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Abstract. This work presents a novel approach to synthesize an artificial visual cor-
tex based on what we call organic genetic programming. Primate brains have several
distinctive features that help in the outstanding display of perception achieved by
the visual system, including binocular vision, memory, learning, and recognition,
to mention but a few. These features are processed by a complex arrangement of
highly interconnected and numerous cortical visual areas. This paper describes a
system composed of an artificial dorsal pathway, or where stream, and an artificial
ventral pathway, or what stream, that are fused to create a kind of artificial visual
cortex. The idea is to show that genetic programming is able to evolve a high number
of heterogeneous trees thanks to the hierarchical structure of our virtual brain. Thus,
the proposal uses two key ideas: 1) the recognition of objects can be achieved by
a hierarchical structure using the concept of function composition, 2) the evolved
functions can be related to the tissues of an artificial organ. Experimental results
provide evidence that high recognition rates could be achieved for a well-known
multiclass object recognition problem.

1 Introduction

The brain is the most sophisticated organ in the human body; its fundamental task
is to control and manage the activities that perform sensorial organs. The neurolo-
gists have divided the human brain into four lobes: frontal, temporal, parietal, and
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Fig. 1 Analogy between the ventral stream and the proposed computational model

occipital. The last one has special interest to the research community interested in
the sense of vision, because this is the lobe where it is located the visual cortex. In
fact, the primary visual cortex and secondary visual areas are specialized for image
processing, object localization, and the estimation of direction, velocity and object
trajectories. Figures 1 illustrates the main ideas that we are proposing to approach
the problem of object recognition. We divide the approach into two key ideas. The
first one is related to the identification of salient features through the application of
a set of functions that should be able to identify the salience properties that char-
acterize a given object. In general, the works that follow a modeling of the human
visual system like [[8],[24], [18],[15],[11]] are based on a set of image patches that
are used as a dictionary of visual words. These small images represent the most
common and useful characteristics presented in all images of a database integrated
by a number of visual categories. The hypothesis made in our work is that such
set of image patches could be substituted with a set of mathematical functions. The
second idea, that we want to outline is based on the concept of an organ. In biology,
an organ is described as a collection of tissues joined in a structural unit to serve a
common function. In particular, we are interested in studying the brain; specially the
visual cortex and how it is explained the functionality of the main tissues involved
into the process of object recognition.

The goal of this work is to outline a methodology based on organic genetic
programming implemented through the modeling of the hierarchical structure of the
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visual cortex and the concept of function composition inspired from the idea of an
organ. In this way, a functional approach is enforce in order to solve the problem of
object recognition.

2 Visual Cortex

Visual processing is performed by the brain, and the explanation about how it works
is based on the idea of two visual subsystems. Today, it is widely accepted the
two-streams hypothesis as a way of describing the phenomenon of visual percep-
tion. This knowledge is based on neuropsychological, neurophysiological, and psy-
chophysical evidence regarding the existence of two visual subsystems known as
ventral and dorsal streams. Thus, the explanation is founded on the idea that both
systems manage the same visual information, but the difference lies in the transfor-
mations that both streams performed to the visual data. This is clearly exposed in the
change of paradigm from a what/where dichotomy into a vision-for-action/vision-
for-perception duality used to explain the same dorsal/ventral anatomical distinc-
tion, see [[22], [23], [29], [28], [17]]. Next, we briefly describe the ventral and dorsal
streams.

The ventral stream is largely associated with object recognition and shape repre-
sentation, see [19]. The ventral or what pathway starts at the retina, and it receives its
main input from the parvocellular layer of the lateral geniculate nucleus of the tha-
lamus, and it projects into V1, which is part of the primary visual cortex, also called
striate cortex, which is located at the back of the brain. Then, the ventral pathway
continues into the visual areas V2 and V4, which are part of a region known as the
extrastriate visual cortex, and finally to the areas TEO and TE of the inferior tem-
poral cortex. In computer science, the ventral stream is explained as performing a
hierarchical and feedforward process that is specialized for object recognition and
is biologically inspired from [9]. Most proposed models start with an image that is
decomposed into a set of alternating “S” and “C” layers that are named after the
discovery of Hubel and Wiesel of the simple and complex cells, see [9]. The idea
was originally implemented by Fukushima in the neocognitron system, see [8]. This
system was further enhanced by other authors including the convolutional networks
[13], and the HMAX model [21]. In all these models the simple layers apply local
filters in order to compute higher-order features, and the complex layers increase
invariance by combining units of the same type, see [27].

The dorsal stream, also known as the “where” or “how” pathway, is related to
the visual processing of spatial locations. Nevertheless, this part of the visual pro-
cessing is still controversial; since, the dorsal stream is said to be involved in the
guidance of actions, as well as, the spatial localization of objects in space. Like the
ventral stream, the dorsal stream starts at the retina, and it receives its main, if not
total, input from the magnocellular retinocortical layer of the lateral geniculate nu-
cleus of the thalamus, and it projects into V1, but it also receives direct subcortical
inputs from the superior colliculus and pulvinar structures. Then, the dorsal stream
continues through V2, V3, the middle temporal area MT , and the medial superior
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temporal area MST , which are part of the extrastriate visual cortex; and finishing in
the posterior parietal cortex and adjacent areas. In general, it is acknowledged that
visual attention is performed by the dorsal stream, and the most widely accepted
paradigm for visual attention is the feature integration theory, see [26]. However,
there are other theories that attempts to explain the workings of visual attention in
the dorsal stream, like [19] and [31]; or even a work that relate visual attention to
both streams, see [6]. In computer science, the first computational approach for vi-
sual attention was introduced by Koch and Ullman in 1985, see [12]. Later, other
researchers proposed several methodologies, which are based mostly in the feature
integration theory, like [14], and [11]. In all these models the image is decomposed
in several dimensions in order to obtain a set of conspicuity maps and then integrate
them into a saliency map.

In this way, the visual system has been defined by two information processing
streams organized in two broad structures subserving object and spatial vision. The
classical dichotomy between object and space perception focuses on the importance
of a single and general purpose representation. On the other hand, the “what” and
“how” theory of Milner and Goodale [17] gives emphasis to the idea that the visual
system is defined according to the requirements of the task that each stream sub-
serves. The idea is to define multiple frames of reference giving special attention
to the goal of the observer. In this way, the same object and spatial information is
transformed by the visual system for different purposes. Thus, the ventral system
represents the visual world in allocentric coordinates by promoting conscious per-
ceptual awareness. On the other hand, the dorsal stream uses egocentric coordinates
to transform the information about objects location, orientation and size, see [5].

3 Evolution and Teleology for Visual Processing

This section is devoted to the idea that visual processing is a product of brain evolu-
tion; and therefore it is plausible to follow an artificial evolutionary approach in the
search of object recognition programs. The explanation that outlines our computa-
tional approach will be developed in two parts. The first reviews some explanations
about how the brain has evolved. Next, we explain how the two stream hypothesis
can be understood in teleological terms. In fact, we would like to stress that there are
two main viewpoints that are used within evolutionary explanations. Today, there
are two schools of knowledge, mechanistic and teleological, that attempt to provide
an explanation for understanding nature. Note, that teleological explanations does
not exclude mechanisms. Also, the controversy is still alive mainly because teleo-
logical explanations cannot materialise the idea of purpose and at the same time the
mechanistic explanations cannot vanish the idea of purpose. Nevertheless, a purpose
is not a desire; and when we refer to a purpose, we talk in terms if it is achieved or
not. Hence, we claim that our personal teleological viewpoint offers the possibility
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of developing a newer and rich explanation about artificial evolution, which is in
accordance to many theoreticians of brain evolution that use a teleological language,
see [17, 5, 2]; and philosophers of science, see [1, 14, 25].

Classical definitions of vision implicitly and explicitly assume that the purpose
of the visual system is to construct some sort of internal model of the environment;
in other words, a kind of visual representation of the real world, that serves as the
perceptual foundation for all visually derived thought and action. The approaches
to study the structure and functionality of the neocortex are based on comparative,
developmental, and functional or adaptationist explanations. In particular, we hold
to the tenet of many biologists that adaptation, in nature, makes the organs to suit
the work they have to do; hence, developmental and functional explanations are
complementary and not alternate explanations. This is clearly seen from the fact that
different species from the same taxonomic group have evolved specialized visual
mechanisms, which are coherent and highly correlated to particular and specific
cognitive and behavioral functions, which were evolved based on the principle of
natural selection. In this way, the goal in this work is to evolve a system that is
based on a description of the ventral and dorsal streams and to adapt their behavior
to an specific task.

4 Artificial Visual Cortex (AVC)

The proposed approach is inspired and based on the idea that an organ is a collec-
tion of tissues joint in a structural unit to serve a common function. In this way,
the central nervous system is understood as the organ and the study is limited to
the retina, brain, in particular the visual cortex, and how it is processed the visual
information. In the literature, the computational approaches inspired from the vi-
sual cortex are always centered into the dorsal or ventral streams, with the idea of
solving the visual attention or object recognition tasks, respectively. Indeed, there is
not yet a significant work that attempts to model the visual cortex as a whole and
unique system. In general, the only works that consider the subject use a visual at-
tention module as input to the object recognition method to create a more complex
system. Instead of this simple approach and according with the reviewed literature
that states that layers V1 and V2 are part of both streams, dorsal and ventral, we
propose a new modeling, see Figure 2, in order to create an artificial visual cortex
using the idea of function composition. This new methodology makes necessary to
understand an image like the graph of a function. The function in this case is under-
stood like the physical, geometrical, or other properties of the scene. In this way, in
order to describe the idea we define an image as the graph of a function.

Definition 1 (Image as the graph of a function) Let f be a function f : U ⊂R
2→

R. The graph or image I of f is the subset of R
3 that consist of the points

(x,y, f (x,y)), in which the ordered pair (x,y) is a point in U and f (x,y) is the value
at that point. Symbolically, the image I = {(x,y, f (x,y)) ∈ R

3|(x,y) ∈U}.
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Fig. 2 Flowchart of the artificial visual cortex. Note, the similarity with the visual attention
process in which the image is decomposed into several dimensions. In our approach a function
driven paradigm is enforced to avoid the application of image patches.

In this way, the image is the input of a computational system that mimics the func-
tionality of an artificial visual cortex by replicating the hierarchical structure of the
natural system. Contrary to previous research devoted to object recognition, where
the ventral stream is modeled through a data-driven scenario; here, the object recog-
nition system is designed following the hierarchical structure of the dorsal and ven-
tral streams, as well as, the idea that each layer can be modeled with a set of mathe-
matical functions that replicate the functionality of a virtual tissue.

Genetic programming is used as the paradigm to implement the proposed
approach for which a set of evolutionary visual operators (EVOs) are optimized
according to the hierarchical structure being evolved in the search of an optimal
object recognition program. The aim of genetic programming is to find the best set
of EVOs using a number of building blocks and the whole hierarchical structure,
in order to find a solution to a multi-class object recognition problem. One advan-
tage of the functional approach compared to previous, data-driven, approaches is
reflected on the lower amount of computations that brings a significant economy in
the number of computer operations without sacrificing the overall quality. Next, it
is described the proposed system according to the dorsal and ventral streams.
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Table 1 Set of functions and terminals used by EVOC to create the visual map V MC

FC = {+, −, ×, ÷, |+ |, | − |,
√

ITC , I2
TC

, log2(ITC ),
Exp(ITC , Complement(ITC ) }

TC = {Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv }

4.1 Artificial Dorsal Stream (ADS)

This first part of the system is based on the psychological model of Treisman and
Gelade [26], which was successfully implemented in [[27], [11]]. The first step
of the process is represented by the image acquired by the camera, whose natu-
ral counterpart is the retina. Here, the system considers digital color images that are
composed of three images at different wavelengths of light that are red, green, and
blue. Note, that it is possible to convert an image represented in RGB space into
another color space. Thus, we say that a color image is the set of images named
Icolor = {Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv}. Next, four visual operators are applied sepa-
rately to emphasize: intensity, color, orientation, and shape. In biological plausible
models such as [11], some of these operators are established according to knowl-
edge in neuroscience about how these features are obtained in the visual cortex of
the brain, using a data-driven approach. Here, the operation of the dorsal stream is
emulated by a set of functions that are evolved with genetic programming to obtain
an optimal set of EVOs as depicted on Figure 2. Each EVO is represented as a spe-
cialized function that is evolved from a set of suitable characteristics that are used
to create a set of visual maps. Note, that each visual map is processed by a number
of functions used to create a pyramid that achieves invariance to position and scale.
In fact, the result of this process is a conspicuity map for each considered feature.
In this way, the evolution is charged of evolving the best possible function that ex-
tract color, orientation, or shape information; without focusing on the problem of
achieving invariance. Thus, the hierarchical structure helps to achieve the desired
result through function composition. Next, we describe the EVO features that are
used within the artificial visual cortex.

4.1.1 Evolved Color Map

The color image received as input is transformed with a function, EVOC : Icolor →
VMC, that enhance the color feature. In this way, an EVOC is evolved with genetic
programming to optimize the extraction of color information of the objects within
the image. The result is an image or visual map V MC containing the prominence in
color that represents the best feature’s image in color space. Thus, the evolutionary
process uses the set of functions and terminals provided in Table 2. The notation is
summarized as follows, ITC can be any of the terminals in TC, as well as the output
of any of the functions in FC; the Complement(ITC) function symbolizes a negative
image that is represented by the inversion of an image.
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4.1.2 Evolved Orientation Map

The function used to compute the orientation, EVOO : Icolor →VMO, is evolved with
genetic programming to optimize the extraction of edge information within the input
image. The result of this operation is a visual map VMO in which the pixel values
represent the feature prominence, in such a way, that the higher the pixel value the
greater the prominence of the feature. In this way, genetic programming applies the
functions and terminals of Table 1, in order to enhance the best orientation features
that are useful for the object recognition task. The notation used is as follows. ITO

can be any of the terminals in TO; as well as, the output of any of the functions in
FO; Du symbolizes the image derivatives along direction u∈ {x,y,xx,yy,xy}; Gσ are
Gaussian smoothing filters with σ = 1 or 2.

Table 2 Set of functions and terminals used by EVOO to create the visual map V MO

FO = {+, −, ×, ÷, |+ |, | − |,
√

ITO , I2
TO

, log2(ITO),

Gσ=1,Gσ=2, |ITO |,
ITO

2
, Dx, Dy}

TO = {Ir , Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv, Gσ=1(Ir),
Gσ=2(Ir), Dx(Ir), Dy(Ir), Dxx(Ir), Dyy(Ir),
Dxy(Ir), ... }

4.1.3 Evolved Shape Map

The function used to compute the shape features, EVOS : Icolor → VMS, is evolved
with genetic programming to optimize the extraction of shape information in the
input image. The result of this operation is a visual map VMS that provides the form
and structure of the object of interest within the image. In this way, genetic pro-
gramming applies the functions and terminals of Table 3. We would like to remark
that the application of this kind of morphological functions has not been applied
in previous research regarding the ventral and dorsal streams. Thus, according to

Table 3 Set of functions and terminals used by EVOS to create the visual map V MS

FS = {+, −, ×, ÷, round(ITS ), f loor(ITS), ceil(ITS),
dilationdiamond(ITS), dilationsquare(ITS),
dilationdisk(ITS), erosiondiamond (ITS),
erosionsquare(ITS), erosiondisk(ITS), skeleton(ITS),
boundary(ITS ), hit − missdiamond(ITS),
hit − misssquare(ITS), hit − missdisk(ITS),
top − hat(ITS ), bottom − hat(ITS ), open(ITS ),
close(ITS) }

TS = {Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv}
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the literature the work reported in this paper could be considered as the first to use
morphological image processing within the modeling of the visual cortex.

Finally, in order to obtain the intensity of an input image Icolor, we apply a similar
process described in previous research where the red, green, and blue values of each
pixel are averaged. The formula is developed as a function VMI : Icolor → I, that is
obtained with the following formulae VMI =

Ir+Ig+Ib
3 .

4.1.4 Conspicuity Maps

The conspicuity maps (CMs) are obtained by means of a center-surround function,
which is applied to the visual maps in order to simulate a set of center-surround
receptive fields. This natural structure allows the ganglion cells to measure the dif-
ferences between firing rates in center (c) and surroundings (s) of ganglion cells.
First, a pyramid VMl(α) of nine spatial scales S = {1,2, ...,9} is created for each
of the four resulting VMs. Afterwards, an across-scale substraction" is performed,
resulting in a center-surrond map V Ml(ω) in such a way that the value of the pixel
is augmented as long as the contrast is increased within their neighbors at differ-
ent scales. Finally, the VMl(ω) maps are added using an across-scale addition⊕ in
order to obtain the desired conspicuity maps CMl .

Until this stage, we have four CMs, one for each feature, as shown in Figure 2.
The CMs are obtained similar to Walther and Koch model [24]. Next, instead of
combining the CMs into a single saliency map, the idea here is to use the four CMs
as input to an artificial ventral stream in order to derive a vector descriptor, which
will be use by a classifier. In fact, the fitness function is computed from the accuracy
achieved with a support vector machine (SVM).

4.2 Artificial Ventral Stream (AVS)

Now, that all regions have been highlighted; the next step is to describe such
important regions. The typical approach is based on a template matching technique
between the information obtained with an interest region selection process and a
number of prototype patches. Traditionally, the goal is to learn a set of prototypes
that are known as the universal dictionary of features and which are used to
identify all object categories. Hopefully, the SVM can recognize the prototypes that
correspond to a specific image of a given category. On the other hand, the proposal
in this paper is to optimized the functionality of the ventral stream that is evolved
with the aim of enhancing the set of prominent features that were highlighted
during the interest region detection computed in previous stages. Thus, in this work
the selection of interest regions is performed by the artificial dorsal stream through
the transformation of the conspicuity maps. It should be noted that according to
the artificial ventral stream each evolved function is a composite function that is
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capable of substituting several prototype features; thus, reducing significantly the to-
tal number of operations needed to define all object features that are used to describe
and classify the input images. According to Figure 2, the information provided by
the conspicuity maps is feedforward to k operators that emulate a set of lower order
hypercomplex cells replicating the functionality of a virtual tissue. Thus, all evolved
functions along each dimension are added in order to obtain a single measure that
we called mental map. Hence, a mental map is obtained for each dimension: color,
orientation, shape, and intensity. In this way, all mental maps are combined with a
max operation that is used to highlight the necessary characteristics that recognize
a specific object class. Note, that each function is an evolved visual operator (EVO)
built by several GPs from the particular set of terminals and functions shown in
Table 4. Note also that this second stage could be said to perform an information
description operation (IDO) with the aim of discovering the best set of functions
that creates the most discriminant vector of characteristics. Hence, this set of func-
tions replaces the universal dictionary proposed in [27, 18, 24] and we claim that it
corresponds to a function driven approach.

Table 4 Set of functions and terminals for the ventral stream

Functions: +, −, /, ∗, | − |, | + |,
√
·, (·)2, log(·),

Dx(·), Dy(·), Dxx(·), Dxy(·), Dyy(·), Gaussσ1 (·),
Gaussσ2 (·), 0.05(·)

Terminals: C1, Dx(C1), Dxx(C1), Dy(C1), Dyy(C1),
Dxy(C1)

5 Evolving AVCs with Organic Genetic Programming

This section describes the main aspects for the evolution of AVCs through the
application of what we called organic genetic programming (OGP). All elements
introduced in the OGP embody an organic motivation, in a sense of describ-
ing an organ composed of tissues, which could be part of an artificial living
organism. Figure 3 illustrates the complexity of the proposed system using a
kind of heterogeneous and hierarchical genetic programming. In our model the
genotype is built from several trees that can be seen as the genes and which
are arranged into a complex chromosome. The phenotype is decoded according
to Figure 2. Thus, the algorithmic process that mimics the visual information
processing of an AVC should be seen as a single entity. In other words, the
functional representation of the artificial organ is represented by the whole
hierarchical and heterogeneous structure. The representation that is proposed
has the aim of ensuring the development of complex functions, while freely
increasing the number of programs according to the task at hand; in this case, the
classification of several object classes. In this way, the structure can grow in the
number and size of its elements. Hence, it is important to note that each individual
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Fig. 3 General flowchart of the methodology to synthesize an artificial visual cortex

within a population should be understood as the whole AVC and it is therefore not
only a list of tree-based programs, but the whole information processing depicted in
Figure 2.

6 Experimental Results

This section provides details about the experiments in order to explain the system
that was implemented to learn an artificial visual cortex. All experiments were
performed in a Dell Precision T7500 Workstation, Intel Xeon 8 Core, NVIDIA
Quadro FX 3800 and Linux OpenSUSE 11.1 operating system. The system was
tested using 10 classes and 15 images per class of the Caltech 101 database, see
[7]. The classifier used in the experiments was the SVM implementation developed
by Chan and Lin, see [3], in order to compare with the HMAX model [24]. Table 5
presents a summary of the best results and a comparison with the HMAX model, an
implementation HMAX-CUDA, and a previous proposal called the artificial ventral
stream (AVS), see [4]. Note, that the total number of convolutions is much lower
than the HMAX and HMAX-CUDA. This aspect is important since the factor of
improvement is on the order of hundred of operations. However, the performance of
the AVC is lower than the HMAX model but its level is worse in testing, while the
effectiveness of our approach remains constant. Figure 4 shows the run where the
best program was obtained, see Figure 4. Also, the Figure 6 illustrates the range of
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Fig. 4 Flowchart of the best individual achieved with the methodology to synthesize an arti-
ficial visual cortex

descriptor values of the best solution for each class. We provide also the overall
results of the best AVC through the confusion matrix, see Table 7. Due to the level of
accuracy being achieved by the AVC we decide to make a simpler test. We evaluated
the performance of the proposed model in the object present/abscent experiment
using several object classes from the same CalTech data set. In this experiment,
each data set was randomly divided in two sets for training and testing using 50
images for each set out of 800 images. We remark that for this case the algorithm
scores a perfect solution during the initial random population. Therefore, it was
not necessary to evolve the AVC to find a solution to the problem. Table 6 shows
a comparison with the HMAX model using boost and SVM as classifiers for the
following classes: airplanes, cars, faces, leaves, and motorbikes.
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Table 5 This table shows the comparison of performances between HMAX, HMAX-CUDA,
AVS and AVC

Image HMAX HMAX Artificial Artificial
size MATLAB CUDA V. S. V. C.

Running time 896×592 34s 3.5s 2.6s 9.91s
over different 601×401 24s 2.7s 1.25s 5.32s
image size 180×113 9s 1s 0.23s 0.49s
Performance over 15 training
images per 10 classes

94% 94% 78% 85.3%

Performance over 15 testing
images per 10 classes

73% 73% 80% 84%

Number of convolutions 4848 4848 216 95

(a) Average fitness with standard deviation
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(b) Behavior of accuracy with respect to the descriptor length

Fig. 5 Figure (a) shows the average fitness and standard deviation of the run that produces
the best individual. Figure (b) depicts the performance after changing the descriptor length.

Table 6 This table shows the performance comparison between HMAX, HMAX-CUDA, and
AVC. Note, that in the case of the HMAX model a learning process was necessary to identify
the best patches, while for the AVC only a random sampling to discover the best solution.

Data sets Performance of HMAX Artificial
boost SVM V. C.

Airplanes 96.7 % 94.9 % 100 %
Cars 95.1 % 93.3 % 100 %
Faces 98.2 % 98.1 % 100 %
Leaves 97.0 % 95.9 % 100 %
Motorbikes 98.0 % 97.4 % 100 %
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Table 7 This table shows the results of the best solution in the form of a confusion matrix
obtained during the AVC testing. The final accuracy acc = 84% classifies correctly (126/150)
images.

Airplanes Bonsai Brains Cars Chairs Faces Leaves Motorcycle Schooner Stop Signal
Airplanes 15 0 0 0 0 0 0 0 0 0

Bonsai 0 9 2 0 3 0 0 0 0 1
Brains 0 2 11 0 1 0 0 0 1 0
Cars 0 0 0 14 0 0 0 0 1 0

Chairs 0 0 2 1 11 0 0 0 0 1
Faces 0 0 0 0 0 14 0 0 1 0

Leaves 0 0 0 0 0 0 15 0 0 0
Motorcycle 0 0 0 0 0 0 0 15 0 0
Schooner 0 1 0 0 0 0 0 0 12 2

Stop Signal 0 2 1 0 0 1 0 0 1 10

135 150
1201059075604530150
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Schooner Stop
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0
0

Descriptor
Index

Descriptor
Value

Fig. 6 This plot shows the descriptors of the best individual that are used as input to the
SVM.

7 Conclusions

This work shows that a complex program, mimicking an artificial visual cortex, with
numerous trees can be evolved to approach successfully a multi-object recognition
problem.
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