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Preface

The massive use and large applicability spectrum of evolutionary algorithms for
real-life applications determined the need of establishing solid theoretical grounds.
Only to offer one example, one may consider mathematical objects that are some-
times difficult and/or costly to calculate. At the same time, acknowledged new re-
sults show that evolutionary computation can provide in some cases good and fast
estimators of such quantities. Similarly, the handling of large quantities of data may
require the use of distributed environments where the probability of failure and the
stability of the algorithms may need to be addressed. What is more, common prac-
tice confirms in many cases that theory-based results have the advantage of ensuring
performance guarantee factors for evolutionary algorithms in areas as diverse as op-
timization, bio-informatics or robotics.

The aim of the EVOLVE is to build a bridge between probability, statistics, set
oriented numerics and evolutionary computing, as to identify new common and
challenging research aspects. The conference is also intended to foster a grow-
ing interest for robust and efficient methods with a sound theoretical background.
EVOLVE is intended to unify theory-inspired methods and cutting-edge techniques
ensuring performance guarantee factors. By gathering researchers with different
backgrounds, ranging from computer science to mathematics, statistics and physics,
to name just a few, a unified view and vocabulary can emerge where the theoretical
advancements may echo in different domains.

Summarizing, the EVOLVE focuses on challenging aspects arising at the passage
from theory to new paradigms and aims to provide a unified view while raising
questions related to reliability, performance guarantees and modeling.

This book contains the proceedings of EVOLVE 2012, organized as an interna-
tional conference for the first time, after previous editions when it followed a work-
shop format. The EVOLVE series started in 2011 with an international workshop
held at the Bourglinster Castle in Luxembourg, while in 2010, the originating event,
Workshop on Evolutionary Algorithms - New Challenges in Theory and Practice,
was organized in Bordeaux. The EVOLVE 2012 has been hosted by the Computer
Science Department of the CINVESTAV-IPN, in Mexico City, Mexico.

This book consists of the accepted full-length papers that were submitted to the
EVOLVE 2012 and that were peer-reviewed by an international program committee.
For convenience of the reader we have divided the 32 papers into 8 main parts
representing different research areas within the scope of the EVOLVE.



VI Preface

Part I consists of two invited papers coming from Keynote Speakers of the
EVOLVE 2012. The first paper, by Jian-Qiao Sun, deals with the control of non-
linear dynamic systems with the cell mapping method. The second paper, by Jose
Blanchet et al., is about a method for estimating the quasi-stationary distribution of
various particle processes.

In Part II, a group of papers is presented dealing with genetic programming.
These contributions come from a special session organized by Leonardo Trujillo
and Edgar Galvan.

In Part III, a collection of papers is given that contribute to the field of evo-
Iutionary multi-objective optimization. These papers come from a special session
organized by Giinter Rudolph and Heike Trautmann.

Part IV contains two papers dealing with combinatorial optimization. The first
one presents a hyperheuristic approach for guiding enumeration in constraint solv-
ing, and the second one proposes a simulated annealing implementation for finding
near-optimal solutions for the Maximum Parsimony problem.

Part V contains one contribution to the field of probabilistic modeling and opti-
mization for emerging networks, coming from a special session organized by Jian-
guo Ding and Xinhui Wang.

In Part VI, a selection of research works on hybrid probabilistic models for real
parameter optimization and their applications are presented. These papers come
from a special session organized by Arturo Herndndez-Aguirre.

In Part VII, a group of papers contributing to the field of evolutionary compu-
tation for vision, graphics, and robotics are presented. These works come from a
special session organized by Gustavo Olague and Humberto Sossa.

Finally, Part VIII presents a selection of contributed papers describing the ap-
plication of bio-inspired metaheuristics to real problems of industrial and scientific
research and development. These papers come from a special session organized by
Andrew Lewis and Marcus Randall.

We would like to express our gratitude to all the invited speakers to accept our
invitation and to give an outstanding presentation at the EVOLVE 2012. Further, we
would like to thank the chairs of the special sessions, the members of the program
committee, and the authors who have submitted a contribution to the event, which
allowed to constitute this book and which allowed to make the EVOLVE 2012 a
success. Finally, we gratefully thank the sponsors of the event and our institutions
which helped us to realize our projects.

Mexico City, Luxembourg, and Bordeaux, Oliver Schiitze
August 2012 Carlos A. Coello Coello
Alexandru-Adrian Tantar

Emilia Tantar

Pascal Bouvry

Pierre del Moral

Pierrick Legrand
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Control of Nonlinear Dynamic Systems
with the Cell Mapping Method

Jian-Qiao Sun

Abstract. This paper studies control problems of nonlinear dynamic systems us-
ing the cell mapping method. We first present the formulation of optimal control
problem and Bellman’s principle of optimality. Then, we present the cell mapping
methods and their application to optimal control problems of deterministic nonlin-
ear dynamic systems. Examples of population dynamics control of two competing
species are presented to demonstrate the effectiveness of the cell mapping method.

1 Introduction

Optimal control theory and its various applications have long been among the impor-
tant topics of research in engineering. The optimal control problem can be solved by
using Pontryagin’s minimum principle and the Hamilton-Jacobi-Bellman equations
(HJB). When the system is non-linear, and control and state constraints are imposed,
finding solutions to optimal control problems becomes a very difficult task. The cell
mapping method offers an attractive way to compute optimal control solutions in
conjunction with Bellman’s principle of optimality.

The cell mapping methods were first introduced by Hsu [16} (18] to study the
global dynamics of nonlinear systems. Two cell mapping methods have been exten-
sively studied, namely, the simple cell mapping and the generalized cell mapping.
The cell mapping methods have been applied to optimal control problems of deter-
ministic and stochastic dynamic systems [TT]]. Other interesting applications
of the cell mapping methods include optimal space craft momentum unloading [13]],
single and multiple manipulators of robots [29], optimum trajectory planning in
robotic systems [23]], and tracking control of the read-write head of computer hard
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disks [26]]. Sun and his group studied the fixed final state optimal control problems
with the simple cell mapping method [7,[6]], and applied the cell mapping methods
to the optimal control of deterministic systems described by Bellman’s principle of
optimality [[10]. Crespo and Sun further applied the generalized cell mapping based
on the short-time Gaussian approximation to stochastic optimal control problems
[OL [T1]]. They also studied semi-active optimal control of populations of competing
species in a closed environment with the cell mapping method [8].

We study the deterministic optimal control in this paper. In Section 2 we review
the formulation of optimal control problems and Bellman’s principle of optimality.
Section [3] presents the cell mapping methods and their application to the optimal
control problem. Section 4] studies optimal control problems of competing species
in a closed habitat. Section[3lconcludes the paper.

2 Optimal Control

Consider a nonlinear dynamic system,

dx

r =f(x,z,u), (1)

where x () € R” is the state vector, u(¢) € R the control input and x(#p) = xo is the
initial condition. Define the performance index, J as:

J(u,x0,00,T) = ¢(x7,T) + TL(x(t),u(t))dt, 2)

fo

where ¢ € [, T] is the time interval of interest, ¢ (x7,T) is the terminal cost at the
state xp = x(7T'), and L(x(z),u(z)) is the Lagrangian function. Here, we assume that
the Lagrangian function is not an explicit function of time. The optimal control
problem is to find a control u(z) within a set U C R on the time interval [fp, T that
drives the system from the initial condition to the target set defined by ¥ (x7,T) =
0 such that the cost function J is minimized. If the Lagrangian function satisfies
convexity conditions, the optimal control solution can be found via Pontryagin’s
minimum principle or the Hamilton-Jacobi-Bellman (HJB) equations.

Bellman’s principle of optimality was originally stated as follows [} 2]: “An
optimal policy has the property that no matter what the previous decisions have
been, the remaining decisions must constitute an optimal policy with regard to the
state resulting from these previous decisions”. We restate Bellman’s principle as
follows: Let (x*,u*) be an optimal control solution pair over the time interval [ty, T']
subject to the initial condition X(fy) = Xo. Let 7 be a time instant such that 7y <7 < T.
Then, (x*,u*) is still the optimal control solution pair from [, T'] subject to the initial
condition x(f) = x*(f).
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We shall combine Bellman’s principle of optimality with the cell mapping
method to obtain optimal controls. When the number of control actions is finite,
Bellman’s principle provides a basis for the search of optimal controls. It also im-
plies that the search for optimal controls should be done backward in time starting
from the target state.

Let V(xo,1,T) = J(u*,Xg,%,T) be the so-called value function or optimal cost
function. Bellman’s principle of optimality can be stated as

7 T
V(xo,t0,T) = inf< L(x(t)7u(t))dt+/f L(x(t),u(t))dt+¢(xT,T)> 3)

uclU 1o

1
= inf < L(x(t)m(t))dt+V(x;,f7T)) )
uclU to
where 1 <7 <T,x; =x(f) and V(x7,T,T) = ¢ (x7,T).

Consider the optimal control of a system starting from x; in the time interval
[it,T] where 7 is a discrete time step. Define an incremental cost and an accumula-
tive cost as

(i+1)7T
Je= [ Lx).u(0)a, @

T

T
Jr=o(x7,T)+ /(i+1)TL(X*(t),u*(t))dt. 5)

In Jr, (x*(¢),u*(¢)) is the optimal solution pair over the time interval [(i + 1)7,T].
Then, Bellman’s principle of optimality can be restated as:

V(Xi7iT7 T) = l}g[fJ{JT_FJT} (6)

= inf {JT+V(Xi+]7(i+ I)T, T)}
ucU

The incremental cost is the cost for the system to march one step forward starting
from the initial condition x; = x(i7). The system lands on the intermediate set of the
state variables x; | =x ((i + 1)7). The accumulative cost is the cost for the system to
reach the target set starting from this intermediate set, and is calculated through the
accumulation of incremental costs over several short time intervals between (i+1)7
and T.

Bellman’s principle of optimality as stated in Equation () suggests that one can
obtain a local solution of the optimal control problem over a short time interval 7 to
form the global solution provided that x;; lies on the optimal solution. The global
solution consists of all the local solutions that are constructed backward in time
starting from the terminal condition ¢ (x7,T) at time 7. The cell mapping method
offers an effective way to compute all the local optimal solutions from Equation (&)
in a given region.
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3 Cell Mapping Methods

The cell mapping methods transform the point-to-point dynamics into a cell-to-cell
mapping by discretizing both phase space and the integration time. We denote all ad-
missible mapping time steps as T = {At1,At,, ...Aty, }. The point-to-point mapping
obtained from Equation (@) is given by

x(k) = F(x(k—1),u(k), At (k)), @)

where x (k) € R" is the state vector at the k" mapping step and u(k) € U is the
control in the k" time interval. By making u(k) = 0 in Equation (7), the uncontrolled
system dynamics can be studied. In the simple cell mapping (SCM), the dynamics
of an entire cell denoted as Z is represented by the dynamics of its center. The center
of Z is mapped according to the point-to-point mapping. The cell that contains the
image point is called the image cell of Z. The cell-to-cell mapping is denoted by C,

Z(k) =C(Z(k—1),u(k),At(k)). ®)

Consequently, the exact image of the center of Z is approximated by the center of its
image cell. This approximation can cause significant errors in the long term solution
of the control problem computed by the SCM method [19} 17, 3, 23]].

Since the image of the entire cell covers a bounded region, more than one cell can
be the image cells. If we don’t restrict the number of image cells of a pre-image cell
to be one, we come to the generalized cell mapping (GCM) [18]. Under GCM, a cell
can have several images, everyone of which has certain probability to be part of the
system solution. The GCM method provides a probabilistic description of the sys-
tem response. The evolution of the system dynamics is governed by a finite Markov
chain. The transition probability matrix of the Markov chain contains the topologi-
cal structure of the global system response in the cell state space. Attractors, basins
of attraction and separatrices may be identified by finding the limiting probability
distribution and the corresponding transient and persistent groups of cells. For more
discussions on the cell mapping methods, the reader is referred to [18].

3.1 Control Application

When applying the cell mapping method to the optimal control problem, we need
to construct a database of cell mappings under all allowable controls. We denote the
set of discrete admissible controls as U. Let N, be the number of admissible controls
in the set U. Let N,,, denote the set of mappings from a pre-image cell to its first Ny,
consecutive image cells along the trajectory under a given control. These mappings
can have non-uniform mapping time steps so that the images of the mapping are
closest to the center of the cell containing the image [[7]].
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The control database consists of the following elements: for each pre-image cell
z;, there are N. X N, image cells z;, the corresponding controls u;, the associated
mapping time steps Az;j; and the incremental control costs
Aljji = ,gﬁm”’ L(x(t),u(t),t)dt. z; denotes the integer coordinates of the i’ cell.
We denote the complete set of mappings by M. A special subset of M denoted by
N contains the image cells in the closest neighborhood of every pre-image cell z;
under all admissible controls. This group of neighborhood image cells consists of
the set of adjacent cells surrounding the pre-image cell only.

Let Q € R" denote the set of cells representing the target set defined by ¥(x7,7) =
0. The iterative backward search algorithm is described here. Let N, be the number
of backward search iterations that we would like to carry out. Initially, the search is
over the mapping set N according to the following steps.

(i) Identify the cells that are mapped into £ in one step.

(ii) Assign a cumulative cost to each cell found in Step[Il The cumulative cost is the
smallest cost for the system to move from the current cell to the original target
set. It is calculated by adding the cumulative cost of the image cell and the
incremental cost of the current cell. If more than one image cells are involved,
the smallest cumulative cost is taken. Note that the cells in the original target
set have zero cumulative costs.

(iii) Expand the target set Q by including all the cells found in Step [ with the
minimal cost.

(iv) Repeat the search from Step[[luntil all the cells in the state space are processed.

(v) Examine the cumulative costs of all N, consecutive image cells z; for every
pre-image cell z; and for every control u; in U. We retain the image cell that
has the smallest cumulative cost. This cell is stored in a set M*.

(vi) Repeat from Step [T over the set M*.

After going through the above backward search N, times, degenerated control so-
lutions are generally eliminated. It has been shown in [[7] that the average cost over
the entire phase space is reduced with the number of backward searches. In other
words, the above backward search is a converging algorithm.

Note that the final set M* contains the information on the location of the switch-
ing curves and the optimal controls for each cell. A discriminating function which
considers smoothness and local continuity of the trajectories is used to break the
cost ties in the backward searches.

4 Optimal Control of Competing Species

In this paper, we consider examples of optimal control of competing species. There
are many studies of mathematical models of population dynamics in the literature
[211 23112} 22]. The classical Lotka-Volterra models for competing species
and for the predator-prey interaction [14]] are two well known examples. In some
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optimal control problems, the inclusion of dispersal processes and time delays in au-
tonomous and non-autonomous models are used as control means [28] [13]]. The use
of performance indices that promote simultaneously economic and ecologic goals
are studied in [24]]. The optimal birth control of age-dependent models is consid-
ered in [5} [4]]. The parametric control of the interaction factors between species is
investigated in [13]. It should be pointed out that many optimal control problems
of population dynamics involve parametric manipulations that are highly nonlin-
ear. We apply the simple cell mapping method to solve the optimal control problem
of population dynamics of two competing species described by the Lotka-Volterra
model.

The classical Lotka-Volterra model describes the interaction between two species
competing for an essential and limited resource in a closed habitat. All other exter-
nal influences such as predators and seasonal effects are neglected. According to
the Lotka-Volterra model, each species would grow to its carrying capacity in the
absence of the other. The population dynamics is described by the logistic growth
for each species. The interaction between the species is modeled as the conflict
that occurs at a rate proportional to the size of each population. The Lotka-Volterra
model is described by the following set of coupled nonlinear ordinary differential
equations,

X1 =x1(p1 —s1x1 —C1x2), 9

Xo = x2(p2 — $2x2 — C2x1),

where x| and x; are the population densities of two species and the coefficients p;,
s; and ¢; (i = 1,2) are the intrinsic growing rates, the saturation factors and the
interaction coefficients, respectively.

The system described by Equation (9) has two stable fixed points at [0, p/s5]
and [p1/s1,0], an unstable node at [0,0], and a saddle node at [(p; — c;((p1c2 —
pzsl)/(clcz — S1S2))/S1, (pl — (1 ((p102 — pgsl)/(clc2 — S1S2))/S1]. In the phase
space, the unstable manifold of the saddle connects the stable points and the stable
manifold defines the boundary of the basin of attraction of the two stable states (see
Figure[T)). It is important to mention that when the system is under parametric con-
trols, the basin of attraction changes its topology. The boundaries of the basin parti-
tion the phase space into regions of initial conditions that lead to different long-term
solutions. In the present study, they define the controllable region for a given control
strategy. The search algorithm for optimal controls in the cell state space can also
delineate the manifolds of the saddle node and the domains of attraction/repulsion
of the fixed points of the nominal system.

Recall that the manifolds of the saddle point define the boundaries of the basins of
attraction of the stable node [0, p»/s5] in the forward mapping, and of the unstable
node [0,0] in the backward mapping. Specifically, we apply the algorithm to find
these manifolds in the phase space by treating the stable node [0, p»/s,] and the
unstable node [0,0] as the final state of a fictitious optimal control problem.
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Fig. 1 Location of the stable (x) and unstable (4) manifolds of the unstable saddle found by
the cell mapping method. The evolution of populations starting from two initial conditions
without control is marked as dots.

4.1 Numerical Examples of Optimal Control

Letp; =3,p2=2,51 =1, =1,¢; =2, and ¢c; = 1. We cover the region [0,2.1] x
[0,2.1] in the state space with 8100 square cells. A uniform time step is used in this
work. The unstable (+) and stable (x) manifolds of the saddle node found by the
cell mapping are shown in Figure[ll

Figure [T] also shows the population evolution starting from two different initial
conditions in the basin of attraction of the stable node [0, p,/s;]. The trajectories
are marked with dots. All initial conditions located above the stable manifold of the
saddle will move to [0, pp/s] in the long term, and the initial conditions below this
manifold will move to [p;/s1,0]. The dichotomy implied by the basin boundary oc-
curs in other population models of competition and has led biologist to formulate the
principle of competitive exclusion, which states that two species competing for the
same limited resource cannot coexist. Analysis and discussions about the biological
interpretation of this phenomena can be found in 22].

Different control problems are studied numerically in this paper. In the exam-
ple, we have chosen ¢ (x7,T) = 0 and L(x(¢),u(¢),#) = 1, which defines a mini-
mum time problem. In the first example, the fixed final state is chosen to be the
fixed point [0, p/s2] where species x; is extinct in the long term. In the second
example, we want to drive the system to the location of the nominal saddle node
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[(p1—c1((prea—pas1)/(cica—s152)) /51, (p1—c1((pre2 — past)/(c1c2—s152)) /1]
where both species coexist, that is, we stabilize the unstable saddle point.

Extinction of One Species

We consider to extinct one species in minimum time by adding the population of
the other from an external habitat. This approach is common to animal population
control in the wild. Assume that a fixed number of species x; can be brought into
the habitat at a time. Let u > 0 be the population density to be added to x; artificially
in the habitat. The state equation () is modified to be

X1 =x1(p1 —s1x1 —c1(x2+u)), (10)
X = (x2+u)(p2—s2(x2+u) —coxy).

In practice, the inclusion of new population of a species to the habitat is often per-
formed at discrete time instants only. In the cell mapping, u is implemented at the
beginning of each mapping step. Mathematically, this control can be expressed as
a sequence of impulsive inputs at the time instants of mappings. Such a control is
equivalent to a change of the initial condition of the system at the beginning of the
mapping step.

We choose a bi-level control set as U = {0,0.2}, i.e. u =0 or u = 0.2. Figure
shows the optimal control solution for the final state located at x7 = (0,2). The
cells marked by the dots represent the boundary of the controllable region. Below
this boundary, the system cannot reach the prescribed target with the given bi-level
control set. The cells marked with x above the boundary represent the areas where
the optimal control is passive with u = 0. The unmarked cells above the basin bound-
ary represent the cells where the optimal control is active with u = 0.2. All the cells
above the basin boundary form the controllable region, meaning that an optimal
control sequence in U can be found to lead any initial condition in the region to
the final state in minimum time. The boundary of the areas with the same optimal
control in the controllable region appears to be fairly complex as shown in Figure[2l

The controllable region shown in Figure[2lis bigger than the domain of attraction
of the stable node at (0,2) of the uncontrolled system shown in Figure[Il The control
with u > 0 displaces the saddle point downward along a vertical line in the phase
space. The basin of attraction of the final state, i.e. the stable node (0,2), is thus
enlarged.

Figure 3 shows the optimal control solution as the function of time for an initial
condition at xo = (0.5,0.6). The upper figure shows the evolution of populations.
The lower figure presents the sequence of optimal control actions. The optimal con-
trol is generally a combination of active and passive actions. Figure [ shows the
optimal trajectory of the populations in the phase space. In this case, the nominal
system without control starting from this initial condition reaches the target cell in
13.17 time units. Under the optimal control, the time is reduced to 8.56 units.
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X

Fig. 2 Controllable region and optimal controls in the phase space for extincting the species
x1 by including animals of the species x; from an external habitat. The cells above the bound-
ary marked by dark dots form the controllable region. The cells marked with + represent the
area with passive control # = 0, and the unmarked cells above the boundary represent the area
with active control u = 0.2.

Figure [5 shows the optimal trajectories starting from four initial conditions in
the phase space. Two of these four initial conditions, (0.3,0.5) and (1.3,1.95), have
been studied in Figure [I] without control. By comparing the trajectories starting
from these two initial conditions, one can see that the optimal control moves the
state to the target cell faster. In fact, the time for these two initial conditions to reach
the target without control are 10.98 and 7.26 units, and 6.52 and 6.55 units with
control. The other two initial conditions cannot reach the target without control.

Finally, we note that Equation (T0) is nonlinear and is not in the control affine
form either. The analytical solutions of the control problem for such a system are
thus quite difficult to obtain.

Another way to control the population is to change the intrinsic growing rate of
the undesirable species. An example is to control the intrinsic growing rate p; of x|
as follows,

xl:xl(pl(l—u)—slxl—clxg), (11)

Xy = x2(p2 — $2%0 — €2x1).

More numerical results of the optimal control can be found in [8].
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Fig. 3 Population evolutions (top) and optimal control (bottom) in the time domain for the
problem studied in the first example. In the top figure, solid line represents x; and dashed line
represents xp.
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Fig. 4 The optimal population trajectory from xo = (0.5,0.6) in the phase space. The bound-
ary of the controllable region is marked by dark dots.



Control of Nonlinear Dynamic Systems with the Cell Mapping Method 13

2 1
5 R
§§§ XX%
N e e
e, % 0
% % X
X, X
1,5 B >§€>< Xxxxxxxxxxxxxxxxxxxxx i
X,
X,
XXXX
XXX
X,
>S<><
o "B
> 1 L Xx;gggx * 1
><35gg§><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><
B AR LLLLLLLLLL R RLLELLLLLERRRRRD
5
><><>2<
><>2<
X5
0.5r 2 ]
><><>2<
0 . ) L L L L
0 0.5 1 1.5 2

X

Fig. 5 The optimal population trajectories (x) for four different initial conditions in the phase
space. Two initial conditions are studied in Figure[Il The boundary of the controllable region
of the target cell is marked by dark dots.

Coexistence of Two Species

Let us now consider a control to maintain the coexistence of both species by adjust-
ing the coupling parameter of the system. The parametric control modifies the state
equations to be

X1 =x1(p1—s1x1 — (1 +u)x2), (12)

X2 =x2(pa — sox2 — (€2 — u)xy).

The admissible control set is bi-level with U = {—0.1,0.1}. The final state of the
system is chosen to be x7 = (1, 1) at the saddle node of the nominal system. Figure
shows the controllable region with the given bi-level control set and the optimal
controls in the phase space. The controllable region has a lower and upper bound-
ary. These boundaries are marked by the dark dots. The cells marked with X in
the controllable region represent the areas where the optimal control takes the value
u = —0.1 and the unmarked cells in the controllable region represent the areas where
the control is u = 0.1. The area below and above the boundaries represents the un-
controllable region.

Figure [7] shows the optimal control solution starting from an initial condition
at xo = (0.3,0.5). The upper figure shows the evolution of populations. The lower
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Fig. 6 Controllable region and optimal controls in the phase space for coexistence of species
x1 and xp by varying the coupling parameter between the two species. Initial conditions lo-
cated outside the region between the boundaries marked by dark dots cannot reach the final
state. Areas marked with + represent cells with control ¥ = —0.1, and the unmarked cells
between the boundaries represent the area with u = 0.1.

figure presents the sequence of optimal controls needed to drive the system to the
final state. Figure [8]shows the optimal trajectory of populations in the phase space.

A Remark

Can the cell mapping based control strategy achieve different objectives? For ex-
ample, can we achieve the coexistence of two species by adding population of one
species from an external habitat or by changing the intrinsic growing rates? Can we
wipe out one population by varying the coupling parameters? It turns out that the
answers are positive.

Figure [9] shows an example of the controllable region for achieving the coexis-
tence of the two species at (1.1,0.9) by using the same control strategy in Equation
(). We found that, similar to the results shown in Figure[f] there is a region in the
phase space where the control can keep both species alive.

In all the cases studied, we can view the control as a means to move the fixed
points of the system and change their corresponding basins of attraction in order
to achieve control objectives. Such a phenomenon can be studied easily by the cell
mapping method. In this paper, we have selected the admissible control set U in such
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Fig. 7 Population evolutions (top) and optimal control (bottom) in the time domain for the
problem studied in the second example. In the top figure, solid line represents x| and dashed
line represents xp.
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Fig. 8 The optimal population trajectory in the phase space for the problem studied in the
second example starting from xo = (0.3,0.5).
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Fig. 9 Controllable region and optimal controls in the phase space for coexistence of both
species by varying the intrinsic growing rate of x. Initial conditions located below and above
the boundary marked by dark dots cannot reach the final state at (1.1,0.9) in the center of
the figure. Areas marked with + represent cells with passive control u = 0, and the unmarked
cells above the boundary represent the area with active control u = 0.1.

a way that the system does not undergo bifurcations for all controls u € U while the
fixed points preserve their nominal stability. If « is allowed to induce bifurcations,
the geometry of the domains of attractions will change drastically when the control
changes slightly.

5 Conclusions

We have presented studies of optimal control problems of a nonlinear system gov-
erning the population dynamics of two species with the cell mapping method. The
optimal control is computed with the help of Bellman’s principle of optimality. Nu-
merical examples of the optimal control of population dynamics of two competing
species are presented to demonstrate the effectiveness of the proposed method. We
should point out that the proposed method has potential to be able to design controls
for fairly complex nonlinear dynamic systems.
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Empirical Analysis of a Stochastic
Approximation Approach for Computing
Quasi-stationary Distributions

Jose Blanchet, Peter Glynn, and Shuheng Zheng

Abstract. This paper studies a method for estimating the quasi-stationary distribu-
tion of various interacting particle processes has been proposed by [6} [5, [8]]. This
method improved upon existing methods in eigenvector estimation by eliminating
the need for explicit transition matrix representation and multiplication. However,
this method has no firm theoretical foundation. Our paper analyzes the algorithm by
casting it as a stochastic approximation algorithm (Robbins-Monro) [12]. In doing
s0, we prove its convergence and rate of convergence. Based on this insight, we also
give an example where the rate of convergence is very slow. This problem can be
alleviated by using an improved version of this algorithm that is given in this pa-
per. Numerical experiments are described that demonstrate the effectiveness of this
improved method.

Keywords: Stochastic Approximation, Quasi-stationary Distributions.

1 Introduction

The original motivation for this algorithm came from physicists’ need to estimate
the quasi-stationary distribution of the contact process [6] A quasi-stationary
distribution can be computed via the left principal eigenvector of the transition ma-
trix (transition rate matrix in the continuous-time setting). The method that has been
proposed by these physicists is a heuristic based on manipulation of the Kolmogorov
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forward equations. The method works in practice but has no firm proof. This paper
recognizes the algorithm as a stochastic approximation algorithm which allows us to
prove convergence and sufficient conditions for a Central Limit Theorem. We then
give an improved version with variance reduction.

This section reviews the relevant related literature on eigenvector estimations.
Sect. 2l reviews some background material to the contact process, quasi-stationary
distributions, and the basis for the original heuristic. Sect.[3]goes over the stochastic
approximation formulation and sketches the proof of convergence (the full proof
will be given in a follow-up journal paper [1]]). Sect. d gives an improved version
of the algorithm. Sect. [ studies the algorithm adapted for continuous-time Markov
chains. Sect. [0l goes over several important numerical experiments.

1.1 Related Literature

Power Method

The power method [9] is very simple. We iterate a sequence x,, by computing

P xTA
T aTA |

This works for any matrix such that the principal eigenvalue has multiplicity one and
strictly largest magnitude. The problem is that for Markov chains with extremely
large state space, such as the contact process, it would not be feasible to store and
compute in such large dimensions (on the order of 2" for interacting particle sys-
tems).

The variant known as inverse method also suffers from similar problems due to
the necessity of matrix multiplication.

1.1.1 Monte Carlo Power Method

The Monte Carlo power method involves a random sampling of the values in the
matrix in such a way that a sequence converges to the principal eigenvalue. This
method works for any matrix A.

We need to define a Markov chain on the index of the matrix A: 1,...,n. Call
this Markov chain {k, } where a transition from k, = & to k,+; = 3 depends on the
magnitude of A, in the following way

[Aagl
o
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with an arbitrary initial distribution generator h so that

h
Plko =)= zl &Ial
o

Then we define a random sequence of variables W, recursively:

hy, Ak, 1k
Wo = 0 W, =W, :
pk() pkn—]kn
Itisn’t hard to verify that
EWu ] . hTAYf

A W, ] A gn 1 p T e

for any f. This method grows according to O(Nnm), where N is the number of states
in your Markov chain, n is the step number at when you terminate E[W,, f, |, and m
is the number of independent Monte Carlo paths that you use to construct E[W, f;, |.
However, in the contact process case, we can reduce this to O(Knm) where K is
the number of nodes in the graph. The major drawback to this method is that it will
only give you the approximate eigenvalue. In order to get the eigenvector, a lot more
work is required especially for large matrices such as ours.

1.1.2 Other Methods

is a good survey of other principal eigenvector estimation algorithms. isa
very recent pre-print of a stochastic method that is related but different from our
method. The mirror descent method method of [11] is also another alternative.

2 Background and Motivation

2.1 Contact Process

A contact process is a continuous-time Markov chain (CTMC)(X],...,X},) € {0,1}",
where ¢ > 0 is the time, with an associated connected graph (V, E) such that

(i) [V]=n
(i) Individual nodes transition from 1 to 0 at an exponential rate of 1
(iii) Individual nodes transition from O to 1 at rate Ar where r is the fraction of
neighbors that are in state 1

This CTMC has 2" states. The state (0,0,...,0) is an absorbing state and the re-
maining states are all transient.

This CTMC will eventually reach the absorbing state but physicists are interested
in the “pseudo-equilibrium” behavior in the long time before absorption happens.
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The hindrance of large state space can be alleviated in the rare cases where a
compressed representation is possible, such as the case of a contact process on com-
plete graph. In that case, we only need to know the total number of “on” states rather
than the identities of all the “on” states.

2.2 Quasi-stationary Distribution

2.2.1 Discrete-Time Version

[3]] proposed the concepts of quasi-stationary distribution and quasi-limiting distri-
bution for the discrete-time Markov chains. Assume that O is the absorbing state and
1,...,n are absorbing, we can write the Markov transition matrix as

10
r=[acl
First we define the conditional transition probabilities

df(l’l) = P(Xn = JIXO ~ 7'E,X1,...Xn_1 79 O)
ﬂlQn7]€j
= TEtQ”_le

where {e;} is the standard basis for R” and e is the vector of all 1’s. If there is a
distribution 7 over the transient states such that d™(n) is constant, then we call d”
the quasi-stationary distribution.

Under the assumption that the substochastic matrix Q is irreducible (not neces-
sarily aperiodic), it is straightforward to see that the quasi-stationary distribution
exists and is the unique solution to principal eigenvector problem

d'Q=pd

by the Perron-Frobenius theorem.
Assuming Q is aperiodic and the condition that if |ps| = |p3|, we require the
multiplicity of p; to be no less than the multiplicity of p3, we have that

P2
dj(n) —d;+0 (nk o

Note that the rate of convergence depends on the ratio between the second eigen-
value and principle eigenvalue.



Stochastic Approximation for Quasi-stationary Vectors 23

2.2.2 Continuous-Time

If we think about the transition rate matrix of a CTMC under similar setup (irre-
ducibility and ergodicity), then it ([4]) can be said that

d¥(t) — dj+o(e'P'~PV))

where d is the principal left-eigenvector of the rate matrix corresponding to the
transient states with associated eigenvalue p;. Le.

dtR = p]dt

where R is the rate matrix of the CTMC.

2.3 Physicist’s Heuristic

Under the setting of a continuous-time Markov chain with rate matrix R and absorb-
ing state O (without loss of generality, we can combine all absorbing states into one
state), if we define p;;(t) = P(X; = j|Xo = i) and P;(t) = 1 — pjo(t) , then we have

that quasi-stationary distribution d; = lim_,.. "’ ((;)) . If we apply the Kolmogorov

is

forward equation (known to physicists as the master equation), we get that

dpij(t)
d’f = 2piei; )
and Py d
is t
P dt(lfpio(r)):fgpikleko 2)

Intuitively by the definition of d;, we have that p;;(f) ~ d;P;(t) in the quasi-
stationary time window (¢ large enough). So we can apply this to the preceding
two equations and get

dP;(t
d; :;t( ) - Y diPis(t)Ry;
dP;(t
wlt) _ — Y diPis(t)Reo
dt c

Combine the two and get

dj(deRk()) + zdkRkj =0
k k
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This gives us a non-linear equation for the equilibrium condition for the quasi-
stationary distribution d. We can think of this as the stationary point of the forward

equation
ddj) _

& > diRej +dj (Y diRio) 3)
k k

The first part of this equation is the standard Kolmogorov forward equation, while
the second part redeposits the probability of hitting the absorbing states onto all the
non-absorbing states according to the current distribution d;.

This suggests the following algorithm

Algorithm 1 Algorithm for estimating quasi-stationary distribution
(i) Start the Markov chain in a non-absorbing state.
(ii) Simulate the Markov chain normally.

(iii) If the Markov chain hits the absorbing state, re-sample the starting posi-
tion based on an empirical estimate of the quasi-stationary distribution up
until that point and go to step 2. That is, we sample a non-absorbing state
according to a weight proportional to the amount of time that such a state
has been visited so far throughout the whole algorithm.

(iv) The samples after a large enough time window will be drawn approxi-
mately from the quasi-stationary distribution.

For large enough time, the dynamics of the Markov chain will be governed by
(@), which means we can obtain the quasi-stationary distribution by examining the
empirical distribution after some large enough time.

3 Stochastic Approximation Analysis of the Algorithm

In this section, we will re-organize Algorithm [I] into a stochastic approximation
algorithm. This will let us rigorously prove a convergence result and Central Limit
Theorem for the algorithm.

3.1 Formal Description of the Algorithm

We will now write down a precise description of the above Algorithm[Il Let our state
space be the finite set S and 7" C S be the set of transient states. Let u, be a probabil-
ity measure over transient states. u, will be the cumulative empirical distribution up
until the n-th iteration. Let Q be the substochastic matrix over the transient states,
and {X/}, be the /th Markov chain in the simulation, and 7/ = min{k > 0|X{ ¢ T}
(the hitting time of the absorbing state), we can write our algorithm as

n+1

(S50 7!) mal)+ (S5~ 106! = xlxXg ! ~ )

VxeT
pYangd

M1 (x) =
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for any arbitrary initial distribution .
Robbins-Monro, or stochastic approximation algorithms [12} [10]], have the form

U1 = M+ 05Y ()

where
Soy=c Yog<eo 0,20 0,0
n

and Y (+) is a collection of vector-valued random variables for each possible point in
the state-space. Note that over the years, the form of the Robbins-Monro algorithm
has been extended. The form here is the classical version.

Under certain conditions, which will be discussed rigorously in [1]], u, converges
to root of the function g(u) = E[Y(u)]. We will transform i, into stochastic ap-
proximation

(n+1) _ n
I ) il '((x}*” X) = ()
n+1 e z;%io ()

.urH—l(x) = .un(x) + (

where '
2o (X = x[Xo ~ 1) — p(x))
1 +1 .

n+1 Z?:0 T(])
The denominator is problematic because it depends on the whole history of u, and
not just on the present state. To solve this, we artificially consider another state 7,
in the following way.

Stochastic approximation scheme for the main algorithm

Y(u)=

1 1 <

Tyt = To+ nH(r("“) ~T) =T, = il ZZ)T(])
Hn1(x) = pn(x) + (4)
oy (T (e =X ) = ()
(n+l> T, + n'r]l) ®)

we can therefore define

(n+1) n
S (1 =0 - ()
T + r(n+1)
n n+l1
Zn(.uann) £ (T<n+1) - Tn)

Yo (M, T) (x) =

So now we have a stochastic approximation path (i, T,,), where the control param-
eters are (U, T), that fits into the Robbins-Monro scheme above.
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Remark 1 Please note that the iterates L1, are constrained in H = {x € R".| Y x; =
1}, the (n-1)-dimensional simplex.

We can also define a similar algorithm for the continuous-time Markov chain by
keeping track of the amount of time a Markov chain spends in each transient state.
This is given in Sect.

We can summarize the conditions for our algorithm in the following theorem
taken from Blanchet, Glynn, and Zheng (2012):

Theorem 1 Given an irreducible absorbing Markov chain over a finite state space
S of cardinality d, let

(i) Matrix Q denoting the transition rates over the non-absorbing states
(ii) Let Uy be a probability vector over the non-absorbing states
(iii) Let Ty € R

Then there exists an unique quasi-stationary distribution [l satisfying the equations

Wo=2u
ul=1
n=0

and the Algorithm[Il converges to the point (L, 1i/1) with probability 1.
Furthermore, if Apy is the principal eigenvalue of Q and Aypy are the other
eigenvalues and they satisfy

1 1 1
Re (1 B lNPv) < ) <1 B va) YV Anpynon-principal eigenvalues

Then
Vi, — ) = N(0,V)

for some matrix V.

3.2 Sketch of Proof of Convergence

Our proof in [[I]] rests on the use of the ODE method [10] where we are required to
examine the asymptotics of the coupled dynamical system

S0 U(Xr = |Xo ~ ) — 71 (x)

(1) = Epy,rr) ()

(Define) A £ (1-0) ™" = 1 [u' (1A~ (1A' (1)
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T(t) =Eult)-T
= u(0)(I1- Q) "1-T(r)

where 4t € R" and T € R™.

In [1l], we were able to show that for a given initial position in the probability
simplex, the solution to the above dynamical system exists and converges to its
stationary point which is the unique point that satisfies

u'o=pu”
Sui=1
w >0

1
Ey(t)"

By Theorer’ﬁ(ill from [10], we can conclude that u, converges to the quasi-
stationary distribution for all initial configurations (o, 7p).

By Theorem 10.2.1 from [10], we conclude that a Central Limit Theorem exists
as long as the Jacobian of the ODE vector field has spectral radius less than —0.5.
This is equivalent to requiring that

andp =1-—

1 1 1
Re ( | — lNPv) < ) ( | — lpv) VAnpy non-principal eigenvalues  (6)

where the A’s are the eigenvalues of the Q matrix.

4 Variations on the Existing Algorithm with Improved Rate
of Convergence

One interesting question to ask is what happens when the sufficient conditions for
Central Limit Theorem is not met. We will study a simple example consisting of
two states.

4.1 Counter Example to CLT
Imagine we have a Markov chain with three states {0, 1,2} and transition matrix

1 0 O

€ l—e 1—¢
l1—¢ 1-¢

€ 9
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Obviously the state {0} is the absorbing state. In this setup, because of symmetry,
our Algorithm[dlreduces to

(i) With probability 155 sample either the state 1 or 2 (without knowing the previ-
ous state, this is ok by symmetry)

(i1) With probability €, sample from either 1 or 2 according to the empirical distri-
bution up until this point.

We recognize this as a self-interacting Markov chain.
A self-interacting Markov chain [7] is a stochastic process {X,,} such that
P (Xy11 € dx|-%,) = O(S,)(dx)

where @ is a function that transforms one measure into another measure and S, is
the empirical measure generated by {X}7_.

Then our quasi-stationary algorithm reduces to the empirical process of a SIMC
X, governed by

P(Xy1 =dz|Fy) /K(x,dz)dSn(dx)

where the kernel is given by

K(x,dz) = €6:(dz) + (1 ge> [61(dz) + 8, (dz)]

The sufficient condition for CLT (@) or this problem translates to requiring € < 0.5.
When the CLT is violated however, states that over a very general class of
bounded and measurable functions f

E[(S.(f) = Sa(f))*] =0 <n2<118>)

where S,,(f) = [ f(x)dS,(x), Sp(f) = E[Sn(f)]. Although this doesn’t technically
contradict with the existence of a 1/n-CLT, it does suggest that the scaling sequence
is n' € instead of \/n.

4.2 The Parallel Algorithm

There is a variant of the algorithm that can offer significant practical benefits. Imag-
ine that at each iteration, instead of there being one run of the Markov chain until
absorption, we have M independent runs. Such that
L 1 1

( ) (21 Ozm X ‘L'l‘m) +2 [zk o —1 I(Xn+ m x|X"+ m I-ln)}

Zn+1 ZM | Tl m

m
n+] m 1 1
1 zm | [zk . —1 (I(X]:1+ m_ |Xn+ m_ I-ln)) —T"Jrl""un(x)}

n+1 n+| Zn—H zM Tl’m

Uny1(x) =

= Hn(x)+
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Again we have to include an extra dimension

{ %:1 [zz:)],m,] (I(X]:l+l,m:_lx(i)1+l,m ~ ,Un)) _ Tn—}—l,m‘un}
Upt1 = Nn+n+l Tn+nllz%:]1-n+l,m

1 M 1 1 n M )
Ly =T+ 2 (mzl Tt T,,) =T, = _— j;)mz:“l i

After some derivation, we obtain the dynamical system

() = ey (W) = (T 0) ')
T(t1)=Mu'(I-Q0)'1-T

Very similarly, we know that

M
T _
©=1 5

If we let g* and g7 denote the dynamical system’s components, then we obtain the

Jacobian

M
T

Vugh <<I—Q>‘ —(I-0) 1" - | 111>
M

Vrgh = -, (W' (=)' = (u'(1-0)" ")

Vg =MiI-0)™"1

VTgT = —1

So the condition for which the Central Limit Theorem remains the same:

1 1 1
R < VA incipal ei 1
e( 1 ANPV) ( 2) . ~Npy on principal eigenvalues

where Apy is the principal eigenvalue of Q and Aypy is the non-principal eigenvalue
of Q.

Although the Central Limit Theorem does not always hold, the variance of the
stochastic approximation noise is lower with bigger M. This means that if we have
enough independent Markov chain iterations across different processors, the algo-
rithm would perform better. See Section 5 for empirical performance.
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5 Continuous-Time Markov Chains

5.1 Formulation and Convergence

So far, the exposition has assumed that the Markov chain of interest is a discrete-
time process. It is straightforward to adapt our method for continuous-time pro-
cesses (such as the contact process). If we denote the transition rate matrix of the
CTMC in the following block form
T_ {0 0}
NQ

m

then we can write the algorithm as

n+
) (i S0y T) + 0y I 1) = X~ )|
z'hLl Zm . Tlm
LS [ (e (s) = X ) ) ds = 7 )]
n+l w1 Zito oy T

M1 (x) =

n+1.m

U (x) +

By a similar approach as the discrete-time case, we deduce the related dynamical
system

) = =, (w0 ~ o o)
T(t) = -Mu'Q~'"1—-T

It is straightforward to adapt the Perron-Frobenius theorem to transition rate ma-
trices such as Q by decomposing Q = A — bl where A is an irreducible matrix. We
know the existence of a principal eigenvector of positive entries fi (with eigenvalue
smaller than 0) such that

p'o=ap
We can easily check that the stationary point, and with more work the limit point of
the dynamical system satisfies

Hence we have proven that the CTMC version of the algorithm converges to the
quasi-stationary distribution.
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5.2 Rate of Convergence

The Jacobian of the dynamical system is given by
u M —1q9,,T 1n-1
Vugh == (07" =0 " — (u'e™'1)1)

M _ -
Vrgh =, (W'o™' = (u'o " u')
VTgT =—1

When evaluated at the stationary point (i, T), we get the matrix
) (Q*' —o 1 — 11) —Mo1
0 —1
If Ay is any non-principal eigenvalue of Q, then the sufficient condition for CLT
becomes
2Apy > Re(/lg)

5.3 Uniformization

Because these CTMC have finite state space, we can form the associated uni-
formized Markov chain. Let O be the transition rate matrix of the non-absorbing
states and let v = max;(—¢;;), we can form a discrete-time transition matrix

~ 1
0=1I+ 0
It is straightforward to verify that any principal left-eigenvector to Q is also a princi-

pal left-eigenvector to Q. Hence we apply the discrete-time algorithm to this DTMC.

6 Numerical Experiments

6.1 Loopy Markov Chain
Let’s consider the loopy Markov chain given by the full stochastic matrix
10 O

l—e 1—¢
¢ 128 ]28
€ 9"
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the eigenvalues of the sub-stochastic matrix are 1 — ¢ and 0. Hence the sufficient
condition for Central Limit Theorem to hold is requiring € < 0.5. A series of nu-
merical experiments were performed for different values of € where the L2 error is
plotted against time. The observation is summarized in the following table.

Table 1 This table summarizes the behavior of the loopy Markov chain for various &

e CLT Satisfied? Observation Figure (in appendix)
0.1 yes No difference between the performance of A.l
different M’s.
0.4 yes (borderline) No difference between the performance of A2
different M’s.
0.6 no (borderline) Noticeable, but relatively medium difference A2

between small M and larger M. Observed critical
M=2. Anomalous large error for the M=10 run.
0.98 no Huge difference between the simulation with A4
small M and larger M. However, some of the
simulations with very large M begin to show
larger errors than the simulation with medium
M’s.

x107 CLT loopy Markov chain epsilon = 0.1
25~ 1

error

0.5

time (n) @

Fig. 1 This figure is the time vs. error plot of the main algorithm ran on a loopy Markov chain
with eigenvalues well within the CLT regime (¢ = 0.1 < 0.5). Notice the scale of the y-axis.
The colors of the different lines represent different runs with different M’s. In this regime
which satisfies the CLT for all M, increasing M does not improve the rate of convergence.
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error plot for CLT loopy Markov chain epsilon=0.4 M(1 —> 40)

error

0.1

0 1 2 3 4 5 6 7 8 9 10
time (n) x 10*

Fig. 2 This figure is the time vs. error plot of the main algorithm run on a loopy Markov
chain with eigenvalues just within the CLT regime (¢ = 0.4 < 0.5). Just like the previous
figure, this figure shows that increasing M does not improve the rate of convergence.

error plot for non-CLT MC (epsilon = 0.6)
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Fig. 3 The is the time vs. error plot of the main algorithm ran on a Markov chain with
eigenvalues just outside of the CLT regime (¢ = 0.6 > 0.5). As you can see, there is a notice-
able difference between the M = 1 simulation and other M simulations. However, there is an
anomalous run for M = 10. It is probably due to the inherent large variance of the error.
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6.2 Contact Process on Complete Graph

6.2.1 Low Infection Rate

Here we apply the algorithm to a special case of the contact process. This is the
contact process on a complete graph. This simple case allows the process to be
only represented by the number of infected nodes. We picked 10000 nodes and an
infection rate of 0.8. The algorithm was run for 1000 iterations. See Fig. [3] for the
plot of the estimated distribution vs the true distribution.

error plot for non-CLT loopy Markov chain epsilon=0.98

0.7r
- = =1
- — 10
15
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o.sk\
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e
0.27 ”"“"-~~....~‘....-
B -
.
0 Il Il Il Il Il J
0 0.5 1 15 2 25 3
x10°

Fig. 4 The is the time vs. error plot of the main algorithm run on a Markov chain with
eigenvalues just outside of the CLT regime (¢ =0.98 >> 0.5). As you can see, there are huge
differences between the M = 1,5 simulation and other M simulations. However, there are
anomalous runs for M = 20,25. They are probably due to the inherent large variance of the
error.
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Contact process on complete graph, N=10000, lambda=0.8
T T T T T T T T
— Estimate by the algorithm
02k ! — — —True QS distribution

Quasi-stationary Probability

0.05

0 10 20 30 40 50 60 70 80
Number of infected nodes

Fig. 5 This is the time vs. probability plot of the the continuous-time version of the algorithm
applied to the contact process on complete graph with 10000 nodes and an infection rate of
0.8.

Contact process on complete graph N=10000 lambda = 1.5
0.05 T T T T T T T T
—— Empirical QS distribution (run 1)
0.045 - , - — - True'ClJS distribytiqn i
—— Empirical QS distribution (run 2)
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Fig. 6 This is the time vs. probability plot of he continuous-time version of the algorithm
applied to the contact process on complete graph with 10000 nodes and a high infection rate
of 1.5.
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6.2.2 High Infection Rate

If the infection rate is changed to 1.5, then each iteration of the algorithm would
take an extreme long time due to the time it takes to hit the absorbing state. Hence,
we uniformized the continuous-time chain to get a discrete-time transition matrix Q.
Instead of applying the algorithm to Q, we can apply the algorithm to 0.99 x Q in or-
der to shorten each tour. The algorithm showed high variability on the two different
runs. See Fig.[@l for the plot of the estimated distribution vs the true distribution.

7 Discussion and Conclusion

In summary, we have given a rigorous foundation to the algorithm of [3]] by rec-
ognizing it as a stochastic approximation algorithm. In doing so, we were able to
prove its law of large number and fluid limits. A slightly improved algorithm is also
proposed and this algorithm significantly improves rate of convergence for some
cases.

There also exists a class of projection-based stochastic approximation algorithms
0,41 = IT[6, + &,Y,] that can be applied to our algorithm. Namely, we can discard
the “T” dimension in our algorithm and replace the normalizing denominator by a
projection operator. Unfortunately, this algorithm works very poorly in practice.

We have tested our algorithm on countable state space processes such as the
M/M/1/e queue with success. Proving the convergence of this algorithm in this
setting is currently an open problem.

Acknowledgements. Support from the NSF foundation through the grants CMMI-0846816
and CMMI-1069064 is gratefully acknowledged.
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Locality in Continuous Fitness-Valued Cases
and Genetic Programming Difficulty

Edgar Galvan, Leonardo Trujillo, James McDermott, and Ahmed Kattan

Abstract. It is commonly accepted that a mapping is local if it preserves neighbour-
hood. In Evolutionary Computation, locality is generally described as the property
that neighbouring genotypes correspond to neighbouring phenotypes. Locality has
been classified in one of two categories: high and low locality. It is said that a repre-
sentation has high locality if most genotypic neighbours correspond to phenotypic
neighbours. The opposite is true for a representation that has low locality. It is ar-
gued that a representation with high locality performs better in evolutionary search
compared to a representation that has low locality. In this work, we explore, for
the first time, a study on Genetic Programming (GP) locality in continuous fitness-
valued cases. For this, we extended the original definition of locality (first defined
and used in Genetic Algorithms using bitstrings) from genotype-phenotype map-
ping to the genotype-fitness mapping. Then, we defined three possible variants of
locality in GP regarding neighbourhood. The experimental tests presented here use
a set of symbolic regression problems, two different encoding and two different
mutation operators. We show how locality can be studied in this type of scenarios
(continuous fitness-valued cases) and that locality can successfully been used as a
performance prediction tool.
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1 Introduction

Over the last years, researchers in the Evolutionary Computation (EC) community
have been trying to estimate problem difficulty and landscape’s structures (e.g.,
6, [14] [T8]]). In particular, researchers have focused their attention on
the use of Genetic Algorithms [9]] for their studies. In this work, we make an effort
to understand problem difficulty by using a more complex representation and use
Genetic Programming (GP) [11]], where there are some interesting works that have
shed some light on this research area [18].

One element that underlies many of these approaches is the well-known notion
of fitness landscape, originally described in [20]. Over the years, researchers have
defined fitness landscapes in slightly different ways. All of them have in common
the use of three main elements: search space x, neighbourhood mapping y and fit-
ness function f. More formally, a fitness landscape, as specified in [I3]], is normally
defined as a triplet (x, x, f): (a) a set x of configurations, (b) a notion y of neigh-
bourhood, distance or accessibility on x, and finally, (c) a fitness function f. The
graphical representation of this, whenever possible, can give an indication about the
difficulty of the problem.

How an algorithm explores and exploits a landscape is a key element of evolu-
tionary search. Rothlauf [14] has described and analysed the importance of locality
in performing an effective evolutionary search of landscapes.

In EC, locality refers to how well neighbouring genotypes correspond to neigh-
bouring phenotypes, and is useful as an indicator of problem difficulty. Similarly,
the principle of strong causality states that for successful search, a small genotypic
change should result in a small fitness change [2].

In his research, Rothlauf distinguished two forms of locality, low and high. A rep-
resentation has high locality if most neighbouring genotypes correspond to neigh-
bouring phenotypes, that is, small genotypic changes result in small phenotypic
changes. On the other hand, a representation has low locality if many neighbouring
genotypes do not correspond to neighbouring phenotypes. According to Rothlauf, a
representation that has high locality is better compared to a representation with low
locality. It should be noticed that a quantitative locality measure denoting high local-
ity is close to 0, whereas the opposite is true for low locality. In his original studies,
Rothlauf used GAs with bitstrings to conduct his experiments [14]. To our knowl-
edge, there are few explicit studies on locality using the typical GP representation
(i.e., tree-like structures).

The goal of this paper then, is to shed some light on the degree of locality present
in GP. In particular in continuous-valued fitness. It is worth mentioning that there are
some works on GP locality [4, [5l]. However, to the best of our knowledge, none of
them have studied this scenario in detail. Thus, in this study we cover the following:

e We extend the notion of genotype-phenotype locality to the genotype-fitness case
for continuous-values fitness. For this purpose we treat two individuals as neigh-
bours in the genotype space if they are separated by a single mutation operation.
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e We consider three different definitions of locality to study which of them gives
the best prediction of problem difficulty,

e We consider only a mutation based GP (two different mutation operators), and

e Finally, we use two different encodings on five different problems (i.e., Real-
Valued Symbolic Regression problems) and compare the results against the three
definitions of locality.

This paper is organised as follows. In the following section a more detailed expla-
nation on locality is provided. Section [3] presents previous work on performance
prediction. Section [ presents the experimental setup. In Section [6] we present and
discuss our findings. Finally, in Section[6l we draw some conclusions.

2 Locality

Understanding how well neighbouring genotypes correspond to neighbouring phe-
notypes is a key element in understanding evolutionary search [14]. In the abstract
sense, a mapping has locality if neighbourhood is preserved under that mappin. In
EC this generally refers to the mapping from genotype to phenotype. This is a topic
worthy of study because if neighbourhood is not preserved, then the algorithm’s at-
tempts to exploit the information provided by an individual’s fitness will be misled
when the individual’s neighbours turn out to be very different.

Rothlauf gives a quantitative definition of locality: “the locality d,, of a represen-
tation can be defined as

dm - 2 |dp(x7y> _drzr)]in|
ds(x,y)=d®

where d”(x,y) is the phenotypic distance between the phenotypes x and y, d8(x,y)
is the genotypic distance between the corresponding genotypes, and d”. resp. d5.
is the minimum distance between two (neighbouring) phenotypes, resp. genotypes”
p. 77; notation changed slightly]. Locality is thus seen as a continuous property
rather than a binary one. It should be noticed, however, that this measure has been
(almost) exclusively used in discrete scenarios [14].

The point of this definition is that it provides a single quantity which gives an
indication of the behaviour of the genotype-phenotype mapping which can be com-
pared between different representations.

It is worth pointing out that while Rothlauf gives a quantitative definition of lo-
cality, as expressed above (d,,), this in fact measures phenotypic divergence. Once
a value is obtained by this measure, then we can talk about high and low locality.
To avoid confusion regarding the type of locality present in a representation, it is
necessary to highlight the following: when the phenotypic divergence d,, is low, we

I'The term locality has also been used in an unrelated context, to refer to the quasi-
geographical distribution of an EC population [3].
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are in presence of high locality. On the other hand, when the phenotypic diver-
gence d,, is high, we are in the presence of “non-locality” (originally called “low-
locality” [[14]]). We have decided to re-label the latter term to avoid confusion. These
two terms (high and non-locality) will be used throughout the paper.

Routhlauf stated that a representation that has high locality will be more efficient
at evolutionary search. If a representation has this type of locality (i.e., neighbour-
ing genotypes correspond to neighbouring phenotypes) then performance is good.
This, however, changes when a representation has non-locality, i.e., non-locality will
translate to a poor evolutionary performance.

To use locality as a measure of problem difficulty in GP, it is necessary to extend
the standard definition of genotype-phenotype locality given by Rothlauf [14] to the
genotype-fitness mapping [4 5]]. This is because, it is normally accepted that in tree-
structured GP there is no explicit genotype-phenotype mapping, so we can say that
there are no explicit phenotypes distinct from genotypes.

In [3], Galvan et al. extended the typical definition of locality from the
genotype-phenotype to the genotype-fitness mapping. In their work, the authors
were able to show how to predict performance on discrete valued-fitness cases. In
this work, as mentioned previously, we want to extend this work to continuous-
valued fitness. This is presented in the following section.

2.1 Extending the Definition of Locality to the Continuous
Valued-Fitness

In [4] [5]], the authors introduced, for the first time, the definition of locality in
GP showing how locality correctly predicted performance only in discrete valued-
fitness cases. Thus, our intention is to extend GP locality to continuous valued-
fitness cases. For this purpose, we generalise the three definitions of locality
originally presented in [4} 3]. These three definitions can be summarised as follows:

e Regard two individuals as fitness-neighbours if the difference of their fitness val-
ues is 1, and regard fitness-neutral mutations as non-local. This leads to the fol-
lowing definition for “non-locality” which we call Defj:

SN 1 fd(xi,m(xi)) — fdminl

Ay =
N

(1)
where fd(x;,m(x;)) = |f(xi) — f(m(x;))| is the fitness distance between a
randomly-sampled individual x; and the mutated individual m(x;), fdmi, = 1 is
the minimum fitness distance between two individuals, and N is the sample size.

e Def)), however, treats a fitness-neutral mutation as being just as bad for local-
ity as a mutation causing a fitness divergence of two fitness units (assuming
integer-valued fitness). It might be preferable to redefine the minimum distance
in the fitness space as zero, giving the same locality definition as above but with
fdmin = 0. We called this Def;.
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e Finally, it might be better to treat only true divergence of fitness as indicating
poor locality. Therefore we might say that fitness divergence occurs only when
the fitness distance between the pair of individuals is 2 or greater: otherwise
the individuals are regarded as neighbours in the fitness space. This leads to the
following definition, which we will call Def,.

Zivzlzfd(th(x’,))zzfd(xivm(xi))

dyn = N

2
As mentioned previously, the work developed in [4} 3] considers the study of GP lo-
cality in discrete-valued cases. In the following paragraphs, we show how it is possi-
ble to extend these definition to continuous-valued fitness. To this end, we consider
the same definitions previously summarised. Thus we have:

e Under the first definition (Def), the quantity being calculated is simply the mean
fitness distance. This idea carries over directly to the continuous case.

e Under the second definition (Def), the idea is that mutations should create fitness
distances of 1: lesser fitness distances are non-local, as are greater ones. In the
continuous case we set up bounds, o and 3, and say that mutations should create
fitness distances o < fd < B. When fd < o, we add o — fd to d,, penalising
an overly-neutral mutation; when fd > 3, we add fd — B to d,,, penalising a
highly non-local mutation. Each of these conditions reflects a similar action in
the discrete case.

e Under the third definition (Def;), both neutral and small non-zero fitness dis-
tances are regarded as local; only large fitness distances contribute to d,,. Thus,
in the continuous case, only when fd > f8 do we add a quantity (fd — f8) to d,,
penalising mutations of relatively large fitness distances.

From the previous new definitions on continuous-valued fitness, it is clear that it is
necessary to know the “correct” values for o and 8. In Section] we discuss this in
detail.

3 Related Work

Landscapes and problem difficulty have been the subject of a good deal of research
in EC in general and GP in particular. Several approaches to investigating problem
difficulty have been proposed. In this section we mention some of them, including
their pros and cons.

3.1 Sampling the Fitness Landscape

One of the best well-known prediction tools available in the literature is the
one proposed by Jones called fitness distance correlation (fdc). This measures the
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difficulty of a problem on the basis of the relationship between fitness and distance
to the goal. The idea behind fdc was to consider fitness functions as heuristic func-
tions and to interpret their results as indicators of the distance to the nearest optimum
of the search space. fdc is an algebraic measure intended to express the degree to
which the fitness function conveys information about distance to the optimum.

Altenberg [[1] argued that predicting the hardness of a problem when using only
fitness and distance in an EC system presents some difficulties. For instance, nei-
ther crossover nor mutation are taken into account when fdc is calculated, unless
their effects are built-in to the measure of genetic distance used. Other works have
also shown some weaknesses in fdc. Both [16] and [12] construct examples which
demonstrate that the fdc can be “blinded” by particular qualities of the search space,
and that it can be misleading. However, perhaps, the most important drawback of the
fdc measure is that the global optimal solution must be known a priori in order to
compute it, something that is basically impossible for real-world problems. There
is, however, a vast amount of work where Jones’ approach has been successfully
used. Of particular interest is the work by Vanneschi and colleagues [19]], on the use
of fdc in GP.

Later work by Vanneschi et al. attempted to address weaknesses of fdc with a new
approach that is based on the concept of fitness clouds [[18]). These are scatter plots
that describe the manner in which the fitness of each individual correlates with the
fitness of its neighbors. Fitness clouds are constructed by plotting a point for each
genotype x on a 2-D plane, where the horizontal axis corresponds with the fitness
of x given by f(x), and the vertical axis represents the fitness f(y) of a neighboring
genotype y. In this definition, y could be chosen in different ways, but the idea is
to relate neighborhood with the search operators, particularly mutation. Given this
scatter plot, Vanneschi et al. proposed the negative slope coefficient (nsc), which is
a measure that characterises the overall shape of the fitness cloud computed for a
given problem. The nsc is computed by assuming a piecewise linear relationship
between f(x) and f(y) for a sample of N individual genotypes and computing the
slope of the scatter points within a set of equally spaced segments on the horizontal
axis. The nsc is given in the range of (—eo,0], where a value of 0 represents a very
easy or evolvable problem, and a negative nsc indicates an increase in difficulty for
the evolutionary search.

An important first observation is that nsc does not require the global optimum to
be known a priori, a significant step foreword from fdc. However, nsc also exhibits
some disadvantages. For instance, the scale of nsc is not clearly defined, in fact it
is mostly described in informal terms. Moreover, while nsc is based on reasonable
assumptions, the algorithm used to compute it relies on a series of ad-hoc design
choices. Nonetheless, nsc is currently considered as one of the best predictor of
search performance for GP.
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Table 1 Functions used as benchmark problems

x+x2+x3
x 422 420 1
x+x2 +x3 +x4 +x5
xA+x2 423 x40 44O
sin(x*)cos(x) — 1

4 Experimental Setup

4.1 Benchmark Problems

For our analysis, we have used five Real-Valued Symbolic Regression problems.
Table [Tl shows the functions used as benchmark problems in our study.

In simple terms, we can say that the goal of these type of problems is to find a
program whose output is equal to the values of the specified functions. Thus, the
fitness of an individual in the population must reflect how closely the output of
an individual comes from the target. To compute the fitness of an individual it is
common to define the fitness as the sum of absolute errors measured at different
values of the independent variable (e.g., x), in this case in the range [-1.0,1.0]. In
this study we have measured the errors for x € {1.0,0.9,0.8,---,0.8,0.9,1.0} and
we have defined an arbitrary threshold of 0.01. The latter is used to indicate that an
individual with a fitness < threshold is regarded as a correct solution.

The problems are posed as maximisation tasks for an easier interpretation.

To study locality we need to have an alternative representation with differing
locality and (presumably) differing performance. Therefore, we will use contrasts
in encoding (two encodings: standard GP and a slightly modified encoding) and in
operators (one-point and subtree mutation). The idea here is that each encoding will
give a different value for locality and different performance, allowing us to compare
the predictions of relative performance made by locality with results of evolutionary
runs. This different encoding is presented next.

4.2  Uniform Genetic Programming

As mentioned previously, we expect to find different performance when using dif-
ferent encodings. This will allow us to compare the performance predictions made
by locality with actual performance. So, we decided to adopt a slightly different
tree-like structure representation, called Uniform GP (UGP) [[7].

UGP (called uniform because all internal nodes are of the same arity) is an en-
coding defined by adding ‘dummy’ arguments (i.e., terminals/subtrees) to internal
nodes whose arity is lower than the maximum arity defined in the function set. These
are called dummy arguments because they are not executed when the individual is
evaluated. For this to happen, it is necessary to use special functions that indicate the
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use of dummy arguments (these special functions can be seen as flags that indicate
that the subtree beneath these type of functions will not be executed). See [[7] for
details.

To use this representation in our five symbolic regression problems, we defined
the function set: UGP = {+, —,*, %, Sin2,Cos2}. Thus, Sin2,Cos2 allow the ad-
dition of dummy arguments as explained previously. When using the typical GP
representation we used the function set: GP = {+, —, %, %, Sin, Cos}. For both UGP
and GP, % is protected division.

4.3 Setting Bounds

In Section 2] we generalised the definition of GP locality in continuous-valued fit-
ness. From Def] and Def; it is clear that it is necessary to establish the values
needed for o and f3. In this work, we have used different values for these variables
to determine the impact of these bounds on locality prediction.

This, in consequence, lead us to the use a several values for o and f3. So,
in this work, we used four starting values for each variable (o) (i.e., ot =
{0.01,0.001,0.0001,0.00001},3 = {0.1,0.01,0.001,0.0001}. For each starting
pair (i.e, Pairy1 = {Ot = 0.0l,ﬁ = 0.1}, Pairy; = {Ot = 0.00],B = 0.01}, Pairy; =
{00 =0.0001,3 = 0.001}, Pairs; = {oe = 0.00001, 3 = 0.00001}), we automati-
cally created 10 different values for each pair using different interval values (i.e.,
0.01,0.001,0.0001,0.00001). To create these 10 cases for each pair, we used one
of the latter interval values for each of the starting pair values, and accumulatively,
we added it to o and B until all the cases were created. So, in total we defined 40
different configuration values for o and f (e.g., Pairj; = {oe = 0.02,8 = 0.11},
Pairy; = {a =0.002,3 = 0.011}, Pairs; = {a = 0.0002,3 = 0.0011}, Pairs, =
{o =0.00002, 3 =0.00011}).

4.4 Evolutionary Runs

The experiments were conducted using a GP with tournament selection (size = 7).
To obtain more meaningful results, we performed 50 independent runs for each of
the three configurations of population size and number of generations. Runs were
stopped when the maximum number of generations was reached. Three population
sizes were used (i.e., 200, 250, 500) along with three different number of genera-
tions (i.e., 125, 100, 50). Tournament selection (size 7) was used and we initialised
our population using the ramped half-and-half method (depth 2 to 4). To control
bloat we defined 1250 nodes and/or a maximum depth of 7. As indicated before,
we used two different mutation operators: one-point and subtree. Finally, to obtain
meaningful results, we performed 50 independent runs.
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4.5 Sampling and Measuring Locality

To predict the performance of an encoding and an operator (as mentioned previ-
ously, we used one-point and subtree mutation), it is important to consider the type
of sampling used.

As discussed previously, in his original studies, Rothlauf used bitstrings, fixed-
length chromosomes to study the locality of a representation. So, in his work it was
straightforward to create a sample to study the locality of a representation. This,
however, changes when using a variable length, variable shape representation like
in tree-like structures. So, one should pay special attention to this.

In our work, we have decided to create a sample based on actual evolutionary
runs. That is, for each of the five problems, we saved all the individuals in the pop-
ulation in every generation along with their fitness values. Then, we sorted the in-
dividuals based on their fitness, and from there we sample uniformly from there.
We sample 40,000 individuals for each of the problems used in this paper (i.e.,
40,000%*5). It is worth pointing out that we tried other sampling methods achieving
similar results.

Now, to study and examine the locality present in each encoding (typical GP
and UGP), for each data point in the sample data, we created an offspring via each
mutation operator and measured locality using the three definitions introduced in
Section [2l Thus, to compare the predictions made by locality (i.e., the lower the
value on locality, the better the performance should be), we performed runs using
the parameters described before in this section.

5 Results and Discussion

As mentioned in Section2] Rothlauf [[14] distinguished two forms of locality: high
and non-locality (originally called “low-locality”). In a nutshell, the author claimed
that a representation with high locality (the closer to 0, the higher the locality of
the representation is, see the three definition introduced in Section[2)) is more likely
to perform an effective evolutionary search compared to a representation with non-
locality (i.e., higher quantitative value). In the following paragraphs we discuss our
findings in terms of how good or bad locality is as a prediction performance tool on
continuous-valued problems.

5.1 Quantitative Locality Measures and Performance

To estimate how good or bad locality is in predicting performance in continuous
fitness-valued cases, it is necessary to calculate quantitative locality measures using
the three definitions introduced in Section 2] denoted by Defy, Def; and Def,. We
know that Def; and Def, rely on two thresholds, o and 3. Now, one question arises:
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Table 2 Average of Quantitative Locality Measures on the Symbolic Regression Problems,
using two encodings GP = {+, —, %, %, Sin,Cos}, UGP = {+,—,*,%, Sin2,Cos2}, two mu-
tations, and three locality definitions. Lower is better.

Mutation Def Def; Def,
Operators GP UGP GP UGP GP UGP
Fl=x+x>+x°

One Point .0049 .0041 .0082 .0075 .0001 5.28e-05

Subtree .0061 .0046 .0079 .0091 .0002 4.85e-05
Py =x+x* +x 4+x*

One Point .0042 .0045 .0080 .0074 .0004 .0008

Subtree .0058 .0052 .0074 .0088 .0001 4.92e-05

Fa=x+x>+34+x4 4+
One Point .0038 .0040 .0078 .0072 .0003 0.0006
Subtree .0057 .0048 .0074 .0084 .0001 4.98e-05
Fy=x+x 403 40 0% 2

One Point .0056 .0052 .0079 .0074 .0002 .0005

Subtree .0065 .0058 .0080 .0088 .0001 3.88e-05
Fs = sin(x*)cos(x) — 1

One Point .0044 .0035 .0079 .0071 .0003 .0008

Subtree .0060 .0062 .0077 .0082 .0001 4.73e-05

what are the best values to use for these two thresholds? This is important to de-
termine to know how sensitive each definition is. Thus, to address this question we
tested different values for these two variables. That is, as mentioned in Section (]
we used different values for each of these variables and tested 40 different config-
urations values for o and 3. Due to space limitations and for clarity purposes %
we decided to average all the quantitative measures for definitions Def; and Def,,
for each of the five symbolic regression functions used in this work. These results
are shown in Table 2l Recall that a low quantitative measure on locality denotes
high-locality, whereas the opposite is true for non-locality.

To see how locality performed in predicting performance, it is necessary to per-
form evolutionary runs. Thus, we also performed extensive empirical experimenta-
tion (50 * 30 * 2 runs in total) B, for each of the five regression problems used in this
work. The performance (measured in terms of average of the best fitness values over
all runs) are shown in Table Bl Now, it is necessary to examine if locality is able to
correctly predict performance. To do so, we examine both locality and performance
values, shown in Tables 2] and Table[3] respectively.

2 We gathered extensive quantitative locality measures (40 * 5 * 3 * 40,000 ) (10 different
values for both o and f using 4 different range of values for them, hence 40 different
settings (see Section[] for full details), 5 problems, 3 definitions of locality, and finally, we
sample 40,000 individuals).

3 50 independent runs, 30 different settings (three different combinations of population sizes
and number of generations, five different problems, and two different function sets for each
of the five problems =3 * 5 * 2), and two different mutation operators.
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Table 3 Performance (measured in terms of average of the best fitness values over all runs) of
a Mutation-Based GP (using only one-point and subtree mutation) on the Symbolic Regres-
sion Problems. Numbers within parentheses indicate number of runs able to find the global
optimum. GP = {+,—,%,/,Sin,Cos} and UGP = {+, —, x, /,Sin2,Cos2}. Higher is better.

Mutation Pop =200, Pop =250, Pop = 500,
Gen =125 Gen=100 Gen =50
Operators GP UGP GP UGP GP UGP

Fl=x+x>+x3
One Point .2417 4831 .3769 .3619 .2788 .5966
3 @ (17)

Subtree 5540 .5229 .6496 .6420 .7308 .8958
(10) (19 @ 18) (29 «1)
B =x+x>+x +x*
One Point .2276 .2788 .2180 .3161 .2318 .3208
Subtree  .9172 .4466 .4463 .6454 4861 .6157
) ® 6 Qo © Jdn
F=x+x" 4+ 4242
One Point .1574 .2768 .1730 .2205 .2031 .2316
Subtree 3332 .3394 .3474 3264 .4291 .3289
(12)
Fy=x+x2+x3 42 47420
One Point .1412 .1862 .1586 .1912 .1940 .1872
Subtree 3161 .3089 .4339 .3005 .3780 .2846
(D
Fs = sin(x*)cos(x) — 1
One Point .4748 .5054 .4432 .5072 .4794 .6232
Subtree  .7329 .8716 .6020 .6289 .7514 .7995
O @O @D M

So, let us start analysing the prediction done by locality Def, (second column
of Table @) on the first function used (F; = x + x% +x3). We first focus our at-
tention using One Point mutation. We take the best locality value (high locality
is represented by a low quantitative measure as explained in Section ). We can
see that for this particular scenario, the best locality is achieved by UGP (.0041),
then we proceed to examine the performance, shown in Table[3] achieved when us-
ing One Point mutation on F; for the three different configurations of population
(Pop = {200,250,500}) and generations (gen = {125,100,50}). So, according to
locality Defy, the best performance should be achieved by UGP. When we examine
the performance achieved on the function F; using one point mutation, we can see
that in two out of three cases (i.e., Pop = 200,Gen = 150, Pop = 500, Gen = 50),
locality Defj correctly predicted performance. Now we proceed to do the same ex-
amining subtree mutation. For this scenario (Def), we can see that the best locality
values is achieved again by UGP (.0046). So, according to this, UGP should achieve
better performance in the three different settings of population size and generations.
When we check this in Table 3l we can see that this is the case only for one case
(Pop =500, Gen = 50). Thus, summarising this, we have that for F}, Def(, of locality
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Table 4 Number of correct predictions of good locality values on performance (measured as
mean best fitness over 100 runs), for the five Symbolic Regression problems and using two
different mutation operators. The three different definitions of locality are denoted by Defy,
Def; and Def,. Table 2l shows the locality definitions for continuous-valued fitness. Table 3]
shows the performance achieved by GP and UGP in each of the five problems used in this
work.

One Point Subtree Total

Fl=x+x>+x3

Def; 2 1 3
Def; 2 2 4
Def, 2 1 3

P =x+x>4+x> +x*
Def, 0 2 2
Def; 3 1 4
Def, 0 2 2

F=x+x>+854+x4+5°
Def, 0 1 1
Def; 3 2 5
Def, 0 1 1
Fy=x4+x>4+x3+x* +20 +x°

Def; 2 0 2
Defl 2 3 5
Def, 1 0 1

Fs = sin(x*)cos(x) — 1
Def 3 0 3
Def; 3 0 3
Def, 0 3 3

was able to correctly predict three out of six scenarios (i.e., three different settings
for population size and generations, for each of the mutation operators).

To help the reader to interpret the prediction done only by the “best” locality
(i.e., lowest quantitative locality values), we process, as described in the previous
paragraph, the data shown in Tables[2]and[3l Thus, in Table [d] we show the number
of correct predictions done by each of the definitions of locality using one point
and subtree mutation. From this, it is clear that best definition of locality able to
correctly predict performance more frequently compared to the other definitions, is
Def (highlighted in boldface). It is, however, fair to say that it is not perfect. That
is, the highest number of times able to correctly predict performance is five out of
six cases (three settings for population size and generations, for each of the two
mutation operators), which were the cases for F3 and F;.

Of course, there are different ways to compare the prediction done by locality
and the performance achieved by performing evolutionary search. For instance, one
can consider all locality values, instead of only considering the best locality values,
as we did before in Table dl Also, instead of taking into consideration the muta-
tion operators, now we compare locality values (see Table 2)) and encoding used
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Table 5 Number of correct predictions of all locality values on performance (measured as
mean best fitness over 100 runs), for the five Symbolic Regression problems and using two
different mutation operators. The three different definitions of locality are denoted by Defy,
Def; and Def,. Table 2l shows the locality definitions for continuous-valued fitness. Table 3]
shows the performance achieved by GP and UGP in each of the five problems used in this
work.

GP UGP Total
Fl=x+x>4+x3
Defy, 3 3 6
Def, 4 4 8
Def; 3 3 6
P =x+x>4+x° +x*
Defy 2 2 4
Def; 4 4 8
Def, 2 2 4
F=x+x> 4+ +x*+2%°
Defy 1 1 2
Def, 5 5 10
Def, 1 1 2
Fy=x+x> 4+ +x"+ +x°
Defy 2 2 4
Def; 5 5 10
Def, 1 1 2
Fs = sin(x*)cos(x) — 1
Defy 3 0 3
Def; 3 0 3
Def; 0 3 3

(GP and UGP). Let us start our analysis with Defy and F;. We know that when we
consider GP, the locality value is .0049 which is the “worst” locality (compared to
.0041 achieved by UGP — recall that the closer to 0, the higher the locality is). This
indicates, that GP should come in second place, regardless of the mutation operator
used. When we compare this against actual performance (see Table [3)), we can see
that this happens in three out of six cases (three settings for population size and
generations, and two mutation operators). Now, when we turn our attention to the
same scenario (Def and F}), but considering UGP, we can see that it has a better
locality (.0041). This means that the performance should be better compared to GP
(.0049). Again, when we compare this against performance (Table ), we can see
that locality was able to correctly predicts only three out of six cases. Table [3] sum-
marises this analysis. We know that a perfect prediction for this scenario is 12H for
each definition of locality. The summary shown in Table [5] indicates that the best
locality definition is Def, which agrees with our previous finding (see Table H).

412 = 2 encodings * 3 different setting for population size and generations * 2 locality
values (one for each encoding).
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5.2 Definitions of Locality and Limitations

From the previous analysis, it is clear that locality can successfully be used as an
estimation of problem difficulty. In particular, Def| appears to be more accurate in
predicting performance, as shown in Tables 4] and Bl but why does this happen?
What are the key differences between the three definitions of locality (introduced in
Section 2)? To answer these questions, one really needs to carefully analyse each
definitions of locality. That is, it seems that the best results are obtained when a
finer grained analysis is taken. For instance, Def(y only considers a rough estimate
of average fitness divergence. While Def, only considers large divergence using a
single threshold (). On the other hand, Def|, adjusts for “highly neutral mutations”
and non-local changes, a more detailed analysis that yields the best results.

Thus, the results presented here suggest that locality is a more or less good indi-
cator of expected performance, for continuous fitness-valued cases. However, there
are still some shortcomings and open questions that should be addressed in future
research. Particularly, it is worth mentioning that to calculate quantitative locality
measures, a sampling method is necessary, as mentioned in Section [ This is sim-
ilar to nsc and fdc, where these measures rely on an extensive sampling procedure,
which can be computationally costly. It appears that, for practical applications, the
locality results should be evaluated based on their generalisation to a whole class of
problems and not just single problem instances.

6 Conclusions

In this work, we made an effort to shed some light on how locality in Genetic
Programming can predict performance. In particular, in continuous-fitness valued
cases. For this purpose, we extended the original definition of locality proposed by
Rothlauf [14] when he used bitstring from the genotype-phenotype mapping to the
genoype-fitness mapping. We also, studied three different locality definitions, to de-
termine if one definition of locality should be preferred among others.

To see if locality was able correctly predict performance, we use two differ-
ent representations (i.e., typical GP, and a slightly different representation called
Uniform GP), based on the assumption that each representation will give different
performance.

Thus, is it possible to use locality as a prediction performance tool? This
question has been discussed before (e.g., [4}, 3, [14]). We argue that it is possible to
get a good estimate on the performance of evolutionary runs by using locality. The
key lessons we have learnt during our experiments are the following. Firstly, we
have shown how it is possible to extend the definition of locality from a bitstring
representation to a more complex representation (GP) for continuous fitness-valued
cases. Secondly, we studied three different definitions of locality and proved that
the definitions that require the use of threshold values (i.e., Def| and Def,) are robust
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to their parametrisation). Thirdly, one definition of locality (Def;) achieved a higher
accuracy compared to the other two definitions explored in this paper. All of these
findings are based on an extensive amount of experimental evidence.
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Analysis and Classification of Epilepsy Stages
with Genetic Programming

Arturo Sotelo, Enrique Guijarro, Leonardo Trujillo*,
Luis Coria, and Yuliana Martinez

Abstract. Epilepsy is a widespread disorder that affects many individuals world-
wide. For this reason much work has been done to develop computational systems
that can facilitate the analysis and interpretation of the signals generated by a pa-
tients brain during the onset of an epileptic seizure. Currently, this is done by human
experts since computational methods cannot achieve a similar level of performance.
This paper presents a Genetic Programming (GP) based approach to analyze brain
activity captured with Electrocorticogram (ECoG). The goal is to evolve classifiers
that can detect the three main stages of an epileptic seizure. Experimental results
show good performance by the GP-classifiers, evaluated based on sensitivity, speci-
ficity, prevalence and likelihood ratio. The results are unique within this domain,
and could become a useful tool in the development of future treatment methods.

Keywords: Epilepsy Diagnosis, Genetic Programming, Classification.

1 Introduction

Epilepsy is a neurological disorder that causes chronic seizures as part of its
symptomatology. Some estimates state that the number of people that suffer from
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this disorder ranges between 11/100,000 to 134/100,000 [6]], or that 1% to 5%
of the general population experiments one or more seizures during their life-time
[3L 20]. From the group of people with this disorder, two thirds can be treated by
anti-epileptic medication and 7 or 8% can be cured by surgery [[17]. Unfortunately,
however, the symptomatology of the rest cannot be controlled by currently available
therapies.

An epilepsy seizure is a sudden episode that disrupts mental functions, motor
control, sensorial abilities and autonomic activity. This is caused by a paroxysmal
malfunction of brain cells, which is considered an abnormal increase of neural syn-
chrony [15]]. Epilepsy can affect a patient’s brain partially or completely, respec-
tively inducing partial or generalized seizures [22]]. A seizure develops over several
basic stages [11]], these are: (1) the Basal stage (2) the Pre-Ictal Stage, (3) the Ictal
stage; and (4) the Post-Ictal stage. The Basal stage represents normal brain activity,
the waveform of brain signals during this stage are characterized by a low ampli-
tude and a relative high frequency. In the Pre-Ictal stage, an Electroencephalography
(EEG) or Electrocorticogram (ECoG) can show considerable amplitude increase rel-
ative to the Basal stage, with spikes and transitory activity, but no distinguishable
symptoms can be seen in a patient during this stage. The Ictal stage is when the
seizure occurs, producing jerky movements, olfactory sensations and even the loss
of consciousness, depending if it is focal or generalized, brain signals are distin-
guished by high amplitude discharges, a low frequency and a predominant rhythm.
The last stage is called Pos-Ictal, where signal recordings show general amplitude
depression and a gradual return towards the Basal stage when symptoms cease.

If an expert neurologist analyzes the EEG or ECoG signal of a patient undergoing
an epileptic seizure he can identify the seizure stages as they occur over time. For
instance, Figure[Ila) depicts an ECoG signal taken over an entire episode, where the
three main stages of the seizure are clearly marked. From this example it is clear that
each stage is characterized by a different signal morphology. While a human expert
has no problem identifying each stage, to our knowledge an automatic method for
stage detection has not been developed. Nonetheless, other works have focused on
predicting the onset of a seizure by identifying specific signal features 23].
An important aspect of most works in this area is that they focus on a small number
of test subjects. Primarily because different patients tend to exhibit different signal
patterns, even if they all share a similar general structure [12]]. Therefore, while each
stage is identifiable when you analyze the time-series of a seizure as a whole, if only
a single two-second segment is considered, for example, then determining the stage
to which it belongs is not trivially done.

In this work, we present an approach that can automatically determine the stage
to which a signal segment belongs. The problem is posed as a supervised learning
task, where the system takes as input a signal sample of a certain duration and from
this determines the corresponding epileptic stage. However, deriving automatic
processing methods for these signals is definitely not a straightforward endeavor,
given the complexities of the brain signals generated during a seizure [4}[12]]. In this
paper the task is solved using a Genetic Programming (GP) classifier, that analyzes
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Fig.1 ECoG signal of a level-5 seizure on Racine scale, showing how signal amplitude varies
through time. (a) Deep recording through the stimulus electrode. (b) Seizure recorded by the
cortex electrode.

basic statistical features of each signal and derives a non-linear mapping following
a symbolic regression approach. Classifiers, similar to the ones derived here, could
be used as computational tools that can assist a human expert during the analysis or
diagnosis of epileptic signals. An even more ambitious goal c