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Abstract. In this paper, we deploy sliding mode control (SMC) to derive new
results for the global chaos synchronization of identical hyperchaotic Yujun sys-
tems (2010). The synchronization results derived in this paper are established
using the Lyapunov stability theory. Numerical simulations have been provided
to illustrate the sliding mode control results derived in this paper for the complete
synchronization of identical hyperchaotic Yujun systems.
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1 Introduction

Chaotic systems are nonlinear dynamical systems that are characterized by sensitive
dependence on initial conditions and by having evolution through phase space that ap-
pears to be quite random. This sensitive dependence on initial conditions is commonly
called as the butterfly effect [1].

Chaos theory has been applied to a variety of fields including physical systems [2],
chemical systems [3], ecological systems [4], secure communications ([5]-[7]) etc.

Since the pioneering work by Pecora and Carroll ([8], 1990), chaos synchronization
problem has been studied extensively in the literature. In the last two decades, various
control schemes have been developed and successfully applied for the chaos synchro-
nization such as PC method [8], OGY method [9], active control method ([10]-[13]),
adaptive control method ([14]-[17]), time-delay feedback method [18], backstepping
design method ([19]-[20]), sampled-data feedback synchronization method ([21]-[22])
etc.

In this paper, we adopt the master-slave formalism of the chaos synchronization
approaches. If we call a particular chaotic system as the master system and another
chaotic system as the slave system, then the goal of the global chaos synchronization is
to use the output of the master system to control the slave system so that the states of
the slave system track asymptotically the states of the master system. In other words,
global chaos synchronization is achieved when the difference of the states of master
and slave systems converge to zero asymptotically with time.
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In this paper, we derive new results based on the sliding mode control ([23]-[25])
for the global chaos synchronization of identical hyperchaotic Yujun systems ([26],
Yujun et al. 2010).

The sliding mode control is often adopted in robust control theory due to its inherent
advantages of easy system realization, fast response and good transient performance.
The sliding mode control results are also insensitive to parameter uncertainties and
external disturbances.

This paper has been organized as follows. In Section 2, we describe the problem
statement and our methodology using sliding mode control. In Section 3, we describe
an analysis of the hyperchaotic Yujun system (2010). In Section 4, we discuss the sliding
mode controller design for the global chaos synchronization of identical hyperchaotic
Yujun systems (2010). Section 5 contains the conclusions of this paper.

2 Problem Statement and Our Methodology Using Sliding Mode
Control

2.1 Problem Statement

Consider the chaotic system described by

ẋ = Ax + f(x) (1)

where x ∈ IRn is the state of the system, A is the n×n matrix of the system parameters
and f : IRn → IRn is the nonlinear part of the system. We take the system (1) as the
master system.

As the slave system, we consider the following chaotic system described by the
dynamics

ẏ = Ay + f(y) + u (2)

where y ∈ IRn is the state of the system and u ∈ IRm is the controller of the slave
system.

If we define the synchronization error e as

e = y − x, (3)

then the error dynamics is obtained as

ė = Ae+ η(x, y) + u, where η(x, y) = f(y)− f(x) (4)

The objective of the global chaos synchronization problem is to find a controller u such
that

lim
t→∞ ‖e(t)‖ = 0 for all initial conditions e(0) ∈ IRn (5)
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2.2 Our Methodology

First, we define the control u as

u(t) = −η(x, y) +Bv(t) (6)

where B is a constant gain vector selected such that (A,B) is controllable.
Substituting (6) into (4), the error dynamics becomes

ė = Ae+ Bv (7)

which is a linear time-invariant control system with single input v.
Thus, we have shown that the original global chaos synchronization problem is

equivalent to the problem of stabilizing the zero solution e = 0 of the linear system
(7) by a suitable choice of the sliding mode control.

In the sliding mode control, we define the variable

s(e) = Ce = c1e1 + c2e2 + · · ·+ cnen (8)

where C = [ c1 c2 · · · cn ] is a constant vector to be determined.
In the sliding mode control, we constrain the motion of the system (7) to the sliding

manifold defined by

S = {x ∈ IRn | s(e) = 0} = {x ∈ IRn | c1e1 + c2e2 + · · ·+ cnen = 0}
which is required to be invariant under the flow of the error dynamics (7).

When in sliding manifold S, the system (7) satisfies the following conditions:

s(e) = 0 (9)

which is the defining equation for the manifold S and

ṡ(e) = 0 (10)

which is the necessary condition for the state trajectory e(t) of the system (7) to stay on
the sliding manifold S.

Using (7) and (8), the equation (10) can be rewritten as

ṡ(e) = C [Ae +Bv] = 0 (11)

Solving (11), we obtain the equivalent control law given by

veq(t) = −(CB)−1CAe(t) (12)

where C is chosen such that CB �= 0.
Substituting (12) into the error dynamics (7), we get the closed-loop dynamics as

ė = [I −B(CB)−1C]Ae (13)

where C is chosen such that the system matrix [I −B(CB)−1C]A is Hurwitz.
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Then the system dynamics(13) is globally asymptotically stable.
To design the sliding mode controller for the linear time-invariant system (7), we use

the constant plus proportional rate reaching law

ṡ = −qsgn(s)− ks (14)

where sgn(·) denotes the sign function and the gains q > 0, k > 0 are determined such
that the sliding condition is satisfied and sliding motion will occur.

From equations (11) and (14), we obtain the control v(t) as

v(t) = −(CB)−1[C(kI +A)e+ qsgn(s)] (15)

Theorem 1. The master system (1) and the slave system (2) are globally and asymptot-
ically synchronized for all initial conditions x(0), y(0) ∈ IRn by the feedback control
law

u(t) = −η(x, y) +Bv(t) (16)

where v(t) is defined by (15) and B is a column vector such that (A,B) is controllable.
Also, the sliding mode gains k, q are positive.

Proof. First, we note that substituting (16) and (15) into the error dynamics (7), we
obtain the closed-loop dynamics as

ė = Ae−B(CB)−1[C(kI +A)e + qsgn(s)] (17)

To prove that the error dynamics (17) is globally asymptotically stable, we consider the
candidate Lyapunov function defined by the equation

V (e) =
1

2
s2(e) (18)

which is a positive definite function on IRn.
Differentiating V along the trajectories of (17) or the equivalent dynamics (14), we

obtain
V̇ (e) = s(e)ṡ(e) = −ks2 − qsgn(s) (19)

which is a negative definite function on IRn.
Thus, by Lyapunov stability theory [27], it is immediate that the error dynamics (17)

is globally asymptotically stable for all initial conditions e(0) ∈ IRn.
This completes the proof. ��

3 Analysis of the Hyperchaotic Yujun System

The 4-D Yujun dynamics is described by

ẋ1 = a(x2 − x1) + x2x3

ẋ2 = cx1 − x2 − x1x3 + x4

ẋ3 = x1x2 − bx3

ẋ4 = −x1x3 + rx4

(20)
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where x1, x2, x3, x4 are the states and a, b, c, r are constant, positive parameters of the
system.

It has been shown by Yujun et al. [26] that the system (20) exhibits hyperchaotic
behaviour when the parameter values are taken as

a = 35, b =
8

3
, c = 55, 0.41 < r ≤ 3 (21)

When r = 15, the system (20) has the Lyapunov exponents

λ1 = 1.4944, λ2 = 0.5012, λ3 = 0, λ4 = −38.9264

Since the system (20) has two positive Lyapunov exponents viz. λ1 and λ2, it is hyper-
chaotic.

The phase portrait of the hyperchaotic Yujun system is depicted in Figure 1.
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Fig. 1. State Portrait of the Hyperchaotic Lorenz System

4 Global Chaos Synchronization of the Identical Hyperchaotic
Yujun Systems

4.1 Main Results

In this section, we apply the sliding mode control results derived in Section 2 for the
global chaos synchronization of identical hyperchaotic Yujun systems ([26], 2010).
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Thus, the master system is described by the hyperchaotic Yujun dynamics

ẋ1 = a(x2 − x1) + x2x3

ẋ2 = cx1 − x2 − x1x3 + x4

ẋ3 = x1x2 − bx3

ẋ4 = −x1x3 + rx4

(22)

where x1, x2, x3, x4 are the states of the system and a, b, c, r are the constant, positive
parameters of the system.

The slave system is also described by the hyperchaotic Lorenz dynamics

ẏ1 = a(y2 − y1) + y2y3 + u1

ẏ2 = cy1 − y2 − y1y3 + y4 + u2

ẏ3 = y1y2 − by3 + u3

ẏ4 = −y1y3 + ry4 + u4

(23)

where y1, y2, y3, y4 are the states of the system and u1, u2, u3, u4 are the controllers to
be designed.

The chaos synchronization error e is defined by

ei = yi − xi, (i = 1, 2, 3, 4) (24)

The error dynamics is easily obtained as

ė1 = a(e2 − e1) + y2y3 − x2x3 + u1

ė2 = ce1 − e2 + e4 − y1y3 + x1x3 + u2

ė3 = −be3 + y1y2 − x1x2 + u3

ė4 = re4 − y1y3 + x1x3 + u4

(25)

We can write the error dynamics (25) in the matrix notation as

ė = Ae + η(x, y) + u (26)

where the associated matrices are

A =

⎡
⎢⎢⎣
−a a 0 0
c −1 0 1
0 0 −b 0
0 0 0 r

⎤
⎥⎥⎦ , η(x, y) =

⎡
⎢⎢⎣

y2y3 − x2x3

−y1y3 + x1x3

y1y2 − x1x2

−y1y3 + x1x3

⎤
⎥⎥⎦ and u =

⎡
⎢⎢⎣
u1

u2

u3

u4

⎤
⎥⎥⎦ (27)

The sliding mode controller design is carried out as detailed in Section 2.
First, we set u as

u = −η(x, y) +Bv (28)

where B is chosen such that (A,B) is controllable. We take B as

B =

⎡
⎢⎢⎣
1
1
1
1

⎤
⎥⎥⎦ (29)
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In the hyperchaotic case, the parameter values are

a = 35, b = 8/3, c = 55 and r = 1.5

The sliding mode variable is selected as

s = Ce = [−1 −2 0 1 ] e (30)

which makes the sliding mode state equation asymptotically stable.
We choose the sliding mode gains as k = 6 and q = 0.2.
We remark that a large value of k can cause chattering and q must be chosen appro-

priately to speed up the time taken to reach the sliding manifold as well as to reduce the
system chattering.

From equation (15), we can obtain v(t) as

v(t) = −40.5e1 − 22.5e2 + 2.75e4 + 0.1 sgn(s) (31)

Thus, the required sliding mode controller is obtained as

u(t) = −η(x, y) +Bv(t) (32)

where η(x, y), B and v(t) are defined in equations (27), (29) and (31).
By Theorem 1, we obtain the following result.

Theorem 2. The identical hyperchaotic Yujun systems (22) and (23) are globally and
asymptotically synchronized for all initial conditions with the sliding mode controller u
defined by (32). ��

4.2 Numerical Results

For the numerical simulations, the fourth-order Runge-Kutta method with time-step
h = 10−8 is used to solve the hyperchaotic Yujun systems (22) and (23) with the
sliding mode controller u given by (32) using MATLAB.

For the hyperchaotic Lorenz systems, the parameter values are taken as

a = 35, b = 8/3, c = 55, r = 1.5

The sliding mode gains are chosen as k = 6 and q = 0.2.
The initial values of the master system (22) are taken as

x1(0) = 2, x2(0) = 17, x3(0) = 22, x4(0) = 16

and the initial values of the slave system (23) are taken as

y1(0) = 14, y2(0) = 26, y3(0) = 38, y4(0) = 5

Figure 2 depicts the synchronization of the hyperchaotic Yujun systems (22) and (23).
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Fig. 2. Synchronization of the Identical Hyperchaotic Yujun Systems

5 Conclusions

In this paper, we have used sliding mode control (SMC) to achieve global chaos syn-
chronization for the identical hyperchaotic Yujun systems (2010). Our synchronization
results for the identical hyperchaotic Yujun systems have been established using the
Lyapunov stability theory. Since the Lyapunov exponents are not required for these cal-
culations, the sliding mode control method is very effective and convenient to achieve
global chaos synchronization for identical hyperchaotic Yujun systems. Numerical sim-
ulations have been shown to demonstrate the effectiveness of the synchronization results
derived in this paper using sliding mode control.
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