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Abstract. Topology optimization is used to find a preliminary structural configura-
tion that meets a predefined criterion. It involves optimizing both the external bound-
ary and the distribution of the internal material within a structure. Usually, counters
are used a posteriori to the topology optimization to further adapt the shape of the
topology according to manufacturing needs. Here we suggest optimizing topologies
by evolving counters. We consider both outer and inner counters to allow for holes
in the structure. Due to the difficulty of defining a reliable measure for the differ-
ences among shapes, little research attention has been focused on simultaneously
finding diverse sets of optimal topologies. Here, niching is implemented within a
suggested evolutionary algorithm in order to find diverse topologies. The niching
is then embedded within the algorithm through the use of our recently introduced
partitioning algorithm. For this algorithm to be used, the topologies are represented
as functions. Two examples are given to demonstrate the approach. These examples
show that the algorithm evolves a set of diverse optimal topologies.

1 Background

The background for the methodology of this paper includes genetic algorithms (see
Section 1.1), which serve here as the search algorithm, and their use for optimizing
topologies (see Section 1.2). Because we aim at finding multiple solutions to a single
objective problem, multi-modal optimization through the utilization of niching is of
interest. Therefore, a review of niching approaches is given in Section 1.3. Finally,
our recently suggested approach to find diverse sets of functions is briefly discussed
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in Section 1.4. In the paper, this approach will serve to enhance the search towards
diverse topologies.

1.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) belong to a class of non-gradient methods that have
grown in popularity following the original publication of [20], and later [8]. ex-
panded the idea and helped make it popular. EAs are stochastic search methods that
mimic natural biological evolution. EAs operate on populations of potential solu-
tions, applying the principle of survival of the fittest to produce better and better
solutions. An EA uses a population of individuals (solutions) instead of a single so-
lution to perform a parallel search in the problem space. At each generation, a new
set of approximations is created by a nature-inspired process. The natural processes
commonly mimicked by EAs include selection, breeding, mutation, migration, and
survival of the fittest.

1.2 EC for Size/Shape/Topology Optimization

According to [15], the problems addressed by structural optimization can be
divided into three major categories, namely: a. Topology (layout) Optimization
where the search is for an optimal material layout; b. Shape Optimization, where the
search targets the optimal contour, or shape, of a structural system whose topology
is fixed; and c. Sizing Optimization, in which the optimization aims at optimal
cross-sections, or dimensions, of elements of a structural system whose topology
and shape are fixed. Finding a good structural configuration (topology) prior to
shape and sizing optimization is an important but difficult task. In comparison to
shape optimization, topology optimization is more complex since it involves the op-
timization of both the external boundary and the distribution of the internal material
within a structure. Topology optimization is used to find a preliminary structural
configuration that meets a predefined criterion. Occasionally it yields a design that
can be completely new and innovative. An EC approach to the continuum topology
optimization design problem based on genetic algorithms has been proposed, e.g.,
in [21] and in [22]. In these studies, the design domain was discretized into small
elements containing materials or voids in a cantilever plate so that the structure’s
weight was minimized subject to displacement and/or stress constraints. A variety
of structural design fitness functions, among them stiffness, area, and perimeter,
were employed to find optimal cantilevered plate topologies. Another coding
approach for topologies is based on graph theory [23], in which a topology is rep-
resented by a connected simple graph consisting of vertices and simple undirected
cubic Bezier curves with varying thicknesses. The derived results show that the
graph representation EA can generate clearly defined and distinct geometries and
perform a global search. A bit-array representation EA [24] was also implemented



Evolution of Contours for Topology Optimization 399

for topology optimization. Design connectivity and constraint handling were fur-
ther developed to improve the efficiency of the EA. In addition, a violation penalty
method has been proposed to drive the EA search towards those topologies with
higher structural performance, less unusable material and fewer separate objects
in the design domain. A multi-EA system [25] and a variable chromosome length
genetic algorithm [16] were proposed for continuum structure topological optimiza-
tion. Recently, a two-stage adaptive genetic algorithm (TSAGA) [4] was developed
in bit-array represented topology optimization. The authors demonstrate the effi-
ciency and effectiveness of TSAGA in comparison to other approaches in reaching
global optimal solutions on several case problems.

1.3 Niching within EC and for Topology Optimization

The sharing method, originally suggested by Holland, [8], is probably the most
popular niching technique. Sharing is analogous to a situation in nature in which
the resources of a niche have to be shared. In mathematical terms this method
penalizes solutions that are similar by dividing the fitness of the niche among
them. According to [19], niching methods can be divided into iterative methods,
explicit parallel sub-population methods and implicit parallel sub-population
methods. Iterative methods address the problem of locating multiple optima of
a multi-modal function by repeatedly applying the same optimization algorithm.
Several techniques have been used to avoid iterations towards local minima, such
as the Tabu technique [7], the sequential niche technique [4] and various jump
techniques [12]. Explicit parallel sub-population methods attempt to generate
multiple solutions to a multi-modal optimization problem by dividing a population
into sub-populations that evolve in parallel. These methods include Multiple-
National EA [25], Island EAs [5], the Adaptive Isolation Model [5], and Particle
Swarm Optimization [18]. Without communications among the populations, these
methods are similar to iterative methods. Implicit parallel sub-population methods
attempt to generate multiple solutions by introducing niche/speciation techniques
so that population diversity is maintained and many niches survive in a single
population. Among these methods are crowding [22], [20], fitness sharing [8],
restricted tournament selection [13], species conservation techniques [20] and
Genetic Sampler [20]. Species conservation is a relatively new technique for
solving multi-modal optimization problems and has been proved effective for
obtaining multiple solutions of tested multi-modal problems (e.g., [22]). The
study reported in [10] proposed a new approach for finding diverse solutions to
a multi-modal problem. The authors suggested posing the single multi-modal
problem as a bi-objective problem, with the value of the function as the first
objective and the number of neighboring points that are better than others as
the second objective. It should be noted that the above studies deal with single
objective problems. Although the notion of resource sharing is also an essential
part of evolutionary multi-objective optimization this aspect is beyond the scope
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of the current paper. Niching within topology optimization has received very little
research attention. The few existing studies include the search for optimal topologies
for trusses and space planners (see e.g., [2], [17]). There is no record of a simultane-
ous search for several optimal beam cross sections (topologies) using niching within
evolutionary computation.

1.4 Function Diversity

The partitioning of the set of functions into subsets (Avigad et al., 2012) is ex-
plained in the following (taken from [1]). This partitioning serves as the basis for
the approach taken in this paper.

Let A = { fc(t)}(c∈Ω ,t∈D), be a set of real valued alternative functions, each sam-
pled k times, with c = [c1, . . . ,cp]

T , Ω ∈R
p, D ∈R and fc(t) = [ fc(t1), . . . , fc(tk)]T .

a j = min
c∈Ω

fc(t j), b j = max
c∈Ω

fc(t j), Δ j = b j− a j, j = 1, . . . ,k, dA = max
j=1,...,k

Δ j

In fact, dA is the diameter of the set A in the Chebyshev metric. The idea of the sug-
gested algorithm is that at each step, the set with the largest diameter is partitioned
into two subsets. The result of such a partitioning is that subsets are formed, each
with a smaller partition than the former maximal partition. This process is repeated
until the desired number of subsets is attained. The following algorithm describes
the suggested procedure.

Partitioning the set A to m subsets

(a) A1 ← A
(b) i← 1
(c) S←{A1, . . . ,Ai}
(d) While i < m do
(e) Find A j such that dA j = max

l=1,...,k
dAl

(f) Find sample tp such that Δp = dA j. assemble subsets A j1,A j2 from functions
fc(t) = [ fc(t1), . . . , fc(tk)]T which satisfy the inequalities f (tp) ≤ ap + dA j/2
and f (tp)> ap + dA j/2 respectively

(g) S←{A1, . . . ,A j1,A j2, . . . ,Ai}
(h) i← i+ 1
(i) End while

To demonstrate the approach, [1] used an artificial set of 100 functions and divided
it into six different sub-sets by using the partitioning algorithm. Figure 1 (borrowed
from [1]) shows the results of the first, second, third and fifth partitioning stages (re-
sulting in six subdivisions of the function space). As a last step one function is cho-
sen from each sub-division. In [1], such functions were evolved by using set-based
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Fig. 1 Partitioning algorithm

dominance and by implementing crowding, which was based on the number of func-
tions present in each sub-division. The current study proposes evolving contours to
optimize topologies by utilizing both the partitioning algorithm and crowding, as
suggested in [1].

Evolving contours for the purpose of evolving topologies differs from the claim
(see Figure 1) that contours are used only for shape optimization. Moreover, the
purpose here is not merely to find one optimal topology but rather to look for sev-
eral diverse optimal topologies. The motivation for finding different solutions to an
optimization problem is well known (see e.g., Mattson and Messac, 2005). Basi-
cally, finding different solutions provides decision makers with greater flexibility in
choosing the preferred design based on unmodeled properties.

2 Methodology

To enhance topology diversity, the algorithm proposed in [1]is adopted and adapted
in this paper. The algorithm in [1], deals with functions. This means that in order
to use that algorithm for topologies, the topologies should also be described by
functions.

2.1 Describing Topologies by Functions

In this paper, 2D topologies are considered. Polar coordinates are used here for de-
scribing topologies, although, as discussed, other coordinate systems may be used.
Topologies with and without holes are considered.
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For topologies without a hole, the j-th contour is described by an ordered set
of radii: r j = [r j

1(θ1), . . . ,r
j
Nθ
(θNθ )]

T where θ ∈ D ⊂ R is an equally spaced angle.
The topology is formed by connecting the ordered set to form a continuous function
(through linear sections). The left panel of Figure 2 depicts the encoding of a topol-
ogy with k points, and the middle panel of that figure depicts the formed topology. It
should be noted that in this paper we use reflection symmetry (or mirror symmetry)
with respect to the horizontal and vertical axes, although the use of other symme-
tries or of no symmetry at all may be considered. Reflection symmetry implies that
a quarter of the contour may describe the entire contour.
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Fig. 2 The encoding of topology without a hole

In fact, based on these equally spaced coordinates we may now describe the
topology as a function of θ , so that the j-th topology may be described as a function
fr(θ ) = r(θ ). The middle panel of Figure 2 depicts the topology while the right
panel depicts its plot as a function.

Two contours are used to describe a topology with a hole. The j-th topology is
coded by its inner contour radius Rin

j = [r j,in
1 (θ1), . . . ,r

j,in
Nθ

(θNθ )]
T and by its outer

contour radius Rout
j = [r j,out

1 (θ1), . . . ,r
j,out
Nθ

(θNθ )]
T . The topology is formed by con-

necting the ordered set to a continuous function (linear sections). The left panel of
Figure 3 depicts the code of the topology, where squares and circles designate the
inner and outer radii of the inner and outer contours respectively. The middle panel
of the figure shows the topology formed by connecting the radii by linear sections
and using the rotational reflection.

As in the no-hole case, here also this topology may be described by a function so
that the j-th topology may be described as functions; f rout

rin
(θ ) = { f rout (θ )∪ frin(θ )}.

It should be noted that the outer and inner boundaries of the outer and inner contours
should be determined to ensure a reasonable thickness for the topology. The middle
panel of Figure 3 depicts the topology, and the right panel shows its description as
a function.
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Fig. 3 The encoding of topology with hole

2.2 Problem Definition
The optimization problem is defined as follows: For topologies without a hole:

min
r

F( fr(θ ))

∀r ∈ R : rmin ≤ r ≤ rmax

g( fr(θ ))≥ 0

(1)

For topologies with a hole:

min
rout ,rin

F( f rout
rin

(θ ))

∀rin ∈ Rin : rin
min ≤ rin ≤ rin

max

∀rout ∈ Rout : rin
max + δ ≤ rout ≤ rout

max

g( f rout
rin

(θ ))≥ 0

(2)

where F : F( f (·))→ 0 ∈ Γ ⊂ R and Γ is the objective space. For example F( f (·))
can be a cross section area, the first or the second moment of inertia and other
topology dependent characteristics.

2.3 Diverse Topologies and Niching

Niching is implemented to find a diverse set of topologies. For this purpose, a
partitioning algorithm is used. First the following parameters must be computed:
a j =min f (·), b j =max f (·) and Δ j = b j−a j, j = 1, . . . ,k as well as dA= max

j=1,...,k
Δ j

then the algorithm of [1] is used by slight changes as follows:

Partitioning the set A to m subsets

(a) A1 ← A
(b) i← 1
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(c) S←{A1, . . . ,Ai}
(d) While i < m do
(e) Find A j such that dA j = max

l=1,...,k
dAl

(f) Find sample θ such that Δp = dA j. Assemble subset A j1,A j2 from functions
fr(θ ) or f rout

rin
(θ ) which satisfy the inequalities:

fr(θ )≤ ap + dA j/2 or f rout
rin

(θ )≤ ap + dA j/2 and
fr(θ )> ap + dA j/2 or f rout

rin
(θ )> ap + dA j/2 respectively

(g) S←{A1, . . . ,A j1,A j2, . . . ,Ai}
(h) i← i+ 1
(i) End while

The algorithm partitions a population of topologies (represented as functions) to
N predefined sub-sets. A solution will reproduce according to its fitness (value
of F( f (·))) which will be penalized according to the number of functions with
which it shares the same sub-partitioning (same niche). Such a penalty will
prevent genetic drift and will increase the chances that other optimal solutions will
reproduce. For example, Figure 4 depicts 20 topologies represented by their related
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Fig. 4 20 individuals before division

functions. The dashed line marks the sample with the largest difference and
therefore the point where the algorithm will divide the group into two groups.
This partitioning results in 5 and 15 individuals in each subdivision, as depicted in
Figure 5. The next partition is marked by the dashed line in the right panel of
Figure 5. The result of dividing the second group (of 15 individuals) into two
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Fig. 5 The two formed subdivisions containing 5 (left panel) and 15 (right panel) individuals
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Fig. 6 The second and third groups
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Fig. 7 The second and third groups

groups is depicted in Figure 6. The point where the algorithm will divide again to
form the next two groups is marked by a dashed line. Finally, the four groups are
presented in Figure 7.

2.4 The Evolutionary Optimization Algorithm

The algorithm described here aims at searching for optimal topologies based on the
optimization problem set in Section 2.2. The algorithm utilizes an archive in order
to preserve elite solutions.

The Evolutionary Optimization Pseudo Code

(a) Initialize a population Pt with n individuals. Also, create a population Qt = Pt

(b) While t ≤ predefined number of generations
(c) Combine parent and offspring populations and create Rt = Pt ∪Qt

(d) For each individual z ∈ Rt compute:

(d.1) F( f (z))
(d.2) g( f (z))
(d.3) The niche count: m(z)
(d.4) The fitness: f it(z) = F( f (z)) 2n

2n−m(z)
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(e) Create elite population Pt+1 of size n from Rt (procedure I )
(f) Create offspring population Q∗t+1 of size n from Rt by Tournament selection

(procedure II )
(g) Perform Crossover to obtain Q∗∗t+1 from Q∗t+1.
(h) Perform Mutation to obtain Qt+1 from Q∗∗t+1.
(i) Set t = t + 1 and go to (b).
(j) Provide the decision maker with N topologies, each from a different sub-

division and each possessing min( f it) within this subdivision.

Procedure I: Archiving

Compute nc = number of individuals that comply with g( f (z)) > 0

(a) If nc ≤ n then include the nc individuals in Pt+1 and sort the remaining 2n− nc

individuals to a list L1(g( f (z) :<)). Add the first n− nc individuals of L1 to
Pt+1.

(b) If nc > n

(b.1) Include N individuals in Pt+1 taking one individual from each sub division
that is with the min(over all fit).

(b.2) Then list all nc−N individuals to a list L2( f it( f (z) :>)). Add the first
n−N individuals of L2 to Pt+1.

Procedure II: Tournament Selection

(a) If g( f (z)) ≥ 0∧g( f (z′))< 0 include z in Qt+1

(b) If g( f (z)) < 0∧g( f (z′))< 0
Then if g( f (z)) > g( f (z′)) include z in Qt+1

(c) If g( f (z)) ≥ 0∧g( f (z′))≥ 0
Then if f it( f (z)) leq f it( f (z′)) include z in Qt+1

Algorithm explanation
In step (a), two populations are initialized. A ”while loop” begins at step (b) and
ends at step (i). In this loop populations of candidate solutions are evolved. Step
(c) is a common step used in MOEAs, which involves creating a combined popula-
tion. In step (d), the following calculations take place with respect to each individual
within a population: (d.1)- value of the objective function (which is to be optimized);
(d.2)- value of the constraint; (d.3)- number of functions that share the same sub-
division with the individual; (d.4)- fitness value of the individual, which is computed
by penalizing the objective function’s value. A greater number of shared individuals
results in a higher penalty and therefore decreased fitness. In step (e) the elite pop-
ulation is formed by utilizing Procedure I. The procedure admits feasible optimal
(low fitness value; without loss of generality) solutions to the archive. Moreover, it
ensures that the archive will always include at least one representative from each of
the N subdivisions. In step (f) the offspring population is created by using Proce-
dure II. In each tournament (among two arbitrary selected individuals), the winning
individual is feasible and possesses a lower fitness value (without loss of generality)
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than its competitor. If both competitors are infeasible, the one with a lesser viola-
tion of the constraint is the winner. Steps (g) and (h) are the crossover and mutation
steps respectively. In the final step (step (j)), the decision maker is presented with N
solutions that have the lowest fitness value (the best as far as minimization is con-
sidered). In order to preserve diversity, each of the presented topologies is extracted
from another sub-division. Please note that step (j) is an a posteriori step and the
decision maker is not involved within the evolutionary search.

3 Examples

In this section two examples are used to demonstrate the proposed approach and to
highlight its potential for solving real life topology optimization problems.

3.1 Cross Section Optimization for a Structure Subjected to a
Tensile Force

A beam is subjected to a tensile force of magnitude: Fr = 150kN. The objective of
the optimization is to find a topology with a minimal cross section A. The allowed
normal stress is: [σ ] = 10MPa, therefore

Amin ≥ Fr
[σ ] =

150×103

10×106 = 150cm2.

This implies on the constraint:

g = A−Amin = A− 150≥ 0

The search here will be conducted towards topologies that contain a hole. The topol-
ogy search space is a priori set such that:
0.5≤ rin ≤ 3;3+ 1 = 4≤ rout ≤ 8, where dimensions are given in cm.

The initial population includes 100 individuals and is represented as functions in
the left panel of Figure 8. In order to prevent the outer contour from dominating the
diversity, normalization is applied such that the amplitude of both contours is the
same. The normalized functions are depicted in the right panel of Figure 8. Note
that the radii have not been altered and that the inner radius seems bigger due to the
normalization.

Two topologies arbitrarily chosen from the initial population are depicted in
Figure 9. These are clearly non-optimal solutions because the topology in the left
panel involves a cross section that is much too big according to the constraint,
whereas the topology in the right panel has a cross section that is smaller than al-
lowed.

Apart from diversity preservation, the algorithm has evolved optimal topologies.
Figures 10 and 11 depict the resulting optimal diversified topologies when the pro-
posed algorithm is run with N=2 and N=4, respectively. Clearly the algorithm has



408 G. Avigad et al.

0 90 180 270 360 90 180 270 360
0

1

2

3

4

5

6

7

8

θ

rin
 a

n
d

 r
o

u
t

Outer redius Inner redius

0 90 180 270 360 90 180 270 360
0

1

2

3

4

5

6

7

8

θ

rin
 a

n
d

 r
o

u
t

Outer redius

Normalaized Inner redius

Fig. 8 Normalized and Un-normalized function
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Fig. 9 Two cross section in the first generation
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Fig. 10 The result for N=2

evolved diverse optimal topologies. All are distinctly different and possess the min-
imal (or close to the minimal) possible cross section area. Considering feasibility,
clearly most topologies are not natural candidates for manufacturing. Nevertheless,
as expected from such algorithms, they have shown the way, and adaptations to fa-
cilitate manufacturing should follow. One approach that should help is to encode the
topologies with less complexity, i.e., fewer angle divisions. Figure 3.1 depicts the
same problem; however, instead of using 10 angle divisions to decode the topolo-
gies, 5 divisions are used.
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Fig. 11 The result for N=4
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3.2 Cross Section Optimization for a Structure Subjected to a
Moment

A beam is subjected to a pure moment. The moment applied magnitude is: M = 66×
103N×m. The allowed normal stress is: [σ ] = 120MPa The equation connecting the
allowable stress and moment is: [σ ] ≥ Mymax

Ixx
= M

Sx
where Ixx is the second moment

of inertia, ymax is the the maximal perpendicular distance from axis x, and Sx =
Ixx

ymax
is the section modulus about x axis. The allowable stress determined the allowable
range of section modulus about the x axis:

[σ ]≥ M
Sx
→ Sx ≥ M

[σ ] =
66×103

120×106 = 5.5× 10−4m3 = 550cm3

The constraint is g = Sx− 550 ≥ 0 and the objective is the minimal beam weight.
Because the problem deals only with constant cross section beams, minimizing
the weight is the same as minimizing the beam’s cross section area. Figure 12 de-
picts three evolved topologies with no holes. It is apparent that although different
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Fig. 12 The result for N=3 decoded without a hole

topologies have been evolved, their cross sections are not similar. As expected, the
optimal topology involves an I-shaped cross section, where other topologies are less
optimal versions of it.

4 Summary and Conclusions

In this paper, we have adapted a recently proposed partitioning algorithm in order
to evolve a diverse set of optimal topologies. It has been suggested to code topolo-
gies using polar coordinates. Topologies with holes and without holes were coded.
The coding was used to establish topologies through linear interpolation. Then, the
topologies were represented as functions (of an equally spaced angles). Once this
was achieved, the partitioning algorithm was implemented within an evolutionary
search. This algorithm enhances a search toward a diverse set of optimal topologies.
These diversified optimal topologies are associated with multiple optimal solutions
(if the problem is inherently multi modal) or with different levels of optimality (if
the problem is not multi modal by nature). In future work other coordinates will
be used to describe the topologies (Cartesian), allowing more complicated structure
with more holes. Moreover, 3D shapes should be evolved by describing the added
dimension using a function as well. Real life problems should be considered, and
comparisons with other approaches should be made.
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