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Abstract. Visual attention is a natural process performed by the brain, whose func-
tionality is to perceive salient visual features, and which is necessary since it is
impossible to focus your sight at two things during the same indivisible time. This
work is devoted to the task of evolving visual attention programs through organic
genetic programming. The idea is to state the problem of visual attention, which
is normally divided in two parts: bottom-up and top-down, in terms of a unique
approach based on a teleological framework. Indeed, this paper explains how vi-
sual attention could be understood as a single mechanism that is designed according
to a given purpose. In this way, genetic programming is used to design top-notch
visual attention programs. Experimental results show that this new approach can
contrive solutions useful in the solution of “top-down and bottom-up” visual atten-
tion problems. In particular, we present a solution to the size popout problem that
was unsolved previously in the literature.

1 Introduction

The brain can be extremely complex and despite rapid scientific progress much
about how the brain works remains a mystery. In nature, there is a large diversity of
brain anatomies that are characterized by the specialization of visual systems. Such
diversity shows the power of evolution through adaptation. In this way, it has been
argued that the evolution of specific visual mechanisms in the primate brain is the
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Fig. 1 This figure illustrates the analogy between the natural and artificial systems. The idea
is based on replicating the functionality of a set of artificial tissues that conform what we
called the organic genetic programming (OGP).

product of natural selection [2]. Contrary, in the past it was widely believed that
human observers construct a complete representation of everything in their visual
field [6, 21]. This has been amply refuted by a large amount of research. The visual
attention is without a doubt one of the most important mechanisms in the visual
system because the brain, or visual cortical areas, are unable to process all informa-
tion received along the entire visual field. In this way, there are two basic process
that define the problem of visual attention. The first basic phenomenon is the lim-
ited capacity of information processing. At one given time, only a small amount of
information available to the retina can be processed and used for control of some
specific behavior. The second basic phenomenon is selectivity; in other words, the
ability to filter unwanted information [5].

In this work, we follow the idea that visual attention is controled by both cogni-
tive, or top-down (TD) factors, such as knowledge, expectation, and current goals;
as well as, reactive stimulus, or bottom-up (BU) factors, that refers to sensory stim-
ulation like gaze, focus, and cuing, see [4]. Moreover, the low level mechanisms for
feature extraction act in parallel over the entire visual field using the TD and BU
systems in order to provide the signs that highlight the image regions. Afterwards,
attention is focused sequentially on the highlighted regions of the image in order to
analyze them in more detail [22, 12].

1.1 Problem Statement

As was mentioned previously selectivity is a quality of the visual attention pro-
cess. Today, many researchers believe that it is necessary to implement this property
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within artificial systems. The answers to the questions: what features should it use?
and when to use those features? is not evident. Moreover, a problem arise after the
feature detection stage known as feature combination. Combining different features,
such as color, orientation and shape, within a single saliency representation becomes
complex since these features came from different visual dimensions. The complex-
ity increases when you are looking for a particular object and it is necessary to filter
the information to stress the features of the desired object. In this work organic ge-
netic programming (OGP) is used to address this problem. In this way, the idea is to
apply OGP as the mechanism to obtain the most suitable visual attention programs
(VAPs) that are capable of pursuing different goals.

2 Visual Attention Processing

This section proposes a new approach for visual attention with the aim of organizing
the whole system as a single functional entity that changes its operation according
to a purpose, but without changing its structure. In this way, contrary to most tra-
ditional approaches that represent the visual attention model through the division
of the process into reactive and volitive parts, our proposal provides the simplicity
and uniqueness to endow a machine with the ability of designing visual attention
programs. Next, the main works are reviewed in order to understand our definition
of visual attention.

In the early 80’s the feature-integration theory for visual attention was proposed
by Treisman and Gelade[22]. Actually, this theory is considered as the most widely
accepted paradigm for visual attention within the cognitive sciences community,
and it is used as the fundamental computational model for “bottom-up” visual at-
tention. In a first stage, the feature-integration theory proposes that the features of
the whole visual scene are perceived in parallel. Next, in a second stage, all features
are detected through the stimuli and are integrated into a coherent representation. In
a third stage, the stimuli are processed serially by focusing the visual attention on
them. In this way, when visual attention is fixed on a particular stimulus, the char-
acteristics, around the attended area, are merged to form a single object. Therefore,
it is said that visual attention should serve as a “glue” that combines the features of
an individual object to obtain a unique and coherent representation.

2.1 Classical Approach to Visual Attention

The visual attention functionality, regarding the localization of objects, is related
to the brain areas around the dorsal stream. Thus, the dorsal pathway is defined as
projecting from V1 through V2, V3, middle temporal area (MT), medial superior
temporal area (MST) and finally to the posterior parietal cortex, see [23]. Never-
theless, there is a lack of consensus about the specific brain areas, structure and
functionality, that conform the dorsal stream. For example, in another theory the
dorsal stream is also known as the “how” stream [15]; while, in the work described
in [1] the dorsal stream areas do not correspond to the literature.
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Nowadays, classical explanations of visual attention are in agreement that the
dorsal stream could be seen as a theory that is influenced by BU and TD factors.
In this way, it is affirmed by [4] that there are two interacting neural systems in-
volved in the control of BU an TD factors that control visual attention. As a result,
the dichotomy of visual attention has inspired several computational models that
are commonly based on only one of these two factors. For example, the research
in computational neuroscience has traditionally separated their study; as well as,
the implementation of visual attention using a benchmark system for human-visual
gaze estimation [17, 3] or for the solution of object recognition tasks. Contrary to
this line of research, we propose to study visual attention from a teleological stand-
point as a way of unifying through this framework both factors with the intention of
considering visual attention as a single mechanism.

Next, both BU and TD factors are reviewed in order to introduce our approach
with the aim of understanding the structure and functionality of visual attention. In
this way, both factors should be studied through a unique process that is capable of
adapting itself according to the pursued goal or goals.

2.1.1 “Bottom-Up” Control for Visual Attention

In the literature the idea of BU visual attention is related with involuntary attention,
which is usually compared with the concept of a spotlight. This metaphor has been
used by Posner et al. [18] to explain that visual attention operates “as a spotlight
which improves the detection of events in their proximity”.

Actually, one of the best and easiest ways of implementing a set of tests is to study
BU attention in terms of visual search. Commonly, the exploratory task is studied
experimentally using a set of images containing challenging visual stimuli that are
presented to an observer. For each image there is an object called target that is dif-
ferent from the rest. Today, the existing computational models are mostly bottom-up
models based on the feature-integration theory [22]. The first biologically, neurolog-
ically, and plausible computational model for BU visual attention was proposed by
Koch and Ullman [12]. Later, Milanese [14] proposed a visual attention system that
uses mechanisms, inspired from biological processes, which were adopted by the
research community to create a whole new trend in visual attention systems. Some
of these processes are the color opponencies such as: red-green and blue-yellow; as
well as, the center-surround difference present in the receptive field of the cortical
cells. One of the most well-known models is probably that of Itti et al. [10], which
provided a software that popularize these theoretical processes. In summary, this can
be considered as a very detailed model that proposes simple solutions to complex
issues. Thereafter, another breakthrough was proposed by Rensink [20, 19] who in-
troduced the notion of proto-objects and the interpretation of the apparent blindness
of observers to recognize dramatic changes within a scene. Finally, Walter and Koch
[24], showed that the proposed model can enhance the task of object recognition
through the application of the concept of proto-object for visual attention tasks.
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2.1.2 “Top-Down” Control for Visual Attention

Today, there is an agreement that TD cues play a key role in the processing of visual
information. In particular, it is known that there are numerous connections between
higher and simpler information processing areas. In this way, it is said that volun-
tary attention takes more time and effort to accomplish compared to involuntary
attention. This is because the target shares with the distractors two or more features,
which forces the observer to perform a scanning of the whole scene.

The TD visual phenomenon, just explained, is studied in psychophysics; in fact,
TD factors are usually investigated through the so-called “cuing experiments”. This
type of experiments consists in presenting a “cue” that guides the observer’s atten-
tion toward the target. In this way, it is said that cues may indicate where is the
target, like in the case of an arrow pointing towards the target, or by answering the
question of what is the target by means of finding the similarities between a picture,
or written description of the target, see [7]. Thus, there have been several attempts to
implement models using TD cues. For example, Oliva et al. propose an attentional
model that uses knowledge about the distribution of features over the image in or-
der to select salient regions [16]. Peters and Itti [17] proposed a combined model
BU/TD, in which they measure the ability of the model to predict the saccades of
people playing video games. In this way, they improved the prediction by a margin
that doubles the performance obtained by the BU model. The TD part computes a
feature vector describing the “gist” of the image with the positions of saccades ob-
tained from real observers that are used to train the model. Finally, a feature vector
is calculated to generate the saccades prediction map. Recently, Borji, et al. [3] fol-
low the same line of research proposed by Peters and Itti, but the system is based on
a different approach that determines the position of the saccades with respect to the
observer by applying a set of robust classifiers.

Thus, from a computational modeling standpoint TD factors are not a trivial task;
in other words, emotions and desires are difficult concepts to model; hence, such
kind of cognitive concepts are still challenging within computer science. Neverthe-
less, from a pragmatic point of view, there are goals to achieve. Therefore, a purpose
should not be confused with a desire; when we refer to a purpose, we talk in terms
of whether the goals are achieved or not. Here lies the importance of modeling TD
and BU mechanisms in teleological terms.

2.2 An Unified Approach of Visual Attention

Aristotle defined the final cause or telos as that for which something is done, its
purpose. Also distinguishes between the telos and desire, consciousness and intelli-
gence. Therefore, according to Aristotle, an organism like a seed has a purpose just
as a person. Latter, Kant [11] wrote, in the “Analytic of Teleological Judgment”, that
organisms must be regarded in teleological terms, and in the “Dialectic of Teleolog-
ical Judgment”, he attempts to reconcile this teleological conception of organisms
with a mechanistic account of nature. Everything can be completely explained by
causality, except the organisms.
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From our standpoint, attention is the result of a single mechanism that is designed
to obey a general purpose; as well as, different particular purposes. For example,
the most primitive purpose for life could be survivorship. But, the achievement of
survivorship depends on many other particular purposes; for example, prey hunting,
mating, predator escape, etc. In this sense, visual attention is capable to adapt itself
to the kind of goal that depend on the current purpose of the organism. In order to
accomplish such task, it is necessary a unique and general visual attention structure
capable of performing, by some temporal readaptation, the necessary functions to
achieve that aim or intention. Furthermore, considering the fact that most of the
tasks involved in the design of BU and TD factors are complex, we could say that
the space of possible readaptations is at least very large and discrete. Therefore, we
defined visual attention as follows.

Definition 1 (Visual Attention) Visual attention is a process that designs a rela-
tionship between the different properties of the scene, which are perceived through
the visual system with the aim of selecting a particular aspect.

For these reasons, we consider the visual attention as a single computational struc-
ture that performs BU and TD processes. In consequence, in this work visual at-
tention is studied within a unified framework in order to evolve visual attention
programs (VAPs) that will be adapted for specific purposes.

3 Purposive Evolution for Visual Attention

The theory of evolution is not exempt of the concept of purpose. Charles Darwin
was the one who brings the concept of purpose into consideration. Note that Dar-
win uses the term final cause systematically in his writings as it is documented
by Lennox [13]. On the other hand, Barton [2] explains the evolution of primates
brains in terms of the specialization of visual mechanisms; such as visual attention.
Thus, this section describes the general structure of attention, which is biologically
inspired and will be evolved to suit different purposes. The resulting evolved pro-
grams will be known as visual attention programs (VAPs). Moreover, following the
same direction of Treisman, the description of the general approach is divided into
two main stages: acquisition and integration.

3.1 Acquisition of Early Visual Features

In previous works of artificial visual attention, the operators are established accord-
ing to the knowledge in neuroscience. Moreover, it is widely recognized that the
operation of the visual cortex, specifically the dorsal stream, is a product of the evo-
lutionary process. In this way, we propose to use evolutionary computation to obtain
these artificial visual operators. In summary, this work explains how to use special-
ized evolved visual operators (EVOs) for the acquisition of visual dimensions such
as color, orientation and shape. Next, the EVO features used within the VAP are
defined.
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Table 1 Functions and terminals used by EVOO to create the orientation visual map V MO

FO = {+, −, ×, ÷, | + |, | − |,
√

ITO , I2
TO

, log2(ITO),

Gσ=1,Gσ=2, |ITO |,
ITO
2 , Dx, Dy}

TO = {Ir , Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv, Gσ=1(Ir), Gσ=2(Ir),
Dx(Ir), Dy(Ir), Dxx(Ir), Dyy(Ir), Dxy(Ir), . . .}

3.1.1 Orientation

In previous work the characteristic of orientation for images was only computed in
gray scales. Thus, our work proposes to evolve the property of orientation along
the different color bands of the image. In this way, a rich set of information is gen-
erated because the edges, corners, and other similar features could appear more
highlighted with the color bands. Therefore, the evolutionary approach evolves a
function EVOO : Icolor →VMO that cooperates with the VAP in order to accomplish
a purpose. The resulting EVOO operation is a visual map VMO for which the pixel
value represents the feature prominence; in such a way, that the larger the pixel
value, the greater the orientation prominence of the feature. This computation is
performed through a set of functions and terminals that are provided in Table 1. The
notation that was used is as follows. ITO can be any of the terminals in TO; as well as,
the output of any of the functions in FO; Du symbolizes the image derivatives along
direction u ∈ {x,y,xx,yy,xy}; Gσ are Gaussian smoothing filters with σ = 1 or 2.

3.1.2 Color

In biology, the color is encoded through photoreceptor cells known as cones, which
are located in the retina. However, a special case is the yellow color which is not
perceived in the cones but in the retinal ganglion cells. Then, the dorsal pathway is
composed of several tissues V1, V2 and V4, whose cells respond to color features.
In this work the characteristics of color information that will be used as the building
blocks to construct the VAPs are color opponencies and simple arithmetic operations
between the different color bands in the corresponding color space. In the same
way, as in EVOO, the evolutionary process uses a set of functions and terminals
provided in Table 2 to evolve the feature in the color space. The result is a visual
map EVOC : Icolor →VMC containing the color prominent features.

Table 2 Functions and terminals used by EVOC to create the color visual map V MC

FC = {+, −, ×, ÷, |+ |, | − |,
√

ITC , I2
TC

, log2(ITC ),
Exp(ITC , Complement(ITC ) }

TC = {Ir , Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv, RGoppn, Y Boppn }
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3.1.3 Shape

As in previous dimensions, the evolutionary process uses a set of functions and
terminals provided in Table 3 to characterize the shape information. Note that we
propose to describe these features through mathematical morphology. The result is
a visual map EVOS : Icolor → VMS containing the shape prominent features. This
part is evolved with genetic programming with the aim to provide the information
about shape and structure of the object of interest within the image. We would like
to remark that the application of this kind of morphological functions has not been
applied in previous research studying the ventral and dorsal streams.

Table 3 Set of functions and terminals used by EVOS to create the shape visual map V MS

FS = {+, −, ×, ÷, round(ITS ), $ITS%, &ITS',
dilationdiamond(ITS), dilationsquare(ITS ),
dilationdisk(ITS ), erosiondiamond (ITS ),
erosionsquare(ITS), erosiondisk(ITS ), skeleton(ITS ),
boundary(ITS ), hit − missdiamond(ITS ),
hit − misssquare(ITS ), hit − missdisk(ITS ),
top − hat(ITS ), bottom − hat(ITS ), open(ITS ),
close(ITS ) }

TS = {Ir , Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv}

Finally, to obtain the intensity of pixels in the image the model averages the red,
green and blue values for each pixel. The result of this operation is a visual map
VMI in which the pixel represents the prominence over the intensity space.

3.1.4 Computing the Conspicuity Maps

The conspicuity maps (CMs) are obtained by means of a center-surround function
that is applied in order to simulate the center-surround receptive fields. This natural
structure allows the ganglion cells to measure the differences between firing rates in
center (c) and surroundings (s) areas of ganglion cells. At this stage, we have one
CM for each feature. The CM is obtained as proposed in the Walther and Koch model
[24]. Finally, the CMs are combined to obtain a single saliency map as explained in
the next section.

3.2 Feature-Integration for Visual Attention

The saliency map (SM) defines the place for the most prominent locations of the
image; given the characteristics of intensity, orientation, color and shape. In other
words, the objective of this stage is to decide where attention could be directed
at any given time. In this work, the problem statement considers that the task must be
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Table 4 Set of functions and terminals used by EFI to create the object saliency map OSM

Ffi = {+, −, ×, ÷, |+ |, | − |,
√

ITf i , I2
Tf i

, Exp(I f i),
Gσ=1,Gσ=2, |ITf i |, Dx, Dy}

Tf i = {CMI , CMO, CMC , Dx(CMI), Dy(CMI),
Dxx(CMI), Dyy(CMI), Dxy(CMI), ... }

addressed to achieve a specific goal. As a result, if the task needs to accomplish a
purpose; then, the main criterion should be the one that guides the suitable com-
bination of characteristics. Therefore, we decided to evolve the integration of CMs
through a function that we called Evolved Feature Integration (EFI). Therefore, the
VAPs provide a dynamic structure since the EVOs can be selected using a fusion
process executed by the EFI. This process considers different combinations of CMs
to complete the entire process. Once the integration of features is performed, we
get an optimized saliency map (OSM) indicating the location of the most prominent
regions within the original image, known as proto-objects (Pt). The definition of the
EFI function is as follows:

EFI : CMl → OSM ; l ∈ {O,C, I}

The evolutionary method uses the set of functions and terminals, listed in Table 4,
to create a fusion operator that highlights the features of the object of interest.

4 Organic Genetic Programming

In this section, we describe the main aspects for the evolution of VAPs using the
organic genetic programming (OGP) strategy. In the OGP the chromosome is com-
posed of several genes that are represented each one with a tree structure. At the
gene level the genetic operations are performed like in the classical genetic pro-
gramming. While at the chromosome level the whole genotype is described by the
parallel set of functions acting over the color, shape, and orientation dimensions.
The design of the OGP embody an organic motivation in a sense of describing an
organ or tissue, as a part of a living organism, and their complexity. We introduce a
set of new concepts in order to deal with the evolution of complex structures, which
are explained below.

In the experiments the OGP goal is to discover a program that learns to attend a
prominent object using a set of training images. In this work, the VAP’s genotype
is considered as robust because it is capable of encoding the phenotype of an
artificial dorsal stream. In other words a genotype consisting of three to four
trees is composed of different and specialized operations. Thus, each tree has
its own independent set of functions and terminals, which are listed in Tables 1,
2, 3 and 4; according to orientation, color, shape and feature integration respectively.
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The first one encodes the orientation feature similar to the orientation-sensitive cells
of V1 [9]. The second one represents the color feature in an analogy to the photo-
receptor cells presented in the retina; as well as, the color sensitive cells of the
layers V1 and V4 of the visual cortex. The third one models the shape feature that
characterizes shape-sensitive cells present in layers V2 and V4 of the brain. Finally,
the fourth one encodes the way in which the features are combined to obtain the
saliency map, or operation of the posterior parietal cortex [8].

5 Experiments and Results

The following experiments are divided in two parts, according to the goal that the
VAP is attempting to reach. The OGP is basically the same for both experiments,
the only parts that change are the fitness function, which encodes the purpose, and
the set of images utilized for training. The fitness function of the OGP is the charac-
terization of the purpose, the answer to the “what are the individuals for?”. In other
words, it is the way in which the purpose is implemented as a computer program-
ming.

5.1 Evolution of VAPs for Aiming Scene Novelty

The first set of experiments are stated in terms of visual search, which is commonly
applied like in classical research devoted to visual attention. In this way, the tests
are designed to obtain through artificial evolution a VAP that is specially adapted to
find the novelty, or asymmetries, in a simple set of images of the kind that are used
in psychophysical studies.

5.1.1 Search of Appearance Novelty

The first experiment was conceived with the aim of obtaining a VAP capable of cen-
tering attention with respect to appearance novelty. In other words, capable of focus-
ing an object using the shape and the information around the object. Figure 2 shows
the VAPtriangle that was obtained by the OGP. We can remark that the VAPtriangle

utilizes only the color dimension. The proposed solution is to regularize the image
through the logarithm function. This process reduces the contrast between the black
and white areas, and as a result, the regions around the triangle are highlighted af-
ter the central-surround processing and evolved feature integration steps. Thus, the
functions obtained by the OGP are listed below:

EVOO:= Dy(IG)
EVOC:= log(log(IB))
EFI:= ‖Dx(CMC)‖
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Visual attention results

IB log log

R+G+B
3

EFIEV OO

EV OC

CMI

CMO

CMC

IG Dy
Abs

Dx

CMC

Fig. 2 Bottom-Up image testing of novelty. This figure depicts the best visual attention pro-
gram that was evolved with organic genetic programming to attend the triangle.

The evolution used only one image per training, This image shows the high-
lighted black square at the top-right corner of Figure 2. The extra images illustrate
the results achieved during a set of tests considering rotation and translation; indeed,
the triangle was rightly focused.

5.1.2 Search of Size Novelty

The experiment described next is important because, according to the literature, it
has not been solved previously by any computational method devoted to the solution
of visual attention. The main reason may be due to the overlook of the characteristic
of size, and the lack of a suitable choice of functions within the problem statement.
Thus, in order to solve this problem for this particular experiment, see Figure 3,
it was decided to increase as an extra dimension the property of shape (EVOS),
which is computed as explained in section 3.1.3 using the fundamental operations
of mathematical morphology. Hence, the best set of functions obtained by the OGP
are listed below:

EVOO := DxDyDxx(Y )+ tresh(DxDyDxx(Y )+0.93
0.83 )

EVOC := IV − IR

EVOS := ((IG + 0.90)⊕ Sqr)⊕ Sqr
EFI := |Dy(CMS)− CMC

|CMO−
CMC

Dy(CMO)
|
|

where Sqr denotes a square structuring element over the dilation operator ⊕.
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R+G+B
3

CMC

CMO

CMI

CMS

EV OO

EV OC

EV OS

EFI

Fig. 3 Bottom-Up testing for the size popout problem. This figure provides an example of a
pop-out effect, the big circle, that previous visual attention programs were unable to detect,
see [7]. Indeed, the evolved visual attention program was able to detect the saliency in the
image related to the single big object.

5.2 Evolution of VAPs for Aiming Specific Targets

In this section, the obtained VAPs and their performance are presented for the case
of TD tasks. Figure 4 provides the statistics of the top-down runs plotting the aver-
age, highest, and lowest values. The examples illustrate that for each target object:
red can and traffic signals, a solution could be attained without changing the pro-
posed computational framework. During the training stage, the FOAcoke detected
the object of interest, in this case the coke, with a successful rate of 100% after us-
ing 44 images. In this way, during the testing stage the FOAcoke detected the object
of interest with a rate of 88.13% using 59 images. In this way, from the 59 test im-
ages the coke was detected in 52 occasions. Moreover, the percentage of detection
increases after considering a second attempt since the coke was detected in one ad-
ditional image; producing a total of 53 images that represent 89.83% of the total,
see Figure 5. This best individual brought into consideration the reflectance, which
is a feature that in some images of the can is useful for the solution of the problem.
Next, the functions obtained by the OGP are listed.

EVOO:= Dx(IK)−Dy(IY )
EVOC:= (Exp(IG)/(IH)

2)2

EFI:= Dx(CMC)

As a final experiment, the training stage was applied to the FOAsignal in order to
detect the object of interest, in this case the traffic signal, with a percentage rate of
88.89%; in other words, in 40 of the 45 training images. Next, during the testing
stage the FOAsignal detected the object of interest, traffic signal, in 77.78% of the
images. Thus, from 45 testing images the best evolved program correctly detected
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Fig. 4 These figures show the average, highest, and lowest fitness; for a) the red can run, and
b) the traffic signal that produce the respective best individual of Figures 5 and 6.

 symbolize the complement or negative function

Visual attention results

Training Testing

 of the color image

CMC

∼

100%

R+G+B
3

EFI

CMI

CMO
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EV OO
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(N = 44)
(N = 59)

V APcoke

exp(IG)
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2

I2

/

∼
Dx

−
Dy(IY )

Fig. 5 Top-Down testing for the red can problem. Evolved structure of VAPCan obtained
through the OGP to attend the red can in the images

the salient object in 35 images. Moreover, the percentage of detection increases
when we consider a second attempt as the signal was detected in five additional
images producing a total of 40 images that represent a rate of 88.89%. Finally, in
a third attempt the percentage increases to 95.56%, see Figure 6. Next, the best
functions that were discovered by the OGP are listed.

EVOO:= Hal f (|Gσ=2(Hal f (Hal f (Gσ=2(Hal f (|Dxx(IM)|)))))|)
EVOC:= 4

√
IB

EFI:=

(√√
Dyy(CMO)×CMO

)
×CMO
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Testing
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Fig. 6 Top-Down testing for the traffic signal problem. Evolved structure of VAPtra f f ic ob-
tained through the OGP to attend traffic signals in the images

6 Conclusions

This work presents a new and useful approach for understanding visual attention.
The experiments are motivated by new ideas about purposive evolution and organic
genetic programming. The results confirm that it is possible to obtain VAPs that
fulfill the task at hand. Moreover, an original program that solves the size pop-out
search task was obtained by our approach, and to our knowledge it is the first time
to be achieved. Also, the incorporation of shape dimension, carried out with mor-
phological operations, is an original contribution to the research in visual attention.
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