
3Software Vendor Strategies

Against the background of the economic principles described in the previous
chapter, this chapter examines selected strategies for software vendors. The ven-
dor’s positioning within the value chain is of critical importance. Section 3.1
initially considers the opportunities and challenges associated with cooperation
strategies. In this context, we also look at acquisitions, which play a key role in
software markets. In addition, we discuss sales strategies (Sect. 3.2) and pricing
strategies (Sect. 3.3). We conclude by exploring key management questions
concerning the development of software in Sect. 3.4.

3.1 Cooperation and Acquisition Strategies

This section looks at cooperation and acquisition strategies within the software
industry. As already described in Sect. 2.2, these strategies are of central impor-
tance, in particular against the background of network effects on software markets.
Moreover, a single vendor is unlikely to be able to fulfill all customer needs with
its own portfolio of products and services. First, we will highlight the general
benefits and challenges of cooperation (Sect. 3.1.1). We will then investigate
acquisitions (Sect. 3.1.2).

3.1.1 Cooperation in the Software Industry

3.1.1.1 Advantages

Cooperation refers here to collaboration between legally independent entities
(based on contractual or tacit agreements). We assume that cooperation is for the
medium or long term, and requires capital investment on the part of the partici-
pants. The key goals are to secure greater efficiency or value added of a kind that
would not have been possible without cooperation. Brandenburger and Nalebuff

P. Buxmann et al., The Software Industry, DOI: 10.1007/978-3-642-31510-7_3,
� Springer-Verlag Berlin Heidelberg 2013

55

http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_2

refer in this context to a ‘‘value net’’ created by this collaboration (Brandenburger
and Nalebuff 1996, pp. 16–19). The advantages that can be secured include the
following:

• Cost savings can be achieved through economies of scale and economies of
scope. Examples include the savings possible by making use of the discounts
available when purchasing large volumes or through the shared use of
resources, such as warehouses or offices. Moreover, costs can be saved through
cooperative planning processes, for example for planning procurement or
deliveries (Martín Díaz 2006).

• Time savings can be achieved, for example during development work, by
combining resources. This can accelerate time-to-market. Development part-
nerships can also reduce risk. For instance, by sharing the costs of development
work, the risks of failure are shared and therefore minimized for the participants.

• Cooperation can also increase the value of the product or service. For example,
airlines, car rental companies, and hotels form alliances to offer additional
services, such as the synchronized provision and return of rental vehicles and
the granting of bonus points. Open-source software is also developed through
collaborative activities. The more programmers are involved, then the better the
quality of the software, at least as a general rule. In his famous article, ‘‘The
Cathedral and the Bazaar,’’ Eric S. Raymond states ‘‘given enough eyeballs all
bugs are shallow’’ (Raymond 1999).

• Cooperation and acquisitions can grant access to new markets. This can involve
new geographies, or an extension to the existing product portfolio.

The potential advantages are ultimately reflected either in savings or (directly or
indirectly) in an increase in revenues. Dividing up the value added between the
partners can be a significant challenge. Many cooperative projects stumble at this
particular hurdle—which is only trivial at first glance—even before they really
begin. We wish to illustrate this problem using an example of cooperative game
theory.

A rich man and a beggar are walking along the road, and both of them discover
some money, let us say 100 euros, simultaneously. The challenge for the two of
them is to divide up the money in a way that is satisfactory for both. If they
manage to find a consensus, each gets to keep his portion of the find. If they fail to
agree, both will be left empty-handed.

The problem is easy to understand, but a mutually agreeable solution is difficult
to find. Both the beggar and the rich man want to keep as much of the money as
possible for themselves. This particular constellation can often be seen in similar
form between business partners. The theoretical solution of the problem is com-
plex in mathematical terms, and is based on a variety of utility functions for the
two parties (Sieg 2005, p. 181 ff.). On the basis of an assumed linear utility
function for the rich man and a logarithmic function for the beggar, it is possible to
arrive at a split of approximately 23 euros for the beggar and 77 euros for the rich
man. However, this is the theory, and in practice it is very difficult to get the two
parties to agree on a split of this kind.

56 3 Software Vendor Strategies

We, therefore, wish to attempt to simplify the matter: we can assume that the
allocation of the benefits of cooperation must be Pareto optimal. In other words,
the gains must be divided up in a way that ensures that at least one of the partners
is better off than before, but none is worse off. If this is not the case, then at least
one of the partners will generally not wish to cooperate.

There are pragmatic alternatives, including the following simple approaches
(Buxmann et al. 2007):

• The profits of cooperation are divided among n participants, so that each par-
ticipant receives the nth share of this additional profit.

• The profits of cooperation are divided up in accordance with the pattern of
profits prior to the partnership.

In the first instance, the smaller partners gain disproportionately. With the
second model, the stronger participants tend to be at an advantage. Even if one or
both of these possible models lead to Pareto optimality, this does not mean that the
participants would actually come to an agreement. There are a wide variety of
possible distribution mechanisms, with an equally large variety of advantages and
disadvantages for the individual participants. Whatever happens, each participant
will attempt to secure the largest possible slice of the available cake for themselves.

Moreover, any partnership entails a sizeable investment on the part of the
participants. This begins with the costs of seeking the right business partner. Then
there is the expense, often considerable, of contract negotiations. Negotiations will
focus, for example, on the partners’ contributions in terms of investments and their
share of any profits. Moreover, there will be significant investment in the estab-
lishment of a shared infrastructure and in developing skills at the participating
organizations (Hirnle and Hess 2006).

In the next section, we wish to concentrate on forms of cooperation within the
software industry.

3.1.1.2 Types of Cooperation and Partners Within the Software
Industry

First, let us consider who the potential partners for software companies are. In
this context, we consider the Brandenburger and Nalebuff model, in Fig. 3.1
(Brandenburger and Nalebuff 1996, p. 17).

Fig. 3.1 Systematic
definition of potential
partners

3.1 Cooperation and Acquisition Strategies 57

In other words, we assume that a company, in the automotive industry, the
software industry, or in a different sector, has the four potential partners given
above: customers, complementary providers, suppliers, and competitors.

Moreover, partnerships can be better understood by employing the classifica-
tion created by Ralf Meyer, which differentiates between (Meyer 2008):

• Development partnerships,
• Reseller partnerships,
• Shared revenue partnerships,
• OEM partnerships,
• Referral partnerships, and
• Standardization partnerships.

When defining collaborative relationships, the following questions need to be
addressed (Meyer 2008):

• Which partner is to deliver the product to the end-customer (who ships)?
• Which partner determines pricing and discounts (pricing)?
• How is the product to be branded (branding)?
• Which partner has the intellectual property rights to the product (IP)?
• Which partner will post sales revenue for the product (revenue booking)?
• Which partner is responsible for customer contact (customer control)?
• Which partner is responsible for go-to-market activities?
• Does the recipient carry out quality checks (quality assurance)?
• Which partner is responsible for support?

Development Partnerships

A development partnership is a collaborative relationship with the aim of creating
new software and service solutions. Software providers can cooperate with any of
the partners depicted in Fig. 3.1. The development tasks are shared among the
partners, taking on the role of inventors.

A frequent example is the joint development of a product and systems on the
part of standard software vendors and their customers. Generally, the aim is to
develop a solution that supports industry-specific needs that are not modeled
within the standard product. What are the advantages of this type of cooperation?
The customer gains access to a software solution tailored to its particular needs.
The software vendor gains insight into a particular industry. An example is the
development of a solution for scheduling agreements with suppliers, created within
the scope of a partnership between SAP and Bosch (Buxmann et al. 2004).

Frequently, as the following example illustrates, joint software development
leads to the establishment of a joint venture.

58 3 Software Vendor Strategies

iBS Banking Solution

Within the scope of a dedicated project, CSC Ploenzke created an in-house
solution for the mortgages unit of DePfa Bank (since renamed Aareal Bank).
The solution adds important components to the standard SAP solution for
banks. Its functionality encompasses all lending and deposit-taking, integrated
derivatives, and money market and foreign exchange trading. The solution also
forms the basis for end-to-end banking management, including risk manage-
ment, on the basis of the SAP system. Once the project was completed, the
participants came to the conclusion that the software solution could be mar-
keted to other companies. The two parties founded a joint venture, with CSC
Ploenzke holding a 51 % stake and DePfa the remaining 49 %. There were two
reasons for this move. First, there was an issue with the fact that potential
customers were DePfa’s direct competitors. Second, DePfa did not have suf-
ficient consulting resources to implement the software at other organizations.

Sources www.ibs-banking.com; Sapinfo.net/SAP-BranchenmagazinBan-
ken and Versicherungen, no. 3 March 2001, pp. 20–21.

Suppliers are an additional group of potential partners for joint development
activities. In the software industry, these particularly comprise other software
companies who can take responsibility for selected development tasks, or free-
lance contractors who can be incorporated into project teams. Major standard
software vendors, for example, frequently work with a large number of software
subcontractors. In particular, the trend toward service-oriented architectures (see
Sect. 4.7.2) may facilitate the establishment of further collaborative arrangements
at the interface between software vendors and subcontractors. This opens up new
opportunities for niche players to offer software as a service (SaaS).

When a standard software provider finds that the costs of developing a particular
service exceed the expected value added, the obvious solution is to outsource this
development work to a software supplier. This limits the software provider’s
development risk and the supplier gains an opportunity to integrate its services into
the major player’s solution. To date, in most actual cases of these types of partner-
ship, the provider and the supplier deal with the customer separately—and send their
own invoices. In the future, closer collaboration will be conceivable and worthwhile.
The partnership could be set up so that the suppliers will have a share in the revenues.
A major challenge here, however, is to find the right formula to divide up the spoils.
In addition, both partners must invest in the partnership. Typically, the supplier will
have to make the larger investment, especially in the form of training costs. Often,
suppliers and development partners must attend—often costly—training sessions
organized by the software provider, in order to gain entry to particular partner pro-
grams. However, this is an understandable approach from the provider’s perspective:
For one thing, it ensures that suppliers are familiar with the relevant underlying
technologies, and for another, training can generate considerable revenues.

3.1 Cooperation and Acquisition Strategies 59

http://www.ibs-banking.com
http://dx.doi.org/10.1007/978-3-642-31510-7_4
http://dx.doi.org/10.1007/978-3-642-31510-7_4

This type of partnership would also be possible with competitors. This rela-
tionship is sometimes described as ‘‘co-opetition,’’ because ‘‘you have to cooperate
and compete at the same time’’ (Brandenburger and Nalebuff 1996, p. 4). The
challenge here is to establish a win–win situation, where both partners profit from
the arrangement, although they are and will remain competitors.

The potential advantages of co-opetition are more or less those already outlined
in Sect. 3.1.1.1. One obvious motivator of cooperation is the opportunity to share
resources. If at least one of the parties has idle development or production
resources, while its competitors are operating at close to capacity, it makes sense
to share those resources. The best-known examples of this form of cooperation are
to be found in the automotive industry. For instance, Daimler and Volkswagen
have long collaborated on the development of engines and commercial vehicles,
while Porsche and Toyota are working closely together on the development of
hybrid drive technology.

DUET is an example of cooperation between two major software providers that
are competitors in some areas: Microsoft and SAP. DUET offers users an interface
between Microsoft’s Office applications and SAP’s ERP systems. Microsoft and
SAP offer competing enterprise software solutions for small and midsize compa-
nies, and both hope that the joint solution will deliver a win–win situation.

Payment for and allocation of intellectual property (IP) rights among the parties
varies considerably from case to case. Figure 3.2 illustrates a type of development
partnership that is often found in the SAP ecosystem. This concerns the joint
development of integration components.

Figure 3.3 depicts another type of development partnership, exemplified by the
integration of partner products into a SAP solution.

Reseller Partnerships

This model is characterized by a purchaser–provider relationship. In this case, the
purchaser incorporates the provider’s solutions in its product portfolio and resells
them to its own customers. In other words, the provider produces the software and
sells licenses to purchasers, taking on the dual role of inventor and—from the
purchaser’s perspective—IP lessor (see Sect. 1.4). The purchaser also occupies the
role of IP lessor, as it resells the licenses it has bought. Figure 3.4 provides an
outline of a reseller partnership.

Fig. 3.2 Outline of joint development of integration components (based on Meyer 2008, p. 110)

60 3 Software Vendor Strategies

http://dx.doi.org/10.1007/978-3-642-31510-7_1
http://dx.doi.org/10.1007/978-3-642-31510-7_1

Reseller partnerships are commonly found in the case of software providers and
their sales partners. But they also occur between suppliers and providers.

For suppliers, the potential advantage of this arrangement is that they obtain
access to the provider’s customers, without having to establish their own sales
organization. While coordinating the partnership involves some additional costs,
these are likely to be offset by the increased revenues from the sales channel.

Reseller partnerships are usually organized as shown in Fig. 3.5.

Shared Revenue Partnerships

This type of partnership involves a software provider selling its products through a
broker. The latter may also be a platform. Above all, the broker allows the provider
to benefit from its strong market position by means of a joint market presence.

Fig. 3.3 Development partnership–parameters (exemplified by an SAP integration project)
(based on Meyer 2008, p. 76)

Fig. 3.4 Outline of reseller partnership (based on Meyer 2008, p. 78)

Fig. 3.5 Reselling–parameters (based on Meyer 2008, p. 76)

3.1 Cooperation and Acquisition Strategies 61

In contrast to resellers, brokers do not assume any proprietary rights to the software
products they sell. Instead, they merely recommend the third-party solution to their
customers, fulfilling the role of an IP broker. This model is illustrated in Fig. 3.6.

Software distribution via mobile application portals is a current example of this
type of cooperation: Software providers—either companies or individual
developers—can use these platforms to provide customers with software solutions
and/or apps for their mobile devices. The best-known examples are Apple’s App
Store and Google’s Android Market.

OEM Relationship

The OEM model is essentially the traditional buyer–supplier relationship, as found
in the automotive industry, for example. In other words, a company integrates
components or systems developed by suppliers into its own product. In the soft-
ware industry, OEM relationships involve both suppliers and buyers acting as
inventors and IP lessors (Fig. 3.7). In rare cases, buyers can even assemble a
solution entirely from supplied components. In this scenario, the buyer’s role as an
inventor is limited to the activities required to integrate the components.

This model enables suppliers to benefit from higher sales revenues and greater
market penetration. Often, this type of relationship consists of smaller companies
providing larger ones with components. But it can also look completely different.
For example, SAP frequently acts as an OEM partner by providing its NetWeaver
platform to other companies. On this basis, the latter can develop complementary
solutions and sell them as a package to their own customers.

Fig. 3.7 Outline of OEM relationship (based on Meyer 2008, p. 97)

Fig. 3.6 Outline of shared revenue partnership (based on Meyer 2008, p. 86)

62 3 Software Vendor Strategies

From the buyer’s perspective, the main advantage of the OEM model is that
purchasing components and solutions cuts development time, costs, and risks.
Suppliers can deliver cost savings because they generally sell their products to
multiple buyers, enabling them to distribute development costs across several
parties.

A typical OEM relationship is organized as shown in Fig. 3.8.

Referral Partnerships

Like shared revenue models, referral partnerships involve an IP broker (Fig. 3.9).
In the following, we describe the latter as the ‘‘referral provider.’’ This partner sells
information about potential customers (leads) to the referral recipient (IP lessor).
In return for this information, the IP broker receives a combination of a fixed fee
and a share of the resulting revenues. As the referral provider mostly has no direct
influence over these customers, but merely passes on their contact details, the share
is generally a lot smaller than in the shared revenue model.

Figure 3.10 shows how this partnership is organized.

Fig. 3.8 OEM relationship–parameters (based on Meyer 2008, p. 76)

Fig. 3.9 Outline of referral partnership (based on Meyer 2008, p. 93)

Fig. 3.10 Outline of referral partnership (based on Meyer 2008, p. 76)

3.1 Cooperation and Acquisition Strategies 63

Standardization Partnerships

Standardization partnerships are somewhat different: As a general rule, no money
changes hands between the parties. However, they are an important element in
many software and IT enterprises’ strategies. These companies frequently form
strategic alliances. Mostly, their aim is to establish standards—or to prevent the
widespread adoption of standards that would benefit potential competitors.

The working groups of standardization organizations, such as the World Wide
Web Consortium, frequently facilitate this type of cooperation. Participating
companies aim to give input into the technical specifications of the new standard.
But they also know that they need to be inside the tent to ensure that their own or
preferred standard is chosen over others, possibly favored by competitors. We
discussed the importance of setting standards in some detail in Sect. 2.2.

3.1.2 Mergers and Acquisitions in the Software Industry

In this section, we will focus on mergers and acquisitions (M&A) in the software
industry. These play a particular role in the software industry, because network
effects make the size of a provider and its network a crucial competitive advantage.
First, we will consider the various forms of M&A (Sect. 3.1.2.1). This will feed
into an investigation of the various motives for acquisitions (Sect. 3.1.2.2), before
we turn to the consolidation trend in the software industry (Sect. 3.1.2.3). Finally,
we will analyze the success of M&A in the software industry (Sect. 3.1.2.4).

3.1.2.1 Forms of M&A

There is a multitude of definitions surrounding M&A. We do not intend to go into
them here. However, a common definition is that acquisitions involve at least one
company relinquishing its financial—and possibly also legal—independence
(Wirtz 2003, p. 15).

A distinction can be made between M&As, as shown in Fig. 3.11. Mergers
entail the fusion of two independent companies into one legal entity. In other

Fig. 3.11 Types of mergers
and acquisitions (Wirtz 2003,
p. 13)

64 3 Software Vendor Strategies

http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_2

words, both parties surrender their legal independence, although they can opt to
form a new legal entity or be incorporated into an existing one. In acquisitions, by
contrast, one company is integrated into a corporate group—this does not neces-
sarily involve a legal fusion.

Another distinction can be drawn between horizontal, vertical, and conglom-
erate (also known as diagonal) M&A (Wirtz 2003, p. 18 ff.).

Horizontal M&A involve companies in the same industry at the same stage of
the value chain. They are generally intended to increase competitiveness and
realize synergies in the form of economies of scale and/or economies of scope.
Examples of horizontal mergers in the software industry include the acquisition of
PeopleSoft by Oracle (see Sect. 3.1.2.3) or Symantec’s purchase of storage and
security solution provider Veritas, for some $13.5 billion (Parbel 2005).

Vertical M&A combine companies on different levels of the value chain. In
other words, an enterprise joins forces with another that is directly upstream or
downstream. This is also known as upward or downward vertical integration. The
aims behind vertical M&A are cutting transaction costs, improving planning across
the value chain, and better access to procurement (in the case of downward vertical
integration) or purchasers (in the case of upward vertical integration). The
expansion of Software AG in Latin America is an example of this type of deal. In
2005, the German provider acquired APS Venezuela and five affiliated companies
in Panama, Costa Rica, and Puerto Rico. Previous to this, APS Venezuela had been
Software AG’s sales partner and an established distributor of transaction systems
for major accounts in the financial, manufacturing, oil and mining industries, and
the public sector. The move was intended to strengthen Software AG’s presence on
the Latin American market.

Diagonal or conglomerate M&A bring together companies from different
industries or segments, enabling the penetration of new markets. These generally
result from a diversification or expansion strategy. For example, this is the strategy
followed by Infor. Its sales revenue of approximately $2.1 billion and headcount
of more than 8,000 make it one of the world’s largest software companies. Infor’s
strategy aims for rapid growth by buying up a number of smaller software pro-
viders from a variety of fields. In contrast to many other acquisitions in the

Fig. 3.12 Forms of M&A
(Wirtz 2003, p. 19)

3.1 Cooperation and Acquisition Strategies 65

industry, those made by Infor are not primarily driven by migration strategy: the
company does not intend to integrate the acquired applications into a single end-
to-end solution. In addition to licensing, Infor quickly generates income from the
target companies’ on-going service contracts. Moreover, it can take advantage of
cost-cutting opportunities such as tighter cost management or by consolidating
corporate or administrative functions.

Figure 3.12 illustrates the various forms of M&A.
In the following section, we will look at the motivations that prompt man-

agement to acquire another company or sell their own.

3.1.2.2 Motivations for M&A

As M&A can affect every aspect of the companies involved, any examination
should theoretically address the viewpoints of all relevant stakeholders. This
would include shareholders, management, employees, suppliers, customers,
competitors, and even society itself, as M&As frequently cause significant changes
in the labor market.

In the following section, however, we will concentrate on a brief outline of the
reasons from management’s perspective. These can be grouped into strategic,
financial, and personal motivations (Wirtz 2003, pp. 57–76).

Strategic motivations are generally about realizing synergies and can be divided
into

• Market motivations,
• Performance motivations, and
• Risk motivations.

Market motivations relate to both the procurement and sales sides. For example,
the deal may increase negotiating power over mutual suppliers, as larger quantities
are at stake. In addition to procurement, boosting sales is another key motivation
for M&A. By combining their sales activities, the companies involved can realize
synergies and gain competitive edge. A stronger position on the sales market can
bestow greater influence over prices, and can even help to squeeze competitors out.
Finally, an acquisition can also offer growth potential, for example in the form of
access to new regional markets.

Synergies may also be created by pooling resources and skills. Performance
motivations are the expectation of synergies in corporate activities such as research
and development, procurement, production, marketing. For one thing, the com-
panies’ technologies and expertise can be combined to produce new or better
quality products and services. In the context of software, the development of
integrated systems is conceivable. In addition, the deal could lead to a better
utilization of existing development resources.

Risk motivations are most commonly found in relation to M&A activities driven
by a diversification strategy. For example, a company may see risks in its
dependence on a particular product or the development of a particular industry.

66 3 Software Vendor Strategies

Expanding the product portfolio or tapping into new industries by means of an
acquisition is seen as a way of reducing these risks.

It should be noted that the strategic motivations listed above also apply to
cooperation in general, and should be regarded as supplementing the list of
advantages of cooperation in Sect. 3.1.1.1.

In addition to the above-mentioned market, performance and risk motivations,
there may also be financial motives for a merger or acquisition. The most powerful
motivation is generally raising profitability by generating profits or by taking
advantage of tax losses carried forward. These options will be based on consid-
erations relating to developments on capital markets, balance-sheet optimization,
and taxation.

Moreover, management may also have personal motivations. A number of
explanations have been put forward, including managers overestimating their own
abilities and empire-building, as the real reasons behind some acquisitions
(Wirtz 2003, pp. 57–76).

3.1.2.3 Consolidation Tendencies in the Software Industry

We have already noted a number of times that, due to network effects, software
markets are governed by the winner-takes-all principle. M&A help fuel this
tendency toward the establishment of monopolies. Their significance in the soft-
ware industry is highlighted in the following table, which compares M&A activ-
ities across industries in 2009. Out of 49 industries studied, the tables show the top
10 on the US (Table 3.1) and European markets (Table 3.2). In the USA, the
software industry occupies second place, in terms of transaction volume. By way
of comparison: in 2006, the software industry was ranked sixth (Buxmann et al.

Table 3.1 Comparison of M&A activities by industry, 2009 (USA) (Mergerstat Free Reports 2009)

Rank Industry Deals Value in millions of $

1 Drugs, medical supplies, and equipment 319 219,089.7

2 Computer software, supplies, and services 1338 50,911.6

3 Brokerage, investment and management, and consulting 521 47,170.5

4 Energy services 83 42,586.3

5 Transportation 81 29,626.0

6 Banking and finance 272 28,632.9

7 Food processing 83 22,665.7

8 Miscellaneous services 816 19,636.7

9 Broadcasting 73 19,069.0

10 Chemicals, paints, and coatings 106 14,060.0

Total
Top 10

3692 493,448.4

3.1 Cooperation and Acquisition Strategies 67

2008a). If we look at the number of deals, though, the software industry topped the
rankings in both 2006 and 2009. In Europe, the software industry is sixth in terms
of transaction volumes. But with respect to the number of deals, the industry
comes out on top here as well.

A well-known example of the consolidation trend is the ERP software segment,
most notably the takeover strategies pursued by Oracle. In recent years, Oracle has
attracted attention for its many M&A activities.

On June 6, 2003, just 4 days after PeopleSoft disclosed its intention to acquire
competitor J. D. Edwards, Oracle announced its own plan to buy up PeopleSoft for
$5.1 billion. The acquisition of J. D. Edwards would have made PeopleSoft the
second largest provider of enterprise software after SAP. Oracle’s announcement
triggered a 19-month long takeover battle. Finally, Oracle emerged victorious,
securing its rival for some $10.3 billion. This made it the industry’s largest merger
to date. Oracle was restored to its runner-up position on the enterprise software
market, and was able to edge closer to market leader SAP.

Oracle promised not only to continue supporting PeopleSoft and J.D. Edwards’
software until 2013, but also to develop it further. At the same time, it released a
new, integrated software solution called ‘‘Fusion,’’ combining all product lines.
This initiative must have required a significant effort on Oracle’s part; Fusion’s
R&D team is already one of the world’s largest.

Oracle then added one of the leading providers of CRM software to its holdings,
acquiring Siebel for around $5.85 billion. This intensified the wave of consoli-
dations on the ERP software market.

Recently, Oracle purchased Sun Microsystems, giving it a foothold on the
hardware market.

Table 3.2 Comparison of M&A activities by industry, 2009 (Europe) (Mergerstat Free Reports
2009)

Rank Industry Deals Value in millions of $

1 Drugs, medical supplies and equipment 71 25,690.5

2 Brokerage, investment and mgmt., and consulting 86 22,535.7

3 Food processing 20 19,939.3

4 Insurance 35 12,560.7

5 Broadcasting 18 8,955.2

6 Computer software, supplies and services 204 8,755.1

7 Beverages 22 7,059.6

8 Mining and minerals 16 6,044.5

9 Electrical equipment 19 6,040.5

10 Miscellaneous services 144 4,587.6

Total
Top 10

635 122,168.7

68 3 Software Vendor Strategies

A hotly debated theory posits that M&A activity upsets the market’s equilib-
rium: it essentially forces other organizations to make their own acquisitions, in
order to preserve their long-term independence on the market and avoid becoming
a takeover target themselves (Hutzschenreuter and Stratigakis 2003).

In the software industry in particular, network effects mean that size is in itself
an advantage for providers, giving them an edge over the competition. This was
the reason given by Oracle CEO Lawrence Ellison, who stated that the acquisition
of Siebel would ‘‘strengthen our number one position in applications in North
America and move us closer to the number one position in applications globally.’’
Moreover, in this case, Oracle also had the opportunity to offer its customers an
end-to-end integrated solution.

A similar consolidation trend can be seen on the market for office software.
A few years ago, there were a number of viable options, such as Lotus 1-2-3 for
spreadsheets or Word Perfect for word processing. Now, Microsoft has a virtual
monopoly over this market. The open source community is the only remaining
serious competitor (see Chap. 7).

Even though monopolistic structures are often regarded as disadvantageous for
the buyers, their impact on network markets is a matter of debate. On the one hand,
of course, customers are far more dependent on the provider. Theoretically, this
would enable the provider to raise prices, which—as shown above—has not
happened in the case of Microsoft. An additional drawback for users is that
monopolies tend to produce fewer innovations. On the other hand, monopolistic
structures have the advantage of avoiding incompatibility issues. This is the line
taken by Stanley Liebowitz and Stephen Margolis in various articles
(e.g., Liebowitz and Margolis 1994, 2001).

Empirical studies show that the wave of consolidations in the software industry
is primarily being driven by leading players (Friedewald et al. 2001). One response
open to smaller software providers is to cooperate with other software companies;
another is to concentrate on specialist or niche solutions.

3.1.2.4 Factors Determining the Success of M&A Activities
in the Software Industry

On software markets, M&As give companies the opportunity to gain strategic
competitive advantage. As previously explained at some length, this is reinforced
by the fact that software providers operate on network effect markets. But do
acquisitions really increase the value of the purchaser’s company? This question
was addressed by Izci and Schiereck in an empirical study (Izci and Schiereck
2010).

The dataset comprised 81 international acquisitions in the enterprise software
industry between 2000 and 2007. All of these transactions were worth at least
$50 million and the purchaser acquired at least 20 % of the target company. Both
the purchaser and the target were listed companies, whose stock prices could be
tracked between 230 days before and 30 days after the announcement of the deal.

3.1 Cooperation and Acquisition Strategies 69

http://dx.doi.org/10.1007/978-3-642-31510-7_7
http://dx.doi.org/10.1007/978-3-642-31510-7_7

The investigation was based on the analysis of abnormal returns. These are the
difference between actual return and the ‘‘normal’’ return that would have been
expected had there been no M&A announcement. The abnormal returns for the
purchaser and target were calculated and cumulated over a period comprising up to
15 days before and after the M&A announcement.

The results showed that target companies obtain a positive cumulative abnor-
mal return (CAR), while the purchasers’ value trends to dip slightly. The CAR
experienced a statistically significant rise or fall, particularly when the
announcement was made and a few days following it, and the trend continued
throughout the observation period thereafter (see Fig. 3.13).

In a second step, the researchers looked at the factors affecting the development
of the stock price, and therefore the success of the purchaser. On the basis of a
multivariate regression, they found no evidence that acquiring a company from the
same industry or segment or in the international environment had the expected
positive effect (Izci and Schiereck 2010).

While the analysis did show a small positive correlation, it was not statistically
significant. Similarly, the percentage of stock acquired and transaction volume had
no meaningful effect on the purchaser’s value. The only factor that showed a
slightly positive impact was cash rather than stock purchase: Buying with cash had
a positive effect on the stock market valuation.

By contrast, there were significant negative impacts in relation to the relative size
and stock market performance of the target company. The stock market reacts
unfavorably to major acquisitions, speculating that the integration costs incurred will
outweigh the potential synergies (Loefert 2007, p. 163; Izci and Schiereck 2010).

The results of the stock market study show that M&A transactions in the
enterprise software industry add value (at least initially) for target companies only,
while purchaser companies are at a disadvantage, in terms of shareholder value.

What is surprising is that overall high risk, in what is an innovative and
dynamic segment, does not appear to be responsible for the negative valuation of
the purchaser. Cross-border or diversifying transactions are not regarded as

Fig. 3.13 Cumulative average abnormal return (CAAR) for purchaser and target companies
(Izci and Schiereck 2010)

70 3 Software Vendor Strategies

particularly negative. Instead, it is cultural challenges that are likely to be punished
by the stock market. To earn a positive reaction from the markets, enterprise
software providers will have to convincingly demonstrate that the integration of
their major competitors will result in strong growth without risking synergies. The
alternative—foregoing acquisitions altogether—is not a realistic option in a
rapidly consolidating network market like the software industry.

3.2 Sales Strategies

Sales strategies involve decision-making around the provision of goods and/or
services to companies in the downstream value chain. This comprises activities
that directly address prospects, and sales logistics activities (Homburg and
Krohmer 2006, pp. 864–866).

This section discusses channel management activities; sales logistics is about
ensuring that physical products reach the end-customer, and is therefore not
relevant to software products.

In channel management, the following issues are of central importance:
• How the sales system is structured?
• How relationships with sales partners and key accounts are managed?
• The use of Key Performance Indicators (KPIs) systems in sales management

and
• How sales activities are organized?

3.2.1 Structuring of Sales Systems: Organization and Sales
Channels in the Software Industry

Structuring a sales system involves taking decisions about the sales organization
and sales channels.

Let us begin by looking at the sales organization. This can generally be
structured according to:

• Region,
• Industry,
• Product as well as
• New and existing customers.

Structuring sales by region generally means by continent, country or federal
state. The advantage of this approach is that it ensures a measure of geographical
proximity to the customer.

But sales can also be organized by industry. The advantage here is that the sales
professionals have the relevant industry-specific skills and ‘speak the customer’s
language.’ One drawback is that they typically spend more time traveling.

Structuring by product is the prime strategy of software companies that have a
broad range of products and whose sales activities rely on product-specific skills.

3.1 Cooperation and Acquisition Strategies 71

The sale of complex SCM or CRM systems is an example of this. Against this
background, many software companies structure their sales and consulting busi-
ness not only by region, but also by product. In the SCM and CRM field, for
example, many software companies have experts who address highly specialized
issues in worldwide projects, such as optimization algorithms for the implemen-
tation and use of SCM solutions.

It makes sense to structure the sales organization in terms of new and existing
customers because these two target groups require different types of sales
employees, who can be labeled ‘hunters’ and ‘farmers.’ As the name suggests, the
hunter type is best suited to winning new customers and selling them a new
product or solution. The farmer type, on the other hand, feels more comfortable
working with customers with whom he has built up a relationship over a long
period of time. This type should, therefore, be deployed in sales to existing
customers.

The above criteria can be combined, of course. It is common practice, for
instance, to create roles defined by product and region. This leads to one depart-
ment being responsible for specific continents and products. The advantage is that
the unique characteristics of specific regions and products are fully taken into
account, but the disadvantage is that it is not always clearly defined who is
responsible for what.

In the following, we will look at how to structure sales channels. The most
basic decision to be made is whether to choose direct or indirect sales. Indirect
sales are when sales activities are performed by third parties, such as VARs and
system integrators. With direct sales, these tasks are carried out in-house
(Homburg and Krohmer 2006, pp. 873–877).

When choosing between direct and indirect sales, businesses should take into
account both efficiency and effectiveness considerations. In terms of efficiency,
they should evaluate the two options in light of the associated transaction costs
(see Sect. 2.4), as using sales partners can lead to savings in this area. Those
savings are comparable with a trade margin in license sales. Effectiveness
considerations can relate to customer service quality, for example regarding
geographical proximity or specialization, or customer allegiance. For instance,
VARs and systems integrators might concentrate on specific industries and
develop deep skills. In addition, businesses in fast-growing sections of the soft-
ware industry tend to work with sales partners, because they could not achieve
rapid growth without them.

We will now look at some factors that can influence the advantages of direct
versus indirect sales. There is an assumption in the marketing literature that a high
specificity and product complexity would favor direct sales (Homburg and
Krohmer 2006, p. 874).

But does this necessarily apply to the software industry? With regard to
specificity, the assertion is correct. A provider of custom software, i.e., specific

72 3 Software Vendor Strategies

http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_2

solutions, is not likely to sell those solutions via indirect channels. So, indirect
sales are only an option for standard software providers. However, these products
are often extremely complex. As we saw in Chap. 1, this applies especially to ERP
systems, considering the huge amount of customization work required during
implementation projects. Nevertheless, standard software providers frequently opt
for indirect sales. But this route calls for sales partners with a correspondingly high
level of (often industry-specific) expertise. So, as far as the software industry is
concerned, high specificity signals a tendency to use direct sales. A further
advantage of direct sales, of course, is that it enables companies to build customer
allegiance and intimacy.

The choice of direct versus indirect sales will also depend on how many
potential customers there are. The advantages of indirect sales tend to increase
with the number of customers. Again, this can be explained in terms of the
transaction costs. As we saw in Sect. 2.4.4 in the discussion of intermediaries,
savings potential rises with the number of market participants.

Now, one might argue that the availability of the Internet and the characteristics
of software as a good would favor direct sales. Why would the provider not simply
sell the software direct to customers over the Web? This is no problem when the
product is relatively easy to understand, such as antivirus software. But it is quite a
different thing when it comes to implementing a complex solution, one with
comprehensive supply chain management functionality, for example. In this case,
the customer is certain to require a good deal of advice and support.

We underlined the international nature of the software industry at the beginning
of the book. This affects the structure of sales in various ways. A study by
Lünendonk showed that companies generally conduct indirect sales in other
countries via a subsidiary. The second most common option is the use of
collaboration partners, such as IT consulting companies, VARs and system inte-
grators (Lünendonk 2007, p. 57).

However, as a rule, providers do not have to opt for exclusively direct or only
indirect sales. They can often combine the two. SAP’s sales strategy is a case in
point. SAP divides up the market and as a result, differentiates its sales strategy in
terms of

• Global Enterprises with at least 2,500 employees,
• Local Enterprises with 1,000–2,499 employees,
• Medium Enterprises with 100–999 employees, and
• Small Enterprises with 1–99 employees.

In a presentation to investors in January 2007, SAP offered the following
market breakdown:

• 20,000 companies in the Global Enterprise segment,
• 1.3 million companies in the Local and Medium Enterprise segment,
• 55.4 million companies in the Small Enterprise segment.

3.2 Sales Strategies 73

http://dx.doi.org/10.1007/978-3-642-31510-7_1
http://dx.doi.org/10.1007/978-3-642-31510-7_1
http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_2

SAP sells direct to global enterprises, i.e., it does not involve any partners in the
sales process. The installed base in this segment ensures repeat sales and a steady
stream of license income through upgrades, new releases, and maintenance.

As SAP already has a very large market share among the top 500 firms, its
future growth will depend mainly on establishing a strong position among small
and midsize enterprises. In line with this objective, the company launched the
SaaS solution, SAP Business ByDesign. A major challenge is that the market
segments targeted differ markedly in terms of structure. Moreover, the various
industries represented by midsize companies make quite different demands on
business software. As a result, SAP’s Sales and Consulting units responsible for
the lower mid-market are locally organized, whereas those for the upper mid-
market are active throughout the whole country or even globally. These midsize
enterprises can be very different with respect to the IT skills at their disposal, as the
parameters in Table 3.3 describe.

SAP aims to acquire new customers in these segments by means of precon-
figured industry-specific solutions with attractive entry-level pricing. In collabo-
ration with its partners, the software giant is utilizing a new sales and
implementation strategy: the try-run-adopt model, which allows companies to try
out the software free of charge. In addition, the solutions are available as a SaaS
offering (see Chap. 6). The first SAP partners began to market these industry
solutions as packages in late 2006. With SAP’s support, they offer customers a
bundle comprising licenses, maintenance services, implementation, and the day-
to-day management of SAP systems at a monthly rate that is currently well below
€ 200 per user. TV commercials have been used to promote this model.

When determining the shape of their sales system, providers must also decide on

• The length of the distribution channel,
• The width of the distribution channel, and
• The width of the sales system (Homburg and Krohmer 2006, pp. 877–884).

The length of the distribution channel indicates how many sales partners there
are between the provider and the customer. In the software industry, multitier

Table 3.3 Availability of IT skills in midsize companies

Resources Lower mid-market Upper mid-market

IT department None In-house

ERP software skills None Yes

IT budget None Yes

Software decision makers Senior management IT department

Process complexity Low High

Number of users Small Large

74 3 Software Vendor Strategies

http://dx.doi.org/10.1007/978-3-642-31510-7_6
http://dx.doi.org/10.1007/978-3-642-31510-7_6

distribution channels make little sense. The advantages to be gained from them
relate mainly to logistics, particularly warehouse storage, which are of little
relevance to the software industry.

The width of the distribution channel expresses the number of sales partners a
provider works with. In principle, it makes more sense to work with a small group
of partners when the products sold are complex and of high value. As mentioned
earlier, this is why software companies provide training to assure the quality of
their sales partners—although another motivation is to generate sales in this sector
themselves.

The width of the distribution system describes whether a product is distributed
over just one channel or several. A single-channel system is one in which the
product can only reach the customer by one channel. With a multi-channel system,
the provider employs several channels to the customer. The music industry is one
example of this approach: albums are sold via conventional brick-and-mortar
retailers, online stores, or digitally via distributors such as Apple iTunes or
Musicload.

Key goals of a multichannel system are broad market coverage and the ability
to reach different customer segments. A core challenge is to create channels that
complement and do not cannibalize each other. For instance, a publisher could
offer subscribers of its daily newspaper various online functions that complement
the print edition, such as search functionality or multimedia content like docu-
mentary films on featured topics. In the software industry, relatively self-explan-
atory products are sold both on the Internet and through intermediaries. However,
cannibalization is less of a problem than in the music industry or in publishing, as
software providers generally have no preference as to whether their sales are
generated by direct or indirect channels.

When designing distribution systems, businesses need to clearly define the
target groups and the tasks of the various distribution channels.

3.2.2 Organization of Relationships with Sales Partners
and Key Accounts

We will now turn our attention to a software provider’s relationship with its sales
partners and key accounts. The term ‘key account’ denotes customers—usually
enterprises—who are particularly important to the provider and who are therefore
offered special deals or services.

Let us begin by looking at the provider-sales partner relationship. As in a supply
chain, this relationship is based on the purchase by sales partners of the provider’s
goods and services—in our case, software licenses—in order to sell them on to
their customers. The following section illustrates SAP‘s sales partnerships.

3.2 Sales Strategies 75

Sales partnerships in the SAP space
Among SAP’s partners, the mid-market is fiercely contested. To provide

transparent information about the quality of its partners, SAP introduced a
new method at the 2005 SAPPHIRE conference, whereby partners are
granted a particular status (associate, silver or gold) via a scoring system
known as Value Points (see Fig. 3.14). This system evaluates both the
partner’s skills and its portfolio. While sales success is the main criterion,
customer satisfaction, training activities, the development of industry-spe-
cific solutions and add-ons also earn companies bonus points. According to
the Value Points system, the score required for a particular status must be
achieved over the past four quarters. Gold status is worth attaining for
several reasons: partners with this status enjoy the biggest discounts on SAP
licenses, which means they can achieve the highest margin when they resell
them. An immaterial benefit is that the partner has close ties with SAP.
Ultimately, the partner status reflects the development of the business
relationship between SAP and the partner. A high status is bestowed in
recognition of the partner’s investment in the skills and resources needed to
develop and implement SAP solutions.

SAP also provides partners with an extensive e-learning portfolio, and
offers them sales and product training, which again earn them value points.
Other concrete support includes quarterly assessments and reviews, strategy
workshops, and joint marketing activities.

Fig. 3.14 SAP’s partnership levels

76 3 Software Vendor Strategies

Key account management is crucial for software providers in the narrow and in
the wider sense. That is why it is not unusual for executive board members or
senior managers to be involved in this task. Managers often draft internal key
account development plans that set out what revenues the company wishes to
generate with which solutions. The discounts granted to key accounts, e.g., on
software licenses, are normally considerably greater than regular discounts.

A primary goal of key account managers—regardless of the person’s level in
the hierarchy—is to be integrated in the customer’s strategic planning. This can
include jointly planning updates to a new release or the implementation of new,
innovative technologies. Coordination can also be worthwhile on an operational
level, e.g., regarding the customer’s spending plan. To help key account managers
with their tasks, some CRM systems enable them to create customer maps that
include information about which customer employees are well-disposed to the
provider and which are not. This information can be particularly vital when
problems need to be communicated.

Organizing regular events for key accounts is another good way of improving
communications and fostering customer allegiance. These can include invitations
to sport and/or cultural events.

Before we examine the organization of sales processes, we would like to start
by offering some thoughts on the management of sales activities. Performance
measurement systems can be an important tool for this purpose.

3.2.3 Key Performance Indicators as a Sales Performance
Management Tool in the Software Industry

3.2.3.1 Sales Performance Management

Sales performance management is the targeted management and coordination of a
company’s sales activities. We believe that performance management systems
must do more than simply monitor performance by comparing target to actual
figures. In a broad field of the literature, the main task of a sales performance
management system is seen as the coordination of the management system.
A coordination task always involves producing and utilizing decision-relevant
information for the purpose of managing a business or part of a business—in our
case, sales activities. A wide range of analysis tools is available to help supply
pertinent information (Fig. 3.15).

In this section, we will restrict ourselves to showing how performance mea-
surement systems are used, because this allows us to identify some special features
of sales activities in the software industry. The use of other tools, by contrast, does
not differ significantly between industries.

3.2 Sales Strategies 77

3.2.3.2 Use of Performance Measurement Systems in the Software
Industry

Generally speaking, the purpose of KPIs is to evaluate something in quantitative
terms. In the business world, performance indicators are used to provide man-
agement with decision-relevant information, usually for planning and monitoring.
For example, KPIs can be used to specify targets for a given period, and at the end
of that time to determine to what extent they have been met. If the actual figures
differ from the targets, corrective action must be taken.

A variety of performance measurement systems has been developed, and they
include many indicators that are related to each other. A classic example is the
DuPont Return on Investment model shown in Fig. 3.16.

Modern management systems, such as the Balanced Scorecard, are also based
on performance indicators as a tool for managing performance.

While the performance measurement systems discussed here are largely
application independent, Homburg and Krohner developed a classification of KPIs

Fig. 3.16 The DuPont ROI model (Küpper 2008, p. 369)

Fig. 3.15 Selected analysis tools for sales performance management (Homburg and Krohmer
2006, p. 1214)

78 3 Software Vendor Strategies

for sales and marketing. They differentiate between potential-related, market-
related, and economic KPIs on the one hand, and effectiveness and efficiency-
related KPIs on the other (see Fig. 3.17).

Although the above KPIs relate to marketing and sales, they are industry-
independent, i.e., they are as relevant to the software industry as to any other. The

Fig. 3.17 KPIs for performance management in marketing and sales (Homburg and Krohmer
2006, p. 1234)

3.2 Sales Strategies 79

KPIs listed below, by contrast, have proven helpful for sales performance
management in the software industry:

• Number of leads generated by direct marketing,
• Volume of addresses,
• Number of first visits,
• Opportunities weighted by closure probability,
• Number of solution presentations at customer,
• Number of proposals/quotations submitted,
• Quotation value,
• Number of contract negotiation meetings,
• Number of deal closures,
• Lost opportunities/unsuccessful quotations, and
• Customer visits per salesperson per month.

These KPIs can also be used for calculating variable, performance-based pay for
sales staff. In line with principal-agent theory, the objective is to develop an
incentive-compatible compensation model (see Sect. 2.5), i.e., design a model that
motivates the agent (sales person) to pursue the goals of the organization (principal).
A core feature of such a system is the division of pay into a fixed and a variable
component. Figure 3.18 shows various basic alternatives.

Fig. 3.18 Alternative performance-related pay models (Homburg and Krohmer 2006, p. 1266)

80 3 Software Vendor Strategies

http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_2

The linear model is standard practice. The variable component should amount
to about 30–40 % of the total target compensation. One of the key issues to be
addressed is the selection of parameters used to determine the variable component.

In the software industry, sales targets or order inflow targets are most often used
to determine the variable component. Concrete answers are needed to the
following questions:

• What sales period will be used (usually the fiscal year)?
• What counts toward fulfillment of sales targets?

The second question can be highly contentious. The most delicate question for
software companies is how maintenance business is handled. The significance of
this question is apparent when we remember that maintenance income is generated
over long periods and can account for up to 80 % of a software company’s total
annual sales (see Sect. 1.5).

During the sales process, setting the right price is a constant consideration, as it
is crucial to a successful sales strategy. Against this background, the following
section will investigate software providers’ pricing strategies.

3.3 Pricing Strategies

3.3.1 Background

Pricing plays a key role in most organizations’ strategies (Simon 1992, p. 7). It
directly affects revenues and therefore, in the long term, profits. Incorrect decisions
can jeopardize the company’s reputation and customer relationships. Despite its
importance, pricing strategies are often deficient in a number of respects, including
lack of rationality in the shape of ad-hoc or arbitrary decisions (Florissen 2008,
p. 85). Small and midsize enterprises are by no means the only ones to frequently
rely on gut feeling when they make pricing decisions. But basing pricing strategies
on empirical data can make a great deal of economic sense. Studies show that price
adjustment at the right time usually has a greater impact on profit than a reduction
in costs. For instance, a price adjustment of just 1 % can lead to a rise in operating
profit of some 8 % (Marn et al. 2003).

However, conventional pricing models are not directly applicable to software
products (Bontis and Chung 2000, p. 246). Of the many characteristics of software
as a good (mentioned in Sect. 2.1), the fact that it can be duplicated virtually for
nothing is particularly significant when it comes to setting a price. To recap: it is
relatively expensive to develop a first copy of a digital good. But the marginal cost
of an additional copy is near zero. How does this affect pricing? First of all,
clearly, cost-based pricing must be ruled out. Demand- or value-based pricing
makes far more sense. This means that software providers need to base their prices
on how much their potential customers are willing to pay. Shapiro and Varian
describe this relationship as follows: ‘‘cost-based pricing just doesn’t work […].

3.2 Sales Strategies 81

http://dx.doi.org/10.1007/978-3-642-31510-7_1
http://dx.doi.org/10.1007/978-3-642-31510-7_1
http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_2

You must price your information goods according to consumer value, not
according to your production cost.’’ (Shapiro and Varian 1998, p. 3).

In principle, the cost structure of digital goods lends itself to low-price strat-
egies. These can be useful when, for instance, a software provider wants to
squeeze out an established provider on a network market. Since the variable costs
of the software product are negligible, the contribution margin would not be
negative, even if the software were given away. This does not apply to physical
products, as they are subject to variable costs. We will see below that the cost
structure of digital goods also lends itself to price bundling, for example.

It would be a mistake, however, to assume that in economic and, specifically, in
pricing terms software can be treated like any other digital good. While doing so
might make sense for a software vendor that generates all or most of its revenues
through license sales, it is by no means the general rule. In fact, consulting and
support services do incur costs.

The following section provides an overview of the parameters that can be used
in pricing software products.

3.3.2 Pricing Models for Software Products

3.3.2.1 Overview

Software products may be offered in many different forms. Over time, pricing models
for software have changed fundamentally. Whereas during the mainframe era, prices
were usually based on computing power, pricing models based on user numbers
(licensing models) have been prevalent in the recent past (Bontis and Chung 2000,
pp. 247–248). Today, software providers are increasingly offering usage-based
pricing models, a topic we will examine in greater depth in Sect. 3.3.2.3.

Since there is no universally valid pricing model for software providers (Bontis
and Chung 2000, p. 246) and pricing models can be comprised of multiple
components, we will next describe various pricing parameters for software
products. Figure 3.19 shows an overview of the parameters we will be discussing
(Lehmann and Buxmann 2009).

Software providers’ pricing models generally comprise a combination of
parameters. The pricing model can include multiple sub-items from each column.

3.3.2.2 Price Formation

The provider defines how the price is to be formed. Both the pricing basis and the
degree of customer interaction must be taken into consideration.

There are essentially three ways to determine prices (Homburg and Krohmer
2006, p. 720; Nieschlag et al. 2002, pp. 810–814):

• Based on cost,
• Based on value or demand, and
• Based on competition.

82 3 Software Vendor Strategies

The cost-based approach determines the price using cost accounting methods
(Diller 2008, pp. 310–311). However, this method of determining the price is of
little significance when it comes to software licenses and digital goods in light of
their unique cost structure. When pricing SaaS solutions, on the other hand, it can
make sense to take costs into account.

Demand- or value-based pricing is oriented toward the level of demand for the
product (Homburg and Krohmer 2006, pp. 720–721). Here, the significant factor is
how much the customer values the product, rather than the product’s cost (Harmon
et al. 2005, p. 1).

Competition-based pricing takes into account the prices offered by competitors
and their price-related behavior (Homburg and Krohmer 2006, p. 747). The
attractiveness of a competing product to a customer partly depends on the
homogeneity of the products and the structure of the market (Nieschlag et al. 2002,
p. 813). In the software industry, network effects and the resulting customer lock-
in effects make it essential for software providers to gain a large market share,
especially when their product is very similar to the competitor’s. Competition-
based pricing therefore plays an important role for software products in addition to
value-based pricing.

Another pricing parameter is the degree of interaction. Noninteractive price
formation is when the provider sets the price unilaterally, without the customer

Fig. 3.19 Parameters of pricing models for software products

3.3 Pricing Strategies 83

having any say in the matter. Interactive pricing, in contrast, requires interaction
between customer and provider. Examples of interactive pricing include negoti-
ations and (online) auctions (e.g., Schmidt et al. 1998). But generally speaking,
auctions of digital goods, including software, make little economic sense (Shapiro
and Varian 1999, p. 23).

3.3.2.3 Structure of Payment Flow

There are essentially two types of payment flows for software: Customers can
make a one-time payment and acquire the right to use the software for an unlimited
period, or they make regular, recurring payments. The two types can also be
combined (Kittlaus et al. 2004, S. 82).

The single payment option corresponds to the software licensing model widely
used today. By purchasing a license, the customer normally acquires unrestricted
usage rights.

Recurring payments can vary in frequency and duration. For example,
customers can agree to pay monthly or annual subscription rates over a two-year
period in order to use the software. These pricing models are primarily used for
SaaS solutions (Cusumano 2007, p. 20), where customers use the provider’s
software via the Internet for the agreed payment period (this is sometimes referred
to as a subscription or rental model; Buxmann et al. 2008b). This kind of pricing
model benefits users because it enables them to employ software cost-effectively
even for brief periods, since normally the monthly payments are substantially
lower than a one-time payment for licenses (Cusumano 2007, p. 20). However, this
customer advantage makes higher financial demands on the provider. For example,
SaaS providers often find it hard to break into the black (Hill 2008, p. 48).
According to a survey by SIIA et al. (2006, p. 5), US-based software providers
expect that the subscription model will become more common than one-time
payments in the form of license purchases (see also Sect. 3.3.3).

Hybrid payment models that combine one-time and regular payments are
another option. For example, it is common to purchase a software license in
conjunction with a software maintenance agreement. These usually specify annual
payments amounting to a certain percentage of the (one-time) license payment.
At present, many software providers charge a maintenance percentage of around
20 %. The advantage of this model for providers is that it generates relatively
uniform payment flows. In Sect. 3.3.3, we will provide some empirical findings
regarding forms of payment for SaaS solutions.

3.3.2.4 Billing Units

The choice of billing units is another way in which pricing models can be shaped.
In other words, the price can be set per user or based on a time factor, for example.
The billing unit plays a key role in determining whether the customer feels the
provider’s pricing model is fair.

First the provider determines how many components the pricing model consists
of (Skiera 1999b). Each component is based on a pricing unit. For instance, the

84 3 Software Vendor Strategies

pricing model can be divided into a fixed monthly charge and a usage-based
component, such as storage capacity utilized. Skiera (1999b) showed that service
providers can increase their profits considerably by using two pricing components
rather than one.

As we indicated in the above example, billing units can be either usage-based or
unrelated to actual usage of the software. In principle, many different billing units
are conceivable. They can also be industry-specific, such as the number of rental
units managed in the case of property management software. Table 3.4 includes
examples of usage-based billing units.

Implementing usage-based pricing can result in fixed and variable adminis-
tration costs, for instance, for monitoring usage and for billing.

Usage-independent billing units are not dependent on to what extent the soft-
ware is actually used. See examples in Table 3.5.

From the software provider’s perspective, one benefit of usage-independent
pricing is that customers are generally prepared to pay more for unlimited usage

Table 3.5 Examples of usage-independent pricing (units) (Lehmann and Buxmann 2009)

Billing unit Description

Named user Software usage rights are linked to specific persons and pricing is based
on particular individuals

Concurrent user This option enables simultaneous use of software by a predefined number
of users

Server/machine Customers are charged per server or machine. Software usage rights are
linked to a server or machine

CPU The software price is calculated by the number of CPUs it runs on

Master data Pricing depends on the amount of master data maintained (e.g., customers,
suppliers, employees, inventory items, rental units, land parcels, managed
assets)

Sites Prices are calculated by site. This can include special types of site (e.g.,
mines)

Production volume Pricing is based on a metric of production (e. g. barrels of oil per day)

Key performance
indicators

Pricing is based on Key Performance Indicators (e. g. revenue, expenses,
budget)

Table 3.4 Examples of usage-based billing units (Lehmann and Buxmann 2009)

Billing unit Description

Transaction The price depends on the number of transactions completed using the software.
Both transactions in the technical sense (e.g., Web service calls) and in the business
sense (e.g., number of delivery items processed) can be applied

Storage The price is measured in units of storage capacity utilized (e.g., per GB)

Time The price is determined by the actual duration of use of the software (e.g., per
minute)

3.3 Pricing Strategies 85

(Sundararajan 2004, p. 1661). Many customers overestimate how much they use
(flat rate bias; Lambrecht and Skiera 2006, p. 221). Empirical findings on the
prevalence of usage-based and/or usage-independent pricing models in the SaaS
field are shown in Sect. 3.3.3.

Billing units are not only important for the customer, but also in terms of price
discrimination. This will be discussed in more depth below.

3.3.2.5 Price Discrimination Strategies

Price discrimination means charging customers different prices for essentially the
same product (e. g. Diller 2008, p. 227; Skiera and Spann 2000; Pepels 1998,
p. 89). The goal of the provider is to capture more of the consumer surplus. In
contrast to a pricing model with consistent prices, this can be achieved by figuring
in varying degrees of consumer willingness to pay (WTP). Because different
customers estimate the product’s value differently, providers can differentiate their
prices and achieve higher turnover (Diller 2008, p. 227). An example of this is an
audio CD available in three separate versions with different price tags:

• The premium version contains a wide range of additional features, such as song
booklets, a multimedia section enabling access to an exclusive Internet offering,
or bonus tracks.

• The standard version offers the features of a conventional album.
• The basic version comprises simply the disk in a sleeve with no booklet.

Pigou (1929) distinguishes between first, second, and third degree price
discrimination.

At first glance, the best strategy for software providers seems to be first degree
discrimination. The idea behind this is to distinguish the price individually by
offering the product exactly at the customer’s reservation price (RP), i.e., the
maximum amount the customer is willing to pay. Minimum price thresholds do not
have to be considered in the case of digital goods because the variable costs are
negligible. This type of pricing strategy is not a practical option for software
providers in the business-to-consumer sector, of course, because they have mil-
lions of customers and it is impossible to make even a rough estimate of each
customer’s WTP. In contrast, vendors of standard business-to-business software
are clearly perfecting the art of price discrimination. Prices in this segment are
often complex and not very transparent. Price lists can be hundreds of pages long,
and there is huge scope for negotiating contractual terms. This applies not only to
software licenses but particularly to complementary consulting services. However,
providers of standard software generally cannot afford too much in the way of
price discrimination. For example, customers may well exchange notes in user
groups and discover that others have paid a different price for the same software
product.

Second degree price discrimination plays a major role in digital goods (Linde
2008, p. 209). It is based on the principle of self-selection, i.e., the customer selects
its own product-price combination (Varian 1997, p. 193). Skiera (1999a, p. 287)

86 3 Software Vendor Strategies

makes a distinction among quantity-, time- and performance-based price
discrimination with self-selection.1

In the case of quantity-based price discrimination, the average price per unit
depends on the total amount purchased. Flat rate is included in this category too,
since the average price per unit depends on the consumer’s overall use (Skiera and
Spann 2000). This type of volume discount is widespread for software licenses,
especially for key accounts. Discounts in excess of 50 % are not uncommon.

Time-based price discrimination targets degrees of consumers’ WTP at various
times (Skiera and Spann 1998). An example of time-based price discrimination is
not charging a fee to disclose stock market prices with a time delay, while
charging for real-time prices. There are a host of other examples, such as seasonal
pricing. One that applies to the software industry is pricing customer service
according to the time of day.

Another type featuring self-selection is performance-based price discrimination.
This is when relatively minor changes are made in service scope or quality (Diller
2008, p. 237) and the resulting product variants offered at different prices. In
conjunction with product differentiation, this is frequently referred to as versioning
(Varian 1997; Viswanathan and Anandalingam 2005).

Offering several versions of a product is seen as especially profitable for digital
goods because of the cost structure (Viswanathan and Anandalingam 2005, p. 269).
In the context of network markets, inexpensive variants can lead to greater market
penetration. This shows that software products generally are well-suited to this type
of price discrimination (Bhargava and Choudhary 2008, p. 1029). Software
providers often develop a high-quality, feature-rich product to begin with, so they
can then remove certain functionality and offer consumers different versions
(Shapiro and Varian 1999, p. 63). Some examples of performance-based price
discrimination include the Home Basic, Home Premium, Professional, and Ultimate
versions of Microsoft Windows 7, which vary in functional scope and price.

It is important to bear in mind that too many different versions can be confusing
for consumers and make more work for the provider (Viswanathan and Ananda-
lingam 2005, p. 269). Because consumers exhibit extremeness aversion, the rule of
thumb for information goods is to offer three versions so that the customer can
compromise by selecting the mid-range variant (Varian 1997, p. 200; Simonson
and Tversky 1992; Smith and Nagle 1995). The basic idea is that undecided
consumers will tend to choose the product of medium quality. The following
example illustrates this principle: If a fast food chain were to offer beverages in
large and small sizes only, some customers with no clear preference would
probably select the small size. But if the vendor also offered a jumbo size, and the
new medium size were identical to what was previously the large size, many
customers would choose the new medium size (Varian 1997, p. 199 f.).

Bhargava and Choudhary (2008) recommend that companies consider offering
additional lower quality variants when variable costs are decreasing. The authors

1 Because of its minor importance for the software industry, search-related price discrimination
has been omitted.

3.3 Pricing Strategies 87

give formal evidence that decreasing variable costs make versioning more prof-
itable for providers because that way, they acquire additional customers with a
lower WTP (Bhargava and Choudhary 2008, p. 1031).

Third degree price discrimination is based on how the provider segments the
market (e.g., Diller 2008, p. 229). In contrast to second degree price discrimina-
tion, the consumer cannot self-select. There are two types: location-based and
customer based (Skiera and Spann 2000).

The latter is often used to create a lock-in effect: ‘‘Although software producers
don’t hang around outside of schoolyards pushing their products (yet), the moti-
vation is much the same.’’ (Shapiro and Varian 1998, p. 46). For example, a
software provider could give away its products to a specific group of consumers to
achieve lock-in effects. The idea is that the pupils will learn to navigate the
software and when they become paying consumers, will be more likely to buy the
provider’s product.

A simple kind of location-based discrimination is to sell products in different
locations at different prices. Software licenses are sometimes priced this way, as
are associated service agreements and consulting contracts.

Price discrimination that includes more than one dimension is called multidi-
mensional (Skiera and Spann 2002, p. 279), and is very common practice. For
example, pricing can be based both on location and on quantity. The provider has
different prices for every country or region as well as a pricing model dependent
on the quantity purchased. Multidimensional price discrimination can achieve a
finer customer segmentation, which enables providers to exploit customers’
existing WTP even more fully. But the complexity of the pricing model should be
limited to avoid confusing the consumer, and to ensure that the provider’s billing
process remains feasible (Skiera and Spann 2002, p. 279).

3.3.2.6 Price Bundling

Price bundling is another parameter relevant to software pricing. In general, it
consists of packaging multiple distinct offerings (products, services, and/or rights)
from one or more providers and selling the package at a single price (Diller 2008,
p. 240). It is sometimes considered a special form of price discrimination (Skiera
et al. 2005, p. 290; Diller 2008, p. 240). Because of its significance in the software
industry, we will devote a complete section to price bundling in relation to soft-
ware pricing.

A variety of goals can be achieved through bundling. First and foremost, it can
be used as a means of price discrimination (see Sect. 3.3.2.5) (Viswanathan and
Anandalingam 2005, p. 264). While conventional methods of discrimination
require comparatively detailed knowledge of each product’s RP, this does not
apply to bundling to the same extent (Adams and Yellen 1976, p. 476). Bakos and
Brynjolfsson (1999) explain this with reference to the law of large numbers.
According to this, it is simpler for the provider to estimate customers’ WTP for a
bundle that includes multiple products than for each product individually. This is
because the WTP distribution for the bundle shows fewer extreme values

88 3 Software Vendor Strategies

(Viswanathan and Anandalingam 2005, p. 264). However, Wu et al. (2008,
pp. 608–609) argue that this only applies when variable costs are zero. If there are
any variable costs at all, even if they are extremely low, a bundle composed of
numerous elements generates significant costs, which will lessen the potential
advantages of bundling.

Because the software industry is heavily influenced by network effects, bund-
ling can be advantageous to providers, as it drives the proliferation of (additional)
products. For example, Adobe’s Creative Suite not only includes the software for
photo editing and layout design, but also the software for creating PDF files. As a
result, sales of the Creative Suite also promote the spread of PDF documents.
Moreover, a bundling strategy may impede market entry for potential competitors
(Nalebuff 2004), e.g., for providers that offer only one of the products in the
bundle. It can also reduce billing and shipping costs, as multiple products are sold
in a single transaction (Viswanathan and Anandalingam 2005, p. 264; Adams and
Yellen 1976, pp. 475–476).

We will explain the aspects of price bundling shown in Fig. 3.20 before dis-
cussing the factors that determine how advantageous bundling strategies will be.

Software providers’ offerings can include pure and mixed bundling as well as
unbundling. Pure bundling means that products are only offered as part of a
package. If the customer can choose between purchasing the bundle or buying
each product separately, this is referred to as mixed bundling. Unbundling is when
the customer can only purchase the products separately (Adams and Yellen 1976;
Schmalensee 1984, pp. 212, 475; Olderog and Skiera 2000, p. 140). Another
option is customized bundling, in which the customer can choose, within specified
limits, which products to include in the bundle. The provider determines merely
the price and scope (Hitt and Chen 2005). Wu and Anandalingam (2002) show that
offering multiple, customized bundles can be beneficial to a monopolistic provider
of information goods. Assuming incomplete information, Wu et al. (2008) found
that customized bundling is more profitable than unbundling.

Fig. 3.20 Aspects of price bundling (Lehmann and Buxmann 2009)

3.3 Pricing Strategies 89

The product type is another aspect of price bundling. The products offered together
in the bundle can be very different in nature. In the software industry, the product types
are usually the software itself, maintenance, support, and other services. Today,
software vendors often generate revenue from three sources—licenses, maintenance,
and other services—in equal measure (Cusumano 2007, p. 19). These three types of
offering can be bundled in various ways.

Products in a bundle can also be described according to their degree of
integration. Elements of a bundle can be complementary (Diller 2008, p. 241),
substitutive, or independent of each other. Bakos and Brynjolfsson (1999) dis-
covered that bundling a large number of unrelated information goods can be
profitable. Their model also lends itself to analyzing complementary and substi-
tutive elements of bundles. Stremersch and Tellis (2002) suggest that when the
purpose of bundling is to add value for customers in comparison to using or
consuming the products separately, it is better to use the term product bundles
rather than price bundles.

Methods for determining bundle pricing can be additive, superadditive, or
subadditive. In the first instance, the bundle price corresponds to the sum of the
individual prices. Superadditive bundles are priced higher than the sum of the
individual components’ price tags, while subadditive bundles are priced lower than
the sum (Diller 2008, pp. 240–241). The latter case, i.e., a bundle that offers a
discount on individual prices, is considered the norm (Diller 2008, p. 241;
Viswanathan and Anandalingam 2005, p. 264). A survey by Günther et al. (2007,
p. 139) revealed that most respondents expected a lower overall price for the
bundle when purchasing bundled Web services. For example, the price for the
Microsoft Office bundle is significantly lower than the sum of the components’
prices. When Microsoft distributed the Windows operating system bundled with
Media Player, customers were under the impression that the latter product was
thrown in for free. This type of bundling strategy can be used, among other things,
to include new applications with older products in order to motivate customers to
upgrade or opt for maintenance services (Cusumano 2007, p. 20). However, it is
important to note that product bundling can contravene antitrust legislation.
A prime example of this was the action taken by the European Commission against
Microsoft for bundling its Windows operating system with Internet Explorer.

Olderog and Skiera (2000), among others, looked at which factors influence the
benefits conferred by bundling, on the basis of a model by Schmalensee (1984).
The success of bundling strategies depends primarily on two factors: first, the type
and degree of correlation between the RPs, and second, the size of the variable
costs compared to the RPs. These two factors will be discussed below. RPs
are positively correlated when the consumers who would be prepared to pay a high
(low) price for product A would also pay a high (low) price for product B.
A negative correlation exists if the customers who would tend to pay a high (low)
price for product A would be willing to pay a low (high) price for product B.
In principle, the more negative the RP correlation, the more advantageous a
bundling strategy will be for a provider. This is because a large negative corre-
lation leads to lower variance in the bundle’s RPs, creating a more homogeneous

90 3 Software Vendor Strategies

demand structure (Olderog and Skiera 2000, p. 142). Figure 3.21 shows the RP
distribution for two products and this relationship is depicted graphically.

Figure 3.22 shows how the correlation between the RPs for the individual
products affects the homogeneity of the RPs for the bundle.

The homogeneity of the demand structure for the bundle increases (decreases),
if the RP correlation is negative (positive). Figure 3.23 shows that the provider can
increase the profit (dark area) when the demand structure is homogeneous.

As explained earlier, the success of a price bundling strategy also depends on
the size of the variable costs in relation to consumer RPs (Olderog and Skiera
2000, p. 144; Bakos and Brynjolfsson 1999). We will now explain this using the
simple numerical model shown in Table 3.6.

Here we are assuming that there are only two products, and comparing whether
an unbundling or a bundling strategy is more successful when variable costs are
relatively high. The first two lines give the maximum RPs of the two customers for
products 1 and 2 and for the bundle comprising these two products. It is also clear
that there is a negative correlation between the RPs of the two potential customers.
The third line gives the optimum price for the two products and for the bundle.
As the variable costs associated with making each of the two products are assumed
to be seven monetary units, it is reasonable to set a price of eight monetary units
for both products. This results in a positive profit contribution of one monetary unit
each for products 1 and 2. Neglecting any fixed costs, the return generated by this
bundling strategy is two monetary units. In light of this, it obviously makes no
sense to pursue a bundling strategy as the variable costs are too high.

Fig. 3.22 Effect of RP
correlations on the
homogeneity of the RPs for
the bundle (Olderog and
Skiera 2000, p. 143)

Fig. 3.21 Example
distributions of reservation
prices for two products
(Olderog and Skiera 2000,
p. 143)

3.3 Pricing Strategies 91

But how does the picture change when the variable costs are lower? To show
this, we recalculate our simple example with variable costs of zero (see Table 3.7).

As we can see, due to the homogeneous demand structure, a bundling strategy
allows the provider to exploit the consumers’ RPs to the full. So with lower variable
costs, the bundling strategy is more successful than the unbundling strategy.

Finally, Fig. 3.24 shows how the variable cost level affects the success of
bundling strategies.

For our numerical example, we have shown the profits for the bundling or
unbundling options in accordance with the variable cost level. It is apparent that
the critical level for variable costs is four monetary units. If they exceed this
amount, unbundling is the more profitable alternative. Conversely, when the

Table 3.6 Example of the effects of a bundling strategy when variable costs are relatively high

Unbundling Bundling

Product 1 Product 2 Bundle

RP buyer i = 1 8 4 12

RP buyer i = 2 4 8 12

Variable costs 7 7 14

Optimal price 8 8 /

Profit contribution 1 1 /

Quantity sold 1 1 0

Profit 1 1 0

Total return 2[0

Fig. 3.23 Effect of a homogeneous demand structure on profit (Olderog and Skiera 2000,
p. 144)

92 3 Software Vendor Strategies

variable costs are lower than four monetary units, the provider gains more from
bundling.

A further advantage of bundling for software providers is that it helps them to
broaden the installed base of their products and thus generate network effects.

In conclusion, when there is a negative correlation between the RPs of the
different products, bundling will tend to produce a more homogeneous demand
structure. In addition, the lower the variable costs, the more advantageous bun-
dling strategies become. For this reason, price bundling is a particularly useful

Fig. 3.24 Break-even point as a function of the variable costs

Table 3.7 Example for the effects of a bundling strategy for digital goods

Unbundling Bundling

Product 1 Product 2 Bundle

RP buyer i = 1 8 4 12

RP buyer i = 2 4 8 12

Variable costs 0 0 0

Optimal price 8 8 12

Profit contribution 8 8 12

Quantity sold 1 1 2

Profit 8 8 24

Total return 16\ 24

3.3 Pricing Strategies 93

strategy for software products. It should also be noted that the ideal number of
products in a bundle can also depend on the presence of constraints on customers’
budgets (Bakos and Brynjolfsson 1999).

3.3.2.7 Dynamic Pricing Strategies

Unlike the approaches we have examined so far, dynamic pricing strategies are
based on a multiperiod horizon in which time prices will usually change. The
following sections will focus on penetration, follow-the-free, and skimming
strategies. We will not discuss pulsation strategies (where vendors alternately raise
and lower the prices over time) as we cannot imagine any useful applications of
them in the software industry.

The purpose of employing a penetration strategy is to quickly acquire market
share by means of low prices. A low-price strategy can play an important role in
network effect markets in light of the startup problem and lock-in effects, which
were mentioned earlier.

The presence of network effects means that the software industry lends itself to
penetration strategies. Furthermore, the type of cost structure in this sector,
featuring negligible variable costs, favors low-price strategies. In fact, even giving
away software will not lead to negative profit margins. In some situations, it may
even be necessary to make a loss in order to catch up with a competitor who has a
head start. However, whether this kind of strategy makes sense depends heavily on
the network effect factor (i.e., the size of the network effects in relation to the total
utility). The higher the network effect factor, which we discussed in Sect. 2.2, the
more vital low-price strategies will be (Buxmann 2002). Furthermore, a penetra-
tion strategy will be especially worthwhile, if the provider is offering a product that
is incompatible with the market standard.

A penetration strategy can include a second stage in which the provider
increases prices once a critical mass has been reached. Ahtiala (2006) showed
experimentally that given the problem of software piracy, it benefits software
providers initially to sell their products at a very reasonable cost to generate a lock-
in effect, and only to offer subsequent upgrades at a higher price. To a certain
extent, this strategy has been observed in the real world: some companies—
including big names—have given away licenses for free in recent years.

The follow-the-free strategy comprises two stages: first the products are given
away to generate lock-in, then revenue is generated through the sale of comple-
mentary products or premium versions to the existing customer base (Zerdick et al.
1999, pp. 191–194). For instance, a company could offer its software product for
free, and charge fees for associated services such as installation, maintenance, user
training, and customizing (Cusumano 2007, p. 21). An example from the software
industry is the strategy of Adobe, which succeeded in making its PDF format the
industry standard by this method.

94 3 Software Vendor Strategies

http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_2

The pricing strategy of Adobe Systems Inc.

Adobe Systems Inc. is a leading provider of graphics, design, publishing,
image, and video processing software for Web and print production. In 1993,
the company set new standards with the development of the document
description standard, PDF (Portable Document Format).

Adobe’s success is mainly down to its unique pricing strategy: offering its
Acrobat Reader free for viewing PDF documents, and selling complemen-
tary PDF creation software. In 2009, Adobe posted more than 20 % of sales
with its Acrobat Software (Knowledge Worker segment). Today, the free
Acrobat Reader has an adoption rate of around 89 %. Figure 3.25 shows the
breakdown of Adobe’s sales per product segment.

Adobe Flash Player

In 2005, Adobe Systems acquired its competitor Macromedia Inc.,
originator of the now widespread Flash technology. With this technology,
Adobe pursued a pricing strategy similar to the one employed for its Acrobat
product line: the Flash Player used to view Flash files is available as free-
ware. According to the company itself, the player is installed on about 98 %
of Internet users’ PCs worldwide. Customers who wish to create Flash
components must purchase an authoring tool.

Through this complementary pricing strategy, i.e., distributing the
viewing software free and selling the associated file creation programs,
Adobe has succeeded in both cases to introduce a standard which is widely
used and accepted, and to generate impressive sales.

Adobe Systems Inc.

Adobe Systems Inc. was established in 1982 by John Warnock und
Charles Geschke, the inventors of the PostScript document format. PostScript
is a page description language used to describe the format of a printed page at
the prepress stage. Building on PostScript’s success, the company developed
and launched the PDF standard in 1993. Since then, Adobe has published the
source code. In January 2007, Adobe Systems submitted the PDF specifica-
tion to the International Organization for Standardization (ISO), paving the
way for it to become an official standard. The success of Adobe Systems Inc.
is due in no small part to its innovative business strategy.

Sources www.adobe.com; Datamonitor (2006): Company Spotlight:
Adobe Systems Incorporated, Financial Times Deutschland: http://www.ftd.
de/technik/it_telekommunikation/133661.html.

In some cases, software products are offered on the basis of a skimming
strategy, where the provider starts with a very high price and reduces it over time.
The main purpose of this strategy is to exploit differences between consumers’
RPs: in the high-price phase, consumers with a very high RP will acquire the

3.3 Pricing Strategies 95

http://www.adobe.com
http://www.ftd.de/technik/it_telekommunikation/133661.html
http://www.ftd.de/technik/it_telekommunikation/133661.html

product. Then, during the period in which the provider gradually reduces the price,
it can exploit the RPs of the remaining consumers step by step. Computer games
are a practical example of this strategy: very expensive when launched, they may
even be distributed free of charge as magazine inserts at a later date.

3.3.3 Pricing Strategies of Software Providers:
Empirical Findings

In this section, we will discuss how providers and users evaluate various pricing
and licensing models. As few empirical findings on this subject have been
published to date, most of the studies that exist include only a small number of
parameters relating to software pricing.

Below we will discuss a study conducted in 2006 by the Software & Infor-
mation Industry Association, which only addressed the parameter of billing units.
We complement this with the results of expert interviews with users. The goal of
our discussions is to cast more light on how users evaluate pricing, and why.
However, it must be emphasized that the interviews are a qualitative rather than a
representative sample of ERP system users.

The Software & Information Industry Association surveyed 698 experts. These
comprised 487 software providers and 211 users (SIIA et al. 2006). Figure 3.26
gives an overview of the different licensing models, indicating which are preferred
by software providers and users, respectively.

The most popular usage-independent billing unit among the users of software
products is the number of concurrent users (see also Sect. 3.3.2.4.). Also attractive
for users, but far less accepted, is licensing by servers or machines. Only a few
customers favored billing by named users or processors. The least desirable form
of billing is financial KPIs, preferred by only 1 % of users (SIIA et al. 2006, p. 7).

Fig. 3.25 Adobe’s sales by
product segment, 2009

96 3 Software Vendor Strategies

We will now look more closely at pricing models with usage-based billing
units, as a key finding of the survey was that software providers expect this kind of
model to become more widespread in future (see Fig. 3.27).

However, the findings also indicate that users are increasingly rejecting usage-
based licensing models, as Fig. 3.28 illustrates

According to the SIIA survey, only one-fourth of customers were satisfied with
the provider’s pricing and licensing strategies.

We will next present the findings of a survey of experts conducted in 2008 to
discover the reasons why users evaluate certain pricing models as attractive or
unattractive.

Only three out of ten experts interviewed regarded usage-based pricing models
for software as an attractive alternative. Seven expressed their skepticism or
rejection of this pricing model. The two main reasons they cited were the difficulty
of predicting costs, and the possibility that costs would fluctuate significantly due

Fig. 3.26 The billing units preferred by software providers and users, respectively (SIIA et al.
2006, p. 7)

Fig. 3.27 How providers expect the use of billing units to change (SIIA et al. 2006, p. 7)

3.3 Pricing Strategies 97

to varying usage levels. Difficulties lay not only in predicting costs, but also in
determining the basis for billing. With a usage-based pricing model, it was
essential that the effort needed to measure usage was not too high and that the
model was straightforward and easy for users to understand. However, for some
respondents, the structure of the model was consistent with their idea of fairness—
these individuals declared themselves willing to pay more for using the software
more (value-based pricing).

What survey participants did not like was the fact that most models force the user
to pay for a certain level of usage in advance. Very often, additional fees are payable
when actual usage exceeds the planned level. Conversely, users who do not fully
exploit the planned usage level do not normally receive any refund or credit.

In general, respondents tended to look unfavorably at the pricing models cur-
rently used by software providers. This was due in part to the complexity of the
models and the combination of multiple models. In this connection, respondents
also expressed their dissatisfaction with IT outsourcing service providers. The
latter often optimize their services on the basis of technical criteria, and this
frequently leads to a mishmash of different licenses.

One respondent expressed his satisfaction with the conditions offered to large
organizations. However, substantial discounts are only granted on licenses and not
on maintenance fees. This has to do with accounting regulations. In the context of
revenue recognition for multiple-element contracts (bundling), software vendors
who prepare financial reports in accordance with US-GAAP are required to state a
fair value, backed by objective evidence, for maintenance services yet to be
provided under the terms of a contract. This is why these vendors do not offer
discounts on maintenance services (Suermann 2006, pp. 112–114).

Asked what changes to pricing models user organizations would like to see,
almost half of respondents expressed a wish for greater flexibility. They would like
to be able to regularly adapt their agreements to changing user numbers, the option

Fig. 3.28 Changes to users’ billing unit preferences, 2005 compared with 2006 (SIIA et al.
2006, p. 7)

98 3 Software Vendor Strategies

of usage for limited periods (including periods with no usage), and new billing
units that are independent of user numbers. However, flexible pricing models can
also be a disadvantage to customers, as providers can exploit flexibility to their
own ends. This is particularly likely to happen with business (ERP) software, since
changing to a different provider would entail significant switching costs for the
customer. It is, therefore, unclear who profits most from more flexible pricing
models.

With regard to pricing of SaaS solutions, respondents suggested usage–based
billing (four votes) and a flat fee (five votes). They believed that these models offer
the option of limited usage periods and reducing entry barriers, and in the case of
flat fees, better cost planning. In addition, users would like to see a much reduced
notice period, although one CIO pointed out the risks to the user organization of
short notice periods.

3.3.4 Approaches to Pricing for Custom Software Providers

The approaches discussed above apply predominantly to standard software pro-
viders. For example, product and price differentiation methods and dynamic
pricing are obviously far less relevant to custom software providers. We will now
look at how providers of custom software determine prices, both in terms of
opportunities and constraints.

Setting or estimating lower price limits is a good starting point. For this pur-
pose, traditional cost estimation methods for software development projects can be
used, such as COCOMO (II) and the Function Point method (Balzert 2000).

It is reasonable to use methods like these because custom software projects are
very difficult to plan in a precise, reliable way. Project budget and schedule
overruns are the norm, not the exception.

Cost estimation methods gage expected project effort and expense using certain
parameters whose values are determined at the start of a development project. In
its simplest form, COCOMO is based on an estimate of the number of lines of
code. Project costs are estimated using tables based on empirical historical data.
The Function Point method, by contrast—the method most commonly used to
estimate the cost of software development projects—starts by evaluating project
complexity in terms of parameters such as external inputs and outputs, user
transactions, interfaces with external data sources, or the number of files used.
Various inputs can be used to determine these quantities, such as specifications,
entity-relationship diagrams, use case diagrams, screen layouts, and other docu-
mentation. Based on an evaluation of these criteria, tables are used to estimate the
function points. A function point is an indicator of the scope and complexity of a
proposed software solution.

ajor providers of custom software employ methods such as these, whereas
smaller-scale software companies are more likely to rely on instinct and experience.
One advantage of the methods is that they are relatively easy to use. On the other

3.3 Pricing Strategies 99

hand, they are also based ultimately on experience and empirical relationships, and
some of their parameters are rather subjective. However, applying these methods
can give providers valuable additional information for their decision making, par-
ticularly when it comes to major contracts. It often makes sense to apply these
methods, given that this costs relatively little in comparison to the overall project
costs. The methods deliver an estimate of project effort and expense, for example in
terms of person-months, and of the likely development period.

The most significant source of expense for the software provider is the cost of
the person-months invested. So, to determine a minimum price threshold for a
development project, it makes sense to start by calculating the labor costs from the
person-months. Labor includes both in-house employees and freelancers who are
usually deployed during peak times. Labor costs for salaried employees comprise
both fixed and variable pay components, employer contributions to social security,
and training costs. Freelancers may be paid by hour or day, or may receive a flat
rate for a given project or sub-project.

If the project effort expressed in person-months is weighted according to the
costs of in-house versus freelance staff, this method will give a rough idea of the
project costs, but no more than that. Manufacturers also use overhead costing and
factor in indirect costs to determine the cost of making a given product. Although
the same principle can be applied in the software industry, it is not generally
necessary, because indirect costs—for offices, the use of software development
environments, etc.—play a minor role in comparison to the labor costs.

Once these costs, with or without overhead costs, have been determined, the
‘‘only’’ thing left to do is to specify the mark-up. A large number of considerations
must be brought into play, including the fact that the Function Point method tends
to underestimate the actual costs.

The method described here is suitable for a cost-driven approach to pricing.
Obviously, the prices determined this way will not necessarily be aligned with
competitive demands or customers’ RPs. Against this background, other authors
have suggested that it would be more appropriate to focus on the market situation
when setting prices. However, this is extremely difficult to do when it comes to
project business. After all, the unique, one-of-a-kind nature of projects makes it all
but impossible to put a market price on them.

Psychological factors should also be taken into account. The relatively new
discipline of behavioral pricing offers valuable insight here: it investigates
potential customers’ attitudes to prices and pricing information, how they respond
to prices offered, and how they use price information when evaluating products
and making choices (Homburg and Koschate 2005). Some of its findings differ
from the assumptions of classical price theory. For example, people often evaluate
prices relative to a reference value, rather than in absolute terms: they often cannot
recall prices; or they abandon a price search half-way through. Behavioral pricing
primarily pursues a descriptive research approach and focuses mainly on cognitive
processes not discussed by classical price theory.

Even though a cost-based pricing strategy has the drawbacks described above, it
can still provide a good basis for determining whether a given project can be

100 3 Software Vendor Strategies

performed in a cost-effective way, at least within a short-term framework. But it
generally makes sense to base decisions on other objectives, too, such as oppor-
tunities for acquiring key customers, defending and extending market share or
preventing competitors from penetrating the market.

Having devoted the preceding two sections to market-driven strategies, we will
now turn our attention to development strategies.

3.4 Development Strategies

Academics and industry professionals have long concerned themselves with the
efficient and effective development of software; previously, this was primarily
considered in the context of user organizations, but is now increasingly analyzed
from the perspective of software providers. A myriad of approaches have been
proposed, tested, and discarded. Over the following pages, we will provide an
overview of the most important approaches to have survived the test of time.

3.4.1 Structuring of the Software Development Process

The structuring of the development process is pivotal to the development of
software. After a brief description of the early days of software development, we
will discuss plan-based approaches. Agile development, which arose as a backlash
to this approach, forms our next subject. Finally, we will compare the merits of the
various approaches in conjunction with the relevant contextual parameters.

3.4.1.1 Ad-hoc Development

Along with the first program codes, one of the first software development meth-
odologies also came into being in the 1950s and early 1960s. Under this meth-
odology, also known as the ‘‘stagewise’’ model, software is developed in strictly
sequential stages. In general, however, the development of software at this time
more closely resembled a craft (hence the term ‘‘software crafting’’), which
depended on the abilities of the individual developers (Boehm 1986, p. 22; Dogs
and Klimmer 2005, p. 15).

Software was generally developed according to the Code and Fix approach.
This was not really a methodology as such. It simply meant developing func-
tionality without much advance planning and continuing to make modifications to
address any errors until the program ran without any error messages. The inevi-
table outcome of this process was highly unstructured and a hard-to-maintain
program code: the infamous spaghetti code (Boehm 2006, p. 13).

3.4.1.2 Plan-Based Approach

The increasing popularity of computers also raised the demands on the associated
software. As software became more and more unwieldy, cost, time, and quality

3.3 Pricing Strategies 101

goals were often unachievable. As a result of this ‘‘software crisis’’, the term
‘‘software engineering’’ was coined at a conference in 1968. Modeling software
development more closely on the structured processes prevalent in engineering
was intended to help overcome the software crisis (Dogs and Klimmer 2005, p. 16
ff.). Consequently, 1970 saw the invention of the ‘‘waterfall model’’ of software
development. This built on the stagewise model mentioned above, and was
regarded from then on as the archetype of plan-based development methodologies
(Boehm 1986, p. 22).

The defining characteristic of plan-based methodologies is that software
development is carried out in a series of standardized, usually sequential steps.
Based on initial requirements elicitation and detailed planning, a range of artifacts
is created in each stage, such as user requirements documents or technical designs.
These form the basis for the next stages. After the actual programming, the
software is tested for correct implementation.

However, in the ensuing years the waterfall model and plan-based approaches
in general, were criticized. One criticism was that the sequential process made it
difficult to accommodate changes to the customer requirements during the
development process. This necessitated extensive, laborious modifications to the
artifacts. The use of new methodologies, such as rapid prototyping, results in new
approaches, including the spiral model (Boehm 1986, p. 21 ff.) and the V model
(Hindel et al. 2004, p. 16), but none of this altered the fundamental limitations of
the plan-based methodologies.

Apart from the term software engineering gaining widespread acceptance, none
of the various approaches achieved the sought-after success. The old problems,
cost blow-outs, lengthy project times, and poor quality, continued to exist.
Numerous reasons have been put forward for this, including the following (Dogs
and Klimmer 2005, p. 19 ff.):

• Plans quickly become out-of-date, as new customer requirements arise
constantly.

• There are too many overheads (such as specifications and designs) which are
irrelevant to the goal of developing high-quality software for the customer.

• Too little attention is paid to the human factor during the development process.
• The first tests take place too late on in the software development process.
• Not enough is learned from mistakes to benefit future projects.

In addition, increasing globalization and a more dynamic business environment
are creating ever more volatile requirements. Critics allege that the inflexibility of
plan-based approaches frequently means that software is developed which, by the
time it is finished, the customer no longer needs.

3.4.1.3 Agile Approach

As a result of the dissatisfaction with plan-based approaches, a variety of
‘‘lightweight’’ approaches were developed in the early 1990s, independently of one
another. The term ‘‘lightweight’’ is intended to convey a contrast with the

102 3 Software Vendor Strategies

previously common ‘‘heavyweight’’ methodologies (in the sense of being process-
and document-heavy) and enable a team to react as flexibly as possible to changes
to the user requirements. Examples of this approach include Scrum, extreme
Programming (XP), and Adaptive Software Development (ASD).

Lightweight methods follow a ‘‘just enough’’ approach. They attempt to
eliminate processes that contribute minimal added value to the final software
product. To this end, any artifacts that are created, such as specifications, are pared
back to bare essentials, to keep the time and trouble of adjustment to a minimum in
the event of changes. A key aim of lightweight approaches is to provide customers
with the desired functionality incrementally (building on achievements to date)—
as prioritized by the customer—in short, iterative development cycles. In addition,
software tests do not simply occur at the end of projects, but are integrated into the
development process.

Instead of seeing the constant changes to user requirements as a negative
influence, lightweight methodologies see this as an opportunity to develop inno-
vative software and so add value for customers. The role of developers is also
different: Instead of extensive documentation, lightweight methodologies
emphasize extensive collaboration among developers, including exchanging
knowledge and experience. This means that the human factor plays a larger role
than with plan-based approaches.

In February 2001, representatives of various lightweight methodologies met to
establish commonalities and reach a joint understanding. One outcome was that
participants agreed to use the term ‘‘agile’’ instead of lightweight, as the latter has
negative connotations. In addition, they adopted the so-called ‘‘Agile Manifesto,’’
which was signed by all attendees and which sets forth their joint understanding
with regard to agile methodologies (Fowler and Highsmith 2001, p. 28 ff.).

The values set out in the Agile Manifesto represent a shift in the importance
placed on various aspects of the software development process. In the words of
Fowler and Highsmith (2001, p. 29 ff.):

‘‘We value:

• Individuals and interactions over processes and tools.
• Working software over comprehensive documentation.
• Customer collaboration over contract negotiation.
• Responding to change over following a plan.’’

In addition to these four values, the Agile Manifesto also defines 12 principles
around the values. But it deliberately avoids prescribing concrete programming
practices. Rather, the principles are couched in sufficiently general terms, so that
users can follow them yet still have sufficient creative freedom.

Critics allege that the principles underpinning agile development are neither
new, nor do they represent a paradigm shift. In fact, the origins of iterative and
incremental development can be traced back to the late 1960s and early 1970s
(Fitzgerald et al. 2006, p. 200; Larman and Basili 2003, p. 48). What is new is the
way the various agile methodologies interact, mutually reinforcing each other.
In addition, proponents of agile methodologies recommend implementing

3.4 Development Strategies 103

iterations in a comprehensive way, to generate code and new software versions as
fast as possible. Moreover, they advocate continuously modifying rough plans—
providing a flexible way of dealing with problems and new requirements, which
spring from the increasing speed of change in the business and technology worlds.

In any case, agile methodologies’ basic principles are fundamentally at odds
with those of plan-based software development, especially the advance preparation
of plans in as much detail as possible, working in clearly identifiable phases and
producing comprehensive documentation. The apparently irreconcilable differ-
ences between the two methodologies led to an increasing polarization of views,
which was also known as the ‘‘Method War.’’ This episode involved agile advo-
cates being labeled ‘‘hackers,’’ while supporters of plan-based approaches were
likened to ‘‘dinosaurs’’ by their opponents. (Boehm and Turner 2003, p. xiii;
Boehm 2002, p. 3; Beck and Boehm 2003, p. 45).

Table 3.8 provides an overview of the differences between plan-based and agile
approaches in several key aspects.

However, the literature increasingly stresses that both agile and plan-based
methodologies have their merits, with strengths in different areas. Neither meth-
odology can be seen as fundamentally superior to the other (Boehm and Turner,
pp. 148ff.). Table 3.9 shows which methodology appears to be best suited for
which task in which application, on the basis of selected variables.

More recent approaches combine both plan-based and agile elements to exploit
the strengths of both methodologies. For example, these hybrid methodologies
plan the interaction of individual software components in great detail. The
development of the components themselves, however, follows an agile approach.

Table 3.8 Comparison of plan-based and agile software development approaches

Aspect Plan-based Agile

Attitude to change Disturbance Opportunity

Process Sequential Iterative

Artifacts Comprehensive As many as necessary

Role of developer Resource Decision maker

Releases Full Incremental

Table 3.9 Factors influencing the selection of methodology

Factor Plan-based Agile

User requirements Stable Unstable

Development team size Tends to be large Tends to be small

Security-critical systems Suitable Unsuitable

Type of software developed Standard software Custom software

104 3 Software Vendor Strategies

Building on the issues discussed in this section, Fig. 3.29 illustrates which
development methodology is generally best suited in which context, in the form of
a dynamism and complexity matrix. The dynamism axis represents an environment
with increasing economic or technological uncertainty, in which user requirements
frequently change. Complexity includes aspects such as the number of software
developers respectively, the size of the team involved or the need to integrate
software and hardware from third parties.

Of course, this depiction is only a starting point for selecting an approach, as
other factors also play an important role within a given organization, such as
experience with a methodology or the specific type of the software being
developed.

3.4.2 Software-Supported Software Development

The first attempts to generate software code automatically, based on models, took
place in the 1980 and 1990. This was known as Computer Aided Software
Engineering (CASE), and in retrospect, was only moderately successful. CASE
approaches had a fundamental weakness (Schmidt 2006): their closed nature.
CASE tools generate code for a single specific target environment. Moreover,
the approach requires that all stages of software development are supported by just
one tool, and executed sequentially in the traditional way.

New approaches, Model-Driven Engineering (MDE), address these two weak
points. We are deliberately using this term to stress the development process
(engineering). In the literature, the term Model-Driven Architecture is frequently
used, which shifts the focus onto the architecture of the software creation tools.
Essentially, MDE is based on models and transformation processes (Petrasch and
Meimberg 2006):

• Models are used to represent application domains. There are two types, Plat-
form Independent Models (PIMs) and Platform Specific Models (PSMs).

Fig. 3.29 Advantages of the
different development
methodologies

3.4 Development Strategies 105

• Transformation processes describe the automated mapping of language
constructs of PIMs to PSMs (model-to-model transformation) and of PSMs to
executable code (Model-to-code transformation).

Figure 3.30 shows how these two central MDE concepts interact, as well as the
Computation Independent Model (CIM), which describes the domain to be
supported by the software in informal, non-technical terms, and serves as a basis
for the PIM.

Tools to support MDE typically include model editors, transformation editors,
and tools and a repository. XML-based interfaces are available that allow different
tools to exchange models.

The implementation of MDE approaches is still in its infancy. With respect to
development costs, it can be assumed that the introduction and optimization of
MDE approaches will give rise to non-project-related costs, while project-related
costs in the later stages of development will be reduced. In other words: Imple-
menting MDE only makes sense from the cost perspective, if

• the costs saved in development are not offset by additional costs for more
extensive modeling and for the MDE implementation itself; and moreover

• a critical mass of projects is achieved.

Fig. 3.30 Interaction of key concepts of Model-Driven-Engineering

106 3 Software Vendor Strategies

MDE is a management concept that is yet to prove its effectiveness in the
software industry. For this reason, we sent a questionnaire to 240 software
providers in Germany asking for their view of selected aspects of this industri-
alization concept. 25 replied (Hess et al. 2007). This sample is small and not
representative of the industry as a whole. However, it allows some initial
conclusions to be drawn, which are presented below.

A significant majority of respondents were familiar with the concept of MDE,
although it was more widely known in larger enterprises (annual net sales over
10 million euros) than in smaller companies. Almost half of the respondents
already had some experiences with the MDE concept. These experiences varied
considerably, as Fig. 3.31 shows. Nevertheless, there are some companies that
successfully deployed the concept. In particular, they reported advantages in
relation to end-to-end model-driven and accelerated software development.

More than half of the respondents expect MDE to play an important role in future.
This assessment was more or less shared by the companies that had some experience
of MDE. In summary, this suggests that MDE is a means for supporting software
development that is seen by businesses in a positive light, but without euphoria.

3.4.3 HR Management in Software Development

Not least with the rise of agile development methodologies (see Sect. 3.4.1), it is
increasingly accepted that the human factor plays a critical role in the software
development process. The influence of such ‘‘soft’’ factors can play a greater role
than technical factors as the type of technology or the use of a particular tool. The
People Capability Maturity Model (CMM), developed by the Software Engi-
neering Institute, addresses this issue. It applies the CMMI maturity model for
assessing development processes to a company’s HR management (SEI 2010).

Having noted the importance of effective HR management for the success of
software development projects, the following section looks in greater detail into
the question of whether software developers have special characteristics that set

Fig. 3.31 Reported effects of MDE

3.4 Development Strategies 107

them apart from other professionals. Further to this, we will look at the ‘‘person-
job fit’’ approach as a possible method to assign employees to roles and
responsibilities. Finally, we will discuss the issue of employee motivation.

The ability to determine and even measure personality traits and types has
caused increasing scientific interest in personality theories in the last few decades.
Given that a person’s attitudes, beliefs, perceptions, and behavior are all influenced
to a certain degree by their personality, the personality structure has a considerable
impact on software development processes.

‘‘Personality’’ refers to an individual’s unique psychological attributes, which,
in turn, shape a multitude of characteristic behavior patterns. Consequently,
personality traits can at least partially explain people’s interest in particular careers
(Costa et al. 1984). Software developers generally possess a different personality
type to that of the average population. They tend to be less dominated by their
emotions, are more likely to be introverted and in many cases would rather work
alone than as a team member (Capretz 2003).

Despite these similarities between software developers, there are of course
considerable differences within this group; it would be wrong to talk of a ‘‘typical’’
software developer. Moreover, a software development project incorporates a
variety of roles (e.g. team leader, quality manager, tester, programmer etc.), which
have different demands.

The ‘‘person-job fit’’ approach focuses on assigning people to particular roles
based on their specific abilities. The model, illustrated in Fig. 3.32, posits that an
individual’s personal attributes and skills need to correspond with the requirements
of their job. A closer fit generally leads to employees performing better, enjoying
greater career success, and experiencing higher satisfaction levels, as well as less
staff turnover.

Applying this to the software industry, Acuña et al. (2006) identify certain
capabilities that are typical for people with particular personality traits. In the second
step, these capabilities are matched against the specific requirements of eight dif-
ferent role profiles found in a software development project (see Fig. 3.33).

Fig. 3.32 Person-job fit (based on Lauver and Kristof-Brown 2001)

108 3 Software Vendor Strategies

Personality tests may also be used to determine whether an employee is suitable
for a particular role. The capabilities identified in the test are then matched up with
the role profile. It should be noted that this matching process provides only initial
guidance as to whether an employee is suitable for a role—this model cannot take
into account employees’ specific skills or experience, the particular requirements
of the position, or organizational details.

Closely related to the assignment of people to roles and responsibilities is the
issue of how best to motivate software developers. However, it is difficult to
provide a general answer, as positive and negative motivational factors depend on
the specific context and the person’s individual needs. Figure 3.34 offers a general
model for explaining software developers’ motivation.

Although there are many unique, context-specific factors, the literature
emphasizes identification with the task as the primary motivator for software
developers: in addition to personal interest in the task, developers are motivated by

Fig. 3.33 Matching developer roles with requirement profiles (Acuña et al. 2006, p. 98)

Fig. 3.34 Motivation of software developers (own illustration, based on Beecham et al. 2008)

3.4 Development Strategies 109

clearly defined targets and an appreciation of the significance of the task for the
project as a whole. Other incentives include the existence of clear career paths and
a varied and challenging range of activities (cf. Beecham et al. 2008).

A poor working environment, for example, lacking in key resources such as
hardware and software, is commonly cited as a negative motivator. Others include
poor management, such as calling superfluous meetings, and poor pay (cf. Beecham
et al. 2008).

When implementing measures to increase motivation, attention should be paid
to the previously discussed fit between the task and the person in question, as a
misfit is a negative motivation. In other words, assigning the ‘‘wrong’’ person to
the job can only be corrected to a limited extent by other means.

110 3 Software Vendor Strategies

	3 Software Vendor Strategies
	3.1…Cooperation and Acquisition Strategies
	3.1.1 Cooperation in the Software Industry
	3.1.1.1 Advantages
	3.1.1.2 Types of Cooperation and Partners Within the Software Industry
	Development Partnerships
	Reseller Partnerships
	Shared Revenue Partnerships
	OEM Relationship
	Referral Partnerships
	Standardization Partnerships

	3.1.2 Mergers and Acquisitions in the Software Industry
	3.1.2.1 Forms of M&A
	3.1.2.2 Motivations for M&A
	3.1.2.3 Consolidation Tendencies in the Software Industry
	3.1.2.4 Factors Determining the Success of M&A Activities in the Software Industry

	3.2…Sales Strategies
	3.2.1 Structuring of Sales Systems: Organization and Sales Channels in the Software Industry
	3.2.2 Organization of Relationships with Sales Partners and Key Accounts
	3.2.3 Key Performance Indicators as a Sales Performance Management Tool in the Software Industry
	3.2.3.1 Sales Performance Management
	3.2.3.2 Use of Performance Measurement Systems in the Software Industry

	3.3…Pricing Strategies
	3.3.1 Background
	3.3.2 Pricing Models for Software Products
	3.3.2.1 Overview
	3.3.2.2 Price Formation
	3.3.2.3 Structure of Payment Flow
	3.3.2.4 Billing Units
	3.3.2.5 Price Discrimination Strategies
	3.3.2.6 Price Bundling
	3.3.2.7 Dynamic Pricing Strategies

	3.3.3 Pricing Strategies of Software Providers: Empirical Findings
	3.3.4 Approaches to Pricing for Custom Software Providers

	3.4…Development Strategies
	3.4.1 Structuring of the Software Development Process
	3.4.1.1 Ad-hoc Development
	3.4.1.2 Plan-Based Approach
	3.4.1.3 Agile Approach

	3.4.2 Software-Supported Software Development
	3.4.3 HR Management in Software Development

