NMAR | 0.001 = -0.091 | 0,000 = -0,058 | -0,077

SimDW | -0,001 0,153 | -0,002 0,025 | 0,075

SimDM | -0,004 = -0,339 | 0,005 = -0,214 | -0,338

Hot deck SeqDW | 0,001  -0,007 | -0,003 = 0,000 | -0.005

method SeqDM | 0.000 = -0,088 | 0,010  -0,133 | -0,041

SimR 0,000 -0,001 -0,001 -0,004 0,000
SeqR 0,000 -0,001 0,000 -0,001 -0,003

For all three portrayed methods, a high amount of imputation classes and a
high percentage of missing data show meaningful effects, indicating an advantage of
either selecting the donor with or without replacement. The amount of objects per
imputation class show no homogeneous effect on the parameters, rather it seems to
strengthen the advantage the donor limitation or non-limitation has, with the parame-
ter evaluated for the binary variable reacting inversely to variance and quartile
distance. The other factors seemingly don’t influence the effects as their variation
does not lead to great differences in the effects sizes, making their absolute level only
dependent on the variable’s scale or imputation method.
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Table 4. Interactions between imputation method and other factors
(Legend: V = variance, Q = quartile distance, R = relative frequency)

SimDW SimDM SeqDM

\Y R \Y Q R \Y Q
(100x9) | 0,140 0,058 | -0,337 -0,192 -0,216 | -0,089 -0,139
Data matrix (350x9) | 0,235 0.055 | -0,473 -0,333 -0,278 | -0,120 -0,207
dimension  (500x9) | 0,120 0,111 | -0,283 -0,116 -0,492 | -0.077 -0,064
(1750x9)| 0,215 0,108 | -0,420 -0,257 -0,554 | -0,109 -0,132
Imputation 2 0,097 | 0,081 | -0,247 -0,101 -0,300 | -0.066  -0,082
class count 7 0,287 |« 0,075 | -0,521  -0,382 -0,424 | -0,130 -0,217
Object count 50 0,182 = 0,034 | -0,426 -0,284 -0,132 | -0,111 -0,196
per class 250 0,143 = 0,140 | -0,319 -0,131 -0,684 | -0.088  -0,047
Class Strong | 0,153 0,078 |-0,339 -0,156 -0,362 | -0,091 | -0,135
structure  Weak | 0,144 0,071 | -0,338  -0,269  -0,313 | -0,085 -0,132
5% 0,065 | 0,031 |-0,084 | -0,057 | -0,045 | -0,013 | -0,028
10% | 0,148 0,077 | -0,262 -0,162 -0,213 | -0,039 -0,073
20% | 0,203 0,101 | -0,558 -0,345 -0,600 | -0,168 -0,233
MAR | 0,151 @ 0,079 | -0,355 -0,226 -0,372 | -0,107 -0,152
MCAR | 0,153 0,067 | -0,326 -0,204 -0,296 | -0.075 -0,119
NMAR | 0,154 0.077 | -0,334 -0,213 -0,344 | -0,081  -0,125

Portion of
missing data

Missingness
mechanism

Besides these meaningful effects differentiated by hot deck method, there are also
some interactions higher order, that lead to some strikingly large effects. For example,
the factor level combination: 20% missing data, high amounts of imputation classes,
and a low amount of objects per imputation class lead to effects up to -1.7 in variance
and up to -1.9 in the quartile distance for SimDM. While effect sizes up to -3 are cal-
culated for the relative frequency in the binary variable when the amount of imputa-
tion classes is large, has many objects in each class and many values are missing. This
signifies some large advantage for donor selection without replacement when using
SimDM. On the other hand, when using SimDW the largest effects are calculated
when the amount of classes is high, but the amount of objects is low while having a
high rate of missingness. Even though this only leads to effects of up to 0.6 and 0.34
for variance and quartile difference respectively, the effect is noticeable and relevant
for donor selection with replacement. Conspicuous none the less is the fact that espe-
cially the combination of hot deck variant, amount of imputation classes, objects per
imputation class, and portion of missing data lead to strong effects indicating strong
advantages for and against donor limitation. Finally, the analysis of higher order inte-
ractions confirm either advantage for donor selection with or without replacement
found in the lower order interactions.
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4.3  Analysis of Donor Limitation Advantages

So far the investigation was limited to under which circumstances, choosing a donor
with or without replacement, was advantageous for parameter estimation. The inves-
tigation is now expanded to include the two dynamic donor limitation cases. For this,
the frequency with which a certain donor limitation yields the best parameter estima-
tion is calculated and shown in table 5.

Table 5. Frequency distribution: smallest deviation between estimated and true parameter

Donor usage limitation

Evaluated parameter Once 25% 50% Unlimited
Quantitative Mean 271% = 2022% = 18,48% = 18,60%
variable Variance 54,05% = 17,79% | 13,04% = 15,12%
) Median 4641% = 21,53% = 1447% = 17,59%
Ordinal A
variable Quartile 56,83% = 1624% = 12.94%  13,99%
distance
Binary Relative 4942%  18.94%  1507% = 16.57%
variable frequency

The table shows that in most cases donor selection without replacement leads to the
best parameter estimation. Again variability measures are more strongly affected. The
table shows, for all parameters, that the frequency first decreases with a more lenient
donor limit and then increases again with unlimited donor usage. This once again re-
veals the situation dependent nature of advantages offered by donor limitation.

These findings show, in summary, that there remains the possibility for optimizing
the precise donor limit instituted. A further analysis of relationships between factors
and to make precise recommendations is not reasonable at this point owed to the fact,
that only 4 levels of donor limitation are available. Findings clearly indicate that fur-
ther research along this path is worthwhile.

5 Conclusions

The simulation conducted show distinct differences between hot deck imputation
procedures that make use of donor usage limitations. Limiting donor usage is not
advantages under all circumstances, as, under some situations, allowing for unlimited
donor usage leads to the best parameter estimates.

Under some situations, donor limitation leads to better parameter estimations.
Splitting the data into a low amount of imputation classes leads to better estimation of
variance and quartile distance for quantitative and ordinal variables, respectively. For
low amounts of objects per imputation class the variance of quantitative variables is
estimated better with a donor limitation, while binary variables with many objects per
imputation class also profit from a donor limit. This is also the case for data matrices
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with high amounts of missingness. Estimation of location, such as mean and median
are not influenced by limiting donor usage.

Next to the data’s properties, the hot deck variant used to impute missing data
plays an important role as to whether or not limiting donor usage is an advantage.
Dependent on the imputation method chosen, the limitation of donor usage is either
advantageous, disadvantageous or without significant effect on parameter estimation.
Both random hot decks and SeqDW are unaffected by any donor limit. Contrary to
this, both SimDM and SeqDM perform better with donor limitation, while SimDW
performs better without a limit on donor usage.

Even though, in most cases, allowing a donor to be used only once leads to the best
parameter estimates, there are situations under which less restrictive donor limits or
no donor limit is advantageous to parameter estimation. Thus developing recommen-
dations for specific situation dependent donor limits is reasonable and a detailed in-
vestigation of the underlying interactions between the factors is an interesting point
for future research.
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Abstract. Regression is the study of functional dependency of one nu-
meric variable with respect to another. In this paper, we present a novel,
efficient, binary search based regression algorithm having the advantage
of low computational complexity. These desirable features make BINER
a very attractive alternative to existing approaches. The algorithm is
interesting because instead of directly predicting the value of response
variable, it recursively narrows down the range in which the response
variable lies. Our empirical experiments with several real world datasets
show that our algorithm, outperforms current state of art approaches
and is faster by an order of magnitude.

Keywords: regression, logarithmic performance, binary search,
efficient, accurate.

1 Introduction

The problem of regression is to estimate the value of a dependent variable based
on the values of one or more independent variables, e.g., predicting price increase
based on demand or money supply based on inflation rate etc. Regression analysis
is used to understand which among the independent variables are related to the
dependent variable and to explore the forms of these relationships. Regression
algorithms can be used for prediction (including forecasting of time-series data),
inference, hypothesis-testing and modeling of causal relationships.

Statistical approaches try to learn a probability function P(y | =) and use
it to predict the value of y for a given value of x. Users study the application
domain to understand the form of this probability function. The function may
have multiple parameters and coefficients in its expansion. Statistical approaches
although popular, are not generic in that they require the user to make an
intelligent guess, about the form of regression equation, so as to get the best fit
for the data.

Regression analysis has been studied extensively in statistics [I], there have
been only a few studies from the data mining perspective. The algorithms stud-
ied from a data mining perspective fall under the following broad categories

P. Perner (Ed.): MLDM 2012, LNAI 7376, pp. 76-B5] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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- Decision Trees [2], Support Vector Machines [3], Neural Networks [4], Near-
est Neighbor Algorithms [5], Ensemble Algorithms [6] among others. It may be
noted that most of these studies were originally for classification, but have been
later modified for regression [7].

1.1 Motivation and Contribution

The current existing standard algorithms [2/3/415] suffer from one or more of high
computational complexity, poor results, fine tuning of parameters and extensive
memory requirements. KNN [5] provides excellent accuracy, but has linear com-
putational complexity. Finding an optimal decision tree [2] is a NP-Complete
problem [§]. Neural networks [4] are highly dependent on the initialization of
weight vectors and generally, have large training time. Also, the best fit struc-
ture of the neural network has to be intelligently guessed or determined by trial
and error method.

The accuracy of KNN highly depends upon the distance metric used. Eu-
clidean distance is a simple and efficient method for computing distance between
two reference data points. More complex distance functions may provide better
results depending on the dataset and domain. But user may refrain from using
a better, generally computationally more complex, distance metric due to high
run time of the algorithm. This motivated us to strive for an algorithm which
has a significantly low run time and hence can incorporate expensive distance
metrics with ease.

In this work, we contribute a new efficient technique for regression. Our algo-
rithm is highly efficient and typically performs with logarithmic computational
complexity on standard datasets. This is in contrast to the linear computational
complexity of existing standard algorithms. It takes a single parameter K, the
same as in KNN. The algorithm instead of directly predicting the response vari-
able, narrows down the range in which the response variable has the maximum
likelihood of occurrence and then interpolates to give the output. It more than
often outperforms the conventional state of art methods on a wide variety of
datasets as illustrated in the Experimental Section.

1.2 Organization of Paper

The organization of rest of the paper is as follows. Section 2 provides a math-
ematical model for the problem of regression. We throw light on related, and
recent, work done in the field of regression in Section 3. In Section 4, intuition
and methodology behind the algorithm is described. We explain the BINER algo-
rithm in Section 5. In Section 6, experimental results are presented together with
a thorough comparison with existing methods. Finally, in Section 7, conclusions
are drawn.

2 Problem Formulation

In this section, we present the problem of regression and notation used to model
the dataset.
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The problem of regression is to estimate the value of a dependent variable
(known as response variable) based on the values of one or more independent
variables (known as feature variables). We model the tuple as {X, y} where X
is an ordered set of attribute values like {z1, 2, ..., x4} and y is the numeric
variable to be predicted. Here x; is the value of the i*" attribute and there are
d attributes overall corresponding to a d-dimensional space.

Formally, the problem has the following inputs:

— An ordered set of feature variables Q i.e. {q1, q2, ..., ¢4}
— A set of n tuples called the training dataset, D, = {(X1, y1), (X2, y2), .-,

(X0, yn)}-

The output is an estimated value of y for the given query Q. Mathematically, it
can be represented as
y = f(X, D, parameters), (1)

where parameters are the arguments which the function f() takes. These are
generally set by user and are learned by trial and error method.

3 Related Work

Before presenting our algorithms, we would like to throw light on related work
done in the recent past.

Traditional Statistical Approaches. Most existing approaches [I] follow a curve
fitting methodology that requires the form of the curve to be specified in advance.
This requires regression problems in each special application domain be studied
and solved optimally for that domain. Another problem with these approaches
is outlier (extreme cases) sensitivity.

Neural Networks and Support Vector Machines. Neural Networks [4] is a class of
data mining approaches that has been used for regression and dimensionality re-
duction. However, Neural Networks are complex and an in-depth analysis of results
obtained is not possible. Support Vector Machine [3] is a new data mining paradigm
applied for regression. However, these techniques involve complex abstract mathe-
matics thus resulting in techniques that are more difficult to implement, maintain,
embed and modify as situation demands. Ensemble [6] based learning is a new ap-
proach to regression. A major problem associated with ensemble based learning is
to determine the relative importance of each individual learner.

Indexing based approaches. Roussopoulus et. al. presented a branch and bound
R-tree traversal algorithm [I3] to find nearest neighbors of a query point. The
algorithm required creating and sorting an Active Branch List of Nodes [13] at
each of the node and then pruning the list. Another drawback of the approach
is the depth first traversal of the index that incurs unnecessary disk IOs. Berch-
told et. al. [I2] suggest precalculating, approximating and indexing the solution
space for the nearest neighbor problem in d dimensional spaces. Precalculating
the solution space means determining the Voronoi diagram of the data points.
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The exact Voronoi cells in d space are usually very complex, hence, the authors
propose indexing approximation of the Voronoi cells. This approach is only ap-
propriate for first nearest neighbor problem in high dimensional spaces.

Decision Tree. One of the first data mining approaches to regression were re-
gression trees [2], a variation of decision trees where the predicted output values
are stored at leaf node. These nodes are finite and hence the predicted output
is limited to finite set of values in contrast with the problem of predicting a
continuous variable as required in regression.

Nearest Neighbor. One of the oldest, accurate and simplest method for pattern clas-
sification and regression is K-Nearest-Neighbor (KNN)[5]. It has been studied at
length over the past few decades and is widely applied in many fields. The KNN rule
classifies each unlabeled example by the majority label of its k nearest neighbors in
the training dataset. Despite its simplicity, the KNN rule often yields competitive
results. A strong point of KNN is that, for all distributions, its probability of error
is bounded above by twice the Bayes probability of error [I1].

A recent work on prototype reduction, called Weighted Distance Nearest
Neighbor (WDNN) [14] is based on retaining the informative instances and learn-
ing their weights for classification. The algorithm assigns a non negative weight
to each training instance tuple at the training phase. Only the training instances
with positive weight are retained (as the prototypes) in the test phase. Although
the WDNN algorithm is well formulated and shows encouraging performance in
practice, it can only work with K = 1. A more recent approach WDKNN [I5]
tries to reduce the time complexity of WDNN and extend it to work for K > 1.

Our work shares resemblance with segmented or piecewise regression [9].
However upon analysis, the techniques are entirely different. In segmented re-
gression the independent variables are partitioned into segments. In our method,
the response variable is partitioned into three groups to facilitate a binary search
based methodology. Also, our work seems to share a resemblance with Binary
Logistic Regression [10]. However the technique is again entirely different. In
Binary logistic regression the response variable is assumed to follow a binomial
logit model and the parameters of this model are learned from training data.

4 Intuition and Methodology of BINER

BINER follows a similar methodology to KNN [20]. In a nutshell, KNN follows
this approach:

1. It finds the K nearest neighbors to the given query.

2. Weighted mean of response variables in K nearest neighbors is given as
output. The weights are kept inversely proportional to distance from the
query.

The intuition of BINER is that the query Q is expected to be similar to tuples
whose response variable values are close to that of Q. Thus it is more beneficial
to find nearest neighbors in a locality where tuples have nearby response variable
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values rather than the whole dataset. This guarantees that even if the tuples in
the considered locality are not the global nearest neighbors (nearest neighbors
of the query in the complete dataset), the value of predicted response variable
will be more appropriate.

Thus, the approach boils down to determining the locality (of nearby response
variable value) in which to conduct the nearest neighbor search. Once the lo-
cality is determined, response variable can be estimated as a weighted mean
of responses of K nearest neighbors in this locality where weight is inversely
proportional to the distance from the query.

Like other KNN based approaches, BINER has the following core assump-
tion - tuples with similar X-values have similar response variable values. This
assumption is almost always borne out in practice and is justified also by our
experiments.

5 The BINER Algorithm

The algorithm proceeds in two steps.

1. Tt first finds the range of tuples where the query @ has the maximum likeli-
hood of occurrence. The term range (or locality), here, refers to consecutively
indexed tuples in the dataset D and thus is characterized by two integers
namely, start index and end index.

2. KNN is applied to these few (compared to D) tuples, and weighted mean of
the K nearest neighbors in these ranges is quoted as output.

To find the range in which the query has the maximum likelihood of occurrence,
the dataset is sorted in, say, non-decreasing manner of response variable values
and then the function biner described below is invoked with @ as query, and
range (0,n) where n is the number of tuples in D.

The function, biner, iteratively bisects the current range until a range with
size less than or equal to 2 % K is obtained (line 1) or a confident decision of
bisecting a range cannot be taken (line 9-10), explained below. For each range,
it makes three choices (lines 2-5) of half sized subranges namely, the lower half
subrange (s1,e1), the center floating half (s2,e2) and the upper half (ss3,e3),
and computes distance of the query from these ranges (lines 6-9). The second
subrange i.e. (s2,e2) is made to overlap with the other two ranges so as to
ensure that tuples at end of first range and at start of third range get their due
importance.

The distance of query @) from a range is calculated as

Dol g

where g; is the i'” attribute of the query, p; is the mean of i*” attribute values
in all tuples in the range and o; is the standard deviation of values of the it"
attribute in the whole dataset, D. Standard deviation shows how much variation
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there is from the mean, p. A low standard deviation indicates that the data points
tend to be very close to the mean whereas high standard deviation indicates
that the data points are spread out over a large range of values. Thus standard
deviation helps in understanding how good a representational point the mean is
for the range. Hence, the term o2 occurs in the distance metric.

Algorithm 1. BINER Algorithm
Input: Query Q, Range (start, end)
Output: Range (s, e)
while end — start > 2 K do
r=e—s
s2,e2 = start +r/4, start + 3r/4
s3,e3 = start +1/2,end
d1 = getDistance(RangeMean(s1,e1), @)
d2 = getDistance(RangeMean(sz, e2), Q)
ds = getDistance(RangeMean(ss,e3), Q)
if similar(d1,dz,ds) then
return (start,end)
else if min(di,d2,ds) == d; then
start,end = s;, ¢e;
end if
end while
return (start,end)

In order to find the subrange in which the query has the maximum likelihood
of occurrence, the distance of subranges from the query are compared. Among
the three subranges, the query has the maximum likelihood of occurrence in
the subrange which has minimum distance from the query. Thus the subrange
with minimum distance from the query is considered and the complete process
is repeated again.

When the size of range becomes small, the distances of subranges from the
query tend to have same or close by values. In such situations, subranges have
similar tuples and thus their distances become similar. Hence, a confident deci-
sion to select a subrange cannot be made and the current range is returned (lines
9-10). It may be noted that only the two minimum distances are checked for sim-
ilarity. If the two larger distances are similar, a confident decision of selecting
the subrange with minimum distance can be made.

We say that two distances, d; and d; are similar if min(d;/d;, d;/d;) is greater
than 0.95. The value of 0.95 was selected by experimentations and it works well
on most of the datasets as shown in the experimental section. The limiting size of
2% K was chosen in order to keep a margin for selection of K nearest neighbors.

The above process obtains a range (or locality) where the query point has
maximum likelihood of occurrence. Then KNN is applied on the range (local-
ity) returned by biner and weighted mean of response variables in K nearest
neighbors is quoted as output. The weights are taken as 1/dist, where dist is
the distance of the query and tuple.
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5.1 Complexity Analysis

Before presenting the complexity analysis, we would like to first mention the
preprocessing done here.

1. The first step is to sort the dataset D in, say, non-decreasing manner of the
response variable.

2. Standard deviation, o;, of each attribute z; is calculated and stored.

3. We store the mean, of all data points in all the feasible ranges (or localities)
that may be encountered in our algorithm, in a Hash Table. Hence, calcu-
lation of mean becomes a constant order step. The key for the Hash Table,
thus, will be two integers denoting the start and end index of tuples of in
the range.

All feasible subranges are formed by recursively dividing a range into 3 ranges
and stopping the recursion, when the size of range becomes less than or equal to
2 % K. The value of K, is a parameter and is the same the one that would had
been set for KNN. The range with start and end indices s and e respectively, is
divided into 3 ranges namely [ s, s+ (e —s)/2 ], [ s+ (e—s)/4,s+3* (e —s)/4
] and [s+ (e — s5)/2, e ].

The algorithm at each stage divides the current range into 3 subranges each
of half size of current range and considers one of them for subsequent processing.
It can be observed that the function iterates O(logn) time. The function returns
a range of size, say, R which is significantly smaller than n as confirmed by
our experimentations. Thus computational complexity of the algorithm becomes
O(logn + R) and when R << n it becomes logarithmic. We illustrate our run
time analysis on 7 datasets in Fig. [

OknN EBINER
25000

20000

15000

Run Time

10000
5000

OLLE_D_D_D.D.[L

1 2

:]
Datasets

Fig. 1. Comparison of run times of KNN and BINER
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6 Experimental Study

6.1 Performance Model

In this section, we demonstrate our experimental results. The experiments were
done on a wide variety of datasets obtained from UCI data repository [17],
Weka Datasets [I8] and ML data repository [19]. We have evaluated our results
against the standard existing state of art approaches. The algorithms used were
available in Weka toolkit [16]. All the results have been obtained using 10-fold
cross validation technique.

We have used two metrics for quantifying our results, namely, Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE). MAE is mean of the ab-
solute errors (actual output - predicted output). RMSE is square root of mean
of squared errors.

We compared our performance against the following approaches: K Nearest
Neighbor, Isotonic, Linear Regression, Least Mean Square (LMS) algorithm,
Radial Basis Function Network (RBF Network), Regression Tree (RepTree) and
Decision Stump.

6.2 Results

Table 1. and Table 2. compare the result of our algorithm with other existing
state of art approaches.

Table 1. Comparison of results of BINER and other standard approaches

Autompg Bodyfat Flow Housing  Space Synfriedman2
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
BINER 1.67 2.28 0.41 0.50 10.54 14.43 2.33 2.92 0.10 0.17 52.55 64.35
KNN 2.40 3.59 0.49 0.62 11.89 16.42 4.14 5.52 0.10 0.17 48.64 60.65
Isotonic 3.16 4.30 0.52 0.67 11.55 14.18 3.80 5.32 0.12 0.16 219.09 284.46
Linear Reg  2.56 3.40 0.43 0.56 10.99 13.26 3.39 4.91 0.11 0.16 108.44 145.69
LMS 2.50 2.59 0.45 0.58 13.28 18.56 3.42 5.55 0.11 0.15 109.62 153.43
RBF Network 3.90 5.07 0.61 0.77 14.76 17.42 6.13 8.42 0.14 0.19 246.71 317.76
Rep Tree 2.30 3.31 0.52 0.67 12.11 15.57 3.18 4.84 0.10 0.14 45.34 61.10
Decision Stump 4.20 5.18 0.63 0.80 12.48 1541 5.61 7.50 0.13 0.18 256.93 320.71

Dataset

6.3 Discussion

We discuss our results in this section. It can be seen that our algorithm out-
performs other algorithms in almost all the datasets. Also, BINER provides
competitive results in typically logarithmic computational complexity which is
very efficient.
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Table 2. Comparison of results of BINER and other standard approaches

Bank Concrete  Forestfire Slump  Synfriedmanl Synfriedman
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
BINER 0.02 0.03 5.41 8.10 13.67 25.74 6.01 9.79 1.77 2.23 1.58 2.05
KNN 0.02 0.03 4.15 6.10 14.69 24.37 5.89 9.83 1.75 2.16 1.53 2.03
Isotonic 0.03 0.46 10.81 13.45 19.18 63.50 5.86 7.52 3.59 4.32 3.69 4.44
Linear Reg 0.02 0.03 8.30 10.45 19.92 64.28 6.67 7.82 2.76 4.65 2.25 2.83
LMS 0.03 0.05 9.52 17.53 12.88 64.91 6.68 10.56 2.45 4.71 2.24 2.82
RBF Network 0.04 0.06 13.38 16.56 18.86 63.86 6.98 8.73 3.92 491 3.86 4.81
Rep Tree 0.02 0.03 5.43 7.38 19.24 64.56 6.14 8.19 2.57 3.24 2.69 3.45
Decision Stump 0.04 0.05 11.54 14.46 18.93 64.68 7.05 8.86 3.69 4.40 3.73 4.63

Dataset

7 Conclusions

In this paper we have presented a new regression algorithm and evaluated it
against existing standard algorithms. Our work is focused on finding a small
locality in which the K nearest neighbors have the maximum probability of
occurrence. In addition to this, it allows users to use a (computationally) complex
distance metric without significant increase in run time. The algorithm finds this
locality in nearly logarithmic computational time. We showed that the algorithm,
more than often, outperforms existing standard state of art approaches on a wide
variety of datasets and is faster by an order of magnitude.

We are planning for better methods of splitting ranges. Instead of simply,
bisecting at some fixed points, if we divide at points where there is some abrupt
change in y values, probably our algorithm will work better. We plan to incor-
porate this feature so as to enhance our algorithm.
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Abstract. Association rule mining and bi-clustering are data mining
tasks that have become very popular in many application domains, par-
ticularly in bioinformatics. However, to our knowledge, no algorithm was
introduced for performing these two tasks in one process. We propose a
new approach called FIST for extracting bases of extended association
rules and conceptual bi-clusters conjointly. This approach is based on
the frequent closed itemsets framework and requires a unique scan of the
database. It uses a new suffix tree based data structure to reduce memory
usage and improve the extraction efficiency, allowing parallel processing
of the tree branches. Experiments conducted to assess its applicability
to very large datasets show that FIST memory requirements and execu-
tion times are in most cases equivalent to frequent closed itemsets based
algorithms and lower than frequent itemsets based algorithms.

Keywords: Association Rules, Bi-clustering, Closure Lattice, Frequent
Closed Itemsets, Suffix Tree Data Structures.

1 Introduction

Data mining, also known as knowledge discovery from database (KDD), is the
task of finding unknown and potentially important information from large data-
bases. The most prominent data mining tasks, gaining actually much importance
in many application domains, are association rule mining, classification, cluster-
ing and regression [7]. Bi-clustering, that is a special case of clustering, is also
gaining much popularity, specially in bioinformatics [9].

Association rule mining (ARM) aims at finding significant relationships be-
tween data values, called items, in a database. ARM is a very popular and
important, but expensive, task in data mining. Since the ARM problem defini-
tion, several approaches have been proposed in the literature to improve ARM
efficiency. See [2] for a complete survey on ARM principles and algorithms.

P. Perner (Ed.): MLDM 2012, LNAI 7376, pp. 86-[[0T] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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Let the database D be a set of data rows, called transactions, D = {t1,ta, - -,
tn} where each transaction ¢; is a set of items from the item list L = {iy, 49, -,
im}, i.e. t; C L. Literally, an association rule for a frequent itemset I, i.e. a
set of items that is contained in at least minsup number of transactions where
minsup is an user defined minimum support threshold, is denoted as I; = I,
where I1,Io C L, Iy Ul = I and I; N Iy = (). The problem of ARM is generally
divided into two sub-problems:

1. Find all frequent itemsets with their support from the database D.
2. Generate all association rules with confidence greater than or equal to the
minimum confidence threshold.

The second sub-problem is straightforward and the problem of ARM is usually
reduced to the problem of finding frequent itemsets. Almost all algorithms based
on the frequent itemsets approach use the subset lattice (or itemset lattice)
framework and the two following properties:

1. All subsets of a frequent itemset are frequent.
1. All supersets of an infrequent itemset are infrequent.

For big databases, the list of all frequent itemsets is very large and even larger
in the case of dense data where transactions are long. Later, this FIs mining
approach was extended to the mining of maximal frequent itemsets (MFIs) from
which all frequent itemsets can be derived, but not their support.

In 1998, a condensed representation of frequent itemsets called frequent closed
itemsets [ITI18] was introduced. The frequent closed itemsets, defined using the
Galois connection closure used in Formal Concept Analysis [5], form the closed
itemset lattice [I1] that is a sub-order of the subset lattice. Informally, an itemset
is closed if none of its supersets is contained in the same number of transactions as
it. Frequent closed itemsets (FCIs) constitute a lossless condensed representation
of all FIs: All FIs and their support can be obtained in a straightforward manner
from the FCIs and their support. Since the number of FCIs is in most cases much
lower than the number of FIs, their computation improves ARM execution times
and memory usage. ARM extraction using the FCIs framework is based on the
three following properties:

1. All subsets of a frequent closed itemset are frequent itemsets.

1. All supersets of an infrequent closed itemset are infrequent itemsets.

1. The support of a frequent itemset is equal to the support of the smallest
closed itemset containing it.

Many algorithms have been proposed in the literature in recent years for finding
FCIs [I6/17]. Almost all of them use either the prefix tree [I] or the FP-Tree
[8] as an internal data structure for compressed representation of the dataset in
main memory. Their efficiency depends mainly on the properties of the database
(number of items, density, size of transactions, etc.). In several cases, such as
biological data, FIs and MFIs mining pose efficiency problems since the number
of Fls is very large and the set of MFIs does not contain all information required
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to directly generate the association rules. In such cases, the FCIs framework is
a good alternative for the ARM problem as the set of all FCIs is sufficient for
finding the association rules and is much smaller than the set of all FIs.

Bi-clustering aims at finding sub-matrices that associate a set of rows and a
set of columns such that all these rows have the same value for each of these
columns in the matrix. The bi-clusters extracted with FIST are maximal sets of
related rows and columns defined as above. These bi-clusters, called conceptual
clusters, constitute a hierarchical lattice structure defined according to inclusion
relation. They are overlapping: each row and each column can be member of
several bi-clusters. Contrarily to recent works on gene expression time series [10],
where columns represent the evolution of gene expressions during time for one
biological experiment, FIST do not restrict bi-clusters to contiguous columns.
Extracting such bi-clusters is known to be an NP-Complete problem [14].

Here, we propose a new algorithm for mining conjointly conceptual clusters,
or bi-clusters, and bases, or minimal covers, of extended association rules. This
algorithm, called FIST (Frequent Itemsets Suffix Tree), is based on the FCIs
framework and uses a new suffix tree based data structure for computations in
main memory. This data structure does not require complex operations such
as maintaining transverse chained lists of items and can be implemented us-
ing standard data structures like Java collections. It was designed to balance
memory usage and computation efficiency and can easily be adapted to specific
requirements of particular application cases. It also allows parallel processing of
the suffix tree branches in multi-threated environments. FIST finds the frequent
closed patterns, each associating a FCI and its corresponding object identifier
list, i.e., the identifiers of database objects containing the FCI. Its size, that
corresponds to the number of occurrences in the database, gives the support of
the FCI. The CHARM algorithm [19] also uses object id space to find frequent
closed itemsets. However, it discards object ids when they are no more needed
whereas FIST keeps them in main memory for generating bi-clusters. Moreover,
the list of supporting objects of each association rule is also generated by FIST,
instead of only its support value as in classical ARM approaches. The user can
then examine the list of objects concerned by each rule. This can be particu-
larly useful in a certain number of applications such as genomics or proteomics
where identifying specific genes or proteins concerned by a rule is important,
particularly if rules contain semantic information such as biological annotations.

FIST proceeds in three steps: In the first step, the Frequent Generalized Item-
set Suffix Tree (fGIST) is created from the database and is stored in main
memory for the second step. In the second step, frequent closed patterns are
extracted from the fGIST by performing inclusion and intersection operations.
Then, during the third step, bases of association rules and conceptual clusters
are generated in a straightforward manner.

The rest of the paper is organized as follows. A brief terminology is given in
section 2l In section Bl we present the FIST algorithm. Section ] shows experi-
mental results and concluding remarks are given in section [l
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2 Terminology

In this section, we define the most relevant data mining terms used to help
the understanding of the problems of finding association rules and conceptual
clusters in a data mining context.

Definition 1 (Database). A database D is a triplet (O, L, R) where O is a
finite set of objects (rows), L is a finite set of items (values of attributes or vari-
ables) represented as columns and R is a binary relation showing relationships
between rows and columns: R C O x L. Every couple (0,i) € R, where o € O
and i € L, means that the item i belongs to the object o: i € o.

Definition 2 (Itemsets). A non-empty finite set of items I C L in D is called
an itemset. An itemset containing k items is called a k-itemset.

Definition 3 (Support). The support of an itemset I, denoted supp(I), is the
frequency of occurrence of I in D:

gy {o€0 IS0}

Definition 4 (Frequent itemsets). An itemset I with support at least equals
to the user-defined threshold minsupp is called a frequent itemset: I C L 1is
frequent iff supp(I) > minsupp.

Definition 5 (Maximal frequent itemsets). Let F' be the set of all frequent
itemsets. A frequent itemset in the set F is called a maximal frequent itemset if
none of its proper supersets is frequent, i.e. present in the set F.

Definition 6 (Galois closure operator [5]). The Galois closure operator
holds the following properties for I, I, I C L in the power set of L of size 2F:

— Eaxtension: I C ~(I)

— Idempotency: (y(I)) = ~(I)
— Monotonicity: I C Iy = vy(I1) C v(I2)

Definition 7 (Closed itemsets). An itemset C is said to be closed in the
database D if the application of the Galois closure operator v to C' gives C. If C
18 a closed itemset, none of its proper supersets present in D has support equal
to the support of C.

Definition 8 (Frequent closed itemsets). A closed itemset which support is
greater than or equal to the user defined minimum threshold support is called a
frequent closed itemset.

Definition 9 (Generators [6]). The generators of a frequent closed itemset C
are the minimal itemsets, according to inclusion, which closure is C'.
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Definition 10 (Association rules). The implication relationship between two
itemsets Iy and Iy with the formr : Iy — Io where I;,Io C L and 1 NI, =0
1s called an association Tule. Iy and Iy are respectively called the antecedent and
the consequent of the rule.

Definition 11 (Confidence). The confidence of an association rule r: Iy —
15 is the ratio of the support of the itemset Iy U I to the support of the antecedent
in the rule:

supp(l1 U I2)

conf(r) = supp(1)

(2)
Definition 12 (Valid association rules). An association rule r : I; —
Iy where Iy U I is a frequent itemset and which confidence conf(r) is greater
than or equal to the user defined minimum confidence threshold is called a valid
association rule.

Definition 13 (Exact and approximate association rules). Association
rules with confidence equals to 1 are called exact association rules and association
rules with confidence less than 1 are called approximate association rules.

Definition 14 (Clusters). A cluster is a subset of rows that are similar ac-
cording to a distance metric defined on variable values. For the above database
D, clusters are defined as Cy, = {o C O |V 0;, 0; € 0, d(0;, 0;) < o} where o
s a user-defined threshold.

Definition 15 (Bi-clusters). A bi-cluster is a sub-matriz associating a subset
of rows and a subset of columns such that all these rows have a similar value for
each of these columns. For the above database D, the bi-clusters have the form
By, = (o0, i) where o C O and i C L.

3 FIST Algorithm

In this section, we present the FIST algorithm for extracting bases of associ-
ation rules and conceptual clusters without extra processing time or database
scan. The algorithm is divided into three main phases: Database preprocessing,
extracting frequent closed patterns and generating knowledge patterns.

3.1 Database Preprocessing

This preprocessing aims at minimizing execution times and memory usage of
subsequent phases. It is divided into two steps: Generating the Item Table (IT)
and generating the Sorted Frequent Database (SFD). This preprocessing phase is
required for each different minsupp value used for experiments; it is not required
if only the minconf value is modified.

During the first step, the support (number of occurrences) of each item in the
database is counted and all infrequent items, according to the minimum support
threshold value supplied by the user, are deleted. Then, the remaining frequent



A New Approach for Association Rule Mining and Bi-clustering 91

items are sorted in ascending order of their support. In the second step, data
values are mapped to discrete numbers. Each item is then a unique discrete
number representing a data, that is a pair attribute = value, in the database.
This representation optimizes the memory space required for storing itemsets
and improves the efficiency of comparison operations. Then, for each row of the
database containing frequent items, one line is created in the SFD. If a row
contains only infrequent items, it is thus not represented in the SFD.

An exemple database D, in binary format, is given in figure [Il with the cor-
responding Item Table and SFD for minsupp=40%. O; rows and P; columns
represent proteins and A columns represent biological annotations. A “1” in a
cell (O;, P;) means that proteins O; and P; interact and in a cell (O;, Ax) means
that protein O; is annotated with Ag. Values “?” mean that there is no relation
between the O; protein and the corresponding protein or annotation in column.
We can see that data values Py and A; that are infrequent do not generate items
in the Item Table and that row Oy that contains only infrequent data values is
not represented in the SFD.

(A) Data Matrix (B) Item Table (C) SFD
OID Py Py P3s Py Ps Ay A Az Ay Data Support Item 1345
o, 1?2 1 7?2 2 7?7 1 7?2 1 Py 3 - 267
O 7?2 1 2?2 ? 1 2?2 7 1 7 Ay 3 - 345
O3 1?2 1 7?2 2 1 1 7?2 7? Ay 4 1 267
Oy 22 72 1 2 1 7 7?72 7 As 4 2 1345
Oy 721 7?2 1 1 1 ? 1 7 Pi 5 3 267
O 1 2 1 2?2 2 7 1 72 1 P3 5 4 1345
O, 2?21 7?2 2?2 1 7?7 7 1 7 Ao 5 5 267
Og 1 7?2 1 1 7?2 2?2 1 7 1 P 5 6 134567
Qg 7?2 1 2?2 ? 1 2?2 7?2 1 7 Ps 5 7
Op 11 1 2 1 2 1 7 1

Fig. 1. Example Database D

3.2 Mining Frequent Closed Patterns

The mining of frequent closed patterns is the core of the algorithm. This phase
is divided into two steps: generating the frequent Generalised Itemset Suffiz Tree
(fGIST) and finding frequent closed itemsets with their object identifier (OID)
list, each constituting a frequent closed pattern (FCP), from the fGIST using
inclusion and intersection operations on the itemset and OIDs spaces.

The fGIST data structure is a compressed representation of the database
that is stored in main memory for further processing. Each node of the fGIST
represents an item and a branch from the root to a leaf represents a frequent
itemset of the SFD. Each leaf of the fGIST contains the list of object identifiers
containing the itemset in the SFD. The combination of the suffix decomposition
of frequent itemsets of the SFD and of the item ordering in increasing support
values optimizes the size of the fGIST as the smallest suffixes are the most
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frequent itemsets in SFD and are thus most likely closed itemsets. The fGIST
for the SFD in figure [ is given in figure Pl and the corresponding FCPs are
shown in figure Bl with their hierarchical relations defined according to inclusion:
A sup-cluster contains a subset of the rows of its sub-clusters and a superset of
the columns of its sub-clusters. These bi-clusters show that proteins Oz, O5, Oz,
Og, O19 all interact with proteins P, and Ps but only O is not annotated with
Ajs suggesting new possible tracks of studies for example.

| [N] P atemn
@ Object list {X.Y, Z}

Fig. 2. frequent Generalised Itemset Suffix Tree

Building frequent Generalised Itemset Suffix Tree: The pseudo-code for
building the fGIST from the SFD is given in algorithm [Il During this process,
rows of the SFD are accessed one by one (lines 3 to 20). Each row read is repre-
sented as a vector V; of numbers (line 4) and a suffix terminator T; containing
the OID of the row in the SFD is created (line 5). Then, the list R of suffixes
of the string V; is generated (lines 6 to 14). These suffixes are the subsets of the
itemset V; obtained by deleting successively one item to V; from the first to the
penultimate. For instance, suffixes of itemset {1, 2, 3} are itemsets {1, 2, 3}, {2,
3} and {3}. The k' item of V; is denoted V;* in the algorithms. Suffixes are then
inserted in the fGIST (lines 16 to 18). During this process, the SFD is accessed
only once; this minimizes disk accesses that are time expensive operations.

Function InsertSuffix(node(I), S;): The pseudo-code of this function is given
in algorithm[2] It takes a node node(I) and a suffix S; as arguments. It recursively
creates (line 4), or updates, sub-nodes starting from the ROOT node to represent
S; as a branch in the fGIST. If the S; suffix was already inserted in the fGIST,
then only the leaf node of the branch representing S; is updated by adding its
suffix terminator (last element of S;) to the list of OIDs of the leaf (line 11).

Extracting Frequent Closed Patterns: The second step of this phase con-
sists in retrieving the FCP, i.e. FCIs with the list of identifiers of objects con-
taining each in the SFD, from the fGIST. Algorithm [ gives the pseudo-code of
this step. The output of this step is the FCP set containing the list of frequent
closed itemsets with their associated OID list. During this step, each itemset
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Fig. 3. Frequent Closed Patterns

corresponding to a branch of the fGIST from root to leaf is traversed and the al-
gorithm tests if this itemset is closed or not as follows (lines 2 to 9). At first, each
branch of the fGIST is traversed from root to leaf and a new entry is created in
the FCP set for the collected items L; and the corresponding OID list L;.OIDs
in the leaf node (line 3). The non-closed itemsets are then identified and deleted
from the FCP set: If an itemset is included in another itemset and both have
identical OID lists, then the included itemset is not closed and is deleted from
FCP (line 5). The second operation consists to identify the remaining few fre-
quent closed itemsets not already identified (lines 10 to 23). These FCIs are those
that can be obtained only by intersecting two FCIs and that do not correspond
to suffixes of itemsets in the SFD. For this, intersection operations are performed
between two FCIs and if the resulting set is frequent and not present in the FCP
set, a new FCP is generated (lines 16 to 18). The OID list of this new FCP is
the union of the OID lists of the two intersected FCIs (line 14). This procedure
for identifying new FCPs continues till no new FCP is found this way (line 11 to
23). However, all pairs of FCIs don’t have to be tested and only newly created
FCIs Lj, are intersected with other FCIs in the FCP set. For this, new FCPs are
stored in the NFCP reference set (lines 12 and 19). For the first iteration, the
NFCP reference set is initialized with FCP members (line 10). At the end, the
final FFCP set contains all frequent closed itemsets with associated OID list.

3.3 Generating Conceptual Clusters and Bases of Association Rules

During the third phase of the algorithm, conceptual clusters, generators and
bases of association rules are generated using the FCP set. Compared with
traditional ARM approaches, FIST association rules provide more information
to the end-user as the list of objects supporting each rule is genererated instead
of only the support of the rule.

Extracting Bi-clusters and Generators: Algorithm[@gives the pseudo-code of
the conceptual cluster creation and generator identification. First, frequent closed
itemsets in the F'CP set are sorted in ascending order of their size (line 2). Then, for
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Algorithm 1. Building f{GIST Algorithm 2. InsertSuffix(node(I), S;)
1: begin 1: begin

2: 1+ |SFD| 2: if length(S;) # 1 then

3: fori=1to !l do 3:  if node(I).children = ) or

4:  map the i*" row to a vector V; S} ¢ node(I).children then

5:  create suffix terminator T; for V; 4 create node(I).child + Sj

6: k< length(V;) 5.  else

7. form=1tokdo 6: identify node(I).child = Sj
8: Sm <0 7. end if

9: for n =m to k do 8 delete S} from S,

10: Sm = S UV 9:  InsertSuffix(node([I).child, S;)
11: end for 10: else

12: S 4= Sm UT; 11:  add S; to node(I).OIDs

13:  end for 12: end if

14: R=U {m} 13: end

15:  destroy(V;)

16:  for all S, € R do

17: InsertSuffix(ROOT, S,,)
18:  end for

19:  destroy(R)

20: end for

21: end

each frequent closed pattern in the FCP set (lines 4 to 27), the generators of the FCI
are identified in a levelwise manner (lines 5 to 25). First, the subsets of the frequent
closed itemset are created in increasing order of their size (line 7). Then, we test for
each subset if it is present among generators already found (lines 9 to 12) or among
the FCIs (lines 13 to 17). If these tests were false, a new entry for generators of
the FCI is created in the GEN set containing generators and their closure (lines 18
to 21). If no generator was identified, this process is repeated for subsets of a size
increased by one (line 23) until the first iteration that founds at least one generator.
If all subsets were proceeded and no generator was found, then the frequent closed
itemset is itselfits only generator (line 25). Finally, a bi-cluster is created in the BIC
set representing maximal sets of related rows and columns respectively (line 26). As
a final operation (line 28), items in generators and bi-clusters are mapped to their
original names in the source database to simplify interpretation by the end-user.
To limit the number of extracted patterns, objective or subjective measures for
selecting patterns according to the application objectives can easily be integrated
in the process.

Generating Bases of Association Rules: Algorithm [ shows the pseudo-
code for finding bases of association rules using the FCP and GEN sets. These
bases are extracted into three sets, one for exact association rules and two differ-
ent bases for approximate association rules. The base of min-max exact associa-
tion rules contains valid association rules between a generator (minimal set) and
the frequent closed itemsets that is its closure (maximal set) [13]. The base of
min-max approximate association rules contains valid association rules between
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Algorithm 3. Extracting Frequent Closed Patterns

1: begin

2: for each itemset L; in fGIST

3:  insert pattern {L;, L;.OIDs} into FCP

4:  for each itemset L; successor of L; in fGIST with length(L;) > length(L;)
5: if L; C Ly and L;.OIDs = L;.0OIDs then

6: delete pattern {L;, L;.OIDs} from FCP

7 end if

8: end for

9: end for

10: NFCP + FCP

11: while NFCP # () do
122 NFCP 0
13:  for each itemset Ly in NFCP

14: for each itemset L; in FCP

15: Ly < L; N Ly

16: if L, # 0 and L,, ¢ FCP then

17: Lm.OIDs < L; OIDsU L;.OIDs

18: insert pattern {Lm, L».OIDs} into FCP
19: NFCP «+ NFCP U {Lm, Lm.OIDs}
20: end if

21: end for

22:  end for

23: end while

24: end

a generator and frequent closed itemsets that are supersets of its closure [13].
The proper base of approximate association rules contains rules between two
frequent closed itemsets related by inclusion [12]. First, the bases of min-max
association rules are created by considering each generator successively (lines 3
to 17). For each generator, a min-max exact association rule is created in the
AR E set if the generator is different from its closure (lines 5 to 9). This rule as
a support equals to the size of the object id list F.OIDs of the closure F.Itemset
and a confidence equal to 1, and its associated supporting OID list is F.OIDs
(line 7). Then a min-max approximate association rule is created in the AR SB
set for each FCI in the FCP set that is a superset of the generator closure
(lines 10 to 15). This rule as a support equals to the size of the closure OID
list F.OIDs and a confidence equal to the division of the size of the generator
OID list G.OIDs by the size of F.OIDs, and its supporting OID list is F.OIDs
(line 12). Then, the proper base of approximate association rules, stored in the
AR PB set, is created in a straightforward manner (lines 18 to 23). This base
contains rules between a FCI and FCIs that are its supersets (line 20). The last
step of the algorithm consists to map the items in the association rules to their
original names in the source database (line 24).
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Algorithm 4. Finding Bi-clusters and Generators
1: begin

2: sort F'CP in increasing size of itemsets

3: GEN, BIC «+ ()

4: for all F in FCP do

5 found gen < false and gen size < 1
6:  while found gen = false and gen size < |F.Itemset| do
T SUB < subsets of F.Itemset of size gen size
8 for all subset S in SUB do
9: not gen <+ false
10: for all G.Generator in GEN do
11: if S = G.Generator then not gen < true
12: end for
13: if not gen = false then
14: for all C € FCP preceding F' € FCP do
15: if S C C.Itemset then not gen < true
16: end for
17: end if
18: if not gen = false then
19: insert{S, F'} into GEN
20: found gen <« true
21: end if
22: end for
23: gen size = gen size + 1

24:  end while

25:  if found gen = false then insert{F.Itemset, F.Itemset} into GEN
26:  insert{F.Itemset, F.OIDs} into BIC

27: end for

28: map items in BIC, GEN to database values

29: return(BIC, GEN)

30: end

4 Performance Analysis

For portability, the FIST algorithm was implemented in Java. A PC with an In-
tel Core 2 Duo (T5670 Series) processor at 1.80 GHz and 4 GB DDR2 of RAM
running under the 32 bits Windows 7 Professional Edition operating system was
used for experiments. For comparison of performances, three state-of-art algo-
rithms were used: Apriori, Zart and DCI-Closed. Apriori and ZART are two
frequent itemsets based algorithms for mining association rules and DCI-Closed
is actually, to the best of our knowledge, the most efficient frequent closed item-
sets based algorithm for mining association rules. It should however be noted
that FIST generates more information than these three algorithms. We could
not find a Java implementation of bi-clustering or formal concept mining able to
process the datasets used for these experiments. The optimized Java implemen-
tations of the Apriori, Zart and DCI-Closed algorithms used for these experi-
ments are available at http://www.philippe-fournier-viger.com/spmf/. We
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Algorithm 5. Generating Bases of Association Rules
1: begin

2. AR E, AR SB, AR PB « 0

3: for all G.Generator in GEN do

4:  for all F.Itemset in FCP do

5: if G.Closure = F.Itemset then

6: if G.Generator # F.Itemset then

7 create rule r: {G.Generator = F.Itemset\G.Generator, sup(r) =
|F.OIDs|, conf(r) =1, F.OIDs}

8: insert r into AR F

9: end if

10: else

11: if G.Closure C F.Itemset then

12: create rule r: {G.Generator = F.Itemset\G.Generator, sup(r) =
|F.OIDs|, conf(r) = |F.OIDs|/|G.OIDs|, F.OIDs}

13: insert r into AR SB

14: end if

15: end if

16:  end for

17: end for

18: for all F;.Itemset in FCP do
19:  for all F;.Itemset in FCP where F;.Itemset D F;.Itemset do

20: create rule r: {F;.Itemset = Fj.I[temset\F;.Itemset, sup(r) = |F;.0IDs|,
conf(r) = |F;.01Ds|/|F;.OIDs|, F;.0O1Ds}

21: insert r into AR PB

22:  end for

23: end for

24: map items in AR E, AR SB, AR PB to database values
25: return(AR E, AR SB, AR PB)
26: end

present experimental results in terms of execution times and memory usage for
four bioinformatics datasets. These datasets and their descriptions are available
athttp://keia.i3s.unice.fr/7Datasets. The reason for using these datasets
is that knowledge patterns generated by FIST are particularly relevant in the
field of bioinformatics and biological analysis.

The first dataset was constructed from the HIV-1-Human Protein Protein In-
teraction Database of the NTAID [4/T5] available at http://www.ncbi.nlm.nih.
gov/RefSeq/HIVInteractions/. It contains 1433 rows corresponding to human
proteins and 19 columns corresponding to the HIV-1 proteins. Each cell of this
matrix contains a 1 if a positive interaction between the corresponding pair of
proteins was reported and a question mark if no interaction was reported. The
second dataset was constructed by integrating biological knowledge and bibli-
ographical annotations of human proteins from the UniProtKB-GOA database
(http://www.geneontology.org/G0.downloads.annotations.shtml) with in-
teraction data. 1149 distinct Gene Ontology (GO) annotations, describing func-
tion and characteristics of human proteins, and 2670 distinct bibliographic
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annotations from Pubmed and Reactome related publications were integrated
in this dataset. This dataset contains up to 40 GO annotations and 88 pub-
lication annotations for each gene. The third dataset is the well known Eisen
Yeast Dataset [3] with gene expression values in terms of over expressed, under
expressed, and not expressed. This dataset contains 2464 rows corresponding
to yeast gene and 79 columns corresponding to different experimental biologi-
cal conditions. The fourth dataset results from the integration with the Eisen
Yeast gene expressions of the following gene annotations as columns: 76 GO,
97 different pathways, 109 transcriptional regulators, 1776 phenotypes and 7623
Pubmed IDs. It contains up to 25 GO, 14 pathways, 25 transcriptional regula-
tors, 14 phenotypes and 581 Pubmed ID annotations for each gene.
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Fig. 4. Comparison of execution times

Execution times of the algorithms for the four datasets are presented in Fig-
ure[dl We can see that for the Eisen Yeast Datasets, execution times of FIST are
higher for very low minsupport threshold values. This is because of the expo-
nential number of bi-clusters generated when minsupport is lowered. However,
execution times remain acceptable in all cases, ranging from seconds to minutes.
Except for these challenging cases, execution times of FIST are equivalent to
those of the three other algorithms, even if it generates much more patterns.
For the two PPI datasets, we can see that Apriori is the the worst performer
and that execution times of ZART are lower than those of FIST only for the
integrated dataset and for the two smallest minsupport values. Except for these
two cases, execution times of FIST are equivalent to those of DCI-Closed for the
two PPI datasets.

Memory usage of the four algorithms are shown in Figure[Bl We can see that,
even if FIST generates more information as OID lists are generated instead of
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only support values for the other three algorithms, the reduction of memory re-
quirement remains important compared to the frequent itemsets based approach
used by Apriori and ZART. FIST memory usage is identical, and sometimes even
lower, than those of DCI-Closed as both are based on the frequent closed item-
sets framework. This is due to the suffix tree based data structure that, together
with the re-ordering of items according to their support, optimizes the number
of itemsets stored in main memory for computations of FCIs and OID lists.

5 Conclusions

We present the FIST approach for mining bases of extended association rules
and bi-clusters conjointly, without extra database access. It uses a suffix tree
based data structure and items re-ordering according to supports to optimize the
extraction of frequent closed itemsets with lists of object identifiers containing
each. These frequent closed patterns are used to generate bases, or minimal
covers, of association rules and conceptual clusters, or bi-clusters. This suffix
tree based data structure does not require complex procedures, like maintaining
a transverse chained list of items, and permits parallel processing of the tree
branches in multi-threated environments. Another important feature of FIST is
that the lists of objects supporting each association rule are generated, instead
of only their support value as in classical association rule mining approaches.
Experiments were conducted on four bioinformatics datasets, two with Yeast
gene expressions and HIV-1-Human protein interactions and two integrating
with these data both biological and publication annotations. These experiments
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show that FIST efficiently extracts bases association rules and bi-clusters even
for a very large number of items such as for datasets integrating annotations that
contain several thousands of variables (data matrix columns). They also show
that FIST execution times are always lower than those of the state-of-the-art
Apriori association rule mining algorithm, even for the optimized implementa-
tion of Apriori used for these experiments. Regarding memory usage, these ex-
periments show that FIST requirements are always lower than frequent itemsets
based approaches and are equivalent to those of the most efficient frequent closed
itemsets based approaches, even if FIST generates not only association rules but
also bi-clusters. In the future, we plan to apply FIST to different domains of
application and integrate subjective and objective measures of interestingness
to filter mined patterns according to the end-user’s interests.
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Abstract. Given a family of transaction databases, various data min-
ing methods for extracting patterns distinguishing one database from
another have been extensively studied. This paper particularly focuses
on a problem of finding patterns that are more uncorrelated in one
database, called a base, and begin to be correlated to some extent in
another database, called a target. The detected patterns are not highly
correlated at the target. In spite of less correlatedness at the target, the
detected patterns are regarded as indicative based on a fact that they
are uncorrelated in the base.

We design our search procedure for those patterns by applying opti-
mization strategy under some constraints. More precisely, the objective
is to minimize the correlation of patterns at the base under the constraint
using upper bound of correlations at the target and the lower bound for
the correlation changes over two databases. As there exist many potential
solutions, we apply top N control that attains the bottom N correlation
values at the base for all the patterns satisfying the constraint.

As we measure the degree of correlation by k-way mutual information,
that is monotonically increasing with respect to item addition, we can
design a dynamic pruning method for disregarding useless items under
the top IV control. This contributes for much reducing the computational
cost, in whole search process, needed to calculate correlation values over
several items as random variables. As a result, we can present a complete
search procedure producing only top NN solution patterns from a set
of all patterns satisfying the constraint, and show its effectiveness and
efficiency through experiments.

Keywords: Information-theoretic correlation, Correlation change min-
ing, Top-N minimization for correlation change

1 Introduction

“Compare and Contrast’ is a general heuristic for finding interesting things that
are hard to be realized when observing only single domain or context. The con-
texts designated by time stamps, topics, categories, and so on, are here assumed
given in the form of transaction databases as in association rule mining [1]. In
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case of transaction databases, the standard approaches for contrasting several
databases are known as emerging pattern [6I18] and contrast set [(I12], where
the actual contrast observed by changing databases is measured by difference
or ratio of supports of itemsets before and after the change. These studies are
successful namely for finding itemsets that are frequent after the change and
less frequent before the change. On the other hand, in this paper, we still show
respect for even non-frequent itemsets, provided they become to have some ne-
cessity of composition as sets of items. Those itemsets with increasing necessity
may not appear as emerging patterns in the standard sense.

As an itemset is made of elemental items, an itemset of correlated elements
can be said to have some necessity of composition as a set. Some studies as [2/5]
have discussed changes of positive correlations among items, where each item
is considered to represent positive event. However, statistical correlation among
items as random variables, deriving a notion known as minimally correlated
itemset in [3], is much more interesting and realistic. This is simply because
it can handle partial correlation which may be positive or negative given some
conditioning.

From this viewpoint, the authors have discussed in [19] the problem of finding
itemsets as variable set whose correlations increase to some extent after change
of databases, where we used k-way mutual information [8] instead of x? statistics
in [3] to measure the degree of correlations, taking the difference of database sizes
into account. In that study, given a pair of databases Dg and Dy, called a base
before some change and a target after the change, respectively, an itemset X is
required to satisfy the following constraints under the three parameters dp, o1
and d :

(C1) corpy(X) <dp, (C2) corpy(X)+d< corp,(X) < dr,

where corp,. (X) denotes the k-way mutual information of X at a database des-
ignated by Y. The constraints intuitively mean that X is not highly correlated
at both of the two databases and that the degree of correlation at Dp must in-
crease at least d at Dr after the change. The actual meaning of solution itemsets
depends on parameter setting. For instance, it is a natural idea to pay particular
attention to

itemsets which are uncorrelated before the change and whose correlations
just begin to increase after the change. In other words, the information
brought by them may not be high at the target, but may indicate some
beginning of change as they are uncorrelated at the base.

In order to restrict solution itemsets to those in the above sense, d g must be small
and d must not be high. According to our experiments, even when we assign these
values to those parameters, there still remain many possible solutions whose
correlation degrees at Dp are just near to the upper bound dp, as is shown in
Section [Gl As long as we prefer more uncorrelated pattern at Dy, any itemset
X whose corp, value is near to the upper bound ép can be disregarded.

From this observation, we propose in this paper not to use ég and to apply
minimization of corp,(X) instead of the constraint corp,(X) < dp, while we
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still hold the constraint corp, (X) + d < corp, (X) < dr. Needless to say, this
new specification more suits the problem of finding changes from uncorrelated-
ness to correlatedness to some extent.

The strategy for applying optimization under some constraints is often used
to find plausible and potential solution sets (e.g. [16]). In the studies of emerg-
ing pattern mining, a procedure to find top K jumping emerging patterns has
been presented in [2I]. A jumping emerging pattern (JEP for short) is a pattern
X satisfying supp, (X) = 0 and supp,(X) # 0, where supp,,(X) denotes the
support of itemset X at a database Dy. Then, a top-K JEP is defined as a JEP
whose support supp,(X) is in the top-K largest among possible JEPs. From
a strategic point of view, ours and the top-K JEP are dual by corresponding
minimization of monotonically increasing information measure at Dp to maxi-
mization of anti-monotonic support measure at Drp.

Applying this strategy under the above correspondence, we present in this
paper a complete procedure to output only top N itemsets in the sense that
whose correlations are in bottom N corp,-values among all the itemsets satisfy-
ing corp, (X)+d < corp,(X) < dp. Particularly, “dynamic pruning technique’
for cutting off useless combinations of items is a key to improve computational
performance. The uselessness of items is judged based on a tentative itemset Z
in a search tree. More precisely, an item 1 is useless given Z iff some combination
of z € Z and i exceeds any of bottom N corp, values v found before the ten-
tative Z. In fact, we have corp,(Z U {i}) > corp,({z,i}) > v by monotonicity
of corp,. Therefore, any combination including Z U {i} never achieves smaller
value than the present bottom N values. As the computation of corp, (Z U {i})
needs 2/41+1 frequencies, the dynamic pruning for our case plays an essential
role for reducing computational resources.

In addition to the above, the search process can be performed without com-
puting itemsets satisfying the constraints beforehand. Both the dynamic pruning
and the constraint satisfaction checking are carried out dynamically in the pro-
cess of building search tree. More precise technical description of these processes
will be given in Section [} using a graph representation.

For two kinds of datasets, collections of Japanese news articles and web doc-
uments, effectiveness of our algorithm is verified from the viewpoints of quality
of extracted patterns and computational performance. We present several in-
teresting patterns actually extracted by our algorithm but never obtained by
contrasting supports or bond-based correlations. Moreover, we show consider-
able reductions of examined patterns in our search achieved by our top-N min-
imization approach. Particularly, many of patterns undesirably obtained by the
previous method can be excluded with the help of dynamic pruning.

The remainder of this paper is organized as follows. In the next section, we in-
troduce some terminologies used throughout this paper. The correlation based on
k-way mutual information and its property are presented in Section 3. In Section
4, we define our problem of mining patterns with top-/N minimized correlations.
Section 5 describes our depth-first algorithm for extracting top-N patterns based
on double-clique search with dynamic update of graph. Our experimental results
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are reported in Section 6. In Section 7, we conclude this paper with a summary
and future work.

2 Preliminaries

Let Z = {i1,...,in} be a set of items. An itemset X is a subset of Z. If | X| = k,
then X is called a k-itemset. A transaction T is a set of items T' C Z. A database
D is a collection of transactions.

In order to calculate the correlation of an itemset (defined later), we take
“presence” and “absence” of an item into account by regarding the set of items
Z ={i1,...,in} as a set of n boolean random variables. Thus, a transaction T is
an n-tuple in {0,1}".

Similar to that in [3], for a k-itemset, we can obtain a contingency table
with 2% cell values. These cell values are considered as supports of the itemset,
i.e., a k-itemset has 2% supports. More precisely, given a database D, for an
item (1-itemset) a, the number of transactions with a in D is denoted as T'(a)
and the number of those without a by T'(a). The probability of a, denoted as
p(a) = p(a = 1), is estimated as p(a) = T(a)/|D|. Similarly, we define p(a) as
p(a) = pla = 0) = T(a)/|D| = 1 — p(a). Thus, the database D is partitioned
into 2 cells by a with the cell values (supports) p(a) and p(a) in its contingency
table.

Similarly, for a 2-itemset {a,b}, we have 4 supports in probabilities, p(ab),
p(ab), p(ab) and p(ab). The probability p(ab) is estimated as T'(ab)/|D|, where
T'(ab) is the number of transactions with both @ and b in D. The probabilities
p(ab), p(ab) and p(ab) are estimated in the same way. The definitions can be
extended for a k-itemset such that & > 3. For a k-itemset, thus, D is partitioned
into 2% cells corresponding to 2% cell values in its contingency table. Based on
the contingency table of an itemset, we can calculate the information-theoretic
correlation of an itemset defined in the next section.

3 Correlation Based on k-way Mutual Information

Correlation mining has been developed to reveal the relationships between item-
sets. To identify linear functional dependence between numerical random vari-
ables, Pearson’s correlation coefficient [14] is usually used in statistics. However,
to handle a dependence between categorical variables, (particularly, the depen-
dence between Boolean variables corresponding to items in this paper), it is
poor as stated in [3]. NMI [13] has also been proposed to measure a correla-
tion between a pair of quantitative variables. On the other hand, in this paper,
we consider a correlation among items - Boolean variables. In order to measure
a positive correlation(i.e., co-occurrence) between a pair of itemsets, a notion
of lift has been proposed [4]. Furthermore, a Jaccard coefficient, bond [II0] is
popularly used to measure a correlation based on co-occurrence of items. When
the items in patterns are regarded as random Boolean variables, their negative
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correlation (i.e., anti-co-occurrence) can also be considered as well as positive
one. It is possible to use the bond as a measure.

However, we often observe that some items are conditionally correlated actu-
ally. The degree of correlation among items is heavily affected by other items
or conditions. For example, for three items a, b and ¢, in some case, we might
observe cor(a; blc) > cor(a;b). We consider that there exists a partial correlation
between a, b under c. It should be noted that the meaning of this partial corre-
lation is different from that in statistics. In this paper, it means a correlation
caused by conditional factors. This kind of correlation is hard to be detected by
correlation in the sense of co-occurrence as bond.

In order to calculate our extended correlation, we regard an item as a Boolean
random variable with presence and absence values. Based on information theory,
for a pair of items, their correlation is measured by standard mutual information.
That is, for two items a and b, the correlation between them is calculated as
I(a;b). For three or more items, the correlation among them is calculated by an
extended mutual information, called k-way mutual information.

Definition 1. (Itemset Correlation)

Let D be a database, X = {x1,...,2x} a k-itemset. The correlation of X in
D, denoted as corp(X), is measured by k-way mutual information I(x1;--- ;)
which is defined as

corp(X) = I(z1;- -+ ;2k)
xx -.-x
= Z Z p(x122 ... x)) log,y pla1es )

£1€{0,1}  zpef0,1} p(x1)p(z2) - plar)

where z; is an item regarded as a Boolean random variable.

Since the extended correlation of an itemset X measured by k-way mutual infor-
mation is calculated on probabilities, it is not affected by the size of databases
and smaller cell values in the contingency table(affecting factors of x? values).
Therefore, we can compare the correlations of an itemset across two contrasted
databases.

It is easily proved that for a pair of itemsets X and X’ such that X C X',
corp(X) < corp(X’) holds. This monotonicity of the extended correlation based
on k-way mutual information is applied as one of the pruning mechanisms in
our algorithm for mining patterns with top-N minimized correlations, as will be
discussed in the following sections.

4 Problem of Mining Top-IN Correlation Contrast Sets

In this section, we define our optimization problem of mining top-N correlation
contrast sets given two contrasted databases. It is noted that although the origi-
nal notion of “contrast sets” in [7] has been discussed for two or more databases,
our “contrast sets” in this paper particularly assumes we are given just two
databases.
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As is similar to [I9], our goal is to detect a potential correlation increase from
one database Dp (called the base) to the other Dr (called the target) by con-
trasting the correlations of itemsets. In general, since visibly correlated itemsets
are not so interesting, in [19], we have imposed correlation constraints in the base
and the target by providing correlation upper bounds dp and 7, respectively.
However, from our experimentation, it has been found that many outputted pat-
terns X with correlations close to §p tend to be uninteresting in the sense that
they seem to show accidental or coincidental changes. In order to exclude those
patterns, we prefer to detect patterns that satisfy the correlation constraint in
the target but have less correlations in the base. This computation task is for-
malized as an optimization problem whose solutions are patterns with top-/V
minimized correlations in the base still satisfying the correlation constraint and
showing sufficient correlation increase in the target. Moreover, to detect more
implicit information, we prefer the patterns with not too much lower entropy in
the target. In the framework of subspace clustering [I1], a pattern (correspond-
ing to a subspace) with higher correlation and lower entropy is preferred as a
distinguished cluster. However, it would be difficult to obtain some potential
information from such an explicit pattern. Therefore, we impose an entropy-
based constraint on our target patterns. In order to exclude the patterns that
involve more rare or common items, we also impose a support-based constraint
as in [I9], because considering the correlations between these items would not
be interesting.

Our problem is now formalized as follows:

Definition 2. (Top-N Correlation Contrast Sets)
Let D and Dr be a pair of databases to be contrastedEI, 6 a threshold for
maximum correlation in Dp, d a threshold for minimum correlation increase, €
a threshold for minimum entropy and s a minimum support at p% level.

A problem of mining top-N correlation contrast sets is to find every pattern
X such that
Constraints on

Correlation: corp,.(X) <4,

Correlation Increase: corp,.(X) — corp,(X) > d,

Entropy: Hp,(X) > e,

Support Constraint: X has support s at p % level in both Dg and Dr,
Objective Function: corp,(X) is in top-N minimum values among those
patterns satisfying the constraints.

5 Extracting Top-IN Correlation Contrast Sets
with Extended Double-Clique Search

Given the base Dp and the target D to be contrasted, a threshold ¢ for max-
imum correlation in Dy, a threshold d for minimum correlation increase and e

! We assume UrepgT = Urep, T, that is, the set of items appeared in Dp is the
same as that in Dr.
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a threshold for minimum entropy, in order to find out top-N contrast sets (pat-
terns), we can simply use our previous double-clique search method proposed
in [I9]. More concretely, we can first enumerate all double-cliques satisfying all
the constraints by setting correlation upper bounds for the base 6 — d and the
target 0, respectively, and then select those actually ranked in top-N in increas-
ing order of correlations in the base. However, such a method would not be so
efficient because the computation of correlations based on k-way mutual infor-
mation is a bit costly and the number of satisfying double-cliques is large. If we
can reduce the number of candidate double-cliques for which we need to actually
compute their correlations in the base, we can detect top-N contrast sets more
efficiently. Fortunately, our top-N minimization of correlations brings us some
effective pruning mechanism.

5.1 Double-Clique Search with Dynamic Update on Base Graph

From Definition [ a target pattern X must satisfy corp, (X) < ¢ in the tar-
get and have a top-IN minimum correlation, say «, in the base. Note that the
correlation based on k-way mutual information is monotonically increasing as
an itemset is expanded to its supersets. This monotonicity property implies
that if corp,(X) < 4, then any pair of items in X, a and b, always satisfy
corp,({a,b}) < 4. It is also implied that in the base for any @ and b in X,
corp,({a,b}) < a holds. Regarding these observations as a necessary condi-
tion, we can obtain a target pattern X as a clique in both of the two graphs
Gp, = (Z, Ep,) (the target graph) and Gp, = (Z, Ep,) (the base graph), called
a double-clique, where

Ep, ={(a,b) | a,b € Z A corp,({a,b}) <46} and

Ep, ={(a,b) | a,b € T A corp,({a,b}) < a}.

It should be noted that while the former graph can be statically constructed
based on the predefined parameter ¢, the latter not, because we have no idea to
get an adequate value of o beforehand. Instead of «, however, we can make use
of the correlation value of patterns actually found so far as tentative top-IV.
More precisely speaking, we initially construct the graph Gp, = (Z, Ep,)
such that Fp, = {(a,b) | a,b € Z A corp,({a,b}) < § —d}, where § — d gives at
most value of correlations in the base which our target patterns can have. Then,
we try to extract double-cliques in both Gp, and Gp,. If a double-clique X as
a pattern is found to satisfy all of the the constraints, then X is stored in a list
L which keeps patterns with top-N minimum correlations in the base extracted
so far. Once the list £ is filled with patterns having tentative top-N minimum
correlations, our task is now to detect patterns (cliques) with the correlations
no more than mazcol(L), where mazxcol(L) is the maximum corp,, value of the
patterns in £. In other words, we can update the initial graph Gp, for the base
into G, = (Z, Ep,) such that Ef, = {(a,b) | a,b € T A corp,({a,b}) <
mawcol(L)}. Since maxcol(L) < 6 —d, it is easy to see that G7,  is sparser
than Gp,. Moreover, it should be emphasized that as we find more tentative
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target patterns, the value of mazcol(L) decreases monotonically and the graph
for the base can be accordingly updated into a sparser one more and more. Such
a dynamic update on the base graph makes the task of finding double-cliques
more efficient, as our computation proceeds.

In the previous method [I9], the primary task is to extract double-cliques in
Gp, and Gp,, where the latter graph is just static and never updated. Although
the double-cliques in the previous method completely covers all of our target
patterns with top-IN minimum correlations in the base, they also include many
hopeless patterns which can never be our targets. With the help of dynamic
update on the base graph, we can exclude a lot of those useless double-cliques.
It is the main advantage of our new method to be emphasized.

Technically speaking, for the base and target graphs, Gp, = (Z, Ep,) and
Gp, = (Z, Ep,), a double-clique in both Gp,, and Gp,. is a clique in the graph
simply defined as G = (Z, Ep,, N Ep,). Every clique in G can be enumerated
systematically, e.g., based on the basic procedure in [I7].

For a graph G = (V, E), let us assume a total ordering on V = {x1,...,2,},
where x; < x;41. For a clique @ C V in G, @ can be expanded into a larger
clique by adding a certain vertex, called an extensible candidate, to Q. A vertex
x € V is called an extensible candidate of @ if x is adjacent to any vertex in
Q. The set of extensible candidates is denoted as cand(Q), that is, cand(Q) =
{zeV|Vyeq, (z,y) € E} =(),cqNc(y), where N (y) is the set of vertices
adjacent to y in G.

Since for any extensible candidate = € cand(Q), Q U {«} always becomes a
clique, we can easily generate a larger clique of @ by adding x € cand(Q) such
that tail(Q) < x, where tail(Q) is the last (maximum) element in @ under the
ordering <. Starting with the initial Q = ¢ and the initial set of extensible
candidates cand(Q) = cand(¢) = V, we can enumerate all cliques in G by
expanding @ with cand(Q) step by step. Although such an expansion process
can be done in depth-first or breadth-first manner, we prefer to take the former
so that we can apply our method to large-scale datasets with a lot of items.

5.2 Pruning Mechanism

Based on the monotonicity of correlations, if a pattern (clique) X cannot satisfy
corp, (X) < 0, then we can safely discard X and its expansion (supersets) as
useless ones. Whenever such a pattern X is found in our depth-first search of
cliques, we can immediately backtrack to another candidate.

In addition to that, a similar pruning based on a tentative value of mazcol (L)
is also available in our search. For a tentative maxcol(L), any of our target pat-
tern must show the correlation value no more than maxcol(L) in the base. For
a pattern X, therefore, if we find corp,(X) < maxcol(L) does not hold, then
X and its supersets can never be our target and hence we can prune any ex-
pansions of X. Since maxcol(L) is monotonically decreasing, the effect of the
pruning based on maxcol(L) becomes powerful more and more as the computa-
tion proceeds.
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Since considering the correlation of an itemset X that involves rare (or com-
mon) items is never interesting, and expanding X cannot cause any significant
gain of information (correlation), such itemsets should be excluded. Therefore,
we set support constraints on searched itemsets as has been described in [19].
More concretely, given p% and a minimum support s, an itemset X must have
support s at p%-level. If X does not satisfy the condition, then we do not need
to expand X.

5.3 Algorithm for Extracting Top-IN Correlation Contrast Sets

Based on the above discussion, we can design a complete depth-first double-
clique search algorithm for finding top-INV correlation contrast sets.

Given a pair of databases, Dp and Dr, to be contrasted, a correlation upper
bound in the target §, a minimum correlation increase d and an entropy lower
bound € in target, we first construct the base and the target graphs Gp, and
Gp,. Then, we enumerate double-cliques in Gp, and Gp, in depth-first manner
with the pruning rules.

During the process, we manage a tentative list £ of patterns with top-IV
minimum correlations in the base found so far. For a double-clique X, if all of
the imposed constraints are satisfied, then the list £ is adequately updated with
X so that it can correctly keep patterns with top-N minimum correlations at
that point. Thus, the tentative top-N list is iteratively updated, monotonically
decreasing the maximum correlation maxcol(L£) in the list. Furthermore, the base
graph Gp, is also updated into a more sparse one based on mazxcol(L). This
procedure is recursively iterated until no double-clique remains to be examined.

Our algorithm for detecting top- N correlation contrast sets is now summarized
in Figure [l In the pseudo-code, we assume tail()) = L, where the symbol L is
a (virtual) minimum element in any ordering. Moreover, for a list of patterns £,
the function maxcor(L) returns oo if the list does not yet contain patterns with
tentative top-N minimum correlations.

One might claim that updating the base graph seems to be costly especially
in case we have to update it frequently. In actual computation, however, we do
not have to update the base graph explicitly. It is enough to have an n X n-
table, Mp, = (b;j), where n is the number of items we are concerned with, that
is, n = |Z|. For T = {x1,..., 2}, bi; is just defined as b;; = corp, ({zi, z;}).
For a clique X and its extensible candidates cand(X), if we expand X with
zp € cand(X), cand(X U {z,}) can be identified by just checking whether for
each x4 € cand(X) such that p # g, bpq < maxcol(L) or not. If it is true, z,
is included in cand(X U {zp}). Thus, we can enjoy pruning based on dynamic
update on the graph without any additional cost.

6 Experimental Results

Our algorithm has been implemented in JAVA and evaluated on two types of
databases, Mainichi News Articles and BankSearch.
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procedure MAIN():
[Output]: the set of top-N correlation contrast sets.
[Global Variables] L: a list of tentative top-N patterns and G: a graph.
G + (Z,Epg N Ep,.), where
Epg ={(a,b) | a,b € ZAcorpg({a,b}) < —d} and
Ep;. ={(a,b) | a,b € ZAcorp,({a,b}) <d};
L« 0;
FINDToPNCCS(0, I);
return L;

procedure FINDToPNCCS(Q, Cand):
for each x € Cand such that tail(Q) < = do
New@ <+ QU {z};
if corpy (NewQ) < 0 A corpg (NewQ) < mazxcor(L) A
NewQ has support s at level of p% in both Dp and Dr then
if corpp (NewQ) — corpg (NewQ) > d A Hpp (NewQ) > € then // NewQ might be a target
prev < maxcor(L);
UPDATETOPNLIST(NewQ@);
if prev # mazcor(L) then // maxcor(L) has been updated
Epg + {(a,b) | a,b € ZAcorpy({a,b}) < maxcor(L)}; // Updating the base graph
end if
else
NewCand < Cand N Ng(x);
FINDToPNCCS(New@Q, NewCand):
end if
end if
end for

procedure UPDATETOPNLIST(Q):
£ LU{Ql
if | { [corpg(P) || P €L} | > N then // L contains patterns with tentatively top-N min. cor.
remove all patterns with M-th minimum correlations from £ such that N < M;
end if

Fig.1. An extended double-clique search algorithm for detecting Top-N correlation
contrast sets

Mainichi News Articles is a collection of articles appeared in a Japanese
newspaper “Mainich?’ in 1994 and 1995. Since at the beginning of 1995, there
happened “Hanshin earthquake” (The South Hyogo Prefecture Earthquake) in
Japan, we try to discover potential change before and after the earthquake. After
a morphological analysis and removing too rare and too frequent words, we have
extracted 406 words as items. Then, we divide the articles into ones in 1994 and
those in 1995 as contrasted databases. The former, referred to as Dygg4, consists
of 2343 articles and the latter, referred to as Diggs5, 9331 articles.

BankSearch is a collection of web documents [I5]. From the dataset, we se-
lected two themes “Banking and Finance” and “Sports’ to obtain a pair of
databases to be contrasted. The former is referred to as Dpgnir and the lat-
ter Dgsports- Bach of them consists of 3000 web documents. After a standard
preprocessing (stemming, removing stop-words, too frequent and too infrequent
words), we have extracted 585 words.

For these databases, we report the computational performance compared with
our previous method on a PC with Core2 Duo E8500 and 4GB main memory.
Then, we show some interesting contrast sets actually extracted.
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6.1 Computational Performance

For the contrasted databases D1gg94 and Digg95, we compared the efficiency of our
method with that of the previous method [19] at 8-pairs of correlation upper
bounds [(dp;)dr| in increasing order. These concrete values were determined
based on the investigation of correlations between every pair of items. It is noted
that in our extended double-clique method, only dr is needed.

At the parameter setting s = 0.005, p = 0.25, d = 0.001 and € = 0.8, compu-
tation times for extracting top-100 contrast sets and the numbers of examined
itemsets during the search are shown in Figure 2l
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Fig. 2. Computational Performance for Mainichi News Articles

In addition, Table [l shows the numbers of outputted itemsets by our method
and the previous method.

Table 1. Numbers of outputted correlation contrast sets on news data

(0m;)oT[E-4] (5;)20 (6;)22 (7;)24 (8;)26 (9;)28 (10;)30 (11;)32 (12;)34
our method 101 102 103 103 102 102 102 101
previous double-clique method 2085 3284 4826 6851 9067 11616 14445 17710

In Figure Bl at higher upper bounds (that is, the double-clique constraint
becomes weaker), the performance curves by the previous method tends to in-
crease significantly. On the other hand, the curves by our extended double-clique
method keeps at a lower level stably. That is, a considerable number of patterns
out of our targets can be excluded in our top-IN method. Particularly, from Ta-
ble Il it would be expected that such excluded patterns also include many of
those with correlations close to d g undesirably obtained by the previous method.
As has been mentioned before, although top-NV patterns can be found by the pre-
vious method with an adequate setting of d g, our top-N approach can efficiently
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detect them without such a difficult parameter adjustment, excluding a signifi-
cant number of useless patterns.

In our correlation contrast set mining, to avoid the itemsets involving many
rare (or common) items, we give a support constraint on itemsets with minimum
support s at p% level. Therefore, one might claim that our top-N correlation
contrast sets can be found by some fast frequent itemset miner like LCM [20].
That is, we can enumerate frequent itemsets by the miner and then calculate
their correlations in both contrasted databases to extract top-N patterns. How-
ever, it would be an unpromising approach. For the dataset Mainichi News
Articles, we have applied LCM under the minimum support equal to the small-
est co-occurrence support of our top-N itemsets so that the frequent patterns
extracted by LCM can minimally cover all of our top-N correlation contrast
sets. As the result, we obtain over 10 billion frequent itemsets even though the
computation time is less than 5 minutes. Computing their correlations based on
k-way mutual information is clearly expensive.

Although we cannot go into the details due to space limitation, a similar
computational performance of our algorithm can also be observed for the dataset
of BankSearch.

6.2 Extracted Correlation Contrast Sets

For the dataset Mainichi News Articles, at the parameter setting § = 0.003,
s = 0.005, p = 0.25, d = 0.001 and € = 0.8, some of extracted top-100 correlation
contrast sets are shown in Table 2

Table 2. Examples of extracted Top-100 correlation contrast sets for Diggs and Digos

contrast sets COTDyggy COTDiggs  iNCrease
{recovery, consultation, Itamsi} 1.88943e-5 2.94553e-3 2.92663e-3
{devotion, doctor, Takarazuka} 2.14402e-5 1.18469e-3 1.16325e-3
{subway, contact, experience } 2.29102e-5 1.59180e-3 1.56889e-3

{restart, unhappy} 5.62339e-7 1.32056e-3 1.31999e-3
{photo, consultation} 2.08342e-6 1.02178e-3 1.01970e-3

It should be noted that most of the top-100 contrast sets are concerned with
the disaster and reveal the changes from 1994 to 1995 in Japan. In the table,
Itami and Takarazuka are the damaged cities in the earthquake. Most of the
news articles related to those itemsets in the table in Diggs report the rescu-
ing activities and re-construction after the earthquake. Thus, the quality of the
output is improved much.

From the first three 3-itemsets, we can observe that there is mainly a partial
correlation increase in 1995 between the first two component items given the
third item. That is, in 1995, the conditional correlation between the first two
items z7 and xo given the third item x3, cor(z1;z2|xs), becomes more greater
than cor(z1;x2) without the conditioning by zs. For example, for the itemset
{subway, contact, experience}, cor(subway;contact) is 0.00005 bit actually in
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1995. On the other hand, cor(subway;contact|experience) increases to 0.0002 bit
in 1995, four times of cor(subway;contact). This means that items subway and
contact are almost not correlated, but get correlated under the conditioning by
experience after the earthquake. The increase of the partial correlation mainly
results in the increase of the correlation of the itemsets {subway, contact, expe-
rience} in 1995 since cor(z1;x2;x3) = cor(x1; x3) + cor(xe; xg) + cor(xy; ra|Ts).
The news articles related to those terms revealed the fact that the subway admin-
istration departments learned much experience from the disaster, and then they
determined to improve their contact system in urgent situation during subway
re-construction after the earthquake.

In addition to partially correlated itemsets, we also extracted negatively corre-
lated contrast sets. For example, {restart, unhappy}, we checked the interest [3],
p(restart, unhappy)/p(restart)p(unhappy) = 0.62 in 1995. It shows that the two
items become more negatively correlated in 1995 with an increase of negative
correlation. Similarly, {photo, consultation} shows the same change.

By contrasting Dpgnt and Dsports, at the parameter setting, § = 0.004, s =
0.001, p = 0.25, d = 0.002 and ¢ = 1.2, some examples of top-100 correlation
contrast sets are shown in Table Bl

Table 3. Examples of Top-100 correlation contrast sets for Dpani and Dsports

contrast sets COTD gk COTDsports increase
{employ, commercial, goal} 7.13674e-5 3.24924e-3 3.17787e-3
{income, motor, host} 4.90993e-5 3.10324e-3 3.05414e-3
{account, race} 1.06733e-7 2.85277e-3 2.85266e-3
{stock, league} 4.35987e-6 2.30343e-3 2.29907e-3
{winner, power} 4.65251e-6 3.74283e-3 3.73818e-3

From the first two itemsets, we can observe the partial correlation between
the first two component items given the third item, and just the potential in-
crease of their partial correlations brings the increase of the correlation of the
itemsets in Dgports. Those documents related to the first itemset mainly discuss
the employments of staff and players in soccer clubs and their commercial values.
Those related to the second are mainly about the hosted motor games and the
incomes of players. The next three itemsets are negatively correlated patterns
in Dpank, but become positively correlated ones in Dgpors.

Additionally, it should be emphasized that there are about 30% of our ex-
tracted contrast sets whose supports (in usual concept) or bonds [9] change
little or decrease on the contrary. This means that many of our contrast sets can
not be extracted by the emerging pattern mining based on contrasting-supports
or contrasting-bonds. This is also a remarkable advantage of our method.

7 Concluding Remark

In this paper, we have discussed an optimization problem of detecting top-IV
correlation contrast sets. In the problem, we only extracted top-IN patterns with
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minimized correlations in the base and a minimum correlation increase in the
target under the double-clique conditions. We consider that such correlation
changes possibly caused by some event and therefore are worth to be detected.
From our experimental results, we can find that the qualities of the outputted
patterns are improved clearly than that by the previous proposal.

To extract the top-IN contrast sets, we developed an extended double-clique
algorithm based on the previous static double-clique search with dynamically
updating the graph of the base. Our experimental results show that the extended
double-clique algorithm works more efficiently than the previous static double-
clique method. Especially at higher correlation constraints, the computation
times by the previous method increase significantly or even out of memory on
the current machine. In comparison, the computation times by our extended
double-clique algorithm for extracting top-N patterns keeps at a lower and stable
level.

It should be noted that even though we have extracted top-N correlation
contrast sets efficiently from the tested databases, the computation of correlation
measure, extended mutual information, is still expensive, especially, when the
number of items becomes larger. As important future work, it would be worth
further investigating correlation measures with monotone properties. Improving
efficiency of the algorithm would also be required for a larger scale dataset with
many items. Since our method is a general framework, we need to apply it to
several actual domains in order to make the method more useful.
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Abstract. Given the large amount of data mining algorithms, their
combinations (e.g. ensembles) and possible parameter settings, finding
the most adequate method to analyze a new dataset becomes an ever
more challenging task. This is because in many cases testing all possi-
bly useful alternatives quickly becomes prohibitively expensive. In this
paper we propose a novel technique, called active testing, that intel-
ligently selects the most useful cross-validation tests. It proceeds in a
tournament-style fashion, in each round selecting and testing the algo-
rithm that is most likely to outperform the best algorithm of the previous
round on the new dataset. This ‘most promising’ competitor is chosen
based on a history of prior duels between both algorithms on similar
datasets. Each new cross-validation test will contribute information to
a better estimate of dataset similarity, and thus better predict which
algorithms are most promising on the new dataset. We have evaluated
this approach using a set of 292 algorithm-parameter combinations on
76 UCI datasets for classification. The results show that active testing
will quickly yield an algorithm whose performance is very close to the
optimum, after relatively few tests. It also provides a better solution than
previously proposed methods.

1 Background and Motivation

In many data mining applications, an important problem is selecting the best
algorithm for a specific problem. Especially in classification, there are hundreds
of algorithms to choose from. Moreover, these algorithms can be combined into
composite learning systems (e.g. ensembles) and often have many parameters
that greatly influence their performance. This yields a whole spectrum of meth-
ods and their variations, so that testing all possible candidates on the given
problem, e.g., using cross-validation, quickly becomes prohibitively expensive.
The issue of selecting the right algorithm has been the subject of many studies
over the past 20 years [I7U3I23/20/T9]. Most approaches rely on the concept of
metalearning. This approach exploits characterizations of datasets and past per-
formance results of algorithms to recommend the best algorithm on the current
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dataset. The term metalearning stems from the fact that we try to learn the func-
tion that maps dataset characterizations (meta-data) to algorithm performance
estimates (the target variable).

The earliest techniques considered only the dataset itself and calculated an
array of various simple, statistical or information-theoretic properties of the
data (e.g., dataset size, class skewness and signal-noise ratio) [17/3]. Another
approach, called landmarking [2[12], ran simple and fast versions of algorithms
(e.g. decision stumps instead of decision trees) on the new dataset and used their
performance results to characterize the new dataset. Alternatively, in sampling
landmarks [21I8I14], the complete (non-simplified) algorithms are run on small
samples of the data. A series of sampling landmarks on increasingly large samples
represents a partial learning curve which characterizes datasets and which can be
used to predict the performance of algorithms significantly more accurately than
with classical dataset characteristics [I3[I4]. Finally, an ‘active testing strategy’
for sampling landmarks [I4] was proposed that actively selects the most infor-
mative sample sizes while building these partial learning curves, thus reducing
the time needed to compute them.

Motivation. All these approaches have focused on dozens of algorithms at most
and usually considered only default parameter settings. Dealing with hundreds,
perhaps thousands of algorithm-parameter combina‘cionsEI7 provides a new chal-
lenge that requires a new approach. First, distinguishing between hundreds of
subtly different algorithms is significantly harder than distinguishing between a
handful of very different ones. We would need many more data characterizations
that relate the effects of certain parameters on performance. On the other hand,
the latter method [I4] has a scalability issue: it requires that pairwise compar-
isons be conducted between algorithms. This would be rather impractical when
faced with hundreds of algorithm-parameter combinations.

To address these issues, we propose a quite different way to characterize
datasets, namely through the effect that the dataset has on the relative per-
formance of algorithms run on them. As in landmarking, we use the fact that
each algorithm has its own learning bias, making certain assumptions about the
data distribution. If the learning bias ‘matches’ the underlying data distribution
of a particular dataset, it is likely to perform well (e.g., achieve high predictive
accuracy). If it does not, it will likely under- or overfit the data, resulting in a
lower performance.

As such, we characterize a dataset based on the pairwise performance differ-
ences between algorithms run on them: if the same algorithms win, tie or lose
against each other on two datasets, then the data distributions of these datasets
are likely to be similar as well, at least in terms of their effect on learning per-
formance. It is clear that the more algorithms are used, the more accurate the
characterization will be. While we cannot run all algorithms on each new dataset

! In the remainder of this text, when we speak of algorithms, we mean fully-defined
algorithm instances with fixed components (e.g., base-learners, kernel functions) and
parameter settings.
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because of the computational cost, we can run a fair amount of CV tests to get
a reasonably good idea of which prior datasets are most similar to the new one.

Moreover, we can use these same performance results to establish which (yet
untested) algorithms are likely to perform well on the new dataset, i.e., those
algorithms that outperformed or rivaled the currently best algorithm on similar
datasets in the past. As such, we can intelligently select the most promising
algorithms for the new dataset, run them, and then use their performance results
to gain increasingly better estimates of the most similar datasets and the most
promising algorithms.

Key concepts. There are two key concepts used in this work. The first one is
that of the current best candidate algorithm which may be challenged by other
algorithms in the process of finding an even better candidate.

The second is the pairwise performance difference between two algorithm run
on the same dataset, which we call relative landmark. A collection of such rela-
tive landmarks represents a history of previous ‘duels’ between two algorithms
on prior datasets. The term itself originates from the study of landmarking al-
gorithms: since absolute values for the performance of landmarkers vary a lot
depending on the dataset, several types of relative landmarks have been pro-
posed, which basically capture the relative performance difference between two
algorithms [12]. In this paper, we extend the notion of relative landmarks to all
(including non-simplified) classification algorithms.

The history of previous algorithm duels is used to select the most promis-
ing challenger for the current best candidate algorithm, namely the method
that most convincingly outperformed or rivaled the current champion on prior
datasets similar to the new dataset.

Approach. Given the current best algorithm and a history of relative landmarks
(duels), we can start a tournament game in which, in each round, the current
best algorithm is compared to the next, most promising contender. We select
the most promising challenger as discussed above, and run a CV test with this
algorithm. The winner becomes the new current best candidate, the loser is
removed from consideration. We will discuss the exact procedure in Section Bl

We call this approach active testing (AT7 as it actively selects the most
interesting CV tests instead of passively performing them one by one: in each
iteration the best competitor is identified, which determines a new CV test to
be carried out. Moreover, the same result will be used to further characterize
the new dataset and more accurately estimate the similarity between the new
dataset and all prior datasets.

Evaluation. By intelligently selecting the most promising algorithms the test
on the new dataset, we can more quickly discover an algorithm that performs
very well. Note that running a selection of algorithms is typically done anyway

2 Note that while the term ‘active testing’ is also used in the context of actively
selected sampling landmarks [14], there is little or no relationship to the approach
described here.
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to find a suitable algorithm. Here, we optimize and automate this process using
historical performance results of the candidate algorithms on prior datasets.

While we cannot possibly guarantee to return the absolute best algorithm with-
out performing all possible CV tests, we can return an algorithm whose perfor-
mance is either identical or very close to the truly best one. The difference between
the two can be expressed in terms of a loss. Our aim is thus to minimize this loss
using a minimal number of tests, and we will evaluate our technique as such.

In all, the research hypothesis that we intend to prove in this paper is: Relative
landmarks provide useful information on the similarity of datasets and can be
used to efficiently predict the most promising algorithms to test on new datasets.
We will test this hypothesis by running our active testing approach in a leave-
one-out fashion on a large set of CV evaluations testing 292 algorithms on 76
datasets. The results show that our AT approach is indeed effective in finding
very accurate algorithms in a very limited number of tests.

Roadmap. The remainder of this paper is organized as follows. First, we formu-
late the concepts of relative landmarks in Section Pl and active testing in Section
Bl Next, Section [ presents the empirical evaluation and Section Bl presents an
overview of some work in other related areas. The final section presents conclu-
sions and future work.

2 Relative Landmarks

In this section we formalize our definition of relative landmarks, and explain
how are used to identify the most promising competitor for a currently best
algorithm.

Given a set of classification algorithms and some new classification dataset
dnew, the aim is to identify the potentially best algorithm for this task with
respect to some given performance measure M (e.g., accuracy, AUC or rank).
Let us represent the performance of algorithm a; on dataset dyew as M(a;, dnew)-
As such, we need to identify an algorithm ax, for which the performance measure
is maximal, or Va;, M (a*, dnew) > M(a;, dnew). The decision concerning > (i.e.
whether ax is at least as good as a;) may be established using either a statistical
significance test or a simple comparison.

However, instead of searching exhaustively for a*, we aim to find a near-optimal
algorithm, ax, which has a high probability P(M (a*, dpew) > M(a;, dnew)) to be
optimal, ideally close to 1.

As in other work that exploits metalearning, we assume that ax is likely better
than a; on dataset dye, if it was found to be better on a similar dataset d; (for
which we have performance estimates):

P(M(ax, dnew) = M(ai, dnew)) ~ P(M(ax, d;) = M(as, d;)) (1)

The latter estimate can be maximized by going through all algorithms and iden-
tifying the algorithm ax that satisfies the > constraint in a maximum number of
cases. However, this requires that we know which datasets d; are most similar to
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dnew- Since our definition of similarity requires CV tests to be run on d,,¢,, but we
cannot run all possible CV tests, we use an iterative approach in which we repeat
this scan for ax in every round, using only the datasets d; that seem most similar
at that point, as dataset similarities are recalculated after every CV test.

Initially, having no information, we deem all datasets to be similar to dyeq, SO
that ax will be the globally best algorithm over all prior datasets. We then call
this algorithm the current best algorithm apes: and run a CV test to calculate its
performance on dy,e,,. Based on this, the dataset similarities are recalculated (see
Section ), yielding a possibly different set of datasets d;. The best algorithm on
this new set becomes the best competitor ay, (different from apest), calculated by
counting the number of times that M (ax, d;) > M (apest, dj), over all datasets d;.

We can further refine this method by taking into account how large the perfor-
mance differences are: the larger a difference was in the past, the higher chances
are to obtain a large gain on the new dataset. This leads to the notion of relative
landmarks RL, defined as:

RL(ak, ayest, dj) = i(M (a, d;) > M(aest, d;)) * (M (ax, dj) — M (avest, d;)) (2)

The function i(test) returns 1 if the test is true and 0 otherwise. As stated before,
this can be a simple comparison or a statistical significance test that only returns
1 if aj, performs significantly better than apes+ on d;. The term RL thus expresses
how much better ay, is, relative to apest, on a dataset d;. Experimental tests have
shown that this approach yields much better results than simply counting the
number of wins.

Up to now, we are assuming a dataset d; to be either similar to dpe, or
not. A second refinement is to use a gradual (non-binary) measure of similarity
Sim(dpew, d;j) between datasets dye and d;. As such, we can weigh the perfor-
mance difference between aj and apest on d; by how similar d; is to dyew. Indeed,
the more similar the datasets, the more informative the performance difference
is. As such, we aim to optimize the following criterion:

ap = arg max Z RL(a;, apest, d;) * Sim(dpew, d;)) (3)
% dgjeD

in which D is the set of all prior datasets d;.

To calculate the similarity Sim(), we use the outcome of each CV test on
dpew and compare it to the outcomes on d;.

In each iteration, with each CV test, we obtain a new evaluation M (a;, dpew ),
which is used to recalculate all similarities Sim(dnew,d;). In fact, we will com-
pare four variants of Sim/(), which are discussed in the next section. With this,
we can recalculate equation [3] to find the next best competitor ay.

3 Active Testing

In this section we describe the active testing (AT) approach, which proceeds
according to the following steps:
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1. Construct a global ranking of a given set of algorithms using performance
information from past experiments (metadata).

2. Initiate the iterative process by assigning the top-ranked algorithm as apest
and obtain the performance of this algorithm on dje, using a CV test.

3. Find the most promising competitor ax for apes: using relative landmarks
and all previous CV tests on dj,cq .

4. Obtain the performance of ax on dje, using a CV test and compare with
apest- Use the winner as the current best algorithm, and eliminate the losing
algorithm.

5. Repeat the whole process starting with step 3 until a stopping criterium has
been reached. Finally, output the current apes; as the overall winner.

Step 1 - Establish a Global Ranking of Algorithms. Before having run any
CV tests, we have no information on the new dataset d,c,, to define which prior
datasets are similar to it. As such, we naively assume that all prior datasets are
similar. As such, we generate a global ranking of all algorithms using the perfor-
mance results of all algorithms on all previous datasets, and choose the top-ranked
algorithm as our initial candidate apest- To illustrate this, we use a toy example
involving 6 classification algorithms, with default parameter settings, from Weka
[10] evaluated on 40 UCI datasets [I], a portion of which is shown in Table[Il

As said before, our approach is entirely independent from the exact evaluation
measure used: the most appropriate measure can be chosen by the user in func-
tion of the specific data domain. In this example, we use success rate (accuracy),
but any other suitable measure of classifier performance, e.g. AUC (area under
the ROC curve), precision, recall or F1 can be used as well.

Each accuracy figure shown in Table [l represents the mean of 10 values ob-
tained in 10-fold cross-validation. The ranks of the algorithms on each dataset
are shown in parentheses next to the accuracy value. For instance, if we consider
dataset abalone, algorithm M LP is attributed rank 1 as its accuracy is highest
on this problem. The second rank is occupied by LogD, etc.

The last row in the table shows the mean rank of each algorithm, obtained
by averaging over the ranks of each dataset: R,, = }L Zsjzl Ry, a;, where Rq, 4,
represents the rank of algorithm a; on dataset d; and n the number of datasets.
This is a quite common procedure, often used in machine learning to assess how
a particular algorithm compares to others [5].

The mean ranks permit us to obtain a global ranking of candidate algorithms,
CA.Inour case, CA = (MLP, J48, JRip, LogD,1B1, N B). It must be noted that
such a ranking is not very informative in itself. For instance, statistical significance
tests are needed to obtain a truthful ranking. Here, we only use this global ranking
C'A are a starting point for the iterative procedure, as explained next.

Step 2 - Identify the Current Best Algorithm. Indeed, global ranking C'A
permits us to identify the top-ranked algorithm as our initial best candidate
algorithm apes;. In Table [0 apesy = MLP. This algorithm is then evaluated
using a CV test to establish its performance on the new dataset dyeq.
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Table 1. Accuracies and ranks (in parentheses) of the algorithms 1-nearest neighbor
(IB1), C4.5 (J48), RIPPER (JRip), LogisticDiscriminant (LogD), MultiLayerPercep-
tron (MLP) and naive Bayes (NB) on different datasets and their mean rank

Datasets 1B1 J48  JRip  LogD  MLP NB
abalone .197 (5) .218 (4) .185 (6) .250 (2) .266 (1) .237 (3)
acetylation .844 (1) .831 (2) .829 (3) .745(5) .609 (6) .822 (4)
adult 794 (6) .861 (1) .843 (3) .850 (2) .830 (5) .834 (4)

Mean rank 4.05 2.73 3.17 3.74 2.54 4.78

Step 3 - Identify the Most Promising Competitor. In the next step we
identify ay, the best competitor of apest. To do this, all algorithms are considered
one by one, except for apes: and the eliminated algorithms (see step 4).

For each algorithm we analyze the information of past experiments (meta-
data) to calculate the relative landmarks, as outlined in the previous section. As
equation [ shows, for each aj, we sum up all relative landmarks involving apest,
weighted by a measure of similarity between dataset d; and the new dataset
dnew- The algorithm aj that achieves the highest value is the most promising
competitor in this iteration. In case of a tie, the competitor that appears first in
ranking C'A is chosen.

To calculate Sim(dyew,d;), the similarity between d; and dye., we have ex-
plored four different variants, AT0,AT1,ATWs,ATx, described below.

ATO is a base-line method which ignores dataset similarity. It always returns
a similarity value of 1 and so all datasets are considered similar. This means
that the best competitor is determined by summing up the values of the relative
landmarks.

AT1 method works as ATO at the beginning, when no test have been carried
out on dye. In all subsequent iterations, this method estimates dataset similar-
ity using only the most recent CV test. Consider the algorithms listed in Table
[[ and the ranking CA. Suppose we started with algorithm M LP as the current
best candidate. Suppose also that in the next iteration LogD was identified as
the best competitor, and won from MLP in the CV test: (M (LogD,dnew) >
M(MLP, dyey)). Then, in the subsequent iteration, all prior datasets d; satisfying
the condition M (LogD, d;) > M (M LP, d;) are considered similar to dpe.,. In gen-
eral terms, suppose that the last test revealed that M (ak, dnew) > M (abest, dnew),
then Sim(dnew, d;) is 1if also M (ag, d;) > M (Gpest, d;), and 0 otherwise. The sim-
ilarity measure determines which RL’s are taken into account when summing up
their contributions to identify the next best competitor.

Another variant of AT1 could use the difference between RL(ag, Gpest, dnew)
and RL(ak, apest, d;j), normalized between 0 and 1, to obtain a real-valued (non-
binary) similarity estimate Sim(dpew, d;). In other words, d; is more similar to
dnew if the relative performance difference between a, and apest is about as large
on both d; and dye. We plan to investigate this in our future work.
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ATWs is similar to AT1, but instead of only using the last test, it uses all
CV tests carried out on the new dataset, and calculates the Laplace-corrected
ratio of corresponding results. For instance, suppose we have conducted 3 tests
on dyeq, thus yielding 3 pairwise algorithm comparisons on dy,e,- Suppose that
2 tests had the same result on dataset d; (i.e. M(az, dnew) > M(ay, dnew) and
M (az,d;) > M(ay,d;)), then the frequency of occurrence is 2/3, which is ad-
justed by Laplace correction to obtain an estimate of probability (2+1)/(3+2).
As such, Sim(dnew,d;) = g

ATx is similar to ATWs, but requires that all pairwise comparisons yield the
same outcome. In the example used above, it will return Sim(dyew,d;) = 1 only
if all three comparisons lead to same result on both datasets and 0 otherwise.

Step 4 - Determine which of the Two Algorithms is Better. Having
found aj, we can now run a CV test and compare it with apess. The winner
(which may be either the current best algorithm or the competitor) is used
as the new current best algorithm in the new round. The losing algorithm is
eliminated from further consideration.

Step 5 - Repeat the Process and Check the Stopping Criteria. The
whole process of identifying the best competitor (step 3) of apest and determining
which one of the two is better (step 4) is repeated until a stopping criterium has
been reached. For instance, the process could be constrained to a fixed number
of CV tests: considering the results presented further on in Section [ it would
be sufficient to run at most 20% of all possible CV tests. Alternatively, one could
impose a fixed CPU time, thus returning the best algorithm in h hours, as in
budgeted learning. In any case, until aborted, the method will keep choosing a
new competitor in each round: there will always be a next best competitor. In
this respect our system differs from, for instance, hill climbing approaches which
can get stuck in a local minimum.

Discussion - Comparison with Active Learning: The term active testing
was chosen because the approach shares some similarities with active learning [7].
The concern of both is to speed up the process of improving a given performance
measure. In active learning, the goal is to select the most informative data point
to be labeled next, so as to improve the predictive performance of a supervised
learning algorithm with a minimum of (expensive) labelings. In active testing,
the goal is to select the most informative CV test, so as to improve the prediction
of the best algorithm on the new dataset with a minimum of (expensive) CV
tests.

4 Empirical Evaluation

4.1 Evaluation Methodology and Experimental Set-up

The proposed method AT was evaluated using a leave-one-out method [I8]. The
experiments reported here involve D datasets and so the whole procedure was
repeated D times. In each cycle, all performance results on one dataset were left
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Fig. 1. Median loss as a function of the number of CV tests

out for testing and the results on the remaining D — 1 datasets were used as
metadata to determine the best candidate algorithm.

This study involved 292 algorithms (algorithm-parameter combinations),
which were extracted from the experiment database for machine learning
(ExpDB) [11l22]. This set includes many different algorithms from the Weka
platform [10], which were varied by assigning different values to their most im-
portant parameters. It includes SMO (a support vector machine, SVM), MLP
(Multilayer Perceptron), J48 (C4.5), and different types of ensembles, includ-
ing RandomForest, Bagging and Boosting. Moreover, different SVM kernels were
used with their own parameter ranges and all non-ensemble learners were used
as base-learners for the ensemble learners mentioned above. The 76 datasets
used in this study were all from UCI [I]. A complete overview of the data used
in this study, including links to all algorithms and datasets can be found on
http://expdb.cs.kuleuven.be/ref/blvil.

The main aim of the test was to prove the research hypothesis formulated
earlier: relative landmarks provide useful information for predicting the most
promising algorithms on new datasets. Therefore, we also include two baseline
methods:

TopN has been described before (e.g. [3]). It also builds a ranking of candidate
algorithms as described in step 1 (although other measures different from
mean rank could be used), and only runs CV tests on the first N algorithms.
The overall winner is returned.

Rand simply selects N algorithms at random from the given set, evaluates them
using CV and returns the one with the best performance. It is repeated 10
times with different random seeds and the results are averaged.
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Since our AT methods are iterative, we will restart TopN and Rand N times,
with N equal to the number of iterations (or CV tests).

To evaluate the performance of all approaches, we calculate the loss of the
currently best algorithm, defined as M (apest, dnew) — M (ax, dpew ), Where apest
represents the currently best algorithm, ax the best possible algorithm and M (.)
represents the performance measure (success rate).

4.2 Results

By aggregating the results over D datasets, we can track the median loss of the
recommended algorithm as a function of the number of CV tests carried out.
The results are shown in Figure[Il Note that the number of CV tests is plotted
on a logarithmic scale.

First, we see that ATWs and AT1 perform much better than ATO0, which
indicates that it is indeed useful to include dataset similarity. If we consider a
particular level of loss (say 0.5%) we note that these variants require much fewer
CV tests than AT0. The results also indicate that the information associated
with relative landmarks obtained on the new dataset is indeed valuable. The
median loss curves decline quite rapidly and are always below the AT0 curve.
We also see that after only 10 CV tests (representing about 3% of all possible
tests), the median loss is less than 0.5%. If we continue to 60 tests (about 20%
of all possible tests) the median loss is near 0.

Also note that ATW's, which uses all relative landmarks involving apes; and
dnew, does not perform much better than AT1, which only uses the most re-
cent CV test. This results suggests that, when looking for the most promising
competitor, the latest test is more informative than the previous ones.

Method ATz, the most restrictive approach, only considers prior datasets on
which all relative landmarks including apes; obtained similar results. As shown in
Figure [l this approach manages to reduce the loss quite rapidly, and competes
well with the other variants in the initial region. However, after achieving a
minimum loss in the order of 0.5%, there are no more datasets that fulfill this
restriction, and consequently no new competitor can be chosen, causing it to stop.
The other two methods, ATW's and AT1, do not suffer from this shortcoming.

ATO0 was also our best baseline method. To avoid overloading Figure [l we
show this separately in Figure[2 Indeed, AT0 is clearly better than the random
choice method Rand. Comparing AT0 to TopN, we cannot say that one is clearly
better than the other overall, as the curves cross. However, it is clear that TopN
looses out if we allow more CV tests, and that it is not competitive with the
more advanced methods such as AT'1 and ATW s.

The curves for mean loss (instead of median loss) follow similar trends, but
the values are 1-2% worse due to outliers (see Fig. Bl relative to method AT1).
Besides, this figure shows also the curves associated with quartiles of 25% and
75% for AT'1. As the number of CV tests increases, the distance between the two
curves decreases and approaches the median curve. Similar behavior has been
observed for ATW s, but we skip the curves in this text.
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Fig. 2. Median loss of AT0 and the two baseline methods

Algorithm Trace. It is interesting to trace the iterations carried out for one
particular dataset. Table [2] shows the details for method AT'1, where abalone
represents the new dataset. Column 1 shows the number of the iteration (thus
the number of CV tests). Column 2 shows the most promising competitor ag
chosen in each step. Column 3 shows the index of ay in our initial ranking
CA, and column 4 the index of apest, the new best algorithm after the CV test
has been performed. As such, if the values in column 3 and 4 are the same,
then the most promising competitor has won the duel. For instance, in step
2, SMO.C.1.0.Polynomial .E.3, i.e. SVM with complexity constant set to 1.0
and a 3rd degree polynomial kernel, (index 96) has been identified as the best
competitor to be used (column 2), and after the CV test, it has won against
Bagging.I1.75..100.PART, i.e. Bagging with a high number of iterations (be-
tween 75 and 100) and PART as a base-learner. As such, it wins this round and
becomes the new apes;. Columns 5 and 6 show the actual rank of the competitor
and the winner on the abalone dataset. Column 7 shows the loss compared to
the optimal algorithm and the final column shows the number of datasets whose
similarity measure is 1.

We observe that after only 12 CV tests, the method has identified an algo-
rithm with a very small loss of 0.2%: Bagging.1.25..50.Multilayer Perceptron,
i.e. Bagging with relatively few iterations but with a MultiLayerPerceptron base-
learner.

Incidentally, this dataset appears to represent a quite atypical problem: the
truly best algorithm, SMO.C.1.0.RBF.G.20, i.e. SVM with an RBF kernel with
kernel width (gamma) set to 20, is ranked globally as algorithm 246 (of all 292).
AT1 identifies it after 177 CV tests.
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5 Related Work in Other Scientific Areas

In this section we briefly cover some work in other scientific areas which is
related to the problem tackled here and could provide further insight into how
to improve the method.

One particular area is experiment design [6] and in particular active learning.
As discussed before, the method described here follows the main trends that have
been outlined in this literature. However, there is relatively little work on active
learning for ranking tasks. One notable exception is [I5], who use the notion
of Expected Loss Optimization (ELO). Another work in this area is [4], whose
aim was to identify the most interesting substances for drug screening using
a minimum number of tests. In the experiments described, the authors have
focused on the top-10 substances. Several different strategies were considered
and evaluated. Our problem here is not ranking, but rather simply finding the
best item (algorithm), so this work is only partially relevant.

Another relevant area is the so called multi-armed bandit problem (MAB)
studied in statistics and machine learning [9/16]. This problem is often formulated
in a setting that involves a set of traditional slot machines. When a particular
lever is pulled, a reward is provided from a distribution associated with that
specific lever. The bandit problem is formally equivalent to a one-state Markov
decision process. The aim is to minimize regret after T rounds, which is defined
as a difference between the reward sum associated with an optimal strategy and
the sum of collected rewards. Indeed, pulling a lever can be compared to carrying
out a CV test on a given algorithm. However, there is one fundamental difference
between MAB and our setting: whereas in MAB the aim is to maximize the sum
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Table 2. Trace of the steps taken by AT'1 in the search for the supposedly best
algorithm for the abalone dataset

CV Algorithm used CA CA  abalone abalone Loss D
test (current best competitor, ay) Ql NeW Apest Ak NEW Apest (%) size
1 Bagging.l.75..100.PART 1 1 75 75 1.9 75
2 SMO.C.1.0.Polynomial.E.3 96 96 56 56 1.6 29
3 AdaBoostM1.1.10.MultilayerPerceptron 92 92 47 47 1.5 34
4 Bagging.1.50..75.RandomForest 15 92 66 47 1.5 27
10 LMT 6 6 32 32 1.1 45
11 LogitBoost.I.10.DecisionStump 81 6 70 32 1.1 51
12 Bagging.1.25..50.MultilayerPerceptron 12 12 2 2 0.2 37
13 LogitBoost.I.160.DecisionStump 54 12 91 2 0.2 42
177 SMO.C.1.0.RBF.G.20 246 246 1 1 0 9

of collected rewards, our aim it to maximize one reward, i.e. the reward asso-
ciated with identifying the best algorithm. So again, this work is only partially
relevant.

To the best of our knowledge, no other work in this area has addressed the
issue of how to select a suitable algorithm from a large set of candidates.

6 Significance and Impact

In this paper we have addressed the problem of selecting the best classification
algorithm for a specific task. We have introduced a new method, called active
testing, that exploits information concerning past evaluation results (metadata),
to recommend the best algorithm using a limited number of tests on the new
dataset.

Starting from an initial ranking of algorithms on previous datasets, the
method runs additional CV evaluations to test several competing algorithms
on the new dataset. However, the aim is to reduce the number of tests to a mini-
mum. This is done by carefully selecting which tests should be carried out, using
the information of both past and present algorithm evaluations represented in
the form of relative landmarks.

In our view this method incorporates several innovative features. First, it
is an iterative process that uses the information in each CV test to find the
most promising next test based on a history of prior ‘algorithm duels’. In a
tournament-style fashion, it starts with a current best (parameterized) algo-
rithm, selects the most promising rival algorithm in each round, evaluates it on
the given problem, and eliminates the algorithm that performs worse. Second, it
continually focuses on the most similar prior datasets: those where the algorithm
duels had a similar outcome to those on the new dataset.
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Four variants of this basic approach, differing in their definition of algo-
rithm similarity, were investigated in a very extensive experiment setup involving
292 algorithm-parameter combinations on 76 datasets. Our experimental results
show that particularly versions ATW's and AT'1 provide good recommendations
using a small number of CV tests. When plotting the median loss as a function
of the number of CV tests (Fig.[I]), it shows that both outperform all other vari-
ants and baseline methods. They also outperform AT0, indicating that algorithm
similarity is an important aspect.

We also see that after only 10 CV tests (representing about 3% of all possible
tests), the median loss is less than 0.5%. If we continue to 60 tests (about 20%
of all possible tests) the median loss is near 0. Similar trends can be observed
when considering mean loss.

The results support the hypothesis that we have formulated at the outset of
our work, that relative landmarks are indeed informative and can be used to
suggest the best contender. If this is procedure is used iteratively, it can be used
to accurately recommend a classification algorithm after a very limited number
of CV tests.

Still, we believe that the results could be improved further. Classical
information-theoretic measures and/or sampling landmarks could be incorpo-
rated into the process of identifying the most similar datasets. This could lead
to further improvements and forms part of our future plans.
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Abstract. The aim of the paper is to compare the prediction accuracies obtained
using logistic regression, neural networks (NN), C5.0 and M5’ classification
techniques on 4 freely available data sets. For this a feedforward neural network
with a single hidden layer and using back propagation is built using a new
algorithm. The results show that the training accuracies obtained using the new
algorithm are better than that obtained using N2C2S algorithm. The cross-
validation accuracies and the test prediction accuracies obtained by using both
the algorithms are not statistically significantly different. Due to this and also
since it is easy to understand and implement than N2C2S algorithm, the pro-
posed algorithm should be preferred than the N2C2S algorithm. Along with this
3 different methods of obtaining weights for neural networks are also com-
pared. The classification results show that NN is better than logistic regression
over 2 data sets, equivalent in performance over 2 data sets and has low perfor-
mance than logistic regression in case of 1 data set. It is observed that M5' is a
better classification technique than other techniques over 1 dataset.

Keywords: classification, logistic regression, feedforward neural network,
backpropagation, N2C2S algorithm, C5.0, M5'.

1 Introduction

Classification is a data mining (machine learning) technique which divides up data
instances such that each is assigned to one of a number of classes. The data instances
are assigned to precisely one class and never to more than one class or never to no
class at all. Classification problems can be found in business, science, industry, and
medicine. Some of the examples include bankruptcy prediction, customer churn pre-
diction, credit scoring, medical diagnosis (like predicting cancer), quality control,
handwritten character recognition, speech recognition etc. Some of the widely used
classification techniques are decision trees, rule based classification, neural networks
(NN), Bayesian networks, logistic regression, k-nearest neighbor classifier, support
vector machines etc. In this study, classification is carried out using four fundamental-
ly different approaches, viz., the traditional statistical method based on logistic
regression, the computationally powerful technique based on Artificial Neural Net-
works (ANN), the model tree technique based on M5’ and the classical decision tree
based technique based on C5.0.

P. Perner (Ed.): MLDM 2012, LNAI 7376, pp. 132-[140] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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Logistic regression (sometimes called the logistic model or logit model) is used for
prediction of the probability of occurrence of an event by fitting data to a logit func-
tion. The logistic function which is as given below takes z as the input and f (z) is the
output which is always between 0 and 1.

f(2)=e /(e +1) =1/(14€ " D)evreiies e (1)

The variable z comprises of other independent variables and is given as
Z=B0+B1X1+BZX2+B3X3+B4X4+BSX5+' .. ..+Bka e ..(2)

where B0 is the intercept and B1, 2, B3 are the regression coefficients of independent
variables x1, x2, x3 respectively. Each of the regression coefficients describes the size
of the contributing independent variable. Logistic regression is widely used in medi-
cal field [1], [2].

NN have gained popularity over a few years and are being successfully applied
across wide problem domains such as finance, medicine, engineering, geology etc.
NN can adapt to the data without any explicit specification of functional or distribu-
tional form for the underlying model [3]. NN can approximate any function thus mak-
ing them flexible in modeling real world complex relationships. Neural networks have
successfully been applied for classification problems in bankruptcy prediction [4], [5],
medical diagnosis [6], [7], handwriting recognition [8] and speech recognition [9].
Artificial neural networks are computing systems made up of large number of simple,
highly interconnected processing elements called nodes or artificial neurons. The
focus of this work is on the feedforward multilayer networks or multilayer percep-
trons (MLPs) with 1 input layer, 1 output layer and 1 hidden layer as one hidden layer
is sufficient to map an arbitrary function to any degree of accuracy. The number of
neurons in the hidden layer needs to be fixed to arrive at the correct architecture of the
network. There are many algorithms which construct the networks with single hidden
layer. In the Dynamic node creation (DNC) algorithm [10] the nodes are added to the
hidden layer one at a time till a desired accuracy is obtained. In Feedforward Neural
network Creation Algorithm (FNNCA) [11] and Constructive Algorithm for Real-
Value Examples (CARVE)[12] the hidden units are added to the hidden layer one at a
time until a network that completely recognizes all its input patterns is constructed.
Using these algorithms can lead to overfitting of the training data and do not general-
ize well with unknown data. In Neural network Construction with Cross-Validation
Samples algorithm (N2C2S) [13] the nodes are added to the hidden layer only if they
improve the accuracy of the network on the training and the cross-validation data.
This algorithm uses freezing of weights which can lead to increase in number of hid-
den units [14]. In the proposed algorithm, the weights are not frozen and the nodes are
added to the hidden layer only if they improve the accuracy of the network on the
cross-validation data only. The cross-validation data accuracy is selected because it is
true measure of the performance of the model.

C5.0 is an algorithm to build decision trees using the concept of information entro-
py. The decision tree is used as a predictive model which maps observations about an
item to conclusions about the item’s target value. In these tree structures the leaves
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represent the class labels and branches represent the rules of features that lead to those
class labels.

M5’ builds tree based models in which the trees constructed have multivariate li-
near models. Thus these trees are analogous to piecewise linear functions. They are
applied to classification problems by applying a standard method of transforming a
classification problem into a problem of function approximation [15]. M5’ is based on
MS5 developed by Quinlan [16] but includes techniques to handle enumerated data and
missing values effectively [17].

The organization of the paper is as follows. After the introduction in section 1, sec-
tion 2 presents the algorithm used for building the NN. Section 3 describes the expe-
rimental setup. Section 4 presents the results from the experiments and section V
gives the discussion and conclusion from the work carried out. The paper concludes
with future work in Section 6.

2 The Proposed Algorithm

The steps of the algorithm used to build the neural network are as follows:-

1. Let N; denote the network with I input units and O output units and H hidden
units.

2. The initialization of the weights and bias is done using Nguyen-Widrow method

[18]. The reason for selecting this algorithm is because it chooses values in order

to distribute the active region of each neuron in the layer approximately evenly

across the layer’s input space. Thus the wastage of neurons by this method is less

as compared to random initialization [19].

The accuracy of this network on the training and validation data set is AT, and AV.

4. The number of hidden units is then increased by 1 unit and the weights are initialized
with the Nguyen-Widrow method. In case of N2C2S the weights of the first H hidden
units of N is obtained from the optimal weights of N; and the remaining connection
weights are set randomly. Thus in the proposed algorithm the weights are not frozen
and the whole network is retrained as freezing requires large number of hidden units
to achieve the same performance as that obtained without freezing [14].

5. Let the accuracy of this network N, be AT, and AV, on the training and the vali-
dation set respectively. If AV, > AV, then N, network is better than N, else the
network is run with increasing the hidden units by 1. Thus the steps 4 and 5 are
repeated till we get the network with highest accuracy over validation data set.

bt

3 Experimental Setup

3.1 Neural Networks

a. The neural network was constructed using Matlab.
b. As mentioned above in section 1 the network consists of input layer, output layer
and hidden layer. The number of neurons in the input layer corresponds to the
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number of independent variables. The number of neurons in the hidden layer is
obtained by using the algorithm mentioned in section 2. And the number of neu-
rons in the output layer is corresponding to the category of classes in the depen-
dent data minus one for programming purpose.

c. The back propagation training function is scaled conjugate gradient
algorithm.

d. Each run of the network was carried out for 200 epochs with the goal for error set
as 0.

e. The Nguyen-Widrow algorithm chooses the weight values in order to dis-
tribute the active region of each neuron in the layer approximately
evenly across the layer’s input space. These values contain a degree of
randomness, so they are not the same each time this function is called.
That’s why 30 runs were carried out for each fold of cross-validation and for
each configuration of the network to consider as many as random weight values
and the average of 30 runs is taken. The 10 fold cross-validation was run 10 times
and then the prediction accuracy was averaged over these 10 runs.

3.2 Logistic Regression

The programming for logistic regression is done using R [20], a free statistical soft-
ware. 10 times, 10 fold cross-validation was used to carry out the runs.

3.3 C5.0 and M5’

The results using these algorithms are obtained from [15]. The experiments using
these algorithms were carried out using 10 runs of ten fold cross-validation.

34 Data

The Chapman data set was obtained from [21] and the rest of the data sets were ob-
tained from the UCI Machine Learning Laboratory [22]. The data sets were chosen in
such a way that they are publicly available and the results of classification using neur-
al nets, C5.0 and M5', on these data sets (except one data set) is already available for
comparison purpose. Also the data sets are small in size and contained only conti-
nuous data and binary data. The missing continuous attribute value was replaced by
the average of the non-missing values. The data was normalized before carrying out
the experiments on them.

Table 1. Details of the data sets

Data sets Size Missing Attributes

values Continuous Binary Nominal
Glass(G2) 163 0 9 0 0
Chapman 200 0 6 0 0
Tonosphere 351 0 33 1 0
Voting 435 5.6 0 16 0
Breast Cancer 699 0.3 9 0 0
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3.5 Experiments

All the data sets used were split up into 3 sets, viz training, validation and test data
sets. Let them be referred as Tg, V and Tg data sets respectively. Initially the neural
network is built using the algorithm mentioned in Section 2. The number of neurons
in the hidden layer varied from 1 to 20 maximum. These steps are common to all the
experiments mentioned below.

1. Experiment A

a. The weights in the common step mentioned above were obtained corresponding
to lowest generalization error over validation data set.

b. Then the network with weights fixed as obtained from step a was run on the
training set comprising of the training set T and validation set V and its accu-
racy was tested on the testing data set Tg. This prediction accuracy is reported
in the results.

2. Experiment B

In this experiment, the steps a and b remain the same as experiment A except that the
criteria for obtaining weights in step a is corresponding to the highest prediction accu-
racy over the validation data set.

3. Experiment C

In this experiment there was no external criteria laid down as done in experiments A
and B for getting the weights. Thus the weights were not fixed. The weights which
were obtained by each run were used as it is for getting the prediction accuracy over
the training set.

4 Experimental Results

The prediction accuracies obtained by 2 different methods were compared by using
the Welch's t test [23]. Welch’s test is an adaptation of Student’s t-test with the 2
samples having unequal variances. The null hypothesis that the two means are equal
was rejected at the significance value of 0.01. Following are the results from various
experiments tried out:-

1. The number of hidden units and the accuracy rates of the neural networks con-
structed by N2C2S and the proposed algorithm are given in the tables 2 and 3.

Table 2. Results using N2C2S algorithm

Using N2C2S Algorithm
Data set Hidden units Training Accuracy Cross-validation Accuracy
Glass 2 7.06+-0.84 89.98+-1.10 81.90+-3.43
Chapman #l * *
Ionosphere 4.20+-0.87 99.20+-0.15 92.65+-1.16
Voting 4.42+-0.61 98.55+-0.13 96.64+-0.48
Breast Cancer 3.4+-0.51 97.47+-0.06 96.94+-0.27

! * Indicates that the data is not available.
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Table 3. Results using proposed algorithm

Using Mentioned Algorithm
Data set Hidden units Training Accuracy Cross-validation Accuracy
Glass 2 17 95.15+-0.96 79.9+-2.31
Chapman 1 93.01+-0.67 84.44+-7.28
Ionosphere 2 99.13 +-0.2 91.35+-4.65
Voting 11 99.36+-0.63 96.03+-2.95
Breast Cancer 1 99.01+-0.55 95.40+-1.69

2. The prediction accuracy over test data set obtained using experiments A, B and C is
given in the table 4. This prediction accuracy is also compared with that obtained

from logistic regression.

Table 4. Prediction accuracies using logistic regression and by neural networks using experiments

A,Band C
Data sets Logistic Regres- | Exp A Exp B Exp C
sion
Glass 2 69.88+1.09 77.97+-2.16 78.10+-1.97 76.6+-0.6
<
Chapman 86.45+-1.01 »* | 80+-1.89 80.611+-1.75 81.33+-0.77
Ionosphere 87.74+-0.93 « 90.64+-1.1 90+-0.9 90.38+-0.75
Voting 95.53+-0.41 96.28+-1.58 95.8+-2.41 95.73+-2.65
Breast Cancer | 96.55+-0.16 95.83+-0.81 95.79+-0.9 95.7+-1.87

3. From table 4, the summary of results showing the comparison of neural networks
with logistic regression is given in the table 5. The wins and losses are decided as

per the Welch’s test described at the start of this section.

4. The test prediction accuracies using the N2C2S algorithm and the proposed algo-

Table 5. Summary of results

NN versus Win Ties Losses
Logistic 2 2 1
Regression

rithm are given in the table 6.

Table 6. Prediction accuracies using N2C2S algorithm and prosed algorithm

Data sets Using N2C2S Exp A Exp B Exp C
Glass 2 7791+-2.5 77.97+-2.16 78.10+-1.97 76.6+-0.6
Chapman * 80+-1.89 80.611+-1.75 81.33+-0.77
Ionosphere 89.52+-2.26 90.64+-1.1 90+-0.9 90.38+-0.75
Voting 96.09+-0.48 96.28+-1.58 95.8+-2.41 95.73+-2.65
Breast Cancer 96.58+-0.24 95.83+-0.81 95.79+-0.9 95.7+-1.87

> < indicates that the prediction accuracy is less compared with other methods.
? » indicates that the prediction accuracy is high compared with other methods.
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5.

Reference [15] gives the prediction accuracies using C5.0 and M5’ on the same
data sets used in this study. The prediction accuracies of logistic regression and NN
are compared with that obtained by using C5.0 and M5 algorithms in table 7. The
results of C5.0 and M5’ are the averages and standard deviations from 10 runs of
ten fold cross-validation experiments. The prediction accuracies using NN from
experiment A are used here.

Table 7. Prediction accuracies using NN, Logistic Regression, C5.0 and M5’

Data sets Prediction Accuracy using

Neural Networks | Logistic Regression C5.0 M5’

Glass 2 77.97+-2.16 69.88+1.09 78.27+-2.1 81.8+-2.2

Chapman 80+-1.89 86.45+-1.01 * *

Ionosphere 90.64+-1.1 87.74+-0.93 88.9+-1.6 89.7+-.12

Voting 96.28+-1.58 95.53+-0.41 96.3+-0.6 96.2+-0.3

Breast Cancer | 95.83+-0.81 96.55+-0.16 94.5+-0.3 95.3+-0.3

5

Discussion and Conclusions

Table 6 shows that the prediction accuracies using N2C2S is same as that ob-
tained using the proposed algorithm. The proposed method of building the net-
work used 30 iterations for each run, thus taking more combinations of weights
using Nguyen-Widrow initialization method into consideration to arrive at the re-
sults as compared to running the N2C2S algorithm [11] which uses random
weight initialization only once. Also the results using N2C2S algorithm are based
on a smaller training set than the one used for the experiments carried out. Thus
the results using N2C2S algorithm are likely to change if more iterations and a
larger training set is considered.

The results in table 2 and 3 show that the hidden units obtained using proposed
algorithm was less than that obtained using N2C2S over 2 data sets and greater in
case of 2 other data sets. Thus it cannot be concluded if the non-freezing of
weights has any advantage over freezing of weights on the number of hidden
units and some more experiments need to be performed over different data sets to
arrive at some conclusion.

The prediction accuracy over training data sets using proposed algorithm was
statistically better than that obtained using N2C2S algorithm over 3 data sets.
From tables 2, 3 and 6, it is observed that the cross-validation accuracies and test
accuracies obtained using both the algorithms are not significantly different. Thus
the proposed algorithm should be preferred as the changes are easy to understand
and implement as compared to the N2C2S algorithm.

From table 4 it is observed there is no single experiment which has performance
better than other 2 experiments.

From tables 5 it is observed that NN gives better performance than logistic re-
gression 2 data sets; gives the same results on 2 data sets and lower than that of
logistic regression on 1 data set. But it is observed that NN consumes more
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execution time than logistic regression. Also logistic regression technique is a
white-box technique which allows the interpretation of the model parameters
whereas NN is a black box technique which does not allow the interpretation of
the model.

6. NN is better than C5.0 over 1 data set and equivalent in performance on the re-
maining data sets.

7. Table 7 shows that M5’ is better than NN, logistic regression and C5.0 over 1
dataset. M5’ is better than logistic regression over 2 data sets and equivalent in
performance for the remaining datasets. M5 and NN do not have significantly
different accuracies except for 1 data set as mentioned at the starting of this point.
M5’ and C5.0 do not have significantly different accuracies on the data sets ex-
cept for 1as mentioned at the starting of this point.

8. (5.0 is better than logistic regression over 1 data set and equivalent in perfor-
mance on the remaining data sets.

6 Future Work

From tables 2, 3 and 6, the proposed algorithm for building the neural networks has
given cross-validation prediction accuracies and test accuracies which are not signifi-
cantly different with that obtained by using the N2C2S algorithm. The further work
will be to improve this algorithm so that the cross-validation accuracies are better than
that obtained using N2C2S algorithm and the prediction accuracies over test data are
better than that obtained by using N2C2S algorithm and logistic regression. Also
some more experiments need to be performed using N2C2S algorithm and the
changes suggested in point 1 of section 5.
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Abstract. Context Free Grammars (CFGs) are widely used in program-
ming language descriptions, natural language processing, compilers, and
other areas of software engineering where there is a need for describing
the syntactic structures of programs. Grammar inference (GI) is the in-
duction of CFGs from sample programs and is a challenging problem. We
describe an unsupervised GI approach which uses simplicity as the crite-
rion for directing the inference process and beam search for moving from
a complex to a simpler grammar. We use several operators to modify a
grammar and use the Minimum Description Length (MDL) Principle to
favor simple and compact grammars. The effectiveness of this approach
is shown by a case study of a domain specific language. The experimental
results show that an accurate grammar can be inferred in a reasonable
amount of time.

Keywords: grammar inference, context free grammar, domain specific
language, minimum description length, unsupervised learning.

1 Introduction

It is difficult to retrieve information from unsupervised data about which little
information is known. For unsupervised data generated by a grammar, induc-
tion of the underlying grammar is a challenge. However, machine learning of
grammars finds many applications in software engineering, syntactic pattern
recognition, computational biology, computational linguistics, speech recogni-
tion, natural language acquisition, etc. Recovery of grammars from legacy sys-
tems in software engineering is used to automatically generate different software
analysis and modification tools. Grammars for this case can be generated semi-
automatically from compilers and language references and other artifacts rather
than generating from scratch [5]. But in the application of generating grammars
for Domain Specific Languages (DSLs) [9] being designed by domain experts
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who may not be well versed in language design or implementation, no compilers
or language references exist and the idea suggested in [5] does not apply. The
syntactic structure of the underlying grammar needs to be generated entirely
based on the sample sentences of the language, which the domain experts are
able to provide.

Grammar inference [3] is a subfield of machine learning. Although it is believed
that learning the structure of Natural Languages solely from positive instances
is possible, Gold’s theorem [2] states that based on positive evidence only, it is
impossible to learn any class of languages other than those of finite cardinality.
Gold’s theorem provides one of the most important theoretical results in the
grammar induction field and proves that a learner, if using an “identification in
the limit” guessing rule, will be wrong only a finite number on times. Identifica-
tion in the limit of any of the four classes of languages in the Chomsky hierarchy
using only positive samples is impossible, but Chomsky hierarchy languages can
be generated with the use of both positive and negative samples which becomes
the complete representation of the corresponding language. Final generalization
in Gold’s theorem would be the automaton that accepts all the positive strings
but rejects all the negative strings. But using only the positive samples, it is
uncertain and difficult to determine when to stop the automaton process be-
cause of lack of negative samples. This suggests the need of some restriction
during the inference process. Several grammar induction techniques have been
developed for generating a grammar from positive samples only but it is still a
challenging research field. Though identification of general purpose programming
languages using grammar inference techniques is not feasible due to the large
search space required, we have found that small Domain Specific Languages can
still be inferred. The use of the Minimum Description Length (MDL) Principle
for grammar inference [6/13] has been tested under simple artificial grammars
but we show in this paper, along with experimental results, how well the MDL
principle works on a simple but real and complete DSL. The paper describes
how underlying grammars of a small DSL can be learned from positive samples.
In Section 2, we present related work in this area. Section 3 explains the Min-
imum Description Length Approach. The experimental results and evaluation
are given in Section 4. Finally we conclude in Section 5.

2 Related Work

Grammar inference has been mainly successful in inferring regular languages. RPNI,
the Regular Positive and Negative Inference algorithm [I1], was developed for
learning regular languages from the complete representation (positive and neg-
ative samples). The genetic approach [I] gives results which are comparable to
other approaches for regular languages. Context Free Grammar inference is more
difficult than regular grammar inference. Even the use of both negative and pos-
itive (characteristics) samples has not resulted in good success. The best results
have come from providing extra information to the inference process, for exam-
ple, the structure of the generated parse trees. Our goal is to find a new algorithm



Grammar Inference 143

which entirely learns grammar from given positive samples when neither complete
structured sentences nor partially structured sentences are available.

Various works have used clustering as an approach to grammar inference.
An iterative biclustering approach [I5] has been used for finding the clusters
and then grammar. Based upon the given corpus, a table T of the number
of appearances of each symbol pair in the corpus is created. This approach
generates a basic grammar based on biclusters in the corpus C, and replaces the
appearances of the symbol pairs (biclusters) by nonterminal symbols. The table
T is updated according to the reduction. The process is repeated until no further
rules can be generated.

Genlnc [4] is an unsupervised CFG learning algorithm for assisting DSL devel-
opers who lack deep knowledge of computer science and programming language.
Genlnc uses ordered characteristic positive samples and it is based on the PACS
(Probably Approximately Correct learning under Simple distributions)[7] learn-
ing paradigm and infers a grammar incrementally. Genlnc analyzes one training
sample at a time, maintains only one CFG in the memory and does not reprocess
previously processed samples. It compares the current sample with the current
CFG and infers the next grammar. The requirement of ordered characteristic
samples limits the use of Genlnc for real problems which may not be character-
istic. A different ordering of samples might result in a wrong grammar and the
difference between two successive samples should be small; only one new feature
is allowed, which again restricts the entire grammar inference process.

A memetic algorithm is a population-based evolutionary algorithm enhanced
with local search. MAGIc (Memetic Algorithm for Grammatical Inference) [§]
infers context free grammars from positive samples. An initial population of the
grammars is generated at the beginning using the Sequitur algorithm [I0], that
detects repetition in a sample and factors it out by forming grammar rules. The
grammar generated by Sequitur is not generalized and parses only the samples
from which the grammar was generated. After initialization, an evolutionary
cycle is performed, where the population of grammars undergoes transformations
through local search, mutation, generalization and selection operators, which
selects grammars for the next generation based on individual fitness values. After
a certain number of generations, only those generated grammars that parse all
positive samples are returned as the result. In the local search step it uses the
Linux diff command to find the difference between two random samples and this
difference is used to change the selected grammar

3 Minimum Description Length Approach

We explore a method for grammar inference using Minimum Description Length
(MDL) [14], which incorporates a heuristic that tries to compress the grammar
as well as the encoding of the positive sentences by the grammar. Both GRIDS
(“GRammar Induction Driven by Simplicity”) [6] and e-GRIDS [I3] direct the
search towards a simple grammar. Most of the prior works that use MDL for
grammar inference are either for some artificial grammars [13] or for sub-parts
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of natural language grammar like adjective phrase grammar [6]. Application of
the MDL approach to infer a grammar for domain specific languages like the
DESK language [12] is explored in this paper. Entirely based on positive sam-
ples, the initial step is to generate one grammar rule per sample. The initial
grammar is only able to recognize the input samples. We need to generalize this
grammar. The main problem in generalization is that the inferred grammar can
be overgeneralized and may recognize many sentences that are not in the target
language leading to a grammar that we are not interested in. Our main goal is to
infer a grammar that will be able to recognize all the positive samples but reject
negative samples. Because of the great chance of a grammar being overgeneral-
ized, most algorithms require negative samples as a part of the input, to prevent
overgeneralization of grammars. But for most programming languages, we only
have positive samples and hence, our approach should generate a grammar using
positive samples only. The heuristic that is used to prevent overgeneralization is
simplicity. This heuristic not only tries to compress the grammar but also the
encoding of all the positive samples by the grammar. Initially, a FLAT gram-
mar, which has one production rule per sentence, is generated. Once the FLAT
grammar is generated, the grammar rules are generalized using some operators.
Generalization can take a variable number of iterations but convergence is en-
sured as each iteration chooses the grammar that needs a minimum number
of bits to encode both the grammar and all the samples with respect to the
grammar. The evaluation function for choosing the best grammar is the sum of
Grammar Description Length (GDL) and Derivation Description Length (DDL)
and given by:

Number of bits = GDL + DDL
= |G| + |code(D/G)]

where |G| is the number of bits required to represent the grammar and |code(D/G)|
is the number of bits required to represent the data (D) given the grammar |G|.
This heuristic directs the inference process towards a simple grammar but pre-
vents overly general grammars. Because of the consideration of both the Grammar
Description Length (GDL) and Derivation Description Length (DDL), the gram-
mar is neither overly general nor trivial. GDL prevents trivial grammar because
it tries to choose a grammar that can be encoded with few bits. At the same time,
DDL prevents unnecessarily overgeneralized grammar because it requires a larger
number of bits to encode the samples when the grammar is over-general. Hence, in
each iteration we improve our grammar and finally the process terminates giving
the best grammar such that the minimum number of bits are required to encode
both the grammar and samples given the grammar. Actually, DDL measures the
derivation power of the grammar and the best way to measure that is to count all
the derivations, which is not always possible. So, instead of counting all possible
derivations, we encode the samples with respect to the grammar and the number
of bits required is considered as the DDL. Three operators are used to modify the
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grammar. Before explaining how each operator is used to generalize the grammar,
calculation of GDL and DDL is explained with an example.

3.1 Grammar Description Length (GDL)

The encoding of grammar and data should be done in such a way that a hy-
pothetical recipient should be able to decode the bits to the original grammar
and data. The grammar is viewed as a piece of code and encoding is done on
the code. We separate all the grammar rules into three subsets and these three
subsets are encoded and sent to receiver sequentially. The first subset contains
all the rules having the start symbol as the head, the second subset contains all
the terminal (unary) rules and the third subset contains all the remaining rules.

1. First subset, which we call Start Rules (Syyes), contains all the rules having
start symbol as head (i.e., left hand side of the rule is the start symbol).

2. Second subset, which we call Terminal Rules (T} yes), contains all the rules
of the form X — « where X is any nonterminal symbol excluding start
symbol and « is any terminal symbol.

3. Third subset, which we call NonTerminal Rules (NT};es), contains all other
rules. Each rule in this subset will have only nonterminal symbols on the right
side. The head of each rule is one of the nonterminal symbols excluding start
symbol.

The bits required to encode all rules in the mentioned three subsets gives us the
GDL. The separation of the rules into three subsets makes encoding of each sub-
set independent of each other and hence, overall encoding is easier. First, all the
rules in S, s are encoded and transmitted. Similarly, encoding and transmission
of Tryies is done and finally NT,..s. But before encoding, rules are considered
as strings of symbols and each rule is separated from others by a special symbol
called the STOP symbol. The STOP symbol helps to determine when each rule
ends. Except the terminal rules whose right hand side (body of the rule) is a
single terminal symbol, all other rules have nonterminal symbol on both body
and head. The following three rules A — BC, C — CD and D — DE, which
belong to the last subset NT,yes, are converted to ABCH#CCD#DDE so that
each rule is separated by a special STOP symbol (#) and the first nonterminal
symbol after each # is known to be head of the rule and the remaining nontermi-
nal symbols are the body of the rule. Since, all the rules in the subset S5 have
the start symbol as the head and there is only one start symbol for the entire
grammar, the head of these rules can be ignored as it is obvious. Three rules
S — AB, S — BC and S — SB, belonging to the S5 subset, are encoded
as string of symbols as AB#BC+#SB. Similarly, each rule in the T}, .s subset
has a single terminal symbol on the right side but can have any nonterminal
symbol except the start symbol on the left side. Therefore, there is no need of #
to separate these terminal rules as it is obvious that after each terminal symbol,
a new rule starts. Three rules A — a, B — b and C — ¢ from the T} s subset
are encoded as AaBbClec.
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Now, we explain how the exact number of bits to encode the entire grammar
is calculated. As explained above, grammar rules are encoded as a string of sym-
bols and these symbols can be either terminal or nonterminal. So, we need to
find the number of unique nonterminal symbols and number of unique terminal
symbols in the grammar. As all the rules having head as the start symbol are
encoded separately, we exclude the start symbol while counting unique nonter-
minal symbols. Let county ny1s be the number of unique nonterminal symbols in
our grammar and the introduction of special STOP symbol (#) makes the total
count county nyts + 1. Therefore, the number of bits that are required to encode
each nonterminal symbol i1

Bitsnt = log(countynrs + 1)

Let countyrs be the number of unique terminal symbols in our grammar; the
number of bits that are required to encode each terminal symbol is:

Bitst = log(countyrs)

After calculating the bits required for encoding each terminal and nonterminal
symbol, the total bits for encoding three subsets are calculated. Separation of
one subset from another by the STOP symbol # should be considered to find the
overall GDL after calculating the bits required for each subset. For encoding the
first subset (Syyies ), the total number of nonterminal symbols in each rule should
be found. Let the body of a rule in this subset have countyoqyn7s nonterminal
symbols and when the STOP symbol (#) is added at the end of each rule, this
count becomes count, en7s + 1. Therefore, the total bits required for encoding
all the rules in subset Syyes 18:

Bitsg = Z ((countpogynts + 1) x log(countynrs +1)) (1)

rules

Vrulein Srules

Each rule in terminal subset T;.,;es has exactly one nonterminal as the head and
one terminal as the body. As separation of rules does not require the STOP
symbol, each rule can be encoded just by encoding a nonterminal and a terminal
symbol. The total bits required for encoding all the rules in this subset is:

Bitsr,,,.. = Z (log(countynrs + 1) + log(countyrs)) (2)

Vrulein Trqyjes

For the third subset, let the body of each rule have a total of countyodynrs
nonterminal symbols and adding the STOP symbol (#) and head symbol incre-
ments this count by two and makes it countyoaynts + 2. The total bits required
for encoding all the rules in subset N7, yes is:

Bitsnr,,,.. = Z ((countpoaynts + 2) X log(countynrts + 1)) (3)
Vrulein NT qyjes

! Log represents the logarithm for base 2.
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One subset is separated from other using a STOP symbol and the encoding of
this STOP symbol requires log(county s+ 1). Now the total GDL is given by:

GDL = Bitsg,.,,.. + log(countynrs + 1) + Bitst,,.. (4)

+log(countynrs + 1) + Bitsnr, ;.. ()

Lets consider the grammar in Fig. [[l The start symbol of the grammar is Np.
There are only two nonterminal symbols (N7 and N3) and three terminal symbols
in the grammar. The first subset S;,es contains the first rule, the second subset
Trules contains the remaining three rules and the third subset N7T;.es does not
have any rules. According to equation [ we get

Bitsg =(241) x log(2+1) = 3log(3) = 4.75 bits

~ -

rules

~
N()*)Nl N3

Using the equation 2]
Bitsr,,,.. =1og(2+ 1) 4+ log(3) +log(2 + 1) + log(3)
N~ N~

~ - ~ -
Ni—print N3—id
+log(2 + 1) + log(3) = 9.5 bits
~ ~ -
Ns—number

And, BitSNTmles =0
Therefore, using equation Ml
GDL = Bitsg,,,,.
+log(countynrts + 1) + Bitsnr,,,..

=4.75+10og(2+ 1)+ 9.5+ 1log(2+1)+0
= 17.42 buts

+ log(countynrs + 1) + Bitsr,

rules

3.2 Derivation Description Length (DDL)

The number of bits required to encode all the samples based on the grammar G
is the derivation description length. It should consider the complete derivation
of each sample from the grammar G. As shown in Fig.[2] the complete derivation
of the sample should be considered. To encode a sample “print id”, the reader
should be told which one of the start rules is used for parsing the current sample.
According to the grammar in Fig[l] as there is only one start rule Ng — Ny N3,
log(1) bits are required to specify the start rule. Again, other rules that are
used for parsing the given sentence should also be specified uniquely. There is
only one rule having N; as head, so log(1) bits required for specifying the rule
N1 — print. Similarly, there are two rules having N3 as the head and one of
the two rules used in deriving the sample should be specified uniquely, so this
requires log(2) bits. The total DDL for this single sample is log(1) + log(1) +
log(2) = 1.

In this way, by adding the contribution to the DDL from each sample, the
overall DDL is found. So, search will be performed and the grammar that requires
the minimum bits for encoding both the grammar and data is chosen.
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No — N1 N3
Ni — print
N3 — id

N3 — number

Fig. 1. Sample grammar to show calculation of GDL

"print id"”

print id number

ADDL =log(1)+log(1)+log(2)=1.0

Fig. 2. Effect of sample "print id” on DDL

3.3 Operators

Different operators that are used to modify and generalize a grammar are ex-
plained in this section.

Merge Operator. The merge operator merges two nonterminal symbols into a
new nonterminal symbol. Every occurrence of the merged nonterminals is re-
placed by the new nonterminal symbol. If nonterminals X and Y are merged
into a new common nonterminal Z, then every occurrence of X is replaced by Z,
and likewise for Y. For example, merging of X and Y into Z for a rewrite rule
S — X PY produces arule S — Z P Z. The resulting grammar after using this
operator always has greater coverage than before. But at the same time, the to-
tal number of nonterminal decreases and some of the production rules might be
eliminated because merging of two nonterminals might produce identical pro-
duction rules and hence GDL always decreases. The DDL either decreases or
increases depending upon the number of eliminated rules. If no rules are elimi-
nated, DDL always increases because of the increase in grammar coverage. Table
[ shows the effect of the Merge Operator on a sample grammar.

Create Operator. The create operator creates a new nonterminal symbol from
two consecutive nonterminals, that is, a sequence of nonterminals of length 2 is
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Table 1. The effect of Merge Operator, when N2 and N3 are merged

Before “Merge Operator” After “Merge Operator”

No — N5 N> No — N5 Ny
Ny — N5 N3 N5 — print
N5 — print N4 — id

No — id N4 — number

N3 — number

renamed as a new nonterminal. A new production rule is created and all the
occurrences of those two consecutive nonterminals are replaced by the new non-
terminal. If the sequence XY is renamed to Z, a rewrite rule Z7 — X Y is added
and all the occurrences of XY are substituted by Z. The coverage of the grammar
remains the same and hence the DDL is unchanged. Because of the introduction
of the new rule, the GDL slightly increases, but the substitution of XY by Z
slightly decreases the GDL. So, depending upon the substituted sequences of
nonterminals, the GDL sometimes increases and sometimes decreases. Table
shows the effect of the Create Operator on a sample grammar.

Table 2. The effect of Create Operator, when N2 and N4 are combined

Before “Create Operator”  After “Create Operator”

No — N1 N3 N2 Ny No — N1 N3 N5

No — N1 Ny Nz Ny No — N1 Ny N5

N1 — print N5 — N2 Ny

N3 — id N1 — print

N4 — number N3 — id

Ny — + N4 — number
Ny — +

Create Optional Operator. Only using merge and create operators resulted in
grammars that were less general than we expected. Therefore, we defined an
additional operator to create a new production rule by (optionally) attaching a
nonterminal at the end of the rule produced by the create operator. If the create
operator produces a rule Z — XY, then the create optional operator appends
a new rule Z — XY N where N is any existing nonterminal. This operator
doesn’t change the original rule but adds one more production rule and makes
the appended nonterminal optional with respect to the original rule. GDL and
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DDL both get affected because of the addition of the new rule and the chance
of eliminating some duplicate rules. Table Blshows the effect of Create Optional
Operator on a sample grammar.

Table 3. The effect of Create Optional Operator, making N5 optional on rule N5 —

N2 Ny

Before “Create Optional After “Create Optional

Operator” Operator”
No — N1 N3 N5 No — N1 N3 N5
No — N1 N4 N5 No — N1 N4 N5
N5 — N2 Ny N5 — Na Ny
Ny — print N5 — N2 N4 Ns
N3 — id N1 — print
N4 — number N3 — id
Ny — + Ny — number

No — +

Learning Process. A beam search is used for selecting the best n grammars.
The initial grammar has a single production rule for a single sentence (the beam
contains only the single grammar initially). During the learning process, each of
the operators is repeatedly applied unless the beam search can’t find any better
grammars than the original. Initially, the merge operator is applied to the initial
grammar and all ways of merging nonterminal symbols are explored. For each
of the grammars in the beam, corresponding successor grammars are created
by repeatedly applying the merge operator and those grammars that require
the minimum number of bits to encode are chosen for the next iteration. When
the merge operator can’t produce any better grammars, the process switches
mode and starts applying the create operator. As with the merge operator,
for each grammar in the beam, the create operator is applied repeatedly and
corresponding successor grammars are generated. These grammars are evaluated
and the beam search selects the best n grammars. If this operator can’t produce
any successor grammars better than the parent grammar, it tries to use the
next operator. At last the create optional operator is applied, and selection and
termination are same as other operators. This entire process repeats until none of
the operators can produce successor grammars better than the parent grammar.
The best grammar from the beam is chosen and it is the inferred grammar.

4 Experimental Result and Evaluation

Since the main goal of this work is the inference of grammars for DSLs, we per-
formed an experiment on samples of the DESK calculator language [12]. As the
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Table 4. The original and inferred grammar of DESK language

Original DESK Grammar Inferred DESK Grammar

N0—>N5N4

N0—>N5N8
N, int EC N5 — N5 No

— prin

0 p N5 — N5 N3
EFE—-E+ F

N2 — N3 N3
E—F

N3 — Ny +
F —id

Ng — N4 N7
F — number

Ng—)NsNg
C — where Dg

N7 — where Ng
C —e

N6—>N10N4
Ds — D

Nig — Ny =
Dy — Ds: D

NQH;N(;
D — id = number )

N5 — print

N4*>id

N4 — number

MDL approach requires a very large number of sample sentences, a large num-
ber of samples were generated from the original grammar. All the samples were
randomly generated because expansion of ambiguous nonterminals was selected
randomly. We tried the MDL approach by changing beam size, total number of
positive samples and maximum length of each sample. The left column of Tabled]
displays the original grammar and right column displays the inferred grammar
when beam size = 2, maximum length of sample = 30 and total number of
positive samples = 400.

The inferred grammar has recursive power that can generate samples of any
length and can generate every string that the original grammar can. The inferred
grammar is almost in Chomsky Normal Form (CNF), which makes it easier to
visualize the grammar. Although the inferred grammar is not exactly same as
the original grammar, we can conclude that the Minimum Description Length
approach gives us a very good grammar that contains both recursive and optional
production rules. In our inferred grammar, some unwanted production rules exist
because the operators that were used in the learning process were not able to
make the grammar completely unambiguous.

After inferring the final grammar from the MDL approach, each nonterminal
symbol which only has a single terminal rule and is used only once in the entire
grammar is replaced by the corresponding terminal symbol and that terminal
rule is deleted from the grammar. This last step does not change the coverage
of the grammar but makes it look user friendly and more understandable.
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However, the inferred grammar has slightly higher coverage than the origi-
nal grammar. In the original grammar, the condition after the terminal symbol
where has a sequence of id = number separated by semicolons, whereas the
inferred grammar has a sequence of Ny = N, separated by semicolons (and
Ny — id | number). This is caused by the merge operator, which merges
two nonterminals into a new nonterminal. As illustrated in Table [l on a sam-
ple grammar, the merge operator merges nonterminals Ny (No — id) and Nj
(N3 — number) into a new common nonterminal Ny thereby resulting in pro-
duction rules Ny — id and Ny — number. Replacing every occurrence of both
Ny and N3 by Ny changes the sequence id = number into Ny = N4. Although
this operator is a part of the algorithm previously used in [6I/I3], the correction
step to prevent such generalization has not been explored yet. We believe that
the entire learning process should be adjusted to address this problem and we
plan to explore this direction in future.

5 Conclusion and Future Work

We explained an approach of grammar induction that uses the minimum de-
scription length principle. The MDL approach, which tries to bias the learning
process towards simple grammars, considers both the encoding length of a gram-
mar as well as the encoding length of samples with respect to the grammar and
is able to prevent the grammar both from being trivial and overly general. The
entire grammar induction is based on MDL, beam search and three learning
operators, and is able to infer a correct grammar for DESK language without
the need of negative samples. Most of the previous work [6/13] that studies the
use of the MDL principle for grammar inference draws a conclusion from the
grammar inference of simple artificial languages, which might be different than
the real existing languages in various aspects. We experimentally illustrate how
well grammar inference based on the MDL principle works on a simple but real
and complete DSL. This study evaluates the application of the MDL principle
on grammar inference of a language that was never exploited using the learning
algorithm and heuristic which we have used. We reach a conclusion that MDL
based grammar inference approach is effective in learning the grammar not only
of simple artificial languages but of a real existing DSL.

Exploring more operators for improving the inferred grammar will be our fu-
ture goal. Comparing to the original grammar, the inferred grammar, although
bigger, has almost the same coverage. Introduction of extra nonterminals and ab-
sence of rules with three symbols in the body in our inferred grammar increased
its size. In the future, we want to explore more about the reduction of size of
the inferred grammar. To automatically learn a grammar having exactly the
same rules as in the original grammar is extremely difficult. So, rather than just
comparing the size and the coverage of our inferred grammar with the original
grammar, our future plan will be to compare it against the one inferred by other
state-of-art grammar inference approaches. At this point, the MDL approach is
tested only for the DESK language. We are interested to look at more real DSL
languages and analyze the behavior of this learning algorithm.
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Abstract. Random Forest is a computationally efficient technique that
can operate quickly over large datasets. It has been used in many re-
cent research projects and real-world applications in diverse domains.
However, the associated literature provides almost no directions about
how many trees should be used to compose a Random Forest. The re-
search reported here analyzes whether there is an optimal number of
trees within a Random Forest, i.e., a threshold from which increasing
the number of trees would bring no significant performance gain, and
would only increase the computational cost. Our main conclusions are:
as the number of trees grows, it does not always mean the performance
of the forest is significantly better than previous forests (fewer trees),
and doubling the number of trees is worthless. It is also possible to state
there is a threshold beyond which there is no significant gain, unless a
huge computational environment is available. In addition, it was found
an experimental relationship for the AUC gain when doubling the num-
ber of trees in any forest. Furthermore, as the number of trees grows,
the full set of attributes tend to be used within a Random Forest, which
may not be interesting in the biomedical domain. Additionally, datasets’
density-based metrics proposed here probably capture some aspects of
the VC dimension on decision trees and low-density datasets may require
large capacity machines whilst the opposite also seems to be true.

Keywords: Random Forest, VC Dimension, Number of Trees.

1 Introduction

A great interest in the machine learning research concerns ensemble learning —
methods that generate many classifiers and combine their results. It is largely
accepted that the performance of a set of many weak classifiers is usually better
than a single classifier given the same quantity of train information [28]. En-
semble methods widely known are boosting [12], bagging [8], and more recently
Random Forests [7124].

The boosting method creates different base learners by sequentially reweight-
ing the instances in the training set. At the beginning, all instances are initialized
with equal weights. Each instance misclassified by the previous base learner will
get a larger weight in the next round, in order to try to classify it correctly. The
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error is computed, the weight of the correctly classified instances is lowered, and
the weight of the incorrectly classified instances is increased. The vote of each
individual learner is weighted proportionally to its performance [31].

In the bagging method (bootstrap aggregation), different training subsets are
randomly drawn with replacement from the entire training set. Each training
subset is fed as input to base learners. All extracted learners are combined us-
ing a majority vote. While bagging can generate classifiers in parallel, boosting
generates them sequentially.

Random Forest is another ensemble method, which constructs many decision
trees that will be used to classify a new instance by the majority vote. Each
decision tree node uses a subset of attributes randomly selected from the whole
original set of attributes. Additionally, each tree uses a different bootstrap sample
data in the same manner as bagging.

Normally, bagging is almost always more accurate than a single classifier, but
it is sometimes much less accurate than boosting. On the other hand, boosting
can create ensembles that are less accurate than a single classifier. In some
situations, boosting can overfit noisy datasets, thus decreasing its performance.
Random Forests, on the other hand, are more robust than boosting with respect
to noise; faster than bagging and boosting; their performance is as good as
boosting and sometimes better, and they do not overfit [7].

Nowadays, Random Forest is a method of ensemble learning widely used in
the literature and applied fields. But the associate literature provides few or no
directions about how many trees should be used to compose a Random Forest.
In general, the user sets the number of trees in a trial and error basis. Sometimes
when s/he increases the number of trees, in fact, only more computational power
is spent, for almost no performance gain. In this study, we have analyzed the
performance of Random Forests as the number of trees grows (from 2 to 4096
trees, and doubling the number of trees at every iteration), aiming to seek out
for a number (or a range of numbers) of trees from which there is no more
significant performance gain, unless huge computational resources are available
for large datasets. As a complementary contribution, we have also analyzed the
number (percentage) of attributes appearing within Random Forests of growing
sizes.

The remaining of this paper is organized as follows. Section [2] describes some
related work. Section [ describes what Random Tree and Random Forest are
and how they work. Section [ provides some density-based metrics used to group
datasets described in Section Bl Section [6 describes the methodology used, and
results of the experiments are shown in Section [1l Section [§ presents some con-
clusions from this work.

2 Related Work

Since Random Forests are efficient, multi-class, and able to handle large at-
tribute space, they have been widely used in several domains such as real-time
face recognition [29], bioinformatics [I6], and there are also some recent research
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in medical domain, for instance [I8JGI2TIT9] as well as medical image segmenta-
tion [3322UBAT5I32).

A tracking algorithm using adaptive random forests for real-time face track-
ing is proposed by [29], and the approach was equally applicable to tracking any
moving object. One of the first illustrations of successfully analyzing genome-
wide association (GWA) data with Random Forests is presented in [16]. Random
Forests, support vector machines, and artificial neural network models are de-
veloped in [I§] to diagnose acute appendicitis. Random Forests are used in [6]
to detect curvilinear structure in mammograms, and to decide whether it is
normal or abnormal. In [21] it is introduced an efficient keyword based medi-
cal image retrieval method using image classification with Random Forests. A
novel algorithm for the efficient classification of X-ray images to enhance the
accuracy and performance using Random Forests with Local Binary Patterns is
presented in [I9]. An enhancement of the Random Forests to segment 3D ob-
jects in different 3D medical imaging modalities is proposed in [33]. Random
Forests are evaluated on the problem of automatic myocardial tissue delineation
in real-time 3D echocardiography in [22]. In [34] a new algorithm is presented
for the automatic segmentation and classification of brain tissue from 3D MR
scans. In [I5] a new algorithm is presented for the automatic segmentation of
Multiple Sclerosis (MS) lesions in 3D MR images. An automatic 3D Random
Forests method which is applied to segment the fetal femur in 3D ultrasound
and a weighted voting mechanism is proposed to generate the probabilistic class
label is developed in [32].

There is one similar work to the one presented here. In [20] is proposed a simple
procedure that a priori determine the minimum number of classifiers. They
applied the procedure to four multiple classifiers systems, among them Random
Forests. They used 5 large datasets, and produced forests with a maximum of
200 trees. They concluded that it was possible to limit the number of trees,
and this minimum number could vary from one classifier combination method
to another. In this study we have evaluated 29 datasets in forests with up to
4096 trees. In addition, we have also evaluated the percentage of attributes used
in each forest.

3 Random Trees and Random Forests

Assume a training set T" with a attributes, n instances, and define T} a boot-
strap training set sampled from 7" with replacement, and containing m random
attributes (m < a) with n instances.

A Random Tree is a tree drawn at random from a set of possible trees, with m
random attributes at each node. The term “at random” means that each tree has
an equal chance of being sampled. Random Trees can be efficiently generated,
and the combination of large sets of Random Trees generally lead to accurate
models [35/10].
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A Random Forest is defined formally as follows [7]: it is a classifier consisting
of a collection of tree structured classifiers {hy(x,Tk)}, &k = 1,2,..., L, where
Ty, are independent identically distributed random samples, and each tree casts
a unit vote for the most popular class at input x.

As already mentioned, Random Forests employ the same method bagging
does to produce random samples of training sets (bootstrap samples) for each
Random Tree. Each new training set is built, with replacement, from the original
training set. Thus, the tree is built using the new subset, and a random attribute
selection. The best split on the random attributes selected is used to split the
node. The trees grown are not pruned.

The use of bagging method is justified by two reasons [7]: the use of bagging
seems to enhance performance when random attributes are used; and bagging
can be used to give ongoing estimates of the generalization error of the combined
ensemble of trees, as well as estimates for the strength and correlation. Theses
estimates are performed out-of-bag. In a Random Forest, the out-of-bag method
works as follows: given a specific training set T, generate bootstrap training
sets Ty, construct classifiers {hx(x,T))} and let them vote to create the bagged
classifier. For each (x,y) in the training set, aggregate the votes only over those
classifiers for which T}, does not contain (x,y). This is the out-of-bag classifier.
Then the out-of-bag estimate for the generalization error is the error rate of the
out-of-bag classifier on the training set.

The error of a forest depends on the strength of the individual trees in the
forest, and the correlation between any two trees in the forest. The strength
can be interpreted as a measure of performance for each tree. Increasing the
correlation increases the forest error rate, and increasing the strength of the
individual trees decreases the forest error rate inasmuch as a tree with a low error
rate is a strong classifier. Reducing the number of random attributes selected
reduces both the correlation and the strength [23].

4 Density-Based Metrics for Datasets

It is well known from the computational learning theory that, given a hypotheses
space (in this case, defined by the Random Forest classifier), it is possible to
determine the training set complexity (size) for a learner to converge (with high
probability) to a successful hypothesis [25, Chap. 7]. This requires knowing the
hypotheses space size (i.e., its cardinality) or its capacity provided by the VC
dimension [30]. In practice, finding the hypotheses space size or capacity is hard,
and only recently an approach has defined the VC dimension for binary decision
trees, at least partially, since it was defined in terms of left and right subtrees [4],
whereas the gold standard should be defined in terms of the instances space.
On the other hand, datasets (instances space) metrics are much less discussed
in the literature. Our concern is, once the hypotheses space is fixed (but its size
or its VC dimension are both unknown or infinite), which training sets seem to
have enough content so that learning could be successful. In a related work we
have proposed some class balance metrics [27]. Since in this study we have used
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datasets with very different numbers of classes, instances and attributes, they
cannot be grouped in some (intuitive) sense using these three dimensions. For
this purpose, we suggest here three different metrics, shown in (), @), and (@),
where each dataset has c classes, a attributes, and n instances.

These metrics have been designed using the following ideas. For a physical
object, the density D is its mass divided by its volume. For a dataset, we have
considered its mass as the number of instances; its volume given by its attributes.
Here we have used the concept the volume of an object (dataset) is understood
as its capacity, i.e., the amount of fluid (attributes) that the object could hold,
rather than the amount of space the object itself displaces. Under these consid-
erations, we have D £ . Since, in general, these numbers vary considerably, a
better way to looking at them was using both numbers in the natural logarithmic
scale, D £ 1122 which lead us to (). In the next metric we have considered the
number of instances (mass) is rarefied by the number of classes, therefore pro-
viding (2)), and the last one embraces empty datasets (no instances) and datasets
without the class label (unsupervised learning).

Dy £log,n (1)

Dy £ log, " (2)
n+1

D321 3

3 084 c+1 (3)

Considering the common assumption in machine learning that ¢ < n (in general,
¢ < n ), it is obvious that, for every metric D;, D; > 0,4 = 1,2, 3. We considered
that if D; < 1, the density is low, and perhaps learning from this dataset should
be difficult, under the computational point of view. Otherwise, D; > 1, the
density is high, and learning may be easier.

According to [4] the VC dimension of a binary tree is VC = 0.7(1 + VC; +
VC, —loga)+1.2log M, where VC; and VC, represent the VC dimension of its
left and right subtrees and M is the number of nodes in the tree. Considering
this, our density-based metrics may capture important information about the VC
dimension: (i) the number a of attributes is directly expressed in this equation;
(ii) since having more classes implies the tree must have more leaves, the number
c of classes is related to the number of leaves, and more leaves implies larger M,
therefore ¢ is related to M, and probably VC; and VC,; (iii) the number n of
instances does not appear directly in this expression but it is surely related to
VCy, VC,., a and/or M, once the VC dimension of a hypotheses space is defined
over the instances space [25, Section 7.4.2].

Intuitively, decision trees are able to represent the family of boolean functions
and, in this case, the number n of required training instances for a boolean at-
tributes is n = 2%, and therefore a = log, n; in other words, n is related to a as
well as M, since more nodes are necessary for larger a values. For these prob-
lems expressed by boolean functions with a > 2 attributes and n = 2% instances,
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Table 1. Density-based metrics for binary class problems (¢ = 2) expressed by boolean
functions with a attributes and n = 2% instances

anD1 DQ D3

2 42.001.000.74
3 81.891.26 1.00
416 2.00 1.50 1.25
532215172 1.49

D; > 1 (except D3 = 0.74 for a = 2), according to Table [II Nevertheless, the
proposed metrics are able to capture the fact binary class problems have high-
density, indicating there is, probably, enough content so learning can take place.

5 Datasets

The experiments reported here used 29 datasets, all representing real medical
data, and none of which had missing values for the class attribute. The biomedi-
cal domain is of particular interest since it allows one to evaluate Random Forests
under real and difficult situations often faced by human experts.

Table 2 shows a summary of the datasets, and the corresponding density
metrics defined in the previous section. Datasets are ordered according to metric
Dy, obtaining 8 low-density and 21 high-density datasets. In the remaining of
this section, a brief description of each dataset is provided.

Breast Cancer, Lung Cancer, CNS (Central Nervous System Tumour Out-
come), Lymphoma, GCM (Global Cancer Map), Owarian 61902, Leukemia,
Leukemia nom., WBC' (Wisconsin Breast Cancer), WDBC (Wisconsin Diagnos-
tic Breast Cancer), Lymphography and H. Survival (H. stands for Haberman’s
are all related to cancer and their attributes consist of clinical, laboratory and
gene expression data. Leukemia and Leukemia nom. represent the same data,
but the second one had its attributes discretized [26]. C. Arrhythmia (C. stands
for Cardiac), Heart Statlog, HD Cleveland, HD Hungarian and HD Switz. (Switz.
stands for Switzerland) are related to heart diseases and their attributes repre-
sent clinical and laboratory data. Allhyper, Allhypo, ANN Thyroid, Hypothyroid,
Sick and Thyroid 0387 are a series of datasets related to thyroid conditions. Hep-
atitis and Liver Disorders are related to liver diseases, whereas C. Method (C.
stands for Contraceptive), Dermatology, Pima Diabetes (Pima Indians Diabetes)
and P. Patient (P. stands for Postoperative) are other datasets related to hu-
man conditions. Splice Junction is related to the task of predicting boundaries
between exons and introns. Datasets were obtained from the UCI Repository
[11], except CNS, Lymphoma, GCM and ECML were obtained from [2]; Ovar-
ian 61902 was obtained from [3]; Leukemia and Leukemia nom. were obtained
from [IJ.
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Table 2. Summary of the datasets used in the experiments, where n indicates the
number of instances; c represents the number of classes; a, ax and a, indicates the total
number of attributes, the number of numerical and the number of nominal attributes,
respectively; MISS represents the percentage of attributes with missing values, not
considering the class attribute; the last 3 columns are the density metrics D1, D2, D3
of each dataset, respectively. Datasets are in ascending order by Da.

Dataset n c a(ag,aq) MISS Di; Dy Ds
GCM 190 14 16063 (16063, 0) 0.00% 0.54 0.27 0.26
Lymphoma 96 4026 (4026, 0) 5.09% 0.55 0.28 0.27
CNS 60 7129 (7129, 0) 0.00% 0.46 0.38 0.34
Leukemia 72 7129 (7129, 0) 0.00% 0.48 0.40 0.36
Leukemia nom. 72 7129 (7129, 0) 0.00% 0.48 0.40 0.36
Ovarian 61902 253 15154 (15154, 0) 0.00% 0.57 0.50 0.46
Lung Cancer 32 56 (0, 56) 0.28% 0.86 0.59 0.52

C. Arrhythmia 452 1 279 (206, 73) 0.32% 1.08 0.59 0.58

Dermatology 366 34 (1, 33) 0.06% 1.67 1.17 1.12

HD Switz. 123 13 (6, 7) 17.07% 1.88 1.25 1.18
Lymphography 148 18 (3, 15) 0.00% 1.73 1.25 1.17
Hepatitis 155 19 (6, 13) 5.67% 1.71 1.48 1.34

HD Hungarian 294
HD Cleveland 303
P. Patient 90
WDBC 569
Splice Junction 3190
Heart Statlog 270

13 (6, 7) 20.46% 2.21 1.59 1.52
13 (6, 7) 0.18% 2.22 1.60 1.53
8 (0, 8) 0.42% 2.16 1.63 1.50
30 (30, 0) 0.00% 1.86 1.66 1.54
60 (0, 60) 0.00% 1.97 1.70 1.63
13 (13, 0) 0.00% 2.18 1.91 1.75

Allhyper 3772 29 (7, 22) 5.54% 2.44 1.97 1.91
Allhypo 3772 29 (7, 22) 5.54% 2.44 2.03 1.97
Sick 3772 29 (7, 22) 5.54% 2.44 2.24 2.12

Breast Cancer 286
Hypothyroid 3163
ANN Thyroid 7200
WBC 699
C. Method 1473
Pima Diabetes 768
Liver Disorders 345
H. Survival 306

9 (0, 9) 0.35% 2.57 2.26 2.07
25 (7, 18) 6.74% 2.50 2.29 2.16
21 (6, 15) 0.00% 2.92 2.56 2.46

9 (9,0) 0.25% 2.98 2.66 2.48

9 (2, 7) 0.00% 3.32 2.82 2.69

8 (8,0) 0.00% 3.19 2.86 2.67

6 (6, 0) 0.00% 3.26 2.87 2.65

3(2,1) 0.00% 5.21 4.58 4.21

NN WNWNNNE TN WN WU T OO WNNNDN O

6 Experimental Methodology

Using the open source machine learning Weka [17], experiments were conducted
building Random Forests with varying number of trees in exponential rates using
base two, i.e., L = 27, j = 1,2,...,12. Two measures to analyze the results
were chosen: the weighted average area under the ROC curve (AUC), and the
percentage of attributes used in each Random Forest. To assess performance,
the experiments used ten repetitions of 10-fold cross-validation. The average of
all repetitions for a given forest on a certain dataset was taken as the value of
performance (AUC and percentage) for the pair.

In order to analyze if the results were significantly different, we applied the
Friedman test [I3], considering a significance level of 5%. If the Friedman test
rejects the null hypothesis, a post-hoc test is necessary to check in which classifier
pairs the differences actually are significant [9]. The post-hoc test used was the
Benjamini-Hochberg [5], and we performed an all versus all comparison, making
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all possible comparisons among the twelve forests. The tests were performed
using the R software for statistical computing (http://www.r-project.org/).

7 Results and Discussion

The AUC values obtained for each dataset, and each number of trees within a
Random Forest are presented in Table[Bl We also provide in this table mean and
median figures as well as the average rank obtained in the Friedman test. Mean,
median and average rank are presented for the following groups: all datasets;
only the 8 low-density datasets; and only the 21 high-density ones.

As can be seen, in all groups (all/8 low-density/21 high-density) the forest
with 4096 trees has the smallest (best) rank of all. Besides, in the 21 high-density
group, we can observe the forests with 2048 and 4096 trees have the same rank.
Analyzing the group using all datasets and the 8 low-density datasets, we can
notice that the forest with 512 trees has a better rank than the forest with 1024
trees, contrary to what would be expected. Another interesting result concerns
mean and median values of high-density datasets for each one of the first three
iterations, L = 2,4, 8, are larger than low-density ones; the contrary is true for
L =16,...,4096. This may suggest low-density datasets, in fact, require more
expressiveness power (larger forests) than high-density ones. This expressiveness
power, of course, can be expressed as the Random Forests (hypotheses) space
size or its VC dimension, as explained in Section [l

In order to get a better understanding, AUC values are also presented in
boxplots in Figures [Il 2 and [3] considering all datasets, only the 8 low-density
datasets and only the 21 high-density datasets, respectively. As can be seen, in
Figures [l and 2 both mean and median increase as the number of trees grows,
but from 64 trees and beyond these figures do not present major changes. In
Figure B mean and median do not present major changes from 32 trees and 16
trees, respectively.

With these results we can notice an asymptotical behavior, where increases in
the AUC values are harder to obtain, even doubling the number of trees within
a forest. One way to comprehend this asymptotical behavior is computing the
AUC difference from one iteration to the next (for instance, from 2 to 4, 4 to
8, etc.). These results are presented in Figures @l Bl and [f for all, 8 low-density
and 21 high-density datasets, respectively. For this analysis, we have excluded
AUC differences from datasets reaching AUC value equal to 99.99% before 4096
trees (boldface figures in Table [B]). Analyzing them, we can notice that using
all datasets and the 8 low-density datasets AUC differences (mean and median)
between 32 and 64 trees in the forest are below 1%. Considering the 21 high-
density datasets, these differences are below 1% between 16 and 32 trees in the
forest, and below 0.3% between 32 and 64 trees.

Analyzing Figures E Bl and [6l we have adjusted mean and median values by
least squares fit to the curve g = aL’, where g represents the percentage AUC
difference (gain), and L is the number of trees within the forest. We have obtained
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Table 3. AUC values, mean, median and average rank obtained in the experiments.
Boldface figures represent values excluded from the AUC difference analysis.

Number of Trees

Datasets

2 4 8 16 32 64 128 256 512 1024 2048 4096
GCM 0.72 0.77 0.83 0.87 0.89 0.91 0.91 0.92 0.92 0.92 0.93 0.93
Lymphoma 0.85 0.92 0.96 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99
CNS 0.50 0.52 0.56 0.58 0.59 0.59 0.59 0.58 0.60 0.60 0.60 0.60
Leukemia 0.76 0.85 0.93 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 1.00

Leukemia nom. 0.72 0.81 0.91 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ovarian 61902 0.90 0.96 0.98 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Lung Cancer  0.58 0.64 0.66 0.65 0.65 0.66 0.66 0.68 0.69 0.68 0.68 0.69
C. Arrhythmia 0.71 0.77 0.82 0.85 0.87 0.88 0.89 0.89 0.89 0.89 0.89 0.89

Dermatology  0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

HD Switz. 0.55 0.55 0.58 0.58 0.60 0.61 0.60 0.60 0.60 0.61 0.61 0.61
Lymphography 0.82 0.87 0.90 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
Hepatitis 0.76 0.80 0.83 0.84 0.85 0.85 0.85 0.85 0.86 0.85 0.86 0.86

HD Hungarian 0.80 0.84 0.86 0.87 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
HD Cleveland 0.80 0.84 0.87 0.88 0.89 0.89 0.90 0.89 0.89 0.89 0.90 0.90
P. Patient 0.45 0.45 0.46 0.46 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
WDBC 0.96 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Splice Junction 0.87 0.93 0.97 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00
Heart Statlog 0.80 0.84 0.87 0.89 0.89 0.89 0.90 0.90 0.90 0.90 0.90 0.90

Allhyper 0.89 0.95 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Allhypo 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sick 0.92 0.97 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Breast Cancer 0.60 0.63 0.64 0.65 0.65 0.66 0.66 0.67 0.66 0.66 0.66 0.66
Hypothyroid ~ 0.95 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
ANN Thyroid 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
WBC 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
C. Method 0.62 0.64 0.66 0.66 0.67 0.67 0.67 0.68 0.68 0.68 0.68 0.68
Pima Diabetes 0.72 0.76 0.79 0.81 0.81 0.82 0.82 0.82 0.82 0.82 0.83 0.83
Liver Disorders 0.66 0.70 0.72 0.74 0.75 0.76 0.76 0.77 0.77 0.77 0.77 0.77
H. Survival 0.58 0.60 0.61 0.62 0.63 0.63 0.64 0.64 0.64 0.64 0.64 0.64

All

Mean 0.77 0.81 0.84 0.85 0.86 0.86 0.86 0.87 0.87 0.87 0.87 0.87
Median 0.80 0.84 0.87 0.89 0.89 0.91 0.91 0.92 0.92 0.92 0.93 0.93
Average rank  11.83 10.55 8.79 8.05 6.88 5.81 5.12 4.62 4.31 4.39 3.91 3.72

8 low-density

Mean 0.72 0.78 0.83 0.85 0.87 0.88 0.88 0.88 0.88 0.88 0.89 0.89
Median 0.72 0.79 0.87 0.91 0.93 0.94 0.95 0.96 0.96 0.96 0.96 0.96
Average rank 12.00 11.00 9.62 8.81 7.94 6.25 4.81 4.44 3.37 3.69 3.37 2.69

21 high-density

Mean 0.79 0.82 0.84 0.85 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86
Median 0.80 0.84 0.87 0.89 0.89 0.89 0.90 0.90 0.90 0.90 0.90 0.90
Average rank  11.76 10.38 8.47 7.76 6.47 5.64 5.24 4.69 4.66 4.66 4.12 4.12
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(for all datasets) using the median AUC difference a = 6.42 and b = —0.83 with
correlation coefficient R? = 0.99, and using the mean AUC difference a = 6.06
and b = —0.65 with correlation coefficient R? = 0.98. For practical purposes, it is
possible to approximate to g = z% with correlation coefficient R? = 0.99, which
indicates that this is a good fit as well. For instance, having L = 8 trees with AUC
equals 0.90 its possible to estimate the AUC for 16 trees (doubling L), therefore

g = g% and the expected AUC value for 16 trees is 0.90 x (1 + Iég) « 0.91. Of
course, this formula may be used with any positive number of trees, for example,
having an forest of 100 trees, the expected gain in AUC for a forest with 200
trees is 0.07%.

In Table [ are presented the results of the post-hoc test after the Friedman’s
test, and the rejection of the null hypothesis. It shows the results using all
datasets, the 8 low-density datasets, and the 21 high-density datasets. In this
table A (A) indicates the Random Forest at the specified row is better (signif-
icantly) than the Random Forest at the specified column; v (V) the Random
Forest at the specified row is worse (significantly) than the Random Forest at
the specified column; o indicates no difference whatsoever.

Some important observations can be made from Table[l First, we can observe
that there is no significant difference between a given number of trees (27) and
its double (27*1), in all cases. When there is a significant difference, it only
appears when we compare the number of trees (27) with at least four times this
number (2772). Second, from 64 = 26 a significant difference was found only at
4096 = 22, only when the Random Forest grew sixty four times. Third, it can
be seen that from 128 = 27 trees, there is no more significant difference between
the forests until 4096 trees.

In order to analyze the percentage of attributes used, boxplots of these ex-
periments are presented in Figures[7 [l and [ for all datasets, the 8 low-density
datasets, and the 21 high-density datasets, respectively. Considering Figure [7]
the mean and median values from 128 trees corresponds to 80.91% and 99.64%
of the attributes, respectively. When we analyze the 8 low-density datasets in
Figure [§ it is possible to notice that even with 4096 trees in the forest, not all
attributes were used. However, as can be seen, this curve has a different shape
(sigmoidal) than those in Figures [ and @l (exponential). Also, the sigmoidal
seems to grow up to its maximum at 100%.

Even Random Forests do not overtrain, this appear to be a unwanted side
effect of them, for instance, datasets of gene expression have thousands genes,
and in that case a large forest will use all the genes, even if not all are impor-
tant to learn the biological /biomedical concept. In [26], trees have only 2 genes
among 7129 genes expression values; and in [I4] the aim of their work was to
build classifiers composed by rules with few conditions, and when they use the
same dataset with 7129 genes they only use 2 genes in their subgroup discov-
ery strategy. Considering the 21 high-density datasets in Figure[@ from 8 trees
the mean and median already corresponds to 96.18% and 100% of attributes,
respectively.
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Fig. 1. AUC in all datasets Fig. 2. AUC in the 8 low-density datasets
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Fig. 9. Percentage of attributes used in the 21 high-density datasets

8 Conclusion

The results obtained show that, sometimes, a larger number of trees in a forest only
increases its computational cost, and has no significant performance gain. They also
indicate that mean and median AUC tend to converge asymptotically. Another ob-
servation is that there is no significant difference between using a number of trees
within a Random Forest or its double. The analysis of 29 datasets shows that from
128 trees there is no more significant difference between the forests using 256, 512,
1024, 2048 and 4096 trees. The mean and the median AUC values do not present
major changes from 64 trees. Therefore, it is possible to suggest, based on the ex-
periments, arange between 64 and 128 trees in a forest. With these numbers of trees
it is possible to obtain a good balance between AUC, processing time, and memory
usage. We have also found an experimental relationship (inversely proportional)
for AUC gain when doubling the number of trees in any forest.

Analyzing the percentage of attributes used, we can notice that using all
datasets, the median reaches the full attribute set with 128 trees in the forest.
If the total number of attributes is small, the median reaches the 100% with
fewer trees (from 8 trees or more). If this number is larger, it reaches 100%
with more trees, in some cases with more than 4096 trees. Thus, asymptotically
the tendency indicates the Random Forest will use all attributes, and it is not
interesting in some cases, for example in datasets with many attributes (i.e., gene
expression datasets), since not all are important for learning the concept [26J14].

We have also proposed density-based metrics for datasets that probably cap-
ture some aspects of the VC dimension of decision trees. Under this assumption,
low-density datasets may require large capacity learning machines composed by
large Random Forests. The opposite also seems to be true.
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Abstract. Multiple instance learning, when instances are grouped into
bags, concerns learning of a target concept from the bags without ref-
erence to their instances. In this paper, we advance the problem with
a novel method based on computing the partial entropy involving only
the positive bags using a partial probability scheme in the attribute sub-
space. The evaluation highlights what could be obtained if information
only from the positive bags is used, while the contributions from the
negative bags are identified. The proposed method attempts to relax
the dependency on the distribution of the whole probability of training
data, but focus only on the selected subspace. Experimental evaluation
explores the effectiveness of using maximum partial entropy in evaluating
the merits between the positive and negative bags in the learning.

Keywords: Maching learning, pattern recognition, multiple instance
learning, total entropy, partial entropy.

1 Introduction

A multiple instance learning (MIL) problem can be defined as follows. Given
a set of instances divided into bags, each of the bags is labelled positive if at
least one instance in a bag coincides with a target concept, or negative if none
of the instances has the target concept. If there is only one instance in each
bag, then the MIL problem degrades to a standard supervised classification
problem. From this perspective, MIL can be thought of as a generalization of
the standard supervised learning. The difficulty of learning from training samples
in this problem is that we are given only the class labels of the bags but not
those of the instances.

MIL was initially formulated for characterizing drug behaviour [6]. Later, ap-
plication domain extends to a wide variety of problems, including image analysis
[4], drug discovery [14], content-based image retrieval []], supervised image seg-
mentation [7], stock selection [12], etc.

The first MIL scheme was proposed in 1997 by Dietterich et al. [6]. Their
work was motivated by the drug activity prediction problem where a bag is a
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Maximum diverse density

J— +1 +2 +2

+3 -1 2

Maximum density

Fig. 1. The idea of MDD is to find areas that are close to at least one instance from
every positive bag and far from instances in negative bags. In a two-dimensional feature
space, each positive instance is denoted by the + sign with its bag number. Negative
instances are similarly represented except that the - sign is used. The true concept
point t € R? where the diverse density is maximized is not necessarily the point with
the maximum density.

molecule (i.e., a drug) of interest and instances in the bag correspond to possible
configurations (i.e., shapes) that the molecule is likely to take. The efficacy of a
molecule (i.e., how well it binds to a “binding site”) can be tested experimentally,
but there is no way to control for individual configurations. Thus, the objective
is to determine those shapes which will bind with a receptor molecule. In their
approach, a set of shape features was extracted to represent the molecule in
a high-dimensional feature space. Subsequently, in order to narrow down the
possible conformations that cause the special property, the smallest axis-parallel
hyper-rectangle (APR) that bounds at least one instance from each positive bag
but excludes any negative ones is found. The execution order of the program
could be either “outside-in”: starting from a bound that includes all instances in
positive bags and keeps shrinking it until all false positive instances are excluded;
or “inside-out”: starting from an instance in a positive bag and grows it until
the smallest APR is obtained. Subsequently, a PAC-learning based scheme was
proposed in [11] and a few publications [3I2] followed up along this direction.

Maximum diverse density (MDD) [12] is popular for its conceptual intuition.
Based on the fact that a prototype should be close to at least one instance in each
positive bag while far from all negative ones, a maximum likelihood estimate can
be formulated to find the most likely estimate(s) of the prototype(s). Assuming
a unique prototype t € R¢ accounting for the labels for all bags, t is located in
a region that is not only dense in positive instances but also diverse in that it
includes at least one instance from each positive bag (See Fig. ).

Because the instance labels in a positive bag are assumed unknown, Zhang and
Goldman [18] extended MDD by adopting hidden variables to model unknown
instance labels. They proposed an expectation-maximization version of MDD
(or EM-DD) in the likelihood estimation. In each E-step, the most likely positive
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instance in each bag is selected and used in estimating the new true concept in
M-step. EM-DD largely simplifies the computational complexity of MDD and
achieves a remarkable performance improvement on the '"MUSK’ data set.

The method Citation k nearest neighbor (KNN) has been proposed for MIL
[15]. It is a generalization of the standard kNN by introducing a bag-level dis-
tance metric. The label of a query bag is predicted not only by the majority
voting of its k nearest bags but also the number of times that the bag is cited
by them. The introduction of citers evidently enhances the robustness of the
method over the standard kNN. On the other hand, suppose every positive bag
is fairly loaded in positive instances, then by associating each instance with the
label of the bag it belongs to, support vector machine (SVM) may achieve a
competitive performance [13]. For example, Andrews et al. [I] treated the un-
observable instance labels as hidden variables and formulated the MIL problem
as a SVM problem in which the optimization of the margin between different
classes is subject to the joint constraints of a kernelized discriminant function
and unknown labels. Other approaches include the multi-decision tree [5] which
is an extension of C4.5 decision tree for MIL, and artificial neural network (ANN)
variants for MIL [I7J10].

Despite the availability of several methods for solving the MIL problem, a
more practical approach is still desirable. APR is simple yet effective but has
the risk of not finding such a rectangle that contains no negative instances. As a
method based on maximum likelihood estimation, MDD requires prior knowledge
about the number of true concepts that is usually unknown in practice. In the
absence of this knowledge, MDD ends up with false estimates. As indicated
in [12], applying the single-prototype formulation to the problem with two (or
more) distinct prototypes results in an estimate close to neither one of them
but somewhere in between. This was also verified in the experiments conducted
n [7)8]. Citation kNN presents robustness by taking into account the impact
of citers but is still sensitive to local variations. For SVM-based approaches, a
proper kernel function (as well as the corresponding parameter values) has to be
decided empirically.

In our previous work [16], we have made an attempt with adaptive kernel
diverse density estimate to address the issue of the coexistence of multiple true
concepts, which is common in textual analysis and image understanding prob-
lems. In this paper, we consider another theoretical criterion for solving the
problem by investigating the properties of partial entropy. Briefly, using the
instance-bag distance as a measure of the degree of an instance belonging to
a bag, the partial entropy taking into account all training samples is defined
as the amount contributed by the positive bags to the total entropy. As shown
in this paper, to maximize the partial entropy is therefore to reduce the inter-
class uncertainty, and increase the intra-class certainty. When related to MIL,
it is equivalent to locate in the instance space a point that is far from negative
bags while close to all the positive bags simultaneously. Thus, the instances that
maximize the partial entropy summarize that to the target concept(s).
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The rest of the paper is organized as follows. Section II gives the definition
of partial entropy, and investigates some useful properties for later analysis.
Section III explains the rationale for using the maximum partial entropy to the
MIL problem. Preliminary experimental results are given in section IV.

2 Partial Entropy

In information theory, entropy is a measure that quantizes the information con-
tained in a message, usually in the unit of bits. This measure gives the absolute
bound on lossless compression if a message is assumed to be a sequence of in-
dependently and identically distributed random variables. Mathematically, the

entropy for a random variable  with N possible outcomes X = {z1,...,zn} is
defined as
N
H(py,....,pn) =— Y _pilog, pi, (1)
i=1

where p; = Pr(z = x;) denotes the probability of taking the i*" outcome and
—logy pi is known as the corresponding self-information. In this sense, entropy
is the expected amount of information provided by X. Hereafter, we use log to
denote log, to simplify the notations.

Entropy is also frequently used as a measure of uncertainty for that it is
maximized only if all outcomes are equally likely, i.e.,

H(p1,...,pn) < H( = log N (2)

1 1 )
NN
Denoted by X s a subset of X with M (1 < M < N) outcomes, the quantity

M
H'(p1,....pm) = — Y _ pilogy pi, (3)
=1

is defined as partial entropy [9] on the subset Xjs. From now on, we use H' to
denote partial entropy.

We reveal that equal probabilities over Xj; result in the maximum partial
entropy H’ by justifying the following Lemma.

Lemma 1. Let x be a random variable with outcomes X = {x1,...,xn}, then
a uniform distribution over a subset Xy C X has the mazimum partial entropy.

Proof: Let 0 < o < 1 be the sum of probabilities {p; }i=1,... m<n for the outcomes
in subset X7, then

M M )
Sh=asy =1,
i=1 =1
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which defines a partial probability scheme {p1/ca,...,pa/a} with total entropy
expressed as

M
o Di Di
H=- E o log o
i=1

| M
~ . > (pilogpi — piloga)

i=1

1 X log o M
faz;pilogpﬁ . Z;pi
i= i=

1 & log o
— ) pilogp; + o
o 4 o

=1
M
1
~ . Zpilogpi + log a.

i=1

By Ineq2l we have H < log M. Therefore,

LM
— Zpilogpi +loga <log M,
et

i=1
and thus

M
H' ==Y pilogp; < a(logM —loga). (4)
i=1
It is easy to verify that partial entropy H’ is a concave function of variables {p;}
and the unique upper bound «a(log M — log @) is achieved only if all p; are the
same, i.e., p; = a/M.
QE.D

Ineql generalizes Ineql2] to any non-empty subset of X, and when Xy = X
partial entropy becomes total entropy. Lemma [I] justifies the intuition that a
non-empty subset Xj,; with equally probable outcomes has the maximum par-
tial entropy. This property is true independent of M. Fig.[2(a) demonstrates this
point graphically by indicating the locations of maximum of the curves for dif-
ferent « values. Nevertheless, another noticeable phenomena in the figure is that
the greater the a value is, the higher the maximum partial entropy will be. To
avoid confusion, hereafter we use the term «-level local mazimum partial entropy
(LMPE) to express the maximum partial entropy associated with a specific «
value. The tight relation between the maximum partial entropy and « has been
implied in IneqMl, and we state it formally as the following Lemma.

Lemma 2. For any subset Xpr C X with M > 3 equally probable outcomes, the
mazimum partial entropy H' is non-decreasing for 0 < o < 1.
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(a) Partial entropy contributed by a binary (b) Maximum partial entropy as a function
subset (M = 2) with different « of a (plotted with M = 10)

Fig. 2. (a) A uniform distribution over outcomes in a subset Xs results in the maxi-
mum partial entropy. (b) Maximum partial entropy increases as « increases in [0, 1] for
M > 3. This is because the maximum partial entropy function f(a) has the maximum
at o = M /e, for M > 3 the interval [0, 1] always falls into the increasing part of f(«).

Proof: If X has equal probabilities for all M outcomes, equality always holds
in Ineq/] and the right side of it gives the LMPE for a certain a. We can thus
express the LMPE with respect to different « as a function of a:

M M
fla) =sup{= pilogp; | > pi=a}
i=1 =1
= a(log M — log @), (5)

which is termed as the local mazimum partial entropy function. We prove this
Lemma by showing that f(«) is concave, and [0, 1] is contained in the increasing
part of f(a).

Let b (b = 2 in our case) denote the base for the logarithm we are using, take
the first-order derivative of Eq5l and make it to zero

1
f(a) =logM —loga — =0,

Inb
we get
loga = log M — log b/ ™) = log M — loge,
SO
M
o =
e

which is beyond [0, 1] on the right for M > 3. Taking the second-order derivative

results in
I

7lnba

f/l(a) —
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Because f”(«) is negative for « € R, f() is concave in 1. Combined with the
previous conclusion that f(«) is monotone in [0, M/e], it is proved that f(«) is
increasing in [0, 1] given M > 3. The maximum attainable value of f(«) is thus
f(a=1) =log M, which is different from the maximum of f(«a) at « = M/e.
QED

Lemma [ simply states that the local maximum partial entropy function (Eq. )
is increasing in partial sum probabilities «, given that the the cardinality of the
subset is at least three. Fig. P(b) explains Lemma [ with a graph for M = 10.
Although «, as the partial sum of probabilities, could never be greater than one,
the curve shown here relaxes the domain so its trend can be easily observed.
More importantly, f(«) is never strictly increasing in [0, 1] unless M > 3.

An immediate conclusion we can draw is that « determines the upper-bound
that the maximum partial entropy can reach, i.e., the maximum partial entropy
is the LMPE with the maximum «. Hence, if one is pursuing the maximum
partial entropy to the most possible extent, a should be as large as possible while
maintaining equal probabilities over outcomes in the subset. We also notice that
M > 3 is critical because for M < 3, the monotonicity does not hold in [0, 1].
Hence, M = 3 is the lower bound of the cardinality of a subset to support the
statement.

Up to this point, we have established the theoretical properties that are useful
in formulating the MIL problem. To summarize the discussions, let us assume,
without loss of generality, that X can be divided into two subsets X, (positive
class) and X§; = X — Xy (negative class). In order to maximize the partial
entropy H'(Xpr) on Xz, one must:

— Following Lemma ] to increase o by decreasing the inter-class information
(between X, and Xjs) so as to increase the upper bound of H'(X ).

— Following Lemma [l increase the intra-class information (within Xps) by
balancing probabilities among all the outcomes in X ;.

The next section explains how we make use of these two properties to analyze
MIL so as to construct a generic concept based on the positive bag information
while taking the contributions of the negative bags into consideration.

3 Approaching MIL by Maximizing Partial Entropy

Let B denote the entire MIL training set composed of positive samples and
negative samples, i.e, B = {BT,B7} = {{B;"},{B; }}. Assuming a continuous
instance space, we estimate the probability of a point x in this space belonging
to a bag B; (regardless of the label) as

N g(dist(x, B;))
Prix e Bi) = > p,ep 9(dist(x, Bj))’ "
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where g(+) is a decreasing function to indicate a higher estimate for a shorter
distance, and dist(x, B;) is the instance-bag distance defined as the Euclidean
distance from the nearest instance in B; to x:

dist(x, B;) = | inf {llx —Bi,ll,}, (7)
(s EB:

where B;; is the j-th instance in B;. This probability estimate agrees with
the intuition that the closer x to a bag B;, the greater the probability x to be
assigned to B;. In this approach, we take a more general probability estimate that
distinguishes the importance of the positive and negative bags with a weighting
parameter v € RT:

Pr(x € Bff) =
g(dist(x, Bj"))

5 e 9(dist(x, B) 47 5 e gldist(x, B;) .

Clearly, Eqlf] and Eq8 produce the same probability estimate for v = 1. Here,
we only need to consider the probability measure of positive bags Pr(x € B:r)
because it is what is necessary to compute the partial entropy on the positive
subset. Note that the formulation of probabilities with respect to the entire
training set B is important for the reason to be interpreted later in this section.
The total entropy based on this probability estimate is thus

HxeB)=H'(xeB")+H'(xeB")

=— Z Pr(x € B;)log Pr(x € B})
BfeBt

- Z Pr(x € B; )logPr(x € B;). (9)
By eB-

Taking away the amount from the negative bags, we are left with the partial
entropy contributed by the positive ones:

H'(xeB")=- Y Pr(xeB;)logPr(x € By). (10)
BiEB+

Note that the impact of negative bags is implicitly included in EqI0 due to the
formulation of probabilities given in Eq[8 (as part of the the denominator).

For v > 1, it implies that the impact of negative bags is considered more
important, and as v grows this impact becomes more important. To the other
extreme end where v = 0, it is thus ignoring all negative bags, and the partial
entropy is then nothing but the total entropy on positive bags. The consequence
is that an estimate is somewhere close to all the positive bags but not subject
to the restriction of the negative ones. We will compare the difference between
partial entropy and total entropy at the end of this section.

We then show that partial entropy as given by EqI0 provides a reasonably
good measure for estimating the target concepts of MIL.
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(a) Maximum total entropy defined on (b) Maximum partial entropy con-
positive bags tributed by positive bags

Fig. 3. (a) Maximum total entropy H(x € BT) defined on B]” and B; corresponds to
points at the same distance to the nearest instance in each bag. Hence, every point on
the line through hi and h2 results in the maximum total entropy. E.g., the obviously
false hypothesis h2 has the same maximum entropy measure as hi: H'(hy € BY) =
H'(hz € BY). (b) Maximum partial entropy H'(x € B") in contrast, does not suffer
from the same problem because the estimate h will be pushed away from B; and
dragged towards the center of B]” and Bj. Also notice that the estimate will be a
little off the line connecting B and By due to the impact from By . The weighting
parameter v can be used to control the degree of the deviation.

As an optimization criterion for the MIL problem, we expect the estimates to
be close to all the positive bags while far from the negative ones. Furthermore,
we demand the estimates to be close to all the positive bags at roughly the same
distance. These preferences are naturally satisfied by maximizing the partial
entropy given in EqI0l The rationale is supported by :

— According to Lemma [ maximizing H'(x € BY) by Eq[IT will force an es-
timate away from negative bags towards the positives so as to maximize «
(the proportion of probabilities over the positive bags).

— According to Lemma [I maximizing H'(x € B") given a being maximized
in previous step will equalize the distances from x to all the positive bags
and thus the maximum H’(x € BT).

Hence, maximizing H'(x € B") results in an estimate x close to all positive
bags at roughly the same distance while far from negative ones. In terms of
entropy, the estimate presents the maximum inter-class (between the positive and
negative bags) certainty as well as the maximum intra-class (within the positive
bags) uncertainty (equal probabilities). All of these summarize the characteristics
of the true concepts of MIL. Therefore, any x that maximizes the partial entropy
given by Eq.(I) can be thought of as a good estimate of the true concept of
MIL, i.e.,

t= argm)?xH’(x € BT) (11)
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Again, in order to have an unbiased estimate, one should be cautious when
selecting . A small v (e.g., v = 0) leads to a result that equalizes the distances
to all positive bags with less consideration of the impact from negative ones.
In the absence of knowledge that one class of bags is more important than the
other, it is normal to choose v = 1.

Now, one might be curious about if the same goal can be achieved by the total
entropy defined on positive bags only, i.e.,

H(xeBt)=— Z Pr(x € B} )log Pr(x € B;") (12)
BfeBt

given probabilities defined as

: +
EB;_r63+ g(dZSt(Xv Bj ))

The difference between Eq[I0l and EqI2 appears unobvious but significant in
consequence, hidden behind the formulation of probabilities. Eq 8l takes the im-
pact of negative samples into account (as part of denominator) while EqI3 does
not. This little difference accounts for the change in effect. Ignoring negative
samples could leads to uncertainty in the estimate. This is illustrated as a sim-
ple example in Fig. B

4 Implementation and Experiments

Only for simple cases with a unique global maximum, it is possible to maximize a
independent of pursuing an equal probability distribution over the subset. How-
ever, for general problems with a complicated function landscape, it is prohibitive
to separate the optimization process into isolated steps. Without a closed-form
solution, a gradient-based method can be used to search all local maxima of
H'(BT), in which g(+) in EqRis simply chosen as

9(z) = _. (14)

Because the target positive concept is located somewhere among the positive
bags, the algorithm starts with every instance in all the positive bags so as to
get the global maximum.

4.1 Artificial Datasets

In order to verify the correctness of the proposed scheme, we first applied the
algorithm to an artificial data set of 100 bags in a 10-dimensional space. In this
experiment, every bag contained 20 randomly generated instances restricted in
the hyper-rectangle [0.0,1.0]'°. A bag was labeled positive if any of its instances
fell into the hyper-rectangle [0.29,0.31]1%, or negative otherwise. The generating



MIL via Maximum Partial Entropy 179

O- Instance in negative bags|
Prototype §
@- Instance in positive bags |
o2 o2
e3 04
o4 ol
os
o2 ol e2
o3
0s | ®
t, o4

o3 t' ;
s 02\‘25//’ / os
of o2 O 7

o4 o3
o2 04

Estimate

Fig. 4. There are 5 bags in this example (3 positive, 2 negative). Instances from each
bag are shown together with their corresponding bag numbers. The rectangle represents
the predefined true concept centered at t. The dashed hypersphere centered at the
estimate £ with threshold T as the radius is used for classifying future unlabeled bags
(i.e., positive if it falls within the hypersphere or negative otherwise).

algorithm was designed to ensure that at least 30% of the bags in the training
set were positive.

For performance evaluation, we adopted the leave-one-out cross validation
strategy. For each round of the experiment, all bags except one take part into
the training and the left-out is used for verification. The label of the left-out is
predicted as positive if any of its instances falls into the hyper-sphere centered
at the acquired prototype t with a threshold (radius) T'. A reasonable threshold
T can be defined as the distance from the estimate to the furthest positive bag
(Fig. M illustrates this):

T = max {dist(t, B]")}.
BeB+

v = 1 was used for all experiments on the artificial data set. The program
first normalizes all the instances into [0, 1]¢, dimension by dimension, and then
performs the hill-climbing algorithm from every instance in positive bags. All
obtained intermediate maxima are ranked for the final decision of the best esti-
mate.

The performance measure was obtained as the consistent ratio between the
number of the correct predictions and the total number of experiments. The ex-
periment on such 20 artificial data sets resulted in an average correctness ratio of
98.6% with all obtained target concepts within 0.30 + 0.0023 in each dimension.
Those missed predictions were due to our particular choice of threshold strategy
used (see Fig.[]). By increasing T with a factor 1.05, we can get perfect correctness
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ratio occasionally. However, when t does not coincide very well with the center of
the predefined target concepts, the false positive error might happen.

4.2 MUSK Datasets

We also experimented with two 'MUSK’ data sets (from UCI machine learning
repository) from the drug-discovery domain, using the same parameter settings
that were used for the artificial data sets. The data set MUSK#1 consists of
92 molecules represented in a 166-dimensional features space with 47 samples
labeled positive by human experts. MUSK#2 consists of 102 samples of which
39 are positive. The number of instances in MUSK#2 is roughly 10 times that
of MUSK#1.

The performance measures on MUSK#1 and MUSK#2 were 80.1% and 84.2%
respectively for v = 1. We intentionally do not include a comparison with other
algorithms on the MUSK data sets for two reasons. Firstly, because we do not
have the exact knowledge of the target concepts in the MUSK data sets, a high
accuracy on the MUSK data sets does not necessarily mean a good understanding
of the underlying patterns. Secondly, reports on the MUSK data set were all
based on the results obtained with the optimal parameter settings. This can be
misleading because exhaustive parameter tuning is nearly impractical for real
problems. Therefore, we also encourage researchers to post experimental results
on data sets that have explicit knowledge of the target concepts for an objective
evaluation.

The performance was very sensitive to the threshold strategy adopted. By
manually adjusting T by a factor within [0.5,1.5], the measure could vary from
58% to 86% (v = 1) on MUSK#2. In contrast, adjusting v did not have signifi-
cant influence on the results for v > 1. The best performance measure obtained
was 87% for v = 10 and T = 1.2. When v < 0.2, there was a persisting low
correctness ratio below 55% regardless of the selection of threshold factor.

The experimental result from MUSK#2 was better than the one from MUSK#1.
An explanation for this is that because there are more instances per bag in
MUSK#2, more accurate (or compact) T' was estimated and thus less false posi-
tive predictions were made. It is thus concluded that the proposed algorithm is very
suitable for large training set. Through the intermediate outputs, there was also a
strong evidence of the presence of multiple true concepts in both MUSK#1 and
MUSK#2. The differences in measure between the first few candidate estimates
are very small for both MUSK#1 and MUSK#2. Experiments using multiple true
concepts will be carried out in the future for verification.

5 Conclusion

In this paper, we make a preliminary study on partial entropy and use the result
to approach MIL. We first show that partial entropy generalizes the entropy
in the sense that a subset with equally probable outcomes has the maximum
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partial entropy, thus equalizing the information from the subset. We next show
that the maximum partial entropy function is non-decreasing in the sum of self
information of a subset. Applying these two properties, we solve the MIL problem
by maximizing the partial entropy contributed by the positive bags. It in turn
gives us estimates close to all the positive bags at roughly equal distance but
far from all the negative ones, as an effective classifier. Notice that no explicit
assumptions are required for the formulation.
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Abstract. Nowadays, Bayesian Networks (BNs) have constituted one of the
most complete, self-sustained and coherent formalisms useful for knowledge
acquisition, representation and application through computer systems. Yet, the
learning of these BN structures from data represents a problem classified at an
NP-hard range of difficulty. As such, it has turned out to be the most exciting
challenge in the learning machine area. In this context, the present work’s major
objective lies in setting up a further solution conceived to be a remedy for the
intricate algorithmic complexity problems imposed during the learning of BN-
structure through a massively-huge data backlog. Our present work has been
constructed according to the following framework; on a first place, we are
going to proceed by defining BNs and their related problems of structure-
learning from data. We, then, go on to propose a novel heuristic designed to re-
duce the algorithmic complexity without engendering any loss of information.
Ultimately, our conceived approach will be tested on a car diagnosis as well as
on a Lymphography diagnosis data-bases, while our achieved results would be
discussed, along with an exposition of our conducted work’s interests as a clos-
ing step to this work.

Keywords: Bayesian Network, structure learning, modeling, algorithmic com-
plexity.

1 Introduction

The huge amounts of data, made recently available, pertaining to the various research
fields, have made it crucially critical for the learning techniques to be efficient, in so
far as the processing of complex data dependences is concerned. Owing to their flex-
ibility and easily-recognizable mathematical formulations, BNs are most often the
basic selected model opted for in a wide-array of application-fields whether astronom-
ic, textual, bioinformatics and web-mining applications. Yet, with an incredibly huge
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number of variables, the learning BNs structure from data remains a big challenge to
be retained and considered in terms of calculation power, algorithmic complexity and
execution time [1]. Most recently, however, various algorithms have been developed
with respect to the BNs learning structures from data-bases [2, 3, 4]. A considerable
class of these algorithms rests on the metric-scoring methods, excessively compared
and exhaustively applied as approaches [5, 6]. Nevertheless, these algorithms and
scoring methods remain still insufficient with regards to those cases in which the
number of variables exceeds hundreds of thousands [7]. In so far as our work is con-
cerned, these algorithms and metric scores are not going to be dealt with or ques-
tioned. Rather, we seek to further enrich them through a new heuristic based on
clustering pertaining to structure learning, in a bid to further reduce the algorithmic
complexity as well as the execution time, with the purpose of modeling some pre-
viously non-modelizeable information systems, by using, exclusively, the underway
available algorithms.

Our work, we reckon, is critically important for a number of various reasons. First,
we have managed to demonstrate, throughout its scope, that by wholly subdividing an
information system into sub-sets, we tend to dramatically reduce the number of possi-
ble structures necessary for learning the BNs structures. Second, a special heuristic
has been devised and proposed whereby this reduction could be exploited without
engendering any significant loss of data. Ultimately, by combining our proper heuris-
tic with the existing prevailing structure-learning algorithms, one can considerably
reduce the extent of algorithmic complexity as well as the learning of BNs structure
from data execution time, in such a way that even a large number of non-
modelizeable variables could be treated or processed.

The remainder of this article has been arranged as follows. The next upcoming sec-
tion deals with the BNs and their structure learning problems. In the following sec-
tion, we are going to put forward a new heuristic which we shall test upon a car-
diagnosis and Lymphography diagnosis data bases. Finally, we will close up our work
by concluding and paving the way for certain potential perspectives relevant to future
researches.

2 BNs and Structure Learning from Data Problems

It is worth highlighting that knowledge representation and the related reasoning,
thereof, have given birth to numerous models. The graphic probability models,
namely, BN, introduced by Judea Pearl in the 1980s, have been manifested in the
practical tools useful for the representation of uncertain knowledge and reasoning
process from incomplete information.

Hence, the BN graphic representation indicates the dependences (or independ-
ences) between variables and provides a visual knowledge representation tool, that
turns out to be more easily understood by its users. Furthermore, the use of probabil-
ity allows to take into account the uncertainty, by quantifying the dependences
between variables. These two properties have been at the origin of the first terms al-
lotted, initially, of BN, "probabilistic expert systems", where the graph used to be
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compared with some set rules pertaining to a classic expert system, and conditional
probability presented as a quantification measurement of the uncertainty related to
these rules.

The number of all BN possible structures has been shown to ascend sharply as a
super-exponential on the number of variables. Indeed, Reference [12] derived the
following recursive formula for the number of Directed Acyclic Graph (DAG) with n
variables:

rim) = i(—l)i+1 (’Z]Zi(""l) rn—i)=n"" )
i=l

which gives: r(1)=1, r(2)=3, r(3)=25, 1(5)=29281, r(10)=4,2x10"

This means that, it is impossible to perform an exhaustive search of all structures in
a reasonable time in cases the number of nodes exceeds seven. In fact, most structure-
learning methods use heuristics to search the DAGs space.

3 A New Clustering-Based Heuristic: Theoretical Framework
and Methodology

The idea lying behind our conceived proceeding lies in the rapid super-exponential
surge of algorithmic complexity of learning BN structure from data with respect to the
rise in the number of variables. To remediate this problem, our preconceived idea
consists in subdividing the variables into subsets (or clusters), by treating each clus-
ter’s learning structure separately, while looking for a convenient procedure whereby
the different structures could be assembled into a final structure version. In this re-
gard, it has been noticed that in numerous information systems, so as not to say in
most of them, there exists, at least, one single central variable of a global interest
constituting the basis of the system’s modelization. In this respect, we reckon to exe-
cute the processing of each cluster learning structure with the central interest variable,
then, proceed by assembling the different various structures around this central vari-
able as a next step.

In the upcoming part (3.1), we shall demonstrate, mathematically, that by subdivid-
ing the variables and by separately processing each cluster’s learning structure with
the interest variable, we dramatically reduce the number of possible DAG in respect
of the simultaneous learning structure of the entire variables. After that, in part (3.2),
we are going to explain our proposed framework procedure as well as the methodolo-
gies to be pursued.

3.1 Theoretical Background

The below represented Robinson formula depicts the number of possible DAG in
respect of the variables’ number:

The Robinson formula is r(n) = ¥, (—1)*12{=0(Mr(n —i); r(1) = 1, where n
stands for the number of variables.

In this section, we will prove that r(n) > Yk, r(J, + 1), where n-I1= J;+Jo+...+J};
J+l<n and 1 =1, ..., k.
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Proposition 1
For all n > 2, we have:

i) rn)>2"2nr(n—1)
ii) iz 2 = 1) .+ 2D xr( + DV (1 +)) <n
View Proof in Appendix A
We denote by: n-1=J;+J,+...+J;; J+I<n
]l_zfglié]k(m
Jir= g0

Proposition 2
(n) > p(n,Ji-Ji+ k) > 1; Where

irg) T
(n-1-0,))(n+-)-2) ( )
2 2 n(n-1)..((J;+)+2
p(n']l_,]l+’k) = X :
Proof

According to ii) of Proposition 1, we have

(n=1-J)(+]1-2)
r(n)>2 2 nn-1 .0, +2)r(J,+1);l=1,..,k.
Hence,
K X (n-1-J))(n+J;-2)
Y r(n)> YK 2 2 nn—1)..(J;+2)r(;+1)
(n-1-0,0))+1-)-2)
kxr(m)>3k, 2 2z nn-1).0p+2)r( +1)
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Therefore: m > p(n,]l—jl+,k) > 1,

(n-1-U ) (n+U-)-2)

Tz a@-1..(U)+2)
k

where p(n,J;-J 1+, k) = 2

Finally, we can conclude that r(n) >> YK, r(J, +1), where n-I1= J;+Jo+...+J;;
J+l<n and 1 =1, ..., k.

3.2  Procedure and Applied Methodologies

3.2.1  Choice of a Global Interest Variable

The aim of such a step is to select a diagnosis variable, or a global interest variable, of
the information system to be modelled. This variable could be a status variable, for
instance: status of individuals (ill/sound), cars’ status (start/not start), customer status
(solvent/not solvent) etc. In such cases, the choice is an easy and immediate one. As
for those cases in which the choice is not evident, due to the analyst’s ignorance of the



A New Learning Structure Heuristic of Bayesian Networks from Data 187

studied variables’ nature, one might eventually resort to some classical automatic
data-exploring methods. For instance, to the principal component analysis in a bid to
dismantle, from the first resulting axis, the mostly intervening variable in the informa-
tion system subject of study.

3.2.2  The Variables’ Clustering

The automatic type of clustering is the most frequently used and widespread tech-
nique among the data-analysis and data mining descriptive techniques. It is often used
when we get a huge amount of data, within which we intend to distinguish some ho-
mogeneous subsets suitable for processing and for differential analyses [13].

Actually, there exist two major well-known algorithm classifying families in the
literature, namely, the partition methods as well as the ascending hierarchical-
clustering ones. The advantage of the ascending-hierarchical methods, as compared to
the partitioning one, lies in the fact that they enable to choose, appropriately, the op-
timum number of clusters. Nevertheless, the partitioning criterion is not global; it
exclusively depends on the already-obtained clusters, since two variables placed in
different clusters could by no means be compared any more. Contrary to the hierar-
chical methods, the partitioning algorithms might continuously improve the clusters-
quality [13], in addition to the fact that their algorithmic complexities are linear (for
the most popular algorithms). Regarding our present work, however, we have chosen
to use the K-means algorithm, as it is the most popular and applied in the literature,
added to fact that its algorithmic complexity is linear (O(n)) [14]. We also propose
to use a hierarchical clustering algorithm along with the bootstrap technique to obtain
the optimal number of clusters that will be introduced as entries in  the K-
means algorithm. To note, the databases that will be applied to test our approach, in
the experimentation section, consist of categorical variables, and regarding the per-
formance of clustering we will use the toolbox ClustOfVar with the software R [15].
In particular, we will use the variant K-means for categorical variables [16] and the
link-likelihood approach [17] (hierarchical clustering algorithm for categorical va-
riables). To assess the stability of all possible partitions, 2 to p-1 (where p is the total
number of variables) clusters from the hierarchical clustering, we will use a feature
called "Stability" (also developed in the ClustOfVar toolbox) based on the "bootstrap"
technique. The result is a graph which is then a tool to help to select the number of
clusters. The user can be choosing the number K of clusters to the heights of the first
increase in the stability.

3.2.3  Structure Learning

A structure learning of each cluster’s variable with the interest variable, will be
undertaken. The ultimate structure would be the n structures obtained from each
cluster around the interest variable.

Numerous algorithms have been devised with regards to the learning of BNs struc-
ture, noteworthy among which is the algorithm PC [18], Maximum weight spanning
tree (MWST) [19], the algorithm K2 [3], Greedy Search (GS) [4] etc. Still, the most
frequently used algorithm, according to the specialized literature, remains the algo-
rithm K2. It is characterized by its rapidity, promptness and the stability of constancy
of its results. Yet, its major problem remains the initial order required for the entries,
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which is very influential on the final results. As a remedy to their problem, the most
frequently used solution consists in applying the upstream MWST algorithm [20], to
obtain a certain order of nodes useful to be introduced as entries for the K2 algorithm.
Less sensitive to the data-base size variation, the MWST algorithm yields a graph
quite similar to the original one. Nevertheless, this method runs exclusively through
the (very poor) trees space [20]. It, therefore, turns out to us to be the most exclusive
effective tool necessary for getting an initial order of nodes very accurate and close to
the data, useful to be used in entry with the K2 algorithm.

To note that in our work, we will use the BNT toolbox [23] running on Matlab
software (2010 version) to apply the MWST and K2 algorithms for learning structure.
We will use also the BNT toolbox to learning parameters and inference.

4 Experimentations Procedures

4.1 Data-Bases

We are going to test our designed approach, firstly, on a car diagnosis data-base
dubbed “Car Diagnosis 2”. It is made up of eighteen variables (see Table 1), among
which is a statue variable called “Car starts”, the global interest variable of the infor-
mation system. The parameters’ generating file of this data base is available on the
site http://www.norsys.com/downloads/netlib/. According to these parameters, we
have been able to generate some 10000 examples, among which thirty two have been
left aside for the references’ testing phase. Secondly, the model will be applied on a
Lymphography diagnosis data-base dubbed “Lymphography”. It is made up of nine-
teen variables (see Table 2), among which is a statute variable called “Diagnosis”, the
global interest variable of the information system. This lymphography domain has
been obtained from the University Medical Centre, Institute of Oncology, Ljubljana,
Yugoslavia. In this respect, we would like to thank Mr. Zwitter and Mr. Soklic for
providing the data. Among the 148 instances of data, thirty two have been left aside
for the references’ testing phase.

Table 1. “Car diagnosis 2” variables

Variables’ names

possible states

Variables names

possible states

AL : Alternator
CS: Charging
System

BA : Battery age
BV: Battery vol-
tage

MEF: Main fuse

DS: Distributor
PV: Voltage at
plug

SM: Starter Motor
SS: Starter system

(Okay, Faulty)
(Okay, Faulty)

(new, old, very_old)
(strong, weak, dead)

(okay, blown)
(Okay, Faulty)
(strong, weak, none)

(Okay, Faulty)
(Okay, Faulty)

HL: Head lights
SP: Spark plugs

SQ: Spark Quality
CC: Car cranks

TM: Spark timing
FS: Fuel system
AF: Air filter

AS: Air system
ST: Car starts

(bright, dim, off)
(okay, too_wide,
fouled)

(good, bad, very_bad)
(True, False)

(good, bad, very_bad)
(Okay, Faulty)
(clean, dirty)

(Okay, Faulty)
(True, False)
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Table 2. “Lymphography” variables

Variables’ names

Possible states

V1: Lymphatics

V2: Block of affere
V3:bl. of lymph. C
V4: bl. of lymph. s
V5: by pass

V6: extravasates

V7: regeneration of
V8: early up take in
VO: lym.nodes dimin
V10: lym.nodes enla
V11: changes in lym.
V12: defect in node
V13: changes in node
V14: changes in stru

V15: special forms
V16: dislocation
V17: exclusion
V18: no. of nodes
VI: Diagnosis

(normal, arched, deformed, displaced)
(no, yes)

(no, yes)

(no, yes)

(no, yes)

(no, yes)

(no, yes)

(no, yes)

©,1,2,3)

1,2,3,4)

(bean, oval, round)

(no, lacunar, marginal, lac_central)
(no, lacunar, marginal, lac_central)
(no, grainy, draplike, coarse, diluted,
reticular, stripped, faint)

(no, chalices, vesicles)

(no, yes)

(no, yes)

1,2,3,4,5,6,7,8)

(normal, metastases, malign_lymph,
fibrosis)

4.2  Clustering

Regarding the clustering, we are going to use the stability function (bootstrap ap-
proach using the mean of corrected rand criterion) of the toolbox ClustOfVar [16]
after the application of an hirarchical ascendant algorithm, in order to estimate,
approximately, the number of clusters to be entered in the algorithm K-means.

Using the stability graphics, the optimal number of clusters selected, for “Car
diagnosis 2 database, has been equal to three and the clustering result of variables is

presented in “Table 3”.

Table 3. Clustering results of the “Car diagnosis 2 data base

Cluster 1

Cluster 2

Cluster 3

AL : Alternator

CS : Charging System
BA : Battery age
BV: Battery voltage
MF: Main fuse

PV: Voltage at plug
SM: Starter Motor
SS: Starter system
HL: Head lights
SP: Spark plugs
SQ: Spark Quality
CC: Car cranks

DS: Distributor
TM: Spark timing

FS: Fuel system
AF: Air filter
AS: Air system
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Using the stability graphics, the optimal number of clusters selected, for “Lympho-
graphy” database, has been equal to two and the variables clustering results is
presented in “Table 4” below.

Table 4. Clustering results of the “Lymphography” data base

Cluster 1 Cluster 2
V1, V8,V9, V10 V2, V3, V4
V11, V12, V13, V5, V6, V7
V14, V15, Ve,

V17,V18

4.3  The Classical Learning Structure Compared to Our New Heuristic

For the “Car diagnosis 2” database, “Figure 1” below depicts the classical structure
learning result of the entire variables after applying the K2 algorithm, with as entry,
the obtained order reached via the tree resulting from the implementation of the
MWST algorithm (to note: we have chosen the interest variable as an initial variable
during the application of the MWST algorithm). The execution time has been 3.45
seconds.

Fig. 1. The classical structure learning result
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The Figures 2, 3 and 4, appearing below, depict the structures resulting from the
learning structure pertaining to every cluster of variables after applying the K2 algo-
rithm, with, as an entry, the order obtained from the MWST resulting tree (we have
selected the interest variable as being the initial variable during the MWST algorithm
application to each cluster). The final structure is automatically represented by reas-
sembling the clusters’ structures around the interest variable (see Figure 5). The
global execution time has been /.45 seconds (over /.32 seconds for cluster 1; 0.05
seconds for cluster 2 and 0.09 seconds for cluster 3). The sum of these executions’
time (/.45 seconds) remains significantly inferior to the structure learning of the en-
tire variables simultaneously, which equals 3.45 seconds.

Fig. 3. Cluster 2 structure Fig. 4. Cluster 3 structure

For the “Lymphography” database, the same treatment and the same algorithms are
applied. The sum of learning structure of “cluster 1” and “cluster 2” executions’ time
(equal to 1.65 seconds) remains significantly inferior to the structure learning of the
entire variables, simultaneously, which equals 2.67 seconds.
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Fig. 5. The ultimate Structure

44  Both Attained Structures’ Relevant Inferences and Result Comparisons

As our approach favors the preservation of data, principally for the interest variable’s
sake, we will learnthe parametersof the two structures found for each of
the databases studied (structure found after learning all the variables simultaneously
and structure found after assembling the various structures of the clusters around
the interest variables). As for the interest variable, we are going to calculate the prob-
abilities of its different possible corresponding states, bearing in mind the states of the
network’s other nodes in respect of the two obtained BN structures. Thus, a thirty-
two-example database will be used for experimenting the interest variables of both
databases. Naturally, the experimentation examples have been excluded during the
structures’ learning. The differential statistical significance between the obtained
probabilities, with respect to both structures, will be measured via the “Z” test (com-
paring the two observed means belonging to two different samples), according to the
P1-P2 [24]

following formula: Z = - - -
Jvarlance(P1)+varlance(P2)—2xcovarzance(Pl,PZ)
Hypothesis Hy: the difference between both probabilities is significant (1Z1>1.96).
HypothesisH,: the difference between both probabilities is non-significant
(1Z1<1.96).

The two tested variables are “Car starts” of “Car Diagnosis 2 database and “Diagno-
sis” of “Lymphography” database. “Appendix B” contains two graphs showing the
variation of the Z-test for each variable studied according to its different possible
states.
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4.5 Discussion

Based on the achieved experimental results, the pairs of probabilities for the varia-
ble “diagnosis” of the "Lymphography" database are identical; the preservation of
information has been complete (see Appendix B, Figure 7). As for the variable “Car
Start” of “Car Diagnosis 2” database, the probabilities pairs are very similar but not
identical; the hypothesis Hj has always been rejected, even with very small Z values,
not exceeding the value of 10.461, very distant from the threshold of 1/.96l, as set by
the Z test theory (see Appendix B, Figure 6). It can, therefore, be deduced that the
inference results, regarding both of learning structures approaches, are very similar
even at eye sight, and without applying any statistical tests to measure the difference’s
significance. Through our heuristic, we have managed to reduce, considerably, the
algorithmic complexity of the BN structure learning without any significant loss of
information, especially with regards to the interest variable. The clustering constancy
and trustiness plays a determining role in the accuracy of the resulting structure. In
fact, the more independent the obtained clusters are, the more the number of inter-
cluster edges to be lost would shrink; consequently, the more independent the clusters
are, the more negligible the lost information would be.

Throughout the present study, we have, firstly, demonstrated mathematically that
the algorithmic complexity of the BN from data-base structure learning decreases
dramatically in the cases when the variables’ subsets are treated in a separate way. In
a second place, a heuristic has been proposed whereby the demonstrated conduct
could be exploited by adding a solution serving to reassemble the sub-sets’ structures
into a single structure framework. This solution has been based on the implementation
of the information system’s interest variable as a linking variable among the subsets’
different structures. Through our proper experimentation procedure, we have proved
that by implementing this undertaking, we can be immune against the information
loss problem while achieving a considerable gain in terms of execution time. Our
original solution has been improved; firstly because no criterion has been defined for
the applicability of our approach on acertain database (possibility of hav-
ing clusters sufficiently  independentto  avoid  losing information). Secondly,
the method applied for determining the optimal number of clustersis known to
be greedy in computational complexity (in the order of O(n’)). So, a heuristic, less
complicated yet effective would be among our aim in future research. Inversely, how-
ever, with the help of our newly-devised concept, new large-scale horizons have been
opened, paving the way for other more global solutions, taking advantage of the fact
that the possible number of DAG decreases incredibly by treating the variables and
subsets during the BN structure learning from data-base.

5 Conclusion

Within the scope of the present work, we have set up a new well-defined approach for
the BN structure learning from data-base, so useful that it can be jointly applied with
the already existing algorithms and underway heuristics. As a first step, we have
demonstrated, mathematically, that the BN structures’ possible space decreases,
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dramatically, by subdividing the relevant variables into clusters before processing the
BN structure learning corresponding to each cluster apart. In the second step, a spe-
cially-devised heuristic has been proposed with the aim of joining each cluster’s
different structures. Actually, through a specially-conducted experimentation adminis-
tered over tow data-bases, we have proved that loss in data turns out to be so negligi-
ble that it does not affect the extracted BNs stemming results during the inference
stage, while saving a great deal of execution time.

In a potential future research, we reckon to make a serious attempt to investigate
other possible alternatives, useful and fit to exploit the considerable reduction of
algorithmic complexity during the BN structure learning by examining and treating
variables’ sub-sets, developing some structure-retrieving oriented heuristics, encom-
passing the already achieved sub-structures, a framework that would be the closest
possible to the discovered structure, while simultaneously treating the whole set of
variables in their entirety.
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Appendix A

Proof of Proposition 1 (i)
For all n > 2, we have:

i) rn)=2"2nr(n—1)

Proof by induction on n

For n=2; r(2)= 3 > 2 is verified

Tel n € IN, we assume that Vi < n; r(i) =212 (i — 1). (1)
By applying Robinson formula, we have:

r(n+1) = X, ()12 =0 (M e (n 41 — )

We set Vi =2{+1=0 (M) (n 4+ 1 — i)

We will firstly prove that (V;);<i<,+; 1S decreasing

Vi

2i+1-D (MY (41 )

vitr  20D)01-i=0) (M

2 r(n+1-i)

it
(n+1-1i)!
- on—i

1 .
SR

By using (1),
vi o 220N (j41)2" 12 (1) r(n—i)
Vi+1l — (n+1-1)
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Which imply, — el > 271(i + 1) > 1. This means that (V;);<<,+; is decreasing.
Secondly we will prove that r(n+1)- 2" *(n + 1) 7(n)>0

Observe that,

2" (n + 1) r(n) - 220:-1 (”;l)r(n -1 >

21 (n 4+ 1)2" 2n r(n — 1) — 22(-D @r(n -1)>

223+ Dnr(n—1)— 22" 3+ Dnr(n-1)=0

So, 2" (n + 1) r(m)+22" V(" )r(n — D<2 x 2"t + 1) r(n)=2"(n + 1) r(n)
=> The sum of the tow first elements of #(n+1) minus 2"~1(n + 1) r(n) is positive

=> r(n+1)- 2" Y(n + Dr(n)=positive element + S; where § = ¥ 1(—1)*1Vi
Thirdly we will prove that S >0

Case 1: n is impair: n=2p-1; p € IN*
S= Zn+1( 1)1+1Vl
_Zi:3( 1)L+1Vl
=lej5p(_1)2]+1V2j + lejsp—l(_1)2]+2V2j+1
(Where in the first sum i=2j and in the second i=2j+1)
=215j5p—1 V2j+1 - Zzsjsp V2j
-1 . .
=Z15j5p—1 V2j+1 - Zzstp—1 V2j+2 = Z?:1(V2j+1 - V2j+2)- Since (Vi)i<isnsr 18 de-
creasing we can conclude that Z?;ll (Vajr1 = Vaju2) 20

Case 2: nis pair: n=2p
Zn+1( 1)1+1Vl
ZZP+1( 1)1+1Vl
=1jep(— DYV, + Yocjepri (D V4
(Where in the first sum i=2j and in the second i=2j-1)
=22<jsp(Vajo1 — V2j)+Vopye1. Since (V) is decreasing and Vp,,1>0 then
Y2<jep(Vajo1 — Vo) + Vapi 20
Therefore S >0, then
r(n+1)- 2" 1(n + 1)r(n)>0, then
r(n+1)=2""1(n + 1)r(n); Which proves the proposition.
Proof of Proposition 1 (ii)
(n-1-))(n+J-2)
oz =)+ D) X+ DV A+ <n
Proof:

By using i) of proposition 1, we have the desired result.

n)>2""2x 23 x . x2/n(n—1)..(J +2) xr(J+1)
(n—-1— )(n+ —-2)

rn)>2 EEe nn—-1)..0+2) xr(J+1)

where (1-2)+(n-3)+... +J=22)) ”(J+ -2)

We can conclude that our propos1t10n 1 (ii) is confirmed.
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Abstract. A new method for dimensionality reduction and feature ex-
traction based on Support Vector Machines and minimization of the
within-class data dispersion is proposed. An iterative procedure is pro-
posed that successively applies Support Vector Machines on perpendic-
ular subspaces using the deflation transformation in such a way that the
within-class variance is minimized. The proposed approach is proved to
be a successive SVM using deflation kernels. The normal vectors of the
successive hyperplanes contain discriminant information and they can
be used as projection vectors for feature extraction and dimensionality
reduction of the data. Experiments on various datasets are conducted in
order to highlight the superior performance of the proposed algorithm.

1 Introduction

In pattern recognition and machine learning problems with high-dimensional
data have always been difficult to cope with. That is, the so-called “curse of
dimensionality”, which constitutes motivation for the development of dimen-
sionality reduction methods. Simple classification algorithms which are very
commonly used in a variety of disciplines, like k-Nearest Neighbor (KNN) [I]
or Nearest Centroid (NC) [2], favor greatly when they have to treat the same
problem in a lower-dimensional space, especially when it is redundant.

The benefits lie in reducing computational complexity, since the size of the
problem is reduced, and improving classification accuracy. The first gives the
possibility to deal with more complex problems that cannot be treated in their
original form. In order for the latter to be succeeded, the dimensionality reduc-
tion has to take place in such a way that will augment discriminant information
and remove information that does not contribute discriminability, e.g noise.

A closely related term to dimensionality reduction is feature extraction, which
entails the transformation of the data from the high-dimensional space to the
lower-dimensional one. This transformation can be either linear or non-linear and
although linear transformations have a more solid mathematical background,
non-linear transformations, which are usually extensions of previously proposed
linear ones, are usually more powerful. These non-linear generalizations are usu-
ally achieved using the kernel trick [3], which gives us the opportunity to compute
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only the dot products of the inpute patterns, rather to explicitly compute the
mapping, i.e. their projection onto a very high-dimensional space.

Feature extraction can also be used for visualization tasks so as to get better
understanding and an overview of a problem. In the framework of this paper we
are interested both in visualization and classification tasks. In the following we
shortly describe the most commonly used dimensionality reduction techniques
that are related to our proposed method.

1.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [E], also known as Karhunen-Loeve trans-
formation, was fisrt developed by Pearson [5] (1901) and Hotelling [6] (1933). It
is one of the most widely used dimensionality reduction technique in problems
as data compression and clustering, pattern recognition and visualization. The
main idea is to reduce the dimensionality of a data population trying to keep
its spatial characteristics. This is achieved with a linear transformation to the
space of principal components, which are ordered in such a way that the first
few retain most of the data variation. The principal components are obtained
by performing eigenanalysis of the data covariance matrix.

More specifically, if Ay is the matrix of the k eigenvectors that correspond
to the k largest eigenvalues of the covariance matrix and X is the initial data
matrix, then the transformed data of dimensionality k is given by Z = A, X.
PCA has been generalized into kernel-PCA [7] using the kernel trick. Since PCA
is an unsupervised learning method, i.e. class label information is not taken into
account, it is not always suitable for classification tasks.

1.2 Linear Discriminant Analysis (LDA)

On the contrary to PCA, Linear Discriminant Analysis (LDA), [8], also known
as Fisher’s Discriminant Analysis (FDA or FLDA), is a supervised learning
technique, which exploits the class label information in order to maximize the
classes discriminality in the extracted space. This is achieved by maximizing
Fisher’s discriminant ratio, that is, the ratio of between-class variance to within-
class variance. For a training set of d-dimensional samples x;,7 = 1,..., N that
belong to two classes these notions are expressed by the following quantities

S; = Z (x — pi) (@ — )",

TEW;

Sw=81+8S2 and (1)
Sp = (1 — p2)(p1 — p2)"

By wu; we denote the mean value of class w;. We call Sy within-class scatter
matriz and Sp between-class scatter matriz. The quantity that LDA seeks to
maximize is defined as

wT Spw

Jw) = 8w’

(2)
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where w is the projection vector that transforms the data to the one-dimensional
subspace. If the number of classes is more than two, then the reduced dimension-
ality can be at most equal to the number of classes minus one. The performance
of LDA is optimal provided that the data distributions are normal for all classes
with the same covariance matrix. LDA was also extended for the non-linear case
in Kernel-FDA [9], similarly to PCA, using the kernel trick.

1.3 Margin Maximizing Discriminant Analysis (MMDA)

Margin Mazimizing Discriminant Analysis (MMDA) [10] investigated the possi-
bility of projecting the input data onto the normal of a hyperplane that separates
two classes in a binary problem. This hyperplane should provide good generaliza-
tion for future data and make no assumptions regarding the distribution of the
input patterns. The authors proposed a deflation approach to be able to perform
this process in subsequent orthogonal subspaces, by projecting onto the space
spanned by the normal of such a margin maximizing hyperplane. The first hy-
perplane is obtained solving the Mazimum Margin Separation (MMS) problem,
which is expressed as a quadratic programming problem:

1 n
minimize 2||w||§ —|—CZ§¢ (3)
i=1

subject to  y;(wla; +b) >1—¢&, &>0, i=1,...,n.

The resulting weighting vector of the hyperplane is normalized and used for
projecting the data by } = x; — (w”x;)w. Then, problem [ is solved again for
the projected data.

1.4 Proposed Approach

In this paper we propose a novel supervised learning technique that seeks to
exploit Support Vector Machines (SVMs) in a dimensionality reduction scheme.
More specifically we intend to use the discriminant information contained in the
resulting hyperplane of SVMs to perform feature extraction and the correspond-
ing normal vector of the hyperplane can be used as projection vector. Thus,
the first step of the proposed method is the standard SVM optimization that
generates the first dimension/feature. In order to be able to extract additional
discriminant information we adopt a deflation procedure similar to MMDA. On
the same time, inspired by the maximization of Fisher’s discriminant ratio, we
desire to minimize the within-class variance similarly to [I1] and [12]. This re-
sults to the definition of a new optimization problem incorporating both the
deflation procedure and the within-class variance minimization. This approach
can be regarded as a modification of the standard SVMs optimization, employing
a deflation kernel.

The novelty of our work lies in three different aspects. The first is the idea
of combining SVMs for maximizing the between-class margin and Fisher’s dis-
criminant ratio for minimizing the within class variance in one dimensionality
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reduction technique. The second is the iterative generation of successive or-
thonormal projections onto deflated subspaces, according to this criterion, for
feature extraction. And the third is the incorporation of the within-class vari-
ance minimization and the deflation procedure in the SVMs optimization, using
the kernel trick.

The manuscript is organized as follows: The proposed approach is described
in Sec.2 In Sec. 21l we discuss in detail the deflation procedure that we adopt
and in Sec. we show how the deflation of the within-class scatter matrix
can be included in the same procedure. The modified optimization problem is
presented in Sec. [Z3 and in Sec. 2.4 we show how this problem can be efficiently
solved using the kernel trick. The way we perform the feature extraction and
the final form of the algorithm are presented in Sec2Hl In Sec. Bl we demon-
strate the visualization capability of our method and in Sec. we present the
experimental results for classification tasks. Finally, conclusions are drawn in

Sec. @

2 Definition and Derivation of the Problem

In the proposed approach, our goal is to use the information regarding the dis-
tribution of the data in space, which is contained in the resulting hyperplane
of a classification task with SVMs minimizing in parallel the within-class vari-
ance. Moreover, we want to do that in an iterative way so as each iteration
of the procedure will provide us with a new feature, which will contain addi-
tional discriminant information for our data with respect to the preceding steps.
In order to achieve that we need to apply the SVMs in successive subspaces,
which are pairwise perpendicular. The proposed method is called Within Support
Vector Discriminant Analysis (WSVDA) and the algorithm can be overseen in
Table

Table 1. The main steps of the iterative procedure of WSVDA

: compute the within scatter matrix Sy for the data

: solve SVMs for the data minimizing Sw

: compute weighting vector w

: compute projection matrix P using the normalized weighting vector of previous step
: deflate the data along the direction of w

: iterate from step 1 to step 5 for as many times as the desired reduced dimensionality
: use the normalized weighting vectors w for feature extraction

N O U W N

2.1 Deflation Procedure

Let us present this idea with a simple example. If we think of a three-dimensional
example of a binary problem, the resulting hyperplane (actually a plane) of lin-
ear SVMs would be as depicted in Fig. [[l The projection of the data onto the
hyperplane is additionally a transformation to a space perpendicular to the ini-
tial one. Consequently if we apply SVMs to these transformed data, projected
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onto the hyperplane, the resulting hyperplane (actually a line) will be perpen-
dicular to the initial one. That means that the two hyperplanes contain exclusive
information regarding the data distribution. The orthogonality property stands
for the corresponding normal vectors of the hyperplanes, which can be used for
the feature extraction.

Class 2in 3D

2nd SVM line al 2in2D
~— Class 2 in
1st SVM plane

Class 1in 3D

Fig. 1. The resulting hyperplanes of linear SVMs for a three-dimensional example of
a binary problem. The three-dimensional data are projected onto the plane, which is
the decision surface when the three-dimensional data are the input to the SVMs. The
deflated two-dimensional data are the input to the SVMs in the second iteration of the
method, resulting to a separating line. Best viewed in color.

Suppose the training set with finite number of elements x;,7 = 1,..., N, of
dimensionality d, which can be separated into two different classes w; and wo.
The corresponding labels for these training samples are denoted by y; with a
value equal to 1, if ®; € wy or -1 if x; € wy. We also use the notation X
for the data matrix, which contains the vectors x; in its columns, i.e. X =
((131,(132, . 'awN)‘

In order to project the data onto the successive hyperplanes we use a deflation
transformation algorithm similar to the one in [I3], which is used for deflating the
data in the space of principal components. Similarly, if w” is the normal vector
of the hyperplane in iteration k of the procedure, then P . = Igyxq — wFw*?,
where P, is the projection matrix along the direction of vector w® and Izyq
is the identity matrix of dimension d. It is important to mention here, that
the weighting vector w", which is the result of SVMs in our algorithm, has
to be normalized before used for the deflation process. Consequently, the data
matrix X can be deflated along the direction of w*, that is, projected onto the
hyperplane of iteration k, by multiplying it with the corresponding projection
matrix Pyr, X* = P X.
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Since in each iteration we transform the data to a subspace having removed
a dimension, the deflation should be done on all the directions of the normal
vectors of the previously computed hyperplanes. This multiple deflation can be
done in a successive way: X! = P,n X, X2 = P X',... X" = P X" 1,
but it can also be applied on the initial data matrix using the product of all the
projection matrices of the previous steps: P¥ = Py1 Py ... Pyr. In this way,
the matrix X* = P*X has been simultaneously deflated along the multiple
directions of the normal vectors.

If we express the product of the successive projection matrices using the
weighting normal vectors we have

Pk = (Idxd — wlwlT)(Idxd — waQT) N (Id><d — wkwkT), (4)

it is shown that the order of multiplication has no effect to the final result and
because of the orthogonality property we conclude to

k
PF=T40-) whw*’. (5)
1=1

However, for the implementation task, the first form proves to be numerically
more stable. Finally, as a result of the symmetry of all the projection matrices,
they are equivalent to their respective transposed matrices, e.g. P* = P+,

2.2 Within-Class Variance Deflation

We have already discussed in the previous section what is the input data, i.e. the
deflated data to the successive SVMs, but we also need to provide them with the
within scatter matrix of the deflated data. In order to avoid the computation of
this matrix for the deflated data in each iteration we investigate the possibility
of ‘projecting’ the within scatter matrix onto the subspace of each iteration.
Indeed,

St = St + S5

wawl wfewz
= > PMa;—p) (@i — ) P+ Y Pla; — po)(x; — po)T P
TiEWL T w2
=P" Y (@i — ) (@i — ) PP+ PP Y (2 — po)(z — po)" P
xT;Cwl TjEw2
= P*(S; + Sy)P*
Sk, = P*Sy P*, (6)

where S7 and S> are the within-class scatter matrices for class wy; and ws re-
spectively. Similarly, g1 and po are the corresponding mean values.
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2.3 Deflated Within-Class Support Vector Machines

According to the aforementioned we can modify the standard SVMs [I5] opti-
mization problem and define a new one, which simultaneously will maximize the
margin and minimize the within-class variance in deflated subspaces. For the
separable case [I4] would be expressed as

minimize w? PSy Pw, w’PSyPw >0 (7)
subject to the separability constraints
yi(w' Px;+b)>1, i=1,...,N. (8)

The solution to this problem is given by the saddle point of the Lagrangian

N
L(w,b,a) = w' PSy Pw — Z ailyi(w? Px; — b) — 1], (9)
i=1

where a = [ag, ... an]7 is the vector of Lagrange multipliers. The Karush-Kuhn-
Tucker (KKT) conditions [16] imply that for the saddle point

N
1
VaL(Wo, bo, o) = 0 & PSwPw, =y aioyi P

=1
8 N
abc(wo, bo, 0ty) = 0 & ; oy = 0
yi(wlPx; —b,)—1>0, i=1,...,N
io>0, i=1,...,N
ai7o[yi(wZPwi—bo)—1]20, iZl,...,N,

where subscript o denotes the optimal solution.

The KKT conditions show that the weighting vector is a linear combination of
the support vectors in the training set multiplied by the inverse of the ‘projection’
of matrix Sy, that is PSyw P. More specifically the optimal weighting vector
normal to the separating hyperplane is given by

N
1
PSwPw, =, > aioyiPri < w, = PSWP Z aioyiPx;.  (11)

i=1

By replacing () into (@) and using the KKT conditions, we obtain the Wolfe-
dual problem

N N N
1
W(a) = Z Q; — 4 Z Zaiajyiijer(PSWP)_lpacj, (12)

i=1 i=1 j=1
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which is equivalent to the optimization problem

1
minimize 2ozTHoz -1 (13)

N
subject to «; > 0,i=1,...,N and Zaiy,» =0,
i=1

where H;; = éyiyja:iTP(PSWP)’lej is the ijth element of the Hessian ma-
trix.
The corresponding separating hyperplane is defined by

g(x) = sgn(w” Px +b)

N
1 -
= sgn <2 Zg 1 o (2] P(PSwP) ' Pz) + b) ) (14)

where b, = %wZP(mi + x;) for any pair of support vectors x; and x; such that
yi =1and y; = —1.

In the non-separable case [15], we relax the separability constraints () by
introducing non-negative slack variables &;, i = 1,..., N. The new optimization
problem is expressed as

N
minimize w” PSwPw+C» &, w'PSyPw >0 (15)
i=1
subject to the separability constraints
yi(w ' Px; +0)>1-¢, &>0, i=1,...,N, (16)

where by C we denote the cost of violating the constraints, i.e. the cost of
misclassification.
The solution to this problem is given by the saddle point of the Lagrangian

N N N
L(w,b,a,B, &) =w PSwPw+ CZ& - Zai[yi(wTPwi —b)—1+&] - Zﬂi&,
=1 =1 =1

(17)

where a = [ay,...ax]T and B = [B1,...8n]T are the vectors of Lagrange
multipliers. The modified Karush-Kuhn-Tucker (KKT) conditions [16] for the
non-separable case imply that for the saddle point
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N
1
vwﬁ(wov boa a071603 50) =0& PSwPw, = 9 Zai,oyiPmi

i=1
P N
abﬁ(wm bo, amﬂmgo) =0« ;ai,oyi =0
0
L(wov boa aovﬁov&o) =0« 51',0 =C - Qj o (18)

&
yi(w! Px; —b,) —1+&,>0, i=1,....,N
ﬁi,o >0,0< Q5 0 < 07 gi,o > O7ﬁi,0€i,0 =0 :=1,.. .,N

aiﬁo[yi(wZPmi —bo)—1+¢&,0] >0, i=1,...,N,

The Wolfe-dual problem as well as the hyperplane are the same as in the sepa-
rable case, i.e equations (I2), (I3) and ([I4), since the slack variables and their
Lagrange multipliers do not appear in it.

2.4 Deflation Kernel

Instead of solving the optimization problem of the previous section for the de-
flated data in every iteration as our algorithm required in order to extract the
desired knowledge, the formulation of the optimization problem in the previous
section allows us to incorporate the deflation transformation of each iteration in
the existing optimization problem. This is possible if we consider the deflation
as a kernel function, which we define as

K(zi,x;) = 2] P(PSwP) ' Px; (19)
and the feature map as
&(x) = (PSwP) Y/*Px. (20)
So
K(zi, ;) = (D(x:)D(x;))
T
— ((PSWP)_l/QPaci) ((PSWP)_l/QPasj)
=zl P(PSwP)" Y?(PSwP) Y/ Pux;
K(z;,z;) = z] P(PSwP) ' Px; (21)

This notation gives us the advantage that the explicit computation of all the
training samples is no longer needed, but we only need to compute the dot
product of the vectors in the feature space, i.e. the Hessian matrix of (I3]), using
the kernel trick. If we use matrix notation for the data instead of vectors, as de-
fined in Sec 2] the above functions are expressed as #(X) = (PSwP)~/?PX
and K(X)= XTP(PSwP) 'PX.
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2.5 Feature Extraction

The method described in the previous sections consists a dimensionality reduc-
tion technique. In each iteration of the procedure we obtain a new weighting
vector, orthogonal to all the previously obtained ones, which is used as a pro-
jection vector in the feature extraction schemes. The number of iterations and
subsequently the number of obtained weighting vectors defines the number of
the resulting dimensionality. The fact that the weighting vectors are pairwise or-
thogonal implies that in each iteration we acquire new discriminant information
regarding our data. The extracted data consist of samples of which each feature
is the projection of the initial vector onto the corresponding weighting vector,
fwk () = w*Tx.

If we denote by W* the augmented projection matrix which contains in its
columns the weighting vector of each iteration, i.e. W* = (w!, w?,...,w") we
can express the feature extraction of the whole procedure in a compact way
using the expression X ’B = W*T X, where by X ’fj we denote the final matrix
of the extracted data after k iterations and with a reduced dimensionality of k
as well. The final form of the algorithm of WSVDA, which is implemented for
the experiments in this paper is shown in Table 2.

Table 2. The implemented algorithm of WSVDA

input: training set data matrix X with N samples and corresponding labels y;

output: extracted data matrix X%

1: compute the within scatter matrix Sw for the initial data

2: initial projection matrix P = I xq

3: for k=1 to reduced dimensionality

4:  check the condition number of (PSw P), regularize by adding a small quantity
to the diagonal elements if needed in order to achieve numerical stability

5.  compute (PSwP)™*

6: train SVMs using H = X P(PSwP) 'PX

7:  compute weighting vector w® from ([T

8 normalize weighting vector w"*

9:  concatenate normalized w" into W7

10:  update projection matrix P using the normalized weighting vector of previous
step, according to P = P(I — w*w"T)

11: end

12: use the normalized weighting vectors w for feature extraction, according to X% = W*TX

3 Experimental Results

In this section we present the results of the experiments performed to assess
the performance of WSVDA and compare it with the most commonly used
techniques as PCA and LDA as well as state of the art methods as MMDA. After
the dimensionality reduction of the datasets with the aforementioned techniques,
classification is performed using KNN and NC algorithms. It was also considered
valuable to compare these results with SVMs classification applied on the initial
data.
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In order to achieve higher credibility for our results we perform various in-
stances of k-fold cross validation, with 1 fold being used as a training set and the
rest (k—1) folds being used as the test set. This approach offers the opportunity
to use a small number of samples for the training phase, which is comparable
or sometimes smaller than the number of features. That is, the dimensional-
ity of the training set is higher than its cardinality, which is often the case for
small sample size (SSS) problems. In such occasions we expect and we show that
WSVDA has better performance. It is also important to mention that all the
datasets were scaled uniformly to [—1,1].

Training Set 1v2 Training Set 2v3 Training Set 3v4
0. = -02 -05 T
0.4 © -0.3 +
-0.6 °
-05 + 04 n +
06 - M 08 + 07 4
o © -06 + ©
-07 o & of% °° +
+ o -07 00 © E -o8 o+
o o ot o
-08 + o
4 -0.8 ) o o
. + X 6. @
-0.9 o —09 +o0 © L ¢ +
-1 -1 = -1
-1 08 06 0.4 02 1 09 -08 -07 -06 -05 -04 -03 -1 08 06 0.4 02
WSVDA 1v2 WSVDA 2v3 WSVDA 3v4
0. 0. -0.
* © o ©
b 009 ° 01 N
0.2 © o_o
+ 0.1 0% 0.1 ®
o1 -on [} -0.12 o
-0.12 -0.13
o
0 -0.13 4 ~0.14
-0.14 -0.15 +
-0.1 g ﬁ%n
015 R -0.16 +
[} +
-02 -0 017
= 15 ] 05 0 05 02 01 0 0.1 02 03 016 0.4 0.2 0.1 —0.08
MMDA 1v2 MMDA 2v3 MMDA 3v4
05 1 T FFE
+ +
0 4 05 + -05
0
-05 + -1
+ o+ + ° +
-05 + o
1 . ° -15 8
o -1 ?bo 0,©
-15 15 + -2
. -
-2 8@ " 2 4 -25 +
-25 -25
3 2 ] o 1 2 25 2 15 -1 05 0 05 25 =2 -5 -1 05 0 05 1
PCA 1v2 PCA 2v3 PCA 3v4
4 25 2 ~+
+
-t 2 15
3
15 ! *
2 QS+
+ 1
", . ++ 05
1 + 05 . o 0 og?
+ 4
olooo 0 R N ~05 o i .
© + -05 o5 & -1 o +
-1 8 *
+ + -1 -15 “
+ +
-2 15 -2
4 3 2 0 1 2 2 4 0 1 2 3 4 2 =] 0 1 2 3

Fig. 2. Projection of pairs of features of Connectionist Bench (Sonar) dataset onto
two-dimensional subspaces. In the first row three pairs of features of the initial data
are shown. In the following three rows we can see the first three pairs of extracted
features for WSVDA, MMDA and PCA. Best viewed in color.
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3.1 Use of WSVDA for Visualization Purposes

One important attribute of WSVDA is the visualization capability, which is partic-
ularly useful for high-dimensional datasets. To demonstrate this attribute we use
the Connectionist Bench dataset from the UCI Machine Learning Repository. In
Fig.2the first three pairs of features are shown for the initial training data and after
reducing their dimensionality with WSVDA, MMDA and PCA. Since the problem
is binary LDA could not be used for two-dimensional visualization purposes.

We can observe that all three methods are capable of extracting discriminant
information from the data and make the classification task easier compared to the
initial data. However, it is important to note that only in the case of WSVDA
the two classes are linearly separable for all the extracted features depicted on
the figure. This means that except for the first extracted feature, the succeeding
features provide additional and new discriminant information.

3.2 Dimensionality Reduction and Classification Results

In this section we present the experimental results for classification purposes
using four different datasets. The experimental scenario includes a dimensionality
reduction step using one of the following four techniques WSVDA, MMDA,

Sonar Dataset Sonar Dataset

b
5,

{
}
f

U

classification accuracy rate
%

classification accuracy rate

20 20 W0
dimensionality

Heart Dataset

classification accuracy rate
classification accuracy rate

TS \
, NG tost

I g 2 3

~ © - PCAKNN test
LDA KNN test

* dimensionality * dimensionality
Fig. 3. Classification accuracy rates for Sonar and Heart datasets. WSVDA outper-
forms the other methods in all occasions in terms of classification accuracy rate and it is
observable that it gains discriminant information from the successive subspaces where
the optimization problem is solved. The number of neighbors for the KNN algorithm
is 5 for this set of experiments, whereas the number of folds for the cross validation is
10 and 5 for Sonar and Heart datasets, respectively. Best viewed in color.
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PCA, and LDA, and a classification step using either KNN or NC classification
algorithms. Classification with Linear SVMs and KNN applied on the initial data
is also performed, using the following datasets: 1. Connectionist Bench (Sonar)
dataset contains 208 samples of 60 attributes that correspond to measurements
of a sonar device for signals that are reflected on two different surfaces. 2. Statlog
(Heart) dataset consists of 270 samples with 13 attributes that correspond to
medical data related to heart. 3. Wine Recognition Data dataset contains 178
samples of 13 features which correspond to the chemical analysis of three varieties
of wine. 4. Splice-junction Gene Sequences dataset consists of 3190 samples with
61 attributes that correspond to DNA sequences.

In Fig. [B] the average classification accuracy rates for the four dimensional-
ity reduction techniques followed by k-Nearest Neighbor or Nearest Centroid
classification are shown for Sonar and Heart datasets, first and second row re-
spectively. On the horizontal axis we have the number of reduced dimensions.
Since the problems are binary, LDA results to one-dimensional extracted data,
so only one accuracy rate is available.

Wine Dataset Class 1v2 Wine Dataset Class 1v3

classification accuracy rate

classification accuracy rate

O 0 0 o T2 o 2 O 0 O
dimensionality dimensionality

Wine Dataset Class 2v3 Wine Dataset Class 2v3

classification accuracy rate
classification accuracy rate

O 0 O 0 T2 o 2 O 0 O
dimensionality dimensionality

Fig. 4. Classification accuracy rates for Wine dataset. The top left subfigure corre-
sponds to the binary problem between classes 1v2 for 5-NN classification and 5-fold
cross-validation, whereas the top right subfigure corresponds to the binary problem
between classes 1v3 for NC classification and 7-fold cross-validation. The second row
corresponds to the binary problem between classes 2v3, which are more difficult to
discriminate and due to 10-fold cross-validation, which results to very small training
sample, we observe very low classification rates. WSVDA outperforms the other meth-
ods in all occasions in terms of classification accuracy rate showing that is a suitable
technique for small sample size problems. Best viewed in color.
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The comparison between the different methods highlights the superior perfor-
mance of WSVDA in comparison to MMDA, PCA, LDA and classification with
Linear SVMs and KNN or NC, applied on the initial data. In the left column
we see the results for KNN and in the right one we see the results for NC. The
results for the Wine Dataset are shown in Fig. @l

Table Bl offers a detailed view over the classification results for all the datasets
examined and all the approaches followed. The accuracy rates correspond to
the highest value over the average accuracy rates of the cross validation and
for every possible reduced dimensionality. They are instances from experiments
with different parameters such as the number of folds, the number of nearest
neighbors and the regularization, but same for each line of the table. This is the
reason for big differences observed in classification rates. For the Wine dataset
for example, the low classification rates for class 2 against 3 are due to the biggest
overlapping between these classes in comparison to the other combination and
due to the larger number of folds which has as a result a very small training set.
This fact results to a more difficult classification task, for which WSVDA proves
to be quite robust.

Table 3. Classification Results

Data KNN NC SVM PCA LDA MMDA WSVDA PCA LDA MMDA WSVDA
sets +KNN +KNN +KNN +KNN +NC +NC +NC +NC
Sonar 51.18 53.37 55.88 53.10 57.54 55.88 58.66 53.48 57.54 56.36  58.29
Heart 80.37 81.67 81.85 80.93 79.44 81.48 82.41 81.76 80.65 81.94 82.41
Wine

1vs2 91.84 90.68 91.07 91.84 90.68 91.84 96.50 90.68 90.29 90.68  96.12
1vs3 89.32 89.17 87.13 89.32 90.42 89.32 100 89.17 90.58 89.17  99.84
2vs3 58.77 61.51 48.11 59.53 71.23 59.43 81.51 61.51 71.23 62.08 81.98
Splice 68.17 80.74 76.81 68.42 77.44 78.88  79.16 72.02 78.36 81.40 81.43

4 Conclusions

A novel dimensionality reduction method has been proposed that combines the
minimization of the within class scatter matrix with the maximization of the
margin between the classes in each projection. The proposed approach uses
an iterative feature extraction with deflation kernels that transform the orig-
inal data to perpendicular subspaces where a quadratic optimization problem
is solved. Thus, the discriminant information that lie in the subspace which is
perpendicular to the only dimension that standard SVM extract is exploited for
better discriminality and classification. Experimental results on several datasets
illustrate the superiority of the proposed approach against other popular dimen-
sionality reduction methods.
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Abstract. Bi-directional Associative Memory (BAM) is an artificial neural net-
work that consists of two Hopfield networks. The most important advantage of
BAM is the ability to recall a stored pattern from a noisy input, which depends
on learning process. Between two learning types of iterative learning and non-
iterative learning, the former allows better noise tolerance than the latter. How-
ever, interactive learning BAMs take longer to learn. In this paper, we propose a
new learning strategy that assures our BAM converges in all states, which means
that our BAM recalls perfectly all learning pairs. Moreover, our BAM learns
faster, more flexibility and tolerates noise better. In order to prove the effective-
ness of the model, we have compared our model to existing ones by theory and
by experiments.

Keywords: Bi-directional Associative Memory, Multiple Training Strategy,
Hopfield neural network.

1 Introduction

BAM is an associative memory that has two directions. Structure of BAM consists of
two Hopfield neural networks with two ways of association, i.e. auto-association and
hetero-association [7]. This class of neural networks is good for pattern recognition
and artificial intelligence. The most important attribute of BAM is the ability to recall
stored patterns from a noisy input. Output of recalling process directly depends on
results of learning process. Learning process is performed by a learning strategy that can
be divided into two types: non-iterative learning [12l21] and iterative learning [9/19].
Results of previous studies show that iterative learning BAMs recall better than non-
interactive ones. Therefore, many iterative learning BAMs have been developed for
recognition applications that manipulate noisy inputs.

Studies of BAMs focus on two main directions: improving math properties of mod-
els and creating new models. Some mathematicians showed output functions that assure
conditions about exponential stability but not considering noisy level of input and learn-
ing process of BAMs [3l22/1046]]. Other studies proposed new models that improve the
ability of storage and the ability of recall [16{17/9119112/13]]. However, noise tolerance
of these models is weak. Moreover speed of learning process is slow when the number
of patterns is large.

In this paper, we propose a novel learning strategy for general BAMs. Our strategy
performs iterative learning until we obtain the condition that guarantees the recall of all

P. Perner (Ed.): MLDM 2012, LNAI 7376, pp. 213-B21] 2012.
(© Springer-Verlag Berlin Heidelberg 2012



214 N.T. Hoa and B.T. Duy

learning pairs, meaning that our novel model converges in all states. Updating connec-
tion weights is flexible by changing pair weights in an iteration of learning process. As
a result, our BAM learns faster and recalls better. Moreover, we prove advantages of
our novel model in theory and by experiments.

The rest of the paper is organized as follows. BAM models are described in Section
Related works are presented in Section[3] In section[d] we present our novel learning
strategy and prove advantages. Section [3] shows our experiments and compares with
other models.

2 Bidirectional Associative Memory Models

Structure of BAM

BAM is a two-layer hetero-associative feedback neural network model introduced by
Kosko [7]. As shown in [Il the input layer F4 includes n binary valued neurons
(a1, az,...,a,) and the output layer Fp comprises of m binary valued components
(b1, b2, ..., by ). Now we have A = {0,1}" and B = {0,1}™. BAM can be denoted as
a bi-directional mapping in vector spaces W : R, <— R,,.

Fig. 1. Structure of Bidirectional Associative Memory

Learning Process
Assume that BAM learns N pattern pairs, (A1, B1), (A2, B2), ..., (An, Bn).The learn-
ing pattern pairs are stored in the correlation matrix as follows [7]:

N
Wo=Y AlB;. (1)

i=1
where A; and B; are the bipolar mode of the i*" learning pattern pair.
A learning rule of BAM shows the multiple training strategy [21]:

N
W =Y qAB;. )
i=1

where ¢; is pair weight of the i*" training pair.
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Recalling Process
To retrieve one of the nearest (A4;, B;) pairs from the network when any («, ) pair
is presented as an initial condition to the network. Starting with a value of («, 3) de-
termine a finite sequence (o, 8'), (&, 8”),... until an equilibrium point (ap, SF) is
reached [7]], where

g = p(aW) 3)

o = p(BWT) )

O(F) =G = (91,92, -1 9n) 5)
F = (f17f27 "'7f71/> (6)

i = {(Lelse @

Energy Function
For any state (A;, B;) , an energy function is defined by [[7]

E; =-AWB; ®)

3 Related Works

3.1 Studies about BAMs
