

The Software Industry

Peter Buxmann • Heiner Diefenbach
Thomas Hess

The Software Industry

Economic Principles, Strategies,
Perspectives

123

Peter Buxmann
Chair of Information Systems/

Wirtschaftsinformatik
TU Darmstadt
Darmstadt
Germany

Heiner Diefenbach
TDS AG
Neckarsulm
Germany

Thomas Hess
Institute for Information Systems

and New Media
LMU München
Munich
Germany

ISBN 978-3-642-31509-1 ISBN 978-3-642-31510-7 (eBook)
DOI 10.1007/978-3-642-31510-7
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012945103

� Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be
obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

Barely any other industry has changed society and the business world that lasting
as software industry. Software support of business processes inside and between
companies has become a matter of course as to ‘‘google’’ for information or the
use of navigation systems. So, it is not surprising that the software industry is one
of the biggest growth markets worldwide and also one of the most international
sectors. Accordingly, software companies compete for customers and to an
increasing degree for employees all over the world. But not only due to the
international software markets, but also as a result of the unique characteristics of
software as a product, there are special rules for software providers. That is the
issue of this book.

This book provides a clear structure: The first part discusses general principles
of the software industry, while the second deals with specific topics. The first
chapter describes the beginnings of the software industry and its basic rules. We
discuss the economic principles of the software industry in Chap. 2 as the prop-
erties of digital goods, the network effects on software markets, the issue of
standardization, and look also at the aspects of transaction cost and agency theory.
Against this background we examine selected strategies for software vendors. The
second part highlights approaches to outsourcing by software providers and users
as well as platform concepts. Moreover, the last chapters are looking at software as
a service and open source software.

We would like to express our sincere gratitude to our colleagues at Software
Economics Group Darmstadt-München (www.software-economics.org) for their
assistance and support. In particular, Prof. Dr. Alexander Benlian, Dr. Björn
Brandt, Christoph Burkard, Tobias Draisbach, Jin Gerlach, Thomas Görge, Daniel
Hilkert, Christian Hörndlein, Dr. Sonja Lehmann, Dr. Janina Matz, and Dr.
Christian Wolf contributed new content, taken in part from their doctoral theses.

We would like to thank Anette von Ahsen and Helena Wenninger for their
assistance with the preparation of this book. Not only did they provide us with
numerous bug reports, but also the corresponding patches. We are equally thankful
to Dr. Niels Thomas and Alice Blanck from our publishers, Springer. Again, it was
a pleasure to work with them.

v

http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://www.software-economics.org

We look forward to your feedback and comments and hope that you will find
the book stimulating and enjoyable.

April 2012 Peter Buxmann
Heiner Diefenbach

Thomas Hess

vi Foreword

Contents

Part I Basics

1 The Rules in the Software Industry . 3
1.1 Software and Software Markets: Unique Characteristics

of the Software Industry . 3
1.2 The Beginnings of the Software Industry 4
1.3 Types of Software Provider and Users’ Selection Criteria 4

1.3.1 Software Providers in the Wider and Narrower Sense . . . 4
1.3.2 The Selection of Software . 9

1.4 Business Models for Software Companies 14
1.5 Revenue from Services in the Software Industry 16

2 Economic Principles in the Software Industry 19
2.1 Properties of Digital Goods . 19
2.2 Network Effects on Software Markets:

The Winner Takes it All . 20
2.2.1 Network Effects: Basics and Definitions 21
2.2.2 Impact of Network Effects on Software Markets. 23
2.2.3 Structure of Software Markets 26
2.2.4 Network Effects as a Competitive Factor 27
2.2.5 A Case Study: Two-Sided Network Effects and

Platform Strategies in the Digital Games Industry. 29
2.2.6 Limitations of Network Effect Theory 32

2.3 The Standardization Problem . 33
2.3.1 Approach and Background . 33
2.3.2 The Central Standardization Problem as

An Optimization Problem . 36
2.3.3 The Decentralized Standardization Problem:

A Game Theoretical Approach 37

vii

http://dx.doi.org/10.1007/978-3-642-31510-7_1
http://dx.doi.org/10.1007/978-3-642-31510-7_1
http://dx.doi.org/10.1007/978-3-642-31510-7_1#Sec1
http://dx.doi.org/10.1007/978-3-642-31510-7_1#Sec1
http://dx.doi.org/10.1007/978-3-642-31510-7_1#Sec1
http://dx.doi.org/10.1007/978-3-642-31510-7_1#Sec2
http://dx.doi.org/10.1007/978-3-642-31510-7_1#Sec2
http://dx.doi.org/10.1007/978-3-642-31510-7_1#Sec3
http://dx.doi.org/10.1007/978-3-642-31510-7_1#Sec3
http://dx.doi.org/10.1007/978-3-642-31510-7_1#Sec4
http://dx.doi.org/10.1007/978-3-642-31510-7_1#Sec4
http://dx.doi.org/10.1007/978-3-642-31510-7_1#Sec5
http://dx.doi.org/10.1007/978-3-642-31510-7_1#Sec5
http://dx.doi.org/10.1007/978-3-642-31510-7_1#Sec8
http://dx.doi.org/10.1007/978-3-642-31510-7_1#Sec8
http://dx.doi.org/10.1007/978-3-642-31510-7_1#Sec9
http://dx.doi.org/10.1007/978-3-642-31510-7_1#Sec9
http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec1
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec1
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec2
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec2
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec2
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec3
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec3
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec4
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec4
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec7
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec7
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec8
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec8
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec9
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec9
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec9
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec12
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec12
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec16
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec16
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec17
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec17
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec18
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec18
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec18
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec19
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec19
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec19

2.3.4 The Standardization Problem: Lessons Learned 40
2.4 Transaction Cost Theory: In Search of the Software

Firm’s Boundaries . 41
2.4.1 Starting Point and Elements of Transaction

Cost Theory . 42
2.4.2 Division of Labor Among Companies:

A Transaction Cost Theory Perspective 44
2.4.3 Structural Changes to Transaction Costs:

The Move to the Middle . 45
2.4.4 Excursion: Intermediaries and Transaction Costs 46

2.5 Software Development as a Principal-Agent Problem. 47
2.5.1 Incentive-Compatible Compensation

and Efficient Control . 47
2.5.2 Principal-Agent Relationships: Definitions

and Basic Principles . 48
2.5.3 Incentive-Compatible Compensation Schemes 49
2.5.4 Control Systems . 52

3 Software Vendor Strategies . 55
3.1 Cooperation and Acquisition Strategies 55

3.1.1 Cooperation in the Software Industry 55
3.1.2 Mergers and Acquisitions in the Software Industry 64

3.2 Sales Strategies . 71
3.2.1 Structuring of Sales Systems: Organization and Sales

Channels in the Software Industry. 71
3.2.2 Organization of Relationships with Sales Partners

and Key Accounts. 75
3.2.3 Key Performance Indicators as a Sales Performance

Management Tool in the Software Industry 77
3.3 Pricing Strategies. 81

3.3.1 Background . 81
3.3.2 Pricing Models for Software Products 82
3.3.3 Pricing Strategies of Software Providers:

Empirical Findings . 96
3.3.4 Approaches to Pricing for Custom Software Providers. . . 99

3.4 Development Strategies . 101
3.4.1 Structuring of the Software Development Process 101
3.4.2 Software-Supported Software Development 105
3.4.3 HR Management in Software Development 107

viii Contents

http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec20
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec20
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec21
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec21
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec21
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec22
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec22
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec22
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec23
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec23
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec23
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec24
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec24
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec24
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec25
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec25
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec26
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec26
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec27
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec27
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec27
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec28
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec28
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec28
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec29
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec29
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec32
http://dx.doi.org/10.1007/978-3-642-31510-7_2#Sec32
http://dx.doi.org/10.1007/978-3-642-31510-7_3
http://dx.doi.org/10.1007/978-3-642-31510-7_3
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec1
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec1
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec2
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec2
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec11
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec11
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec16
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec16
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec17
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec17
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec17
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec18
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec18
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec18
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec19
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec19
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec19
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec22
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec22
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec23
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec23
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec24
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec24
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec32
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec32
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec32
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec33
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec33
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec34
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec34
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec35
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec35
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec39
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec39
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec40
http://dx.doi.org/10.1007/978-3-642-31510-7_3#Sec40

Part II Specific Issues

4 Outsourcing and Offshoring of Software Development. 113
4.1 Overview . 113
4.2 Forms of Outsourcing and Offshoring 114
4.3 Motives for Outsourcing and Offshoring 117

4.3.1 Cost Savings . 117
4.3.2 Greater Flexibility . 119
4.3.3 Concentration on Core Competencies 119
4.3.4 Acquisition of Knowledge and Skills. 119
4.3.5 Exploitation of the ‘‘Follow-the-Sun’’ Principle 120

4.4 Selection of Locations by Software Providers 120
4.5 Outsourcing by Software User Organizations 123

4.5.1 Outsourcing of the Development
of New Custom Software . 123

4.5.2 Outsourcing Modifications to Standard Software. 126
4.5.3 Outsourcing the Further Development and Maintenance

of Application Software . 129
4.5.4 User Satisfaction with Onshore, Nearshore,

and Farshore Providers . 133
4.6 Nearshoring Versus Farshoring: Distance from the Customer

as a Success Factor? . 134
4.6.1 Cultural and Language Barriers in Offshore Projects 134
4.6.2 The Importance of Face-to-Face Meetings

to Project Success . 136
4.6.3 Time Difference: Challenges and Opportunities 137

4.7 Outsourcing by Software Providers . 139
4.7.1 The Status Quo of Specialization and the Division

of Labor: Insights from Three Case Studies.. 139
4.7.2 Future Division of Labor in the Software Industry 146

5 Platform Concepts . 155
5.1 Overview . 155
5.2 Product Platforms in the Software Industry. 155

5.2.1 Cost Structure of Platform-Based Software
Development . 155

5.2.2 Organizational Support for Implementing
Product Platforms . 159

5.2.3 Add-on: Industrialization as a Management
Concept for the Software Industry. 159

5.3 Industry Platforms in the Software Industry 162
5.3.1 Openness of Industry Platforms 162
5.3.2 Management of Complementors 165

Contents ix

http://dx.doi.org/10.1007/978-3-642-31510-7_4
http://dx.doi.org/10.1007/978-3-642-31510-7_4
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec1
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec1
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec2
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec2
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec3
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec3
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec4
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec4
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec5
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec5
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec6
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec6
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec7
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec7
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec8
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec8
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec8
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec8
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec9
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec9
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec10
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec10
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec11
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec11
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec11
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec14
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec14
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec17
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec17
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec17
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec21
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec21
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec21
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec22
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec22
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec22
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec23
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec23
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec24
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec24
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec24
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec25
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec25
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec26
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec26
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec27
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec27
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec27
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec28
http://dx.doi.org/10.1007/978-3-642-31510-7_4#Sec28
http://dx.doi.org/10.1007/978-3-642-31510-7_5
http://dx.doi.org/10.1007/978-3-642-31510-7_5
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec1
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec1
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec2
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec2
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec3
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec3
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec3
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec4
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec4
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec4
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec5
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec5
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec5
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec6
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec6
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec7
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec7
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec16
http://dx.doi.org/10.1007/978-3-642-31510-7_5#Sec16

6 Software as a Service: The Application Level
of Cloud Computing. 169
6.1 Overview . 169
6.2 Basic Principles of Cloud Computing. 170
6.3 SaaS: Applications and Examples . 174
6.4 SaaS from the User’s Perspective: Opportunities and Risks 176

6.4.1 Background . 176
6.4.2 Empirical Study on Opportunities and Risks

for SaaS Users . 180
6.5 SaaS from the Provider’s Perspective: Pricing Strategies

and Business Models . 183
6.5.1 Basic Considerations . 183
6.5.2 Empirical Study of SaaS Providers’ Pricing

Strategies and Business Models 184
6.5.3 Case Study to Compare Usage-Based and

Usage-Independent Pricing Models 187

7 Open Source Software . 191
7.1 Overview . 191
7.2 Features of Open Source Software. 191
7.3 Open Source Projects: Principles and Motivation

of Software Developers . 196
7.3.1 Organizational Structures and Processes

in Open Source Projects. 196
7.3.2 Contributor Motivation . 197

7.4 Open Source Software: The User Perspective 199
7.5 Commercial Software Vendors’ Involvement 200
7.6 Open Source ERP Systems . 202

References . 211

Index . 221

x Contents

http://dx.doi.org/10.1007/978-3-642-31510-7_6
http://dx.doi.org/10.1007/978-3-642-31510-7_6
http://dx.doi.org/10.1007/978-3-642-31510-7_6
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec1
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec1
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec2
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec2
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec3
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec3
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec4
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec4
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec5
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec5
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec6
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec6
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec6
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec9
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec9
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec9
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec10
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec10
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec11
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec11
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec11
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec12
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec12
http://dx.doi.org/10.1007/978-3-642-31510-7_6#Sec12
http://dx.doi.org/10.1007/978-3-642-31510-7_7
http://dx.doi.org/10.1007/978-3-642-31510-7_7
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec1
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec1
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec2
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec2
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec3
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec3
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec3
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec4
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec4
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec4
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec5
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec5
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec6
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec6
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec7
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec7
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec8
http://dx.doi.org/10.1007/978-3-642-31510-7_7#Sec8

Abbreviations

ASD Adaptive software development
ASP Application service providing
BOT Build operate transfer
BPEL Business process execution language
BSA Business software alliance
BSD Berkeley software distribution
B2B Business-to-business
B2C Business-to-company
CAR Cumulative abnormal return
CAAR Cumulative average abnormal return
CASE Computer aided software engineering
CCC Content communication and collaboration
CEO Chief executive officer
CIM Computational independent model
CIO Chief information officer
CMMI Capability maturity model integration
CORBA Common object request broker architecture
CPU Central processing unit
CRM Customer relationship management
CTO Chief technology officer
CVS Concurrent versions system
DCOM Distributed component object model
EDI Electronic document interchange
EPK Event-driven process chain
ERP Enterprise resource planning
GNU GNU is not Unix
GPL General public license
HTTP Hypertext transfer protocol
ICT Information and communication technology
IE Internet explorer
IP Intellectual property
ISO International organization for standardization
IT Information technology
ITT Indian Institute of technology

xi

JDK Java development kit
KPI Key performance indicator
LGPL Library/Lesser general public license
LoC Lines of code
M&A Mergers & Acquisitions
MDE Model driven engineering
MIT Massachusetts institute of technology
MPL Mozilla public license
MU Monetary units
ODF Open document format
OEM Original equipment manufacturer
OSI Open source initiative
OSS Open source software
PDF Portable document format
PIM Platform independent model
PM Platform model
PMC Point of marginal cheapness
PME Point of marginal expensiveness
PPC Production planning and control
PSM Platform specific model
PSM Price sensitivity meter
ROI Return on investments
RPC Remote procedure call
R&D Research and development
SaaS Software as a service
SIIA Software and Information Industry Association
SCM Supply chain management
SME Small and mid-size enterprises
SOA Service-oriented architecture
SQL Structured query language
SW Software
TIME Telecommunications, information, media and entertainment
UDDI Universal description, discovery, and integration
URI Uniform resource identifier
US-GAAP United States Generally Accepted Accounting Principles
VHS Video home system
WSDL Web services description language
W3C World wide web consortium
WTP Willingness to pay
XML Extensible markup language
XP eXtreme programming

xii Abbreviations

Part I

Basics

1The Rules in the Software Industry

1.1 Software and Software Markets: Unique Characteristics
of the Software Industry

The software industry is fundamentally different from other industries. This is
partly due to the unique nature of software as a product, but also the structure of
software markets.

A distinctive feature of software products is that they, like all other digital
goods, can be reproduced cheaply. In other words, variable costs are close to zero.
This cost structure has the result that the licensing side of software providers’
business is generally more profitable than the service side—or at least it appears to
be, something we will discuss in more detail later. Moreover, software can be
copied any number of times without loss of quality. Once a copy is available on the
Internet, intellectual property rights are practically unenforceable. This especially
applies to easy-to-understand products on business-to-consumer markets. In
addition, once a software product has been developed, it is relatively simple to
create different versions or packages and sell these to separate groups of customers
at different prices.

Software markets also have some unique characteristics. The software industry
is more international in nature than practically any other sector. Software can be
developed by distributed teams working almost anywhere in the world, and sold
over the Internet in seconds, at negligible cost. This has fueled global competition
between software providers. In comparison with other industries, providers in
many segments enjoy little ‘‘home advantage’’ in their national markets. More-
over, the network effects associated with software often creates winner-takes-all
markets. This accounts for the large number of mergers and acquisitions, for
example.

These and other specific economic principles and game rules will be discussed
later in more detail. After all, they are the backdrop against which software
industry players formulate their strategies and business models.

But first, we wish to briefly outline the historical development of the industry.

P. Buxmann et al., The Software Industry, DOI: 10.1007/978-3-642-31510-7_1,
� Springer-Verlag Berlin Heidelberg 2013

3

1.2 The Beginnings of the Software Industry

The software industry is relatively young. Its origins date back to the early 1950s,
when it was still common practice to sell software and hardware as a single package.
At that time, software was an integral part of hardware, and was still referred to as
program code—the term software was first used in 1959 (Campbell-Kelly 1995,
p. 80). In the USA, this period saw the establishment of the first small companies to
develop software within the scope of specific projects (Hoch et al. 2000, p. 27 ff).

The profile of software rose in 1969, when the US Department of Justice demanded
that IBM itemize hardware and software separately on its invoices. During the 1960s,
a whole series of companies that focused exclusively on software development sprang
up. Of these, Microsoft is most worthy of mention: founded jointly by Bill Gates and
Paul Allen, the company began developing programming languages—first BASIC,
and later others such as FORTRAN and COBOL—for various processors and com-
puters. Later, in collaboration with IBM, Microsoft developed MS-DOS, which
would become the standard operating system, significantly contributing to the spread
of the personal computer (Ichbiah 1993, pp. 91–116). Later, the company would offer
applications as well, entering into competition with Lotus and the like. As early as
1983, Bill Gates told in Business Week that it was Microsoft’s goal to become a one-
stop provider of all types of PC software (Ichbiah 1993, p. 141).

At the same time as Microsoft embarked on its long rise, another success story
was unfolding in the small town of Walldorf, Germany. Dietmar Hopp, Hans-
Werner Hector, Hasso Plattner, Klaus Tschira, and Claus Wellenreuther estab-
lished a company specializing in the development of software for business
applications and processes: SAP AG was born. At first, it developed software for
mainframes, later offering applications for client–server environments. Today,
SAP is the largest European software company and the world leader in enterprise
resource planning (ERP) systems.

These first two examples already reveal a key characteristic of the software
industry: often, just one technology or vendor will come to dominate the market. For
example, MS-DOS squeezed out the rival CPM operating system, while the Excel
spreadsheet program trounced competing products such as Lotus 1–2–3. Microsoft
was to become the world’s leading provider of office applications, browsers, and
operating systems. The market for business software is currently undergoing con-
solidation (see Sect. 3.1.2). We will return to the special features of these markets—
but will now turn our focus to the key players in the software industry.

1.3 Types of Software Provider and Users’ Selection Criteria

1.3.1 Software Providers in the Wider and Narrower Sense

In the following section, we will introduce the various types of software providers.
A distinction should be made between software providers in the broader and
narrower sense.

4 1 The Rules in the Software Industry

http://dx.doi.org/10.1007/978-3-642-31510-7_3

The role of a software provider in the narrower sense is to develop software—and
this applies to all types of software. Software itself can be categorized in various
ways. A commonly used criterion is how directly it interacts with the hardware
(i.e., at what level of the system stack does it operate. According to this method,
software comprises system software (e.g., operating systems), middleware at the
next level up, and application software (e.g., for word processing or accounting)
above that. Software can also be divided into products for commercial and for private
users. A third criterion for classification of software, and one that is more pertinent to
our discussion, is the degree of standardization. On this scale, custom software and
standard software are at the end points.

Custom software is developed, in line with specific customer requirements. It is
developed either in-house—generally in the IT department, but in some cases, in
relevant user departments—or by an external software vendor. In India particu-
larly, the custom software development industry is booming. A number of
successful players with enormous growth rates have emerged, such as Tata Con-
sultancy Services, Wipro Technologies, Infosys Technologies, and Cognizant
Technology Solutions. In addition, there are multitudes of smaller or mid-size
companies that are still operating nationally or regionally in high-wage countries.
By contrast, custom software development companies based in low-wage countries
are more likely to operate globally, and so compete against one another. We will
examine these nearshore and farshore providers and their impact on the software
industry more closely in Sect. 4.6.

Standard software is generally developed for the mass market. As a result,
providers address the lowest common denominator in terms of users’ needs. In the
following pages, we will analyze the rise of, and success factors behind, standard
software, using SAP as a case study.

SAP and its R system
SAP is the leading provider of business software in Europe and the fourth

largest independent software vendor in the world. The company employs
55,000 people at 75 subsidiaries worldwide. Overall 183,000 customers reap
the benefits of SAP’s solutions.

Key factors
SAP’s success is attributed to three key factors; namely, the idea of

standard software, offering integrated solutions, and real-time processing. In
1981, the company put these ideas into practice for the first time with SAP
R/2, thereby opting to focus on the development of business software. SAP
launched the R/3 system a decade later. Originally, the new architecture was
not meant to replace R/2 but complement it by providing a solution for
SMEs. However, the general changeover from mainframe solutions to the
client–server model, which was underway at that time, made R/3 just as
appealing to larger companies and led to its huge popularity. Since then,
SAP has extended its product portfolio. We will return to this topic later.

1.3 Types of Software Provider and Users’ Selection Criteria 5

http://dx.doi.org/10.1007/978-3-642-31510-7_4

Standard software
In the early days, as mentioned above, software was generally developed

within customer-specific projects. This meant that the software and, if
necessary, the hardware was tailored exactly to the customer’s requirements.
By contrast, SAP planned from the outset to develop a standardized system
that could be used by multiple customers. SAP was one of the first com-
panies to systematically pursue this approach.

An integrated solution
At the heart of the SAP system is an integrated database that all appli-

cations can access. Using an integrated data repository was a completely
new approach in the 1970s. At the time, redundant and inconsistent data
generated enormous costs. Building on this foundation, SAP gradually
developed modules for various corporate functions, such as financial and
management accounting, logistics, and human resource management. Ini-
tially, these packages were primarily designed for industrial companies and
could be purchased individually or as a package which included a database.

In contrast to office applications such as those offered by Microsoft, it
became clear that many areas of business had to address industry-specific
requirements. To meet this need, SAP now offers a wide variety of industry-
specific solutions. This included the service sector, which had received little
attention up to that point.

Real-time data processing
By the end of the 1970s, companies generally used punch cards, i.e., data

were entered into the computer via punch cards and not processed until later.
From the outset, SAP’s founders saw real-time processing as a key feature,
which was implemented in all systems. This also explains the ‘‘R’’ in the
product name, which stands for real time.

Sources Leimbach (2007) Vom Programmierbüro zum globalen Soft-
wareproduzenten. Die Erfolgsfaktoren der SAP von der Gründung bis zum
R/3-Boom. In: Zeitschrift für Unternehmensgeschichte 52: 5–34;

www.sap.com.

There is no clear distinction between custom and standard software’s. Even
standard business software can be customized to users’ needs to a certain extent.
Nonetheless, implementation projects involving software parameterization and/or
customization, and, where required, function extensions, frequently cost into the
millions. So, it generally makes sense for users to opt for smaller adjustments only:
complete modification of standard software, until it is 100 % geared to users’
needs, is extremely expensive; it can also create problems when upgrading to new
versions. In addition, new approaches, such as service-oriented architectures, offer
the possibility (at least theoretically) of selecting software that best matches their

6 1 The Rules in the Software Industry

http://www.sap.com

requirements in specific areas, and then melding them into a single customized
application solution by means of integration software (see Sect. 4.7.2).

The proportion of standardized software solutions in enterprises’ portfolios is
set to increase, as our survey of 498 German CIOs shows (Buxmann et al. 2010).
Total 62.9 % of respondents’ companies mostly use standard software solutions,
while 24.5 % employ standard and custom softwares more or less equally. Custom
software dominates at 12.6 % of enterprises (Fig. 1.1).

In addition to asking about their companies’ current use of standard and custom
softwares, we also canvassed respondents’ opinions as to the future development
of these types of software. Almost 66.7 % of the CIOs surveyed agreed with the
statement that companies are increasingly employing standard software at the
expense of custom software. Out of this 20.2 of companies disagreed, while
13.1 % expressed no opinion (see Fig. 1.2). Total 34 % of the participants

Fig. 1.1 Share of software types

Fig. 1.2 Predicted developments in the share of software types used

1.3 Types of Software Provider and Users’ Selection Criteria 7

http://dx.doi.org/10.1007/978-3-642-31510-7_4

concurred with the assertion that customizations of standard software would
decrease, while almost half (49 %) disputed this assumption. The overwhelming
majority of respondents (71.2 %) believed that, due to growing user requirements,
custom solutions would continue to be needed sometimes to address specific
problems, and would have to be integrated into the overall IT landscape.

In future, therefore, companies will employ more standard software solutions;
however, customizations will still be necessary. For specific problems, for which
no standard application software is available (as yet), companies will continue to
develop individual solutions (either in-house or via outsourcing), and then have to
integrate them into their IT environments.

In addition to software providers in the narrower sense—in other words,
companies that develop standard or custom software—there are also those that
offer services for the later phases in the lifecycle of software solutions. In the
following, we have described these organizations as software providers in the
broader sense. Their services include both implementation support and ongoing
operation. Figure 1.3 depicts our classification of software providers.

Especially, in the case of complex software solutions that are not self-explan-
atory—in other words, those that are not easy to implement and integrate into an
application environment—there is currently great demand for services. As a result,
a large number of providers are active in this space. These can be broken down as
follows (Lünendonk 2009):

• IT consultancies and system integrators (which offer IT consulting, develop-
ment of custom software, etc.),

• IT service providers (outsourcing, ASP, user training etc.) and
• Business innovation/transformation partners (management and IT consulting,

system implementation).

The provision of user support for SAP implementation projects has traditionally
been a significant market. This is because—as discussed above—these projects
involve customizing the software to the specific needs of the user organization. In
many cases, companies using SAP software do not have the necessary knowledge
and skills, or have insufficient employees with this expertise. Such implementation
projects are crucial for the customer to gain the full benefits from the software, as
it directly affects internal and inter-company processes. In addition, these projects
frequently entail minor programming tasks, such as the development of interfaces
between heterogeneous systems.

Fig. 1.3 Classification of software providers

8 1 The Rules in the Software Industry

This business relies like almost no other on a relationship of trust between cus-
tomer and service provider. Detlev Hoch et al. even describe this relationship in terms
of ‘‘faith’’. In their view, the customer must have faith in the outstanding skills of the
service provider or the employees assigned to the project, and in their ability to solve
the customer’s problems as promised (Hoch et al. 2000, p. 160). While users can test-
drive products from a standard software vendor, this is simply not possible in the case
of bespoke solutions. Often, the customers have no alternative, but to base their
decision on the references furnished by the consultants and system integrators.
Against this background, these service providers’ marketing activities have the
primary goal of building trust in their skills and ability to deliver. To this end, the
following activities are essential: (Hoch et al. 2000, pp. 162–178):

• Sponsoring IT conferences,
• Discussion groups and forums with leading lights from the IT and software

industries,
• Publications in industry media and scientific journals and
• Advertisements and TV commercials.

For customers, the complexity of implementation and integration projects
means that selecting the right service provider is crucial. Especially, considering
that most projects go over budget—and in many cases, fail altogether. In a study
by Standish Group International Inc, just 32 % of the IT projects in their sample
were successfully completed within the allotted time and budget (The Standish
Group International 2009, p. 2). Overall 44 % far exceeded these targets, while
24 % were never completed at all. Projects assessed as being complex exceeded
their budget and planned duration by more than 100 %.

Operating IT solutions has been a key part of the outsourcing business for many
years (also see Chap. 4). There are a large number of players on this international
and highly competitive market. We include them among our software providers in
the broader sense.

In recent years, a new form of IT delivery has emerged: cloud computing,
which will be examined in Chap. 5.

1.3.2 The Selection of Software

The business models of software providers (both in the narrower and broader sense)
reflect the selection mechanisms and preferences of their customers. The following
sections will outline the processes and criteria used for evaluating and selecting
software solutions by businesses (Sect. 1.3.2.1) and consumers (Sect. 1.3.2.2).

1.3.2.1 Software Selection by Businesses

Companies generally go through several sequential steps to reach their final choice
(see Fig. 1.4). This involves gradually reducing the choice of possible alternatives.

1.3 Types of Software Provider and Users’ Selection Criteria 9

http://dx.doi.org/10.1007/978-3-642-31510-7_4
http://dx.doi.org/10.1007/978-3-642-31510-7_5

Typical context variables are company-related factors, such as industry, size or
business functions to be supported, or environmental variables, such as techno-
logical standards. These basic conditions are used to define the goals which pur-
chasing the software must achieve. The next step is usually to define criteria.
These are characteristics that describe a software system and that form the basis
for evaluation.

Market overviews are used to identify potential options. Typically, this is
followed by a two-stage evaluation and selection process. In the first round, the
options are assessed according to elimination criteria. Only solutions that meet
these criteria are examined in more detail. With the help of a detailed definition of
requirements (functional specifications), which is derived from the criteria, the
company will then request quotations or additional information on the remaining
options. Based on this information, a further round of selection follows, culmi-
nating in a selection recommendation. Some approaches also include post-selec-
tion steps, such as contract negotiations and functional testing to estimate the
customization effort required.

The following section explores the development of a system of goals, the
selection and weighting of criteria, and the activities involved in the two selection
rounds in more detail.

The formulation of goals that are to be met by introducing or deploying soft-
ware in a particular area is generally the starting point for analysis, and provides a
yardstick for assessing alternatives. A variety of methods can be used; for
example, goals can be derived from the top down, i.e., from corporate goals or the
IT strategy. For example, high-level corporate goals, such as increasing profits, can
be applied to the concrete problem of selecting standard software for a specific
purpose. One way of doing this is to breakdown the high-level goals into concrete
subordinate goals in terms of an end-means relationship with respect to the
selection problem. Examples include reducing throughout, cutting inventory
levels, or improving response times.

A bottom-up approach is also possible. The goals derived in this way have a very
functional focus with respect to the specific selection problem and/or to existing
structures (such as the IT architecture). Examples include goals in the form of
general characteristics of software, such as independence from database or hardware
vendors, compatibility with existing versions, or specific application-related func-
tionality, such as automatic allocation of part numbers with checksum or broadening
the information base. These characteristics often correspond to concrete require-
ments rather than being goals in the narrow sense, which are pursued for their own
sake. In practice, to determine the goals needed as a basis for the criteria, most
companies employ a combination of top-down and bottom-up methods.

Fig. 1.4 Software selection by companies

10 1 The Rules in the Software Industry

If criteria are derived from the goal system, they generally represent the lowest
level of this system. As a result, the effect of a given system property on the
desired goals is clearly visible. Selection criteria are often subdivided into soft-
ware, implementation, and provider-related properties to reflect the goal hierarchy.
Besides the characteristics of the software itself, implementation criteria also play
a key role, especially in complex systems. This is because over and above the
procurement costs, implementation work can significantly impact the software’s
total cost. The implementation of complex software systems is often carried out
with the support of software providers or implementation partners, and generally
speaking, their expertise and professionalism should also be evaluated before
selecting software. In addition to purely rational criteria, the role of political
factors (e g., informal agreements, nepotism, and internal power struggles) should
not be underestimated. These can have a significant influence on the selection
process (Howcroft and Light 2006).

Table 1.1 shows which selection criteria for software, implementation, and
providers are actually used in practice in the selection of ERP systems (Keil and
Tiwana 2006; Jadhav and Sonar 2009).

In terms of weighting criteria toward the overall decision, it is generally
assumed that these criteria are already, or will be fulfilled. However, it is also
possible for a criterion to be partially met. In this case, it is necessary to specify a
desired goal threshold or evaluate various thresholds. For example, a criterion
dubbed ‘‘database independence’’ does not make it clear whether compatibility
with two, three, or ten database management systems is required. This can be
important to ensure solutions are not overrated, for example, where the threshold is
set relatively low. With some goals, on the other hand, a certain minimum level
needs to be met before an option will even be considered or investigated further.
Such knockout (or killer) criteria make the selection process more efficient.
However, they also pose the risk of ruling out options that only narrowly miss the
minimum requirement.

A holistic approach is usually employed to weight criteria, for example, the
kind familiar from cost-benefit analyses. Weightings are generally allocated by a
direct comparison of criteria. For example, empirical studies on the selection of
ERP systems have shown that functionality, reliability, and cost are weighted more
heavily, while user friendliness and implementation effort are regarded as less
important (Keil and Tiwana 2006). However, problems arise with this approach
when a highly differentiated system of weightings is used. Especially with

Table 1.1 Typical selection criteria in the selection of ERP systems

Selection criteria (software) Selection criteria (implementation/provider)

Functionality Ability of software to be integrated into existing IT architecture

Cost Implementation time/Customization costs

User friendliness Support from provider

Reliability Reputation of provider

1.3 Types of Software Provider and Users’ Selection Criteria 11

complex selection problems, which owing to the large number of evaluation cri-
teria, include the selection of software, it is only possible to rank options according
to an ordinal scale. More precise scores imply (pseudo-) accuracies that seldom
reflect with the decision maker’s actual preferences.

In practice, drawing up market overviews, shortlisting and evaluating alterna-
tives are often interdependent tasks that are carried out at the same time. Whether
or not a system is included in a market overview is a form of selection in itself.
Due to the wide array of offerings available, this first selection step is commonly
shaped by heuristic approaches such as:

• Inclusion of systems employed by competitors,
• Inclusion of systems currently receiving widespread coverage in industry media

(e.g., Google Apps Premier, SAP ERP),
• Inclusion of systems that employees already have experience with,
• Inclusion of systems that, if selected, the consultant hopes will lead to a follow-

up contract at the implementation stage and
• Inclusion of systems based on a random selection, e.g., through a visit to a trade

show.

As explained above, evaluation and selection are an interconnected process, in
which knockout criteria can reduce the number of alternatives. The following
methods are typically employed:

• Evaluation of system descriptions,
• Evaluation of potential providers’ bids in response to tender documents or

requirements catalogs and
• Presentation of the system and/or concrete functionality based on defined

application scenarios.

To evaluate certain criteria, a three-point scale comprising the values ‘‘fulfilled’’,
‘‘partially fulfilled’’, and ‘‘not fulfilled’’ is frequently used. Finally, individual
evaluations need to be aggregated to form an overall assessment.

A system’s suitability does not depend on how closely it meets functional
requirements, but also on its costs. Accordingly, cost factors are often incorporated
into the evaluation process by way of a cost-benefit coefficient. Ultimately, the
software selection decision is made by comparing relevant quantitative and
qualitative factors.

1.3.2.2 Software Selection by Consumers

While selection in companies is usually a group decision, consumers mostly make
a choice alone. Much the same as in a business context, consumers typically go
through four phases when selecting any product, including software (Blackwell
et al. 2003). These are shown in Fig. 1.5.

Once a consumer has become aware of the need to buy new software (Phase 1:
Determination of need), he or she will look for suitable information on available
products that could satisfy the need. In doing so, the consumer, more or less

12 1 The Rules in the Software Industry

consciously, identifies key subjective and objective criteria for decision making
(Phase 2: Information gathering). After information gathering, the consumer
processes the available data and evaluates the options in light of his or her personal
selection criteria (Phase 3: Evaluation of options). Finally, the consumer compares
and evaluates the available options and decides which product to purchase (Phase
4: Assessment and selection).

In contrast to selection decisions made by enterprises, consumers’ choices are
influenced not only by purely objective criteria (such as cost or functionality), but
also individual or internal, i.e., personal (e.g., their personality, emotions,
impressions, or lifestyle) and situational or external factors (e.g., culture or mouth-
to-mouth propaganda). To help providers better understand which key criteria
consumers use to make their selection, these factors will be examined in more
detail below.

As mentioned above, in addition to purely rational selection criteria, soft factors
play an important role in consumer decision making. A comprehensive model, which
aptly reflects the special characteristics of digital products, is that of the experience
value of digital goods as described by Mathwick et al. 2001 (see Fig. 1.6). It reveals

Fig. 1.6 Factors influencing the experience values of digital goods (following Mathwick
et al. 2001)

Fig. 1.5 Software selection process by consumers

1.3 Types of Software Provider and Users’ Selection Criteria 13

that digital products (e.g. computer games) have an experience value that is (con-
sciously or unconsciously) evaluated before purchase. The experiential value is a
combination of utilitarian and hedonic factors.

Utilitarian factors are overwhelmingly objective in nature and typically reflect
cost-benefit calculations. This cost-benefit mindset, in turn, is fed by mainly
rational evaluation criteria, such as functionality, compatibility, or the software’s
procurement costs. In addition, there is the service provided with the software,
including the support, and guarantees (e. g., a hotline or warranty) the user will
obtain on purchasing the software.

By contrast, hedonic factors appeal to the personal and situational needs of
customers. Consumers’ esthetic preferences play a key role, as does user friend-
liness. Both factors include more concrete subcriteria, e. g., visual attractiveness
(such as colors and 3-D effects) or the way the software is navigated (e. g., mouse,
keyboard, and joystick), which address consumers’ specific personal purchasing
motives.

Put together, these subcriteria influence the product’s hedonic and utilitarian
factors and so the entire experiential value of the software, which in turn impacts
the consumer’s software selection and ultimate purchase. These subcriteria can be
influenced to a lesser or greater extent by software providers. The design of
business models for software vendors is the subject of the following section.

1.4 Business Models for Software Companies

A business model describes the essential decisions that influence the economic
performance of a company (cf. Osterwalder 2004). It outlines the products or
services offered by the company as well as its revenue and distribution model.
Furthermore, it addresses the embedding of a company in the value chain.

In the software industry, it all begun with companies that develop software by
direct order of their customer. Such a software company gets in exchange directly
paid by the ordering customer, either a fixed sum for the product or accordingly for
the employed resources. The business model of the individual software manu-
facturer was born.

Relatively fast it became clear, that some software could be used in a variety of
companies. The idea of standard software was formed, first for mainly system
software but soon also for application software. It led to the business model of the
standard software manufacturer. In this model, software is no longer developed for
a specific customer—but the software now is developed for an anonymous market.
However, this does not exclude pilot projects in individual companies. Well-
known suppliers in this segment are Oracle (for system software) and SAP
(for application software). In this model, a user company typically buys a license
to use the software. The price depends on the numbers of installations or other
indicators for usage of the software. Often the license fee also includes costs for
maintenance and incremental upgrades of the software. Up to now, the user
companies use software mainly to support their processes. Increasingly, however,

14 1 The Rules in the Software Industry

the software becomes part of the company’s product offering (e.g., in cyber-
physical systems of cars).

In the 1990s, the rising demand of private customers (B2C) enlarged the
existing customer base (B2B) to a sizeable extend. Suppliers of standard software
begun to serve this market also, but employed a modified business model than in
B2B. Typically in this model, the private customer pays an up-front fee for an
unlimited usage license of the software and receives incrementally upgraded
versions as well. Distribution takes place directly through the Internet or indirectly
through computer hardware retail shops, in exceptions also through the suppliers
own brick and mortar shop.

Table 1.2 shows the three traditional business models (see also Valtakosi/
Rönkkö 2009) once again in an overview.

Two specific models have to be taken in account. First, an attractive model for
software companies is the preinstallation of software on end-user devices. This
enables the supplier to gain a revenue share from the sold bundle of hardware and
software. Bundles like this are offered to private customers. A second special case
occurs when the software can be purchased over a platform which is located
between the software company and the user. This setting becomes problematic for
a software company if the platform is the only possible way to install the software
on the end-user device and the company is not the platform provider. Such a
position was established by Apple for their temporarily market dominating
Smartphone, the iPhone.

Suppliers of software were often keen to extend their share of the value chain
by offering complementary services to their products. In the case of suppliers of
individual software solutions, this is often directly part of the customer’s order.
Suppliers of complex standard software in the B2B market offer sometimes
operational or technical services that support the implementation of the software in
the customer’s organization. Therefore, they stand in partial competition with
specialized service providers.

Table 1.2 Three generic business models of software companies

Supplier of
Individual Software

Supplier of
Standard Software
B2B

Supplier of
Standard Software B2C

Offering Software,
developed for the
specific needs of a
company

Software,
developed for a mass
market on the
business side

Software,
developed for a mass market on
the consumer side

Revenue
Model

Payment for
completed solution or
used resources

One-time
license fee plus
maintenance fee

One-time
license fee

Distribution
Model

Direct contact with
customers

Direct contact with
customers

Digital or physical retail or in
exceptions preinstallation on
computer hardware

1.4 Business Models for Software Companies 15

Equally, strong growth can be observed in the business customers’ demand for
the provisioning of services for data processing center. Specialized service pro-
viders in this segment are, e.g., T-Systems or IBM, but suppliers of software also
try to enter in this business model. Recently, they started to offer Software-as-a-
Service over the Internet and simplify the company-specific adjustments of soft-
ware through, e.g., easy to use toolkits. SAP is currently developing their offers
into this direction. Suppliers of that kind reach their turnover usually through
charging monthly usage fees.

1.5 Revenue from Services in the Software Industry

In addition to incomes from licenses, software providers increasingly earn reve-
nues from services. This is a source of revenue not just for custom software
developers and software providers in the broader sense. It also offers standard
software providers a wealth of opportunities to generate sales through services
such as consulting and maintenance.

While consulting fees are commonly based on working days (and occasionally,
on results), maintenance services generally involve the user paying the provider a
percentage of the licensing fees annually. This percentage varies from provider-to-
provider—a typical amount would be around 20 %/year. That makes it clear just
how important this source of revenue is for software providers: If we assume that a
software solution is used for an average 7–10 years before, it is replaced by a new

Fig. 1.7 Share of total sales generated by services, large standard software vendors (own
calculations, building on Cusumano 2004, p. 37)

16 1 The Rules in the Software Industry

version—or, less commonly, a different product—we can see that the revenues
from maintenance generally exceed those from licensing; this applies even after
discounting revenues. Furthermore, this business model also ensures a regular
income from maintenance fees, in contrast to licensing fees, providing a relatively
steady source of revenue that software providers can factor into their planning.
Figure 1.7 shows that, over the last few years, most major standard software
vendors were able to significantly increase the share of their total sales generated
by services.

But although revenue from services is significantly higher than income from
licensing, this does not mean that providing services is necessarily a more
attractive business than selling licenses. This is shown by comparing the profit-
ability of the various sources of revenue. Licensing generally makes a 90–100 %
profit (Cusumano 2004, p. 43 ff.). Variable costs, such as for data media, manuals,
services such as logistics service providers or packaging, are mostly low—and in
the case of sales over the Internet, they are negligible. In contrast, the profit
margins for consulting and maintenance services are considerably lower.

The profitability of these business models is pivotal for investors, who are often
more interested in rates of return than in absolute monetary values. This often
makes software providers who primarily focus on selling products and licenses
more attractive for investors than software providers in the broader sense. The
main reason for this is that providers of products can grow faster than companies
whose sales largely consist of services. As a result, many software companies lack
a consulting arm, e.g., Oracle. On the other hand, software providers who generate
a large share of their sales through services have the advantage that, as noted
above, they gain relatively constant revenues, which is especially significant
during economic downturns, when there is little new business to be won.

It should also be noted that, the revenues from licensing and services discussed
in this section are not independent of each other. Rather, the amount of revenue
from licensing and providers’ pricing strategies significantly influence income
from services. In fact, a business model in the software industry can entail selling
software at low prices—or even giving it away. This is often a rewarding and even
necessary strategy, to gain an early foothold in the market or take market share
from an established competitor. And in any case, it can be worthwhile to offer
services in conjunction with low cost or free software, and generate profits entirely
or largely from the sale of these services.

This kind of business model is especially suitable for companies that offer
digital goods, such as software or music. In addition to building up revenue, there
are a few other defining characteristics that differentiate software from other
goods. In the second chapter, we will explore the economic background and the
consequences for software markets.

1.5 Revenue from Services in the Software Industry 17

2Economic Principles in the Software
Industry

Having described the basic rules of the game in Chap. 1, we now turn to the
economic principles in the software industry. We begin by discussing the prop-
erties of digital goods (Sect. 2.1), and go on to examine network effects on soft-
ware markets (Sect. 2.2.) and the closely related issue of standardization (Sect.
2.3). We will also be looking at aspects of transaction cost (Sect. 2.4) and prin-
cipal-agent theory (Sect. 2.5) that are of particular relevance to the software
industry.

2.1 Properties of Digital Goods

Early in Chap. 1, we introduced some of the economic properties of digital goods
and software products. We will now discuss these in greater depth. A key property
of digital goods is that producing the first copy generally incurs high costs, but that
subsequent copies can be made at very low variable costs. Let us take a closer look
at this phenomenon as it relates to the software industry. The development of
software (or to be precise, the source code as the first copy), usually requires
considerable investment, but there is no guarantee that a development project will
be a success. For this reason, a vendor of custom software will be keen to pass on
at least some of the development costs and associated risk to the customer
(compare Sect. 2.5). A standard software vendor does not have this option, but
bears the whole risk. At the same time, it can make a substantial profit if the
product is popular. In addition, development costs are sunk costs, i.e., costs that
have already been incurred and as such can no longer be influenced, so they are no
more decision relevant.

However, we must point out that by assuming that variable costs are close to
zero, the theory of digital goods considerably simplifies, and in many cases,
oversimplifies, the real state of affairs. Only the variable costs of software licenses
are close to zero. However, what are not negligible are the variable costs for
providing services associated with the software, such as consulting, maintenance,
and support. We will return to this issue in Chap. 3.

P. Buxmann et al., The Software Industry, DOI: 10.1007/978-3-642-31510-7_2,
� Springer-Verlag Berlin Heidelberg 2013

19

http://dx.doi.org/10.1007/978-3-642-31510-7_1
http://dx.doi.org/10.1007/978-3-642-31510-7_1
http://dx.doi.org/10.1007/978-3-642-31510-7_3

Another important property of digital goods is that they can be copied easily
without loss of quality. This explains why the costs of reproducing software are so
low. Copies of digital goods are termed perfect, since the original and the copy do
not differ.

The resulting problems are well known, for example, in the music business.
Various peer-to-peer platforms enable users to download their own free (and often
illegal) copies of music files. The same problem affects the software industry,
particularly vendors whose products require little or no modification before use,
and which are popular with noncommercial users. For example, office applications
and computer games are often copied illegally and exchanged on file sharing
networks. Several studies have attempted to estimate the loss of revenue suffered
by software companies through digital piracy, including the Piracy Study pub-
lished annually by the business software alliance (BSA). However, these studies
have been criticized for their methodologies and assumptions. Many of them
simply assume that every illegal copy leads to a direct loss of revenue, i.e., that
every owner of a pirate copy would otherwise have purchased the software
product. This results in immense (theoretical) losses that seem rather unrealistic,
although there is no doubt that piracy costs software providers dear.

To protect their intellectual property and/or prevent illegal copying, vendors of
digital goods can use digital rights management systems (Hess and Ünlü 2004).
These provide protective methods based on hardware and software, including
controls on access to, and use of, the software, protection of authenticity and
integrity, identification via metadata, the use of copy protection, or a specific
payment system.

2.2 Network Effects on Software Markets: The Winner Takes
it All

In this section, we will discuss network effects, which play a significant role on
software markets. The reason for this is that in addition to the functionality of a
software product, especially its current and future distribution has a decided
influence on its usefulness for users. This relationship is described and analyzed
within the context of the theory of positive network effects. The first part of this
section provides basic background information and definitions (Sect. 2.2.1). After
that, we will explain why it is not always the best standards and the best software
solutions that come to dominate markets with network effects, and why in many
cases small software companies and startups tend to struggle (Sect. 2.2.2). First,
we will describe these problems with reference to the so-called penguin effect. We
will then present a model proposed by Arthur that illustrates how small chance
events can determine the success of standards and software solutions in markets
with network effects. We will go on to discuss why ‘‘winner takes all’’ so often
applies to this kind of market, and how this ultimately explains why acquisitions
are so frequent in the software industry (Sect. 2.2.3). Following on from this point,

20 2 Economic Principles in the Software Industry

we will show how software providers can exploit the existence of network effects
to enhance their competitiveness (Sect. 2.2.4). Section 2.2.4 will explain both
platform strategies and two-sided network effects with reference to the digital
game industry. Section 2.2 concludes with a discussion of the limitations and
potential extensions of network effect theory (Sect. 2.2.6).

2.2.1 Network Effects: Basics and Definitions

Michael Katz and Carl Shapiro define network effects as follows: ‘‘The utility that
a given user derives from the good depends upon the number of other users who
are in the same network as he or she’’ (Katz and Shapiro 1985, p. 424). In other
words, the larger the network, the more the users benefit. Network effects are
either direct or indirect.

Direct network effects arise from the fact that by employing the same software
standards or common technologies, users can communicate with each other more
simply and therefore more cost-effectively. The classic example of a direct net-
work effect is the telephone: the more people own one, the more beneficial this
technology becomes for users. The same principle applies to XML vocabularies
such as xCBL, which are more useful the greater the number of organizations
employing them. Inter-enterprise network effects also play a growing role in the
context of ERP systems. The use of standard formats, for example, simplifies the
exchange of business documents between different ERP systems. For this reason,
stronger value-chain partners, for instance, in the automotive sector often pres-
surize smaller companies into deploying a compatible or identical ERP system to
their own. Intercompany process standardization takes this approach a step further.

Indirect network effects, by contrast, result from the dependency between
consumption of a basic good and consumption of complementary goods and ser-
vices. They arise, therefore, when the wider adoption of a good generates a broader
range of associated goods and services, which enhances the utility of the basic
good. Indirect network effects occur in the context of standard software and
complementary consulting services, operating systems with compatible application
software, or with regard to the availability of programming language experts and/
or tools.

Network effects lead to demand-sided economies of scale and to what is known
as positive feedback respectively, increasing returns. Shapiro and Varian sum-
marize this phenomenon as follows: ‘‘Positive feedback makes the strong get
stronger and the weak get weaker’’ (Shapiro and Varian 1998, p. 175). Figure 2.1
shows this self-reinforcing cycle both for direct and for indirect network effects.

These network effects represent a huge motivation for users to select popular
software products, and to prefer providers who can offer them strong network
effects.

But there are other arguments in favor of large providers: first and foremost,
they offer protection of investment, a key factor in light of the high switching costs

2.2 Network Effects on Software Markets: The Winner Takes it All 21

associated with software (see also Sect. 2.2.4). Risk reduction probably also plays
a role: choosing software from a market leader such as SAP or Microsoft is
unlikely to cost you your job. On the other hand, if an implementation project for
open-source software ends in failure, those responsible will find it much harder to
justify the decision, and failure is more likely to affect their standing within the
company.

It is necessary to differentiate between the network utility and the stand-alone
utility that software can deliver, i.e., the utility of the software irrespective of how
many other people use it. An example of a good with both network and stand-alone
utility is a spreadsheet program. The stand-alone utility lies in the functionality
provided, whereas the network effect utility derives from the ability to exchange
files with other users (direct network effect) or to obtain advice on how to use the
software (indirect network effect). An e-mail system, on the other hand, is an
example of the software that offers only a network utility, because a single user on
his or her own derives no utility from the system at all.

Figure 2.2 a user’s utility function. The total utility is the sum of the stand-
alone and network utility. In this diagram, a positive linear correlation is assumed
between the network utility and the number of users.

To measure the magnitude of the network utility in comparison to the stand-
alone utility, we introduce a network effect factor Q. In addition, c represents the
network utility and b the stand-alone utility of a software product. We now define
the network effect factor as follows:

Q ¼ c

cþ b

where Q is standardized between zero and 1. The higher the value of Q, the greater
the impact of network effects in comparison to the stand-alone utility. For
example, the network effect factor of standard software such as Microsoft Excel

Fig. 2.1 Positive feedback loop—direct and indirect (modified from Bansler and Havn 2002,
p. 819)

22 2 Economic Principles in the Software Industry

would be somewhere between zero and 1. However, an EDI standard does not
offer any stand-alone utility, so the network effect factor in this case is 1. We will
return to this network effect factor in the context of assessing pricing strategies
(see Sect. 3.3).

We will now examine the impact of network effects on software markets.

2.2.2 Impact of Network Effects on Software Markets

Let us begin with a straightforward example: Imagine that a newly established
company has succeeded in developing a software product that offers superior
functionality to Microsoft’s Office package. In other words, the product offers the
customer a higher stand-alone utility. Would this start-up be successful in pene-
trating the market? We would not like to bet on it. The problem for the small
company is that the market leader—in this case, Microsoft—already offers its
customers the benefit of high network effects. From a macroeconomic point of view,
the optimum solution—assuming that switching costs are not too high—would be
for all users to opt for the new software. This is because, as explained, if it offers a
greater stand-alone utility, and if all users were to switch over; corresponding net-
work effects would arise over time. Nevertheless, a wholesale changeover is unlikely
to happen, because the existence of network effects can lead to a lock-into, a tech-
nically inferior technology (cf. David 1985; Liebowitz and Margolis 1994). As a
result, a company that has an installed base in a network market has such a significant
competitive lead that is extremely difficult for other players to catch up. In our
example, Microsoft has a competitive lead.

2.2.2.1 The Penguin Effect

According to Farrell and Saloner, the fact that the installed base often hinders the
changeover to a technically superior standard is due to informational and resulting

Fig. 2.2 Correlation between stand-alone and network utilities

2.2 Network Effects on Software Markets: The Winner Takes it All 23

http://dx.doi.org/10.1007/978-3-642-31510-7_3

coordination problems (Farrell and Saloner 1985). Their reasoning goes like this:
The sum of the utilities enjoyed by all market players could be increased, if these
opt to transition to a new (technically superior) standard—in our example, if they
choose the startup’s software. However, the users are unsure whether this transi-
tion is actually taking place. A potential switcher with incomplete information is
facing the problem that the other market players may not follow suit, and the
greater stand-alone utility enjoyed when using the new standard cannot compen-
sate for the network utilities forfeited. The uncertainty about how the other market
players will respond can encourage a company to maintain the status quo. This
coordination problem is also termed the penguin effect, based on the following
analogy: hungry penguins are standing at the edge of an ice floe. Out of fear of
predatory fish, they hope that other penguins will jump into the water first, to
check out the risk of falling victim to a predator. As soon as some of the birds have
taken the plunge, the danger for the others is reduced, and the free-rider penguins
follow suit (Farrell and Saloner 1987).

In light of this effect, software providers face a startup problem. Although every
new player in a market has difficulties to contend with, they are more significant
for companies in markets with network effects. The startup company in this sce-
nario not only has to effectively promote the product itself, but also assure
potential buyers that it is going to prevail in the marketplace and generate network
effects. This startup problem caused by the penguin effect is also referred to as
‘‘excess inertia’’. The converse problem, i.e., ‘‘excess momentum’’, or an excess of
different standards, can also arise.

The penguin effect is one of the main reasons why an inferior standard often
manages to gain the upper hand; there are many examples of this phenomenon:

For a long time, the VHS video standard dominated the market, although
Betamax was technically superior.

OSI protocols did not succeed in becoming standard at all levels, despite their
high quality in technical terms. Today, Internet protocols dominate the market.

The QWERTY keyboard layout is said to be less efficient than alternatives,
such as the later Dvorak layout, which conforms with ergonomic principles.
Converting to a potentially more efficient layout is prevented by both direct and
indirect network effects.

What we learn from these examples is that it is very difficult to replace a
standard, once it has become firmly established on the market.

2.2.2.2 Diffusion Processes: The Model Proposed by Arthur

According to Arthur, small chance events can determine which standard ultimately
prevails (Arthur 1989). The term ‘‘path dependence’’ describes the effects of
earlier, sometimes random events that occurred during the diffusion process on the
market structure (David 1985, p. 322). The model described below clearly illus-
trates how competition between two technologies plays out when both of them
generate network effects.

24 2 Economic Principles in the Software Industry

The model takes two technologies, A and B, as a starting point. In addition,
there are two types of users, which Arthur terms R and S agents. The total utility of
a technology is then the sum of the stand-alone and network utilities. The model
uses the following parameters to denote the stand-alone utility:

ar stand-alone utility of technology A for R agents
as stand-alone utility of technology A for S agents
br stand-alone utility of technology B for R agents
bs stand-alone utility of technology B for S agents
We shall assume the following: technology A has a higher stand-alone utility

for R agents than technology B (ar [br). Conversely, technology B has a greater
stand-alone utility for S agents than technology A (as \ bs).

As shown in Fig. 2.2, we assume that network utility increases linear with the
number of users. na denotes the number of users of technology A and nb the
number of users of technology B.

Arthur’s model shows how, based on the agents’ decisions, a technology comes
to dominate the market. To this end, Arthur develops a simulation model in which
an R or an S agent opts for one of the two technologies at random. The agents
choose the technology that offers them the greatest total utility. The total utility of
technology A for the R agent is (ar ? r … na), while the corresponding total utility
of technology B is (br ? r…nb). The parameter r stands for the marginal utility
generated by each additional user. It is assumed that the S agents take their
decisions on the same basis. Figure 2.3 shows the results of applying this simu-
lation model.

In the white area shown in the diagram, R agents choose technology A and S
agents opt for technology B, i.e., each chooses the technology that gives them the
greatest stand-alone utility. However, if many S agents choose technology B, the
network utility of technology B increases. From a given number of users upward,
this prompts R agents to opt for technology B, too, as the higher network utility of

Fig. 2.3 Path dependence due to increasing returns (Arthur 1989, p. 120)

2.2 Network Effects on Software Markets: The Winner Takes it All 25

this technology more than compensates for the lower stand-alone utility for the R
agents.

This simple model shows two things clearly: first, so-called early adopters play
a decisive role in the struggle for market share. Second, that it is often chance
events that determine how a given technology fares in markets with network
effects.

2.2.3 Structure of Software Markets

For a long time, economists have recognized that network effects often lead to
monopolies. For this reason, markets displaying strong positive network effects
and feedback loops are frequently termed ‘‘tippy’’: ‘‘When two or more firms
compete for a market where there is strong positive feedback, only one may
emerge as a winner. It’s unlikely that all will survive.’’ (Shapiro and Varian 1998,
p. 176). Multiple standards or technologies seldom exist side by side. A dominant
technology crowds out the others (Besen and Farrell 1994, p. 118). Therefore, they
are known as winner-takes-all markets.

An observation of today’s software markets bears out these theoretical con-
siderations. Looking at markets for standard software solutions, for example, it is
obvious that the number of providers has fallen sharply. A few years ago, the
market still had room for alternatives to Microsoft products for browsers or office
solutions, such as Netscape Navigator, the WordPerfect word processing system,
or the 1-2-3 spreadsheet application. Now, there is really only one powerful
competitor to Microsoft on these markets: the open source community.

The browser wars

The browser war between Microsoft and Netscape started in 1995. Net-
scape rose to prominence with its Netscape Navigator web browser. Prior to
1995, it had a market share of more than 80 %. The battle between these two
companies commenced when Microsoft finally recognized the growing
importance of the Internet, and developed its competing product, internet
explorer (IE). During these wars, there were two issues of particular interest
that will be described in more detail below: first, the importance of open-
source products to rival commercial software, and second, the effect of price
bundling on a business.

Phase I: The beginnings of the WWW

One of the leading web browsers to emerge in the early 1990s, when the
Internet was really taking off, was Mosaic. It was the only browser to boast a
graphical user interface that enabled users to surf the web. Established in late
1993, Netscape launched the first version of its Netscape Navigator browser
in 1994. By 1995, Netscape had built up a monopoly on the browser market.

26 2 Economic Principles in the Software Industry

Phase II: 1995–1998

When Microsoft decided to enter the Internet market, the first version of
the Internet Explorer was developed. The company had two decisive
advantages over Netscape: first, Microsoft had far more financial resources
at its disposal to develop browser software. Second, Microsoft was able to
create product packages, and started to include Internet Explorer in its
software offerings. From Windows 98, Internet Explorer was a fixed com-
ponent of the operating system (along the lines of: ‘‘If it’s installed, it will be
used’’). Since Windows is preinstalled on about 95 % of all new PCs,
Microsoft’s price bundling strategy soon paid off. In the following period,
Internet Explorer’s market share rose from below 3 % initially, to over
95 %. In 1998, with its market share below 4 %, Netscape was finally
compelled to admit defeat. Netscape then published the source code of its
Navigator and converted it to the Mozilla open-source project.

Phase III: 2004 to the present

This phase is also referred to as the second round of the browser wars. In
2004, more and more security gaps in Internet Explorer were coming to light
enabling Mozilla to regain market share. The Mozilla Organization launched
Firefox 1.0 (a slimmed-down browser) in November 2004. It spread rapidly
thereafter, not only because of Internet Explorer’s security deficiencies.
Firefox offers a range of practical functions (tabbed browsing, find-as-you-
type, Download Manager, etc.), which were contributed by open-source
developers. Microsoft failed to upgrade the outdated technology underlying
Internet Explorer 6.0 fast enough to prevent the modern, open-source
browser, Firefox, from capturing significant market share. It was not until
version 7 (many of whose ‘‘new’’ functions were copied from Firefox) that
Internet Explorer regained a positive image on the market.

A monopolistic market structure such as that for office software often poses
problems for users. However, Microsoft did not come under criticism for imposing a
(higher) so-called Cournot price—as predicted by traditional microeconomics.
Rather, it was for violating competition law that the European Commission levied a
large number of fines on Microsoft, and instructed the company to disclose interface
specifications and debundle certain of its products or face further penalties. Both
demands benefit the other software providers by making it easier for them to develop
and market products that are compatible with Microsoft’s standards.

2.2.4 Network Effects as a Competitive Factor

Our discussions so far indicate that network effects can represent a decisive
competitive advantage for a provider. Once a software solution has become widely

2.2 Network Effects on Software Markets: The Winner Takes it All 27

adopted, a lock-in effect will occur. As a result, potential rivals are faced with a
start-up problem whose magnitude correlates with the network effect factor.

At the same time, an analysis of the competitive environment must take into
account that a user who changes to a different software solution generally incurs
high switching costs. This applies particularly in relation to ERP systems, which
explains why they are seldom replaced in practice. But what accounts for these
high switching costs? One of the principles behind the ERP market is that this type
of software models and shapes the user’s business processes. Changing to a dif-
ferent provider would therefore result in considerable costs in terms of organi-
zational changes. In addition, especially for standard software with a high network
effect factor, there is uncertainty about how many other users will change over to a
new software standard—compare the penguin effect discussed in Sect. 2.2.2.1. The
switching costs will also increase, the longer an ERP software product has been in
use, because over time, it will become better integrated into the overall environ-
ment. Extensive system customizations increase the switching costs still further.

How can a software provider motivate users to switch over despite the lock-in
effect? One possibility is to subsidize the change. Moreover, the vendors could
pursue a low-price-strategy (see Sect. 3.3).

Major providers who are already able to offer their customers network effects
may find it lucrative to maintain their competitive edge by not disclosing interface
specifications in full. This makes it difficult for other providers to offer compatible
products. In today’s world, however, putting limits on compatibility is unlikely to
be popular with customers. Users have long since realized that open standards
make them more vendor-independent and above all, can simplify IT integration
both within and between companies.

However, the product compatibility question pans out very differently for small
software companies and for providers whose solutions have yet to be launched.
These providers have no choice but to either go for completely open standards or
develop products that are compatible with those of the major players. A very good
example is provided by Business Objects, a provider of business intelligence
software:

Business Objects was established in 1990 by two Oracle employees. The
company began with an application that enabled Oracle customers to create
database queries intuitively, without any knowledge of SQL. In the early years, the
company targeted only Oracle customers and their application only supported
Oracle databases. In other words, they pursued a niche strategy and did not include
other databases at first. By concentrating on Oracle customers, Business Objects
was able to forge a close partnership with Oracle. Oracle saw Business Objects
products as complementary to its own; they were not rival offerings, but helped
drive sales of its own database technology. Later, Business Objects built other
partnerships, such as with IBM, and became a well-known provider of business
intelligence technology. In 2007, the company was acquired by SAP.

The Oracle database system first served as a springboard for the products and
services offered by Business Objects. This model can be found in many other areas
of the software industry, such as in the games sector, which we will look at below.

28 2 Economic Principles in the Software Industry

http://dx.doi.org/10.1007/978-3-642-31510-7_3

2.2.5 A Case Study: Two-Sided Network Effects and Platform
Strategies in the Digital Games Industry

In this section, we will describe a branch of industry positioned somewhere
between the software and the media industry: digital games. We will use this
market to explain the impact of two-sided network effects and the importance of
platform strategies. Our focus will be on console games, because the varied results
of network effects are particularly apparent in this market.

2.2.5.1 Overview of the Digital Games Industry

Digital games have grown into a sizeable market for the entertainment industry.
The USA plays a leading role, not only due to the size of its retail market, but also
because most of this sector’s software providers are based there.

We will start by looking at the players and the value chain in the digital games
industry. The main players are console manufacturers, suppliers, game developers,
game publishers, consumers, and third-party providers. The value chain in this
sector is shown in Fig. 2.4.

Console manufacturers develop and sell the consoles needed to play the digital
games. For this reason, we refer to this hardware below as platforms. At present,
the main console vendors are Microsoft, Nintendo, and Sony. They are assisted by
suppliers who provide certain console components. For example, specialized
sound and graphics chips and CPUs are produced by manufacturers like NVIDIA,
ATI, IBM, and Intel.

Fig. 2.4 Structure of the value chain in the digital games industry

2.2 Network Effects on Software Markets: The Winner Takes it All 29

Game publishers, such as Electronic Arts and Activision, reproduce and market
games for these consoles. They act as intermediaries between the game developers
and the console makers.

The games are developed by in-house or independent game developers or by
studios such as Pyro Studios, Rockstar North, and Deck13. Either the developers
are commissioned and funded by the game publisher to create a particular game, or
they themselves approach publishers with a prototype. A unique feature of this
market is that game publishers require a license from the console maker before
they are allowed to market a game for that manufacturer’s console. Under this
model, the console manufacturer receives a portion of the publisher’s sales reve-
nue and thus has a stake in a game’s success.

Third-party providers (e.g. manufacturers of peripheral equipment, magazine
publishers, or video rental stores) offer complementary products and services such
as gaming magazines, or joysticks, and memory cards. Consumers purchase
consoles, games, and other complementary products and services via corre-
sponding distribution channels (department stores or online retailers).

2.2.5.2 Two-sided Network Effects on Digital Games Markets

As mentioned above, the consoles represent the (industry) platform on which the
games can be played. This constellation is comparable with other areas of the
software industry. For example, operating systems underpin application software,
while integration platforms such as SAP’s NetWeaver and IBM’s WebSphere form
the basis for service-based software. As a rule, the platform providers do not have
the resources to develop the applications, services, or games themselves
(Cusumano 2004, p. 75). That is why they often work closely with other software
and service providers. And very often, the winner-takes-all principle described
earlier applies to platform/console providers, too. This has led to a consolidation
on this market. In the early days, there were several console providers, whereas
today there are only three: Microsoft, Nintendo, and Sony. The fierce competition
on this market is often referred to as the ‘‘console wars’’. The manufacturers
generally launch a new generation of hardware about every 5 years. Figure 2.5
shows the leading consoles on the European market. Some of them—such as
Atari’s Jaguar or Sega’s Dreamcast—could not compete for very long, despite
their technical superiority. Others—such as the Nintendo NES and the Atari
2600—held their own for years, despite the appearance of new, more advanced
consoles. The network effect theory introduced earlier can explain why technically
inferior systems can dominate markets.

The success of a console or platform does not depend on its technical merits or
price alone, but also on the game software available for it. Therefore, this is a
market with indirect network effects as the utility and popularity of a console is
primarily determined by the availability of attractive games, which are comple-
mentary goods (compare Sect. 2.2.1).

The structure of the value chain in the digital games industry can also help us
illustrate network effects of another kind, termed two-sided network effects.

30 2 Economic Principles in the Software Industry

Multiple groups form around a given platform, whereby the utility that the plat-
form offers one group depends on the number of members in the other group.
Armstrong gives an illuminating example: ‘‘For instance, a heterosexual dating
agency or nightclub can only do well if it succeeds in attracting business from both
men and women’’ (Armstrong 2006, p. 1). On the digital games market, the two
groups comprise game publishers and consumers. The game publishers benefit
when large numbers of consumers own a console, resulting in high demand for the
games played on it. On the other side of the coin, consumers benefit when many
game publishers develop games for a console, because that increases the supply of
games, which is the console’s indirect network utility.

In this section, we have restricted our discussion to the console games
subsector, in order to illustrate how two-sided network effects work. There are,
however, other sectors in the digital game industry, such as mobile games, browser
games, and massive multiplayer online games, all of which are predicted to soar in
popularity.

In recent years, we can observe the emergence of an increasing number of apps
and games which are offered for social media platforms like Facebook. Market
leader for the game industry in this sector is Zynga with titles like Farmville.
Zynga is linked very closely to Facebook and generated approximately 12 % of
Facebook’s revenue in 2011.

In the following section, we will describe the limitations of network effect
theory, and possible ways of extending the theory.

Fig. 2.5 Console generations in Europe (from Wikipedia, reworked)

2.2 Network Effects on Software Markets: The Winner Takes it All 31

2.2.6 Limitations of Network Effect Theory

Although network effect theory has given rise to some interesting insights with
respect to explaining the widespread adoption of standards, there are limits to its
applicability. In light of this fact, the following extensions, among others, have
been suggested (Weitzel et al. 2000).

2.2.6.1 Homogeneous Network Effects and Costs of Network Size

An important potential extension of traditional network effect theory models
relates to assumptions about the dependence of the network effect utility on the
number of users. Often, as in the preceding sections, a linear utility function is
assumed, i.e., every additional user leads to a constant utility increase for the users
as a whole. However, degressive or progressive functions are equally conceivable.
With the former, the nth user produces a smaller utility than the (n-1)th user. With
the latter type of function, the nth user produces a greater utility than the (n-1)th.
Similarly, various models also make differing assumptions about the cost functions
in relation to the network size. Alternative functions are shown in Fig. 2.6.

However, all the utility functions shown in the figure—whatever form they
take—ignore the individual nature of communications relationships. We believe
that individualization is essential to decisions about employing standards, such as
EDI. It is obviously extremely relevant to an automaker which standards its
suppliers use. On the other hand, the company will be relatively unconcerned
about the standards used by enterprises with which it has no business relationships
at present and is unlikely to in future.

2.2.6.2 Type of Network Effect Utility

In the models proposed to date, the network effect utility is predominantly treated
in the abstract and not specified. However, this means that the utility is not con-
cretized, either. This raises the question as to what concrete utility, a given net-
work effects actually offers.

Fig. 2.6 Possible cost and
utility functions depending on
network size (Weitzel 2004,
p. 30)

32 2 Economic Principles in the Software Industry

2.2.6.3 Normative Implications

Most of the literature treats standardization decisions from a macroeconomic
perspective, particularly with regard to the consequences of the existence of net-
work effects in terms of market efficiency. The intention of most articles is to
explain how users make standardization decisions. However, they do not, as a rule,
offer any concrete recommendations.

The standardization problem touches on the limitations of network effect theory
discussed above. First, a detailed, actor-specific method is proposed for modeling
the costs and utility of network effect goods; second, the network effect utility is
concretized; and third, recommendations will be offered to users on the extent to
which standardization is the best solution.

2.3 The Standardization Problem

2.3.1 Approach and Background

The application systems used in many companies and groups have grown up over
long periods, often in an uncoordinated manner. This gives rise to heterogeneous
IT environments which, due to incompatibilities, hinder the flow of information
between different parts of the organization. According to an oft-cited rule of
thumb, developing and maintaining interfaces between incompatible subsystems
can account for up to half of the entire IT budget. The use of standards is a key
method of reducing these integration costs. Examples include the use of EDI
standards to exchange information between companies, and SOA platforms
deployed to enable the seamless integration of services from different providers on
the basis of Web service standards.

An alternative to standards is the use of converters. However, this generally
leads to higher costs than standards, because integrating n functions or business
units can require up to n * (n - 1) converters (Wüstner 2005). Furthermore, the
consistent use of converter-based solutions usually reduces the flexibility of the
overall IT environment. For these reasons, we will not discuss this option in any
more detail.

The model introduced below looks into user decisions on the use of standards to
link applications. However, providers can derive strategy recommendations from
the model by employing it to anticipate the decisions, users are likely to make
(Buxmann 2002). Like the model proposed by Arthur, we initially assume that a
software standard offers a user both a stand-alone utility and a network effect
utility. The stand-alone utility could be the functionality of an ERP system, for
example. In principle, standard investment evaluation methods—such as multi-
attribute utility analysis or the net present value method—can be used to compare
the stand-alone utility of multiple software solutions. How can we concretize the
network effect utility, which is largely treated in the abstract in network effect
theory? In the following discussion, we will assume that using shared software

2.2 Network Effects on Software Markets: The Winner Takes it All 33

standards leads to savings in information costs. This term encompasses all costs
incurred for exchanging information. For example, using a common EDI standard
enables savings on human resources, postage, paper, etc. The common use of the
same Microsoft Office solution generally saves money, time, and trouble when
exchanging documents. Similarly, information cost savings can be achieved
when a standard software product supports business processes across multiple
departments.

On the other hand, costs are incurred for the procurement and implementation
of software standards. These will be termed standardization costs in the following
sections.

We will now simplify our reflections by taking a static approach. That means,
for instance, that the cost of introducing a software standard will be assigned a
specific value in our model. This is of course a simplification, because the costs
associated with an investment of this kind differ from year to year. For example,
users have to bear one-time licensing costs and also annual maintenance and
service costs. This simplification is, nevertheless, unproblematic for two reasons:
first, we can interpret the value assigned to the standardization costs as a dis-
counted value of the payments incurred over the years; second, a dynamic
approach that explicitly takes into account different points in time does not change
the main model predictions that will be derived below.

Fig. 2.7 Example illustrating the standardization problem

34 2 Economic Principles in the Software Industry

The standardization problem is formulated on the basis of a graph as shown in
Fig. 2.7. The actors are represented as nodes and the relationships between them as
edges. The model is formulated in a general way: in other words, the nodes can
stand for companies, e.g. in a supply chain, or organizational units within an
enterprise.

The stand-alone utility and the standardization costs are modeled nodes related.
The information costs that can be saved are edges related. If, to take the simplest
case, we assume that there is only one standard available, meaning that each actor
has to take a yes/no decision for or against introducing a given standard, we can
label the stand-alone utility of node i as bi and the standardization costs of node
i as ai (i = 1,2,…,n). If the decision about introducing a software standard were to
be taken with reference to the nodes and in isolation, only the difference between
the stand-alone utility and the standardization costs would have to be determined
for each node. If this net stand-alone utility is greater than zero, the software
standard is a worthwhile investment, otherwise it is not.

But such an isolated treatment is not useful in practice, because the IT inte-
gration costs in particular are usually very high. In our model, the information
costs along the edge from node i to node j are termed cij. These can be reduced if
both actors implement the common standard, such as the same EDI standard, the
same standard software or the same communications protocol. Of course, it is
unrealistic to assume that the use of common standards will reduce the information
costs to zero. But this does not pose a problem for the model, because the edge
values may also be interpreted as the difference between the information costs
without and with the common software standards.

Figure 2.7 shows a simple example. The respective net stand-alone utility is
shown in the nodes, while the edges represent the communication costs that can
be reduced. Using this example, we can demonstrate that, unlike classical net-
work effect theory, this approach makes it possible to model the communications
relationships between certain actors on an individual basis. That means the
substantial demand for communications between nodes 2 and 3 is shown by edge
costs of 9. These can be saved by adopting a common standard. In contrast, the
need for communications between node 5 and the others is slight, and so using
the common standard can only lead to minor savings in information costs.

In the first analysis, as shown above, the ideal case is when the standard is
adopted by all of the nodes for which the net stand-alone utility is positive. In this
case, this applies to nodes 1, 2, and 3. But standardization can be advantageous
even for a node with a negative net stand-alone utility. This is precisely the case
when this node has close communications relationships with others, and in con-
sequence, substantial information cost savings can be achieved. In our example,
this applies to node 4. Although the net stand-alone utility for this node is negative,
standardization is worthwhile overall, as information costs amounting in 15 can be
eliminated if nodes 1, 2, and 3 also introduce the standard. On the other hand,
standardization makes little sense for node 5. Here, the information cost savings of
3 are lower than the negative net stand-alone utility of 5.

2.3 The Standardization Problem 35

2.3.2 The Central Standardization Problem as An Optimization
Problem

In formal terms, we can represent the standardization problem as an optimization
calculation as follows:

max FðxÞ ¼
Xn

i¼1

ðbi � aiÞxi �
Xn

i¼1

Xn

j¼ 1
j 6¼i

cijð1� xixjÞ

s.t.

xi 2 0; 1f g

Decision variable xi takes the value of 1, if actor i employs the standard. Only in
this case can the stand-alone utility bi be achieved, and only then will standardi-
zation costs ai incur. The information costs cij can only be saved if both actor i and
actor j employ the standard. The goal function also shows that the model tends
toward optimization of the entire graph. In one application, for example, a central
entity, e.g. the Chief Information Officer and his staff, could look for the optimal
solution for the entire company. This, however, can mean that individual actors are
worse off than before.

The above model only encompasses situations in which there is exactly one
standard. In contrast, the extended standardization problem also looks at situations
in which the decision maker can choose between several standards—we will not
show the mathematical details of this model in this book (Domschke and Wagner
2005).

To illustrate the model, perform optimization and simulations, we have
developed a prototype. Figure 2.8 shows the optimum standardization solution
from a central viewpoint for a complete communications network with seven
actors and a choice of three standards. In this example, the optimum solution is to
implement multiple standards in the network, and even to provide individual actors
with more than one standard.

The prototype makes it possible to generate communication networks with
widely different structures and examine them under diverse cost distributions. For
example, it is possible to investigate the effects of the network topology on the
advantages of specific standardization options, such as partial standardization or
full standardization. Figure 2.9 gives an example of this kind.

We have explored this model both by analytical means and via simulations
(Buxmann and Schade 2007). This has permitted us to derive the following three
basic propositions:
1. The best solution is often to standardize the network fully or not at all.
2. The larger the network, the more worthwhile full standardization will be.
3. If multiple software standards are available, it is seldom the best option to

employ several of them.

36 2 Economic Principles in the Software Industry

That also means that best-of-breed solutions generally do not represent an ideal
solution for the user organization.

This means that the best option for a major software provider is generally to
offer solutions for all areas (nodes) of a network. A standard solution is usually
beneficial to the users. This is especially true if the customer organization is
large—expressed, in terms of the model, as the number of nodes n. One exception
to this rule (which is, however, relatively rare in practice), is a scenario in which
one area of the business (one node) has few, if any, information relationships with
other areas (nodes). In this case, the customer’s best option may be to employ
multiple software standards in accordance with a best-of-breed strategy.

Obviously, smaller software providers and niche providers must ensure their
products comply with compatible standards and are therefore, attractive to users
who wish to save on information costs (for integration or conversion).

2.3.3 The Decentralized Standardization Problem: A Game
Theoretical Approach

Our considerations so far have been based on the assumption that a central entity
exists that decides about adopting standards for all nodes. This would mean that a
CIO and his team are able to choose (and enforce) the respective software standard

Fig. 2.8 Solution to the standardization problem for seven actors (Schade and Buxmann 2005)

2.3 The Standardization Problem 37

for all organizational units. From an interorganizational perspective, it is reasonable
to assume that the strongest player in a supply chain can impose the software
standard on its partners. But what happens when every node takes standardization
decisions independently (Buxmann et al. 1999; Weitzel 2004; Heinrich et al. 2006)?

To describe this decentralized problem, we will take an approach based on
game theory (Weitzel 2004). We will simplify the problem, by assuming a single-
standard problem and examining just two actors i and j. This is in fact perfectly
sufficient to illustrate the differences between a centralized and a decentralized
decision and the resulting consequences. Each of these actors takes a decision to
implement or not to implement the given standard. We now introduce directed
edges between the actors with the help of which we can show that adopting a
software standard can benefit one participant more than another. In formal terms: if
both actors adopt the given standard, actor i can save information costs cij, while
actor j can save cji. This general problem can be modeled on the basis of non-
cooperative game theory, as shown in Fig. 2.10:

This matrix may be interpreted as follows: the squares give the results of the
four possible strategy combinations based on the two alternatives (standardize or
do not standardize) facing actors i and j, respectively. Starting at the top left, if
both actors adopt the software standard, both can save their information costs.
What remains is the net stand-alone utility for actors i and j, which we will term ui

and uj, respectively. In the top right-hand square, only actor i is adopting the

Fig. 2.9 Examination of various network topologies

38 2 Economic Principles in the Software Industry

standard. As a result, actor i achieves ui-cij—the net stand-alone utility for
introducing the software standard minus the information costs that actor i cannot
save because actor j has decided against adopting the standard. In this scenario,
actor j makes a loss to the amount of information costs cji. At the bottom left, the
same applies, but the actors’ roles are reversed. The bottom right square describes
the case where neither of the actors adopts the standard. As a result, there are no
standardization costs, and both actors have to bear the information costs cij and cji,
respectively.

In game theory, a situation where no actor has an incentive to change his
decision (in this case in favor of or against adopting the software standard) is
known, in simple terms, as a Nash equilibrium. The Nash equilibrium is therefore
a combination of strategies that represents a stable state. This game-theory-based
matrix can now be examined with different parameter constellations to discover
what equilibria form. For our purposes, a particularly interesting and instructive
scenario is one where, from a global perspective, it would appear ideal for both
actors to adopt the standard, but where, from a decentralized viewpoint, only one
of the actors benefits from adopting the standard. Let us look at Fig. 2.11.

It is obvious at first glance that from a global perspective, the ideal situation
would be for both actors to standardize. Although the net stand-alone utility is
negative, i.e., the standardization costs are higher than the gross stand-alone utility,
standardization is still worthwhile because information costs totaling 9 MUs
(monetary units) can be saved. The negative net stand-alone utility, by contrast, only
amounts to -6 MUs. So the total saving is 3 MUs. The problem now is that there is
no central entity that takes the decision for both actors and seeks the optimum

Fig. 2.11 An example scenario for decentralized standardization decisions

Fig. 2.10 The standardization problem in the light of game theory

2.3 The Standardization Problem 39

solution from a global viewpoint. However, assuming a decentralized perspective
for both actors, it is clear that only actor i benefits from both sides adopting the
software standard: the information cost savings of 6 MUs are greater than the
negative net stand-alone utility. The picture is different for actor j, for whom
adopting the standard does not make sense because j’s negative stand-alone utility is
higher than the information costs that can be saved by adopting the standard.

Figure 2.12 shows the results matrix derived from game theory for this example.
This matrix is interesting in that it shows that the standardization solution (top

left square) cannot be seen as a Nash equilibrium, although this is the ideal
solution from a global perspective. Obviously, actor j has an incentive not to
choose this solution and save 1 MU.

2.3.4 The Standardization Problem: Lessons Learned

A comparison of the decentralized with the centralized model highlights the fact
that decentralized decisions about adopting software standards tend to lead to a
lower—and from a global perspective, frequently suboptimal—degree of stan-
dardization than centralized decisions. One reason for the actors’ reluctance to
adopt standards when faced with a decentralized standardization problem may be
found in the penguin effect discussed in Sect. 2.2.2.1. A second is that different
actors benefit to different extents when all of them adopt a standard.

In order to achieve an ideal result from a global perspective with decentralized
decision structures, financial incentives could be worthwhile for those actors who
lose out when the standard is implemented (Heinrich et al. 2006). For example, in
the example given in Fig. 2.11, actor i could make a compensatory payment to actor
j to encourage j to follow suit. This is problematic for two reasons: first, determining
the appropriate size of the payment. Second, it will be all but impossible to
negotiate compensation payments with all those many business partners and
determine a distribution acceptable to all actors (see also Sect. 3.1.1Co-operations

Fig. 2.12 Modeling the example using game theory

40 2 Economic Principles in the Software Industry

http://dx.doi.org/10.1007/978-3-642-31510-7_3

in the software industry). In practice, the stronger players tend more or less to
dictate the standard to the weaker ones—it was during negotiations on EDI stan-
dards that the phrase ‘‘EDI or die’’ was coined. However, a recent empirical study
showed that standards are often introduced by business partners cooperatively. The
study found that in about 70 % of cases in the automotive industry, the major
carmakers assisted their smaller partners, particularly systems suppliers, with the
introduction of software solutions (Buxmann et al. 2005).

Furthermore, the standardization problem reveals that it is generally preferable
for user organizations to implement just one standard. In consequence, internal
network effects (e.g. within an enterprise or a supply chain) reinforce the position of
major software providers. Attempting to introduce a large array of different sys-
tems, especially in large organizations, will often lead to high information costs,
e.g., in the form of integration and conversion costs. In many cases, therefore, the
best solution from a global perspective is to use an integrated solution from a single
vendor—complemented, perhaps, with compatible products from smaller software
providers and niche providers. Best-of-breed solutions are only advantageous for
the user when there is very little exchange of information and so the information
costs between different areas of the business are low—a rare scenario in the real
world. A key issue for users and providers is to what extent service-oriented
architectures and platforms can contribute to reducing communication costs
through the use of open standards, and therefore make best-of-breed solutions more
attractive (we will discuss service-oriented architectures in more detail in Sect. 4.7.)

From a provider’s perspective, too, it is seldom worthwhile to incorporate a
host of different standards into a solution (Plattner 2007, p. 3). It makes more sense
to select the right standard in terms of giving customers interoperability between
different vendors’ platforms. Against this background, it is, of course, vital for
providers to participate in the development of standards in order to assert their
strategic interests. However, during the development of standards, problems fre-
quently arise for the following reasons (Plattner 2007, p. 3):

In standardization processes, providers often represent different economic
interests (we have looked into this issue in Sect. 2.2.4)

Standardization processes are often slowed down by the typical features of
committee work (Plattner talks about ‘‘committee thinking’’).

For employees, participation in standardization bodies is often merely an extra
task in addition to their main jobs, which is reflected in the way they prioritize
their activities.

2.4 Transaction Cost Theory: In Search of the Software
Firm’s Boundaries

The position a company assumes within the value chain is of great importance. In
essence, this is a classic make-or-buy decision: what should the company produce
or develop in-house, and what should it source from third parties? Transaction cost

2.3 The Standardization Problem 41

http://dx.doi.org/10.1007/978-3-642-31510-7_4

theory provides some interesting insights into these questions. In Sect. 2.4.1, we
introduce the starting point and elements of transaction cost theory. In Sect. 2.4.2,
we present a general model for economically efficient division of labor among
companies. In addition, we demonstrate where transaction cost theory can be
applied within software companies. Section 2.4.3 deals with the impact on
transaction costs of structural changes—such as those brought about by the
emergence of new communications technologies. Section 2.4.4 considers the way
intermediaries can lower transaction costs.

2.4.1 Starting Point and Elements of Transaction
Cost Theory

In markets characterized by division of labor, players are linked by many and
varied exchange relationships. This is the starting point for transaction cost theory
(Williamson 1985). But the theory focuses not on the exchange of goods and
services per se, but on the transfer of property rights that precedes the exchange.
This transfer is referred to as transaction. For example, a provider handing over a
piece of tailor-made software to its customer is a transaction. Further examples
include integrating a module developed by an offshore service provider, or for-
warding functional specifications from department A to department B within a
company. To avoid confusion, we would like to point out that the term ‘‘trans-
action’’ is also used by the software industry in the context of database systems.
This, however, is completely unrelated to the way the term is used in economics.

Transactions cause costs—an insight, incidentally, that economists ignored for
many years. In particular, costs are incurred while gathering information and
communicating with the transaction partner during deal initiation, agreement,
completion of the transaction, and for the purposes of control/monitoring and fine-
tuning. Let us take a look at an example. To draw attention to its offering, a custom
software vendor must participate in trade shows and conferences and make regular
appearances in the trade press. The client will also want to gain an overview of the
market. This means that both companies will incur significant costs associated with
initiating the transaction (setup costs). Further costs will be incurred for negotiations
as to the scope of service and the price of the software to be developed. Other costs
include those for policing and enforcement (for example via testing) and potentially
for later modifications (e.g. if requirements should change). All in all, the provision
of custom software is a transaction cost–intensive process.

This is where transaction cost theory comes in. It is concerned with determining
what organizational form incurs the lowest transaction costs in a given situation.
The approach can be applied both to the division of labor between enterprises and
among departments within a company. We will look at the division of labor among
market players in greater detail below. But first, let us examine the major deter-
minants of transaction costs, and briefly tease out the theory’s underlying
assumptions.

42 2 Economic Principles in the Software Industry

In transaction cost theory, the level of investment specific to the transaction
(often termed simply ‘‘specificity’’) is regarded as the main determinant of the
cost of a transaction. The reasoning is quite straightforward. While the purpose
of transaction-specific investments is to cut production costs, high transaction-
specific investments create considerable dependency between the parties.
Because once an investment has been made, the company cannot switch trans-
action partners without incurring losses, and it must be prepared to renegotiate
terms with the existing partner. For example, large-scale outsourcing of IT
services can create a dependency of this type. So clearly, transaction-specific
investments will initially drive up transaction costs. The magnitude of transac-
tion costs are also influenced by factors such as the degree of uncertainty
associated with the transaction, the frequency, the strategic significance, and the
atmosphere in which it is conducted.

Transaction cost theory assumes that all parties are characterized by opportu-
nistic behavior, bounded rationality, and risk neutrality. These and other key
assumptions are illustrated in Fig. 2.13.

Opportunistic parties can be assumed to act solely in accordance with their own
interests. This means that if one of the partners has an opportunity to maneuver the
other partner to renegotiate terms, he or she will usually do so. Certain informa-
tion, such as compatibility with other solutions, is likely to be held back. What’s
more, opportunistic players do not always fulfill their promises when other parties
cannot easily determine compliance (e.g. regarding the quality of a software
module). In the software industry in particular, judgments regarding a product’s
quality can often only be made after the solution has been deployed—opening the
door for opportunism. Bounded rationality in this context means that transaction
partners do not have access to all available information (e.g. about a customer’s
solvency).

Fig. 2.13 Basic model underlying transaction cost theory

2.4 Transaction Cost Theory: In Search of the Software Firm’s Boundaries 43

2.4.2 Division of Labor Among Companies: A Transaction
Cost Theory Perspective

Probably the most well-known branch of transaction cost theory addresses the
question of where an enterprise begins and ends. For simplicity’s sake, a clear
boundary is drawn between the company (also termed hierarchy in the model) and
the market and (as a later addition)—cooperation as a hybrid of market and
hierarchy. These three basic types of arrangement are characterized by the fol-
lowing coordination mechanisms: the price for the market, the organization for the
company, and a mixture of the two for alliances.

According to the theory, when transactions are not associated with transaction-
specific investments (i.e. when they are unspecific), the market is the most efficient
coordination mechanism. On the other hand, if the partners become dependent on
one another through high transaction-specific investments, they have more
incentive to act opportunistically, taking advantage of the other party’s depen-
dency. However, this opportunism can be effectively restricted by means of the
hierarchy. This means that when specificity is high, hierarchy is the most efficient
coordination instrument. Likewise, moderate specificity calls for cooperation as
the coordination instrument, as it combines elements of markets and hierarchies.

Transaction cost theory has developed these ideas further, as illustrated in
Fig. 2.14. In this representation, when specificity is below s1, the market is the
most efficient coordination form. When specificity is between s1 and s2, an alliance
is the most efficient. And when specificity is greater than s2, the company is the
coordination instrument of choice.

Figure 2.14 illustrates the transaction costs associated with various organiza-
tional forms, at different levels of specificity. However, the exact shape of the
curve cannot be determined by analytical or empirical means. This is why it is
discussed controversially in the literature.

Initially, transaction cost theory mainly focused on explaining the emergence of
enterprises and alliances as alternatives to the market as regulating mechanisms—a
macroeconomic question. Today, the theory has become a standard business

Fig. 2.14 Transaction costs
as a function of asset
specificity (Williamson 1991,
p. 284)

44 2 Economic Principles in the Software Industry

instrument for determining the boundaries of a given enterprise. It typically
addresses make-or-buy decisions at the level of individual tasks, and relationships
with the contractor. In the software industry, this topic and its many variations are
of great importance—from outsourcing to specialists, to the use of offshoring.
We will take a closer look at these questions in Sect. 4.1.

Concerning software enterprises in particular, transaction theory provides valu-
able insights into the factors of greatest interest to the end customer, especially the
business user. In contrast to make-or-buy decisions as mentioned above, this
question has long been addressed exhaustively in the literature. For example, simple
management instruments were developed that support decision-making concerning
outsourcing IT tasks. Figure 2.15 illustrates the tool suggested by Picot and Maier.

In addition to specificity, Picot and Maier also consider the IT tasks’ strategic
importance—as we already mentioned briefly in the section describing the variables
involved in transaction costs. In general, they recommend completely outsourcing
only those IT tasks that have a relatively low specificity and a low strategic
importance. Network operations fall into this category for many enterprises—which
explains why so many companies’ foray into outsourcing begins with this task.

2.4.3 Structural Changes to Transaction Costs: The Move
to the Middle

We have already shown that transaction cost theory is helpful in the search for the
most cost-effective form of organization for a given environment. In the real
world, however—particularly in the software industry—the environment is by no
means unchanging. New communications technologies and the rise of new nations
with impressive IT skills and relatively low labor costs are bringing about radical

Fig. 2.15 Decision matrix
for outsourcing IT tasks
(Picot and Maier 1992, p. 21)

2.4 Transaction Cost Theory: In Search of the Software Firm’s Boundaries 45

http://dx.doi.org/10.1007/978-3-642-31510-7_4

change. Against this background, we will sketch the impact of these changes on
transaction costs and in consequence, on the selection of the most cost-effective
form of organization.

Most market watchers today agree that new communications technologies such
as the Internet and IP-based services are leading to a reduction in variable transaction
costs and causing the curve in Fig. 2.14 to sink and flatten (Bauer and Stickel 1998).
As a result, the point of intersection for the transition to the next form of coordination
is moving to the right. This means that moving to cooperative or hierarchical rela-
tionships only begins to make sense in economic terms at a higher asset specificity. A
pithy term for this trend is ‘‘move to the market’’. The core proposition is that as a
result of new communications technologies, coordination within an enterprise is
giving way to cooperative relationships and markets, and that value chains are
becoming more fragmented. For the software industry, this would mean that a large
number of specialized businesses would arise—a scenario that could be reinforced
by the new service-oriented paradigm (see Sect. 4.7).

However, although many companies are now collaborating more intensively
than they did in the past, they are often doing so with few partners. This coop-
eration strategy demands transaction-specific investment, for example for agreeing
and implementing special modes of data exchange. In accordance with transaction
cost theory, this leads to an increase in asset specificity which would tend to
counteract the ‘‘move to the market’’ (Clemons et al. 1993). In summary, both
trends taken together mean that cooperation is beneficial, a phenomenon which is
referred to as the ‘‘move to the middle’’.

The new opportunities for outsourcing IT services to low-wage countries, which
we discuss in Chap. 4, also play a key role. In terms of classical economic theory, this
means that new providers are entering the arena, who will tend to reduce prices on
the consumer market or make it attractive to outsource certain tasks that were
performed more cheaply in-house until now. At this point, transaction costs must be
taken into consideration. A software provider will only outsource services to a
software company in India, for example, if the lower development costs resulting
from massive wage differentials are not completely offset, and more, by higher
transaction costs. Many factors can raise transaction costs, ranging from the greater
effort required to develop software specifications and make modifications, to the
additional costs associated with supervising the outsourcing provider. Even this
brief list of potential issues makes clear that outsourcing software development tasks
does not automatically reduce overall costs. Bad decisions can also be made because
cost accounting methods typically only show up only a company’s production costs,
but not the transaction costs. We will return to this issue in Sect. 4.1 of this book.

2.4.4 Excursion: Intermediaries and Transaction Costs

Transaction cost theory centers around transactions, which we defined earlier as
the transfer of usage rights. Taking the transaction as the starting point of analysis,
transaction cost theory offers insight into the form of organization that makes most

46 2 Economic Principles in the Software Industry

http://dx.doi.org/10.1007/978-3-642-31510-7_4
http://dx.doi.org/10.1007/978-3-642-31510-7_4
http://dx.doi.org/10.1007/978-3-642-31510-7_4

economic sense in terms of the size of transaction-specific investments. Aside
from this, the concept of a transaction is used again and again in discussions of the
economic importance and usefulness of intermediaries.

Until now, most intermediaries in the software industry have been marketing
agents or distributors sandwiched between the developers and the users of a
software product, particularly in business-to-consumer markets. In the near future,
the trend toward splitting conventional standard software packages into modules
and the emergence of service-based architectures will lead to intermediaries
wielding unprecedented influence in other subsectors of the industry, too. Against
this background, we will present the basic tenets of intermediation theory below,
despite the fact that this is not directly connected to transaction cost theory. We
will then return to intermediation theory in the sections on distribution strategy and
industrialization.

Intermediaries are companies that do not make products or provide services
themselves, but deliver a good or a bundle of goods to those with a demand for it.
The most familiar example of intermediaries is retailers who offer consumers a
large number of products from various manufacturers at a convenient location for
their customers. But intermediaries can also be publishers or television companies
that very often do not create content themselves but purchase it from freelance
writers or specialized production companies and offer it in the form of a daily
newspaper or a TV channel in accordance to customer preferences. We have
already given various examples from the software industry. There is a place for
intermediaries whenever conducting a transaction through them is more cost-
effective than conducting one directly between the supplier and the customer.

Baligh and Richartz’s mathematical model makes it possible to assess the effect
of an intermediary, at least with regard to the search phase of a transaction (Baligh
and Richartz 1967). Let us assume a market with m suppliers and n customers. If a
customer wishes to gain an overview of what is on offer, it needs to ask all m
suppliers. As this applies for each of the n customers, m 9 n contacts will be
necessary. However, if an intermediary is involved, each supplier and each cus-
tomer only needs to register its details with an intermediary, and only
m ? n contacts are required. Even when n and m are relatively small, this means
that employing an intermediary is preferable in terms of the number of contacts
required, and this therefore makes good economic sense.

2.5 Software Development as a Principal-Agent Problem

2.5.1 Incentive-Compatible Compensation
and Efficient Control

In the development of custom software as well as in implementation projects,
maintenance work and the operation of standard software solutions, software
companies and customers work closely together. This close collaboration gives

2.4 Transaction Cost Theory: In Search of the Software Firm’s Boundaries 47

rise to complex dependencies which in economics are known as principal-agent
problems. The rest of Sect. 2.5 will present the underlying idea (2.5.1), show how
it can be applied in practice through compensation schemes (2.5.2) and control
systems (2.5.3).

2.5.2 Principal-Agent Relationships: Definitions and Basic
Principles

The principle-agent theory (Spence and Zeckhauser 1971; Ross 1973; Jensen and
Meckling 1976) focuses on the division of labor relationship between a principal
and an agent. A relationship of this kind exists when, to realize its interests, a
principle transfers powers of decision-making and execution to an agent and offers
compensation in return.

For our purposes, the relationship between a software company (agent) and a
company (principal) that commissions the former is particularly important, where
the software company takes responsibility for developing, delivering, imple-
menting or operating software and is paid to do so. A different principal-agent
relationship is also of interest to us: if a software company outsources one part of
the development process to another company, for example the development of a
software module to a business located in a country where labor costs are lower, the
software company is then the principal and the outsourcing company in the low-
wage country assumes the role of agent (see also Chap. 4).

The principal-agent theory is based on two core assumptions. First, it is
assumed that both the principal and the agent are motivated by utility maximi-
zation and systematically use discretionary powers in their own interest (e.g. by
over-reporting the programming time taken). Second, it is assumed that the agent
has an information advantage with respect to performing the task assigned. The
agent generally knows better than the principal, for example, how many person–
months a development project will require, and will often not reveal its true
interests (e.g. to lock the principal into a long-term relationship). This means that
the principal and the agent act rationally in terms of the (incomplete) information
available to them, which is termed bounded rationality. Figure 2.16 gives an
overview of this basic model.

Opportunistic behavior and bounded rationality in the principal-agent rela-
tionship can result in three types of problems which also describe the relationship’s
structure in temporal terms.

Hidden characteristics arise before conclusion of the contract. Initially, the
principal is not fully cognizant of the quality attributes of the agent and the
services he or she delivers. This situation involves the risk that the principal could
select an unsuitable agent. That is the case when the customer commissions a
software company that does not possess the knowledge and skills needed to
develop a particular solution.

48 2 Economic Principles in the Software Industry

http://dx.doi.org/10.1007/978-3-642-31510-7_4

Hidden action describes the risk that the principal cannot observe or cannot
evaluate the agent’s actions. In both cases, the principal knows the end-result but
has no way of assessing to what extent this is due to the agent’s efforts or external
factors. As a result, the agent can always exploit his or her freedom to its own
ends. For example, a customer will find it very difficult to discover what quality
assurance tests have been performed and what the outcome was.

Hidden intention denotes the danger that the principal can become dependent
on the agent because it relies on the services the agent performs. Like hidden
action, hidden intention only arises after the contract has been signed. The agent
can exploit this fact to its own advantage. For example, if a customer concludes an
outsourcing agreement, it will automatically be dependent on the outsourcing
provider.

Hidden characteristics, hidden action and hidden intention lead to so-called
agency costs for the principal. To reduce these costs, the principal can use
mechanisms such as compensation plans and control systems. Both these
approaches will be described below, and we will provide insight into both quan-
titative and qualitative research on principal-agent theory.

2.5.3 Incentive-Compatible Compensation Schemes

Performance-based contracts or contracts for services are the basis for compen-
sation of services rendered. The form a compensation scheme takes depends on the
type of contract involved. Compensation schemes for both types of contract are
described below (Picot and Ertsey 2004).

2.5.3.1 Compensation Based on a Contract with a Defined Result

By signing a performance-based contract, the service provider undertakes to
deliver a defined result with clearly specified characteristics in accordance with

Fig. 2.16 Principal-agent relationship

2.5 Software Development as a Principal-Agent Problem 49

agreed terms and conditions. So only the price remains to be set. There are two
ways of doing this: The customer can either recompense the provider for the actual
costs incurred plus some additional amount (‘‘cost-plus’’) or pay a fixed price.
With cost-plus contracts, the customer alone bears the project’s cost risk. The
provider is in a position to report inflated costs, and even clauses stipulating the
disclosure of cost information cannot rule this out completely. A cost-plus contract
makes sense when the project specifications are incomplete and the provider is not
able to estimate the production costs.

However, if one of these two conditions is not fulfilled, a fixed price agreement
is advisable. Under an agreement of this kind, the customer pays a previously
agreed fixed price at the end of the project. This means that the provider alone
bears the projects’ cost risk. If the costs incurred by the provider are below the
agreed price at the end of the project, the provider has realized an (additional)
profit. But if the total project costs exceed the agreed price, its profit margin
shrinks correspondingly and in the worst case, it might even make a loss. A fixed
price certainly gives the provider an incentive to conduct the project efficiently.
At the same time, however, there is no motivation to pass on any savings to the
customer. We will discuss methods of estimating costs and approaches to pricing
custom software projects in Sect. 3.3.4.

Both types of contract feature a completely one-sided risk situation, with only
one of the two parties bearing all of the risk. This gives the other side leeway to act
opportunistically. The model presented below describes the distribution of risk for
cost-plus contracts. Let us assume that a provider receives compensation e. This
comprises a fixed fee fmin and a certain share a of the difference between planned
and actual costs ca – cp, where cp represents the planned costs and ca the actual
costs. The customer and the provider therefore share the excess costs. If ca is
below the contractually defined minimum cmin, then the provider still receives the
minimum amount fmin—thereby realizing additional profit. But if ca exceeds cmax,
the provider still receives the agreed maximum amount fmax—and its profit margin
sinks, or it may even make a loss. The compensation scheme, which limits risk for
both parties, is as follows:

f ¼
fmin where ca\cmin

fmin þ a � ðca � cpÞ where cmin� ca� cmax

fmax where ca [cmax

8
<

:

Figure 2.17 illustrates this compensation scheme with an example in which cp

and cmin both amount to 80 monetary units (MUs).
Additional development costs up to a maximum of 120 MUs are contributed by

both parties equally, i.e., for ca = 100 MUs, the provider receives 80 MUs plus 0.5
(100 MUs–80 MUs) = 90 MUs. Project costs in excess of 120 MUs are borne
solely by the provider. If the project costs are below 80 MUs, the provider alone
profits from the efficiencies achieved.

50 2 Economic Principles in the Software Industry

http://dx.doi.org/10.1007/978-3-642-31510-7_3

2.5.3.2 Compensation Based on a Contract for Services

Under a contract for services, the provider undertakes to perform a particular task
such as programming or the provision of a service. If a fixed price is agreed, the
provider has an incentive to work cost-effectively and may not focus sufficiently
on the quality aspect—after all, it has only agreed to perform a task. This problem
can be addressed by means of an incentive-compatible compensation scheme in
which the fee is linked to the quality of work performed.

Let us refer to the provider’s performance (e.g. number of lines of code) as pa. If
pa is below an agreed threshold pmin, the provider does not receive any fee—as a
deterrent. In the interval [pmin; pmax], the service provider receives the minimum fee
fmin and a share of the bonus b which is equal to fmax-fmin. If the performance is
greater than pmax, the provider only receives the maximum fee fmax, so no provider
will be motivated to achieve that. If the bonus paid in the interval [pmin; pmax] is to
increase linearly with the performance, the overall fee f is calculated as follows:

f ¼
0 where pa\pmin

fmin þ pa�pmin

pmax�pmin
ðfmax � fminÞ where pmin� pa� pmax

fmax where pa [pmax

8
<

:

In practice, this depends on the ability to measure performance pa in an
objective way. For a software development project, this can be based on lines of
code while for network services, service level agreements can be employed.

We will illustrate this scheme by way of a brief example. Let us assume that the
performance of a software company is to be measured in lines of code (LoC).
Although this indicator is not ideal for various reasons, it can still give a rough idea
of the provider’s performance and is used, for example, in models designed to
estimate software development effort, such as COCOMO.

Fig. 2.17 Example
compensation scheme based
on a contract with a defined
result

2.5 Software Development as a Principal-Agent Problem 51

In our example, we assume that the contracted software company is supposed to
develop at least 200 LoC and receive a fee of 200 MUs for 200 LoC. Up to 300
LoC, the fee increases linearly up to 400 MUs. Below 200 LoC, the software
company receives no fee at all. Above 300 LoC, it always receives 400 MUs. The
customer is therefore introducing two separate incentives: at least 200 LoC are
required (e.g. to avoid jeopardizing the follow-on project) and up to 300 LoC
would be very useful (reflected by the fee for each additional LoC in the interval
[200;300] MUs. Figure 2.18 gives an overview of this example.

To conclude, we would like once again to highlight the basic differences between
the two compensation schemes presented. Both include the idea of sharing risk
within given limits. But the crucial difference is the basis on which the fee is
determined: for a contract with a defined outcome, this is the costs incurred by the
provider, whereas for a contract for services, it is the provider’s performance.

2.5.4 Control Systems

Another way to reduce agency costs besides compensation schemes is to deploy
control systems. The design of a control system depends on whether the principal
controls only the results produced by the agent or how the agent goes about its
work or the input factors such as the development methodology employed.

Fig. 2.18 Example compensation scheme on the basis of a contract for services

52 2 Economic Principles in the Software Industry

Research findings on the efficient design of control systems show that the main
factors determining the selection of a suitable control system are the agent’s ability
to exercise influence and how well the principal can observe what is happening
(Ouchi 1977; Picot 1989). Figure 2.19 shows the underlying logic.

Figure 2.19 provides a basis for a general recommendation for software
development. Normally, the provider has many ways of controlling the involve-
ment of employees in the project. For example, a custom software provider can
choose different project leaders and programmers for a project. It is reasonable to
expect that the quality of results will depend on the experience and training of
these project members. Given this fact, the agent is able to exert a large influence,
so that the left-hand column of Fig. 2.19 applies. However, it is normally difficult
for the principal to observe and evaluate the agent’s efforts. Even if the customer
understands the software development process per se, perhaps because he himself
is a member of an IT department, he seldom has truly reliable information about
the concrete status of the project. So in the final analysis, he has no alternative but
to limit himself to controlling the results and possibly threatening to acquaint the
industry at large with the provider’s failures—this is why reputation is sometimes
referred to as the customer’s collateral.

The methods of limiting agency costs discussed above are based on a series of
assumptions that simplify the real state of affairs. For example, when formulating
the principal-agent problem, whether with the software company as the provider or
the customer in the case of sub-contracts, we assumed that the specifications are
created once and then used by the provider as a basis for developing the software.
A far more realistic assumption is that the customer needs to be involved
repeatedly and at different points in the development process. A further potential
complication is that the people who conclude the contract and those with the
required knowledge and skills may come from different parts of the customer’s
organization, typically the IT department and the department that will actually be
using the software, which are unlikely to have the same interests. These two
influencing factors lead to much more complex principal-agent relationships than
those presented here.

Fig. 2.19 Various control
system designs (based on
Hess and Schumann 1999,
p. 360)

2.5 Software Development as a Principal-Agent Problem 53

3Software Vendor Strategies

Against the background of the economic principles described in the previous
chapter, this chapter examines selected strategies for software vendors. The ven-
dor’s positioning within the value chain is of critical importance. Section 3.1
initially considers the opportunities and challenges associated with cooperation
strategies. In this context, we also look at acquisitions, which play a key role in
software markets. In addition, we discuss sales strategies (Sect. 3.2) and pricing
strategies (Sect. 3.3). We conclude by exploring key management questions
concerning the development of software in Sect. 3.4.

3.1 Cooperation and Acquisition Strategies

This section looks at cooperation and acquisition strategies within the software
industry. As already described in Sect. 2.2, these strategies are of central impor-
tance, in particular against the background of network effects on software markets.
Moreover, a single vendor is unlikely to be able to fulfill all customer needs with
its own portfolio of products and services. First, we will highlight the general
benefits and challenges of cooperation (Sect. 3.1.1). We will then investigate
acquisitions (Sect. 3.1.2).

3.1.1 Cooperation in the Software Industry

3.1.1.1 Advantages

Cooperation refers here to collaboration between legally independent entities
(based on contractual or tacit agreements). We assume that cooperation is for the
medium or long term, and requires capital investment on the part of the partici-
pants. The key goals are to secure greater efficiency or value added of a kind that
would not have been possible without cooperation. Brandenburger and Nalebuff

P. Buxmann et al., The Software Industry, DOI: 10.1007/978-3-642-31510-7_3,
� Springer-Verlag Berlin Heidelberg 2013

55

http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_2

refer in this context to a ‘‘value net’’ created by this collaboration (Brandenburger
and Nalebuff 1996, pp. 16–19). The advantages that can be secured include the
following:

• Cost savings can be achieved through economies of scale and economies of
scope. Examples include the savings possible by making use of the discounts
available when purchasing large volumes or through the shared use of
resources, such as warehouses or offices. Moreover, costs can be saved through
cooperative planning processes, for example for planning procurement or
deliveries (Martín Díaz 2006).

• Time savings can be achieved, for example during development work, by
combining resources. This can accelerate time-to-market. Development part-
nerships can also reduce risk. For instance, by sharing the costs of development
work, the risks of failure are shared and therefore minimized for the participants.

• Cooperation can also increase the value of the product or service. For example,
airlines, car rental companies, and hotels form alliances to offer additional
services, such as the synchronized provision and return of rental vehicles and
the granting of bonus points. Open-source software is also developed through
collaborative activities. The more programmers are involved, then the better the
quality of the software, at least as a general rule. In his famous article, ‘‘The
Cathedral and the Bazaar,’’ Eric S. Raymond states ‘‘given enough eyeballs all
bugs are shallow’’ (Raymond 1999).

• Cooperation and acquisitions can grant access to new markets. This can involve
new geographies, or an extension to the existing product portfolio.

The potential advantages are ultimately reflected either in savings or (directly or
indirectly) in an increase in revenues. Dividing up the value added between the
partners can be a significant challenge. Many cooperative projects stumble at this
particular hurdle—which is only trivial at first glance—even before they really
begin. We wish to illustrate this problem using an example of cooperative game
theory.

A rich man and a beggar are walking along the road, and both of them discover
some money, let us say 100 euros, simultaneously. The challenge for the two of
them is to divide up the money in a way that is satisfactory for both. If they
manage to find a consensus, each gets to keep his portion of the find. If they fail to
agree, both will be left empty-handed.

The problem is easy to understand, but a mutually agreeable solution is difficult
to find. Both the beggar and the rich man want to keep as much of the money as
possible for themselves. This particular constellation can often be seen in similar
form between business partners. The theoretical solution of the problem is com-
plex in mathematical terms, and is based on a variety of utility functions for the
two parties (Sieg 2005, p. 181 ff.). On the basis of an assumed linear utility
function for the rich man and a logarithmic function for the beggar, it is possible to
arrive at a split of approximately 23 euros for the beggar and 77 euros for the rich
man. However, this is the theory, and in practice it is very difficult to get the two
parties to agree on a split of this kind.

56 3 Software Vendor Strategies

We, therefore, wish to attempt to simplify the matter: we can assume that the
allocation of the benefits of cooperation must be Pareto optimal. In other words,
the gains must be divided up in a way that ensures that at least one of the partners
is better off than before, but none is worse off. If this is not the case, then at least
one of the partners will generally not wish to cooperate.

There are pragmatic alternatives, including the following simple approaches
(Buxmann et al. 2007):

• The profits of cooperation are divided among n participants, so that each par-
ticipant receives the nth share of this additional profit.

• The profits of cooperation are divided up in accordance with the pattern of
profits prior to the partnership.

In the first instance, the smaller partners gain disproportionately. With the
second model, the stronger participants tend to be at an advantage. Even if one or
both of these possible models lead to Pareto optimality, this does not mean that the
participants would actually come to an agreement. There are a wide variety of
possible distribution mechanisms, with an equally large variety of advantages and
disadvantages for the individual participants. Whatever happens, each participant
will attempt to secure the largest possible slice of the available cake for themselves.

Moreover, any partnership entails a sizeable investment on the part of the
participants. This begins with the costs of seeking the right business partner. Then
there is the expense, often considerable, of contract negotiations. Negotiations will
focus, for example, on the partners’ contributions in terms of investments and their
share of any profits. Moreover, there will be significant investment in the estab-
lishment of a shared infrastructure and in developing skills at the participating
organizations (Hirnle and Hess 2006).

In the next section, we wish to concentrate on forms of cooperation within the
software industry.

3.1.1.2 Types of Cooperation and Partners Within the Software
Industry

First, let us consider who the potential partners for software companies are. In
this context, we consider the Brandenburger and Nalebuff model, in Fig. 3.1
(Brandenburger and Nalebuff 1996, p. 17).

Fig. 3.1 Systematic
definition of potential
partners

3.1 Cooperation and Acquisition Strategies 57

In other words, we assume that a company, in the automotive industry, the
software industry, or in a different sector, has the four potential partners given
above: customers, complementary providers, suppliers, and competitors.

Moreover, partnerships can be better understood by employing the classifica-
tion created by Ralf Meyer, which differentiates between (Meyer 2008):

• Development partnerships,
• Reseller partnerships,
• Shared revenue partnerships,
• OEM partnerships,
• Referral partnerships, and
• Standardization partnerships.

When defining collaborative relationships, the following questions need to be
addressed (Meyer 2008):

• Which partner is to deliver the product to the end-customer (who ships)?
• Which partner determines pricing and discounts (pricing)?
• How is the product to be branded (branding)?
• Which partner has the intellectual property rights to the product (IP)?
• Which partner will post sales revenue for the product (revenue booking)?
• Which partner is responsible for customer contact (customer control)?
• Which partner is responsible for go-to-market activities?
• Does the recipient carry out quality checks (quality assurance)?
• Which partner is responsible for support?

Development Partnerships

A development partnership is a collaborative relationship with the aim of creating
new software and service solutions. Software providers can cooperate with any of
the partners depicted in Fig. 3.1. The development tasks are shared among the
partners, taking on the role of inventors.

A frequent example is the joint development of a product and systems on the
part of standard software vendors and their customers. Generally, the aim is to
develop a solution that supports industry-specific needs that are not modeled
within the standard product. What are the advantages of this type of cooperation?
The customer gains access to a software solution tailored to its particular needs.
The software vendor gains insight into a particular industry. An example is the
development of a solution for scheduling agreements with suppliers, created within
the scope of a partnership between SAP and Bosch (Buxmann et al. 2004).

Frequently, as the following example illustrates, joint software development
leads to the establishment of a joint venture.

58 3 Software Vendor Strategies

iBS Banking Solution

Within the scope of a dedicated project, CSC Ploenzke created an in-house
solution for the mortgages unit of DePfa Bank (since renamed Aareal Bank).
The solution adds important components to the standard SAP solution for
banks. Its functionality encompasses all lending and deposit-taking, integrated
derivatives, and money market and foreign exchange trading. The solution also
forms the basis for end-to-end banking management, including risk manage-
ment, on the basis of the SAP system. Once the project was completed, the
participants came to the conclusion that the software solution could be mar-
keted to other companies. The two parties founded a joint venture, with CSC
Ploenzke holding a 51 % stake and DePfa the remaining 49 %. There were two
reasons for this move. First, there was an issue with the fact that potential
customers were DePfa’s direct competitors. Second, DePfa did not have suf-
ficient consulting resources to implement the software at other organizations.

Sources www.ibs-banking.com; Sapinfo.net/SAP-BranchenmagazinBan-
ken and Versicherungen, no. 3 March 2001, pp. 20–21.

Suppliers are an additional group of potential partners for joint development
activities. In the software industry, these particularly comprise other software
companies who can take responsibility for selected development tasks, or free-
lance contractors who can be incorporated into project teams. Major standard
software vendors, for example, frequently work with a large number of software
subcontractors. In particular, the trend toward service-oriented architectures (see
Sect. 4.7.2) may facilitate the establishment of further collaborative arrangements
at the interface between software vendors and subcontractors. This opens up new
opportunities for niche players to offer software as a service (SaaS).

When a standard software provider finds that the costs of developing a particular
service exceed the expected value added, the obvious solution is to outsource this
development work to a software supplier. This limits the software provider’s
development risk and the supplier gains an opportunity to integrate its services into
the major player’s solution. To date, in most actual cases of these types of partner-
ship, the provider and the supplier deal with the customer separately—and send their
own invoices. In the future, closer collaboration will be conceivable and worthwhile.
The partnership could be set up so that the suppliers will have a share in the revenues.
A major challenge here, however, is to find the right formula to divide up the spoils.
In addition, both partners must invest in the partnership. Typically, the supplier will
have to make the larger investment, especially in the form of training costs. Often,
suppliers and development partners must attend—often costly—training sessions
organized by the software provider, in order to gain entry to particular partner pro-
grams. However, this is an understandable approach from the provider’s perspective:
For one thing, it ensures that suppliers are familiar with the relevant underlying
technologies, and for another, training can generate considerable revenues.

3.1 Cooperation and Acquisition Strategies 59

http://www.ibs-banking.com
http://dx.doi.org/10.1007/978-3-642-31510-7_4
http://dx.doi.org/10.1007/978-3-642-31510-7_4

This type of partnership would also be possible with competitors. This rela-
tionship is sometimes described as ‘‘co-opetition,’’ because ‘‘you have to cooperate
and compete at the same time’’ (Brandenburger and Nalebuff 1996, p. 4). The
challenge here is to establish a win–win situation, where both partners profit from
the arrangement, although they are and will remain competitors.

The potential advantages of co-opetition are more or less those already outlined
in Sect. 3.1.1.1. One obvious motivator of cooperation is the opportunity to share
resources. If at least one of the parties has idle development or production
resources, while its competitors are operating at close to capacity, it makes sense
to share those resources. The best-known examples of this form of cooperation are
to be found in the automotive industry. For instance, Daimler and Volkswagen
have long collaborated on the development of engines and commercial vehicles,
while Porsche and Toyota are working closely together on the development of
hybrid drive technology.

DUET is an example of cooperation between two major software providers that
are competitors in some areas: Microsoft and SAP. DUET offers users an interface
between Microsoft’s Office applications and SAP’s ERP systems. Microsoft and
SAP offer competing enterprise software solutions for small and midsize compa-
nies, and both hope that the joint solution will deliver a win–win situation.

Payment for and allocation of intellectual property (IP) rights among the parties
varies considerably from case to case. Figure 3.2 illustrates a type of development
partnership that is often found in the SAP ecosystem. This concerns the joint
development of integration components.

Figure 3.3 depicts another type of development partnership, exemplified by the
integration of partner products into a SAP solution.

Reseller Partnerships

This model is characterized by a purchaser–provider relationship. In this case, the
purchaser incorporates the provider’s solutions in its product portfolio and resells
them to its own customers. In other words, the provider produces the software and
sells licenses to purchasers, taking on the dual role of inventor and—from the
purchaser’s perspective—IP lessor (see Sect. 1.4). The purchaser also occupies the
role of IP lessor, as it resells the licenses it has bought. Figure 3.4 provides an
outline of a reseller partnership.

Fig. 3.2 Outline of joint development of integration components (based on Meyer 2008, p. 110)

60 3 Software Vendor Strategies

http://dx.doi.org/10.1007/978-3-642-31510-7_1
http://dx.doi.org/10.1007/978-3-642-31510-7_1

Reseller partnerships are commonly found in the case of software providers and
their sales partners. But they also occur between suppliers and providers.

For suppliers, the potential advantage of this arrangement is that they obtain
access to the provider’s customers, without having to establish their own sales
organization. While coordinating the partnership involves some additional costs,
these are likely to be offset by the increased revenues from the sales channel.

Reseller partnerships are usually organized as shown in Fig. 3.5.

Shared Revenue Partnerships

This type of partnership involves a software provider selling its products through a
broker. The latter may also be a platform. Above all, the broker allows the provider
to benefit from its strong market position by means of a joint market presence.

Fig. 3.3 Development partnership–parameters (exemplified by an SAP integration project)
(based on Meyer 2008, p. 76)

Fig. 3.4 Outline of reseller partnership (based on Meyer 2008, p. 78)

Fig. 3.5 Reselling–parameters (based on Meyer 2008, p. 76)

3.1 Cooperation and Acquisition Strategies 61

In contrast to resellers, brokers do not assume any proprietary rights to the software
products they sell. Instead, they merely recommend the third-party solution to their
customers, fulfilling the role of an IP broker. This model is illustrated in Fig. 3.6.

Software distribution via mobile application portals is a current example of this
type of cooperation: Software providers—either companies or individual
developers—can use these platforms to provide customers with software solutions
and/or apps for their mobile devices. The best-known examples are Apple’s App
Store and Google’s Android Market.

OEM Relationship

The OEM model is essentially the traditional buyer–supplier relationship, as found
in the automotive industry, for example. In other words, a company integrates
components or systems developed by suppliers into its own product. In the soft-
ware industry, OEM relationships involve both suppliers and buyers acting as
inventors and IP lessors (Fig. 3.7). In rare cases, buyers can even assemble a
solution entirely from supplied components. In this scenario, the buyer’s role as an
inventor is limited to the activities required to integrate the components.

This model enables suppliers to benefit from higher sales revenues and greater
market penetration. Often, this type of relationship consists of smaller companies
providing larger ones with components. But it can also look completely different.
For example, SAP frequently acts as an OEM partner by providing its NetWeaver
platform to other companies. On this basis, the latter can develop complementary
solutions and sell them as a package to their own customers.

Fig. 3.7 Outline of OEM relationship (based on Meyer 2008, p. 97)

Fig. 3.6 Outline of shared revenue partnership (based on Meyer 2008, p. 86)

62 3 Software Vendor Strategies

From the buyer’s perspective, the main advantage of the OEM model is that
purchasing components and solutions cuts development time, costs, and risks.
Suppliers can deliver cost savings because they generally sell their products to
multiple buyers, enabling them to distribute development costs across several
parties.

A typical OEM relationship is organized as shown in Fig. 3.8.

Referral Partnerships

Like shared revenue models, referral partnerships involve an IP broker (Fig. 3.9).
In the following, we describe the latter as the ‘‘referral provider.’’ This partner sells
information about potential customers (leads) to the referral recipient (IP lessor).
In return for this information, the IP broker receives a combination of a fixed fee
and a share of the resulting revenues. As the referral provider mostly has no direct
influence over these customers, but merely passes on their contact details, the share
is generally a lot smaller than in the shared revenue model.

Figure 3.10 shows how this partnership is organized.

Fig. 3.8 OEM relationship–parameters (based on Meyer 2008, p. 76)

Fig. 3.9 Outline of referral partnership (based on Meyer 2008, p. 93)

Fig. 3.10 Outline of referral partnership (based on Meyer 2008, p. 76)

3.1 Cooperation and Acquisition Strategies 63

Standardization Partnerships

Standardization partnerships are somewhat different: As a general rule, no money
changes hands between the parties. However, they are an important element in
many software and IT enterprises’ strategies. These companies frequently form
strategic alliances. Mostly, their aim is to establish standards—or to prevent the
widespread adoption of standards that would benefit potential competitors.

The working groups of standardization organizations, such as the World Wide
Web Consortium, frequently facilitate this type of cooperation. Participating
companies aim to give input into the technical specifications of the new standard.
But they also know that they need to be inside the tent to ensure that their own or
preferred standard is chosen over others, possibly favored by competitors. We
discussed the importance of setting standards in some detail in Sect. 2.2.

3.1.2 Mergers and Acquisitions in the Software Industry

In this section, we will focus on mergers and acquisitions (M&A) in the software
industry. These play a particular role in the software industry, because network
effects make the size of a provider and its network a crucial competitive advantage.
First, we will consider the various forms of M&A (Sect. 3.1.2.1). This will feed
into an investigation of the various motives for acquisitions (Sect. 3.1.2.2), before
we turn to the consolidation trend in the software industry (Sect. 3.1.2.3). Finally,
we will analyze the success of M&A in the software industry (Sect. 3.1.2.4).

3.1.2.1 Forms of M&A

There is a multitude of definitions surrounding M&A. We do not intend to go into
them here. However, a common definition is that acquisitions involve at least one
company relinquishing its financial—and possibly also legal—independence
(Wirtz 2003, p. 15).

A distinction can be made between M&As, as shown in Fig. 3.11. Mergers
entail the fusion of two independent companies into one legal entity. In other

Fig. 3.11 Types of mergers
and acquisitions (Wirtz 2003,
p. 13)

64 3 Software Vendor Strategies

http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_2

words, both parties surrender their legal independence, although they can opt to
form a new legal entity or be incorporated into an existing one. In acquisitions, by
contrast, one company is integrated into a corporate group—this does not neces-
sarily involve a legal fusion.

Another distinction can be drawn between horizontal, vertical, and conglom-
erate (also known as diagonal) M&A (Wirtz 2003, p. 18 ff.).

Horizontal M&A involve companies in the same industry at the same stage of
the value chain. They are generally intended to increase competitiveness and
realize synergies in the form of economies of scale and/or economies of scope.
Examples of horizontal mergers in the software industry include the acquisition of
PeopleSoft by Oracle (see Sect. 3.1.2.3) or Symantec’s purchase of storage and
security solution provider Veritas, for some $13.5 billion (Parbel 2005).

Vertical M&A combine companies on different levels of the value chain. In
other words, an enterprise joins forces with another that is directly upstream or
downstream. This is also known as upward or downward vertical integration. The
aims behind vertical M&A are cutting transaction costs, improving planning across
the value chain, and better access to procurement (in the case of downward vertical
integration) or purchasers (in the case of upward vertical integration). The
expansion of Software AG in Latin America is an example of this type of deal. In
2005, the German provider acquired APS Venezuela and five affiliated companies
in Panama, Costa Rica, and Puerto Rico. Previous to this, APS Venezuela had been
Software AG’s sales partner and an established distributor of transaction systems
for major accounts in the financial, manufacturing, oil and mining industries, and
the public sector. The move was intended to strengthen Software AG’s presence on
the Latin American market.

Diagonal or conglomerate M&A bring together companies from different
industries or segments, enabling the penetration of new markets. These generally
result from a diversification or expansion strategy. For example, this is the strategy
followed by Infor. Its sales revenue of approximately $2.1 billion and headcount
of more than 8,000 make it one of the world’s largest software companies. Infor’s
strategy aims for rapid growth by buying up a number of smaller software pro-
viders from a variety of fields. In contrast to many other acquisitions in the

Fig. 3.12 Forms of M&A
(Wirtz 2003, p. 19)

3.1 Cooperation and Acquisition Strategies 65

industry, those made by Infor are not primarily driven by migration strategy: the
company does not intend to integrate the acquired applications into a single end-
to-end solution. In addition to licensing, Infor quickly generates income from the
target companies’ on-going service contracts. Moreover, it can take advantage of
cost-cutting opportunities such as tighter cost management or by consolidating
corporate or administrative functions.

Figure 3.12 illustrates the various forms of M&A.
In the following section, we will look at the motivations that prompt man-

agement to acquire another company or sell their own.

3.1.2.2 Motivations for M&A

As M&A can affect every aspect of the companies involved, any examination
should theoretically address the viewpoints of all relevant stakeholders. This
would include shareholders, management, employees, suppliers, customers,
competitors, and even society itself, as M&As frequently cause significant changes
in the labor market.

In the following section, however, we will concentrate on a brief outline of the
reasons from management’s perspective. These can be grouped into strategic,
financial, and personal motivations (Wirtz 2003, pp. 57–76).

Strategic motivations are generally about realizing synergies and can be divided
into

• Market motivations,
• Performance motivations, and
• Risk motivations.

Market motivations relate to both the procurement and sales sides. For example,
the deal may increase negotiating power over mutual suppliers, as larger quantities
are at stake. In addition to procurement, boosting sales is another key motivation
for M&A. By combining their sales activities, the companies involved can realize
synergies and gain competitive edge. A stronger position on the sales market can
bestow greater influence over prices, and can even help to squeeze competitors out.
Finally, an acquisition can also offer growth potential, for example in the form of
access to new regional markets.

Synergies may also be created by pooling resources and skills. Performance
motivations are the expectation of synergies in corporate activities such as research
and development, procurement, production, marketing. For one thing, the com-
panies’ technologies and expertise can be combined to produce new or better
quality products and services. In the context of software, the development of
integrated systems is conceivable. In addition, the deal could lead to a better
utilization of existing development resources.

Risk motivations are most commonly found in relation to M&A activities driven
by a diversification strategy. For example, a company may see risks in its
dependence on a particular product or the development of a particular industry.

66 3 Software Vendor Strategies

Expanding the product portfolio or tapping into new industries by means of an
acquisition is seen as a way of reducing these risks.

It should be noted that the strategic motivations listed above also apply to
cooperation in general, and should be regarded as supplementing the list of
advantages of cooperation in Sect. 3.1.1.1.

In addition to the above-mentioned market, performance and risk motivations,
there may also be financial motives for a merger or acquisition. The most powerful
motivation is generally raising profitability by generating profits or by taking
advantage of tax losses carried forward. These options will be based on consid-
erations relating to developments on capital markets, balance-sheet optimization,
and taxation.

Moreover, management may also have personal motivations. A number of
explanations have been put forward, including managers overestimating their own
abilities and empire-building, as the real reasons behind some acquisitions
(Wirtz 2003, pp. 57–76).

3.1.2.3 Consolidation Tendencies in the Software Industry

We have already noted a number of times that, due to network effects, software
markets are governed by the winner-takes-all principle. M&A help fuel this
tendency toward the establishment of monopolies. Their significance in the soft-
ware industry is highlighted in the following table, which compares M&A activ-
ities across industries in 2009. Out of 49 industries studied, the tables show the top
10 on the US (Table 3.1) and European markets (Table 3.2). In the USA, the
software industry occupies second place, in terms of transaction volume. By way
of comparison: in 2006, the software industry was ranked sixth (Buxmann et al.

Table 3.1 Comparison of M&A activities by industry, 2009 (USA) (Mergerstat Free Reports 2009)

Rank Industry Deals Value in millions of $

1 Drugs, medical supplies, and equipment 319 219,089.7

2 Computer software, supplies, and services 1338 50,911.6

3 Brokerage, investment and management, and consulting 521 47,170.5

4 Energy services 83 42,586.3

5 Transportation 81 29,626.0

6 Banking and finance 272 28,632.9

7 Food processing 83 22,665.7

8 Miscellaneous services 816 19,636.7

9 Broadcasting 73 19,069.0

10 Chemicals, paints, and coatings 106 14,060.0

Total
Top 10

3692 493,448.4

3.1 Cooperation and Acquisition Strategies 67

2008a). If we look at the number of deals, though, the software industry topped the
rankings in both 2006 and 2009. In Europe, the software industry is sixth in terms
of transaction volumes. But with respect to the number of deals, the industry
comes out on top here as well.

A well-known example of the consolidation trend is the ERP software segment,
most notably the takeover strategies pursued by Oracle. In recent years, Oracle has
attracted attention for its many M&A activities.

On June 6, 2003, just 4 days after PeopleSoft disclosed its intention to acquire
competitor J. D. Edwards, Oracle announced its own plan to buy up PeopleSoft for
$5.1 billion. The acquisition of J. D. Edwards would have made PeopleSoft the
second largest provider of enterprise software after SAP. Oracle’s announcement
triggered a 19-month long takeover battle. Finally, Oracle emerged victorious,
securing its rival for some $10.3 billion. This made it the industry’s largest merger
to date. Oracle was restored to its runner-up position on the enterprise software
market, and was able to edge closer to market leader SAP.

Oracle promised not only to continue supporting PeopleSoft and J.D. Edwards’
software until 2013, but also to develop it further. At the same time, it released a
new, integrated software solution called ‘‘Fusion,’’ combining all product lines.
This initiative must have required a significant effort on Oracle’s part; Fusion’s
R&D team is already one of the world’s largest.

Oracle then added one of the leading providers of CRM software to its holdings,
acquiring Siebel for around $5.85 billion. This intensified the wave of consoli-
dations on the ERP software market.

Recently, Oracle purchased Sun Microsystems, giving it a foothold on the
hardware market.

Table 3.2 Comparison of M&A activities by industry, 2009 (Europe) (Mergerstat Free Reports
2009)

Rank Industry Deals Value in millions of $

1 Drugs, medical supplies and equipment 71 25,690.5

2 Brokerage, investment and mgmt., and consulting 86 22,535.7

3 Food processing 20 19,939.3

4 Insurance 35 12,560.7

5 Broadcasting 18 8,955.2

6 Computer software, supplies and services 204 8,755.1

7 Beverages 22 7,059.6

8 Mining and minerals 16 6,044.5

9 Electrical equipment 19 6,040.5

10 Miscellaneous services 144 4,587.6

Total
Top 10

635 122,168.7

68 3 Software Vendor Strategies

A hotly debated theory posits that M&A activity upsets the market’s equilib-
rium: it essentially forces other organizations to make their own acquisitions, in
order to preserve their long-term independence on the market and avoid becoming
a takeover target themselves (Hutzschenreuter and Stratigakis 2003).

In the software industry in particular, network effects mean that size is in itself
an advantage for providers, giving them an edge over the competition. This was
the reason given by Oracle CEO Lawrence Ellison, who stated that the acquisition
of Siebel would ‘‘strengthen our number one position in applications in North
America and move us closer to the number one position in applications globally.’’
Moreover, in this case, Oracle also had the opportunity to offer its customers an
end-to-end integrated solution.

A similar consolidation trend can be seen on the market for office software.
A few years ago, there were a number of viable options, such as Lotus 1-2-3 for
spreadsheets or Word Perfect for word processing. Now, Microsoft has a virtual
monopoly over this market. The open source community is the only remaining
serious competitor (see Chap. 7).

Even though monopolistic structures are often regarded as disadvantageous for
the buyers, their impact on network markets is a matter of debate. On the one hand,
of course, customers are far more dependent on the provider. Theoretically, this
would enable the provider to raise prices, which—as shown above—has not
happened in the case of Microsoft. An additional drawback for users is that
monopolies tend to produce fewer innovations. On the other hand, monopolistic
structures have the advantage of avoiding incompatibility issues. This is the line
taken by Stanley Liebowitz and Stephen Margolis in various articles
(e.g., Liebowitz and Margolis 1994, 2001).

Empirical studies show that the wave of consolidations in the software industry
is primarily being driven by leading players (Friedewald et al. 2001). One response
open to smaller software providers is to cooperate with other software companies;
another is to concentrate on specialist or niche solutions.

3.1.2.4 Factors Determining the Success of M&A Activities
in the Software Industry

On software markets, M&As give companies the opportunity to gain strategic
competitive advantage. As previously explained at some length, this is reinforced
by the fact that software providers operate on network effect markets. But do
acquisitions really increase the value of the purchaser’s company? This question
was addressed by Izci and Schiereck in an empirical study (Izci and Schiereck
2010).

The dataset comprised 81 international acquisitions in the enterprise software
industry between 2000 and 2007. All of these transactions were worth at least
$50 million and the purchaser acquired at least 20 % of the target company. Both
the purchaser and the target were listed companies, whose stock prices could be
tracked between 230 days before and 30 days after the announcement of the deal.

3.1 Cooperation and Acquisition Strategies 69

http://dx.doi.org/10.1007/978-3-642-31510-7_7
http://dx.doi.org/10.1007/978-3-642-31510-7_7

The investigation was based on the analysis of abnormal returns. These are the
difference between actual return and the ‘‘normal’’ return that would have been
expected had there been no M&A announcement. The abnormal returns for the
purchaser and target were calculated and cumulated over a period comprising up to
15 days before and after the M&A announcement.

The results showed that target companies obtain a positive cumulative abnor-
mal return (CAR), while the purchasers’ value trends to dip slightly. The CAR
experienced a statistically significant rise or fall, particularly when the
announcement was made and a few days following it, and the trend continued
throughout the observation period thereafter (see Fig. 3.13).

In a second step, the researchers looked at the factors affecting the development
of the stock price, and therefore the success of the purchaser. On the basis of a
multivariate regression, they found no evidence that acquiring a company from the
same industry or segment or in the international environment had the expected
positive effect (Izci and Schiereck 2010).

While the analysis did show a small positive correlation, it was not statistically
significant. Similarly, the percentage of stock acquired and transaction volume had
no meaningful effect on the purchaser’s value. The only factor that showed a
slightly positive impact was cash rather than stock purchase: Buying with cash had
a positive effect on the stock market valuation.

By contrast, there were significant negative impacts in relation to the relative size
and stock market performance of the target company. The stock market reacts
unfavorably to major acquisitions, speculating that the integration costs incurred will
outweigh the potential synergies (Loefert 2007, p. 163; Izci and Schiereck 2010).

The results of the stock market study show that M&A transactions in the
enterprise software industry add value (at least initially) for target companies only,
while purchaser companies are at a disadvantage, in terms of shareholder value.

What is surprising is that overall high risk, in what is an innovative and
dynamic segment, does not appear to be responsible for the negative valuation of
the purchaser. Cross-border or diversifying transactions are not regarded as

Fig. 3.13 Cumulative average abnormal return (CAAR) for purchaser and target companies
(Izci and Schiereck 2010)

70 3 Software Vendor Strategies

particularly negative. Instead, it is cultural challenges that are likely to be punished
by the stock market. To earn a positive reaction from the markets, enterprise
software providers will have to convincingly demonstrate that the integration of
their major competitors will result in strong growth without risking synergies. The
alternative—foregoing acquisitions altogether—is not a realistic option in a
rapidly consolidating network market like the software industry.

3.2 Sales Strategies

Sales strategies involve decision-making around the provision of goods and/or
services to companies in the downstream value chain. This comprises activities
that directly address prospects, and sales logistics activities (Homburg and
Krohmer 2006, pp. 864–866).

This section discusses channel management activities; sales logistics is about
ensuring that physical products reach the end-customer, and is therefore not
relevant to software products.

In channel management, the following issues are of central importance:
• How the sales system is structured?
• How relationships with sales partners and key accounts are managed?
• The use of Key Performance Indicators (KPIs) systems in sales management

and
• How sales activities are organized?

3.2.1 Structuring of Sales Systems: Organization and Sales
Channels in the Software Industry

Structuring a sales system involves taking decisions about the sales organization
and sales channels.

Let us begin by looking at the sales organization. This can generally be
structured according to:

• Region,
• Industry,
• Product as well as
• New and existing customers.

Structuring sales by region generally means by continent, country or federal
state. The advantage of this approach is that it ensures a measure of geographical
proximity to the customer.

But sales can also be organized by industry. The advantage here is that the sales
professionals have the relevant industry-specific skills and ‘speak the customer’s
language.’ One drawback is that they typically spend more time traveling.

Structuring by product is the prime strategy of software companies that have a
broad range of products and whose sales activities rely on product-specific skills.

3.1 Cooperation and Acquisition Strategies 71

The sale of complex SCM or CRM systems is an example of this. Against this
background, many software companies structure their sales and consulting busi-
ness not only by region, but also by product. In the SCM and CRM field, for
example, many software companies have experts who address highly specialized
issues in worldwide projects, such as optimization algorithms for the implemen-
tation and use of SCM solutions.

It makes sense to structure the sales organization in terms of new and existing
customers because these two target groups require different types of sales
employees, who can be labeled ‘hunters’ and ‘farmers.’ As the name suggests, the
hunter type is best suited to winning new customers and selling them a new
product or solution. The farmer type, on the other hand, feels more comfortable
working with customers with whom he has built up a relationship over a long
period of time. This type should, therefore, be deployed in sales to existing
customers.

The above criteria can be combined, of course. It is common practice, for
instance, to create roles defined by product and region. This leads to one depart-
ment being responsible for specific continents and products. The advantage is that
the unique characteristics of specific regions and products are fully taken into
account, but the disadvantage is that it is not always clearly defined who is
responsible for what.

In the following, we will look at how to structure sales channels. The most
basic decision to be made is whether to choose direct or indirect sales. Indirect
sales are when sales activities are performed by third parties, such as VARs and
system integrators. With direct sales, these tasks are carried out in-house
(Homburg and Krohmer 2006, pp. 873–877).

When choosing between direct and indirect sales, businesses should take into
account both efficiency and effectiveness considerations. In terms of efficiency,
they should evaluate the two options in light of the associated transaction costs
(see Sect. 2.4), as using sales partners can lead to savings in this area. Those
savings are comparable with a trade margin in license sales. Effectiveness
considerations can relate to customer service quality, for example regarding
geographical proximity or specialization, or customer allegiance. For instance,
VARs and systems integrators might concentrate on specific industries and
develop deep skills. In addition, businesses in fast-growing sections of the soft-
ware industry tend to work with sales partners, because they could not achieve
rapid growth without them.

We will now look at some factors that can influence the advantages of direct
versus indirect sales. There is an assumption in the marketing literature that a high
specificity and product complexity would favor direct sales (Homburg and
Krohmer 2006, p. 874).

But does this necessarily apply to the software industry? With regard to
specificity, the assertion is correct. A provider of custom software, i.e., specific

72 3 Software Vendor Strategies

http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_2

solutions, is not likely to sell those solutions via indirect channels. So, indirect
sales are only an option for standard software providers. However, these products
are often extremely complex. As we saw in Chap. 1, this applies especially to ERP
systems, considering the huge amount of customization work required during
implementation projects. Nevertheless, standard software providers frequently opt
for indirect sales. But this route calls for sales partners with a correspondingly high
level of (often industry-specific) expertise. So, as far as the software industry is
concerned, high specificity signals a tendency to use direct sales. A further
advantage of direct sales, of course, is that it enables companies to build customer
allegiance and intimacy.

The choice of direct versus indirect sales will also depend on how many
potential customers there are. The advantages of indirect sales tend to increase
with the number of customers. Again, this can be explained in terms of the
transaction costs. As we saw in Sect. 2.4.4 in the discussion of intermediaries,
savings potential rises with the number of market participants.

Now, one might argue that the availability of the Internet and the characteristics
of software as a good would favor direct sales. Why would the provider not simply
sell the software direct to customers over the Web? This is no problem when the
product is relatively easy to understand, such as antivirus software. But it is quite a
different thing when it comes to implementing a complex solution, one with
comprehensive supply chain management functionality, for example. In this case,
the customer is certain to require a good deal of advice and support.

We underlined the international nature of the software industry at the beginning
of the book. This affects the structure of sales in various ways. A study by
Lünendonk showed that companies generally conduct indirect sales in other
countries via a subsidiary. The second most common option is the use of
collaboration partners, such as IT consulting companies, VARs and system inte-
grators (Lünendonk 2007, p. 57).

However, as a rule, providers do not have to opt for exclusively direct or only
indirect sales. They can often combine the two. SAP’s sales strategy is a case in
point. SAP divides up the market and as a result, differentiates its sales strategy in
terms of

• Global Enterprises with at least 2,500 employees,
• Local Enterprises with 1,000–2,499 employees,
• Medium Enterprises with 100–999 employees, and
• Small Enterprises with 1–99 employees.

In a presentation to investors in January 2007, SAP offered the following
market breakdown:

• 20,000 companies in the Global Enterprise segment,
• 1.3 million companies in the Local and Medium Enterprise segment,
• 55.4 million companies in the Small Enterprise segment.

3.2 Sales Strategies 73

http://dx.doi.org/10.1007/978-3-642-31510-7_1
http://dx.doi.org/10.1007/978-3-642-31510-7_1
http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_2

SAP sells direct to global enterprises, i.e., it does not involve any partners in the
sales process. The installed base in this segment ensures repeat sales and a steady
stream of license income through upgrades, new releases, and maintenance.

As SAP already has a very large market share among the top 500 firms, its
future growth will depend mainly on establishing a strong position among small
and midsize enterprises. In line with this objective, the company launched the
SaaS solution, SAP Business ByDesign. A major challenge is that the market
segments targeted differ markedly in terms of structure. Moreover, the various
industries represented by midsize companies make quite different demands on
business software. As a result, SAP’s Sales and Consulting units responsible for
the lower mid-market are locally organized, whereas those for the upper mid-
market are active throughout the whole country or even globally. These midsize
enterprises can be very different with respect to the IT skills at their disposal, as the
parameters in Table 3.3 describe.

SAP aims to acquire new customers in these segments by means of precon-
figured industry-specific solutions with attractive entry-level pricing. In collabo-
ration with its partners, the software giant is utilizing a new sales and
implementation strategy: the try-run-adopt model, which allows companies to try
out the software free of charge. In addition, the solutions are available as a SaaS
offering (see Chap. 6). The first SAP partners began to market these industry
solutions as packages in late 2006. With SAP’s support, they offer customers a
bundle comprising licenses, maintenance services, implementation, and the day-
to-day management of SAP systems at a monthly rate that is currently well below
€ 200 per user. TV commercials have been used to promote this model.

When determining the shape of their sales system, providers must also decide on

• The length of the distribution channel,
• The width of the distribution channel, and
• The width of the sales system (Homburg and Krohmer 2006, pp. 877–884).

The length of the distribution channel indicates how many sales partners there
are between the provider and the customer. In the software industry, multitier

Table 3.3 Availability of IT skills in midsize companies

Resources Lower mid-market Upper mid-market

IT department None In-house

ERP software skills None Yes

IT budget None Yes

Software decision makers Senior management IT department

Process complexity Low High

Number of users Small Large

74 3 Software Vendor Strategies

http://dx.doi.org/10.1007/978-3-642-31510-7_6
http://dx.doi.org/10.1007/978-3-642-31510-7_6

distribution channels make little sense. The advantages to be gained from them
relate mainly to logistics, particularly warehouse storage, which are of little
relevance to the software industry.

The width of the distribution channel expresses the number of sales partners a
provider works with. In principle, it makes more sense to work with a small group
of partners when the products sold are complex and of high value. As mentioned
earlier, this is why software companies provide training to assure the quality of
their sales partners—although another motivation is to generate sales in this sector
themselves.

The width of the distribution system describes whether a product is distributed
over just one channel or several. A single-channel system is one in which the
product can only reach the customer by one channel. With a multi-channel system,
the provider employs several channels to the customer. The music industry is one
example of this approach: albums are sold via conventional brick-and-mortar
retailers, online stores, or digitally via distributors such as Apple iTunes or
Musicload.

Key goals of a multichannel system are broad market coverage and the ability
to reach different customer segments. A core challenge is to create channels that
complement and do not cannibalize each other. For instance, a publisher could
offer subscribers of its daily newspaper various online functions that complement
the print edition, such as search functionality or multimedia content like docu-
mentary films on featured topics. In the software industry, relatively self-explan-
atory products are sold both on the Internet and through intermediaries. However,
cannibalization is less of a problem than in the music industry or in publishing, as
software providers generally have no preference as to whether their sales are
generated by direct or indirect channels.

When designing distribution systems, businesses need to clearly define the
target groups and the tasks of the various distribution channels.

3.2.2 Organization of Relationships with Sales Partners
and Key Accounts

We will now turn our attention to a software provider’s relationship with its sales
partners and key accounts. The term ‘key account’ denotes customers—usually
enterprises—who are particularly important to the provider and who are therefore
offered special deals or services.

Let us begin by looking at the provider-sales partner relationship. As in a supply
chain, this relationship is based on the purchase by sales partners of the provider’s
goods and services—in our case, software licenses—in order to sell them on to
their customers. The following section illustrates SAP‘s sales partnerships.

3.2 Sales Strategies 75

Sales partnerships in the SAP space
Among SAP’s partners, the mid-market is fiercely contested. To provide

transparent information about the quality of its partners, SAP introduced a
new method at the 2005 SAPPHIRE conference, whereby partners are
granted a particular status (associate, silver or gold) via a scoring system
known as Value Points (see Fig. 3.14). This system evaluates both the
partner’s skills and its portfolio. While sales success is the main criterion,
customer satisfaction, training activities, the development of industry-spe-
cific solutions and add-ons also earn companies bonus points. According to
the Value Points system, the score required for a particular status must be
achieved over the past four quarters. Gold status is worth attaining for
several reasons: partners with this status enjoy the biggest discounts on SAP
licenses, which means they can achieve the highest margin when they resell
them. An immaterial benefit is that the partner has close ties with SAP.
Ultimately, the partner status reflects the development of the business
relationship between SAP and the partner. A high status is bestowed in
recognition of the partner’s investment in the skills and resources needed to
develop and implement SAP solutions.

SAP also provides partners with an extensive e-learning portfolio, and
offers them sales and product training, which again earn them value points.
Other concrete support includes quarterly assessments and reviews, strategy
workshops, and joint marketing activities.

Fig. 3.14 SAP’s partnership levels

76 3 Software Vendor Strategies

Key account management is crucial for software providers in the narrow and in
the wider sense. That is why it is not unusual for executive board members or
senior managers to be involved in this task. Managers often draft internal key
account development plans that set out what revenues the company wishes to
generate with which solutions. The discounts granted to key accounts, e.g., on
software licenses, are normally considerably greater than regular discounts.

A primary goal of key account managers—regardless of the person’s level in
the hierarchy—is to be integrated in the customer’s strategic planning. This can
include jointly planning updates to a new release or the implementation of new,
innovative technologies. Coordination can also be worthwhile on an operational
level, e.g., regarding the customer’s spending plan. To help key account managers
with their tasks, some CRM systems enable them to create customer maps that
include information about which customer employees are well-disposed to the
provider and which are not. This information can be particularly vital when
problems need to be communicated.

Organizing regular events for key accounts is another good way of improving
communications and fostering customer allegiance. These can include invitations
to sport and/or cultural events.

Before we examine the organization of sales processes, we would like to start
by offering some thoughts on the management of sales activities. Performance
measurement systems can be an important tool for this purpose.

3.2.3 Key Performance Indicators as a Sales Performance
Management Tool in the Software Industry

3.2.3.1 Sales Performance Management

Sales performance management is the targeted management and coordination of a
company’s sales activities. We believe that performance management systems
must do more than simply monitor performance by comparing target to actual
figures. In a broad field of the literature, the main task of a sales performance
management system is seen as the coordination of the management system.
A coordination task always involves producing and utilizing decision-relevant
information for the purpose of managing a business or part of a business—in our
case, sales activities. A wide range of analysis tools is available to help supply
pertinent information (Fig. 3.15).

In this section, we will restrict ourselves to showing how performance mea-
surement systems are used, because this allows us to identify some special features
of sales activities in the software industry. The use of other tools, by contrast, does
not differ significantly between industries.

3.2 Sales Strategies 77

3.2.3.2 Use of Performance Measurement Systems in the Software
Industry

Generally speaking, the purpose of KPIs is to evaluate something in quantitative
terms. In the business world, performance indicators are used to provide man-
agement with decision-relevant information, usually for planning and monitoring.
For example, KPIs can be used to specify targets for a given period, and at the end
of that time to determine to what extent they have been met. If the actual figures
differ from the targets, corrective action must be taken.

A variety of performance measurement systems has been developed, and they
include many indicators that are related to each other. A classic example is the
DuPont Return on Investment model shown in Fig. 3.16.

Modern management systems, such as the Balanced Scorecard, are also based
on performance indicators as a tool for managing performance.

While the performance measurement systems discussed here are largely
application independent, Homburg and Krohner developed a classification of KPIs

Fig. 3.16 The DuPont ROI model (Küpper 2008, p. 369)

Fig. 3.15 Selected analysis tools for sales performance management (Homburg and Krohmer
2006, p. 1214)

78 3 Software Vendor Strategies

for sales and marketing. They differentiate between potential-related, market-
related, and economic KPIs on the one hand, and effectiveness and efficiency-
related KPIs on the other (see Fig. 3.17).

Although the above KPIs relate to marketing and sales, they are industry-
independent, i.e., they are as relevant to the software industry as to any other. The

Fig. 3.17 KPIs for performance management in marketing and sales (Homburg and Krohmer
2006, p. 1234)

3.2 Sales Strategies 79

KPIs listed below, by contrast, have proven helpful for sales performance
management in the software industry:

• Number of leads generated by direct marketing,
• Volume of addresses,
• Number of first visits,
• Opportunities weighted by closure probability,
• Number of solution presentations at customer,
• Number of proposals/quotations submitted,
• Quotation value,
• Number of contract negotiation meetings,
• Number of deal closures,
• Lost opportunities/unsuccessful quotations, and
• Customer visits per salesperson per month.

These KPIs can also be used for calculating variable, performance-based pay for
sales staff. In line with principal-agent theory, the objective is to develop an
incentive-compatible compensation model (see Sect. 2.5), i.e., design a model that
motivates the agent (sales person) to pursue the goals of the organization (principal).
A core feature of such a system is the division of pay into a fixed and a variable
component. Figure 3.18 shows various basic alternatives.

Fig. 3.18 Alternative performance-related pay models (Homburg and Krohmer 2006, p. 1266)

80 3 Software Vendor Strategies

http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_2

The linear model is standard practice. The variable component should amount
to about 30–40 % of the total target compensation. One of the key issues to be
addressed is the selection of parameters used to determine the variable component.

In the software industry, sales targets or order inflow targets are most often used
to determine the variable component. Concrete answers are needed to the
following questions:

• What sales period will be used (usually the fiscal year)?
• What counts toward fulfillment of sales targets?

The second question can be highly contentious. The most delicate question for
software companies is how maintenance business is handled. The significance of
this question is apparent when we remember that maintenance income is generated
over long periods and can account for up to 80 % of a software company’s total
annual sales (see Sect. 1.5).

During the sales process, setting the right price is a constant consideration, as it
is crucial to a successful sales strategy. Against this background, the following
section will investigate software providers’ pricing strategies.

3.3 Pricing Strategies

3.3.1 Background

Pricing plays a key role in most organizations’ strategies (Simon 1992, p. 7). It
directly affects revenues and therefore, in the long term, profits. Incorrect decisions
can jeopardize the company’s reputation and customer relationships. Despite its
importance, pricing strategies are often deficient in a number of respects, including
lack of rationality in the shape of ad-hoc or arbitrary decisions (Florissen 2008,
p. 85). Small and midsize enterprises are by no means the only ones to frequently
rely on gut feeling when they make pricing decisions. But basing pricing strategies
on empirical data can make a great deal of economic sense. Studies show that price
adjustment at the right time usually has a greater impact on profit than a reduction
in costs. For instance, a price adjustment of just 1 % can lead to a rise in operating
profit of some 8 % (Marn et al. 2003).

However, conventional pricing models are not directly applicable to software
products (Bontis and Chung 2000, p. 246). Of the many characteristics of software
as a good (mentioned in Sect. 2.1), the fact that it can be duplicated virtually for
nothing is particularly significant when it comes to setting a price. To recap: it is
relatively expensive to develop a first copy of a digital good. But the marginal cost
of an additional copy is near zero. How does this affect pricing? First of all,
clearly, cost-based pricing must be ruled out. Demand- or value-based pricing
makes far more sense. This means that software providers need to base their prices
on how much their potential customers are willing to pay. Shapiro and Varian
describe this relationship as follows: ‘‘cost-based pricing just doesn’t work […].

3.2 Sales Strategies 81

http://dx.doi.org/10.1007/978-3-642-31510-7_1
http://dx.doi.org/10.1007/978-3-642-31510-7_1
http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_2

You must price your information goods according to consumer value, not
according to your production cost.’’ (Shapiro and Varian 1998, p. 3).

In principle, the cost structure of digital goods lends itself to low-price strat-
egies. These can be useful when, for instance, a software provider wants to
squeeze out an established provider on a network market. Since the variable costs
of the software product are negligible, the contribution margin would not be
negative, even if the software were given away. This does not apply to physical
products, as they are subject to variable costs. We will see below that the cost
structure of digital goods also lends itself to price bundling, for example.

It would be a mistake, however, to assume that in economic and, specifically, in
pricing terms software can be treated like any other digital good. While doing so
might make sense for a software vendor that generates all or most of its revenues
through license sales, it is by no means the general rule. In fact, consulting and
support services do incur costs.

The following section provides an overview of the parameters that can be used
in pricing software products.

3.3.2 Pricing Models for Software Products

3.3.2.1 Overview

Software products may be offered in many different forms. Over time, pricing models
for software have changed fundamentally. Whereas during the mainframe era, prices
were usually based on computing power, pricing models based on user numbers
(licensing models) have been prevalent in the recent past (Bontis and Chung 2000,
pp. 247–248). Today, software providers are increasingly offering usage-based
pricing models, a topic we will examine in greater depth in Sect. 3.3.2.3.

Since there is no universally valid pricing model for software providers (Bontis
and Chung 2000, p. 246) and pricing models can be comprised of multiple
components, we will next describe various pricing parameters for software
products. Figure 3.19 shows an overview of the parameters we will be discussing
(Lehmann and Buxmann 2009).

Software providers’ pricing models generally comprise a combination of
parameters. The pricing model can include multiple sub-items from each column.

3.3.2.2 Price Formation

The provider defines how the price is to be formed. Both the pricing basis and the
degree of customer interaction must be taken into consideration.

There are essentially three ways to determine prices (Homburg and Krohmer
2006, p. 720; Nieschlag et al. 2002, pp. 810–814):

• Based on cost,
• Based on value or demand, and
• Based on competition.

82 3 Software Vendor Strategies

The cost-based approach determines the price using cost accounting methods
(Diller 2008, pp. 310–311). However, this method of determining the price is of
little significance when it comes to software licenses and digital goods in light of
their unique cost structure. When pricing SaaS solutions, on the other hand, it can
make sense to take costs into account.

Demand- or value-based pricing is oriented toward the level of demand for the
product (Homburg and Krohmer 2006, pp. 720–721). Here, the significant factor is
how much the customer values the product, rather than the product’s cost (Harmon
et al. 2005, p. 1).

Competition-based pricing takes into account the prices offered by competitors
and their price-related behavior (Homburg and Krohmer 2006, p. 747). The
attractiveness of a competing product to a customer partly depends on the
homogeneity of the products and the structure of the market (Nieschlag et al. 2002,
p. 813). In the software industry, network effects and the resulting customer lock-
in effects make it essential for software providers to gain a large market share,
especially when their product is very similar to the competitor’s. Competition-
based pricing therefore plays an important role for software products in addition to
value-based pricing.

Another pricing parameter is the degree of interaction. Noninteractive price
formation is when the provider sets the price unilaterally, without the customer

Fig. 3.19 Parameters of pricing models for software products

3.3 Pricing Strategies 83

having any say in the matter. Interactive pricing, in contrast, requires interaction
between customer and provider. Examples of interactive pricing include negoti-
ations and (online) auctions (e.g., Schmidt et al. 1998). But generally speaking,
auctions of digital goods, including software, make little economic sense (Shapiro
and Varian 1999, p. 23).

3.3.2.3 Structure of Payment Flow

There are essentially two types of payment flows for software: Customers can
make a one-time payment and acquire the right to use the software for an unlimited
period, or they make regular, recurring payments. The two types can also be
combined (Kittlaus et al. 2004, S. 82).

The single payment option corresponds to the software licensing model widely
used today. By purchasing a license, the customer normally acquires unrestricted
usage rights.

Recurring payments can vary in frequency and duration. For example,
customers can agree to pay monthly or annual subscription rates over a two-year
period in order to use the software. These pricing models are primarily used for
SaaS solutions (Cusumano 2007, p. 20), where customers use the provider’s
software via the Internet for the agreed payment period (this is sometimes referred
to as a subscription or rental model; Buxmann et al. 2008b). This kind of pricing
model benefits users because it enables them to employ software cost-effectively
even for brief periods, since normally the monthly payments are substantially
lower than a one-time payment for licenses (Cusumano 2007, p. 20). However, this
customer advantage makes higher financial demands on the provider. For example,
SaaS providers often find it hard to break into the black (Hill 2008, p. 48).
According to a survey by SIIA et al. (2006, p. 5), US-based software providers
expect that the subscription model will become more common than one-time
payments in the form of license purchases (see also Sect. 3.3.3).

Hybrid payment models that combine one-time and regular payments are
another option. For example, it is common to purchase a software license in
conjunction with a software maintenance agreement. These usually specify annual
payments amounting to a certain percentage of the (one-time) license payment.
At present, many software providers charge a maintenance percentage of around
20 %. The advantage of this model for providers is that it generates relatively
uniform payment flows. In Sect. 3.3.3, we will provide some empirical findings
regarding forms of payment for SaaS solutions.

3.3.2.4 Billing Units

The choice of billing units is another way in which pricing models can be shaped.
In other words, the price can be set per user or based on a time factor, for example.
The billing unit plays a key role in determining whether the customer feels the
provider’s pricing model is fair.

First the provider determines how many components the pricing model consists
of (Skiera 1999b). Each component is based on a pricing unit. For instance, the

84 3 Software Vendor Strategies

pricing model can be divided into a fixed monthly charge and a usage-based
component, such as storage capacity utilized. Skiera (1999b) showed that service
providers can increase their profits considerably by using two pricing components
rather than one.

As we indicated in the above example, billing units can be either usage-based or
unrelated to actual usage of the software. In principle, many different billing units
are conceivable. They can also be industry-specific, such as the number of rental
units managed in the case of property management software. Table 3.4 includes
examples of usage-based billing units.

Implementing usage-based pricing can result in fixed and variable adminis-
tration costs, for instance, for monitoring usage and for billing.

Usage-independent billing units are not dependent on to what extent the soft-
ware is actually used. See examples in Table 3.5.

From the software provider’s perspective, one benefit of usage-independent
pricing is that customers are generally prepared to pay more for unlimited usage

Table 3.5 Examples of usage-independent pricing (units) (Lehmann and Buxmann 2009)

Billing unit Description

Named user Software usage rights are linked to specific persons and pricing is based
on particular individuals

Concurrent user This option enables simultaneous use of software by a predefined number
of users

Server/machine Customers are charged per server or machine. Software usage rights are
linked to a server or machine

CPU The software price is calculated by the number of CPUs it runs on

Master data Pricing depends on the amount of master data maintained (e.g., customers,
suppliers, employees, inventory items, rental units, land parcels, managed
assets)

Sites Prices are calculated by site. This can include special types of site (e.g.,
mines)

Production volume Pricing is based on a metric of production (e. g. barrels of oil per day)

Key performance
indicators

Pricing is based on Key Performance Indicators (e. g. revenue, expenses,
budget)

Table 3.4 Examples of usage-based billing units (Lehmann and Buxmann 2009)

Billing unit Description

Transaction The price depends on the number of transactions completed using the software.
Both transactions in the technical sense (e.g., Web service calls) and in the business
sense (e.g., number of delivery items processed) can be applied

Storage The price is measured in units of storage capacity utilized (e.g., per GB)

Time The price is determined by the actual duration of use of the software (e.g., per
minute)

3.3 Pricing Strategies 85

(Sundararajan 2004, p. 1661). Many customers overestimate how much they use
(flat rate bias; Lambrecht and Skiera 2006, p. 221). Empirical findings on the
prevalence of usage-based and/or usage-independent pricing models in the SaaS
field are shown in Sect. 3.3.3.

Billing units are not only important for the customer, but also in terms of price
discrimination. This will be discussed in more depth below.

3.3.2.5 Price Discrimination Strategies

Price discrimination means charging customers different prices for essentially the
same product (e. g. Diller 2008, p. 227; Skiera and Spann 2000; Pepels 1998,
p. 89). The goal of the provider is to capture more of the consumer surplus. In
contrast to a pricing model with consistent prices, this can be achieved by figuring
in varying degrees of consumer willingness to pay (WTP). Because different
customers estimate the product’s value differently, providers can differentiate their
prices and achieve higher turnover (Diller 2008, p. 227). An example of this is an
audio CD available in three separate versions with different price tags:

• The premium version contains a wide range of additional features, such as song
booklets, a multimedia section enabling access to an exclusive Internet offering,
or bonus tracks.

• The standard version offers the features of a conventional album.
• The basic version comprises simply the disk in a sleeve with no booklet.

Pigou (1929) distinguishes between first, second, and third degree price
discrimination.

At first glance, the best strategy for software providers seems to be first degree
discrimination. The idea behind this is to distinguish the price individually by
offering the product exactly at the customer’s reservation price (RP), i.e., the
maximum amount the customer is willing to pay. Minimum price thresholds do not
have to be considered in the case of digital goods because the variable costs are
negligible. This type of pricing strategy is not a practical option for software
providers in the business-to-consumer sector, of course, because they have mil-
lions of customers and it is impossible to make even a rough estimate of each
customer’s WTP. In contrast, vendors of standard business-to-business software
are clearly perfecting the art of price discrimination. Prices in this segment are
often complex and not very transparent. Price lists can be hundreds of pages long,
and there is huge scope for negotiating contractual terms. This applies not only to
software licenses but particularly to complementary consulting services. However,
providers of standard software generally cannot afford too much in the way of
price discrimination. For example, customers may well exchange notes in user
groups and discover that others have paid a different price for the same software
product.

Second degree price discrimination plays a major role in digital goods (Linde
2008, p. 209). It is based on the principle of self-selection, i.e., the customer selects
its own product-price combination (Varian 1997, p. 193). Skiera (1999a, p. 287)

86 3 Software Vendor Strategies

makes a distinction among quantity-, time- and performance-based price
discrimination with self-selection.1

In the case of quantity-based price discrimination, the average price per unit
depends on the total amount purchased. Flat rate is included in this category too,
since the average price per unit depends on the consumer’s overall use (Skiera and
Spann 2000). This type of volume discount is widespread for software licenses,
especially for key accounts. Discounts in excess of 50 % are not uncommon.

Time-based price discrimination targets degrees of consumers’ WTP at various
times (Skiera and Spann 1998). An example of time-based price discrimination is
not charging a fee to disclose stock market prices with a time delay, while
charging for real-time prices. There are a host of other examples, such as seasonal
pricing. One that applies to the software industry is pricing customer service
according to the time of day.

Another type featuring self-selection is performance-based price discrimination.
This is when relatively minor changes are made in service scope or quality (Diller
2008, p. 237) and the resulting product variants offered at different prices. In
conjunction with product differentiation, this is frequently referred to as versioning
(Varian 1997; Viswanathan and Anandalingam 2005).

Offering several versions of a product is seen as especially profitable for digital
goods because of the cost structure (Viswanathan and Anandalingam 2005, p. 269).
In the context of network markets, inexpensive variants can lead to greater market
penetration. This shows that software products generally are well-suited to this type
of price discrimination (Bhargava and Choudhary 2008, p. 1029). Software
providers often develop a high-quality, feature-rich product to begin with, so they
can then remove certain functionality and offer consumers different versions
(Shapiro and Varian 1999, p. 63). Some examples of performance-based price
discrimination include the Home Basic, Home Premium, Professional, and Ultimate
versions of Microsoft Windows 7, which vary in functional scope and price.

It is important to bear in mind that too many different versions can be confusing
for consumers and make more work for the provider (Viswanathan and Ananda-
lingam 2005, p. 269). Because consumers exhibit extremeness aversion, the rule of
thumb for information goods is to offer three versions so that the customer can
compromise by selecting the mid-range variant (Varian 1997, p. 200; Simonson
and Tversky 1992; Smith and Nagle 1995). The basic idea is that undecided
consumers will tend to choose the product of medium quality. The following
example illustrates this principle: If a fast food chain were to offer beverages in
large and small sizes only, some customers with no clear preference would
probably select the small size. But if the vendor also offered a jumbo size, and the
new medium size were identical to what was previously the large size, many
customers would choose the new medium size (Varian 1997, p. 199 f.).

Bhargava and Choudhary (2008) recommend that companies consider offering
additional lower quality variants when variable costs are decreasing. The authors

1 Because of its minor importance for the software industry, search-related price discrimination
has been omitted.

3.3 Pricing Strategies 87

give formal evidence that decreasing variable costs make versioning more prof-
itable for providers because that way, they acquire additional customers with a
lower WTP (Bhargava and Choudhary 2008, p. 1031).

Third degree price discrimination is based on how the provider segments the
market (e.g., Diller 2008, p. 229). In contrast to second degree price discrimina-
tion, the consumer cannot self-select. There are two types: location-based and
customer based (Skiera and Spann 2000).

The latter is often used to create a lock-in effect: ‘‘Although software producers
don’t hang around outside of schoolyards pushing their products (yet), the moti-
vation is much the same.’’ (Shapiro and Varian 1998, p. 46). For example, a
software provider could give away its products to a specific group of consumers to
achieve lock-in effects. The idea is that the pupils will learn to navigate the
software and when they become paying consumers, will be more likely to buy the
provider’s product.

A simple kind of location-based discrimination is to sell products in different
locations at different prices. Software licenses are sometimes priced this way, as
are associated service agreements and consulting contracts.

Price discrimination that includes more than one dimension is called multidi-
mensional (Skiera and Spann 2002, p. 279), and is very common practice. For
example, pricing can be based both on location and on quantity. The provider has
different prices for every country or region as well as a pricing model dependent
on the quantity purchased. Multidimensional price discrimination can achieve a
finer customer segmentation, which enables providers to exploit customers’
existing WTP even more fully. But the complexity of the pricing model should be
limited to avoid confusing the consumer, and to ensure that the provider’s billing
process remains feasible (Skiera and Spann 2002, p. 279).

3.3.2.6 Price Bundling

Price bundling is another parameter relevant to software pricing. In general, it
consists of packaging multiple distinct offerings (products, services, and/or rights)
from one or more providers and selling the package at a single price (Diller 2008,
p. 240). It is sometimes considered a special form of price discrimination (Skiera
et al. 2005, p. 290; Diller 2008, p. 240). Because of its significance in the software
industry, we will devote a complete section to price bundling in relation to soft-
ware pricing.

A variety of goals can be achieved through bundling. First and foremost, it can
be used as a means of price discrimination (see Sect. 3.3.2.5) (Viswanathan and
Anandalingam 2005, p. 264). While conventional methods of discrimination
require comparatively detailed knowledge of each product’s RP, this does not
apply to bundling to the same extent (Adams and Yellen 1976, p. 476). Bakos and
Brynjolfsson (1999) explain this with reference to the law of large numbers.
According to this, it is simpler for the provider to estimate customers’ WTP for a
bundle that includes multiple products than for each product individually. This is
because the WTP distribution for the bundle shows fewer extreme values

88 3 Software Vendor Strategies

(Viswanathan and Anandalingam 2005, p. 264). However, Wu et al. (2008,
pp. 608–609) argue that this only applies when variable costs are zero. If there are
any variable costs at all, even if they are extremely low, a bundle composed of
numerous elements generates significant costs, which will lessen the potential
advantages of bundling.

Because the software industry is heavily influenced by network effects, bund-
ling can be advantageous to providers, as it drives the proliferation of (additional)
products. For example, Adobe’s Creative Suite not only includes the software for
photo editing and layout design, but also the software for creating PDF files. As a
result, sales of the Creative Suite also promote the spread of PDF documents.
Moreover, a bundling strategy may impede market entry for potential competitors
(Nalebuff 2004), e.g., for providers that offer only one of the products in the
bundle. It can also reduce billing and shipping costs, as multiple products are sold
in a single transaction (Viswanathan and Anandalingam 2005, p. 264; Adams and
Yellen 1976, pp. 475–476).

We will explain the aspects of price bundling shown in Fig. 3.20 before dis-
cussing the factors that determine how advantageous bundling strategies will be.

Software providers’ offerings can include pure and mixed bundling as well as
unbundling. Pure bundling means that products are only offered as part of a
package. If the customer can choose between purchasing the bundle or buying
each product separately, this is referred to as mixed bundling. Unbundling is when
the customer can only purchase the products separately (Adams and Yellen 1976;
Schmalensee 1984, pp. 212, 475; Olderog and Skiera 2000, p. 140). Another
option is customized bundling, in which the customer can choose, within specified
limits, which products to include in the bundle. The provider determines merely
the price and scope (Hitt and Chen 2005). Wu and Anandalingam (2002) show that
offering multiple, customized bundles can be beneficial to a monopolistic provider
of information goods. Assuming incomplete information, Wu et al. (2008) found
that customized bundling is more profitable than unbundling.

Fig. 3.20 Aspects of price bundling (Lehmann and Buxmann 2009)

3.3 Pricing Strategies 89

The product type is another aspect of price bundling. The products offered together
in the bundle can be very different in nature. In the software industry, the product types
are usually the software itself, maintenance, support, and other services. Today,
software vendors often generate revenue from three sources—licenses, maintenance,
and other services—in equal measure (Cusumano 2007, p. 19). These three types of
offering can be bundled in various ways.

Products in a bundle can also be described according to their degree of
integration. Elements of a bundle can be complementary (Diller 2008, p. 241),
substitutive, or independent of each other. Bakos and Brynjolfsson (1999) dis-
covered that bundling a large number of unrelated information goods can be
profitable. Their model also lends itself to analyzing complementary and substi-
tutive elements of bundles. Stremersch and Tellis (2002) suggest that when the
purpose of bundling is to add value for customers in comparison to using or
consuming the products separately, it is better to use the term product bundles
rather than price bundles.

Methods for determining bundle pricing can be additive, superadditive, or
subadditive. In the first instance, the bundle price corresponds to the sum of the
individual prices. Superadditive bundles are priced higher than the sum of the
individual components’ price tags, while subadditive bundles are priced lower than
the sum (Diller 2008, pp. 240–241). The latter case, i.e., a bundle that offers a
discount on individual prices, is considered the norm (Diller 2008, p. 241;
Viswanathan and Anandalingam 2005, p. 264). A survey by Günther et al. (2007,
p. 139) revealed that most respondents expected a lower overall price for the
bundle when purchasing bundled Web services. For example, the price for the
Microsoft Office bundle is significantly lower than the sum of the components’
prices. When Microsoft distributed the Windows operating system bundled with
Media Player, customers were under the impression that the latter product was
thrown in for free. This type of bundling strategy can be used, among other things,
to include new applications with older products in order to motivate customers to
upgrade or opt for maintenance services (Cusumano 2007, p. 20). However, it is
important to note that product bundling can contravene antitrust legislation.
A prime example of this was the action taken by the European Commission against
Microsoft for bundling its Windows operating system with Internet Explorer.

Olderog and Skiera (2000), among others, looked at which factors influence the
benefits conferred by bundling, on the basis of a model by Schmalensee (1984).
The success of bundling strategies depends primarily on two factors: first, the type
and degree of correlation between the RPs, and second, the size of the variable
costs compared to the RPs. These two factors will be discussed below. RPs
are positively correlated when the consumers who would be prepared to pay a high
(low) price for product A would also pay a high (low) price for product B.
A negative correlation exists if the customers who would tend to pay a high (low)
price for product A would be willing to pay a low (high) price for product B.
In principle, the more negative the RP correlation, the more advantageous a
bundling strategy will be for a provider. This is because a large negative corre-
lation leads to lower variance in the bundle’s RPs, creating a more homogeneous

90 3 Software Vendor Strategies

demand structure (Olderog and Skiera 2000, p. 142). Figure 3.21 shows the RP
distribution for two products and this relationship is depicted graphically.

Figure 3.22 shows how the correlation between the RPs for the individual
products affects the homogeneity of the RPs for the bundle.

The homogeneity of the demand structure for the bundle increases (decreases),
if the RP correlation is negative (positive). Figure 3.23 shows that the provider can
increase the profit (dark area) when the demand structure is homogeneous.

As explained earlier, the success of a price bundling strategy also depends on
the size of the variable costs in relation to consumer RPs (Olderog and Skiera
2000, p. 144; Bakos and Brynjolfsson 1999). We will now explain this using the
simple numerical model shown in Table 3.6.

Here we are assuming that there are only two products, and comparing whether
an unbundling or a bundling strategy is more successful when variable costs are
relatively high. The first two lines give the maximum RPs of the two customers for
products 1 and 2 and for the bundle comprising these two products. It is also clear
that there is a negative correlation between the RPs of the two potential customers.
The third line gives the optimum price for the two products and for the bundle.
As the variable costs associated with making each of the two products are assumed
to be seven monetary units, it is reasonable to set a price of eight monetary units
for both products. This results in a positive profit contribution of one monetary unit
each for products 1 and 2. Neglecting any fixed costs, the return generated by this
bundling strategy is two monetary units. In light of this, it obviously makes no
sense to pursue a bundling strategy as the variable costs are too high.

Fig. 3.22 Effect of RP
correlations on the
homogeneity of the RPs for
the bundle (Olderog and
Skiera 2000, p. 143)

Fig. 3.21 Example
distributions of reservation
prices for two products
(Olderog and Skiera 2000,
p. 143)

3.3 Pricing Strategies 91

But how does the picture change when the variable costs are lower? To show
this, we recalculate our simple example with variable costs of zero (see Table 3.7).

As we can see, due to the homogeneous demand structure, a bundling strategy
allows the provider to exploit the consumers’ RPs to the full. So with lower variable
costs, the bundling strategy is more successful than the unbundling strategy.

Finally, Fig. 3.24 shows how the variable cost level affects the success of
bundling strategies.

For our numerical example, we have shown the profits for the bundling or
unbundling options in accordance with the variable cost level. It is apparent that
the critical level for variable costs is four monetary units. If they exceed this
amount, unbundling is the more profitable alternative. Conversely, when the

Table 3.6 Example of the effects of a bundling strategy when variable costs are relatively high

Unbundling Bundling

Product 1 Product 2 Bundle

RP buyer i = 1 8 4 12

RP buyer i = 2 4 8 12

Variable costs 7 7 14

Optimal price 8 8 /

Profit contribution 1 1 /

Quantity sold 1 1 0

Profit 1 1 0

Total return 2[0

Fig. 3.23 Effect of a homogeneous demand structure on profit (Olderog and Skiera 2000,
p. 144)

92 3 Software Vendor Strategies

variable costs are lower than four monetary units, the provider gains more from
bundling.

A further advantage of bundling for software providers is that it helps them to
broaden the installed base of their products and thus generate network effects.

In conclusion, when there is a negative correlation between the RPs of the
different products, bundling will tend to produce a more homogeneous demand
structure. In addition, the lower the variable costs, the more advantageous bun-
dling strategies become. For this reason, price bundling is a particularly useful

Fig. 3.24 Break-even point as a function of the variable costs

Table 3.7 Example for the effects of a bundling strategy for digital goods

Unbundling Bundling

Product 1 Product 2 Bundle

RP buyer i = 1 8 4 12

RP buyer i = 2 4 8 12

Variable costs 0 0 0

Optimal price 8 8 12

Profit contribution 8 8 12

Quantity sold 1 1 2

Profit 8 8 24

Total return 16\ 24

3.3 Pricing Strategies 93

strategy for software products. It should also be noted that the ideal number of
products in a bundle can also depend on the presence of constraints on customers’
budgets (Bakos and Brynjolfsson 1999).

3.3.2.7 Dynamic Pricing Strategies

Unlike the approaches we have examined so far, dynamic pricing strategies are
based on a multiperiod horizon in which time prices will usually change. The
following sections will focus on penetration, follow-the-free, and skimming
strategies. We will not discuss pulsation strategies (where vendors alternately raise
and lower the prices over time) as we cannot imagine any useful applications of
them in the software industry.

The purpose of employing a penetration strategy is to quickly acquire market
share by means of low prices. A low-price strategy can play an important role in
network effect markets in light of the startup problem and lock-in effects, which
were mentioned earlier.

The presence of network effects means that the software industry lends itself to
penetration strategies. Furthermore, the type of cost structure in this sector,
featuring negligible variable costs, favors low-price strategies. In fact, even giving
away software will not lead to negative profit margins. In some situations, it may
even be necessary to make a loss in order to catch up with a competitor who has a
head start. However, whether this kind of strategy makes sense depends heavily on
the network effect factor (i.e., the size of the network effects in relation to the total
utility). The higher the network effect factor, which we discussed in Sect. 2.2, the
more vital low-price strategies will be (Buxmann 2002). Furthermore, a penetra-
tion strategy will be especially worthwhile, if the provider is offering a product that
is incompatible with the market standard.

A penetration strategy can include a second stage in which the provider
increases prices once a critical mass has been reached. Ahtiala (2006) showed
experimentally that given the problem of software piracy, it benefits software
providers initially to sell their products at a very reasonable cost to generate a lock-
in effect, and only to offer subsequent upgrades at a higher price. To a certain
extent, this strategy has been observed in the real world: some companies—
including big names—have given away licenses for free in recent years.

The follow-the-free strategy comprises two stages: first the products are given
away to generate lock-in, then revenue is generated through the sale of comple-
mentary products or premium versions to the existing customer base (Zerdick et al.
1999, pp. 191–194). For instance, a company could offer its software product for
free, and charge fees for associated services such as installation, maintenance, user
training, and customizing (Cusumano 2007, p. 21). An example from the software
industry is the strategy of Adobe, which succeeded in making its PDF format the
industry standard by this method.

94 3 Software Vendor Strategies

http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_2

The pricing strategy of Adobe Systems Inc.

Adobe Systems Inc. is a leading provider of graphics, design, publishing,
image, and video processing software for Web and print production. In 1993,
the company set new standards with the development of the document
description standard, PDF (Portable Document Format).

Adobe’s success is mainly down to its unique pricing strategy: offering its
Acrobat Reader free for viewing PDF documents, and selling complemen-
tary PDF creation software. In 2009, Adobe posted more than 20 % of sales
with its Acrobat Software (Knowledge Worker segment). Today, the free
Acrobat Reader has an adoption rate of around 89 %. Figure 3.25 shows the
breakdown of Adobe’s sales per product segment.

Adobe Flash Player

In 2005, Adobe Systems acquired its competitor Macromedia Inc.,
originator of the now widespread Flash technology. With this technology,
Adobe pursued a pricing strategy similar to the one employed for its Acrobat
product line: the Flash Player used to view Flash files is available as free-
ware. According to the company itself, the player is installed on about 98 %
of Internet users’ PCs worldwide. Customers who wish to create Flash
components must purchase an authoring tool.

Through this complementary pricing strategy, i.e., distributing the
viewing software free and selling the associated file creation programs,
Adobe has succeeded in both cases to introduce a standard which is widely
used and accepted, and to generate impressive sales.

Adobe Systems Inc.

Adobe Systems Inc. was established in 1982 by John Warnock und
Charles Geschke, the inventors of the PostScript document format. PostScript
is a page description language used to describe the format of a printed page at
the prepress stage. Building on PostScript’s success, the company developed
and launched the PDF standard in 1993. Since then, Adobe has published the
source code. In January 2007, Adobe Systems submitted the PDF specifica-
tion to the International Organization for Standardization (ISO), paving the
way for it to become an official standard. The success of Adobe Systems Inc.
is due in no small part to its innovative business strategy.

Sources www.adobe.com; Datamonitor (2006): Company Spotlight:
Adobe Systems Incorporated, Financial Times Deutschland: http://www.ftd.
de/technik/it_telekommunikation/133661.html.

In some cases, software products are offered on the basis of a skimming
strategy, where the provider starts with a very high price and reduces it over time.
The main purpose of this strategy is to exploit differences between consumers’
RPs: in the high-price phase, consumers with a very high RP will acquire the

3.3 Pricing Strategies 95

http://www.adobe.com
http://www.ftd.de/technik/it_telekommunikation/133661.html
http://www.ftd.de/technik/it_telekommunikation/133661.html

product. Then, during the period in which the provider gradually reduces the price,
it can exploit the RPs of the remaining consumers step by step. Computer games
are a practical example of this strategy: very expensive when launched, they may
even be distributed free of charge as magazine inserts at a later date.

3.3.3 Pricing Strategies of Software Providers:
Empirical Findings

In this section, we will discuss how providers and users evaluate various pricing
and licensing models. As few empirical findings on this subject have been
published to date, most of the studies that exist include only a small number of
parameters relating to software pricing.

Below we will discuss a study conducted in 2006 by the Software & Infor-
mation Industry Association, which only addressed the parameter of billing units.
We complement this with the results of expert interviews with users. The goal of
our discussions is to cast more light on how users evaluate pricing, and why.
However, it must be emphasized that the interviews are a qualitative rather than a
representative sample of ERP system users.

The Software & Information Industry Association surveyed 698 experts. These
comprised 487 software providers and 211 users (SIIA et al. 2006). Figure 3.26
gives an overview of the different licensing models, indicating which are preferred
by software providers and users, respectively.

The most popular usage-independent billing unit among the users of software
products is the number of concurrent users (see also Sect. 3.3.2.4.). Also attractive
for users, but far less accepted, is licensing by servers or machines. Only a few
customers favored billing by named users or processors. The least desirable form
of billing is financial KPIs, preferred by only 1 % of users (SIIA et al. 2006, p. 7).

Fig. 3.25 Adobe’s sales by
product segment, 2009

96 3 Software Vendor Strategies

We will now look more closely at pricing models with usage-based billing
units, as a key finding of the survey was that software providers expect this kind of
model to become more widespread in future (see Fig. 3.27).

However, the findings also indicate that users are increasingly rejecting usage-
based licensing models, as Fig. 3.28 illustrates

According to the SIIA survey, only one-fourth of customers were satisfied with
the provider’s pricing and licensing strategies.

We will next present the findings of a survey of experts conducted in 2008 to
discover the reasons why users evaluate certain pricing models as attractive or
unattractive.

Only three out of ten experts interviewed regarded usage-based pricing models
for software as an attractive alternative. Seven expressed their skepticism or
rejection of this pricing model. The two main reasons they cited were the difficulty
of predicting costs, and the possibility that costs would fluctuate significantly due

Fig. 3.26 The billing units preferred by software providers and users, respectively (SIIA et al.
2006, p. 7)

Fig. 3.27 How providers expect the use of billing units to change (SIIA et al. 2006, p. 7)

3.3 Pricing Strategies 97

to varying usage levels. Difficulties lay not only in predicting costs, but also in
determining the basis for billing. With a usage-based pricing model, it was
essential that the effort needed to measure usage was not too high and that the
model was straightforward and easy for users to understand. However, for some
respondents, the structure of the model was consistent with their idea of fairness—
these individuals declared themselves willing to pay more for using the software
more (value-based pricing).

What survey participants did not like was the fact that most models force the user
to pay for a certain level of usage in advance. Very often, additional fees are payable
when actual usage exceeds the planned level. Conversely, users who do not fully
exploit the planned usage level do not normally receive any refund or credit.

In general, respondents tended to look unfavorably at the pricing models cur-
rently used by software providers. This was due in part to the complexity of the
models and the combination of multiple models. In this connection, respondents
also expressed their dissatisfaction with IT outsourcing service providers. The
latter often optimize their services on the basis of technical criteria, and this
frequently leads to a mishmash of different licenses.

One respondent expressed his satisfaction with the conditions offered to large
organizations. However, substantial discounts are only granted on licenses and not
on maintenance fees. This has to do with accounting regulations. In the context of
revenue recognition for multiple-element contracts (bundling), software vendors
who prepare financial reports in accordance with US-GAAP are required to state a
fair value, backed by objective evidence, for maintenance services yet to be
provided under the terms of a contract. This is why these vendors do not offer
discounts on maintenance services (Suermann 2006, pp. 112–114).

Asked what changes to pricing models user organizations would like to see,
almost half of respondents expressed a wish for greater flexibility. They would like
to be able to regularly adapt their agreements to changing user numbers, the option

Fig. 3.28 Changes to users’ billing unit preferences, 2005 compared with 2006 (SIIA et al.
2006, p. 7)

98 3 Software Vendor Strategies

of usage for limited periods (including periods with no usage), and new billing
units that are independent of user numbers. However, flexible pricing models can
also be a disadvantage to customers, as providers can exploit flexibility to their
own ends. This is particularly likely to happen with business (ERP) software, since
changing to a different provider would entail significant switching costs for the
customer. It is, therefore, unclear who profits most from more flexible pricing
models.

With regard to pricing of SaaS solutions, respondents suggested usage–based
billing (four votes) and a flat fee (five votes). They believed that these models offer
the option of limited usage periods and reducing entry barriers, and in the case of
flat fees, better cost planning. In addition, users would like to see a much reduced
notice period, although one CIO pointed out the risks to the user organization of
short notice periods.

3.3.4 Approaches to Pricing for Custom Software Providers

The approaches discussed above apply predominantly to standard software pro-
viders. For example, product and price differentiation methods and dynamic
pricing are obviously far less relevant to custom software providers. We will now
look at how providers of custom software determine prices, both in terms of
opportunities and constraints.

Setting or estimating lower price limits is a good starting point. For this pur-
pose, traditional cost estimation methods for software development projects can be
used, such as COCOMO (II) and the Function Point method (Balzert 2000).

It is reasonable to use methods like these because custom software projects are
very difficult to plan in a precise, reliable way. Project budget and schedule
overruns are the norm, not the exception.

Cost estimation methods gage expected project effort and expense using certain
parameters whose values are determined at the start of a development project. In
its simplest form, COCOMO is based on an estimate of the number of lines of
code. Project costs are estimated using tables based on empirical historical data.
The Function Point method, by contrast—the method most commonly used to
estimate the cost of software development projects—starts by evaluating project
complexity in terms of parameters such as external inputs and outputs, user
transactions, interfaces with external data sources, or the number of files used.
Various inputs can be used to determine these quantities, such as specifications,
entity-relationship diagrams, use case diagrams, screen layouts, and other docu-
mentation. Based on an evaluation of these criteria, tables are used to estimate the
function points. A function point is an indicator of the scope and complexity of a
proposed software solution.

ajor providers of custom software employ methods such as these, whereas
smaller-scale software companies are more likely to rely on instinct and experience.
One advantage of the methods is that they are relatively easy to use. On the other

3.3 Pricing Strategies 99

hand, they are also based ultimately on experience and empirical relationships, and
some of their parameters are rather subjective. However, applying these methods
can give providers valuable additional information for their decision making, par-
ticularly when it comes to major contracts. It often makes sense to apply these
methods, given that this costs relatively little in comparison to the overall project
costs. The methods deliver an estimate of project effort and expense, for example in
terms of person-months, and of the likely development period.

The most significant source of expense for the software provider is the cost of
the person-months invested. So, to determine a minimum price threshold for a
development project, it makes sense to start by calculating the labor costs from the
person-months. Labor includes both in-house employees and freelancers who are
usually deployed during peak times. Labor costs for salaried employees comprise
both fixed and variable pay components, employer contributions to social security,
and training costs. Freelancers may be paid by hour or day, or may receive a flat
rate for a given project or sub-project.

If the project effort expressed in person-months is weighted according to the
costs of in-house versus freelance staff, this method will give a rough idea of the
project costs, but no more than that. Manufacturers also use overhead costing and
factor in indirect costs to determine the cost of making a given product. Although
the same principle can be applied in the software industry, it is not generally
necessary, because indirect costs—for offices, the use of software development
environments, etc.—play a minor role in comparison to the labor costs.

Once these costs, with or without overhead costs, have been determined, the
‘‘only’’ thing left to do is to specify the mark-up. A large number of considerations
must be brought into play, including the fact that the Function Point method tends
to underestimate the actual costs.

The method described here is suitable for a cost-driven approach to pricing.
Obviously, the prices determined this way will not necessarily be aligned with
competitive demands or customers’ RPs. Against this background, other authors
have suggested that it would be more appropriate to focus on the market situation
when setting prices. However, this is extremely difficult to do when it comes to
project business. After all, the unique, one-of-a-kind nature of projects makes it all
but impossible to put a market price on them.

Psychological factors should also be taken into account. The relatively new
discipline of behavioral pricing offers valuable insight here: it investigates
potential customers’ attitudes to prices and pricing information, how they respond
to prices offered, and how they use price information when evaluating products
and making choices (Homburg and Koschate 2005). Some of its findings differ
from the assumptions of classical price theory. For example, people often evaluate
prices relative to a reference value, rather than in absolute terms: they often cannot
recall prices; or they abandon a price search half-way through. Behavioral pricing
primarily pursues a descriptive research approach and focuses mainly on cognitive
processes not discussed by classical price theory.

Even though a cost-based pricing strategy has the drawbacks described above, it
can still provide a good basis for determining whether a given project can be

100 3 Software Vendor Strategies

performed in a cost-effective way, at least within a short-term framework. But it
generally makes sense to base decisions on other objectives, too, such as oppor-
tunities for acquiring key customers, defending and extending market share or
preventing competitors from penetrating the market.

Having devoted the preceding two sections to market-driven strategies, we will
now turn our attention to development strategies.

3.4 Development Strategies

Academics and industry professionals have long concerned themselves with the
efficient and effective development of software; previously, this was primarily
considered in the context of user organizations, but is now increasingly analyzed
from the perspective of software providers. A myriad of approaches have been
proposed, tested, and discarded. Over the following pages, we will provide an
overview of the most important approaches to have survived the test of time.

3.4.1 Structuring of the Software Development Process

The structuring of the development process is pivotal to the development of
software. After a brief description of the early days of software development, we
will discuss plan-based approaches. Agile development, which arose as a backlash
to this approach, forms our next subject. Finally, we will compare the merits of the
various approaches in conjunction with the relevant contextual parameters.

3.4.1.1 Ad-hoc Development

Along with the first program codes, one of the first software development meth-
odologies also came into being in the 1950s and early 1960s. Under this meth-
odology, also known as the ‘‘stagewise’’ model, software is developed in strictly
sequential stages. In general, however, the development of software at this time
more closely resembled a craft (hence the term ‘‘software crafting’’), which
depended on the abilities of the individual developers (Boehm 1986, p. 22; Dogs
and Klimmer 2005, p. 15).

Software was generally developed according to the Code and Fix approach.
This was not really a methodology as such. It simply meant developing func-
tionality without much advance planning and continuing to make modifications to
address any errors until the program ran without any error messages. The inevi-
table outcome of this process was highly unstructured and a hard-to-maintain
program code: the infamous spaghetti code (Boehm 2006, p. 13).

3.4.1.2 Plan-Based Approach

The increasing popularity of computers also raised the demands on the associated
software. As software became more and more unwieldy, cost, time, and quality

3.3 Pricing Strategies 101

goals were often unachievable. As a result of this ‘‘software crisis’’, the term
‘‘software engineering’’ was coined at a conference in 1968. Modeling software
development more closely on the structured processes prevalent in engineering
was intended to help overcome the software crisis (Dogs and Klimmer 2005, p. 16
ff.). Consequently, 1970 saw the invention of the ‘‘waterfall model’’ of software
development. This built on the stagewise model mentioned above, and was
regarded from then on as the archetype of plan-based development methodologies
(Boehm 1986, p. 22).

The defining characteristic of plan-based methodologies is that software
development is carried out in a series of standardized, usually sequential steps.
Based on initial requirements elicitation and detailed planning, a range of artifacts
is created in each stage, such as user requirements documents or technical designs.
These form the basis for the next stages. After the actual programming, the
software is tested for correct implementation.

However, in the ensuing years the waterfall model and plan-based approaches
in general, were criticized. One criticism was that the sequential process made it
difficult to accommodate changes to the customer requirements during the
development process. This necessitated extensive, laborious modifications to the
artifacts. The use of new methodologies, such as rapid prototyping, results in new
approaches, including the spiral model (Boehm 1986, p. 21 ff.) and the V model
(Hindel et al. 2004, p. 16), but none of this altered the fundamental limitations of
the plan-based methodologies.

Apart from the term software engineering gaining widespread acceptance, none
of the various approaches achieved the sought-after success. The old problems,
cost blow-outs, lengthy project times, and poor quality, continued to exist.
Numerous reasons have been put forward for this, including the following (Dogs
and Klimmer 2005, p. 19 ff.):

• Plans quickly become out-of-date, as new customer requirements arise
constantly.

• There are too many overheads (such as specifications and designs) which are
irrelevant to the goal of developing high-quality software for the customer.

• Too little attention is paid to the human factor during the development process.
• The first tests take place too late on in the software development process.
• Not enough is learned from mistakes to benefit future projects.

In addition, increasing globalization and a more dynamic business environment
are creating ever more volatile requirements. Critics allege that the inflexibility of
plan-based approaches frequently means that software is developed which, by the
time it is finished, the customer no longer needs.

3.4.1.3 Agile Approach

As a result of the dissatisfaction with plan-based approaches, a variety of
‘‘lightweight’’ approaches were developed in the early 1990s, independently of one
another. The term ‘‘lightweight’’ is intended to convey a contrast with the

102 3 Software Vendor Strategies

previously common ‘‘heavyweight’’ methodologies (in the sense of being process-
and document-heavy) and enable a team to react as flexibly as possible to changes
to the user requirements. Examples of this approach include Scrum, extreme
Programming (XP), and Adaptive Software Development (ASD).

Lightweight methods follow a ‘‘just enough’’ approach. They attempt to
eliminate processes that contribute minimal added value to the final software
product. To this end, any artifacts that are created, such as specifications, are pared
back to bare essentials, to keep the time and trouble of adjustment to a minimum in
the event of changes. A key aim of lightweight approaches is to provide customers
with the desired functionality incrementally (building on achievements to date)—
as prioritized by the customer—in short, iterative development cycles. In addition,
software tests do not simply occur at the end of projects, but are integrated into the
development process.

Instead of seeing the constant changes to user requirements as a negative
influence, lightweight methodologies see this as an opportunity to develop inno-
vative software and so add value for customers. The role of developers is also
different: Instead of extensive documentation, lightweight methodologies
emphasize extensive collaboration among developers, including exchanging
knowledge and experience. This means that the human factor plays a larger role
than with plan-based approaches.

In February 2001, representatives of various lightweight methodologies met to
establish commonalities and reach a joint understanding. One outcome was that
participants agreed to use the term ‘‘agile’’ instead of lightweight, as the latter has
negative connotations. In addition, they adopted the so-called ‘‘Agile Manifesto,’’
which was signed by all attendees and which sets forth their joint understanding
with regard to agile methodologies (Fowler and Highsmith 2001, p. 28 ff.).

The values set out in the Agile Manifesto represent a shift in the importance
placed on various aspects of the software development process. In the words of
Fowler and Highsmith (2001, p. 29 ff.):

‘‘We value:

• Individuals and interactions over processes and tools.
• Working software over comprehensive documentation.
• Customer collaboration over contract negotiation.
• Responding to change over following a plan.’’

In addition to these four values, the Agile Manifesto also defines 12 principles
around the values. But it deliberately avoids prescribing concrete programming
practices. Rather, the principles are couched in sufficiently general terms, so that
users can follow them yet still have sufficient creative freedom.

Critics allege that the principles underpinning agile development are neither
new, nor do they represent a paradigm shift. In fact, the origins of iterative and
incremental development can be traced back to the late 1960s and early 1970s
(Fitzgerald et al. 2006, p. 200; Larman and Basili 2003, p. 48). What is new is the
way the various agile methodologies interact, mutually reinforcing each other.
In addition, proponents of agile methodologies recommend implementing

3.4 Development Strategies 103

iterations in a comprehensive way, to generate code and new software versions as
fast as possible. Moreover, they advocate continuously modifying rough plans—
providing a flexible way of dealing with problems and new requirements, which
spring from the increasing speed of change in the business and technology worlds.

In any case, agile methodologies’ basic principles are fundamentally at odds
with those of plan-based software development, especially the advance preparation
of plans in as much detail as possible, working in clearly identifiable phases and
producing comprehensive documentation. The apparently irreconcilable differ-
ences between the two methodologies led to an increasing polarization of views,
which was also known as the ‘‘Method War.’’ This episode involved agile advo-
cates being labeled ‘‘hackers,’’ while supporters of plan-based approaches were
likened to ‘‘dinosaurs’’ by their opponents. (Boehm and Turner 2003, p. xiii;
Boehm 2002, p. 3; Beck and Boehm 2003, p. 45).

Table 3.8 provides an overview of the differences between plan-based and agile
approaches in several key aspects.

However, the literature increasingly stresses that both agile and plan-based
methodologies have their merits, with strengths in different areas. Neither meth-
odology can be seen as fundamentally superior to the other (Boehm and Turner,
pp. 148ff.). Table 3.9 shows which methodology appears to be best suited for
which task in which application, on the basis of selected variables.

More recent approaches combine both plan-based and agile elements to exploit
the strengths of both methodologies. For example, these hybrid methodologies
plan the interaction of individual software components in great detail. The
development of the components themselves, however, follows an agile approach.

Table 3.8 Comparison of plan-based and agile software development approaches

Aspect Plan-based Agile

Attitude to change Disturbance Opportunity

Process Sequential Iterative

Artifacts Comprehensive As many as necessary

Role of developer Resource Decision maker

Releases Full Incremental

Table 3.9 Factors influencing the selection of methodology

Factor Plan-based Agile

User requirements Stable Unstable

Development team size Tends to be large Tends to be small

Security-critical systems Suitable Unsuitable

Type of software developed Standard software Custom software

104 3 Software Vendor Strategies

Building on the issues discussed in this section, Fig. 3.29 illustrates which
development methodology is generally best suited in which context, in the form of
a dynamism and complexity matrix. The dynamism axis represents an environment
with increasing economic or technological uncertainty, in which user requirements
frequently change. Complexity includes aspects such as the number of software
developers respectively, the size of the team involved or the need to integrate
software and hardware from third parties.

Of course, this depiction is only a starting point for selecting an approach, as
other factors also play an important role within a given organization, such as
experience with a methodology or the specific type of the software being
developed.

3.4.2 Software-Supported Software Development

The first attempts to generate software code automatically, based on models, took
place in the 1980 and 1990. This was known as Computer Aided Software
Engineering (CASE), and in retrospect, was only moderately successful. CASE
approaches had a fundamental weakness (Schmidt 2006): their closed nature.
CASE tools generate code for a single specific target environment. Moreover,
the approach requires that all stages of software development are supported by just
one tool, and executed sequentially in the traditional way.

New approaches, Model-Driven Engineering (MDE), address these two weak
points. We are deliberately using this term to stress the development process
(engineering). In the literature, the term Model-Driven Architecture is frequently
used, which shifts the focus onto the architecture of the software creation tools.
Essentially, MDE is based on models and transformation processes (Petrasch and
Meimberg 2006):

• Models are used to represent application domains. There are two types, Plat-
form Independent Models (PIMs) and Platform Specific Models (PSMs).

Fig. 3.29 Advantages of the
different development
methodologies

3.4 Development Strategies 105

• Transformation processes describe the automated mapping of language
constructs of PIMs to PSMs (model-to-model transformation) and of PSMs to
executable code (Model-to-code transformation).

Figure 3.30 shows how these two central MDE concepts interact, as well as the
Computation Independent Model (CIM), which describes the domain to be
supported by the software in informal, non-technical terms, and serves as a basis
for the PIM.

Tools to support MDE typically include model editors, transformation editors,
and tools and a repository. XML-based interfaces are available that allow different
tools to exchange models.

The implementation of MDE approaches is still in its infancy. With respect to
development costs, it can be assumed that the introduction and optimization of
MDE approaches will give rise to non-project-related costs, while project-related
costs in the later stages of development will be reduced. In other words: Imple-
menting MDE only makes sense from the cost perspective, if

• the costs saved in development are not offset by additional costs for more
extensive modeling and for the MDE implementation itself; and moreover

• a critical mass of projects is achieved.

Fig. 3.30 Interaction of key concepts of Model-Driven-Engineering

106 3 Software Vendor Strategies

MDE is a management concept that is yet to prove its effectiveness in the
software industry. For this reason, we sent a questionnaire to 240 software
providers in Germany asking for their view of selected aspects of this industri-
alization concept. 25 replied (Hess et al. 2007). This sample is small and not
representative of the industry as a whole. However, it allows some initial
conclusions to be drawn, which are presented below.

A significant majority of respondents were familiar with the concept of MDE,
although it was more widely known in larger enterprises (annual net sales over
10 million euros) than in smaller companies. Almost half of the respondents
already had some experiences with the MDE concept. These experiences varied
considerably, as Fig. 3.31 shows. Nevertheless, there are some companies that
successfully deployed the concept. In particular, they reported advantages in
relation to end-to-end model-driven and accelerated software development.

More than half of the respondents expect MDE to play an important role in future.
This assessment was more or less shared by the companies that had some experience
of MDE. In summary, this suggests that MDE is a means for supporting software
development that is seen by businesses in a positive light, but without euphoria.

3.4.3 HR Management in Software Development

Not least with the rise of agile development methodologies (see Sect. 3.4.1), it is
increasingly accepted that the human factor plays a critical role in the software
development process. The influence of such ‘‘soft’’ factors can play a greater role
than technical factors as the type of technology or the use of a particular tool. The
People Capability Maturity Model (CMM), developed by the Software Engi-
neering Institute, addresses this issue. It applies the CMMI maturity model for
assessing development processes to a company’s HR management (SEI 2010).

Having noted the importance of effective HR management for the success of
software development projects, the following section looks in greater detail into
the question of whether software developers have special characteristics that set

Fig. 3.31 Reported effects of MDE

3.4 Development Strategies 107

them apart from other professionals. Further to this, we will look at the ‘‘person-
job fit’’ approach as a possible method to assign employees to roles and
responsibilities. Finally, we will discuss the issue of employee motivation.

The ability to determine and even measure personality traits and types has
caused increasing scientific interest in personality theories in the last few decades.
Given that a person’s attitudes, beliefs, perceptions, and behavior are all influenced
to a certain degree by their personality, the personality structure has a considerable
impact on software development processes.

‘‘Personality’’ refers to an individual’s unique psychological attributes, which,
in turn, shape a multitude of characteristic behavior patterns. Consequently,
personality traits can at least partially explain people’s interest in particular careers
(Costa et al. 1984). Software developers generally possess a different personality
type to that of the average population. They tend to be less dominated by their
emotions, are more likely to be introverted and in many cases would rather work
alone than as a team member (Capretz 2003).

Despite these similarities between software developers, there are of course
considerable differences within this group; it would be wrong to talk of a ‘‘typical’’
software developer. Moreover, a software development project incorporates a
variety of roles (e.g. team leader, quality manager, tester, programmer etc.), which
have different demands.

The ‘‘person-job fit’’ approach focuses on assigning people to particular roles
based on their specific abilities. The model, illustrated in Fig. 3.32, posits that an
individual’s personal attributes and skills need to correspond with the requirements
of their job. A closer fit generally leads to employees performing better, enjoying
greater career success, and experiencing higher satisfaction levels, as well as less
staff turnover.

Applying this to the software industry, Acuña et al. (2006) identify certain
capabilities that are typical for people with particular personality traits. In the second
step, these capabilities are matched against the specific requirements of eight dif-
ferent role profiles found in a software development project (see Fig. 3.33).

Fig. 3.32 Person-job fit (based on Lauver and Kristof-Brown 2001)

108 3 Software Vendor Strategies

Personality tests may also be used to determine whether an employee is suitable
for a particular role. The capabilities identified in the test are then matched up with
the role profile. It should be noted that this matching process provides only initial
guidance as to whether an employee is suitable for a role—this model cannot take
into account employees’ specific skills or experience, the particular requirements
of the position, or organizational details.

Closely related to the assignment of people to roles and responsibilities is the
issue of how best to motivate software developers. However, it is difficult to
provide a general answer, as positive and negative motivational factors depend on
the specific context and the person’s individual needs. Figure 3.34 offers a general
model for explaining software developers’ motivation.

Although there are many unique, context-specific factors, the literature
emphasizes identification with the task as the primary motivator for software
developers: in addition to personal interest in the task, developers are motivated by

Fig. 3.33 Matching developer roles with requirement profiles (Acuña et al. 2006, p. 98)

Fig. 3.34 Motivation of software developers (own illustration, based on Beecham et al. 2008)

3.4 Development Strategies 109

clearly defined targets and an appreciation of the significance of the task for the
project as a whole. Other incentives include the existence of clear career paths and
a varied and challenging range of activities (cf. Beecham et al. 2008).

A poor working environment, for example, lacking in key resources such as
hardware and software, is commonly cited as a negative motivator. Others include
poor management, such as calling superfluous meetings, and poor pay (cf. Beecham
et al. 2008).

When implementing measures to increase motivation, attention should be paid
to the previously discussed fit between the task and the person in question, as a
misfit is a negative motivation. In other words, assigning the ‘‘wrong’’ person to
the job can only be corrected to a limited extent by other means.

110 3 Software Vendor Strategies

Part II

Specific Issues

4Outsourcing and Offshoring
of Software Development

4.1 Overview

There are few industries more international than the software industry. This can be
traced back to the characteristics of software itself: code can be developed any-
where and delivered over the Internet in seconds. In contrast to a physical supply
chain, the costs for transporting products or components are practically zero. This
means providers can develop software in globally distributed projects. In turn, this
keeps labor costs down, while also giving companies access to a worldwide talent
pool. User companies that outsource their development tasks to software providers
can also exploit these advantages.

But the globalization of the software industry is not only significant in terms of
procurement and labor markets. Another key factor is that software can be sold
very simply over the Internet. So it is not surprising that in terms of their orga-
nizational structures, all major providers are global in nature. The extent of the
internationalization of the software industry can be seen by its almost complete
lack of a home country advantage, in contrast to most other industries, where
companies often enjoy considerably higher sales in their countries of origin than
their foreign competitors.

Another form of competition takes place between locations. This is not only the
case in Asia, where multiple software development centers are vying for
supremacy, but also in Europe and the USA. Software companies’ most valuable
resources are their employees; the products they create are purely digital. That also
has the effect that, ‘‘no company is as easy to relocate as a software company,’’ in
the words of Dietmar Hopp, one of the co-founders of SAP AG, commenting on
the debate surrounding the establishment of a works council to represent
employees at SAP.

In his multiple award-winning book, The World is Flat, journalist Thomas
Friedman describes the internationalization of markets and identifies what he calls
‘‘flatteners’’, factors that are driving globalization (Friedman 2005). Against this
background, we want to explore offshore software development and the resulting
challenges and opportunities.

P. Buxmann et al., The Software Industry, DOI: 10.1007/978-3-642-31510-7_4,
� Springer-Verlag Berlin Heidelberg 2013

113

First, we will establish some basic definitions and introduce some varieties of
outsourcing and offshoring. That leads us to a consideration of various organiza-
tional structures and an analysis of some of the issues related to IT service pro-
viders’ choice of location. Finally, we discuss possible drivers and motives for
outsourcing und offshoring, which provide a basis for assessing the success factors
for these projects. Here, we focus on an investigation of the significance that
geographical distance between customer and provider has for the success of a
project. Our conclusions are partly based on our large-scale empirical study, which
involved almost 500 CIOs. In addition, we also conducted expert interviews with
leading employees from the following 10 software companies:

• Accenture,
• CGI,
• Cognizant,
• Covansys,
• Gamaxcom,
• HCL Technologies,
• Infosys Technologies,
• Starsoft Development Labs,
• Tatvasoft, and
• Wipro Technologies.

The empirical studies were complemented by 23 expert interviews.

4.2 Forms of Outsourcing and Offshoring

We will start this section by defining some basic terms: Outsourcing means
contracting tasks or services, in our context, IT services in particular, to an external
service provider (Mertens et al. 2005). If this provider is located in another
country, this is known as offshoring; if not, the term onshoring is used. If the other
party is an affiliated company in another country, we refer to captive offshoring.
These terms are set out in Fig. 4.1.

The decision whether to outsource certain activities, such as software devel-
opment, to third parties boils down to the classic ‘‘make or buy’’ decision.
Transaction cost theory can be used to find a solution. We discussed this in detail
in Sect. 2.4 .

Figure 4.1 makes a simple distinction between offshoring and captive offsh-
oring. However, there is a sliding scale between these two forms of organization in
terms of the intensity of the relationship, as shown in Fig. 4.2.

114 4 Outsourcing and Offshoring of Software Development

http://dx.doi.org/10.1007/978-3-642-31510-7_2

Companies can reap a host of benefits from the establishment of an offshore
subsidiary. In addition to the primary goals of offshoring, cutting costs and access
to a highly skilled workforce, captive offshoring can also help to penetrate new
markets. Compared to outsourcing to an external company, captive offshoring
generally permits a high level of control, not only over processes, but also over the
company’s knowledge assets (Gadatsch 2006, p. 49).

However, captive offshoring also poses a number of challenges and risks that do
not arise with external offshoring arrangements. Above all, this includes the cost of
setting up a new business location (Willcocks and Lacity 2006, p. 6).

For this reason, many companies opt for a joint venture, reducing risk by
entering into a partnership with a local company (Vashistha and Vashistha 2006,
p. 172 ff.; Morstead and Blount 2003, p. 91). Players in many industries have
successfully taken this route to international expansion. The following case study,
about Software AG, shows how this is done and illustrates its potential.

R
el

at
io

ns
hi

p
in

te
ns

ity

Subsidiary

Joint Venture
Customer holds majority stake

Joint Venture
50% / 50%

Joint Venture
Provider holds majority stake

high medium low

Fig. 4.2 Intensity of the relationship in various forms of organization (based on Bräutigam and
Grabbe 2004, p. 179)

Internal
activities are
contracted
to…

Contractor is located…

In the same
country

In another
country

An affiliated
company

An external
company

_

Onshoring and
Outsourcing

Offshoring and
Outsourcing

Captive
Offshoring

Fig. 4.1 Outsourcing and offshoring (based on Mertens et al. 2005, p. 2)

4.2 Forms of Outsourcing and Offshoring 115

SAG India
Software AG and iGate Global Solutions provide a good example of a

joint venture. Together, these two companies set up a development and
service center in India under the name Software AG India (SAG India). The
company is headquartered in Pune, near Bombay/Mumbai.

A key advantage of the new joint venture was that SAG India could tap
into a large pool of qualified IT professionals from the outset, thanks to
iGate. This meant that it could become operational very quickly.

The new enterprise is incorporated as a Private Limited Company.
Software AG holds 51 % of the shares, while iGate GS has 49 %. Each
parent company is represented by two senior executives.

Initially, Software AG had only two employees in India: one employee
who was responsible for legal and business matters (such as the formal
establishment of SAG India), and another who was very familiar with the
tasks that were to be carried out in India, and who, jointly with iGate
employees, oversaw the hiring of new staff. The latter employee had already
gained experience from Software AG’s previous outsourcing activities and
was therefore familiar with the culture in India. In retrospect, this contrib-
uted significantly to the venture’s success.

Teaming up with iGate fast-tracked the process of establishing an off-
shore site, as iGate already had the necessary premises, infrastructure,
telephone systems, and so on. A further advantage of the joint venture was
that iGate possessed many key contacts, so that, for example, Software AG
did not need to find out for itself which government agency was responsible
for which task.

Another form of organization that is closely related to the joint venture is the
build-operate-transfer (BOT) model. In this model, as with a joint venture, the
customer looks for an offshore partner, who then sets up and operates an offshore
center. Only after the successful completion of these stages is the offshore center
transferred to the customer’s ownership (Vashistha and Vashistha 2006, p. 92).
The advantage of this model is that some of the initial risks are at least partially
borne by the partner company, while ultimately allowing the customer to have its
own subsidiary. The form of organization with the least intensive relationship is
outsourcing to external companies, shown on the far right in Fig. 4.2. In this form
of offshoring, the customer devolves a considerable amount of control to the
offshoring provider, which performs its services on a contractual basis. The
advantage for the customer is that operational risks are relatively low. In addition,
this form of organization can be implemented much more quickly than estab-
lishing a joint venture or subsidiary (Robinson and Kalakota 2005, p. 29).

Offshoring activities may also be categorized as nearshoring or farshoring. This
distinction relates to the distance between customer and provider. As the names
already indicate, nearshoring describes the outsourcing of IT services to a nearby

116 4 Outsourcing and Offshoring of Software Development

location, while farshoring denotes outsourcing to a distant one. This refers not
only to geographical distance, but also cultural distance, and/or the number of time
zones between the countries. A swarm of related buzzwords, such as rightshoring
and bestshoring, have since been coined. We need not discuss them here.

From the perspective of German companies, offshoring to Eastern European
countries or Ireland is commonly described as nearshoring. For their American
counterparts, preferred nearshore locations include Mexico and Canada. Although
a customer in California and a provider in Canada, for example in Halifax on the
east coast, may be far apart in geographical terms, their relationship is still referred
to as nearshoring. This is because there are few cultural and linguistic barriers.
Typical farshoring destinations, from both an American and European perspective,
include India, China, and Vietnam.

Before we turn to an overview of the outsourcing and offshoring markets, we
should make it clear who the customers for these services actually are. Until now,
the literature has tended to assume that these are companies whose core compe-
tencies do not include software development. However, software providers also
outsource development tasks to offshore locations. In most cases, this entails
captive offshoring or setting up a joint venture, as in the example of Software AG
India. But this is by no means a rule. There are also examples of software com-
panies outsourcing the development of entire modules to third-party providers. In
summary, customers can be both users and providers of software.

4.3 Motives for Outsourcing and Offshoring

In this section, we will explore the primary motives behind offshoring. In par-
ticular, these include (Amberg and Wiener 2006, Hirschheim et al. 2006):

• Cost savings,
• Greater flexibility,
• Concentration on core competencies,
• Acquisition of knowledge and skills and
• Exploitation of the ‘‘follow-the-sun’’ principle.

4.3.1 Cost Savings

One of the most commonly cited reasons for outsourcing and/or offshoring is the
expectation of reducing overheads, primarily through lower labor costs in offshore
locations. The actual magnitude of these savings, however, is the subject of some
debate. On one hand, the salaries of IT project leaders in offshore locations are
often a fraction of those in the USA or Western Europe (see Fig. 4.3).

On the other hand, offshoring creates additional costs, especially resulting from
greater coordination effort. A number of studies have been carried out, for example
by Deutsche Bank Research and the outsourcing consultancy neoIT, to estimate

4.2 Forms of Outsourcing and Offshoring 117

the actual cost savings delivered by offshore projects. These results should be
treated as rough indicators rather than precise, universally applicable figures. In the
scenario of a software project executed offshore, neoIT regards the cost savings
presented in Fig. 4.4 as achievable. This reveals that cost savings from consid-
erably lower offshore salaries are only partially outweighed by higher expenditure,
making savings of 25–35 % possible.

0.00
USA Deutschland Tschechien Russland VR China Indien

10,000.00

20,000.00

30,000.00

40,000.00

50,000.00

60,000.00

70,000.00

Fig. 4.3 Comparison of the annual salaries in euros of IT project managers (5–-9 years
experience) (Payscale 2010; own calculations)

OffshoreOnshore

O
n

sh
o

re
 S

al
ar

ie
s

O
th

er
co

st
s

Communication and travel cost

Offshore salaries

Change management

Building infrastructure

Other costs

25% to 35% savings

Fig. 4.4 Possible cost savings (Kublanov et al. 2005, p. 3)

118 4 Outsourcing and Offshoring of Software Development

4.3.2 Greater Flexibility

For customers, increasing flexibility is another incentive for offshoring. In prin-
ciple, this is achieved by buying the required services and skills only as needed.
This has the advantage of converting fixed costs into variable ones.

4.3.3 Concentration on Core Competencies

In the face of increasing competition, many companies are choosing to focus on
their core competencies. According to this school of thought, activities that fall
outside the scope of these competencies should be outsourced (and, as the case
may be, offshored). Assuming that highly specialized offshore providers can
perform IT services more efficiently and effectively, the obvious conclusion is to
outsource these tasks. The resources freed up as a result can then be devoted to
strengthening core competencies. As for the offshore providers, the high volume of
similar tasks enables them to exploit significant economies of scale, and therefore,
at least in principle, offer their services at a more attractive price.

This oft-repeated argument initially seems straightforward and eminently
plausible. On closer inspection, however, a number of complications come to light.
What exactly are a bank’s core competencies, when tasks such as credit checks are
already among those being outsourced? Another example is the outsourcing of
R&D in the automotive industry to suppliers. And in the software industry, we
know of several cases where companies have outsourced part of their development
activities to third parties—albeit with mixed results.

4.3.4 Acquisition of Knowledge and Skills

Another factor frequently cited as an incentive for offshoring relates to the
employment market in offshore locations. For one thing, the number of available
skilled workers is considerably higher than in organizations’ home countries. And
for another, these workers are highly motivated, even when it comes to simpler and
less challenging tasks (Hirschheim et al. 2006, p. 6 ff.). In particular, India, the
classic offshore location, but also China has much higher numbers of graduates
than Western European countries (NASSCOM 2007).

In addition, the IT industry enjoys such a high status in India that many highly
motivated Indian employees are keen to pursue a career in this arena (Vashistha
and Vashistha 2006, p. 62).

But India, like many other Eastern European and Asian countries, not only
produces graduates in large numbers. They are also very well trained. Indian IT
professionals in particular are well versed in fundamental mathematical principles
and programming (programming languages, knowledge of databases, etc.). Both
the head of SAP’s India-based development center and Daimler managers con-
firmed that the results and productivity of Indian, German, and American software

4.3 Motives for Outsourcing and Offshoring 119

developers are much the same (Boes and Schwemmle 2005, p. 30). Graduates’
very high skill levels are also confirmed by recent university rankings.

Against this background, it should come as no surprise that an online survey
conducted by Software magazine found that 48 of the USA’s top 86 software
companies operate an R&D center in India (Aspray et al. 2006, S. 115).

However, we also need to caution against taking too rosy a view: For example,
many software companies reported that their Indian workforces had relatively little
loyalty to their employers. Consequently, it is not uncommon for employees to be
lured away by competitors at very short notice. This has had the result that some
software providers have several back-up members on every project team, in case
some defect to a competitor halfway through.

4.3.5 Exploitation of the ‘‘Follow-the-Sun’’ Principle

The time difference between the customer’s site and the offshore location provides
an opportunity to increase the number of working hours in a day. In the ideal
scenario, the on-site team can delegate a series of tasks to the offshore team before
they leave. They are then presented with the completed tasks when they return to
work the next morning (Hirschheim et al. 2006, p. 6; Amberg and Wiener 2006,
p. 48; Thondavadi and Albert 2004, p. 18). On the other hand, time differences can
also make it difficult to communicate in real time. We will study the opportunities
and drawbacks more closely in Sect. 4.6.3.

Last but not least, we want to return to the empirical study mentioned earlier.
This revealed some interesting results relating to organizations’ experiences with
near- and farshoring. In general, companies with experience of offshoring evalu-
ated the benefits of offshoring more favorably than those who had no such
experience. Respondents were asked to evaluate some of the advantages and
disadvantages on a scale from ‘‘not applicable’’ to ‘‘highly applicable’’. Figure 4.5
shows the results obtained in relation to nearshoring. We recorded similar findings
for farshoring.

These experiences are clearly shaping future plans: Almost half of the
respondents’ companies intend to outsource more work in the next few years.
Smaller companies tend to be more cautious: Only 20 % of the sample reported
plans to step up their offshoring activities.

4.4 Selection of Locations By Software Providers

As we saw in the previous section, companies’ primary aim when outsourcing is to
cut costs. Against this background, selecting the right location is strategically
important for IT service providers. While the reduced labor costs in low-wage
countries allow them to produce their services more cheaply, their choice of
location should also take into account the benefits of being close to the customer.
For example, SAP has outsourced the development of various modules to India

120 4 Outsourcing and Offshoring of Software Development

and intends to expand its activities on the subcontinent. This achieves its goal of
cutting development costs. But this choice of location also offers better access to
India, a high-potential market that ranks among the top eight in the world,
according to SAP. Moreover, SAP has set up a network of fallback centers in
several of Asia’s major cities (Mertens et al. 2005, p. 15 ff. and 21).

To date, providers have overwhelmingly shifted work from high-wage to low-
wage countries. Recently, however, there has been some movement in the opposite
direction. For example, Indian software companies are beginning to recruit young
people from European and American universities and establish branch offices in
high-wage countries. These providers are clearly willing to accept higher labor
costs in order to be closer to potential customers.

Essentially, the following factors need to be taken into account when deciding
on a location (Meyer-Stamer 1999; Kearney 2004):

• hard factors, such as proximity to buying and selling markets, transport con-
nections, workforce, wage, and salary levels and/or local taxes;

• soft company-related factors, including business climate, contacts in the
industry, partnership opportunities, universities, and research bodies, and

• soft employee-related factors, such as the housing situation, environmental
quality, schools, social infrastructure, and recreational opportunities.

To evaluate sites, a variety of indices have been developed, many of them based
on scoring models. One example is the Local Attractiveness Index developed by
the global management consultancy A.T. Kearney.

0 1 2 3 4 5

Too high costs

Declining morale among own staff

Lack of knowledge/skills

Geographical distance

Institutional barriers (legislation, etc.)

Language barriers

Cost savings

Focus on own core competencies

Time/resource limitations in-house

Outsourcing partner’s expert knowledge

Companies with experience in nearshoring

Companies without experience in nearshoring

highly
applicable

Not
applicable

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es

Fig. 4.5 Evaluation of the advantages and disadvantages of nearshoring

4.4 Selection of Locations By Software Providers 121

To exploit the benefits of worldwide locations, providers such as Accenture and
Cognizant, are setting up global IT delivery networks. One of the advantages is
that the scale of onshore versus offshore activities can be chosen to suit each client.
Another benefit is that a global network can be regarded in the light of a back-up
strategy. The following map shows some of Accenture’s global IT delivery centers
(Fig. 4.6).

Against this background, the development of global delivery models (Prehl
2006, p. 38) is becoming increasingly important. The term covers more than
offshoring alone. Rather, it encompasses a mix of onshoring, nearshoring, and
farshoring. Occasionally, this form of organization is referred to as next-generation
offshoring—and given the creativity of marketing experts in coining new phrases,
it is only a matter of time until we hear talk of Offshoring 2.0.

In particular, thanks to their global footprint, large, international software
providers can break projects down and assign tasks to onshore, nearshore, or far-
shore locations according to their specific requirements. Using Infosys as an
example, Table 4.1 shows how a software development project can be distributed
across various sites. Of course, the exact form of organization depends on the
nature of the project in question.

An analysis of software companies’ operational and organizational structures
reveals that an approach by which the technical specifications are drafted in a high-
wage country, while code development and system testing take place offshore is
increasingly a thing of the past. Even if this quasi-traditional method of dividing
up tasks is still to be found among offshore projects, the trend is clearly heading
away from a hierarchical approach to more egalitarian forms of co-operation.
For example, at SAP, responsibilities are parceled out among the various sites by
module. One result of this is that some development managers in Walldorf, SAP’s
headquarters in Germany, now report to senior managers in India.

Montreal
Toronto

WilmingtonChicago
Cincinnati

Houston

Sao Paulo

Malaga

London
Prague

Madrid

Bratislava

Mumbai

Riga

Bangalore Chennai
Hyderabad

Manila

Dalian

Shanghai

Curitiba

Buenos Aires

Warsaw

Bucharest

Pune

Fig. 4.6 Part of Accenture’s global IT service center network (the world map is based on the
image ‘‘BlankMap-World gray’’ by Vardion, licensed under Creative Commons CC-BY-SA 2.5)

122 4 Outsourcing and Offshoring of Software Development

4.5 Outsourcing by Software User Organizations

In this section, we will examine current findings on outsourcing of development,
modification and maintenance of application software from the software users’
perspective. The results are based on a 2009 empirical study (Buxmann et al.
2010), which targeted IT decision makers from large, midsize, and small com-
panies. Of the 5,500 companies contacted, a total of 498 usable questionnaires
were returned. A wide range of industries were represented. The study’s aim was
to depict the current situation with regard to outsourcing of the task areas men-
tioned above. But the findings also reveal what user organizations require of the
software companies and service providers they contract.

4.5.1 Outsourcing of the Development of New
Custom Software

4.5.1.1 Take-up Rate for Outsourcing Services

The companies questioned in the study were first asked whether they are currently
deploying a large-scale custom software system. This was the case with about
47 % of respondents. In comparison, around 53 % said they did not use a custom
system, so that means they predominantly deploy standard application software
(see Fig. 4.7).

Almost 80 % of the companies who deploy a custom software system have
outsourced development work to an external service provider (see Fig. 4.8). The
remaining organizations have not chosen to outsource. One-third of those who did
so contracted out the entire development process. About two-thirds employed both
external providers and in-house staff to develop the custom software (see Fig. 4.9).

We also looked separately at mission-critical versus nonmission-critical pro-
cesses (Brandt 2010). The results are shown in Figs. 4.10 and 4.11.

4.5.1.2 Criteria for Selecting Providers to Develop
New Custom Software

The research participants were then asked which criteria they use to select a
partner to develop new custom software. This question was only addressed to

Table 4.1 Software development according to Infosys’ global delivery model (based on Gov-
ernment of India 2006a, p. 131)

Onshore Nearshore Farshore

Architecture
Requirements
Change management
Implementation

Requirements analysis
High-level design
Prototype building
Implementation support

Detailed design
Code development
Testing and integration

4.4 Selection of Locations By Software Providers 123

companies who have employed outsourcing services. The companies were asked
to rate specific criteria (1 = very unimportant … 7 = very important). Figure 4.12
shows how these criteria were ranked on the basis of the mean values. It is
apparent that the companies we interviewed saw a long-term business relationship
with the software company as the most important criterion.

One reason for this is that in the course of a long-term relationship, user
organizations often task the software provider with the upgrading and maintenance
of software solutions, too. References showing successful implementations in

Fig. 4.8 Development of new custom software: share of companies who have outsourced

Fig. 4.7 Proportion of custom software systems

124 4 Outsourcing and Offshoring of Software Development

similar areas were cited as the second most important criterion. The quality of the
provider’s employees presented to the company took third place. According to the
respondents, the reputation of the software company also plays a significant role.
The calculated mean of 5.11 shows that though value for money is not unimportant;
it is not viewed as a top priority when selecting external providers. The companies
expressed no opinion as to establishing a partnership of equals with the outsourcer.
The purpose of this question was to discover whether SMEs tend to prefer providers
of comparable size to themselves.

Fig. 4.10 Options for using outsourcing services (Responsibility stays with the company)

Fig. 4.9 Development of new custom software: share of companies who have fully outsourced
custom software development

4.5 Outsourcing By Software User Organizations 125

4.5.2 Outsourcing Modifications to Standard Software

4.5.2.1 Take-up Rate for Outsourcing Services
In this section, we will take a closer look at outsourcing of modifications to
standard software. We have already identified the following alternatives (Buxmann
et al. 2010):

Fig. 4.11 Options for using outsourcing services (responsibility is transferred)

Fig. 4.12 Ranking of criteria for selecting external providers to develop new custom software
(1 = very unimportant, …, 7 = very important)

126 4 Outsourcing and Offshoring of Software Development

• Customizing/parameterization,
• Add-on programming, and
• Changes to source code.

Customizing and parameterization enable users to adapt the software to their
business requirements to a relatively small extent. Extensive programming skills
are not required. Customizing is part of the process of implementing practically
any standard business software.

However, it is seldom possible to tailor standard software to a company’s
unique needs through customizing alone. This is particularly true for business
processes that are mission-critical or create competitive differentiation. So-called
add-ons which can be integrated with the standard product are developed to
provide additional functionality. Standard solutions often include interfaces for
this purpose. Add-on development does not entail modifications to the standard
software. A third alternative is to modify the source code of the standard solution.
This is only possible if the vendor makes the source code available to users. An
advantage of customizing and add-on programming is that the company-specific
parameterizations and additions remain in place when a new release is installed.
If substantial changes are made to the standard system, however, this is frequently
impossible.

Some three-fourths of participants have made use of third-party services for
implementing standard software (see Fig. 4.13). About 70 % of these companies
stated that they did not outsource the entire task (see Fig. 4.14). In contrast to this, just
under 30 % of these companies handed over end-to-end responsibility for imple-
menting a standard system or components of a standard system to a third party.

The results show that customizing and parameterizing are by far the most
common methods of modifying standard software, followed by add-on develop-
ment, while source-code modification is seldom performed.

Fig. 4.13 Outsourcing of development work/modification of standard software

4.5 Outsourcing By Software User Organizations 127

4.5.2.2 Criteria for Selecting Software Providers to Develop
Standard Software

As with the evaluation of custom software providers, the participants were asked
which criteria they applied in selecting standard software providers (Brandt
2010). Figure 4.15 shows how these criteria were ranked, again on the basis of
the mean responses (1 = very unimportant … 7 = very important). Provision of

Fig. 4.15 Ranking of criteria for selecting a standard software provider

Fig. 4.14 Full outsourcing of development work/modification of standard software

128 4 Outsourcing and Offshoring of Software Development

the required business functionality and industry experience is the top priorities
for users, followed by a long-term business relationship (continuity). The pro-
vider’s skills in implementing standard software were also regarded as important
by the participants who use standard software. The same applies to the soft-
ware’s scalability and openness. A broad installed base of the standard product is
seen as relatively important. With regard to value for money, a similar picture
emerges as with the selection of custom software providers: value for money is
not seen as a top priority or a very important criterion in comparison to the
others. The calculated mean of 5.1 shows that value for money is relatively
important, but compared to the other criteria named, it is not seen as a high
priority. With a mean of 4.86, the reputation of the software provider was given
the lowest priority of all criteria.

4.5.3 Outsourcing the Further Development and Maintenance
of Application Software

4.5.3.1 Take-up Rate for Outsourcing Services

User organizations were also asked whether they had made use of outsourcing for
further development and maintenance of application software (Brandt 2010). More
than 85 % of respondents answered in the affirmative (see Fig. 4.16). A minority
handles these tasks entirely in-house.

The vast majority (72.6 %) of respondents, who have outsourced further
development and maintenance of application systems, stated that they did not
exclusively outsource but used third-party services to complement work done in-
house (see Fig. 4.17). More than one-fourth of these companies completely out-
sourced these tasks to service providers.

Fig. 4.16 Further development and maintenance: share of companies who have outsourced

4.5 Outsourcing By Software User Organizations 129

Participants were also asked whether, and to what extent, their willingness to
outsource further development and maintenance of application software depends
on whether the software solution in question supported mission-critical or
less-critical business processes. The results show that companies are far more
willing to outsource these tasks with regard to less-critical processes than core
business processes (Fig. 4.18).

The results also indicate that backsourcing, i.e., returning previously outsourced
processes associated with further development and maintenance of application
software is relatively uncommon to date. For example, more than 80 % of
respondents asserted that they had not yet brought back in-house previously out-
sourced further development and maintenance of application software (see
Fig. 4.19). Less than 3 % have done so. However, 15 % of companies were
contemplating deploying their own staff (once again) to perform these tasks.

Fig. 4.17 Further development and maintenance: share of companies who have fully outsourced
these tasks

Fig. 4.18 Outsourcing of further development and maintenance of entire application systems

130 4 Outsourcing and Offshoring of Software Development

4.5.3.2 Selection Criteria for Software Providers

In the following survey, participants were asked what criteria they apply when
selecting an outsourcing partner for the further development and maintenance of
their application software. The question was only addressed to companies who
have already outsourced to software and service providers. Figure 4.20 shows how
the criteria were rated.

The results show that the key factor for survey participants was a long-term
business relationship with the software and service provider (continuity). This is
probably because a long-term collaboration enables the provider to get to know the
company, which reduces communication effort. References about successful
implementations of a similar work area were identified by the companies as the
second most important factor. Respondents identified the reputation of the soft-
ware and service provider, value for money, and the people who are introduced to
them as relatively important. Furthermore, participants indicated that the service or
software provider being a similar size to them is not important to relatively
important. Collaboration with as few IT service providers as possible, who are not
specialists but have broad skills in several fields, was also seen as not important to
relatively important.

4.5.3.3 Location of Service Delivery

In light of the important roles that further development and maintenance play in
the software lifecycle, the companies were also asked whether there are specific
advantages associated with the service provider being located near at hand. Almost
72.8 % of the companies who had already outsourced their further development
and maintenance agreed with the statement that it is extremely important for the
service provider to be local (see Fig. 4.21). As many as 81.9 % of respondents
stated that they prefer to outsource to an onshore provider. Furthermore, 75.9 % of

Fig. 4.19 Backsourcing the further development and maintenance of entire application systems

4.5 Outsourcing By Software User Organizations 131

the companies were of the opinion that it is more difficult to specify tasks and
clarify responsibilities when collaborating with nearshore and farshore providers.

The above findings reveal a tendency toward outsourcing the further develop-
ment and maintenance of application software to onshore providers.

Fig. 4.20 Ranking of criteria for selecting a software/service provider to further develop and
maintain an IT environment

Fig. 4.21 Location of service delivery for the outsourcing of further development and
maintenance of IT environments

132 4 Outsourcing and Offshoring of Software Development

4.5.4 User Satisfaction with Onshore, Nearshore, and Farshore
Providers

In the following section we will assess whether, and to what extent, the geo-
graphical distance between the provider and the customer affects the success of
outsourcing projects (Buxmann et al. 2010).

Figure 4.22 shows the comparison of the response profiles regarding out-
sourcing the development of new custom software and the customizing of standard
software to onshore, nearshore, and farshore locations. Interestingly, the responses
were almost identical for all tasks.

How satisfied are user organizations with the services of their outsourcing
providers? In order to find this out, we asked the companies about their experi-
ences with onshore, nearshore, and farshore providers. We were particularly
interested in how satisfied the companies were with the quality of products and
services, costs, on-time delivery as well as communication and coordination.
Figure 4.23 shows the mean responses. Only those companies from the sample

Fig. 4.22 A comparative analysis of usage from outsources to onshore, nearshore, and farshore
providers for custom versus standard software

4.5 Outsourcing By Software User Organizations 133

who had already had experience with onshore, nearshore, and farshore providers
were included. These tend to be the larger companies in the overall sample.

The results show that companies were most satisfied with onshore providers with
respect to the quality of products and services, on-time delivery as well as com-
munication, and coordination. Software and service providers in nearshore countries
came out second best, whilst customers who used farshore providers were least
satisfied on these counts. The results are statistically significant. In contrast to this,
there were no significant differences in levels of satisfaction with costs.

A possible reason for these findings is that companies find the large geo-
graphical distance between themselves and farshore providers a problem. The
main issue here is that geographical, linguistic, and cultural differences can make
communication between the user organization and the provider much more diffi-
cult, which generally leads to inferior project results and/or projects taking longer
to complete. These communication problems can be split into linguistic and cul-
tural problems, which will be looked at in more detail in the following section.

4.6 Nearshoring Versus Farshoring: Distance
from the Customer as a Success Factor?

4.6.1 Cultural and Language Barriers in Offshore Projects

Knowing how to work with people from different cultures is the success factor
most frequently cited in studies of offshore projects (Buxmann et al. 2010; Gregory
2010). All of the experts we asked stressed the danger of cultural and linguistic
problems leading to potential misunderstandings, a loss of trust, and lower
employee motivation.

Due to India’s status as an offshore location the cultural differences between
Indians on the one hand, and Europeans and Americans on the other, are frequently
discussed. In this context, different attitudes to hierarchies and the habit of skirting
around bad news play an important role. Staff in India tends to seek the superior’s

Fig. 4.23 A comparative analysis of user satisfaction with outsourcing services of onshore,
nearshore, and farshore locations

134 4 Outsourcing and Offshoring of Software Development

approval even for minor decisions and are sometimes reluctant to express their
opinion, particularly in the presence of the project leader. They often find it
difficult to say ‘‘no’’ even when it is necessary to do so. Furthermore, problems are
not readily admitted to because that would lead to a loss of face. It is obvious that a
question such as: ‘‘Can we rely on the prototype being delivered to schedule?’’
could cause difficulties in the project.

It is not only in India that such differences are evident. In their study of
offshoring, Delmonte and McCarthy describe Russian developers’ reluctance to
seek clarification of something they have not fully comprehended. This leaves
customers with the impression that their requests have been understood, although
this might not always be the case (Delmonte and McCarthy 2003, p 1609).

Cultural differences can even exist between neighboring countries. One expert
recalled his experiences in the Netherlands. People are less formal with each other
than in Germany and verbal agreements are generally no less binding than written
ones. If a German employee asks for a verbal agreement to be put in writing, his
Dutch counterparts regard this as showing a lack of trust and become suspicious.

Experts from the nearshore companies surveyed value the fact that the cultural
differences between themselves and their German customers are small.
If employees have more in common with each other, relationships tend to be more
open in comparison to those with Indian or Chinese providers.

For communications to be effective, all parties need a certain level of language
skills. Yet, this cannot always rule out mistakes being made due to differences of
pronunciation, differences in the meanings of words, and in the technical terms
used, which are all cultural by-products.

Offshoring and farshoring have been less widespread in Germany than in the
UK or the USA, mainly due to the language barrier. German is still the working
language of most companies although things are slowly but surely changing,
particularly among major international players. It is understandable that the staff of
German customers (unless they happen to be native speakers) prefers on the whole
to use German. Thus wherever possible, exchanges with most of the German
customers in development and first level support are conducted in German. Most
of the experts we asked therefore attached great importance to language skills. As
a result, global players are increasingly establishing onshore and nearshore loca-
tions and sourcing staff locally.

In a study of the relationship between outsourcing contracts and the success of
the associated projects, Willcocks and Lacity discovered that projects tend to be
more successful when the contract is detailed rather than loosely defined
(Willcocks and Lacity 2006, p. 20 f.). Bearing in mind the language barriers
inherent in offshoring, it is obviously imperative that contracts leave as little room
for interpretation as possible.

Given that, almost all experts emphasize the significance of cultural and lin-
guistic differences, it is worth addressing the question of how companies can meet
this challenge. A common method is to provide intercultural training for both the
onshore and offshore staff. Sometimes offshore providers even run such seminars
for their customers.

4.6 Nearshoring Versus Farshoring 135

By sharing their knowledge, experienced employees can make an important
contribution to cultural awareness. That is why some providers send employees on
exchange to other locations. One expert reported that it proved very worthwhile to
invite two members of staff from India to work on projects in Germany. One of the
many benefits this delivered was that the employees concerned were more com-
mitted to their work when they returned home. Other experts have observed similar
phenomena. However, the preference is usually to send the customer Indian
employees who have at least a basic knowledge of western corporate culture.

One expert said that he always advises his customers to send out an employee,
likewise. By doing so, customers feel more in control and improve their inter-
cultural skills at the same time. Many customers readily take up this advice.

Employing local staff is a third way to breakdown cultural barriers. One expert
explained that even with projects in neighboring Austria or Switzerland, local
employees were always included in the team, as they were better than their
German counterparts at noticing nuances in communications with customers.
Local staff often fills interfacing roles. Almost all offshore providers employ
German staff for projects based in Germany. These individuals often head up the
project and are the first point of contact for customers.

In the following section, we will consider the importance of face-to-face
meetings in greater depth and examine to what extent these can improve provider/
customer relations.

4.6.2 The Importance of Face-to-Face Meetings to Project Success

It is in the initial stages of a project that face-to-face meetings between the cus-
tomer’s and the software provider’s employees have a major impact on the pro-
ject’s success. Most of the experts we surveyed agreed that it is better for a
software development project to be partly carried out at the customer site. How-
ever, it is only the top international providers, with their nearshore development
centers and multiple offshore locations, who are able to divide work up in a very
granular way. Most of the experts interviewed assigned the different development
stages as shown in Fig. 4.24.

The sequence shown in the above figure is only a general trend. For the success
of a project, there needs to be some overlap between the project teams working on
the various stages. The experts we surveyed stressed the importance of all par-
ticipants working closely together throughout the project.

A large number of offshore providers maintain that about 30 % of time is spent
onsite. Many experts emphasize the importance of keeping the onsite team, or at
least some of its members, unchanged for the duration of the project.

The stages on the left hand side in Fig. 4.24 are rather communication intensive
and should generally be carried out onsite with the customer rather than offshore.
Even the latest communications technologies, such as video conferencing, are not
substitute for meeting in person. It should be noted that, unlike providers, many
German companies have yet to see video conferencing as an everyday tool. One

136 4 Outsourcing and Offshoring of Software Development

respondent related a situation in which customer and provider urgently needed to
exchange notes as soon as possible. Because of organizational problems and the
fact that it was not standard procedure, the video conference was not scheduled
until a few days later, which wasted a great deal of time.

But if we assume that such means of communication will one day become a
matter of course, then video conferencing could replace at least some face-to-face
meetings and further boost the popularity of offshoring.

As the distance between provider and customer increases, so the travel times
between them do. This will lead to customers more frequently opting for a nearshore
location rather than a farshore location. Whether customers feel that solutions, such
as documenting the project status online, are sufficient to overcome this drawback
depends on the type of customer and project. Conversely, it tends to be the provider’s
employees, and not the customer’s, who have to do most of the traveling.

It is ultimately the cultural distance, and not the mileage, between customer and
provider that has a greater impact on the success of the project. All distributed project
teams pose communication and coordination challenges, wherever they are located.
And most respondents confirmed that the costs of communication and coordination
in a development project do not rise in proportion with the physical distance.

4.6.3 Time Difference: Challenges and Opportunities

When there is a time difference between customers and offshore providers, the first
potential difficulty is real-time communication such as telephone or video confer-
ences. The greater the time difference, the smaller the window for these exchanges.

Fig. 4.24 Onshore and offshore division of the development stages

4.6 Nearshoring Versus Farshoring 137

Offshore providers overcome this in two ways: by extending the working hours
at offshore sites, and by planning this type of communication in advance. The
experts we spoke to pointed out that in India, in particular, employees have few
problems working long or unusual hours.

Aside from potential communication issues, time differences also create an
opportunity—to apply the follow-the-sun principle described in Sect. 4.3. In cer-
tain cases, this has worked successfully for American customers, for example.
Requirements are gathered in the US during the day, and are then sent to India,
where they are implemented as prototypes overnight. The next morning, results
can be processed further at the US site, shortening both release cycles and
development times, while increasing coordination costs, however.

From a European perspective, it is important to remember that time difference with
India alternates between 3.5 h in summer and 4.5 h in winter, limiting the benefits of
‘‘following the sun’’. An example of successful exploitation of time differences,
however, is the acceptance testing carried out by Software AG in India (the estab-
lishment of the joint venture in Pune has already been discussed in Sect. 4.2):

Software AG’s software tests in India

Software AG maintains a testing team in Pune, India for the development
of SOA-based solutions. The team takes the same approach as would
customers intending to implement the solutions. It is responsible for the
following tasks:

• Installing the product,
• Coexistence and integration testing,
• Verifying the interoperability of the product,
• Verifying basic functionality,
• Issuing error reports, and
• Retesting after corrections.
The team comprises 14 employees including the team leader. As well as

the testing itself, it is their job to draw up test plans, to coordinate, and
supervise testing activities, to deliver weekly progress updates, to train
employees on the ground and to keep in contact with headquarters.

The development unit, which is distributed worldwide, provides complete
product kits at regular intervals, which are then downloaded and tested by the
team in India. The kits are produced overnight, so that the employees in Pune
can begin testing first thing in the morning. When the working day begins at
the development units the first results are already in. Queries can be
answered and any reported errors resolved. According to Software AG,
sharing work between multiple locations rather than working at the
Darmstadt headquarters alone reduces costs by around 50 %. The costs of
coordination have been factored into this estimate.

138 4 Outsourcing and Offshoring of Software Development

Another much cited advantage of time difference is the opportunity to offer
round-the-clock support.

When we asked the experts what factors were key to facilitating work across
time zones, they mentioned three in particular:

• Clearly defined processes,
• Integration of company sites, and
• Accurate documentation.

4.7 Outsourcing by Software Providers

Much has been written about how software users outsource IT tasks, and in Sect.
4.5 we described a current study. A subject which has received far less extensive
treatment, on the other hand, is the degree to which software and service providers
themselves outsource tasks to specialized companies. We will focus on this issue
in the following two sections: in Sect. 4.7.1 we will review the current division of
labor among software providers; in Sect. 4.7.2, we will outline a new technology
and discuss its potential impact on the structure of the software industry value
chain.

4.7.1 The Status Quo of Specialization and the Division
of Labor: Insights from Three Case Studies.

So far, no broad empirical studies on vertical integration in software companies
have been conducted. Therefore, we will refer the study by Wolf et al. (Wolf et al.
2010; Wolf 2010), which investigated this issue at three mid-sized German ven-
dors of complex standard enterprise software that requires extensive
customization.

The starting point of this study is an eight-stage value chain in the software
industry, as shown in Fig. 4.25.

The study analyzed the situation from the software provider’s perspective.
Focusing on a particular point in time, it investigated whether activities within
individual value chain stages were performed in-house, carried out by a partner
company, or sourced from the market. In accordance with transaction cost theory
(see Sect. 2.4), the first form of coordination is termed ‘‘hierarchy’’, the second
‘‘hybrid’’, and the third ‘‘market’’.

Fig. 4.25 Generic stages in software vendors’ value chain (based on Wolf et al. 2010)

4.6 Nearshoring Versus Farshoring 139

http://dx.doi.org/10.1007/978-3-642-31510-7_2

To visualize the scenarios we will use the ‘‘swim lane’’ concept (Binner 1987)
supported by many process modeling tools. Based on the inter-company division of
labor described in the case studies, each value chain stage is assigned to either the
hierarchy, hybrid or market swim lane, or positioned between two of them. If a stage
is positioned in the hierarchy swim lane, all corresponding subtasks are performed
by the software provider, so there is no division of labor between companies. A
stage positioned on the line between the hierarchy and hybrid lanes indicates a
greater division of labor between companies, as one or more activities are hybrid in
nature. From the software provider’s perspective, inter-company collaboration is
most pronounced when a value chain stage is allocated to either the hybrid or market
swim lanes or is on the line between these two; this signifies that the subject of the
case study performs none of the associated activities. By comparing the state of
affairs at two points in time, we can see whether the subject’s division of labor has
changed over time, and where in the value chain this change occurred.

Case study 1 (Wolf et al. 2010)
This case study was conducted in May 2009 on an independent, mid-sized

vendor of standard software. The value chain analyzed is that of an ERP
solution for SMEs which offers functionality for merchandise management
and production, financial accounting, business analysis, HR management,
and customer relationship management and is designed to cover the business
and accounting requirements of companies in the retail, manufacturing, and
service sectors. The purpose of the study was to investigate the current
situation and that at an earlier point of time, which the customer decided
should be the year 2005.

In 2009, product research was primarily carried out by the subject’s own
staff, although partners were involved for certain add-on products that
broadened the product’s functional scope. In 2005, by comparison, all
product research was conducted in-house.

Product development of the core product was carried out in-house at both
points in time. However, as mentioned under product research, add-ons were
included in 2009, and these were developed in cooperation with partners.

Both in 2005 and 2009, documentation was prepared in-house by spe-
cialists from the quality management department.

The company’s own staff took sole responsibility for generic marketing
activities such as trade shows, advertisements, online media, branding, and
brand campaigns—in 2009 and in 2005.

In both years, sales activities were carried out indirectly (see Sect. 3.2.1).
End customers could not buy the product directly from the provider, but only
from sales partners and software companies who in some cases specialized
in specific product lines or industries. The subject had long-term relation-
ships with these partners (in some cases up to 16 years). However, in 2009
some of the subject’s own sales staff were involved in pre-sales support and

140 4 Outsourcing and Offshoring of Software Development

http://dx.doi.org/10.1007/978-3-642-31510-7_3

on request, assisted partners with customer presentations. This means that
both hybrid and hierarchical coordination was employed in 2009.

Implementation was performed in both years by the partners mentioned in
the context of pre-sales support; however in this instance, unlike the pre-
sales support stage in 2009, the provider’s in-house employees did not
provide support.

For the most part, training, particularly for new customers, was con-
ducted by the partners responsible for pre-sales support and implementation.
They trained the customer’s key users in the software, who, in turn, trained
their colleagues. The subject only held training sessions under certain cir-
cumstances in 2009 (this did not happen in 2005). These sessions dealt with
new releases or changes to the product regarding financial or payroll
accounting, for example, as here the partner lacked the necessary skills to
conduct the training.

Both in 2005 and 2009, the subject fully outsourced maintenance of the
software product to its partners.

To summarize, Fig. 4.26 depicts the division of labor in 2005 and 2009,
respectively.

Case study 2 (Wolf et al. 2010)
The case study was conducted in May 2009, at one of the leading mid-

sized consulting and software companies for integrated ERP solutions in
German-speaking Europe. The value chain analyzed is that of a modular,
multilingual, multi-tenant, and multi-server ERP system for discrete, con-
tract, and variant manufacturing. The study’s aim was to investigate both the
current situation and the situation as it stood in the year 2000.

The subject of this case study did not differentiate between product
research and product development but regarded them as a single stage.

Fig. 4.26 Division of labor in case study 1 in 2005 versus 2009 (Wolf et al. 2010)

4.7 Outsourcing by Software Providers 141

Within the scope of product research, in-house staff was responsible in both
2000 and 2009 for devising new product ideas and analyzing customer
requirements, and for passing these on to the development department. In
terms of development, the company differentiated between application
development per se and technical development (such as determining which
tools should be used for software development). In 2000, technical devel-
opment and development of the core product were carried out solely by
internal employees. In 2009, the software was more open and offered various
ways to access external programs such as Outlook, Excel, or Word from
within the product. Also, basic functionality of the SQL database underlying
the product could be used to display data in graphical form, for example, and
this functionality appeared to the user to be an integral part of the product.
However, as these were standard functions of Microsoft technologies
deployed in the development process, we cannot treat them as program
modules purchased from external transaction partners as defined by this
study. As a result, this does not constitute hybrid coordination. In 2009, on
the other hand, modules for HR management and customs freight docu-
mentation/clearing were integrated into the system, and these were devel-
oped by external software partners. We can conclude, therefore, that both
hierarchical and hybrid coordination were present in the product research
and product development stages in 2009.

To avoid the need to share specialist, architectural, programming, and
documentation knowledge with too many people, documentation was com-
piled in both years by the internal employees involved in product research
and development.

In 2009, the subject ran an in-house marketing department that handled
press relations and CRM activities and communicated the brand image
created by an external agency. In 2000, the subject was not yet collaborating
with this agency, and hence the activities later performed by the agency were
still done by in-house resources. Therefore, in the marketing stage of the
value chain, both hierarchical and hybrid coordination could be observed in
2009, while in 2000 coordination was purely hierarchical.

In 2009, direct sales channels were deployed in the German market. In
other countries, the subject implemented an indirect sales model with a small
number of franchisees in which it had a minority shareholding. In 2000, on
the other hand, the subject relied much more heavily on partners in the
German, Austrian, and Swiss markets. However, this did not prove suc-
cessful as the product was often not managed or sold properly.

Similarly, in 2009 the provider took full responsibility for implementation
in the German market, and the franchisees mentioned previously performed
these tasks in foreign markets. Partners were also responsible for imple-
mentation on foreign markets in 2000, signifying hybrid coordination. At
this time, however, they also conducted implementation projects in

142 4 Outsourcing and Offshoring of Software Development

Germany. As the problems addressed by the software product tended to be
highly customer specific, the subject did not operate a training department
offering standardized seminars in either year.

On the whole, training was usually tailored to the needs of individual
customers and carried out by the employees of the provider or of a partner
company who performed the implementation. Therefore, in both years the
forms of coordination correspond to those described for the implementation
stage.

In 2009, the subject saw itself, particularly with regard to consulting-
intensive projects, both as a supplier of its own software and as an integrator of
other providers’ solutions. Therefore, in order to ensure customer satisfaction,
it not only provided maintenance services for its own software but also for the
add-on modules of various software partners, and for the third-party products
managed by the company in its role as systems integrator. In 2000, the
company did not yet provide maintenance for third-party modules, but already
used in-house resources alone to maintain its own software product.

To summarize, Fig. 4.27 depicts the division of labor in 2005 and 2009,
respectively.

Case study 3 (Wolf et al. 2010)
This study was conducted in April 2009. The value chain analyzed is that

of an ERP software product for the plant and mechanical engineering sector
and for car manufacturers and suppliers, comprising a standard ERP module
and a range of modules addressing requirements unique to the above target
industries. The study’s purpose was to examine the current situation and the
situation as it stood in the period 1999–2001.

The product core was developed in a research project conducted around
25 years previously. At that time, the subject had been working with

Fig. 4.27 Division of labor in case study 2 in 2000 versus 2009 (Wolf et al. 2010)

4.7 Outsourcing by Software Providers 143

customers to find a PPC system designed specifically for contract manu-
facturers. As there was no such solution available on the market, the subject
collaborated with the customer and research organizations to develop a
proprietary system. Excluding the product core (which already existed), the
subject adopted the same approach to product research for its target indus-
tries (plant and mechanical engineering; car industry, in particular suppliers)
in 2009. Add-on functionality was developed in collaboration with research
organizations and integrated into the standard product. In light of the
company’s strategic positioning, the only requirement was that the func-
tionality in question should be of direct relevance to manufacturing pro-
cesses. With respect to make-or-buy decisions relating to the composition of
the product portfolio, the subject basically pursued the following strategy: If
the software related to a manufacturing issue that could strengthen the
subject’s position in this market, product research was largely conducted in-
house. In these cases, the subject collaborated either with customers or with
research organizations in the form of long-term partnerships, and the part-
ners involved were selected on account of their industry specialization or
geographic proximity. In contrast to this specialized approach, in 1999–2001
the company targeted a significantly wider market with its product. Because
time to market was much shorter in this period, the subject’s product
research was conducted much more frequently in-house, and it focused more
heavily on technical research projects. In summary, hierarchical and hybrid
coordination could be observed in the product research stage of the value
chain in both 2009 and 1999–2001.

In 2009, product development of the core functionality for the manu-
facturing process was primarily conducted by the company itself. However, its
parent firm outsourced certain development activities to Poland. This Polish
unit was a wholly owned subsidiary of the parent and provided services to its
sister companies. However, seen from the subject’s perspective, the
involvement of the Polish operation was an example of hybrid coordination.

Furthermore, functionality in other, noncore areas not covered by the
subject (such as document or quality management) were sourced from
selected product partners specializing in certain kinds of solution. This add-
on functionality was integrated via interfaces, and the subject acted as prime
contractor for customer projects. Therefore, in 2009 both hierarchical and
hybrid (Polish sister company) coordination were in place for core product
development, while hybrid coordination (product partners) was the sole form
when developing add-ons. In 1999–2001, on the other hand, the core product
was developed exclusively in-house. Yet even at that stage, add-on func-
tionality was already being sourced from third-party providers—to an even
greater extent than in 2009. The company worked with far more third-party
providers than in 2009, and these partnerships were not as close. To cover
customer requirements, software was often sourced from the market and

144 4 Outsourcing and Offshoring of Software Development

integrated on an ad hoc basis—corresponding to the market form of
coordination.

For the period 1999–2001, therefore, we must make the following dis-
tinction: in terms of core-product development, coordination was exclusively
hierarchical in nature; for add-on functionality, both hybrid and market
coordination took place. In our visual representation, the ‘‘add-on develop-
ment’’ subtask has moved from the line between the hybrid and market swim
lanes in 1999–2001, to the hybrid swim lane in 2009. However, this does not
represent a change in the division of labor from the subject’s perspective, as
it was not involved in this subtask in either period.

In 2009, documentation was compiled in the form of wikis by employees
from the marketing division, indicating hierarchical coordination. During
this process, documentation for third-party products integrated in the core
product was also incorporated into the wiki. Likewise, in 1999–2001 doc-
umentation was compiled solely in-house. However, wikis were not yet
used, causing problems for the integration of third-party documentation,
particularly in the case of online help.

Activities in the marketing stage of the value chain were performed
almost completely by in-house resources in both periods.

In 2009, the main method of addressing the customer was via a direct
sales channel, necessitated by the complexity of customer requirements and
of the product itself. In 1999–2001, on the other hand, the subject targeted a
wider market. As a result, the company also made heavy use of indirect sales
channels via partners. In summary, hierarchy was the dominant form of
coordination in pre-sales support in 2009; in 1999–2001, by contrast, both
hierarchical and hybrid coordination were evident.

Fig. 4.28 Division of labor between companies for case study 3 in comparison (Wolf et al.
2010)

4.7 Outsourcing by Software Providers 145

In 2009, implementation was more or less the preserve of the subject
company. As for pre-sales support, partner companies played a larger role in
1999–2001 as the company was intentionally targeting a broader market
segment, and as a result both hierarchical and hybrid coordination were
evident.

In 2009, training was carried out at the customer site within the scope of
implementation. In 1999–2001 on the other hand, the company ran an in-
house training department at its main office, as it targeted a significantly
broader segment in this period. Moreover, many of the company’s partners
also offered training. As a result, we can observe both hierarchical and
hybrid coordination for this stage of the value chain.

The organization viewed maintenance as the most important source of
revenue for standard software vendors, and as such these tasks were per-
formed solely by the company itself during both periods.

To summarize, Fig. 4.28 depicts the division of labor in 1999–2001 and
2009, respectively.

Figure 4.29 provides an overview of the individual value chain stages, showing
whether the software vendors in each case study experienced a greater (:) or lesser
(;) degree of cross-company division or labor, or whether there was no change (9).

From this we can observe that inter-company division of labor increased,
particularly for upstream stages of the value chain, product research in case studies
1 and 2, and product development in case studies 1, 2, and 3.

A comparatively low degree of inter-company collaboration was apparent for
downstream stages of the value chain, for pre-sales support (case studies 1, 3),
implementation (case study 3), and training (case studies 1, 3). In the first case
study, the shift between 2005 and 2009 can be explained by two factors: additional
support from partners in the pre-sales support stage for large and complex cus-
tomer presentations, and the specialist training offered after certain new releases.
In case study 3 on the other hand, the pre-sales support, implementation, and
training stages were brought back in-house. This could be traced back to a strategic
decision to narrow the target market, and the subsequent switch to a direct sales
model.

4.7.2 Future Division of Labor in the Software Industry

4.7.2.1 Service-Oriented Architecture as the Technological Basis
for Software Development

As described in the previous section, the division of labor between companies
demands common business and technology standards. We will now present the
service-oriented architecture (SOA) concept, which is based on open (technical)
standards and can provide a foundation for inter-enterprise collaboration in the

146 4 Outsourcing and Offshoring of Software Development

Fig. 4.30 EPC representation of the sample process

Fig. 4.29 Overview of case study findings

4.7 Outsourcing by Software Providers 147

software industry. A system based on the SOA concept packages the functionality
of business processes in the form of services. This means it is not merely a
technical issue, but of increasing interest to management, too (Henn and Khan
2007). The principles of loose coupling and reusability are key to SOA: the former
minimizes dependencies between services; the latter ensures certain functions need
only be implemented once.

The idea behind this approach is to enable the creation and execution of
business processes composed of modular services, either existing, proprietary
ones, or from a third party. Each service performs a well-defined business task, and
includes both the necessary data and corresponding business logic. Whereas we
have previously discussed component-based programming as an abstract idea,
these services are a concrete example of the technology in action.

We can illustrate this concept with a simple example: the business process of a
financial services company, designed to evaluate the creditworthiness of business
customers.

The following figure depicts the process as an event-driven process chain (EPC)
(Fig. 4.30).

If a company applies for a loan of up to 100,000 euros, a simple credit
assessment is used to calculate its cash flow. If the latter reaches a certain
threshold, the application is approved; otherwise, it is rejected. If the loan
requested is more than 100,000 euros, on the other hand, a complex scoring
method is used, which includes a multitude of parameters such as additional
balance-sheet KPIs, the customer’s industry, holdings, and so on.

One fundamental decision the modeler or software developer must make relates
to the granularity of the service. Calculating cash flow, for example, is a very fine-
grained service; it is simply a small program with a few add-ons. However, the
entire credit assessment process could also be mapped as a single, and therefore
relatively coarse-grained service.

When deciding on the granularity, developers must weigh up a number of
factors (Erl 2006). The more fine-grained services, the greater number of interfaces
between them, increasing complexity, and negatively impacting performance.
Very coarse-grained services, on the other hand, hinder reusability and result in
less flexible IT systems.

Business processes can be comprised of existing elementary services or other
business processes. The definition of the order in which the services are executed,
and the parameterization of the services, is termed ‘‘orchestration’’. As is often the
case, there are a number of competing standards in this sphere, including the
XML-based Business Process Execution Language (BPEL4WS and BPEL), that is
supported by certain vendors. Other providers, on the other hand, are trying to
promote their own standards.

As previously mentioned, various definitions exist for the term SOA. Krafzig,
Banke and Slama (2006) describe a service-oriented architecture as comprising the
elements illustrated in Fig. 4.31.

As shown here, an application frontend initiates processes, controls their exe-
cution and receives the values returned by the calls. One example is a Web

148 4 Outsourcing and Offshoring of Software Development

application in a company Intranet that employees use as a tool for deciding
whether to approve loan applications.

Typically, a service represents a concrete business function, and according to
Krafzig, Banke and Slama (2006) comprise three elements: contract, implemen-
tation, and interface. The contract provides information on the interface(s), the
purpose of the service, what service quality can be expected, and what is required
to use the service correctly. The interface presents the service to the user, while
concealing its internal implementation. The implementation, at least in theory,
contains both the business logic and the data necessary for modeling business
functionality. In practice, however, business logic and data are still often sepa-
rated, with the latter stored conventionally, in databases.

For the loan approval process described in this section, the ‘‘Calculate cash
flow’’ function could be modeled as a service. The input data are processed by the
business logic (in this case a formula for calculating the cash flow). The contract
includes an interface description plus information on currencies and the accounting
methods that the service supports. It can also be a repository of data on the
reliability of the service, and who maintains it. Employees or other services can
then use the service via a Web application (i.e., an application frontend).

The service bus supports communications between the application frontends as
well as between different services, and must be able to handle the different
characteristics of various actors. This it does by deploying multiple programming
languages or operating systems, for example. It is sometimes necessary to translate
messages reciprocally, into the syntax form (and semantics, if applicable) of the
respective communication partner. In this regard, the role of the service bus is
similar to that of hardware buses in PCs. Yet it can also offer additional services,
such as logging, load balancing, and authentication of all actors, for example.

The service repository enables registration, search, and discovery of services. It
also provides information on how they are used, including the service contract,
version information, or the provider’s physical address, for example. The larger

Fig. 4.31 Elements of an SOA (adapted from Krafzig et al. 2006, p. 57)

4.7 Outsourcing by Software Providers 149

the number of available services, the more important the repository becomes.
Repositories do not have to cover only services available in-house; a truly
visionary idea is to have globally accessible, cross-enterprise repositories which
provide services that can be used and re-used in applications of many different
kinds.

Let us now look at technologies and standards that can be used to implement the
SOA concept. While SOA is frequently associated with Web services (Alonso
et al. 2004), it is in fact an abstract concept that can be implemented using a
variety of technologies. However, the most promising approach is an implemen-
tation based on Web services and the corresponding communication standards
(UDDI, WSDL and SOAP). As these standards are supported by the SOA solu-
tions of vendors like IBM, SAP, and Software AG, we will briefly examine this
technology in the following section. Web services rely on an XML-based
exchange of data. This open standard is particularly effective in enabling the IT
systems of different companies to communicate with each other.

As with SOA, the term ‘‘Web service’’ is defined in a number of different ways.
The World Wide Web Consortium (W3C) defines a Web service as a ‘‘software
system designed to support interoperable machine-to-machine interaction over a
network. It has an interface described in a machine-processable format (specifi-
cally WSDL). Other systems interact with the Web service in a manner prescribed
by its description using SOAP messages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related standards.’’ (Booth et al.
2004, p.7). In the following section we will take a brief look at these standards.

SOAP is a XML-based message format used to exchange data between Web
services. The Web Service Description Language (WSDL) is also based on XML.
A WSDL document includes information on the Web service’s interface, and
describes parameters and return values for the operations that the service supports.
This section will describe the elements of WSDL in more detail, using a
straightforward example. The Universal Description, Discovery, and Integration
(UDDI) specification essentially describes how information on the services can be
stored in the repository and how it can be retrieved. The following figure is a
schematic representation of a SOA based on Web services; the standards used are
given in brackets.

From registration to use of a Web service, the sequence can be described as
followed: to register the service, the service provider sends the Web service
description, in the form of a contract for example, to the UDDI-based service
repository (step 1 in Fig. 4.32). The contract can include a WSDL document
formally describing the interface. Moreover, it is possible to publish information
on the service semantics in the repository. As soon as a potential user sends a
message to the repository asking about the service (step 2), the corresponding
WSDL document (step 3) is provided. With this information, the service user can
now communicate directly with the service provider via SOAP messages (step 4).
Service discovery and binding is possible both at the development stage and at
runtime. However, the latter has mainly been a theoretical option up to now.

150 4 Outsourcing and Offshoring of Software Development

Let us now illustrate what we have just described using an example, how the
‘‘Calculate the cash flow’’ function can be performed using a service. The service
is based on the following Java class, which implements a simple cash flow cal-
culation method (Fig. 4.33).

This Java class can be offered as a Web service by means of a framework such
as Apache Axis, making it possible to automatically generate a corresponding
WSDL document. Before taking a closer look at this document, we will first
describe the main language artifacts of WSDL (Alonso 2004, p. 165-174).

A WSDL document describes the Web service both in abstract terms (\port
types[, \operations[and \messages[) and in concrete terms (\binding[,
\port[and \service[). The \port type[command combines related \opera-
tions[into sets. Each \operation[is specified via its incoming and outgoing
\messages[. The commands mentioned so far only provide an abstract descrip-
tion of the Web service; they do not include details on the concrete physical
address or protocols used. The\binding[command describes the communication
protocols (e.g., SOAP) that use a\port type[. The\ports[can state the concrete
address of the Web service in the form of a uniform resource identifier (URI). The
\service[command, finally, defines a set of \ports[, which means a given
service can be offered to a range of physical addresses. The following figure shows
the WSDL document that was generated from the Java class to calculate cash flow.
The elements described above are shown in bold (Fig. 4.34).

We would like to emphasize again at this point that SOA is not tied to the Web
service technology. Other technical implementation options are also conceivable,
on the basis of DCOM or CORBA, for example.

4.7.2.2 Potential Implications of SOA for the Value Chain Structure

After outlining the basic concept of SOA, let us now discuss its potential impli-
cations for the structure of value chains in the software industry. The Web service
for calculating cash flow, for example, could be used both in credit rating software
and in a program for evaluating company value. The automotive industry already
takes a similar approach, using individual modules or systems in as many different

Fig. 4.32 Schematic
representation of a SOA
based on Web services
(adapted from Dostal et al.
2005, p. 28)

4.7 Outsourcing by Software Providers 151

<m
essage>

<portType>
<operation>

<binding>
<service>

<port>

<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions targetNamespace="http://localhost:8080/axis/

CashFlowBerechnung.jws" xmlns:apachesoap="http://xml.apache.org/xml-
soap" xmlns:impl="http://localhost:8080/axis/CashFlowBerechnung.jws"
xmlns:intf="http://localhost:8080/axis/CashFlowBerechnung.jws"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:wsdlsoap="http://
schemas.xmlsoap.org/wsdl/soap/" xmlns:xsd="http://www.w3.org/2001/
XMLSchema">
<wsdl:message name="cashFlowDirektRequest">

<wsdl:part name="fWErträge" type="xsd:double" />
<wsdl:part name="fWAufw" type="xsd:double" />
<wsdl:part name="fWKSbErträge" type="xsd:double" />
<wsdl:part name="fWKSbAufwend" type="xsd:double" />

</wsdl:message>
<wsdl:message name="cashFlowDirektResponse">

<wsdl:part name="cashFlowDirektReturn" type="xsd:double" />
</wsdl:message>
<wsdl:portType name="CashFlowBerechnung">

<wsdl:operation name="cashFlowDirekt" parameterOrder="fWErträge
fWAufw fWKSbErträge fWKSbAufwend">
<wsdl:input message="impl:cashFlowDirektRequest"

name="cashFlowDirektRequest" />
<wsdl:output message="impl:cashFlowDirektResponse"

name="cashFlowDirektResponse" />
</wsdl:operation>

</wsdl:portType>
<wsdl:binding name="CashFlowBerechnungSoapBinding"

type="impl:CashFlowBerechnung">
<wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/

soap/http" />
<wsdl:operation name="cashFlowDirekt">

<wsdlsoap:operation soapAction="" />
<wsdl:input name="cashFlowDirektRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/" namespace="http://DefaultNamespace"
use="encoded" />

</wsdl:input>
<wsdl:output name="cashFlowDirektResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/" namespace="http://localhost:8080/axis/
CashFlowBerechnung.jws" use="encoded" />

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name="CashFlowBerechnungService">

<wsdl:port binding="impl:CashFlowBerechnungSoapBinding"
name="CashFlowBerechnung">
<wsdlsoap:address location="http://localhost:8080/axis/

CashFlowBerechnung.jws" />
</wsdl:port>

</wsdl:service>
</wsdl:definitions>

D
efinition of

nam
espaces

D
escription of

m
essage

form
ats

D
escription of
operations

D
escription of m

essage
transports

W
eb service
address

Fig. 4.34 WSDL description of the Web service (style: RPC/encoded)

Fig. 4.33 Java class to calculate cash flow

152 4 Outsourcing and Offshoring of Software Development

products as possible. Service repositories, e.g., based on UDDI, are a good way of
facilitating the use and reuse of services.

Thanks to common open standards such as SOAP, WSDL, or UDDI, the ser-
vice-oriented paradigm is opening up new opportunities for collaborative software
development and for greater specialization (reducing the scope of activities per-
formed in-house). For example, a standard software provider could outsource
development of certain services to offshore locations and integrate services from
smaller providers into its products to provide niche functionality. To return to
value creation in the automotive industry: smaller software companies could take
on the role of suppliers, while the ERP system provider assumes the role of a
service integrator, providing the customer with made-to-measure, service-based
applications that support their unique business processes (see Fig. 4.35).

Services are integrated via an SOA platform. These are developed by big-name
players such as IBM, Microsoft, Oracle, or SAP, but also by smaller providers such
as Software AG.

In Chap. 5 , we will take a closer look at the structure and economic charac-
teristics of platforms.

Service
Integrator

Implemented by
the SeI

Service
Portfolio

Supplier 1

Supplier n

…

Customer 1

Customer n

…

Fig. 4.35 Example of a supply network in the software industry of tomorrow

4.7 Outsourcing by Software Providers 153

http://dx.doi.org/10.1007/978-3-642-31510-7_5

5Platform Concepts

5.1 Overview

The rise of platform concepts can be observed in numerous industries. The
automotive industry was already hailing product platforms as a recipe for success
back in the 1990s. Many other industries followed suit (cf. e.g., Köhler 2004 on
product platforms in the media industry). In the following, we will explore the role
of platforms in the software industry. Drawing on the work of Gawer (2009), we
can distinguish between two generic types of platforms: product platforms enable
products and services to be produced efficiently through the re-use of existing
modules (Wheelwright and Clark 1992); while the main purpose of industry
platforms is to attract complementary products and/or services from third parties in
an industry (Cusumano and Gawer 2002). Figure 5.1 shows other characteristics of
these two types.

Both varieties of platforms are now also found in the software industry. In the
field of consumer software, there is already a multitude of examples: the best known
is Apple’s AppStore for the iPhone. Industry platforms for business software are still
in their infancy, for example salesforce.com’s AppExchange, Google Apps Mar-
ketplace, Microsoft Pinpoint, or SugarCRM’s SugarExchange (Burkard et al. 2010).

5.2 Product Platforms in the Software Industry

5.2.1 Cost Structure of Platform-Based Software
Development

Like their high-profile counterparts in the automotive industry, product platforms
in the software industry are intended to reduce development costs while main-
taining or enhancing quality. In particular, software product platforms are used to
make and deliver products in a product line that address different target groups
with different price categories and system environments—flexibly and above all
efficiently (Reussner and Hasselbring 2006).

P. Buxmann et al., The Software Industry, DOI: 10.1007/978-3-642-31510-7_5,
� Springer-Verlag Berlin Heidelberg 2013

155

These product platforms are designed to exploit reusable software modules, just
as the automotive industry example cited above involves the reuse of components
(Boysen and Scholl 2009). A software module is a unit of software that performs a
defined task or function and can communicate with other modules via interfaces,
for example on the basis of the SOA standards outlined in the previous chapter, but
can also be run independently. Modules are managed via configuration software, in
other words the product platform. Most crucially, a module should be used in as
many products as possible (Baldwin and Clark 1997; Miller and Elgård 1998;
Meyer and Lehnerd 1997).

A simple cost model demonstrates how the introduction of a product platform
can alter a software provider’s cost structure. We shall assume that each of the
provider’s products is developed separately, but in a modular way. Accordingly,
all N products, each consisting of Mn ðn ¼ 1 . . .NÞ modules, are developed inde-
pendently of each other. Figure 5.2 illustrates an example with three products,
each comprising two to three product-specific modules.

Fig. 5.2 Example of the
development of three
products without a platform

P lattform Typ P roduktplattform Branchenplattform
Participants One company (and in

some cases its
suppliers)

Multiple companies
with compatible
products

Objectives • Faster and more
efficient development
and production
• Greater product
variety at lower cost
• Increased flexibility
when designing new
products

• For platform
operators: Boost a
platform’s usefulness
through
complementary
products and
services
• For suppliers of
complementary
services: Increased
sales

Design principles • Reuse of
components
• Stable underlying
architecture

• Stable interfaces
for extensions

Fig. 5.1 Platform typology
(based on Gawer 2009)

156 5 Platform Concepts

The system n has development costs Kn, which are made up of the total of the
Knm development costs of Mn individual modules ðM ¼ 1 . . .MnÞ. The costs of the
development of the provider’s N systems, therefore, amounts to:

K ¼
XN

n¼ 1

Kn ¼
XN

n¼ 1

XMn

m¼ 1

Knm

This approach will now be contrasted with the cost structure after the introduction
of a product platform, or in other words, the reuse of components. For the vendor,
there will be upfront expenditure to establish the product platform. We will call this
Kp. Development of the modules incurs costs for each of the D modules, which we
will transcribe as Kd ðd ¼ 1 . . .DÞ. Each module will be implemented in 1 B n B N
systems. Integrating all these modules into a single system creates additional costs.
To keep this simple, we shall assume an average cost rate, which we shall call Kd.
Accordingly, the development of a vendor’s N systems using a platform concept
entails the following costs:

K ¼ Kp þ
XD

d¼1
Kd þ N � K1

Figure 5.3 depicts a usage matrix showing which modules are used in which
products. In our example, module 3 is used in products 1 and 3; module 1 is
included in all three products. Modules 2, 4, and 5, on the other hand, are used in
only one product.

By comparing cost functions (1) and (2), we can draw conclusions about the
changes in cost structure that can be expected on the introduction of a product
platform. First, we can clearly see that introducing a product platform requires a

Fig. 5.3 Configuration of three products via a product platform

5.2 Product Platforms in the Software Industry 157

large and potentially risky investment to develop it. For each of the N products
there are integration costs of Kl. In real life, the size of these costs is determined by
the quality and the future-proof design of the platform interfaces. Initially, at least,
this upfront investment is a certain challenge.

However, the deployment of product platforms leads to sizeable cost savings,
particularly if the module reuse rate is high. In other words, if the modules, once
developed, can be reused in as many products as possible, or if the number of
modules required to create for a given number of products can be reduced. Our
example illustrates the latter scenario: the number of products remains the same,
but the number of modules has been trimmed from eight to five.

In the automotive industry, as cited above, the leading manufacturers produce
only a small proportion of the modules themselves. Instead, they concentrate
mainly on integrating modules to create their products. The development and
production of modules is the task of highly specialized suppliers.

P
ro

du
ct

2
P

ro
du

ct
1

RDBMS

LDAP Server

System X

Server

EclipseRCP
Frontend

Net Frontend

System X Adapter

LDAP Adapter

RDBMS Adapter

Business
Component A

Business
Component B

Business
Component D

RDBMS

Server

Web Frontend
RDBMS Adapter

Business
Component A

Business
Component C

EclipseRCP
Frontend

Web Frontend

Net Frontend

System X Adapter

LDAP Adapter

RDBMS Adapter

Business
Component A

Business
Component B

Business
Component C

Business
Component D

A
ss

et
Li

br
ar

y
P

ro
du

ct
2

P
ro

du
ct

1

RDBMS

LDAP Server

System X

Server

EclipseRCP
Frontend

Net Frontend

System X Adapter

LDAP Adapter

RDBMS Adapter

Business
Component A

Business
Component B

Business
Component D

RDBMS

Server

Web Frontend
RDBMS Adapter

Business
Component A

Business
Component C

EclipseRCP
Frontend

Web Frontend

Net Frontend

System X Adapter

LDAP Adapter

RDBMS Adapter

Business
Component A

Business
Component B

Business
Component C

Business
Component D

A
ss

et
Li

br
ar

y

Fig. 5.4 Relationship between product and components (based on Zacharias 2007, p. 74)

158 5 Platform Concepts

5.2.2 Organizational Support for Implementing Product
Platforms

A major challenge for software providers is to align their organizational structures
with the rather abstract notion of a product platform. Here, both theory and
practice are still embryonic. In addition to the simpler concepts found in the Web
application development space, there are also more comprehensive approaches,
such as component-based software development (Messerschmitt and Szyperski
2003, p. 244–263).

Zacharias provides some interesting initial insights (Zacharias 2007), dividing
tasks into domain engineering, application engineering, and product line
management:

• Domain engineering constitutes the technical, specialist, and organizational
basis for component-based development. In particular, this includes the main-
tenance of an asset library, which contains all available components. Domain
engineering also involves the provision of development environments and
procedural models.

• Application engineering develops software solutions, drawing on the compo-
nents provided by domain engineering, and with new, complementary com-
ponents. Simultaneously, application engineering passes these newly developed
components back to domain engineering.

• Product line management oversees domain engineering and application engi-
neering and ensures these are in alignment.

In the final analysis, products are nothing more than special configurations of
components, which are linked at the time of development, installation, or at
runtime. Figure 5.4 illustrates the concept of component-based engineering, after
Zacharias.

Van der Linden et al. (2004) have developed a guideline for the implementation
and evaluation of product platforms. They look at a product platform from four
perspectives: the business dimension, the architectural dimension, the procedural
dimension, and the organizational dimension. For each of these four dimensions,
there are different evaluation levels that can be used to assess an organization’s
current status in relation to the implementation of a product platform.

5.2.3 Add-on: Industrialization as a Management Concept
for the Software Industry

In the previous section, we looked at component reusability and the related
principle of standardization. In Chap. 4, we discussed various forms of out-
sourcing. In Sect. 3.4.2, we analyzed current approaches to automating software
development. These three concepts are all part of the broader concept of indus-
trialization, which is currently the subject of much discourse and is becoming
increasingly important for the software industry.

5.2 Product Platforms in the Software Industry 159

http://dx.doi.org/10.1007/978-3-642-31510-7_4
http://dx.doi.org/10.1007/978-3-642-31510-7_3

Industrialization is a historically evolved management concept that offers a
framework for cost-effective mass manufacturing. According to this concept, the
key factors are: increased standardization of products and processes; greater
specialization (i.e., an increasing division of labor); and automation (Heinen 1991,
p. 10; Schweitzer 1994, p. 19). These three elements are interrelated, standardi-
zation being the most important prerequisite for implementing both specialization
and automation. To put it another way: specialization and automation are not
possible without standardization. But even standardization alone can lead to lower
unit costs. This is because only standardized processes can be carried out by a
machine or divided among multiple parties. Similarly, standardized processes are
only possible with standardized products.

New technologies play a central role in industrialization. As they create new
potential for automation, specialization, and standardization, they are often
described as drivers of industrialization.

Based on these technologies, we can demarcate three stages of industrialization,
two of which have already come to a close, and one that continues to this day
(Condrau 2005). The first period begins with the Industrial Revolution, from 1780
onwards. The invention of the steam engine, railroad, and power loom saw artisan-
type one-at-a-time manufacturing replaced by an early form of industrial mass
production. Whereas goods had previously been made individually for the
craftsman’s own use, machines enabled the more standardized manufacture of
large quantities of products for sale. This first stage of industrialization was a time
of enormous productivity gains and rapid economic growth.

The concept evolved further during the second stage of industrialization, which
commenced in 1840. In addition to studies conducted by academics, Taylor’s work
on scientific management is a case in point, key drivers in this phase were the
discovery of electricity and the invention of electric motors. While in the first stage
of industrialization, the production process was shaped by a quantitative division
of labor (i.e., dividing similar activities between multiple machines or human
resources), the installation of conveyor belts and the consequent increase in
standardization meant that work could be divided according to the type of task.
As a result of this greater specialization, highly standardized material goods, such
as the Model T Ford, could be created, stimulating further productivity gains.

The IT revolution, which began in the late twentieth century, is now seen as
ushering in a third stage of industrialization. While the first two stages involved the
manufacture of material goods, the focus is now on creating information-intensive
services and products. This development has been driven by the well-known waves
of innovation in information and communication technology. Figure 5.5 summa-
rizes the factors behind the industrialization of software development which were
discussed previously in various parts of this book.

Figure 5.6 outlines the three stages of industrialization and their key charac-
teristics. In the literature, the service sector is sometimes presented as the primary
target of the third stage of industrialization. We do not share this point of view:
Industrialization, through modern ICT, is also impacting information products
such as books or software, which are not part of the service sector.

160 5 Platform Concepts

However, it should be noted that there are limitations to the division of labor
and automation, and therefore to the concept of industrialization. These limitations
concern the motivation of employees, the costs of distributed manufacturing, and
the flexibility of the production processes. When there is a very deep division of
labor, tasks become increasingly similar. Taken to excess, this becomes mind
numbing and monotonous for workers. As a result, their motivation sinks,
diminishing the unit cost advantage. In addition, a high level of automation
requires a high level of standardization: This makes changes to processes, and
therefore also to products, increasingly difficult. In light of both of these aspects,
the manufacturing industry no longer sees maximum industrialization as its ulti-
mate ambition.

Fig. 5.6 Three stages of industrialization

Fig. 5.5 Drivers and expected effects of industrialization in the software industry

5.2 Product Platforms in the Software Industry 161

5.3 Industry Platforms in the Software Industry

5.3.1 Openness of Industry Platforms

As we noted at the start of this chapter, industry platforms provide a basis for
products and/or services whose functionality is extended by complementors. For
example, most game consoles include only the basic functionality required for
playing games, such as a graphics accelerator. The games themselves are devel-
oped by third parties. Industry platform operators’ main objective is to maximize
the attractiveness of their platform, by offering the largest possible number of
complementary products to the largest possible group of end customers (who can
be consumers or companies).

In more general terms, platform operators are primarily concerned with
achieving the right degree of openness for their platform. A platform can be
described as completely open, if it has no limitations as to participants, develop-
ment, use, and commercialization of the platform (Eisenmann et al. 2009). This
extreme form is rare, however, especially when it comes to commercially operated
platforms. Rather than simply taking an either-or decision, platform operators need
to find the ideal degree of openness for their platform.

The difficulty herein lies in the trade off between openness and control: while
more openness encourages third parties to participate, increasing the platform’s
attractiveness, it will generally lead to a loss of control over the platform design
(West 2003). In the following section, we distinguish between vertical and hori-
zontal openness.

5.3.1.1 Vertical Openness

Vertical openness refers to what extent complementary products or services from
external providers can or should be provided. In this regard, we can differentiate
between three platform-specific parameters which we will address below.

Exclusivity

A key parameter in deciding the degree of openness is the agreement of exclusive
rights. Their goal is to ensure that a specific complementary product is offered
exclusively via the platform (Eisenmann and Wong 2004). For example, new ver-
sions of the popular computer game Grand Theft Auto GTA are first available only on
Sony’s Playstation platform. A second form of exclusivity agreement is category
exclusivity. In this case, the platform operator and complementor agree that a certain
type of application may only be offered by that particular complementor. Strategies
such as these, which essentially reduce openness, make particular sense when one
side needs to make high and specific investments, and is only prepared to do so when
the other side ensures exclusive access to the distribution channel in return. This form
of agreement can also be observed on the market for console games: Platform

162 5 Platform Concepts

operators commonly limit console games’ access to the market—ensuring that, on
one hand, the chosen games are of sufficiently high quality; and on the other, that they
can command high licensing fees.

Reverse Compatibility

When a platform is further developed, new and/or additional functionality usually
becomes available to the developers of complementary applications. An important
decision is the required about reverse compatibility; in other words, whether to
ensure that complementary extensions developed for an older version of the
platform will also be able to run on newer versions. Platform providers need to
weigh up whether to accept potentially higher costs and limitations in the further
development of the platform, in order to make all existing complementary offer-
ings available on new platform versions (Choi 1994). When partner applications
are a central feature of the platform, ensuring reverse compatibility is essential.
As proclaimed by its slogan, ‘‘There’s an app for everything’’, Apple has made the
availability of complementary applications a key competitive advantage of the
iPhone. In consequence, the company needed to ensure reverse compatibility when
developing the fourth generation iPhone. This is why the company deliberately
opted for a new display resolution with exactly double the number of pixels, both
vertically and horizontally. This step ensured that all applications developed for
previous generations of iPhone will run on the new version without a hitch.
If Apple had overlooked this, all developers of complementary applications would
have been forced to provide a new version tailored to the new platform. In turn,
this would have diminished the amount of vertical openness.

Integration of Complementary Applications into the Platform Core

Another method of determining the degree of openness is to integrate comple-
mentary applications previously developed by external partners into the core of the
platform, in the course of further development. An example of this type of strategy
is Microsoft’s Windows operating system: A multitude of standard applications,
such as browsers, media players, and system utilities, were previously offered only
by third parties as optional extras. Now, they are an integral part of current
versions. As will be explained in the following section on the management of
complementors, this step can be viewed as closing the platform, as these partners
run the risk of competing with the operator (Yoffie and Kwak 2006). At the same
time, there are reasons for this kind of strategy, such as reducing strategic
dependence on particular providers, or the opportunity to realize economies of
scale.

5.3.1.2 Horizontal Openness

A platform’s openness to other platforms or third parties is described as horizontal.
This can be achieved via the following parameters (Eisenmann et al. 2009):

5.3 Industry Platforms in the Software Industry 163

Interoperability with Other Platforms

The main method by which a platform can be opened horizontally is the provision
of open interfaces and tools (Katz and Shapiro 1985). The Facebook Connect
interface is an example of this way of creating interoperability: Once a user has
registered, other platforms, such as Yahoo, can access their profile data. At the
same time, Facebook even displays the user’s activities on other platforms. As the
Facebook platform had already reached a certain maturity by the time this con-
verter was introduced (late 2008), this strategic opening provided an opportunity to
grow user numbers beyond the core target group. Conversely, using Facebook
Connect is also attractive for competing platforms, as it enables them to access the
data of users already registered on Facebook.

Licensing Other Platform Operators

In the development stage of a platform, one-sided subsidies are often employed to
prevent the ‘‘penguin effect’’ discussed in the context of network effect theory (see
Sect. 2.2.2.1). In this stage, it often makes sense to license only one proprietary
platform operator, to prevent freeloaders from taking advantage of one-sided
subsidies (Eisenmann 2008). If the platform has reached a certain level of matu-
rity; however, a strategic opening through the licensing of further operators can
dramatically accelerate growth. This option is especially attractive when the
additional operators apply their specific knowledge to provide innovative forms of
the platform, which broadens the potential user base (Gawer and Cusumano 2002).

A successful example of this type of opening can be observed in the market for
smartphone operating systems: The Android operating system is developed and
provided by the Open Handset Alliance, led by Google. Android is licensed to
numerous smartphone manufacturers, such as HTC, Motorola, Samsung, Dell, and
Sony Ericsson, as an operating system for their devices. This strategy of licensing
further providers (without relinquishing control over the development of the
platform), seems to be a success: Android, at least for the time being, is recording
strong growth rates, both in absolute terms and relative to its competitors.

Acquisition of Platform Sponsors

In addition, a platform can also be opened horizontally by taking on sponsors. In
contrast to licensees, who base their specific extensions on the platform core,
platform sponsors, are also involved in the ongoing technical development of the
platform. We have already discussed the advantages of these types of development
partnerships in Sect. 3.1.1.2. On the other hand, opening the platform to additional
sponsors also increases the complexity of coordination between the sponsors and
increases the effort required to specify common standards (West 2006).

Compared to licensing additional operators, adding to the number of sponsors
also involves a considerable risk: In the worst case scenario, political disagree-
ments between the sponsors could delay or completely impede development.
According to West (2003), this type of opening should be pursued if the original

164 5 Platform Concepts

http://dx.doi.org/10.1007/978-3-642-31510-7_2
http://dx.doi.org/10.1007/978-3-642-31510-7_3

platform operator’s business model focused not on licensing the platform, but on
selling complementary products or services. In fact, pushing this kind of business
was a key factor in IBM’s decision to transfer its rights from the Eclipse devel-
opment platform to the open source community. We will delve deeper into this
topic in Chap. 7.

Another possible motivation for opening to new sponsors is when the platform
is under considerable pressure from competing platforms. For example, in 1998,
after losing the browser wars, Netscape disclosed the complete source code of its
Netscape Communicator as part of the Mozilla Project, and opened itself to further
sponsors. The result: the Mozilla Foundation produced the Firefox browser.

5.3.2 Management of Complementors

Senior management at software companies tend to focus on analyzing their own
strengths and those of competitors, and frequently neglect to evaluate their sup-
posed allies: providers of complementary applications. While platform operators
are fully aware of their reliance on complementary functionality; especially those
who run industry platforms, they often overestimate the extent to which their
interests coincide. Even if, thanks to indirect network effects, both parties are
equally eager for the platform to grow, their interests cease to accord when it
comes to dividing up the profits.

For this reason, managing complementors is a key task for platform providers.
In addition to an intensive analysis of complementors’ business models, strategies,
goals, skills, and motives, this also encompasses the selection of suitable para-
digms for shaping the relationship between platform operators and complementors.
Ney (2004) has devised two opposing paradigms, hard and soft power, which will
be briefly described in the following section.

The most immediately obvious means for influencing complementors fall into
the ‘‘hard power’’ category: By adopting a credibly threatening posture or dangling
financial incentives, for example a share of revenue, platform operators hope to
ensure that complementors toe the line. A real-life example of the use of hard
power can be seen in Bill Gates’ threat to cease the development of Microsoft
Office for Apple’s Mac OS, should Apple continue to refuse to integrate Micro-
soft’s Internet Explorer in the Mac OS. These methods are generally underpinned
by traditional sources of power, such as a large market share or exclusive control
of a distribution channel. A platform operator can also exercise hard power and
reduce complementors’ independence by producing and providing strategically
important complementary offerings itself. Smartphones are a case in point: Despite
the trend towards coordinating a wide array of apps through marketplaces, vital
core functionality, such as telephony or text messaging, remains integral to the
platform. This strategy lets the platform operator realize economies of scale and
generate additional earnings by selling complementary products. In addition, it can
also be deployed to convey a clear message. However, especially when the

5.3 Industry Platforms in the Software Industry 165

http://dx.doi.org/10.1007/978-3-642-31510-7_7

platform operator relies on the existence of a broad range of complementary
offerings, this step can be counter productive: the message that the platform
operator can and will encroach on the market and jeopardize complementors’
sources of income may cause the latter to think twice about collaborating with this
operator.

This reveals the disadvantages of using hard power: entering the market for
complementary offerings incurs considerable ongoing costs. In addition, it pre-
vents the development of a long-term relationship of trust with complementors.
Furthermore, complementors will presumably try to avoid becoming too depen-
dent on a particularly powerful platform operator, and may well bestow their long-
term support on a competitor.

The alternative, namely exerting soft power, is generally a cheaper, and in the
long term, more successful method of encouraging complementors to collaborate
by pointing out shared objectives and opportunities. Concrete steps to achieve this
include the pro-active communication of market data and plans for the future
direction of the platform. Soft power can be wielded by proclaiming a common
vision, which clearly highlights the advantages for complementors. One example
of this, albeit from another industry, is Steve Jobs’ efforts to integrate offerings
from all the major music labels in his iTunes platform: In 2003, he articulated a
compelling shared vision for the industry, and was able to persuade all labels to
collaborate with him on terms that ensured the Apple iTunes Stores could offer
attractive prices.

The disadvantages of this approach are that soft power is only successful as a
long-term strategy, and an operator relying solely on soft power can be outflanked
by a more aggressive competitor.

As shown above, both hard and soft power can be successful means to deal with
complementors. Yoffie and Kwak (2006) have identified three factors that help to
select the most suitable paradigm:

• Strength and dominance: The use of hard power in particular requires the
deployment of considerable (generally financial) resources and a correspondingly
strong position on the market. If a platform operator cannot meet these require-
ments, they are better advised to consider soft power. Small and seemingly weak
companies can be especially attractive to external partners, as the latter do not
have to fear that the operator will encroach on their territory.

• Diversity of complementary offering: If a platform operator is dependent on a
large and diverse offering of complementary products, soft power is the better
option, as this is the only way to ensure that the platform remains attractive to
complementors over the long term.

• Specific investments by complementors: To integrate their offerings into the
platform in the best possible way, complementors often need to make specific
and irreversible investments. Where such investments are necessary, potential
partners will try to guard against a breakdown in their relationship with the
platform operator. As a result, it can be assumed that this type of trust is more
likely to be built using soft power.

166 5 Platform Concepts

For platform operators, therefore, the question of hard or soft power is not an
either-or decision, but rather a search for the ideal combination of the two. A
middle path chosen by many operators is to restrict their exercise of hard power by
producing only the most strategically significant complementary products them-
selves. Beyond that, they avoid intervening in the market for complementary
offerings, or do so only in a very rudimentary way, for example in the form of
quality controls. They will then use soft power to establish as stable and open a
relationship with their partners as possible.

5.3 Industry Platforms in the Software Industry 167

6Software as a Service: The Application
Level of Cloud Computing

6.1 Overview

This chapter is devoted to cloud computing, a new form of IT service delivery via
the Internet. The main focus will be on the software as a service (SaaS) concept, as
this book primarily discusses issues relating to software rather than hardware. SaaS
is regarded as a key trend—and figures on many IT decision-makers’ agendas.
SaaS involves providing a standard software solution to customers in the form of a
service over the Internet. The SaaS provider is responsible for the operation and
maintenance of the multitenant software. These providers do not charge license
fees. Instead, users pay fees for the right to use software components and services.
These are generally paid monthly, quarterly, or annually (for empirical findings on
this subject, please refer to Sect. 6.4.2). In addition, software and service providers
may leverage other revenue models, such as advertising or pay-per-use.

To come straight to the point: The idea behind SaaS is nothing new. Indeed, critics
often gibe that it is ‘‘old wine in new bottles’’. A similar approach, termed application
service providing (ASP), was already being pursued in the 1990s (Günther et al.
2001). SaaS is nothing more than an extension of ASP that,—due mainly to the
development and widespread adoption of innovative Internet technologies and
standards—has a great deal of potential and opens up new possibilities for users and
providers. To leverage SaaS solutions today, most users need only Internet access
and a Web browser. Formerly, by contrast, taking advantage of ASP services
necessitated high upfront investment and considerable expertise. For users, this
means that switching to SaaS is generally simpler and, therefore, more cost-effective
than it once was. Moreover, service-oriented architectures and open standards, such
as Web service protocols, make it easier to integrate SaaS solutions with in-house
systems and other services. However, to observe that SaaS is nothing revolutionary is
not to infer that this concept will not continue to spread or that it is of little interest to
providers and users.

P. Buxmann et al., The Software Industry, DOI: 10.1007/978-3-642-31510-7_6,
� Springer-Verlag Berlin Heidelberg 2013

169

In Sect. 6.2 we will begin by giving a general overview of cloud computing.
Building on this, in Sect. 6.3 we will describe potential applications of SaaS and
give examples of well-known SaaS products. Section 6.4 will offer empirical
findings on the adoption of SaaS solutions from the user’s perspective, before
discussing the provider’s viewpoint in Sect. 6.5. A key focus of the latter section
will be on empirical findings regarding the business and pricing models of soft-
ware providers.

6.2 Basic Principles of Cloud Computing

The basic idea behind cloud computing is that providers deliver standardized
services to customers via the Internet. For users, this offers an opportunity to save
costs and benefit from greater flexibility. Providers aim to make efficient use of
resources and increase revenues through new business models.

As is commonly the case with new IT concepts and solutions, a multitude of
definitions has sprung up. Here, we shall follow the definition offered by the
national institute of standards and technology (NIST): ‘‘cloud computing is a
model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, appli-
cations, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.’’ (cf. Zhang/Cheng/Boutaba;
Mell/Grance).

Some examples are the virtual computing environment, Amazon Elastic
Compute Cloud (EC2), Google Apps, and Microsoft Azure. Now, almost all major
IT players, such as Dell, Hewlett Packard, and IBM, are offering cloud solutions.
But even companies from other sectors, such as the financial industry and research,
are considering putting their excess computing resources on the market.

Cloud services are normally categorized as follows: infrastructure as a service
(IaaS), platform as a service (PaaS), and software as a service (SaaS) (Fig. 6.1).

Fig. 6.1 Spectrum of cloud computing offerings (Vaquero et al. 2009)

170 6 Software as a Service: The Application Level of Cloud Computing

IaaS solutions include computing power, storage, and networks. The customer
manages these leased infrastructure components via a user interface. Two exam-
ples are EC2 and Amazon Simple Storage Service (S3). Amazon EC2 is a virtual
computing environment. Users can lease preconfigured instances, each of which is
effectively a virtual PC. The Small Instance includes a 1.7 GB main memory, a
virtual core with an EC2 Compute Unit, and 160 GB instance storage (hard disk
storage) based on a 32-bit platform. Amazon S3 is an online storage Web service.
In conjunction with tools or further cloud services, S3 can be used as an external
hard drive with unlimited scalability.

PaaS solutions encompass a variety of services that support the development and
sale of software. The idea is that software developers—from individual programmers
to leading vendors—develop complementary applications for the corresponding
platforms. Apple’s App Store is an example from the business-to-consumer (B2C)
space. In the business-to-business (B2B) space, there is the AppExchange platform
provided by Salesforce.com, which enables users to develop and market CRM
applications. More than 1,000 such applications are now available. Further examples
of these types of platforms include Google App Engine and Microsoft Windows
Azure (cf. Zhang/Cheng/Boutaba).

Software as a service involves the delivery of software to customers, who
access it via a network. All the user needs is an Internet browser, which can be
installed on a variety of devices, including mobile ones. We will discuss this
subject in greater detail later in this chapter.

Providers commonly offer multiple service models. For instance, Sales-
force.com provides its CRM system as a SaaS solution, while its development and
deployment platform, Force.com, and sales platform, AppExchange, are PaaS
solutions. Google also offers a platform in the shape of Google App Engine, and a
SaaS solution, Google Apps.

Another classification is based on the operating model, i.e., public and private
clouds. Public clouds are open systems that are shared by multiple customers.
They usually allow customers to flexibly expand their usage as required.

In contrast, private clouds, also known as private managed clouds, are closed
systems—for example, belonging to a particular company or provider. Being more
limited physically, they are less flexible. On the other hand, the stored data is
better protected against unauthorized access by third parties. When both types of
cloud are used, this is termed a hybrid cloud. For example, hybrid solutions allow
users to lease additional external resources to cope with peak loads.

As regards technology, the concepts of virtualization and multitenant archi-
tecture are pivotal to cloud computing. Virtualization comprises software and
hardware-based techniques that add a layer of abstraction between the user’s
applications and the provider’s physical resources. This can be illustrated by
looking at data storage in the IaaS layer: Providers can make efficient use of their
resources by distributing customers’ data to servers with free storage space. For
customers, however, this means that they often have no idea where their data are
physically stored.

6.2 Basic Principles of Cloud Computing 171

Multitenant architecture is closely linked to virtualization. It means that rather
than providing each customer with a dedicated technical infrastructure, all cus-
tomers use the same platform.

Setting aside private cloud offerings, cloud computing is a form of outsourcing,
as functionality and/or processes are outsourced to third parties (see also Chap. 4).
As a result, the advantages and disadvantages of cloud computing are similar to
those of outsourcing:

• Concentration on core competencies: By outsourcing tasks such as day-to-day
application management or data storage, customers can free up resources for
other activities, such as their core competencies.

• Simplification and greater flexibility: Cloud computing enables customers to
streamline their IT management and make it more flexible. For example, it can
be scaled up or down at short notice as required. Providers can add or remove
storage and computing resources on demand.

• Cost savings: This is a key benefit of cloud computing. Fixed hardware and HR
costs are converted into variable usage fees, avoiding costly capital expendi-
ture. By exploiting economies of scale, providers are able to pass on attractive
prices to customers.

• Access to external knowledge and skills: While cloud computing does enable
customers to draw on external expertise, experience shows that outsourcing
often entails the loss of in-house knowledge and skills. This is a drawback for
one thing because it means the user organization is more heavily dependent on
the outsourcing provider. If there are standards that make it easier to switch
between providers, this becomes less of a problem.

• Security: Even major providers who work to the highest professional standards
cannot always prevent system failures, as evinced by the server outages
experienced by Amazon, Google, and Salesforce.com. The costs incurred by
downtime vary widely, depending on the industry and the company affected.
With online broker systems, for example, these costs are estimated at 6.5
million dollars an hour. On top of the direct costs of the outage, there are
damages that are harder to quantify, such as loss of reputation and angry
customers and suppliers.

• Protection of customer data: Another central issue for cloud computing is the
protection of customer data from loss, hackers, or other threats. For example, a
server fault at T-Mobile USA resulted in the deletion of data belonging to
thousands of Sidekick users. The company was not able to restore all of the lost
data. Of course, these types of slip ups are not the preserve of cloud providers
alone—they also happen to customers themselves, as the recent incidents at
games vendor Sony aptly demonstrate.

• Lock-in: The oft-times inadequate interoperability between different providers’
offerings and with existing (legacy) systems poses another risk. As the stan-
dards for application programming interfaces are still incomplete, changing
providers can prove to be a costly exercise for customers. As a result, this
increases customers’ dependency on the cloud provider. However, this lock-in

172 6 Software as a Service: The Application Level of Cloud Computing

http://dx.doi.org/10.1007/978-3-642-31510-7_4

effect is not exclusive to cloud computing, either. High switching costs are
associated with other types of standard software, such as ERP systems, which is
why companies seldom change providers. Like ERP, cloud computing can also
necessitate organization changes at the customer end. However, less scope for
customization means that there is also less of a lock-in effect than with ERP or
other standard solutions.

• Further risks: Measuring and monitoring the provider’s performance can also be
difficult. Another issue is how much the customer’s IT organization will need to
be restructured as a result of cloud computing.

This list is by no means exhaustive: Given that cloud computing is a relatively
new area, further problem fields are sure to surface.

Simply put, the business model of cloud providers consists in providing
customers with IT resources in return for a fee. That makes cloud computing
particularly appealing to companies that already have extensive resources, such as
Amazon and Google. The less use they make of these resources themselves (e.g.,
storage space, or processing power), the more the providers stand to profit. As a
result, a cloud provider can realize economies of scale, delivering cost advantages
in relation to IT infrastructure, hardware, software, and human resources.

For IaaS, customers are mostly charged a usage-based fee. Hourly rates can vary
depending on the resource or service used and the user’s location. For Amazon’s
Small Instance, these costs amount to a few cents per hour. Interestingly, Windows
users tend to pay higher prices than Linux/Unix users. A fixed fee may also be
offered, which reduces the variable costs per hour. This type of pricing is partic-
ularly attractive to heavy users. In addition, processing power and storage capacity
may be auctioned. PaaS providers often make free tools available to developers, to
entice them to produce applications for the platform. One such example is the
Force.com development environment provided by Salesforce.com. Usage-inde-
pendent fees are prevalent with SaaS, with the number of users being the main
parameter. For instance, Google offers SMEs services like G-Mail, a calendar,
Google Sites, word processing, and a spreadsheet program for 40 € per user per
year. Customers of SAP Business ByDesign can choose between a number of
versions priced between 19 and 199 € per user per month, depending on the scope of
functionality, and include operation and maintenance (as at April 2011).

From a technical perspective, nothing about this modern version of outsourcing
is revolutionary. Similarly, the principle of virtualization is not really all that new.
However, cloud computing is interesting from an economic perspective, given that
the costs are significantly lower than those of traditional outsourcing offerings.
Moreover, thanks to open interfaces, the cloud can be accessed relatively quickly
and simply, i.e., the barriers to entry are low. Competition between cloud providers
is likely to increase dramatically, which will influence prices. As a result, cloud
computing will have a considerable impact on users’ IT. In turn, this could mean
that cloud computing will effect lasting changes on the IT industry.

In the following sections, we will take a closer look at software as a service, the
cloud computing layer most closely connected to software.

6.2 Basic Principles of Cloud Computing 173

6.3 SaaS: Applications and Examples

SaaS is suitable for a variety of applications. However, this business model
particularly lends itself to functions and processes that can be standardized to a high
degree. This includes CRM software (see also the empirical findings in Sect. 6.3.2).

The following pages offer three SaaS case studies: salesforce.com, SAP
Business ByDesign, and Google Apps.

Software as a Service at Salesforce.com
Salesforce.com is a US-based provider of on-demand business applica-

tions and operator of a cloud platform. As is typical for SaaS solutions,
revenues are not generated by the sale of software licenses, but through
subscription fees for the CRM system components used by the customers.
These components, plus the entire infrastructure, support, and other services,
are delivered over the Internet.

In addition to sales automation, Salesforce.com also offers solutions for
marketing, partner management, content management, innovation manage-
ment, knowledge management, and customer service. The CRM application
is offered in five different versions (Contact Manager, Group Edition, Pro-
fessional Edition, Enterprise Edition, and Unlimited Edition).

Since 2007, Salesforce.com has offered an on-demand platform for
Web-based applications, Force.com. Users and developers can employ
Salesforce’s infrastructure to develop custom applications, which they can
either use themselves or offer via the AppExchange marketplace.

Customers pay monthly fees for using the software components and
services they choose. That saves them the—frequently high—upfront costs
of acquiring software licenses and implementation. With SaaS, upgrading
software also falls within the provider’s remit. Salesforce.com’s contracts
have a minimum term (agreed by the parties) and if they are not terminated,
are automatically extended for the same period of time. Fees are calculated
according to the number of licensed users and the fixed monthly costs. The
latter varies widely between versions (€ 4 for Contact Manager and € 270 for
the Unlimited Edition per user and month).

Salesforce.com was founded in 1999 by Marc Benioff, a former Oracle
executive. Right from the start, the company delivered its software over the
Internet. By 2008, Salesforce.com had conquered 10 % of the market for
CRM systems, notching up annual sales of $ 1 billion. This earned it third
place, behind only SAP and Oracle. Moreover, Salesforce.com has won a
series of awards for its innovative products. It now has more than 67,000
customers with over 1.5 million users, and employs around 3,600 people.

174 6 Software as a Service: The Application Level of Cloud Computing

SAP’s Business ByDesign
SAP ERP is mostly deployed by companies with large workforces. To

enable further growth, SAP has expanded its ERP product portfolio to
include offerings for small and mid-sized enterprises (SMEs). Products
aimed at this group include Business One (for SMEs with up to 100
employees), Business ByDesign (100–500 employees), and Business All-in-
One (up to 2,500 employees). Of these, Business ByDesign is delivered
exclusively as an on-demand business application (SaaS). As is commonly
the case with SaaS, SAP is responsible for hardware, software, service, and
support.

The core of Business ByDesign comprises eight modules: Executive
Management, Financial Management, Customer Relationship, Supplier
Relationship, Human Resources, Supply Chain, Compliance, and Project
Management. Users can be authorized for specific functions or entire areas.
Because the modules are integrated, users can perform analyses across
multiple modules.

One potential advantage for users of SaaS makes itself felt when changes
are made to financial regulations or other legislation: with conventional
licensing models, users often have to acquire and/or install corresponding
software updates. By contrast, in the ideal case, SaaS solutions are updated
by the provider, without the customer having to do anything at all.

Unlike SAP ERP, Business ByDesign can only be customized by pro-
gramming to a minor degree. It can only be tailored to users’ needs by
configuring the standard version. However, it is possible to add functionality
via the SAP NetWeaver platform. The standard solution supports 7 of the 17
industries identified by SAP, including automotive, high tech, and electronics.

Customers pay for Business ByDesign based on the number of users. In
contrast to other SaaS applications (for example salesforce.com), it is not
possible to select only one module.

Office Software as a Service by Google: Google Apps
In addition to its well-known search engine, Google offers a variety of

other Internet applications—including the Google Apps software package.
This includes the Gmail e-mail service (which is called Google Mail in the
UK and Germany, to avoid any conflict with existing names). The package
also contains a calendar, word processing and spreadsheet programs, and an
instant messenger. Google Apps is primarily aimed at enterprise. However,
consumers can access all components of the package individually via Go-
ogle’s home page.

As usual with SaaS, neither the user interface, the program logic, nor the
data are stored on the user’s computer. To use the software, all customers
need is an up-to-date Web browser.

6.3 SaaS: Applications and Examples 175

The price list for Google Apps is short. The free Standard Edition is
aimed at smaller organizations and offers only limited functionality.
Google’s ads are displayed to users, and the storage capacity per user
account corresponds in size to a private Google Mail account. The Profes-
sional Edition offers greater storage capacity and support services in addition
to availability guarantees and programming interfaces for integrating the
software with existing IT environments.

According to Google, it has acquired around two million corporate cus-
tomers, since launching the Professional Edition. Apart from Google itself,
high-profile clients include Procter & Gamble and General Electric. Google
also works with developing countries to increase the take-up of its offering.
For example, the official Google Blog reported that the software is deployed
by some 70,000 students at universities in Rwanda and Kenya.

With its Google Apps offering, Google has well-established desktop
solutions such as Microsoft Office and Open Office in its sights. Similar SaaS
products include IBM’s Lotus Live and Microsoft’s Office Web Apps.
Google Apps may have a competitive disadvantage in its relatively late entry
to the market, in light of lock-in situations on network effect markets (also
see Sect. 2.2). However, the growing market for on-demand office solutions
offers potential for Google.

Besides these high-profile examples, a multitude of other SaaS solutions are
available. Software providers are also showing signs of interest in this business
model.

6.4 SaaS from the User’s Perspective: Opportunities
and Risks

6.4.1 Background

Taking advantage of a SaaS offering essentially means outsourcing, i.e., contracting
out functions or processes to third parties (Buxmann et al. 2008b). This means that
some of the potential advantages and disadvantages of SaaS can be deduced from
those of outsourcing. Against this background, we will now explore the opportu-
nities and risks associated with SaaS. Based on prior research into conventional IT
outsourcing (Earl 1996), the ASP market (Kern et al. 2002) and early findings on
the adoption of SaaS (Benlian et al. 2009), five categories of opportunities and five
of risks may be identified (Benlian et al. 2010). These are outlined in Table 6.1.

We will now analyze, in greater detail, the opportunities and risks outlined in
Table 6.1.

A key advantage of SaaS solutions from the user’s perspective is the oppor-
tunity to reduce costs and improve cash flow, given that software solutions no

176 6 Software as a Service: The Application Level of Cloud Computing

http://dx.doi.org/10.1007/978-3-642-31510-7_2

longer need to be installed on the company’s servers. Nor is there any need for
testing, development, or maintenance. Users also save upfront licensing costs.

SaaS involves regular, fixed costs for operations, support, and maintenance. For
this reason, it is often discussed in terms of a rental or subscription model. Most
providers do not charge extra for updating the software. However, in addition to
the application rental costs, users also have to bear implementation costs—for
example, for the technical and organizational integration of the SaaS solution. The
integration with existing in-house systems can be particularly challenging. Having
said that, in the conventional model, users not only have to bear implementation
costs, they also have to pay upfront license fees (refer to Sect. 3.3). On top of this,
there are annual support and maintenance fees. Users also face update costs
roughly every 7–10 years.

Table 6.1 Opportunities and risks of SaaS from the user’s perspective (based on Benlian and
Hess 2010 with extensions by the authors)

Chancen Risken

Category Description Category Description

Cost and
Cashflow
benefits

Delivery of SaaS applications
may lead to lower overall costs
and improved cash flow

Financial
risks

SaaS customers may end up
paying more for application
provision (e.g., due to Internet
outages, increased
customization costs, or price
rises); risk of higher opportunity
costs, as SaaS applications are
generally less adaptable to
company-specific requirements

Strategic and
operational
flexibility

SaaS customers may have
greater scope to change provider
(e.g., due to short notice periods
for termination and reduced
dependence)

Strategic
risks

SaaS customers may lose
business-critical resources or
knowledge when outsourcing
their application development
and management

Improved
quality

SaaS providers may be forced to
deliver a continuously high
quality of service, given that
their customers are able to
terminate at short notice

Operational
risks

SaaS providers may not fulfill
the Service Level Agreements
in terms of availability,
performance, and application
interoperability

Access to
specific
resources

SaaS customers may benefit
from the SaaS provider’s
resources, skills and
technologies

Security
risks

Business-critical data may be
transferred to the SaaS provider,
and/or mission-critical
processes may be negatively
impacted

Concentration
on core
competencies

SaaS customers may find it
easier to concentrate on their
core competencies if they
outsource application
development and management

Social risks Outsourcing applications to a
third party may invoke
opposition from employees or
lead to negative publicity

6.4 SaaS from the User’s Perspective: Opportunities and Risks 177

http://dx.doi.org/10.1007/978-3-642-31510-7_3

As a general rule, implementation costs (hardware, software, business process
applications, human resources), including licenses, are higher for a conventional
standard software solution than for SaaS (Altmann et al. 2007, p. 40). One of the
reasons for this is that the solution is not dependent on a specific operating system
or platform, and so there are little or no additional IT costs. This means that SaaS
solutions can be made available faster.

In addition, the implementation costs of SaaS solutions are often lower, because
they normally offer less scope for customization than conventional standard
software (Buxmann et al. 2008b). Of course, this also means that the cost benefit
must be offset against a reduced ability to tailor the software to specific organi-
zational requirements.

Another—much-vaunted—potential opportunity arising from SaaS is greater
(strategic and operational) flexibility: Enterprises can simply change SaaS pro-
vider, for example if targets set in the contract are not met. Because the installation
of hardware and software is the provider’s responsibility, users tend to enjoy
greater independence. In general, they need to make fewer investments in their
own IT infrastructure and can terminate the contract ahead of time at relatively
short notice. Assuming that the SaaS provider stores the user’s data in an open data
format, migrating the data is also relatively easy. However, as several real-life
cases show, this purported flexibility is often no more than wishful thinking.

In the following, we scrutinize this potential advantage (i.e., greater flexibility
in terms of choosing providers) a little more closely. As outlined in Sect. 2.2.4,
changing standard software solutions generally entails high switching costs for
users. This is particularly true of ERP systems—which means that in real life,
users rarely change providers. What exactly is the reason for these high switching
costs? The most significant factor is not the licensing costs of an alternative
software solution. Rather, it is because most ERP software reflects the user’s
business processes—and may have driven their re-engineering. As a result,
switching the provider entails significant and costly operational changes. In
principle, the same applies to SaaS. Once these solutions are integrated into the
user’s IT environments, a certain lock-in effect is unavoidable. The more the
organization has invested in the integration, the greater the lock-in effect—and
therefore the dependence on the provider. However, because SaaS solutions
generally involve limited customization, open standards, and service-oriented
architectures, there is less lock-in than with conventional standard software.

The opportunity to improve quality is seen as a consequence of SaaS’ lower
switching costs for user organizations: SaaS providers are therefore compelled to
respond to the wishes and requirements of their customers. Another factor named
as a source of better quality is SaaS providers’ specialization in the delivery of the
latest IT infrastructures, and their economies of scale. Quality is also improved
through the prompt installation of updates, patches, and extensions. Moreover,
providers are well placed to analyze customers’ usage of their software. Providers
see this as an opportunity to better understand their customers’ needs and make
their solutions more user-friendly. On the other hand, not all users are overjoyed at
the fact that their activities can be logged and evaluated. Similarly, as we

178 6 Software as a Service: The Application Level of Cloud Computing

http://dx.doi.org/10.1007/978-3-642-31510-7_2

discovered in many of our interviews with users, automatic updates are not nec-
essarily regarded in a positive light, either. This applies especially to updates that
affect navigation of the software as this may not meet with the employees’
approval.

Access to specialized resources, skills, and technologies is often mentioned in
the context of quality improvements. Because of their specialization, SaaS
providers generally have the means and opportunities to invest in the newest
generation of information technologies. In addition, the employees of SaaS pro-
viders can specialize exclusively in SaaS application provisioning and amass
expert knowledge that ultimately benefits the end customer.

Finally, any discussion of the advantages of SaaS will include the standard
argument that outsourcing software development, customization, and maintenance
to a specialist third party enables companies to concentrate on their core business.
This frees up resources in the IT department (both human and financial), which can
then be devoted to strategic tasks. For example, routine support activities can be
outsourced to the SaaS provider, allowing the in-house IT team to concentrate on
strategic IT projects.

On the other side of the equation, there are financial, strategic, operational,
security, and social risks to consider. In particular, financial risks are associated with
hidden costs, which are common in outsourcing. Often, these cannot be estimated at
the time the contract is concluded. One possible explanation for these hidden costs is
that user organizations need to engage specialist system integrators—for example, to
adapt the software to the company’s specific needs or integrate the SaaS application
with in-house applications. However, hidden (future) costs can also arise when SaaS
providers raise their subscription prices, after companies have invested in tailoring
the solution and have migrated their data. Providers may also ask for additional fees
for alternative access channels to the SaaS solution (e.g., via mobile devices). Last
but not least, the user organization may incur considerable expenses (e.g., loss of
sales) resulting from system outages or poor performance (e.g., slow Internet
connections).

Strategic risks result from the fact that a company outsourcing mission critical
resources puts itself in a position of dependence, which could limit its freedom to
act. For example, companies may no longer be able to respond flexibly to changes
in their own corporate strategy, because they have lost the ability to tailor the
software to their individual needs. In this scenario, the software could be cus-
tomized by the SaaS provider or a system integrator, of course. In reality, however,
this could not be implemented quickly enough to generate a competitive
advantage.

Finally, social risks allude to the danger that employees (e.g., in IT or user
departments, or employee representatives) will oppose the delivery of SaaS
applications by a third party—or in other words, the outsourcing of (what are
presumably) critical business functions. This could not only damage the com-
pany’s reputation but also cause friction inside the company, negatively impacting
on productivity. However, this risk is not peculiar to SaaS, and can result from
many other types of organizational change.

6.4 SaaS from the User’s Perspective: Opportunities and Risks 179

6.4.2 Empirical Study on Opportunities and Risks
for SaaS Users

6.4.2.1 Data Set and Methodology

To investigate the opportunities and risks of SaaS from the user’s perspective, we
conducted an empirical study (Benlian et al. 2010). In July 2009, we took a
random sample of 2,000 companies from the Hoppenstedt company database and
sent them an electronic and a paper-based questionnaire. The questionnaire was
aimed at heads of IT and CIOs/CTOs, who would have the background knowledge
required to answer the questions. Of the 2,000 companies, 349 (of which 142 were
SaaS customers and 207 non-customers) responded, returning a total of 922
completed questionnaires. On average, therefore, each company evaluated two to
three application types used in their organizations with respect to the opportunities
and risks of deploying SaaS (whether currently or potentially in future).

Non-customers were asked to evaluate how knowledgeable they were about
SaaS, to ensure that they had indeed looked into the topic. More than 85 % of non-
customers responded that they were familiar with SaaS solutions. Only 5 %
indicated that while they understood the principles behind SaaS applications, they
had not yet thought about implementing any.

The sample included companies from the following industries: Mechanical
engineering/automotive, wholesalers and retailers, insurance/banks, telecommu-
nications/information/media/entertainment, real estate and construction, logistics,
public sector and healthcare, and service providers. Further, characteristics of the
respondent companies are outlined in Table 6.2.

Table 6.2 Breakdown of sample (Benlian et al. 2010)

Category Percentage Category Percentage

Number of employees Sales in millions of euros

\10 27.3 \1 28.2

10–49 25.4 1–9 41.3

50–99 20.8 10–99 16.9

[99 26.5 [99 13.6

Use of SaaS applications (in years) Position of respondent

0 (non-customer) 59.4 CEO, CIO 24.9

[0 (currently SaaS customer) 40.6 Head of IT 62.5

I have been familiar with SaaS for … years Commercial manager 8.4

\2 17.3 Other and N/A 4.2

[2 82.7

180 6 Software as a Service: The Application Level of Cloud Computing

6.4.2.2 Findings

The participating companies were asked whether and to what extent they currently
used SaaS applications, or were planning to do so in future. This question spanned
the period between 2008 and 2012. Their current or planned deployment was
measured in terms of the percentage of their IT budget spent on SaaS for the
relevant type of application (e.g., ERP or CRM) (Benlian et al. 2010).

The results show that acceptance was greater for highly standardized applica-
tions such as CRM or office applications than for less standardized application
systems. Expenditure on SaaS for highly standardized types of applications ranges
between 8 and 14 % of the IT budgets for 2008 and 2009 and 23–35 % for 2010–
2012.

Less standardized types of applications are much less likely to be delivered via
SaaS, with just 0–3 % between 2008 and 2009 and between 4 and 11 % between
2010–2012. However, because of the low base effect, less standardized application
systems will see higher growth rates in the near future. For ERP systems, we found
an average growth of 54 %—and an impressive 95 % for SCM applications
(Benlian et al. 2010).

In the next step, respondents were asked to gage the opportunities and risks of
deploying SaaS. Enterprises cited short- to middle-term cost advantages as the
greatest opportunity. Clearly, SaaS is regarded as a means to reduce costs.
In addition, companies also regarded flexibility as a moderate to a major advan-
tage. Furthermore, the respondents saw CRM, ERP, and SCM applications as
offering moderate to good opportunities for improving quality and access to
specialized resources and skills. Interestingly, SaaS is not seen as an opportunity to
focus on the company’s core competencies.

Fig. 6.2 Opportunity risk analysis for various application types (Benlian et al. 2010)

6.4 SaaS from the User’s Perspective: Opportunities and Risks 181

According to the results of our study, security concerns emerged as the most
significant form of risk, across all types of applications. In addition, respondents
saw considerable financial risks in relation to CCC, ERP, and SCM applications.
We can conclude from this that many companies fear that deploying SaaS
applications will incur hidden costs that will only be revealed in the course of time.
The companies in our sample did not see any social risks, either in terms of
resistance from employees or damage to the company’s reputation as a result of
surrendering critical parts of the business.

Our results concerning the opportunities and risks of SaaS are visualized in the
following diagram (Fig. 6.2).

If we compare the opportunity risk analysis for SMEs with that for larger
companies, we find only small differences (see Fig. 6.3). For larger organizations,
however, the strategic risk of losing business-critical skills to a SaaS provider is a
particular concern. SMEs’ greatest fear, on the other hand, is that the delivery of
SaaS applications via an Internet interface could lead to loss of data and/or a
connection failure.

In terms of opportunities, SMEs especially value the advantage of being able to
draw on specialized resources, skills, and technologies that they themselves do not
possess. They also saw greater cost advantages in SaaS than major enterprises did.
By contrast, larger companies emphasized strategic flexibility and potential quality
improvement over cost advantages. Neither SMEs nor large enterprises regard
being better able to concentrate on their core competencies as a key advantage of
SaaS.

A comparison of the opportunity and risk assessments of current SaaS
customers and non-customers reveals some interesting differences. While on
average, non-customers evaluate the risks of SaaS as being consistently high, SaaS
customers tend to focus on the advantages (see Fig. 6.4).

Fig. 6.3 Opportunity risk analysis: large companies compared to SMEs (Benlian et al. 2010)

182 6 Software as a Service: The Application Level of Cloud Computing

Analyzing the details, we see that security is a greater concern for non-
customers. In addition, this group rates financial and operational risks as critical.
Current SaaS customers regard security and financial risks in the same light.
However, they see the risk of employee opposition to SaaS and its possible con-
sequences (downsizing) as minimal.

6.5 SaaS from the Provider’s Perspective: Pricing
Strategies and Business Models

6.5.1 Basic Considerations

In the previous section, we could deduce some of the potential advantages and
disadvantages of SaaS for users from those for outsourcing. We can do the same
for providers. Assuming they have a large customer base, SaaS providers can
exploit economies of scale and therefore cost advantages. This applies to IT
infrastructure, hardware, software, and human resources. If the SaaS provider is
also the vendor of the software in question, further savings can be made in
development. Because the software is operated solely via a single platform, there
is no need for costly modifications to make it run on different operating systems.

Moreover, SaaS may make it easier to offer customers a range of product
versions. For example, different solutions for large organizations and mid-sized
enterprises can be provided through the same platform.

Companies that offer SaaS are naturally subject to the risks that every provider
of software faces. In addition, users’ diminished dependence on a particular pro-
vider, as discussed in the previous section, can also pose a risk for SaaS providers.

SaaS providers can also learn from the results of the study presented above,
specifically that non-customers are still apprehensive about deploying SaaS. Their

Fig. 6.4 Opportunity risk assessment: SaaS customers compared to non-customers (Benlian et al.
2010)

6.4 SaaS from the User’s Perspective: Opportunities and Risks 183

main concerns relate to security and financial risks. Consequently, SaaS providers
should improve their communications by focusing on the positive experiences of
current customers to win over the rest. SaaS providers should also avoid tailoring
their offerings solely to SMEs. Our results show that large user organizations
appear to evaluate opportunities and risks much the same as SMEs, which suggests
that they have a similar need for straightforward, affordable, on-demand software
solutions.

In the following section, we will continue to examine SaaS from the provider’s
perspective. In particular, we will investigate the various pricing strategies pursued
by software companies.

6.5.2 Empirical Study of SaaS Providers’ Pricing Strategies
and Business Models

Between February and May 2010, we conducted a content analysis on the websites
of 259 US providers, to identify their pricing models for SaaS products. In addi-
tion, the study encompassed statistics about the provider (the size of the company
and the year it was founded) and the product type of the SaaS solutions on offer.

To find SaaS providers for our study, we used the ‘‘Software-as-a-Service
Showplace’’.1 Currently, this Internet portal lists more than 1,300 SaaS providers.
According to the portal’s operators, the majority of these enterprises are US based.
Providers can register themselves according to the type of application and
industry.

The study’s target group was providers with SaaS products for business cus-
tomers. The sample was also limited to US-based providers. We cannot guarantee

Fig. 6.5 Surveyed SaaS solutions by product type

1 http://www.saas-showplace.com

184 6 Software as a Service: The Application Level of Cloud Computing

http://www.saas-showplace.com

that this group is representative of US SaaS providers as a whole. However, as we
included all providers in the B2B category, and other portals offered few additional
providers, we shall assume that our sample can be regarded as characteristic of the
industry as a whole. The portal’s list is regularly updated and expanded by the
site’s operator, as well as through registration by SaaS providers.

Of our sample group of 259 companies, 56 % had up to 50 employees. A fourth
of providers had between 51 and 250 staff. Only 13 % had a headcount exceeding
250. We were unable to establish the number of employees for the remaining 6 %.

Figure 6.5 shows a breakdown of the 300 SaaS solutions in our analysis (one
company can offer multiple solutions) by product type.

Fig. 6.6 Breakdown by year of founding

Fig. 6.7 Effort needed to find pricing information on SaaS providers’ websites in relation to
company size

6.5 SaaS from the Provider’s Perspective: Pricing Strategies and Business Models 185

As SaaS is a relatively new form of software delivery, we also looked at the
year in which each provider in our sample was founded. The following diagram
shows the results, divided into 3-year intervals (Fig. 6.6).

Our empirical investigation focused on the billing units used, in order to dis-
cover to what extent usage-based pricing models are employed, and by which
providers. The availability of this information on providers’ websites gave us an
indication of the transparency of their pricing models. In most cases, providers’
websites stated both the billing units and the corresponding prices.

We found details of billing units on the provider’s website for 55 % of the 300
SaaS solutions in our analysis. For the other 45 %, no other information was
available. The availability of this information is a good approximation for the
transparency of pricing models for customers: The billing units and corresponding
prices are the crucial information that customers need in order to understand the
product’s pricing model. We then investigated which providers published pricing
information on their websites, and which did not.

More than 60 % of small SaaS providers (those with up to 50 employees)
provided an above average amount of pricing information on their websites.
In contrast, this applied to less than 40 % of the providers with a workforce of
more than 250. A more detailed analysis of the smaller enterprises confirmed this
correlation: Smaller SaaS providers tend to provide more pricing information on
their websites than large providers.

With regard to the effort needed by customers to find pricing models on pro-
viders’ websites, we found the following: (Fig. 6.7)

We found pricing information immediately on 60 % of smaller SaaS providers’
websites, i.e., the pricing model was described on the home page, or there was a
button labeled ‘‘price’’ or ‘‘pricing’’ that led to this information. The ‘‘Cannot be
found easily’’ category included cases, where pricing information could not be

Fig. 6.8 Use of different types of pricing basis

186 6 Software as a Service: The Application Level of Cloud Computing

found intuitively or quickly, for example, where it was hidden away in Terms and
Conditions, FAQs, News, and other places.

Looking at the pricing basis for US providers’ SaaS solutions, we can see that
exclusively usage-based pricing models are rare. The majority, or 114 of the 166
SaaS solutions, are usage independent (Fig. 6.8).

On the basis of the available data, we are unable to satisfactorily answer the
question of whether a particular type of billing unit is more common among
particular types of providers: Usage-based pricing is seldom used by small, mid-
sized, or large SaaS providers alike (Fig. 6.9).

Comparing the age of the SaaS provider with the billing unit employed also
fails to bring any relationship to light. It is noticeable that, of the companies in our
sample that were founded between 2007 and 2009, none of them employ exclu-
sively usage-based pricing models.

Overall, we can conclude that usage-based pricing has not (yet) established
itself as the primary model. Instead, user-based models continue to dominate.
In the following section, we will look at this subject in greater depth. We will
consider demand structures with usage-based and usage-independent pricing
models through the lens of a case study.

6.5.3 Case Study to Compare Usage-Based and Usage-
Independent Pricing Models

In the following section, we will further explore the issue of usage-based and
usage-independent pricing of SaaS solutions using an example. In particular, we
want to test the validity of the oft-cited claim that SaaS is especially suited to
usage-based pricing (e.g., Kittlaus and Clough 2009, p. 59; Choudhary 2007).

Against this background, we carried out a case study involving a provider of
statistical software for the B2B market. This software provider is planning to
deliver an application via SaaS, which it currently offers as an on-premise version.

Fig. 6.9 Billing unit type by company size

6.5 SaaS from the Provider’s Perspective: Pricing Strategies and Business Models 187

In this context, the question arises of what pricing model should be employed for
the new solution.

6.5.3.1 Data Set and Methodology

In February and March 2009, we conducted a telephone survey of the software
provider’s customers. We used van Westendorp’s Price Sensitivity Meter or PSM
(van Westendorp 1976) to compare customers’ willingness to pay for a SaaS
solution when it comes with usage based as opposed to usage-independent pricing.
Because of the small sample size and the opportunity we had to discover the
reasons for these decisions by this means, we decided against other methodologies,
such as conjoint analysis.

The van Westendorp method is a form of direct survey, whereby customers are
asked four questions on a previously defined product. These questions ask
respondents at what price they would consider the product ‘‘affordable’’,
‘‘expensive’’, ‘‘too expensive’’, and ‘‘too cheap’’ (these being the method’s four
price points). Individual participants’ answers are aggregated and presented as
curves on a diagram. The intersections of these four curves define the region in
which the price for the product should be located. The point of PSM is not to
determine a concrete price-demand function. Rather, it is intended to identify an
‘‘acceptable price range’’ (Lock 1998, p. 507) for an innovative product when it is
not yet apparent what the price should be.

The sample consisted of 28 of the software provider’s customers, who already
use the intended SaaS product in its on-premise version. As a result, these cus-
tomers are familiar with the application’s functionality and the costs of the current
licensing model.

With respect to the size of the company, 38 % of our sample comprised small
and mid-sized businesses whose annual sales are below 500 million €, while 62 %
were large enterprises whose annual sales exceed 500 million €. The sample

Fig. 6.10 Results of the PSM with usage-independent pricing (Lehmann et al. 2010)

188 6 Software as a Service: The Application Level of Cloud Computing

companies were mainly automotive OEMs and suppliers in German-speaking
countries. We will devote the following section to the survey’s findings.

6.5.3.2 Findings

The van Westendorp method was implemented twice in this survey. First,
‘‘concurrent users’’ was chosen as the billing unit for the SaaS application’s pricing
model. A total of 12 out of 28 respondents, i.e., around 43 % percent, gave answers
on all four price points. The results are illustrated in Fig. 6.10

As explained above, PSM provides a price range within which the price for the
application should lie. This recommended price falls between the ‘‘point of mar-
ginal cheapness’’ (PMC) and the ‘‘point of marginal expensiveness’’ (PME)—in
this case between € 5.46 and € 24.10 per month and concurrent user.

Our survey of the demand structure with usage-based pricing, which was
conducted at the same time, had a much smaller response rate. One of the func-
tions of the software is the production of statistical reports. Accordingly,
‘‘per completed report’’ was chosen as a usage-based billing unit for the software.
Only 14 % of participants (four out of 28) gave concrete figures for all four price
points.

However, the results do offer some insight into why usage-based pricing models
play such a minor role. In addition to concrete price points, the telephone survey
allowed respondents to give reasons for their inability to estimate a suitable price:
It transpired that respondents were not actually sure how intensively they used the
software they deployed. As this is what determines costs with usage-based pricing,
these customers were unable to estimate their willingness to pay.

The choice of billing unit—such as the number of reports produced—turned out
to be a further problem. Given the versatility of the software, and the many
different ways it is employed by users, opinions varied as to what a suitable usage-
based billing unit might be.

The results obtained from respondents’ replies also contained some surprises.
For example, two respondents’ estimations of what was a ‘‘cheap’’ price varied by
a factor of more than 1,000—which indicates that what customers would be
willing to pay varied over a huge range. For the provider, this state of affairs is
especially unwelcome. As we explained at some length in Sect. 3.3, to reach as
many customers as possible and best exploit their willingness to pay, a homoge-
neous demand structure with a low variance is required.

Generally speaking, price discrimination is a good way of exploiting customers’
different reservation prices. Given the magnitude of these differences, however,
this may be difficult to implement. Furthermore, presumably due to their distri-
bution over the Internet, the pricing of SaaS products tends to be more transparent
than, for instance, on-premise software. This makes third degree price discrimi-
nation particularly difficult.

In conclusion, the study’s findings do not support the oft-cited assertion that
SaaS is highly suited to usage-based pricing. In most cases, providers employ

6.5 SaaS from the Provider’s Perspective: Pricing Strategies and Business Models 189

http://dx.doi.org/10.1007/978-3-642-31510-7_3

usage-independent billing units. For most customers, prices based on usage, such
as per completed transaction, are optional.

However, it should be noted that this study of demand structures was conducted
among potential customers of one particular SaaS offering. Comparable surveys
relating to other types of SaaS products, such as ERP or CRM software, would be
of interest, as would a general analysis of the relationship between the demand
distribution and the form of pricing model offered.

190 6 Software as a Service: The Application Level of Cloud Computing

7Open Source Software

7.1 Overview

Software providers in the narrower sense create software in order to generate
license sales and in some cases, revenue from services. A different motivation lies
behind open source projects. Software developers come together in an interna-
tional community to pool their knowledge and jointly solve a problem. In this
scenario, many developers invest their time, normally without being paid. But it
does not follow that open source software (OSS) is irrelevant in an economic
sense. In this chapter, we will explore the fundamental questions that OSS poses to
the software industry and to users.

We will begin by briefly introducing the nature and features of open source
software (OSS) and exploring the origins of the open source movement. We will
then examine the development process in open source projects and how it differs
from the process in a traditional software company. We will also consider what
motivates developers to become involved in open source projects in the first place.
Furthermore, we will look at the introduction of OSS from a user perspective. We
will then provide an overview of commercial software providers’ strategies—in
terms of opposing and utilizing OSS. We will conclude with some thoughts and
early empirical results on the use of open source business apps.

7.2 Features of Open Source Software

Free software has been around for a long time. Private users have frequently taken
advantage of freeware, for example certain database systems or games. The
methods of distribution have evolved over time: during the early years of the
personal computer, freeware was exchanged via floppy disk, then via CDs, and
nowadays almost exclusively over the Internet. Programmers have always been in
the habit of sharing their source codes and programs to help and learn from one
another.

P. Buxmann et al., The Software Industry, DOI: 10.1007/978-3-642-31510-7_7,
� Springer-Verlag Berlin Heidelberg 2013

191

In the 1970s, some companies began to sell only compiled software, and keep
their source code under lock and key. A movement opposed to this practice
evolved, and one of its pioneers was Richard Stallman. He began his academic
career in 1971 at MIT’s Artificial Intelligence Laboratory. The following quote
from Stallman paints a picture of the culture that prevailed there at the time
(Grassmuck 2004, p. 219):

‘‘I had the good fortune in the 1970s to be a part of a community in which
people shared software. We were developing software, and whenever somebody
wrote an interesting program it would circulate around. You could run the pro-
gram, add features, or just read the code and see how problems were solved. If you
added features to the program then other people could use the improved version.
So one person after another would work to improve the software and develop it
further. You could always expect at least the passive cooperation of everybody
else in this community. They might not be willing to drop their work and spend
hours doing something for you, but whatever they had already done, if you could
get some use out of it, you were welcome to do so.’’

As the quote shows, free software is by no means a phenomenon of the 1990s.
Many people viewed sharing software code and knowledge as a matter of course.

In the end, dissatisfaction with the functionality of a printer driver sparked the
development of the open source movement (Grassmuck 2004, p. 222), although it
was not yet known by that name. The Xerox network printers at MIT had no
function for displaying printer status directly on the PC. Stallman wanted to write a
function to make this possible, and embed it in the printer driver’s source code.
But the Xerox employee responsible for the code refused to release it, because he
had signed an undertaking not to share it with any third parties.

This prompted Stallman to do two things: develop the driver himself, and set up
the GNU project (GNU is a recursive acronym for GNU’s Not Unix). In order to
prevent others from making commercial use of his work, Stallman resigned from
MIT. To make a living and ensure the continuation of the GNU project, he
founded the free software foundation. This organization collected donations,
charged fees for the distribution of GNU software on data media complete with
manuals, but not for the software itself, and hired developers. A complete GNU/
Linux operating system was created in the early 1990s by combining the com-
ponents of the GNU project with a Linux kernel.

Free system components were not the only fruits of the GNU project: it also
produced the GNU general public license (GPL), a special software license that
has had a substantial influence on the free software and open source movements.
The GPL grants users free access to the source code, the right to copy and share the
software, freedom to modify the code, and permission to distribute the modified
version, albeit under the same terms.

From an economic perspective, this last condition rules out the possibility of
later changes to the software’s property rights. Rather than, the software developer
waving his intellectual property rights (which is standard practice with public

192 7 Open Source Software

domain software), the so-called copyleft principle is applied, to guarantee the
software remains permanently free. In accordance with this principle, modified
versions of the software have to be subject to the same license.

In addition to GPL, there are many other open source licenses, such as the less
restrictive library/lesser general public license (LGPL, originally developed for
libraries), the Berkeley software distribution-style license (BSD-style license) and
the mozilla public license (MPL). Table 7.1 summarizes selected features of these
licenses.

The term ‘‘open source’’ was not coined until 1998, when the open source
initiative (OSI) was founded. Until that point, free software had been the standard
name. But the change was more than just linguistic. Eric S. Raymond, known
principally for his essay, ‘‘The Cathedral and the Bazaar’’ (Raymond 1999), in
which he compared a centrally run software project to the construction of a
cathedral and the decentralized organization of a project in the Linux community
to a bazaar—was not the only one interested in a realignment of the free software
movement. Software companies also displayed an interest. One reason for
founding the OSI was Netscape’s announcement of its intention to publish its
browser’s source code.

In summary, the aim of OSI’s founders was to set the free software movement
on a new course. A key goal was to improve cooperation with software companies.
Free software was renamed ‘‘open source’’ as a way to ‘‘market the free software
concept to the people who wore suits’’ (Perens 1999, p. 173). Volker Grassmuck
has commented that some developers probably feared that the word ‘‘free’’ could
cause misunderstandings and could be interpreted as a communist ‘‘four-letter
word’’ (Grassmuck 2004, p. 230).

Such considerations prompted more than just a change of name: the group
wrote a definition of open source based on the work of Bruce Perens, the former
project leader of Debian GNU/Linux. The definition included several criteria that
must be met for software to be classed as open source. The criteria are listed in the
box below.

Table 7.1 Selected features of some open source licenses (adapted from Perens 1999, p. 186)

Type of license GPL LGPL MPL BSD
license

Can be integrated into proprietary software and redistributed
without an OS software license

No Yes Yes Yes

Modifications to OS licensed source code can remain proprietary
on distribution

No No No Yes

7.2 Features of Open Source Software 193

The OSI open source definition
Open source does not just mean access to the source code. The distri-

bution terms of open source software must comply with the following
criteria:

1. Free redistribution
The license shall not restrict any party from selling or giving away the

software as a component of an aggregate software distribution containing
programs from several different sources. The license shall not require a
royalty or other fee for such sale.

2. Source code
The program must include source code, and must allow distribution in

source code as well as compiled form. Where some form of a product is
not distributed with source code, there must be a well-publicized means
of downloading the source code, without charge, via the Internet. The
source code must be the preferred form in which a programmer would
modify the program. Deliberately obfuscated source code is not allowed.
Intermediate forms, such as the output of a preprocessor or translator, are
not allowed.

3. Derived software
The license must allow modifications and derived works, and must allow

them to be distributed under the same terms as the license of the original
software.

4. Integrity of the author’s source code
The license may restrict source code from being distributed in modified

form only if the license allows the distribution of ‘‘patch files’’ with the
source code for the purpose of modifying the program at build time. The
license must explicitly permit distribution of software built from modified
source code. The license may require derived works to carry a different name
or version number from the original software.

5. No discrimination against persons or groups
The license must not discriminate against any person or group of persons.

6. No discrimination against fields of endeavor
The license must not restrict anyone from making use of the program in a

specific field of endeavor. For example, it may not restrict the program from
being used in a business, or from being used for genetic research.

7. Distribution of license
The rights attached to the program must apply to all to whom the program

is redistributed without the need for execution of an additional license by
those parties.

194 7 Open Source Software

8. License must not be specific to a product
The rights attached to the program must not depend on the program’s

being part of a particular software distribution. If the program is extracted
from that distribution and used or distributed within the terms of the pro-
gram’s license, all parties to whom the program is redistributed should have
the same rights as those that are granted in conjunction with the original
software distribution.
9. License must not restrict other software

The license must not place restrictions on other software that is distrib-
uted along with the licensed software. For example, the license must not
insist that all other programs distributed on the same medium must be open
source software.

� 2011 Open Source Initiative. Opensource.org site content is licensed
under a Creative Commons Attribution Noncommercial No Derivatives
License (creativecommons.org/licenses/by-nc-nd/2.5/legalcode).

This definition is not itself a license but a standard against which licenses are
measured. In effect, the OSI assumes the role of a certification authority. So far,
more than 60 licenses have been certified, including the GNU GPL, GNU LGPL,
MPL, and the New BSD License. A current list can be found at http://www.
zopensource.org/licenses.

Some of these licenses make it easier for software providers to privatize or
commercialize OSS. This is why the OSI’s open source definition is controversial
and has sparked so many debates. For example, the first criterion on the above list
does not rule out the use of open source code in commercial software packages. This
is how a BSD license enabled Microsoft to integrate open source code into Windows.
If the code had been subject to a GPL, Microsoft would not have been permitted to
use it without Windows becoming free software (Grassmuck 2004, p. 299).

As shown above, the GPL also prevents the privatization of modified codes,
whereas under the terms of Apache or BSD licenses this is permissible (Grass-
muck 2004, p. 301). A modified version of OSS can, then, be sold without having
to release the source code.

It quickly becomes apparent that many software companies can profit from the
OSI‘s new approach. GPL can prove to be something of a hurdle to software
projects (even noncommercial ones); for instance, if open source code has to be
integrated into commercial products. In response, the LGPL was developed to
make code sharing more attractive by allowing libraries to be integrated more
easily. Integrating a GPL licensed library into a software program would mean that
the entire software would have to be subject to the GPL. Since this is often not
what programmers want, and in order to incentivize developers to use free
libraries, the LGPL relaxes this condition (Grassmuck 2004, p. 290).

7.2 Features of Open Source Software 195

http://www.opensource.org/licenses
http://www.opensource.org/licenses

The less restrictive software licenses that simplify the privatization and com-
mercialization of open source code are a double-edged sword. On the one hand, it
could be argued that commercialization is not necessarily financially damaging to
open source developers and that many software projects reap its benefits. On the
other hand, many of those involved in open source projects are sure to regard this
as an injustice and an attempt by companies to get something for nothing, which
could affect their willingness to participate in these projects. We will come back to
these incentives later, but first we will turn to the development principles that
shape open source projects.

7.3 Open Source Projects: Principles and Motivation
of Software Developers

The process by which, open source software is developed, is very different to
software development in a commercial company. In the following section, we will
examine the main differences and how they affect the structure of a project and the
motivation of those involved in it.

7.3.1 Organizational Structures and Processes in Open Source
Projects

An open source project usually comes about when somebody would like to solve a
problem. In the previous section, we described how Stallman’s dissatisfaction with a
Xerox printer driver was the starting point for the GNU project. Another oft-cited
example is the development of the LINUX operating system. Linus Torvalds wanted
to run a Unix operating system on his 386 PC. Finding nothing suitable, he began to
develop his own and published his source code on the Internet. As we all know, the
project met with keen interest and a number of software developers became involved
in developing it. Even Torvalds was surprised by this turn of events and has
repeatedly stressed that he had never dreamed that it would be so successful.

The development of OSS is an evolutionary and distributed process. Raymond
evocatively represents the development process as a bazaar and contrasts this with
the so-called cathedral model, synonymous in his eyes with conventional software
development (Raymond 1999). If commercial software development is viewed in
the context of early models from the field of software engineering, then the two
approaches differ widely. However, concepts of evolutionary and of agile software
development are similar to elements of the open source movement’s approach
(Sharma et al. 2002).

Once a project has been set up, its success depends on the prompt establishment
of a community around the software. It is always helpful if some modules are
already available for testing and execution.

The development team’s decision-making structure and the composition of the
team itself are centrally important. Large-scale open source projects usually have a

196 7 Open Source Software

coreteam composed of the developers who have been working on the project the
longest, or who have contributed a large quantity of code. The core team of the
Apache web server project comprised 22 programmers from six countries (Grass-
muck 2004, p. 237).

In small-scale open source projects, the founder usually assumes the role of
‘‘maintainer’’. He assumes responsibility for project coordination and quality
control. Developers with a good track record often act as maintainers in large
projects, where a two-tiered system lets them coordinate module development and
have a say in decisions on general principle in the overall project. It is quite often
the case that the founding member has a special role in the core team. The Linux
project, for instance, had a team of five or six developers who tested and selected
incoming source code before passing it on to Torvalds, who would make the final
decision (Dietrich 1999). In contrast, the Apache project’s core team takes a
democratic approach to decision making. The decision to integrate a module or not
may be decided, for example, via mailing list.

The maintainers and software developers who contribute a great deal of code to
the project are supported by a host of other people, who test the software, write the
documentation, and provide localizations. It is often difficult to find qualified soft-
ware developers to perform these supporting roles. Most developers regard docu-
mentation as boring, and in any case it is not the best way to boost one’s reputation.

Open source projects tend not to be wound up like conventional ones. Instead,
development work may be discontinued once the user is satisfied with the solution,
or if either the maintainer or key developers have lost interest in the project. If a
maintainer becomes inactive, the development community can appoint a new one.
Occasionally, a project splits, or ‘‘forks’’. Forking happens when the core team can
no longer agree on questions of principle.

Internet-based source code management systems such as concurrent versions
system (CVS)) serve as an important function in open source projects. Program-
mers download the latest version of a module from the CVS, work on it, test it with
their own development tools, and copy the results back to the CVS repository. If
several developers have been working on a file at the same time, their changes are
ideally merged into a new file in the repository. If this causes conflicts that cannot
be resolved automatically, developers must come to an agreement amongst
themselves. At regular intervals, the core team flags certain branches of the source
tree in the repository as a new release.

7.3.2 Contributor Motivation

Open source projects are based on the joint work of a frequently global community
of software developers. They participate on a voluntary basis and the majority are
not paid for their work. Their involvement implies acceptance of opportunity costs,
from sacrificing leisure time, to passing up alternative paid positions, to neglecting
their day job. This is particularly relevant to the core team members in open source
projects.

7.3 Open Source Projects: Principles and Motivation of Software Developers 197

This raises the question of what motivates developers to participate in open
source projects. Some authors try to explain the phenomenon through the personal
gains a developer can make with his contribution (Lerner and Tirole 2002). Other
studies assume that most programmers are driven by intrinsic motivations
(Kollock 1999). Against this backdrop, Franck (2003) distinguishes between

• Rent-seekers and
• Donators.

Rent seekers behave like a conventional ‘‘homo economicus’’. Rent-seeking
developers are looking for benefits beyond regular pay checks. Empirical studies
have repeatedly shown that contributors hope to boost their reputation on the job or
capital market, expect to improve their know-how, or assume that their activities
will help them in their everyday work (Lerner and Tirole 2002). Hence, these
developers do not become involved unless they expect a pay-off –in other words,
they are seeking ‘‘rent.’’

Conventional rational motives alone cannot account for the phenomenon of
people contributing to open source projects. Time and again, empirical studies
have shown that developers hope to get enjoyment and entertainment out of their
participation in open source projects, as well as advancing the open source
movement. Furthermore, many open source developers are pursuing other goals,
such as freedom of information. And very often, their activities are actually an
attempt to break market leader Microsoft’s virtual monopoly. Franck terms people
for whom this is a top priority ‘‘donators’’ (Franck 2003). They believe that they
are investing their time in something worthwhile. For ‘‘donators’’, open source
projects subject to a GPL, or another similar license, are attractive, because they
have no reason to fear that their ‘‘donation’’ will be commercialized.

Successful open source projects often manage to create a governance structure
that appeals to both rent seekers and donators. The open nature of source code
gives rent seekers the chance to improve their reputation, as their contributions are
visible and verifiable. The more rent seekers involved, the more appealing an open
source project is to donators because the chances of success are higher. This avoids
the conflict that is often evident between rent seekers and donators.

However, gone are the days when the teams for most open source projects
comprised unpaid hobbyists (Brügge et al. 2004, p. 101 f). Instead, there are a
number of open source projects in which salaried programmers and other spe-
cialists work alongside each other. Almost 30 % of the developers at open source
platform Sourceforge.net, for example, are paid for their work. It is rare for an
open source project to be initiated by a commercial enterprise. The Apache pro-
ject, for instance, was begun by employees who were responsible for their com-
panies’ Web servers. But such a situation does not rule out rent seekers and
donators working together. In fact, it may even encourage cooperation, especially
in the case of projects subject to a GPL license or similar.

198 7 Open Source Software

7.4 Open Source Software: The User Perspective

OSS has a particularly appealing benefit for users: it is free. This means that users
save licensing costs of standard software, and expenses associated with company-
specific solutions. But licensing costs are of course not the only relevant param-
eters that must be considered when choosing which software to deploy.

As an example, let us take a look at the decision by local government in
Munich, Germany to replace Windows XP and Office solutions with Linux and
open source software. This example was chosen, because the deployment rate of
OSS in the public sector is particularly high. The study was carried out by con-
sulting company Unilog in 2002 and considered the direct costs for the organi-
zation’s 14,700 desktops. It concluded that migrating to an OSS solution is not the
best option—at least not in the short term. It should be noted that the study focused
only on costs. Although the city’s licensing costs would be eliminated, any savings
would be wiped out due to significantly higher migration and training expenses.
Figure 7.1 shows a breakdown of costs (in millions of euros) for both options.

Upon considering the results of the study, the city of Munich still decided to
migrate to the open source solution. It explained its decision by stating that it
hoped to significantly reduce its dependence on Microsoft, and that the two
solutions were identical in terms of their capabilities and standalone utility.

It is still unclear whether OSS can generally be regarded as cost-effective. Studies
on this topic have reached varying conclusions (Brügge et al. 2004). For example, a
Berlecon Research study (2002) found that, in addition to eliminating licensing
costs, open source solutions have lower implementation and administration costs,
and are more stable. But the latter two benefits were not demonstrated in the case of
the Munich local government. Such great variance can be partly due to the fact that

2.89 2.8
3.4

13.4

17.1

26.18.8

2.1

3.6

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

Proprietary solution Open source solution

Hardware und software Migration Training Lincenses Other

Millions of euros

Fig. 7.1 Short-term cost comparison for the city of Munich

7.3 Open Source Projects: Principles and Motivation of Software Developers 199

differentiating between costs is far from simple in practice. In addition, the debate
and the studies on this topic are often ideologically biased.

7.5 Commercial Software Vendors’ Involvement

In a previous section, we examined why developers and other software specialists
participate in open source projects. In this section, we will take a look at what
motivates enterprises to support these projects. There are three main reasons
(Hecker 1999, Raymond 1999, Henkel 2004):

• Supporting sales of complementary products and services,
• Integrating OSS into own products and
• Reduction of market power of competitors’ proprietary software.

The reason most commonly cited in the literature is the possibility of selling
complementary products and services. This is a follow-the-free strategy, as
described in Sect. 3.3.2.7. To put it another way: OSS creates additional demand
on the user side. By meeting this demand, companies can create and leverage
indirect network effects. Complementary add-ons can include hardware, software
solutions, and services such as training. Linux distributer SuSe’s business model is
just one example.

Linux distributer SuSe
Linux is a free operating system that supports multitasking and multi-

using. The system is now being deployed in many different areas (desktops,
servers, mobile telephones, routers, etc.). Ready-made software packages,
called distributions, are usually used. SuSe was the first company in Ger-
many to successfully sell a Linux distribution on a broad scale. And it was
one of the world’s first companies to base its business model on Linux. SuSe
penetrated the market with the first German-language installation program
for Linux.

Background information
Roland Dyroff, Burchard Steinbild, Hubert Mantel, and Thomas Fehr

founded Software und Systementwicklungsgesellschaft mbH (literally:
‘‘Software and System Development Company’’) in 1992. Their first product
was merely an enhanced version of an existing Linux distribution; but in
1996, the company introduced the first distribution that it developed itself.
The company’s headquarters were initially in Fürth, Germany, before it was
moved to Nürnberg, Germany in 1998. In 1997, SuSe opened an office in
Oakland, USA. Six additional sites in Germany and three international ones
(Italy, Czech Republic, UK) followed. In 2004, SuSe was acquired by
American company Novell for 210 million dollars. Novell also assumed

200 7 Open Source Software

http://dx.doi.org/10.1007/978-3-642-31510-7_3

responsibility for all of Suse’s employees around the world, around 380 at
the time. That year, SuSe generated revenues of 37 million euros. Today,
Novell is one of the world’s leading vendors of complete Linux solutions.
A key success factor is its numerous strategic partnerships with companies
including SAP, Oracle Intel, and IBM.

Service portfolio
Novel’s product range includes offerings for both business and private

users. The SuSe Linux Enterprise 11 platform is an end-to-end solution for
enterprises. It comprises a database, server, desktop, and hardware man-
agement. OpenSuSe, an open source solution, is the company’s offering for
private users. Originally called SuSe-Linux, it was renamed to openSuSe in
December 2006 to differentiate it from nonfree products.

Novell’s main source of revenues is the provision of services. This is why
its portfolio includes a comprehensive range of support, consulting, and
training offerings, the most important being its certified courses for enter-
prises. To underline its service centricity, the company offers numerous free
services such as a discussion forum, databases, and documentation that help
users find answers to their questions.

Sources www.novell.com, www.opensuse.org

Companies quite often incorporate OSS in their products and solutions.
Therefore, it makes sense for them to support their development financially.
Integrating OSS in embedded systems is an example. This approach is charac-
terized by a dedicated connection between hardware and software components that
can only be used for one specific purpose. Machine control is a typical example.
These systems often leverage Linux and other OSS. A high-profile example of a
device featuring an embedded system of this kind is TiVO, a digital video
recorder. If the all-but-invisible software used in a product is licensed under GPL,
the provider can only generate revenues by selling (specialized) hardware. At its
core, this is another example of a complementary add-on that we discussed above.

A third motivating factor for software companies to actively engage in open
source projects and provide manpower for them is limiting competitors’ market
power. IBM’s involvement in the development of Linux is just one example. By
doing this, it succeeded in checking Microsoft’s dominance in PC-based operating
systems—at least to a certain extent. IBM’s considerable investment in Linux
gained it one significant benefit: reduced dependency on Microsoft as an operating
system vendor.

As an alternative to paying employees for their involvement in open source
projects, companies can publish the code of software developed in-house and
donate it to the OSS community. IBM is one of the enterprises pursuing this
strategy. Other well-known examples are Mozilla and OpenOffice, and Sun
Microsystems’ decision to turn over Java and JDK to the open source community.

7.5 Commercial Software Vendors’ Involvement 201

http://www.novell.com
http://www.opensuse.org

7.6 Open Source ERP Systems

Today, when we talk about OSS, it is generally the well-known and successful
projects, such as Linux, that spring to mind. And no wonder, more than 30 million
copies of this operating system have been deployed worldwide. This corresponds
to a 20–25 % market share for server operating systems. Other success stories
include Apache Webserver, the Eclipse development environment, and the
MySQL database.

A closer look at the above contenders shows that OSS has predominantly taken
root at the lower level of the ‘‘software stack’’, where it has become the standard.
This leads to the question of whether and to what extent the OS paradigm is also
suitable for ERP systems and whether it could compete with established software
providers, such as SAP and Oracle, in this market segment.

One of the key issues is whether the ERP segment is alluring enough to attract
many OS developers and whether they possess the necessary knowledge of
business. A study of the largest repository for OS software, SourceForge.net,
clearly demonstrates that developers are definitely interested in business applica-
tions. There are over 630 ERP-related projects on the platform. A notable example
of how OS software can become established beyond the infrastructure level is the
customer relationship management software, SugarCRM (Sterne and Herring
2006). Open source ERP systems have not been very prominent up to now.

A selection of open source and ERP production solutions is shown in the
following table (Buxmann and Matz 2009). The table depicts how each of the
responsible enterprises is organized, and describes the features of their individual
software projects and characteristics of their business models. All of the offerings
are international, multilingual projects. OS projects, such as aforementioned
SugarCRM, or GnuCash, which supports financial accounting, are not included.
These systems only support single functions of an ERP system (Table 7.2).

There are marked differences between the providers’ business models: The
development of systems, such as ADempiere and webERP, is driven primarily by a
committed community of private developers. The full functionality of the software
is available under a GPL license, and paid services are marketed exclusively by
third-party providers. Other offerings are more commercial in nature. Their
business model is similar to traditional software providers. The only difference of
note is that, in addition to the commercial software packages, they also provide a
version with an OS license, which often only offers basic functionality. Both the
provider and the customer can reap benefits from this dual licensing model
(Mundhenke 2007, pp. 130–131; Hecker 1999, p. 49). Customers have the
opportunity to test and use the free version without restrictions. And, if necessary,
they can switch to the proprietary versions, which allow them to leverage richer
functionality and services. This way, the provider can simultaneously address
different customer groups and expand the installed base. Furthermore, many
providers hope that releasing a software version under an OS license will have a
positive effect in terms of marketing.

202 7 Open Source Software

T
a

b
le

7
.2

A
n

ov
er

vi
ew

of
op

en
so

ur
ce

E
R

P
sy

st
em

s
(B

ux
m

an
n

an
d

M
at

z
20

09
)

[D
ie

Z
ei

le
n‘

‘L
et

zt
e

V
er

si
on

’’
bi

tt
ew

ie
hi

er
w

eg
la

ss
en

]

A
de

m
pi

er
e

C
om

pi
er

e
E

R
P

5
ex

pr
es

s
O

pe
nb

ra
vo

O
pe

nE
R

P

P
ro

vi
de

r

P
ro

vi
de

r/
tr

ad
em

ar
k

ow
ne

r
A

D
em

pi
er

e
C

om
pi

er
e,

In
c.

N
ex

ed
i

S
A

O
pe

nb
ra

vo
,

S
.L

.
T

in
y

L
oc

at
io

n
U

S
A

U
S

A
F

ra
nc

e
S

pa
in

B
el

gi
um

W
eb

si
te

ad
em

pi
er

e.
co

m
co

m
pi

er
e.

co
m

er
p5

.o
rg

op
en

br
av

o.
co

m
op

en
er

p.
co

m

S
of

tw
ar

e
pr

oj
ec

t

P
ro

je
ct

be
ga

n
20

06
19

99
20

07
20

06
20

05

T
yp

e
W

eb
ap

pl
ic

at
io

n
an

d
ri

ch
cl

ie
nt

R
ic

h
cl

ie
nt

(W
eb

in
te

rf
ac

e
is

pa
id

so
ft

w
ar

e)

W
eb

ap
pl

ic
at

io
n

W
eb

ap
pl

ic
at

io
n

W
eb

ap
pl

ic
at

io
n

an
d

ri
ch

cl
ie

nt

R
eg

is
te

re
d

de
ve

lo
pe

rs
at

S
ou

rc
eF

or
ge

89
(i

nc
lu

di
ng

9
ad

m
in

s)
75

(i
nc

lu
di

ng
2

ad
m

in
s)

N
ot

re
gi

st
er

ed
81

(i
nc

lu
di

ng
15

ad
m

in
s)

N
ot

re
gi

st
er

ed

P
ro

gr
am

m
in

g
la

ng
ua

ge
Ja

va
Ja

va
,

Ja
va

S
cr

ip
t

P
yt

ho
n

Ja
va

,
Ja

va
S

cr
ip

t
Ja

va
,

P
yt

ho
n

S
up

po
rt

ed
pl

at
fo

rm
s

(s
er

ve
r-

si
de

)
P

la
tf

or
m

-
in

de
pe

nd
en

t
P

la
tf

or
m

-
in

de
pe

nd
en

t
L

in
ux

,
M

ac
O

S
X

,
U

ni
x,

W
in

do
w

s
B

S
D

,
L

in
ux

,
S

ol
ar

is
,W

in
do

w
s

L
in

ux
,

M
ac

O
S

X
,

U
ni

x,
W

in
do

w
s

S
up

po
rt

ed
da

ta
ba

se
s

O
ra

cl
e,

P
os

tg
re

s
O

ra
cl

e,
P

os
tg

re
s

D
B

2,
M

yS
Q

L
,

O
ra

cl
e,

P
os

tg
re

s
O

ra
cl

e,
P

os
tg

re
s

P
os

tg
re

s

B
us

in
es

s
m

od
el

T
ar

ge
t

gr
ou

p
N

o
in

fo
rm

at
io

n
F

or
or

ga
ni

za
ti

on
s

of
al

l
si

ze
s

F
or

or
ga

ni
za

ti
on

s
of

al
l

si
ze

s
F

or
or

ga
ni

za
ti

on
s

of
al

l
si

ze
s

N
o

in
fo

rm
at

io
n

(c
on

ti
nu

ed
)

7.6 Open Source ERP Systems 203

T
a

b
le

7
.2

(c
on

ti
nu

ed
) A

de
m

pi
er

e
C

om
pi

er
e

E
R

P
5

ex
pr

es
s

O
pe

nb
ra

vo
O

pe
nE

R
P

L
ic

en
se

G
P

L
G

P
L

fo
r

C
om

m
un

it
y

an
d

st
an

da
rd

ed
it

io
n

an
d

a
co

m
m

er
ci

al
li

ce
ns

e
fo

r
th

e
pr

of
es

si
on

al
ed

it
io

n

G
P

L
O

pe
nb

ra
vo

P
ub

li
c

L
ic

en
se

(b
as

ed
on

M
oz

il
la

P
ub

li
c

L
ic

en
se

)
G

P
L

P
ri

ce
di

sc
ri

m
in

at
io

n,
so

ft
w

ar
e

N
on

e
C

om
m

un
it

y,
st

an
da

rd
,

an
d

pr
of

es
si

on
al

ed
it

io
n

N
on

e
N

on
e

M
od

ul
e-

de
pe

nd
en

t
pr

ic
in

g

P
ri

ce
di

sc
ri

m
in

at
io

n,
se

rv
ic

es
N

on
e

C
om

m
un

it
y,

st
an

da
rd

,
an

d
pr

of
es

si
on

al
ed

it
io

n

C
om

m
un

it
y

ve
rs

io
n,

st
ar

te
r,

pr
em

iu
m

,
an

d
el

it
e

pa
ck

s
C

om
m

un
it

y
ed

it
io

n,
S

M
B

ne
tw

or
k,

B
as

ic
ne

tw
or

k,
O

E
M

ne
tw

or
k

M
od

ul
e-

de
pe

nd
en

t
pr

ic
in

g

O
pe

nT
ap

s
xT

up
le

E
R

P
S

Q
L

-L
ed

ge
r

L
X

-O
ffi

ce
w

eb
E

R
P

P
ro

vi
de

r

P
ro

vi
de

r/
tr

ad
em

ar
k

ow
ne

r
O

pe
n

so
ur

ce
st

ra
te

gi
es

,
In

c.

xT
up

le
D

W
S

S
ys

te
m

s,
In

c.
L

x-
S

ys
te

m
–

H
ol

ge
r

L
in

de
m

an
n,

an
d

L
IN

E
T

se
rv

ic
es

G
bR

A
dm

in
is

tr
at

or
:

P
hi

l
D

ai
nt

re
e

L
oc

at
io

n
U

S
A

U
S

A
C

an
ad

a
G

er
m

an
y

N
ew

Z
ea

la
nd

W
eb

si
te

op
en

ta
ps

.o
rg

xt
up

le
.c

om
sq

l-
le

dg
er

.o
rg

lx
-o

ffi
ce

.o
rg

w
eb

er
p.

or
g

S
of

tw
ar

e
pr

oj
ec

t
(c

on
ti

nu
ed

)

204 7 Open Source Software

T
a

b
le

7
.2

(c
on

ti
nu

ed
)

O
pe

nT
ap

s
xT

up
le

E
R

P
S

Q
L

-L
ed

ge
r

L
X

-O
ffi

ce
w

eb
E

R
P

P
ro

je
ct

be
ga

n
20

05
20

02
20

00
20

04
20

03

T
yp

e
W

eb
ap

pl
ic

at
io

n
R

ic
h

cl
ie

nt
W

eb
ap

pl
ic

at
io

n
W

eb
ap

pl
ic

at
io

n
W

eb
ap

pl
ic

at
io

n

R
eg

is
te

re
d

de
ve

lo
pe

rs
at

S
ou

rc
eF

or
ge

38
(i

nc
lu

di
ng

1
ad

m
in

)
39

(i
nc

lu
di

ng
9

ad
m

in
s)

N
ot

re
gi

st
er

ed
4

(i
nc

lu
di

ng
3

ad
m

in
s)

9
(i

nc
lu

di
ng

2
ad

m
in

s)

P
ro

gr
am

m
in

g
la

ng
ua

ge
Ja

va
C

+
+

,
Ja

va
S

cr
ip

t
P

er
l

P
er

l,
P

H
P

P
H

P

S
up

po
rt

ed
pl

at
fo

rm
s

(s
er

ve
r-

si
de

)
L

in
ux

,
M

ac
O

S
X

,
U

ni
x,

W
in

do
w

s

L
in

ux
,

M
ac

O
S

X
,

W
in

do
w

s
P

la
tf

or
m

-i
nd

ep
en

de
nt

L
in

ux
,

U
ni

x
P

la
tf

or
m

-i
nd

ep
en

de
nt

S
up

po
rt

ed
da

ta
ba

se
s

M
yS

Q
L

,
P

os
tg

re
s

P
os

tg
re

s
P

os
tg

re
s

P
os

tg
re

s
M

yS
Q

L

B
us

in
es

s
m

od
el

T
ar

ge
t

gr
ou

p
N

o
in

fo
rm

at
io

n
S

M
E

s
N

o
in

fo
rm

at
io

n
N

o
in

fo
rm

at
io

n
S

m
al

l
co

m
pa

ni
es

L
ic

en
se

H
on

es
t

pu
bl

ic
li

ce
ns

e
(b

as
ed

on
G

P
L

)
an

d
co

m
m

er
ci

al
li

ce
ns

es

P
os

tB
oo

ks
ed

it
io

n
un

de
r

co
m

m
on

pu
bl

ic
at

tr
ib

ut
io

n
li

ce
ns

e
1.

0
an

d
st

an
da

rd
an

d
op

en
m

an
uf

ac
tu

ri
ng

ed
it

io
n

un
de

r
a

co
m

m
er

ci
al

li
ce

ns
e

G
P

L
A

rt
is

ti
c

L
ic

en
se

,
G

P
L

an
d

L
G

P
L

G
P

L

(c
on

ti
nu

ed
)

7.6 Open Source ERP Systems 205

T
a

b
le

7
.2

(c
on

ti
nu

ed
)

O
pe

nT
ap

s
xT

up
le

E
R

P
S

Q
L

-L
ed

ge
r

L
X

-O
ffi

ce
w

eb
E

R
P

P
ri

ce
di

sc
ri

m
in

at
io

n,
so

ft
w

ar
e

N
on

e
P

os
tB

oo
ks

,
st

an
da

rd
an

d
op

en
m

an
uf

ac
tu

ri
ng

ed
it

io
n

N
on

e
N

on
e

N
on

e

P
ri

ce
di

sc
ri

m
in

at
io

n,
se

rv
ic

es
T

he
co

m
m

er
ci

al
li

ce
ns

e
pr

ov
id

es
en

ha
nc

ed
su

pp
or

t
op

ti
on

s

N
on

e
B

y
us

er
gr

ou
p:

us
er

,
te

ch
,

de
v

N
on

e
N

on
e

206 7 Open Source Software

An empirical study of development activities and forum postings in the
SourceForge platform (www.sourceforge.org) offers insight into whether the
development of open source ERP software can be driven by a dedicated com-
munity of private developers. SourceForge provides developers and users with
various tools for communication and software development free of charge. Reg-
istered members can take part in projects and use or add to the community’s
resource pool. Each SourceForge project generally has several forums. Participants
can start threads, generally to ask a question, to which registered SourceForge
users can then post replies. According to SourceForge, the platform currently hosts
over 23,000 OS projects with over 2 million registered users. All projects whose
software is governed by an OSI-recognized license can be registered. In collab-
oration with the University of Notre Dame, Indiana (USA), SourceForge provides
data from its project database for research purposes (cf. van Antwerp and Madey
2008). This enables an analysis of the projects above and beyond what the plat-
form’s standard statistics tell us.

We will begin by taking a look at the ranking of the most active projects on
SourceForge. A SourceForge project’s activity level is derived from the number of
visitors to the project site, development activity, and communications, for example
within the forums. The standard ranking is based on a cumulative analysis of all
data since the start of the project.

In this ranking, there are no ERP projects in the top 20 and only six in the top
1,000. However, recent rankings, which only cover the last 7 days, for example,
paint a different picture. For the last 2 years or so (as of July 2009) ERP projects
have figured high up on the list. For example, the Openbravo project is regularly
among the top ranked, often landing in first place. Of course, these rankings say
nothing about the quality of the projects’ contributions. But they do indicate that,
in principle, the OS model appears to be suitable for ERP software, too.

For a more indepth comparison of ERP and other OS projects, we will now
examine the development and communication activities in greater detail.

Our sample for this purpose comprises projects that meet the following criteria:

• at least two registered developers are involved,
• the project has existed for at least 1 year and
• the forums contain at least one posting.

These criteria filter out the very newest and the less active projects. They
enabled us to identify 208 projects under the aegis of the ERP group. We then
selected 208 projects unrelated to ERP at random.

We began the analysis by comparing the size of the communities. Leaving aside
projects with only one registered participant, ERP projects have an average of 5.7
registered participants. As Fig. 7.2a shows, between 2 and 10 participants are
registered in over 90 % of these projects. About 9 % of the projects have 11 or
more contributors. The largest project (Openbravo) has 77.

7.6 Open Source ERP Systems 207

http://www.sourceforge.org

In contrast, the average number of participants in the other, randomly selected
projects are 26.7, with a maximum of 391. Figure 7.2b shows that within the projects
a similar number of participants are registered in each of the three categories—2 to
10, 11 to 20 and 21 and more. In conclusion, there are significantly fewer users and
developers registered in the ERP projects than in the control group.

Next, we will examine and compare how participants communicate in the
different types of OS project. We will begin by looking at the forums in ERP
projects. Our findings show that around 80 % of users start threads, while some
48 % post replies on the various topics. At least 32 % of threads receive zero
replies.

We notice some surprising similarities when we compare these findings to those
of the control group, where the proportion of participants who start thread dis-
cussions is also 80 %. At the same time, 35 % of participants post replies, which is
around 12 % points less than in the ERP project forums. With respect to randomly
selected projects, around 72 % of their forum postings stay unanswered. It is hard
to tell whether a posting has been answered satisfactorily or whether it is a follow-
up question by the thread starter or merely fleshes out the original question.
In order to filter out follow-up postings of this kind, we only included postings by
users other than the thread starter. Our findings show that less than one-third of
users only post replies in other people’s threads, but do not start any of their own.
Figure 7.3 gives the breakdown.

In summary, we found that users and developers in ERP project forums tended
to be more active. In the group of randomly selected projects; for instance, the
proportion of forum postings with zero replies was more than twice as large.

We will now examine whether there are any differences with respect to
response times—the time lapse between the posting of a question and the first
answer (Lee et al. 2009, p. 431). The following chart gives a comparison between
the response times for ERP projects and those of other projects. Over 60 % of
threads received a reply within 1 day, and 83 % after 1 week. There were no
significant differences between the ERP projects and other projects in this respect
(Fig. 7.4).

Fig. 7.2 a Number of
participants in ERP projects;
b Number of participants in
the control group (Buxmann
and Matz 2009)

208 7 Open Source Software

In conclusion, the OS scene plainly does now offer alternatives to proprietary
ERP systems. Our study shows that although there tend to be fewer developers
involved in ERP projects, these communicate with each other more intensively,
responding to forum threads more willingly and more frequently. It is also
noticeable that, ERP projects are increasingly among the most active projects in
the SourceForgedatabase recently.

Fig. 7.3 a User activity in ERP project forums; b User activity in control-group forums
(Buxmann and Matz 2009)

Fig. 7.4 Cumulated response times in ERP project forums and others (Buxmann and Matz 2009)

7.6 Open Source ERP Systems 209

It must be emphasized that these findings say nothing about the quality of work;
for example, how useful the posted responses actually were, or how much effort
programmers put into the development process. Furthermore, the data we used did
not allow us to differentiate between private and paid programmers. Many soft-
ware and IT enterprises employ large numbers of programmers who spend all or
most of their time working on particular OS projects. As a result, the findings of
this study may only be interpreted as showing that the OS model can be successful
in the ERP space. However, they do not allow us to estimate the market potential
of ERP applications. On the contrary, it must be taken into consideration that
software markets are subject to special rules and the best solution does not always
become the standard. As we discussed in detail in Chap. 2 , there are considerable
lock-in-effects on software markets. Due to the penguin effect, changing to a
different product incurs high risks and switching costs.

What this means for providers of ERP software is that ultimately, having a good
product is not enough. It is vitally important to market software solutions in
attractive, customer-friendly packages. Economic simulation models reveal that on
software markets, it is more effective to increase market share through pricing than
by adding more functionality to a product (Buxmann 2002). The smaller a pro-
vider’s share of the market in comparison to the market leader, the more this holds
true. And it begs the question why some providers are offering their open source
ERP software at prices comparable to those of SAP.

Judging by the way some providers present themselves, they still have some
catching up to do in terms of professional communications and sales strategies.
Against this background, it will not be easy for open source ERP software to
capture market share from established ERP providers.

And yet, few experts could have predicted that OS software would become as
widespread and popular as it is today in various segments of the operating-system
market. Time will tell whether the open source community will shake up the
software industry again in the ERP space.

210 7 Open Source Software

http://dx.doi.org/10.1007/978-3-642-31510-7_2

References

Acuña, S., Juristo, N., & Moreno, A. (2006). Emphasizing human capabilities in software
development. IEEE Software, 23, 94–101.

Adams, W., & Yellen, J. (1976). Commodity bundling and the burden of monopoly. The
Quarterly Journal of Economics, 90, 475–498.

Ahtiala, P. (2006). The optimal pricing of computer software and other products with high
switching costs. International Review of Economics & Finance, 15, 202–211.

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web services—concepts, architectures
and applications. Springer, Berlin.

Altmann, J., Ion, M., Bany, M., & Ashraf, A. (2007). Taxonomy of grid business models. In D.
J. Veit & J. Altmann (Eds.), Grid economics and business models, 4th international workshop,
GECON 2007, Berlin, Heidelberg, pp. 29–43.

Amberg, M., & Wiener, M. (2006). IT-offshoring. Heidelberg: Physika.
Armstrong, M. (2006). Competition in two-sided markets. Journal of Economics, 37, 668–691.
Arthur, W. B. (1989). Competing technologies, increasing returns, and lock-in by historical

events. The Economic Journal, 99, 116–131.
Aspray, W., Mayadas, F., & Vardi, M. (2006). Globalization and offshoring of software. New

York: Association for Computing Machinery.
Bakos, Y., & Brynjolfsson, E. (1999). Bundling information goods: Pricing, profits, and

efficiency. Management Science, 45, 1613–1630.
Baldwin, C. Y., & Clark, K. B. (1997). Managing in an age of modularity. Harvard Business

Review, 75, 84–93.
Baligh, H., & Richartz, L. (1967). Vertical market structures. Boston: Allyn and Bacon.
Balzert, H. (2000). Lehrbuch der Software-Technik. Software-Entwicklung (2nd ed.). Heidelberg:

Spektrum Akademischer Verlag.
Bansler, J. P., & Havn, E. C. (2002). Exploring the role of network effects in IT implementation:

The case of knowledge management systems. Proceedings of the 10th European Conference
on Information Systems, Information Systems and the Future of the Digital Economy, Gdansk,
Poland, pp 817–829.

Bauer, S., & Stickel, E. (1998). Auswirkungen der Informationstechnologie auf die Entstehung
kooperativer Netzwerkorganisationen. Wirtschaftsinformatik, 40, 434–442.

Beecham, S., Baddoo, N., Hall, T., Robinson, H., & Sharp, H. (2007). Motivation in software
engineering: A systematic literature review. Information and Software Technology, 50, 860–878.

Beck, K., & Boehm, B. (2003). Agility through discipline: A debate. Computer, 36, 44–46.
Benlian, A. & Hess, T. (2010). The risks of sourcing software as a service—an empirical analysis

of adopters and non-adopters. In: Proceedings of the 18th European Conference on
Information Systems, Pretoria, South Africa.

Benlian, A., Hess, T., & Buxmann, P. (2009). Drivers of SaaS-adoption: An empirical study of
different application types. Business & Information Systems Engineering.

Benlian, A., Hess, T., & Buxmann, P. (2010). Chancen und Risiken des Einsatzes von SaaS—die
Sicht der Anwender. Wirtschaftsinformatik und Management, 2, 23–32.

P. Buxmann et al., The Software Industry, DOI: 10.1007/978-3-642-31510-7,
� Springer-Verlag Berlin Heidelberg 2013

211

Berlecon Research. (2002). Use of open software in firms and public institutions: Evidence from
Germany, Sweden and UK. Berlin: Author.

Besen, S. M., & Farrell, J. (1994). Choosing how to compete: Strategies and tactics in
standardization. Journal of Economic Perspectives, 8, 117–131.

Bhargava, K., & Choudhary, V. (2008). When is versioning optimal for information goods?
Management Science, 54, 1029–1035.

Binner, H. F. (1987). Anforderungsgerechte Datenermittlung für Fertigungssteuerungssysteme.
Cologne: Beuth.

Blackwell, R. D., Miniard, P. W., & Engel, J. F. (2003). Consumer behavior. Orlando, FL:
Harcourt.

Boehm, B. (1986). A spiral model of software development and enhancement. ACM SIGSOFT
Software Engineering Notes, 11, 14–24.

Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35, 1–7.
Boehm, B. (2006). A view of 20th and 21st century software engineering, pp 12–29.
Boehm, B., & Turner, R. (2003). Balancing agility and discipline: A guide for the perplexed.

Boston: Addison-Wesley Longman.
Boes, A., & Schwemmle, M. (2004). Herausforderung Offshoring. Düsseldorf: Hans-Böckler-

Stiftung.
Boes, A., & Schwemmle, M. (2005). Bangalore statt Böblingen? Hamburg: VSA.
Bontis, N., & Chung, H. (2000). The evolution of software pricing: From box licenses to application

service provider models. Electronic Networking Applications and Policy, 10, 246–255.
Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., et al. (2004). Web

services architecture. W3C working group note. Retrieved from http://www.w3.org
/TR/2004/NOTE-ws-arch-20040211

Boysen, N., & Scholl, A. (2009). A general solution framework for component commonality
problems. BuR—Business Research, 2/1, 86–106.

Bräutigam, P., & Grabbe, H. (2004). Rechtliche Ausgangspunkte. In P. Bräutigam (Ed.), IT-
outsourcing (pp. 161–202). Berlin: Erich Schmidt Verlag.

Brandenburger, A., & Nalebuff, B. (1996). Co-opetition. A revolutionary mindset that combines
competition and cooperation. The game theory strategy that’s changing the game of business.
New York: Doubleday.

Brandt, B. (2010). Make-or-Buy bei Anwendungssystemen. Wiesbaden: Gabler.
Brügge, B., Harhoff, D., Picot, A., Creighton, O., Fiedler, M., & Henkel, J. (2004). Open-source-

software. Berlin: Springer.
Burkard, C., Draisbach, T., Widjaja, T., & Buxmann, P. (2010). Ein Framework zur Erhebung

von applikationsspezifischen Metadaten in Online-Marktplätzen—Vorstellung und
beispielhafte Anwendung im SaaS-Kontext, Darmstädter Arbeitspapier.

Buxmann, P. (1996). Standardisierung betrieblicher Informationssysteme. Wiesbaden: Gabler.
Buxmann, P. (2002). Strategien von Standardsoftware-Anbietern: Eine Analyse auf Basis von

Netzeffekten. Zeitschrift für betriebswirtschaftliche Forschung, 54, 442–457.
Buxmann, P., Brandt, B., von Ahsen, A., & Hess, T. (2010). Outsourcing der Entwicklung und

Anpassung von Anwendungssoftware: Analyse der Kundenzufriedenheit auf Basis einer
empirischen Untersuchung, Darmstädter Arbeitspapier.

Buxmann, P., Diefenbach, H., & Hess, T. (2008a). Die Softwareindustrie. Ökonomische
Prinzipien, Strategien, Perspektiven. Wiesbaden: Springer Verlag.

Buxmann, P., Gerlach, J., & Ristl, J. (2009). Ökonomie von Business-Open-Source-Software am
Beispiel ERP. Linux-Magazin, 1, 51–54.

Buxmann, P., Hess, T., & Lehmann, S. (2008b). Software as a service. Wirtschaftsinformatik, 50,
500–503.

Buxmann, P., König, W., Fricke, M., Hollich, F., Martín Díaz, L., & Weber, S. (2004). Inter-
organizational cooperation with SAP solutions—design and management of supply networks
(2nd ed.). Berlin: Springer.

212 References

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211

Buxmann, P., & Lehmann, S. (2009). Preisstrategien von Softwareanbietern. Wirtschaftsinfor-
matik, 51, 519–529.

Buxmann, P., & Matz, J. (2009). ERP-software: Von der Kathedrale zum Basar. Controlling und
Management, 3, 18–23 (special edition).

Buxmann, P., & Schade, S. (2007). Wie viel Standardisierung ist optimal? Eine analytische und
simulative Untersuchung aus Anwenderperspektive. In U. Blum & A. Eckstein (Eds.),
Wirtschaftsinformatik im Fokus der modernen Wissensökonomik—Festschrift für Prof. Dr.
Dr. h.c. Wolfgang Uhr (pp. 67–88). Dresden: TUDpress.

Buxmann, P., Strube, J., & Pohl, G. (2007). Cooperative pricing in digital value chains—the case
of online music. Journal of Electronic Commerce Research, 8, 32–40.

Buxmann, P., Weitzel, T., & König, W. (1999). Auswirkung alternativer Koordinationsmech-
anismen auf die Auswahl von Kommunikationsstandards. Zeitschrift für Betriebswirtschaft,
Ergänzungsheft, 2, 133–151.

Buxmann, P., Wüstner, E., & Kunze, S. (2005). Wird XML/EDI traditionelles EDI ablösen? Eine
Analyse auf Basis von Netzeffekten und einer empirischen Untersuchung. Wirtschaftsinfor-
matik, 47, 413–421.

Campbell-Kelly, M. (1995). Development and structure of the international software industry
1950–1990. Business and Economic History, 24, 73–110.

Capretz, L. F. (2003). Personality types in software engineering. International Journal of Human
Computer Studies, 58, 207–214.

Choi, J. (1994). Network externality, compatibility choice, and planned obsolescence. Journal of
Industrial Economics, 42, 167–182.

Choudhary, V. (2007). Software as a service: Implications for investment in software
development. Proceedings of the 40th Hawaii International Conference on System Sciences
(HICSS 2007), Hawaii, 2007.

Clemons, E. K., Reddi, S. P., & Row, M. C. (1993). The impact of information technology on the
organization of economic activity—the ‘‘Move to the middle’’ hypothesis. Journal of
Management Information Systems, 10, 9–35.

Condrau, F. (2005). Die Industrialisierung in Deutschland. Darmstadt: Wissenschaftliche
Buchgesellschaft.

Costa, P. T., McCrae, R. R., & Holland, J. L. (1984). Personality and vocational interests in an
adult sample. Journal of Applied Psychology, 69, 390–400.

Cusumano, M. A. (2004). The business of software: What every manager, programmer and
entrepreneur must know to succeed in good times and bad. New York: Simon & Schuster Inc.

Cusumano, M. A. (2007). The changing labyrinth of software pricing. Communications of the
ACM, 50, 19–22.

Cusumano, M., & Gawer, A. (2002). The elements of platform leadership. MIT Sloan
Management Review, 43, 51–58.

David, P. A. (1985). Clio and the economics of qwerty. The American Economic Review, 75,
332–337.

Delmonte, A. J., & McCarthy, R. V. (2003). Offshore software development: Is the benefit worth
the risk? Proceedings of the 2003 America’s Conference on Information Systems (AMCIS
2003), Tampa (Florida), pp 1607–1613.

Dietrich, O. (1999). In den Tiefen des Kernel. Interview mit Linux-Entwickler Alan Cox. In: c’t
25: 34.

Diller, H. (2008). Preispolitik. Stuttgart: Kohlhammer.
Dogs, C., & Klimmer, T. (2005). Agile Software-Entwicklung kompakt. Bonn: Mitp-Verlag.
Domschke, W., & Wagner, B. (2005). Models and methods for standardization problems.

European Journal of Operations Research, 162, 713–726.
Dostal, W., Jeckle, M., Melzer, I., & Zengler, B. (2005). Service-orientierte Architekturen mit

Web Services—Konzepte, Standards, Praxis. Heidelberg u. a.: Spektrum.
Earl, M. J. (1996). The risks of outsourcing IT. Sloan Management Review, 37, 26–32.

References 213

Eisenmann, T. (2008). Managing proprietary and shared platforms. California Management
Review, 50, 31–53.

Eisenmann, T., Parker, G., & Van Alstyne, M. (2009). Opening platforms: How, when and why?
In: Gawer (Ed.). Platforms, markets and innovation. London: Edward El-gar.

Eisenmann, T., & Wong, J. (2004). Electronic arts in online gaming. Harvard Business School
Case 804-140.

Erl, T. (2006). Service-oriented architecture—concepts, technology and design. Prentice hall,
Upper Saddle River.

Farrell, J., & Saloner, G. (1985). Standardization, compatibility, and innovation. Rand Journal of
Economics, 16, 70–78.

Farrell, J., & Saloner, G. (1987). Competition, compatibility, and standards: The economics of
horses, penguins and lemmings. In H. L. Gabel (Ed.), Product standardization and
competitive strategy (pp. 1–22). Amsterdam: North Holland.

Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customising agile methods to software
practices at Intel Shannon. European Journal of Information Systems, 15, 200–213.

Florissen, A. (2008). Preiscontrolling—Rationalitätssicherung im Preismanagement. Zeitschrift
für Controlling und Management, 52, 85–90.

Fowler, M., & Highsmith, J. (2001). The Agile Manifesto. Software Development, 9(8), 28–32.
Franck, E. (2003). Open Source aus ökonomischer Sicht. Wirtschaftsinformatik, 45, 527–532.
Friedewald, M., Rombach, H. D., Stahl, P., Broy, M., Hartkopf, S., Kimpeler, S., Kohler, K.,

Wucher, R., & Zoche, P. (2001). Analyse und Evaluation der Softwareentwicklung in
Deutschland. Studie für das Bundesministerium für Bildung und Forschung (BMBF).
Nuremberg: GfK Marktforschung.

Friedman, T. (2005). The world is flat: A brief history of the 21st century. London: Penguin
Books.

Gadatsch, A. (2006). IT-Offshore realisieren. Wiesbaden: Vieweg.
Gawer, A. (2009). Platform dynamics and strategies: From products to services. In: Gawer, A.

(Ed.). Platforms, markets and innovation (pp. 45–76).
Gawer, A., & Cusumano, M. A. (2002). Platform leadership: How Intel, Microsoft, and Cisco

Drive Industry Innovation. Boston, MA: Harvard Business School Press.
Government of India, Ministry of Communications & Information Technology (Ed.). (2006).

Information technology: Annual report 2005–06, New Delhi. Retrieved from
http://www.mit.gov.in/annualreport2005-06.pdf

Grassmuck, V. (2004). Freie Software—Zwischen Privat- und Gemeineigentum. Bonn:
Bundeszentrale für politische Bildung.

Gregory, R. W. (2010). Review of th0e IT offshoring literature: The role of cross-cultural
differences and management practices. 18th European Conference on Information Systems,
Manuscript ID: ECIS2010-0086.R1.

Günther, O., Tamm, G., Hansen, L., & Meseg, T. (2001). Application service providers: Angebot,
Nachfrage und langfristige Perspektiven. Wirtschaftsinformatik, 43, 555–568.

Harmon, R., Raffo, D., & Faulk, S. (2005). Value-based pricing for new software products:
Strategy insights for developers. Retrieved from http://www.cpd.ogi.edu/MST/
CapstoneSPR2005/VBSP.pdf

Hecker, F. (1999). Setting up shop: The business of open-source-software. IEEE Software, 16,
45–51.

Heinen, E. (1991). Industriebetriebslehre—Entscheidungen im Industriebetrieb. Wiesbaden:
Gabler.

Heinrich, B., Klier, M., & Bewernik, M. (2006). Unternehmensweite Anwendungsintegration—
Zentrale Anreizsetzung zur Realisierung von Netzeffekten bei dezentralen Entscheidungsstrukturen.
Wirtschaftsinformatik, 48, 158–168.

Henkel, J. (2004): The Jukebox Mode of innovation—a model of commercial open source
development. CEPR discussion paper 4507.

214 References

http://www.mit.gov.in/annualreport2005-06.pdf
http://www.cpd.ogi.edu/MST/CapstoneSPR2005/VBSP.pdf
http://www.cpd.ogi.edu/MST/CapstoneSPR2005/VBSP.pdf

Henn, J., & Khan, A. (2007). Serviceorientierung—Mehr als nur IT-Architekturen. In: Fink, D.,
Gries, A., & Lünendonk, T. (Ed.). Consulting-Kompendium (pp. 208–217). FAZ Frankfurt.

Hess, T., Buxmann, P., Mann, F., & Königer, M. (2007). Industrialisierung der Softwarebranche:
Erfahrungen deutscher Anbieter. Management Reports des Instituts für Wirtschaftsinformatik
und Neue Medien 2, Munich.

Hess, T., & Schumann, M. (1999). Medienunternehmen im digitalen Zeitalter—Neue Technol-
ogien—Neue Märkte—Neue Geschäftsansätze. Wiesbaden: Gabler.

Hess, T., & Ünlü, V. (2004). Systeme für das Management digitaler Rechte. Wirt-schaftsinfor-
matik, 46, 273–280.

Hill, S. (2008). SaaS economics seem to favor users more than vendors. Manufacturing Business
Technology, p. 48.

Hindel, B., Hörmann, K., Müller, M., & Schmied, J. (2004). Basiswissen Software-Projektman-
agement. Heidelberg: Dpunkt Verlag GmbH.

Hirnle, C., & Hess, T. (2007). Investing into IT infrastructures for inter-firm networks: Star
Alliance’s move to the common platform. Electronic Journal for Virtual Organizations and
Networks, 8, 124–143.

Hirschheim, R., Heinzl, A., & Dibbern, J. (2006). Information systems outsourcing. Heidelberg:
Springer.

Hitt, L. M., & Chen, P. (2005). Bundling with customer self-selection: A simple approach to
bundling low marginal cost goods. Management Science, 51, 1481–1493.

Hoch, D. J., Roeding, C. R., Purkert, G., & Lindner, S. K. (2000). Erfolgreiche Software-
Unternehmen. Die Spielregeln der New Economy. Munich: Hanser.

Homburg, C., & Koschate, N. (2005). Behavioral Pricing—Forschung im Überblick. Zeitschrift
für Betriebswirtschaft, 75, 383–423 and 501–524.

Homburg, C., & Krohmer, H. (2006). Marketing management. Wiesbaden: Gabler.
Howcroft, D., & Light, B. (2006). Reflections on issues of power in packaged software selection.

Information Systems Journal, 16, 215–235.
Hutzschenreuter, T., & Stratigakis, G. (2003). Die feindliche Übernahme von PeopleSoft durch

Oracle—der Beginn einer Konsolidierungswelle. Signale, 18(3), 10–11.
Ichbiah, D. (1993). Die Microsoft Story: Bill Gates und das erfolgreichste Softwareunternehmen

der Welt. Munich: Campus.
Izci, E., & Schiereck, D. (2010). Programmierte Wertgenerierung durch M&A in der Business-

Softwareindustrie? Mergers and Acquisitions Review, 2, 69–74.
Jadhav, A. S., & Sonar, R. M. (2009). Evaluating and selecting software packages: A review.

Information & Software Technology, 51, 555–563.
Jensen, M. C., & Meckling, W. H. (1976). Theory of the firm: Managerial behaviour, agency

costs and ownership structure. Journal of Financial Economics, 3, 305–360.
Katz, M. L., & Shapiro, C. (1985). Network externalities, competition, and compatibility.

American Economic Review, 75, 424–440.
Kearney, A. T. (2004). Making offshore decisions. Chicago: Offshore Location Attractiveness

Index.
Keil, M., & Tiwana, A. (2006). Relative importance of evaluation criteria for enterprise systems:

A conjoint study. Information Systems Journal, 16, 237–262.
Kern, T., Willcocks, L. P., & Lacity, M. C. (2002). Application service provision: Risk

assessment and mitigation. MIS Quarterly Executive, 1, 113–126.
Kittlaus, H.-B., & Clough, P. N. (2009). Software product management and pricing. Key success

factors for software organizations. Berlin: Springer.
Kittlaus, H.-B., Rau, C., & Schulz, J. (2004). Software-Produkt-Management: Nachhaltiger

Erfolgsfaktor bei Herstellern und Anwendern. Heidelberg: Springer.
Köhler, L. (2004). Produktinnovation in der Medienindustrie - Organisationskonzepte auf Basis

von Produktplattformen. Wiesbaden: Gabler.

References 215

Kollock, P. (1999). The economies of online cooperation: Gifts and public goods in cyberspace.
In M. A. Smith & P. Kollock (Eds.), Communities in cyberspace (pp. 220–239). London:
Routledge.

Krafzig, D., Banke, K., & Slama, D. (2006). Enterprise SOA. Best Practices für Service-
orientierte Architekturen—Einführung, Umsetzung, Praxis. Upper Saddle River u. a: Prentice
Hall PTR.

Kublanov, E. M., Satyaprasad, S., & Nambiyattil, R. (2005). Offshore & Nearshore ITO salary
report 2004, Vol. 3, neoIT, San Ramon. Retrieved from http://www.neoit.com/pdfs/
whitepapers/OIv3i05_0505_ITO-Salaries2004.pdf

Küpper, H.-U. (2008). Controlling. Konzeption, Aufgaben, Instrumente. Stuttgart: Schäffer-
Poeschel.

Lambrecht, A., & Skiera, B. (2006). Paying too much and being happy about it: Existence, causes,
and consequences of tariff-choice biases. Journal of Marketing Research, 43, 212–223.

Larman, C., & Basili, V. R. (2003). Iterative and incremental development: A brief history.
Computer, 36, 47–56.

Lauver, K. J., & Kristof-Brown, A. (2001). Distinguishing between employees’ perceptions of
person–job and person–organization fit. Journal of Vocational Behavior, 59, 454–470.

Lee, S. Y. T., Kim, H.-W., & Gupta, S. (2009). Measuring open source software success.
Omega—The International Journal of Management Science, 37, 426–438.

Lehmann, S., & Buxmann, P. (2009). Preisstrategien von Softwareanbietern. Wirtschaftsinfor-
matik, 51, 519–529.

Lehmann, S., Draisbach, T., Koll, C., Buxmann, P., & Diefenbach, H. (2010). Preisgestaltung für
Software-as-a-Service. Ergebnisse einer empirischen Analyse mit Fokus auf nutzungsabhäng-
ige Preismodelle. Proceedings zur Teilkonferenz ‘‘Software-Industrie‘‘ der Multikonferenz
Wirtschaftsinformatik (MKWI) 2010, pp. 505–516.

Leimbach, T. (2007). Vom Programmierbüro zum globalen Softwareproduzenten. Die
Erfolgsfaktoren der SAP von der Gründung bis zum R/3-Boom. Zeitschrift für
Unternehmensgeschichte, 52, 5–34.

Lerner, J., & Tirole, J. (2002). Some simple economics of open source. Journal of Industrial
Economics, 52, 197–234.

Liebowitz, S. J., & Margolis, S. E. (1994). Network externality: An uncommon tragedy. Journal
of Economic Perspectives, 8, 133–150.

Liebowitz, S. J., & Margolis, S. E. (2001). Winners, losers & Microsoft competition and antitrust
in high technology. Oakland: Independent Institute.

Linde, F. (2008). Pricing-Strategien bei Informationsgütern. WISU, 2, 208–214.
Lock, D. (1998). The Gower handbook of management. Hampshire: Gower Publishing.
Loefert, C. (2007). Unternehmensreputation und M&A-Transaktionen—Bewertung strategischer

Entscheidungen in der US-amerikanischen Finanz- und Telekommunikationsindustrie.
Wiesbaden: Gabler.

Lünendonk, T. (2007). Führende Standard-Software-Unternehmen in Deutschland. Bad
Wörishofen.

Lünendonk, T. (2009). Führende IT-Beratungs-, IT-Service- und Standard-Software-Unterneh-
men in Deutschland. Bad Wörishofen.

Marn, M. V., Roegner, E. V., & Zawada, C. C. (2003). The power of pricing. The McKinsey
Quarterly, Number 1.

Martín Díaz, L. (2006). Evaluation of cooperative planning in supply chains. An empirical
approach of the European Automotive Industry. Wiesbaden: Gabler.

Mathwick, C., Malhotra, N., & Rigdon, E. (2001). Experiential value: Conceptualization,
measurement and application in the catalog and internet shopping environment. Journal of
Retailing, 77, 39–56.

Mell, P., Grance, T. (2011). The NIST-definition of cloud computing. Information note dated
25th May 2012. Retrieved from http://www.nist.gov/manuscript-publication-search.cfm?
pub_id=909616

216 References

http://www.neoit.com/pdfs/whitepapers/OIv3i05_0505_ITO-Salaries2004.pdf
http://www.neoit.com/pdfs/whitepapers/OIv3i05_0505_ITO-Salaries2004.pdf
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=909616
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=909616

Mergerstat Free Reports. (2009). Mergerstats free reports: Industry rankings for year 2009.
Retrieved from https://www.mergerstat.com/newsite/free_report.asp

Mertens, P., Große-Wilde, J., & Wilkens, I. (2005). Die (Aus-)Wanderung der Softwareproduk-
tion—Eine Zwischenbilanz (Vol. 38). Erlangen-Nuremberg: Institut für Informatik der
Friedrich-Alexander-Universität Erlangen-Nuremberg.

Messerschmitt, D. G., & Szyperski, C. (2003). Software ecosystem. Understanding an
indispensable technology and industry. Cambridge: MIT Press.

Meyer, M. H., & Lehnerd, A. P. (1997). The power of product platforms: Building value and cost
leadership. New York: Free Press.

Meyer, R. (2008). Partnering with SAP Vol. 1: Business models for software companies.
Norderstedt: Books on Demand.

Meyer-Stamer, J. (1999). Lokale und regionale Standortpolitik—Konzepte und Instrumente
jenseits von Industriepolitik und traditioneller Wirtschaftsförderung. Institut für Entwicklung
und Frieden, Gerhard-Mercator-Universität Duisburg.

Miller, D., & Elgård, P. (1998). Defining modules, modularity and modularization. Proceedings
of the 13th IPS Research Seminar, Fuglsoe.

Mit Siebel kauft Oracle Marktanteile. (2005). Computerwoche. Retrieved from
http://www.computerwoche.de/nachrichten/566287

Morstead, S., & Blount, G. (2003). Offshore ready: Strategies to plan and profit from offshore
IT-enabled services. Houston: ISANI Press.

Mundhenke, J. (2007). Wettbewerbswirkungen von Open-Source-Software und offenen Stan-
dards auf Softwaremärkten. Springer, Berlin.

Nalebuff, B. (2004). Bundling as an entry barrier. Working paper. School of Management, Yale
University, New Haven.

NASSCOM. (2007). NASSCOM’s education initiatives. Sustaining India’s talent edge to fuel the
next wave of IT-BPO industry growth. NASSCOM Press. Information note dated July 5,
2007. Retrieved from http://www.nasscom.in/upload/5216/July%205%202007%20%20
Education%20/initiatives-Final.pdf

Ney, J. (2004). Power in the global information age. London: Routledge.
Nieschlag, R., Dichtl, E., & Hörschgen, H. (2002). Marketing (19th ed.). Berlin: Duncker &

Humblot.
Olderog, T., & Skiera, B. (2000). The benefits of bundling strategies. Schmalenbach Business

Review, 1, 137–160.
Ouchi, W. G. (1977). The relationship between organizational structure and organizational

control. Administrative Science Quarterly, 3, 95–113.
Osterwalder, A. (2004). The business model ontology—a proposition in a design science

approach. Dissertation, University of Lausanne.
Parbel, M. (2005). Symantec übernimmt Veritas: Security und Storage wachsen zusammen.

Retrieved from http://www.crn.de/showArticle.jhtml?articleID=184423707
Payscale. (2010). Salary benchmarking. Retrieved from www.payscale.com
Pepels, W. (1998). Einführung in das Preismanagement. Munich: Oldenbourg.
Perens, B. (1999). The open source definition. In C. DiBona, S. Ockman, & M. Stone (Eds.),

Open sources: Voices from the open source revolution (pp. 171–188). Sebastopol: O’Reilly.
Petrasch, R., & Meimberg, O. (2006).Model driven architectures. Heidelberg: dpunkt.
Picot, A. (1982). Transaktionskostenansatz in der Betriebswirtschaftslehre: Stand der Diskussion

und Aussagewert. Die Betriebswirtschaft, 42, 267–284.
Picot, A. (1989). Zur Bedeutung allgemeiner Theorieansätze für die betriebswirtschaftliche

Information und Kommunikation. In W. Kirsch & A. Picot (Eds.), Die Betriebswirtschaftslehre
im Spannungsfeld zwischen Generalisierung und Spezialisierung (pp. 361–379). Wiesbaden:
Gabler.

Picot, A., & Ertsey, B. (2004). IT-Management der Zukunft als Vertragsmanagement.
Information Management & Consulting, 19, 11–19.

References 217

https://www.mergerstat.com/newsite/free_report.asp
http://www.computerwoche.de/nachrichten/566287
http://www.nasscom.in/upload/5216/July%205%202007%20%20Education%20/initiatives-Final.pdf
http://www.nasscom.in/upload/5216/July%205%202007%20%20Education%20/initiatives-Final.pdf
http://www.crn.de/showArticle.jhtml?articleID=184423707
http://www.payscale.com

Picot, A., & Meier, M. (1992). Analyse- und Gestaltungskonzepte für das Outsourcing.
Information Management, 7(4), 14–27.

Pigou, A. C. (1929). The economics of welfare (3rd ed.). London: Macmillan.
Plattner, H. (2007). Trends and concepts, lecture. Retrieved from http://epic.hpi.uni-potsdam.

de/Home/TrendsAndConcepts_I_2007
Prehl, S. (2006). Der Offshore-Trend erreicht Europa. Computerwoche Online, 18, 38.
Raymond, E. S. (1999). The Cathedral and the Bazaar. Sebastopol: O’Reilly.
Reussner, R., & Hasselbring, W. (2006).Handbuch der Software-Architektur. Heidelberg: dpunkt.
Robinson, M., & Kalakota, R. (2005). Offshore outsourcing. Alpharetta: Mivar Press.
Ross, S. A. (1973). The economic theory of agency: The principal’s problem. The American

Economic Review, 63, 134–139.
Schade, S., & Buxmann, P. (2005). A prototype to analyse and support standardization decisions. In

T. M. Egyedi & M. H. Sherif (Eds.), Proceedings of the 4th International Conference on
Standardization and Innovation in Information Technology, September 21–23 2005 (pp. 207–
219). Geneva: ITU.

Schmalensee, R. (1984). Gaussian demand and commodity bundling. The Journal of Business,
57, 211–230.

Schmidt, C., Weinhardt, C., & Horstmann, R. (1998). Internet-Auktionen—Eine Übersicht für
Online-Versteigerungen im Hard- und Softwarebereich. Wirtschaftsinformatik, 40, 450–457.

Schmidt, D. C. (2006). Model-driven-engineering.IEEE Computing, 39, 25–31.
Schweitzer, M. (1994). Industriebetriebslehre—Das Wirtschaften in Industrieunternehmungen.

Munich: Vahlen.
SEI. (2010). People CMM. Retrieved from http://www.sei.cmu.edu/cmmi/tools/peoplecmm
Shapiro, C., & Varian, H. R. (1998). Information rules: A strategic guide to the network economy.

Boston: Harvard Business School Press.
Shapiro, C., & Varian, H. R. (1999). Information rules: A strategic guide to the network economy.

Boston: Harvard Business School.
Sharma, S., Sugumaran, V., & Rajagopalan, B. (2002). A framework for creating hybrid-OSS

communities. Information Systems Journal, 12, 7–25.
Sieg, G. (2005). Spieltheorie. Munich: Oldenbourg.
SIIA, MACROVISION, SOFTSUMMIT, SVPMA, CELLUG. (2006). Key trends in software

pricing and licensing: A survey of software industry executives and their enterprise customers.
Retrieved from http://softsummit.com/pdfs_registered/SW_Pricing_Licensing_Report_2006
2007.pdf

Simon, H. (1992). Preismanagement. Stuttgart: Gabler.
Simonson, I., & Tversky, A. (1992). Choice in context: Tradeoff contrast and extremeness

aversion. Journal of Marketing Research, 29, 281–295.
Skiera, B. (1999a). Preisdifferenzierung. In S. Albers, M. Clement, & K. Peters (Eds.), Marketing

mit interaktiven Medien. Strategien zum Markterfolg (pp. 283–296). Frankfurt am Main:
F.A.Z. Institut.

Skiera, B. (1999b). Mengenbezogene Preisdifferenzierung bei Dienstleistungen. Wiesbaden:
Gabler.

Skiera, B. (2000). Wie teuer sollen die Produkte sein?—Preispolitik, Ecommerce: Einstieg,
Strategie und Umsetzung im Unternehmen. In: S. Albers, M. Clement, K. Peters & B. Skiera
(Eds.) eCommerce. Einstieg, Strategie und Umsetzung in Unternehmen. Frankfurt: Frank-
furter Allgemeine Buch, S 95–108.

Skiera, B., & Spann, M. (1998). Gewinnmaximale zeitliche Preisdifferenzierung für Dienstle-
istungen. Zeitschrift für Betriebswirtschaft, 68, 703–718.

Skiera, B., & Spann, M. (2000). Flexible Preisgestaltung im Electronic Business. In R. Weiber
(Ed.), Handbuch electronic business: Informationstechnologien—electronic commerce—
Geschäftsprozesse (pp. 539–557). Wiesbaden: Gabler.

218 References

http://epic.hpi.uni-potsdam.de/Home/TrendsAndConcepts_I_2007
http://epic.hpi.uni-potsdam.de/Home/TrendsAndConcepts_I_2007
http://www.sei.cmu.edu/cmmi/tools/peoplecmm
http://softsummit.com/pdfs_registered/SW_Pricing_Licensing_Report_20062007.pdf
http://softsummit.com/pdfs_registered/SW_Pricing_Licensing_Report_20062007.pdf

Skiera, B., & Spann, M. (2002). Preisdifferenzierung im Internet. In M. Schögel, T. Tomczak, &
C. Belz (Eds.), Roadmap to E-Business—Wie Unternehmen das Internet erfolgreich nutzen
(pp. 270–284). St. Gallen: Thexis.

Skiera, B., Spann, M., & Walz, U. (2005). Erlösquellen und Preismodelle für den Business-to-
Consumer-Bereich im Internet. Wirtschaftsinformatik, 47, 285–293.

Smith, G. E., & Nagle, T. T. (1995). Frames of reference and buyers’ perception of price and
value. California Management Review, 38, 98–116.

Spence, A. M., & Zeckhauser, R. J. (1971). Insurance, information and individual action.
American Economics Review, 61, 380–391.

Sterne, P., & Herring, N. (2006). SugarCRM—a sweet mix of commercial and open source.
Linux. Retrieved 16 Nov 2006 from http://linux.sys-con.com/node/173436

Stremersch, S., & Tellis, G. J. (2002). Strategic bundling of products and prices: A new synthesis
for marketing. Journal of Marketing, 66, 55–72.

Suermann, J. C. (2006). Bilanzierung von Software nach HGB, US-GAAP und IFRS—
Integrative Analyse der Regelungen zu Ansatz, Bewertung und Umsatzrealisation von
Software aus Hersteller- und Anwendersicht. Diss. Universität Wurzburg. Retrieved from
http://www.opus-bayern.de/uni-wuerzburg/volltexte/2006/1933

Sundararajan, A. (2004). Nonlinear pricing of information goods. Management Science, 50,
1660–1673.

‘‘Temporary Workers’’. U.S. Department of State. (2006).http://travel.state.gov/visa/temp/types/
types_1271.html

The Standish Group International, Inc. (2009). New Standish Group report shows more project
failing and less successful projects. Retrieved from http://www1.standishgroup.com/
newsroom/chaos_2009.php. Pressemeldung vom 23.04.2009, Massachusetts.

Thondavadi, N., & Albert, G. (2004). Offshore outsourcing. Bloomington: 1stbooks.
Unilog Integrata Unternehmensberatung GmbH. (2002). Client Studie der Landeshauptstadt

München, Munich.
Valtakoski, A., & Rönkkö, M. (2009). Business models of software firm. Proceedings of the

HICSS.
Van Antwerp, M., & Madey, G. (2008). Advances in the SourceForge Research Data Archive

(SRDA). Fourth International Conference on Open Source Systems, IFIP 2.13 (WoPDaSD
2008)

Van der Linden, F., Bosch, J., Kamsties, E., Känsälä, K., & Obbink, H. (2004). Software product
family evaluation. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J.
C. Mitchell, et al. (Eds.), Lecture notes in computer science (pp. 110–129). Berlin: Springer.

Van Westendorp, P. H. (1976). NSS-price sensitivity meter: A new approach to study consumer
perception of prices. Venice ESOMAR Congress (pp. 139–167), Amsterdam.

Vaquero, L. M., Rodero-Merino, L., Caceres, J., & Lindner, M. (2009). A break in the clouds:
Towards a cloud definition. SIGCOMM Computer Communication Review ACM, 39, 50–55.

Varian, H. R. (1997). Versioning information goods. Working paper, University of California,
Berkeley. Retrieved from http://people.ischool.berkeley.edu/*hal/Papers/version.pdf

Vashistha, A., & Vashistha, A. (2006). The offshore nation. New York: McGraw-Hill.
Viswanathan, S., & Anandalingam, G. (2005). Pricing strategies for information goods.

Sadhana—Journal of the Indian Academy of Sciences, 30, 257–274.
Weber, J., & Schäffer, U. (2008). Einführung in das Controlling. Stuttgart: Schäffer-Poeschel.
Weitzel, T. (2004). Economics of standards in information networks. Heidelberg: Physica.
Weitzel, T., Wendt, O., & von Westarp, F. (2000). Reconsidering network effect theory.

Proceedings of the 8th European conference on information systems (ECIS 2000), Vienna,
pp. 484–491.

West, J. (2003). How open is open enough? Melding proprietary and open source platform
strategies. Research Policy, 32, 1259–1285.

References 219

http://linux.sys-con.com/node/173436
http://www.opus-bayern.de/uni-wuerzburg/volltexte/2006/1933
http://travel.state.gov/visa/temp/types/types_1271.html
http://travel.state.gov/visa/temp/types/types_1271.html
http://www1.standishgroup.com/newsroom/chaos_2009.php
http://www1.standishgroup.com/newsroom/chaos_2009.php
http://people.ischool.berkeley.edu/~hal/Papers/version.pdf

West, J. (2006). The economic realities of open standards: Black, white and many shades of gray.
In S. Greenstein & V. Stango (Eds.), Standards and public policy. Cambridge: Cambridge
University Press.

Wheelwright, S. C., & Clark, K. B. (1992). Creating project plans to focus product development.
Harvard Business Review, 70, 67–83.

Willcocks, L., & Lacity, M. C. (2006). Global sourcing of business and IT services. New York:
Pal-grave Macmillan.

Williamson, O. E. (1985). The economic institutions of capitalism. Firms, markets, relational
contracting. New York: Free Press.

Williamson, O. E. (1991). Comparative economic organization: The analysis of discrete
structural alternatives. Administrative Science Quarterly, 36, 269–296.

Wirtz, B. W. (2003). Mergers & acquisitions management. Strategie und Organisation von
Unternehmenszusammenschlüssen. Wiesbaden: Gabler.

Wolf, C. (2010). Leistungstiefe von Softwareunternehmen—Eine Untersuchung von Herstellern
monolithischer Standardanwendungssoftware. Hamburg: Kovač.

Wolf, C. M., Benlian, A., & Hess, T. (2010). Industrialisierung von Softwareunternehmen durch
Arbeitsteilung: Einzelfall oder Trend? Multikonferenz Wirtschaftsinformatik 2010.

Wu, S., & Anandalingam, G. (2002). Optimal customized bundle pricing for information goods.
Proceedings workshop on information technology and systems, Barcelona.

Wu, S., Hitt, L. M., Chen, P., & Anandalingam, G. (2008). Customized bundle pricing for
information goods: A nonlinear mixed-integer programming approach. Management Science,
54, 608–622.

Wüstner, E. (2005). Standardisierung und Konvertierung: Ökonomische Bewertung und
Anwendung am Beispiel von XML/EDI. Aachen: Shaker.

Yoffie, D. B., & Kwak, M. (2006). With friends like these: The art of managing complementors.
Harvard Business Review.

Zacharias, R. (2007). Produktlinien: Der nächste Schritt in Richtung Software-Industrialisierung.
Java Magazin, 3, 69–82.

Zerdick, A., Picot, A., Schrape, K., Artopé, A., Goldhammer, K., Lange, U. T., et al. (1999). Die
Internet-Ökonomie: Strategien für die digitale Wirtschaft. Berlin: Springer.

Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: State-of-the-art and research
challenges. Journal of Internet Services and Applications, 1(2), 7–18.

220 References

Index

A
Accenture, 114, 121–122
Adobe, 88, 94–95
Application engineering, 159
Application erontend, 148–149
Application service providing (ASP), 169, 176
Automation, 160–161

B
Backsourcing, 129, 131
Best-of-breed, 37, 41
Billing units, 84–85, 96–97, 186–187, 189–

190
Broker, 61–63, 172
Browser War, 26–27, 165
Build-operate-transfer (BOT) model, 116
Bundling, 26–27, 81, 88–93, 98
Business model, 3, 9, 14–17, 165, 170,

173–174, 183–185, 187, 189, 200,
202–205

Business relationship, 32, 125, 128, 130

C
Cash flow, 148–150, 152–153, 176–177
Cloud computing, 9, 169–173
CMMI, 107
Communication costs, 35, 41
Compatibility, 10–11, 14, 28, 43

reverse, 163
Complementor, 5, 162–163, 165–166
Computer aided software engineering, 104
Concurrent user, 85, 96, 189
Conjoint analysis, 188
Cooperation strategy, 55–57
Co-opetition, 59–60
Console wars, 30
Consulting, 8, 16–17, 19, 21, 59, 67–68,

72–74, 81, 86, 88, 201
Consulting service, 21, 86

Copyleft, 192
CRM software, 68, 174, 190
Customer relationship management, 140, 202
Customizing, 8, 94, 127–128, 132

D
Digital games industry, 29–30
Digital good, 13, 17, 19–20, 81, 83, 86, 92
Distributor, 47, 65, 75
Distribution channel, 30, 74–75, 162, 165
Distribution system, 75
Domain engineering, 159
Dual licensing model, 202

E
Early adopter, 26
Enterprise resource planning, 96, 98, 140–141,

143, 153, 173, 175, 178, 181–182,
190, 202–210

External service provider, 124

F
Farshoring, 116–117, 120–122, 134–135
First copy, 19, 81
Follow-the-free strategy, 93–94, 200
Follow-the-sun-principle, 117, 120, 138
Free software, 17, 191–193, 195
Free software foundation, 192
Freeware, 191
Function point method, 99–100

G
Global delivery model, 122
GNU, 192–193, 195–196
Google, 12, 62, 155, 164, 170–176
GPL-license, 192–193, 195, 198, 201–202,

204–205

P. Buxmann et al., The Software Industry, DOI: 10.1007/978-3-642-31510-7,
� Springer-Verlag Berlin Heidelberg 2013

221

H
Hidden Aation, 49
Hidden characteristics, 48–49
Hidden intention, 49

I
IBM, 4, 16, 28–30, 150, 153, 165, 170,

176, 201
iBS banking solution, 58–59
Increasing returns, 21, 25
Industrialization, 47, 106, 159–161
Information costs, 34–41
Incompatibility, 69
Intermediation theory, 47

J
Joint venture, 58, 115–117, 138

K
Key account manager, 76
Key performance indicator (KPI), 71, 77–80,

85, 96, 148

L
Lessor, 60, 62–63
LGPL-license, 193, 195, 205
Linux, 173, 192–193, 196–197, 199–205
License, 14–17, 19, 30, 60, 72–76, 81, 83–84,

86, 88–89, 94, 98, 122, 164, 169,
174, 177–178, 191–195, 198,
201–202, 204–207

Local attractiveness index, 121
Location selection, 114, 121
Lock-in-effect, 23, 28, 87–88, 93–94,

172–173, 176, 178, 210

M
Maintainer, 197
Make-or-buy, 41, 45, 115, 144
Mergers and acquisitions, 3, 64–70
Microsoft, 4, 6, 22–23, 26–27, 29–30, 34, 60,

69, 87, 90, 142, 153, 155, 163, 165,
170–171, 176, 195, 198–199, 201

Model-Driven Architecture, 105
Model-Driven Engineering (MDE), 105–107
Move to the market, 46
Move-to-the-middle, 45–46

N
Nash equilibrium, 39–40
Nearshoring, 116–117, 120–122, 134
Network Effect, 3, 19–33, 41, 55, 67, 69, 83,

88, 93–94, 164–165, 176, 200
direct, 22, 24
indirect, 21–22, 24, 30, 165, 200
two-sided, 21, 29–31

Network effect factor, 22–23, 28, 94

O
Openness, 128, 162–165

horizontal, 163
vertical, 162–163

Offshore, 42, 113, 115–122, 134–138, 153
Offshoring, 45, 113–122, 135, 137
On-demand, 170, 172, 174–176, 184
Onshoring, 114, 122
Open source initiative (OSI), 24, 193, 195, 207
Open source software (OSS), 22, 56, 191, 193,

195–196, 199–202
Oracle, 14, 17, 28, 65, 68–69, 153, 174,

201–203
Outsourcing, 8–9, 43, 45–46, 48–49, 98, 113–

139, 172–173, 176–177, 179, 183

P
Partnership, 28, 57–64, 75–76, 115, 121, 126,

144, 164, 201
development partnership, 58–60
OEM partnership, 58, 62–63
referral partnership, 58, 63
reseller partnership, 58, 60–61
shared revenue partnership, 58, 61–62
standardization partnership, 58, 64

Path dependence, 24–25
Penguin effect, 20, 23–24, 28, 40, 164, 210
Person-job-fit, 107–108
Pirate copy, 20
Platform sponsor, 164
Point of marginal cheapness (PMC), 189
Point of marginal expensiveness (PME), 189
Positive feedback, 21–22, 26
Price bundling, 26–27, 81, 88–93, 98
Price differentiation, 98
Price sensitivity meter (PSM), 188–189
Pricing, 17, 23, 50, 55, 58, 74, 81–100, 170,

173, 183–190, 204, 210
Principal-agent-theory, 47–49, 53
Product line management, 159
Product platform, 155–159

222 Index

R
Return

abnormal, 70
Reservation price, 86, 91, 189
Rule of thumb, 33, 87

S
SaaS, 59, 74, 83–85, 98, 169–190
Sales

direct, 72–73, 142, 146
indirect, 72–73, 142, 145

Salesforce.com, 155, 171–175
Sales management, 71
Sales organization, 71–72
Sales strategy, 71–81
SAP, 4–6, 8, 12, 14, 16, 22, 28, 30, 58–62, 68,

73–76, 113, 119, 121, 123, 150,
153, 173–175, 201–202, 210

Service bus, 149
Service contract, 66, 149
Service repository, 149
Service-oriented architecture (SOA), 6, 33, 41,

59, 138, 146, 148–153, 156, 169
Skimming strategy, 93, 95
Small and mid-sized businesses, 188
SOAP, 150–153
Software

Custom software, 5, 7–8, 16, 19, 42, 47, 50,
53, 72, 98–99, 104–105, 123–128,
132

Standard software, 5–10, 14–17, 19, 21–22,
26, 28, 34–35, 47, 58–59, 72–73,
86, 98, 104, 126–128, 133, 140,
146, 153, 169, 173, 178, 199

System software, 5, 14
Software AG, 65, 115–117, 138, 150, 153
Software as a service, 169–190
Software provider

in the narrower sense, 4–5, 8–9, 191
in the broader sense, 4, 8–9, 16–17

Software development

ad-hoc development, 101
agile approach, 101–104, 196
plan-based approach, 101–104
rapid prototyping, 101

Software license, 19, 75–76, 83–84, 86, 88,
174, 192–193, 195

Standardization problem, 33–41
Stand-alone utility, 22–26, 35–36, 38–40
Startup problem, 24, 93
SuSe, 200–201
Switching costs, 21, 23, 28, 98, 173, 178, 210

T
Time difference, 137–144
Transaction, 19, 41–47, 65, 67–72, 84, 89, 99,

139, 142, 190
Transaction cost, 19, 42–47, 65, 72–73
Transaction cost theory, 41–47, 115, 139

U
UDDI, 150–153

V
Value chain, 14–15, 21, 29–30, 41, 46, 55, 65,

71, 139–146, 153
Value net, 56

W
W3C, 150
Web service, 33, 84, 90, 150–153, 169, 171
Willingness-to-pay, 86–88, 188–189
Winner-takes-it-all-market, 20
WSDL, 150–153

X
XML, 21, 105, 148, 150–151

Index 223

	The Software Industry
	Foreword
	Contents
	Abbreviations
	Part IBasics
	Part IISpecific Issues
	References

