
7Open Source Software

7.1 Overview

Software providers in the narrower sense create software in order to generate
license sales and in some cases, revenue from services. A different motivation lies
behind open source projects. Software developers come together in an interna-
tional community to pool their knowledge and jointly solve a problem. In this
scenario, many developers invest their time, normally without being paid. But it
does not follow that open source software (OSS) is irrelevant in an economic
sense. In this chapter, we will explore the fundamental questions that OSS poses to
the software industry and to users.

We will begin by briefly introducing the nature and features of open source
software (OSS) and exploring the origins of the open source movement. We will
then examine the development process in open source projects and how it differs
from the process in a traditional software company. We will also consider what
motivates developers to become involved in open source projects in the first place.
Furthermore, we will look at the introduction of OSS from a user perspective. We
will then provide an overview of commercial software providers’ strategies—in
terms of opposing and utilizing OSS. We will conclude with some thoughts and
early empirical results on the use of open source business apps.

7.2 Features of Open Source Software

Free software has been around for a long time. Private users have frequently taken
advantage of freeware, for example certain database systems or games. The
methods of distribution have evolved over time: during the early years of the
personal computer, freeware was exchanged via floppy disk, then via CDs, and
nowadays almost exclusively over the Internet. Programmers have always been in
the habit of sharing their source codes and programs to help and learn from one
another.

P. Buxmann et al., The Software Industry, DOI: 10.1007/978-3-642-31510-7_7,
� Springer-Verlag Berlin Heidelberg 2013

191



In the 1970s, some companies began to sell only compiled software, and keep
their source code under lock and key. A movement opposed to this practice
evolved, and one of its pioneers was Richard Stallman. He began his academic
career in 1971 at MIT’s Artificial Intelligence Laboratory. The following quote
from Stallman paints a picture of the culture that prevailed there at the time
(Grassmuck 2004, p. 219):

‘‘I had the good fortune in the 1970s to be a part of a community in which
people shared software. We were developing software, and whenever somebody
wrote an interesting program it would circulate around. You could run the pro-
gram, add features, or just read the code and see how problems were solved. If you
added features to the program then other people could use the improved version.
So one person after another would work to improve the software and develop it
further. You could always expect at least the passive cooperation of everybody
else in this community. They might not be willing to drop their work and spend
hours doing something for you, but whatever they had already done, if you could
get some use out of it, you were welcome to do so.’’

As the quote shows, free software is by no means a phenomenon of the 1990s.
Many people viewed sharing software code and knowledge as a matter of course.

In the end, dissatisfaction with the functionality of a printer driver sparked the
development of the open source movement (Grassmuck 2004, p. 222), although it
was not yet known by that name. The Xerox network printers at MIT had no
function for displaying printer status directly on the PC. Stallman wanted to write a
function to make this possible, and embed it in the printer driver’s source code.
But the Xerox employee responsible for the code refused to release it, because he
had signed an undertaking not to share it with any third parties.

This prompted Stallman to do two things: develop the driver himself, and set up
the GNU project (GNU is a recursive acronym for GNU’s Not Unix). In order to
prevent others from making commercial use of his work, Stallman resigned from
MIT. To make a living and ensure the continuation of the GNU project, he
founded the free software foundation. This organization collected donations,
charged fees for the distribution of GNU software on data media complete with
manuals, but not for the software itself, and hired developers. A complete GNU/
Linux operating system was created in the early 1990s by combining the com-
ponents of the GNU project with a Linux kernel.

Free system components were not the only fruits of the GNU project: it also
produced the GNU general public license (GPL), a special software license that
has had a substantial influence on the free software and open source movements.
The GPL grants users free access to the source code, the right to copy and share the
software, freedom to modify the code, and permission to distribute the modified
version, albeit under the same terms.

From an economic perspective, this last condition rules out the possibility of
later changes to the software’s property rights. Rather than, the software developer
waving his intellectual property rights (which is standard practice with public

192 7 Open Source Software



domain software), the so-called copyleft principle is applied, to guarantee the
software remains permanently free. In accordance with this principle, modified
versions of the software have to be subject to the same license.

In addition to GPL, there are many other open source licenses, such as the less
restrictive library/lesser general public license (LGPL, originally developed for
libraries), the Berkeley software distribution-style license (BSD-style license) and
the mozilla public license (MPL). Table 7.1 summarizes selected features of these
licenses.

The term ‘‘open source’’ was not coined until 1998, when the open source
initiative (OSI) was founded. Until that point, free software had been the standard
name. But the change was more than just linguistic. Eric S. Raymond, known
principally for his essay, ‘‘The Cathedral and the Bazaar’’ (Raymond 1999), in
which he compared a centrally run software project to the construction of a
cathedral and the decentralized organization of a project in the Linux community
to a bazaar—was not the only one interested in a realignment of the free software
movement. Software companies also displayed an interest. One reason for
founding the OSI was Netscape’s announcement of its intention to publish its
browser’s source code.

In summary, the aim of OSI’s founders was to set the free software movement
on a new course. A key goal was to improve cooperation with software companies.
Free software was renamed ‘‘open source’’ as a way to ‘‘market the free software
concept to the people who wore suits’’ (Perens 1999, p. 173). Volker Grassmuck
has commented that some developers probably feared that the word ‘‘free’’ could
cause misunderstandings and could be interpreted as a communist ‘‘four-letter
word’’ (Grassmuck 2004, p. 230).

Such considerations prompted more than just a change of name: the group
wrote a definition of open source based on the work of Bruce Perens, the former
project leader of Debian GNU/Linux. The definition included several criteria that
must be met for software to be classed as open source. The criteria are listed in the
box below.

Table 7.1 Selected features of some open source licenses (adapted from Perens 1999, p. 186)

Type of license GPL LGPL MPL BSD
license

Can be integrated into proprietary software and redistributed
without an OS software license

No Yes Yes Yes

Modifications to OS licensed source code can remain proprietary
on distribution

No No No Yes

7.2 Features of Open Source Software 193



The OSI open source definition
Open source does not just mean access to the source code. The distri-

bution terms of open source software must comply with the following
criteria:

1. Free redistribution
The license shall not restrict any party from selling or giving away the

software as a component of an aggregate software distribution containing
programs from several different sources. The license shall not require a
royalty or other fee for such sale.

2. Source code
The program must include source code, and must allow distribution in

source code as well as compiled form. Where some form of a product is
not distributed with source code, there must be a well-publicized means
of downloading the source code, without charge, via the Internet. The
source code must be the preferred form in which a programmer would
modify the program. Deliberately obfuscated source code is not allowed.
Intermediate forms, such as the output of a preprocessor or translator, are
not allowed.

3. Derived software
The license must allow modifications and derived works, and must allow

them to be distributed under the same terms as the license of the original
software.

4. Integrity of the author’s source code
The license may restrict source code from being distributed in modified

form only if the license allows the distribution of ‘‘patch files’’ with the
source code for the purpose of modifying the program at build time. The
license must explicitly permit distribution of software built from modified
source code. The license may require derived works to carry a different name
or version number from the original software.

5. No discrimination against persons or groups
The license must not discriminate against any person or group of persons.

6. No discrimination against fields of endeavor
The license must not restrict anyone from making use of the program in a

specific field of endeavor. For example, it may not restrict the program from
being used in a business, or from being used for genetic research.

7. Distribution of license
The rights attached to the program must apply to all to whom the program

is redistributed without the need for execution of an additional license by
those parties.

194 7 Open Source Software



8. License must not be specific to a product
The rights attached to the program must not depend on the program’s

being part of a particular software distribution. If the program is extracted
from that distribution and used or distributed within the terms of the pro-
gram’s license, all parties to whom the program is redistributed should have
the same rights as those that are granted in conjunction with the original
software distribution.
9. License must not restrict other software

The license must not place restrictions on other software that is distrib-
uted along with the licensed software. For example, the license must not
insist that all other programs distributed on the same medium must be open
source software.

� 2011 Open Source Initiative. Opensource.org site content is licensed
under a Creative Commons Attribution Noncommercial No Derivatives
License (creativecommons.org/licenses/by-nc-nd/2.5/legalcode).

This definition is not itself a license but a standard against which licenses are
measured. In effect, the OSI assumes the role of a certification authority. So far,
more than 60 licenses have been certified, including the GNU GPL, GNU LGPL,
MPL, and the New BSD License. A current list can be found at http://www.
zopensource.org/licenses.

Some of these licenses make it easier for software providers to privatize or
commercialize OSS. This is why the OSI’s open source definition is controversial
and has sparked so many debates. For example, the first criterion on the above list
does not rule out the use of open source code in commercial software packages. This
is how a BSD license enabled Microsoft to integrate open source code into Windows.
If the code had been subject to a GPL, Microsoft would not have been permitted to
use it without Windows becoming free software (Grassmuck 2004, p. 299).

As shown above, the GPL also prevents the privatization of modified codes,
whereas under the terms of Apache or BSD licenses this is permissible (Grass-
muck 2004, p. 301). A modified version of OSS can, then, be sold without having
to release the source code.

It quickly becomes apparent that many software companies can profit from the
OSI‘s new approach. GPL can prove to be something of a hurdle to software
projects (even noncommercial ones); for instance, if open source code has to be
integrated into commercial products. In response, the LGPL was developed to
make code sharing more attractive by allowing libraries to be integrated more
easily. Integrating a GPL licensed library into a software program would mean that
the entire software would have to be subject to the GPL. Since this is often not
what programmers want, and in order to incentivize developers to use free
libraries, the LGPL relaxes this condition (Grassmuck 2004, p. 290).

7.2 Features of Open Source Software 195

http://www.opensource.org/licenses
http://www.opensource.org/licenses


The less restrictive software licenses that simplify the privatization and com-
mercialization of open source code are a double-edged sword. On the one hand, it
could be argued that commercialization is not necessarily financially damaging to
open source developers and that many software projects reap its benefits. On the
other hand, many of those involved in open source projects are sure to regard this
as an injustice and an attempt by companies to get something for nothing, which
could affect their willingness to participate in these projects. We will come back to
these incentives later, but first we will turn to the development principles that
shape open source projects.

7.3 Open Source Projects: Principles and Motivation
of Software Developers

The process by which, open source software is developed, is very different to
software development in a commercial company. In the following section, we will
examine the main differences and how they affect the structure of a project and the
motivation of those involved in it.

7.3.1 Organizational Structures and Processes in Open Source
Projects

An open source project usually comes about when somebody would like to solve a
problem. In the previous section, we described how Stallman’s dissatisfaction with a
Xerox printer driver was the starting point for the GNU project. Another oft-cited
example is the development of the LINUX operating system. Linus Torvalds wanted
to run a Unix operating system on his 386 PC. Finding nothing suitable, he began to
develop his own and published his source code on the Internet. As we all know, the
project met with keen interest and a number of software developers became involved
in developing it. Even Torvalds was surprised by this turn of events and has
repeatedly stressed that he had never dreamed that it would be so successful.

The development of OSS is an evolutionary and distributed process. Raymond
evocatively represents the development process as a bazaar and contrasts this with
the so-called cathedral model, synonymous in his eyes with conventional software
development (Raymond 1999). If commercial software development is viewed in
the context of early models from the field of software engineering, then the two
approaches differ widely. However, concepts of evolutionary and of agile software
development are similar to elements of the open source movement’s approach
(Sharma et al. 2002).

Once a project has been set up, its success depends on the prompt establishment
of a community around the software. It is always helpful if some modules are
already available for testing and execution.

The development team’s decision-making structure and the composition of the
team itself are centrally important. Large-scale open source projects usually have a

196 7 Open Source Software



coreteam composed of the developers who have been working on the project the
longest, or who have contributed a large quantity of code. The core team of the
Apache web server project comprised 22 programmers from six countries (Grass-
muck 2004, p. 237).

In small-scale open source projects, the founder usually assumes the role of
‘‘maintainer’’. He assumes responsibility for project coordination and quality
control. Developers with a good track record often act as maintainers in large
projects, where a two-tiered system lets them coordinate module development and
have a say in decisions on general principle in the overall project. It is quite often
the case that the founding member has a special role in the core team. The Linux
project, for instance, had a team of five or six developers who tested and selected
incoming source code before passing it on to Torvalds, who would make the final
decision (Dietrich 1999). In contrast, the Apache project’s core team takes a
democratic approach to decision making. The decision to integrate a module or not
may be decided, for example, via mailing list.

The maintainers and software developers who contribute a great deal of code to
the project are supported by a host of other people, who test the software, write the
documentation, and provide localizations. It is often difficult to find qualified soft-
ware developers to perform these supporting roles. Most developers regard docu-
mentation as boring, and in any case it is not the best way to boost one’s reputation.

Open source projects tend not to be wound up like conventional ones. Instead,
development work may be discontinued once the user is satisfied with the solution,
or if either the maintainer or key developers have lost interest in the project. If a
maintainer becomes inactive, the development community can appoint a new one.
Occasionally, a project splits, or ‘‘forks’’. Forking happens when the core team can
no longer agree on questions of principle.

Internet-based source code management systems such as concurrent versions
system (CVS)) serve as an important function in open source projects. Program-
mers download the latest version of a module from the CVS, work on it, test it with
their own development tools, and copy the results back to the CVS repository. If
several developers have been working on a file at the same time, their changes are
ideally merged into a new file in the repository. If this causes conflicts that cannot
be resolved automatically, developers must come to an agreement amongst
themselves. At regular intervals, the core team flags certain branches of the source
tree in the repository as a new release.

7.3.2 Contributor Motivation

Open source projects are based on the joint work of a frequently global community
of software developers. They participate on a voluntary basis and the majority are
not paid for their work. Their involvement implies acceptance of opportunity costs,
from sacrificing leisure time, to passing up alternative paid positions, to neglecting
their day job. This is particularly relevant to the core team members in open source
projects.

7.3 Open Source Projects: Principles and Motivation of Software Developers 197



This raises the question of what motivates developers to participate in open
source projects. Some authors try to explain the phenomenon through the personal
gains a developer can make with his contribution (Lerner and Tirole 2002). Other
studies assume that most programmers are driven by intrinsic motivations
(Kollock 1999). Against this backdrop, Franck (2003) distinguishes between

• Rent-seekers and
• Donators.

Rent seekers behave like a conventional ‘‘homo economicus’’. Rent-seeking
developers are looking for benefits beyond regular pay checks. Empirical studies
have repeatedly shown that contributors hope to boost their reputation on the job or
capital market, expect to improve their know-how, or assume that their activities
will help them in their everyday work (Lerner and Tirole 2002). Hence, these
developers do not become involved unless they expect a pay-off –in other words,
they are seeking ‘‘rent.’’

Conventional rational motives alone cannot account for the phenomenon of
people contributing to open source projects. Time and again, empirical studies
have shown that developers hope to get enjoyment and entertainment out of their
participation in open source projects, as well as advancing the open source
movement. Furthermore, many open source developers are pursuing other goals,
such as freedom of information. And very often, their activities are actually an
attempt to break market leader Microsoft’s virtual monopoly. Franck terms people
for whom this is a top priority ‘‘donators’’ (Franck 2003). They believe that they
are investing their time in something worthwhile. For ‘‘donators’’, open source
projects subject to a GPL, or another similar license, are attractive, because they
have no reason to fear that their ‘‘donation’’ will be commercialized.

Successful open source projects often manage to create a governance structure
that appeals to both rent seekers and donators. The open nature of source code
gives rent seekers the chance to improve their reputation, as their contributions are
visible and verifiable. The more rent seekers involved, the more appealing an open
source project is to donators because the chances of success are higher. This avoids
the conflict that is often evident between rent seekers and donators.

However, gone are the days when the teams for most open source projects
comprised unpaid hobbyists (Brügge et al. 2004, p. 101 f). Instead, there are a
number of open source projects in which salaried programmers and other spe-
cialists work alongside each other. Almost 30 % of the developers at open source
platform Sourceforge.net, for example, are paid for their work. It is rare for an
open source project to be initiated by a commercial enterprise. The Apache pro-
ject, for instance, was begun by employees who were responsible for their com-
panies’ Web servers. But such a situation does not rule out rent seekers and
donators working together. In fact, it may even encourage cooperation, especially
in the case of projects subject to a GPL license or similar.

198 7 Open Source Software



7.4 Open Source Software: The User Perspective

OSS has a particularly appealing benefit for users: it is free. This means that users
save licensing costs of standard software, and expenses associated with company-
specific solutions. But licensing costs are of course not the only relevant param-
eters that must be considered when choosing which software to deploy.

As an example, let us take a look at the decision by local government in
Munich, Germany to replace Windows XP and Office solutions with Linux and
open source software. This example was chosen, because the deployment rate of
OSS in the public sector is particularly high. The study was carried out by con-
sulting company Unilog in 2002 and considered the direct costs for the organi-
zation’s 14,700 desktops. It concluded that migrating to an OSS solution is not the
best option—at least not in the short term. It should be noted that the study focused
only on costs. Although the city’s licensing costs would be eliminated, any savings
would be wiped out due to significantly higher migration and training expenses.
Figure 7.1 shows a breakdown of costs (in millions of euros) for both options.

Upon considering the results of the study, the city of Munich still decided to
migrate to the open source solution. It explained its decision by stating that it
hoped to significantly reduce its dependence on Microsoft, and that the two
solutions were identical in terms of their capabilities and standalone utility.

It is still unclear whether OSS can generally be regarded as cost-effective. Studies
on this topic have reached varying conclusions (Brügge et al. 2004). For example, a
Berlecon Research study (2002) found that, in addition to eliminating licensing
costs, open source solutions have lower implementation and administration costs,
and are more stable. But the latter two benefits were not demonstrated in the case of
the Munich local government. Such great variance can be partly due to the fact that

2.89 2.8
3.4

13.4

17.1

26.18.8

2.1

3.6

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

Proprietary solution Open source solution

Hardware und software Migration Training Lincenses Other

Millions of euros

Fig. 7.1 Short-term cost comparison for the city of Munich

7.3 Open Source Projects: Principles and Motivation of Software Developers 199



differentiating between costs is far from simple in practice. In addition, the debate
and the studies on this topic are often ideologically biased.

7.5 Commercial Software Vendors’ Involvement

In a previous section, we examined why developers and other software specialists
participate in open source projects. In this section, we will take a look at what
motivates enterprises to support these projects. There are three main reasons
(Hecker 1999, Raymond 1999, Henkel 2004):

• Supporting sales of complementary products and services,
• Integrating OSS into own products and
• Reduction of market power of competitors’ proprietary software.

The reason most commonly cited in the literature is the possibility of selling
complementary products and services. This is a follow-the-free strategy, as
described in Sect. 3.3.2.7. To put it another way: OSS creates additional demand
on the user side. By meeting this demand, companies can create and leverage
indirect network effects. Complementary add-ons can include hardware, software
solutions, and services such as training. Linux distributer SuSe’s business model is
just one example.

Linux distributer SuSe
Linux is a free operating system that supports multitasking and multi-

using. The system is now being deployed in many different areas (desktops,
servers, mobile telephones, routers, etc.). Ready-made software packages,
called distributions, are usually used. SuSe was the first company in Ger-
many to successfully sell a Linux distribution on a broad scale. And it was
one of the world’s first companies to base its business model on Linux. SuSe
penetrated the market with the first German-language installation program
for Linux.

Background information
Roland Dyroff, Burchard Steinbild, Hubert Mantel, and Thomas Fehr

founded Software und Systementwicklungsgesellschaft mbH (literally:
‘‘Software and System Development Company’’) in 1992. Their first product
was merely an enhanced version of an existing Linux distribution; but in
1996, the company introduced the first distribution that it developed itself.
The company’s headquarters were initially in Fürth, Germany, before it was
moved to Nürnberg, Germany in 1998. In 1997, SuSe opened an office in
Oakland, USA. Six additional sites in Germany and three international ones
(Italy, Czech Republic, UK) followed. In 2004, SuSe was acquired by
American company Novell for 210 million dollars. Novell also assumed

200 7 Open Source Software

http://dx.doi.org/10.1007/978-3-642-31510-7_3


responsibility for all of Suse’s employees around the world, around 380 at
the time. That year, SuSe generated revenues of 37 million euros. Today,
Novell is one of the world’s leading vendors of complete Linux solutions.
A key success factor is its numerous strategic partnerships with companies
including SAP, Oracle Intel, and IBM.

Service portfolio
Novel’s product range includes offerings for both business and private

users. The SuSe Linux Enterprise 11 platform is an end-to-end solution for
enterprises. It comprises a database, server, desktop, and hardware man-
agement. OpenSuSe, an open source solution, is the company’s offering for
private users. Originally called SuSe-Linux, it was renamed to openSuSe in
December 2006 to differentiate it from nonfree products.

Novell’s main source of revenues is the provision of services. This is why
its portfolio includes a comprehensive range of support, consulting, and
training offerings, the most important being its certified courses for enter-
prises. To underline its service centricity, the company offers numerous free
services such as a discussion forum, databases, and documentation that help
users find answers to their questions.

Sources www.novell.com, www.opensuse.org

Companies quite often incorporate OSS in their products and solutions.
Therefore, it makes sense for them to support their development financially.
Integrating OSS in embedded systems is an example. This approach is charac-
terized by a dedicated connection between hardware and software components that
can only be used for one specific purpose. Machine control is a typical example.
These systems often leverage Linux and other OSS. A high-profile example of a
device featuring an embedded system of this kind is TiVO, a digital video
recorder. If the all-but-invisible software used in a product is licensed under GPL,
the provider can only generate revenues by selling (specialized) hardware. At its
core, this is another example of a complementary add-on that we discussed above.

A third motivating factor for software companies to actively engage in open
source projects and provide manpower for them is limiting competitors’ market
power. IBM’s involvement in the development of Linux is just one example. By
doing this, it succeeded in checking Microsoft’s dominance in PC-based operating
systems—at least to a certain extent. IBM’s considerable investment in Linux
gained it one significant benefit: reduced dependency on Microsoft as an operating
system vendor.

As an alternative to paying employees for their involvement in open source
projects, companies can publish the code of software developed in-house and
donate it to the OSS community. IBM is one of the enterprises pursuing this
strategy. Other well-known examples are Mozilla and OpenOffice, and Sun
Microsystems’ decision to turn over Java and JDK to the open source community.

7.5 Commercial Software Vendors’ Involvement 201

http://www.novell.com
http://www.opensuse.org


7.6 Open Source ERP Systems

Today, when we talk about OSS, it is generally the well-known and successful
projects, such as Linux, that spring to mind. And no wonder, more than 30 million
copies of this operating system have been deployed worldwide. This corresponds
to a 20–25 % market share for server operating systems. Other success stories
include Apache Webserver, the Eclipse development environment, and the
MySQL database.

A closer look at the above contenders shows that OSS has predominantly taken
root at the lower level of the ‘‘software stack’’, where it has become the standard.
This leads to the question of whether and to what extent the OS paradigm is also
suitable for ERP systems and whether it could compete with established software
providers, such as SAP and Oracle, in this market segment.

One of the key issues is whether the ERP segment is alluring enough to attract
many OS developers and whether they possess the necessary knowledge of
business. A study of the largest repository for OS software, SourceForge.net,
clearly demonstrates that developers are definitely interested in business applica-
tions. There are over 630 ERP-related projects on the platform. A notable example
of how OS software can become established beyond the infrastructure level is the
customer relationship management software, SugarCRM (Sterne and Herring
2006). Open source ERP systems have not been very prominent up to now.

A selection of open source and ERP production solutions is shown in the
following table (Buxmann and Matz 2009). The table depicts how each of the
responsible enterprises is organized, and describes the features of their individual
software projects and characteristics of their business models. All of the offerings
are international, multilingual projects. OS projects, such as aforementioned
SugarCRM, or GnuCash, which supports financial accounting, are not included.
These systems only support single functions of an ERP system (Table 7.2).

There are marked differences between the providers’ business models: The
development of systems, such as ADempiere and webERP, is driven primarily by a
committed community of private developers. The full functionality of the software
is available under a GPL license, and paid services are marketed exclusively by
third-party providers. Other offerings are more commercial in nature. Their
business model is similar to traditional software providers. The only difference of
note is that, in addition to the commercial software packages, they also provide a
version with an OS license, which often only offers basic functionality. Both the
provider and the customer can reap benefits from this dual licensing model
(Mundhenke 2007, pp. 130–131; Hecker 1999, p. 49). Customers have the
opportunity to test and use the free version without restrictions. And, if necessary,
they can switch to the proprietary versions, which allow them to leverage richer
functionality and services. This way, the provider can simultaneously address
different customer groups and expand the installed base. Furthermore, many
providers hope that releasing a software version under an OS license will have a
positive effect in terms of marketing.

202 7 Open Source Software



T
a

b
le

7
.2

A
n

ov
er

vi
ew

of
op

en
so

ur
ce

E
R

P
sy

st
em

s
(B

ux
m

an
n

an
d

M
at

z
20

09
)

[D
ie

Z
ei

le
n‘

‘L
et

zt
e

V
er

si
on

’’
bi

tt
ew

ie
hi

er
w

eg
la

ss
en

]

A
de

m
pi

er
e

C
om

pi
er

e
E

R
P

5
ex

pr
es

s
O

pe
nb

ra
vo

O
pe

nE
R

P

P
ro

vi
de

r

P
ro

vi
de

r/
tr

ad
em

ar
k

ow
ne

r
A

D
em

pi
er

e
C

om
pi

er
e,

In
c.

N
ex

ed
i

S
A

O
pe

nb
ra

vo
,

S
.L

.
T

in
y

L
oc

at
io

n
U

S
A

U
S

A
F

ra
nc

e
S

pa
in

B
el

gi
um

W
eb

si
te

ad
em

pi
er

e.
co

m
co

m
pi

er
e.

co
m

er
p5

.o
rg

op
en

br
av

o.
co

m
op

en
er

p.
co

m

S
of

tw
ar

e
pr

oj
ec

t

P
ro

je
ct

be
ga

n
20

06
19

99
20

07
20

06
20

05

T
yp

e
W

eb
ap

pl
ic

at
io

n
an

d
ri

ch
cl

ie
nt

R
ic

h
cl

ie
nt

(W
eb

in
te

rf
ac

e
is

pa
id

so
ft

w
ar

e)

W
eb

ap
pl

ic
at

io
n

W
eb

ap
pl

ic
at

io
n

W
eb

ap
pl

ic
at

io
n

an
d

ri
ch

cl
ie

nt

R
eg

is
te

re
d

de
ve

lo
pe

rs
at

S
ou

rc
eF

or
ge

89
(i

nc
lu

di
ng

9
ad

m
in

s)
75

(i
nc

lu
di

ng
2

ad
m

in
s)

N
ot

re
gi

st
er

ed
81

(i
nc

lu
di

ng
15

ad
m

in
s)

N
ot

re
gi

st
er

ed

P
ro

gr
am

m
in

g
la

ng
ua

ge
Ja

va
Ja

va
,

Ja
va

S
cr

ip
t

P
yt

ho
n

Ja
va

,
Ja

va
S

cr
ip

t
Ja

va
,

P
yt

ho
n

S
up

po
rt

ed
pl

at
fo

rm
s

(s
er

ve
r-

si
de

)
P

la
tf

or
m

-
in

de
pe

nd
en

t
P

la
tf

or
m

-
in

de
pe

nd
en

t
L

in
ux

,
M

ac
O

S
X

,
U

ni
x,

W
in

do
w

s
B

S
D

,
L

in
ux

,
S

ol
ar

is
,W

in
do

w
s

L
in

ux
,

M
ac

O
S

X
,

U
ni

x,
W

in
do

w
s

S
up

po
rt

ed
da

ta
ba

se
s

O
ra

cl
e,

P
os

tg
re

s
O

ra
cl

e,
P

os
tg

re
s

D
B

2,
M

yS
Q

L
,

O
ra

cl
e,

P
os

tg
re

s
O

ra
cl

e,
P

os
tg

re
s

P
os

tg
re

s

B
us

in
es

s
m

od
el

T
ar

ge
t

gr
ou

p
N

o
in

fo
rm

at
io

n
F

or
or

ga
ni

za
ti

on
s

of
al

l
si

ze
s

F
or

or
ga

ni
za

ti
on

s
of

al
l

si
ze

s
F

or
or

ga
ni

za
ti

on
s

of
al

l
si

ze
s

N
o

in
fo

rm
at

io
n

(c
on

ti
nu

ed
)

7.6 Open Source ERP Systems 203



T
a

b
le

7
.2

(c
on

ti
nu

ed
) A

de
m

pi
er

e
C

om
pi

er
e

E
R

P
5

ex
pr

es
s

O
pe

nb
ra

vo
O

pe
nE

R
P

L
ic

en
se

G
P

L
G

P
L

fo
r

C
om

m
un

it
y

an
d

st
an

da
rd

ed
it

io
n

an
d

a
co

m
m

er
ci

al
li

ce
ns

e
fo

r
th

e
pr

of
es

si
on

al
ed

it
io

n

G
P

L
O

pe
nb

ra
vo

P
ub

li
c

L
ic

en
se

(b
as

ed
on

M
oz

il
la

P
ub

li
c

L
ic

en
se

)
G

P
L

P
ri

ce
di

sc
ri

m
in

at
io

n,
so

ft
w

ar
e

N
on

e
C

om
m

un
it

y,
st

an
da

rd
,

an
d

pr
of

es
si

on
al

ed
it

io
n

N
on

e
N

on
e

M
od

ul
e-

de
pe

nd
en

t
pr

ic
in

g

P
ri

ce
di

sc
ri

m
in

at
io

n,
se

rv
ic

es
N

on
e

C
om

m
un

it
y,

st
an

da
rd

,
an

d
pr

of
es

si
on

al
ed

it
io

n

C
om

m
un

it
y

ve
rs

io
n,

st
ar

te
r,

pr
em

iu
m

,
an

d
el

it
e

pa
ck

s
C

om
m

un
it

y
ed

it
io

n,
S

M
B

ne
tw

or
k,

B
as

ic
ne

tw
or

k,
O

E
M

ne
tw

or
k

M
od

ul
e-

de
pe

nd
en

t
pr

ic
in

g

O
pe

nT
ap

s
xT

up
le

E
R

P
S

Q
L

-L
ed

ge
r

L
X

-O
ffi

ce
w

eb
E

R
P

P
ro

vi
de

r

P
ro

vi
de

r/
tr

ad
em

ar
k

ow
ne

r
O

pe
n

so
ur

ce
st

ra
te

gi
es

,
In

c.

xT
up

le
D

W
S

S
ys

te
m

s,
In

c.
L

x-
S

ys
te

m
–

H
ol

ge
r

L
in

de
m

an
n,

an
d

L
IN

E
T

se
rv

ic
es

G
bR

A
dm

in
is

tr
at

or
:

P
hi

l
D

ai
nt

re
e

L
oc

at
io

n
U

S
A

U
S

A
C

an
ad

a
G

er
m

an
y

N
ew

Z
ea

la
nd

W
eb

si
te

op
en

ta
ps

.o
rg

xt
up

le
.c

om
sq

l-
le

dg
er

.o
rg

lx
-o

ffi
ce

.o
rg

w
eb

er
p.

or
g

S
of

tw
ar

e
pr

oj
ec

t
(c

on
ti

nu
ed

)

204 7 Open Source Software



T
a

b
le

7
.2

(c
on

ti
nu

ed
)

O
pe

nT
ap

s
xT

up
le

E
R

P
S

Q
L

-L
ed

ge
r

L
X

-O
ffi

ce
w

eb
E

R
P

P
ro

je
ct

be
ga

n
20

05
20

02
20

00
20

04
20

03

T
yp

e
W

eb
ap

pl
ic

at
io

n
R

ic
h

cl
ie

nt
W

eb
ap

pl
ic

at
io

n
W

eb
ap

pl
ic

at
io

n
W

eb
ap

pl
ic

at
io

n

R
eg

is
te

re
d

de
ve

lo
pe

rs
at

S
ou

rc
eF

or
ge

38
(i

nc
lu

di
ng

1
ad

m
in

)
39

(i
nc

lu
di

ng
9

ad
m

in
s)

N
ot

re
gi

st
er

ed
4

(i
nc

lu
di

ng
3

ad
m

in
s)

9
(i

nc
lu

di
ng

2
ad

m
in

s)

P
ro

gr
am

m
in

g
la

ng
ua

ge
Ja

va
C

+
+

,
Ja

va
S

cr
ip

t
P

er
l

P
er

l,
P

H
P

P
H

P

S
up

po
rt

ed
pl

at
fo

rm
s

(s
er

ve
r-

si
de

)
L

in
ux

,
M

ac
O

S
X

,
U

ni
x,

W
in

do
w

s

L
in

ux
,

M
ac

O
S

X
,

W
in

do
w

s
P

la
tf

or
m

-i
nd

ep
en

de
nt

L
in

ux
,

U
ni

x
P

la
tf

or
m

-i
nd

ep
en

de
nt

S
up

po
rt

ed
da

ta
ba

se
s

M
yS

Q
L

,
P

os
tg

re
s

P
os

tg
re

s
P

os
tg

re
s

P
os

tg
re

s
M

yS
Q

L

B
us

in
es

s
m

od
el

T
ar

ge
t

gr
ou

p
N

o
in

fo
rm

at
io

n
S

M
E

s
N

o
in

fo
rm

at
io

n
N

o
in

fo
rm

at
io

n
S

m
al

l
co

m
pa

ni
es

L
ic

en
se

H
on

es
t

pu
bl

ic
li

ce
ns

e
(b

as
ed

on
G

P
L

)
an

d
co

m
m

er
ci

al
li

ce
ns

es

P
os

tB
oo

ks
ed

it
io

n
un

de
r

co
m

m
on

pu
bl

ic
at

tr
ib

ut
io

n
li

ce
ns

e
1.

0
an

d
st

an
da

rd
an

d
op

en
m

an
uf

ac
tu

ri
ng

ed
it

io
n

un
de

r
a

co
m

m
er

ci
al

li
ce

ns
e

G
P

L
A

rt
is

ti
c

L
ic

en
se

,
G

P
L

an
d

L
G

P
L

G
P

L

(c
on

ti
nu

ed
)

7.6 Open Source ERP Systems 205



T
a

b
le

7
.2

(c
on

ti
nu

ed
)

O
pe

nT
ap

s
xT

up
le

E
R

P
S

Q
L

-L
ed

ge
r

L
X

-O
ffi

ce
w

eb
E

R
P

P
ri

ce
di

sc
ri

m
in

at
io

n,
so

ft
w

ar
e

N
on

e
P

os
tB

oo
ks

,
st

an
da

rd
an

d
op

en
m

an
uf

ac
tu

ri
ng

ed
it

io
n

N
on

e
N

on
e

N
on

e

P
ri

ce
di

sc
ri

m
in

at
io

n,
se

rv
ic

es
T

he
co

m
m

er
ci

al
li

ce
ns

e
pr

ov
id

es
en

ha
nc

ed
su

pp
or

t
op

ti
on

s

N
on

e
B

y
us

er
gr

ou
p:

us
er

,
te

ch
,

de
v

N
on

e
N

on
e

206 7 Open Source Software



An empirical study of development activities and forum postings in the
SourceForge platform (www.sourceforge.org) offers insight into whether the
development of open source ERP software can be driven by a dedicated com-
munity of private developers. SourceForge provides developers and users with
various tools for communication and software development free of charge. Reg-
istered members can take part in projects and use or add to the community’s
resource pool. Each SourceForge project generally has several forums. Participants
can start threads, generally to ask a question, to which registered SourceForge
users can then post replies. According to SourceForge, the platform currently hosts
over 23,000 OS projects with over 2 million registered users. All projects whose
software is governed by an OSI-recognized license can be registered. In collab-
oration with the University of Notre Dame, Indiana (USA), SourceForge provides
data from its project database for research purposes (cf. van Antwerp and Madey
2008). This enables an analysis of the projects above and beyond what the plat-
form’s standard statistics tell us.

We will begin by taking a look at the ranking of the most active projects on
SourceForge. A SourceForge project’s activity level is derived from the number of
visitors to the project site, development activity, and communications, for example
within the forums. The standard ranking is based on a cumulative analysis of all
data since the start of the project.

In this ranking, there are no ERP projects in the top 20 and only six in the top
1,000. However, recent rankings, which only cover the last 7 days, for example,
paint a different picture. For the last 2 years or so (as of July 2009) ERP projects
have figured high up on the list. For example, the Openbravo project is regularly
among the top ranked, often landing in first place. Of course, these rankings say
nothing about the quality of the projects’ contributions. But they do indicate that,
in principle, the OS model appears to be suitable for ERP software, too.

For a more indepth comparison of ERP and other OS projects, we will now
examine the development and communication activities in greater detail.

Our sample for this purpose comprises projects that meet the following criteria:

• at least two registered developers are involved,
• the project has existed for at least 1 year and
• the forums contain at least one posting.

These criteria filter out the very newest and the less active projects. They
enabled us to identify 208 projects under the aegis of the ERP group. We then
selected 208 projects unrelated to ERP at random.

We began the analysis by comparing the size of the communities. Leaving aside
projects with only one registered participant, ERP projects have an average of 5.7
registered participants. As Fig. 7.2a shows, between 2 and 10 participants are
registered in over 90 % of these projects. About 9 % of the projects have 11 or
more contributors. The largest project (Openbravo) has 77.

7.6 Open Source ERP Systems 207

http://www.sourceforge.org


In contrast, the average number of participants in the other, randomly selected
projects are 26.7, with a maximum of 391. Figure 7.2b shows that within the projects
a similar number of participants are registered in each of the three categories—2 to
10, 11 to 20 and 21 and more. In conclusion, there are significantly fewer users and
developers registered in the ERP projects than in the control group.

Next, we will examine and compare how participants communicate in the
different types of OS project. We will begin by looking at the forums in ERP
projects. Our findings show that around 80 % of users start threads, while some
48 % post replies on the various topics. At least 32 % of threads receive zero
replies.

We notice some surprising similarities when we compare these findings to those
of the control group, where the proportion of participants who start thread dis-
cussions is also 80 %. At the same time, 35 % of participants post replies, which is
around 12 % points less than in the ERP project forums. With respect to randomly
selected projects, around 72 % of their forum postings stay unanswered. It is hard
to tell whether a posting has been answered satisfactorily or whether it is a follow-
up question by the thread starter or merely fleshes out the original question.
In order to filter out follow-up postings of this kind, we only included postings by
users other than the thread starter. Our findings show that less than one-third of
users only post replies in other people’s threads, but do not start any of their own.
Figure 7.3 gives the breakdown.

In summary, we found that users and developers in ERP project forums tended
to be more active. In the group of randomly selected projects; for instance, the
proportion of forum postings with zero replies was more than twice as large.

We will now examine whether there are any differences with respect to
response times—the time lapse between the posting of a question and the first
answer (Lee et al. 2009, p. 431). The following chart gives a comparison between
the response times for ERP projects and those of other projects. Over 60 % of
threads received a reply within 1 day, and 83 % after 1 week. There were no
significant differences between the ERP projects and other projects in this respect
(Fig. 7.4).

Fig. 7.2 a Number of
participants in ERP projects;
b Number of participants in
the control group (Buxmann
and Matz 2009)

208 7 Open Source Software



In conclusion, the OS scene plainly does now offer alternatives to proprietary
ERP systems. Our study shows that although there tend to be fewer developers
involved in ERP projects, these communicate with each other more intensively,
responding to forum threads more willingly and more frequently. It is also
noticeable that, ERP projects are increasingly among the most active projects in
the SourceForgedatabase recently.

Fig. 7.3 a User activity in ERP project forums; b User activity in control-group forums
(Buxmann and Matz 2009)

Fig. 7.4 Cumulated response times in ERP project forums and others (Buxmann and Matz 2009)

7.6 Open Source ERP Systems 209



It must be emphasized that these findings say nothing about the quality of work;
for example, how useful the posted responses actually were, or how much effort
programmers put into the development process. Furthermore, the data we used did
not allow us to differentiate between private and paid programmers. Many soft-
ware and IT enterprises employ large numbers of programmers who spend all or
most of their time working on particular OS projects. As a result, the findings of
this study may only be interpreted as showing that the OS model can be successful
in the ERP space. However, they do not allow us to estimate the market potential
of ERP applications. On the contrary, it must be taken into consideration that
software markets are subject to special rules and the best solution does not always
become the standard. As we discussed in detail in Chap. 2 , there are considerable
lock-in-effects on software markets. Due to the penguin effect, changing to a
different product incurs high risks and switching costs.

What this means for providers of ERP software is that ultimately, having a good
product is not enough. It is vitally important to market software solutions in
attractive, customer-friendly packages. Economic simulation models reveal that on
software markets, it is more effective to increase market share through pricing than
by adding more functionality to a product (Buxmann 2002). The smaller a pro-
vider’s share of the market in comparison to the market leader, the more this holds
true. And it begs the question why some providers are offering their open source
ERP software at prices comparable to those of SAP.

Judging by the way some providers present themselves, they still have some
catching up to do in terms of professional communications and sales strategies.
Against this background, it will not be easy for open source ERP software to
capture market share from established ERP providers.

And yet, few experts could have predicted that OS software would become as
widespread and popular as it is today in various segments of the operating-system
market. Time will tell whether the open source community will shake up the
software industry again in the ERP space.

210 7 Open Source Software

http://dx.doi.org/10.1007/978-3-642-31510-7_2

	7 Open Source Software
	7.1…Overview
	7.2…Features of Open Source Software
	7.3…Open Source Projects: Principles and Motivation of Software Developers
	7.3.1 Organizational Structures and Processes in Open Source Projects
	7.3.2 Contributor Motivation

	7.4…Open Source Software: The User Perspective
	7.5…Commercial Software Vendors’ Involvement
	7.6…Open Source ERP Systems


