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Abstract. Because of its simplicity, ease of implementation, and speed, RC4 is
one of the most widely used software oriented stream ciphers. It is used in several
popular protocols such as SSL and it has also been integrated into many applica-
tions and software such as Microsoft Windows, Lotus Notes, Oracle Secure SQL
and Skype.

In this paper, we present an obfuscated implementation for RC4. In addition
to investigating different practical obfuscation techniques that are suitable for the
cipher structure, we also perform a comparison between the performance of these
different techniques. Our implementation provides a high degree of robustness
against attacks from execution environments where the adversary has access to
the software implementation such as in digital right management applications.

1 Introduction

Because of its simplicity, ease of implementation and robustness, RC4 [1] has become
one of the most commonly used stream ciphers. In its software form, implementations
of RC4 appear in many protocols such as SSL, TLS, WEP and WPA. Furthermore,
it has been integrated into many applications and software including Windows, Lotus
Notes, Oracle Secure SQL, Apple AOCE, and Skype. Although the core of this two
decade old cipher is just a few lines of code, the study of its strengths and weaknesses
as well as its different software and hardware implementation options is still of a great
interest to the security and research communities.

Cryptographic techniques are traditionally implemented to protect data and keys
against attacks where the adversary may observe various inputs to and outputs from
the system, but has no access to the internal details of the execution. On the other hand,
several recently developed applications require a higher degree of robustness against at-
tacks from the execution environment where the adversary has closer access to the soft-
ware implementation of key instantiated primitives. Digital Rights Management (DRM)
is an example of such applications where one of the main design objective is to control
access to digital media content. This can be achieved through white-box implementa-
tions where encryption keys are hidden, using obfuscation techniques, within the im-
plementation of the cipher. White-box implementations for block ciphers, such as AES
and DES, are widely available [2] [3]. However, to the authors’ knowledge, there is no
published white-box implementation for any dedicated stream ciphers including RC4.
Directly applying the techniques developed for white-box implementation of block ci-
phers to stream ciphers does not seem to work, mainly, because normal operation of
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stream ciphers requires us to always maintain the inner state of the cipher. Recovering
the inner state of the stream cipher usually sacrifices the security of the cipher even if
the attacker is not able to recover the key. In fact, it seems to be an open research prob-
lem to determine if a practical white box implementation (in a cryptographic sense)
would ever exist for stream ciphers such as RC4.

On the other hand, obfuscation can be used to transform a program from an easily
readable format to one that is harder to read, trace, understand and modify. This offers
an additional layer of security as it protects the program by increasing the required
human and computational power that is needed to reverse engineer, alter, or compromise
the obfuscated program. Obfuscation techniques can be categorized into automated and
manual methods. The former systematically, using specific tools, modify the source
code (e.g. [4]) or the binary executable file (e.g. [5],[6]). The latter techniques rely on
the programmer to follow obfuscation techniques during coding. These techniques are
governed by the programming language in use. For example, languages like C and C++,
which are commonly used in the implementation of cryptographic primitives due their
high performance, are flexible in syntax and allow the use of pointers.

Obfuscated programs can be reverse engineered using techniques such as static and
dynamic analysis. Static analysis techniques analyze the program file by performing
control flow and data flow analysis ([7],[8],[9]) without running the program. Dynamic
analysis, on the other hand, takes place at runtime and addresses the followed execution
path.

In this paper, we investigate several obfuscation techniques that are suitable for
applications to array-based stream ciphers such as RC4. We also perform a compari-
son between the performance of these different techniques when applied to RC4. Al-
though our proposed implementation does not provide the same level of theoretical
security provided by white-box implementations for block ciphers, it still provides a
high degree of robustness against attacks from execution environments where the ad-
versary has access to the software implementation such as in digital right management
applications.

The rest of this paper is organized as follows. A brief review of the RC4 key schedul-
ing algorithm and pseudorandom generation algorithms is provided in the next section
where we also briefly describe the Skype attempt to obfuscate the RC4 software imple-
mentation. Our proposed obfuscated implementation is described in section 3. Section
4 shows a performance comparison between different implementation options. Finally,
our conclusion is provided in section 5.

2 The RC4 Cipher

In this section, we briefly review the Key Scheduling Algorithm (KSA), and the Pseu-
dorandom Generation Algorithm (PRGA) of RC4. We also describe the Skype attempt
to provide an obfuscated software implementation for RC4.

2.1 Standard RC4 Implementation

While traditional feedback shift register based stream ciphers are efficient in hardware,
they are less so in software since they require several operations at the bit level. The
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design of RC4 avoids the use of bitwise operations as it requires only byte manipu-
lations which makes it very efficient in software. In particular, RC4 uses 256 bytes
of memory for the state array, S[0] through S[255], k bytes of memory for the key,
key[0] through key[k−1], and two index pointers: a sequential index i, and quasi random
index j.

Algorithm 1 shows the KSA of RC4, where the permutation S is initialized with a
key of variable length, typically between 40 to 256 bits. Once this is completed, the key
stream is generated using the PRGA shown in Algorithm 2. The generated key stream
is combined with the plaintext, usually, through an XOR operation.

Algorithm 1. RC4 Key Scheduling Algorithm (KSA) [1]
1: for i = 0 → 255 do
2: S[i] := i
3: end for
4:
5: j := 0
6: for i = 0 → 255 do
7: j := (j + S[i] + key[i mod keylength]) mod 256
8: swap values of S[i] and S[j]
9: end for

Algorithm 2. RC4 Pseudo-Random Generation Algorithm (PRGA) [1]
1: i := 0
2: j := 0
3: while GeneratingOutput do
4: i := (i + 1) mod 256
5: j := (j + S[i]) mod 256
6: swap values of S[i] and S[j]
7: K := S[(S[i] + S[j]) mod 256]
8: output K
9: end while

Analyzing the KSA and PRGA algorithms of RC4 yields the following observations:

1. As with most stream ciphers, an adversary does not have to find the key in order to
break the cipher. In other words, recovering the initialized inner-state S allows the
adversary to efficiently generate the keystream output of the cipher and decrypt the
target ciphertext even without knowing the key array.

2. An adversary who is able to observe the values of the index pointer j in the PRGA
can efficiently recover the whole inner state S.
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2.2 Skype’s RC4 Implementation

The only reference to obfuscated RC4 implementation in the open literature appeared
in a Blackhat publication that describes the leaked implementation used in Skype [10]
[11]. By analyzing this leaked implementation, we observe the following:

• Regarding the cipher itself, the cryptographic key used is 80 bytes in length whereas
standard implementations use a key of 40 to 256 bits in length (i.e. 5 to 32 bytes).

• Regarding key management, the Skype’s implementation selects a key from a pool
of 232 keys.

• Regarding the use of the cipher, RC4 itself is used as an obfuscation technique to
hide the network layer.

The implementation utilizes a macro called RC4 round that is used in both the KSA and
the PRGA. Therefore, we first describe this macro. This macro is shown in Algorithm 3.
When called, the macro is passed the following parameters:

i: the sequential index
j: the quasi random index
RC4: an array corresponding to S in the standard implementation
t: a variable for swapping the ith and jth element in S
k: the cryptographic key used in this iteration

Lines 1, 3 and 4 describe the swapping operation, line 2 evaluates the new quasi random
index j, and line 5 evaluates the key for this iteration. The main difference in the use of
this macro between KSA and PRGA is in the key value passed and the action based on
the return value. In the PRGA, the value for k is always zero, whereas in the KSA, the
key used in this iteration is passed. Furthermore, in the KSA, the returned value of this
macro is discarded, whereas in the PRGA the returned value is used as part of the key
stream.

Algorithm 3. Round Macro: RC4 round(i,j,t,k,RC4) [10]
1: t :=RC4[i],
2: j := (j + t + k) mod 256,
3: RC4[i] := RC4[j],
4: RC4[j] := t,
5: RC4[(RC4[i] + t) mod 256] {Output to be returned}

The KSA is shown in Algorithm 4. In this implementation, the inner-state of the
cipher is stored in a data structure called rc4. This structure contains an array (repre-
senting the array S from Algorithms 1 and 2) which holds the random ordered values, a
sequential index i, and quasi random index j. The ”for” loop in lines 1 through 6 initial-
izes the array rc4.s sequentially from 0 to 255. The array rc4.s is allocated exactly 256
sequential bytes in memory. The implementation takes advantage of the array structure
in memory by initializing 4 bytes in each iteration rather than a single byte. Therefore,
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the index j in the loop is incremented in each iteration by 4 bytes (0x04040404), and is
assigned to the array at the ith position. Consequently, the index i has to be incremented
by 4 in each iteration. The reordering step (lines 9 through 11) is done by the macro
RC4 round.

Algorithm 4. Skype Implementation for the RC4 KSA [10]
1: j := 0x03020100
2: for i = 0 → 255 do
3: i := i + 4
4: j := j + 0x04040404
5: rc4.s[i] := j
6: end for
7:
8: j := 0
9: for i = 0 → 255 do

10: RC4 round(i, j, t, byte(key,i%80), rc4.s)
11: end for

The PRGA is shown in Algorithm 5 where the ”for” loop iterates over the data stream
(buffer, of size bytes) performing the encryption/decryption operation. This is done by
XORing the data (in buffer) and the key stream generated by the macro RC4 round.
Furthermore, the indices i and j in the data structure rc4 are updated.

Algorithm 5. Skype Implementation for the RC4 PRGA [10]

1: for (;bytes;bytes−−) do
2: i := (i + 1) mod 256
3: buffer++ {positioning the pointer to the new value to be en-/decrypted}
4: *buffer = *buffer XOR RC4 round(i, j, t, 0, s)
5: rc4.i := i
6: rc4.j := j
7: end for

Clearly, the Skype implementation described above does not provide enough level of
protection for the inner state of the cipher. It should be noted, however, that Skype uses
the RC4 cipher itself as an obfuscation technique for the network layer but the effective
data stream (voice, chat, video) is encrypted with AES [11].

3 Proposed Implementation

In this section we present our obfuscated implementation of RC4. Throughout our work,
we assume that the cipher is implemented as a standalone module, i.e., the implemented
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code contains only the functionality of the cipher. Another approach would be to mix
the implementation of the cipher with parts of a larger application. Such a needle in the
haystack approach can add more security as the containing application offers more ob-
fuscation space. However, since an implementation of this approach is highly dependent
on the containing application, it is therefore not considered in this work.

In our proposed obfuscated implementation, we first eliminate the use of the array
S by using independent set of variables. To improve the efficiency of this approach,
we use function pointers. Following that, we utilize multithreading to provide security
against dynamic analysis attacks. Finally, We present other generic techniques used
to further obfuscate the proposed implementation. Throughout the remaining of this
paper, for illustrative purposes, we use a toy implementation of RC4 (with an array of
size N = 4). However, performance measures have been made based on a RC4 with
standard parameters (i.e. with an array of size N = 256).

3.1 Eliminating the S Array Data Structure

As the KSA and PRGA algorithms show, standard RC4 implementation requires only
a few data objects, namely two index pointers i and j, and an array S.

As a first step towards obfuscation, we substitute the array data structure S by N
independent variables, where N is the number of elements in the array S. Unlike the el-
ements of an array which are stored in consecutive memory locations, these independent
variables can be scattered throughout the program memory. On the other hand, working
with such independent variables eliminates our ability to dynamically address them us-
ing a loop structure since we no longer have an array index that can be related to loop
counters. To address these variables, we use the loop unrolling technique, also known as
loop unwinding. This is illustrated for the toy implementation in Figure 1. As depicted
in the figure, the implementation is based on two nested switch/case structures, where
the outer structure operates over the index i and the inner structure operates over the
index j. It is worth noting that the inner switch/case structures are almost identical for
various outer switch/case structures. However, since the ith element in array S has been
substituted with an independent variable, this variable has to be correctly referenced
in each inner switch/case structure. This nested structure cannot dynamically evaluate
expressions such as S[S[i]+ S[ j]]. For such expressions, a dedicated switch/case struc-
ture, Switch(Out put − Index), is used. This structure is passed an intermediate value,
Out put − Index = S[i] + S[ j], and evaluates the expression above. In an 8 bit imple-
mentation with an array of size N = 256, the number of possible combinations is given
by N ×N = 28 × 28 = 216. This implies that a total of 216 case statements are needed
to represent all the possible combinations. Thus, despite its conceptual simplicity, the
use of nested switch/case structures results in a prohibitively large program (e.g. for
N = 256, the program size exceeds 12 MB). In the next subsection we show how this
obfuscation approach can be enhanced to yield a more practical program size.

3.2 The Use of Function Pointers

Function pointers are pointers that hold addresses of functions, and can be used to exe-
cute them. Depending on the address assigned to the pointer, a single function pointer
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while(NOT_END_OF_DATA_STREAM)  

{  i++;  Switch(i) {   Case 0: //i = 0 

   Switch(j) { 
    j = (j + S0); //j = (j + S[i]) mod N; 
    Case 0: //j = 0 
      //swap(S[i], S[j]);       swap(S0, S0); 
      //Output S[S[i] + S[j] mod N];  Output S[Output-Index];       Output-Index = (S0 + S0); 
    Case 1: swap(S0, S1); Output-Index = (S0 + S1); 
    Case 2: swap(S0, S2); Output-Index = (S0 + S2); 
    Case 3: swap(S0, S3); Output-Index = (S0 + S3); 
   } //end switch(j)   Case 1: //i = 1 

   Switch(j) { 
    j = (j + S1); //j = (j + S[i]) mod N; 
    Case 0: swap(S1, S0); Output-Index = (S1 + S0); 
    Case 1: swap(S1, S1); Output-Index = (S1 + S1); 
    Case 2: swap(S1, S2); Output-Index = (S1 + S2); 
    Case 3: swap(S1, S3); Output-Index = (S1 + S3); 
   } //end switch(j)   Case 2: //i = 2 

   Switch(j) { 
    j = (j + S2); //j = (j + S[i]) mod N; 
    Case 0: swap(S2, S0); Output-Index = (S2 + S0); 
    Case 1: swap(S2, S1); Output-Index = (S2 + S1); 
    Case 2: swap(S2, S2); Output-Index = (S2 + S2); 
    Case 3: swap(S2, S3); Output-Index = (S2 + S3); 
   } // end switch(j)   Case 3: //i = 3 

   Switch(j) { 
    j = (j + S3); //j = (j + S[i]) mod N; 
    Case 0: swap(S3, S0); Output-Index = (S3 + S0); 
    Case 1: swap(S3, S1); Output-Index = (S3 + S1); 
    Case 2: swap(S3, S2); Output-Index = (S3 + S2); 
    Case 3: swap(S3, S3); Output-Index = (S3 + S3); 
   } // end switch(j)  } //end switch(i) 

 Switch(Output-Index) { 
  Case 0: Output S0; //  Output S[S[i] + S[j] mod N]; 
  Case 1: Output S1; 
  Case 2: Output S2; 
  Case 3: Output S3; 
 } //end switch(Output-Index) 

} //end while 

Fig. 1. The implementation of the PRGA when replacing the array data structure by independent
variables

can be used to call multiple functions. Normally, a designated array is used to hold the
addresses of the functions and when a function is to be called, its address is assigned to
the pointer and the function is executed. A visualization of function pointers is shown
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Fig. 2. Array of Function Pointers

in Figure 2 where the array f ctArrJ[] is the designated array that holds the addresses
of functions jX(), jY (), jZ(). As the code fragment shows, the address of the desired
function in loaded into the function pointer f ctPtr, and then executed.

T. Ogiso et al. [12] analyze the use of function pointers in software obfuscation.
Specifically, they prove that when using arrays of function pointers, determining the
address a pointer points to is NP-hard.

Arrays of function pointers can be used to replace the inner switch/case structures in
our obfuscation technique presented in the previous subsection. In addition to the secu-
rity advantage resulting from the difficulty of determining the address a function pointer
points to, implementing function pointers requires much less space than switch/case
structures described in the previous section. This enables us to maintain the complexity
introduced by the nested switch/case structure while reducing the program size.

The use of function pointers as a replacement of the inner switch/case statement
requires the following:

1. For each index j, there exists a function in which the variable that substitutes S[ j] is
hard coded. Furthermore, the variable that substitutes S[i] is passed as a parameter to
this function. With these variables, the functionality of RC4 can be easily realized.

2. There exists a designated array that holds the addresses of the functions described
above.

The array of function pointers can be directly used to replace the inner switch/case struc-
tures operating on index j. The inner switch/case statements are replaced by functions
in which the variable representing S[ j] is hard coded. To evaluate the inner structure, we
first compute the new j value. This is used to retrieve the corresponding function ad-
dress from the designated array. Finally, the retrieved function is called using a function
pointer and the variable that substitutes S[i] is passed as a parameter.

Figure 3 shows the use of function pointers as a replacement of the inner switch/case
structures of our obfuscated toy implementation of RC4. As shown in the figure, the
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//Declaration of function pointers unsigned int (*output)() = NULL; //for functions returning the value of S[x] void (*jN)(unsigned int) = NULL; //for functions handling a specific value of index j 
//function returning the value of S[x]  oS0() { return S0; } oS1() { return S1; } oS2() { return S2; } oS3() { return S3; } 
// functions handling a specific value of index j 
// The variable representing S[j] is know in advance and hardcoded 
// The variable that handles S[i] has to be passed as function parameter to sX J0(sX) { swap(S0,sX); output = arrayOutput[S0+sX]; Output output(); } J1(sX) { swap(S1,sX); output = arrayOutput[S1+sX]; Output output(); } J2(sX) { swap(S2,sX); output = arrayOutput[S2+sX]; Output output(); } J3(sX) { swap(S3,sX); output = arrayOutput[S3+sX]; Output output(); } 
// Assign addresses of the functions to the arrays 
// Access to the functions via its position in the array arrayJN[N] = {&J0, &J1, &J2, &J3}; arrayOutput[N] = {&oS0, &oS1, &oS2, &oS3};  
while(NOT_END_OF_DATA_STREAM)  
{  i++; 

Switch(i){   Case 0:  //i = 0 
    j = (j + S0); //j = (j + S[i]) mod N; 
    jN = arrayJN[j]; //Select function address from array 
    jN(S0); //Execute function via the function pointer   Case 1:  //i = 1 
    j = (j + S1); //j = (j + S[i]) mod N; 
    jN = arrayJN[j]; //Select function address from array 
    jN(S1); //Execute function via the function pointer   Case 2:  //i = 2 
    j = (j + S2); //j = (j + S[i]) mod N; 
    jN = arrayJN[j]; //Select function address from array 
    jN(S2); //Execute function via the function pointer   Case 3:  //i = 3 
    j = (j + S3); //j = (j + S[i]) mod N; 
    jN = arrayJN[j]; //Select function address from array 
    jN(S3); //Execute function via the function pointer 

} // end switch(i) 
} //end while 

 
Fig. 3. Implementation of the PRGA using switch/case for i and array of function pointer for j

loop over index i remains unrolled using the switch/case structure proposed initially.
The setup for the array of function pointers requires:

1. The declaration of two function pointers (∗out put and ∗ jN)
2. The definition of output functions oS0(),oS1(),os2() and oS3() that return the

value S[x]
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3. The definition of functions j0(sX), j1(sX), j2(sX) and j3(sX) that replace the in-
ner switch/case structure

4. The definition of arrays used to hold the addresses of the functions stated in steps
2 and 3 above

Next, we illustrate the combination of switch/case structures with array function point-
ers. The outer structure used to unroll the loop over the index i remains unchanged.
However, the inner switch/case structure is replaced by using the function pointers con-
cept. To do this, we first compute the new j value. This is used to retrieve the corre-
sponding function address from the designated array. Finally, the retrieved function is
called using a function pointer where the variable that represents S[i] is passed as a
parameter. With these variables, the functionality of RC4 can be realized. When im-
plemented, this approach while improving the obfuscation level, significantly reduces
the obfuscated program size . In comparison to the initial attempt (in section 3.1), the
program size is reduced from 12 MB to about 450 KB.

The techniques used so far have mainly increased the resilience of the implementa-
tion against static analysis. We, next, introduce further obfuscation with the objective
of increasing its resilience against dynamic analysis.

3.3 Multithreading

Traditionally, multithreading allows various parts of a program to run simultaneously.
Each such part is called a thread and although these are functionally independent, they
share some resources such as processing power and memory, with other threads. Shared
resources, such as data, code, and heap segments allow communication and functional
synchronization between threads. Furthermore, constructs such as critical sections, and
semaphores enable the realization of atomic units which, in turn, prevent corruption of
shared resources. Because of this parallelism and the randomness in order of execution,
analyzing multithreaded programs is much harder than their single threaded counter-
parts [13]. In this section, we capitalize on this and utilize the randomness in the order
of execution introduced by multithreading to further obfuscate our implementation. To
do so, we require the following:

1. There exists a multithreaded environment where each thread implements the RC4
functionality (key stream value) for a specific subset of index values i. That is,
each thread contains an implementation of a subset of switch/case statement for the
corresponding values of i. Furthermore, for each implemented switch/case state-
ment, let the thread implement the function pointer concept for all values of j, as
described in 3.2.

2. The sets of index values i are assigned to the threads such that each value of i
is assigned randomly to at least two threads. This introduces randomness in the
threads that have the capability of implementing the RC4 functionality for a given
value of i. Since at least two threads have this capability, the execution path cannot
be determined with certainty which introduces an additional layer of obfuscation.

If one uses only 2 threads, requirement 2 above would result in identical functionality
for both threads, which simplifies conducting static analysis on the cipher. Thus, in our
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Thread1() { 
 while(NOT_END_OF_DATA_STREAM) 

 {   EnterCriticalSection; //enter the coherent, not interruptible code sequence   Switch(i) {    //Case 0: i = 0 is not handled in this thread    Case 1:  //i = 1 
     j = (j + S1); //j = (j + S[i]) mod N; 
     jN = arrayJN[j]; //Select function address from array 
     jN(S1); //Execute function via the function pointer      i++;       //Leave the coherent, not interruptible code sequence      LeaveCriticalSection;    Case 2:  //i = 2 
     j = (j + S2); //j = (j + S[i]) mod N; 
     jN = arrayJN[j]; //Select function address from array 
     jN(S2); //Execute function via the function pointer      i++;       //Leave the coherent, not interruptible code sequence      LeaveCriticalSection;    Case 3:  //i = 3 
     j = (j + S3); //j = (j + S[i]) mod N; 
     jN = arrayJN[j]; //Select function address from array 
     jN(S3); //Execute function via the function pointer      i++;       //leave the coherent, not interruptible code sequence      LeaveCriticalSection;    default:  //Handles the non-available ‘cases'      //Leave the critical section      LeaveCriticalSection;   } // end switch(i) 
 } //end while 
} //end Thread1 
Thread2() {  //same structure like Thread1(), but  
 //Case 0: i = 0 is handled  
 //Case 2: i = 2 is handled  
 //Case 3: i = 3 is handled 
 //and 
 //Case 1: i = 1 is not handled  
} 
Thread3() {  //same structure like Thread1(), but  
 //Case 0: i = 0 is handled  
 //Case 1: i = 1 is handled  
 //Case 3: i = 3 is handled  
 //and 
 //Case 2: i = 2 is not handled  
} 

Fig. 4. Implementing the PRGA using multithreading
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implementation, the minimum number of threads used is set to 3. This ensures that the
implementations of various threads differ. The specific number of threads to be used is
left as a design parameter.

To compute the key stream value for the current value of i, the running thread enters
a critical section and retrieves i. If this thread does not implement the switch/case state-
ment for this value of i, the critical section exits without affecting the cipher inner state
and without producing any new keystream words. On the other hand, if the thread im-
plements the switch/case statement for this value of i, the key stream value is evaluated
and returned.

Figure 4 illustrates a toy implementation, with N = 4, of the multithreading imple-
mentation described above. In this example, the sequential index i can have the values
{0,1,2,3}, and 3 threads are used. The first thread implements the switch/case state-
ments for i∈ {1,2,3}; the second thread implements the statements for i∈ {0,2,3}, and
the third thread implements the statements for i ∈ {0,1,3}. For standard RC4 parame-
ters, this implementation increases the program size to 650 KB but offers an additional
obfuscation layer and enhances the implementation’s resilience to dynamic analysis
attacks.

3.4 Handling the Key Scheduling Process

As shown in section 2.1, RC4 runs two main algorithms, the PRGA, and the KSA.
While the implementation of the KSA can be obfuscated using the same techniques
discussed above, one weakness of this approach is that the cryptographic key has to be
passed in the clear to the KSA algorithm. In this section, we discuss a possible extension
of the above implementation in order to mitigate this vulnerability.

In the white-box implementations of AES [2] and DES [3], the cryptographic key
is integrated into the lookup tables of the implemented algorithms. Furthermore, the
lookup tables are pre-created outside the users’ environment. Applying this off-line
generation technique to the inner states of RC4 can be used to eliminate the need for
a KSA algorithm and consequently mitigate the vulnerability described above. This
shifts our objective from protecting the key and key scheduling algorithm to protecting
the process of securely assigning the off-line generated values to the inner-state.

Assume a setup where the user receives some encrypted data stream, and pre-created
inner-state for the cipher from some service provider. In this case, the inner-state can
be transferred from the provider to the customer in the form of an array. Instead of
generating the inner-state by the KSA, the inner-state is initialized by directly assigning
the values from the array to the corresponding variables. In other words, the array from
the provider contains 256 values corresponding to S and the two index pointers i and j
in a random order. Those 258 values are directly assigned to the variables representing
the inner-state on the customer side. It should be noted that as long as the order of the
values in the array is not known, an adversary cannot gain any useful information about
the inner state of the cipher. Furthermore, assuming that the service provider knows
the memory structure of the user’s cipher, the service provider can produce a formatted
memory dump that can be loaded directly into the user’s cipher.
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To this point, our obfuscation approaches structurally altered the implementation of
the cipher. Additional obfuscation techniques, that are deployable on a smaller scale can
also be utilized. These techniques do not significantly change the implemented structure
and are easily applied. In the next subsection, we briefly explore the application of such
techniques to our RC4 implementation.

3.5 Generic Obfuscation Techniques

In this section, we introduce a set of standard techniques that can be used to further
obfuscate our implementation of RC4. These techniques are independent of the struc-
ture of the implemented program and do not significantly change the structure of the
resulting obfuscated program.

3.5.1 Order and Dimension Change of Arrays
When using arrays of function pointers, assigning the pointers to the array in a sequen-
tial order introduces a 1 : 1 mapping between the j value and the index of the array. This
mapping can be further obfuscated using a random allocation table or by modifying the
array structure. In [14], Zhu, et al. address this problem by changing the index order and
the arrays’ dimension. Transforming an array A[N] into an array B[M], whereM >N and
M is relatively prime to N, can be done by applying the mapping B[i] = A[i×N mod M].
We have used this methodology to obfuscate the array of function pointers in our
implementation.

3.5.2 Variable Aliases
When two or more variables address the same memory location, they are called aliases.
Introducing aliases to a program reduces the effectiveness of static analysis techniques
as they increase the data flow complexity [7] since the attacker has to identify and
track all aliases that manipulate a specific memory location. The larger the program,
the harder it is for the attacker to identify and keep track of all the aliases. The pointers
used in our implementation are an extensive form of aliasing, and therefore, introduce
an additional level of obfuscation.

3.5.3 Scattering the Code for the Swap Operations
The RC4 cipher makes extensive use of swapping in both the KSA and the PRGA algo-
rithms. In a standard implementation, monitoring the swapping function easily reveals
the position of j and consequently, its value, which compromises the security of the
implementation. To address this problem, in our implementation, we scatter the steps of
the swap functionality throughout the program. In addition, we use a pool of temporar-
ily swap variables rather than a single variable.
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3.5.4 Opaque Constructs
Opaque predicates are expressions that evaluate either to true or false upon a given con-
dition, but their outcome is known/controlled in advance. These constructs introduce
confusion and are widely used in obfuscation [7], [15]. Opaque predicates can be clas-
sified based on their possible outcome into two types. In the first type, the outcome is
always either ’true’ or always ’false’. An example of such predicate would be j > 255,
which is always evaluated ’false’ in an 8 bit environment. In the second type, the output
could be either ’true’ or ’false’, but is controlled by adjusting the statement that it eval-
uates. To increase the complexity of control flow analysis, we implemented a similar
approach where either the real function or some other dummy is executed.

3.5.5 Evaluation of the Index Pointer j
Normally, the index pointer j, at step i, is calculated as

ji = ji−1 + S[i] (1)

where ji denotes the value of the index pointer j at iteration i and S[i] denotes the value
of the inner state array during the ith iteration of the cipher. Monitoring the value of ji,
while knowing the value of i, allows reproducing the inner state. In our implementation,
we obfuscate the computation of ji by introducing three intermediate variables (a,b,c)
that are initialized as follows:

b = random,
a = b− ji−1,
c = 2a− b− S[i+1].

Then we calculate the value of ji as ji = a− c.

4 Performance Evaluation

In this section we compare the execution costs (i.e., program size and execution time)
for various combinations of obfuscation techniques proposed in the previous sections.

The reported timing, as summarized in Table 1, are measured on an HP PC with a
quad core Intel 2.67 GHz processor, and 8 GB of RAM. The prototype was implemented
in C using Microsoft Visual C++ that was running on Windows 7 Enterprise platform.
As expected, obfuscated implementations impose a penalty on the resulting program
size and execution speed.

From Table 1, the slowdown factor varies highly between the obfuscation configu-
rations. For configuration 1, the slowdown factor is about 16, whereas the slowdown
factor when implementing all the described obfuscation techniques is about 481. The
slowdown factors for the white-box implementations of AES and DES found in the
published literature are 55 for AES and 10 for DES [16],[17].

In the following subsections, we highlight the main causes of this performance
impairment.
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Table 1. Program size and throughout for different obfuscation options

RC4 Implementation options Program Size (KB) Throughput (KB/sec) a b c d
No obfuscation 8 288,700 - - - -
Configuration 1 514 17,850 x - - -
Configuration 2 518 15,450 x x - -
Configuration 3 537 11,500 x x x -
Fully obfuscated 969 600 x x x x

a: Loop unrolling over index pointer i, Array of function pointers, Variable aliases,
Opaque constructs

b: Order and dimension change of arrays
c: Evaluation of index pointer j
d: Multithreading

4.1 Multithreading

Although multithreading is typically used to enhance the performance of a program,
in our implementation it is used only as an obfuscation technique. Multithreading, as
implemented, significantly enhances the programs resilience against dynamic analysis
attacks but it also slows down the resulting program because of the following reasons:

1. The threads are essentially executed in sequence as the key stream value is evalu-
ated only within a critical section. Therefore, when this section is in use by a given
thread, other threads remain idle.

2. The use of a critical section introduces an additional overhead. Furthermore, as the
design of RC4 dictates, only a single index can be evaluated at a time, which offers
no room for parallelism.

3. Threads that do not implement the switch/case statement for the given value of the
index i introduce an additional delay. These threads lock the critical section and
consequently prevent other threads from operation and, yet, produce no keystream
words.

4.2 Excessive Use of Context Switches

The proposed implementation extensively uses branch statements to switch between
real and dummy functionality. This context switching introduces a delay since each
switch/case structure is evaluated before the real functionality is executed. In addition,
each function, whether dummy or real, introduces further delay as its parameters have
to be pushed or pulled from the stack. Furthermore, due to the use of arrays of function
pointers, in each iteration, two additional functions have to be handled.

4.3 Additional Calculations Overhead

Many mathematical calculations are required to obfuscate the value of j and the array
indices. This includes the additional calculations used to obfuscate the index pointer j.
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Furthermore, when obfuscating the order of arrays by changing their dimensions, addi-
tional computations are used to select the correct index for the address of each function.

5 Conclusion

In this work, different practical obfuscation techniques for RC4 implementation were
investigated and compared. Our implementation provides a high degree of resiliency
against attacks from the execution environment where the adversary has access to the
software implementation such as digital right management applications. Furthermore,
while the focus of this paper was RC4, these techniques can be applied to other array-
based stream ciphers such as HC-128, HC-256 and GGHN.

Providing a white box implementation with more theoretical foundations for dif-
ferent cryptographic primitives, including RC4, is an interesting research problem.
Exploring how to use multithreading to speed up the RC4 implementation is another
challenging research problem.
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