
5Platform Concepts

5.1 Overview

The rise of platform concepts can be observed in numerous industries. The
automotive industry was already hailing product platforms as a recipe for success
back in the 1990s. Many other industries followed suit (cf. e.g., Köhler 2004 on
product platforms in the media industry). In the following, we will explore the role
of platforms in the software industry. Drawing on the work of Gawer (2009), we
can distinguish between two generic types of platforms: product platforms enable
products and services to be produced efficiently through the re-use of existing
modules (Wheelwright and Clark 1992); while the main purpose of industry
platforms is to attract complementary products and/or services from third parties in
an industry (Cusumano and Gawer 2002). Figure 5.1 shows other characteristics of
these two types.

Both varieties of platforms are now also found in the software industry. In the
field of consumer software, there is already a multitude of examples: the best known
is Apple’s AppStore for the iPhone. Industry platforms for business software are still
in their infancy, for example salesforce.com’s AppExchange, Google Apps Mar-
ketplace, Microsoft Pinpoint, or SugarCRM’s SugarExchange (Burkard et al. 2010).

5.2 Product Platforms in the Software Industry

5.2.1 Cost Structure of Platform-Based Software
Development

Like their high-profile counterparts in the automotive industry, product platforms
in the software industry are intended to reduce development costs while main-
taining or enhancing quality. In particular, software product platforms are used to
make and deliver products in a product line that address different target groups
with different price categories and system environments—flexibly and above all
efficiently (Reussner and Hasselbring 2006).

P. Buxmann et al., The Software Industry, DOI: 10.1007/978-3-642-31510-7_5,
� Springer-Verlag Berlin Heidelberg 2013

155

These product platforms are designed to exploit reusable software modules, just
as the automotive industry example cited above involves the reuse of components
(Boysen and Scholl 2009). A software module is a unit of software that performs a
defined task or function and can communicate with other modules via interfaces,
for example on the basis of the SOA standards outlined in the previous chapter, but
can also be run independently. Modules are managed via configuration software, in
other words the product platform. Most crucially, a module should be used in as
many products as possible (Baldwin and Clark 1997; Miller and Elgård 1998;
Meyer and Lehnerd 1997).

A simple cost model demonstrates how the introduction of a product platform
can alter a software provider’s cost structure. We shall assume that each of the
provider’s products is developed separately, but in a modular way. Accordingly,
all N products, each consisting of Mn ðn ¼ 1 . . .NÞ modules, are developed inde-
pendently of each other. Figure 5.2 illustrates an example with three products,
each comprising two to three product-specific modules.

Fig. 5.2 Example of the
development of three
products without a platform

P lattform Typ P roduktplattform Branchenplattform
Participants One company (and in

some cases its
suppliers)

Multiple companies
with compatible
products

Objectives • Faster and more
efficient development
and production
• Greater product
variety at lower cost
• Increased flexibility
when designing new
products

• For platform
operators: Boost a
platform’s usefulness
through
complementary
products and
services
• For suppliers of
complementary
services: Increased
sales

Design principles • Reuse of
components
• Stable underlying
architecture

• Stable interfaces
for extensions

Fig. 5.1 Platform typology
(based on Gawer 2009)

156 5 Platform Concepts

The system n has development costs Kn, which are made up of the total of the
Knm development costs of Mn individual modules ðM ¼ 1 . . .MnÞ. The costs of the
development of the provider’s N systems, therefore, amounts to:

K ¼
XN

n¼ 1

Kn ¼
XN

n¼ 1

XMn

m¼ 1

Knm

This approach will now be contrasted with the cost structure after the introduction
of a product platform, or in other words, the reuse of components. For the vendor,
there will be upfront expenditure to establish the product platform. We will call this
Kp. Development of the modules incurs costs for each of the D modules, which we
will transcribe as Kd ðd ¼ 1 . . .DÞ. Each module will be implemented in 1 B n B N
systems. Integrating all these modules into a single system creates additional costs.
To keep this simple, we shall assume an average cost rate, which we shall call Kd.
Accordingly, the development of a vendor’s N systems using a platform concept
entails the following costs:

K ¼ Kp þ
XD

d¼1
Kd þ N � K1

Figure 5.3 depicts a usage matrix showing which modules are used in which
products. In our example, module 3 is used in products 1 and 3; module 1 is
included in all three products. Modules 2, 4, and 5, on the other hand, are used in
only one product.

By comparing cost functions (1) and (2), we can draw conclusions about the
changes in cost structure that can be expected on the introduction of a product
platform. First, we can clearly see that introducing a product platform requires a

Fig. 5.3 Configuration of three products via a product platform

5.2 Product Platforms in the Software Industry 157

large and potentially risky investment to develop it. For each of the N products
there are integration costs of Kl. In real life, the size of these costs is determined by
the quality and the future-proof design of the platform interfaces. Initially, at least,
this upfront investment is a certain challenge.

However, the deployment of product platforms leads to sizeable cost savings,
particularly if the module reuse rate is high. In other words, if the modules, once
developed, can be reused in as many products as possible, or if the number of
modules required to create for a given number of products can be reduced. Our
example illustrates the latter scenario: the number of products remains the same,
but the number of modules has been trimmed from eight to five.

In the automotive industry, as cited above, the leading manufacturers produce
only a small proportion of the modules themselves. Instead, they concentrate
mainly on integrating modules to create their products. The development and
production of modules is the task of highly specialized suppliers.

P
ro

du
ct

2
P

ro
du

ct
1

RDBMS

LDAP Server

System X

Server

EclipseRCP
Frontend

Net Frontend

System X Adapter

LDAP Adapter

RDBMS Adapter

Business
Component A

Business
Component B

Business
Component D

RDBMS

Server

Web Frontend
RDBMS Adapter

Business
Component A

Business
Component C

EclipseRCP
Frontend

Web Frontend

Net Frontend

System X Adapter

LDAP Adapter

RDBMS Adapter

Business
Component A

Business
Component B

Business
Component C

Business
Component D

A
ss

et
Li

br
ar

y
P

ro
du

ct
2

P
ro

du
ct

1

RDBMS

LDAP Server

System X

Server

EclipseRCP
Frontend

Net Frontend

System X Adapter

LDAP Adapter

RDBMS Adapter

Business
Component A

Business
Component B

Business
Component D

RDBMS

Server

Web Frontend
RDBMS Adapter

Business
Component A

Business
Component C

EclipseRCP
Frontend

Web Frontend

Net Frontend

System X Adapter

LDAP Adapter

RDBMS Adapter

Business
Component A

Business
Component B

Business
Component C

Business
Component D

A
ss

et
Li

br
ar

y

Fig. 5.4 Relationship between product and components (based on Zacharias 2007, p. 74)

158 5 Platform Concepts

5.2.2 Organizational Support for Implementing Product
Platforms

A major challenge for software providers is to align their organizational structures
with the rather abstract notion of a product platform. Here, both theory and
practice are still embryonic. In addition to the simpler concepts found in the Web
application development space, there are also more comprehensive approaches,
such as component-based software development (Messerschmitt and Szyperski
2003, p. 244–263).

Zacharias provides some interesting initial insights (Zacharias 2007), dividing
tasks into domain engineering, application engineering, and product line
management:

• Domain engineering constitutes the technical, specialist, and organizational
basis for component-based development. In particular, this includes the main-
tenance of an asset library, which contains all available components. Domain
engineering also involves the provision of development environments and
procedural models.

• Application engineering develops software solutions, drawing on the compo-
nents provided by domain engineering, and with new, complementary com-
ponents. Simultaneously, application engineering passes these newly developed
components back to domain engineering.

• Product line management oversees domain engineering and application engi-
neering and ensures these are in alignment.

In the final analysis, products are nothing more than special configurations of
components, which are linked at the time of development, installation, or at
runtime. Figure 5.4 illustrates the concept of component-based engineering, after
Zacharias.

Van der Linden et al. (2004) have developed a guideline for the implementation
and evaluation of product platforms. They look at a product platform from four
perspectives: the business dimension, the architectural dimension, the procedural
dimension, and the organizational dimension. For each of these four dimensions,
there are different evaluation levels that can be used to assess an organization’s
current status in relation to the implementation of a product platform.

5.2.3 Add-on: Industrialization as a Management Concept
for the Software Industry

In the previous section, we looked at component reusability and the related
principle of standardization. In Chap. 4, we discussed various forms of out-
sourcing. In Sect. 3.4.2, we analyzed current approaches to automating software
development. These three concepts are all part of the broader concept of indus-
trialization, which is currently the subject of much discourse and is becoming
increasingly important for the software industry.

5.2 Product Platforms in the Software Industry 159

http://dx.doi.org/10.1007/978-3-642-31510-7_4
http://dx.doi.org/10.1007/978-3-642-31510-7_3

Industrialization is a historically evolved management concept that offers a
framework for cost-effective mass manufacturing. According to this concept, the
key factors are: increased standardization of products and processes; greater
specialization (i.e., an increasing division of labor); and automation (Heinen 1991,
p. 10; Schweitzer 1994, p. 19). These three elements are interrelated, standardi-
zation being the most important prerequisite for implementing both specialization
and automation. To put it another way: specialization and automation are not
possible without standardization. But even standardization alone can lead to lower
unit costs. This is because only standardized processes can be carried out by a
machine or divided among multiple parties. Similarly, standardized processes are
only possible with standardized products.

New technologies play a central role in industrialization. As they create new
potential for automation, specialization, and standardization, they are often
described as drivers of industrialization.

Based on these technologies, we can demarcate three stages of industrialization,
two of which have already come to a close, and one that continues to this day
(Condrau 2005). The first period begins with the Industrial Revolution, from 1780
onwards. The invention of the steam engine, railroad, and power loom saw artisan-
type one-at-a-time manufacturing replaced by an early form of industrial mass
production. Whereas goods had previously been made individually for the
craftsman’s own use, machines enabled the more standardized manufacture of
large quantities of products for sale. This first stage of industrialization was a time
of enormous productivity gains and rapid economic growth.

The concept evolved further during the second stage of industrialization, which
commenced in 1840. In addition to studies conducted by academics, Taylor’s work
on scientific management is a case in point, key drivers in this phase were the
discovery of electricity and the invention of electric motors. While in the first stage
of industrialization, the production process was shaped by a quantitative division
of labor (i.e., dividing similar activities between multiple machines or human
resources), the installation of conveyor belts and the consequent increase in
standardization meant that work could be divided according to the type of task.
As a result of this greater specialization, highly standardized material goods, such
as the Model T Ford, could be created, stimulating further productivity gains.

The IT revolution, which began in the late twentieth century, is now seen as
ushering in a third stage of industrialization. While the first two stages involved the
manufacture of material goods, the focus is now on creating information-intensive
services and products. This development has been driven by the well-known waves
of innovation in information and communication technology. Figure 5.5 summa-
rizes the factors behind the industrialization of software development which were
discussed previously in various parts of this book.

Figure 5.6 outlines the three stages of industrialization and their key charac-
teristics. In the literature, the service sector is sometimes presented as the primary
target of the third stage of industrialization. We do not share this point of view:
Industrialization, through modern ICT, is also impacting information products
such as books or software, which are not part of the service sector.

160 5 Platform Concepts

However, it should be noted that there are limitations to the division of labor
and automation, and therefore to the concept of industrialization. These limitations
concern the motivation of employees, the costs of distributed manufacturing, and
the flexibility of the production processes. When there is a very deep division of
labor, tasks become increasingly similar. Taken to excess, this becomes mind
numbing and monotonous for workers. As a result, their motivation sinks,
diminishing the unit cost advantage. In addition, a high level of automation
requires a high level of standardization: This makes changes to processes, and
therefore also to products, increasingly difficult. In light of both of these aspects,
the manufacturing industry no longer sees maximum industrialization as its ulti-
mate ambition.

Fig. 5.6 Three stages of industrialization

Fig. 5.5 Drivers and expected effects of industrialization in the software industry

5.2 Product Platforms in the Software Industry 161

5.3 Industry Platforms in the Software Industry

5.3.1 Openness of Industry Platforms

As we noted at the start of this chapter, industry platforms provide a basis for
products and/or services whose functionality is extended by complementors. For
example, most game consoles include only the basic functionality required for
playing games, such as a graphics accelerator. The games themselves are devel-
oped by third parties. Industry platform operators’ main objective is to maximize
the attractiveness of their platform, by offering the largest possible number of
complementary products to the largest possible group of end customers (who can
be consumers or companies).

In more general terms, platform operators are primarily concerned with
achieving the right degree of openness for their platform. A platform can be
described as completely open, if it has no limitations as to participants, develop-
ment, use, and commercialization of the platform (Eisenmann et al. 2009). This
extreme form is rare, however, especially when it comes to commercially operated
platforms. Rather than simply taking an either-or decision, platform operators need
to find the ideal degree of openness for their platform.

The difficulty herein lies in the trade off between openness and control: while
more openness encourages third parties to participate, increasing the platform’s
attractiveness, it will generally lead to a loss of control over the platform design
(West 2003). In the following section, we distinguish between vertical and hori-
zontal openness.

5.3.1.1 Vertical Openness

Vertical openness refers to what extent complementary products or services from
external providers can or should be provided. In this regard, we can differentiate
between three platform-specific parameters which we will address below.

Exclusivity

A key parameter in deciding the degree of openness is the agreement of exclusive
rights. Their goal is to ensure that a specific complementary product is offered
exclusively via the platform (Eisenmann and Wong 2004). For example, new ver-
sions of the popular computer game Grand Theft Auto GTA are first available only on
Sony’s Playstation platform. A second form of exclusivity agreement is category
exclusivity. In this case, the platform operator and complementor agree that a certain
type of application may only be offered by that particular complementor. Strategies
such as these, which essentially reduce openness, make particular sense when one
side needs to make high and specific investments, and is only prepared to do so when
the other side ensures exclusive access to the distribution channel in return. This form
of agreement can also be observed on the market for console games: Platform

162 5 Platform Concepts

operators commonly limit console games’ access to the market—ensuring that, on
one hand, the chosen games are of sufficiently high quality; and on the other, that they
can command high licensing fees.

Reverse Compatibility

When a platform is further developed, new and/or additional functionality usually
becomes available to the developers of complementary applications. An important
decision is the required about reverse compatibility; in other words, whether to
ensure that complementary extensions developed for an older version of the
platform will also be able to run on newer versions. Platform providers need to
weigh up whether to accept potentially higher costs and limitations in the further
development of the platform, in order to make all existing complementary offer-
ings available on new platform versions (Choi 1994). When partner applications
are a central feature of the platform, ensuring reverse compatibility is essential.
As proclaimed by its slogan, ‘‘There’s an app for everything’’, Apple has made the
availability of complementary applications a key competitive advantage of the
iPhone. In consequence, the company needed to ensure reverse compatibility when
developing the fourth generation iPhone. This is why the company deliberately
opted for a new display resolution with exactly double the number of pixels, both
vertically and horizontally. This step ensured that all applications developed for
previous generations of iPhone will run on the new version without a hitch.
If Apple had overlooked this, all developers of complementary applications would
have been forced to provide a new version tailored to the new platform. In turn,
this would have diminished the amount of vertical openness.

Integration of Complementary Applications into the Platform Core

Another method of determining the degree of openness is to integrate comple-
mentary applications previously developed by external partners into the core of the
platform, in the course of further development. An example of this type of strategy
is Microsoft’s Windows operating system: A multitude of standard applications,
such as browsers, media players, and system utilities, were previously offered only
by third parties as optional extras. Now, they are an integral part of current
versions. As will be explained in the following section on the management of
complementors, this step can be viewed as closing the platform, as these partners
run the risk of competing with the operator (Yoffie and Kwak 2006). At the same
time, there are reasons for this kind of strategy, such as reducing strategic
dependence on particular providers, or the opportunity to realize economies of
scale.

5.3.1.2 Horizontal Openness

A platform’s openness to other platforms or third parties is described as horizontal.
This can be achieved via the following parameters (Eisenmann et al. 2009):

5.3 Industry Platforms in the Software Industry 163

Interoperability with Other Platforms

The main method by which a platform can be opened horizontally is the provision
of open interfaces and tools (Katz and Shapiro 1985). The Facebook Connect
interface is an example of this way of creating interoperability: Once a user has
registered, other platforms, such as Yahoo, can access their profile data. At the
same time, Facebook even displays the user’s activities on other platforms. As the
Facebook platform had already reached a certain maturity by the time this con-
verter was introduced (late 2008), this strategic opening provided an opportunity to
grow user numbers beyond the core target group. Conversely, using Facebook
Connect is also attractive for competing platforms, as it enables them to access the
data of users already registered on Facebook.

Licensing Other Platform Operators

In the development stage of a platform, one-sided subsidies are often employed to
prevent the ‘‘penguin effect’’ discussed in the context of network effect theory (see
Sect. 2.2.2.1). In this stage, it often makes sense to license only one proprietary
platform operator, to prevent freeloaders from taking advantage of one-sided
subsidies (Eisenmann 2008). If the platform has reached a certain level of matu-
rity; however, a strategic opening through the licensing of further operators can
dramatically accelerate growth. This option is especially attractive when the
additional operators apply their specific knowledge to provide innovative forms of
the platform, which broadens the potential user base (Gawer and Cusumano 2002).

A successful example of this type of opening can be observed in the market for
smartphone operating systems: The Android operating system is developed and
provided by the Open Handset Alliance, led by Google. Android is licensed to
numerous smartphone manufacturers, such as HTC, Motorola, Samsung, Dell, and
Sony Ericsson, as an operating system for their devices. This strategy of licensing
further providers (without relinquishing control over the development of the
platform), seems to be a success: Android, at least for the time being, is recording
strong growth rates, both in absolute terms and relative to its competitors.

Acquisition of Platform Sponsors

In addition, a platform can also be opened horizontally by taking on sponsors. In
contrast to licensees, who base their specific extensions on the platform core,
platform sponsors, are also involved in the ongoing technical development of the
platform. We have already discussed the advantages of these types of development
partnerships in Sect. 3.1.1.2. On the other hand, opening the platform to additional
sponsors also increases the complexity of coordination between the sponsors and
increases the effort required to specify common standards (West 2006).

Compared to licensing additional operators, adding to the number of sponsors
also involves a considerable risk: In the worst case scenario, political disagree-
ments between the sponsors could delay or completely impede development.
According to West (2003), this type of opening should be pursued if the original

164 5 Platform Concepts

http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_3

platform operator’s business model focused not on licensing the platform, but on
selling complementary products or services. In fact, pushing this kind of business
was a key factor in IBM’s decision to transfer its rights from the Eclipse devel-
opment platform to the open source community. We will delve deeper into this
topic in Chap. 7.

Another possible motivation for opening to new sponsors is when the platform
is under considerable pressure from competing platforms. For example, in 1998,
after losing the browser wars, Netscape disclosed the complete source code of its
Netscape Communicator as part of the Mozilla Project, and opened itself to further
sponsors. The result: the Mozilla Foundation produced the Firefox browser.

5.3.2 Management of Complementors

Senior management at software companies tend to focus on analyzing their own
strengths and those of competitors, and frequently neglect to evaluate their sup-
posed allies: providers of complementary applications. While platform operators
are fully aware of their reliance on complementary functionality; especially those
who run industry platforms, they often overestimate the extent to which their
interests coincide. Even if, thanks to indirect network effects, both parties are
equally eager for the platform to grow, their interests cease to accord when it
comes to dividing up the profits.

For this reason, managing complementors is a key task for platform providers.
In addition to an intensive analysis of complementors’ business models, strategies,
goals, skills, and motives, this also encompasses the selection of suitable para-
digms for shaping the relationship between platform operators and complementors.
Ney (2004) has devised two opposing paradigms, hard and soft power, which will
be briefly described in the following section.

The most immediately obvious means for influencing complementors fall into
the ‘‘hard power’’ category: By adopting a credibly threatening posture or dangling
financial incentives, for example a share of revenue, platform operators hope to
ensure that complementors toe the line. A real-life example of the use of hard
power can be seen in Bill Gates’ threat to cease the development of Microsoft
Office for Apple’s Mac OS, should Apple continue to refuse to integrate Micro-
soft’s Internet Explorer in the Mac OS. These methods are generally underpinned
by traditional sources of power, such as a large market share or exclusive control
of a distribution channel. A platform operator can also exercise hard power and
reduce complementors’ independence by producing and providing strategically
important complementary offerings itself. Smartphones are a case in point: Despite
the trend towards coordinating a wide array of apps through marketplaces, vital
core functionality, such as telephony or text messaging, remains integral to the
platform. This strategy lets the platform operator realize economies of scale and
generate additional earnings by selling complementary products. In addition, it can
also be deployed to convey a clear message. However, especially when the

5.3 Industry Platforms in the Software Industry 165

http://dx.doi.org/10.1007/978-3-642-31510-7_7

platform operator relies on the existence of a broad range of complementary
offerings, this step can be counter productive: the message that the platform
operator can and will encroach on the market and jeopardize complementors’
sources of income may cause the latter to think twice about collaborating with this
operator.

This reveals the disadvantages of using hard power: entering the market for
complementary offerings incurs considerable ongoing costs. In addition, it pre-
vents the development of a long-term relationship of trust with complementors.
Furthermore, complementors will presumably try to avoid becoming too depen-
dent on a particularly powerful platform operator, and may well bestow their long-
term support on a competitor.

The alternative, namely exerting soft power, is generally a cheaper, and in the
long term, more successful method of encouraging complementors to collaborate
by pointing out shared objectives and opportunities. Concrete steps to achieve this
include the pro-active communication of market data and plans for the future
direction of the platform. Soft power can be wielded by proclaiming a common
vision, which clearly highlights the advantages for complementors. One example
of this, albeit from another industry, is Steve Jobs’ efforts to integrate offerings
from all the major music labels in his iTunes platform: In 2003, he articulated a
compelling shared vision for the industry, and was able to persuade all labels to
collaborate with him on terms that ensured the Apple iTunes Stores could offer
attractive prices.

The disadvantages of this approach are that soft power is only successful as a
long-term strategy, and an operator relying solely on soft power can be outflanked
by a more aggressive competitor.

As shown above, both hard and soft power can be successful means to deal with
complementors. Yoffie and Kwak (2006) have identified three factors that help to
select the most suitable paradigm:

• Strength and dominance: The use of hard power in particular requires the
deployment of considerable (generally financial) resources and a correspondingly
strong position on the market. If a platform operator cannot meet these require-
ments, they are better advised to consider soft power. Small and seemingly weak
companies can be especially attractive to external partners, as the latter do not
have to fear that the operator will encroach on their territory.

• Diversity of complementary offering: If a platform operator is dependent on a
large and diverse offering of complementary products, soft power is the better
option, as this is the only way to ensure that the platform remains attractive to
complementors over the long term.

• Specific investments by complementors: To integrate their offerings into the
platform in the best possible way, complementors often need to make specific
and irreversible investments. Where such investments are necessary, potential
partners will try to guard against a breakdown in their relationship with the
platform operator. As a result, it can be assumed that this type of trust is more
likely to be built using soft power.

166 5 Platform Concepts

For platform operators, therefore, the question of hard or soft power is not an
either-or decision, but rather a search for the ideal combination of the two. A
middle path chosen by many operators is to restrict their exercise of hard power by
producing only the most strategically significant complementary products them-
selves. Beyond that, they avoid intervening in the market for complementary
offerings, or do so only in a very rudimentary way, for example in the form of
quality controls. They will then use soft power to establish as stable and open a
relationship with their partners as possible.

5.3 Industry Platforms in the Software Industry 167

	5 Platform Concepts
	5.1…Overview
	5.2…Product Platforms in the Software Industry
	5.2.1 Cost Structure of Platform-Based Software Development
	5.2.2 Organizational Support for Implementing Product Platforms
	5.2.3 Add-on: Industrialization as a Management Concept for the Software Industry

	5.3…Industry Platforms in the Software Industry
	5.3.1 Openness of Industry Platforms
	5.3.1.1 Vertical Openness
	Exclusivity
	Reverse Compatibility
	Integration of Complementary Applications into the Platform Core

	5.3.1.2 Horizontal Openness
	Interoperability with Other Platforms
	Licensing Other Platform Operators
	Acquisition of Platform Sponsors

	5.3.2 Management of Complementors

