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Preface

This volume comprises the proceedings of the 9th International Conference on
Parallel Processing and Applied Mathematics – PPAM 2011, which was held in
Toruń, Poland, September 11–14, 2011. It was organized by the Department of
Computer and Information Science of the Cz ↪estochowa University of Technology,
with the help of the Nicolaus Copernicus University in Toruń, Faculty of Math-
ematics and Computer Science. The main organizer was Roman Wyrzykowski.

PPAM is a biennial conference. Eight previous events have been held in dif-
ferent places in Poland since 1994. The proceedings of the last five conferences
have been published by Springer in the Lecture Notes in Computer Science se-
ries (Na�l ↪eczów, 2001, vol. 2328; Cz ↪estochowa, 2003, vol. 3019; Poznań, 2005, vol.
3911; Gdańsk, 2007, vol. 4967; Wroc�law, 2009, vols. 6067 and 6068).

The PPAM conferences have become an international forum for exchanging
ideas between researchers involved in scientific and parallel computing, includ-
ing theory and applications, as well as applied and computational mathematics.
The focus of PPAM 2011 was on models, algorithms, and software tools which
facilitate efficient and convenient utilization of modern parallel and distributed
computing architectures, as well as on large-scale applications, and cloud com-
puting.

This meeting gathered more than 200 participants from 33 countries. A strict
refereeing process resulted in acceptance of 130 contributed presentations, while
approximately 45% of the submissions were rejected. Regular tracks of the con-
ference covered such important fields of parallel/distributed/grid computing and
applied mathematics as:

– Parallel/distributed architectures and mobile computing
– Numerical algorithms and parallel numerics
– Parallel non-numerical algorithms
– Tools and environments for parallel/distributed/grid computing
– Applications of parallel/distributed computing
– Applied mathematics, neural networks and evolutionary computing
– History of computing

The plenary and invited talks were presented by:

– David A. Bader from the Georgia Institute of Technology (USA)
– Paolo Bientinesi from the RWTH Aachen (Germany)
– Christopher Carothers from the Rensselaer Polytechnic Institute (USA)
– Ewa Deelman from the University of Southern California (USA)
– Jack Dongarra from the University of Tennessee and Oak Ridge National

Laboratory (USA)
– Geoffrey Ch. Fox from the Indiana University (USA)
– Fred Gustavson from the Ume̊a University (Sweden) and emeritus from the

IBM T.J. Watson Research Center (USA)
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– Tony Hey from the Microsoft Research
– Bo K̊agström from the Ume̊a University (Sweden)
– Jakub Kurzak from the University of Tennessee (USA)
– Jarek Nabrzyski from the University of Notre Dame (USA)
– Raymond Namyst from the University of Bordeaux & INRIA (France)
– Victor Pankratius from the University of Karlsruhe (Germany)
– Markus Pueschel from the ETH Zurich (Switzerland)
– Eugen Schenfeld from the IBM T.J. Watson Research Center (USA)
– Robert Strzodka from the Max Planck Institut für Informatik (Germany)
– Boles�law Szymański from the Rensselaer Polytechnic Institute (USA)
– Richard W. Vuduc from the Georgia Institute of Technology (USA)
– Jerzy Waśniewski from the Technical University of Denmark (Denmark)

Important and integral parts of the PPAM 2011 conference were the workshops:

– Minisymposium on GPU Computing organized by José R. Herrero from the
Universitat Politecnica de Catalunya (Spain), Enrique S. Quintana-Ort́ı from
the Universitat Jaime I (Spain), and Robert Strzodka from the Max Planck
Institut für Informatik (Germany)

– Minisymposium on Autotuning organized by Richard W. Vuduc from the
Georgia Institute of Technology (USA) and Roman Wyrzykowski from the
Cz ↪estochowa University of Technology (Poland)

– Workshop on Memory and Data Parallelism on Multi- and Manycore Plat-
forms organized by Michael Bader from the University of Stuttgart (Ger-
many), Carsten Trinitis, and Josef Weidendorfer from the TU München
(Germany)

– Workshop on Models, Algorithms and Methodologies for Hierarchical Par-
allelism in New HPC Systems organized by Giulliano Laccetti and Marco
Lapegna from the University of Naples Federico II (Italy) and Raffaele Mon-
tella from the University of Naples “Parthenope” (Italy)

– Workshop on Scheduling for Parallel Computing—SPC 2011—organized by
Maciej Drozdowski from the Poznań University of Technology (Poland)

– The 4th Workshop on Language-Based Parallel Programming Models—WLPP
2011—organized by Ami Marowka from the Bar-Ilan University (Israel)

– The Second Workshop on Scalable Computing in Distributed Systems and
the 7th Workshop on Large-Scale Computations on Grids—ScoDiS-LaSCoG
2011—organized by Dana Petcu from the West University of Timisoara (Ro-
mania) and Marcin Paprzycki from WSM and the Systems Research Institute
of the Polish Academy of Sciences (Poland)

– The Third Workshop on Performance Evaluation of Parallel Applications
on Large-Scale Systems organized by Jan Kwiatkowski from the Wroc�law
University of Technology (Poland)

– Workshop on Parallel Computational Biology—PBC 2011—organized by
David A. Bader from the Georgia Institute of Technology (USA), Jaros�law
Żola from the Iowa State University (USA), and Scott Emrich from the Uni-
versity of Notre Dame (USA)
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– Minisymposium on Applications of Parallel Computations in Industry and
Engineering organized by Raimondas Čiegis from the Vilnius Gediminas
Technical University (Lithuania) and Julius Žilinskas from the Vilnius Uni-
versity (Lithuania)

– Minisymposium on High-Performance Computing Interval Methods orga-
nized by Bart�lomiej J. Kubica from the Warsaw University of Technology
(Poland)

– Workshop on Complex Colective Systems organized by Pawe�l Topa and
Jaros�law W ↪as from the AGH University of Science and Technology in Cracow
(Poland)

– The First Workshop on Service-Oriented Architecture in Distributed
Systems—SOADS 2011—organized by Jan Kwiatkowski from the Wroc�law
University of Technology (Poland) and Dariusz Wawrzyniak from the Poznań
University of Technology (Poland)

The PPAM 2011 meeting began with five tutorials:

– Scientific Computing with GPUs, by Dominik Göddeke from the University
of Dortmund (Germany), Jakub Kurzak from the University of Tennessee
(USA), Jan-Philipp Weiss from the Karlsruhe Institute of Technology (Ger-
many), as well as André Heidekrüger from AMD, and Tim Schröder from
NVIDIA

– StarPU System for Heterogeneous Multicore Architectures, by Raymond
Namyst from the University of Bordeaux and INRIA (France)

– Tutorial on the 100th Anniversary of Cholesky’s Algorithm, by Fred Gus-
tavson from the Ume̊a University (Sweden) and emeritus from the IBM T.J.
Watson Research Center (USA) and Jerzy Waśniewski from the Technical
University of Denmark (Denmark)

– FutureGrid, by Geoffrey Ch. Fox from the Indiana University (USA)
– Best Practices to Run Applications in HPC Environments, by the POWIEW

Project team (Poland)

The PPAM Best Poster Award is granted to the best poster on display at the
PPAM conferences, and was established at PPAM 2009. This Award is bestowed
by the Program Committee members to the presenting author(s) of the best
poster. The selection criteria are based on the scientific content and on the
quality of the poster presentation.

The PPAM 2011 winners were Damian Wóicik, Marcin Kurowski, Bogdan
Rosa, and Micha�l Ziemiański from the Institute of Meteorology and Water Man-
agement in Warsaw, who presented the poster “A Study on Parallel Performance
of the EULAG F90/95 Code.”

The Special Award was bestowed to Andrzej Jarynowski from the Jagiellonian
University and Przemys�law Gawroński, Krzysztof Ku�lakowski from the AGH
University of Science and Technology in Kraków, who presented the poster “How
the Competitive Altruism Leads to Bistable Homogeneous States of Cooperation
or Defection.”
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Automated Performance Tuning (“Autotuning”) of Software: The complexity of
modern machines makes performance tuning a tedious and time-consuming task.
The goal of autotuning techniques is to automate the process of selecting the
highest-performing program implementation from among a space of candidates,
guided by experiments. An experiment is the execution of a benchmark and ob-
servation of its performance; such experiments may be used directly to test a
candidate implementation, or may be used to calibrate a model that is then used
to select such an implementation. Roughly speaking, autotuning research con-
siders questions of how to identify and generate the space of candidate program
implementations as well as how to find (or search for) the best implementation
given such a space. A system that implements an autotuning process is an au-
totuner. An autotuner may be a stand-alone code generation system or may be
part of a compiler.

The Minisymposium on Autotuning featured a number of invited and con-
tributed talks covering recent and diverse advances, including:

– A new high-level rewrite system for linear algebra computations, with appli-
cations to computational physics and biology (by P. Bientinesi)

– Novel uses of machine learning to facilitate searching (M. Püschel)
– The extension of autotuning ideas into general software engineering pro-

cesses, such as tuning the software architecture (V. Pankratius)
– New code generation and search space pruning techniques for dense linear

algebra targeted at GPU architectures (J. Kurzak and H.H.B. Sørensen)
– Reducing tuning time for high-performance LINPACK using novel perfor-

mance models (P. �Luszczek)

The organizers are indebted to the PPAM 2011 sponsors, whose support was
vital to the success of the conference. The main sponsor was the Intel Corpo-
ration. The other sponsors were: IBM Corporation, Hewlett-Packard Company,
Microsoft Corporation, and AMD. We thank all members of the International
Program Committee and additional reviewers for their diligent work in refer-
eeing the submitted papers. Finally, we thank all of the local organizers from
the Cz ↪estochowa University of Technology, and the Nicolaus Copernicus Univer-
sity in Toruń, who helped us to run the event very smoothly. We are especially
indebted to Grażyna Ko�lakowska, Urszula Kroczewska, �Lukasz Kuczyński, and
Marcin Woźniak from the Cz ↪estochowa University of Technology; and to Andrzej
Rozkosz, and Piotr Ba�la from the Nicolaus Copernicus University.

We hope that this volume will be useful to you. We would like everyone who
reads it to feel invited to the next conference, PPAM 2013, which will be held
during September 8–11, 2013, in Warsaw, the capital of Poland.

February 2012 Roman Wyrzykowski
Jack Dongarra

Konrad Karczewski
Jerzy Waśniewski
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Seredyński, Franciszek Polish Academy of Sciences and

Polish-Japanese Institute of Information
Technology, Warsaw, Poland

Schaefer, Robert Institute of Computer Science, AGH, Poland
Silc, Jurij Jozef Stefan Institute, Slovenia
Sloot, Peter M.A. University of Amsterdam, The Netherlands
Sosonkina, Masha Ames Laboratory and Iowa State University,

USA
Sousa, Leonel Technical University of Lisbon, Portugal
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XIV Table of Contents – Part II

Verification of a Heat Diffusion Simulation Written with Orléans
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Parallel Implementation of Stochastic Inversion of Seismic Tomography
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Maciej Dwornik and Anna Pi ↪eta

Parallel Coarse-Grid Treatment in AMG for Coupled Systems . . . . . . . . . 361
Maximilian Emans

Approaches to Parallelize Pareto Ranking in NSGA-II Algorithm . . . . . . 371
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Table of Contents – Part II XIX

Compensability of Business Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
Hubert G ↪ezikiewicz, Krzysztof Jankiewicz, and Tadeusz Morzy

A Developer’s View of Application Servers Interoperability . . . . . . . . . . . . 638
Pawe�l Lech Kaczmarek and Micha�l Nowakowski

Traffic Pattern Analysis for Distributed Anomaly Detection . . . . . . . . . . . 648
Grzegorz Kolaczek and Krzysztof Juszczyszyn

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659



Table of Contents – Part I

A Look Back: 57 Years of Scientific Computing . . . . . . . . . . . . . . . . . . . . . . 1
Jerzy Waśniewski
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On Time Constraints of Reliable Broadcast Protocols for Ad Hoc
Networks with the Liveness Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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Abstract. The goal of this paper is to propose a methodology of the
effective cost function determination for the job shop scheduling prob-
lem in parallel computing environment. Parallel Random Access Machine
(PRAM) model is applied for the theoretical analysis of algorithm effi-
ciency. The methods need a fine-grained parallelization, therefore the
approach proposed is especially devoted to parallel computing systems
with fast shared memory. The methods proposed are tested with CUDA
and OpenCL and ran on NVidia and ATI GPUs.

1 Introduction

In this work we are showing the method of parallelization of the job shop problem
solving algorithm for GPGPU, consisting in parallelization of the cost function
calculations. There are only few papers dealing with single-walk parallel algo-
rithms for the job shop scheduling problem. Most of papers examine multiple-
walk parallelization, e.g. parallel metaheuristics, without using of any theoretical
properties of this scheduling problem. From the single-walk approaches, Bożejko
et al. [2] proposed a simulated annealing metaheuristic for the job shop problem.
Steinhöfel et al. [6] described the method of parallel cost function determination
in O(log2 o) time on O(o3) processors, where o is the number of all operations.
Bożejko [3] considered a method of parallel cost function calculation for the flow
shop problem which constitutes a special case of the job shop problem. Here we
show a cost-optimal parallelization which takes a O(d) time on O(o/d) proces-
sors, where d is the number of layers in the topological sorted graph represent-
ing a solution. Finally, we conduct computational experiments on two types of
GPU architectures (provided by nVidia and ATI) which fully confirm theoretical
results.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 1–10, 2012.
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2 The Job Shop Problem

Let us consider a set of jobs J = {1,2,...,n}, set of machines M = {1,2,...,m} and
a set of operationsO = {1,2,...,o}. A setO is decomposed into subsets connected
with jobs. A job j consists of a sequence oj operations indexed consecutively by

(lj−1+1, lj−1+2,...lj) which have to be executed in the order, where lj =
∑j

i=1 oi
is a total number of operations of the first j jobs, j = 1,2,...,n, l0 = 0,

∑n
i=1 oi = o.

An operation i has to be executed on the machine vi ∈M without any idleness in
the pi > 0, i ∈ O time. Each machine can execute at most one operation in any
moment of time. A feasible solution constitutes a vector of times of the operation
execution beginning S= (S1, S2,...,So) such that the following constrains are
fulfilled:

Slj−1+1 ≥ 0, j = 1, 2, ..., n, (1)

Si + pi ≤ Si+1, i = lj−1 + 1, lj−1 + 2, ..., lj − 1, j = 1, 2, ..., n, (2)

Si + pi ≤ Sj or Sj + pj ≤ Si, i, j ∈ O, vi = vj , i �= j. (3)

Certainly, Cj = Sj + pj . An appropriate criterion function has to be added to
the above constrains. The most frequently met are the following two criteria:
minimization of the time of finishing of all the jobs and minimization of the sum
of jobs’ finishing times. From the formulation of the problem we have Cj ≡ Clj ,
j ∈ J .

The first criterion, the time of finishing of all the jobs:

Cmax(S) = max
1≤j≤n

Clj , (4)

corresponds to the problem denoted as J ||Cmax in the literature. The second
criterion, the sum of the jobs’ finishing times:

C(S) =

n∑
j=1

Clj , (5)

corresponds to the problem denoted as J ||
∑

Ci in the literature.
Both described problems are strongly NP-hard and although they are sim-

ilarly modeled, the second one is considered to be harder because of lack of
some specific properties (so-called block properties, see [5]). They are used in
optimization of execution time of solving algorithms.

2.1 Disjunctive Model

A disjunctive model is based on the notion of disjunctive graph G∗ = (O∗, U∗ ∪
V ). This graph has a set of vertices O∗ = O ∪ {0} which represents operations
(with an additional artificial beginning operation (0), for which p0 = 0), a set
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of conjunctive arcs (directed) which show a technological order of operation’s
execution

U∗ = U ∪ U0 =
n⋃

j=1

lj−1⋃
i=lj−1+1

{(i, i + 1)} ∪
n⋃

j=1

{(0, lj−1 + 1)} (6)

and the set of disjunctive arcs (non-directed) which shows a possible schedule of
operations’ realization on each machine

V =
⋃

i,j∈O,i�=j,vi=vj

{(i, j), (j, i)}. (7)

Disjunctive arcs {(i, j),(j, i)} are in fact pairs of directed arcs with inverted
directions connecting vertices i and j.

A vertex i ∈ O has a weight pi which equals to the time of execution of
the operation Oi. Arcs have the weight zero. A choice of exactly one arc from
the set {(i, j),(j, i)} corresponds to determination of a schedule of operations
execution – ”i before j” or ”j before i”. A subset W ⊂ V consisting exclusively
of directed arcs, at most one from each pair {(i, j),(j, i)}, we call a representation
of disjunctive arcs. Such a representation is complete, if all the disjunctive arcs
have determined directions. A complete representation, defining a precedence
relation of jobs’ execution on the same machine, generates one solution – not
always feasible, if it includes cycles. A feasible solution is generated by a complete
representation W such that the graph G(W ) = (O, U ∪ W ) is acyclic. For a
feasible schedule values Si of the vector of operations execution starting times
S= (S1, S2,...,So) can be determined as a length of the longest path incoming
to the vertex i (without pi). Because the graph G(W ) includes o vertices and
O(o2) arcs, therefore determining the value of the cost function for a given
representation W takes the O(o2) time.

2.2 Combinatorial Model

In case of many applications a combinatorial representation of the solution is
better than a disjunctive model for the job shop problem. It is voided of redun-
dance, characteristic for the disjunctive graph, it denotes the situation where
many disjunctive graphs represent the same solution of the job shop problem.
A set of operations O can be decomposed into subsets of operations executed
on the single, determined machine k ∈ M , Mk = {i ∈ O : vi = k} and let
mk = |Mk|. A schedule of operations execution on a machine k is determined
by a permutation πk = (πk(1), πk(2), . . . , πk(mk)) of elements of the set Mk,
k ∈M , where πk(i) means such an element from Mk which is on the i position
in πk. Let Π(Mk) be a set of all permutations of elements of Mk. A schedule of
operations’ execution on all machines is defined as π = (π1, π2, . . . , πm), where
π ∈ Π , Π = Π(M1) × Π(M2) × . . . × Π(Mm). For a schedule π we create a
directed graph (digraph) G(π) = (O, U ∪ E(π)) with a set of vertices O and a
set of arcs U∪E(π)), where U is a set of constant arcs representing technological
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order of operations execution inside a job and a set of arcs representing an order
of operations’ execution on machines is defined as

E(π) =

m⋃
k=1

mk−1⋃
i=1

{(πk(i), πk(i + 1))} (8)

Each vertex i ∈ O has the weight pi, each arc has the weight zero. A schedule
π is feasible, if the graph G(π) does not include a cycle. For a given feasible
schedule π the process of determining of the cost function value requires the
O(o) time, thus shorter than for the disjunctive representation.

3 Sequential Determination of the Cost Function

Taking into consideration the constraints (1)–(3) presented in Section 2 it is
possible to determine the time moments of operation completion Cj , j ∈ O
and job beginning Sj, j ∈ O in time O(o) on the sequential machine using the
recurrent formula

Sj = max{Si + pi, Sk + pk}, j ∈ O. (9)

where an operation i is a direct technological predecessor of the operation j ∈ O
and an operation k is a directed machine predecessor of the operation j ∈ O.
The determination procedure of Sj , j ∈ O from the recurrent formula (9) should
be initiated by an assignment Sj = 0 for those operations j which do not possess
any technological or machine predecessors. Next, in each iteration an operation
j has to be chosen for which:

1. the execution beginning moment Sj has not been determined yet, and
2. these moments were determined for all its direct technological and machine

predecessors; for such an operation j the execution beginning moment can
be determined from (9).

It is easy to observe that the order of determining Sj times corresponds to the
index of the vertex of the G(π) graph connected with a j operation after the topo-
logical sorting of this graph. The method mentioned above is in fact a simplistic
sequential topological sort algorithm without indexing of operations (vertices
of the graph). If we add an element of indexing vertices to this algorithm, for
which we calculate Sj value, we obtain a sequence which is the topological or-
der of vertices of the graph G(π). Now, we define layers of the graph collecting
vertices (i.e., operations) for which we can calculate Sj in parallel, as we have
calculated the starting times for all machines and technological predecessors of
the operations in the layer.

Definition 1. The layer of the graph G(π) is a maximal (due to the number of
vertices) subsequence of the sequence of vertices ordered by the topological sort
algorithm, such that there are no arcs between vertices of this subsequence.

We will need this definition in the next paragraph.
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4 Parallel Determination of the Cost Function

Theorem 1. For a fixed feasible operations π order for the J ||Cmax problem,
the number of layers from Definition 1 of the G(π) graph can be calculated in

O(log2 o) time on the CREW PRAMs with O
(

o3

log o

)
processors.

Proof. Here we use the G∗(π) graph with an additional vertex 0. Let B = [bij ]
be an incidence matrix for the G∗(π) graph, i.e., bij = 1, if there is an arc i, j
in the G∗(π) graph, otherwise bij = 0, i, j = 0, 1, 2, . . . , o. The proof is given in
three steps.

1. Let us calculate the longest paths (in the sense of the number of vertices) in
G∗(π). We can use the parallel Bellman-Ford algorithm (see [1]) – we need
the time O(log2 o) and CREW PRAMs with O(o3/ log o) processors.

2. We sort distances from the 0 vertex to each vertex in an increasing or-
der. Their indexes, after having been sorted, correspond to the topological
order of vertices. This takes the time O(log o) and CREW PRAMs with
o + 1 = O(o) processors, using the parallel mergesort algorithm. We obtain
a sequence Topo[i], i = 0, 1, 2, . . . , o. The value of Topo[o] equals d.

We can also use a tree-based parallel maximum determination algorithm in Step
2, instead of mergesort. However, the most time- and processor-consuming is

Step 1. We need the time O(log2 o) and the number of processors O
(

o3

log o

)
of

the CREW PRAMs.

Theorem 2. For a fixed feasible operations π order for the J ||Cmax problem,
the value of cost function can be determined in O(d) time on O(o/d)-processor
CREW PRAMs, where d is the number of layers of the graph G(π).

Proof. Let Γk, k = 1, 2, . . . , d, be the number of calculations of the operations
finishing moments Ci, i = 1, 2, . . . , o in the k-th layer. Certainly

∑d
k=1 Γk = o.

Let p be the number of processors used. The time of computations in a single
layer k after having divided calculations into 	Γk

p 
 groups, each group containing

(at most) p elements, is 	Γk

p 
 (the last group cannot be full). Therefore, the total

computation time in all d layers equals
∑d

k=1	Γk

p 
 ≤
∑d

k=1(Γk

p + 1) = o
p + d. To

obtain the time of computations O(d)we should use p = O( o
d) processors.

This theorem provides a cost-optimal method of parallel calculation of the cost
function value for the job shop problem with the makespan criterion.

5 The GPU Algorithm

The main part of our parallel implementation of goal function calculation for the
job shop problem constitutes calculating of the longest path between all vertices
in graph. This part was parallelized with CUDA and OpenCL and ran on NVidia
and ATI GPUs.
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Fig. 1. CUDA kernel code

Kernel code (Figure 1 – CUDA kernel code) is invoked o times where o is
the number of nodes in the graph. At the k-th iteration, the kernel computes
direct and the indirect distance between every pair of nodes in graph through
node υk. The larger of the two distances is written back to the distance matrix.
The final distance matrix reflects the lengths of the longest paths between each
pair of nodes in the graph. The inputs of the GPU kernel are the number of
the graph nodes, the graph distance matrix and the iteration number. Figure
2 shows OpenCL implementation of computing the longest path between each
pair of nodes in a graph.

6 Computational Experiments

The proposed parallel algorithm of goal function calculation for the job shop
problem was coded in CUDA and OpenCL and tested on GPU servers in the
Wroclaw Centre for Networking and Supercomputing. The algorithm was tested
on the set of benchmark problem instances taken from Lawrence [4] and Tail-
lard [7]. We run our algorithm on three different GPUs:

– NVidia GTX480 with 480 parallel processor cores and 1.4 GHz clock rate,
– ATI Radeon HD5870 with 20 compute units and 850 MHz clock rate,
– ATI Radeon HD5970 with 20 compute units and 725 MHz clock rate.



Parallel Cost Function Determination on GPU for the Job Shop 7

Fig. 2. OpenCL code

This GPUs are installed in servers with Intel Core i7 CPU with 3.20 GHz
clock rate working under 64-bit GNU/Linux Ubuntu 10.10 operating system.
The proposed algorithm uses o2 processors for layers determination (basing on
Theorem 1, scaled to the time O(o log o)). The sequential algorithm (based on
the method presented in the Section 3) using one CPU processor has been coded
with the aim of determining the absolute speedup value which can be obtained
with a parallel algorithm.

Our CUDA (OpenCL) implementation of the parallel goal function calculation
for the job shop problem uses o blocks (work groups) with o threads (work
items). The maximum work item size per dimension for HD5870 and HD5970 is
equal to 256. Therefore we could ran our parallel algorithm on ATI GPUs only
for Lawrence test instances (up to 255 operations). The maximum number of
threads per block for NVidia GTX480 GPU is equal to 1024. On this GPU we can
calculate a goal function for the job shop problem with up to 1024 operations.

Figures 3 and 4 show the comparison of computation time for sequential
(run on CPU) and parallel algorithm coded in CUDA/OpenCL and run on
NVidia/ATI GPUs. The measured time contains the time needed for data trans-
fer between CPU and GPU. As shown in Figure 3 the considered algorithm coded
in CUDA is faster than the algorithm coded in OpenCL for all Lawrence test
instances. The algorithm coded in OpenCL is faster than the algorithm for CPU
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Fig. 3. Computation time for Lawrence test instances

for the number of operations grater than 225. The comparison of computation
time for OpenCL code on different hardware shows that running the same code
on Nvidia GTX 480 take less time than on used ATI GPUs. Also, the compu-
tation time for ATI Radeon HD5870 is less than ATI Radeon HD5970. This
situation is caused by clock rate for GPU hardware used for tests evaluation.

Fig. 4. Computation time for Taillard test instances

Figure 5 and Table 1 report the comparison of speedup obtained for CUDA
and OpenCL implementation on NVidia GTX480 GPU. The particular columns
in Table 1 denote:
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Fig. 5. Speedup for Taillard test instances

Table 1. Speedup for CUDA and OpenCL impementation obtained on NVidia
GTX480 GPU

problem o sOpenCL sCUDA

tail01-10 225 1.97731 8.25768
tail11-20 300 3.40649 12.6401
tail21-30 400 5.22559 16.0617
tail31-40 450 7.10766 19.855
tail41-50 600 9.7754 22.8953
tail51-60 750 15.9346 27.0535
tail61-70 1000 19.6828 25.9972

– o – number of operations in considered job shop problem instance,
– sOpenCL – speedup for OpenCL implementation (average for each 10 in-

stances),
– sCUDA – speedup for CUDA implementation (average for each 10 instances).

The obtained results show that parallel goal function computation for the job
shop problem on GPU results in shorter calculation time for the number of
operations greater than 225. The considered algorithm coded in CUDA allow
to obtain greater speedup than for the algorithm coded in OpenCL for all
tested benchmarks. Our parallel algorithm reached 25x speedup for CUDA im-
plementation and 19x speedup for OpenCL implementation on NVidia GTX480
GPU.
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7 Conclusions

The algorithm proposed in this paper can be used for computation acceleration in
metaheurisics solving the job shop problem. The calculation time of goal function
in algorithms which solve the job shop problem take even 90% of the whole
algorithm computation time. The use of parallel algorithm for goal function
calculation might result in significant decreasing of algorithm execution time for
solving the job shop problem.
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Abstract. This paper aims to address the problem of scheduling large
workflows onto multiple execution sites with storage constraints. Three
heuristics are proposed to first partition the workflow into sub-workflows.
Three estimators and two schedulers are then used to schedule sub-
workflows to the execution sites. Performance with three real-world work-
flows shows that this approach is able to satisfy storage constraints and
improve the overall runtime by up to 48% over a default whole-workflow
scheduling.

Keywords: workflow scheduling, partitioning, storage constraints.

1 Introduction

Scientific workflows [1] have been widely applied in astronomy [2], seismology
[3], genomics [4], etc. A scientific workflow has a sequence of jobs that perform
required functionality and it has control or data dependencies between jobs.
Workflows in systems such as Pegasus [5] are defined at an abstract level, devoid
of resource assignments. A key problem that needs to be addressed is the map-
ping of jobs in the workflow onto resources that are distributed in the wide area.
This is especially challenging for data-intensive workflows that require significant
amount of storage. For these workflows, we need to use multiple execution sites
and consider their available storage. For example, the CyberShake [3] workflow
has 80 sub-workflows and each sub-workflow has more than 24,000 individual
jobs and 58 GB data. A sub-workflow is a workflow and also a job of a higher-
level workflow. We use Condor [6] pools as execution sites.

In this paper, we have developed a three-phase scheduling approach integrated
with the Pegasus Workflow Management System [5] to partition, estimate, and
schedule workflows onto distributed resources. Pegasus is a workflow-mapping
and execution engine that is used to map large-scale scientific workflows onto
the available resources. Our contributions include three heuristics to partition
workflows respecting storage constraints and internal job parallelism. We utilize
three methods to estimate runtime of sub-workflows and then we schedule them
based on two commonly used algorithms (MinMin[7] and HEFT[8]).

The reason that we partition workflows into sub-workflows instead of schedul-
ing individual jobs is that this approach reduces the complexity of the workflow

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 11–20, 2012.
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mapping. For example, the entire CyberShake workflow has more than 1.9×105

tasks, which is a large number for workflow management tools. In contrast, each
sub-workflow has 24,000 tasks, which is acceptable for these tools.

We model workflows as Directed Acyclic Graphs (DAGs), where nodes repre-
sent computation and directed edges represent data flow dependencies between
nodes. Such workflows comprise sequences of fan-out (where the output of a job
is input to many children), fan-in (where the output of several jobs is aggregated
by a child), and pipeline nodes (1 parent, 1 child). We assume that the size of
each input file and output file is known, and that they are much smaller than the
storage constraints of a site. To estimate the runtime of sub-workflows, runtime
information for each job is required. In our proposed heuristics, we use historical
performance information.

2 Related Work

Considerable amount of work tried to solve workflow-mapping problem using
DAG scheduling heuristics such as HEFT[8], Min-Min[7], etc. Sonmez [10] ex-
tended them to multiple workflows in multi-cluster grids. Duan [9], Wieczorek
[16] have discussed the scheduling and partitioning of scientific workflows in dy-
namic grids. These algorithms do not take storage constraints into consideration
and they need to check every job and schedule it, while our algorithm only needs
to check a few particular types of jobs (see Section 3).

Singh[11] optimized disk usage and runtime performance by removing data
files when they’re no longer required. We distinguish our work in three points.
First, there is an upper bound of the amount of data that can be cleaned up.
If the workflow with data clean up is still too large for a single site to run,
our work tries to find a valid partitioning if it exists. Second, our algorithm only
needs to check a few particular jobs instead of the entire workflow. Third, simply
applying scheduling algorithms to this problem and grouping jobs at the same
sites into sub-workflows may result in invalid workflows with cross dependencies
(see Section 3). Data clean up can be simply added to our approach.

Workflow partitioning can be classified as a network cut problem [12] where
a sub-workflow is viewed as a sub-graph. But there are two differences with our
approach. First, we must consider the problem of data overlap when a new job is
added to a sub-workflow. Second, valid workflows require no cross dependencies
although it is possible to make that cut in network cut problem.

3 System Design

Our approach (shown in Fig.1) has three phases: partition, estimate and sched-
ule. The partitioner takes the original workflow and site catalog (containing
information about available execution sites) [5] as input, and outputs various
sub-workflows that respect the storage constraints—this means that the data
requirements of a sub-workflow are within the data storage limit of a site. The
site catalog provides information about the available resources. The estimator
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provides the runtime estimation of the sub-workflows and supports three estima-
tion methods. The scheduler maps these sub-workflows to resources considering
storage requirement and runtime estimation. The scheduler supports two com-
monly used algorithms. We first try to find a valid mapping of sub-workflows
satisfying storage constraints. Then we optimize performance based on these gen-
erated sub-workflows and schedule them to appropriate execution sites if runtime
information for individual jobs is already known. If not, a static scheduler maps
them to resources merely based on storage requirements.

Fig. 1. The steps to partition and schedule a workflow

Fig. 2. Four Partitioning Fig. 3. Three Steps of Searches

Cross Dependency. The major challenge in partitioning workflows is to
avoid cross dependency, which is a chain of dependencies that forms a cycle in
the graph (in this case cycles between sub-workflows). With cross dependencies,
workflows are not able to proceed since they form a deadlock loop. For a workflow
depicted in Fig.2, we show the result of four different partitioning. Partitioning
(a) does not work in practice since it has a deadlock loop. Partitioning (c) is valid
but not efficient compared to Partitioning (b) or (d) that have more parallelism.

Partitioner. Usually jobs that have parent-child relationships share a lot
of data since they have data dependencies. It is reasonable to schedule such
jobs into the same partition to avoid extra data transfer and also to reduce the
overall runtime. Thus, we propose Heuristic I to find a group of parents and
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children. Our heuristic only checks three particular types of nodes: the fan-out
job, the fan-in job, and the parents of the fan-in job and search for the potential
candidate jobs that have parent-child relationships between them. The check
operation means checking whether one particular job and its potential candidate
jobs can be added to a sub-workflow while respecting storage constraints. Thus,
our algorithm reduces the time complexity of check operations by n folds, while
n is the average depth of the fan-in-fan-out structure. The check operation takes
more time than the search operation since the calculation of data usage needs
to check all the data allocated to a site and see if there is data overlap. Similar
to [8], the algorithm starts from the sink job and proceeds upward.

Fig. 4. Pseudo-code of partitioning. Not all the situations are listed here.

To search for the potential candidate jobs that have parent-child relationships,
the partitioner tries three steps of searches. For a fan-in job, it first checks if it is
possible to add the whole fan structure into the sub-workflow (aggressive search).
If not, similar to Fig.2(d), a cut is issued between this fan-in job and its parents to
avoid cross dependencies and increase parallelism. Then a less aggressive search
is performed on its parent jobs, which includes all of its predecessors until the
search reaches a fan-out job. If the partition is still too large, a conservative
search is performed, which includes all of its predecessors until the search reaches
a fan-in job or a fan-out job. Fig.3 depicts an example of three steps of search
while the workflow in it has an average depth of 4. Pseudo-code of Heuristic I is
depicted in Fig.4.

The partitioner starts by picking an execution site from site catalog and form-
ing a sub-workflow with the heuristic above. Users can specify the order of exe-
cution sites to be picked or the partitioner will sort them in the order of storage
constraints. If the execution site does not have sufficient storage to host any more
jobs, a new execution site is selected. For the dependencies between jobs across
multiple sub-workflows, they form the new dependencies between sub-workflows
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and are added to the final graph. The partitioner guarantees to satisfy storage
constraints since in each step it assures the size of all sub-workflows assigned to
a site is smaller than its storage constraint.

To compare the approach we propose two other heuristics. The motivation for
Heuristic II is that Partitioning (c) in Fig.2 is able to solve the problem. The
motivation for Heuristic III is an observation that partitioning a fan structure
into multiple horizontal levels is able to solve the problem. Heuristic II adds a
job to a sub-workflow if all of its unscheduled children can be added to that sub-
workflow without causing cross dependencies or exceed the storage constraint.
Heuristic III adds a job to a sub-workflow if two conditions are met: 1) for
a job with multiple children, each child has already been scheduled; 2) after
adding this job to the sub-workflow, the data size does not exceed the storage
constraint.

Estimator. To optimize the workflow performance, runtime estimation for
sub-workflows is required assuming runtime information for each job is already
known. We provide three methods. Critical Path is defined as the longest
depth of the sub-workflow weighted by the runtime of each job. Average CPU
Time is the quotient of cumulative CPU time of all jobs divided by the number
of available resources. The HEFT estimator uses the calculated earliest finish
time of the last sink job as makespan of sub-workflows assuming that we use
HEFT to schedule sub-workflows.

Scheduler. The scheduler selects appropriate resources for the sub-workflows
satisfying the storage constraints and optimizes the runtime performance. We
select HEFT[8] and MinMin[7]. There are two differences compared to their
original versions. First, the data transfer cost within a sub-workflow is ignored
since we use a shared file system in our experiments. Second, the data constraints
must be satisfied for each sub-workflow. The scheduler selects a near-optimal
set of resources in terms of available Condor slots since its the major factor
influencing the performance. Although some more comprehensive algorithms can
be adopted, HEFT or MinMin are able to improve the performance significantly
in terms that the sub-workflows are already generated since the number of sub-
workflows has been greatly reduced compared to the number of individual jobs.

4 Experiments and Evaluations

In order to quickly deploy and reconfigure computational resources, we use a
cloud computing resource in FutureGrid [17] running Eucalyptus [13]. Euca-
lyptus is an infrastructure software that provides on-demand access to Virtual
Machine (VM) resources. In all the experiments, each VM has 4 CPU cores, 2
Condor slots, 4GB RAM and has a shared file system mounted to make sure
data staged into a site is accessible to all compute nodes. In the initial experi-
ments we build up four clusters, each with 4 VMs, 8 Condor slots. In the last
experiment of site selection, the four virtual clusters are reconfigured and each
cluster has 4, 8, 10 and 10 Condor slots respectively. The submit host that per-
forms workflow planning and which sends jobs to the execution sites is a Linux
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Fig. 5. Performance of the three heuristics. The default workflow has one execution
site with 4 VMs and 8 Condor slots and has no storage constraint.

2.6 machine equipped with 8GB RAM and an Intel 2.66GHz Quad CPUs. We
use Pegasus to plan the workflows and then submit them to Condor DAGMan
[14], which provides the workflow execution engine. Each execution site contains
a Condor pool and a head node visible to the network.

Fig. 6. From left to right: Heuristic I, Heuristic II, Heuristic III

Performance Metrics. To evaluate the performance, we use two types of
metrics. Satisfying the Storage Constraints is the main goal of our work in
order to fit the sub-workflows into the available storage resources. We compare
the results of different storage constraints and heuristics. Improving the Run-
time Performance is the second metric that is concerned with to minimize the
overall makespan. We compare the results of different partitioners, estimators
and schedulers.

Workflows Used. We ran three different workflow applications: an astron-
omy application (Montage), a seismology application (CyberShake) and a bioin-
formatics application (Epigenomics). They were chosen because they represent
a wide range of application domains and a variety of resource requirements [15].
For example, Montage is I/O intensive, CyberShake is memory intensive, and
Epigenomics is CPU intensive. The goal of the CyberShake Project [3] is to cal-
culate Probabilistic Seismic Hazard curves for locations in Southern California
area. We ran one partition that has 24,132 tasks and 58GB of overall data. Mon-
tage [2] is an astronomy application that is used to construct large image mosaics
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Fig. 7. CyberShake with storage constraints of 35GB, 30GB, 25GB, and 20GB. They
have 3, 4, 4, and 5 sub-workflows and require 2, 3, 3, and 4 sites to run respectively.

of the sky. We ran a Montage workflow with a size of 8 degree square of sky. The
workflow has 10,422 tasks and 57GB of overall data. Epigenomics [4] maps short
DNA segments collected with gene sequencing machines to a reference genome.
The workflow has 1,586 tasks and 23GB of overall data. We ran each workflow
instance 5 times to assure the variance is within 10%.

Performance of Different Heuristics. We compare the three proposed
heuristics with the CyberShake application. The storage constraint for each site
is 30GB. Heuristic II produces 5 sub-workflows with 10 dependencies between
them. Heuristic I produces 4 sub-workflows and 3 dependencies. Heuristic III
produces 4 sub-workflows and 5 dependencies. The results are shown in Fig.5
and Heuristic I performs better in terms of both runtime reduction and disk
usage. This is due to the way it handles the cross dependency. Heuristic II or
Heuristic III simply adds a job if it does not violate the storage constraints
or the cross dependency constraints. Furthermore, Heuristic I puts the entire
fan structure into the same sub-workflow if possible and therefore reduces the
dependencies between sub-workflows. The entire fan structure is defined as a set
of jobs and begins from a fan-out job and merges into a fan-in job. In Fig.6 with
a simplified CyberShake workflow, Heuristic I runs two sub-workflows in parallel
while the other two have to run them in sequence. From now on, we only use
Heuristic I in the partitioner in our experiments.

Performance with Different Storage Constraints. Fig.7 depicts the disk
usage of the CyberShake workflows over time with storage constraints of 35GB,
30GB, 25GB, and 20GB. They are chosen because they represent a variety of
required execution sites. Fig.8 depicts the performance of both disk usage and
runtime. Storage constraints for all of the sub-workflows are satisfied. Among
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them sub1, sub2, sub3 (if exists), and sub4 (if exists) are run in parallel and
then sub0 aggregates their work. The CyberShake workflow across two sites
with a storage constraint of 35GB performs best. The makespan (overall com-
pletion time) improves by 18.38% and the cumulative disk usage increases by
9.5% compared to the default workflow without partitioning or storage con-
straints. The cumulative data usage is increased because some shared data is
transferred to multiple sites. Adding more sites does not improve the makespan
because they require more data transfer even though the computation part is
improved.

Fig. 8. Performance of CyberShake, Montage and Epigenomics with different storage
constraints

Fig.8 depicts the performance of Montage with storage constraints ranging
from 20GB to 35GB and Epigenomics with storage constraints ranging from
8.5GB to 15GB. The Montage workflow across 3 sites with 30GB disk space
performs best with 8.1% improvement in makespan and the cumulative disk
usage increases by 23.5%. The Epigenomics workflow across 3 sites with 10GB
storage constraints performs best with 48.1% reduction in makespan and only
1.4% increase in cumulative storage. The reason why Montage performs worse is
related to its complex internal structures. Montage has two levels of fan-out-fan-
in structures and each level has complex dependencies between them as shown
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Fig. 9. The Montage (left) and the Epigenomics (right) workflows. For simplicity, only
a few branches are shown.

in Fig.9. Our heuristic is not able to untie them thoroughly and thereby the cost
of data transfer increases and the sub-workflows are not able to run in parallel.

Fig. 10. Performance of estimators and schedulers

Site Selection. We use three estimators and two schedulers described in
Section 3 together with the CyberShake workflow. We build four execution sites
with 4, 8, 10 and 10 Condor slots respectively. The labels in Fig.10 are defined
in a way of Estimator+Scheduler. For example, HEFT+HEFT denotes a com-
bination of HEFT estimator and HEFT scheduler, which performs best. The
Average CPU Time (or CPU in Fig. 10) does not take the dependencies into
consideration and the Critical Path (or PATH in Fig.10) does not consider the
resource availability. The HEFT scheduler is slightly better than MinMin sched-
uler (or MIN in Fig.10). Although HEFT scheduler uses a global optimization
algorithm compared to MinMins local optimization, the complexity of scheduling
sub-workflows has been greatly reduced compared to scheduling a vast number
of individual tasks. Therefore, both of them are able to handle such situations.

5 Conclusions

This paper provides a solution to address the problem of scheduling large work-
flows across multiple sites with storage constraints. Three heuristics are proposed
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and compared to show the close relationship between cross dependency and run-
time improvement. The performance with three workflows shows that this
approach is able to satisfy the storage constraints and reduce the makespan signif-
icantly especially for Epigenomics, which has fewer fan-in (synchronization) jobs.
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Abstract. Flowshop is an example of a classic hard combinatorial prob-
lem. Branch-and-bound is a technique commonly used for solving such
hard problems. Together, the two can be used as a benchmark of ma-
turity of parallel processing environment. Grid systems pose a number
of hurdles which must be overcome in practical applications. We give a
report on applying parallel branch-and-bound for flowshop in grid envi-
ronment. Methods dealing with the complexities of the environment and
the application are proposed, and evaluated.

Keywords: branch-and-bound, flowshop, grid computing.

1 Introduction

Solving a hard combinatorial optimization problem on the grid is considered in
this paper. Flowshop is a classic NP-hard combinatorial optimization problem.
A set of test instances has been proposed for this problem [16]. Despite 20-
year attempts, some of the instances remain unsolved. Thus, flowshop became a
benchmark problem in combinatorial optimization, and deterministic scheduling.
Though many methods have been proposed to solve combinatorial optimiza-

tion problems, Branch-and-Bound (BB) remains the main algorithm delivering
guaranteed optimum solutions. BB partially enumerates the solutions, and this
process often can be envisioned as searching a tree. Various approaches are used
to prune the tree, but still search spaces of combinatorial problems remain huge.
Therefore, parallel branch-and-bound (PBB) is used to reduce the running time
[1,3]. BB parallelization introduces a host of new complications [3,7]. Overcoming
them requires making design decisions which influence performance of PBB.
By combining computational resources of many institutions Grid environ-

ments provide computational power not available to any single institution sepa-
rately. Therefore, grid is a very attractive computing platform for combinatorial
optimization applications. Yet, grid has a number of inherent peculiarities such
as resource heterogeneity and volatility which must be dealt with when designing
a robust application.
Overall, the three elements: benchmark hard combinatorial problem, parallel

branch-and-bound, the grid environment make the implementation practically

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 21–30, 2012.
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hard. Therefore, these three elements can serve as a benchmark of maturity and
robustness in parallel processing. With such a goal 2nd Grid Plugtests Flowshop
Challenge was organized by European Telecommunications Standards Institute
in 2005 [4]. A testbed for solving benchmark hard problems on the grid was
provided to verify usability and maturity of the computational platform and the
programming environment. The code presented in this paper scored 1st prize in
the above competition. This paper is dedicated to the grid parallel processing,
and the challenges which must be faced by application designers, rather than to
solving flowshop problem itself. Flowshop serves as a benchmark here.
The rest of this paper is organized as follows. In the next section we define

flowshop problem. Section 3 is dedicated to grid middleware, and the computa-
tional platform peculiarities. In Section 4 parallel branch-and-bound algorithm is
described. In Section 5 we report on the results obtained by our implementation
of PBB.

2 Flowshop

Flowshop (FS) problem is defined as follows. Sets {M1, . . . ,Mm} of m dedicated
machines, and J = {J1, . . . , Jn} of n jobs are given. Each job Jj consists of a
sequence of m operations (Oj1, Oj2, . . . , Ojm). Operations Oji are executed on
machine Mi, for all j = 1, . . . , n. Consequently, operations Oj1, Oj2, . . . , Ojm

proceed through machinesM1,M2, . . . ,Mm, as for example, cars on the produc-
tion line. Execution time of operation Oji is a non-negative integer pji. Only
active schedules are allowed, which means that operations are started as soon
as it is possible. The problem consists in finding the shortest schedule. We will
denote schedule length by Cmax.
In general, the operations of different jobs can be executed on a given machine

in an arbitrary order. This results in at most (n!)m possible solutions of the
problem. In permutation flowshop jobs proceed through the machines in the same
order. It means that the sequence of operations from different jobs is the same
on all the machines. In this paper we consider permutation flowshop. Though
there are ’only’ n! solutions for the permutation flowshop, the number of possible
solutions is still very big in practice. Flowshop problem is polynomially solvable
for m = 2 [8], and strongly NP-hard for m ≥ 3 [5].
A set of test instances is known [16] for flowshop problem. In the following we

refer to Taillard’s instances [17] which sizes are from (n×m): 20×5 to 500×20.
Over the years, flowshop has been used as a benchmark problem to test new
methods in combinatorial optimization [6,9,14].

3 The Test Platform

In this section we characterize grid environment in the 2nd Grid Plugtests Flow-
shop Challenge. The information mentioned here follows [4]. Initial runs of the
algorithm were also executed on an SMP SunFire 6800 machine with 24 CPUs
and 96GB RAM in Poznań Supercomputing and Networking Center.
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Fig. 1. a) Distribution of computer performance score. b) Datacenter performance vs.
CPU number. On the basis of [4].

The test grid consisted of 2700 CPUs distributes in 40 locations (datacenters)
in 13 countries on 5 continents [4]. The computing platform comprised 5 different
operating systems, 10 job submission and deployment systems, 5 Java Virtual
Machine types. The total performance of the grid was estimated at 450GFlops
according to SciMark benchmark [4]. Fig.1a depicts distribution of the CPU
speeds, and Fig.1b the spread of datacenter CPU numbers and the total per-
formance. It should be noted that the computers were not continuously and
exclusively available. Since the computing platform lacked sufficient reliability
mechanisms, such mechanisms had to be implemented by the application.
Developing an application for such a diverse computing platform was possible

thanks to Proactive middleware [15]. Proactive is a Java programming library
providing active objects, asynchronous communication between the objects, their
deployment and method execution. An active object has its own thread of exe-
cution. For example, it can be executed in a loop actively pooling conditions and
reacting to them. Proactive provides uniform view of the application memory
space. Therefore, methods of a remote active object can be called by other ob-
jects in the same way as in a sequential program. For deployment of the active
objects Proactive used XML Deployment Descriptors comprising information
on: the addresses of available computers, process initiation, communication and
file transfer protocols. Thus, a programmer was separated from the actual grid
hardware and referred to an active object in its very own code rather than to a
description of a process on a remote computer.

4 Parallel Branch-and-Bound for Grid

In this section we give a general description of the PBB, our implementation of
PBB for flowshop, and the above computing platform. An interested reader will
find description of BB and PBB in, e.g., [2,3,7,10].
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4.1 PBB in General

The BB search for the optimum solution may be understood as a recursive
analysis of the set of solutions in divide-and-conquer manner. The initial set of
solutions is divided into subsets. A subset is fathomed by either eliminating it,
as not containing optimum solution, or by further sub-dividing it. The recur-
sion stops if a subset comprises only one solution. This process of creating and
eliminating subsets can be viewed as constructing and searching of a tree. Thus,
names sub-tree or search tree node can be used when referring to a subset of
solutions. We will use abbreviation BBTnode for Branch and Bound tree node.
Search trees for hard combinatorial problems have exponential size in the

length of the input (here the number of jobs n). Since it is not desirable, various
methods are applied to limit the search tree. We will be calling a BBTnode active
if it has neither been branched into offspring, nor eliminated. The active nodes
can be eliminated on the following basis (e.g.): 1) all the solutions represented
by the subtree are infeasible, 2) all the solutions represented by the subtree
are dominated, 3) all the solutions represented by the subtree are not better
than some already known solution. If it is known that the optimum solution
has certain feature, then the analyzed BBTnode a is dominated and can be
eliminated if it lacks such a feature. Suppose we solve minimization problem. In
the third case a lower bound LB(a) on the objective function is calculated for all
the solutions represented by a. Suppose some solution b is known with objective
value Cmax(b) ≤ LB(a), then node a is pruned. The best known solution b
establishes an upper bound UB. The more the search tree is cut, the smaller
the set of visited nodes and the faster the algorithm is. Yet, sometimes shallower
cuts but faster to calculate give faster BB than deep time consuming cuts.
Parallelization is a natural step to speed up BB. Yet, PBB has to deal with

several problems. A common approach is to distribute the search tree between
computers. Since the search tree is instance-dependent, its structure is unknown
before the runtime. Consequently, the tree cannot be partitioned statically be-
cause some computers would quickly run out of work, while the other would
be overloaded. However, an optimistic scenario is also possible. When several
computers search the solution space simultaneously, then a good upper bound
UB may be found earlier than in the sequential run. As a result, some parts
of the search tree which would have been visited in a sequential run, may be
pruned in a parallel run. Such phenomena are known as performance anomalies
in PBB [11,12]. In distributed systems other difficulties arise. For example, ter-
mination of the computation may be erroneously declared when some BBTtree
node is lost. This may happen due to errors in communication, or as a result of
transition state when some tree nodes are in the communication network, while
computers have nothing to process.
Thus, the following issues must be taken into account in PBB:

1) load balancing is necessary to avoid idling or overloading the processors,
2) upper bounds must be globally communicated to prune unneeded nodes,
3) deploying and quick initiation of computation to avoid idling of the computers,
4) reliable termination of computation.
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4.2 Branching Scheme

In the following subsections we outline our PBB implementation. The branching
scheme can be seen as construction of all possible job permutations. Let AS be
the set of already sequenced jobs. The jobs in set TS = J − AS remain to be
sequenced. Suppose we have two sequences π, σ partitioning AS, i.e., job sets in
π, σ are disjunctive and their sum is equal to set AS. Initially π = σ = (), AS =
∅, and TS = J . Pair (π, σ) is a BBTnode representing all the schedules starting
with sequence π and finishing with sequence σ. Let |x| denote the number of jobs
in sequence x. Height of a BBTnode is the height of the subtree it represents,
i.e. height of (π, σ) is n− |π| − |σ|.
Branching BBTnode (π, σ) consists in inserting unassigned jobs Jj ∈ TS

between sequences π and σ. Jobs Jj may be attached either to the end of π
or to the beginning of σ, but only one option can be used to avoid generating
the same sequences many times. Both assignments are verified for each job in
TS, but only one assignment type is used in all the successors of (π, σ). The
assignment which results in a greater number of the offspring nodes with their
lower bounds smaller than the current upper bound UB is selected. If both
choices are equivalent, then the assignment giving the smallest lower bound for
any new node is chosen. Otherwise, all the jobs are arbitrarily attached at the
beginning of σ.
The branching process is finished when a complete solution is achieved, i.e.

when TS = ∅ or equivalently |π| + |σ| = n. Observe that the search method
is exhaustive, i.e. all possible sequences may be enumerated (unless they are
pruned), and no sequence is generated twice.
The search tree was explored in the Depth-First Least Lower Bound (DF/LLB)

order, i.e. the newly branched BBTnodes (π′, σ′) were sorted according to non-
decreasing values of lower bounds LB(π′, σ′) and analyzed in this order before
the older BBTnodes.

4.3 Bounding Techniques

Let us remind that BBTnodes with lower bound greater than or equal to the
upper bound are not expanded. The upper bound UB is the schedule length of
the best known solution of the problem. The initial UB value is the length of
the schedule built by NEH heuristic [13]. NEH first sorts the jobs in the order
of nonincreasing total processing times

∑m
i=1 pji. Then the first two jobs are

scheduled for the minimum schedule length. Thus, a sequence of l = 2 jobs is
constructed. For the given sequence of l jobs schedules with the (l + 1)th job
inserted between all the jobs in the sequence of length l, including the starting
and the ending positions, are verified. The best schedule for l + 1 jobs is chosen
and l is increased. This procedure is repeated until inserting all jobs, i.e. until
l = n. The value of UB is updated and the new solution is recorded when a
better solution is found in a leaf of the search tree.
Now we proceed to the methods of lower bound calculation. A BBTnode con-

sists of two sequences (π, σ). The unscheduled tasks from set TS shall be either
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Fig. 2. Calculation of head(i, πj) and tail(i, jσ)

appended to π, or attached at the beginning of σ. Suppose job Jj is inserted
at the beginning of sequence σ, and the offspring node is (π, jσ). Consider op-
eration Oji which is immediately followed by the operations in σ on machines
Mi, . . . ,Mm (cf. Fig.2). OperationOji and its successors in jσ will be executed in
time at least tail(i, jσ). Let tail(m+ 1, jσ) = tail(m,σ). The value of tail(i, jσ)
is calculated using the following formula:

tail(i, jσ) = max{pji + tail(i + 1, jσ), tail(i, σ)} for i = m, . . . , 1 (1)

Note that tail(i, jσ) is tabulated after tail(i + 1, jσ). Analogously, assume Jj ∈
TS is to be appended to π, and (πj, σ) is the offspring. Operation Oji is preceded
by the operations in π on machines M1, . . . ,Mi. Let head(i, πj) denote the min-
imum time it takes to execute these operations. Let head(0, πj) = head(1, π).
The value of head(i, πj) can be tabulated using the following formula:

head(i, πj) = max{pji + head(i− 1, πj), head(i, π)} for i = 1, . . . ,m (2)

Again head(i, πj) is calculated after head(i − 1, πj). Let π′, σ′ be the offspring
sequences. If Jj is appended to π, then π′ = πj, σ′ = σ, otherwise Jj immediately
precedes σ and π′ = π, σ′ = jσ. The first lower bound was calculated in O(m)
time from the formula

LB1(π′, σ′) =
m

max
i=1

{head(i, π′) +
∑

j∈TS−{Jj}
pij + tail(i, σ′)} (3)

Also a second lower bound was initially used. It was based on the above defined
head(k, π), tail(l, σ), and the length of the schedule for tasks in set TS exe-
cuted on any pair of machines Mk,Ml only. Though this lower bound effectively
reduced search tree, it had higher complexity O(m2). Consequently, despite op-
timizations speeding computation of the second lower bound, it did not reduce
overall running time.

4.4 Parallelizing for the Grid

In this section we describe control mechanisms and load balancing. Active nodes
are stored in queues at each of the computers. An active BBTnode is a unit of
load balancing.
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Control Architecture. The control structure is a three-tier tree comprising a
master server, slave servers and clients. There is one master server in the tree
root. To avoid a communication bottleneck on the master server monitoring the
whole computation, an intermediate layer of slave servers was introduced. A
slave server manages a set of its clients. Except for the computation initiation
the servers perform communications and load balancing. Clients compute and
shift the load. All communications are performed on the paths up and down the
tree.
The number of clients is equal to the number of CPU cores. Master server

deploys a slave server for each 8 clients, and at least one slave server in each
geographic location. The number of 8 clients per slave server was established
experimentally in the preliminary runs on the SMP machine. The slave servers
deploy their clients.
Both the master server, and the slave servers verify if the subordinate ma-

chines are alive. This is done by ping-like function during the BBTnode har-
vesting procedure (see the next paragraph). Let us observe that the timeout
for a ping was 15s which is quite long period. A slave server or a client can
be eliminated from the computing pool also if it causes a communication error,
e.g., when a controlling computer tries to send to its subordinate some BBTno-
des. If a computer does not respond or causes a communication error, then it is
declared dead, removed from the computer pool and no longer used. The BBT-
nodes assigned to such a computer are moved back by the supervising server to
the queue of active nodes to be reassigned. Computations finish when there are
no BBTnodes to branch (see the next paragraph for details).

Load Balancing. At the start of the computation the master server branches
the BB tree to the depth of two levels, creating n(n− 1) active nodes of height
n − 2, and sends one node to each slave server. Each slave server expands the
received BBTnode by two additional levels, creating (n−2)(n−3) new BBTnodes
of height n − 4, and sends one node to each of its clients. The servers record
information on the forwarded nodes and their destinations. A client expands
the received node to a full depth of the BB tree. If a client achieves a complete
solution b which is better than the current upper bound, i.e. Cmax(b) < UB,
then b, UB are sent to the slave server. If the received upper bound UB is better
than the old one, then the slave server sends it up to the master server, and
down to its other client computers. Analogously, the master server sends a new
better UB to the other slave servers, which forward it to their clients. A client
or a slave server ignore the received upper bounds if these bounds are worse
than the bounds known to the client or the slave server. A BBTnode a which
has LB(a) ≥ UB (because a was enqueued when UB was bigger) is discarded
when pulled from the queue for branching or load balancing.
If a client exhausts all its BBTnodes, then it requests one node from its slave

server. The slave server records that the node previously sent to the client is
fathomed, and assigns to the client a new BBTnode from its queue. If no active
nodes are available at the slave server, then the slave server requests a node
from the master server. The master server acts similarly if it has a BBTnode
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available. If it has no BBTnodes available then the initial BBTnodes of height
n−2 are distributed, and the computation is in the final stage. Then, the master
server starts a harvesting procedure.
In the first phase of harvesting the master server requests half of the nodes

from the slave servers. A slave server returns at most half of its BBTnodes but
only if they have sufficient height. If the request is successful, then the received
BBTnodes are sent by one to the waiting slave servers. If the request is not
successful, then the second phase of harvesting is initiated. Namely, the master
server sends to the slave servers requests for half of BBTnodes from the clients.
If a client has BBTnodes of sufficient height then it sends them to its slave
server. The slave server keeps half of the received nodes, and the other half is
transferred to the master server, provided that they have sufficient height.
The height of the BBTnodes returned to the servers in the harvesting proce-

dure is important for the PBB performance. On one hand, low BBTnodes allow
for fine granularity load balancing because they represent smaller subtrees. On
the other hand, low BBTnodes represent smaller computational demands. They
can be fathomed faster, and clients return for new BBTnodes earlier than for
high BBTnode. Hence, use of high BBT nodes reduces the number of communi-
cations. In the tests on an SMP machine the minimum heights of the returned
nodes were set to 10 for slave servers, and 8 for clients. In the grid, the number
of processors was bigger and the load transfers were too frequent overloading
the computers with handling communications. Therefore, BBTnodes lower than
12 at the slave servers or 10 at the clients, were not returned in the grid runs.
If the master server request for BBTnodes at the second phase of harvesting

fails, then it means that only low BBTnodes are held by the clients and slave
servers (if any). In such a case a request to confirm the completion of the com-
putations is issued by the master server to all live slave servers. The slave servers
wait for a confirmation of the completion of the computation at the live clients.
When a client exploits all its BBTnodes, then the confirmation is sent. If all its
clients confirmed then also the slave server confirms completion to the master
server. Finally, computations stop if all live slave servers confirm completion of
the computation to the master server.
We observed that in the final stage of the computation the number of ex-

changed messages was intensively increasing. This was a result of exchanging
control messages to achieve load balance with a small number of final BBT-
nodes. As they had low subtrees, clients quickly fathomed them and returned
requests for new BBTnodes. Thus, the load balancing method needs better tun-
ing for the final stage of computation.

5 Experiments

Running a PBB was not always as smooth as one could expect. Application
deployment was time consuming and not always successful. To speed up the
deployment process our PBB used parallel deployment of the clients by the slave
servers. Not always have the machines declared available successfully deployed
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Table 1. Example of the infrastructure
deployed for instances Taillard 21,28,29

Location No. of CPUs per
Computers computer

Amsterdam 20 2 x 1GHz
Supelec 33 2 x 3GHz
Lifl 53 2 x 2.4GHz

Inria Sophia 16 2 x 2GHz
Inria Sophia 16 2 x 933MHz
Inria Nef 32 2 x 2GHz

Table 2. Runtimes for Taillard 20×20
instances

Taillard Runtime CPUs Runtime
instance (grid) [s] (grid) (SMP) [s]
No. 21 435 370 1285
No. 22 219 361 499
No. 23 1746 352 16627
No. 24 234 361 502
No. 25 351 361 925
No. 26 515 361 1486
No. 27 607 352 2119
No. 28 148 370 102
No. 29 187 370 234
No. 30 139 361 108

the code. Consequently, our application quickly discarded slow and unreliable
computers. For example, out of 2300 computers declared available, instances
Taillard 21, 28, 29 were solved on grid shown in Table 1. Hence, our attempt in
heterogeneous computing immediately reduced the heterogeneity of the platform
for the benefit of speed and reliability.
It was possible to solve all the submitted 20× 20 FS instances to optimality

within the 1 hour limit imposed by the competition rules. The running times
and numbers of CPUs are shown in Table 2. The last column of Table 2 give
running times on SMP SunFire machine. The computing infrastructure com-
prised moderate number of processors from close locations. This allowed for
using fewer but more reliable CPUs. The optimum solutions in Table 2, were
obtained despite small number of CPUs, because the FS part in PBB was ade-
quately implemented. It can be observed [4] that other teams of the Flowshop
Challenge used a strategy oriented toward employing big number of CPUs. This
strategy, however, turned out futile because using more CPUs did not result in
solving the instances.

6 Conclusions

We presented PBB for permutation flowshop as a benchmark of maturity of grid
computing and the supporting middleware in executing applications with un-
predictable resource demands. Both the platform, and the middleware excelled
well. Furthermore, qualitative conclusions can be drawn. Three elements consti-
tute the parallel application described above: flowshop algorithm, PBB, and grid
interaction algorithms. All the three elements had to be adequately addressed.
It is not possible, for example, to ignore flowshop domain issues and rely solely
on the sheer parallel processing power to solve the problem because the num-
ber of possible solutions is anyway too big. Yet, too complex domain-specific
solutions turned out counterproductive. PBB must actively shift the work be-
tween the machines to account for irregular and unpredictable load distributions.
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The grid part must monitor resource availability to avoid stalls in the computa-
tion. Though the techniques we presented are not new, only combined together
were they able to produce a successful parallel application for hard problem on
a difficult computing platform.

Acknowledgments. Research partially supported by Polish National Science
Center grant N519 643340.
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Abstract. Web Computing is a variant of parallel computing where the
idle times of PCs donated by worldwide distributed users are employed
to execute parallel programs. The PUB-Web library developed by us
supports this kind of usage of computing resources. A major problem for
the efficient execution of such parallel programs is load balancing. In the
Web Computing context, this problem becomes more difficult because
of the dynamic behavior of the underlying “parallel computer”: the set
of available processors (donated PCs) as well as their availability (idle
times) change over time in an unpredictable fashion.

In this paper, we experimentally evaluate and compare load balancing
algorithms in this scenario, namely a variant of the well-established Work
Stealing algorithm and strategies based on a heterogeneous version of
distributed hash-tables (DHHTs) introduced recently. In order to run a
meaningful experimental evaluation, we employ, in addition to our Web
Computing library PUB-Web, realistic data sets for the job input streams
and for the dynamics of the availability of the resources.

Our experimental evaluations suggest that Work Stealing is the better
strategy if the number of processes ready to run matches the number
of available processors. But a suitable variant of DHHTs outperforms
Work Stealing if there are significantly more processes ready to run than
available processors.

1 Introduction

In recent years, Volunteer Computing and Grid Computing have received con-
siderable attention. Web Computing is a variant of parallel computing that com-
bines aspects of both volunteer and grid computing: Like Volunteer Computing,
Web Computing means to utilize only the idle times on lots of donated PCs
connected via the Internet to build up a virtual supercomputer (rather than
connecting a few supercomputers or computing clusters). And like Grid Com-
puting, Web Computing means to run coupled, massively parallel algorithms
(rather than distributed data processing). The Bayanihan BSP implementation
[9] is a first attempt to support bulk-synchronous parallel (BSP) programs in
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a Volunteer Computing context. A major problem for the efficient execution of
such parallel programs is load balancing. The processes of the parallel programs
have to be distributed among the processors such that all processes receive ap-
proximately the same amount of computing power. In the Volunteer Computing
context, this problem becomes more difficult because of the dynamic behavior
of the underlying “parallel computer”: the set of available processors (donated
PCs) as well as their availability (idle times) change over time in an unpre-
dictable fashion. The Bayanihan BSP implementation uses a central master
node that schedules the processes; all communication and checkpointing traffic
passes through the master node.

Our PUB-Web library is a Web Computing library supporting the BSP pro-
gramming style. In addition to the above mentioned library, PUB-Web allows
very flexible load balancing, because it provides the possibility to migrate threads.
Thus, processes can be stopped and finished elsewhere. In this paper, we evalu-
ate and compare several load balancing algorithms in this scenario. They work
in a distributed fashion and only need little non-local information. On the one
hand, we examine a variant of the well-established Work Stealing algorithm. On
the other hand, we consider three strategies based on a heterogeneous version
of distributed hash-tables (DHHTs) introduced recently [5]. In order to run a
meaningful experimental evaluation, we need, in addition to our Web Comput-
ing library PUB-Web, realistic models for the BSP programs to run and for the
dynamics of the availability of the resources (idle times of the donated PCs). For
the former, we use synthetic streams of jobs modeled according to insights from
traces of big parallel machines. For the latter, we use real data collected during
a profiling of hundreds of PCs at several places.

Our experimental evaluations suggest that Work Stealing is the best strategy
if the number of processes ready to run matches the number of available pro-
cessors. However, a suitable variant DHHTs outperforms Work Stealing if there
are significantly more processes ready to run than available processors.

The remainder of this paper is organized as follows: in the next section, we
give an overview of our PUB-Web library. In Section 3 we present our DHHT-
based load balancers and describe the Work Stealing variant which we compare
against. In Section 4 we present the experimental setup, which we use for our
evaluation of the load balancing in Section 5. Section 6 concludes this paper.

2 PUB-Web

Our Paderborn University BSP-based Web Computing (PUB-Web) library [7,3]
is realized as a peer-to-peer (P2P) system, consisting of a dynamically changing
set of maybe worldwide distributed computers temporarily donated to be used
for Web Computing. In addition, a few supernodes are employed for the manage-
ment of the system. PUB-Web only utilizes the left-over computing power on the
donated computers, in order not to disturb other activities on these machines.
The donated computers may be very different (e.g., desktop PCs, notebooks,
etc.), both w.r.t. their computing power and the dynamics of their availability
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(i.e., their left-over computing power). Note that the availability depends on the
way the computers are used by other activities of their users (e.g., regular or
irregular patterns). This might be very different for different computers. For the
remainder of this paper we refer to these other activities as external workload.

All peers of the PUB-Web network are allowed to run processes of parallel
jobs. As a basic precondition for rebalancing the process-to-peer assignment on
sudden changes in the external workload, PUB-Web supports thread migration.
In order to continue the execution of a parallel job if one of the participating
peers crashes, PUB-Web creates checkpoints at regular times and stores them
at different nodes across the network.

PUB-Web supports the well-established Bulk-Synchronous Parallel (BSP) pro-
gramming style [12,1]. This has been introduced by Leslie G. Valiant in order to
simplify the development of parallel algorithms. It forms a bridge between the
hardware to use and the software to develop by giving the developer an abstract
view of the technical structure and the communication features of the hardware
to use (e.g., a supercomputer with shared memory, a cluster of workstations, or
PCs connected via the Internet). Jobs running in the PUB-Web system are BSP
programs, which consist of a set of processes and a sequence of supersteps – time
intervals bounded by a barrier synchronization. Within a superstep each pro-
cess performs local computations and sends messages to other processes. When
all processes have invoked the sync method and all messages are delivered, the
next superstep begins and the messages sent during the previous superstep can
then be accessed by its recipients. When run on PUB-Web, each superstep of a
BSP program constitutes a load balancing problem for independent processes;
the ability of PUB-Web to perform thread migration enables preemption of pro-
cesses, so that they can be completed on another processor.

3 Load Balancing

In this section we give a description of the scheduling problem, discuss a Work
Stealing variant, and three variants of our DHHT-based load balancer.

Problem Description. Our scheduling problem can be formulated as follows:
We are given a stream describing the availability of the peers and a stream of
jobs consisting of independent processes. For a time t, the availability of a peer
is described by a value in [0; 1] indicating the fraction of its computing power
currently available. This value reflects removal / addition of peers (value changes
to 0 / from 0 to something greater than 0) or the power left over beside the
current external workload. This stream may show an unpredictably changing
behavior. In order to reflect the heterogeneity of the hardware, we associate
a static weight factor from (0;∞) describing the processor speed. This value is
derived by a benchmark being part of PUB-Web. Thus, at any time, the currently
available computing power of a peer can be expressed as the product of the peer’s
weight and its availability in a globally uniform way.

The supersteps of a BSP program are by definition subsequent, disjoint time
intervals. Thus, scheduling a BSP program with � supersteps is equivalent to
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scheduling � successive BSP programs with one superstep each, where the release
time of the second program is identical to the finishing time of the first program,
and so on. As a consequence, each job in our stream of jobs is described by a
release time, the number of its processes, and their lengths. These lengths are
assumed to be identical within one job. The processes to be executed at a given
time may belong to different jobs and may therefore have different lengths. We
consider all processes of all jobs to be equally important, independently of their
length and job-parallelism.

Our optimization goal is to ensure that (i) all processes receive approximately
the same amount of computing power, and (ii) the total processor utilization is
maximized without violating condition (i). To this end, the PUB-Web system
has to regularly (re-) assign all currently running processes to peers using its
migration capabilities.

We now describe the load balancing algorithms evaluated and compared in
this paper.

Work Stealing. The Work Stealing idea has been well studied over the past
decades. In [8] for example, a Work Stealing strategy is presented for balancing
the load of independent processes on a parallel computer, i.e., a set of homo-
geneous, fully available processors. In [2], a Work Stealing algorithm for well-
structured, multithreaded computations is presented. We have examined the
following variant: Consider a randomized, distributed setting, where each com-
puting node maintains a FIFO queue. Whenever a processor becomes idle, it
removes the first process from its queue and executes it. In case its queue is
empty, the processor “steals” the first process from the queue of another, ran-
domly chosen processor. When a job with parallelism k is released, its processes
are added to the queues of up to k distinct, randomly chosen processors, with
probabilities inverse-proportional to the current queue-sizes. This, and the fact
that a processor only steals a process when its queue has run empty, helps to
prevent unnecessary migrations. Using a queue instead of a stack and stealing
processes from the head instead of the tail of the queues is useful for our BSP-
scenario, because it makes sure that no jobs are disadvantaged. This algorithm
can be implemented in an efficient and fully distributed fashion.

Distributed Heterogeneous Hash-Tables (DHHT (Rnd.)). In [5] we have proposed
a novel distributed load balancer, which provides scheduling, migration, and fault
tolerance for processes using Distributed Heterogeneous Hash-Tables (DHHTs).
DHHTs are a heterogeneous generalization of the consistent hashing introduced
by Karger et. al. [6]. In order to map all running processes to the active peers,
first all peers are hashed uniformly and independently at random into the [0; 1)-
interval, which is interpreted as a unit ring (cf. Fig. 1). There is a linear function
associated with each node, whose gradient is the inverse of the currently available
(globally normalized) computing power. The lower envelope for the [0; 1)-interval
is defined, at any point x, as the peer whose linear function has the minimum
value at point x; this way we assign sub-ranges of the [0; 1)-interval to the peers.
Finally, all processes are also hashed uniformly and independently at random into
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the [0; 1)-interval and are assigned to the peers associated with them through
the lower envelope.

Fig. 1. Load balancing using DHHT

With this approach, the assign-
ment of a process to a peer does
not depend on the presence or assign-
ment of other processes. Thus, using
pseudo-random or deterministic hash
functions, only the weight and avail-
ability information about the active
peers need to be communicated.

Concerning the balancing quality,
it is shown in [10] that a process is
assigned to peer i with probability
pi ≤ wi

W−wi
, where wi is the available

computing power of peer i and W =
∑

i wi.
Our implementation uses SHA-1 as a pseudo-random uniform hash function.

We refer to this DHHT variant as “DHHT (Rnd.)” in the remainder of this
paper.

Double Hashing (DHHT (Dbl.)). In [10] several possible improvements are dis-
cussed; among them a double hashing technique, for which it is shown that a
process is assigned to peer i with probability (1−

√
ε) · wi

W ≤ pi ≤ (1+ ε) · wi

W . We
also implemented this variant and refer to it as “DHHT (Dbl.)” in the following.

Deterministic Hashing (DHHT (Mult.)). It is well-known that when hashing
peers uniformly and independently at random, the longest interval has length
Θ( log n

n ) with high probability, and the shortest one has length Θ( 1
n2 ) with con-

stant probability. Thus, the ratio of the longest interval to the shortest one,
called smoothness, is Θ(n · logn) with high probability.

In order to overcome this drawback, we implemented another, deterministic
DHHT variant based on multiplicative hashing: In [11] it is shown that when
consecutively adding the points i · Φ mod 1, i = 0, 1, 2, . . . , n, to [0, 1), where x
mod 1 := x− �x� and Φ := 1

2 · (
√

5− 1), a smoothness of Φ2 is obtained for any
n ∈ N. In the following, we refer to this variant as “DHHT (Mult.)”.

4 Experimental Setup

In order to perform a meaningful experimental evaluation of the load balancing,
we need realistic information about the capabilities of the simulated hardware,
about the dynamics of the external workload on the peers, and about the parallel
programs to run.

4.1 Capabilities of the Processors

We use the following weight factors: Approximately 15% of the factors are in
each of the intervals [0.6; 1.5), [1.5; 2.5), [2.5; 4), and [4; 5); the remaining 40%
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are in the range [5; 6.2]. These values are derived from a collection of 100 com-
puters donated to PUB-Web during the European project “AEOLUS” (FP6
IST-15964).

4.2 Dynamics of the External Workload

In order to collect real usage data for the evaluation of our load balancers, we did
a detailed, long-term analysis of the availability of several hundred computers.

In total we have analyzed the CPU usage on more than 250 PCs for several
months. Among these PCs there are different sets of office computers, PCs in
computer pools available to students, notebooks of employees, and both home
PCs and notebooks of individuals. The examined computers are very heteroge-
neous with respect to their hardware and operating system.

In the following, we analyze the collected data with respect to these criteria:

Availability. How often a computer is switched on, and how much idle time
is available, affects the total amount of computing power available in the
PUB-Web network. This parameter describes how much computing power
is available on a computer on average.

Diversity. If all computers in the PUB-Web network would be switched on and
off at the same time, and would have the same loss or gain of computing
power at the same times, load balancing would be trivial because all running
processes would experience the same slowdown or speedup. However, that
is usually not the fact. The diversity parameter describes how different the
availability curves of the computers behave.

Uniformity. If the availability of a computer is rather stable (at any level) for
long time intervals, the load balancer rarely has to rebalance the assigned
processes. This parameter describes how often the availability of a computer
significantly changes (high uniformity = rare changes).

Cumulative Pattern. When averaging over a big amount of computers, the
aggregated data may show a certain pattern even if the diversity is high and
the uniformity is low. Typical patterns are daytime / nighttime or workday
/ weekend differences, and may help to improve the load balancing.

Analyzing the collected data, we identify distinguishing parameters for three
types of computers: office PCs, notebooks, and pool PCs used by students
(cf. Table 1).

Table 1. Characterization of the availability

Office PCs Notebooks Pool PCs

Availability high low medium
Diversity low high medium

Uniformity high low low
Daytime Pattern significant significant weak
Weekend Pattern significant significant no

When the computers are
switched on, the availability is
very high: above 90% with a prob-
ability of approximately 90% for
office PCs and pool PCs; and
above 80% with a probability
of approximately 75% for note-
books. If additionally taking into
account the times, when the com-

puters are switched off, we have an average availability of approximately 70%
for office PCs, 45% for pool PCs, and 30% for notebooks.
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Not surprisingly, the office PCs are used in a quite homogeneous way with
respect to both time of usage and kind of usage, leading to a low diversity, a high
uniformity, and clear daytime and workday patterns. Notebooks are often used
in a mixed fashion for different purposes, leading to a high diversity and low
uniformity; however, they still show clear daytime and workday patterns on av-
erage. The pool PCs are used by lots of different students for very heterogeneous
tasks. Despite this fact, they show only a medium diversity; but as expected,
they have a low uniformity and not even a clear daytime pattern.

For our evaluation of the load balancers, the diversity property will be most
interesting as a high diversity generates a lot of imbalance.

4.3 Properties of the Job Stream Model

Beside the parameters for the hardware capabilities and the external workload,
where we will use the collected data as input for our experiments, we will create
synthetic job input streams because we do not have access to traces of compa-
rable Web Computing systems. As already outlined in Section 3, a job stream
consists of a sequence of jobs with certain release times, parallelism, and lengths.

The release times of the jobs are chosen uniformly and independently at ran-
dom within the total simulation duration, except for a short warm-up phase
at the beginning of the experiments. Realistic values for the length of a super-
step in a coarse-grained BSP program are lower bounded by a couple of minutes
(otherwise the synchronization overhead becomes unreasonably large) and upper
bounded by roughly one hour (otherwise communication would occur unrealis-
tically rarely). Remember from Section 3 that a BSP program consisting of �
supersteps is splitted into � successive jobs. Thus, our jobs have lengths of 5, 10,
15, 20, 30, 45, or 60 minutes (on a CPU with weight factor 1 and 100% avail-
ability). For each job, one of these lengths is randomly chosen, where we use
probability distributions derived from traces of supercomputers; in particular,
we use the traces of three Linux clusters and two IBM systems available through
the Parallel Workloads Archive1 to obtain different realistic assumptions about
the job lengths and parallelism. While we only use the probability distribution
of the job lengths to derive realistic quantities for our model, we directly copy
the probability distribution of the parallelism; all parallelism values occurring
are powers of 2, up to 1024, where small values are much more likely than big
ones.

The total number of jobs is chosen such that there are sufficiently many pro-
cesses ready to run in all of our experiments. Since all of our experiments are
performed under a fully loaded or slightly overloaded system, and because we
need to control the load as the system would collapse at some time under very
heavy overload, we keep all released processes in a ready queue if the total sys-
tem load exceeds a certain limit. This limit is given by the number of peers in
the PUB-Web network times a so-called overload factor. This procedure allows
for a fair comparison of the load balancers because each load balancer has to

1 http://www.cs.huji.ac.il/labs/parallel/workload/index.html
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deal with the same total system load, independently of its throughput, and gets
exactly the same sequence of jobs as input stream.

Though the job streams are generated in a randomized fashion according to
the probability distributions of the parallelism and job lengths, we ensure, by
using random seeds, that exactly the same job stream is used in a series of
experiments for comparison of the particular load balancers.

5 Evaluation of the Load Balancing

Using the collected data and the job stream model described in the previous
section, we are now able to conduct reproducible experiments: From each of the
three profile groups (office computers, PCs in computer pools, notebooks) we
use an interval of two weeks of collected data as input for our simulations. In
total we simulate more than 108 processes in more than 700 experiments. The
complete evaluation can be found in [4]. In order to separate the influences of the
external work load from potential drawbacks of the load balancers, we perform
three types of experiments:

A: To focus on the dynamics of the external workload, we feed the load bal-
ancers with the measured availability in the different profile groups, but do
not generate additional load imbalances by a varying number of processes
in the system; instead, we consider x = 1, 2, 4 times as many processes as
processors, which are simultaneously released at the beginning of the exper-
iment and run throughout the whole duration of the experiment. Thus, we
measure with our experiments how well processes are distributed among the
available peers, and how often migrations occur.

B: In order to focus on the processing of the jobs, we fix the availability of all
peers to 100% throughout the whole experiment and feed the load balancers
with the different synthetic job streams. Thus, we measure how fast and how
fair the processes are executed.

C: We run the experiments of type B again, but now apply the same profiles
of the external workload as in the experiments of type A. Thus, we measure
the quality of our load balancers under dynamically changing availabilities
of the processors and for realistic job streams.

Experiments of Type A. Since we run a fixed number of processes throughout the
whole duration of the experiment, this setup is not suitable for Work Stealing.
Thus, we only compare our three DHHT variants.

Due to space limitations we focus on the most interesting results that our
evaluation reveals: DHHT (Mult.) yields 100% utilization of the available CPU
time in all cases, whereas DHHT (Rnd.) and DHHT (Dlb.) only achieve around
70% for x = 1 and improve to 90%–99% (depending on the external workload)
for x = 4. The balancing quality for DHHT (Dbl.) and DHHT (Mult.) is at a
comparable level and significantly better than for DHHT (Rnd.). The number
of migrations is at a comparable level for DHHT (Rnd.) and DHHT (Dbl.) and
is significantly lower for DHHT (Mult.); even for the notebooks profile group,
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where the most migrations occur on average, we have less than one migration
per process and hour.

Experiments of Type B. In this set of experiments we perform two runs, one with
overload factor 1 (i.e., with an ideal total system load) and one with factor 4.

In the following, we call the factor between the actual average runtime and
the length of the processes the process stretch factor ; analogously, we define the
job stretch factor.
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Under ideal system load condi-
tions we are not able to keep up
with the Work Stealing algorithm;
DHHT (Mult.) is the best of our
candidates, which only suffers a per-
formance drawback of a factor of
approximately 1.25–2 (depending on
the job input stream) in terms of the
job stretch factor.

But under the overloaded condi-
tions, Work Stealing suffers a per-
formance loss of a factor of 3–6
(depending on the job input stream)
with respect to the job stretch fac-
tor. Exemplarily for one of our exper-
iments, Fig. 2 shows that the Work Stealing curve still is the one that grows
least, but is notably shifted upwards. At first glance, this may appear strange;
but when looking at the Work Stealing sleeping curve, we notice that all pro-
cesses wait in the queues approximately for the same time, independently of
their lengths. As a consequence, 5-minute-jobs take more than 5 times as long as
when executed using the DHHT (Mult.) load balancer, and 1-hour-jobs are less
than 1.5 times faster, leading to the overall performance loss for Work Stealing
in average.

Experiments of Type C. Finally, we repeat the experiments of type B again, but
apply the three external workload profiles in order to obtain completely realistic
circumstances. Due to space limitations we focus on the main results:

When the external workload has a low or medium diversity, the results are
very similar to the ones obtained for our experiments with 100% availability;
in particular, DHHT (Mult.) suffers a performance drawback of a factor of only
approximately 1.25–2 against Work Stealing in the ideal system load case, and it
outperforms Work Stealing under overloaded conditions by a factor of approxi-
mately 3–7. On a high diversity in the external workload, DHHT (Dlb.) performs
better than DHHT (Mult.) and is able to keep up with Work Stealing up to a
factor of approximately 2 in the ideal system load case; under the overloaded
conditions, also DHHT (Dbl.) is best, outperforming Work Stealing by a factor
of approximately 2.
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6 Conclusion

Our evaluation reveals: as long as the total system load matches almost ideally
the number of available processors, the Work Stealing algorithm performs best.
However, on overloaded systems our algorithms outperform Work Stealing by a
factor of 2–7 (depending on the diversity of the external workload).

Further future work could include the research of a sophisticated algorithm
which switches between the Work Stealing and DHHT load balancers depending
on the overall job load, the diversity of the external workload, or other criteria
such as the desired fairness level (Work Stealing delays all jobs approximately
equally, whereas DHHT delays the jobs proportionally to their length). Enhance-
ments of the DHHT load balancer could include a multi-level load balancing in
order to additionally consider further criteria beside the computing power, such
as the network bandwidth for example.
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Abstract. In this paper we propose an efficient parallel job schedul-
ing algorithm for a grid environment. The algorithm implies two stage
scheduling. At the first stage, the algorithm allocates jobs to the suitable
machines, where at the second stage jobs are independently scheduled
on each machine. Allocation of jobs on the first stage of the algorithm
is performed with use of a relatively new evolutionary algorithm called
Generalized Extremal Optimization (GEO). Scheduling on the second
stage is performed by some proposed heuristic. We compare GEO-based
scheduling algorithm applied on the first stage with Genetic Algorithm
(GA)-based scheduling algorithm. Experimental results show that the
GEO, despite of its simplicity, outperforms the GA algorithm in all range
of scheduling instances.

Keywords: grid computing, evolutionary algorithm, generalized
extremal optimization, parallel job.

1 Introduction

Distributed computing has recently become popular technique to provide high
performance computing for computationally intensive applications. This term is
often described as ”the Grids” or ”Grid Computing”. In grid computing there are
multi-institutional virtual organizations with shared and coordinated resources.
As resource we can define direct access to computers, software, data, or other
resources, as it is required by a range of collaborative problem-solving [3].

Many studies propose the distributed management system [1] against the
centralized scheduling [2]. There are also combination of distributed and cen-
tralized management [10]. It can be characterized by a hierarchical multilayer
resource management [6]. The first (higher) layer is often assigned to a global
grid scheduler. In this layer jobs are scheduled among the machines in the grid.
At the second layer (lower) a local management system exists, which schedules
assigned jobs on local machine.
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The idea of grid computing has forced development of new algorithms of
management of a large number of heterogeneous resources. The execution of
the user’s application must satisfy both job execution constraints and system
policies. Scheduling algorithms applied to the traditional multiprocessor systems
are often inadequate to grid systems. On the other hand, many algorithms [4],
[5] have been adapted to the grid computing. However, there are many open
problems in this field, including the consideration of multilayered system in the
scheduling process.

This work is related to offline scheduling problem in grid computing and its
resolution using meta-heuristic approaches. These algorithms are often used to
solve a class of NP-hard problems. The scheduling problem belongs to this class.
In this paper we will show the usefulness of meta-heuristic approaches for the
design of efficient grid schedulers. We propose a relatively new meta-heuristic
called GEO to solve the scheduling problem [8].

The paper is organized as follows. In the next section we define both the
grid model and the scheduling problem. Section 3 presents the concept of GEO
algorithm and its application for the scheduling problem. In Section 4 we present
GA-based scheduling algorithm. Section 5 describes local scheduling algorithm.
Next, in Section 6 we analyze experimental results comparing the use of GEO
and GA-based scheduling algorithms. Last section contains conclusions.

2 Grid Model and Scheduling

2.1 Model

The grid model is defined as follows [9]. A grid system consists of a set of m
parallel machines M1, M2, ..., Mm. Each machine Mi has mi identical processors,
called also the size of machine Mi. Fig. 1(a) shows an example of the grid system.

In the grid system there is a set of n jobs J1, J2, ..., Jn. A job Jj is described
by a triple (rj , sizej, tj). The release time rj can be defined as the earliest time
when the job can be processed. In this model we assume rj >= 0. The size sizej
is referred to the processor requirements. It specifies a number of processors
required to run the job Jj within assigned machine. We can define this as degree
of parallelism or a number of threads. All threads of the job must be run at the
same time and the same machine. The tj is defined as the execution time of the
job Jj . Fig. 1(b) shows an example of the job.

...

M1 Jj

M2 Mm

m processorsi
sizej

tj

processor Pj

a) b)

Fig. 1. Example of the grid system (a) and the job model (b)
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Then, the wj = tj ∗ sizej denotes the work of job Jj . A machine executes
a job of the sizej when sizej processors are allocated to it during time tj . We
assume that job Jj needs to be allocated only within assigned machine Mi. In
other words, the job cannot be divided into small parts and executed on two
or more machines simultaneously. Jobs must not be reallocated from different
machines. The machine has to be capable to allocate the job to its processors,
so sizej <= mi must meet.

Let us denote S as a schedule. As Si we denote the schedule on machine Mi.
The completion time of jobs on machine Mi in the schedule Si is denoted by
Ci(Si). We consider a minimization of the time Ci(Si) on each machine Mi over
the system in such a way that the makespan is defined as

Cmax = maxi(Ci(Si)). (1)

The purpose of the scheduling is to distribute jobs among the machines and
schedule them to minimize a makespan Cmax.

2.2 Two-Stage Scheduling

The proposed scheduling is the two-stage algorithm. An important role of the
scheduling process is an appropriate allocation of jobs on machines. We consider
a system with a different number of processors in machines. It forces to use an
algorithm which globally distributes jobs among the system. Each job should be
allocated in such a way that the makespan Cmax is minimized.

According to the model we consider the first and the second stages of the
scheduling. At the first stage the scheduling algorithm allocates globally jobs to
suitable machines. At each step of the algorithm jobs are reallocated to machines
with a lower utilization. The algorithm compares time of the schedule with a
previous one. Then choose and reallocate the job to another machine, where
the time can be minimized. At the second stage we apply a local scheduling
algorithm. It schedules jobs in a particular machine.

3 Global Scheduling with Generalized Extremal
Optimization Algorithm

3.1 The Bak-Sneppen Model and Its Representation in Job
Allocation

At the first stage a meta-heuristic algorithm is applied. We propose a relatively
new evolutionary algorithm called GEO. The idea of this algorithm is based on
the Bak-Sneppen model [8]. Evolution in this model is driven by a process in
which the weakest species in the population, together with its nearest neighbors,
is always forced to mutate. The dynamics of this extremal process shows char-
acteristics of Self-Organized Criticality (SOC), such as punctuated equilibrium,
that are also observed in natural ecosystems. Punctuated equilibrium is a theory
known in evolutionary biology. It states that in evolution there are periods of
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stability punctuated by a change in an environment that forces relatively rapid
adaptation by generating avalanches, large catastrophic events that affect the
entire system. The probability distribution of these avalanches is described by a
power law in the form:

pi = k−τ
i , (2)

where pi is a probability of mutation of the i-th bit (species), k is a position of
the i-th bit (species) in the ranking, τ is a positive parameter. If τ → 0, the
algorithm performs a random search, while when τ → ∞, then the algorithm
provides deterministic searching. Bak and Sneppen developed a simplified model
of an ecosystem in which N species are placed side by side on a line. Fig. 2(a)
shows the population of species in the Bak-Sneppen model [8] and the Fig. 2(b)
presents the idea of GEO algorithm of the grid scheduling.

i-th bit

tau - positive user parameter
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i

P=ki i
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Fig. 2. Population of species in the Bak-Sneppen model and its correspondence in the
GEO algorithm (a). Representation of grid model in Bak-Sneppen model (b).

In the GEO approach, a population of species is a string of bits that encodes
the design variables of the optimization problem, and each bit corresponds to one
species. In Fig. 2(a) two variable function F (x1, x2) is optimized. Each variable is
coded using seven bits, and the whole string - a potential solution of the problem
consists of 14 bits (upper part of Fig. 2(a)). Each bit of the string is considered
as the species (lower part of Fig. 2(a)) of the Bak-Sneppen model. The number
of bits per variable depends on the type of the problem. The population of the
GEO algorithm to solve the scheduling problem presented in this paper contains
one string of n numbers. The length of the string is equal to the total number
of jobs in the grid system. Fig. 2(b) (upper part) shows an example of the GEO
string which presents proposed allocation of jobs to machines in the grid. The
job numbers are placed in a permutation form. This form defines the order of
jobs executing by a local scheduling algorithm. To assign jobs to machines we
set the additional vector (top vector on the Fig. 2(b)) showing the number of
jobs allocated to corresponding machines. One can see that, for example, two
jobs were allocated to machine M1 and these are jobs 13 and 7. Fig. 2(b) (lower
part) shows a relation between coding used in the GEO to solve the scheduling
problem and Bak-Sneppen model.
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3.2 The GEO-Based Scheduling Algorithm

The GEO was originally presented by Sousa and Ramos [8]. In the algorithm each
bit (species) is forced to mutate with a probability proportional to the fitness. It
is a value associated with a given combination of bits of the GEO string, related
to a problem. Change of a single bit of the string results in changing its fitness
and indicates the level of adaptability of each bit in the string corresponding to
a current solution of a problem. The fitness can gain or lose if a bit is mutated
(flipped). After performing a single changing of the string bits and calculating
corresponding values of fitness function we can create the sorted ranking of bits
by its fitness. Since this moment the probability of mutation pi of each i-th bit
placed in the ranking can be calculated by Eq. 2 described above. In our problem

13 7 5 10 14 6 11 8 1 4 12 2 9 3

M1 M2 M3 M4

moves job to another machine

Fig. 3. Type of mutation used by GEO

we use integer numbers indicated jobs, instead of bits. Therefore, we propose
another type of mutation operator adapted to our problem, called transposition.
In Fig. 3 we present this type of mutation which is used by GEO. It assumes
that a selected job migrates to another machine. At first, a job k (job 5 in Fig. 3)
is randomly selected. The chosen job is moved to a machine having the shortest
total time of execution of allocated jobs (machine M4 in Fig. 3).

The GEO-based scheduling algorithm can be presented as the Algorithm 1.

Algorithm #1. GEO-based scheduling algorithm

1. Initialize randomly a permutation string of the length L that encodes n jobs.
2. For the current configuration C of jobs, calculate the value V corresponding

to the objective function (1) and set Cbest = C and Vbest = V .
3. For each job i do

(a) mutate (transpose) each job and calculate the objective function value
Vi of the string configuration Ci,

(b) set the job fitness Fi as (Vi−R), where R is a positive constant. It serves
only as a reference number and can assume any value. The job fitness
indicates the relative gain (or loss) that is a result of mutating the job.

(c) return the string to its previous state.

4. Rank the N jobs according to their fitness values, from k = 1 for the least
adapted job (on the top of the rank) to k = N for the best adapted (with
lowest ranking). In a minimization problem higher values of Fi are on the
top of the rank. If two or more jobs have the same fitness, rank them in
random order, but follow the general ranking rule.
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5. Choose with an equal probability a job i to mutate according to the probabil-
ity distribution pi = k−τ , where τ is an adjustable parameter. This process
called a generation is continued until some job is mutated.

6. Set C = Ci and V = Vi.
7. If Fi < Fbest then set Fbest = Fi and Cbest = Ci.
8. Repeat steps 3 to 7 until a given stopping criteria is reached.
9. Return Cbest and Fbest.

4 Global Scheduling with GA

GA is a search technique used to find an approximate solution in optimization
and search problems. It is a particular class of evolutionary algorithms (EA)
that uses mechanisms inspired by evolutionary biology. The algorithm operates
on a population of chromosomes coding potential solutions. Chromosomes usu-
ally are strings of bits. The fitness function is computed for each individual
(chromosome). In the scheduling problem the fitness function is calculated as a
makespan Cmax. The Algorithm #2 presents the scheduling algorithm.

Algorithm #2. GA-based scheduling algorithm

1. Create an initial population of individuals (solutions of the problem)
2. Evaluate the fitness of each individual in the population (calculate the

makespan)
3. Repeat

(a) Use the Roulette Wheel operator to select individuals for reproduction
(b) Apply operators: crossover and mutation to generate new solutions
(c) Evaluate fitness of new individuals
(d) Replace the population with new individuals
Until stop condition is satisfied

In our problem strings are permutations of jobs similar to GEO string. As con-
trasted with GEO, which operates on one string, this algorithm operates on a
set of strings.

5 Local Scheduling Algorithm

5.1 List Scheduling Algorithm

List scheduling is a heuristic technique encountered in scheduling algorithms [7].
In the first part of a list algorithm jobs J are sorted according to a priority
scheme. In the second part, each job of the list is successively scheduled on a
chosen machine. Usually, the chosen machine is the one that allows the earliest
start time of the job. Algorithm #3 outlines the simplest form of list scheduling:

Algorithm #3. List scheduling algorithm

1. Sort jobs J into list L, according to priority scheme.
2. for each Ji ∈ L do

(a) Choose a machine M for Ji.
(b) Schedule Ji on M .
end for
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5.2 Local Scheduling Algorithm

The algorithm of local scheduling allocates jobs within a particular machine. The
main idea of this algorithm is to arrange jobs in such a way to minimize the area
of empty space of the schedule corresponding to non-busy period processors time.
Jobs assigned to a given machine are ordered by the global scheduler (permutated
substring). In a local scheduler we use a simple list algorithm. At the beginning
jobs J are sorted according to their work w. If some jobs have the same size of
the work then they are ordered by a sequence given by a global scheduler.
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Fig. 4. A schema of local scheduling. The representation of the solution and its con-
structing (a) and allocation in the machine (b).

Fig. 4 shows an example of local scheduling. It is assumed that a subset
(7,1,4,2,6,3,5) of seven jobs was assigned to a machine (see Fig. 4a, upper). Let
us assume that each job consists of a number of threads: job J7 consists of 1
thread, J1 consists of 2 threads, J4 consists of 1 thread, J2 consists of 3 threads,
J6 consists of 4 threads, J3 consists of 2 threads and J5 consists of 3 threads.
We calculate for each job its work. Let us assume that work for this subset is as
follows: w7 = 1, w1 = 12, w4 = 2, w2 = 12, w6 = 24, w3 = 12, w5 = 15. These
jobs are next sorted in descending order according to their work w (see Fig. 4a,
down). This sorted substring is used directly to assign them to processors of
the machine. The job with the largest work is assigned first to processors. Next,
the job J5 is assigned to processors, and the remaining jobs are assigned in the
following order: J1, J2, J3, J4, J7. In such a way we obtain the schedule Sk

i with
the makespan Ci(S

k
i ). As Sk

i we denoted actual schedule on the machine Mi.

6 Experimental Results

In this section we show the performance of GEO scheduling algorithm for the
scheduling problem defined in this paper. At the first experiment we use some
instances of scheduling problem to compare GEO with a list algorithm. In Tab. 1
we show the results obtained by these algorithms.



48 P. Switalski and F. Seredynski

Table 1. Comparison of the makespan obtained by the GEO algorithm and list algo-
rithm for some instances of the problem

Machine set11 machines 1 2 411 machines 1 2 44 machines 4 84 machines 4 8
Jobs set 22 jobs 32 jobs 1 1 100 jobs 3 2 1000 jobs 3 2

GEO 2 2 35 317

List algorithm 2 3 43 339

One can see that the GEO algorithm can find better solutions than list
scheduling algorithm. For two first instances the optimal makespan is equal to
2. For the first instance (22 jobs with sizej of threads in the range 1..4) both
algorithms found an optimal result. When we used the second instance with the
32 jobs with sizej threads equal to 1 only GEO found the optimal solution. We
also test algorithms on randomly generated jobs sets. The sets of instances were
generated with the following parameters: the number of jobs Nj , the average ex-
ecution time of a job Tavg, and the average required number of processors Savg

(sets are noted as: Nj jobs Tavg Savg). It was assumed that the release time r
was equal to 0 for both sets. In this case GEO found the better solution in all
range of the scheduling instances.

In the second experiment we compare GEO with GA metaheuristic. Initially
we show a typical run of GEO and GA algorithm (see Fig. 5). We run these
algorithms for a 500 jobs set. One can see that during the first generations
the GA algorithm quickly improves the solution, but later searching for new
solutions goes slowly. The GEO, in opposite to the GA, starts with a relatively
worse solution. However, it consistently improves solutions and quickly finds a
solution outperforming ones presented by the GA. Calculation of the makespan
is the main source of the time complexity of considered algorithms, and the
number of evaluations (iterations of the algorithm) of the makespan in both
algorithms may be different. We assumed an equal number of evaluations of the
makespan for both algorithms.
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Fig. 5. Typical run of GEO and GA algorithm for 500 jobs set (Tavg=5, Savg = 4) in
4 (with 8 and 16 processors) machines environment
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In this experiment we use three sets of jobs (see Tab. 2) consisting of the
number of jobs (Nj) ranging from 100 to 1000. The average execution time Tavg

was set to 3, the average required number of processors Savg was set to 2. For
each set of jobs the problem of scheduling with use of 4 and 8 processors was
considered. In the GEO we used the following parameters in the experiment:
τ = 4.0, a number of iterations of the algorithm NitGEO = 500. For GA we set
a population size PGA = 200, mutation probability pm = 0.1, crossover proba-
bility pc = 0.75. The number of iterations was set in range NitGA ∈ {250..2500}
(for an equal number of the evaluation of the makespan in both algorithms).
We repeated each instance of the experiment 20 times. Tab. 2 shows the results

Table 2. Comparison of the makespan (in bold) obtained by GEO and GA for machines
with use of 4 and 8 processors. The model of jobs assumes the average time Tavg equal
to 3 and the average threads Savg equal to 2. The average makespan is in italic text.
In rounded brackets the standard deviation is given.

4 machines 8 machines 16 machines 32 machines
4 machines 4 88 machines 4 816 machines 4 832 machines 4 8

Jobs set GEO GA GEO GA GEO GA GEO GA

100 jobs 35 36 20 22 11 13 8 9
35.1 43.5 20.75 26.05 11.5 14.65 8.4 9.95
(0.3) (5.7) (0.4) (2.1) (0.6) (1.3) (0.5) (0.8)

500 jobs 147 181 81 96 39 49 22 30
147.2 197.15 81.3 105.75 39.5 56 23 32.7
(0.4) (9.2) (0.4) (5) (0.6) (2.7) (1.4) (2)

1000 jobs 317 408 174 220 82 112 46 53
326.55 440.7 179.75 232.4 92.85 119.9 54.8 66
(12.2) (17) (8.9) (7.4) (10) (4.4) (5) (4.1)

of the experiment. We start from small instances of the problem. In the table
we present the minimal time (makespan) obtained by algorithms, and in the
brackets the standard deviation calculated for 20 runs of the algorithm. One
can see that for 100 jobs the results are similar for both algorithms, but GEO
slightly outperforms GA. The standard deviation for the GA is higher than for
the GEO. This is visible especially for small machine sizes. For instances with
use of 1000 jobs the standard deviation is smaller for GA than for GEO, how-
ever, the makespan is significantly smaller for GEO. This algorithm searches the
solution more permanently and precisely. As we can notice, GEO can find appre-
ciably better outcomes than GA. These results can be explained by behavior of
GEO and GA algorithms. GEO finds the solution by calculating the makespan
for each job from one string population and tend to accept strings for which
mutation of job gives better result. In GA we calculate fitness function for a
population of individuals. In GA mutation only maintains genetic diversity from
one generation to another. Mutation in GEO is more meaningful. GEO finds a
solution more consequently by precisely valuation of jobs and choosing the most
suitable solution in the current step of the algorithm.
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7 Conclusions

In this paper we have proposed a two-stage scheduling algorithm, where we used
the relatively new meta-heuristic called GEO to solve the scheduling problem.
We compared our results obtained with use of GA. We have shown that GEO-
based scheduling algorithm outperforms GA-based scheduling algorithm in term
of the makespan.
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Abstract. Modern multicore processor technology can fairly easily de-
liver special accelerator processors dedicated to fast optimised execution
of critical computational functions. Multi CMP (Chip Multi-Processor)
systems can be composed as a set of dedicated and general purpose com-
putational modules interconnected by a global data exchange network.
The paper proposes special program scheduling algorithms for such sys-
tems. Dedicated CMP modules assumed in the paper are based on a
new data communication model called communication on the fly. It en-
ables strong reduction of inter–process and inter–core communication
overheads for intensively shared data.

1 Introduction

The use of processor clusters for scientific computations provides improved par-
allel program execution efficiency and scalability. Multicore processor technology
provides new possibilities in the domain of cluster-based systems. The number of
cores on a chip is hoped to quickly increase to hundreds and it is the core inter-
connect design which focuses attention of chip designers rising the interconnect–
centric style in the design of Chip MultiProcessors (CMPs) [1, 2]. Technology
limitations at the level of internal interconnect fabric and the number of active
cores in a CMP make it probable that large monolithic multicore CMP designs
will be replaced by hierarchical structures of many technologically sound CMP
modules connected by a global network.

In globally interconnected systems of CMP modules a particular strategy in
the design of the constituent CMP modules architecture can be applied. Some
CMPs can be strongly optimised to provide high parallel speedup for particular
types of computations, for example for some program library functions, while
other CMPs can be standard multicore processors meant for execution of general
purpose code. Usually, the architecturally optimised CMPs are more costly or
more difficult to be designed due to some special techniques used, such as more
efficient computational facilities or sophisticated interconnection fabrics. Opti-
mal design of program code for so composed system of CMP modules can impose
particular requirements on programs. Programs for such executive system can
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Fig. 1. General system structure

be decomposed into well defined “architecturally supported” regions surrounded
by some “glue” code which includes interfaces for these regions.

The paper presents scheduling algorithms for parallel programs which are to
be executed in a modular CMP system built of different kinds of constituent
CMP modules. The architecture of the specialised CMP modules provides dy-
namic core switching between CMP shared memory modules (more exactly be-
tween L2 data memory busses) and provides data reads on the fly to core L1
caches from L2 memory busses [5–7]. This technique enables efficient direct trans-
missions of shared data between core L1 data caches inside specialised CMPs.
As a result, interconnection structure between cores in specialised CMP modules
dynamically adjusts to communication requirements of programs.

Scheduling program tasks in the presence of the architecturally supported
regions requires new algorithmic methods and program representation. The pa-
per describes a modified Earliest Task First (ETF) [10] heuristics extended by
special task priorities analysis applied to macro data flow graphs of parallel pro-
grams. To evaluate the performance of the scheduled exemplary program graphs
a simulator is used, which executes structured application program graphs.

The paper is composed of 4 parts. In the first part, the concept of architectu-
rally–supported program regions is explained. In the second part, the proposed
architecture of the executive system is described. The third part describes the
proposed scheduling algorithm. The fourth part presents experiment results ob-
tained by using the described scheduling algorithms and the program graph
execution simulator.

2 Regions in a Program Graph

The algorithm proposed in this paper schedules programs given in a form of
macro dataflow graphs. The general structure of the assumed executive parallel
multi–CMP system is presented in Fig. 1. Basic system elements are CMP mod-
ules interconnected by a global network. There are two kinds of CMP modules:
modules with a special architecture, called the architectural CMP modules –
ACMPs, and standard modules called general–purpose CMPs – GCMPs (in our
case, standard multicore CMP modules). Program graph for such architecture
can be logically divided into subgraphs of two forms:
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– Subgraphs showing structural or functional features qualifying the respec-
tive program parts to be executed in ACMPs which can accelerate their
execution. They will be called Architecturally–Supported Regions (ASR).
In the case of the ACMPs assumed in this paper, such ASRs should show
phase–like regular structure or high level of data sharing, which makes data
transfers on the fly and dynamic core switching profitable.

– Subgraphs without promising features for special hardware acceleration.
They contain nodes which constitute “a glue” filling the gaps between ASRs
and can be executed using a set of general purpose hardware modules with
a standard architecture. For the assumed ACMPs, such glue subgraphs have
either very irregular (un–phased) structure or they are very loosely data re-
lated with low level of data sharing, in which case using core switching and
data transfers on the fly will not give performance improvements.

Formally, a program is described by a macro data flow graph G = (V, E), where
V , E are the set of nodes and edges of the graph, respectively. G can be divided
into two disjoint sets of nodes Vs and Va, such that V = Vs ∪ Va, Vs ∩ Va = ∅
where Vs contains standard nodes, which constitute a glue, and Va contains nodes
belonging to ASRs. The division may be determined automatically by a compiler,
or manually by a programmer. We assume, that incoming data communications
to a given ASR may happen only at its beginning (before its computations are
started), outgoing data transfers are possible after the region execution is finished
and no additional external transfers are allowed. Under such restrictions, ASRs
can correspond to subroutines, which may be replaced by a single meta node
in the program macro data flow graph. We will call the meta–nodes in such
transformed program graph the “architectural nodes”.

We assume, that each ASR program subgraph is optimally mapped to cores
in an ACMP by separate application of a special scheduling algorithm such as
described in [8, 9] for the ACMPs assumed in this paper. We assume that only
one ASR subgraph may be executed on a given architectural CMP at a time and
that all the cores in this module are potentially enabled for the ASR execution.
We also assume, that execution of any ASR may not be interrupted.

3 Architectural CMP Modules with Communication on
the Fly

For the experiments performed for this paper we assume that the executive sys-
tem contains architectural CMP modules supporting data communication on the
fly and a set of general purpose multicore shared memory CMP modules. The
structure of the assumed architectural CMP module is shown in Fig. 2. Such
CMP module contains a number of cores which have private L1 data caches, a
number of shared L2 data cache banks, a common shared main memory and a
local communication network, which enables connecting L1 caches with L2 data
busses. Dynamic core clusters can be created for special group data communi-
cation by connecting these core L1 banks to some L2 bank busses. The group
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Fig. 2. The structure of an architectural CMP module

communication is oriented on efficiency in using shared data by many cores.
Multiple parallel reads of data by many cores to their L1 data caches can be
done when some data are present on a L2 cache bus (read on the fly, similar to
cache injection [4]). It can be done when a core writes/reads data from/to L1
to/from a L2 bank. The data can be captured to L1 selectively by snooping L2
busses under control of special L1 controllers. A new method for data exchange
among dynamic core clusters is supported, called communication on the fly. It
consists in dynamic switching of cores with their L1 data cache contents between
L2 busses to expose data on the target L2 bus and enable reads on the fly to L1
caches of cores already connected to the L2 bus. Communication on the fly con-
verts standard data transmissions through shared memory and/or some global
network, onto dynamic cluster reconfiguration with data transfers performed di-
rectly between L1 caches. L1 data caches are multi–ported. It enables parallel
pre-fetching of arguments of core n-ary operations, including multiple reads on
the fly done in parallel for a core. All data communication and core switching
are application program controlled actions. Programs are built of tasks assigned
to cores, built according to a cache–controlled macro data–flow paradigm. It re-
quires all data be pre–fetched to core’s L1 data cache before a task begins. L1
data cache swapping during tasks is disabled. Computation results can be sent
to L2 only between tasks execution. All L2 cache banks of the CMP module are
connected to a local fragment of the distributed data main memory shared by
all CMP modules in the system. Data communication between fragments of the
CMP shared memory is possible under supervision of NICs (Network Interface
Controllers). Reads on the fly to L2 modules during data transfers among CMP
shared memory fragments are also possible. More details on the proposed archi-
tecture of the architectural CMP modules and communication control, can be
found in [5–7].
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4 Task Scheduling with Architecturally Supported
Regions

The presented algorithm aims at minimal program execution time by obtaining
equal load of ACMP and GCMP modules. It schedules glue nodes to GCMPs
and architectural subgraphs to ACMPs. The algorithm is based on list scheduling
with the ETF heuristics [10], but the node selection is extended by classification
of nodes in the program graph to obtain gradual load balancing of both general
purpose and architectural CMPs. The nodes are classified by priorities, which at
each point of the scheduling algorithm allow selection of only such glue nodes,
whose results are required for execution of the topologically nearest ASRs in
the graph. Other standard nodes are scheduled within the remaining available
processing resources without delaying higher classified nodes.

The architectural nodes are divided into layers by assignment of the 1st level
priorities (denoted as pr1(v) for each node v). Each such layer contains a subset
of pair–wise independent nodes, i.e. with no data dependencies between any two
of them. The nodes for layers are selected according to topological properties of
the graph, using graph paths analysis. Such layers are then scheduled one–by–
one. The 1st level priorities are computed using an “architectural task graph”
Ga = (Va, E′). In this graph, nodes correspond to architectural nodes in an
initial graph G (the Va set). For two nodes u, v ∈ Va, an edge u → v ∈ E′ exists
in Ga, if there is a directed path between these two nodes in the original graph
G containing only glue nodes. For each u ∈ Va, pr1(u) is equal to its depth
in Ga (the number of nodes on the longest path leading to u from one of the

Algorithm 1. Definition of 2nd level priorities for a set U of nodes
1: Let p = 0 be the lowest priority value for a set U of graph nodes.
2: while U is not empty do
3: Find Xu sets for all nodes from U . Let V = ∅ and XV = ∅.
4: while |V | is smaller than the number of ACMPs do
5: if V is empty then
6: for all tasks u from U do
7: Schedule a subgraph Xu on available cores inside GCMPs, using an ETF–

based list scheduling.
8: end for
9: Select such node u from U , for which its Xu set gives the shortest schedule

in the previous step and uses the smallest number of resources.
10: else
11: Select node u ∈ U such, that Xu ∩ XV is the biggest.
12: end if
13: Let V = V ∪ {u} and XV = XV ∪ Xu

14: end while
15: Assign pr2(u) = p for all nodes u from V ∪ XV .
16: Remove the architectural nodes, which belong to V from U .
17: Let p = p + 1.
18: end while
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nodes which have no predecessors in Ga). Priorities for glue nodes are derived
from priorities of architectural nodes. For each v ∈ Vs, a set X ⊂ Va of nodes is
determined such that there exists a path from node v to each of these nodes. If
X is not empty, the priority of v is equal to minu∈X(pr1(u)), and it is equal to
maxu∈Va(pr1(u)) + 1 otherwise. A set of nodes with the same 1st level priority
constitutes a layer of nodes.

The 2nd level priority (denoted as pr2(v) for each node v) aims at division of
nodes for layers determined by the 1st level priority, into subsets in such way
that we can obtain equal, high load of all CMPs. Each subset of nodes contains
no more architectural nodes than the number of ACMPs in the system. We
determine 2nd level priorities, if there is a set U of architectural nodes, which
have the same 1st level priorities. For each node u ∈ U we determine Xu as a
set of standard nodes v ∈ V such that there exists a directed path from v to u,
pr1(v) = pr1(u), and they have no 2nd level priority assigned yet. The nodes in
such sets are used to put architectural nodes in order. Priorities for nodes from
the U–sets are assigned using the algorithm shown as Algorithm 1.

The final priority pr(v) is defined as follows: for two nodes u and v (both
must be either architectural or standard), pr(u) < pr(v) ⇐⇒ pr1(u) < pr1(v)∨
(pr1(u) = pr1(v) ∧ pr2(u) < pr2(v)).

Algorithm 2. List scheduling algorithm with modified ETF heuristics
1: {Input: a program graph G = (V, E)}
2: Determine architectural task graph G′ based on graph G and, based on it, compute

priorities pr1(v) for all nodes v ∈ G.
3: for all nodes v ∈ G determine pr2(v) using Algorithm 1 do
4: Let P be the set of ready nodes from graph G. Initially, insert all the nodes

without predecessors from G into P .
5: while P is not empty do
6: Let prmin = minu∈P (pr(u))
7: for all nodes u ∈ P such that pr(u) = prmin do
8: Select the node u with the earliest possible execution start time. Let p be

the core, on which this execution is available.
9: end for

10: for all nodes v ∈ P such that pr(v) > prmin do
11: If possible, select the node v with earliest possible execution start time and

for which execution ends before execution of the node u selected in the
previous loop may be started. Let q be the core, on which such execution
is possible.

12: end for
13: if the node v has been selected then
14: Let u = v and p = q
15: end if
16: Schedule the node u for execution on the core p and remove it from P .
17: Insert to P all the descendants of the node u, for which all their predecessors

have already been scheduled.
18: end while
19: end for
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The scheduling algorithm (Algorithm 2) is based on list scheduling. Glue nodes
are scheduled for execution on GCMPs, architectural nodes are scheduled for ex-
ecution on ACMPs. Each time, when a node is to be selected, first, the nodes
with the lowest priorities are examined and scheduled. Other nodes are sched-
uled only when their execution doesn’t interfere with execution of those which
have currently the lowest priority. Such selection of nodes leads to a situation,
where architectural nodes may be executed as soon as possible, using cores from
architectural CMPs. In the same time, general purpose cores may be used to
execute standard nodes, whose execution doesn’t depend on architectural nodes
and which are required for further computations.

5 A Scheduling Example

As an example, scheduling of a program graph of form shown in Fig. 3 is used.
This graph consists of a set of nodes which compute a value of a functions Fi, Gi
and multiplication (Mi) on square matrices. The Fi and Gi nodes have irregular
internal structure, but can be divided into independent nodes of a smaller size.
Each node is performed on square matrices of a given size, which is a parameter.

Each of matrix multiplication nodes M1, . . . ,Mn from Fig. 3a is expanded
using parallel Strassen matrix multiplication method. Such graph unrolled at
1st recursion level is presented in Fig. 3b. Also nodes Fi and Gi were parallelised
as shown in Fig. 3c and 3d to match the matrix sizes imposed by final serial
multiplication operations in the graph. In the unrolled graph, all the Fni, Gni

and addition nodes Ani are treated as glue, only multiplications Mni inside
subgraphs from Fig. 3b are implemented as architectural nodes and executed
inside ACMPs. Inside an architectural CMP module, each multiplication node
is parallelised using decomposition of matrices into quarters and structured to
use core switching and reads on the fly. For our experiments we have limited the
depth of the graph in Fig. 3a to 3 multiplication nodes (n = 3).

a)

b)

c) d)

Fig. 3. The general view of the exemplary program graph (a), graph of the Mn node
following parallel Strassen method (b) and graphs for node Fn (c) and Gn (d)
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Table 1. Parallel speedup of the scheduled program graph

Rec. System config. Speedup Matrix size
level ACMPs GCMPs over 32 64 128 256 512

1 7 1 serial 24,402 29,195 35,531 37,525 44,936
ETF 1,130 1,195 1,248 1,331 1,302

2 serial 24,384 29,643 34,128 39,494 43,912
ETF 1,115 1,105 1,149 1,167 1,197

8 serial 32,470 39,335 47,575 53,522 60,607
ETF 1,013 1,018 1,026 1,073 1,060

2 49 1 serial 24,002 53,387 61,505 72,642 60,822
ETF 1,052 1,054 1,044 1,013 1,070

4 serial 45,116 99,689 117,146 141,822 153,406
ETF 1,142 1,157 1,200 1,262 1,270

8 serial 52,199 114,818 142,462 174,640 197,307
ETF 1,056 1,118 1,117 1,138 1,197

32 serial 56,494 132,290 168,018 219,307 265,135
ETF 1,006 1,008 1,012 1,017 1,080

3 343 2 serial 20,958 46,188 107,499 137,845 181,543
ETF 1,000 1,000 1,014 1,055 1,115

4 serial 41,235 90,864 210,670 260,937 330,366
ETF 1,043 1,026 1,042 1,089 1,113

8 serial 77,976 171,032 382,424 452,388 562,933
ETF 1,182 1,139 1,105 1,103 1,058

16 serial 114,037 255,967 570,518 728,020 959,998
ETF 1,136 1,163 1,150 1,213 1,287

32 serial 124,540 279,513 656,417 834,289 1044,773
ETF 1,013 1,039 1,137 1,129 1,151

128 serial 129,250 289,167 681,178 883,506 1196,697
ETF 1,004 1,006 1,006 1,009 1,014

If such graph is scheduled using a classic ETF list scheduling without prior-
ities, the F-nodes are examined and scheduled in the order as in Fig. 3a (F1i –
Fn+1i). The critical path of this graph consists of multiplication nodes, Fn+1i

and Gii nodes, therefore such scheduling leads to unoptimal execution. Optimal
schedule should first execute nodes Fni and Fn+1i, followed by addition nodes
Ani, enabling execution of the nodes Mni. While these nodes are executed using
ACMPs, other F-nodes may be executed in parallel by GCMPs, thus providing
the best execution time. Experiments have shown, that the presented algorithm
with priorities leads to such schedule. In all the experiments a software simulator
of graph execution in the proposed architecture was used.

Table 1 shows parallel speedup of the scheduled graph for 3 different recur-
sion levels, different matrix sizes and different system configurations, compared
to standard serial multiplication and the schedule obtained using a classical ETF
list scheduling without priorities. The numbers of ACMPs and GCMPs (8 and
4 cores, respectively) were so selected as to enable full parallelization of mul-
tiplication in ACMPs and to check the influence of the number of GCMPs on
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the overall program performance due to potential serialization of the execution
of the glue. Cores in ACMPs and GCMPs are assumed to be equally fast in
terms of computation. Computations were assumed to be 3 times faster than
local communication on the L1–L2 bus. Global communication was assumed to
be 4 times slower than the local one.

The number of ACMPs was assumed to match the parallel multiplication
graph width for each recursion level. If the number of GCMPs is small, exe-
cution of architectural regions of the graph can be forced to wait for the glue
to be computed, which slows down execution. Increasing the number of GCMP
modules improves parallel execution. Speedup increases up to 8 GCMPs at re-
cursion level 1 (32 and 128 GCMPs at rec. levels 2 and 3, respectively) and then
it saturates.

For a fixed matrix size, a higher recursion level means larger graphs and
smaller computation grain. It means, that the parallel execution of the graph
requires more resources (both ACMP and GCMP modules) to obtain good per-
formance. If the executive system contains enough GCMP modules, a higher
recursion level leads to higher overall speedup, due to greater use of parallelism.

Increasing the size of a matrix leads to a bigger parallel computation grain.
For considered matrix sizes (32–512), the computation grain is determined by the
size of the matrix parts used for elementary serial multiplication after recursive
decomposition at a given recursion level, at the 3rd recursion level, the grain is
the smallest: 2, 4, 8, 16 and 32, respectively. A bigger grain – in most cases –
gives better parallel speedup, but we can observe departure from this rule at
recursion level 1 with 2 GCMP modules as well as at recursion level 2 with 1
and 2 GCMP modules.

Introduction of priorities in almost all cases improves execution, comparing
to a standard ETF-based list scheduling algorithm. We can observe the best
improvements for the highest size of matrices (512). For recursion level 1, the
presented algorithm improved parallel execution up to 1.3 times (for 1 GCMP
module), for rec. level 2 the best improvement was 1.27 (for 4 GCMP modules)
and for rec. level 3 it was 1.28 (for 16 GCMP modules). Apart from the situation,
when the number of GCMPs is definitely too small for execution of a big parallel
graph (1 GCMP for recursion levels 2 and 3), the positive influence of the special
priorities is especially visible when the execution of the glue is “squeezed” to a
small number of GCMPs.

6 Conclusions

The paper has presented parallel program scheduling algorithms for modular
CMP systems composed of two kinds of CMP modules interconnected by a
global network: architecturally supported CMP modules — ACMPs and general
purpose shared memory CMP modules — GCMPs. The proposed scheduling
algorithm is based on an ETF heuristics improved by insertion of multi–level
priorities for the nodes in application program graphs. The additional priori-
ties enable better synchronisation of execution of architecturally supported re-
gions and so called “glue” nodes in application programs. Thus, better parallel
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speedups were obtained in the case of graph structures “difficult” for the stan-
dard ETF schedulers for adequate composition of the executive system. The
proposed scheduling algorithm was experimentally verified on a graph of matrix
computation in which matrix multiplications by Strassen method were architec-
turally supported for parallel execution of Strassen constituent submatrix mul-
tiplications by matrix decomposition into quarters. To obtain maximal parallel
speedup, the number of CMP modules should match the width of the program
graph: the number of ACMPs should match the Strassen method recursion level
and the number of GCMPs should match the width of the glue regions of the
graph.
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Abstract. This paper addresses non-preemptive offline scheduling par-
allel jobs on a Grid. We consider a Grid scheduling model with two
stages. At the first stage, jobs are allocated to a suitable Grid site, while
at the second stage, local scheduling is independently applied to each
site. In this environment, one of the big challenges is to provide a job al-
location that allows more efficient use of resources and user satisfaction.
In general, the criteria that help achieve these goals are often in conflict.
To solve this problem, two-objective genetic algorithm is proposed. We
conduct comparative analysis of five crossover and three mutation oper-
ators, and determine most influential parameters and operators. To this
end multi factorial analysis of variance is applied.

Keywords: Offline scheduling, Grid, Genetic Algorithm, Crossover Op-
erator, Mutation Operator.

1 Introduction

In this paper, we present experimental work in the field of multi-objective
scheduling in a two layer Grid computing. At the first layer, we select the best
suitable machine for each job using a given criterion. At the second layer, local
scheduling algorithm is applied to each machine independently. In such an en-
vironment, one of the big challenges is to provide scheduling that allows more
efficient use of resources, and satisfies other demands. The optimization criteria
are often in conflict. For instance, resource providers and users have different
objectives: providers strive for high utilization of resources, while users are in-
terested in a fast response. We provide solutions that consider both goals. The
aggregation method of criteria and a scalar function to normalize them are used.
We examine the overall Grid performance based on real data and present a com-
prehensive comparative analysis of five crossover operators, three operators of
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mutation, five values of crossover probability, and five values of mutation prob-
ability. To genetic algorithm tune up the multifactorial analysis of variance is
applied.

After formally presenting our Grid scheduling model in Section 2, we discuss
related work in Section 3. We introduce genetic scheduling algorithms and discuss
their application for Grid scheduling in Section 4. Genetic algorithm calibration
is presented in section 5. Finally, we conclude with the summary in Section 6.

2 Model

We address an offline scheduling problem: n parallel jobs J1, J2, ..., Jn must be
scheduled on m parallel machines (sites) N1, N2, ..., Nm. Let mi be the number
of identical processors or cores of machine Ni. Assume without loss of gener-
ality that machines are arranged in non-descending order of their numbers of
processors, that is m1 ≤ m2 ≤ ... ≤ mm holds.

Each job Ji is described by a tuple (sizej, pj , p
′
j): its size 1 ≤ sizej ≤ mm also

called processor requirement or degree of parallelism, execution time pj and user

runtime estimate p
′
j . The release date of a job is zero; all the jobs are available

before scheduling process start. Job processing time is unknown until the job
has completed its execution (non-clairvoyant case). User runtime estimate p

′
j

is provided by a user. A machine must execute a job by exclusively allocating
exactly sizej processors for an uninterrupted period of time pj to it. As we
do not allow multisite execution and co-allocation of processors from different
machines, a job Jj can only run on machine Ni if size ≤ mj holds.

Two criteria are considered: makespan: Cmax, Cmax = max(Ci), where Ci

is the maximum completion time on Ni machine (i = 1, 2, 3, ..., Nm) and mean
turnaround time: TA = 1

n

∑n
j=1 cj , where cj is the completion time of job Jj .

We denote our Grid model by GPm. In the three field notation (α |β| γ) intro-

duced in [6], our scheduling problem is characterized as GPm

∣∣∣sizej, pj , p′
j

∣∣∣OWA,

where OWA is the value of the multi-criteria aggregation operator (OWA =
w1Cmax + w2TA), and wi is the linear combination weights. The problem of

scheduling on the second stage is denoted as Pm

∣∣∣sizej, pj , p′
j

∣∣∣Cmax.

3 Related Work

3.1 Hierarchical Scheduling

Scheduling algorithms for two layer Grid models can be split into a global
allocation part and a local scheduling part. Hence, we regard MPS (Multi-
ple machine Parallel Scheduling) as a two stage scheduling strategy: MPS =
MPS Alloc+PS [20]. At the first stage, we allocate a suitable machine for each
job using a genetic algorithm. At the second stage, PS (single machine Par-
allel Scheduling) algorithm is applied to each machine independently for jobs
allocated during the previous stage.
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3.2 Multi-criteria Scheduling

Several studies deal with scheduling in Grids considering only one criterion (e.g.
EGEE Workload Management System [1], NorduGrid broker [4], eNANOS [16],
Gridway [10]. Various Grid resource managements involve multiple objectives
and may use multicriteria decision support. Dutot et al. [3] considered task
scheduling on the resources taking into account maximum task completion time
and the average completion time. Siddiqui, et al. [18] presented task scheduling
based on the resource negotiation, advance reservation, and user preferences.
The user preferences are modeled by utility functions, in which users must enter
the values and levels of negotiation.

General multi-criteria decision methodology based on the Pareto optimality
can be applied. However, it is very difficult to achieve fast solutions needed for
Grid resource management by using the Pareto dominance. The problem is very
often simplified to a single objective problem or objectives’ combining. There are
various ways to model preferences, for instance, they can be given explicitly by
stakeholders to specify an importance of every criterion or a relative importance
between criteria. This can be done by a definition of criteria weights or criteria
ranking by their importance.

In order to provide effective guidance in choosing the best strategy, Ramirez
et al. [15] performed a joint analysis of several metrics according to methodology
proposed in [19]. They introduce an approach to multi-criteria analysis assuming
equal importance of each metric. The goal is to find a robust and well performing
strategy under all test cases, with the expectation that it will also perform well
under other conditions, e.g., with different Grid configurations and workloads.
Kurowski et al. [11] used aggregation criteria method for modeling the prefer-
ences of participants (owners, system managers and users). Authors considered
two stage hierarchical grids, taking into account the stakeholders’ preferences,
assuming unknown processing times of the tasks, and studied the impact of the
size of the batch of tasks on the efficiency of schedules. Lorpunmanee et al. [12]
presented task allocation strategies to the different sites of a Grid and propose
a model for task scheduling considering multiple criteria. They concluded that
such scheduling can be performed efficiently using GAs.

In this paper, we consider two-criteria scheduling problem. We propose a
genetic algorithm as a strategy for allocating jobs to resources. It uses an ag-
gregation criteria method and the weight generating function representing the
relative importance of each criterion. We present an experimental analysis of
such a problem and compare obtained results with strategies aimed at optimiz-
ing a single criterion. In this paper, the Ordered Weighted Averaging (OWA)

[11] is applied: OWA(x1, x2, ..., xn) =
∑k

c=1 wcs(x)σ(c), where wc is the weight,
c = 1, ..., k, xc is a value associated with the satisfaction of the c criterion. Per-
mutation ordering values: s(x)σ(1) ≤ s(x)σ(2) ≤ ...s(x)σ(k) is performed. Weights

(wc) are nonnegative and
∑k

c=1 wc = 1. If all the weights are set to the same
value, OWA behaves as the arithmetic mean. In this case, high values of some
criterion compensate low values of the other ones. In OWA approach, a compro-
mise solution is provided. The highest weight is w1 and the subsequent ones are
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decreasing, but never reaching 0. That means that both the worst criterion and
the mean of criteria are taken into account. In this way stakeholders are able to
evaluate schedules using multiple criteria. The goal is to find a weighting scheme
that provides the best possible mean value for all stakeholders’ evaluations and
the highest possible value for the worst case evaluation. To achieve this, weight
w1 must be relatively large, while weight wk should be small, where k denotes
the number of criteria. The remaining weights decrease in value from w1 to wk

according to:

wc =

{
3/2k, c = 1
(3k − 2c− 1)/ [2n(k − 1)] , 1 < c ≤ k

(1)

4 Genetic Algorithm

Scheduling algorithms for two layer Grid models can be split into a global allo-
cation part and a local scheduling part. Hence, we regard MPS as a two stage
scheduling strategy: MPS=MPS Alloc+PS. At the first stage, we use a genetic
algorithm (GA) to allocate a suitable machine for each job (MPS Alloc=GA).
At the second stage, the parallel job scheduling algorithm PS is applied to each
machine independently for jobs allocated during the previous stage. As PS we
use the well-known strategy Backfilling-EASY [21,22].

GA is a well-known search technique used to find solutions to optimization
problems [9]. Candidate solutions are encoded by chromosomes (also called
genomes or individuals). The set of initial individuals forms the population.
Fitness values are defined over the individuals and measures the quality of the
represented solution. The genomes are evolved through the genetic operators
generation by generation to find optimal or near-optimal solutions. Three ge-
netic operators are repeatedly applied: selection, crossover, and mutation. The
selection picks chromosomes to mate and produce offspring. The crossover com-
bines two selected chromosomes to generate next generation individuals. The
mutation reorganizes the structure of genes in a chromosome randomly so that
a new combination of genes may appear in the next generation. The individuals
are evolved until some stopping criterion is met. OWA operator as a fitness
function is applied (Section 2).

Each solution is encoded by n ·m matrix. Where m is a number of machines
in a Grid, and n is a number of jobs. The i = 0, ...,m − 1 row represents local
queue of machine Ni. Note, that machines are arranged in non-descending order
of their number of processors m0 ≤ m2 ≤ mm−1. A job Jj can only run on
machine Ni if sizej ≤ mi holds. The available set of machines for a job Jj is
defined to be the machines with indexes fj , ...,m, where fj is the smallest index
i such that mi ≥ sizej.

The selection picks chromosomes to produce offspring. The binary tournament
selection known as an effective variant of the parents’ selection is considered.
Two individuals are drawn randomly from the population, and one with highest
fitness value wins the tournament. This process is repeated twice in order to
select two parents.
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4.1 Crossover Operators

Crossover operator produces new solutions by combining existing ones. It takes
parts of solution encodings from two existing solutions (parents) and combines
them into single solution (child). The crossover operator is applied under a cer-
tain probability (Pc). In this paper, five operators are considered.

One Segment Crossover for Matrix (OSXM ). It is based on the crossover
operator OSX - One Segment Crossover [7]. In this crossover, two random points
S1 and S2 from 0 to vmax (maximum index used) are selected. The child inherits
columns from the 0 to S1 position from parent 1. It also inherits columns from
S1 to S2 from parent 2, but only elements that have not been copied from parent
1. Finally, child inherits elements from parent 1 that have not yet been copied.

Two Point Crossover for Matrix (TPM ). It is based on the crossover operator
Two Point Crossover [13]. In this crossover, two random points S1 and S2 from
0 to vmax are selected. Columns from position 0 to S1 and from S2 to vmax
are copied from parent 1. The remaining elements are copied from the parent 2
only if they have not been copied.

Order Based Crossover for Matrix (OBXM ). It is based on the crossover
operator OBX - Order Based Crossover [5]. A binary mask is used. The mask
values equal to one indicate that the corresponding columns are copied from
parent 1 to the child. The rest of elements are copied from parent 2, only if they
have not been copied. The mask values are generated randomly and uniformly.

Precedence Preservative Crossover for Matrix (PPXM ). It is based on the
crossover operator PPX - Precedence Preservative Crossover [2]. Random binary
mask values equal to one indicates that corresponding columns are copied from
parent 1 to the child, and the values equal to zero indicate that columns are
copied from parent 2, this is done by iterating the columns of parents who have
not been copied in order from left to right.

Order Segment Crossover for Matrix with Setup (OSXMS ). It is based on the
crossover operator OSX - Order Segment Crossover [7]. It chooses two points
randomly. Columns from position 1 to the first point are copied from parent 1.
The elements are ordered by the number of processors required for subsequent
insertion into the child in the position according to the number of required
processors. Columns from first point to second point are copied from parent 2,
only if the elements have not been copied. Finally, the remaining elements are
copied from the parent 1, considering not copied elements.

4.2 Mutation

The mutation operator produces small changes in an offspring with probability
Pm. It prevents falling of all solutions into local optimum and extends search
space of the algorithm. Three operators Insert, Swap and Switch adapted for
two-dimensional encoding are considered. 1)Queue Insert. Two points are ran-
domly selected. The element of the second point is inserted to the first point,
shifting the rest. Note that this mutation preserves most of the order and the



66 V.H. Yaurima-Basaldua et al.

adjacency information. 2)Queue Swap. This mutation randomly selects two
points and swaps their elements. 3)Queue Switch. This mutation selects a ran-
dom column and swaps their elements with the next column.

5 GA Calibration

5.1 Workload

The accuracy of the evaluation highly relies upon workloads applied. For testing
the job execution performance under a dedicated Grid environment, we use Grid
workload based on real production traces. Carefully reconstructed traces from
real supercomputers provide a very realistic job stream for simulation-based
performance evaluation of Grid job scheduling algorithms. Background work-
load (locally generated jobs) that is an important issue in non-dedicated Grid
environment is not addressed.

Four logs from PWA (Parallel Workloads Archive) [14] (Cornell Theory Cen-
ter, High Performance Computing Center North, Swedish Royal Institute of
Technology and Los Alamos National Lab) and one from GWA (Grid Work-
loads Archive) [8] (Advanced School for Computing and Imaging) have been
used: The archives contain real workload traces from different machine instal-
lations. They provide information of individual jobs including submission time,
and resource requirements.

For creating suitable grid scenarios, we integrate several logs by merging users
and their jobs. The premise for the integration of several logs of machines in
production use into a Grid log is based on the following. Grid logs contain jobs
submitted by users of different sites; a Grid execution context could be composed
by these sites. Unification of these sites into a Grid will trigger to merger users
and their jobs. It should be mentioned that merging several independent logs
to simulate a computational Grid workload does not guarantee representation
of the real Grid with the same machines and users. Nevertheless, it is a good
starting point to evaluate Grid scheduling strategies based on real logs in the
case of the lack of publicly available Grid workloads. Time zone normalization,
profiled time intervals normalization, and invalid jobs filtering are considered.

5.2 Calibration Parameters

A method of experimental design is adapted from Ruiz and Maroto [17], where
the following steps are defined: (a) test all instances produced with possible com-
binations of parameters; (b) obtain the best solution for each instance; (c) apply
the Multifactor Variance Analysis (ANOVA) with 95% confidence level to find
the most influential parameters; (d) set algorithm parameters based on selected
parameters values; (e) calculate relative difference of the calibrated algorithm
and other adapted algorithms over the best solutions. Table 1 shows parameters
that were set for the calibration. Hence, 5 x 3 x 5 x 5 = 375 different algorithms
alternatives were considered. 30 executions of the workload were realized, in total
375 x 30 = 11,250 experiments.



Genetic Algorithm Calibration for Two Objective Scheduling Parallel Jobs 67

Table 1. Calibration parameters

Instance Levels

Crossover operators OSXM, TPM, OBXM, PPXM, OSXMS
Mutation operators Queue Insert, Queue Swap, Queue Switch
Crossover probability 0.001, 0.01, 0.05, 0.1, 0.2
Population 50 individuals
Number of jobs in individual 5275
Selection Binary tournament
Stop criterion If the fitness value of the best chromosome is not

improved 4 times, the algorithm is stopped.

The performance of the proposed algorithm is calculated as the percentage
of the relative distance of the obtained solution from the best one (Relative
Increment over the Best Solution - RIBS ). The RIBS is calculated using the
following formula: RIBS = (Heusol − Bestsol)/Bestsol · 100, where Heusol is
the value of the objective function obtained by considered algorithm, and Bestsol
is the best value obtained during the testing all possible parameter combinations.

5.3 Analysis of Variance

To assess the statistical difference among the experimental results, and observe
effect of different parameters on the result quality, the ANOVA is applied. The
analysis of variance is used to determine factors that have a significant effect,
and which are the most important factors. Parameters of the Grid scheduling
problem are considered as factors, and their values as levels. We assume that
there is no interaction between the factors.

Table 2. Analysis of variance for RIBS (Type III Sums of Squares)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
A:cross 2111.03 4 527.758 152.00 0.0000
B:mut 47.4724 2 23.7362 6.84 0.0012
C:pc 20.9586 4 5.23964 1.51 0.1990
D:pm 27.5114 4 6.87785 1.98 0.0969
RESIDUAL 1249.99 360 3.4722
TOTAL 3456.97 374
(CORRECTED)

The F-Ratio is the ratio between mean square of the factor and the mean
square of residues. A high F-Ratio means that this factor affects the response
variable (see Table 2). The value of P-Value shows the statistical significance
of the factors. The factors, whose P-Value is less than 0.05, have statistically
significant effect on the response variable (RIBS ) with 95% level of confidence.
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Here we see that the factors that significantly affect the response variable are
the operators of crossover and mutation. According to the F-Ratio, the most
important factor is the crossover operator.

Fig. 1. Means and 95% LSD intervals

Figs. 1(a)-1(d) show means and 95% LSD intervals of the most influential fac-
tors. Fig. 1(a) shows the results obtained for crossover operators. Five operators
are presented in the following order: 1-OSXM, 2-TPM, 3-OBXM, 4-PPXM and
5-OSXMS. The vertical axis is the values of RIBS. We can see that crossover
TPM is the best crossover among the five ones tested, followed by OBXM. Figure
1(b) shows the results obtained for mutation operators. Three mutation opera-
tors are presented in the following order: 1- Queue Insert, 2- Queue Swap y 3-
Queue Switch. Queue Insert is shown to be the best, followed by Queue Swap.
Figures 1(c) and 1(d) show the results for the crossover and mutation probability.
The best crossover probability occurring is 0.9. The best mutation probability
occurring is 0.2.

6 Conclusions and Future Work

We addressed a two-objective genetic algorithm calibration for scheduling jobs
in a two stage computational Grid. We conduct comprehensive comparison of
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five known crossover operators, three mutation operators adapted for two di-
mension encoding, five values for the crossover probability, and five values for
the mutation probability. 375 different genetic algorithms are analysed with 30
instances for each one. 11,250 experiments were evaluated. We use aggregation
criteria method for modeling the preferences of two objectives: Cmax and TA.
To assess the statistical difference among the experimental results, and observe
impact of different parameters on the result quality, the ANOVA technique was
applied. The crossover operator is shown to have a statistically significant effect.
It plays the most important role in genetic algorithms applied to a scheduling
in computational Grid. Of five compared operators, the TPM obtained the best
result, followed by the OBXM.

Obtained results may serve as a starting point for future heuristic Grid schedul-
ing algorithms that can be implemented in real computational Grids. While the
scope of this work is to determine most influential GA parameters and oper-
ators, in future work, we also intend to evaluate the practical performance of
the proposed strategies, and the assessment of their cost. To this end, we plan
simulations using real workload traces and corresponding Grid configurations.
We will compare our GA with other existing Grid scheduling strategies which
are typically based on heuristics. Future work needs for a better understanding
of the scheduling with dynamic Grid configuration, resource failures and other
real characteristics of the Grid.
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Abstract. In this paper we discuss the interaction of expression tem-
plates with OpenCL devices. We show how the expression tree of expres-
sion templates can be used to generate problem specific OpenCL kernels.
In a second approach we use expression templates to optimize the data
transfer between the host and the device which leads to a measurable
performance increase in a domain specific language approach. We tested
the functionality, correctness and performance for both implementations
in a case study for vector and matrix operations.

Keywords: GPGPU, OpenCL, C++, Expression templates, Domain
specific language, Code generation.

1 Introduction

In the last years computer architecture has changed from a single-core design to
a multi-core architecture providing several processor cores on a single CPU. This
new way of processor design has the intention to circumvent the physical con-
straints of increasing the performance of a single-core CPU by using symmetric
multi-core processors to parallelize the computation [3].

Additionally the GPU (Graphics Processing Unit) has recently come into
focus for general purpose computing by the introduction of CUDA (Compute
Unified Device Architecture) [14] as well as the open standard OpenCL (Open
Computing Language) [7] to exploit the tremendous performance of highly par-
allel graphic devices.

CUDA is NVIDIA’s parallel computing architecture on GPU’s which could be
used for GPGPU (General Purpose Computing on Graphics Processing Units)
through CUDA C [13], CUDA Fortran [18] or OpenCL [16].

OpenCL is an open standard for general purpose parallel programming across
CPU’s, GPU’s and other processors [7]. It provides a C like programming lan-
guage to address the parallel concept of heterogeneous systems. In contrast
to CUDA C, which is the common programming language for CUDA devices,
OpenCL is not limited onto a specific GPU architecture. OpenCL is rather avail-
able for NVIDIA CUDA GPU’s [16], multi-core CPU’s and the latest GPU’s from
AMD [2], Intel Core CPU’s [6], DSP’s [7] and many other architectures.

Both technologies, CUDA as well as OpenCL, have a huge impact onto the
world of scientific computing and also scientists without an access onto a super
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computer as well as the normal user could benefit from the tremendous perfor-
mance of GPU’s in their workstation and desktop computers.

Alongside the use of standard applications which support CUDA or OpenCL,
users are able to write their own applications running on GPU’s. But this is bur-
dened with many new concepts and techniques which are necessary to address
the parallel programming on GPU’s or heterogeneous systems. The program-
mer has to take care about the data transfer between the host system and the
CUDA or OpenCL device, he has to organize the thread local or shared memory
as well as the global memory and he has to use specific parallel programming
techniques [12,15].

All these new concepts and techniques could be a real challenge for unexpe-
rienced developers in the area of GPGPU. In the worst case the program on a
GPU has a inferior performance compared to a plain old sequential approach on
a CPU caused by the bottleneck of inappropriate data transfers between host
and device, misaligned memory access and bank conflicts, inappropriate load
balancing, deadlocks and many more.

Hence, our intention was to investigate techniques and concepts to provide
user-friendly libraries with an interface completely integrated into C++ hiding
all the GPGPU specific paradigms from the user. Additionally the C++ concept
of operator overloading offers the possibility to integrate the library interface as
a domain specific language (DSL). Furthermore expression templates [19] are
used to optimize the data transfer between the host and the device.

In this paper we used OpenCL as the hidden layer under the C++ interface
using operator overloading and expression templates to utilize the benefits of
GPU’s as well as of multi-core CPU’s. As an application area we chose matrix
and vector operations which are particularly suitable to show the capability of
a domain specific language embedded into C++ using expression templates and
OpenCL.

2 Expression Templates

One of the outstanding features of C++ is the feasibility to overload several
operators like the arithmetic operators, the assignment operator, the subscript
operator or the function call operator. This offers a developer of particularly
mathematical data types to implement the interface of this types as a domain
specific language embedded into C++. But besides the possibility to define an
easy and intuitively usable data type, the operator overloading in C++ has a
drawback called pairwise evaluation problem [21]. This means that operators
in C++ are defined as unary or binary functions. For expressions with more
than one operator like r = a + b + c this has the consequence that a + b are
evaluated first and than their result, stored in a temporary variable, is used
to perform the second operator to evaluate the addition with the variable c.
Obviously this leads to at least one temporary variable for each + operator but
if the data types are e.g. vectors it also performs several consecutive loops to
perform the particular vector additions. Both the temporary variables as well
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as the consecutive loops are a performance penalty compared to a hand coded
function computing the result with a single loop and no temporaries [21], see
Listing 1.

for (int i = 0; i < a.size (); ++i)

r[i] = a[i] + b[i] + c[i];

Listing 1. Hand coded and optimal computation of r = a + b + c

Expression templates [19] are a C++ technique to avoid this unnecessary
temporaries as well as the consecutive loops by generating an expression tree
composed of nested template types. Furthermore this expression tree is explic-
itly visible at compile time and could be evaluated as a whole resulting in a
similar computation as shown in Listing 1. This could be achieved by defining a
template class BExpr<typename T, class OP, typename A, typename B> as
an abstract representation of a binary operation1 specified by the template pa-
rameter OP as an exchangeable policy class [1] working on the arguments of the
types A and B which are stored as reference member variables.

template <typename T, class OP, typename A, typename B>

class BExpr {

A const& a_;

B const& b_;

public:

BExpr(A const& a, B const& b) : a_(a), b_(b) { }

T operator [] (size_t i) const {

return OP.eval(a_[i], b_[i]);

}

...

};

Listing 2. Class BExpr<typename T, class OP, typename A, typename B>

Thereby the template type T specifies the type of the vector elements which
is important to implement the element-wise evaluation using the subscript op-
erator. In principle the subscript operator uses the policy class specified by the

template parameter OP to compute the ith element of the result of the operation.
Listing 3 shows an implementation of a policy class for a vector addition.

template <typename T> struct Add {

static T eval(T a, T b) { return a + b; }

};

Listing 3. Policy class ADD<typename T>

1 Types for operations with a different order are defined in a similar manner. Further-
more we have shown in [10] how a general type for operations of a arbitrary order
could be specified using a C++0x.
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With these building blocks it is quite easy to overload the arithmetic operators
for vector and scalar types to implement the operations like the vector sum or
the multiplication with a scalar returning an expression tree. Figure 1 shows
the composed tree structure for the expression Scalar * (Vector + Vector).
Therefore expression templates are a technique to compose expression trees with
nested template classes at compile time.

BExpr<double, Mul<double>, •, •>

Scalar BExpr<double, Add<double>, •, •>

Vector Vector

Fig. 1. Tree structure for the expression Scalar * (Vector + Vector)

The evaluation of such an expression tree then could be performed as a whole
by overloading the assignment operator. For the example with vector operations
it is quite easy by using one loop over the size of the vectors computing the
result element-wise by calling the overloaded subscript operator of the tree.2

Obviously there are a lot of small objects and inline functions used for the
expression template approach but due to modern compilers this evaluation leads
almost to a similar machine code as Listing 1.

Using expression templates for vector operations to avoid unnecessary loops
and temporaries is the classical example used in [19] to introduce these powerful
technique. Besides loop fusion the expression templates are used in many other
areas like the adaptation to grids in finite element methods [5] or to increase the
accuracy in dot product expressions [8].

In addition we are working in the area of interval arithmetic and primarily
used expression templates to reduce the necessary but time-consuming round-
ing mode switches of the floating point unit to speed up the computation [11].
Because this showed promising results we investigated an optimized expression
template approach and combined it with additional functionality like the auto-
matic differentiation [10] at compile time using template meta programming [20].

3 Implementation

Recently we started to investigate the usage of GPU’s for reliable computing
and especially interval arithmetic. Hence, the tremendous computing power of
GPU’s motivated us to research the potential of a GPU as a back end for a
C++ interval library which is based on expression templates and template meta
programming. Our goal in this context is to offer the user a domain specific
language for interval computations which is able to utilize GPU’s for specific

2 Note that for this approach it is required that the Vector class as well as the Scalar

class overload the subscript operator. For a Scalar it could easily return the value
of the scalar.
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algorithms or problem solvers. The aim of this work was to have a case study
for the combination of expression templates and GPU’s.

We chose OpenCL in place of CUDA as the framework for our case study
because it offers the possibility to generate and compile the OpenCL code at
run time and additionally it is possible to run it on different GPU’s as well as
on CPU’s.

As a field of application we chose vector and matrix operations for the case
study and we implemented two different approaches. The first one is to use ex-
pression templates to generate specific OpenCL code for the expressions. The
second one uses precompiled OpenCL kernels which are utilized by the expres-
sion templates. Both approaches are compared against an implementation using
standard operator overloading to realize the domain specific language in C++
and computing the result on the GPU.

3.1 OpenCL Code Generation

The approach of generating specific OpenCL kernels with expression templates
needs to address three different problems. The transfer of the data between
the host and the device, the unique mapping between the data and the kernel
parameters and the generation of the kernel itself.

In a domain specific language approach there are two different possibilities
to realize the transfer of the data onto the device. The first one is to allo-
cate and fill the cl::Buffer on the device during the creation of the vector
or matrix. For this, the two OpenCL memory flags CL MEM READ WRITE and
CL MEM COPY HOST PTR are used to initialize a read-write buffer with data from
the host. The second approach is to allocate the buffer and copy the data within
the assignment operator prior to the execution of the kernel. Both of them have
their advantages and disadvantages. The first one has to copy the data only once
but the required memory, which is limited on a GPU, is used all the time and the
access of the data from the host is more costly. The second one has to copy the
data for each expression but it only uses the required memory for the ongoing
expression and the access from the host is easy.

For the unique mapping of the data and the kernel parameters we used the
singleton pattern [4] to implement a class to generate unique id’s which are
requested at the construction of the vectors and matrices and stored as the
member id . Additionally the vector and matrix classes provide two methods
getIdent and getCode which return the string ‘‘v’’ + id as an identifier and
the string ‘‘v’’ + id + ‘‘[index]’’ as the code snippet to access the data.
Both methods are required to generate the specific OpenCL kernels out of the
expression tree inside the assignment operator and to access the required data.
For scalar types it is not required to return the identifier. In this case the method
getCode returns the value of the scalar itself which is included as a constant into
the kernel code.

The generation of the kernel itself is then subdivided into three parts. The
first one is the computation of all required parameters. For this task an instance
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paramSet of the STL [17] container type std::set is recursively filled with all
vectors or matrices of the expression.3

Then afterwards this paramSet could be used to generate the header of the
kernel while iterating over the set declaring the parameters of the expression,
see Listing 4. Additionally a constant for the index of the work item is declared.

std:: string code = "__kernel void CLETGenVectorKernel ( ";

for ( it = paramSet.begin() ; it != paramSet .end(); it++ ) {

code += "__global float* " +

(*it). getObject (). getIdent () += ", ";

}

code += " const unsigned int size )" +

"\n{ \n" +

" const int index = get_global_id (0); \n";

Listing 4. Generation of the kernel header and the constants

The last but most important part is to generate the body of the kernel itself.
This is done by calling the method getCode for the result type as well as for the
expression tree, see Listing 5.

code += " " + result.getCode () + " = " +

expression .getCode () + ";\n};\n \n";

Listing 5. Generation of the kernel body

Obviously the method getCode is a replacement of the subscript operator
of the expression template implementation introduced in Section 2. Hence the
nodes of the expression tree used for the code generation, which are almost
similar to the class BExpr in Listing 2, have to implement the method getCode.
But this is quite easy by using specific policy classes to concatenate the strings
of the recursive call of the child nodes with the required arithmetic operator, see
Listing 6.

std:: string getCode() const {

return std:: string("(" + a_.getCode () +

" + " + b_.getCode () + ")" );

}

Listing 6. Method getCode of a tree node for the addition

Subsequently the generated kernel string could be compiled and executed
using the OpenCL API functions inside the assignment operator.

3.2 Utilize Precompiled OpenCL Kernels

In addition to the implementation in Section 3.1 to generate specific kernels out
of the expression tree we inspected the use of expression templates in place of

3 The vectors or matrices are stored as a constant reference in a wrapper class to
afford a sorted organization of the paramSet. The method getObject offers access
to the stored object.
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operator overloading to minimize the data transfer of a domain specific language
using precompiled kernels on a GPU back end. The aim of this case study is
to realize a DSL where some parts of the computation, e.g. vector or matrix
operations, are executed on a GPU without the requirement to transfer the data
between the host and the device manually by the user. A classical approach using
operator overloading suffers from the pairwise evaluation problem, see Section 2,
where data is transferred from the host to the device, then the result is computed
on the GPU and transferred back onto the host for every single operation. With
expression templates the unnecessary data transfers can be eliminated.

The implementation of the expression templates are almost similar to the ap-
proaches in Section 2 and Section 3.1 respectively. The most important difference
is that in addition to the leaf nodes (vectors, matrices . . . ) of the expression tree
all inner nodes of the tree are annotated with unique id’s. These id’s are required
to map the several operations of the expression, performed by operation specific
precompiled kernels, onto the temporaries used for the results of the operations.

The evaluation of the expression tree is as well performed inside the assign-
ment operator. But in contrast to the implementation in Section 3.1 there is
no OpenCL code generated. Rather two traversals of the expression tree are
required.

The first traversal is used to allocate all the necessary memory for the leaf
nodes (vectors, matrices . . . ) as well as for the temporary results of the operations
of the inner nodes on the OpenCL device. For each leaf node with a new id a
cl::Buffer is allocated and initialized from the host. Additionally the id of
the leaf node as well as the associated cl::Buffer are stored in a instance
paramMap of the STL container std::map [17]. This approach has the benefit
that the data of a leaf node is transferred only once even if the same associated
variable/parameter is used multiple times in an expression. For inner nodes of
the tree the required memory is only allocated for the temporary results of the
related kernel of the operation. These allocated memory areas are stored in the
paramMap together with their id’s.

The second traversal of the tree performs the computation of the expression
on the OpenCL device by using the method compute4 of the nodes recursively.
This method could be subdivided into two parts. First of all the recursive calls
of the method compute of the child nodes take place to evaluate the subexpres-
sions. Afterwards the operation specific parts are performed, which could be also
implemented with policy classes to generalize the code of the implementation,
see Section 2. These parts are the determination of the required memory areas
for the parameters5 and the result of the operation using the paramMap and the
id’s of the nodes as well as the execution of the operation specific precompiled
kernel.

4 This is the correspondent method to the subscript operator or the method getCode

of the implementations in Section 2 or Section 3.1, respectively.
5 These are the memory areas which are initialized by the evaluation of the child nodes

or which are defined by the leaf nodes during the first traversal.
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After the second traversal the evaluation of the expression is finished and the
result is stored in the associated memory area of the root node of the tree. These
data is transferred back to the host and the allocated device memory is freed.

4 Experimental Results

We have tested our two implementations on a AMD Radeon HD 6950 GPU.
For the code generation approach (Section 3.1) it turned out that for standard

vector operations the compile time for the generated kernel is out of scale for most
of the problems. For example the time required for the expression v1 + v2 +

v1 * 5 is shown in Table 1. In this comparison the code generation approach as
well as the operator overloading approach use device memory which is allocated
and initialized during the construction of the vectors. Hence only the time for
the compilation as well as for the execution of the kernel is measured. In contrast
the operator overloading approach uses precompiled kernels.

Table 1. Performance comparison of the code generation approach (Section 3.1)

Vector size Code generation Operator overloading

4096 63 ms 1,2 ms

1048576 63,2 ms 1,3 ms

16777216 64,8 ms 5,7 ms

However, if we don’t regard the compile time, we have measured an execution
time of 3 ms for a vector size of 16777216 which is almost the half of the execution
time with operator overloading. Hence, the code generation approach could be
a good choice for hard problems where the compile time is almost irrelevant.

Table 2. Performance comparison of the precompiled kernel approach (Section 3.2)

Expression Precompiled kernels Operator overloading

(M1 + M2) + (M3 + M4) 26 ms 51 ms

(M1 + M2) + (M3 + M1) 21 ms 51 ms

(M1 * M2) * (M3 * M4) 183 ms 218 ms

On the other hand we have inspected the approach using precompiled kernels
against an implementation using operator overloading for matrix operations. For
this case study the data of both approaches are kept on the host and are only
transferred for the execution of the expression template or for the particular op-
eration, respectively. Table 2 shows the required time for the execution of three
different expressions for a matrix size 2048× 2048. Note that for the second ex-
pression where the matrix M1 occurs two times the expression template approach
is 5 ms faster than the first expression which also adds 4 matrices whereas the
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operator overloading approach is identical. This speed up was reached because
the matrix M1 is in this approach transferred to the device memory only once.

For the third expression the speed up of the expression template approach is
not such significant because the execution of the matrix multiplication on the
GPU predominate the required latency time for the data transfer from the host
to the device.

As a last remark to the execution time of OpenCL kernels we have compared
the kernels on an AMD Radeon HD 6950 GPU against an Intel Core i7-950
CPU. Due to the latency time for the data transfer from the host to a GPU the
execution of an expression is only worth for a big enough problem. For example
the execution time including the data transfer for a matrix multiplication of two
square matrices is almost similar for 256 × 256 matrices. For smaller matrices
the CPU is significantly faster than the GPU. To avoid this runtime penalty we
can use template meta programming6 at compile time or normal branches at run
time to decide, if we would run the kernels on the GPU or CPU, respectively.

5 Related Work

In [22] a analogical approach as in Section 3.1 is used to generate CUDA C
for vector operations but they have only measured the pure execution time of
the kernels neither with a regard for the time of the compilation nor the data
transfer.

6 Conclusion and Further Research

In this paper we have shown that it is possible to use expression templates to
build a bridge between a domain specific language in C++ and OpenCL. We
have presented two different approaches.

The first one is to generate and compile the problem specific OpenCL kernels
out of the expression trees. A drawback of this approach is the time required to
compile the kernel, which is generated along with the evaluation of the expres-
sion template. On the other hand these specifically generated kernels showed a
good performance for the pure execution time on the GPU. Hence, it could be
a good choice for harder problems. Since expression templates are explicit types
only one compilation of identical expression trees is required. Another applica-
tion is to mix in the problem specific code into preassembled problem solvers,
e.g. mix in the computation of a function and their derivative, using automatic
differentiation, into a preassembled interval Newton method.

Our second implementation is used to reduce the necessary data transfers be-
tween the domain specific language and the OpenCL device by using precompiled
kernels which are called in an optimized way. Thanks to the expression templates
it has the benefit that the necessary data transfer is reduced to minimum.

6 If the problem size is available at compile time.
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Further investigations are planned to improve the interaction between domain
specific languages, expression templates and template meta programming on the
host and OpenCL and CUDA on the device to offer libraries for heterogeneous
systems which are fast and easy to use.
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Abstract. New applications for parallel computing in today’s data cen-
ters, such as online analytical processing, data mining or information re-
trieval, require support for concurrency. Due to online query processing
and multi-user operation, we need to concurrently maintain and ana-
lyze the data. While the Portable Operating System Interface (POSIX)
defines a thread interface that is widely available, and while modern im-
plementations of the Message Passing Interface (MPI) support threading,
this combination is lacking in safety, security and reliability. The devel-
opment of such parallel applications is therefore complex, difficult and
error-prone. In response to this, we propose an additional layer of middle-
ware for threaded MPI applications designed to simplify the development
of concurrent parallel programs. We formulate a list of requirements and
sketch a design rationale for such a library. Based on a prototype imple-
mentation, we evaluate the run-time overhead to estimate the overhead
caused by the additional layer of indirection.

Keywords: Threads, Parallel programming, Concurrent programming,
Message passing interface.

1 Introduction

Multi-core processors and fast Infiniband networks have become off-the-shelf
commodity components in todays data centers. Consequently, there is now an
enormous potential for parallelism in enterprise computing. Due to the high
computational demands, online analytical processing (OLAP), data mining and
information retrieval are ideal candidates for the use of parallel computing.

Traditionally, parallel programs were written primarily for conventional su-
percomputing applications, such as numerical simulations. But with the advent
of multi-core CPUs in mainstream server infrastructure, the availability of par-
allel computer systems has opened up new vistas in the development of parallel
software. There are now many new areas of interest including data mining, on-
line analytical processing (OLAP), information retrieval (IR) and many other
economically attractive application domains. However, these applications have
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very different requirements compared to conventional parallel numerical simula-
tions and kernel functions. For one thing, we are no longer dealing with batch
jobs, which are deployed, perform their computation, deliver their result and ter-
minate. These new applications must operate for extended durations, and have
therefore been referred to as persistent parallel services. This causes some imme-
diate problems related to fault tolerance, because the traditional error recovery
mechanisms are inadequate for such applications [1]. Another requirement that
we believe is currently not sufficiently supported is the ability to increase the
number of hosts without halting or suspending the parallel application. This type
of dynamic growth is required to scale the system as the problem size increases.

But in this paper, we are concerned with another problems that arise in a
number of online data analysis activities: the need for concurrent processing.
As we migrate data mining, OLAP or information retrieval to a parallel setting,
we must maintain the data and execute queries concurrently. The information
we operate on may grow, shrink or change spontaneously. As such, we must
ensure consistency for concurrently executed queries. In addition, if we allow
multi-user operation, multiple queries may arrive simultaneously. We thus re-
quire means to concurrently receive, store and distribute processing requests. If
we can execute these queries in parallel, we must prevent interference on the
communication channels and isolate the individual workloads. In this paper, we
propose an additional layer of portable middleware on top of the most commonly
used middleware for parallel programs on distributed memory computer systems
– the message passing interface (MPI). It should provide concurrency through
threads in a safe, reliable and convenient manner.

2 The MPIT Programming Model

The central key concept of our API is the use of threads to isolate concur-
rent activities in parallel MPI programs. The MPIT API captures this intent
in the thread collective pattern. A thread collective is a parallel ensemble of
threads, which cooperate across MPI processes in a parallel activity, that has to
be isolated in terms of execution and communication. Figure 1 depicts the basic
deployment pattern.

It consists of one thread on every process of an MPI communicator. The col-
lective receives a private MPI communicator, which is copied from the source
communicator. The threads of the collective can communicate with each other
on this isolated communication channel. Communication on higher-level com-
municators such as MPI COMM WORLD is possible, but not encouraged, to
avoid collisions. For local inter-thread communication, the MPIT API provides
a set of reliable thread synchronization mechanisms to support the development
of correctly synchronized programs. The threads of a thread collective are in-
tended to be used primarily for long running activities – the rapid creation and
joining of sub-threads is not a primary goal.

In our programming model, every thread is characterized by two member-
ships: the process and the collective. For threads of identical or different process
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T1.1

P1

T1.2

MPI_COMM_WORLD

private communicator for threads T*.2

T2.1

P2

T2.2 T3.1

P3

T3.2

Fig. 1. Illustration of the MPI Threads (MPIT) programming model for three processes
P1–P3 and two threads per process. MPI communicators are depicted as busses. Dotted
lines indicate that threads can communicate via shared memory. Threads are used to
isolate concurrent activities in parallel MPI applications. Consequently, the parallel
thread collective consisting of T1.2, T2.2 and T3.2 has an isolated communication
channel. Communication between local threads, e.g. T1.1 ↔ T1.2, takes place through
shared memory and the shared address space, e.g. that of process P1.

and collective, we can discriminate four cases of thread communication. How-
ever, only two of these modes of communication are encouraged. Firstly, for
communication amongst local threads from different thread collectives we can
use the common address space of the common process. Secondly, communication
with remote threads of the same thread collectives takes place on the private
MPI communicator. Thirdly, communication with remote threads from differ-
ent thread collectives can be achieved on a higher-level MPI communicator,
given that it is adequately used. However, this type of communication is not
encouraged by the MPIT library and is not supported directly. The main moti-
vation is that use of higher-level, non-private communicators can easily lead to
incorrect programs. As an example, consider what would happen if all threads
shown in Figure 1 attempt to perform a broadcast on the global communica-
tor MPI COMM WORLD. The result would be that six independent calls of
MPI Bcast would be made on an MPI communicator with a size of three. Con-
sequently, the threads would randomly participate in one of two independent,
sequential broadcast operations. The fourth type of communication would be
local communication within the same thread collective, which is impossible by
definition because a thread collective consists of one thread per participating pro-
cess. Instead, the last case refers to global communication with all other threads
regardless of process and collective. However, this is currently not supported by
the MPIT API. It is possible to provide a layer of communication on top of MPI
that provides a rank for every individual thread – including collective operations
such as broadcasts and reductions – but we have thus far considered this out of
scope for our library.

As an example, consider a parallel search engine, which allows multiple users
to concurrently add, modify or delete documents in the index and execute
queries. This is a typical case for a system that requires some form of concur-
rency support. A very natural way of dealing with this situation is to use threads
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and queues that handle these two types of operations. Both maintenance and
query operations are handled by a separate thread, which has a queue to hold in-
coming requests. Coarse-grained locks, which protect not individual documents
but groups thereof, can be used to protect the index data against concurrent
modification. If each of these threads have their own MPI communicators, they
can communicate freely without having to guard against interference. Therefore,
our notion of a thread collective comes as a natural fit for this type of situation.

3 Related Work

Threading is no new topic in the field of parallel programming. In literature,
we have identified three main directions related to our work: use of threads in
parallel programming paradigms, threads in MPI programs and use of POSIX
threads in parallel programming.

The parallel programming community has developed a range of inherently
multi-threaded programming models. A full survey of shared address space mod-
els and techniques is beyond the scope of this paper, but let us briefly mention
two representative technologies. OpenMP is one of the most prominent exam-
ples [2] [3]. Originally developed primarily for shared memory systems, it has
since been extended to distributed memory settings, see e.g. [4] [3]. Unified par-
allel C is a dialect of the C programming language which supports explicit par-
allel programming with a shared address space [5]. The original focus was on
non-uniform, remote memory access for machines with a single thread per CPU,
but has since been extended to multi-core machines [6]. But all of these pro-
gramming environments are aimed at the field of parallel programming. For our
purposes we require portable means to implement concurrent activities in a safe
and effective manner. Parallel programming is of course the key feature of any
persistent parallel service, but concurrency support is required on top of a par-
allel environment. Therefore, multi-threaded parallel programming models can
only be seen as complementary base technologies – and not as rivals.

MPI is an interface specification for the message passing parallel programming
model. It is often seen as the canonical representative of middleware for parallel
processing on distributed memory systems. Traditionally, MPI’s primary unit of
organization is the process. By definition, a process is an abstraction that implies
a private address space. If shared memory is available on a particular hardware
platform, notably multi-core processes, an MPI implementation may use it to
provide effective inter-process communication for processes located on the cores
of an individual CPU. While this is effective enough to compete head-on with
OpenMP and UPC [7], the sole purpose of this optimization is to make efficient
use of contemporary CPU designs. The primary unit of processing is and remains
that of a process. However, recognizing the need to support concurrency in the
form of threads, earlier versions of the MPI standard have been augmented to
permit processes to consist of multiple thread. In its current version, the key
issue for thread support is the thread safety of all MPI functions. Many existing
MPI implementations have reached full thread support with a thread support
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level of MPI THREAD MULTIPLE, but the development of high-performance MPI
implementation with full thread support continues to be a research issue [8] [9].
Based on this thread support, MPI has been combined with existing multi-
threaded parallel programming models. The combination of OpenMP and MPI
is still an ongoing research issue [10] but not a new idea [11]. But these are hybrid
programming models and do not provide us with the concurrency support we
require. The MPI Forum currently leads an open discussion of new features for
MPI 3.0. For performance reasons, collective operations are to be supported
asynchronously [12]. This requires the use of threads on all nodes to carry out
the work required by the collective operation, while the user program continues
with its processing. All in all, we can say that MPI has developed support for
threads to the point that our necessary preconditions have been met. But the
available facilities are by no means sufficient for our needs. We thus need to
consider other means for acquiring the required functionality.

When we think of a threading environment for parallel software, the POSIX
thread environment immediately comes to mind [13]. This thread interface has
seen much use for the development of thread-based parallel programming tools,
such as unified parallel C [14]. But for a number of reasons, we do not believe
that this is sufficient.

For one thing, threads are not supported by the operating system on all high-
performance platforms, but user-level threads can be used to provide the required
functionality on such systems [15]. The Cray XT4 system [16] has been cited as
an example for a thread-less modern system. Unfortunately, the lack of threads
causes problem in modern extensions to MPI [12]. By defining an independent
interface we can use a wider range of implementation techniques for thread-
ing without having to modify the applications. In another matter, the POSIX
threads API defines unreliable semantics for condition variables. When waiting
on a condition variable, a thread may experience spurious wake-up, meaning
that the thread can be awakened without any external signal or other stimulus.
This decision is justified by gains in performance [13]. However, due to the gen-
eral discussion surrounding the difficulty of both parallel programming [17] and
concurrent programming [18], we believe that unreliable semantics in the thread
synchronization system are not going to aid the advancement of the state of the
art. A more subtle issue is that the use of the POSIX thread interface in an
MPI program forces us to mix two very different styles of programming. MPI
defines and adheres to certain coding convention, which have been introduced
to impose a clear structure on MPI programs. The POSIX thread interface, on
the other hand, adheres to the conventions of UNIX system programming. The
differences are most obvious in the error handling code. Any MPI function call
will return MPI SUCCESS if it completes normally, and we normally do not ex-
pect to require much in the way of error handling once a parallel application has
reached a mature state. POSIX thread function calls have very different error
handling requirements, and we are sometimes forced to analyze the error codes
returned by a function call in order to ensure a deterministic behavior, e.g. due



86 T. Berka, H. Hagenauer, and M. Vajteršic

to spurious wake-up on condition variables. Therefore, these differences are more
than just a cosmetic issue, and we believe that it is preferable to have a thread
interface that conforms to the same coding style and conventions as MPI.

4 The MPI Threads API

The analysis of the related work indicates that while the prerequisites for con-
currency by threading in MPI programs have been met, no existing technique
is a natural fit for the problems we face in implementing persistent parallel ser-
vices. But the shortcomings of these methods provide a set of requirements for
our approach.

We require a set of explicit thread control primitives instead of a thread-based
parallel programming model. Since we need to integrate our solutions with exist-
ing MPI programs, we require a library that is fully compatible with the C pro-
gramming language. The concurrent programming community argues that there
are many good reasons to prefer language mechanisms over APIs [19], notably
the ability to enforce correctness and to avoid certain performance penalties, but
practical necessities suggest otherwise. Such an API should be designed to be
similar in style to the MPI interface definitions, especially in terms ofreliability
and error handling. Due to issues related to determinism, reliability and coding
conventions, we consider the POSIX thread interface insufficient for our pur-
poses. The key goal of such a development should be the interface specification
and not the implementation, because it may be necessary to implement it for
platforms without any out-of-the-box thread support. In addition, the interface
declaration and the implementation should be decoupled to the largest extent
possible, so that implementors can re-use existing definitions. Users of our library
should be able to combine any two implementations of our thread middleware
and the MPI interface standard. This means the we must be able to work with
all MPI implementations that provide a thread level of MPI THREAD MULTIPLE

and avoid any implementation-dependent features. With these goals in mind, we
have developed the “MPI Threads API” or MPIT API – an interface definition
and a prototype implementation in the C programming language. It provides
the following features:

– Thread control – the ability to create threads, temporarily suspend them
and to either join them with or detach them from their parent thread.

– Mutual exclusion or mutex locks – which can be atomically acquired by only
one single thread at a time and remain in their possession until they are
released.

– Condition variables – objects on which threads can be suspended from their
execution until they are explicitly reactivated by another thread.

– Barriers – synchronization objects that block arriving threads until all par-
ticipating threads have arrived.

The prototype internally uses the POSIX threads interface. On a modern POSIX
compliant operating system it only depends on an MPI implementation. Since
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MPIT is based on POSIX threads, it is fair to ask what benefits one can expect
to gain from this additional layer of indirection. In its current version, the MPIT
library provides the following advantages:

– Re-use of objects that have previously been released is detected.
– All return codes are consistently being checked for all possible errors includ-

ing depletion of memory and operating system resources.
– The API conforms with MPI coding conventions.
– Thread cancellation as provided by the POSIX specification has not been

included and is restricted to explicit shut-down.
– Collective thread creation across all processes on an MPI communicator is

supported to aid the construction of concurrent parallel programs.
– Full error checking for mutex objects is enabled by default.
– Condition variables are no longer subject to spurious wake-up.
– Barriers are provided as part of the regular synchronization functionality.
– The participating threads of a barrier are explicitly identified, wheres POSIX

threads merely count the participants without considering their identity.
– The MPIT library provides a dynamic barrier, where threads may safely join

or leave the set of participating threads at their discretion, as we will discuss
below.

Summarizing, we can say that the MPIT API extends or modifies the semantics
of conventional POSIX threads in a number of ways. The typical approach for
most systems will be to implement it on top of the POSIX thread layer. Despite
all the benefits it offers, the our library constitutes a layer of indirection which
cannot be as efficient as a native implementation. Let us therefore examine the
overhead in execution time.

5 Evaluation

Our prototype implementation of the MPIT interface has been built as a user
space library using the native POSIX thread control primitives. It wraps POSIX
system calls and adds the functionality outlined above, and thus constitutes an
additional layer of indirection. This indirection necessarily comes at the cost of an
increased execution time. To quantify and report this cost, we have conducted
a performance evaluation for three use cases. For reasons of scope we cannot
present the native POSIX threads implementation in this paper, but it is derived
in a straightforward manner from the following three MPIT-based program.

In the first experiment, we have measured the time to create, execute, ter-
minate, join and free an empty thread function that consists only of a return
statement. The second experiment extends the first by adding a mutex and
having all spawned threads lock and unlock it repeatedly. This experiment is de-
signed to measure the execution time of mutex operations. The third experiment
measures the time it takes to perform wait or wake operations on a condition
variable. Unfortunately, we could not compare the performance of our barrier
implementation to the POSIX thread barrier, because it is part of the advanced
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real-time threads functionality and was not available on our evaluation platform.
We have executed all of these tests on an system equipped with an Intel i7-920
processor running at 2.67 GHz with 6 GiB of main memory, CentOS 64 bit
version 5.2, Linux kernel version 2.6.18-194.3.1.el5, and compiled and executed
with MPICH2 version 1.0.6 in conjunction with the GNU Compiler Collection
version 4.1.2.

The results for all three experiments are depicted in Figure 2. We have re-
peated all operations 1000 times, performed 100 independent measurements and
found no signifiant deviations. These results indicate that our thread creation
and condition variable operations do not suffer a substantial loss of performance
compare to a direct implementation with POSIX threads. While the mutex oper-
ations suffer a greater slow-down, they remain very fast operations. To gauge the
necessity of a reliable threading middleware we have conducted measurements to
determine the relative frequency of spurious wake-up relative to the total num-
ber of thread reactivation events. Depicted in Figure 3, we can see that spurious
wake-up is highly dependent on the number of threads using a condition vari-
able. Based on these figures, the use of mechanisms to avoid spurious wake-up
from occurring must be considered critical for highly contended systems.

6 Summary and Conclusion

In this paper, we have argued the need for an additional layer of middleware for
parallel programs to support threading and concurrent programming for MPI-
based parallel applications. We have outlined our requirements for such a mid-
dleware, which include explicit thread control instead of a thread-based parallel
programming paradigm, a library-based instead of a language-based approach,
conformance with MPI in terms of naming, error codes and other programming
conventions, more reliable and deterministic behavior than the POSIX specifi-
cation for inter-thread condition variables and inter-process semaphores and to
produce a portable specification that can be used with any particular MPI imple-
mentation, and can be implemented on a wide range of thread systems including
user-space threads. We have then given a full presentation of the MPI Threads
API, which attempts to meet these requirements and constitutes the main con-
tribution of this paper. Our future research objectives are three-fold. Firstly,
we will seek to improve the efficiency of our current prototype implementation,
which focuses on correctness, e.g. by using macros to provide a light-weight im-
plementation of mutex objects. Secondly, we will investigate how our API can be
used to implement a range applications requiring concurrent programming, e.g.
queue-based workload distribution systems. Thirdly, we intend to apply the MPI
Threads API to the development and deployment of persistent parallel services
in information retrieval and data mining, to demonstrate the ability to construct
viable systems in these application domains.
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4. Duran, A., Gonzàlez, M., Corbalán, J.: Automatic Thread Distribution for Nested
Parallelism in OpenMP. In: Proc. ICS, USA, pp. 121–130 (2005)

5. UPC Consortium: UPC Language Specifications, v1.2. Technical Report LBNL-
59208, Lawrence Berkeley National Lab (2005)

6. Zheng, Y., Blagojevic, F., Bonachea, D., Hargrove, P.H., Hofmeyr, S.,
Iancu, C., Min, S.J., Yelick, K.: Getting Multicore Performance with UPC.
In: Proc. PP, USA. SIAM (2010)

7. Mallón, D.A., Taboada, G.L., Teijeiro, C., Touriño, J., Fraguela, B.B., Gómez, A.,
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Written with Orléans Skeleton Library

Noman Javed and Frédéric Loulergue

LIFO, University of Orléans, France
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Abstract. Orléans Skeleton Library (OSL) provides a set of algorithmic
skeletons as a C++ library on top of MPI. The parallel programming
approach of OSL is a structured one, which eases the reasoning about the
performance and correctness of the programs. In this paper we present
the verification of a heat diffusion simulation program, written in OSL,
using the Coq proof assistant. The specification used in proving the cor-
rectness is a discretisation of the heat equation.

Keywords: Parallel programming, algorithmic skeletons, verification of
programs, proof assistant.

1 Introduction

With parallel machines being now the norm, parallel programming has to move
to structured paradigms, in the same way sequential programming did more than
forty years ago [12,17]. Algorithmic skeletons [10] and bulk synchronous paral-
lelism [27] are two structured approaches of parallelism. In the former, a set of
higher-order functions are provided to the user that combines them to build her
parallel application, the skeletons capturing usual patterns of parallel program-
ming. The latter imposes some restrictions on the form of parallel programs that
make the reasoning about their performance simple yet realistic. The Orléans
Skeleton Library or OSL [20], is a C++ library of bulk synchronous parallel
algorithmic skeletons on top of MPI. It uses expression template techniques to
ensure good performances.

Parallel machines being widespread, the verification of parallel programs be-
comes more and more important. In the case of parallel scientific applications,
the guarantee of correctness of a program makes the users of rare or expen-
sive computing resources, confident that these resources will not be wasted run-
ning programs with errors. We are thus interested on formalising and proving
the correctness of OSL programs using Coq [3]. The Coq proof assistant pro-
vides a formal language to write mathematical definitions, executable algorithms
and theorems. Its environment allows automated and interactive development of
machine-checked proofs.

In this paper we study an application of heat diffusion simulation in one
dimension. We will first give an overview of parallel programming with OSL
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(section 2) and discuss some related work (section 3), before presenting the
application (section 4) and its formalisation and proof of correctness (section 5).
We conclude and give future research directions in section 6.

2 Parallel Programming with OSL: An Overview

For the sake of conciseness we will not present the BSP model, nor the perfor-
mance model of OSL skeletons. In the BSP model, any parallel computer is seen
as a distributed memory machine with a fully connected network and a global
synchronisation unit. The BSP machine is characterised by several parameters,
including p the number of memory-processors pairs. OSL gives access to these
parameters, including osl::bsp_p.

OSL skeletons manipulate distributed arrays. This data structure is a generic
one: distributed arrays have type DArray<T>. One can seen a distributed array
as an array containing elements of type T. In the implementation it is in fact
a set of p local arrays, each one being hold by a processor. There are several
constructors for building distributed arrays: creating a distributed array evenly
distributed of a given size, and whose initial values are given by a constant or
by a function from array indices to values ; creating a distributed array from a
sequential array on the root processor (the local array on other processors being
empty), etc. We will write informally, [ v0 , . . . , vn−1 ] for a distributed array of
size n containing value vi at index i.

It is not possible to access directly an element of a distributed array: we can only
apply skeletons to it. We will not describe the whole OSL library here, but only
the skeletons used in the heat diffusion simulation presented in the next section.

The map skeleton takes as argument a unary function f (strong typing is
enforced as it is required that f extends std::unary_function<A,B>) and a
distributed array [ v0 , . . . , vn−1 ] of type DArray<A>, and returns a distributed
array of type DArray<B> that has the same distribution that the initial array
and whose content is given by the following equation:

map f [ v0 , . . . , vn−1 ] = [ f(v0) , . . . , f(vn−1) ]

The zip skeleton is similar to the map skeleton but it takes as argument a binary
function f and two distributed arrays (that should have the same size and be
distributed in the same way), and returns a distributed array that has the same
distribution that the initial arrays and whose content is given by the following
equation:

zip f [ u0 , . . . , un−1 ] [ v0 , . . . , vn−1 ] = [ f(u0, v0) , . . . , f(un−1, vn−1) ]

The shift skeleton is used for communications. It takes as argument an offset
d, a replacement function f , and a distributed array [ n0 , . . . , nv−1 ]. It returns
a distributed array that has the same type and distribution that the initial array
and whose content is given by the following equations:

shift d f [ v0 , . . . , vn−1 ] = [f(0); . . . ; f(d− 1); v0; . . . ; vn−d−1] if d > 0
shift d f [ v0 , . . . , vn−1 ] = [vd; . . . ; vn−1; f(n− d− 1); . . . ; f(n− 1)] if d < 0
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3 Related Work

There are many proposals for skeletal parallelism. A recent survey is [16]. Muesli
and SkeTo [9,25] share with OSL a number of classical data-parallel skeletons
on distributed arrays.

There is work on formal semantics of algorithmic skeleton languages or li-
braries: [11] is a data-parallel calculus of multi-dimensional arrays, but no im-
plementation was released ; [1] is a formal semantics for the Lithium algorithmic
skeleton language and it differs from OSL as it is a stream-based language ; the
Calcium/Skandium library for Java has both a formal static and dynamic seman-
tics [8], further extended in a shared memory context to handle exceptions [23] ;
Quaff [14,13] is a highly optimised library with meta-programming techniques,
and to attain its very good performances, some constraints are put on the al-
gorithmic structure of the skeletons (that are mainly task parallel skeletons) ;
Eden [18] is a parallel functional language often used to implement algorithmic
skeletons [2]. To our knowledge, none of these semantics have been used as the
basis of programs proofs of correctness, but are rather formal reference manuals
for the libraries. Moreover, none have been formalised using a proof assistant.
Using Coq, we provide an executable formal semantics (that allows testing with
respect to the implementation) and a framework to prove the correctness of OSL
programs, these proofs being machine-checked.

Program calculation [4,5,19] is the usual way to prove the correctness of al-
gorithm skeletons programs (by construction), the proof being done “by hand”.
However a new algorithmic skeleton called BH as been implemented in Bulk
Synchronous Parallel ML [24] and its implementation proved correct using the
Coq proof assistant. This BH skeleton is used in a framework for deriving pro-
grams written in BH from specifications [15], and to extract BSML programs
that could be compiled and run on parallel machines. A heat diffusion simula-
tion directly written in BSML (therefore not at all in the algorithmic skeleton
style) has also been proved correct and the BSML program extracted from the
proofs [26].

4 A One Dimensional Heat Diffusion Simulation in OSL

The goal of the application is to give an approximate solution of the following
partial differential equation describing the diffusion of heat in a one dimensional
bar of metal of length 1:

δh

δt
− κ

δ2h

δ2x
= 0 ∀t, h(0, t) = l ∀t, h(1, t) = r (1)

where κ is the heat diffusivity of the metal, and l and r some constants (the
temperature outside the metal). A discretised version of this equation is:
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h(x, t + dt) =
κdt

dx2 ×
(
h(x + dx, t) + h(x− dx, t) − 2× h(x, t)

)
+ h(x, t) (2)

for a space step dx and a time step dt and with the same boundary conditions.
In sequential the temperature at the discretisation points in the metal bar is

stored in an array, and a loop is used to update this array when a new time step
occurs. For the OSL version, we use a distributed array for storing the values
of h. If we consider the equation (2) for the whole array h, and not element-
wise, then the update of h is is a linear combination of the distributed arrays in
figure 1.

hr l h(dx, t) · · · h(1 − 2dx, t)

hl h(2dx, t) . . . h(1 − dx, t) r

h h(dx, t) . . . h(1 − dx, t)

Fig. 1. Distributed Arrays for Heat Diffusion Simulation

Array hr (resp. hl) can be computed from array h using the shift skeleton
with offset 1 (resp. −1) and with replacement function the constant function
returning always l (resp. r). The linear combination of these arrays can be com-
puted using the map and zip skeletons.

The OSL program for one step of update is thus:

bar =

zip(std::plus<double>(),

bar,

map(boost::bind(multiplies<double>(),(kappa*dt)/(dx*dx),_1),

zip(plus<double)(),

zip(plus<double>(),

shift(1, leftBound, bar),

shift(-1, rightBound, bar)),

map(boost::bind(multiplies<double>(),-2,_1), bar)))

where:

– plus<double>() is the addition on double precision floating point numbers
of the C++ standard library,

– boost::bind(multiplies<double>(),(kappa*dt)/(dx*dx),_1) is a func-
tion obtained as partial application of the multiplication to the expression
κdt
dx2 ,

– leftBound and rightBound are the constant replacement functions that
return respectively l and r,

– and boost::bind(multiplies<double>(),-2,_1) is the function that mul-
tiplies by −2.
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5 Verification Using the Coq Proof Assistant

For proving the correctness of the OSL heat diffusion simulation, we use the
Coq proof assistant[3]. The Gallina language of Coq can be seen as a functional
programming language with very rich types that allow to express logical proper-
ties about the programs. It is based on the Curry-Howard correspondence: types
correspond to theorems and programs correspond to proofs. However, even if it
is possible to write proofs as function programs, it is usually complex to do so.
Therefore there also exists a tactics language used to interactively build proof
terms. In this paper we will not present Coq source code (although the reader
can access the complete code at http://traclifo.univ-orleans.fr/OSL), but
we will sketch the formalisation and the proof in an informal manner.

5.1 OSL Programming Semantics: An Overview

The formalisation of the programming model of OSL in Coq is presented in [21].
This is a big-step semantics: it takes an OSL expression as input and returns in
one step the value produced by this program. Small-step semantics may return
several intermediate steps before reaching the final value. The OSL big-step
semantics is formalised in Coq as a function evaluation that take as input a term
representing an OSL program and returns either the value produced by this
program or an error message.

The terms representing an OSL program are given by the following grammar,
restricted here mostly to the skeletons used in the heat diffusion simulation, and
without type information (in the Coq formalisation it is not possible to write
OSL program wrongly typed ; it is therefore unnecessary to formalise a type
system in addition to the syntax and proof that the typing works well with the
operational semantics, it is the case by construction):

e ::= se | pe
se ::= v | se se | reduce(se, se, pe)
pe ::= pv | map(se, pe) | zip(se, pe, pe) | shift(se, se, pe)

An expression e could be either an expression se whose type is a sequential one,
or a parallel expression pe. A sequential expression could be either a sequential
value v (possibly a function), an application of a sequential expression to another
sequential expression (for example to be able to apply a sequential function to
the result of a parallel skeleton expression ended by a call to reduce), or an appli-
cation of the reduce skeleton that takes as input a binary associative operator, an
identity value for this operator, and a distributed array to be reduced. A paral-
lel expression could be either a parallel value (the formalisation of a distributed
array), a call to the map, zip or shift skeletons.

Values produced by OSL programs could be either sequential values (in case
of the evaluation of the reduce skeleton), or parallel values, or an error message.

For the sequential part, we do not model the programming language: rather
we consider than the sequential parts are black boxes (the v case of se), and are

http://traclifo.univ-orleans.fr/OSL
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modelled as Coq functions. Thus sequential types and values are formalised as
the types and values of the functional programming language part of Coq. The
syntax is polymorphic, and thus the user of this formalisation should choose the
Coq type and values than corresponds the best to its C++ counterparts. For
example one could choose to represent values of type int in C++ by values of
type Z in Coq.

The parallel values are a formalisation of distributed arrays. This formalisation
is a kind of structure/record that has three parts:

{
content: list T;
distribution: vector nat;
invariant: length content = sum distribution

}

– the content of the distributed array, modelled as a Coq list of values of some
type T

– the distribution of the distributed array, represented by the p sizes of the
local arrays, therefore we use a data structure similar to a vector (of size p)
of naturals for formalising distributions,

– a proof than the two first components are coherent: the length of the list
representing the content of the distributed array should always be equal to
the sum of elements of the vector representing the distribution of the dis-
tributed array. In Coq an expression of type length content = sum distribution
is a proof of this equality.

5.2 Formalisation of the OSL Heat Diffusion Program

As we do not rely on the properties of the arithmetic operators, we only assume
that we have a type number of numbers with usually operations +, −, ∗, /. When
we write ( op ) for an operator, we consider it has a binary function that can be
partially applied.

The formalisation of the OSL heat diffusion program, is therefore the expres-
sion shown in figure 2, provided bar is a distributed array of numbers, kappa, dt
and dx are numbers, and leftBound and rightBound are constant functions from
array index to numbers.

5.3 Proof of Correctness

The first step for the proof of correctness in the Coq proof assistant is to write the
specification of the function that computes a step of the heat diffusion simulation,
as indicated by equation (2) but with formally taking into account the boundary
conditions. We model the array of temperatures by a list of numbers. For this
list structure we have a function nth that takes as input an index i, a list, and
a default value d: it returns the value in the list at index i, if the index is valid,
and it returns the default value otherwise. It is a kind of array access but with
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zip( ( + ),
bar,
map ( ( ∗ ) ( / ) ( ( ∗ ) kappa dt ) ( ( ∗ ) dx dx ),

zip ( ( − ),
zip ( ( + ), shift(1, leftBound, bar), shift(−1, rightBound, bar) ),
zip ( ( + ), bar, bar ) ) ) )

Fig. 2. Modelling of OSL Heat Diffusion Program

the default value in case the index is not valid. The specification could then be
written, for non-empty lists bar and valid indices i (these conditions are omitted
here but not in the formal development):

∀κ dx dt l r bar i d,
nth i (step κ dx dt l r bar) d =
κ× dt/(dx× dx) ∗

(
(nth (1 + i) bar r)+
(if i = 0 then l else nth (i− 1) bar d)−
((nth i bar d) + (nth i bar d))

)
+

(nth i bar d).

The function step takes as argument the numbers κ, dt, dx, l and r as well as
a list of numbers bar and returns an updated list of numbers. For the parallel
version of the heat diffusion simulation, we can use the expression of figure 2 and
the evaluation function that models the OSL programming model as a big-step
semantics. However what we can obtain directly from these two components is
a function that takes as arguments the same numbers but a distributed array
instead of a list and a returns either a distributed array or an error message.

The first problem can be easily solved: we compose the obtained function
with a distributedArrayOfList function that takes a list and returns an evenly
distributed array.

The second problem needs a proof that the evaluation of the expression of
figure 2 will not raise an error. As a matter of fact, there is only one skeleton
in this expression that can lead to an error message: the zip skeleton in case its
two distributed array arguments do not have the same distribution. We have a
short lemma that states that an evaluation of zip does not raise an error message
when the two distributed arrays have the same distribution:

Lemma zipGivesOkForSameDistribution:
∀(A B C:Type)(f: A→B→C)
(da1: distributedArray A)(da2: distributedArray B),
distributedArray distribution da1 = distributedArray distribution da2 →
exists d: distributedArray C, (zip f da1 da2 = Ok d ∧
distributedArray distribution d = distributedArray distribution da1).

This results is used together with the fact that the other skeleton preserve dis-
tribution to prove that the evaluation of the OSL heat diffusion program does
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not raise an error. From this proof we can build a function that evaluates the
expression of figure 2 and returns a distributed array.

The main theorem thus states that this last function follows the specification
defined above. The proof of this theorem proceeds as follows:

– the skeletons preserve distribution, so the guard of the application of zip can
be removed,

– we then obtain for the content part of the result an expression similar to
figure 2 but on lists instead of distributed arrays: using results on the com-
mutation of nth with other functions on lists such as map, this expression
can be simplified in such a way that the call to nth on the left hand side of
the equation is not on top, but rather copied inside the expression,

– finally with reason by cases on i: i is 0, i is the length of bar minus 1, or i
is in the middle. For each case the assumptions are enough to simplify both
side of the equation to the same expression.

6 Conclusion and Future Work

High-level parallel programming approaches such as algorithmic skeletons ease
the development of parallel programs. As parallelism is now everywhere, it is
also important to be able to prove the correctness of parallel programs. Algo-
rithmic skeleton programs are also easier to prove correct than programs written
using Pthreads and MPI libraries. Based on a formal programming model of the
Orléans Skeleton Library, we prove the correctness of one step of a heat diffusion
simulation with respect to the discretised heat equation as specification.

If we consider the partial differential equation as the specification, then we
should first prove the bound on the error introduced by the discretisation method,
then prove the error introduced by using floating point numbers instead of real
numbers in the program. Then the proof of correctness will be a proof than the
result computed by the program at a certain point of the material is in a given
interval around the value than could be obtained using a function solution of the
partial differential equation. [7,6] follows such an approach for a wave equation
and a sequential C program. As the heat diffusion simulation program do not
reorder the computations, such a proof of correctness for our heat diffusion sim-
ulation should be very similar to the proofs of [7,6] and the proof of the present
paper for the parallel aspects. A program that uses the reduce skeleton of OSL
would be much more difficult to prove as the reduce produces the same result as
a sequential loop if the binary operator is associative. However usual operations
on floating point numbers are not associative.

To be confident that the compiled OSL program will be correctly executed,
and if we trust the C++ compiler, we could focus on verifying that the parallel
implementation of the OSL library is correct. We will formalise the execution
model of the OSL library, ie formalise the implementation of OSL, then we will
prove the equivalence of this execution model and the programming model we
used in this paper.
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Another more ambitious approach is to design a verified compiler. The PaP-
DAS project (http://traclifo.univ-orleans.fr/PaPDAS) aims at the design
of an algorithmic skeleton language extension of C, and at the design, imple-
mentation and proof correctness of a compiler for this language (extension of
the CompCert compiler [22]). The set of skeletons of this ASC language will be
similar to the set of skeletons of OSL. Therefore the proof of correctness of a heat
diffusion simulation written in ASC will be very similar to the proof presented
here. In addition, with the verified ASC compiler, we would have a proof that
the compiled version of the heat diffusion simulation program is correct.
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Abstract. Because of a growing interest in using XML for massive com-
plex data there has been considerable research on designing XML com-
pressors. This paper presents our research aimed at building parallel
XML compressors, using Java and OpenMP (with C++). Our findings
show that OpenMP is a preferred choice achieving better results than
Java using a multi-core platform.

Keywords: XML, XML compression, multi-cores, Java, OpenMP.

1 Introduction

Recent availability of multi-core processors has resurrected interest in parallel
programming environments designed to take advantage of multiple threads using
shared memory, such as Java [16], TBB [8], and OpenMP [4].

Although XML is now the de facto data format standard for Web services,
as well as for encoding semi-structured data, its verbose nature adversely affects
various XML services. Given these XML-related performance issues, there has
been interest in devising various queryable and updateable XML compressors,
with minimal decompression.

To the best of our knowledge, to date, no work on applying parallelization
techniques to XML processing has been done, which has the potential to im-
prove execution time while maintaining high compression ratio. Our research
aims to parallelize XSAQCT (pronounced exact), developed by the authors of
this paper, which supports querying and updating XML documents, see [15] and
[14]. The compression process in our XML compressor XSAQCT involves: (1)
encoding the document structure in an annotated tree; (2) storing the annotated
tree and the document contents in separate containers ; and (3) applying back-
end compressors to the containers. Since processing of any XML document starts
with parsing, this stage has been recognized as the most important performance
bottleneck. The disk I/O is much slower than the parallel processing and for
various applications, such as an atmospheric model simulation described in [17],
the scalability of the system implemented on a multi-core cluster is limited by
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disk performance operations. We intend to use multi-cores for XML compression
in such a way that various cores are used not only to read the XML file and parse
it, but also to perform more computation-intensive operations; specifically cre-
ating an annotated tree and compressed containers using multiple threads. The
main focus of the work described in this paper is to compare the two program-
ming environments, namely Java and OpenMP (with C++) for parallelization
of the process of creating compressed containers (steps 2 and 3 in the above
description of XSAQCT). This paper is organized as follows. In Section 2, we
briefly describe XSAQCT and in Section 3 provide a detailed description of our
tests of the two programming environments. In Section 4, we compare results
using Java and OpenMP and in Section 5 provide conclusions and describe our
future work.

Contributions. First, this paper examines the use of Java parallelization tools
applied to creating compressed data containers (as the basic step in process of
XML compression). We performed tests on a eight-core platform using five dif-
ferent versions, namely: (1) each similar path is given a container and a thread;
(2) a pool of compressing threads; (3) a pool of threads with all compressed data
passed to a single writer thread; (4) using multiple writer threads; and finally
to better support updates of compressed XML data (5) using multiple writer
threads and a database for storage rather than the file system. Second, we re-
peated all these tests using the same multi-core platform and OpenMP (with
C++) rather than Java. The results of our tests show that Java parallelization
provides some relative speedup (i.e. a speedup compared to a single-threaded
version). Similarly, OpenMP provides some relative speedup. However, compar-
ing timings of both environments, OpenMP turns out to be faster and therefore
is a better choice for the task in hand. We show that Version 5 (using a database)
is the fastest version and should be used for implementing parallel updateable
XML compressors.

2 Brief Description of XSAQCT

Given a document D, we perform a single SAX traversal of D to encode it,
thereby creating an annotated tree TA,D, in which all similar paths (i.e. paths
that are identical, possibly with the exception of the last component, which is
the data value) are merged into a single path and each node is annotated with a
sequence of integers; see Fig. 1. When the annotated tree is being created, data
values are output to the appropriate data containers. Next, TA,D is compressed
by writing its annotations to one container and the skeleton tree TD (with an-
notations stripped) to another container. Finally, all containers are compressed,
using back-end compressors (such as GZIP [3] or BZIP2 [1]), and written to
create the compressor’s output.

The main reason behind using an annotated tree representation is that it can
be used to answer various queries as well as to efficiently implement updates.
Because of space limitations, here we do not describe the compression technique
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(a) (b)

Fig. 1. (a) XML document D; (b) the annotated tree TA,D representing D

used in the presence of cycles, nor do we describe the available update operations
(for more details see [14]).

3 Testing the Two Programming Environments

Let us first recall some basic concepts related to parallelization in the context of
our application. Speedup Sn is defined as the execution time of the sequential
algorithm (a serial time, denoted by R) divided by the execution time Ln of the
parallel algorithm with n processors, or cores; i.e. Sn = R/Ln. Now let O be
the optimal time for a sequential parser to parse the XML file (with no extra
operations, such as compression) and let P be the fraction of time spent on the
paralellizable part, such that P = (R − O)/R. The theoretical upper bound Un

is given by Amdahl’s law, we also introduce the achieved fraction of time spent
on the paralellizable part An using the achieved speedup Sn and solving for P
the equation, then computing An:

Un = 1
(1−P )+P /n

Sn = 1
(1−P )+P /n

An =
n∗(1−1/Sn)

n−1

Efficiency En is defined as Sn/n and it indicates whether all processors are well
utilized in solving the algorithm.

Since our goal is to test parallel compression of containers, the SAX parser
(specifically Xerces [10]), was used to read an XML document from a file and
discard all features (such as tags) except text values. Each program was tested on
the following three files of varying sizes and the corresponding number of contain-
ers: shakespeare.xml (7,894,984 bytes and 40 containers), dblp.xml (133,862,735
bytes and 116 containers) and 1gig.xml (1,172,322,551 bytes and 497 contain-
ers). The first two files are taken from the Wratislavia corpus [9], while the last
file is a randomly generated XML file, using xmlgen [11]. We tested our code on
an eight-core Mac machine running 32-bit Darwin Kernel Version 10.6.0. Specif-
ically, this box uses 2.8GHz Quad-Core Intel Xeon chips (Harpertown/Penryn)
processors, and has 12MB of L2 cache per processor. In the parallel versions,
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we always used eight cores and ran each test three times recording the average.
Therefore, showing our results we omit the subscript n, e.g. we use S to denote
the speedup.

3.1 Using Java

We used Java 1.6 and implemented five versions of tests. In these tests, all
text data associated with a similar path are stored in a single container and
compressed, using as a backend compressor Java’s internal gzip compression
library.

Table 1 shows the compression time L(Vi) (in seconds) using five parallel ver-
sions denoted by V1,. . . ,V5 and the serial time R as well as the optimal time O.
Table 2 shows the corresponding speedups S(Vi), efficiency E(Vi), parallelizable
fractions P(Vi), achieved fractions A(Vi) and upper bounds U(Vi). The detailed
discussion of each version is provided in the following sections.

Table 1. Compression time using various Java versions

File L(V5) L(V4) L(V3) L(V2) L(V1) R O

shakespeare.xml 0.960 0.739 0.698 0.932 0.856 1.242 0.412
dblp.xml 5.518 5.344 5.826 5.758 5.263 10.121 2.999
1gig.xml 30.185 40.678 53.581 54.130 55.260 139.749 10.256

Table 2. Analysis of results using various Java versions

File and analysis V5 V4 V3 V2 V1

shakespeare.xml
S(Vi) 1.294 1.681 1.779 1.333 1.451
E(Vi) 0.162 0.210 0.222 0.167 0.181
P(Vi) 0.668 0.668 0.668 0.668 0.668
A(Vi) 0.259 0.463 0.501 0.285 0.355
U(Vi) 2.408 2.408 2.408 2.408 2.408

dblp.xml
S(Vi) 1.834 1.894 1.737 1.758 1.923
E(Vi) 0.229 0.237 0.217 0.220 0.240
P(Vi) 0.704 0.704 0.704 0.704 0.704
A(Vi) 0.520 0.539 0.485 0.493 0.549
U(Vi) 2.602 2.602 2.602 2.602 2.602

Continued on next page
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Table 2. (Continued)

File and analysis V5 V4 V3 V2 V1

1gig.xml
S(Vi) 4.630 3.435 2.608 2.582 2.529
E(Vi) 0.579 0.429 0.326 0.323 0.316
P(Vi) 0.927 0.927 0.927 0.927 0.927
A(Vi) 0.896 0.810 0.705 0.700 0.691
U(Vi) 5.285 5.285 5.285 5.285 5.285

Version 1. In the first version, each similar path is given a container and a
thread (therefore the number of containers is the same as the number of threads);
see Fig. 2. Note that Version 1 cannot be scaled to fewer than the maximum
number of available cores (which in this case is eight).

Fig. 2. Overview of the first version

In Table 1, column L(V1) we show the compression times for all three files
running Version 1. Table 2, column V1 shows some speedup, but it was much less
than the theoretical upper bound. For example, for shakespeare.xml the speedup
was 1.451 while the theoretical upper bound was 2.408. Our hypothesis stating
that the presence of a large number of threads running reduces the advantage of
having multiple cores was supported by another test, namely running Version 1
on enwikinews.xml file from the XML corpus, where there are 116 threads and
there is no speedup resulting from using a parallel version. In this file, 86% of
text data belongs to a single similar path, while each other path has less than
5% of the total text data. Since we don’t know in advance (before the parsing
is completed) the size of each container, a better solution may be to improve
load balancing by giving each thread approximately the same amount of data to
compress.
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Version 2. In the second version, we use a pool of compressing threads and
the user can choose the size of the pool thereby using a specific number of
cores. Here, the parser thread passes data to the next compressing thread in
the pool. Therefore, any thread can compress data in any container and as a
result the load is more balanced. However, if no threads are available, or if
threads are given too much work, then the parser thread is forced to wait. Table
1, column L(V2) provides the compression times for this version and shows
that they are much better than using the serial version, although worse than
using the optimal version. Corresponding analysis provided in Table 2 shows
that speedups, efficiency and achieved parallelizable fractions in Version 2 are
roughly the same as in Version 1. Since in this version the number of cores used
can be selected, we tried to run our program using two, four, six and eight cores,
but found that while moving from two to four cores the compression time gets
better, moving beyond four cores does not improve the speedup. One possible
reason for the lack of speedup is that even though many threads can compress in
parallel, they must wait for an exclusive lock on a GZIPOutputStream to start
compressing (and then write to an output file). Therefore, for a similar path that
holds large amount of data, there may be many threads waiting to get the lock.
Unfortunately, compressing in memory is not feasible as too much data may
reside in memory, and in addition we must ensure compressed data is written in
the correct order. Our next version uses many compressors and a single writer.

Version 3. The third version is similar to the second version and uses a pool of
threads, but all compressed data is passed to a writer thread thereby avoiding
waiting for a lock. In addition, each container stores a buffer and an integer
order value. When a buffer is full, it is passed to an available compressor thread
from the pool. Compressor threads can compress in parallel without writing to
a file because the order number is used to determine the correct order in which
buffers are written. Table 1, column L(V3) provides the compression times for
this version and shows no significant improvement over Version 2. Corresponding
results from Table 2 show that there is a slightly better speedup, efficiency and
achieved parallelizable fractions for the smallest file, shakespeare.xml, but other
results are roughly the same as in the previous versions. This may indicate that
the writer thread receives data faster than it can write it.

Version 4. In this version, we used multiple writers and when data needs to be
compressed, the next thread in the pool is used and when a writing operation
is performed, the next writer thread is used. Table 1, column L(V4) provides
the compression times for this version with two writer threads, and shows that
the compression time is significantly better only for the largest file, 1gig.xml.
Corresponding results from Table 2 show that other results are roughly the same
as in the previous version. This may indicate that the writer threads contend
with each other for access to a file output. Adding additional writers does not
result in any improvement.
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Version 5. The final version uses multiple worker threads described in the
previous version and additionally it tries to remove limitations imposed by the
file system (in particular pertaining to updates on compressed XML files) by
using Oracle’s Berkeley DB Java Edition 11.2.4.0 [5]. Table 1, column L(V5)
provides the compression times and again show that the compression time is
significantly better only for the largest file, 1gig.xml. Corresponding results from
Table 2 show a speedup of 4.63 for the largest file, i.e. 1gig.xml using Version 5,
which is better than using Version 4 and approaching the theoretical speedup of
5.285, but other results are roughly the same or even worse than in the previous
versions. It appears that the drawback of using a database is that it uses its own
threads to perform logging, cache control and database cleanup.

Conclusion. In comparing five versions using Java, we determined that for
1gig.xml each version is better than its predecessor, with Version 5 - using the
database backend - achieving the greatest speedup. Another desirable property
is that the larger the XML file the greater the relative speedup and this occurs
in all versions except Version 3.

3.2 Using OpenMP/C++

We used OpenMP with C++ on the same platform as Java using the Boost
GZip Filters [2] for compression. However, one slight alteration to our design
requirements comes from the fact that OpenMP is “‘. . . based upon the existence
of multiple threads in the shared memory programming paradigm. . . ” [12], thus
defining OpenMP as a more “task” based paradigm rather than Java, which
is a “thread” based paradigm. Specifically the design limitations are seen in
Version 1 (see Section 3.1.1) where the OpenMP specifications are not designed
to handle a dynamically increasing number of threads. To overcome this problem
and to gauge some type of performance, each similar path is given a container
and POSIX thread [13]. Tables 3 and 4 correspond respectively to Tables 1 and
2, except they show results using OpenMP.

Table 3 shows that using OpenMP/C++ parallel implementations are much
faster than the serial implementations. In particular, parallel Version 1 is 58%
faster than the serial version for the largest file, 1gig.xml. It also shows that
using Version 2 (data is passed by the parser thread to the next compressing
thread, see Section 3.1.2) and comparing it to Version 1, there was a only slight
increase in performance for the two first two files, but a 140% increase for the
largest file. Version 3, in which all compressed data is passed to a writer thread,
see Section 3.1.3, provides an incremental increase over Version 2, for the first
two files and little increase for the third file. Finally, both Version 4 (separate
compressing and multiple-writer threads, see Section 3.1.4) and Version 5 (using
a database, see Section 3.1.5) exhibit only a little speedup, if any for the first
two files but larger speedup for the third, the largest file. In particular, for this
file and Version 5 the speedup is 3.022 while the theoretical speedup is 3.705.
Lack of larger speedup can be attributed to the overhead in creating a database
backend being the limiting factor.
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Table 3. Compression time using various OpenMP versions

File L(V5) L(V4) L(V3) L(V2) L(V1) R O

shakespeare.xml 0.391 0.280 0.282 0.539 0.555 0.512 0.116
dblp.xml 4.547 4.718 4.810 5.149 5.317 6.950 2.259
1gig.xml 25.599 31.910 31.815 31.943 44.987 77.353 12.812

Table 4. Analysis of results using various OpenMP versions

File and analysis V5 V4 V3 V2 V1

shakespeare.xml
S(Vi) 1.309 1.829 1.816 0.950 0.923
E(Vi) 0.164 0.229 0.227 0.119 0.115
P(Vi) 0.773 0.773 0.773 0.773 0.773
A(Vi) 0.270 0.518 0.513 -0.060 -0.096
U(Vi) 3.094 3.094 3.094 3.094 3.094

dblp.xml
S(Vi) 1.528 1.473 1.445 1.350 1.307
E(Vi) 0.191 0.184 0.181 0.169 0.163
P(Vi) 0.675 0.675 0.675 0.675 0.675
A(Vi) 0.395 0.367 0.352 0.296 0.269
U(Vi) 2.443 2.443 2.443 2.443 2.443

1gig.xml
S(Vi) 3.022 2.424 2.431 2.422 1.719
E(Vi) 0.378 0.303 0.304 0.303 0.215
P(Vi) 0.834 0.834 0.834 0.834 0.834
A(Vi) 0.765 0.671 0.673 0.671 0.478
U(Vi) 3.705 3.705 3.705 3.705 3.705

The most interesting findings are that the size and structure of the input file
determines the results. Specifically, for shakespeare.xml and dblp.xml results are
better using versions 3 and 4 than using versions 1 and 2, while for 1gig.xml the
best results are using Version 5.

4 Comparison of Java and OpenMP/C++

In this section we compare the speeds of using OpenMP comparing to Java, i.e.
the ratios of the OpenMP versions to their Java counterparts, see Fig. 3, where
in column labels, the suffix “-J” indicate the Java versions.
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To avoid any confusion, let us stress that Java’s single threaded implementa-
tions are much slower than the corresponding OpenMP’s implementation. Com-
paring parallelizable part for the largest file, 1gig.xml, it is 0.927 for Java and
0.834 in OpenMP/C++. Looking at speedups it may appear that Java benefits
the most from using multiple cores, but comparing timing results and considering
parallelizable parts shows that OpenMP is superior for all three files. Specifically,
for shakespeare.xml, the smallest XML file, OpenMP is significantly better than
Java both in terms of relative speedup and time taken to process the file.

For dblp.xml, the next largest file, the Java implementation benefited the most
from having multiple cores available, as its relative speed up was moderately
greater than OpenMP. However considering all factors OpenMP is better than
using Java.

Fig. 3. Comparison of Java and OpenMP

5 Conclusions and Future Work

In this paper, we described our work on using multi-core machines for XML
data compression, with Java and OpenMP. Our tests show that while both plat-
forms have showed potential to increase performance and productivity, OpenMP
is much better suited for the task in hand, and it makes it possible to achieve
considerable gains using eight cores when compared to using a single core. In
addition, our tests show the advantage of using Version 5, with multiple com-
pressors and a database backend, which is the preferred choice for all update
operations on compressed XML files.
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The alternative to using internal gzip as a backend compressor would be to
use already existing external parallel compressor, such as pigz [7] or pbzip2 [6].
Finally, we will test our algorithms using TBB, run all algorithms on various plat-
forms and design and implement parallel algorithms for other stages of XSAQCT.
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Abstract. Computer simulations of cardiac electrophysiology are a
helpful tool in the study of bioelectric activity of the heart. The cardiac
monodomain model comprises a nonlinear system of partial differential
equations and its numerical solution represents a very intensive compu-
tational task due to the required fine spatial and temporal resolution.
Recent studies have shown that the use of GPU as a general purpose
processor can greatly improve the performance of simulations. The aim
of this work is to study the performance of different GPU programming
interfaces for the solution of the cardiac monodomain equations. Three
different GPU implementations are compared, OpenGL, NVIDIA CUDA
and OpenCL, to a CPU multicore implementation that uses OpenMP.
The OpenGL approach showed to be the fastest with a speedup of 446
(compared to the multicore implementation) for the solution of the non-
linear system of ordinary differential equations (ODEs) associated to the
solution of the cardiac model, whereas CUDA was the fastest for the
numerical solution of the parabolic partial differential equation with a
speedup of 8. Although OpenCL provides code portability between dif-
ferent accelerators, the OpenCL version was slower for the solution of
the parabolic equation and as fast as CUDA for the solution of the sys-
tem of ODEs, showing to be a portable way of programming scientific
applications but not as efficient as CUDA when running on Nvidia GPUs.

1 Introduction

Simulations of cardiac electrophysiology have become a valuable tool for the
study and comprehension of heart’s bioelectric activity under normal and patho-
logical conditions. These simulations are usually based on the bidomain model [5],
which is a system of two Partial Differential Equations (PDEs) coupled to a set
of nonlinear Ordinary Differential Equations (ODEs) describing the behavior of
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the membrane of cardiac cells. In spite of being currently the most complete
description of the electrical activity of the heart, the numerical solution of the
bidomain equations is a computational challenging task [8]. Usually the bido-
main equations are reduced to the simpler monodomain model by considering
that: the extracellular potential is constant; or tissue conductivity is isotropic; or
the intracellular and extracellular conductivities have equal anisotropy ratios [5].

Nevertheless, numerical approximation of these models involves the spatial and
temporal discretization of the PDEs as well as the integration of the nonlinear sys-
tems of ODEs. Using an appropriate decomposition for the time discretization, the
nonlinearity of the system may be isolated, i.e. for each node of the spatial mesh
a system of ODEs, that comes from the cellular model, may be solved indepen-
dently. To perform realistic simulations of cardiac tissue, a large number of ODE
systems must be solved at each time step, which contributes substantially to the
total computational work. Therefore, it is necessary to pursue new efficient ways
of solving the large linear algebraic system that arises from the discretization of
the PDEs as well as the systems of ODEs associated with the cell models.

The use of the graphics processing units (GPUs) for general purpose (GPGPU)
programming is becoming more popular and there are different approaches for
this kind of parallel programming. Currently, the most popular environment for
GPU programming is the NVIDIA CUDA parallel computing architecture. Re-
cent studies have reported significant performance gains obtained using NVIDIA
CUDA to parallelize the solution of the monodomain model [3,9].

The aim of this work is to compare the performance of different approaches for
GPU programming to solve the monodomain problem. We present a comparison
between different implementations using OpenGL, NVIDIA CUDA and OpenCL
for the numerical solution of the monodomain equations on modern hardware
platforms.

2 Governing Equations and Numerical Scheme

2.1 Monodomain Model

In cardiac tissue, the excitation wave spreads through the tissue because the
cardiac cells are electrically coupled via special proteins called gap junctions.
This phenomenon is mathematically described by a reaction–diffusion equation
referred to as the monodomain equation, given by

βCm
∂Vm

∂t
+ βIion(Vm,η) = ∇ · (σm∇Vm) + Istim (1)

∂η

∂t
= f(Vm,η) (2)

where β is the surface-to-volume ratio of the cardiac cells, Cm is the membrane
capacitance, Vm is the transmembrane voltage, Iion is the density of the total
ionic current which is a function of Vm and a vector of state variables η, Istim
is a stimulus current, σm is the monodomain conductivity tensor and f is a
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vector-valued function of the transmembrane voltage and state variables vector.
The tissue is assumed to be isolated along its boundaries, i.e. no–flux boundary
conditions are imposed on Vm along all myocardial surfaces.

In this work the classical Luo–Rudy I (LRI) model [2] that describes the
electrical activity in a general mammalian ventricular cell was considered to
simulate the kinetics of Iion in Eq. (2). In this mammalian ventricular model,
Iion is defined as the following sum of currents:

Iion = INa + Isi + IK + IK1 + IKp + Ib (3)

where INa is the fast sodium current, Isi is the slow inward current, IK is
the time-dependent potassium current, IK1 is the time-independent potassium
current, IKp is the plateau potassium current and Ib is time-independent back-
ground current. The LRI model is based on a set of 8 ODEs describing ionic
currents and intracellular calcium concentration [2].

2.2 Numerical Scheme

The reaction and diffusion part of the monodomain equations can be split by em-
ploying the Godunov operator splitting [5]. Each time step involves the solution
of two different problems: a nonlinear system of ODEs

∂Vm

∂t
=

1

Cm
[−Iion(Vm, ηi)] (4)

∂ηi
∂t

= f(Vm, ηi) (5)

and a parabolic linear PDE

∂Vm

∂t
=

1

βCm
[∇ · (σ∇Vm)] + Istim (6)

To obtain a numerical solution of the parabolic equation (6), first, the standard
Galerkin Finite Element Method (FEM) was employed for the spatial discretiza-
tion and then, the second–order Crank-Nicolson (CN) time stepping method was
used to obtain a fully discrete approximation. Using the FEM with bilinear el-
ements results in a sparse linear system of equations that needs to be solved at
each time step and in the particular case of the CN method has the following
form:

(M + 1
2cK)υk+1 = (M − 1

2cK)υk (7)

where υ discretizes Vm at time kΔt; M and K are the mass and stiffness matrices
from the FEM discretization, respectively; and the constant c is Δt

βCm
. The linear

system was solved by employing the Jacobi preconditioner with an iterative
Conjugate Gradient (PCG) solver.

The systems of ODEs in (4)-(5) were integrated using the explicit Euler
method. Although it is well known that explicit numerical methods have strong
limitations because of stability and accuracy restrictions [6], they are widely
used in cardiac simulations due to their simplicity of implementation [4].
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2.3 Sparse Matrices Storage

In the present work only 2D regular square meshes were considered, resulting
in diagonally structured matrices with 9 diagonals. In order to efficiently store
the matrices the following two sparse matrix formats were used: the compressed
sparse row (CSR) format and the diagonal (DIA) format [11,7]. The CSR format
was used to assemble the finite element matrices and then the simulations were
performed either using the CSR or DIA format.

Let N and Nz be the number of rows of the matrix and the total number
of non-zero entries of the matrix, respectively. Then, the CSR format stores a
sparse matrix in three arrays: vals and cols which are both of size Nz and
hold, respectively, the non-zero entries and the columns indexes of these entries
and finally, a third array named ptrs of size N + 1 that stores pointers to the
beginning of each row in vals and cols.

The diagonal format uses 2 arrays to store the sparse matrix: the first is a
rectangular array of N ×Nd entries, where Nd is the number of diagonals while
the second, offsets is a one–dimensional array that stores the diagonal offset
with respect to the main diagonal.

3 Implementations

The code that implements the numerical solution of the monodomain problem (2)
using the LRI cardiac cell model was written in ANSI C and parallelized using
OpenMP. The GPU implementations were all extended from the CPU code
to the different GPU computing environments, namely: OpenGL, NVIDIA C
for CUDA and OpenCL. Hence, particular functions were developed for each
environment to solve: (i) the system of ODEs and (ii) the parabolic problem.
For the ODE problem the explicit Euler method was developed, whereas for the
parabolic problem the building blocks (vector operations such as SAXPY, dot
product and sparse matrix vector multiplication) of the PCG were written for
each GPU code. The details of each GPU implementation are described below.

3.1 OpenGL Implementation

This implementation uses the same programming resources available for graphics
computing, therefore a better understanding of this approach requires a back-
ground knowledge in computer graphics. The main idea behind using OpenGL
for GPGPU computation is to map some of the computer graphics concepts into
CPU programming concepts.

Basically, in computer graphics, textures are used as input data for rendering,
which draws to the frame buffer. So in our case this machine of rendering graph-
ics is used to perform general purpose computation. Therefore, for our GPGPU
approach, the textures were used to provide the input data necessary to the com-
putation, while the rendering process performed the computation that produced
the results which were then written to the frame buffer.
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The graphics hardware is implemented as a pipeline, and, in recent GPUs,
there are some stages of this pipeline that can be programmed. For example, the
vertex processor and the fragment processor. We used the fragment processor in
our implementation because it fits better to the problem and it is the most pow-
erful processor on the GPU. The fragment processor executes a fragment shader,
that is a program written to the fragment processor. The fragment shader can be
written using shading languages such as the OpenGL Shading Language(GLSL)
and is responsible for calculating the color of individual pixels. The shader can
only write to its own position, or in other words, scatter writes are not possible.
Textures, however, can be randomly accessed although it is better to keep the
access with a certain locality because of the texture cache.

There are much more details involved in this complex task which we do not
discuss here. For further discussion on the OpenGL implementation see [1].

3.2 GPU Implementation Using NVIDIA C for CUDA

The CUDA parallel programming model extends the C language with a minimal-
ist set of abstractions for expressing parallelism. That is, it lets the programmer
focus on important issues of parallelism rather than dealing with unfamiliar
and complicated concepts from computer graphics (as is the case when using
OpenGL for GPU programming) in order to explore the computational power
of GPUs for general purpose computation.

A CUDA program is organized into a host program running on the CPU
and one or more parallel special C functions called kernels that are suitable
for execution on a parallel processing device like the GPU. A kernel executes a
scalar sequential program on a set of parallel threads. The threads are organized
into a grid of thread blocks by the programmer. All the threads within a single
thread block are allowed to synchronize with each other via barriers and have
access to a high–speed, per–block shared memory which allows inter–thread
communication. Threads from different blocks in the same grid can coordinate
only via operations in a global memory visible to all threads. CUDA requires
thread blocks to be independent, meaning that a kernel must execute correctly
no matter the order in which blocks are scheduled to run.

The NVIDIA CUDA solver of the cardiac monodomain equations was previ-
ously presented in [9], where details of the implementation are discussed.

3.3 GPU Implementation Using OpenCL

OpenCL is an open standard that can be used to program CPUs, GPUs, and
other devices from different vendors. Our OpenCL solver was based in the pre-
viously CUDA monodomain solver presented in [9]. We relied on a previously
implemented code mainly to make the comparisons fair. In addition, converting
a kernel that uses C for CUDA to an OpenCL kernel involves minor changes.

The major portion of code that had to be rewritten was the host one, for
example to detect and setup the GPU or to copy data between host and device.
It its important to point out that there are minor differences between NVIDIA
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and AMD host codes. Table 1 shows some of the changes we had to make to the
CUDA kernel code in order for it to compile and run under OpenCL.

Table 1. Kernel directives in CUDA C and OpenCL

Change CUDA kernel OpenCL Kernel
Type qualifiers shared , global ,etc. local, global.

GPU thread indexing threadIdx, blockIdx, etc get local id(), get global id(), etc
Thread synchronizing syncthreads() barrier()
Kernel declaration global void... kernel void...

4 Methods

The test cases for benchmarking code performance consisted of three different
in-silico tissue preparations in which the fibers were set along the longitudinal
direction and the spatial discretization was set to Δx = 50μm. The simulations
were carried out for 200 ms, after an initial current stimulus, using a time step
of Δt = 0.01ms, which guarantees the stability of the explicit Euler scheme for
the LRI model.

Table 2 presents the dimensions of the simulated tissues as well as the prop-
erties of the FEM meshes. The relative tolerance of the PCG method was set
to 10−8. The parameters of the monodomain model were taken from the lit-
erature [5]: Cm = 1μF/cm2; β = 2000 cm−1. Tissue conductivity was consid-
ered homogeneous with the monodomain conductivity tensor entries given by
σl = 3.0 mS/cm, σt = 1.0 mS/cm and σn = 0.31525 mS/cm.

Table 2. Details of the in-silico tissue preparation and properties of the meshes

Tissue Nodes Elements Nonzero

10 mm × 10 mm 200 × 200 39601 357604
20 mm × 20 mm 400 × 400 159201 1435204
40 mm × 40 mm 800 × 800 638401 5750404

4.1 The ODE and Parabolic Problems

The state variables associated with the systems of ODEs of m cells were stored
in a unidimensional vector of size mn called SV, where n is the number of dif-
ferential equations of the ionic model (n = 8 in the LRI model [2]). In the CPU
implementation the state variables of the cells are stored in SV following a row–
major ordering, that is, the first 8 entries of SV are the state variables associated
with the first cell. During the solution phase of the problem a vector containing
the Vm of each node has to be passed as argument for the PCG method. In
order to avoid extra memory transactions on the GPU implementations, we re-
arranged the SV array using a column–major ordering, where the first m entries
of this array represent the Vm values of each node. The GPU implementation of
the time stepping of the ODEs uses one thread to solve one ODE system, that
is, each thread is associated with each node.
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The solution of the parabolic problem consists of one sparse matrix vector
multiplication and the solution of a system of linear equations, which also re-
quires basic linear algebra operations such as vector scalar product and SAXPY
operations. The GPU implementation of these linear algebra building blocks is
a straightforward task since each thread (or work item in OpenCL terminology)
is assigned to do the computation of one position of the array, whereas for the
scalar product a reduction is required. The computation of the sparse matrix
vector multiplications y = Ax using either the CSR format or the DIA format
were performed assigning one matrix row to each thread, which then computed
one entry of the output vector y.

4.2 Numerical Error

To ensure that there were no deviations in the numerical solutions due to the
use of single precision and compiler optimization flags, we compared the results
against reference solutions obtained on the CPU using double precision floating
point arithmetic. We used the relative root–mean–square (RRMS) as a measure
for the error:

e = 100

√∑
t

∑
i,j(vi,j−νi,j)2√∑

t

∑
i,j(vi,j)

2
(8)

where v is the reference solution, ν is the numerical solution computed by the
GPU that we want to check and i, j and t are indexes in space and time,
respectively.

5 Results

In this section we present the numerical results obtained for the monodomain
simulations using a ventricular cell model on graphics processing units through
OpenGL, NVIDIA CUDA and OpenCL environments. Simulations were carried
out on a quad-core Intel Core i7 860 2.80GHz, 8GB of memory equipped with:
(i) NVIDIA GeForce GTX 470 with a total of 448 Cuda cores, 1 GB GDDR5
of memory and 133.9 GB/s of memory bandwidth or (ii) AMD Radeon 6850
with 960 Stream processors, 1 GB GDDR5 of memory and 128 GB/s of memory
bandwidth.

All the host code was compiled with GNU C compiler version 4.4.5 using the
-O3 compiler flag. The CUDA version was developed with CUDA Toolkit v3.2
and the OpenCL code was developed with NVIDIA OpenCL v1.0 and AMD APP
SDK V2.4 with OpenCL 1.1 support. For each test we distinguish between two
versions of the GPU code: a version without compiler optimizations and a version
with optimizations. The only exception is the OpenGL implementation which
was treated as CPU code and therefore compiled only with the -O3 flag. The com-
pilation flags used for CUDA and OpenCL are different. However, they were used
in order to optimize the code as much as possible with respect to mathematical
operations. We notice here that the ODE part of the problem has a substan-
tial volume of mathematical operations that are affected by these compilation
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flags. For the CUDA implementation the -use fast math flag was used, while
the following flags were used for the OpenCL version: -cl-fast-relaxed-math,
-cl-mad-enable and -cl-no-signed-zeros.

The performance of the OpenMP multi–core code over a single core version
was previously reported in [9]. There, speedups of 3.98 and 2.35 (comparing 4
cores against single core) were achieved for the ODE and parabolic problems,
respectively. In the next tables the OpenMP entry accounts for the performance
results obtained with the CPU implementation running with 4 processing cores.

Table 3 gives the elapsed time required to integrate the ODE problem. We
observed that for all problem sizes, the OpenGL code performed better than both
OpenCL and CUDA versions with or without optimizations. Further, we noticed
that turning on the mathematical optimization flags makes the OpenCL (and
also the CUDA) version noticeably more effective than without optimization.
The tables entries marked with * represent the cases that could not be simulated
due to portability of the code. It reflects the fact that NVIDIA CUDA does
not run on AMD graphics card and our OpenGL code was implemented using
features (textures) that are not supported by AMD GPU hardware.

Table 4 describes the performance of the GPU solvers for the parabolic prob-
lem, which mainly depends on the performance of sparse matrix vector multipli-
cation operations, which in turn depends on the storage format used. It is clear
that for this part of the problem the computational gain with respect to the
multi–core CPU version is smaller than for the ODE part, which is considered
to be an embarrassingly parallel computational problem. In this case the CUDA
implementation without and with optimizations (*-opt) outperformed the other
two versions using both CSR and DIA sparse matrix formats. At this point it
is important to recall that the CUDA code used textures in order to improve
the performance when fetching data from memory and that OpenCL does not
support this feature.

The results show that, for the ODE problem with the largest tissue prepa-
ration, GPU speedups (GPU version compared to OpenMP with 4 cores) of
277, 286 and 446 were obtained for the OpenCL, CUDA and OpenGL, respec-
tively, when using the NVIDIA GTX 470 hardware. A GPU speedup of 107 was
achieved for the OpenCL code running on AMD Radeon 6850. GPU speedups
of about 4–5 were observed for the parabolic problem using the DIA sparse ma-
trix format for both OpenCL and OpenGL. Better performance was achieved
for the CUDA version where in the largest problem the code was 8 times faster.
A more modest GPU speedup of 2 was obtained when using the AMD Radeon
6850 hardware.

Finally, we computed the numerical error against reference solutions which
were carried out using the CPU code with double precision floating point arith-
metic. The errors for the OpenCL and CUDA implementations, with an without
optimization flags, were smaller than 0.0050%. The errors computed for the
OpenGL implementation were about 0.011 %. The results suggested that there
were no deviations in the solution neither by use of single precision nor by the
use of the several optimization flags used for compilation.
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Table 3. Comparison between CPU and GPU solvers for the ODE problem. Execution
times are given in seconds.

GPU GeForce GTX 470 AMD Radeon 6850

Problem ODE ODE-opt ODE ODE-opt

200 × 200 OpenMP 285.65 285.65 285.65 285.65
OpenCL 3.39 2.32 4.99 4.99
OpenGL 2.86 2.62 * *

CUDA 3.57 1.63 * *
400 × 400 OpenMP 1145.63 1145.63 1145.63 1145.63

OpenCL 9.21 5.09 12.54 12.48
OpenGL 4.11 4.09 * *

CUDA 11.59 4.51 * *
800 × 800 OpenMP 4588.23 4588.23 4588.23 4588.23

OpenCL 33.74 16.55 42.85 42.85
OpenGL 10.21 10.21 * *

CUDA 42.59 16.03 * *

Table 4. Comparison between CPU and GPU solvers for the parabolic problem using
either the CSR or the DIA matrix format. Execution times are given in seconds.

Version GeForce GTX 470

Problem CSR CSR-opt DIA DIA-opt

200 × 200 OpenMP 43.02 43.02 * *
OpenCL 137.79 137.79 91.52 88.26
OpenGL 216.38 205.69 135.63 135.63

CUDA 66.03 65.47 20.64 20.64

400 × 400 OpenMP 254.03 254.03 * *
OpenCL 305.15 305.15 116.70 116.70
OpenGL 505.45 503.84 173.42 172.61

CUDA 225.79 225.44 47.32 47.32

800 × 800 OpenMP 1285.11 1285.11 * *
OpenCL 971.64 970.47 263.88 263.88
OpenGL 1562.95 1562.95 312.52 312.52

CUDA 850.21 850.21 149.16 149.16

Version AMD Radeon 6850

200 × 200 OpenCL 272.93 272.93 246.27 235.72
400 × 400 OpenCL 477.79 477.12 311.63 306.45
800 × 800 OpenCL 1242.22 1242.22 589.24 589.24

6 Discussion

We have evaluated the performance of different GPU solvers for the monodomain
model using OpenGL, NVIDIA CUDA and OpenCL parallel environments. Three
different in-silico tissue preparations were used in this work for the performance
tests. We have shown that in all cases, considering the whole simulation, that the
GPU outperformed the parallel multi–core CPU implementation using OpenMP.
Also shown is the fact that the GPU performance depended on the GPU pro-
gramming language adopted. For instance, in the ODE problem the OpenGL
code delivered an excellent performance, even when compared to the other two
GPU approaches studied in this work. However, the OpenGL approach is hard
to program, maintain and understand due to the complexity in mapping the
problem concepts to computer graphics concepts for GPGPU computation. It is
also shown that for the parabolic problem the CUDA code was the most effective
between the GPU solvers.

The OpenCL code was slower than the CUDA version for the solution of
the parabolic PDE, where a performance overhead of 77% was observed for the
OpenCL code. On the other hand, for the solution of the system of ODEs, the
performance of OpenCL and CUDA were very similar. Although OpenCL pro-
vides application portability and be can run on different accelerator devices (such
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as GPUs, multicore and Cell processors), it was shown that it induces a significant
performance cost when running on Nvidia GPUs in comparison to code written
in CUDA.

6.1 Related Work

Recently, Weber et al. have presented the performance and programmability of
several accelerators running a Quantum Monte Carlo application in [10]. The
study compared performance on several platforms including CUDA, Brook+
with ATI graphics accelerators, OpenCL running on both multicore and graphics
processors and more. In agreement the results of this study, it was reported that
although OpenCL provides application portability, it induces a performance cost.
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Abstract. Most recursive functions hide a significant degree of inherent
parallelism. Much research work has been done in detecting and exploit-
ing this parallelism, mainly by focusing on calls which can be invoked
in parallel. However, not all recursive algorithms allow concurrent ex-
ecution of function calls. In this paper we study how we can extract
concurrency from those recursive functions which cannot be parallelized
with the commonly used methods. The key idea is to parallelize them in
a finer level, using as infrastructure a multi-core, multi-thread architec-
ture. Multi-core architectures give us the opportunity to achieve higher
degree of fine grained parallelism than the conventional parallel archi-
tectures, by providing real thread level parallelization and low overhead
in the communication between different threads. For our experiments
we use the SVP processor and model, a novel multi-core architecture
which supports threads of execution with rapid communication between
“neighboring” threads. The mapping of recursive functions onto the SVP
processor is part of a more general framework the C2μTC/SL source to
source compiler, developed to support the automatic extraction of paral-
lelism from C programs and the exploitation of the special characteristics
of the SVP processor. The experimental results are very encouraging and
show satisfactory speedups between the parallel execution and the auto-
matically produced code.

Keywords: recursive function calls, automatic parallelization, SVP,
self-adaptive virtual processor.

1 Introduction

It is common practice for the programmers to write recursive programs without
taking into account the overhead introduced by the successive function calls or
from possible repetition of computations. Compilers often use techniques like tail
recursion in order to speed up the execution of recursive functions. Paralleliza-
tion techniques have also been appeared in which the compiler tries to extract
concurrency from the recursive function calls. Much work has been done in this
field since recursive functions usually hide a high degree of parallelism.
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In the very popular divide and conquer technique some input is divided into
two or more parts and a recursive call is invoked for each one of those parts.
Usually each call operates on a different part of the data and, thus, it is safe to
perform these recursive calls in parallel. For example, let us consider the quick-
sort algorithm. The array is divided into two smaller arrays, and one recursive
call is performed for each one of the smaller arrays. Since each call performs
on different data it is safe to invoke both calls in parallel. This is an easy task
for a parallel programs developer since it can be easily understood that each
call performs on different data. The problem becomes difficult for a compiler,
where the detection of parallelism must be automatic. A framework for auto-
matic parallelization of such recursive functions is discussed in [4] where the
main target is the divide and conquer algorithms. At compile time symbolic ar-
ray section analysis is used to detect the interdependence of multiple recursive
calls in a procedure. When the compile time analysis is not enough, specula-
tive run time parallelization is employed. Similar work is described in [9] where
parallelism from recursive functions targeting divide and conquer algorithms is
also extracted. In [3] the Huckleberry tool is presented, again detecting paral-
lelism from divide and conquer algorithms and producing code for a multi-core
platform. A quantifier-elimination based method belongs in the same family too.
This method shrinks function closures representing partial computations, splits
the input structure and perform computation on each part in parallel [8].

However, when a recursive call does not call more than one instance of itself,
the extraction of parallelization is more difficult. Let us consider the factorial
as an example. The computation of fact(n) requires that the computation of
fact(n-1) has been completed. Thus, the kind of parallelism discussed above
cannot be detected here. We target this kind of recursive function on which the
commonly used methods cannot be applied and try to exploit threads of execu-
tion in order to achieve a finer lever of parallelism in the instruction level. For our
experiments we use the SVP processor and model and exploit the hardware level
threads of execution and the synchronizing memory which allows neighboring
threads to communicate with low overhead. This work is part of the C2μTC/SL
compiler, a source to source parallelizing compiler which automatically maps C
programs onto the SVP model.

In similar work, we must also mention recursion splitting [5] a technique which
converts recursive functions into loops and then applies loop parallelization tech-
niques on them. In [1] an analytical method is presented which transforms recur-
sive functions on general recursive data structures into compositions of parallel
skeletons. Both papers use functional languages.

The rest of the paper is structured as follows. Section 2 gives an abstract
presentation of the SVP model and briefly presents the C2μTC/SL compiler.
Section 3 discusses how we map the recursive functions onto the SVP proces-
sor while in section 4 the experimental results are presented. The last section
presents plans for future extensions and summarizes this work.
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2 The Processing Model and the C Parallelizing Compiler

In SVP [2,6], the unit of parallelism is a thread. Threads are organized in groups
which are called families. The threads in a family are ordered, i.e. each thread
has a unique number which defined the order of the thread in the family. The
communication between threads can be done through (i) the shared memory and
through (ii) the synchronizing memory. The shared memory can be considered as
consistent only after all threads in the family has terminated. The synchronizing
memory allows data to be forwarded from thread with index i to the thread
with index i+1. No other kind of communication is possible between any two
executing threads. Figure 1 present schematically the processing model.

Fig. 1. The processing model

To better describe the SVP model, an intermediate language has been defined.
It is called micro-threaded C (μTC) [7] and it is similar to other concurrent
languages based on C. SL is a script language on top of μTC which masks some
details and provide a more user friendly interface to the programmer.

C2μTC/SL is a parallelizing compiler which maps sequential C programs on
the SVP concurrent processing model and the μTC and SL languages. The aim
of C2μTC/SL is to extract parallelism from C programs and produce fami-
lies of threads in order to exploit the special characteristics of SVP. Since we
expect to extract most of the parallelism of a program from loop structures
C2μTC/SL mainly focuses on loops [10]. Contrary to most parallelizing compil-
ers, C2μTC/SL moves the problem of scheduling from compile-time to run-time
[11]: at compile-time a lightweight scheduler is generated which in runtime will
be responsible for the coordination of the execution of the families allowing more
flexibility than static scheduling.

We will give an example to show how we can achieve parallelism in SVP. Let
us consider the inner product:

sum=0;

for (i=0;i<N;i++)

sum+=a[i]*b[i];
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The compiler will produce code which will create one family consisted of N
threads of execution. Each thread i will perform the multiplication a[i]*b[i]

and then wait to receive the partial sum for the thread i-1, namely it will receive
the amount sum =

∑i−1
j=0 a[j]b[j]. After receiving the partial sum from the pre-

vious thread, it will add its own contribution and forward the result to thread
i + 1, namely it will forward the amount sum =

∑i
j=0 a[j]b[j]. All multiplica-

tions a[i]*b[i] will be performed in parallel and only the summation of the
multiplications will be serial. For the summation procedure the synchronizing
memory will be used which allows fast forward of data from thread i to thread
i + 1. The execution times for the serial execution and the execution on SVP is
shown on figure 2.
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Fig. 2. Execution times for the inner product

3 Recursive Functions onto SVP

A recursive function call consists of successive calls of the same function each one
of which performs on different data. These data have been produced by previous
calls of the function in the chain of the function calls, or are common for all calls.
In most cases each function uses the data produced by its calling functions, or
at least uses data transferred through one of its calling functions.

When mapping a recursive function onto SVP, a family of threads is cre-
ated and each one of the successive recursive calls is assigned to one thread of
execution. Threads in a family are ordered. Each thread i in the family can
communicate with the thread i+1 and forward data in a way similar to the
“return” call of the recursive function. Obviously, the first thread in the family
corresponds to the last function call in the chain of the recursive functions, the
second thread to the one before the last, etc.

The information needed to be extracted is how many threads are to be created
and what kind of communication is required between them. Of course, the great
challenge is to do this automatically, without any hint from the programmers.
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In case we fail to extract this information it is better not to attempt to parallelize
the execution at all and choose to run the program sequentially.

The structure of a recursive function call is not the same for all problems.
However we can observe that in most cases this structure is of the form:

if (...) return(...)

else if (...) return(...)

else if (...) return(...)

...

else return(...)

When the structure of the function is as shown above, it is possible to decide how
many threads have to be created and what kind of communication is necessary
between them. The steps we have to follow are:

1. we decide which variable can be used as an index. In most recursive func-
tions such a variable exists and can be located in the conditions of the if

statements and in the parameters of the function
2. we detect for which values of this variable it is not necessary to call the

function recursively
3. we detect how the value of this variable changes for any two successive calls

in the chain of the recursive calls
4. based on steps 2 and 3, we identify how many recursive calls will be done.

We create a family with the same number of threads
5. we decide on what data should move from one thread to the next thread in

the family
6. we decide on what data are global to all threads, i.e. are not modified in the

body of the function call
7. we detect the initial values for the variables of the first threads in the family
8. we compile the recursive function and produce the SL code

Let us consider a small example here, the computation of the factorial:

long int factorial(int x)

{
if (x<0) return(-1); // not defined

else if (x>L) return(-2); //overflow

else if (x==0) return(1);

else return(x*factorial(x-1));

}

According to the steps discussed above, the following information must be ex-
tracted.

1. the variable which can be considered as the index is x. The variable x exists
in all conditions and in the parameters of the function

2. the function will not perform any recursive calls when x < 0 or x > L
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3. each recursive call is based on data returned by the next recursive call. The
value of x is reduced by 1 in every call, according to the x−1 actual parameter
in the call

4. suppose we want to compute the factorial of N . Based on steps 2 and 3 we
can conclude at compile time that we need N recursive calls. Thus, we must
create a family with N threads

5. each thread forwards to the next thread in the family an integer, which is
equal to the return value of the corresponding function call

6. the first thread is initialized to 1, the return value of the function for x = 0.
This value is found if we move downwards (as indicated in step 3) from the
given value until we found a value the computation of which does not require
a recursive call

7. the information extracted in the steps above is enough to automatically
produce a program in SL which produces the same results with the function
factorial and can execute in parallel exploiting the special characteristics
of the SVP architecture.

The expected speedup of mapping such a recursive call onto the SVP computing
model can be summarized in the following steps:

1. the execution environment for each thread is created in parallel and not
sequentially as in recursive calls

2. the part of the computation which performs the evaluation of the condition
is executed in parallel, since the value of x is given for each thread from the
beginning (x is the index of the thread inside the family)

3. the rest of the computation, before the recursive call, can also run in parallel.
In this example, x can move to the register and wait for the second operand
before the multiplication can be performed. Please note that this part of
the computation can be more expensive or much expensive. For example, if
we had x3 or

√
x or generally f(x) instead of x the computation before the

recursive calls becomes more expensive.

Let us now discuss another one interesting example, the fibonacci numbers:

long int fib(int x)

{
if (x<0) return(-1); // not defined

else if (x>L) return(-2); //overflow

else if (x==0) return(1);

else if (x==1) return(1);

else return(fib(x-1)+fib(x-2));

}
In this example the function fib is called recursively twice. We can again exploit
the synchronizing memory and employ two shared variables this time, one for
keeping the fibonacci number computed by the thread i− 1 and one for the
fibonacci number computed by the thread i−2. In this way we eliminate the need
for each function call to call itself twice. This leads to a significant reduction of
the necessary number of threads and to a further improve of the execution time,
even more significantly this time as we will see in the following section.
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4 Experimental Results

We will present two experiments with well known problems. Experimental re-
sults have been collected using a hardware simulator of the SVP model [6]. The
simulator counts machine-cycles necessary for a program to complete. Both se-
rial and parallel code run on the simulator. The serial version is pure C, i.e.
we do not use any the special characteristics of SVP (synchronizing memory,
families, e.t.c.).
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Fig. 4. Execution times for Fibonacci numbers

In the first experiment we compute the numbers of the moves necessary to
solve the Hanoi tower problem with N disks. The recursive code that solves the
problem follows:
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long int hanoi(int x)

{
if (x<0) return(-1); // not defined

else if (x==0) return(0);

else return(2*hanoi(x-1)+1);

}

In order to compute hanoi(x) the function hanoi(x-1) has to have finished the
computation. The problem is serial, at least in its current form. A family of N
threads will be created, all initializations will take place in parallel, all evaluation
of conditions will also be executed in parallel and only the final computation in
every thread will be serial. Thus, we expect an acceleration of the execution
due to this parallelism. Execution times for the hanoi problem and for different
number of disks is shown on figure 3.

Next we considered the fibonacci numbers problem. The code is listed in
the previous section. Even though fib(x-1) and fib(x-2) can be invoked in
parallel, there is replication of work which results in low execution times, even if
we run it in parallel. We avoid the replication of work by moving two amounts
from thread to thread, shifting the value of the first to the second and computing
only the first amount. This leads to a significant speedup even if compare with
the iterative implementation of fibonacci numbers. The execution times for the
iterative implementation is shown on figure 4(a) and the execution times for the
recursive implementation is shown on figure 4(b). Please note that the recursive
implementation can compute only the first few fibonacci numbers, and even in
such a small problem size the execution time explodes. The reason that the line
for SVP in figure 4(b) seems flat is that the y-axis is in logarithmic scale.

Please also note that the recursive hanoi and the iterative fibonacci numbers
presents similar execution times. This is due to the optimizations performed by
the gcc compiler which eliminates the recursion. The execution times on SVP is
still better. In the fibonacci problem (i) gcc fails to perform optimizations and (ii)
there is much replication of work, something that explains why the acceleration
is that large.

We presented experimental resutls comparing the execution times of the code
automatically produced by the compiler and the sequential code. We also wrote
parallel code manually. The experimental resutls were similar to that from the
code produced by the compiler.

5 Discussion

Research work on automatic extraction of parallelism from recursive function
mainly focuses on those recursive calls for which the data dependences allow
more than one function call to execute in parallel. For example, the quicksort
separates an array into two subarrays and perform one function call on each one
of the arrays independently. We examine a different model in which all function
calls start execution and there is a synchronization point between successive
function calls in which one function call waits for data from the previous one.
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Such recursive function calls is the factorial, the computation of the power and
more general all recursive function calls that can be transformed into loop struc-
tures. Even though the execution of these calls seems to be necessarily sequential,
we exploit the SVP and the special purpose hardware to achieve parallelism and,
thus, acceleration of execution. The parallelism extracted is due to divide and
conquer technique and cannot be compared with that.

Comparison with similar work is meaningful when considering the ability of
most other compilers to transform recursive calls into loops. Our compiler extracts
the same information from loops with those compilers; however, we map this in-
formation on a parallel architecture/model and not on a sequential loop structure,
accelerating the execution of an application that seems completely sequential. The
most important contribution of this paper is that we showed that this is possible
to do it and examined how. The experimental results verified our claim.

The compiler at the present stage of design and development can extract par-
allelism from most well-written function calls. Generally it takes the conservative
approach and transforms only programs for which it is absolutely sure that the
extracted information is correct. Generally the extraction of the necessary in-
formation is difficult and sometimes even undecidable. However, for most of the
well written code this information is possible to be extracted at in most of the
cases not difficult. Our purpose was not to invest in capturing the widest range
of written code, especially the not the tricky one. Our purpose was to show that
the automatic capturing of parallelism is feasible and the acceleration of the ex-
ecution possible. I would characterize our analysis as “simple analysis with a big
number of classical cases”. Functions from which parallelism cannot be extracted
from the algorithm described in this paper remain without transformation.

6 Conclusions and Future Extensions

The parallelization method presented above is confined to recursive functions
which use integer variables updated in a regular and systematic way. A large
number of recursive functions uses integer variables regularly updated between
successive calls. However not all recursive functions belong in this category. This
method can be generalized to include some function calls from linked lists as
well. Linked lists have also a regular structure while moving from one node to
another becomes with a systematic way, well defined and easily extracted way.
Similar to the approach presented in this paper, a number of threads equal to the
number of nodes of the list can be created but using a different mechanism this
time. Then, each thread can run the code up to the point where the function
is called recursively. The synchronizing memory will be used for moving data
between successive calls.

In this paper we presented a part of the C2μTC/SL source to source compiler
which maps recursive functions onto the SVP processing model. The compiler
extracts information from the source code and produces a family with the re-
quired number of threads, one for each expected recursive call. Experimental
results show that we can obtain remarkable speedup, even when the gcc com-
piler successfully eliminates the recursion.
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Abstract. Existing Grid monitoring approaches do not combine three
desirable features: on-line access to monitoring data, advanced query
capabilities and data reduction. We present a solution for on-line moni-
toring of large-scale computing infrastructures based on Complex Event
Processing principles and technologies. We focus on leveraging CEP for
distributed processing of client queries and monitoring data streams.
This results in significant reduction of network traffic due to on-line
monitoring. We discuss benefits of CEP-based approach to monitoring
and describe details of processing queries in a distributed way. A case
study – monitoring of load caused by jobs in a Grid infrastructure – is
presented. Performance evaluation to investigate monitoring overhead in
terms of CPU, memory and network traffic is also provided.

Keywords: on-line monitoring, grid infrastructure, complex event pro-
cessing.

1 Introduction and Motivation

On-line monitoring in large-scale computing infrastructures is crucial for such
purposes as SLA contract monitoring [5], system intrusion detection [9], self-
healing [6] or performance steering and dynamic reconfiguration [11]. Existing
Grid information systems store information as data sets and do not expose direct
streams of on-line measurements [1,8]. Some monitoring approaches provide on-
line access to monitoring data streams [7,4,10], but they fail to provide advanced
query capabilities and sufficient data reduction.

We present an on-line distributed monitoring solution for large-scale comput-
ing infrastructures based on Complex Event Processing. The basic concept of
CEP-based monitoring and its implementation – the GEMINI2 system – have
been presented in [2]. In this paper we focus on distributed processing of queries
and monitoring data streams in order to minimize resource consumption due to
monitoring. Such an approach allows for the combination of three desirable fea-
tures in a Grid monitoring system: (1) on-line access to monitoring information,
(2) advanced query capabilities that enable on-demand definition and real-time
calculation of complex derived metrics, (3) data reduction which prevents flood-
ing of network with monitoring data.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 131–140, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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This paper is organized as follows. Section 2 presents related work. Section 3
introduces the concept of CEP-based on-line monitoring and the GEMINI2 ar-
chitecture. In section 4, distributed processing of requests and monitoring event
streams is explained. Section 5 presents the resource load monitoring use case.
In section 6, monitoring overhead is investigated. Section 7 concludes the paper.

2 Related Work

While there are many solutions for Grid monitoring, below we overview these
which provide on-line monitoring combined with query capabilities. MonALISA
[7] provides two mechanisms to request on-line streams of monitoring data: pred-
icates and data filters. However, predicates only allow to request data matching
a specific regular expression. Data filters potentially enable to calculate any de-
rived values from collected ones (aggregations or even distributed correlations).
However, they need to be developed as Java plugins. CEP, on the other hand,
offers a generic mechanism whereby derived values can be defined on-demand
and calculated in real-time simply by using a continuous query language.

In vizTool [3], events from monitoring of a distributed system are gathered on-
line and visualized. However, query capabilities are limited to defining of custom
filters. In addition, a limited number of high-level metrics (such as aggregation)
can be computed at the level of visualization.

In R-GMA [4], monitoring data is collected by distributed producers and
stored in local relational databases. A global registry of producers is also pro-
vided making it possible to formulate distributed, continuous queries using SQL
as the query language. However, the SQL and the relational model have not
been designed for continuous querying over streams. Therefore, this approach
is inherently restricted in comparison to CEP, lacking such key capabilities as
aggregations over sliding window, stream joining or event correlation. In ad-
dition, querying distributed relational databases is arguably less efficient than
in-memory processing of data streams in a CEP engine.

SCALEA-G [10] also offers on-line monitoring, albeit with limited query capa-
bilities. A client essentially can choose which entities to monitor, select desired
metrics, and optionally specify XQuery or XPath filters (data is represented
in XML). Besides lacking the possibility of defining derived metrics and dis-
tributed queries, all remarks about the SQL/relational model are also valid for
XQuery/XML which is not designed for data streams.

In summary, existing Grid monitoring systems which offer on-line monitoring,
lack advanced query capabilities and/or do not support distributed processing.

3 Benefits of Applying CEP to On-Line Monitoring

CEP offers several benefits when applied to on-line monitoring, notably real-
time access to monitoring data, on-demand definition and calculation of derived
metrics, and data reduction.
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Real-Time Access to Monitoring Data. In the CEP-based approach, mon-
itoring data is encapsulated as events (named collections of attributes) which
typically contain information about the monitored resource and associated met-
rics. An example HostInfo event could contain a unique host name, current
CPU load, current memory consumption, etc. Next, sensors need to be deployed
which generate the events and feed them to a CEP engine. The clients retrieve
monitoring information from the engine using queries expressed in a continu-
ous query language. For example, in the simple query select * from Host-

Info(name=’zeus.cyfronet.pl’), attribute selection and filtering is used in
order to subscribe to the event stream of all metrics for the specified host.

On-Demand Definition and Calculation of Derived Metrics. Decision
making based on on-line monitoring typically requires real-time calculation of
derived metrics on the basis of data from multiple sources collected over time.
Such derived metrics can be defined by clients on-demand through complex
queries using such constructs as aggregations over sliding window, stream joining,
event correlation or results grouping and ordering. Example metrics not difficult
to express in a continuous query language are as follows. (1) Return all host
names where average CPU consumption over last 5 minutes exceeds 90% AND
the pid of the process which has the highest CPU consumption on the given host.
(Aggregation over sliding time window, conditional output, joining streams).
(2) Return alert when an average response time of client requests exceeds 100ms
OR average data transfer rate drops below 128KB/s. (Event pattern).

Data Reduction. Data reduction aims at minimizing network traffic due to on-
line monitoring. This can be achieved with a distributed processing of monitoring
requests, as explained in the next section.

4 Distributed Request Evaluation

4.1 Distributed Architecture and On-Line Processing

Fig. 1 presents a distributed architecture of the GEMINI2 framework. The archi-
tecture features a hierarchy of distributed Monitors and sensors, all of which may
contain CEP engines. The Monitors are organized into a super-peer architecture
and share information regarding available sensors. A client request, submitted
to any Monitor, is analyzed and distributed to other affected Monitors and, ulti-
mately, sensors. The distributed processing involves two stages: (1) distribution
of client requests, (2) assembly of partial monitoring data streams. In the distri-
bution stage, a client sends a query expressed in the Event Processing Language
to a Monitor. The query is analyzed and decomposed into partial statements
which are distributed to affected Monitors and sensors. In the assembly stage,
the partial monitoring data streams are assembled in order to produce a final
result matching the original query.

The task of request decomposition is carried out by a dedicated distributor
component. Its function is to analyze a given EPL statement and calculate (1)
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Fig. 1. Distributed architecture of the GEMINI2 monitoring infrastructure. CEP en-
gines deployed in Monitors and (optionally) sensors enable the distribution of queries
and assembly of partial replies.

one or more partial statements for individual producers, (2) the assembly state-
ment. The partial statements are sent as EPL requests to appropriate lower-level
producers. The assembly statement is installed in the CEP engine of the distrib-
utor in order to process the partial event streams from producers and assemble
them into a final result expected by the consumer. Consider the following exam-
ple EPL statement:

select hostName , avg(cpu.load) as cpuLoad
from CpuInfo .win:time(10 minutes ) as cpu
group by hostName output last every 5 minutes

This request returns, once every 5 minutes, events containing the average CPU
load over last 10 minutes for each monitored host. The group by clause results
in generating a separate event for each unique host. This request is decomposed
into the following partial statements:

select hostName , sum(cpu.load) as loadSum , count(cpu.load) as loadCount
from CpuInfo .win:time(10 minutes )

group by hostName output last every 3 minutes

The partial streams generated by these statements are assembled using the fol-
lowing assembly statement:

select hostName , sum(loadSum )/sum(loadCount) as cpuLoad
from assemblyStream.std:unique(producerId , hostName )

group by hostName output last every 5 minutes

4.2 Distribution Patterns

There is a number of continuous query language constructs whose influence on
the effectiveness of distribution should be investigated. These constructs include
aggregations (calculation of min, max, average etc.), sliding windows (time- and
length-based), output control statements (grouping, ordering etc.), and stream
joining (selecting attributes from multiple streams joined by a common attribute
value). Some distribution patterns are presented in Table 1.

The distribution of the max aggregate function utilizes a unique window. It
works as a buffer of length 1 for events with same value of a given attribute (in
this case producerSpec). Therefore, only the latest event from each producer



On-Line Grid Monitoring Based on Distributed Query Processing 135

will be used to compute the final result. The distribution of a request containing
a length-based sliding window requires dividing the size of the partial length
windows by the number of producers so that the total number of events coming
to the consumer matches the original request.

Table 1. EPL distribution pattern examples. The rightmost column contains, in or-
der, the partial statement(s) and the assembly statement. The notation used in the
statements is as follows:
– assemblyStream denotes an event stream composed of events coming from producers
that received partial statements.
– producerId is a unique identifier assigned to event producers.
– producerCount denotes the number of producers that received partial statements.
– [generic expression] indicates a part of the request whose precise content does
not influence the distribution (e.g., [aggregate] denotes any aggregate function).

Request type Distribution / Assembly
Calculation of max aggregation function

select max(value) as [alias] from
[stream];

select max(value) as mx from [stream];

select max(mx) as [alias] from
assemblyStream.std:unique(producerSpec);

Aggregation with sliding time window:

select [aggregate] as [alias] from
[stream].win:time([time spec])

(same as partial for normal aggregate
but over time window with [time spec])

(same as assembly for given aggregate)
Aggregation with slid-
ing length window:

select [aggregate] as [alias] from
[stream].win:length( [length spec])

(same as partial for normal aggregate but over length
window with length [length spec]/producerCount)

(same as assembly statement for given aggregate function)

The distribution of statements involving joining of multiple streams (example
given in Section 5) is particularly challenging. Two basic cases can be identified.
(1) All events in all streams involved in a join are provided by the same producer;
in this case the join operation is resolved entirely within this particular producer
and the distribution is trivial (the same as if there was no join). (2) At least one
of the event streams involved in the join is provided by a different producer than
the rest; the distribution is impossible as there must be a single CEP engine
processing all streams.

4.3 Semantics of Metrics in Distributed Evaluation

The value of derived metrics expressed in EPL depends on temporal relationships
between events. Consequently, values calculated in a distributed way may differ
from those obtained in a centralized way. This is caused by processing in multiple
distributed engines and associated delays it involves. The more layers in the
distributed hierarchy, the more visible this effect can be.

The problem is well illustrated in requests with time- and length-based sliding
windows, as depicted in Fig. 2. The y axis represents time. The arrivals of three
events are shown for two different settings (dashed events represent the centralized
case, solid lines – distributed one, delays being significantly higher). The events
are inserted into a time-based sliding window. Because of the delays, the contents
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of the sliding windows vary in the different settings. As a result, calculations such
as aggregate functions operating on those windows will return different results in
each case. A similar effect may occur for length-based windows: depending on the
sequence of event arrivals, different events will fit into a given window.

Fig. 2. Effect of different event arrival delays on time-based sliding window calcu-
lations. Dashed events represent centralized evaluation, solid – distributed one. The
arrangements of events in windows vary in both cases.

Given the described examples, we can say that the request semantics varies
slightly depending on the setting – distributed or centralized. The question is
whether the calculations obtained in the distributed semantics are actually in-
correct or not? The answer depends on the way the calculations are used. In
on-line monitoring it is clear these ‘inconsistencies’ are not significant. First,
the difference is the greater the smaller the time window is. However, decisions
based on on-line monitoring are rarely made on the basis of short-term (instant)
readings. Rather, a longer trend is taken into account. The trend, however, is
clearly preserved regardless of the incidental temporal fluctuations.

5 Case Study: Resource Load Monitoring

Let us consider the following use case to demonstrate on-line CEP-based moni-
toring and a distribution of a complex EPL statement. Suppose a site adminis-
trator would like to receive continuous reports about machines with the highest
load in a cluster and top processes whose CPU consumption is the highest.

An example deployment of computing resources and GEMINI2 monitoring
components is shown in Fig. 3. The environment consists of two sites (SARAH
and DIANA) in which there are clusters of Worker Nodes managed by Com-
puting Elements. GEMINI2 sensors are deployed on Computing Elements and
Worker Nodes. The latter generate two types of event streams: (1) HostInfo –
one stream for each host, contains, among others, the host’s name and dynamic
metrics: cpuLoad, memFree, etc., (2) ProcInfo – one stream for each process,
contains the process’ pid, the name of the host on which the process is running,
and metrics: cpuLoad, memUsage, etc. GEMINI2 Monitor is deployed on a global
level (Front Monitor) on top of multiple Grid sites; intermediate Monitors are
also deployed at each site.
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Fig. 3. Example Grid computing environment with GEMINI2 infrastructure compo-
nents deployed

The administrator requests to be notified about all Worker Nodes in the clus-
ter DIANA whose average CPU load over last 5 minutes exceeded 90%. In ad-
dition, a list of top 10 processes on those hosts in terms of CPU consumption
should be returned. This can be expressed in EPL in the following way:

select host.name , avg(host.cpuLoad ), proc.pid, avg(proc.cpuUsage )
from HostMs(CE=’DIANA’).win:time(5 min) as host ,

ProcessMs(CE=’DIANA ’).win:time(30sec) as proc
where proc.hostName = host.name /* join streams */
group by host.name , pid /* group by unique (hostname ,pid) */
having avg( host.cpuLoad ) > 90
output all every 1 minute
order by avg(proc.cpuUsage ) desc
limit 10 /* display top 10 results */

The Front Monitor determines that the only producer for this request is the
Monitor on site DIANA, therefore the statement is simply forwarded to this
monitor, while the Front Monitor installs in its CEP engine the following assem-
bly statement: select * from aggregateStream.

The Monitor in the DIANA cluster determines that all sensors on Worker
Nodes are affected by the query. The statement is decomposed into the following
partial statements submitted to sensors:

select host.hostName , sum(host.cpuLoad ) as hostCpuLoadSum , count(host.cpuLoad
) as cpuLoadCount , proc.pid as pid , sum(proc.cpuUsage ) as procCpuUsageSum
, count(proc.cpuUsage ) as procCpuUsageCount
from HostMs(CE=’DIANA’).win:time(5 min) as host ,

ProcessMs(CE=’DIANA’).win:time(30 sec) as proc
where proc.hostName = host.name
group by host.name , proc.pid

The assembly statement is as follows (producerId being the name of a Worker
Node):

select hostName , sum(hostCpuLoadSum)/sum(hostCpuLoadCount) as hostCpuLoad ,
pid, sum(procCpuUsageSum)/sum(procCpuUsageCount) as procCpuUsage
from assemblyStream.std:unique(producerId , hostName , pid)
group by hostName , pid
having sum(hostCpuLoadSum)/sum(hostCpuLoadCount) > 90
output all every 1 minute
order by sum(procCpuUsageSum)/sum(procCpuUsageCount) desc
limit 10
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6 Performance Evaluation

In this section, we measure the monitoring perturbation of the employed solution
for on-line monitoring in terms of CPU utilization, memory consumption and
network traffic.
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Fig. 4. CPU consumption for Esper engine having 1000 EPL statements registered
of following format: select avg(userTime) from CpuInfoEvent(machine=’{host}’).win:time(60
seconds) output last every 30 seconds where {host} is different for each statement

CPU Utilization. Low CPU utilization is critical on the sensor side where also
jobs run. In GEMINI2, the CPU utilization depends on the intensity of event ar-
rivals to the CEP engine1. Because CEP engines deployed in sensors are not ex-
posed to high event rates (given the fact they only collect events from a single
node), the associated CPU usage is very low – it almost never exceeds 1%. The
Monitors, on the other hand, collect events from many sensors therefore the result-
ing CPU usage can be high. This does not pose a problem though, since Monitors
can be deployed on dedicated servers. Fig. 4 presents a benchmark of CPU usage
caused by a Monitor in the presence of 14 event senders (sensors), each produc-
ing 1 event per second, and 1000 complex queries registered in the CEP engine.
The Monitor and the senders were working on a double-core 2.2-GHz-per-core ma-
chine. Even for such high parameters, the resulting CPU usage is moderate; most
of the time it balances at about 10%, almost never exceeding 30%.

Memory Utilization. Memory utilization due to CEP-based processing is
caused mainly by large sliding windows. However, CEP engines are optimized
also in this respect. Fig. 5(a) presents memory usage caused by a GEMINI2
sensor for an EPL statement with a four-hour long sliding time window. The
event frequency was 1 per second and output was released every hour. Memory
utilization slowly increases for the first 4 hours (filling up the window) and then
remains constant.

Figure 5(b) presents results for a smaller, two-hour window. In addition, all
events are released every 2 hours. This causes memory usage to decrease pe-
riodically which is clearly visible in the graph. Overall, given the amount of
memory on modern computing nodes (Gigabytes), the memory overhead is not
significant.

1 Compare performance benchmarks for the Esper engine http://esper.codehaus-

.org/esper/performance/performance.html, Accessed 10.05.2011.
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Fig. 5. Memory utilization by sensors for two different EPL statements with long
sliding windows and event generation rate 1 per second

Network Utilization. Distributed processing can significantly reduce network
bandwidth utilization due to on-line monitoring. In order to investigate this,
we measured the network traffic in loopback interface between artificial sensors
with CEP engine and a Monitor working on same machine. The system was pro-
cessing statement select avg(usertime) as au from CpuInfo.win:time(10

seconds) output last every 10 seconds. The measurements have been made
for both centralized and distributed configurations. In the first case no statement
distribution was performed and the sensors were continuously sending all avail-
able monitoring data every second. In the second measurement the statement
was decomposed and distributed to sensors. As a result, partial aggregation was
performed in sensors and sent to the Monitor every 10 seconds.

While the employed request is simple, it is designed to generate a relatively
high network traffic when no data reduction is employed. Enabling the distri-
bution allowed to reduce the network traffic 5-fold. Given that the trade-offs
in additional CPU and memory consumption are minimal, this is a promising
result.

7 Conclusion

We have presented an approach to on-line monitoring of large-scale comput-
ing infrastructures based on Complex Event Processing. CEP, besides providing
the capability for on-line access to monitoring data streams, offers the follow-
ing benefits: (1) Advanced derived metrics can be defined on-demand simply by
using a continuous query language (such as EPL), without the need to develop
dedicated plug-ins, or even to reconfigure the monitoring system. (2) Query ca-
pabilities offered by the continuous query languages are more advanced than in
alternative approaches (SQL, XML/XQuery). (3) The derived metrics are cal-
culated in real-time by dedicated CEP engines, optimized for performance and
small footprint. (4) Monitoring overhead in terms of network traffic can be min-
imized by applying distributed processing and sensor-side CEP engines. Thanks
to the small footprint, the trade-off in increased CPU / memory consumption is
minimal.
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Future work concerns further development of CEP-based distribution mech-
anisms for various monitoring use cases.
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Abstract. Scalable Distributed Data Structures (sdds) are a user–level
software component that makes it possible to create a single coherent
memory pool out of distributed rams of multicomputer nodes. In other
words they are a tool for distributed memory virtualization. Applications
that use sdds benefit from a fast data access and a scalability offered
by such data structures. On the other hand, adapting an application to
work with sdds may require significant changes in its source code. We
have proposed an architecture of sdds called sddsfl that overcomes this
difficulty by providing sdds functionality for applications in a form of
an operating system service. In this paper we investigate usefulness of
sddsfl for different types of applications.

Keywords: Scalable Distributed Data Structures, operating system,
distributed memory virtualization.

1 Introduction

To be efficient, most of the software used in scientific or business data centers
requires significant amounts of resources. The Random Access Memory (ram)
is an especially valuable resource. Keeping data working sets in the ram allows
applications to increase their efficiency by reducing the number of i/o operations
[5]. A multicomputer is able to provide substantial quantities of the ram for user
applications. However, it is a system consisting of individual computers, so called
nodes, connected through a fast local network [28] where each of the nodes has
its own ram. Therefore, a form of a virtualization [5, 10, 11] has to be used in
order to create a unified, common ram address space for the multicomputer.

Scalable Distributed Data Structures (sdds) [14, 17] are a software compo-
nents that serve such a purpose. There are several variants of sdds but all of
them have some common properties [14]. Sdds usually store data in the ram
of multicomputer’s nodes called servers. Other nodes, called clients, access the
data. When a client accesses an item of data it computes the address of a server
that possibly keeps this item. To this end it uses some parameters called a client’s
image. The address calculation procedure provides a fast access to data stored
in the ram of any sdds server. Thus a common address space is created.

Every variant of sdds must follow some fundamental design rules [17,19] that
ensure the scalability and short data access time:

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 141–150, 2012.
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1. No central directory is used in the algorithm of computing a data address.
2. The sdds may change their size to adjust to current needs of clients.
3. The client’s image may become outdated due to such changes but it is up-

dated only when the client makes an addressing mistake.
4. No basic operation on data, such as inserting or deleting, requires an imme-

diate and atomic image update of multiple clients.
5. Incorrectly addressed data is send to the right server and the client which

made an addressing mistake receives an Image Adjusting Message (iam) that
updates its image.

The properties of sdds are very valuable for multicomputer systems. Yet, sdds
are typical user–level software components, so adapting any application to work
with them requires making significant changes in the source code of the applica-
tion or at least developing a middleware that would connect the application to
the sdds.

To simplify that process we have proposed a new sdds architecture for Linux
(sddsfl) [4]. In sddsfl a client of sdds is not a user–level software component
but a part of an operating system. In this paper we describe the latest updates
of the sddsfl architecture and experimental results of an sddsfl prototype
implementation for a chosen set of centralized, user–level applications.

This paper is organized as follows. Section 2 contains a short summary of
related work. In Section 3 a motivation for the research is given. The sddsfl
architecture is briefly described in Section 4. Results of an experimental evalua-
tion of sddsfl for different types of applications are presented in Section 5. The
paper ends with conclusions.

2 Related Work

The problem of distributed memory virtualization is a major subject of many
scientific works. This kind of virtualization may be applied for [5, 25]:

1. extending a physical memory,
2. implementing a shared memory in distributed environments,
3. supporting applications that provide remote services.

The first goal is usually achieved by creating a distributed swap area for a stan-
dard virtual memory mechanism like demand paging [28] or by establishing a
distributed ram–disk. NSwap [20] and Distributed Anemone (da) [8] are ex-
amples of a software that creates the distributed swap area. NSwap allows a
client node to use the memory of one of the server nodes as a swap space. If
the available memory size is not sufficient for the client’s needs he may decide
to migrate his pages to another server node. A client and a server communicate
with each other using the udp/ip protocol. Da uses its own low–level protocol
for communication. Unlike NSwap it transparently increases the size of a swap
space by adding the available memory of other multicomputer nodes when nec-
essary. The Network Ram Disk (nrd) [7] makes it possible to use a free memory
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of multicomputer nodes for creating a general purpose ram–disk. Similarly to
NSwap it uses the udp/ip protocol for communication and stores client’s data
in only one server node at time.

The shared memory is one of inter–processes communication means that is
available in multiprocessor systems with a common address space. In environ-
ments with no global address space such as a multicomputer or a numa multi-
processor the shared memory may be simulated by a Distributed Shared Mem-
ory dsm [21, 22]. There are three ways of implementing the dsm: as a soft-
ware, as a hardware or using a hybrid approach (mixed software and hardware).
Dash [12] and ddm [29] are examples of a hardware implementation of the dsm,
while ivy [13] and Clouds [1] represent the software approach. Flash [22] and
Paradigm [2] belong to the hybrid solutions.

Applications that provide remote services tend to operate on working data
sets that are larger than the available physical memory [5]. Applying a standard
virtual memory scheme like the demand paging is the usual solution to such an
issue. However, the virtual memory uses a hard disk as an additional memory
space what increases the number of i/o operations and leads to longer data
access time. In a multicomputer system this problem may be avoided by creating
a single memory pool out of the available ram of all nodes. Such an approach
is offered by Oracle Coherence Data Grid [23] and products of rna Network
company [25].

There are some similarities between the dht schemes like Chord [27], Sym-
phony [18], can [24] and Pastry [26] and sdds. However, the former ones address
only the data location problem, while the sdds are perfect data structures. 1

3 Motivation

Sdds have many properties that are useful in the multicomputer system. They
are scalable, reliable and provide short data access time. One of the limitations
of the original sdds design is its interface. It is inconvenient when porting a
centralized application into a distributed environment. This task would require
a significant changes in the source code of the application or at least an ex-
tra middleware that has to be developed. To avoid such an inconvenience the
sdds should use an interface which almost all applications are familiar with.
That requirement justifies implementing sdds as a part of the operating system.
Another reason for implementing sdds that way is their memory virtualization
property. Hence, since the operating system is responsible for the memory man-
agement, the sdds should be a part of it. In the next section we briefly describe
a variant of sdds, named sddsfl [3,4], where a client is implemented as a block
device driver, and so as a part of the operating system. Such an implementation

1 The dht schemes were designed to be used in p2p environments and they must cope
with such issues as frequent joining and leaving of network nodes or even network
partitioning. Such problems are less common in a multicomputer environment, and
are not addressed in most of sdds architectures. One of the exceptions is sdds

lh∗
rs

p2p [15] which was especially designed for p2p environments.
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of sdds may be used as a substitute of a hard drive. It is expected that the
more i/o requests an application performs the more it will profit from using
sddsfl. The goal of the research is to show when this claim is true, and to what
extent.

4 Scalable Distributed Data Structure for Linux

We have designed and implemented a new architecture of sdds for Linux oper-
ating system (sddsfl) that allows the applications to use sdds as a form of a
system service. It is based on the sdds lh∗ architecture which detailed descrip-
tion could be found in [17]. In this type of sdds the client uses a distributed
version of Linear Hashing algorithm [16] to find the addresses of sdds servers.
A record is a basic data unit in sdds lh∗. Records are grouped into lager data
units called buckets which are kept in the ram of sdds servers. As a result of
a record insertion some of the buckets may become overloaded. The sdds deals
with such an issue by splitting the buckets. The split operations are supervised
by a sdds component called a split coordinator (sc).

The main idea of the sddsfl is that the client is implemented as a block device
driver for Linux kernel. We made the decision basing on the basic properties of
sdds and block devices. Records in sdds are identified by unique keys. Each
data block which is the primary data unit of a block device has also a unique
identifying number. Sdds store records without processing their content, the
same way as the block devices. Other components of sddsfl are implemented as
a user–level applications that run on separate multicomputer nodes. The sddsfl
could be used by any application that uses a hard disk or a similar device,
without any modifications. It may also serve as a swap device for the demand
paging [28]. More details of sddsfl architecture could be found in [4].

First experiences with sddsfl have shown that running the whole client code
in the main thread of the kernel makes the system prone to catastrophic failures.
Therefore, we have made decision to divide the code of sddsfl client into two
parts. The fist part is directly responsible for handling the i/o operations issued
by user–level applications. The second part is a separated kernel thread that
takes care of network communication. It cooperates with the rest of sddsfl
client by exchanging data through a shared buffer. Such a separation of the i/o
code and the networking code allows for better exceptions handling and reduces
the risk of system crash. We have also made the sddsfl client configurable from
user–level with the use of sysfs [6].

5 Experimental Results

We have subjected the prototype implementation of sddsfl to a series of tests
in order to find out what kind of computations would benefit from using it.
The main design goal of the sddsfl is simplifying the migration of application’s
working data sets from a centralized environment to a distributed one. Therefore
centralized, non-distributed programs were chosen for the experiments. In our
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previous papers [3, 4] database applications and some preliminary numerical
applications were tested. This work extends evaluation of the sddsfl on a wider
spectrum of i/o–bound and cpu–bound applications [28], summarizes the results
and draws the conclusions from the research. We relate the results of sddsfl to
the performance of hard disks and distributed file systems.

In the first experiment the time of file sorting was measured. The Quick-
Sort was used as an algorithm for file sorting. Because of that the program is
an i/o–bound application. The tests were made for a set of files consisting of
2 KiB data records. The sizes of files range from 1 MiB to 1 GiB. The following
hard disks were used for the tests: the SeaGate Barracuda 80 GB, 7200 rpm
sata disk and the SeaGate Cheetah 73GB, 15000 rpm scsi Ultra–320 disk –
both of them installed in a pc computer with 1.5 GiB of the ram, the Max-
tor 160 GB, 7200 rpm, Parallel ata (pata) udma/133 disk – installed in a pc
computer with 2 GiB the ram and the SeaGate Barracuda 160 GB, 7200 rpm
sata 2 disk installed in a multicomputer node with 2 GiB of the ram. The
sddsfl ran on eight nodes of the same multicomputer equipped with two differ-
ent local networks – InfiniBand (inf) and Gigabit Ethernet (gbe). The total size
of sddsfl file (the total capacity of all buckets) was 4 GiB. A QuickSort was
used as an algorithm for the file sorting. Because of that the sorting program is
an i/o–bound application. Figure 1 shows the results. As expected the sddsfl
allows the application to faster sort files consisting of small records than the
majority of hard drives, even if it uses a relatively slow local network (Gigabit
Ethernet).

We repeated the file sorting experiment for distributed file systems, namely
Network File System (nfs) and lustre, and for sddsfl. This time we used
two sets of files, one with files consisting of 2 KiB records and second with files

0 200 400 600 800 1000

0

200

400

600

800

1000

1200

1400

File size [MiB]

T
im

e
[s

]

sata disk
sata 2 disk
pata disk

sddsfl (gbe)

sddsfl (inf)
scsi disk

Fig. 1. Results of file sorting (record size = 2 KiB)



146 A. Chrobot et al.

build of 4 KiB records. The tests were made with the use of Gigabit Ethernet
network. Figure 2 shows the results. Number in parentheses represents the size
of a record in bytes. In this test the sddsfl is slightly better then nfs but they
both outperform lustre.
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Fig. 2. Results of file sorting for dfs and sddsfl

In the next experiment we measured the performance of a program that uses
Boyer–Moore algorithm for pattern matching. Aside the previously described
hard disks and dfs, a usb memory (pendrive) was used, namely the 8 GiB
Kingston Data Traveler. If a single, short pattern is searched in relatively large
files, the efficiency of such a process depends mostly on the i/o performance
(Figure 3). However, such a task requires only a sequential access to data, so the
random access oriented sddsfl may be outperformed by hard drives in case of
big files. If several patterns are searched in a single run the task becomes cpu–
bound (Figure 4) and the performance of i/o requests becomes meaningless for
its efficiency.

In the last experiment the sddsfl was used as a swapping device in a mul-
ticomputer created from ordinary pc computers with 2 GiB of the ram each
one. Its performance was compared to the results of the SeaGate Barracuda
80 GB, 7200 rpm, sata 2 hard disk. A special program was used for this test
that allocates a memory area of a size equal to the size of the physical memory
and gradually writes zeros to this area. In each iteration the process of writing
starts from the beginning of the area and increases by 1 MiB. At some point the
operating system starts to swap pages to the external memory. The results in
Figure 5 show that when the activity of swapping becomes intensive the sddsfl
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works better as a swap device than the hard drive, because of its random ac-
cess nature. The obtained results are comparable to the results of Distributed
Anemone described in [8].
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6 Conclusions

The Scalable Distributed Data Structure for Linux (sddsfl) is a software tool for
distributed memory virtualization. Similarly to Oracle Coherence Data Grid it
changes the i/o–operations into ram references, but leaves a hard disk interface
for applications.

Results of the experiments described in Section 5 together with results pre-
viously presented in [3, 4] show that i/o–bound applications, like transactional
databases, generally perform their tasks more efficiently when they use sddsfl
rather than a hard disk. However, modern hard disks are equipped with their
own hardware cache memory, which reduces the time needed for performing
sequential i/o–operations [9]. The cache combined with a fast bus, like sata
2, allows contemporary hard disks to get closer to the results of the sddsfl,
provided that the applications require a sequential access to data and that the
sddsfl uses Gigabit Ethernet or a similar local network. In case of applications
that require a random data access, like the page swapping, the hard disk cache
becomes inefficient, hence better results of the sddsfl.

When compared to distributed file systems the sddsfl outperforms lustre
file systems and gives similar results to nfs for i/o–bound applications. All the
three solutions were tested with the use of a Gigabit Ethernet network. It is
worth to mention that the Network File System (nfs) is not a truly distributed
file system. It allows many clients to access a single hard disk, so its performance
is similar to the performance of a local hard disk 2. The efficiency of lustre for

2 Nfs v. 4.1 permits a client to access more than one disk in parallel. However, this
version was not used in our tests.
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i/o–bound applications is very low. The possible cause for this is that the work
of hard disks installed on separated nodes of multicomputer is not synchronized.

For the cpu–bound applications the differences in performance of all tested
solutions are negligible. The overall conclusion is following: the more random
i/o–operations an application does the more it benefits from using the sddsfl.

In the experiments the sddsfl cooperated with the InfiniBand network
through a tcp/ip protocol stack, which hampered its overall efficiency. A direct
communication with the use of the native InfiniBand protocols should further
improve the performance.

Although the sddsfl prototype implementation was developed for Linux op-
erating system its architecture is to some degree universal. It may be adapted
for any operating system that supports the block device paradigm. All appli-
cations that uses hard disks or similar devices may use the sddsfl almost at
once, without expensive modifications of their source code. The only changes,
that might be necessary, apply only to environmental variables or configuration
files of applications and could be performed by a system operator without any
assistance of a software engineer.
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Abstract. The paper presents a concept and an implementation of dy-
namic learning of compatibilities of services used in a workflow applica-
tion. While services may have the same functionality, they may accept
input and produce output in different formats. The proposed solution
learns matching of outputs and inputs at runtime and uses this knowl-
edge in subsequent runs of workflow applications. The presented solution
was implemented in an existing workflow execution system – BeesyBees.

Keywords: matching of services, workflow application, workflow exe-
cution, dynamic learning.

1 Introduction

Traditionally, a complex task can be defined as a workflow application which
is modelled as an acyclic directed graph G = (V, E) in which vertices V =
{t1, t2, . . . , t|V |} correspond to subtasks of the original task while edges E =
{e1, e2, . . . , e|E|} denote time dependencies between the subtasks [1]. For each
of the subtasks, a different service from a different provider can be assigned.
Integration of distributed services into workflow applications is associated with
the following steps: definition of a complex task, searching for services capable
of subtasks, QoS selection of services for subtasks, execution and reselection of
services if conditions have changed or previously selected services have failed.

Even though services may be able to perform subsequent parts of the given
complex task, it is necessary to determine that the output of a given service
can be understood properly by a service that follows. Consequently, learning
and knowledge about matching of inputs and outputs of services considered in
this work allow to determine particular services that would accept outputs of
previous ones. It is a technique that allows a more precise search in step 1 above.

2 Problem Statement and Related Work

Firstly, for definition of a complex workflow functional specification of particular
subtasks needs to be defined.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 151–160, 2012.
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Secondly, services capable of executing particular subtasks need to be found.
For instance, a service description in OWL-S [2] can specify its functions in
the service Category element. Descriptions of services can be matched with
functional descriptions of subtasks. This can be done through ontologies which
link concepts from both descriptions using e.g. the inheritance relation [3], [4].
Systems such as Meteor-S [5] allow for specification of both functional and non-
functional descriptions and finding services.

Thirdly, for each subtask, one service needs to be chosen so that a global
QoS criterion is optimized while meeting other QoS constraints. For instance,
the goal is to minimize the workflow execution time while keeping the cost of
selected services below the given budget [6]. Algorithms such as integer linear
programming, genetic algorithms, GAIN etc. can be used for this purpose [1].

Furthermore, should a failure occur in the service or new services appear,
dynamic reselection of services is applied [7].

There exist many functional service descriptions available in UDDI registries [8]
or Web-based registries of services such as www.service-repository.com,
www.xmethods.net/ve2/index.po, www.embraceregistry.net or webser
vices.washington.edu. Similarly, a previous approach of adopting Linux ap-
plications to services [9] uses descriptions of the functions performed by the
applications from the man pages or descriptions available in rpm or deb pack-
ages. However, there arises a problem with matching output data formats of
a service with input data formats of following services. The goal of this work
is to construct an automatic mechanism for learning compatibilities of outputs
and inputs of services and incorporation into future service selection decisions.
Namely, apart from selection of services capable of executing a particular func-
tion, such services are selected so that their allowed inputs are compatible with
outputs of already executed and preceding services.

3 Proposed Solution

3.1 System Architecture

The idea presented in this paper was implemented in an existing workflow exe-
cution system, BeesyBees [10,11] which is a module of BeesyCluster [12].

BeesyCluster can be regarded as a middleware for integrating and access-
ing resources like files and services located on various distributed servers and
clusters. It allows its users to construct, invoke and execute complex workflows,
prepared with the provided editor and using services available to the workflow
creator. Services can be chosen both from those published by the user modelling
the workflow as well as made available by other system users [7].

The BeesyBees system (its architecture is presented in Figure 1) was prepared
in order to add a decentralized and distributed workflow execution module based
on autonomous agents to the BeesyCluster. It is based on the JADE (Java Agent
DEvelopment Framework) [13].

The system consists of a number of nodes (called containers in JADE) where
agents can reside and migrate between them. All agents inside the system are

www.service-repository.com
www.xmethods.net/ve2/index.po
www.embraceregistry.net
webser
vices.washington.edu
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Fig. 1. Architecture of BeesyBees

able to communicate with each other using ACLMessages. Agents are capable
of executing workflow services, which according to BeesyCluster documentation
are programs called through the SSH protocol. All the data needed between
different executions are stored persistently in a database.

There are four types of agents essential for this work:

– GateWayAgent — an agent running in a Web Service deployed in a Java EE
server to mediate in communication between the BeesyBees and external
systems e.g. BeesyCluster. Allows for adding new and cancelling existing
workflows as well as notifications about progress of workflow execution.

– StatusAgent — agents responsible for monitoring an execution process of all
workflows delegated to BeesyBees. They decide which workflows should be
accepted and launched. They gather information about execution progress
and persist it in order to be able restart execution from the moment when
it was interrupted e.g. because of a system failure.

– RepositoryAgent — an agent responsible for storing information concerning
services used in workflows execution. Each agent can store and fetch some
information describing QoS of services.

– TaskAgent — A group of TaskAgents execute the workflow cooperatively
using negotiations [14]. They are able to distribute tasks between each other
in a decentralized way. Moreover, when one of them fails and disappears
from the system, another is able to pick an orphaned task.

3.2 Proposed Algorithm

It is assumed that the following descriptions of services are available to the
author of the workflow:
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1. a service with a functional description without semantic descriptions of input
and output,

2. a service with a full description contained in e.g. OWL-S,
3. a service with only input or output described in e.g. OWL-S.

In all cases, a description of input or output does not imply that such a descrip-
tion is complete. This results from the fact that for services with only a functional
description, input/output specification is generated during system runtime.

Secondly, we consider the following types of services with respect to handling
input and output formats:

– fixed formats e.g. able to accept only one format and returning output in
only one specified format,

– able to accept and/or return output in many different formats. As an exam-
ple, ImageMagick’s convert command is able to process and produce various
image formats (i.e. JPEG, PNG,GIF) depending on program input.

An important factor is the way to determine if the input of a service is compliant
with the output(s) of previous service(s); this can be accomplished by e.g. check-
ing that the size of the output is not smaller than a specified threshold. In the
implementation used by the authors, the exit status of a program representing
the service was examined. It is assumed that it is different from 0 for programs
which have failed.

This paper assumes service comparison based on the specification of input and
output handled by the services. It is appropriate to compare not only data types
but also additional formatting requirements (e.g. a service may accept on input
integers between 0 and 256); the specification of such requirements is possible
and supported by OWL-S [2] semantic description.

OWL-S descriptions consist of three top level values: (i) a service profile de-
scribing what a service does for a service-seeking agent, (ii) service grounding
that specifies technically how the service can be accessed, and (iii) a service
model that explains in detail how to interact with the service and what output
is generated based on the input.

For the purposes of this work only the service profile is used. This is be-
cause it contains details what types of input (hasInput parameter) and out-
put (hasOutput parameter) are handled by the described service. Each of the
inputs and outputs are described as RDF [15] entities denoting the type and
format of those parameters. Additionally, the profile provides a human read-
able service description (serviceClassification, serviceProduct, serviceName, and
textDescription parameters) and a service category allowing for categorization
and recognition.

The following algorithm for workflow execution is proposed by the authors.
The following are assumed:

1. a matrix that denotes matching between service sij and skl; MS(sij, skl)
denotes the matching score between the two services at the given moment.
sij means the j-th service capable of executing task ti. It is assumed that



Dynamic Compatibility Matching of Services for Distributed Workflow 155

the higher MS the better the matching. Range [0, 1] is assumed. Namely,
this is defined as MC(sij , skl)/C(sij , skl) in which MC denotes the number
of cases in which output of service sij matched input of service skl until now
where C denotes the number of successive runs of these services;

2. a description of each service sij that contains the following sets of fields:
– set I(sij) of fields that specify inputs accepted by the service,
– set O(sij) of fields that specify outputs that could be produced by the

service.
As mentioned above, this data may be given for some services, may be given
partially or not available at all when the system starts its operation.

The algorithm proceeds with the steps shown in Figure 2. For each task to
be executed, a list of services capable of executing the task is created. Then,
a selection algorithm is applied that selects the best service to be executed
considering both matching outputs and inputs of services. This is followed by
execution of the selected service and a learning phase that learns about matching
of outputs and inputs of services so that this knowledge can be reused in the
selection phase in the future.

Fig. 2. Activity Diagram for the Matching Algorithm

The service selection phase described in Listing 1.1 takes all services assigned
to current task tk (set Sk) and the services chosen for execution of all preceding
tasks (SPk). In order to provide learning about unknown services and updating
knowledge (some services can change their properties at runtime) a probability
threshold THRE SHOLD is used to determine whether to select a service ran-
domly (to learn about it) or rely on a selection based on the previous knowledge
about outputs and inputs of services. In the latter case, for each service in Sk

a matching score is calculated. The result consists of matching scores between
preceding services sij ∈ SPk and the considered service skl. Additionally, the
minimum value of matching scores multiplied by 1000 is added. This is to ex-
press that the minimum matching score between the current and previous service
is crucial in evaluation of the given service.

Individual matching scores are calculated according to a function presented in
Listing 1.2. In situations when both services have defined descriptions in OWL-
S (it is enough for skl to have I(skl) defined and sij to have O(sij) defined)
their compatibility is verified by checking if all output descriptions of sij form
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a subset of all input descriptions of skl. In cases where a service lacks required
description, the learned matching scores are returned. Additionally, in order to
avoid mistakes resulting from a small number of calls (C(sij , skl)), the matching
score is always maximum for services for which the numbers of runs are below a
defined threshold (C_THRESHOLD).

For services with equal matching scores, additional conditions should be taken
into account. For instance, a weighted score can be used that incorporates both
compatibility matching and service QoS [6]. In cases when all conditions are
equal, a service can be chosen randomly from those with highest matching scores.
The experiments in this work focus on the compatibility matching.

Listing 1.1. Get Best Service
function get_best(SPk , Sk) : Service
begin

p := rand(0, 1)
i f p < THRESHOLD

return skl : skl ∈ Sk ∧ l = rand(1, |Sk|)
end
for skl in Sk

mscoreskl
:= 1000 · minsij∈SPk

(score(sij , skl)) +
∑

sij∈SPk
score(sij , skl)

end
return skl : skl ∈ Sk ∧ mscoreskl

= maxlmscoreskl
end

Listing 1.2. Compatibility Scores between Pairs of Services
function score(sij , skl) : double
begin

i f I(skl) �= ∅ and O(sij) �= ∅ and O(sij) ⊂ I(skl)
return 1

else i f C(sij , skl) < C_THRESHOLD
return 1

else
return MS(sij , skl)

end end

Listing 1.3. Learning about Compatibility between Services
function learning(SPk , skl, success)
begin

for sij in SPk

C(sij , skl) + +
i f success(sij , skl) = true

MC(sij , skl) + +
i f MS(sij , skl) == 1 and C(sij , skl) > M_THRESHOLD

I(skl) := I(skl) ∪ O(sij)
end

else
i f I(sij) �= ∅ and O(sij) �= ∅ and O(sij) ⊂ I(sij)

intersection := O(sij) ∩ I(skl)
O(sij) := O(sij) \ intersection
I(skl) := I(skl) \ intersection

end end end end

Listing 1.3 presents the process of learning about service compatibility after
a particular task has been executed. Parameters taken by the function are all
preceding services (SPk), the currently executed service (skl) and flags indicating
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if the service was executed successfully for the output data passed from service
sij (success(sij , skl)).

For all preceding services (sij ∈ SPk) the number of successive calls is incre-
mented. The number of matching calls is increased only in the cases of successful
task execution for the data passed from the particular preceding service. Descrip-
tions made in OWL-S are being updated after successful execution in cases when
the matching score is maximum and the number of successive calls is above a pre-
defined threshold (M_THRESHOLD). In case of failures and if selection was
made on the basis of OWL-S descriptions, descriptions are updated irrespective
of the number of calls.

4 Experiments

Figure 3a presents a testbed workflow that consists of six tasks and two parallel
paths. For each task three different services were prepared. Those services differ
in input/output specification, that is they accept and produce different formats
of input and output parameters respectively. Figure 3b shows detailed specifi-
cation of accepted inputs and produced outputs by all services, where a set of
all possible formats is {a, b, c, d, e, f, g, h, i}. Figure 4a shows a matrix with real
matching scores that the algorithm ideally should learn. This shows only pairs
of services which are 100% compatible that is any output is accepted by the
following service. This shows pairs which are then tested in testbed workflow.
For test purposes, all services have output described semantically but no infor-
mation about input. All tests were performed using a distributed environment
with multiple agents, agent system nodes and service servers. During execution
each task agent was programmed to pick a service up to six times (in case if the
selected service appeared incompatible with the preceding ones selected previ-
ously). Workflow execution was cancelled beyond this value. The probability of
selection a service randomly was set to THRESHOLD = 0.3.

In order to show the way the algorithm learns, the same workflow was run
400 times. Each time different formats of initial inputs were used. At first, all
matching scores are equal which means that the algorithm does not have any

(a) Testbed Workflow (b) Specification of Original Inputs/Outputs for Services

Fig. 3. Testbed Environment
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oi
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

(a) Real (Designed) and Expected Match-
ing Scores

oi
1 0 0 1 0 0 1 0 0 0 0 0 1 1 0
1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 1 0 0 0 0 0 1 1 0
1 0 0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 1 0 0 1 1 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 1 0 0 0 0 0 1 1 0
1 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
1 0 0 1 0 0 1 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 1

(b) Compatible Services according to Se-
mantic Descriptions after 400 Runs

oi
1 0.11 0.06 1 0.08 0.07 0 0 0 0 0 0 0 0 0
1 1 0.09 0.02 1 0.05 0 0 0 0 0 0 0 0 0

0.07 0.01 1 0.06 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0.11 0 0 0 0 0 0 0
0 0 0 0 0 0 0.17 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0.09 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0.17 0.06 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0.11
0 0 0 0 0 0 0 0 0 0 0 0 0.17 1 0.79
0 0 0 0 0 0 0 0 0 0 0 0 0.19 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0.12 1
0 0 0 0 0 0 0 0 0 0 0 0 0.21 1 0.29
0 0 0 0 0 0 0 0 0 0 0 0 1 0.04 1

(c) Matching Scores after 400 Runs (d) Change of Matching Score in Work-
flow Runs

(e) Change of Probability for Finishing
Worklow in Runs

(f) Change of Service Selection Count in
Workflow Runs

Fig. 4. Tests Results

knowledge. The matrix shown in Figure 4c shows updated matching scores at the
end of all runs. Figure 4d shows how during subsequent runs the matching scores
between pairs {s11, s21} and {s13, s21} change converging to 1 and 0 respectively.
Figure 4e shows the probability of finishing a workflow successfully which grows
while gaining knowledge about services. The fact that it does not reach 1 stems
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from the fact that occasionally a service is chosen randomly. Figure 4f shows the
number of service selections which decreases in subsequent runs. Fluctuations in
results are caused by the THRESHOLD value. The ideal value for the testbed
workflow is equal to the number of nodes i.e. 6.

The matrix in Figure 4b presents which services are regarded as compatible
according to the updated semantic descriptions. Values of matching scores are
leading to designed values. Compatibility between pairs of services unchecked
during the test was detected. This can be useful for running new workflows. For
example, services s61 and s21 were not connected in the testbed workflow. Service
s61 has output described as O(s61) = {a, g, h, i}. Thanks to testing connections
between services s11, s12 and s21 it has been learned that the input for s21 is
I(s21) = {a, b, g, h, i} which implies compatibility between s61 and s21.

5 Conclusions and Future Work

This work presents a decentralized and distributed system for execution of work-
flows using autonomous agents. The presented method for selection of an appro-
priate service for a particular task is based on compatibility between pairs of
successive services. The presented algorithm uses two ways for comparison of
services: (i) on the basis of semantic descriptions of input and outputs handled
by services, and (ii) using matching scores between pairs of services describing
statistically successful successive calls.

Additionally, the algorithm introduces a learning phase allowing for updates
of an actual value of a matching score and updating semantic descriptions after
a predefined number of successful successive calls.

Currently, two services are compatible according to semantic description iff
descriptions of all outputs of a service form a subset of all descriptions of inputs
of another service. In the future, the system should be able to reason how data
flowing through services change in terms of formats in order to choose services for
which input and output sets descriptions have some intersection without a need
for a complete inclusion as above. Namely, knowing inputs, the algorithm is able
to determine possible outputs and consequently inputs and outputs of successive
services. Moreover, it would improve the process of updating semantic descrip-
tions both in cases of successful and unsuccessful task execution. Furthermore,
the approach will be tested on larger real world scenarios designed and deployed
at the Faculty of ETI, Gdańsk University of Technology along with tests when
scaling the system up.
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Abstract. Integrated Computational Material Engineering (ICME) is
an emerging discipline transforming materials science. Computational
engineering accelerates materials development, integrates design and
manufacturing, and unifies these with the engineering design optimiza-
tion process, as well as efficiently employs greater accuracy in simulation-
based design. Efforts to realize this enormous and complex goal
have catalyzed the development of the Engineering Virtual Organiza-
tion for Cyber Design (EVOCD), which provides a cyberinfrastructure
to accumulate and protect the intellectual property pertaining to se-
lected aspects of materials science and engineering that is generated by
the participants of the organization, to enforce the quality of that in-
formation, and to manage its complexity. The intellectual property in-
cludes experimental data, material models and constants, computational
tools and software artifacts, and the knowledge pertaining to multiscale
physics-based models for selected properties and processes. EVOCD has
been developed using open source components augmented with custom
modules such as a secure data repository integrated with online model
calibration tools. EVOCD is available at http://icme.hpc.msstate.edu

Keywords: Virtual Organizations, Knowledge Management, Cyberin-
frastructure, Service-Oriented Software Engineering, Data Repository.

1 Introduction

Integrated Computational Material Engineering (ICME) is ”an emerging disci-
pline that aims to integrate computational materials science tools into a holistic
system that can accelerate materials development, transform the engineering de-
sign optimization process, and unify design and manufacturing.”.[23] The notion
of ICME arose from the new simulation-based design paradigm that employs a
hierarchical multiscale modeling methodology for optimizing load-bearing struc-
tures. The methodology integrates material models with structure-property re-
lationships that are observed from experiments at different length scales. ICME
emerged because of the recent confluence of smaller desktop computers with
enhanced computing power coupled with the development of physically-based
material models and associated methods to experimentally validate in-situ rate
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effects.[21] ICME continues to evolve, its revolutionary vision progressively adapt-
ing to assimilate advances in information technology (IT), multiscale simulation
technology, and the underlying sciences of engineering (applied mathematics,
physics of materials, different length scales, etc.). This paper discusses the strate-
gies for applying the new IT approaches toward the realization of ICME goals.

Cyberinfrastructure is widely recognized for facilitating system-level science
through formation of Virtual Organizations (VOs).[29] To construct the VO, the
underlying cyberinfrastructure must enable collaborative research by support-
ing the creation of virtual workgroups and teams, facilitate access to resources,
and enhance problem-solving processes.[17] The literature describes many at-
tempts to create effective VOs by capitalizing on dramatic advances in IT.
[26][12][2][4][9][6][3][14][18]

While it is not possible to create a VO without cyberinfrastructure, the cyber-
infrastructure alone is insufficient to establish an effective VO: organizational,
human, and social factors are also important aspects of VO creation and op-
eration. For example, the participants must reorient their research methods to
work together as a community while still protecting their competitive advan-
tages. Moreover, standardizing patterns of interactions in organizations (e.g.,
fostering a ”corporate culture” for accumulating and sharing the intellectual
property)[27]-developing a signature rather than a mere Web site-is critical for
the initialization of a successful VO. Depending on the stated goals of a VO,
the solutions needed to create and operate the VO may vary. In this paper we
present the strategy for the development of a VO aimed toward satisfying the
specific needs of ICME, and it is illustrated by actual implementation of crucial
parts of the Engineering Virtual Organization for CyberDesign (EVOCD).

The remainder of the paper is organized as follows: in Section 2 we define the
goals and functionality of EVOCD and derive the requirements for the support-
ing cyberinfrastructure. Section 3 describes the functionality of the EVOCD and
the software engineering approach adopted to satisfy the requirements of the VO
explained in Section 4. Finally, Section 5 summarizes the outcomes of this work.

2 Engineering Virtual Organization for CyberDesign

The primary focus of the ICME vision is establishing a knowledge base ac-
cessible to the community-at-large for solving a plethora of disparate issues in
material science, applied mechanics, and engineering. This knowledge base re-
quires collection of experimental data describing phenomena at different scales
(exploratory experiments, calibration of material models, and validation of mod-
els), performing simulations at different scales (atomic, molecular, dislocation,
crystal-plasticity, macro-scale FEA), and linking all this information together
to determine structure-properties relationships, thereby leading to new concepts
and design of new materials. In addition to pushing the edge of material sci-
ence and solid mechanics by supporting the development and validation of new
methods, particularly in the area of multiscale modeling which requires mul-
tidisciplinary expertise, the knowledge base is further expected to be used for
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engineering design optimization and to support workforce training, including
enhancing academic curricula at the graduate level. [21]

It follows that managing the ICME knowledge base directs the principal ra-
tionale and objective for establishing a VO. Management entails gathering, de-
veloping, integrating, and disseminating experimental data, material models,
and computational tools, as well as their use for material and product design.
Consequently, the Engineering Virtual Organization for CyberDesign (EVOCD,
http://icme.hpc.msstate.edu) is dedicated to the accumulation of the ”intellec-
tual capital” pertaining to ICME. It is the organization’s capital that attracts
community participation in the organization. There are three critical aspects to
the process of accumulating capital in order to create a relevant organization:
(1) protection of intellectual property, (2) quality assurance of information, and
(3) the management of complexity.

In a competitive environment in which materials research and development is
performed, protection of the intellectual property is imperative. While the infor-
mation meant for public consumption must be clearly attributed to its creators,
the innovative research may require a restriction of information exchange to only
a narrow group of collaborators. The VO must support the former, and enforce
the latter. Quality assurance of the information must include its pedigree and
then its validation, followed with approval by either a curator or a peer-review
process. The management of complexity implies that the information must be
easily navigable through intuitive interfaces, yet all complexity of the underlying
infrastructure must be hidden from the end user. Furthermore, the information
must be understandable to students and directly and efficiently accessible to
practitioners.

Notably, many other currently established VOs facilitate widespread collabo-
rative efforts to process huge datasets and require a network of petaflop-range su-
percomputers to solve specific grand-challenge problems. In this sense, EVOCD
is different: it is a cyberspace where the participants can solve their own scientific
and engineering problems. On the other hand, EVOCD complements the efforts
of nanoHub [6], 3D Material Atlas [1], MatDL [7], NIST Data Gateway [10], and
when linked together with these portals, it will become part of the global ICME
cyberinfrastructure.

3 Functionality of EVOCD

EVOCD has been developed with the primary goal of accumulating and protect-
ing the intellectual property generated by the participants of the organization.
The portal provides powerful passage for accruing and exchanging community
knowledge as well as access to repositories of experimental data, material mod-
els and computational tools at different length scales, which together exploit the
integrative nature of ICME. To achieve this goal, EVOCD is comprised of four
primary functional components that are the foundation of the VO: (i) Knowl-
edge Management; (ii) Repository of Codes; (iii) Repository of Data; (iv) Online
Calibration Tools.
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3.1 Knowledge Management: Wiki

Knowledge management has been achieved by applying an ”architecture of par-
ticipation” as advocated and implemented by Web 2.0 concepts and technologies.
Tools like Wiki lead to the creation of a collective (read: peer-reviewed) knowl-
edge database that is always up-to-date with a structure that spontaneously
evolves to reflect the current state of the art. Therefore, we have chosen Wiki as
the mechanism for community-driven knowledge management.

The Wiki has become the faade for the EVOCD portal to accumulate the
knowledge pertaining to ICME. The Wiki captures the knowledge about different
classes of materials, material models at various length scales, and design issues,
from process and performance models, to optimization under uncertainty. In
addition, the Wiki provides direct access to resources, such as data and code
repositories.

The intellectual property is protected by configuring the Wiki server [8] to
restrict creation and editing of pages to only registered users verified by their
email addresses. As a result, all contributions are uniquely attributed to their
authors. Following the model introduced by Wikipedia, the quality of contribu-
tions is guaranteed by the Web 2.0 process but further monitored by the Wiki
editors.

3.2 Repository of Codes

ICME applies computational methods to material science, applied mechanics,
and engineering. A significant part of the knowledge is therefore captured as
software artifacts from implementing material models, as well as simulation,
modeling and optimization codes. Realization of ICME thus critically depends
upon providing the capability to gather and disseminate the information about
these software components, which is, in turn, an imperative part of the VO’s in-
tellectual capital. Consequently, EVOCD serves as the repository of open-source
codes contributed by the EVOCD participants. Each code is accompanied with
documentation (installation instructions, user manual, theoretical background,
and examples). In addition to the open-source material models, the repository
provides tutorials and examples for popular commercial or otherwise proprietary
codes (such as ABAQUS). The repository of codes complements the knowledge
captured in Wiki, enabling the EVOCD user to reproduce the results reported
there.

The intellectual property is further protected by restricting access to the actual
SVN repository. Only individually-approved contributors have the privilege to of-
fer new revisions. The contributed codes are made available to the general public
through a read-only SVN mirror that serves as the back-end for the Web SVN
client (open source ViewVC) [13]. All codes downloaded through the ViewVC
client are subject to Mississippi State University (MSU) policies and disclaimers.
Because of these arguably restrictive policies, many codes listed and documented
in the EVOCD repository are available from other locations specified in the reposi-
tory, typically web sites of their developers or vendors’ web sites. This is the
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beginning of the ”supply chain” envisioned as being the foundation of the global
cyberinfrastructure for ICME. The quality of the codes is assured by the fact that
they have been used to generate results described in the EVOCD Wiki.

3.3 Repository of Data

Experimental data is another critical component of the intellectual capital cap-
tured by EVOCD. At this time, EVOCD focuses on force-displacement, stress-
strain, strain-life, and materials characterization data, such as images of mi-
crostructure, all of which complement the data repositories offered by other
ICME cyberinfrastructure participants. The significance of the data types sup-
ported by EVOCD is that they are necessary for the development of Internal
State Variable (ISV) material models [22] sed in hierarchical multiscale model-
ing. The ISV-based models are described in detail in the Wiki pages, and the
codes that implement them are available from the repository.

This time, the intellectual property is protected at two levels. At the first
level, similarly to the protection of Wiki and repository of codes, only registered
users are allowed to contribute. At the second level, the data repository is under
access control. To this end, each data request is augmented with SAML-based
credentials that are checked against the custom-developed Community Autho-
rization Server (CAS) [19]. This authorization mechanism allows each user to
create a group and invite a selected group of users to participate in the group.
Only the members of this group are permitted (subject to CAS authorization)
to upload data to the group folder. The group moderator (the group creator,
or a group member appointed by the group creator) makes the decision to keep
the data private, i.e., visible only to the group members, or to make the data
”public” by granting read-only access to all users. This group-based access con-
trol mechanism is used to exchange restricted-access data, an essential tool for
collaborations within EVOCD.

The issue of data quality is addressed in several ways. First, metadata is pro-
vided to reveal the pedigree of the data. The information included in a metadata
record and pertaining to the data quality is generated automatically from the
user session and the mandatory header of the data file. The data is automat-
ically rejected by the system if any critical information is missing (e.g., initial
temperature or strain rate for stress-strain data). Most of the publicly available
data in the repository have been published in professional journals, thus verified
by a peer-review process, and described in the Wiki pages. Non-published data
are typically hidden from the general public (group data) and require verifica-
tion by the group members. Finally, data generated by students are subjected to
approval by a curator, most often an academic advisor, and therefore are stored
in private group folder. The assurance of the data quality is an example of stan-
dardizing the organizational patterns of interactions between the participants
defining the organization.
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3.4 Online Calibration Tools

The derivation of the material constants from the experimental data to be used
by a particular material model is referred to as model calibration, and the ca-
pability of model calibration is yet another distinguished feature of EVOCD.
Currently, the EVOCD provides three online models for calibration: Plasticity-
Damage, Multistage Fatigue, and Thermoplastic; there is also an Image Analysis
tool for material characterization [5]. The models are contributed to EVOCD
by MSU researchers, available to all users, and their quality scrutinized by the
community-at-large. In addition to an intuitive user interface, the tools are func-
tionally integrated with the data repository to facilitate their use; therefore, a
selected data set can be seamlessly loaded into the tool, even if it requires data
format translation. This defines two important patterns of use possible with
EVOCD: (1) the user uploads experimental data, performs model calibration,
and saves the material constants in the data repository; (2) the user searches
for the constants of a particular model of a particular material and retrieves the
constants for further analysis, typically to use them in numerical simulations,
such as finite element analysis using ABAQUS or other software.

4 Cyberinfrastructure for EVOCD

The third characteristic of an efficient VO is the management of complexity,
which relates to the implementation of the VO and its supporting cyberinfras-
tructure. One aspect of the management of complexity is the ease of use, which
involves, among others features, clarity of presentation, ability to find all rele-
vant information, availability and accessibility of the information for the user’s
purpose, and hiding from the end-user the intricacies of the underlying infras-
tructure. Ease of use is realized by the design and implementation of the user
interface. Another aspect of complexity management involves maintainability
of the VO, including its extensibility, scalability, and most importantly, hori-
zontal integration agility (to avoid messy stow-pipes) to coordinate disparate,
autonomous software components into a self-consistent, and perhaps self-healing,
unified system. The architecture of EVOCD is shown in Figure 1.

4.1 EVOCD Services

The cyberinfrastructure for EVOCD is a collection of interoperable, autonomous,
and platform-independent services to manage and streamline the process of gath-
ering and disseminating knowledge, including computational codes, experimental
data, and derived material properties. The Service-Oriented Architecture (SOA)
[16] enables the EVOCD portal to hide the details of the heterogeneous platforms
and allows integration of services on demand, promoting agility and dynamism
to distributed applications in the system. The SOA, which is defined by the Or-
ganization for the Advancement of Structured Information Standards (OASIS)
as ”a paradigm for organizing and utilizing distributed capabilities that may be
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Fig. 1. Multi-tier architecture of EVOCD. The heart of the system is the Enterprise
Service Bus that mediates the front-end requests (AJAX) as forwarded to it by the
Web layer, and integrates services provided by the back-end resources.

under the control of different ownership domains [25],” empowers the EVOCD
cyberinfrastructure to separate functions into distinct services which can be ac-
cessed, combined and reused over the network, providing flexibility to adapt to
new business prospects and challenges.

EVOCD cyberinfrastructure is comprised of a number of services, notably
data, transformation, plotting, computing and authorization services. The data
service is an aggregation of three independent ”sub-services”: metadata, stor-
age, and replica locator services. Each experimental data set in the repository is
stored in a file system. The storage service manages the part of the file system
designated to store the data sets. When a file is submitted to the storage ser-
vice, the service determines the location at which the file is to be stored, then
returns its URI to the caller. GridFTP is used as the transport mechanism for
moving the files to and from storage. The metadata service collects the infor-
mation about data sets maintained by the storage service. The information is
comprised of the file identification (a name assigned by the user, project, mate-
rial, etc.), the data provenance (owner, date submitted, etc.), tags which enable
querying of the metadata repository to find data sets matching particular search
criteria, and some additional information necessary to process the data (such as
transformation from raw force-displacement measurement to stress-strain rela-
tionship). When a new metadata record is created, the service returns its URI
so that it can be referred to at a later time. The metadata repository is imple-
mented as a DBMS application. The replica locator provides mappings between
the metadata records and data files. There are two significant advantages to
this approach. First, the decoupling of the metadata and data storage services
permits geographical distribution of the repository to accommodate different
storage and access control mechanisms, thus allowing for aggregation of data
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services maintained by different organizations. Second, the CAS authorization
service can be used to control access to metadata and data separately: the user
may be made aware of the existence of the data without being granted automatic
access to it. The details of the implementation can be found in [19].

The data services are augmented with independently developed and main-
tained transformation services, such as format translations (e.g., force-
displacement to true stress-strain) and data visualization services, implemented
as ESB service engines.

The computing service provides the capability of performing model calibra-
tion on selected data sets. The model calibration tools were originally prototyped
as the standalone MATLAB applications. However, the implementation of this
service required the conversion of an interactive application into a stateless ser-
vice with actual computations delegated to a back-end computational server.
Therefore, to accommodate EVOCD’s multi-user environment, a pool of com-
putational engines is scheduled in round-robin fashion. This approach has proven
very successful: during a training session, 30 simultaneous users were served by
a pool of just four computational engines without any noticeable latencies.

4.2 Service Integration

The final step in developing the cyberinfrastructure for EVOCD is the integra-
tion of the disparate autonomous software components (services) into a single
unified system capable of processing REST-based requests from the front end.
This is achieved by the employment of the Enterprise Service Bus (ESB) [15]
[24]. With ESB, requestors and service providers are no longer interacting di-
rectly with each other; rather they exchange messages through the bus, and
the messages can then be processed by mediations (e.g., message transforma-
tion, routing, monitoring). Mediations implement the integration and commu-
nication logic, and they are the means by which ESB can ensure that services
interconnect successfully. As a result, the ESB acts as the intermediary layer be-
tween a portal server and the back-end data sources with which the data portal
interacts [28].

EVOCD uses an open-source Apache ServiceMix [11] implementation of ESB.
An HTTP-binding component receives REST requests (for security reasons, for-
warded by the Apache Tomcat server). A custom router then directs them to
the corresponding service provider through the mediation process that involves
orchestration of services and message transformations (for the implementation
details, see [20]. For example, a simple GET request for a selected data set is
processed as a sequence of service invocations: request to the replica locator to
convert the data URI to a physical file location followed by GridFTP file transfer.
Similarly, to produce a plot visualizing a data set, the GET request parameter
must be transformed from the data URI to the location of the local copy of
the data retrieved from the repository. Note that this ESB-based mediation pro-
cess removes all the dependencies of the visualization service on the actual data
location. Finally, the model calibration tools require data in a strictly defined
format. In the case of format mismatch, the ESB automatically forces format
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translation. In general, ESB provides the necessary mechanisms for agile and
robust service integration on the one hand, and the bridge between REST and
SOA architectures on the other.

5 Conclusions

This paper describes the concept, design, and implementation of Engineering
Virtual Organization for CyberDesign (EVOCD) and its supporting cyberin-
frastructure. The goal of EVOCD is accumulation of knowledge pertaining to
selected aspects of materials science and engineering, and it is expected that
EVOCD will become part of the emerging global cyberinfrastructure for the
Integrated Computational Material Engineering (ICME). The attractiveness of
EVOCD lies in the intellectual capital amassed by the organization, and its fu-
ture success depends on the capability of protecting the intellectual properties,
enforcing the quality of information, and managing the complexity, both for end
user and the system developer. The intellectual capital gathered by EVOCD
includes experimental data, material models and constants, computational tools
and software artifacts, and the knowledge pertaining to multiscale physics-based
models for selected properties and processes.

The cyberinfrastructure for EVOCD is a collection of autonomous services,
following the Service-Oriented Architecture, with Enterprise Service Bus (ESB)
integrating the disparate services into a single unified system to exploit its ca-
pability of mediating messages. Furthermore, ESB serves as a bridge between
back-end services and AJAX- and REST-based front end services.

EVOCD has been operational for the last 18 months, supporting the research
communities involved in the DOE-sponsored Southern Regional Center for the
Innovative Lightweight Design, and the Three Nations (Canada, China, and the
U.S.) Magnesium Front-End Pilot Project (MFERD). In addition, EVOCD is
being extensively used to support the training of engineering graduate students
at Mississippi State University. EVOCD is accessible to the general public at
http://icme.hpc.msstate.edu.
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Abstract. Cloud computing infrastructures are in the spotlight of mod-
ern computer science. They offer flexibility and on-demand resource pro-
visioning. The automatic scalability feature enables cloud-based systems
to seamlessly adjust to the constantly changing environment of the Inter-
net. Despite their usefulness there is still much space for improvements.
In this paper we introduce an approach to automatic infrastructure scal-
ing, based on observation of business-related metrics. An implementation
of a tool based on this concept, using the previously developed SAMM
system, is also presented. Finally, we discuss evaluation results.

Keywords: cloud computing, automatic scaling, SAMM, Esper.

1 Introduction

Cloud computing platforms [1] become very attractive for a big part of computer
software industry. They offer flexibility and pricing options which are very inter-
esting especially from the end user point of view. The service consumer pay only
for the actually used resources and need not worry about providing/maintaining
them. All the required computing power, memory and disk space can be used on
demand [3]. Along with easy allocation and de-allocation, many cloud environ-
ments offer the ability to automatically add and remove new resources based on
the actual usage. These automatic scaling capabilities can provide a great value.
With such a tool it is possible to seamlessly deal with peak load situations and to
reduce the costs of handling a stream of service requests which form predictable
patterns.

Usually the rules behind a scaling mechanism are based on the observation
of generic metrics, e.g. CPU usage. This approach doesn’t require spending
additional time to develop customized tools and can be easily applied to many
different systems. Nevertheless, it is far from perfect. The decision on what to
do with the system is based mainly on low level data, which indicate that the
system is already undergoing high load or some resources are not being used. One
has also to keep in mind that it always takes some time to execute a particular
action. Launching a VM instance, connecting it to load balancing facilities and
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redirecting requests to a new node may take a while (e.g. a couple of minutes).
Therefore the action should be executed at such a moment when it will actually
improve the situation, instead of generating an undesired overload of the system.

It is common for monitoring tools to provide not only generic, low level in-
formation, but also describe the state of resources with metrics tailored to a
specific technology or even a particular instance of the system [2]. In many sit-
uations such information indicate how much resources will be required in the
near future. For example, if the length of the request queue for computationally
intensive tasks is rapidly growing, we may be sure that new virtual machines
should be deployed. On the other hand, when request buffers on virtual machines
are getting empty, the number of running virtual machines may be reduced.

Based on such observations we developed a novel approach to automatic scal-
ing. We propose to use higher level data, including customized metrics relevant
only to a particular system, as decision-making criteria for an auto-scaling mech-
anism. For example, a resources pool could be extended based on the requests
queue length. In this approach we assume that it is far easier for the user to de-
fine triggers for dynamic resource provisioning, when they use concepts directly
bound to the application to be scaled.

In this paper we present a modified version of Semantic-based Autonomic
Monitoring and Management - SAMM ([13], [14]) - a system which implements
the new paradigm, created as a result of our previous research. The tool enables
monitoring a set of customized, high level metrics. They describe the observed
system in the context of business objectives (e.g. defined in a Service Level Agree-
ment - SLA). Such an insight into the current situation helps administrators to
fulfill agreement terms.The latter can be considered by the user as a source for
triggering rules. SAMM was designed to independently modify the application’s
behaviour to prevent it from breaking the contract. Since this level of autonomy
isn’t always desired, we decided to enhance the system by support for custom
rules which trigger specified actions.

The rest of paper is organized as follows: Section 2 presents the already exist-
ing approaches in the area of automatic scaling. Next, in Section 3, we provide
more details on SAMM’s improvements and define (Section 4) an environment
which was used to test it. In Section 5 we discuss the obtained results. Finally,
Section 6 concludes the paper with a short summary and outlines plans for
future work.

2 Related Work

Depending on a user’s cloud usage model [4], automatic scaling may be under-
stood in different ways. If the user consumes a ready-to-use software application
(Software as a Service model [9]) the service provider is the party which is re-
sponsible for providing a proper amount of resources. In this case, from the end
user perspective automatic scaling is only a feature of the system, which allows
to easily satisfy the business needs when they arise. For example, a company
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which uses an on-line office software suite may need to provide such software
to ten new employees. Instead of buying expensive licenses and installing the
software on their workstations, the IT department requests for additional ten
accounts in the online service.

In the Platform-as-a-Service model ([8], [5]) the situation is similar. The
service provider is also responsible for the automatic scaling of application. How-
ever, usually the user has to explicitly request for the provisioning of such re-
sources. Providers are able to influence the applications by defining technical
constraints for the platform. This way they may ensure that the architecture
of the software deployed allows to add and remove some resources dynamically
without disrupting normal operation. The algorithm used in decision making
may be fine tuned to the underlying hardware and internal resource handling
policies of the provider. Usually the user can influence the automatic scaling be-
havior by setting boundaries of automatic scaling. This prevents from unlimited
consumption of resources and therefore from exceeding an assumed budget.

The last model - Infrastructure-as-a-Service (e.g. [6]) relies on virtualizing the
infrastructure elements like machines and network connections between them.
The user has to install and configure everything from scratch and on its top
develop their own applications. On the other hand the environment can be cus-
tomized in many ways, beginning with virtual hardware resources (e.g. CPU
power, storage size) and ending with their own server software. Automatic scal-
ing in this model is understood as provisioning on-demand more resources (e.g.
virtual machines, virtual storage devices). The user may delegate this task to
the service provider ([7]). Adding and removing certain elements is then usually
triggered by user-defined rules specifying what action should be taken when a
particular threshold is exceeded. These thresholds are limited to a set of metrics
predefined by the provider (e.g. CPU usage, storage usage). Many IaaS providers
also share an API for operations related to managing acquired resources. With
such a manner of interaction with infrastructure, the user may create own man-
agement tools which can implement custom automatic scaling policies.

In [10] the authors showed that automatic scaling algorithms working with
application-specific knowledge, can improve the cost-effectiveness ratio of appli-
cation deployed in cloud environments. Choosing metrics from a set of traditional
system usage indicators as CPU utilisation, disk operation and bandwidth usage
can be not helpful enough. The authors decided that the deadline for jobs exe-
cuted by the system can be used as a key factor for triggering the auto-scaling
of the system.

These examples show that currently existing automatic scalability mecha-
nisms can be improved. The presented tools focus on maximizing resource usage,
which doesn’t have to be the most important factor from the user point of view,
e.g. it may be more important to have a system with very short request response
time instead of high CPU usage. There are attempts to improve this situation,
but there is no generic tool which would be oriented towards easy adaptation to
particular systems.
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3 Enhancements to SAMM

Our approach to automatic scaling is based on the assumption that for each
application it is possible to choose a set of metrics, which can be used to esti-
mate how many resources will be required in the nearest future. On the most
basic level it should be sufficient to be able to predict whether more resources
will be required, or some of those currently running may be stopped. This way
the user can determine thresholds related to triggering some actions which in-
fluence the system in a desired way.The set of metrics is tightly coupled with
the application’s specifics. Even those metrics with the same names may have
different semantics if used in different contexts. To handle so much different in-
formation, a data representation capable of describing all the used concepts is
required. Additionally it should be possible to easily extend the monitoring sys-
tem with support for new data acquisition techniques. Measurements may have
to be gathered with use of several technologies.

Therefore, we have decided to use the result of our previous work on automatic
scaling - SAMM ([13], [14]), as a starting point. It uses ontologies to describe
resources and available metrics so it is possible to describe very different system
architectures. Owing to its module-based architecture based on OSGi bundles
and services, adding support for new technologies or replacing the existing com-
ponents doesn’t require much effort. To meet the requirement of being able to
define rules in a convenient way, we came to a new decision-making module. For
this purpose we exploited the Esper ([15]) event processing engine. The internal
architecture of the enhanced SAMM is depicted in Fig. 1.

Fig. 1. SAMM’s architecture after changes
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The flow of measurement activities is as follows:

1. Measurements are collected by the Transport Adapters which are a an ab-
straction layer over different data collection technologies, e.g. there are sepa-
rate adapters for Java Management Extensions (JMX, [18]) and Eucalyptus
([16]). They translate internal SAMM measurement requests to a specific
technology language, e.g. Java method invocations.

2. The Metrics module processes measurements according to metric formulas
into metrics values and sends them further to the Decisions module.

3. Values coming from Transport Adapters and Metrics modules are processed
by the Decisions module. Measurement and metrics values are processed by
Esper as events. They are filtered with the rules provided by the user.

4. Whenever the Decisions module detects exceeding a threshold, a request to
execute an action is sent to Action Executor. This component tries to modify
the infrastructure via a specific Transport Adapter.

The rules can trigger the execution of certain actions. An action may simply
be a Java code bound to a particular communication protocol. Due to Esper
conditions are very flexible (aggregation, filtering, etc.) the only limitation being
the flexibility of the Esper query language.

4 Evaluation of the Approach

To evaluate our approach to automatic resources provisioning we applied a scal-
ing policy based on business-metrics to a sample application - a simple service
which provides numerical integration (please see in Fig. 2). To easily scale the
number of nodes used for computation, the Master - Slave model was used. The
master node dispatches the requests (functions to be integrated) and one or
more slave nodes which perform numerical integration 1.

The Master node has three components:

– Slave Dispatcher - the main component of Master node. It handles the
queue of incoming integration requests. If any request is present in the queue,
Slave Dispatcher removes it from the queue and sends a numerical inte-
gration request to one of the registered slaves. A slave is chosen based on
the following algorithm:

1. Retrieve a proxy for another slave from Slave Resolver
2. If the slave is capable of handling a next request, send it to this node,

else go to point 1.
3. If there are no slaves capable of handling the request - wait (e.g., 5

seconds) and start from the beginning.

The slave node is capable of handling a next request, if it does not overflow
the buffer of numerical integration requests. The size of the buffer was set
up to 25 requests.

1 We do not focus on the details of the numeric integration algorithm.
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Fig. 2. Test application architecture

– Slave Resolver - the component in which slave nodes register. The informa-
tion about the addresses of nodes are later shared with Slave Dispatcher.

– Expression Generator - generates the functions to be numerically inte-
grated. The functions can be generated infinitely or read from a file in chunks
of a specified size.

4.1 Test Environment

All the tests were carried out on the FutureGrid project environment [17], on the
India Eucalyptus ([16]) cluster. This cloud environment provides the following
virtual machine types:

– m1.small - 1 CPU, 512 MB of RAM, 5 GB of storage space
– c1.medium - 1 CPU, 1024 MB of RAM, 5 GB of storage space
– m1.large - 2 CPUs, 6000 MB of RAM, 10 GB of storage space
– m1.xlarge - 2 CPUs, 12000 MB of RAM, 10 GB of storage space
– c1.xlarge - 8 CPUs, 20000 MB of RAM, 10 GB of storage space

The cluster contains 50 nodes and provides up to 8 small instances per node.
Since slave nodes didn’t use much storage space and memory, we decided to use
m1.small instances to run them. Master node’s application had higher memory
requirements so it had to use the c1.medium instance in this case. The advantage
of using the smaller instances was a possibility to control the number of CPUs
involved in the computation at a fine-grained level.

4.2 Test Cases

We evaluated our approach by comparing two strategies of automatic scaling.
The first one was based on a generic metric - CPU usage. The second one used a
business metric - the average time spent by computation requests while waiting
for processing in Slave Dispatcher’s queue.
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The rules used in the first approach are:

– Start another slave node virtual machine, when the average CPU usage of
slave nodes from the last 300 seconds was higher than 90%

– Stop a random slave node virtual machine, when the average CPU usage of
slave nodes from the last 300 seconds was less than 50%.

The rules exploited in the second approach are as follows:

– Start another slave node virtual machine, when the average wait time of
request from the last 300 seconds was higher than 35 seconds

– Stop a random slave node virtual machine, when the average wait time of
request from the last 300 seconds was less than 10 seconds.

One virtual machine had to be running all the time and at most ten instances
could get started automatically. Such limitations have to be considered be-
fore starting work with automatic scaling algorithms. Otherwise all available
resources could get consumed or the application could get shut down.

One has to bear in mind that these parameters were tuned up specifically to
the infrastructure on which we carried out the tests and its current load. The
FutureGrid Eucalyptus India cluster was used in parallel by other users, thus
e.g. the start time of virtual machines varied over time.

During the evaluation two test scenarios were considered. Both of them con-
sisted of 360 steps. Each step consisted of adding some functions to the Slave
Dispatcher’s incoming requests queue by Expression Generator and waiting 60
seconds. The first workload is used to verify if SAMM is able to properly adjust
the amount of resources to handle a constant stream of requests. The second
one shows that the system can optimize the amount of allocated resources to
meet certain performance goals. To ensure that two auto-scaling strategies will
handle the same situation, the functions to be processed (randomly generated
polynomials) were generated and stored into files before the actual test. During
the test run Expression Generator read functions from the file and passed them
further for processing.

The number of requests added to the queue was equal to 100 in each step of
static workload while being equal to

ExprNum(n) = 100 + 5 ∗ (n mod 80)

(where n is the number of iteration) of each step of dynamic workload.

5 Results

To compare the automatic scaling when using the selected strategies, we in-
vestigate the average wait time, Slave Dispatcher’s input queue length and the
number of running instances for both dynamic and static workloads (Fig. 3).
Such metrics can be used in SLA for describing the features which are crucial
from the business viewpoint.

For the dynamic workload, during the first half of an hour, SAMM launches
too many slave nodes. The number of integration requests is still growing, there-
fore machines are kept being busy.
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(a) Average wait time (b) Average wait time

(c) Queue length (d) Queue length

(e) Number of running instances (f) Number of running instances

Fig. 3. Test results for dynamic (a,c,e) vs. static (b,d,f) workload execution using two
strategies (CPU usage and Avg wait time)

In the first approach (generic metrics) it triggers the allocation of more and
more resources until there are too much slaves. When the queue gets completely
empty, CPU usage drops and SAMM terminates the unused virtual machines.
However, after some minutes, the queue gets refilled with new requests and now
more resources have to be provisioned to handle the load. After 90 minutes
(when the workload rapidly drops), the number of requests in the queue is still
large. In the second approach (business metrics) the rapid drop of the average
wait time also indicates that some resources should get released. However in
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this case, SAMM can recognize early that the workload still is increasing, and
provides necessary resources. Once the workload has dropped, the number of
running virtual machines is declining as well.

For the static workload the differences between the first and second strategy
are significantly smaller. Both strategies had a problem with setting up a proper
number of virtual machines that led to the accumulation of a big number of
requests.

Table 1 presents the average values of the metrics.

Table 1. Average metric value for AvgWaitTime and CPU strategies

Dynamic workload Static workload

Metric AvgWaitTime CPU AvgWaitTime CPU

Average instances number 4.53 4.96 2.31 2.12
Average wait time (ms) 203987.08 266362.25 161727.80 167754.66
Average queue length 934.06 1392.72 273.42 269.65

6 Conclusions and Future Work

The results on the use of two VM allocation policies presented in the paper
show that using the average wait time metric may have a positive impact on
the system from the business point of view. End users are mostly interested in
making the time required to wait as short as possible. By improving this factor,
the potential business value of the sample service shows an increase. Instead of
focusing on the CPU usage, the resource management algorithm was controlled
by a far more significant metric, what is important, from the business value
perspective.

The actual improvement highly depends on workload. For the first test sce-
nario, the system shortened the time spent on waiting by 62 seconds. However,
the second case showed that there are situations in which a strategy based on
generic metrics can be as good as the one based on business metrics.

Automatic scalability features of clouds are a response for very quickly chang-
ing environments. Adding resources on-demand can enable a running system to
smoothly handle high request loads and serve a bigger number of users. On
the other hand when the demand for certain resources goes down, the unused
capacity is disabled, what makes the operational costs lower.

The possibility to make the automatic scaling facilities more aware of business
rules makes them even more useful, especially in private cloud systems. With
better insight into what elements are running inside the system, scaling rules
can be fine-tuned to particular hardware and software setup. A proper ratio of
the resources allocated to the most crucial applications to the computing power
spent on low priority tasks can be automatically maintained.

Our research in automatic scaling area is ongoing. The nearest plans include
development of a user-friendly web interface for SAMM which would facilitate
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using the service. Another goal is to add support for other cloud stacks, e.g.
Open Stack [12] or Open Nebula [11] thus making SAMM interoperable in a
heterogeneous environment.

Acknowledgments. The research presented in this paper has been partially
supported by the European Union within the European Regional Development
Fund program no. POIG.02.03.00-00-007/08-00 as part of the PL-Grid Project
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Abstract. The paper presents model desribing the dynamics of the
background load for the computers in the network. For that model two
problems of the task allocation in the network are formulated: the prob-
lem of the stochastic control based on the background load model and
the stochastic control based on the Markov Decision Process Theory. The
open-loop and closed-loop control algorithms based on the stochastic fore-
cast and Markov Decision Process Theory respectively are presented.

Keywords: stochastic control, distributed computation, optimal task
distribution, Markov Decision Process.

1 The Manager-Worker Application and Heterogeneous
Network Model

The heterogeneous computer network and distributed application is a tuple <H,
A, F,GA > [3] [7], where:

– H = {M0, . . . ,Mm} is a set of m + 1 distinct machines which may commu-
nicate with any other one, may have a different architecture and for each
machine its performance parameters may vary in time. We assume that the
computer network is nondecomposable [1].

– A is a manager-worker application which is composed of sequential part t0
(manager task) and distributed part consisting of N identical tasks (workers)
VD = {t1, . . . , tN}.

– F is a mapping F : V →H which in case of the dynamic tasks allocation is
defined as a sequence of partial mappings, {Fn}n=0,1,..., i.e.⋃

n

F−1
n (Mi) = F−1(Mi) ∀Mi ∈ H F−1(M0) = t0 (1)

– GA =(V,E), is a scheduled task graph for the applicationA [1] defined by F ;

2 The Estimation of the State of Background Workload

The considered network H is composed of the computers of which resources
are shared between several users. Therefore, processes may appear randomly on

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 181–190, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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each machine M ∈ H , so the background load of M changes during the time.
For that reason the background load of the machine is allowed to be estimated
in the stochastic way.

Let loadj ∈ R+ be the additional background load for the machine Mj ∈ H .
Each value loadj corresdponds to the execution slowing down parameter ηj ∈ R+

[4][7] i.e. T
j

t = (1 + ηj) · T j
t , where T

j

t and T j
t are the pattern task execution

times with and without additional background load respectively. So, further we
will consider the bijection ψj : R+ � loadj → ηj ∈ R+.

Let’s consider Θj and Γj two ordered sets of thresholds (Kj ∈ N ):

Θj = {θj(i) ∈ R+, i = 0, . . . ,Kj : ∀i = 0, . . . ,Kj−1 θj(i) < θj(i + 1) } (2)

Γj = {ηj(i) ∈ R+, i = 0, . . . ,Kj : ∀i = 0, . . . ,Kj−1 ηj(i) < ηj(i + 1) } (3)

First of them refers to the physical measured performance parameters (like loadj)
and the second one to the slowing down parameters, and such that ∀Mj ∈
H ∀i = 0, . . . ,Kj ψj(θj(i)) = ηj(i). So, ∀Mj we obtained a set Sj = {0, . . . ,Kj}
which will be called the set of states of the background load.

Let’s define the mapping Ψj : R+ → Sj as:

Ψj(ηj) =

⎧⎪⎪⎨⎪⎪⎩
0 for ηj(0) ≤ ηj < ηj(1),
1 for ηj(1) ≤ ηj < ηj(2),
· · · · · ·
Kj dla ηj(Kj) ≤ ηj <∞

(4)

where ∀j ηj = ψj(loadj).
Now, the machine Mj∈H is in the state i ∈ {0, . . . ,Kj} of the background

load iff Ψj ◦ ψj(loadj) = i. Moreover, ∀Mj let define bijection ϕj
1 : Sj � i →

ηj(i) ∈ Γj .

3 The Model of Background Workload for the Computer
Network

We assume a tuple <℘,{Xn}n=0,1...,P , Γ, Θ, S, ϕ1> as the model of background
load for the computer network H where

– ℘ is a tuple <℘1, . . . , ℘m> where ∀j ℘j = (Ω,�, P j) is a probability space
where Ω is a set of events that M admits some average value of the execution
slowing down parameter in the time interval Δn for some n, identical for each
Mj . In consequence each evant corresponds with an unique state from Sj .

– {Xn}n=0,1... is a tuple < {X1
n}n=0,1..., . . . , {Xm

n }n=0,1...> of nonstationary
discrete stochastic Markov chains [6] which describe dynamic behavior of
state of background load for each Mj during the time. The dynamics is
given by:

P k(Xk
n+1 =j|Xk

n = i) = P k(Xk
n+1 =j|Xk

0 = i0, . . . , X
k
n−1= in−1, X

k
n = i) (5)

Each Xj
n : Ω → S corresponds to the time interval Δn, n = 0, 1, . . ..
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– P is a tuple <P1, . . . ,Pm> where Pk = {P k
n}n=0,1... is a sequence of Markov

transition matrices. The pkij(n) =P k
n (Xk

n+1 = j|Xk
n = i) is a probability that

process will be in state j of background load at the step n+1 provided that
it is in state i at step n for the machine Mk. If Π(n)=

(
Π1(n), . . . , Πm(n)

)
denotes the vector of the state probability distributions at the step n for
the network H and Πj(μ) = βμ = (β1

μ, . . . , β
m
μ ) is the initial distribution,

then the consecutive distributions may be evaluated according to the formula
[2][6]: Πj(n) = Πj(n− 1) · P j

n, n > μ.
– Γ is a tuple <Γ1, . . . , Γm> where Γj is the following set of tresholds for the

slowing down parameters:

Γj = {ηj(i) ∈ R+, i = 0, . . . ,K, : ∀i = 0, . . . ,K−1 ηj(i) < ηj(i+1) } (6)

– Θ is a tuple <Θ1, . . . , Θm> where Θj is the following set of tresholds for the
physical measured performance parameters for the machine Mj :

Θj = {θj(i) ∈ R+, i = 0, . . . ,K, : ∀i = 0, . . . ,K−1 θj(i) < θj(i+1) } (7)

Moreover, ∀j = 1, . . . ,m ∀i = 0, 1, . . . ,K ψj : Θj � θj(i) → ηj(i) ∈ Γj ;
– S is a tuple <S1, . . . , Sm> where Sj is the set of states of background load

for the machine Mj ∈ H and card(Sj) = card(Γj) ∀j.

– ϕ1 is a tuple <ϕ1
1, . . . , ϕ

m
1 >, ∀j = 1, . . . ,m ϕj

1 is a mapping ϕj
1 : Sj → Γj .

Having the stochastic processes {Xj
n}n=0,1,... which describes dynamic behavior

of the background load of Mj and bijections ϕ1 and ϕ2 ( ϕ2 = <ϕ1
2, . . . , ϕ

m
2 >

where ϕj
2 : Γj → R+, and ϕj

2(ηj) = (1 + ηj) · T j
t ), then we may define the

new stochastic processes {T j

t (n)}n=0,1,... describing the dynamic behavior of the
times required to execute the single task t ∈ VD on the machine Mj with the
background load. Moreover, ∀j ∈ {1, . . . ,m}, n = 0, 1, . . .

T
j

t (n) = ϕj
2 ◦ ϕ

j
1(Xj

n)) = (1 + ηj(X
j
n)) · T j

t (8)

4 The Stochastic Control Based on Background Load
Model

The control policy u is the sequence {Fn}n=μ,μ+1,... where the subscript μ ≥ 0
denotes the starting time epoch τμ (the time step of the nonstationary stochastic
process describing dynamic behavior of the background load) of the realized
policy.

Let Uμ be the set of admissible policies i.e. policies which accomplish defined
limitations. The policy u ∈ Uμ is an admissible policy if ∃q ∈ (0, 1], ∀j =
1, . . . ,m ∀n=μ, μ + 1, . . .

q ≤ P j
n

((
T

j

t (n) · card(F−1
n (Mj))

)
< Δn

)
≤1 (9)

where P (·) denotes the probability and Δn = [τn, τn+1) denotes the time interval.
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Let Cn(βμ, s, u) denotes the cost function for the step n=μ, μ + 1, . . . of the
realized policy u ∈ Uμ (consequently, that is the cost of the function Fn applied
in the period [τn, τn+1), n = μ, μ + 1, . . .) defined for the initial distribution
βμ = (β1

μ, . . . , β
m
μ ) of the state of background load in the time epoch τμ and

achieved state s = (s1, . . . , sm), sj ∈ Sj in τn. It is defined as:

Cn(βμ, s, u) = max
Mj∈H

(cj(n, sj , u)) (10)

where cj(n, sj , u) is an immediate cost function for machine Mj ∈ H that is in
the state sj ∈ Sj . Also, let’sassume that ∀u ∈ Uμ, ∀μ and τn ≥ τμ, and for each
initial distribution βj

μ and each state in the time epoch τn for Mj there exists

an expected value Eβj
μ

(
cj(n, sj , u)

)
[2][6].

Let CZ(βμ, u) be the finite horizon cost for the network H related to the policy
u ∈ Uμ provided in the time period [μ, Z], (Z <∞). It is defined as:

CZ(βμ, u) = Eβμ

(
μ+Z−1∑
n=μ

Cn(βμ, s, u)

)
(11)

We define the control problem as:

Find a policy u ∈ Uμ that minimizes CZ(βμ, u) over the whole Uμ .

5 The Stochastic Control Based on MDP

The following control problem is based on the theory of Markov Decision Process
(MDP) [5][6]. Let T = {τμ, . . . , τμ+Z−1} be a set of decision epochs correspod-
ning to the beginning of the period Δn, n = μ, μ+1 . . . and Z ∈ N , Z <∞. We
assume that the last decision is made at τμ+Z−1.

In each decision epoch the decision agent receives the state s=(s1, . . . , sm)∈S
of network H in which may choose an action a = (a1, . . . , am) ∈ As = A1

s1 ×
. . . × Am

sm , where Ak
sk is the discrete set of actions which may be chosen if the

state of machine Mk is sk. Moreover, let’s assume that the actions are chosen in
deterministic way.

As a result of choosing the action ak ∈ Ak
sk in the state sk at the decision epoch

τi is an immediate cost function ck(i, sk, u) (u ∈ Uμ) and the state of machine
Mk in the decision epoch τi+1 is determined by the probability distribution
pkτi(·|sk, ak).

A decision rule describes a procedure for action selection in each state and
decision epoch τi. It is defined as a function dτ : S � s → dτ (s) ∈ As, where if
s = (s1, . . . , sm) then dτ (s) = (d1τ (s1), . . . , dmτ (sm)).

The control policy is defined as the sequence u = (d0, d1, . . . , dZ−1). We will
use the finite horizon Markov deterministic policies [5][6] in order to control
the execution of the distributed application. It means that each decision rule
depends on previous state of the machines whole workload and selected action
in this state, and each action is chosen with certainty. The whole workload for
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the machine will be understood as the common load of background and load
derived from the execution of the task belonging to an application A.

The admissible policy u is defined by the formula (9) where if sn = (s1n, . . . , s
m
n )

and an = (a1n, . . . , a
m
n ) than

{dn(sn)}n=0,1,...,Z−1 = {an}n=μ,μ+1,... = {Fn}n=μ,μ+1,... (12)

In the finite horizon Markov decision processes we define the sample space ΩH

for the network H as ΩH = {S ×A}Z−1×S so the elementary event ωH ∈ ΩH

is a sequence of states and actions, that is: ωH = (s0, a0, s1, a1, . . . , aZ−1, sZ)
∀n sn = (s1n, . . . , s

m
n ), an = (a1n, . . . , a

m
n ).

Now, let’s define for each machine Mk the sequence of random variables

X
k

i (ω), ω ∈ Ω, i = 0, 1, . . . as X
k

i : Ω → Sk and X
k

i (ω) = ski where ski is
the state of the common load of background and load derived from the exe-
cution of the task belonging to an application A (the whole workload for the
machine). And additionaly let’s define the sequence of the random variables
Y k
i (ω), which ∀i admits values Y k

i (ω) = aki ∈Ak
sk

. If we denote by hk
i the history

for the machine Mk ∈ H i.e.

hk
i = (X

k

0 = sk0 , Y k
0 = ak0 , . . . , Y

k
i−1 = aki−1, X

k

i = ski ) (13)

then the dynamic behavior of the state of the whole workload of machine Mk is
given by:

P k
u

(
X

k

n+1 = j|hk
n = (hk

n−1, a
k
n−1, i), Y

k
n = akn

)
=

P k
u

(
X

k

n+1 = j|Xk

n = i, Y k
n = akn

)
= pkτn(j|i, akn) (14)

i.e. the next state of the whole bachground depends only on the current state

and chosen action in this state. The state probabilities Π
j
(μ+i+1) for random

variables X
k

μ+i+1 at the decision epoch τμ+i+1 can be evaluated by:

Π
k
(μ + i + 1) =

∑
j∈Sk

pkτμ+i
(j | skj , akj ) ·Πk

(μ + i)) (15)

where Π
k
(μ + i) is the probability distribution at the decision epoch τμ+i.

The computation of the probability distribution Π
k
(μ + i) is based on the

probability distribution of the state of background load. Let’s sign ri = η(i+1)−
η(i) and αi = δ/ri where δ is the load derived from the task of an application A.
Let’s assume that the load δ is less then ri, then the evaluation of the probability

distribution Π
k
(μ + i) is as follows (in matrix form) ([4]):

(
Π

k
(n)

)T

= B ·
(
Πk(n)

)T
= B ·

(
P k(n) ·Πk(n− 1)

)T
(16)
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The superscript T denotes the matrix transposition and matrix B has the fol-
lowing form: ⎡⎢⎢⎢⎢⎣

1− α1 0 0 0 · · ·
α1 1− α2 0 0 · · ·
0 α2 1− α3 0 · · ·
· · · · · ·
0 . . . αK−1 1

⎤⎥⎥⎥⎥⎦ (17)

The finite horizon cost for network H for the deterministic Markov policy u ∈ Uμ

and for the finite horizon Z is defined as:

CZ(βμ, u) = Eu
βμ

(
μ+Z−1∑
n=μ

Cn(n,Xn, dn(hn)

)
(18)

where hn = (hn−1, an−1, s), and βμ = (β1
μ, . . . , β

m
μ ).

Now, the control problem defined in Section 4 lies in finding the policy u ∈ Uμ

that minimizes the defined above finite coast function (18) over the Uμ.
The existance of the optimal Markov deterministic policy is guaranteed by

the following theorem [6]:

Theorem 1. Assume S is finite or countable. Then if

1. ∀s the set of actions As is finite, or
2. As is compact, than the expected cost function Cn(βμ, s, a) for the step n

of the realized policy is continuous in point a ∀s ∈ S, and ∃C < ∞ for
which Cn(βμ, s, a) ≤ C ∀a ∈ As, s ∈ S, and pkn(j | skn, akn) is continuous in
akn ∀j ∈ Sk and skn ∈ Sk and n = μ, . . . , Z − 1

then there exists a deterministic Markovian policy which is optimal.

6 The Policies of Tasks Distributions

In thise paper will be considered policies which are leading to the fastest ex-
ecution of an application A. They fall generally in two groups: the group of
deterministic policies and the group of stochastic policies based on the described
Markov models.

The following policies from the first group: single task, multiple task, dynamic
single distribution, stationary are described in details in [3] [4].

In order to execute one of the stochastic policies, we introduce the following
classes of agents: state agents - that monitors the load during the time and
prepares the state forecast for each machine in H ; decision making agents, that
are involved in establishing task allocation policy based on actual forecast of the
average state of each machine in H (or forecasted computation time of task) [7].
Below there are presented two algorithms belonging to the group of stochastic
policies: first one based on the background load model (see Sect. 3) (open loop
control) and the second one based on the MDP model (see Sect. 4) (closed loop
control) [4].
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6.1 The Open Loop Control

The following algorithm is based on the average state of the background load
forecast generated only once in the starting time epoch τμ for each machine
in H . More precisely, this policy rely on the computation of the distributions
Πk

i (n) having the initial distributions of the state of background load βk
μ for

each machine Mk ∈ H recursively for each time epoch according to the formula:

Πk
i (n) =

∑
j∈S

pkji(n− 1) ·Πk
j (n− 1), τn > τμ (19)

Now, having the vector of the state probabilities for each time epoch we may com-
pute the expected execution times of one task on each machine in each time step
which leads to the computation of power coefficients λj for all machines Mj as well
as power coefficient Λ for the network H defined as: λj = 1

T
j
t

, Λ =
∑m

j=1 λj .

The consecutive decision rules (or functions Fn) allocates the subsets of tasks
F−1(Mk) for which cardinal numbers are proportional to the machines expected
power coefficients for the n = μ, μ + 1, . . . , μ + Z − 1.

Algorithm 1

Step 1: n = μ; V (n) = VD;

Step 2: foreach( Mj ∈ H ) let λj(n) = 1

E
β
j
μ
(T

Mj
t (n))

;

C =
∑

Mj∈H �Δn · λj(n)� ;

Step 3: if( C < card(V ) )

{ for( each Mj ∈ H )
let F−1

n (Mj) ⊂ V (n) such that card(F−1
n (Mj)) = �Δn · λj(n)� ;

V (n + 1) = V (n) \⋃j F
−1
n (Mj);

n = n + 1; goto 2;}
else /* last step */

{ Λ =
∑

Mj
λj(n);

foreach( Mj ∈ H ) �j =
λj(n)

Λ
;

foreach( Mj ∈ H )

let Wj = F−1
n (Mj) such that the set

{
| card(F−1

n (Mj))

card(V (n))
− �j |

}
is minimal over {Wj}Mj∈H and

⋃
j
Wj=V (n)

;

}
Step 4: /*** start execution for the horizon Z ***/

The expected time of a single task execution on the machine Mk in each time
step n = μ, μ + 1 . . . is as follows:

Eβk
μ

(
T

k

t (n)
)

= Eβk
μ

(
ϕk
2 ◦ ϕk

1(Xk
n))

)
={

(1 + ηk(j)) · T k
t dla n = μ∑K

j=0

(
Πk

j (n) · (1 + ηk(j)) · T k
t

)
dla n > μ

(20)
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so the expected cost for one step Cn(βμ, sn, u) of the realized policy u =
{Fn}n=μ,μ+1,... is as follows:

Cn(βμ, sn, u) = (21){
maxFn(Mk)

{
νk(n) · (1 + ηk(j)) · T k

t

}
for n = μ

maxFn(Mk)

{
νk(n) ·

∑Kk

j=0

(
Πk

j (n) · (1 + ηk(j)) · T k
t

)}
for n > μ

where sn = (X1
n, . . . , X

m
n ), νk(n) = card(F−1

n (Mk)) and since u is an admissible
policy, ∀k = 1, . . . ,m functions F−1

n (Mk) satisfy the constraint (9).

6.2 The Closed Loop Control

The first decision in the starting time epoch τμ in the closed loop algorithm is
analoguous to open loop algorithm (the choice of action is based on the average
states of the background load of each machine). The choice of the consecutive
decisions (concerning the task subsets allocation) is based on the forcasted av-

erage states of the whole workload for each machine in H (Π
k
(n) distributions)

generated in each time epoch τn, n = μ + 1, . . . , μ + Z − 1. In other words, in
each time epoch τn, the choice of action is based on the generated forecasted
computation time of elementary task only for the next step and successively
repeated in each time epoch.

Algorithm 2

Step 1: V (n) = VD;

foreach( Mj ∈ H ) let λj(μ) = 1

E
β
j
μ
(T

Mj
t (μ))

;

foreach( Mj ∈ H ) /* computation is based on Πj(μ) */
let F−1

μ (Mj) ⊂ V (μ) such that card(F−1
μ (Mj)) = �Δμ · λj(μ)� ;

/*** start execution in the Δμ ***/
n = μ + 1;

V (n + 1) = V (n) \⋃j F
−1
n (Mj);

Step 2: foreach( Mj ∈ H ) /* computation is based on Π
j
(n) */

let λj(n) = 1

E
β
j
μ
(T

Mj
t (n))

;

C =
∑

Mj∈H �Δn · λj� ;

Step 3: if( C < card(V ) )

{ foreach( Mj ∈ H )

let F−1
n (Mj) ⊂ V (n) such that card(F−1

n (Mj)) = �Δn · λj(n)� ;

/*** start execution in the Δn ***/

V (n + 1) = V (n) \⋃j F
−1
n (Mj);

n = n + 1; goto 2; }
else /* last step */

{ Λ =
∑

Mj
λj(n);
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foreach( Mj ∈ H ) �j =
λj(n)

Λ
;

foreach( Mj ∈ H )

let Wj = F−1
n (Mj) such that the set

{
| card(F−1

n (Mj))

card(V (n))
− �j |

}
is minimal over {Wj}Mj∈H and

⋃
j
Wj=V (n)

;

}

The expected time of a single task execution on the machine Mk in each con-
secutive time step n = μ+ 1, μ+2 . . . is as follows:

Eβk
μ

(
T

k

t (n)
)

= Eβk
μ

(
ϕk
2 ◦ ϕk

1(X
k

n))
)

=

K∑
j=0

(
Π

k

j (n) · (1 + ηk(j)) · T k
t

)
(22)

so the expected cost for one step Cn(βμ, sn, u) of the realized policy u =
{an}n=μ+1,... = {Fn}n=μ+1,... is as follows:

Cn(βμ, sn, an) = max
ak
n∈Ak

skn

⎧⎨⎩ν(akn) ·
K∑
j=0

(
Π

k

j (n) · (1 + ηk(j)) · T k
t

)⎫⎬⎭ (23)

where sn = (s1n, . . . , s
m
n ), νk(n) = card(F−1

n (Mk)), an = (a1n, . . . , a
m
n ), and be-

cause u is an admissible policy, so ∀n ∀k akn has to satisfy constraint (9). For
the first time step (i.e. for n = μ) the expected time of a single task execution on
machine Mk is defined by (20) and the expected cost for the first step of realized
policy is defined by (21).

7 Conclusions and Future Works

Having based on the made assumptions regarding the model of heterogeneous
computer network and distributed application (see Sect. 1), was defined stochas-
tic model which describes the dynamics of the background load for the computers
in the network (see Sect 3). Then, there were formulated two control problems
for the task allocation, first one based on the presented stochastic model of
background load and the second one based on the theory of Markov Decision
Processes (see Sect. 4 and 5).

Next, there were defined two stochastic policies (algorithms) which are lead-
ing to the fastest execution of the distributed application. First algorithm was
presented for the case of the single task execution time forecast for the whole
horizon of the calculations i.e. the control is determined only once at the initial
time epoch - open-loop control (see Sect. 6.1). The second one was presented for
the case of the dynamic control i.e. the control is dynamically determined for
each time step and the single task execution time forecast is based on the actual
state of the whole workload of computer and on the possible decision - closed
loop control (see Sect. 6.2).

The closed loop control usually is better than the open-loop one in case of
computation on the horizon consisting of more than one time period because
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it provides the better estimation of computational power of each machine (i.e.
power coefficients for each machine and power coeffcient for the network - see
Section 6.1) for each time epoch during computation. The open-loop algorithm
prepares estomation of the computational power for each time period only at
the starting time epoch, so it is only forecast of the computational power.

At the starting time epoch both policies give the same control but in the next
time epochs the workload of machines may change contrary to the workload
forecast made at the beginning by the open-loop algorithm. The closed-loop can
improve the control because it dynamically checks the actual state of machine
workload and because the control is determined not only on the actual state of
background load but also on decision made in given state.

The presented models and policies of task distribution can be utilized rather
to the coarse grained large applications consisting of the great number of identi-
cal processes for example the phase of matrix-formulation in CBS computation
(topological decomposition for the CAE computation) [3]] [4] as well as for other
problems like on-line learning [5] (closed-loop control). Moreover, prediction of
the task time execution sholuld be done by the identical pattern task for each
machine in the heterogeneous network and on this basis should implement the
allocation of the tasks of the application.

The worker tasks communicate with the manager task under the random
network load, so communication workload of the network could be estimated in
the stochastic way too. Threrefore, the analogous model of network load and
algorithm of stochastic control for the process distribution in the heterogeneous
network will be defined. Moreover, the pair of background load of the machine
and the network load could be used to define the modification of the algorithm
of the task distribution and to define the new cost function in each time epoch
(closed-loop control).
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Abstract. Remote visualization using mobile devices has been a chal-
lenge for distributed systems for a long time. Large datasets, usually
distributed on different servers require high network bandwidth and sig-
nificant computational power for effective, real time rendering. The prob-
lem is getting more complex when data are visualized in collaborative
environment, where every user can interactively participate in rendering
session.

In this paper we present a distributed system we have developed for
the interactive visualization of remote datasets on variety of mobile de-
vices such as laptops, tablets and cell phones. In our system mobile
users can join sessions, where they can collaborate over remote data in
real time. Every user can watch presentation or can become presenter.
If needed, users can individually manipulate the data without affecting
rest of participants.

During these sessions all the data are generated on dedicated ren-
dering servers, compressed on-the-fly by the encoding machines using
video codec and progressively sent to participants as video streams. Ev-
ery video stream is dynamically adapted to individual capabilities of
users’ devices and their network bandwidth. Our system works in a dis-
tributed environment, where every machine serve different functionality,
like data storage, frames rendering or video compression. Successive parts
of processed data are streamed between different servers in real time to
achieve highly interactive visualization with minor latency. Based on this
model we took off most of the computational power from client’s appli-
cation so it can be run on almost any kind of modern mobile device. We
were also able to achieve very high video quality and frame rates. System
can work with 2D, 3D and even animated 3D data, all of them being pro-
cessed remotely in real time. At the end of this paper we present some
preliminary results of performance test we have obtained using sample
multidimensional datasets.
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1 Introduction

Pervasive computer technologies have redefined group collaboration long time
ago. Modern collaboration techniques rely mostly on the Internet and mobile
communication systems, which provide almost unlimited access to the global
information resources. Presently available solutions for computer-based cooper-
ation could be divided into four categories depending on a place-time relation
of participating users, as presented in [1] (same time - same place, same time
different place, different time same place, different time different place). The
collaboration, which involves simultaneous presence of all users is usually called
synchronous communication. Otherwise it is called asynchronous communica-
tion. Most popular examples of today’s asynchronous systems are email and
discussion boards. On the other hand, exemplary synchronous techniques would
be instant messaging, chat, shared boards, teleconferencing or videoconferencing.

Modern collaboration techniques could also be effectively adopted into the sci-
entific activities. Progressive globalization causes, that many scientific projects
involve cooperation of researchers from different departments, universities or
even countries. With the use of the Internet and computer technologies the col-
laboration is much easier today then it used to be in the past. However, in
some situations it is still a challenge to virtually bridge the distance between
participants, especially when the collaboration is centered on the large datasets,
distributed among storage centers around the globe. Many modern scientific ex-
periments and simulations are so complex, that they must be realize on dedicated
computer clusters. Obtained data volumes are usually so large that they cannot
be easily transferred between distant users, and must be stored on the dedicated
servers.

One of the biggest challenges in this area is an effective visualization of these
data through the Internet, without the need of downloading and rendering it on
local computers. The problem is even bigger when the visualization should be
realized on mobile devices, which still don’t have enough computational power
to effectively render complex data in real time. In this paper we present a
framework, which confronts this problem allowing mobile visualization of remote
datasets in a distributed collaborative environment. Our framework consists of
a distributed server side application, as well as the client’s application, which
could be run on thin, mobile devices. According to the users’ demands, server
application reads the data from adequate storage area, renders it in real time,
compresses using a video codec and broadcast to client using a dedicated stream-
ing protocol. Remote users receive these streams, decode them and display on
the screen. Moreover, distant users can collaborate over the remote data in real
time, with the use of a built-in teleconferencing functionality and a shared, in-
teractive video area. If needed, they can also manipulate remote data without
affecting rest of the session participants.

The rest of this paper is organized as follows. Section 2 briefly describes related
works covering mobile visualization in a distributed collaborative environment.
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In the sections 3 and 4 we describe in details main functionalities of the system,
its architecture and technologies that we have used to implement it. Section 5
presents system’s performance test results obtained during a sample collabora-
tive session. Section 6 concludes this paper and draws up further work.

2 Related Work

There are few different approaches to the remote visualization problem. First
category involves systems, which force data rendering on clients’ devices. Many
solutions which are based on this model compress all the data on the server
and transfer it progressively to distant users using different kind of 3D objects
streaming techniques, like progressive meshes or levels of details [2, 3, 25–27].
Other commonly used approaches are based on the Virtual Reality Modeling
Language, which is a text file standard for 3D scenes representation [4, 5]. Al-
though, one of the biggest challenges when using VRML standard is the size of
generated files, which causes some serious limitations in a data network transfer.
References [6] and [7] propose different compression techniques, which reduce
this latency.

Second category involves systems, where all the data is rendered on dedicated
server and transferred to client as a digital image sequence. References [8] and [9]
introduce exemplary solutions based on the image streaming techniques, which
make use of the lossless compression algorithms, like LZO or BZIP. The authors
of [10] and [11] presented possibilities of using JPEG 2000 compression, which
increases the overall image compression level. They also showed, that with the
use of the Motion JPEG 2000 it is possible to visualize animated 3D data,
although there are more sophisticated techniques available in this area, like for
example VNC [12] or by means of a dedicated video codec [13, 14].

The idea of collaborative visualization of remote data has been described
in details in [1]. Reference [15] proposes exemplary solution to this problem by
means of establishment of dedicated rooms, equipped with the specialized video-
conferencing hardware and software. However, a much ubiquitous solution would
be to use participants’ individual computers during the collaborative sessions,
including modern mobile devices. Exemplary systems based on the VRML text
files were introduced in [6], [16], [17] and [18]. The authors of [19] and [20] in-
troduced sample frameworks for a collaborative visualization, which render all
the data on a server and send it to every connected user as a sequence of digi-
tal images. The references [21], [22] and [23] additionally made use of dedicated
video codecs.

In this paper we propose a distributed visualization system, which derives
directly from the video streaming techniques, allowing thereby an effective and
fully interactive data visualization on different kind of mobile devices, including
tablets and cell phones.
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3 System Overview

3.1 Remote Collaboration

The system consists of the client and server applications. Server modules are
responsible for session management, clients’ collaboration, data rendering and
video encoding. On the other hand, client’s application’s main job is to receive a
video stream, decode it and display on the screen. During collaborative sessions
clients can additionally communicate using a built-in teleconferencing module.

The first user, which connects to the server, becomes a session presenter.
Successive users can either start their own sessions or they can join previously
established one. The presenter of each session can load the remote data and
manipulate it in real time using his mouse or touch gestures. As the response
to user’s requests server’s application loads the data from the source, renders it,
compresses using a video codec and broadcast to every user participating in the
session. By default all the other session participants can only passively display
the video stream on their screens, listening to the presenter’s lecture at the same
time. At any point during the session, the presenter can pick up any connected
participant, giving him temporary ability to manipulate the data and to speak to
other users. From this moment both the presenter and selected user can discuss
among other participants using teleconferencing module. Additionally, during
the whole session users can individually manipulate the remote data, having a
chance to analyze it from different angles, without affecting other participants.

3.2 Interactive Visualization

Our system can work with a 2D, 3D and animated 3D data, all of them being
processed on the server and broadcasted to the users in real time. When the
presenter changes his view angle, the remote data is dynamically processed by
the adequate servers, which generate successive frames and compress them using
a video codec. Video frames are streamed to all participants in real time, giving
them effect of a zoom, move and spin animations [Fig. 1].

The output of a two-dimensional data is a typical digital image. Depending on
the data source, these images could have very large resolutions, transcending typi-
cal screen sizes of mobile devices. Our system dynamically crops and resizes every
image, fitting it to the individual capabilities of users’ devices. The session pre-
senter can zoom in / out and move to the different parts of an image by selecting
its successive regions on the screen of his device. According to the user’s actions
these events are transferred to the server application, which crops adequate parts
of an input image and places them on an encoding sequence. Successive frames
are compressed and streamed to the users one by one, giving the effect of an im-
age motion. Every session participant receives his own video stream, individually
customized to the capabilities of his device, including a screen size and network
parameters. That means, that depends on the number of concurrent connections
every server could encode in parallel many different video streams during a single
visualization session. The visualization of a 3D data additionally involves rotation
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of a remote object over the X and Y axes. As a response to the presenter’s rota-
tion events, adequate server application generates successive frames in real time,
which are later encoded and progressively broadcasted to users. During the visu-
alization of an animated 3D data all the above techniques work in a loop, giving
thereby an effect of data evolution in time.

Fig. 1. Successive frames of processed data are encoded as a sequence, and broadcasted
to all participants as an independent video streams, individually customized to their
devices

4 System Architecture

The server side application consists of three modules: a session manager, data
renderer and video encoder. To achieve the highest possible performance level,
each of them should be run on a different machine, so they could process their
tasks in parallel. For a better load balancing during multiuser sessions, the ren-
dering and encoding modules, which are the most CPU consuming parts of the
system, should be additionally distributed between servers [Fig. 2].

Every joining user starts his session by connecting to the manager module.
The session manager stores the information about other servers available in the
system, together with their current load, including avarage CPU / RAM usages
and a number of concurrent users. Every server measures these parameters and
sends them to the session manager periodically. Based on this information the
session manager is able to find the less laden servers at the moment (encoding
and rendering modules), and sends their IP addresses to the newly connected
presenter. With the use of these parameters the presenter is able establish the
connection with the selected encoder, which from this moment controls the rest
of the visualization computes. The further participants who join this session
establish their connections only with the session manager module, which also
acts as a video proxy between the encoding module and clients’ applications.
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Fig. 2. A general schema of the system’s communication workflow. To achieve highly
interactive visualization, the session manager, encoder and rendering modules exchange
partial data progressively, and transfer them to distant users as a live video stream.

By default, every new user is able only to watch the presentation passively,
so there is no need for them to communicate with any of the encoders. The
only situation when other users connect to the encoder is when they become
temporary presenters or when they want to individually manipulate the remote
data. The selection of the less laden server in that case is realized the same way
as described earlier.

In a response to the presenter’s activities (zooming, moving and rotating)
client’s application sends adequate events to the selected session encoder. Based
on these events the encoder creates appropriate frame sequence and progressively
sends it to session participants. During the two-dimensional data visualization,
all the images are buffered directly on the encoder machine, as there is no need for
permanent data rendering. However, working with the 3D and animated 3D data
involves parallel image generation in the rendering module, which broadcasts
them to the encoder one by one in real time (rotation and animation frames).
The rendering module is completely transparent to the data source, and it could
be easily adapted to cooperate with a database, storage drive or a dedicated
rendering machine.

Regardless from the dimension of the data source, the encoder processes every
frame on-the-fly, based on the current parameters of the presenter’s view (crops
and resizes), compresses them using a video codec and broadcast to the session
manager, which republishes them to the rest of the session participants. To serve
many users simultaneously the encoding module runs a multithread application,
which in parallel compresses and broadcasts different video streams to session
participants (different resolutions, bit rates and qualities of the outgoing video).
We are not sending the videos directly to the session users, because practically
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in most cases one stream would have many simultaneous recipients, which have
devices with the same screen sizes and similar network bandwidth. This approach
allowed us to limit number of the encoding threads being run in parallel, reducing
thereby the encoding server’s load.

Session users can communicate using a teleconference module, which has been
built into the manager server’s application. The audio data, which is transmit-
ted from the presenter’s device, behaves exactly the same way as other videos
streamed to the session manager from the encoder module. Client’s application
acquires the data from user’s microphone, compresses it and broadcasts to the
session manager, which re-streams it to the rest of the session participants.

All the server side modules have been written in Java. The session manager’s
application has been deployed on the Wowza Media Server, which is currently one
of the most powerful video streaming solution. The WMS assures communication
with the sessions’ participants and provides the video re-streaming solution to a
variety of popular protocols, including RTMP, RTSP or HTTP.

Rendering module streams successive frames to the encoder using a TCP
socket connection. During a typical visualization session both machines exchange
large amount of data, so it is recommended that they communicate using a broad-
band connection. We have decided not to use any compression techniques at this
point because they would require additional computational power from the ren-
dering module. Encoding module compresses the video sequence and streams it
to the session manager with the use of FFMPEG, which is currently one of the
best open source solutions to handle digital video. Encoded video sequence is
streamed to the session manager, and later to all users by means of the Adobe’s
Real Time Messaging Protocol.

5 Results

We have run a series of performance tests of the system. At first we have mea-
sured the video compression speed and CPU usage of the encoder. The session
management module was run on an Intel Xeon 5050 3GHz, the rendering mod-
ule on a dual core Intel Xeon X5355 2.6 GHz, and the encoding module on a
quad core Intel Xeon E5420 2.5 GHz. All the servers were connected using 1 Gb
network.

We have run four tests using different types and number of clients’ devices,
each of them having set different screen resolutions. That way we were able
to measure the system’s performance during simultaneous encoding of multiple
video streams. At first we have tested its behavior using three different mobile
devices: a laptop running Mac OS X, tablet and a cell phone, both equipped
with the Android 2.2 system. Three other tests were run on a Windows Vista
desktop computers, which involved 5 and 10 simultaneous users, each of them
having different screen sizes. Additionally, 5 users test was run two times. The
first test was run for a group of devices equipped with the small screens, and
the second effort, which involved only a high resolution video encoding. Table 1
presents obtained data.
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Table 1. Encoding speed averages measured in frames per seconds during four different
collaborative sessions

Resolution 3 users 5 small screens 5 big screens 10 users

320 x 240 - 228 - 119

400 x 240 - 228 - 116

640 x 480 - 86 - 40

800 x 480 78 84 - 40

854 x 480 - 52 - 37

768 x 576 - - 63 31

800 x 600 - - 37 30

1024 x 600 57 - 36 26

1024 x 768 41 - 27 20

1366 x 768 - - 26 19

The results show, that a single encoding server is able to effectively compress
many simultaneous video streams, all set at different resolutions. From the users
point of view the lowest acceptable encoding speed is 15 frames per second.
Below that value the visualization looses its smooth and decreases the overall
reception of the session. In our experiment all results were above the minimum
fps, regardless from the targeted users device (desktop, tablet, cell phone). The
CPU usages of the encoding server were 25%, 30%, 50% and 75% respectively,
never reaching the maximum capability of the system.

During the experiment we have also measured the network communication
latency between the clients and a session manager modules. We have also tested
the overall delay between client’s activity start (mouse or touch gesture), and
the moment when the first visualized video frame was received from the server
(including image generation in the rendering module, compression in the encoder
and all the network transfers). Both tests were run for 5 and 10 simultaneous
users connected to a single session, using single rendering and encoding machines.
Every group was tested three times, using different screen resolutions of the
clients’ devices: 320x240, 800x480 and 1366x768.

The average measured RTMP communication latency was 0.05 ms and with
this level it didn’t affect the overall system efficiency. The overall encoding time
of a single video frame was also gratifying. For the typical mobile devices’ res-
olutions (320x240 and 800x480) the visualization’s latency was lower than 100
ms in most cases. Only when 1366x768 resolution was set and 10 simultaneous
users were connected to a single session, the encoding latency increased to 300
ms. However, even then it did not affect the overall comfort of the visualization
session.
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6 Conclusion and Further Work

In this paper we presented the system we have developed for a distributed col-
laborative visualization of remote datasets. The system allows for visualization
of a multidimensional data on a variety of modern mobile devices. Distance
users can join sessions and collaborate over the remote data in real time using a
built-in teleconferencing system. They can also manipulate the data individually,
without affecting rest of the participants. Obtained results of the performance
tests showed, that thanks to the distributed architecture our system is able to
effectively serve many simultaneous participants, even if they are using different
devices.

In the future we are planning to experiment with the multicast and peer-to-
peer communications, which we believe, in some cases should further increase the
overall efficiency of our system. Beside the many laboratory tests that have been
taken so far, one of the most important thing is also the evaluation of the users’
perception of the system. The current results of the latency in communication
between the servers and mobile users show, that the fluency and interactivity
of the remote visualization could be nearly the same, as if the data were stored
locally. We are planning to do much bigger researches in this area soon, once the
final version of the application’s user interface will be prepared.
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Abstract. For several years, all major communicational and informa-
tional aspects of organizations are being virtualized. This trend can be
expected to evolve even further, provided sufficient technology is avail-
able, which can foster this process. Several research efforts have dealt
in the past with the problem of creating and supporting management
in Virtual Organizations, i.e., introducing the possibility of virtualizing
the entire organization concept, by means of special IT infrastructure.
One of the main problems of this approach is allowing the organizations
to discover and collaborate with other organizations. In this paper we
analyze the possibility of using P2P technology to data knowledge dis-
tribution in distributed systems. We present a survey and comparison of
various structured and unstructured P2P networks. We describe our P2P
approach to knowledge based emergent Virtual Organizations inception
and management.

Keywords: P2P, Virtual Organization, ontology.

1 Introduction

The need for creating large scale distributed systems increased significantly in
the last decade. This includes in particular need for significant computing power,
and automation of processes such as collecting, processing, and storage of large
amounts of data. Despite the advantages, they have to deal with the problem of
resource and information discovery. One of the technologies designed to remedy
this problem are the decentralized P2P systems, for instance Large Scale Dis-
aster Information System based on P2P Overlay Network [26]. The distributed
semantic approach is one of the elements of a future interconnection environment
which will assist people in solving complex problems. In order to make it more
versatile, support from knowledge management technologies is necessary. In our
previous research we have created a Virtual Organization inception and manage-
ment support framework called FiVO (Framework for Intelligent Organizations)
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[9], providing among others distributed contract negotiation, monitoring of VO
execution and security enforcement. The backbone of the system is a distributed
knowledge base, called Grid Organizational Memory (GOM) [10], designed to
support dynamic Virtual Organization (VO) inception and management using
Web Ontology Language (OWL)[1] ontologies. They include semantic descrip-
tions of service classes, functionality and performance records. More specifically,
GOM contains overall semantic descriptions of services, resources, applications
and data. The most important element in the application of such systems as the
GOM for VO management is easy and efficient searching for relevant informa-
tion. An important factor is also scalability - easy addition of new resources and
search speed. To ensure all these properties, we performed research on the appli-
cation of P2P networks. With the amount of resources stored in the GOM up to
several hundred thousand individuals we should decentralize it to avoid bottle-
necks. Since the initiation of research on a possible merger of the Semantic Web
and P2P networks has given rise to several projects such as Ontology-based In-
formation Service (DIS) [22] or the OpenKnowledge framework [5]. The process
of sharing resources and services defines a model for building large scale comput-
ing or information systems. In this paper we present P2P approach to knowledge
based emergent Virtual Organizations inception and management. The paper is
organized as follows. The work related with this area of research is described
in section 2. In Section 3 P2P technologies description in the area of structured
and unstructured P2P networks is given. Section 4 presents an application of
the Grid Organizational Memory. In section 5 we describe our P2P approach
to knowledge based emergent Virtual Organizations. Section 6 presents results
from scalability and reliability tests of the system. Finally, Section 7 outlines
summary with some conclusions.

2 Related Work

One of the first projects devoted to the problem of ontologies distribution in
P2P networks was DRAGO [19]. It enables distribution, creation, modification
and deletion of ontologies and making queries on these ontologies. In this sys-
tem every peer called DRP (DRAGO Reasoning Peer) owns in its local memory
the whole information about the available ontologies (ontology ID and its phys-
ical address). As a contrary, in the PeerThing [3] architecture, peers are split
in groups which are merged later in one large network. Each pool owns one
”Poolhead” responsible for connecting with other groups in P2P network. Af-
ter receiving the query, Poolhead decides if local clients know the answer or it
whether should be sent to other groups. Edutella [15] project is the precursor of
unstructured P2P network usage in the semantic technologies. It enables various
systems to form networks for metadata exchanging according to semantic web
standards. Unfortunately, information searching was not as efficient as for the
systems based on structured architecture with DHT. In the paper [8] a detailed
data management strategy for a DHT based RDF store providing reasoning,
robustness and load-balancing is presented. In [25] the solution for distributed
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reasoning using the technique for materializing the closure of an RDF graph
based on MapReduce [2] is presented. The optimizations for encoding the RDFS
ruleset in MapReduce were found. Finally, some systems were designed such as
Bibster [7] focusing in the knowledge representation of the digital content via
semantic based techniques in P2P networks.

Our work explores how P2P technologies can be used to distribute the in-
formation in VO using GOM knowledge base. The suggested architecture, as
contrasted to the presented solutions, is based on clustering of resources in an
appropriate way and efficient querying. Our approach has an excellent scalabil-
ity - adding of new resources to the network is straightforward. Peers do not
implement complex algorithms as in the structured networks. Our approach is
dedicated for VO contexts, where participating organizations publish informa-
tion about their resources and activities, and it will not be optimal for projects
with different information characteristics.

3 P2P Technologies

P2P systems are based on general principle that each node linked to the network,
behaves as a client and a server. The P2P overlay network consists of all the peers
participating as network nodes. Based on how the nodes in the overlay network
are connected to each other, we can classify the P2P networks as structured or
unstructured.

Structured P2P networks employ a globally consistent protocol to ensure that
nodes can route a search to some peer that owns the desired file. Such a guaran-
tee necessitates a more structured pattern of overlay connections. All structured
P2P systems modelled as Distributed Hash Tables (DHT) assign identifiers to
nodes, typically at random. Random selection in DHTs can be done by randomly
choosing a value from the DHT number space, and routing to this value. The
nodes of the DHT ring maintain connections in the DHT ring in terms of specific
geometry mode, e.g. Bamboo DHT [16] or Pastry DHT [18]. An unstructured
P2P network is created when the overlay connections are established arbitrar-
ily. If a peer wants to find a desired piece of data in the network, the query
must be flooded through the network to find as many peers sharing the data as
possible. These systems use the flooding technique to broadcast the requests of
the resources in the network. To limit the vast number of messages produced by
flooding, many techniques, such as TTL (Time-To-Live) tags, dynamic querying,
random walks and multiple random walks [24], were proposed. Several popular
unstructured P2P applications, such as FastTrack [12] and Gnutella [17] explored
organizing of the resource nodes in the superpeer mode to improve the perfor-
mance of the search. These systems forward queries to high-capacity superpeers
chosen due to their capability to process large numbers of requests. A superpeer
behaves as a local search engine, building an index of the files being shared by
each connected peer and proxying search requests on behalf of these peers by
flooding requests to other superpeers. Our structure, which will be based on this
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model, is an unstructured P2P networks, which are easier to create and use. Such
networks can be quickly constructed, because peers do not need to implement
advanced DHT algorithms.

4 Grid Organizational Memory

Grid Organizational Memory (GOM) [10,11] is a versatile distributed knowledge
base for managing semantic metadata in distributed computing environments
such as Grid or SOA based infrastructures. GOM allows to separate the metadata
space into parts which can be managed by separate GOM Engine processes
deployed on different machines in OWL format. Each GOM deployment can have
a GOM registry process which keeps track of currently running GOM instances
and can distribute queries and events to the knowledge base. The knowledge
base allows for efficient storage and querying for the metadata, but also provides
a semantic protocol called OWL Change for fine grained modifications of the
underlying ontologies. This allows the knowledge base to record the changes of
the ontologies, which represent the evolution of knowledge. One of the main
applications of GOM is to support dynamic VO inception and management,
within a larger software framework called FiVO [9]. In FiVO different aspects of
knowledge related to both the physical organizations (e.g. resources, employees,
capabilities) as well as aspects related strictly to VO (e.g VO contract, VO
monitoring information) can be divided into logical parts and distributed over
the IT infrastructure of the organizations.

5 Peer-to-Peer Overlay for GOM

After analyzing the existing P2P solutions, we chose an unstructured P2P net-
work solution based on the use of super nodes (JXTA) [6]. Due to the topology
of rendezvous peers connections (ring type) and the topology of regular peers
(star type) which refers to VO structure, we chose JXTA. The JXTA protocols
are defined as a set of XML messages which allow any device connected to a
network to exchange messages and collaborate independently of the underlying
network topology. JXTA architecture has several aspects which distinguish it
from other models of distributed networks: resources are described using XML
abstraction of connections between nodes independent of the central addressing
system and distributed search infrastructure based on DHT (Distributed Hash
Table) to the indexed stocks.

5.1 P2P Network Architecture

We based our architecture on the mechanism of Shared Resource Distributed
Index (SRDI) [23], which is used by JXTA. One can easily promote ones query
in the network. Each rendezvous node (the node is used to promote and search
for resources and maintains a list of nodes connected to it) builds indexes an-
nouncements published by the nodes. A node sends an index created by the
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SRDI mechanism of ones rendezvous type node, which reduces significantly the
number of nodes used to search for resources. In addition, when the index is
sent to the rendezvous node type, node sends a copy of this index to other nodes
such as rendezvous. Distributed replicas of the index ensure that information
about resources is not lost when rendezvous node is removed. Each rendezvous
node has its own list of other well-known peer-types of the same type, which is
updated from time to time.

5.2 Peer Architecture

When designing the main network our assumptions were: universality (inde-
pendence on used ontologies), support for conflicting resources, interconnections
of resources from different nodes, and the query performance. In Figure 1 the
architecture of a single node connected to a network is presented.

Fig. 1. Peer architecture

GOM Engine Interface - set of interfaces exposed to the GOM engine.
They allow GOM engine to communicate with the P2P module.

Query Dispatcher - module responsible for analyzing queries, dividing them,
etc. This module implements the algorithm in Listing 1.

Core - module responsible for communication between all layers and for pro-
viding information about classes held in the GOM ontologies

P2P Communication - is the communication layer, responsible for commu-
nication between nodes on a P2P network. In this layer, we can distinguish two
components:

– Pipe Service - module is responsible for querying nodes for resources, send-
ing the prepared questions and receiving answers from other nodes,

– Discovery Service - module is used to broadcast information about which
resources are stored in GOM. When connecting to a network node, this
module sends information about its resources to the node type Rendezvous.
Module from time to time update this list.



206 M. Stelmach, B. Kryza, and J. Kitowski

5.3 Distribution of Resources

Distribution of resources is presented in Figure 2. The system supports the so-
called collision resources (individuals with the same id must be unique but not
necessarily contain the same data). Periodically, each node refreshes (rendezvous
node sends to peer node) notices about available resources. Each node before
connecting to the network makes a list of class names with individuals which
are stored by its underlying GOM instance. Then, when a connection is made
it announces the names through the Service Discovery module. Doing so allows
to store current data on the resources of the network. Each node can to search

Fig. 2. Distribution of resources

the network. This is done using SPARQL language. However, each query before
executing the algorithm in Listing 1 has to be decomposed using Algorithm 1.
This algorithm is responsible for sharing queries, grouping and joining them. The
getClassesFromQuery() method is responsible for delivering individuals types
or domains and ranges of the properties used in the query. The other method
called getQueriesForClass() is responsible for mapping of split queries to the
appropriate classes found by getClassesFromQuery()method. The usage of the
algorithm is necessary because it may happen that an individual class, connected
through some relationship, is not in the same node as their relationship. The
algorithm accelerates the effectiveness of the program by splitting queries and
grouping them due to the classes of the searched individuals. The queries are
sent in packets thus accelerating the search time. After receiving the results,
they are combined and presented in the form of RDF. Sample query has been
presented in the listing below:
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Listing 1. Example query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX vbe: <http://fivo.cyf-kr.edu.pl/ontologies/VBE#>
PREFIX vo: <http://fivo.cyf-kr.edu.pl/ontologies/VOOntology#>
SELECT ?OrganizationName, ?OrganizationAddress, ?VOName
WHERE {

{
?x vbe:administeredBy ?administeredBy; vo:VO.name ?VOName .
?administeredBy vo:Organization.name ?OrganizationName;

vo:Organization.address ?OrganizationAddress .
FILTER regex(?VOName, "Virtual Organization 1") .

} UNION {
?x vbe:administeredBy ?administeredBy ; vo:VO.name ?VOName .
?administeredBy vo:Organization.address ?OrganizationAddress .
?x vo:VO.name "Virtual Organization 2" .

} UNION {
?x vo:Organization.name ?OrganizationName .
?x vo:Organization.address ?OrganizationAddress .
?x vo:Organization.name "Organization 1" .

}
} ORDER BY ?OrganizationName

Algorithm 1. Grouping and decomposition algorithm
1: Input: query
2: Output: querymap
3: classes = getClassesFromQuery(query);
4: if query has objectProperty OR UNION then
5: queries = decomposition(query);
6: for i=0 to classes.length do
7: querymap.put(class, getQueriesByClass(queries));
8: end for
9: else

10: querymap.put(classes[0], queries);
11: end if

12: sendQueries(querymap);

6 Performance Tests

To perform the required tests, 10 machines with Pentium M 1.86 GHz and 1,5
GB RAM were used. Each machine contained more then one program instance.
One instance is equal to one node. The influence of the network was negligible
in the carried tests. The correctness of the reasoning was verified by comparing
the answers with the expected results. All tests were carried out by the following
formula:

T =

∑N
i=1(ts − te)

N

ts - the time of receipt of response,
te - the time to send responses,
N - number of repetitions.

(1)

Questions were requested at the same time by 10 independent nodes. In
Figure 3 a speed of the response time due to increasing resources and the nodes
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in the network is presented. From the right plot in Figure 3 we can conclude
that the optimal distribution of resources is always limited, the time of routing
the messages is smaller than the analogous time for a single node. On the left
plot in Figure 3 we presented the results of the response time for an increasing
number of nodes at a fixed amount of resources in those nodes. Distribution of
resources was also a more structured, e.g. appropriate nodes have much greater
amount of resources ”Person class” from the other nodes. The arrangement re-
sembles the resources in the VO where organization provides to the other nodes
its unique knowledge. In this approach, there is always the optimum, e.g. for 2
million individuals the best dispersion is obtained for 200 nodes. It should be
noted that this is dependent on the choice of system hardware. In this case the
Jena Framework [13] and Pellet [20] reasoner were applied. Figure 4 presents
the search time on a single node. For a large number of individuals >200k query
time was very large. As one can see, the time on a single node for a small number
of individuals of the order of 10k is satisfactory, but for a greater number the
time is too big. These results give an important conclusion - the use of P2P
network performs best for large amounts of resources.

Fig. 3. P2P network time as a function of number of peers at the given number of
individuals (left) and number of individuals at the given number of peers (right)

Fig. 4. Query time for a single peer



P2P Approach to Knowledge-Based Virtual Organizations Inception 209

7 Conclusions and Future Work

In this paper we presented our approach to P2P distribution of ontological knowl-
edge base. We showed P2P network diagram that was used. It is a network of dis-
tributed computers, highlighting is a compromise between the network with a cen-
tral server and the distributed network. Our choice guarantees an access to every
node and enables easier monitoring and managing of the network. Searching for
resources is effective and does not clog the network links as distributed. Tests show
that our approach is adequate for the envisioned application in VO management
due to the inherent knowledge distribution in VO. Each organization has unique
knowledge to share with other organizations. In our opinion, the solution will be
applied in systems such as Grid due to a good VO support. Our approach can be
applied to distribute VO resources in heterogeneous systems (monitoring systems
[4], negotiation systems [21] or other similar systems [14]). We will also consider
applying this approach to Cloud interoperability scenarios, where we could run or
migrate user application between diffrent Clouds. It ensures the availability and
consistency of data and can be applied to distributing the knowledge in order to
select the Cloud that fits our application best. Test results showed that the data
is distributed in a structured way. In terms of the data structure, the set of Clouds
behaved similarly to VO. The security of P2P network from the standpoint of the
VO is being currently examined in separate studies.

Acknowledgment. This research is partially supported by European Regional
Development Fund program PL-Grid POIG.02.03.00-00-007/08-00.

References

1. OWL 2 Web Ontology Language Document Overview. W3C Recommendation (Oc-
tober 2009), http://www.w3.org/TR/owl2-overview/

2. Dean, J., Ghemawat, S.: Mapreduce: Simplified Data Processing on Large Clusters.
Operating System Design and Implementation, 13 (2004)

3. Heine, F., Hovestadt, M., Kao, O., Voss, K.: Peerthing: P2P-based Semantic Re-
source Discovery. In: Bubak, M., Tura�la, M., Wiatr, K. (eds.) The 5th Cracow Grid
Workshop, pp. 32–38. Academic Computer Center CYFRONET AGH (2005)

4. Funika, W., Kupisz, M., Koperek, P.: Towards Autonomic Semantic-based Man-
agement of Distributed Applications. Computer Science 11, 51–63 (2010)

5. Gaia, T., Rizzi, V., Maurizio, M., Lorenzino, V., Paolo, B.: Enabling Information
Gathering Patterns for Emergency Response with the OpenKnowledge System.
Computing and Informatics 29(4), 537–555 (2010)

6. Gong, L.: Industry Report: JXTA: A Network Programming Environment. IEEE
Internet Computing 5(3), 88 (2001)

7. Haase, P., Schnizler, B., Broekstra, J., Ehrig, M., van Harmelen, F., Menken, M.,
Mika, P., Plechawski, M., Pyszlak, P., Siebes, R., Staab, S., Tempich, C.: Bib-
ster a semantics-based bibliographic Peer-to-Peer system. Web Semantics: Science,
Services and Agents on the World Wide Web 2(1), 99–103 (2004)

8. Kaoudi, Z., Miliaraki, I., Koubarakis, M.: RDFS Reasoning and Query Answering
on Top of DHTs. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard,
D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 499–516.
Springer, Heidelberg (2008)

http://www.w3.org/TR/owl2-overview/


210 M. Stelmach, B. Kryza, and J. Kitowski

9. Kryza, B., Dutka, L., Slota, R., Kitowski, J.: Dynamic VO Establishment in Dis-
tributed Heterogeneous Business Environments. In: Allen, G., Nabrzyski, J., Seidel,
E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009, Part II. LNCS,
vol. 5545, pp. 709–718. Springer, Heidelberg (2009)

10. Kryza, B., Pieczykolan, J., Kitowski, J.: Grid Organizational Memory: A Versa-
tile Solution for Ontology Management in the Grid. In: e-Science, p. 16. IEEE
Computer Society (2006)

11. Kryza, B., Slota, R., Majewska, M., Pieczykolan, J., Kitowski, J.: Grid Organiza-
tional Memory - Provision of a High-Level Grid Abstraction Layer Supported by
Ontology Alignment. Future Generation Comp. Syst. 23(3), 348–358 (2007)

12. Liang, J., Kumar, R., Ross, K.W.: The Fasttrack overlay: A measurement study.
Computer Networks 50(6), 842–858 (2006)

13. McBride, B.: Jena: A Semantic Web Toolkit. IEEE Internet Computing 6(6), 55–59
(2002)

14. Mylka, A., Swiderska, A., Kryza, B., Kitowski, J.: Integration of heterogeneous
data sources into an ontological knowledge base. Computing and Informatics (in
Press, 2012)

15. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér,
M., Risch, T.: Edutella: a P2P networking infrastructure based on RDF. In: Proc.
11th International World Wide Web Conference, pp. 604–615 (2002)

16. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT. In:
ATEC 2004: Proceedings of the Annual Conference on USENIX Annual Technical
Conference, p. 10. USENIX Association, Berkeley (2004)

17. Ripeanu, M.: Peer-to-Peer Architecture Case Study: Gnutella Network. In: Gra-
ham, R.L., Shahmehri, N. (eds.) Peer-to-Peer Computing, pp. 99–100. IEEE Com-
puter Society (2001)

18. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

19. Serafini, L., Tamilin, A.: Drago: Distributed Reasoning Architecture for the Seman-
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Abstract. We consider large scale finite element modeling on 3D
unstructured grids. Large scale problems imply the use of parallel hard-
ware and software. In general, the computational process on unstruc-
tured grids includes: mesh generation, mesh partitioning, optional mesh
refinement, discretization, and the solution. The impact of the domain
partitioning strategy on the performance of the discretization and solu-
tion stages is studied.

Our investigations are focused on the Blue Gene/P massively parallel
computer. The mapping of the communications to the underlying 3D
tours interconnect topology is considered as well.

As a sample problem, we consider the simulation of the thermal and
electrical processes, involved in the radio-frequency (RF) ablation proce-
dure. RF ablation is a low invasive technique for the treatment of hepatic
tumors, utilizing AC current to destroy the tumor cells by heating.

1 Introduction

Finite element method (FEM) on unstructured grids has proven to be an in-
dispensable tool in computer modelling. Large scale simulations and complex
models require parallel computing. This work is focused on optimizing the per-
formance of parallel simulations.

We use state of the art parallel computer – IBM Blue Gene/P with a state
of the art linear solver – BoomerAMG multigrid method[4] from the Hypre
library[13]. Our intention was to study the influence of the mesh partitioning
on the performance of the entire computational process. We compare two dif-
ferent partitioning libraries: ParMETIS and PT-Scotch. We also, to improve
performance, try to map the communication pattern of our programs to the
underlying 3D torus interconnect.

Our investigations are done while performing parallel simulation of the radio-
frequency (RF) ablation. This is a hepatic tumor treatment technique which
uses AC current from an electrode with a complex shape (see Figure 1. a).

The paper is organized as follows: In Section 2, we describe the problem
we solve. In Section 3 we discuss and compare the used partitioners. Section 4
contains times from the parallel experiments with and without the mapping of
the communications and we finish with a conclusion.
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2 Radio-Frequency Tumor Ablation

Our test problem is numerical simulation of radio-frequency (RF) tumor ab-
lation. RF ablation is an alternative, low invasive technique for the treatment
of hepatic tumors, utilizing AC current to destroy the tumor cells by heating
([7,8]). The destruction of the cells occurs at temperatures of 45◦C–50◦C. The
procedure is relatively safe, as it does not require open surgery.
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Fig. 1. a) The structure of a fully deployed RF probe; b) Sample mesh: cross-section,
different gray levels are used for different materials

The considered RF probe is illustrated on Fig. 1. a) It consists of a stain-
less steel trocar with four nickel-titanium retractable electrodes. Polyurethane
is used to insulate the trocar. The RF ablation procedure starts by placing the
straight RF probe inside the tumor. The surgeon performs this under computer
tomography (CT) or ultrasound guidance. Once the probe is in place, the elec-
trodes are deployed and RF current is initiated. Both the surfaces areas of the
uninsulated part of the trocar and the electrodes conduct RF current.

The human liver has a very complex structure, composed of materials with
unique thermal and electrical properties. There are three types of blood vessels
with different sizes and flow velocities. Here, we consider a simplified test prob-
lem, where the liver consists of homogeneous hepatic tissue and blood vessels.

The RF ablation procedure destroys the unwanted tissue by heating. The heat
is dissipated by the electric current flowing through a conductor. The bio-heat
time-dependent partial differential equation [7,8]

ρc
∂T

∂t
= ∇ · k∇T + J ·E − hbl(T − Tbl) (1)

is used to model the heating process during the RF ablation. The term J · E
in (1) represents the thermal energy arising from the current flow and the term
hbl(T − Tbl) accounts for the heat loss due to blood perfusion.
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The following initial and boundary conditions are applied

T = 37◦C when t = 0 at Ω,
T = 37◦C when t ≥ 0 at ∂Ω.

(2)

The following notations are used in (1) and (2):

– Ω – the entire domain of the model;
– ∂Ω – the boundary of the domain;
– ρ – density (kg/m3);
– c – specific heat (J/kg K);
– k – thermal conductivity (W/m K);
– J – current density (A/m);
– E – electric field intensity (V/m);
– Tbl – blood temperature (37◦C);
– wbl – blood perfusion (1/s);
– hbl = ρblcblwbl – convective heat transfer coefficient accounting for the blood

perfusion in the model.

The bio-heat problem is solved in two steps. The first step is finding the potential
distribution V of the current flow. With the considered RF probe design, the
current is flowing from the conducting electrodes to a dispersive electrode on the
patient’s body. The electrical flow is modeled by the Laplace equation

∇ · σ∇V = 0, (3)

with boundary conditions
V = 0 at ∂Ω,
V = V0 at ∂Ωel.

The following notations are used in the above equations:

– V – potential distribution in Ω;
– σ – electric conductivity (S/m);
– V0 – applied RF voltage;
– ∂Ωel – surface of the conducting part of the RF probe.

After determining the potential distribution, the electric field intensity can be
computed from

E = −∇V,

and the current density from
J = σE.

The second step is to solve the heat transfer equation (1) using the heat source
J · E obtained in the first step.

For the numerical solution of both of the above discussed steps of the simula-
tion the Finite Element Method (FEM) in space is used [10]. Linear conforming
elements are used. To solve the bio-heat equation, after the space discretization,
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backward Euler scheme is used [11]. There, the time derivative is discretized
via finite differences. For a description of the discretization of the problem (3)
see [12].

Let us focus on the discrete formulation of the bio-heat equation. Let us
denote with K and M the stiffness and mass matrices from the finite element
discretization of (1). They can be written as

K =

[∫
Ω

k∇Φi · ∇Φjdx

]N
i,j=1

,

M =

[∫
Ω

ρcΦiΦjdx

]N
i,j=1

.

Let us also denote with Ωbl the subdomain of Ω occupied by blood vessels and
with Mbl the matrix

Mbl =

[∫
Ω

δblhblΦiΦjdx

]N
i,j=1

,

where

δbl(x) =

{
1 for x ∈ Ωbl,
0 for x ∈ Ω \Ωbl.

Than, the parabolic equation (1) can be written in matrix form as:

M
∂T

∂t
+ (K + Mbl)T = F + MblTbl. (4)

If we denote with τ the time-step, with T n+1 the solution at the current time
level, and with T n the solution at the previous time level and approximate the
time derivative in (4) we obtain the following system of linear algebraic equations
for the nodal values of T n+1

(M + τ(K + Mbl))T
n+1 = MT n + τ(F + MblTbl). (5)

In table 1 are given the material properties, taken from [7]. The blood perfu-
sion coefficient wbl = 6.4 × 10−3 1/s. For the test simulations, a RF voltage of
15 V is applied for a duration of 8 minutes. A time step of τ = 10 s is used.

Table 1. Thermal and Electrical Properties of the Materials

Material ρ (kg/m3) c (J/kg K) k (W/m K) σ (S/m)

Ni-Ti 6 450 840 18 1 × 108

Stainless steel 21 500 132 71 4 × 108

Liver 1 060 3 600 0.512 0.333
Blood 1 000 4 180 0.543 0.667
Polyurethane 70 1 045 0.026 10−5
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3 Partitioning Methods

Our software tools are written in C++, using MPI for the parallelization. Al-
though we use external libraries for graph partitioning, and for the solution,
plenty of nontrivial gluing code was required.

The first stage in the computational process is the mesh generation. Here
Netgen package is used [14]. Currently, we use computer generated model of the
liver and blood vessels. The RF ablation probe is inserted in the model. Then
the geometric data is fed to the generator. In Fig. 1. b) is depicted a cross-
section from a sample mesh. The generator output consist in three parts: list of
coordinates of the vertices, list of tetrahedrons with assigned materials, and a
list of boundaries with assigned boundary conditions.

The next stage is to partition the computational domain among processors.
Our intent was to investigate the applicability of two graph partitioning libraries:
ParMETIS [2,3] and PT-Scotch [5,6]. To use the graph partitioning routines
in both cases we first calculate the dual graph of the mesh using the routine
ParMETIS_V3_Mesh2Dual. Both libraries require for performance and scalability
reasons the initial data to be distributed (fairly) among the processors. This is
done by our toolchain as the mesh is read.

The routine ParMETIS_V3_PartMeshKway is used for the graph partitioning
with ParMETIS. This call computes graph partitioning minimizing the number
of cut edges. The result is a part (processor) number, assigned to each tetrahe-
dron. ParMETIS uses parallel version of multilevel k-way partitioning algorithm
described in [1].

PT-Scotch library computes graph partitioning via recursive bipartitioning
algorithm. PT-Scotch contains ParMETIS compatibility layer, so we use the
very same ParMETIS_V3_PartMeshKway function from it.

After the partitioning of the elements some postprocessing is required. This in-
cludes: distribution of the elements to their processors, determining the
partitioning of vertices which are on the interfaces between the processors, distri-
bution of vertex data, distribution of boundary condition data, and node renum-
bering, which is required for the parallel solver. We assign a shared vertex to a
processor with lower number of previously assigned vertices.

Before giving experimental results, let us describe the Blue Gene/P parallel
computer. It consist of racks with 1024 PowerPC 450 based compute nodes each.
Each node has four computing cores and 2 GB RAM. The nodes are intercon-
nected with several networks. The important ones from the computational point
of view are: Tree network for global broadcast, gather, and reduce operations
with a bandwidth of 1.7GB/s, 3D torus network for point to point communi-
cations, and a separate global interrupt network, used for barriers. In the torus
network each node is connected to six other nodes with bidirectional links, each
with bandwidth of 0.85GB/s. Torus network is available only when using mul-
tiplies of 512 nodes. For smaller number of nodes only 3D mesh interconnect is
possible. We were using the machine in so call virtual node mode(VN), in which
different MPI rank is assign to each of the computing cores. This is the mode
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Table 2. Mesh partitioning

Elements Vertices

mesh Nproc avg maxParMetis maxPT−Scotch avg maxParMetis maxPT−Scotch

M0 128 110 453 114 606 110 885 18 561 21 672 20 937
M0 256 55 226 57 494 55 507 9 280 11 363 10 812
M0 512 27 613 28 736 27 765 4 640 5 857 5618
M0 1 024 13 806 14 364 13 902 2 320 3 073 2 968

M1 128 883 627 922 323 888 266 147 654 157 272 151 698
M1 256 441 813 460 387 444 112 73 827 80 836 77 136
M1 512 220 906 230 192 222 074 36 913 41 944 39 366
M1 1 024 110 453 115 055 111 102 18 456 21 796 21 118

M2 1 024 883 627 920 329 888 327 147 405 158 601 154 454
M2 2 048 441 813 461 092 444 934 73 702 81 441 78 815
M2 4 096 220 906 230 500 222 279 36 851 42 419 40 492

to use the entire power of the system, for pure MPI programs (without shared
memory parallelism). We were allowed to use up to 1024 computing nodes –
4096 cores, further called processors.

The computation volume for the discretization is proportional to the num-
ber of elements in each processor. The computation volume for the solver is
proportional to the number of vertices in each processor. Because of the global
synchronizations which present in both processes, parallel times will be governed
by the maximum number of elements and vertices per processor. In the table 2
these numbers are shown, compared to the averages. Three meshes had been
partitioned: M0, M1, and M2. Meshes M1 and M2 are obtained from uniform
refinement of mesh M0 once and twice. Let us note that the finest mesh M2 has
about 9.0 × 108 elements and about 1.5 × 108 vertices. We expect from a good
partitioner per processor maximums to be as close to the averages as possible.
Results from partitions on different number of processors are shown.

We can clearly see that PT-Scotch produces better partitions. Both the max-
imum number of elements per processor and the maximum number of vertices
per processor are closer to the optimal values.

To give an idea about the communication pattern resulting from the partition-
ings, we have shown some info about the connections in table 3. We call two pro-
cessors connected if they share at least one vertex in their elements. Connected
processors must exchange data during the discretization and the solution pro-
cesses. The minimum – Cmin, average – Cavg, and maximum – Cmin number of
connection for an processor are shown. The other column Nmax is defined as
follows:

Nmax = max
0<i<Nproc

Nproc∑
j=1

Ni,j ,

Ni,j = max(Si,j , Ri,j),

(6)

where Nproc is the number of processors, Si,j is the number of values sent from
processor i to processor j and Ri,j is the number of received values. In other
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Table 3. Communication volume

ParMETIS PT-Scotch
mesh Nproc Cmin Cavg Cmax Nmax t[s] Cmin Cavg Cmax Nmax t[s]

M0 128 4 12 28 73 108 2.96 5 12 22 63 728 39.0
M0 256 4 13 26 47 392 1.59 3 13 25 39 020 35.9
M0 512 5 14 26 30 596 1.03 4 14 27 25 714 33.9
M0 1 024 5 14 27 19 376 0.87 4 14 26 16 652 32.8

M1 128 5 12 25 225 788 23.0 5 13 23 172 096 125
M1 256 7 14 29 155 912 11.5 3 13 27 118 948 92.7
M1 512 5 14 29 103 508 5.94 5 14 26 78 774 72.5
M1 1 024 5 15 32 80 360 3.46 5 14 25 67 392 61.11

M2 1 024 7 15 30 271 951 25.1 4 15 27 206 942 192
M2 2 048 5 16 30 162 946 13.4 5 15 29 137 587 138
M2 4 096 4 16 30 106 734 8.01 4 15 28 97 510 111

words Nmax is the maximum amount of data a processor communicates. We
also give the time t for the partitioning in seconds. We see in both cases similar
number of connections. The communication volume Nmax is lower for PT-Scotch.
Although PT-Scotch produces better partitions, we see that it does not scale.
Its run times are several times longer than those of ParMETIS.

The matrices of the linear systems are ill-conditioned and large. Since they
are symmetric and positive definite, we use the PCG [9] method, with a Boomer-
AMG as a preconditioner. The settings for the BoomerAMG preconditioner were
carefully tuned for maximum scalability. The selected coarsening algorithm is
Falgout-CLJP. Modified classical interpolation is applied. The selected relax-
ation method is hybrid symmetric Gauss-Seidel or SSOR. To decrease the oper-
ator and grid complexities two levels of aggressive coarsening are used. Smaller
operator and grid complexities are lead to faster iterations and reduced mem-
ory requirements. This is essential on BlueGene/P, as each processor has only
512MB of RAM. The downside is that this affect the convergence rate of the
solver.

In table 4 are shown parallel times for the discretization – Tdisc and the
solution of the linear system – Tsolve for the bioheat problem 1. The matrix
A = M + τ(K +Mbl) from (5) is assembled only once on the first time step and
not varied after that. The corresponding AMG preconditioner is also constructed
only on the first time step. We see that the discretization is faster and the
linear solver performs better for the partitions produced by PT-Scotch. The
discretization part scales nicely. We see that the linear solver fails to scale for
(relatively) small problems, and beyond 2 048 processors.

We asked ourselves the question “can we do better?” We tried to use the static
graph mapping capabilities of the Scotch library. A mapping is called static if it is
computed prior to the execution of the program. Static mapping is NP-complete
in the general case [5]. Scotch library uses suboptimal method of Dual recursive
bipartitioning. The parallel program to be mapped onto the target architecture
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Table 4. Computation times

ParMETIS PT-Scotch
mesh Nproc Tdisc[s] Tsolve[s] Tdisc[s] Tsolve[s]

M0 128 515 54.6 471 51.2
M0 256 247 34.6 249 29.7
M0 512 138 23.8 133 23.4
M0 1 024 72.8 22.7 69.9 21.3

M1 128 4 225 332 4 007 319
M1 256 2 160 173 2 101 167
M1 512 1 196 101 1 131 97.9
M1 1 024 608 75.2 574 69.0

M2 1 024 5 381 356 4 856 337
M2 2 048 2 742 224 2 364 211
M2 4 096 1 322 204 1 215 207

is modeled by a weighted unoriented graph S called source graph or process
graph, the vertices of which represent the processes of the parallel program, and
the edges of which are the connections between communicating processes. The
target machine onto which is mapped the parallel program is also modeled by
a weighted unoriented graph T called target graph or architecture graph. The
algorithm starts with the set of processors in T , also called domain, which is
associated the set of all the processes in S to map. At each step, the algorithm
bipartitions a yet unprocessed domain into two disjoint subdomains, and calls a
graph bipartitioning algorithm to split the subset of processes.

In our case the we use Ni,j from (6) as edge weights for S. We set the weights
on the edges of T to be the number of hops between a pair of nodes plus one
(there is a non-zero weight requirement in Scotch). We take into account that
the mesh topology is mesh up to 1024 processors and torus in other two cases.
The mapping is computed with the tool gmap, with an option which does not al-
low to assign two processes to one processor. In our solver, we construct an MPI
communicator with reordered ranks to match the mapping. We use that commu-
nicator for the computations. We performed the same tests, bur with mapped
communications. The results are shown in table 5. To ease the comparison only
the ratios Tmapped/T non−mapped are shown in percents, where T non−mapped are
the corresponding values in table 4.

In all cases the performance of the linear solver is improved. Although the
improvements are small – under 2%, we can say that that the mapping has
a positive effect. Things differ for the discretization times. For the ParMETIS
partitionings, there is a small improvement in most cases, expect three. But
for the PT-Scotch partitions things got worse in all cases. We expected that
because of the algorithm PT-Scotch uses and because of the nature of the inter-
connect, its partitions were already properly mapped. But the slower run times
can only mean that there is an overhead in using communicator different from
MPI_COMM_WORLD.
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Table 5. Computation mapping

ParMETIS PT-Scotch
mesh Nproc Tdisc[%] Tsolve[%] Tdisc[%] Tsolve[%]

M0 128 96.1 99.7 101.4 99.4
M0 256 98.1 100.0 102.2 99.6
M0 512 99.8 98.9 103.6 99.2
M0 1 024 100.1 99.7 103.6 99.7

M1 128 99.6 99.4 102.5 99.7
M1 256 99.1 99.8 101.6 99.2
M1 512 99.5 99.1 101.8 98.2
M1 1 024 101.9 99.1 104.1 98.1

M2 1 024 100.7 98.6 104.3 98.7
M2 2 048 98.7 99.7 104.2 99.7
M2 4 096 99.5 98.9 107.2 99.0

4 Conclusion and Future Work

In this work we compared the impact two graph partitioning libraries on the
performance of parallel FEM simulations. We saw that partitioning quality has
direct and non-negligible influence on the performance.

We used a tool for static graph mapping to optimize the communications on
massively parallel computer. The results show that we could gain by this kind
of optimizations, especially on problems with heavy communication loads.

Our future plans include tuning the parameters. Scotch library offers many
possibilities to influence its partitioning results. This is also true for the static
mapping. We also expect a parallel version of the routine METIS_PartGraphVKway
from the Metis library, which directly minimizes total communication volume.

We intent to use process remapping method, different from currently used
MPI communicator with reordered ranks.
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Abstract. Modeling turbulent transport is a major goal in order to pre-
dict confinement issues in a tokamak plasma. The gyrokinetic framework
considers a computational domain in five dimensions to look at kinetic
issues in a plasma. Gyrokinetic simulations lead to huge computational
needs. Up to now, the semi-Lagrangian code GYSELA performed large
simulations using a few thousands of cores. The work proposed here im-
proves GYSELA onto two points: memory scalability and execution time.
The new solution allows the GYSELA code to scale well up to 64k cores.

Keywords: Quasineutrality solver, Gyrokinetics, MPI, OpenMP.

1 Introduction

To have access to a kinetic description of the plasma dynamics inside a toka-
mak, one usually needs to solve the Vlasov equation nonlinearly coupled to
Maxwell equations. Then, a parallel code addressing the issue of modelling toka-
mak plasma turbulence needs to couple a 5D parallel Vlasov solver with a 3D
parallel field solver (Maxwell). On the first hand, a Vlasov solver moves the
plasma particles forward in time. On the other hand, the field solver gives the
electromagnetic fields generated by a given particles setting in phase space.

Computational resources available nowadays has allowed the development of
several petascale codes based on the well-established gyrokinetic framework. In
the last decade, the simulation of turbulent fusion plasmas in Tokamak devices
has involved a growing number of people coming from the applied mathematics
and parallel computing fields [5,1,9].

In this paper, we focus on the study of the field solver embedded in the
GYSELA gyrokinetic code. A new algorithm is presented here that has excellent
performance up to a few thousands of cores. An adapted communication scheme
is introduced to reduce the communication costs for exchanging information
between the semi-Lagrangian Vlasov solver and the field solver. From 4k cores
to 64k cores, the field solver tends towards an asymptotic time cost. Nevertheless,
its small computation cost compared to the other parts, allows GYSELA to get
good performance. Relative efficiency has been measured at 78% on 64k cores.
In the last sections, performance is evaluated both in term of execution time and
memory scalability.
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2 Gyrokinetic Model

2.1 Parallel Solving of Vlasov Equation

Our gyrokinetic model considers as main unknown a distribution function f̄ that
represents the density of ions at a given phase space position. This function de-
pends on time and on 5 other dimensions. First, 3 dimension in space, r and θ are
the polar coordinates in the shortest cross-section of the torus (called poloidal
section), while ϕ refers to the angle in the largest cross-section of the torus.
Second, velocity space has two dimensions: v‖ being the velocity along the mag-
netic field lines (one has v‖ = dϕ/dt), and μ the magnetic moment corresponding
to the action variable associated with the gyrophase. The time evolution of the
guiding-center 5D gyroaveraged distribution function f̄t(r, θ, ϕ, v‖, μ) is governed
by the so-called gyrokinetic equation [4,2] :

∂f̄

∂t
+

dr

dt

∂f̄

∂r
+

dθ

dt

∂f̄

∂θ
+

dϕ

dt

∂f̄

∂ϕ
+

dv‖
dt

∂f̄

∂v‖
= 0. (1)

In this Vlasov gyrokinetic equation, μ acts as a parameter because it is an
adiabatic motion invariant. Let us denote by Nμ the number of μ values, we
have Nμ independent Eq. 1 to solve at each time step. The function f̄ is periodic
along θ and ϕ. Vanishing perturbations are imposed at the boundaries in the
non-periodic directions r and v‖.

GYSELA is a global nonlinear electrostatic code which solves the gyrokinetic
equations with a semi-Lagrangian method [3,2]. We combine this with a second
order in time Strang splitting method. We refer the reader to [6,2] for detailed
description of Vlasov solver, we will only recall a few issues concerning the par-
allel domain decomposition. Large data structures are used in GYSELA: the 5D
data f̄ , and the 3D data as the electric potential Φ. Let Nr, Nθ, Nϕ, Nv‖ be the
number of points in each dimension r, θ, ϕ, v‖.

In the Vlasov solver, we give the responsibility of each value of μ to a given
set of MPI processes [6] (a MPI communicator). We fixed that there are always
Nμ sets, such as only one μ value is attributed to each communicator. Within
each set, a 2D domain decomposition allows us to attribute to each MPI Process
a subdomain in (r, θ) dimensions. Thus, a MPI process is then responsible for
the storage of the subdomain defined by f̄(r = [istart, iend], θ = [jstart, jend], ϕ =

∗, v‖ = ∗, μ = μvalue). The parallel decomposition is initially set up knowing
local values istart, iend, jstart, jend, μvalue. They are derived from a classical block
decomposition of the r domain into pr pieces, and of the θ domain into pθ

subdomains. The numbers of MPI processes used during one run is equal to
pr × pθ × Nμ. The OpenMP paradigm is used in addition to MPI (#T threads
in each MPI process).

2.2 Quasineutrality Equation

The quasineutrality equation and parallel Ampere’s law close the self-consistent
gyrokinetic Vlasov-Maxwell system. However, in an electrostatic code, the field
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solver reduces to the numerical solving of a Poisson-like equation [4]. In tokamak
configurations, the plasma quasineutrality (denoted QN) approximation is cur-
rently assumed [2]. Electron inertia is ignored, which means that an adiabatic
response of electrons is supposed. We define the operator ∇⊥ = (∂r,

1
r∂θ). We

note n0 the equilibrium density, B0 the magnetic field at the magnetic axis and
Te(r) the electronic temperature. We have also B(r, θ) the magnetic field, J0

the Bessel function of first order and k⊥ the transverse component of the wave
vector. Hence, the QN equation can be written in dimensionless variables

− 1

n0(r)
∇⊥ .

[
n0(r)

B0
∇⊥Φ(r, θ, ϕ)

]
+

1

Te(r)

[
Φ(r, θ, ϕ) − 〈Φ〉θ,ϕ (r)

]
= ρ̃(r, θ, ϕ) (2)

where ρ̃ is defined by

ρ̃(r, θ, ϕ) =
2π

n0(r)

∫
B(r, θ)dμ

∫
dv‖J0(k⊥

√
2μ)(f̄ − f̄eq)(r, θ, ϕ, v‖, μ). (3)

with f̄eq representing local ion Maxwellian equilibrium, and 〈〉θ,ϕ the average onto
the variables θ, ϕ. The presence of the non-local term 〈Φ〉θ,ϕ (r) couples (θ, ϕ) di-
mensions and penalizes the parallelization. We employ a solution based on FFT to
overcome this problem. But this method is valid only in polar coordinates and not
adapted to all geometries [8]. The QN solver includes two parts. First, the func-
tion ρ̃ is derived taking as input function f̄ that comes from the Vlasov solver. In
Eq. (3) specific methods (e.g. see [7]) are used to evaluate the gyroaverage oper-
ator J0 on (f̄ − f̄eq). Second, the 3D electric potential Φ is derived. The present
solution retains components of [7], while reducing parallel overheads.

In the following, we will refer to several data as 3D field data. They are
produced and distributed over the parallel machine just after the QN solver.
These field data sets, namely: Φ, ∂J0(k⊥

√
2μ)Φ

∂r
, ∂J0(k⊥

√
2μ)Φ

∂θ
, ∂J0(k⊥

√
2μ)Φ

∂ϕ
, are dis-

tributed on processes in a way that exclusively depends on the parallel do-
main decomposition chosen in the Vlasov solver. Indeed, they are inputs for the

Vlasov Eq. (1), and they play a major role in terms dr

dt
, dθ

dt
, dϕ

dt
,

dv‖
dt

not detailed
here. So we need that the subdomain owned by each MPI process has the form
(r = [istart, iend], θ = [jstart, jend], ϕ = ∗) for the 3D field data, as we shall see.

3 Scalable Algorithm for the QN Solver

3.1 1D Fourier Transforms Method

The method that follows considers only 1D FFTs in θ dimension and uncouples
computations in ϕ direction. The equation (2) averaged on (θ, ϕ) gives :

−
∂2 〈Φ〉θ,ϕ (r)

∂r2
− [

1

r
+

1

n0(r)

∂n0(r)

∂r
]
∂ 〈Φ〉θ,ϕ (r)

∂r
= 〈ρ̃〉θ,ϕ (r) (4)

A Fourier transform in θ direction leads to:

Φ(r, θ, ϕ) =
∑

m Φ̂m(r, ϕ)eim θ, ρ̃(r, θ, ϕ) =
∑

m ρ̂m(r, ϕ)ei m θ
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The equation (2) could be rewritten as:

for m > 0 :

−∂2Φ̂m(r, ϕ)

∂r2
− [

1

r
+

1

n0(r)

∂n0(r)

∂r
]
∂Φ̂m(r, ϕ)

∂r
+

m2

r2
Φ̂m(r, ϕ) +

Φ̂m(r, ϕ)

Te(r)
= ρ̂m(r, ϕ) (5)

for m = 0 :

∂2 〈Φ〉θ (r, ϕ)

∂r2
− [

1

r
+

1

n0(r)

∂n0(r)

∂r
]
∂ 〈Φ〉θ (r, ϕ)

∂r
+
〈Φ〉θ (r, ϕ) − 〈Φ〉θ,ϕ (r)

Te(r)
= 〈ρ̃〉θ (r, ϕ) (6)

The equation (4) allows one to directly find out the value of 〈Φ〉θ,ϕ (r) from the
input data 〈ρ̃〉θ,ϕ (r). Let us define the function Υ (r, θ, ϕ) as Φ(r, θ, ϕ)−〈Φ〉θ,ϕ (r).
Substracting equation (4) to equation (6) leads to

−∂2 〈Υ 〉θ (r, ϕ)

∂r2
− [

1

r
+

1

n0(r)

∂n0(r)

∂r
]
∂ 〈Υ 〉θ (r, ϕ)

∂r
+
〈Υ 〉θ (r, ϕ)

Te(r)
= 〈ρ̃〉θ (r, ϕ) − 〈ρ〉θ,ϕ (r) (7)

Let us notice that Φ̂0(r,ϕ)=〈Υ 〉θ(r,ϕ)+〈Φ〉θ,ϕ(r). So, the solving of equations (4) and
(7) allows one to compute 〈Φ〉θ,ϕ(r),〈Υ 〉θ(r,ϕ) and Φ̂0(r,ϕ) from the quantities 〈ρ̃〉θ(r,ϕ)

and 〈ρ̃〉θ,ϕ(r). Then, Eq. (5) is sufficient to compute Φ̂m>0(r, ϕ) from ρ̃. The
equations are solved using a LU decomposition precomputed once. As ϕ acts as
a parameter in Eq. (5), parallelization is possible over this dimension.

3.2 Data Distribution Issues

In the Vlasov solver and the beginning of QN solver each process knows the val-
ues of a subdomain f̄(r = [istart, iend], θ = [jstart, jend], ϕ= ∗, v‖ = ∗, μ=μvalue).
The field Φ is an output of QN solver that we would like to distribute over
the parallel machine. In an earlier work [7], we had simplified the problem of
data dependancies, in broadcasting the entire Φ data structure to all processes.
Then we computed in each MPI process the derivatives of gyroaveraged electric
potential redondantly. Nevertheless, this strategy leads to a bottleneck for large
platforms (typically more than 4k cores). Indeed, the broadcast involves growing
communication costs along with the number of processes, and the sequential na-
ture of derivatives computation becomes also problematic. These two overheads
are unnecessary, even they simplify the implementation of several subroutines
and reduces also the complexity of data management. In the presented version,
only a subdomain of Φ is sent to each process. Also, a distributed algorithm
computes the derivatives of J0(k⊥

√
2μ)Φ, as you will see in Algo. 2.

3.3 Parallel Algorithm Descriptions

The Algo. 1 describes a scalable parallel algorithm of the QN solver. This formu-
lation is not yet valid in toroidal setting, cylindrical geometry is used. It improves
previous approaches [7,2] in introducing a better work distribution, and also in
reducing the final communication. The main idea of the algorithm is to get 〈Φ〉θ,ϕ
for solving Eq. (7), and then to uncouple computations of Φ̂m along ϕ direction
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in the QN solver. Finally, each locally computed Φ(r, θ, ϕ) values are sent to
process that is responsible for it. The algorithm has parameters: the mappings
s, g and q that are detailed in the next subsection.

Algorithm 1. Parallel algorithm for the QN solver

Input : local block1

f̄(r = [istart, iend], θ = [jstart, jend], ϕ = ∗, v‖ = ∗, μ = μvalue)

(* task 1*)2

Computation : ρ̃1 by integration in dv‖ of f̄ /* parallel in μ, r, θ */3

Send local data ρ̃1(r = [istart, iend]), θ = [jstart, jend], ϕ = ∗, μ = μvalue)4

Redistribute ρ̃1 / Synchronization5

Receive block ρ̃1(r = ∗, θ = ∗, ϕ = [sϕstart, s
ϕ
end], μ = [sμstart, s

μ
end])6

(* task 2*)7

for ϕ = [sϕstart, s
ϕ
end] and μ = [sμstart, s

μ
end] do /* parallel in μ, ϕ */8

Computation : from ρ̃1 at one ϕ, compute ρ̃2 applying J0(k⊥
√

2μ)9

(Fourier transform in θ, Solving of LU systems in r)10

∀μ ∈ [sμstart, s
μ
end]

Computation : ρ̃3 for a given ϕ by integration in dμ of ρ̃211

if [sμstart, s
μ
end] �= [0, Nμ − 1] then12

Send local data ρ̃3(r = ∗, θ = ∗, ϕ = [sϕstart, s
ϕ
end])13

Reduce Sum ρ̃ += ρ̃3 / Synchronization14

Receive summed block ρ̃(r = ∗, θ = ∗, ϕ = [gstart, gend])15

(* task 3*)16

for ϕ = [gstart, gend] do /* parallel in ϕ */17

Computation : accumulation of ρ̃ values to get 〈ρ̃〉θ (r = ∗, ϕ)18

Send local data 〈ρ̃〉θ(r=∗,ϕ=[gstart,gend])19

Broadcast of 〈ρ̃〉θ / Synchronization20

Receive 〈ρ̃〉θ(r=∗,ϕ=∗)21

(* task 4*)22

Computation : Solving of LU system to find 〈Φ〉θ,ϕ from 〈ρ̃〉θ,ϕ, eq. (4)23

for ϕ = [gstart, gend] do /* parallel in ϕ */24

Computation : 1D FFTs of ρ̃ on dimension (θ)25

Computation : Solving of LU systems for Φ̂m modes (∀m > 0), eq. (5)26

Computation : Solving of LU system for 〈Υ 〉θ(r=∗,ϕ), eq. (7)27

Computation : Adding 〈Φ〉θ,ϕ to 〈Υ 〉θ(r=∗,ϕ) gives Φ̂0(r=∗,ϕ)28

Computation : inverse 1D FFTs on Φ̂0 and Φ̂m>0 to get Φ(r=∗,θ=∗,ϕ)29

Send local data Φ(r = ∗, θ = ∗, ϕ = [gstart, gend]) to the Nμ communicators30

Broadcast of values / Synchronization31

Receive global data Φ(r = ∗, θ = ∗, ϕ = [qstart, qend])32

Outputs : Φ(r = ∗, θ = ∗, ϕ = [qstart, qend])33

Algorithm 2. Parallel algorithm to get derivatives of the potential

Input : local block Φ(r = ∗, θ = ∗, ϕ = [qstart, qend])1

(* task 1*)2

for ϕ = [qstart, qend] and μ = μvalue do /* parallel in μ, ϕ */3

Computation : A0(r = ∗, θ = ∗, ϕ) = J0(k⊥
√

2μ)Φ(r = ∗, θ = ∗, ϕ)4

A1(r = ∗, θ = ∗, ϕ) = ∂A0(r=∗,θ=∗,ϕ)
∂r5

A2(r = ∗, θ = ∗, ϕ) = ∂A0(r=∗,θ=∗,ϕ)
∂θ6

Send local data A0|A1|A2(r = ∗, θ = ∗, ϕ = [qstart, qend])7

Redistribute A0|A1|A2 inside μ communicator/ Synchronization8

Receive blocks A0|A1|A2(r = [istart, iend], θ = [jstart, jend], ϕ = ∗)9

(* task 2*)10

for r = [istart, iend], θ = [jstart, jend], μ = μvalue do /* parallel in11

μ, r, θ */

Computation : A3(r, θ, ϕ = ∗) = ∂A0(r,θ,ϕ=∗)
∂ϕ12

Outputs : A1|A2|A3(r = [istart, iend], θ = [jstart, jend], ϕ = ∗)13

The computation sequence is: integrate f̄ over v‖ direction (task 1), compute
right-hand side ρ̃ in summing over μ (task 2), perform averages 〈ρ̃〉θ(r=∗,ϕ=∗) and
〈ρ̃〉θ,ϕ(r=∗) (task 3), solve QN equation and produces Φ slices (task 4).
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Fig. 1. Mappings of μ, ϕ (Nμ = 32,Nϕ = 16) on processes, large testbed (#P = 1024)
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Fig. 2. Mappings of μ, ϕ (Nμ = 8,Nϕ = 16) on processes, small testbed (#P = 8)

The Algo. 2 follows immediatly the QN solver. It applies the gyroaverage on
distributed Φ data and then computes its derivatives along spatial dimensions.
These 3D fields are named A1, A2, A3 in the algorithm. They are redistributed in
a communication step in order to correctly feed the Vlasov solver. In the task 2,
derivatives along ϕ direction are computed (all values are known along ϕ).

3.4 Mapping Functions

The two presented algorithms use three different mappings to distribute com-
putations and data on the parallel machine. These mappings concern ϕ and μ
variables and are illustrated in Fig. 1 and 2 for a large testbed and a small one
respectively. Let #C be the number of cores used for a simulation run and #P
be the number of MPI process. The number of threads #T per MPI process is
fixed, so we have #C = #P#T. Each rectangle on the Figures 1 and 2 represents
a MPI process. A process filled in dark or light gray has computations to perform,



Scalable Quasineutral Solver for Gyrokinetic Simulation 227

whereas the white color denotes an idle process. These mappings also implicitly
prescribe how communication schemes exchange data during the execution of
the two algorithms. We give here a brief description of these mappings:

– Mapping S - It defines the ranges ϕ ∈ [sϕstart, s
ϕ
end] and μ ∈ [sμstart, s

μ
end]. In

the task 2 of QN solver, we use this mapping to distribute the computation
of the gyroaverage J0. The maximal parallelism is then obtained whenever
each core has at most one gyroaverage operator to apply. We have considered
in the example shown in Fig. 1 that each MPI process hosts #T = 8 threads,
so that a process can deal with 8 gyroaveraging simultanously (sμend−sμstart+
1 = 8). This distribution is computed in establishing a block distribution of
domain [0,Nμ − 1]× [0,Nϕ − 1] over #C cores.

– Mapping G - It defines the range [gstart, gend] for the ϕ variable. A simple
block decomposition is used along ϕ dimension. For a large number of cores,
this distribution gives to processes 0 to Nϕ−1 the responsability to compute
the Nϕ slices of Φ data structure (task 4 of the QN solver). For a small
testbed (see Fig. 2), this mapping is identical to S mapping ([sμstart, s

μ
end] =

[0, Nμ − 1]). Then, we save the communication step in task 2 of QN solver.
– Mapping Q - The mapping Q defines the range ϕ ∈ [qstart, qend] in each

MPI process. Inside each μ communicator, it creates a block decomposition
along ϕ dimension. It is designed to carry out the computation of the gyroav-
erage of Φ, together with the computation of its derivatives (Algo. 2). These
calculations depend on the value of μ. It is cost effective to perform them
inside μ communicators: we need to only locally redistribute data inside the
μ communicator at the end of Algo. 2 in order to prepare the input 3D data
fields for the Vlasov solver.

3.5 Communication Costs Analysis

Let us estimate communication costs over all processes associated with the
Algo. 1. From line 6 to line 8, a 4D data ρ̃1 is redistributed (a global transposi-
tion that involves all MPI processes). The amount of communication represents
the exchange of NrNθ NϕNμ floats. For the lines 18 to 20, the amount of com-
munication is strictly lower to NrNθ NϕNμ floats, and tightly depends on the
mapping S. The broadcast of lines 28 to 30 corresponds to a smaller communi-
cation cost of NrNϕ min(#C,Nϕ). The final communication of lines 42-44 sends
Nμ times each 2D slice of Φ (locally computed). Its costs is near the cost of lines
6-8 with NrNθ NϕNμ floats, but without data transpose (so less memory copies).

In Algo. 2, a communication step transpose three 3D data inside each μ com-
municator. The overall cost is 3 Nr Nθ Nϕ Nμ floats, but only local communica-
tions inside μ communicators are realized.

4 Performance Analysis

Timing measurements have been performed on CRAY-XT5 Jaguar machine
(DOE). This machine has 18 688 XT5 nodes hosting dual hex-core AMD
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Table 1. Time measurements for one call
to the QN solver - Small case

Nb. cores 256 1k 4k

Nb. nodes 32 128 512

comp1 2300 ms 580 ms 100 ms

io1 300 ms 160 ms 90 ms

comp2 170 ms 43 ms 13 ms

io2 0 ms 0 ms 8 ms

comp3 0 ms 0 ms 2 ms

io3 17 ms 42 ms 43 ms

comp4 4 ms 3 ms 4 ms

io4 100 ms 40 ms 35 ms

Total time 2900 ms 870 ms 300 ms

Relative eff. 100% 83% 60%

Table 2. Time measurements for one call

to the QN solver - Big case

Nb. cores 4k 16k 64k

Nb. nodes 512 2k 8k

comp1 2200 ms 570 ms 95 ms

io1 450 ms 300 ms 470 ms

comp2 320 ms 180 ms 180 ms

io2 30 ms 60 ms 70 ms

comp3 3 ms 2 ms 3 ms

io3 150 ms 140 ms 130 ms

comp4 30 ms 30 ms 30 ms

io4 180 ms 100 ms 65 ms

Total time 3400 ms 1400 ms 1000 ms

Relative eff. 100% 61% 21%

processors, 16 GB of memory. The Table 1 reports timing of the QN solver ex-
tracted from GYSELA runs. Nμ remains constant while pr and pθ are increased.
A small case was run from 256 cores to 4096 cores. The parameters are the fol-
lowing: Nr = 128, Nθ = 256, Nϕ = 128, Nv‖ = 64, Nμ = 32. In Table 2, timings for a bigger
test case are presented. Its size is Nr = 512, Nθ = 512, Nϕ = 128, Nv‖ = 128, Nμ = 32.

For this second case, the testbed was composed of 4k to 64k cores. In Tables,
the io[1-4] steps state for communications of task[1-4], whereas comp[1-4]

stand for computation costs of task[1-4]. The Vlasov solver is parallelized using a
domain decomposition in μ, r, θ. The number of processes #P equals Nμ×pr×pθ.

General Observations. We map a single MPI process per node. The main idea
for this OpenMP parallelization has been to target ϕ loops. This approach is
efficient for the computation task 1 of QN solver. But in the tasks 3, 4, this
strategy competes with the MPI parallelization that also parallelizes over ϕ.
Thus, above Nϕ cores, no parallelization gain is expected. This fact is not the
hardest constraint up to now: communication costs are the critical overhead,
much more than computation distribution for these tasks (see Table 2). A re-
cent improvement has been to add a parallelization over μ in task 2. Even if
this change adds a unecessary communication (io2), it is worthwhile on large
platforms. Notably, we see that comp2 scales beyond Nϕ = 128 cores in Table 2.

Comments for the Small Case. In Table 1, the communication costs for exchang-
ing ρ̃1 values (io1 - task 1) is reduced along with the involved number of nodes.
This is explained by the fact that the cumulative network bandwidth increases
with larger number of nodes, while the amount of data exchanged remains the
same. The communication cost associated with io3 is mainly composed of syn-
chronization of nodes and broadcasting the 2D slice 〈ρ̃〉θ (r = ∗, ϕ = ∗). The io4

communication involves a selective send of Φ slices to each process; and one can
note the same decreasing behaviour depending on the number of cores observed
for io1. The comp1 calculation is a big CPU consumer; it scales well with the
number of cores. The comp3 is negligible time and comp4 is a small computation
step, time measurements are nearly constant for all number of cores shown. As
already said, Nϕ cores is the upper bound of the parallel decomposition here.
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Fig. 4. Big case - GYSELA timings
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Fig. 5. Small case, GYSELA efficiency
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Fig. 6. Big case, GYSELA efficiency

Table 3. Memory consumption (in GB) on each node by GYSELA, big case

Nb. cores 4k 8k 16k 32k 64k

Previous version

3D data struct. 2.79 2.75 2.73 2.72 2.72

All data struct. 11.55 8.07 6.38 5.48 5.02

Nb. cores 4k 8k 16k 32k 64k

Present version

3D data struct. 1.07 0.82 0.58 0.39 0.24

All data struct. 9.50 5.83 3.93 2.86 2.27

The relative efficiency for the overall QN solver is 60% at 4k cores which is a
good result for this solver that collects/redistributes data between all cores.

Comments for the big case. The relative speedups shown in Table 2 consider
as a reference the execution times on 4k cores. Communication costs are larger
than in the small test case. Badly comp2 and comp4 do not scale well. Only
comp1 and io4 parts behave as we wish. In future works, we expect improving
the scalability of this algorithm: reduction of communication costs is the first
candidate (we investigate compression methods). Even if improvements can be
found, a good property of this solver is that execution time globally decreases
along with the number of cores, and does not explode (for example due to grow-
ing communication costs). We see in Fig. 6 that this cheap cost of the QN solver
brings a good overall scalability. GYSELA reaches 78% of relative efficiency at
64k cores. In Fig. 3 and 4, timings for short runs of GYSELA are presented (ini-
tialization step is omitted). The field solver and derivatives computation of the
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gyroaveraged Φ are low compared to Vlasov solver and diagnostics costs. Then,
their limited scalability at very large number of cores, does not impact signifi-
cantly the scalability of the overall code. Let us remark the excellent scalability
for the small case (Fig. 5) with 97% of overall relative efficiency at 4k cores.

Memory Scalability. Thanks to the parallel algorithms described, we avoid the
storage of complete 3D field data in memory, but we need only distributed 3D
data. The threads inside a MPI process share these 3D data. In addition to this
data distribution, another modification has occured in the present version: a set
of different 3D and 2D data buffers have been removed and replaced by a unique
large 1D array. The Table 3 shows the decrease in memory usage.

Conclusion

We describe the parallelization of a quasineutral Poisson solver used into a full-f
gyrokinetic 5D simulator. The parallel performance of the numerical method
is demonstrated. It achieves good parallel computation scalability up to 64k
cores with a OpenMP/MPI approach. The coupling of the quasineutral solver
and the Vlasov code is improved here by reducing communication costs and
introducing better computation distribution compared to previous results [6,2,7].
The modifications result also in savings in the memory occupancy, which is a
big issue when physicists wish to run large case.
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Abstract. Storage systems play a key role in any modern data center
influencing the overall performance and availability of applications and
services, especially, if they deal with large volumes of data. Clients of
storage services may have expectations concerning the QoS, which may
be formally expressed in a contract called SLA. SLA monitoring is essen-
tial part of the automated SLA management process. In this paper we
present a method of applying ontologies for SLA monitoring of storage
related services.

1 Introduction

Storage systems play a key role in any modern data center influencing the over-
all performance and availability of applications and services, especially if they
deal with large volumes of data. Using virtualization technologies data centers
can make their resources and services available to clients – like in the Cloud
environments [7,3]. Clients may have expectations concerning the QoS (Quality
of Service), which may be formally expressed in a contract called SLA (Service
Level Agreement) [12,10].

SLA monitoring is essential part of the automated SLA management process.
It provides information about fulfilling SLA obligations, which can be further
used by the other modules, e.g., replica manager [11] to improve the QoS or to
stop accepting new SLAs when the resources get exhausted.

Because of the heterogeneity of MSS (Mass Storage Systems) it seems rea-
sonable to apply semantic technologies for defining relations between different
concepts in the context of MSS, QoS and SLA. In this paper we propose a
method of applying ontologies for SLA monitoring of storage related services,
developed as a part of OntoStor project [1]. This approach is targeted at modern
distributed environments like Clouds and Grids [8].

An important assumption influencing the method of implementing the moni-
toring system and the relevant ontologies is that some of the QoS metrics may
be calculated differently depending on the available attributes of the MSS being
monitored. We use the term abstract QoS metric to describe a set of metrics
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sharing common meaning (measuring the same property of a resource, using the
same unit) but being calculated differently, based on the availability of monitor-
ing information for a particular resource. Another important assumption is that
the method of obtaining the QoS attributes can also differ between MSS.

The rest of the paper is organized as follows. State of the art is presented in
the next section. Then we define QoS metrics in section three and present the
SLA monitoring system and the relevant ontologies developed within Ontostor
project in section four. Example use cases are presented in section five and the
last section concludes the paper.

2 State of the Art

The problems related to management of SLAs, QoS metrics and the usage of
ontologies have been studied in many research works. Below we present selected
papers concerning the usage of ontologies in the field of SLA management in
contrast with our research. In [4] evaluation of QoS ontology research work is
done and an initiative for creation of an unified QoS ontology is presented. In [5]
a comprehensive ontology-based model of SLA is proposed. The model is used
for automatic generation of QoS monitors. In [6] an ontology for describing SLAs
is presented and discussed in the context of the telecommunications domain.

Due to the heterogeneity of MSS, which implies different methods of obtaining
common QoS metrics we started a research on SLA monitoring using a previ-
ously developed common model of MSS including the relevant ontology describ-
ing performance related parameters for MSS [9], created within the OntoStor
project [1].

The created ontology is modeled similarly to [4]. However, some core concepts
are different, our ontology provides a way to model abstract QoS metrics, which
can be measured in different ways. This allows to choose suitable method of
measurement of a metric for a particular set of available monitoring information,
using an ontology reasoning engine. We also introduced domain specific ontology
for specifying QoS requirements for MSS.

3 Storage QoS metrics

In order to provide desirable level of QoS it is important to define how to mea-
sure the level of QoS. Several QoS metrics regarding storage systems performance
are presented in this section. These QoS metrics are calculated from the mon-
itoring parameters (further called also attributes) obtained from the low-level
monitoring system and derived by sensors (see Fig.1).

The default QoS metrics for MSS defined in [1] and implemented in the
presented study are presented in Table 1. The following notation is used for
the metrics description: AttributeName(t, r) – the monitored value of attribute
AttribiteName at time t for the resource r; R – set of resources for which the
metric value is calculated; t0 – current time; T – time period for which the metric
value is calculated.
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Table 1. QoS metrics for storage systems

QoS metric Metric definition

Total available capacity
∑

r∈R TotalCapacity(t0, r)

Free capacity
∑

r∈R FreeCapacity(t0, r)

w(t, r) ∈ {0, 1} ∧ w(t, r) = 1 ⇔ IsWorking(t, r)

Uptime of all resources average
t0−T<t≤t0

(
min
r∈R

(w(t, r))

)
Uptime of any resource average

t0−T<t≤t0

(
max
r∈R

(w(t, r))

)
rtrr(t) ∈ {AverageReadTransferRate(t,r), CurrentReadTransferRate(t,r),

max(CurrentReadTransferRate(t,r),DiskstatReadTransferRate(t,r))}
Average read transfer rate average

t0−T<t≤t0

(∑
r∈R rtrr(t)

)
Minimal read transfer rate min

t0−T<t≤t0

(∑
r∈R rtrr(t)

)
wtrr(t) ∈ {AverageWriteT ransferRate(t,r), CurrentWriteT ransferRate(t,r),

max(CurrentWriteT ransferRate(t,r), DiskstatWriteT ransferRate(t,r))}
Average write transfer rate average

t0−T<t≤t0

(∑
r∈R wtrr(t)

)
Minimal write transfer rate min

t0−T<t≤t0

(∑
r∈R wtrr(t)

)

Average read transfer rate is an example of a metric with multiple methods of
measurement. Depending on the type of a storage system, it may provide differ-
ent type of information about its read transfer rate: AverageReadTransferRate
is predetermined average transfer rate for the device, CurrentReadTransferRate
is based on periodical active measurement and DiskstatReadTransferRate is ad-
ditional information based on real usage of the device, which may be more ac-
curate than the one obtained by active measurement. Depending on which of
these monitoring attributes are available, the system chooses suitable method of
calculating the metric.

4 Semantic-Based SLA Monitoring

The SLA monitoring system is designed to monitor fulfillment of SLA contracts.
The contracts are expressed as a set of requirements – constrains on the value
of specified QoS metrics for some storage resources. A QoS metric is a high-
level, abstract entity and can be applicable for various different types of storage
systems. This is achieved by defining a QoS metric with several different methods
of calculation, each of these applicable to a different type of storage resources.
The semantic way of describing methods of calculation, resources and monitoring
systems allows to automatically find a method suitable for a given resource, using
a semantic reasoner. The abstract way of defining QoS metrics and the semantic
approach make the system easily extensible to support new metrics, types of
resources or monitoring systems.



Semantic-Based SLA Monitoring of Storage Resources 235

4.1 Overall System Design

The proposed system consists of 2 main parts, together with accompanying on-
tologies (see Fig. 1, area marked with dotted border): (1) QoS Metric Mapper,
which is responsible for mapping an abstract semantic metric definition onto
some concrete expression combining monitored attributes of a specified resource
to calculate value of the metric; (2) SLA Monitor, which allows monitoring of
SLA contracts submitted as ontological documents. The parts and the way they
communicate are described in the ontology.

Fig. 1. Overview of the SLA monitoring system architecture

4.2 Description of System Components

The SLA Monitor analyzes the contract ontology. For each defined requirement it
queries the QoS metric mapper to obtain an expression representing a metric for
all specified resources. Metric mapper breaks this down to some combination of
metrics, each for every single resource. Metric expression for the single resource
is then mapped to monitoring systems queries.

The core of the system is the QoS Metric Mapper. Its most important feature
is the ability to choose optimal way of calculating a particular metric for a
particular resource, based on the available monitored attributes of the resource.
Moreover, the metric may be expressed using the monitored attributes obtained
from different systems monitoring the resource.

Each monitored storage system is described in an ontology specified in the
contract ontology. This description provides various information on the resource,
like: which monitoring systems monitor the resource, how to communicate with
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this monitoring system and how to get the value of each attribute specified for
the resource. This information is used by appropriate monitoring system adapter
to provide monitoring information to the QoS Metric Mapper.

4.3 Ontologies

Ontologies in this system play important role, as they provide a way to describe
information exchanged within the system. Due to a large number of available
tools and popularity, OWL (RDF/XML) was chosen as a ontology language. The
used tools include: protégé – free, Open Source ontology editor, OWLAPI – Java
API and reference implementation for manipulating OWL ontologies, Pellet –
semantic reasoning engine for OWL ontologies for Java.

Areas of application of the ontology in this system are as follows:

1. Description and classification of storage resources and their attributes.
2. Description of monitoring systems, representation of resources in this sys-

tems and monitored attributes of the resources.
3. Definitions of QoS metric and methods of calculating them based on re-

sources’ attributes.
4. Way of describing QoS requirements in contracts.

Following is a description of the created OntoStor ontologies (see also Fig.2) that
satisfy these requirements.

Attributes Ontology (OntoStor-ATN). This ontology provides a model of stor-
age resources and their attributes. It allows to describe storage systems of differ-
ent types (HSM (Hierarchical Storage Management)), disk arrays, local drives)
and abstract attributes associated with these systems (see model in [9]).

Monitoring and Expressions Ontology (OntoStor-monitoring). It contains
few types of concepts: MeasurementConcepts, MonitoringConcepts and Expres-
sionConcepts (see Fig. 2).

MeasurementConcepts describe a system of measurements, i.e. simple and
complex units, dimensions of the units, and conversion rates between the units.
This allows performing calculations using different sources with different units.

MonitoringConcepts describe monitoring systems and their types, monitored
storage resources and monitored attributes. Other ontologies deriving from this
concepts describe particular monitoring system types and any information spe-
cific to them. Each monitoring system can provide a subset of attributes de-
scribed in OntoStor-ATN for a particular monitored storage system.

ExpressionConcepts provide means of describing arithmetic, Boolean or even
more generic expressions. Expressions of these types are used to construct defi-
nitions of QoS metrics and methods of calculating them.

QoS Requirements Ontology (OntoStor-qos). This ontology provides con-
cepts which allow to describe SLA contracts and QoS requirements within these
contracts, QoS metrics and methods of calculating them. The ontology also de-
fines some higher-level expressions, like a QoS metric value for single resource
or a QoS metric value for multiple resources.
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Fig. 2. Main concepts in OntoStor ontologies

Metrics Ontology (OntoStor-metrics). This ontology contains the definition of
the QoS metrics described in section 3, using ExpressionConcepts from OntoStor-
monitoring ontology and metrics-related concepts from OntoStor-qos.

4.4 Example – Analyzing and Monitoring of a Requirement

The following ontology example describes a single QoS requirement from an
example SLA contract ontology. The requirement is met when the value of
averageReadTransferRatemetric for resources agh da0 and agh hsm0 is greater
than 300 MB/s. The example QoS requirement:

<owl:NamedIndividual rdf:about="&sla;averageReadTransferRate">
<rdf:type rdf:resource="&qos;QoSRequirement"/>
<qos:isValidatedUsing rdf:resource="&sla;bwGt300MBps"/>
<qos:hasMetricValue rdf:resource="&sla;testMetricValue"/>

</owl:NamedIndividual>

defines this constrain:

<owl:NamedIndividual rdf:about="&sla;bwGt300MBps">
<rdf:type rdf:resource="&monitoring;NamedParametersFunctionValue"/>
<monitoring:hasArguments rdf:resource="&sla;requirementMetricValue"/>
<monitoring:hasArguments rdf:resource="&sla;value300MBps"/>
<monitoring:ofFunction rdf:resource="&monitoring;greaterThan"/>

</owl:NamedIndividual>

on this QoS metric value:

<owl:NamedIndividual rdf:about="&sla;testMetricValue">
<rdf:type rdf:resource="&qos;QoSMetricValue"/>
<qos:forResources rdf:resource="&sla;agh_da0"/>
<qos:forResources rdf:resource="&sla;agh_hsm0"/>
<qos:ofMetric rdf:resource="&metrics;averageReadTransferRate"/>

</owl:NamedIndividual>

Analyzing. The purpose of analysis of this requirement is to create its calcu-
lable representation. First, metric value expression (&sla;testMetricValue) is
analyzed. It is done in the following steps:
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1. For each specified resource (in this case, &sla;agh da0 and &sla;agh hsm0)
the QoS Metric Mapper queries the ontology reasoner to get possible metric’s
methods of calculation for the resource (based on availability of monitored
attributes). This is done using following query:

QoSMetricCalculation
that hasMetric value <metric>
and calculationRequires

only (Attribute that isProvidedByResource some
(MonitoredResource that hasResource value <resource>))

and inverse monitoringSystemProvides some
(MonitoringSystem that inverse isMonitoredBySystem some

(MonitoredResource that hasResource value <resource>)))

2. Ontology reasoner returns all available methods of calculating metric value
for specified resource, based on available monitored resource’s attributes. In
our case there are three possible methods: AverageReadTransferRate, Cur-
rentReadTransferRate or DiskstatReadTransferRate (see Table 1).

3. QoS Metric Mapper chooses one way of measuring the metric.
4. QoS Metric Mapper queries the ontology to retrieve a description of the

expression calculating the metric value.
5. Mapper creates Java objects corresponding to the elements of the expression.

This may be function invocations, constant values or monitored attribute
values, arranged together as an expression tree. In order to create objects
representing monitored attribute value, the system queries the ontology for
a way of monitoring the attributes required to calculate this metric and
initializes appropriate monitoring systems adapters (see Fig. 3).

6. Now, each evaluation of the created expression returns the QoS metric value
for the resources.

7. Expression used to validate the requirement is created, in similar way as in
point 5. In this example it is simple comparison, which yields positive result
when QoS metric value is greater than specified constant value (in this case,
300MB/s).

8. The result of the analysis of a requirement is a calculable expression repre-
senting the QoS metric value for the specified resources and an expression
which given the QoS metric value, validates whether the requirement is met.

Monitoring. Once the expression representing the QoS metric value and the
expression validating the QoS requirement are created by QoS Metric Mapper,
the SLA monitoring is simple:

1. SLA monitor queries monitoring systems (through adapters) to retrieve value
of attributes required to calculate the QoS metric value for each resource.

2. This values are passed to the already created expressions calculating metric
value using predetermined method. Evaluation of this expression yields the
value of the QoS metric.

3. SLA monitor passes the calculated QoS metric value to the validating ex-
pression. In this case, simple comparison is performed. Positive result means
that the requirement is fulfilled.

4. SLA monitor stores the QoS metric value and the result of validation to
present them to the user in a useful way.
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Fig. 3. Sequence diagram of metric instantiating

5 Use Cases

Typical use case of this system may be described in following steps:

1. Service provider creates an ontology describing their storage systems (us-
ing OntoStor-ATN ontology). This may involve extending OntoStor-ATN
ontology to include custom attributes.

2. Service provider creates an ontology describing how these storage systems
are monitored. If used monitoring technology is not already supported by
the system, service provider needs to extend OntoStor-monitoring ontology
and provide Java plugin to interface with this monitoring system.

3. Service provider reviews available metrics and may optionally add new ones.
This involves only extension of the base OntoStor-metrics ontology, since
methods of measuring metrics are fully specified within ontology.

4. Customer requests a service with particular QoS, and together with service
provider they specify SLA contract ontology. It includes a set of require-
ments, being a constrains on the values of QoS metrics for resources.

5. The contract is submitted to the SLA monitoring system, and is being con-
tinuously monitored. QoS metrics’ method of calculation is automatically
matched to particular resources, based on the definition of the method of
calculation and available monitoring information for the resource.

6. Results of the monitoring are presented. Users can view percentage of time
when each requirement was satisfied, together with past and present values
of the QoS metrics. Overall contract satisfaction is currently calculated as a
percentage of time when all the requirements were satisfied.
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5.1 Deployment Example

The SLA monitoring system was deployed together with a simple web interface.
Few example contracts were tested, regarding different types of storage systems:
local disks, HSM system and disk arrays. Monitored attributes of this resources
were available through two different monitoring systems: Gemini2 [2] and HSM
systems monitor with a RESTful webservice interface.

Fig. 4. SLA fulfillment monitoring - test results

In the screenshot (Fig. 4) a result of monitoring an example SLA contract
is shown. Excerpts from this contract (defining of a requirement) are shown
in section 4.4. The contract consists of 2 requirements, constraining 2 metric
values. First metric value, read transfer rate is averageReadTransferRate without
averaging over time. Second metric value, average read transfer rate is the same
as previous, but averaged over 10 minutes, both calculated for two different
resources: a disk array and a HSM system. Each resource is also monitored using
different monitoring system. Values of the metrics is required by the contract to
be over 300MB/s. Both values are higher, therefore the contract is satisfied. The
contract was satisfied 96.7% of the time.
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6 Conclusion

In this paper we have presented an approach for semantic-based SLA monitor-
ing of storage resources. The main contribution of this research is proposing a
method of specifying abstract QoS metrics using ontologies. The semantic way
of describing methods of calculation, storage resources and monitoring systems
allows to automatically obtain a method of QoS metric calculation suitable for
the given storage resource. The presented approach allows to use one QoS met-
ric set for different storage resources due to possibility to fit the way of metric
calculation according to the available storage resource monitoring attributes.
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Abstract. A queueing system of the M/M/1/(∞, V ) type with gen-
erally distributed packet volumes and bounded capacity (total packets
volume) is considered. The queue length is controlled by means of the
accepting function that enqueues the arriving packet with probability
depending on the free capacity volume in the system at the pre-arrival
epoch. Explicit representations for stationary probabilities are derived
via solving the system of differential equations. Sample numerical re-
sults are attached in which stationary queue-size distributions with and
without dropping packets are compared.

Keywords: AQM algorithms, Loss Probability, Numerical Laplace trans-
form inversion, Queue-size distribution.

1 Introduction

Queueing systems with finite buffer capacities have numerous applications in
analysis of modern telecommunication and computer networks. In particular,
they are used for modelling processes occurring in nodes of networks, like Inter-
net routers or ATM switches. One of the major practical problems occurring in
such networks is the phenomenon of buffer overflow, which results in temporary
blocking of data transmission, such as e.g. IP packets (it corresponds to stopping
the service process in the appropriate queueing system). The prevention of this
problem by increasing the capacity of the buffer can result in a significant pro-
longation of the real time of transmission (the sojourn time of the packet in the
corresponding queueing system increases due to increasing the maximal queue
length).

One of the tools for avoiding the risk of buffer saturation is using the Active
Queue Management (AQM) algorithms. In [8] one of such scheme called Random
Early Detection (RED) was proposed. The idea of RED procedure is in intro-
ducing a mechanism for monitoring the current queue size by a drop function
that can depend on the instantaneous queue size n. This function, with some
positive probability d(n), rejects the incoming packets even when the buffer is
not saturated. A typical drop function (see [4]) is linearly increasing from 0 to
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some value dmax, for queue sizes between qmin and qmax. Below qmin the enqueue-
ing process is not controlled, and above qmax the incoming packets are dropped
with probability 1. Different modifications of the classical RED algorithm can
be found in the literature. In [10] the linear drop function is replaced with an
exponential and in [14] – by a quadratic one. A dynamic RED scheme (DRED)
is proposed in [3] and REM algorithm is introduced in [2]. In [7] a BLUE algo-
rithm is proposed. In this scheme the incoming packets are dropping with certain
constant initial probability that is increased by ε when the buffer overflows and
decreased by ε when the queue empties.

One of the fundamental characteristics of each queueing system is the queue-
size distribution. In the paper we study the stationary queue-size distribution
in the system in that the incoming packets can have different volumes which
are generally distributed random variables, at the same time the total packets
volume in the system is bounded. Instead of the classical drop function we intro-
duce the accepting function that enqueues the incoming packet with probability
that depends on the free capacity volume in the system at the pre-arrivals epoch.

Such a system is a natural generalization of the AQM-modelled system with
batch arrivals to the case in that the volume of the packet can be continu-
ously distributed. Evidently, due to this extension the model becomes more
applicable in the performance analysis e.g. of telecommunication and computer
networks. The analysis generalizes partially results obtained in [9] where the
classical MX/M/1/N finite-buffer queue with batch arrivals and AQM schemes
was investigated. The generalization is based on the theory of queueing systems
with random volume customers (see e.g. [11,12]).

The paper is organized as follows. In Section 2 we give a precise description
of the system and introduce necessary notation. In Section 3 we introduce the
Markovian process describing the evolution of the system. In Section 4 we write
down the system of differential equations for stationary queue-size probabilities
and find its solution. As a special case formulae for stationary queue-size dis-
tribution and loss probability are given for the M/M/1/(∞, V ) system without
dropping packets. Section 5 is devoted to numerical computations: we compare
stationary probabilities in sample systems with and without AQM algorithm. In
this section we use one of algorithms for numerical Laplace transform inversion.
The last Section 6 contains conclusions.

2 System Description and Necessary Notation

Let us consider the system of M/M/1/(∞, V ) type [13]. Denote by a the ar-
rival rate of incoming packets. Each packet is characterized by its random vol-
ume ζ that is generally distributed with the distribution function (d.f.) L(x) =
= P{ζ < x}. The service time ξ of the packet is independent of its volume and
exponentially distributed with parameter μ, so we denote B(t) = P{ξ < t} =
= 1−e−μt. Denote by σ(t) the total volume of all packets present in the system at
time instant t. It is assumed that the total volume is bounded by a non-random
positive value (capacity volume) V.
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Denote by τ any (fixed) arrival epoch in the stationary state of the system.
The packet arriving at τ is lost if its volume x satisfies condition x > V −y, where
y = σ(τ−). Introduce a right-hand continuous and nondecreasing function r(v),
defined on the interval [0, V ] such that r(V ) ≤ 1, r(0) ≥ 0. The function r(v)
represents the probability that the incoming packet is enqueued in the system if
the free volume of the system at the pre-arrival epoch equals v units. In other
words, if the packet with volume x arrives at time τ and σ(τ−) = y, then it will
be accepted for service with probability r(V − y) and dropped with probability
1−r(V −y). Moreover, the incoming packet will be lost if x > V −y. Let us note
that, if d(y) is the value of the classical drop function at the pre-arrival epoch,
then we have r(V − y) = 1− d(y).

Let η(t) be the number of packets present in the system at time t. If the
packet arriving at time τ is lost (dropped) then we have η(τ) = η(τ−) and
σ(τ) = σ(τ−). Otherwise we have η(τ) = η(τ−) + 1 and σ(τ) = σ(τ−) + x.

3 Stochastic Process Describing the Evolution of the
System

The evolution of the investigated queueing system can be described by means of
the following Markovian process:(

η(t), ζi(t), i = 1, ..., η(t)
)
, (1)

where ζi(t) denotes the volume of the ith packet present in the system at time
t (we assume that the arriving packets are numbered according to their appear-
ance). Components ζi(t) vanish if η(t) = 0. In this case, obviously, we have

σ(t) = 0 and otherwise σ(t) =
∑η(t)

i=1 ζi(t).
The process (1) will be characterized by functions having the following prob-

ability meanings:

P0(t) = P{η(t) = 0}; (2)

Gk(y, t)dy = P{η(t) = k, σ(t) ∈ [y, y + dy)}, k = 1, 2, ...; (3)

Pk(t) = P{η(t) = k} =

∫ V

0

Gk(y, t)dy, k = 1, 2, .... (4)

Since for any finite a, V and nonzero μ there exists the stationary state of the
system, then the following limits also exist:

p0 = lim
t→∞P0(t) = P{η = 0}; (5)

gk(y)dy = lim
t→∞Gk(y, t)dy = P{η = k, σ ∈ [y, y + dy)}, k = 1, 2, ...; (6)

pk = lim
t→∞Pk(t) = P{η = k} =

∫ V

0

gk(y)dy, k = 1, 2, ..., (7)

where η and σ denote the stationary number of packets and the stationary total
volume in the system respectively.
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4 System of Equations for Stationary Probabilities

It is easy to show that functions (2)–(4) satisfy the following differential equa-
tions:

P ′
0(t) =− aP0(t)r(V )L(V ) + μP1(t); (8)

P ′
k(t) =a

∫ V

0

Gk−1(x, t)r(V − x)L(V − x)dx

− a

∫ V

0

Gk(x, t)r(V − x)L(V − x)dx − μPk(t) + μPk+1(t),

k = 1, 2, .... (9)

Taking in (8), (9) limits as t → ∞ we obtain the following system of equations
for stationary probabilities pk :

0 =− ap0r(V )L(V ) + μp1; (10)

0 =a

∫ V

0

gk−1(x)r(V − x)L(V − x)dx

− a

∫ V

0

gk(x)r(V − x)L(V − x)dx − μpk + μpk+1,

k = 1, 2, .... (11)

Denoting by ρ = a
μ the traffic load of the system, from the equations (10), (11)

the following representation for gk(y)dy can be written (that can be formally
proved by direct calculations):

gk(y)dy = ρkp0d
[
(r · L)k∗(y)

]
, k = 1, 2, ..., (12)

where the notation Hk∗(x) denotes the k-fold Stieltjes convolution of the function
H(x) with itself i.e.

H0∗(x) = 1, Hk∗(x) =

∫ x

0

H(k−1)∗(x− y)dH(y), k = 1, 2, .... (13)

From (12) we get

pk = p0ρ
k(r · L)k∗(V ), k = 1, 2, .... (14)

The value of p0 can be found from the normalization identity:

p0 =
( ∞∑
k=0

ρk(r · L)k∗(V )
)−1

. (15)

The loss probability P can be obtained from the equilibrium equation, thus it
equals

P = 1− 1− p0
ρ

. (16)
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Assume now that the arriving packet is being accepted (or dropped) in depen-
dence only on the number of packets present in the system just before its arrival
and, besides, the total number of packets in the system is bounded by m + 1
(m places in the buffer queue and one place for service). In fact, we obtain the
system of the M/M/1/m+ 1 type in that the incoming packet is being qualified
for service with probability rk = r(m + 1 − k), where k denotes the number of
packets at the pre-arrival epoch.

Such a system is a special type of that one considered earlier, under the
assumption that all packets have the same volume equal to one (ζ ≡ 1) and
V = m + 1.

It is easy to show that the stationary probabilities in the simplified system
can be found as

pk =
ρk

∏k−1
i=0 ri

1 +
∑m+1

j=1 ρj
∏j−1

i=0 ri
, k = 0, ...,m + 1. (17)

Note that the last result corresponds to that obtained in [9] by taking rk =
= 1− d(k), where d(k) denotes the value of the dropping function for k packets
present in the system.

Finally, let us note that taking r(v) = 1, v ∈ [0, V ], we obtain a “pure”
system of the M/M/1/(∞, V ) type (without dropping packets). In such a system
stationary probabilities p̂k can be written as follows (see e.g. [13]):

p̂k = p̂0ρ
kLk∗(V ), k = 1, 2, ... (18)

and

p̂0 =
( ∞∑
k=0

ρkLk∗(V )
)−1

. (19)

Similarly, the loss probability P̂ in the M/M/1/(∞, V ) system without AQM
algorithm can be written as (compare (16))

P = 1− 1− p̂0
ρ

. (20)

In particular, if the volume of an arriving packet is exponentially distributed
with parameter f i.e. L(x) = 1− e−fx, x > 0, then probabilities (18)–(20) take
the following forms respectively (see [13]):

p̂k = p̂0ρ
k
[
1− e−fV

k−1∑
j=0

(fV )j

j!

]
, (21)

p̂0 =

{ 1−ρ
1−ρe−(1−ρ)fV , for ρ �= 1,

(1 + fV )−1, for ρ = 1.
(22)

The loss probability P̂ equals

P̂ =

{ 1−ρ
e(1−ρ)fV −ρ

, for ρ �= 1,

(1 + fV )−1, for ρ = 1.
(23)
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5 Numerical Computations

The main goal of this section is to compare stationary probabilities pk and p̂k in
sample systems with and without dropping packets. In numerical computations
we will use the algorithm of numerical Laplace transform inversion that was
introduced in [1]. It is based on the Bromwich inversion integral that evaluates
the value of the function F (t) from its Laplace transform f(s) as

F (t) =
1

2πi

∫ b+i∞

b−i∞
estf(s)ds, (24)

and Euler summation formula (see [1] and [5] for more details).

In numerical computations we use the Mathematica environment. Below we
present results for stationary probabilities (14), (15) and the loss probability
defined in (16) for three different sample input “conditions” of the system.

(1) Let us firstly consider the system with ρ = 2.0 (strongly overloaded) and
V = 10, in that the volume of the arriving packet is exponentially distributed
with mean α−1 = 0.5. Define the accepting function r(v) in the following way:

r(v) =
v

V
, 0 ≤ v ≤ V. (25)

In Table 1 we present numerical results for stationary queue-size distributions in
such a system considered separately with and without AQM algorithm (with ac-
curacy of six significant digits). Moreover, stationary probabilities for the system
without dropping packets are also presented in Figure 1.

Appropriate loss probabilities equal P = 0.569850 and P̂ = 0.500000.

Table 1. Comparing stationary probabilities pk and p̂k for case (1)

Queue size k Stationary probability pk Stationary probability p̂k

0 0.139700 1.03058 × 10−9

1 0.278773 2.06116 × 10−9

2 0.276607 4.12232 × 10−9

3 0.178722 8.24464 × 10−9

4 0.0841088 1.64892 × 10−8

5 0.0305664 3.2978 × 10−8

6 0.00889457 6.59524 × 10−8

7 0.0021244 1.31881 × 10−7

8 0.000424114 2.63623 × 10−7

9 0.0000717861 5.26556 × 10−7

10 0.0000104248 1.05004 × 10−6
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Fig. 1. Stationary probabilities pk for case (1)

(2) Now let us take L(x) = 1 − e−x(1 + x), x > 0 (2-Erlang distribution with
parameter 1), V = 10 and ρ = 0.7 (underloaded system). Besides, define the
acceptance function r(v) as follows:

r(v) = 1− (v − V )2

V 2
0 ≤ v ≤ V. (26)

Stationary queue-size distributions for the case of system with AQM and a
“pure” one are shown in Table 2 and in Figure 2 (in darker colour for the
system with dropping). Besides, the loss probabilities are P = 0.2112227 and

P̂ = 0.0756514 respectively.

Table 2. Comparing stationary probabilities pk and p̂k for case (2)

Queue size k Stationary probability pk Stationary probability p̂k

0 0.448559 0.352956

1 0.313832 0.246943

2 0.171089 0.171161

3 0.0551387 0.112942

4 0.0101847 0.0660822

5 0.00111604 0.0321563

6 7.62985 × 10−5 1.25914 × 10−2

7 3.42022 × 10−6 3.93966 × 10−3

8 1.05107 × 10−7 9.91732 × 10−4

9 2.31908 × 10−9 2.03357 × 10−4

10 4.36933 × 10−11 3.44403 × 10−5
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Fig. 2. Comparing stationary probabilities pk and p̂k for case (2)

(3) Finally, let us consider the system in that ρ = 0.9 (underloaded in heavy traf-
fic), V = 10 and the packet volumes have 3-Erlang distribution with parameter
λ = 0.5, so we have

L(x) = 1− 1

2
e−

1
2x

(
1

4
x2 + x + 2

)
, x > 0. (27)

Choose the accepting function r(v) as in the case (2). In Table 3 (see also
Figure 3) we present results for probabilities pk and p̂k, for k = 0, 1, ..., 10.
Moreover, loss probabilities in the system with and without packet dropping
equals P = 0.443716 and P̂ = 0.405351 respectively.

Table 3. Comparing stationary probabilities pk and p̂k for case (3)

Queue size k Stationary probability pk Stationary probability p̂k

0 0.499344 0.464816

1 0.392966 0.365793

2 0.101605 0.144591

3 0.00597565 0.0230736

4 ×1.08817 × 10−4 0.00166301

5 7.83935 × 10−7 6.21003 × 10−5

6 2.77802 × 10−9 1.33826 × 10−6

7 2.40534 × 10−11 1.81255 × 10−8

8 1.60297 × 10−12 1.82717 × 10−10

9 7.88015 × 10−14 4.30895 × 10−12

10 2.51900 × 10−15 3.82569 × 10−13
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Fig. 3. Comparing stationary probabilities pk and p̂k for case (3)

6 Conclusions

In the paper stationary probabilities for the M/M/1/(∞, V ) queueing model
with bounded total volume and the queue size controlled by a mechanism of
dropping packets (AQM) are derived. For sample systems stationary distribu-
tions are compared numerically for the evolution with and without AQM algo-
rithm. In computations an algorithm of numerical Laplace transform inversion
based on Bromwich integral and Euler summation formula is used.

As numerical examples show, the introduction of a function that accepts in-
coming packets in dependence on the free volume of the system at pre-arrival
epoch allows to reduce probability of high queue-size significantly. Thus, a suit-
able accepting function r(·) can be helpful in avoiding the buffer congestion and
blocking the service of packets. However, as one can note, the loss probability in
the “pure” system is lower than in the case of AQM algorithm.
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Abstract. Progress in the development of the PetaScale implementa-
tion of the anelastic EULAG model combined with the warm-rain bulk
and bin microphysics schemes, as well its application to multiscale cloud
modeling, are presented. A new three-dimensional (3D) model domain
decomposition is implemented to increase model performance and scal-
ability. We investigate performance of the code on IBM BlueGene/L
and Cray XT4/XE6 architectures. The scalability results show signifi-
cant improvement of the new domain decomposition over the previous
2D decomposition used as the standard in many geophysical fluid flow
models.

Keywords: Cloud resolving models, parallel performance, large eddy
simulations.

1 Introduction

Cloud dynamics and microphysics play an essential role in the weather and
climate at local and global scales. Strong inhomogeneities within clouds and
critical couplings between multiphase microphysical processes and processes at
larger scales (such as radiative transfer, cloud dynamics, stratified and rotating
flow dynamics) involve a wide range of spatial and temporal scales. Cloud mi-
crophysics concerns latent heating that drives convective motions, with cloud
particles changing their size due to condensation and evaporation. At the cloud
microscale (spatial scales between a millimeter and a centimeter), individual
cloud droplets are suspended in the turbulent moist air. Their sedimentation
and collisions lead to the formation of drizzle and rain drops. At larger scales,
energy-containing fluid-flow eddies (from tens of meters to kilometers) result in
a broad range of cloud structures. At the mesoscale, Earth rotation plays the key
rome in the development of mesoscale convective systems and tropical cyclones.
Weather patterns associated with extratropical cyclones and anticyclones domi-
nate synoptic variability. Monsoon circulations, large-scale convective coherences
(e.g., intraseasonal oscillations such as the Madden-Julian oscillation, MJO) and
the El Niño-Southern Oscillation (ENSO) are examples of planetary-scale phe-
nomena where moist processes are critical.
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Cloud resolving models (CRM) allow quantitative description of multiscale
interactions between small-scale moist processes and larger-scale dynamics, and
reduce of the number of parameterizations and assumptions. However, the com-
putational effort is challenging, and it does not allow for covering the whole
range of scales within a single model. Scales below O(10 cm) are typically inves-
tigated applying direct numerical simulation (DNS) models [1]. Scales between
O(10 m) and O(10 km) are investigated by large-eddy simulation (LES) models
which explicitly resolve large-scale turbulent eddies in the boundary layer while
parameterizing the effect of smaller unresolved and less energetic perturbations
[2]. For scales above O(100 km) up to the global scale, a range of cloud-resolving
models can be used, such as, for instance, the Cloud Resolving Convection Pa-
rameterization (CRCP, [3]) or Diabatic Acceleration and REscaling (DARE, [4]).

As the resolution of CRM improves, application of PetaScale computing allows
reducing the gap between different scale ranges. This requires that CRM works
efficiently on contemporary and future architectures, and features high level of
scalability to accommodate large number of processing cores, from O(104) to
O(106). Here we present parallel implementation of the geophysical fluid flow
model EULAG [5], in the contest of the cloud-resolving simulations at different
scales. We compare scalability of a two-dimensional (2D) domain decomposi-
tion with a newly developed three-dimensional (3D) approach [6]. The physical
benchmarks include the precipitating thermal and shallow cumulus field simula-
tions based on BOMEX case studies [7].

The paper is organized as follows. Section 2 describes model formulation, and
microphysics parameterizations. Section 3 describes model parallel implemen-
tation. Section 4 presents configuration of benchmark experiments. Section 5
demonstrate scalability results, while conclusions are presented in Section 6.

2 Cloud Resolving Model EULAG

The geophysical EULAG model (see [5], [8] for references) integrates Navier-Stokes
equations using either EUlerian (flux form) or LAGrangian (advective form) nu-
merics. The analytic formulation of EULAG assumes nonhydrostatic equations of
motion in Bousinesq and anelastic approximations. The anelastic approximation
removes the speed of sound from the Courant-Friedrichs-Lewy (CLF) stability cri-
teria of an explicit integration (i.e. sound-proof equations [9]).

CRM may involve a broad range of microphysical parameterizations depend-
ing on the spatial scales of interest and the range lof physical processes involved.
Parameterizations implemented in earlier versions of EULAG included the abbre-
viated bulk precipitating thermodynamics [10], with a relatively small number of
condensate types, but also sophisticated droplet-size-resolving bin microphysics
[12]. Here we present comparison of two microphysical parameterizations: a
single moment bulk warm-rain scheme [8] and a bin-based [11] microphysical
schemes.
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2.1 Bulk Microphysics Scheme

The bulk scheme accounts for the effects of phase-change representing conden-
sation of water vapor to form cloud condensate (Cd), the ”autoconversion” (i.e.,
initial source of precipitation, Ap), growth/evaporation of precipitation due to
diffusion of water vapor (Ep), and growth of precipitation due to accretion of
cloud condensate (Cp). The governing thermodynamic equations can be written

Dθ

Dt
=

Lθe
cpTe

(Cd + Ep) + Dθ (1)

Dqv
Dt

= −Cd − Ep + Dqv (2)

Dqc
Dt

= Cd −Ap − Cp + Dqc (3)

Dqp
Dt

=
1

ρ

∂

∂z
(ρVT qp) + Ap + Cp + Ep + Dqp (4)

where θ is the potential temperature; qv, qc, and qp are water vapor, cloud
condensate, and precipitation mixing ratios, respectively; ρ is the base-state
anelastic density profile; D terms represent sources and sinks of model variables
due to processes not directly represented in Eq: (1-4) (such as surface fluxes
or turbulent transport); the subscript e (at θe and Te) refers to the ambient
(environmental) profiles; L and cp and VT denote the latent heat of condensation,
the specific heat at constant pressure, and terminal velocity of the precipitation.

2.2 Bin Microphysics Scheme

The multiscale approach of the newly developed warm-rain bin-based microphysics
include effects of entrainment and mixing on droplet size distribution [12]; turbu-
lent fluctuations on droplet growth [1]; diffusion and collision-coalescence [13]; and
precipitation formation [14]. The bin scheme solves the equation for the spectral
density function f for the concentration of droplets N at a spatial location x, and
in the droplet radius interval (r, r + dr):

f(r, x) =
DN(x)

Dr
(5)

∂f

∂t
+

1

ρ
∇ · (ρ[v − kvt(r)]f) +

∂

∂r

(
dr

dt
f

)
=

(
∂f

∂t

)
AC

+

(
∂f

∂t

)
CC

+ Df (6)

The second and third terms of the left-hand side of (6) represent the advection of
droplets ion the physical space (including droplet sedimentation) and their dif-
fusional growth, respectively. The terms ”AC”, ”CC”, and Df on the right-hand
side represent sources due to activation (AC), the collision/coalescence (CC),
and parameterized turbulent transport. The activation term is relevant only for
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the bin corresponding to the initial droplet radius of 1 μm. The coalescence
term includes two processes: a source of droplet formation in a particular bin
owing to collisions of two droplets from different bins, and a sink representing
collisions of droplets from this bin with all other droplets. The terminal fall
speed vt(r) is calculated using the approximation in [15]. The discrete system
consists of n bins (or classes) of droplets of the radius width Δr(i), with N(i)
concentration, and spectral density functions f(i) = N(i)/Δr(i) in (i) bin. The
grid in radius space is a combination of linear and exponential, with mean radius
r [μm] given by r(i) = 0.25(i − 1) + 100.055(i−1). The linear spacing minimizes
spectral dispersion during condensational growth of small droplets (< 15 μm),
while the exponential spacing is required for larger radii to provide a stretched
grid incorporating drizzle/rain sizes.

2.3 Numerical Approximation

The model prognostic equations are integrated using second-order nonoscillatory
forward-in-time (NFT) approach [16] on an unstaggered grid. The boundary
value elliptic problem for pressure perturbations is solved using a generalized
conjugate residual - preconditioned nonsymmetric Krylov subspace GCR algo-
rithm (see [17] for details). The sub-grids terms D are evaluated explicitly to
the first-order accuracy inside the sub-grid scale turbulence model.

The water substance variables enter the dynamics of moist air and clouds
only through the buoyancy term in the vertical momentum equation, and, ex-
cept for the buoyancy, the equations of motion are virtually the same as for the
dry dynamics. To accommodate a broad range of coarse spatial resolutions, the
disparity between the timescales of the fluid flow and short timescales associ-
ated with phase-change processes and precipitation fallout, the approach based
on the method of averages is employed [8]. In such approach the fast processes
are evaluated with adequately small time steps (and lower accuracy) over the
large time step of the dynamic model. This approach allows for stable integra-
tions when cloud processes are poorly resolved and it converges to the explicit
formulation (standard in cloud models) as the resolution increases.

3 Parallel Implementation

The EULAG code uses massively-parallel message-passing, where the interpro-
cessor communication employs either Message Passing Interface (MPI) or Shared
Memory (SHMEM) parallel libraries. The traditional parallelization strategy
adopted initially in EULAG for the three-dimensional computations accounts for
characteristic anisotropy of the media and favors checkerboard like 2D horizon-
tal domain decomposition while maintaining the vertical direction unpartitioned.
Such approach allowed to run quite efficiently on TeraScale parallel architectures
applying hundred and thousands of processors [5]. Recently, a fully 3D domain de-
composition was developed [6] where the domain is partitioned in each
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Fig. 1. Model parallel domain decomposition methods: checkerboard-like 2D domain
decomposition in the horizontal direction in the left panel, and the newly developed
3D decomposition in the right panel

physical direction (Fig. 1). Such approach increases model scalability on PetasS-
cale systems with ten and hundred thousands of processors. In both decompo-
sitions, a subdomain is assigned statically to a single processor responsible for
calculations in this subdomain. The communication between processors requires
assigning logical relationships between processors to track processor numbers and
relation with their neighbors. Fig. 2 presents the logical redistribution of proces-
sors in both decompositions: 9 processors in 2D horizontal configuration (3x3) vs
27 processors in 3D configuration (3x3x3). Performing discrete differentiations
require interprocessor communication and exchange information at the border
of the sub-domains. For this purpose, a variable size (ih) area (i.e., the halo or
ghost cell, shaded areas in Fig.2) is designated and it contains information sent
by the neighbor processors. In the 3D decomposition, the communication cost
(i.e. the ratio of the number of grid points within the halo area to the number
of iner grid points on the processor) is smaller than in the 2D decomposition,
which increases model performance.

Fig. 2. Processor near neighbor interconnection for 2D and 3D decompositions
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All model algorithms (except the GCR preconditioner) are fully paralleliz-
able in the vertical direction. The line relaxation preconditioner is based on the
sequential tridiagional Thomas algorithm which is naturally better suited for
the 2D domain decomposition. In the 3D decomposition a pipelined version of
Thomas algorithm (PTA) is developed [18] which minimizes communication in
vertical direction by splitting the horizontal subgrids into portions that quickly
fill up the pipeline of processors in vertical using single gather/scatter operations.

4 Benchmarks Outline

Three computer systems were used in the scalability experiments. The IBM
BlueGene/L (BG/L) ”Frost” is a massively parallel architecture used by the
National Center for Atmospheric Research (NCAR) and the University of Col-
orado (CU). It is configured with 4 racks (8192 cores) reaching 22.9 Teraflops
of peak performance. A single node of BG/L consists of two PowerPC 700 MHz
processors and 512 MB of RAM memory, working in co-processor and virtual
modes. In the coprocessor mode, one processor performs all computations while
the other one is responsible for handling communication (e.g. reduction oper-
ations). In the virtual mode, both CPUs are running computations and share
node resources. The point-to-point interconnection network is organized into 3D
mesh or torus of 64x32x32 dimension, with bandwidth of 154 MB/s/link, and
latency 3.35 μs. The global reduction and broadcast operations are performed
with fast collective network with bandwidth 337 MB/s and small latency 2.5 μs.
The Cray XT4 ”Franklin” at the National Energy Research Scientific Comput-
ing Center (NERSC) is a massively parallel system with 38640 compute cores
(9532 quadcore 2.3 GHz AMD-Opteron processors), 78 TB of memory, and
436 TB of parallel scratch disk space. The nodes are arranged in a 3D torus
topology of dimension 21x16x24. The system is capable of providing 356 Ter-
aflops of computational power. The Cray XE6 ”Hopper II” system has 6392
nodes, (153,408 cores) with 217 TB of memory and 2 PB of disk space, and
reaches peak performance of 1.288 Petaflops. The compute nodes are connected
via Cray’s custom high-bandwidth, low-latency network. The interconnection
between nearby nodes is in the form of a ”mesh”, whereas the ”edges” of this
mesh form a 3D torus of 17x8x24 dimension.

4.1 Precipitating Thermal with Explicit Bulk Model

In the first computational benchmark we use explicit bulk microphysics to sim-
ulate 3D moist precipitating thermal evolving in the sheared environment. The
default model domain consists of [256x256x160] grid points with uniform 40 m
gridlength and time step of 0.5 s. The initial spherical buoyancy perturbation of
the radius of 250 m is prescribed in the domain center, 1500 m above the ground.
Boundary conditions are periodic in x, y and rigid-lid in z. Fig. 3 shows the de-
velopment of a cloudy thermal. Initially at rest, the moist thermal starts to rise
due to the imposed buoyancy excess. The accompanying adiabatic cooling results
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Fig. 3. Upper panel: the cloud water mixing ratio (color) and vertical velocity field
with contour intervals 0.5 [gkg−1] and 0.5 [ms−1] respectively. Lower panel: Snapshot
of cloud water mixing ratio (shaded isosurfaces) of value qc = 0.05 [gkg−1] and the
activation tendency larger than 1 [(mgs)−1] (yellow isosurfaces).

in the condensation and eventually leads to the precipitation development. At
later times, evaporation of rain leads to the development of a downdraft below
the thermal.

4.2 Shallow Stratocumulus Simulations with Bin Microphysics

In the second test case, the experiments are set on a uniform 10 m grid spacing
for a marine ice-free shallow cumulus simulations based on the Barbados Oceano-
graphic and Meteorological Experiment (BOMEX) case [7]. The default model
grid size uses [256x256x180] points, the time step of the simulation is dt = 1.5 s,
and the whole simulation last 6 hours. The detailed bin-cloud microphysics is
implemented, with 72 bins covering droplet sizes between 1 and 6000 μm. The
drops with radius less than 40 μm are assumed to be cloud droplets, those
greater than this size are assumed to be drizzle/rain. Lower panel on Fig. 3
shows snapshot of the steady-state trade wind shallow non-precipitating convec-
tion after 6 hour of simulations. The 1.5-km-deep trade-wind convection layer
overlays 0.5 km deep mixed layer near the ocean surface and is covered by 500 m
deep trade wind inversion layer. The cloud cover is about 10and quasi-steady
conditions are maintained by the prescribed large-scale subsidence, large-scale
moisture advection, surface heat fluxes, and radiative cooling.
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5 Parallel Performance

In the 3D domain decomposition, a smaller amount of the halo information is ex-
changed compared to the 2D case. On the toroidal network, the 3D sub-domains
are better mapped to virtual processor configuration, which results in a more
localized data structure and less complicated communication while performing
global operations (e.g. fast reduction and broadcast). This is especially impor-
tant on IBM BG/L where separate network supports collective communications.
The advantage of using the 3D decomposition is seen in Fig. 4. The results

Fig. 4. Strong scalability results with full model physics. The red, blue, and green lines
shows results from IBM BG//L, CRAY XT4 and Cray XE6 respectively, the dashed
lines represent 2D decomposition, the continuous lines 3D decomposition. Upper and
lower panels show default and double resolution problems respectively.

presented for different test cases on IBM BG/L show that, in both test cases,
the 3D decomposition preserves perfect scalability for approximately four times
larger number of computing nodes. The lower performance of the PTA algorithm
requires that, for the largest number of processors, the number of subdomain in
vertical must be smaller than in the horizontal. Model performance is not op-
timal in such a case as previously shown in [6]. Combined with the increasing
communication cost for the largest number of cores, this leads in saturation of
scalability. Such saturation effects related to the increase of the communication
cost at the largest number of cores are commonly observed in other geophysical
models, see [19], [21], [20] for references. However, in the current simulations, the
low resolution runs show that the model is scalable up to 8192 cores in thermal
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case and 4096 cores in BOMEX case. The double resolution runs extended the
scalability to 65,536 and 32,768 cores respectively. The microphysical scheme
follows the scalability pattern of the whole algorithm. The average overhead due
to use of bulk microphysics ranges depending on application between 11 and
17 %, while the cost of using the bin scheme ranges between 50-54 %.

It was also observed that the model performance is sensitive to work-load im-
balances due to the logical mapping pattern between nodes. The different scala-
bility achieved at the tested systems may be related to improper mapping pattern
between logical distribution of model sub-domain elements and compute nodes
organized on toroidal interconnection networks. In the current experiments, only
the default mapping algorithms were used due to limited computer resources,
and further tests of this aspect are required.

6 Summary

We have demonstrated the applicability and efficiency of the cloud resolving
model EULAG on contemporary high performance massively parallel systems.
Performance has been assessed by conducting series of scalability experiments
with two different microphysical models. The newly developed 3D model domain
decomposition increases the scalability for up to 4 times more cores than the 2D
decomposition. The model with 3D domain partitioning scales well up to 8K
processors on the IBM BG/L and Cray XT4 and XE6 architectures for small-
size problems. The scalability increases up to 32-64 thousands of cores when the
size of the problem is doubled. The model performance is sensitive to work load
imbalance impacted by the logical mapping pattern between model sub-domain
elements and compute nodes organized on toroidal interconnection networks,
which calls for further investigations in this area.
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Abstract. Due to the rapid development of the technology, next-ge-
neration sequencers can produce huge amount of short DNA fragments
covering a genomic sequence of an organism in short time. There is a
need for the time-efficient algorithms which could assembly these frag-
ments together and reconstruct the examined DNA sequence. Previously
proposed algorithm for de novo assembly, SR-ASM, produced results of
high quality, but required a lot of time for computations. The proposed
hybrid parallel programming strategy allows one to use the two-level hi-
erarchy: computations in threads (on a single node with many cores)
and computations on different nodes in a cluster. The tests carried out
on real data of Prochloroccocus marinus coming from Roche sequencer
showed, that the algorithm was speeded up 20 times in comparison to
the sequential approach with the maintenance of the high accuracy and
beating results of other algorithms.

Keywords: hybrid programming paradigm, de novo assembly.

1 Introduction

A molecule of deoxyribonucleic acid (DNA) can be found in every cell of a living
organism. It carries genetic information necessary for its functioning. Despite
the fact that DNA is similar for individuals from the same species, each in-
dividual has a unique DNA sequence. These differences in DNA cause different
appearance of each individual but may also cause susceptibility to some diseases.
Thanks to the knowledge of specific differences in DNA, a proper therapy can
be applied to an ill patient. Thus, its proper decoding has a crucial meaning in
all the aspects of the health issues.

DNA sequence is in the form of a double helix, where two strands are closely
connected by hydrogen bonds according to specific rules. Each strand is com-
posed of small molecules, called nucleotides, which differ in nitrogenous bases.
Four different bases can be distinguished: adenine, cytosine, guanine and thymine,
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and are abbreviated respectively as A, C, G, T. Reading a DNA sequence means
reading the order of nucleotides (letters A, C, G, and T). It is sufficient to read
only one strand, because the other one is complementary to it, which means
that if there is ‘A’ in one strand, then there is ‘T’ at the same position in the
other strand. Similarly, ‘C’ is always opposite to ‘G’. The DNA assembly is a
part of the process of reading a DNA sequence. In the DNA assembly problem
short fragments of DNA (of length up to a few hundreds of nucleotides) are
combined together in order to construct a longer sequence, e.g. a sequence of
a whole chromosome of length ca 108 nucleotides. The set of short DNA frag-
ments is the output of the preceding process: DNA sequencing. Originally, in
DNA sequencing phase gel-based methods were used [15,16], which produced
long fragments but with a lot of effort and time. A few years ago several tech-
niques of next-generation sequencing were developed, which read huge amount of
DNA fragments in parallel. Among next-generation sequencing systems the most
known are Roche (454) sequencer [14], Illumina sequencer [1] and SOLiD Ap-
plied Biosystems sequencer [8]. Huge amounts of data force the implementation
of time-efficient algorithms which optimize the memory usage.

DNA assembly problem is strongly NP-hard, because even its simplified ver-
sion, shortest common superstring problem is strongly NP-hard [9](cf. also [10]).
In DNA assembly problem the aim is to reconstruct a sequence from shorter
DNA fragments. Fragments may contain errors like insertions, deletions or mis-
matches, and may come from both strands of a DNA helix.

Several heuristic algorithms were developed, both for assembling DNA frag-
ments coming from gel-based methods, e.g. [11,13,18], and for shorter fragments
obtained with next-generation sequencers, e.g. [12,19]. Some methods are spe-
cialized for the special type of the sequencer, e.g. Newbler assembler is designed
only for Roche sequencer [14]. The method developed previously by the authors
of the current paper [2] proved to give as its output long reconstructed sequences
of high quality, outperforming other available methods. The crucial point of the
algorithm was long computation time, even in the case of parallel version [5].

The aim of the current paper was to develop an algorithm, which will maintain
high accuracy of the previous approach but being much faster. The proposed
hybrid strategy allows to use the two level hierarchy: computations in threads
(on a single node with many cores) and computations on different nodes in a
cluster. The applied parallel mechanism reduces computational time giving at
the same time a high quality of the results.

A construction of the paper is as follows. Section 2 describes the algorithm
for DNA assembly while Section 3 – the parallel version of the algorithm. In
Section 4 results of the computational experiment are presented. The last section
concludes the paper.

2 Short Reads ASseMbly (SR-ASM) Algorithm

SR-ASM algorithm [2] is based on operations on an overlap graph. Here, we
modify slightly a concept of DNA graphs introduced in [4]. The vertices of the
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overlap graph correspond to DNA fragments which are connected by arcs if there
exists a feasible overlap between vertices. Next, in this graph a path(s) is searched
for, which passes a maximum number of vertices. At the end, the sequence(s) is
reconstructed from the path(s). Each step of the algorithm is described in details
below.

Construction of the Overlap Graph. Every DNA fragment corresponds
to one vertex in the graph. Additionally, for each vertex its complementary
counterpart is created, which corresponds to the fragment coming from the other
strand of the DNA helix, which is reverse and complementary to the original
fragment. Next, the overlaps between pairs of fragments are calculated with
the Smith-Waterman (SW) algorithm [17]. The algorithm aligns two fragments
returning an error rate (the number of mismatches in the alignment) and a
shift between fragments. The SW algorithm takes O(kl) time, where k and l
are the lengths of the fragments. The number of alignments, which need to be
calculated, is O(n2), where n is the number of fragments. The most preferable
would be to determine the alignment between each pair of the fragments (every
one taken twice, as the original and the reverse and complementary version),
but then the number of fragments goes up to a million. Most of the fragments
do not overlap with each other in a satisfying manner, thus, determining the
alignment is not necessary. The algorithm selects in a fast and intelligent way
the pairs of fragments which possibly give high score of the alignment. In our
algorithm, a heuristic was introduced, which searches for common substrings in
pairs of fragments. Based on this, it selects pairs of promising fragments, i.e. the
fragments which would overlap with high probability.

For each pair of the promising fragments the alignment is determined accord-
ing to the SW algorithm. The score of the alignment gives an information about
the number of errors (mismatches, insertions and deletions), but also about the
shift between two fragments. If the shift and the error rate for two fragments is
feasible, an arc is added to the graph which connects corresponding vertices.

The construction of the graph is composed of many independent operations,
very suitable for distributing among parallel processes.

Searching for the Path in the Graph. In the overlap graph a path is searched
for, which contains most of the vertices. (Here, the approach is very similar to the
one constructing a DNA sequence in the SBH approach [3,6]) Optimally, it will
be a Hamiltonian path. Unfortunately, due to errors present in the instance it is
usually not possible. Another reason is that the heuristic used for construction
of the overlap graph, selects just few pairs of fragments for further comparison,
and many connections between vertices are not considered at all. In that case,
the graph is quite sparse and might not be connected. Following this fact, many
shorter paths are returned. Some vertices may be not used in any of the path,
because they may represent contaminated fragments.

As the output of this step we obtain for each path an ordered set of vertices,
for which respective fragments are tightly overlapping.
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Printing the Consensus Sequence. In this step, the consensus sequences are
constructed from the paths. Consecutive fragments (vertices) from each path are
aligned together. The fragments which cover a certain position (letter) in the
consensus sequence vote and the majority settle the proper letter (A, C, G or
T). The consensus sequence of a path is called a contig (contiguous consensus
sequence)

Again the problem of multiple alignment of the sequences is NP-hard, thus
heuristic algorithm was applied here.

3 Parallelization of the Algorithm

The parallelism can be introduced to the aforementioned algorithm, especially
in the first step. However, one should remember that the process of building
the graph is composed of a few parts. Some parts cannot be parallelized at all
and some to a satisfactory extent. Although the comparison of fragments with
each other was efficiently performed by different threads (on different nodes),
the stage of selecting fragments to be compared was implemented sequentially,
due to high demand on the memory and relatively short computation time.

The second part of the algorithm (searching for paths in the graph) was
also parallelized. This part is more complex and CPU-time consuming than the
previous one. Searching for paths in a graph is, in general, very difficult to
perform in a parallel way. Nevertheless, our method has partially solved this
problem by running the same algorithm (on many nodes, in many threads)
starting from different initial points. In each iteration every fragment is taken as
the initial solution. The longest path is chosen and the arcs from the path are
deleted from the graph.

This approach has two major disadvantages. First, each thread on every node
requires full information about the graph, which dramatically increases require-
ments of memory and limits size of problem instances that can be processed. The
second problem involves the implementation of searching method. Our solution
offered the possibility of modifying the structure of the graph by adding some
arcs during the phase of finding paths. If the algorithm finds out that there is no
way to continue the process of extending the path from the last vertex, but there
are some premises to continue the path, coming from the preceding vertices, ad-
ditional alignments are calculated and if feasible – respective arcs are added.
Possible extensions to the overlap graph are presented in Figure 1. Adding arcs
to the graph implies possibility of desynchronizing information about the graph
among different processes and could be the reason of receiving different results
on different computing environments (various number of processes or threads,
different computer architectures). The results obtained from the desynchronized
data may be of lower quality. To avoid these situations, additional functionality
was implemented - the synchronization. After every iteration of the algorithm,
information about modifications in the graph is gathered from all processes and,
if there are any differences, the graphs from each node are synchronized. In such
a case, the iteration is calculated from the beginning. Synchronization ensures
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Fig. 1. An example of adding arcs in the overlap graph in the phase of searching for
paths. (a) In the graph a path was found (A,B,C,D). The path cannot be extended
because there is no arc outgoing from D, but some arcs from the predecessors of D
were detected. (b) Scores of alignments between D and E, and D and F are calculated,
and if they are feasible, the respective arcs are added to the graph. These arcs were
not inserted in the first phase of the algorithm because the fragments (vertices) were
not selected as ‘promising pairs’ (due to errors in fragments).

that the results obtained are the same as in the sequential version of the al-
gorithm. At the same time, the synchronization leads to overhead time (single
iteration may be computed a few times) and the user can decide to turn it off.

The third part of the algorithm (printing the consensus sequence) takes rela-
tively little time and no attempt was made to parallelize it.

The implementation of parallelism in the program is based on a hybrid strat-
egy introducing two level hierarchy: the communication between nodes in one
cluster is realized by MPI library implementing the message passing paradigm,
while the computations on a single node with many cores are parallelized utiliz-
ing POSIX threads. When the program is run on a single node, the first thread
becomes a dedicated supervisor responsible for synchronization and distribution
of the data as well as for doing sequential computations. The other available
threads become worker units executing parallel computations. Similarly, in the
case of using MPI, the first MPI process is designed to be a master, while the
other MPI processes (slaves) do parallel computations.

In a typical scenario of running the SR-ASM program on a cluster, the pro-
cess being an MPI master divides the tasks and distributes them among other
MPI processes located on different nodes. Next, the MPI processes (dedicated
supervisor threads) being a node-level coordinators, receive the data, once again
divide the tasks and distribute them among the worker threads. After computa-
tions, the worker threads send results back to supervisor threads on theirs nodes
and finally these threads response to the MPI master that gathers all the results.
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The MPI communication is here both synchronous and asynchronous. The MPI
master communicates with supervisor threads (MPI slaves) fully synchronously.
It sends tasks and waits for results. When the results are obtained from one of
the MPI slave processes, the master stores the data, generates next set of tasks
and sends it to this process for further computations. On the other hand, on a
single computing node level, worker threads communicate with the supervisor
thread in an asynchronous way. Thanks to this approach, the computations and
communication may be done simultaneously in order to improve efficiency of
the whole process. Moreover, the implemented communication scheme utilizes
queues to ensure that the next task to compute will be immediately available
for processing after finishing the currently executed one. The performed tests
confirm that all these mechanisms significantly improve an overall program scal-
ability and performance.

4 Computational Tests

The scalability and performance tests were done on the Zeus cluster being a part
of the Polish National Grid Initiative - PL-Grid Project. The cluster consists of
several types of Intel-based nodes, which offer total computational power about
105 TF. The results presented in the paper are the outcome of running SR-ASM
program on nodes with the following parameters:

Processor : Intel Xeon L5650 2666MHz (2 x 6 cores)
Memory: 24GB per node
Network Interface: Ethernet 1Gb/s
Operating System: Scientific Linux 5

The test bed used in the computational experiment consists of raw data produced
at Joint Genome Institute. The data cover the whole genome of Prochlorococcus
marinus bacteria of length 1.84 nucleotides [7]. The output of the sequencer
contains over 300 000 DNA fragments, each approximately 100 nucleotides long.
The sequencer also provides rates of confidence for every nucleotide.

As compared with its standard sequential version [2] the parallel SR-ASM
improves the speed of the computations considerably. In fact, while the sequential
version solved the analyzed instance of the problem in 255 min. (the first version
of the algorithm published in [2] produced the results in 80 hrs., but since then
it has been improved), its parallel version, even in the simplest case of the 1
node and 12 cores, needed 27 min only. What’s more the parallel version is well
scalable (to some extent).

Speedup of the whole algorithm with enabled and disabled synchronization
is shown in Figure 2. One can easily see from this chart that the speedup for
24 cores is much lower than for 12 cores. This dramatic fall off is a result of
changing the type of parallelism. For the first 12 cores, only one machine was
used to compute results, while bigger number of cores was achieved by running
SR-ASM on a cluster consisting of many 12-core nodes, what resulted in a higher
communication overhead. Speedup of the version with synchronization turned
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Fig. 2. Speedup of the parallel version of SR-ASM: version with synchronization turned
on and synchronization turned off. Computations were performed on a computer cluster
of 12-core nodes.

off varies between 30% (for the small number of cores) and 5% (for the big
number of cores) as compared to the version with synchronization turned on. It
is worth stressing that the parallel version of the algorithm with the synchro-
nization turned on, maintains the high quality level for constructed sequences,
already known for the sequential SR-ASM. As compared with other assembling
algorithms: Newbler [14], Velvet [19], Phrap [11], Cap3 [12], the basic quality
measures are favorable for SR-ASM. These measures include:

a) the length of the contig (for the three largest contigs),
b) the coverage, i.e. the percentage of the total length of the reconstructed se-

quence (genome), which is covered by the contig,
c) the quality, i.e. the similarity of a contig to a sequence of the genome; it was

calculated by the Smith-Waterman algorithm.

The coverage and the similarity to a sequence of the reference genome can be
calculated by comparing the obtained results with the reference genome. The
reference genome of Prochlorococcus marinus is known and can be downloaded
from Genbank (National Center for Biotechnology Information – NCBI).

The comparison of the results obtained for the considered instance are given
in Table 1. Each algorithm is evaluated with the time of computations and
the measures (mentioned above) for three largest contigs. Two versions of our
algorithm are compared: with the synchronization turned on and off. Parallel
SR-ASM with the synchronization on gives the same results in the quality terms
as the sequential algorithm. When the synchronization is off, the algorithm does
not update the information about new arcs in the graph (in the part of searching
for paths). This may lead to nondeterministic results. Time of computations is
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Table 1. The results of the computational experiment performed on the dataset of
short fragments coming from the experiment of sequencing bacteria Prochlorococcus
marinus. The length of the genome is 2Mbp. The number of fragments in the dataset
is ca. 3 ∗ 105.

algorithm 1st contig 2nd contig 3rd contig
(time[s]) length coverage quality length coverage quality length coverage quality

SR-ASM,s on
105951 5.66% 99.71 81990 4.38% 99.76 59714 3.19% 99.68

(781)

SR-ASM,s off
82209 4.39% 99.27 73071 3.90% 98.95 60475 3.23% 88.32

(714)

at JGI
86108 4.60% 96.85 74315 3.97% 96.94 73941 3.95% 97.00

(-)

NEWBLER
84798 4.53% 99.29 73192 3.91% 99.38 72818 3.89% 99.45

(-)

PHRAP
88729 4.74% 94.56 35379 1.89% 81.66 35192 1.88% 98.56

(2067)

CAP3
7862 0.42% 99.85 7113 0.38% 99.69 5990 0.32% 99.91

(12376)

VELVET
3182 0.17% 99.90 2808 0.15% 99.96 2621 0.14% 99.90

(328)

shorter than for SR-ASM with synchronization on, but the contigs are shorter,
and often with lower quality. Thus, updating the information about the graph
among the nodes seems to be very important. The results of other methods pre-
sented in Table 1 are obtained by assemblers from the Joint Genome Institute
with an additional step of experts’ finishing (‘at JGI’), NEWBLER (assembler
available with the Roche sequencer), PHRAP and CAP3 (well known publicly
available assemblers), and VELVET (specialized algorithm for assembling short
fragments). The executing time for NEWBLER and JGI were not available. All
the methods except SR-ASM were tested sequentially. CAP3 and VELVET re-
sulted in a great amount of short contigs but of very high quality. Thus, these
methods are not likely to be used for de novo sequencing, but rather for re-
sequencing, when the reference genome is known and good quality contigs are
aligned to it to check for the difference between genomes of individuals. VELVET
was the fastest method among all, while CAP3 the slowest. PHRAP obtained
contigs shorter and of worse quality than the NEWBLER and JGI methods.

None of the algorithms found one contig covering the whole genome. This is
usually the case, because the fragments are not uniformly distributed among the
genome sequence. So, they result in disjoint contigs. Further order of the contigs
can be determined e.g. on the basis of paired end fragments or by aligning contigs
to a reference genome. If the reference genome is not known (this is the case of
de novo sequencing) one may try to align contigs to a genome closely related to
the examined organism.
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5 Conclusions

The parallelization of SR-ASM algorithm satisfactorily speeded up the compu-
tations, especially in the case of multi-threading (almost linear speedup can be
viewed for up to 12 cores in Fig. 2). The possible improvement of the algorithm
could be realized on machines with more cores and shared memory to decrease
the time needed for the communication and synchronization.

The results presented in Table 1 and in Figure 2 show, that although turning
off synchronization may speed up the method (5-30% in comparison with the
synchronization turned on), the results have worse quality. For a greater number
of clusters the speedup goes down. This is a result of changing time distribution
between the computation, communication and synchronization.

It can be seen, that the parallel version of SR-ASM maintained high quality
of the results as for the sequential version, while the time was greatly speeded
up. Thus, the proposed solution can be of practical interest for those who would
like to sequence whole genomes, based on the massive data coming from next-
generation sequencers.
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Abstract. As genomes, transcriptomes and meta-genomes are being se-
quenced at a faster pace than ever, there is a pressing need for efficient
genome assembly methods. Two practical issues in assembly are heavy
memory usage and long execution time during the read indexing phase.
In this article, a parallel and memory-efficient method is proposed for
reads indexing prior to assembly. Specifically, a hash-based structure
that stores a reduced amount of read information is designed. Erroneous
entries are filtered on the fly during index construction. A prototype
implementation has been designed and applied to actual Illumina short
reads. Benchmark evaluation shows that this indexing method requires
significantly less memory than those from popular assemblers.

1 Introduction

Until the emergence of next-generation sequencing (NGS) technologies, soft-
ware for assembling genomes could process up to millions of long (∼ 104 bp)
reads. Now, a typical genome assembly instance for a vertebrate genome con-
sists of billions of short (100 bp) reads. Despite this technological shift, computa-
tional models for assembly are essentially based on constructing and simplifying
a genome graph. However, graph-based models have inherent limitations that
make them unpractical for assembly of NGS data. They require the construc-
tion of either a large string graph containing all the reads, or a de Bruijn graph
containing all the k-length substrings (k-mers) of the reads. For human-sized
genomes, the de Bruijn graph typically requires hundreds of gigabases of mem-
ory [9]. Nevertheless, NGS assembly tools rely on optimized implementations of
these graph models. For instance, leading assembly programs have implemented
efficient heuristics using a de Bruijn graph [9, 18]. For more details concerning
these implementations, refer to a recent survey [10]. In a near future, larger
eukaryotic genomes and meta-genomes will be sequenced at a faster pace than
computational resources growth. Hence, new assembly models need to be devel-
oped to sustain the increasing rate of NGS technologies.

Several theoretical advances have been recently proposed to reduce the mem-
ory usage of graph-based assemblers. Simpson et al. implemented compression
techniques (FM-index [6]) during construction of the string graph [15] at the ex-
pense of running time. Conway et al. used succinct bitmap structures [11, 13] to
construct an immutable de Bruijn graph [5]. Distributed de Bruijn graph con-
struction using a message passing interface have been implemented in several
assemblers [7, 8, 16].

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 272–280, 2012.
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Greedy assemblers use a different assembly strategy. Instead of constructing a
genome graph, they repeatedly perform an extension procedure until branching
is detected. Previous implementations of greedy assemblers used a prefix tree to
store reads [17], which consumes significantly more memory than a de Bruijn
graph. Recent optimized implementations use custom k-mer indexing structures
for memory efficiency [1–3]. In particular, these implementation have been ap-
plied to complex mammalian genomes, demonstrating that greedy assemblers
are not limited to genomes with low repeat content. Unlike de Bruijn graph as-
semblers, data structures used in greedy assemblers typically contain references
to read sequences. Hence, efficient read indexing is necessary to keep memory
usage low.

In the next section, we propose a parallel reads indexing procedure designed
specifically for assembly. Two novel filtering methods are introduced to reduce
memory usage: a procedure to remove erroneous k-mers on the fly, and a proce-
dure to avoid referencing redundant reads. Finally, a prototype implementation
is applied to real Illumina data to validate the method.

2 Methods

2.1 Distributed and Multi-threaded Indexing

A multi-threaded, multi-node procedure for reads indexing is proposed. A hash
table is constructed, where the entries are k-mers, and the values are references
to reads. Taking advantage of shared memory between threads, reads sequences
are stored separately in memory, without redundancy within a node. Index con-
struction is distributed among N nodes, and each node performs independent
computations in parallel. Specifically, each node n is running Tn threads, each
thread tn constructs a separate sub-index I(n, tn). A binning method adapted
from [16] assigns each k-mer to a unique sub-index. Let h be a k-mer hash value
with perfect hashing [16]. The corresponding k-mer belongs to the sub-index
I(n, tn) if: {

h mod N = n

h mod Tn = tn

which ensures that each sub-index contains distinct k-mers. Each thread reads
the entirety of the input data to construct its sub-index. When all the sub-indexes
are constructed, an inexpensive merging phase yields the complete index. Hence,
the indexing procedure always constructs the same complete index on different
architectures. In the following, two algorithmic ingredients are described for
parallel sub-index construction: k-mers filtering and reads indexing.

2.2 On-Line Parallel k-Mers Filtering

Memory efficiency is crucial when assembling NGS data. In many approaches,
including the one proposed here, memory consumption is proportional to the
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number of indexed k-mers. It is therefore important to filter out erroneous k-
mers as early in the indexing process as possible. Erroneous k-mers are pro-
duced whenever the sequencing process makes a mistake during base calling.
The abundance distribution Kn

t (m) is defined as the number of k-mers seen ex-
actly m times at indexing time t by node n. A key fact is that the hash function
used above evenly distributes k-mers among sub-indexes. Hence, each Kn

t (m)
is identically distributed as the entire distribution

∑
n Kn

t (m). This observation
enables independent, parallel filtering for each sub-index. The superscript n is
then omitted in the following.

A typical distribution of Kt(m) at final time t is multimodal. A large number
of k-mers occur only a few times: these are mostly sequencing errors. Assuming
uniform sequencing coverage, the distribution of correct k-mers is a Gaussian
mixture. The most abundant component is centered at the expected coverage
of the target genome. Less abundant components are centered at multiples of
the coverage, due to repeats in the genome. The proposed method consists in
(i) detecting components corresponding to erroneous and correct k-mers as soon
as they separate sufficiently from each other and (ii) finding an appropriate
erroneous threshold (cut-off value). Every k-mer that has appeared fewer times
than the erroneous threshold so far is then considered as an error and removed.
This procedure could be extended to correct errors in reads, but it is outside the
scope of the current indexing scheme.

Error Detection. The following two inequalities must be satisfied to trigger the
filtering procedure. First, erroneous k-mers are identified by their abundance.
Theorem 3 from [12] establishes that, under reasonable sequencing assumptions,
an error is significantly less likely to appear m + 1 times than m times. Thus,
the abundance of erroneous k-mers peaks at m = 1 and has a strictly decreasing
slope. The low end mlow(t) is computed as the largest m that satisfies Kt(m −
1) > Kt(m) for m ≥ 1. Then, the peak abundance mhigh(t) of correct k-mers is
computed as the parameter at which the maximum value of Kt(m) is attained
for m > mlow(t). Erroneous and correct k-mers are considered to be separated
when:

mhigh(t) − mlow(t) > r

where r is a user-defined resolution parameter. Second, to avoid the compu-
tational cost of filtering too soon or too often, a constraint is imposed on the
amount of erroneous k-mers. Let Smin be a minimum amount (user-defined) of
erroneous k-mers before the filtering process can be performed:

mlow∑
m=1

Kt(m) > Smin

Calculating the Cut-Off Value. During early filtering passes, a small fraction of
correct k-mers still contributes to the erroneous component. Hence, removing the
entire component at each filtering pass is not a sensible choice. An incrementing
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value, defined as the cut-off value, is introduced to overcome this problem. All
k-mers of abundance lower than the cut-off value are removed by the filtering
procedure, others are kept. Formally, a threshold msolid is defined as the number
of occurrences below which a k-mer is considered a potential error. All k-mers
over this threshold at the end of the indexing phase are solid k-mers. Let tReads
and nReads(t) be the total number of reads in the input file and the number
of reads processed at time t respectively. The cut-off value F (t) is calculated
according to the following formula:

F (t) = �msolid · nReads(t)
tReads

�

2.3 Reads Indexing Structure

Each sub-index is populated independently with a filtered set of references to
reads, given a filtering function designed for de novo assembly. The extension of
a k-mer in a read is defined as the suffix immediately following the k-mer (e.g.
for a read r = uwv where w is a k-mer and u, v are arbitrary strings, v is the
extension of w in r). We introduce a notion of redundancy between extensions.
Let (v1, v2) be two extensions of the same k-mer, without loss of generality
assume that the length |v1| is shorter than |v2|. Two extensions v1,v2 are said to
be t-redundant if the Hamming distance between their prefixes of length |v1| is
lower than t. The representative read spectrum with similarity threshold t, noted
RRS(k, t), is defined for a set of input reads as follows:

(i) associate a set Sw to each solid k-mer w occurring in the reads
(ii) Sw discards all but one of the reads associated to t-redundant extensions. A

read with the longest extension is kept, ties are broken arbitrarily.

Figure 1 shows an example of a representative reads spectrum. The reads se-
quences referenced by the RRS are stored separately. Practically, both a read
and its reverse-complement are indexed. References to paired-end reads are ex-
plicitly made to the left or the right mate of the read.

In essence, this structure records a representative set of reads for each solid
k-mer. Note that this indexing does not correct errors in read, but merely ig-
nores errors in reads suffixes. Erroneous prefixes yield un-solid k-mers, hence
these reads are not indexed in the structure. This property is well suited with
Illumina reads as sequencing errors are known to mostly occur at read suffixes.
Provided the sequencing coverage is high, errors in suffixes can be corrected at a
later stage during a consensus phase. This justifies the arbitrary removal of other
reads having equally long t-redundant extensions. To maximize the effectiveness
of the structure for assembly, sequencing reads should contain solid k-mers cor-
responding to every position in the genome. Hence, either a high sequencing
coverage or a low error-rate is required. Both criteria are typically met with
recent Illumina sequencers.

For assembly, it can be verified that basic traversal of a string graph can be
performed with this structure. The RRS acts as an incomplete inverted index
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Fig. 1. The representative reads spectrum for a set of 8 reads with parameters k =
3, t = 1. Entries are solid k-mers from reads. Each k-mer is associated with a list of
reads which extend the k-mer to the right. The extensions are filtered for t-redundancy.
For instance, reads 4 and 5 are not indexed to the CAT entry because extensions T and
TA are 1-redundant with respect to extension GA from read 1. Reverse complements
of reads are also indexed, but are omitted in this figure.

for the reads. Specifically, in the string graph, out-neighbors of a read (i.e.,
other reads that overlap that read to the right) are retrieved from the RRS by
querying each of the read k-mers. In-neighbors (left overlap) are equivalent to
out-neighbors of the read reverse complement.

3 Results

We developed an implementation of the on-line k-mers filtering and the reads
indexing algorithms, as part of the Monument assembler [4]. The implementation
is tested on two actual sequence datasets from R. sphaeroides (SRA reference
SRR034530) and N.crassa (all libraries from [14]) sequenced using the Illumina
technology. The R. sphaeroides dataset (dataset 1) contains 46 million reads of
length 36 bp. The N.crassa dataset (dataset 2) contains 320 million reads of
average length 32 bp. Benchmarks were run on a 64-bit 8-cores machine with
66 GB of memory. In this implementation, read sequences are stored in memory
on each node as an array of 2-bit encoded sequences. In the case of multi-nodes
computation, n

4 bytes are redundantly stored per node, where n is the number
of nucleotides in the reads. For the R. sphaeroides reads set, this amounts to
0.462 GB.

We first examined the effect of on-line k-mers filtering on the first dataset.
To this end, only the abundance count is retained for each k-mer. A comparison
against a k-mer counting without filtering is made in Figure 2. It is important to
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Fig. 2. Memory usage during the on-line k-mers filtering procedure, compared with
un-filtered indexing. Dataset 1 is processed with parameters msolid = 10, r = 10,
Smin = 107 and using 1 thread. The first filtering pass is triggered at 11.6% of the
dataset. Sporadic jumps in memory consumption correspond to resize operations of
the hash table.

note that, when entries corresponding to erroneous k-mers are removed from the
hash table, the allocated memory is not freed but is instead made available for
new entries. There are 144 M k-mers in the dataset, only 4.5 M (3.1%) of which
are correct. On-line filtering enabled to keep the number of k-mers in the hash
table under 23 M at any time. We verified that 4,544,973 solid kmers are retrieved
without filtering, compared to 4,464,256 (98.2%) solid kmers with filtering (solid
threshold msolid = 10). The difference of 80,717 k-mers corresponds to premature
filtering of k-mers that would be solid if given enough time before filtering. Then,
we computed the full indexing time for an increasing number of cores (Figure 3).
Some constant over-head occurs as reads pre-loading is not parallelized.

We compared memory usage of indexing procedures from other popular ultra-
short reads assemblers with our implementation. The Velvet assembler (version
1.1.03) and the SOAPdenovo assembler (version 1.05) are based on de Bruijn
graphs and use graph simplification heuristics. SOAPdenovo is specifically opti-
mized for memory efficiency, it discards reads and pairing information in the initial
graph structure. Our implementation uses spectrum parameter t = 4, Smin =
106, msolid = 10 and r = 0 for both datasets. All the assemblers are executed
with k-mer size of 21. Only the indexing phase of assemblers were run (pregraph
for SOAPdenovo, velveth for Velvet). Results are summarized in Table 1.
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Fig. 3. Execution time of indexing for our implementation on datasets 1 and 2 using
1 node and 1 to 8 threads

The k-mers filtering step is essential in our method: complete indexing of Dataset
1 without k-mers filtering required 20.1 GB of memory. In terms of wall-clock time,
these methods are comparable: for the largest dataset, SOAPdenovo and Monu-
ment completed indexing in respectively 41 and 64 minutes using 6 threads. In
conclusion, our indexing scheme significantly reduces the memory bottleneck for
assembly, with minor impact on parallel indexing time.

Table 1. Practical memory usage of indexing 46 M reads from R. sphaeroides (dataset
1) and 320 M reads from N.crassa (dataset 2) using Velvet, SOAPdenovo and Monu-
ment. Velvet exceeded the memory limit (66 GB) on the second dataset.

Dataset Monument Velvet SOAPdenovo

Peak memory (GB) 1 2.7 7.7 3.9

2 15.3 - 31.4

We verified that this index permits assembly with comparable quality than
existing methods. To this end, we implemented an assembly method which con-
structs contigs based on extensions recorded in the representative reads spectrum.
We computed the following N50 values (contig length such that longer contigs
produce 50% of the assembly) with respect to the same assembly size (that of Vel-
vet, 4.30 Mbp). Our assembly of R. sphaeroides yields 4.28 Mbp of contigs with
a N50 value of 1.49 kbp. In comparison, we executed Velvet with similar k-mer
size, which yields 4.30 Mbp of contigs with a N50 value of 1.41 kbp. In terms of



Parallel and Memory-Efficient Reads Indexing for Genome Assembly 279

running times, Velvet assembly phase (velvetg) executed in 2 min 46 sec CPU
time, whereas our parallel string graph traversal required 1 min 42 sec CPU time
per thread using 6 threads.

4 Discussion

A novel method is proposed for multi-nodes, multi-threaded reads indexing. It
introduces two filtering techniques for memory efficiency: on-line removal of er-
roneous k-mers and on-line indexing of only representative reads. To our knowl-
edge, this is the first read index that provides in-memory O(1) access to overlaps
between reads, full read sequences and also pairing information. This novel in-
dexing method allows to design assembly algorithms which overcome several of
the performance issues inherent to graph-based assembly. For instance, memory
usage is lowered as no graph structure is constructed. Independent indexing of
sub-indexes allows for embarrassingly parallel and distributed computation. As
implemented in our prototype, the read index is constructed using significantly
less memory than recent, optimized implementations of de Bruijn graphs with
comparable indexing time.

These results can also be used to reduce memory usage of single-threaded
greedy assemblers. Usually, the same data structure is used to construct the
final reads index and then access it during assembly. However, greedy assemblers
typically uses an immutable index. Hence, taking advantage of immutability,
one can focus on designing a more compact representation of the reads index
once it is fully constructed. For memory efficiency, sub-indexes can be simply
constructed one at a time. In our index, the hash table can be replaced by a
succinct rank/select data structure [11] to represent entries, and a simple array
containing fixed-length lists of representative reads. The memory overhead of
such structure becomes negligible as no pointer is used. A preliminary experiment
shows that the entire index of dataset 2 is represented in only 4.2 GB of memory
with this method.
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Abstract. Cloud computing opens new possibilities for computational
biologists. Given the pay-as-you-go model and the commodity hardware
base, new tools for extensive parallelism are needed to make experi-
mentation in the cloud an attractive option. In this paper, we present
EasyProt, a parallel message-passing architecture designed for develop-
ing experimental workflows in computational biology while harnessing
the power of cloud resources. The system exploits parallelism in two
ways: by multithreading modular components on virtual machines while
respecting data dependencies and by allowing expansion across multiple
virtual machines. Components of the system, called elements, are eas-
ily configured for efficient modification and testing of workflows during
ever-changing experimentation. Though EasyProt, as an abstract cloud
programming model, can be extended beyond computational biology,
current development brings cloud computing to experimenters in this
important discipline who are facing unprecedented data-processing chal-
lenges, with a type system designed for proteomics, interactomics and
comparative genomics data, and a suite of elements that perform useful
analysis tasks on biological data using cloud resources.

Availability: EasyProt is available as a public abstract machine image
(AMI) on Amazon EC2 cloud service, with an open source license, reg-
istered with manifest easyprot-ami/easyprot.img.manifest.xml.

Keywords: parallel architectures, scientific workflows, cloud computing.

1 Introduction

Cloud computing is set to change the way that bioinformatics research is con-
ducted, improving the cost-effectiveness of massive computations [1]. Cloud
computing provides an increasingly attractive alternative for computational bi-
ologists as datasets are increasing in size faster than desktop computers are
increasing in capacity [1]. With its pay-as-you-go model, new computational
tools are needed to make cloud computing an attractive option for scientists
conducting computational experiments, to balance speed of applications and de-
velopment with cost. A primary advantage, and challenge, of cloud computing

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 281–291, 2012.
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is its ability for horizontal expansion [2]. Single virtual machines typically have
several virtual cores while the power of each core remains relatively constant,
and multiple virtual machines can be launched on demand.

The scientific workflow management system [3] is a framework that can be
usefully adapted to make cloud computing attractive to experimenters in the
computational sciences. In a scientific workflow, tasks are connected in a directed
graph representing data dependencies, and data flows in parallel along the edges.
Scientific workflows generalize ideas from pioneering projects on configurable
services [4,5,6]. The strength of the scientific workflow as a cloud programming
model is its ability to harness resources as they expand horizontally in the cloud.
This computing development model can be easily built on top of Infrastructure
as a Service [7] clouds, providing an attractive development environment for
computational biologists.

There have been attempts to extend scientific workflow software into the realm
of cloud computing [8], the most notable of which is Pegasus [9,10]. Pegasus is
designed for large stable scientific applications, and is an excellent choice for
this use case. Custom workflows using cloud computing have been designed with
other scientific workflow software including Taverna [11] and Kepler [12]. How-
ever there remains a need for a programming framework that allows cost-effective
and fast reconfiguration by programmers during scientific experimentation in the
cloud. Very recently, a workflow system, Conveyor [13], was released that shares
the goal of EasyProt for a programming model that allows fast configuration
during ever-changing experimentation. However, Conveyor does not offer full
support for cloud computing, is not released as an AMI, and requires substan-
tial local installation.

EasyProt is workflow software for the programmer. EasyProt uses a graph
configuration language, modelled after Click [5], that makes it fast and easy
to create many experimental workflows on the same elements. Like Conveyor,
EasyProt takes advantage of parallelism available in multicore virtual machines
by using a multithreaded approach. EasyProt uses message-passing protocols
that can pass arbitrary Java objects, allowing it to scale horizontally, an im-
portant feature for cloud computing applications [2]. Several message-passing
protocols are part of EasyProt, including broadcast and round-robin message-
passing, and new protocols can be programmed directly by the element designer.
EasyProt supports a data cache for versioning and provenance that is separable
from the workflows. In case of failure of a workflow for any reason, intermediate
cached results are available that can be used for a modified workflow using data
from the cache. The EasyProt system follows modular design, making it easy
to modify workflows or to share workflows with other users, and to incorporate
new algorithms, new web services, and support for new forms of data as they
become available. The focus of EasyProt is on the programmer and the process
of development, simplifying adoption of a principled framework for reproducible
experimentation.

Systems research in computer science introduced similar modular systems for
various applications. Click [5] used a similar architecture to build configurable
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routers. SEDA [6] extended this architecture to general Internet services with
an emphasis on horizontal expansion. EasyProt uses a model similar to SEDA
in which each element waits on a single queue for messages. To maintain the
order of the messages received and to avoid conflict among threads attempting
to access shared state, each element in EasyProt runs in its own thread rather
than using thread pools as in SEDA.

Cloud computing opens a new way to share data and workflows, through
the abstract machine image or whole system snapshot exchange [14]. AMIs are
stored in cheap storage, are always available, and can be easily used to develop
and maintain multiple versions of software. Sharing of software with AMIs is
enormously beneficial as the virtual machines provide complete control over the
program execution environment, eliminating issues of portability and dependen-
cies. By releasing EasyProt as an AMI, it is merely necessary for the user to
launch a virtual machine from the AMI to run and modify workflows. Multi-
ple virtual machines can be launched to compute workflows in parallel. Virtual
machines can be configured to the needs of the workflows, according to desired
specifications for computing capability and memory, and, to a lesser extent,
network bandwidth. Releasing workflows as EasyProt AMIs addresses the chal-
lenges of reproducible computation [15,14], allowing experiments to be readily
repeated and verified by others.

2 EasyProt Software Architecture

EasyProt provides a programming model and development environment for com-
putationally demanding experimental workflows in computational biology. A
workflow is represented by instances of elements running in parallel across many
virtual cores, connected into a directed graph representing data dependencies
using a simple graph configuration language. During development of workflows
on predefined elements, the elements are connected using the graph configura-
tion language while ensuring that the types of data flowing along the connections
satisfy the element specifications, and processed data is retrieved from the cache.
When designing new workflows, computational biologists create new elements by
implementing a clean interface using an API that hides the parallelism and de-
tails of the dataflow. During the process of developing and modifying workflows,
the modified AMIs, including all intermediate data, can be stored in stable cloud
storage, with no need for transferring large datasets over the network.

2.1 Elements

EasyProt elements each perform a well-defined task. Some of these tasks require
accessing external web services to acquire data. Some require running external
programs. Others are data processing elements that apply functions to the data
before passing it on. Element instances are connected in a directed graph that
represents the dependencies among the element instances. Each element instance
runs in its own thread, supporting parallelism across multiple virtual cores.
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The time required to complete the processing is the time of the longest path
from a source to a sink in the directed graph, where the length of a path is given
by its running time, with the goal being that this time is limited only by the
data dependencies.

An element is represented by an abstract Java class with the core functionality
hidden behind a clean interface and shared among all elements. Defining a new
element for the user’s own needs requires writing two abstract functions in the
abstract Java class: an initialization function and a task function. Most of the
code necessary for defining a new element is task specific. The element designer
is presented with a clean API for retrieving and sending messages through the
graph. Instructions for defining new elements are contained on the AMI in well-
documented code and examples.

2.2 Graph Configuration Language

Fig. 1 lists a sample graph configuration for a workflow using the elements de-
fined in Section 3. Each configuration file consists of two sections: an initializa-
tion section and a connections section. The initialization section defines each
instance of the elements that are to be used along with their jobs and initializa-
tion strings. The connections section defines the connections among the element
instances. For each statement in the connections section the first element in-
stance is connected directly upstream of all other element instances appearing
in the statement. Each element defines the types of the elements that can appear
directly upstream and directly downstream of it. The elements used in the sam-
ple graph configuration are defined in Section 3, and described in more detail,
with their jobs and initialization string semantics, on the AMI. The language is
implemented as a grammar in ANTLR [16], a Java-based parser generator, and
it can be easily extended to accommodate future enhancements.

2.3 Type System

Elements are free to pass custom types along the graph. EasyProt wraps every
message in a wrapper type, transparent to the user, before sending it along the
graph, providing a uniform interface for messages. A collection of types has been
defined, designed for workflows in proteomics, interactomics and comparative
genomics. Proteome and Interactome are generic types that can store proteins
and interactions in various formats. A collection of types that can be stored in
proteomes and interactomes have been defined, including various protein iden-
tifier schemas, annotated proteins, protein amino acid sequences, and protein
interactions in various formats. For many elements in the sample workflows de-
scribed in Section 3, proteomes and interactomes are the units of data passed
through the configuration graph; however, some elements combine proteomes or
interactomes and release data in a custom output format. Message types have
been defined for these custom formats. Designers of new elements are free to use
the predefined types or to define new customized types most suitable for their
data.
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INITIALIZATION

Interactome int1 “iRefIndex\t9606\tall” “”
Interactome int2 “iRefIndex\t7227\tall” “”
MitabToCache mtc “2” “”
InteractomeFilter ifil “2” “”
InteractomeToCache itc “2” “”
ProteinLinearizer plin1 “2” “”
ProteinLinearizer plin2 “2” “”
Sequence seq1 “1” “”
Sequence seq2 “1” “”
SequenceToCache stc “2” “”
Blast blas “1.0E-9:inter” “/easyprot/workspace/blast/blast1/”
BlastToCache btc “1” “”
InteractomeDegree degr “2” “”
Go go “2” “”
MergeAnnotations merg “2” “2”
AnnotationsToCache atc “2” “”
Produles prod “P\t5\t20\t1.5\t0.05\t50” “/easyprot/workspace/produles/”
ModuleAlignmentToCache matc “1” “”
Time time “1” “”
Modularity modu “1” “”
Size size “1” “”
Density dens “1” “”
Overlap over “1” “”
Evolution evol “1” “”
Coverage cove “1” “”
Components comp “1” “”
Summary summ “1” “”
AnalysisTableToCache attc “9” “”
VieprotML vpml “1” “forward”

CONNECTIONS

int1 mtc ifil ;
int2 mtc ifil ;
ifil itc plin1 plin2 degr prod modu cove ;
plin1 seq1 seq2 ;
plin2 go ;
seq1 stc blas ;
seq2 stc blas ;
blas btc prod ;
degr merg ;
go merg ;
merg atc vpml ;
prod matc time modu size dens over evol cove comp vpml ;
time attc summ vpml ;
modu attc summ vpml ;
size attc summ vpml ;
dens attc summ vpml ;
over attc summ vpml ;
evol attc summ vpml ;
cove attc summ vpml ;
comp attc summ vpml ;
summ attc vpml ;

Fig. 1. Graph configuration for a sample workflow
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2.4 Cache

EasyProt includes a cache that facilitates reuse of intermediate results. The
cache separates the data from the workflows. Each object passed as a message
includes a description that records key elements through which the message has
travelled. These descriptions are written in string format both as file names with
a timestamp and internally. The timestamps allow versioning of the data and the
descriptions store the provenance, which allows repeatability. Special elements
control reading from the cache and writing to the cache. Caching elements have
been defined for all message types currently supported, and it is easy to define
new caching elements for custom message types. The cache is organized into
subdirectories corresponding to message types. As seen in Fig. 1, experimenters
decide which data is cached by calling the appropriate caching elements.

3 Sample Workflows

To demonstrate the usefulness of the EasyProt system, we designed a collec-
tion of workflows for comparative interactomics, defining elements for acquiring
and annotating protein data and comparing algorithms. A protein interaction
network is an undirected graph with nodes that are proteins, and edges that
indicate protein interactions between the endpoints. An interactome is a large
protein interaction network that ideally includes all protein interactions on an
organism’s proteome [17]. Comparative interactomics is the comparison of inter-
actomes across organisms. A multiprotein module is a collection of proteins that
work together to perform a common task, for example, a protein complex or a
signaling pathway [18]. Given two interactomes, GA and GB, a module align-
ment is a set of possibly-overlapping multiprotein modules in Gi for i ∈ {A,B};
a one-to-one mapping from the multiprotein modules in GA to the multiprotein
modules in GB; and a many-to-many mapping between the proteins in aligned
modules. The sample workflows acquire current high-quality protein data for
multiple organisms, and apply and analyse algorithms to detect multiprotein
modules conserved in these organisms.

Several key elements designed for these workflows are defined below.

1. Interactome: acquires interactome datasets from various sources.
2. InteractomeFilter: removes extraneous data and simplifies the format for

later computation.
3. ProteinLinearizer: converts interactomes to proteomes.
4. Sequence: obtains amino acid sequences for the proteomes from external

web services.
5. Blast: performs pairwise protein sequence similarity comparisons between

proteomes.
6. InteractomeDegree: computes the number of interactions for each protein

in an interactome.
7. Go: obtains protein function annotations.
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8. Produles: finds multiprotein modules conserved during evolution using the
Produles [18] algorithm. Other algorithms are placed in similar elements.

9. MergeAnnotations: accepts the output from several elements and produces
a unified annotated proteome.

10. Time, Modularity, Size, Density, Overlap, Evolution, Coverage,
Components: compute module alignment evaluation statistics [18].

11. Summary: compiles statistics on the module alignment for visualization.
12. VieprotML: generates output suitable for visualization of module alignments.

Using workflows similar to Fig. 1, multiple algorithms to detect multiprotein
modularity conserved during evolution were compared and evaluated on current
datasets [18].

4 Experiments and Results

Versions of the sample workflow in Fig. 1 were applied to the organisms Homo
sapiens, Drosophila melanogaster, and Saccharomyces cerevisiae with interac-
tome sizes: H. sapiens : 12,952 proteins, 71,035 interactions; D. melanogaster :
10,192 proteins, 41,050 interactions; S. cerevisiae: 6,083 proteins, 175,113 inter-
actions. Three versions, H. sapiens vs. D. melanogaster, D. melanogaster vs. S.
cerevisiae, and S. cerevisiae vs. H. sapiens, were run in parallel on six separate
EC2 instances with two configurations of processing capability and memory ca-
pacity. Table 1 lists the running times. As the workflows run in parallel, the total
time required is the maximum of the individual timings.

Table 1. Time to run sample workflows derived from Fig. 1. The workflows run in
parallel so the total time required for all datasets is the maximum of the timings.
The EC2 Large instances are applied with 6GB of available RAM and the EC2 High-
Memory Quadruple Extra Large instances are applied with 65GB of available RAM.

Dataset EC2 Large EC2 High-Memory
Quadruple Extra Large

H. sapiens vs. D. melanogaster 7h 32m 7h 18m

D. melanogaster vs. S. cerevisiae 7h 22m 7h 9m

S. cerevisiae vs. H. sapiens 7h 21m 7h 14m

Complete 7h 32m 7h 18m

Interestingly, the time required for the virtual machines with vastly differing
amounts of computing capabilities and memory is quite similar. This seems to be
due mainly to the large amount of network requests from web services in these
workflows that are limited by the speed of the external servers rather than the
computing capability, amount of memory, or network bandwidth of the virtual
machines.

The more powerful virtual machines are faster for computationally intensive
workflows. To demonstrate this, Table 2 compares the timings on variants of the
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sample workflow from Fig. 1 that use data from the cache rather than retrieving
data through the network. For these computationally demanding workflows, the
more powerful virtual machines require less than three quarters of the time
required by the less powerful virtual machines.

Table 2. Time to run sample workflows using data from the cache with the same
virtual machines and settings as Table 1

Dataset EC2 Large EC2 High-Memory
Quadruple Extra Large

H. sapiens vs. D. melanogaster 70m 38s 51m 14s

D. melanogaster vs. S. cerevisiae 17m 16s 23m 47s

S. cerevisiae vs. H. sapiens 21m 28s 29m 13s

Complete 70m 38s 51m 14s

5 Using EasyProt

EasyProt is distributed as a public AMI that runs on Amazon EC2. The AMI is
registered with manifest easyprot-ami/easyprot.img.manifest.xml. Upon launch-
ing the AMI, one can type from any directory “easyprot X configFile” to launch
EasyProt, where configFile is the name of a configuration file stored in the di-
rectory /easyprot/configurations, and X is the amount of memory available to
EasyProt in the format nT where n is an integer and T ∈ {m, g}, where m speci-
fies megabyte and g specifies gigabyte. Thirty sample workflow configuration files
are provided including the sample workflow in Fig. 1. Instructions are also pro-
vided in the welcome message on the AMI. Documentation explaining how to use
the elements currently defined is provided in the folder /easyprot/documentation
and in the source Javadoc. EasyProt, including all source code, is released under
the GNU General Public License, Version 3.

The directory structure on the AMI is as follows:

– easyprot
• cache: contains the EasyProt cache
• config: contains 30 sample workflow configuration files including Fig. 1
• documentation: contains documentation for the elements also found in

the source Javadoc
• language: contains the ANTLR grammar and code
• license: contains open source license
• project: contains the project with Java source code in subdirectory src
• scripts: contains the easyprot script that compiles the configuration file,

compiles the project, and launches EasyProt
• workspace: contains temporary workspace and executables for external

programs

At the time of this writing, EasyProt supports 61 elements. Documentation
for using the elements in the most current version, with allowable connections
and specification of jobs and initialization strings, can be found in the file
/easyprot/documentation/README on the AMI and in the source Javadoc.
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6 Perspectives and Discussion

The power of the EasyProt software architecture is its parallel message-passing
design that allows the computation to be distributed across multiple virtual
cores and multiple virtual machines. In EasyProt, elements have clearly defined
roles and pass messages to other elements allowing for direct horizontal expan-
sion. EasyProt is a programmer-oriented model for reproducible computation
in the cloud that supports a parallel element-based approach for using multiple
virtual cores and parallel deployment from an AMI for using multiple virtual
machines. Enhancements are being implemented for automated partitioning of a
single workflow across multiple virtual machines, when desired by the workflow
developer, with objectives to minimize message passing across virtual machine
boundaries and to group expensive elements with inexpensive elements in order
to balance the load.

A clear advantage of the text-based graph configuration language is that it
is easy to understand and manipulate directly, allowing for direct modification
through a console during the design of ever-changing experiments. For any cost-
effective cloud computing programming model, it is essential to minimize transfer
of data over the network. The EasyProt model offers immediate availability
from any virtual machine running the AMI with no local installation. We are
investigating the merits of a hybrid programming environment where flexible
console-based access is supplemented with graphical tools that run locally.

MapReduce [19] is a method of parallelization that may increase efficiency
for particular highly repetitive tasks. MapReduce elements can be directly im-
plemented in the EasyProt framework. However, preexisting systems such as
Hadoop [20] are highly optimized for MapReduce. If a programmer desires to
use MapReduce within the EasyProt framework, the recommended option is to
design an element that passes data to a MapReduce optimized system.

Comparing the cost of development in the cloud with the cost of develop-
ment on a high-performance locally managed cluster is not straightforward, as
there are hidden costs associated with purchasing and maintaining any cluster.
A discussion of cost effectiveness with references to detailed studies, and the
conclusion that development in the cloud is cost effective, can be found in [1].

7 Conclusion

We present EasyProt, a parallel software architecture designed to be workflow
software for the computational biologist, to bring cloud resources to experi-
menters who must face the reality of programming increasingly demanding com-
putational workflows on large datasets. We hope that this system will be broadly
useful to computational biologists as a cost-effective solution to the challenges
of designing and testing time-consuming experimental workflows reproducibly.
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Abstract. Text matching with errors is a regular task in computational
biology. We present an extension of the bit-parallel Wu-Manber algo-
rithm [16] to combine several searches for a pattern into a collection
of fixed-length words. We further present an OpenCL parallelization of
a redundant index on massively parallel multicore processors, within a
framework of searching for similarities with seed-based heuristics. We
successfully implemented and ran our algorithms on GPU and multicore
CPU. Some speedups obtained are more than 60×.1

Keywords: bit parallelism, pattern matching, sequence comparison,
neighborhood indexing, GPU, OpenCL.

1 Introduction

With the advances in “Next Generation Sequencing” technologies (NGS), the
data to analyze grows even more rapidly than before and requires very efficient
algorithms. In read mapping, the goal is to map short “reads” produced by NGS
on a reference genome; another example is metagenomics analyses, where one of
the goals can be to identify at which species belongs each read. Such applications
require to search a short sequence against a set of sequences. All these problems
are thus related to a generic basic problem where we query a pattern into one
or several texts, allowing some errors :

Problem 1 (Approximate Pattern Matching in Large Sequences). Given a pattern
p, a parameter e and a set of sequences S over an alphabet Σ, find all occurrences
of p in S within a Levenshtein distance of e.

The Levenshtein distance between two words is the minimal number of insertions,
deletions and substitutions needed to transform one word into the other one.
In the case of NGS read mapping, the lengths of the patterns are typically
from several dozens to several hundreds. The set of sequences can be either a
large number of short sequences or a unique large sequence. There are multiple
strategies to address this problem (see Section 2.2). The well-known seed-based
heuristics assume that there is a conserved short word between the pattern and
its occurrence in the text. There are numerous tools implementing this strategy,

1 This research was partially supported by the French ANR project MAPPI. Cards
for experiments were provided through a “Action Incitative LIFL” grant.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 292–301, 2012.
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including the popular BLAST [1], but also tools using improved seeds such as
PatternHunter [9] or YASS [12]. Such methods involve several stages, including
a neighborhood extension that can be formalized as follows:

Problem 2 (Approximate Pattern Matching in Fixed-Length Word). Given a pat-
tern p and a parameter e, find all words in a set of fixed-length words such that
the Levenshtein distance with p is at most e.

The length of such fixed-length words is often small (4, 8, 16 in this paper), and
corresponds only to the neighborhood of matched seeds. Positive results at this
step lead to alignments on the full pattern length to solve Problem 1.

GPU/manycore Computing. Graphics processing units (GPUs) were used in
bioinformatics since 2005 [4]. Since then, lots of different studies were proposed
on Smith-Waterman sequence comparisons or other bioinformatics applications
(review in [15]). Computing with GPUs was firstly done by tweaking graphics
primitives. The CUDA libraries, released by NVIDIA in 20072, and the OpenCL
standard3 now enable easy programming on GPU/manycore architectures. The
same OpenCL code can be compiled and optimized for different platforms [5]. As
of today, at least five different implementations of this standard are available:
NVIDIA, AMD, Apple, IBM, and Intel. In the following years, the OpenCL
standard could become a practical standard for parallel programming.

Contents. This paper brings two contributions. In Section 3, we propose a sim-
ple extension to the bit-parallel algorithms of [16] to a collection of fixed-length
words to address Problem 2. In Section 4, extending ideas from [13], we show how,
for solving Problem 1 with a seed-based heuristic, a redundant neighborhood in-
dexing is more efficient than an offset indexing and scales well on GPU/manycore
architectures. Performance tests on CPU and GPU are given in Section 5.

It should be noted that Hirashima et al. also studied bit-parallel algorithms
on CUDA [8], but their algorithms were optimized for strings over a binary
alphabet for stringology studies and do not apply here.

2 Background

We provide here some background in bit-parallelism (Section 2.1), as well as in
seed-based heuristics and neighborhood indexing (Section 2.2).

2.1 Bit Parallel Matching

Text searching using bit-parallelism emerged in the early 90’s. The approach
consists in taking advantage of the parallelism of bit operations, encoding the
states of a matching automaton into a machine word seen as a bit array. Ideally,

2 http://www.nvidia.com/cuda
3 http://www.khronos.org/opencl
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these algorithms divide the complexity by w, where w is the length of a machine
word. The book [11] is an excellent reference on the subject.

The Shift-or algorithm for exact pattern matching [2] is one of the first
algorithms using this paradigm. In 1992, Wu and Manber [16] proposed an ap-
proximate matching algorithm. The Wu-Manber algorithm (called BPR, for Bit-
Parallelism Row-wise, in [11]) allows substitution, insertion and deletion errors,
and was implemented in the agrep software.

Exact Matching. The pattern p of length m is encoded over a bit array R of
length m. Characters of the text t are processed one by one, and we denote by
R[j] the value of R once the first j letters of the text have been read. More
precisely, the ith bit of R[j] equals 1 if and only if the first i characters of the
pattern (p1...pi) match exactly the last i characters of the text (tj−i−1...tj). The
first bit of R[j] is thus just the result of the matching of (p1 = tj), and, when
i ≥ 2, the ith bit R[j](i) of R[j] is obtained by:

R[j](i) =

{
1 if R[j−1](i− 1) = 1 and (pi = tj) (match)
0 otherwise

With bitwise operators and ( & ) and shift (� ), this results in Algorithm 1.

Algorithm 1. Exact Bit-Parallel Matching⎧⎨⎩
R[0] ← 0m

R[j] ←
(

(R[j−1] � 1) | 0m−11
)

& B[tj ]

The pattern bitmask B is a table with |Σ| bit arrays constructed from the
pattern, such that B[tj ](i) = 1 if and only if (pi = tj). This algorithm works
as long as m ≤ w, where w is the length of the machine word, and needs O(z)
operations to compute all R[j] values, where z is the length of the text.

Approximate Matching. To generalize the matching up to e errors, we now con-
sider e + 1 different bit arrays R0, R1, ...Re, each one of length m. The ith bit of

R
[j]
k equals 1 if and only if the first i characters of the pattern match a subword

of the text finishing at tj with at most k errors, leading to Algorithm 2. Due
to insertion and deletion errors, the length of a match in the text is now in the
interval [m− e,m + e].

This algorithm works as long as m + e ≤ w, but now takes O(ez) time. BPR
has been reported as the best unfiltered algorithm in DNA sequences, for low
error levels and short patterns (p. 182 of [11]). We thus focused on this algorithm
instead of theoretically better ones such as BNDM, implemented in the nrgrep

software [10]. Moreover, BPR is more regular than other solutions, enables a
better performance on processors with large memory words such as those with
SIMD instructions.



Bit-Parallel Multiple Pattern Matching 295

Algorithm 2. BPR Matching

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R
[0]
k ← 0m−k1k

R
[j]
0 ←

(
(R

[j−1]
0 � 1) | 0m−11

)
& B[tj ] (match)

R
[j]
k ←

(
(R

[j−1]
k � 1) & B[tj ]

)
| R

[j−1]
k−1 | (R

[j−1]
k−1 � 1) | (R

[j]
k−1 � 1) | 0m−k1k

(match) (insertion) (substitution) (deletion) (init)

2.2 Seed-Based Heuristics and Redundant Neighborhood Index

Preprocessing and Indexes. A common way to speed-up pattern matchings is
to preprocess the text, for example by building an index in which performing
a query of a pattern can be achieved in constant or linear time. A lot of work
has been done to build non-redundant indexes in order to save memory, such
as suffix trees or suffix arrays [6]. Obviously, there is always a trade-off between
memory efficiency and time efficiency. Thus, simpler index techniques, even with
some redundancy, could achieve better time performance.

Seed-Based Indexing. In seed-based indexing, the pattern p is divided in two
parts: a seed ps of size W , which has to occur exactly, and a neighborhood pn
of length �. In the filtering phase, we search for occurrences of the seed in the
index and retrieve the list of all its neighborhoods. In the finishing phase, the
neighborhood of the pattern is compared to the neighborhoods of the occurrences
of the seed.

Complete seed-based heuristics can include further finishing stages. Moreover,
designing efficient seeds is a wide area of research, including spaced seeds and
their extensions (see [3] for a review). We will not address these problems here,
but focus on the storage of neighborhoods: how can we, for each seed, have access
to the list of all its occurrences in the index ? We now follow the discussion of
[14] to present different ways to store these neighborhoods.

Fig. 1. Offset indexing [14]. During the filtering phase, the seed ps (here AAC) is used
to access to the index. Then the finishing phase get neighborhoods of this seed (one
memory access per position), and compare them against pn. If N is the total number
of neighborhoods, each offset takes log N bits, thus index size is N × log N bits.
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Offset Indexing. In the usual offset indexing approach, depicted on Figure 1, an
offset is stored for each seed position. For each query position, each hit returned
by the filtering phase leads to an iteration of the finishing phase. This iteration
accesses some neighborhoods of the positions. These memory accesses are ran-
dom, that are unpredictable and non contiguous. Such accesses are not efficiently
cached and require high latencies [7]. This is still true for GPUs: despite high
internal memory bandwidths, random access patterns decrease efficiency.

Fig. 2. Neighborhood indexing [14]. All neighborhoods are stored along the offset of
each seed occurrence. One unique memory access gives all the data needed by the
finishing phase. For nucleotide characters, stored in 2 bits, the overall index size is
then equal to N × (log N + ) bits, where  is the length of the neighborhood.

Neighborhood Indexing. A way to reduce the computation time is thus to avoid
as far as possible such random memory accesses. In [13], a neighborhood indexing
approach has been proposed. The idea is to directly store in the index the neigh-
borhood of size � for every seed occurrence (Figure 2). Thus all neighborhoods
corresponding to a seed are obtained through a single contiguous memory access.

This index is redundant, as every character of the text will be stored in the
neighborhoods of � different seeds: the neighborhood indexing enlarges the size of
the index. However, it can improve the computation time by reducing the random
memory access. In [13], the authors claimed that the neighborhood indexing
speeded up the execution time by a factor ranging between 1.5 and 2 over the
offset indexing.

3 Multiple Fixed-Length Bit-Parallel Matchings

In this section, we propose an extension of BPR (Algorithm 2, [16]) which solves
Problem 2 and takes care of memory accesses. More formally, we compare a
pattern pn of length m against a collection of words t1, t2, ... tn of length � =
m + e, allowing at most e errors (substitutions, insertions, deletions).

The existing bit-parallel algorithms for multiple pattern matching (review in
Section 6.6 of [11]) match a set of patterns within a large text. Our setup is
different, as we want to match one pattern with several texts. Of course, one
could reverse the multiple pattern matching algorithms and build an automaton
on a set of all neighborhoods. This would result in a huge automaton, and the
algorithm would not be easily parallelizable.
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t1 =ATCG, t2 = GGAC

t3 =AGCG, t4 = AGTC

B̂[AGAA] 0 0 1 0 0 0 0 0 1 0 0 1 −→

B̂[TGGG] 0 1 0 0 0 0 0 0 0 0 0 0 −→

B̂[CACT] 1 0 0 0 0 1 1 0 0 0 1 0 −→

B̂[GCGC] 0 0 0 1 0 0 0 0 0 1 0 0 −→

t1 t2 t3 t4

R
[0]
0 0 0 0 0 0 0 0 0 0 0 0 0

R
[0]
1 0 0 1 0 0 1 0 0 1 0 0 1

R
[1]
0 0 0 1 0 0 0 0 0 1 0 0 1

R
[1]
1 0 1 1 0 0 1 0 1 1 0 1 1

R
[2]
0 0 1 0 0 0 0 0 0 0 0 0 0

R
[2]
1 1 1 1 0 0 0 0 1 1 0 1 1

R
[3]
0 1 0 0 0 0 1 0 0 0 0 0 0

R
[3]
1 1 1 0 0 1 0 1 0 0 0 1 0

R
[4]
0 0 0 0 0 0 0 0 0 0 0 0 0

R
[4]
1 1 0 0 1 1 1 0 0 0 1 0 0

Fig. 3. Execution of the algorithm 3 on 12-bit machine words. The pattern p =
ATC, of length m = 3, is compared against n = 4 words with up to e = 1 error.
The text data t ={ATCG, GGAC, AGCG, AGTC} is stored in a stripped layout
as AGAA TGGG CACT GCGC. After 2 iterations, there is one approximate match
for t1 (AT, one insertion). After 3 iterations, there is one exact match for t1, and
one approximate match for t3 (AGC, one substitution). After 4 iterations, there are
three approximate matches, for t1 (ATCG, one deletion), t2 (AC, one insertion) and
t4 (AGTC, one deletion).

Algorithm. The idea of our algorithm is to store n fixed-length words into a
machine word, so n matchings can be done simultaneously. As in BPR, to have
a matching up to e errors, we consider e + 1 different bit arrays R0, R1, ...Re,
but each one is now of size mn, that is n slices of m bits. If 1 ≤ r ≤ n and

1 ≤ i ≤ m, the ith bit of the rth slice of R
[j]
p equals 1 if and only if the first i

characters of the pattern match the last i characters of the rth text (trj−i−1...t
r
j)

with at most k errors. We thus obtain Algorithm 3.

Algorithm 3. Multiple Fixed-Length BPR (mflBPR) Matching

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R
[0]
k ←(0m−k1k)n

R
[j]
0 ←

(
(R

[j−1]
0 � 1) | (0m−11)n

)
& B̂[t̂j ] (match)

R
[j]
k ←

(
(R

[j−1]
k � 1) & B̂[t̂j ]

)
| R

[j−1]
k−1 | (R

[j−1]
k−1 � 1) | (R

[j]
k−1 � 1) | (0m−k1k)n

(match) (insertion) (substitution) (deletion) (init)

Figure 3 shows a run of this algorithm. Compared to BPR, the initialization
is (0m−k1k)n instead of 0m−k1k. This initialization puts 1’s at the k first bits
of each slice, thus overriding any data shifted from another slice. Moreover, to
allow better memory efficiency:
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Fig. 4. Structure of the index file. The START LIST contains the positions of
4W Blocks. The main part is the list of Blocks, each one containing, for a given seed,
its neighborhoods as well as its offsets.

– The set of n fixed-length words t = {t1, t2, ..., tn} is stored and accessed
through a stripped layout, as each access j returns the jth characters of
every word: t̂j = t1j t

2
j ...t

n
j

– The block mask B̂[t1j t
2
j ...t

n
j ] = B[t1j ]B[t2j ]...B[tnj ] is thus now larger, having

|Σ|n bit arrays (instead of |Σ|). As in BPR, the computation of this table
still depends only of the pattern. This table is somehow redundant, but now
allows the match of n characters with one unique memory access.

This algorithm works as long as mn ≤ w, where w is the length of the machine

word, and needs O(ez/n) operations to compute all R
[j]
k values, where z is the

total length of all texts. Comparing to the BPR algorithm, there are n times less
operations. Of course, the limiting factor is again the size of the machine word.

4 Redundant Parallel Neighborhood Indexing

We now describe our redundant neighborhood index for DNA (|Σ| = 4), and
show how it may be used on regular processors as well as on GPUs. The structure
of the neighborhood index file is depicted on Figure 4. Searching for a pattern
p = pspn is done through the following natural steps:

Pattern pre-processing
Compute the pattern bitmask B(pn) (for BPR) or B̂(pn) (for mflBPR)

Filtering phase
Retrieve the position of Block(ps) in the index

Finishing phase
Compare pn against all the neighborhoods of Block(ps)

This index works either with BPR or mflBPR, or with any other neighbor com-
paring method. In all cases, there are very few random memory accesses since
the Block(ps) is stored contiguously in the memory.
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Usage with OpenCL Devices. All the index data are precomputed and transferred
only once to the device. Then the application runs looping on each query. The
pattern pre-processing as well as the Block(ps) position retrieving are done on

the host. Then the block bitmask B(pn) or B̂(pn) and the positions of Block(ps)
are sent to the global memory of the device. The device is devoted to the fin-
ishing phase. Depending on the size of Block(ps), several comparing cycles may
be run. In each comparing cycle, neighborhoods are distributed into different
work groups and loaded in the local memory of each work group, and processed
by several work items. The positions of the matching neighborhoods are then
written back to a result array in the global memory, then transferred back to
the host. This index is intrinsically parallel, as the neighborhoods are processed
independently.

Index Size. An obvious drawback of the neighborhood indexing is the additional
memory requiring to store neighborhoods. The ratio between the overall index
sizes of the neighborhood indexing and the offset indexing is r� = 1 + 2�/ logN .
For alignment purposes, considering offsets of logN = 32 bits gives ratios that
are acceptable, r8 = 1.5 and r16 = 2. For example, a 100 Mbp sequence with a
neighborhood of size L = 8 with small seeds (W ≤ 6) gives an index of size 630
MB, fitting in the main host memory as well as in GPU cards.

5 Performance Results and Perspectives

Testing environment. We benchmarked the algorithms BPR and mpfBPR on
GPU and on multicore CPU. The same OpenCL code was used, but with differ-
ent OpenCL libraries. We thus target these two platforms:

– GPU: NVIDIA 480 (30×16 cores, 1.4 GHz, 1.5 GB RAM), with the OpenCL
library was NVIDIA GPU Computing SDK 1.1 beta.

– CPU: Intel Xeon E5520 (8 cores, 2.27 GHz, 8 MB cache), with the OpenCL
library was AMD APP SDK 2.4.

We also tested a C++ “CPU serial” version, which ran on only one core of
the CPU. Programs were compiled by GNU g++ with the -O3 option. The host
computer had 8 GB RAM.

Methodology. Tests were run on the first 100 Mbp of the human chromosome 1.
We measured the performance of the algorithms in millions of words matched
per second (Mw/s). This normalization allowed to benchmark the problem 2
independently. For the problem 1, the number of words was the total number of
neighborhoods, removing the bias due to seed selection. We ran searches on 10
successive patterns, but we saw no significant difference between 1, 10, or 100
patterns, as soon as enough computations hided the transfer times.
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10 Mw/s

100 Mw/s

1 Gw/s

Exact matching 1 error 2 errors 3 errors

BPR Matching

length 4
length 8

length 16

10 Mw/s

100 Mw/s

1 Gw/s

Exact matching 1 error 2 errors 3 errors

mflBPR Matching

length 4, n = 4
length 8, n = 2

length 16, n = 1

Fig. 5. Performance of BPR (left) or mflBPR (right), both on CPU serial version

10 Mw/s

100 Mw/s

1 Gw/s

Exact matching 1 error 2 errors 3 errors

Neighborhood length 8

NVIDIA 480 GTX
Serial CPU

OpenCL CPU

10 Mw/s

100 Mw/s

1 Gw/s

Exact matching 1 error 2 errors 3 errors

Neighborhood length 16

NVIDIA 480 GTX
Serial CPU

OpenCL CPU

Fig. 6. Performance of the neighborhood indexing with a neighborhood length
of 8 (left) and 16 (right). For each platform, there are three different curves, corre-
sponding to different seed lengths (3, 4 and 6), hence to different total numbers of
neighborhoods. Times used in the OpenCL versions include transfer times between
host and device for the queries and the result, but not for the index.

Performance of mflBPR (CPU). Figure 5 shows performance of mflBPR on a
CPU. With 32-bit integers, performance gain compared to BPR ranges from
2.73× to 3.92× for words of length 4 and from 1.89× to 2.06× for words of
length 8, close to the 4× and 2× theoretical gains.

Performance of redundant neighborhood index (CPU and GPU). Figure 6 shows
performance of the whole index. In the most simple instance (neighborhoods of
size 8, no error), the serial CPU implementation peaks at 59 Mw/s, the OpenCL
CPU at 189 Mw/s, and the OpenCL GPU at 3693 Mw/s. In this case, using
OpenCL brings speed-ups of about 3.2× on CPU and about 62× on GPU. In
the same setup, the offset indexing peaks at 4.0 Mw/s on serial CPU, 108 Mw/s
on OpenCL CPU and 1706 Mw/s on OpenCL GPU (data not shown).

When the error rises, performance degrades in both implementations. On
small neighborhoods, starting from e = 2, the performance of both GPU and
CPU versions are limited by the number of matches in the output. However,
even in the worst case (7.5 Mw/s, CPU serial implementation, 3 errors, seed size
4 and neighborhood length of size 16), using the neighborhood indexing takes
less than 0.06 s for parsing a chromosome with 100 Mbp, while non-indexed
approaches using bit parallelism takes 0.9 s with agrep and 0.7 s with nrgrep.
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We thus demonstrated the efficiency of using OpenCL and GPUs to speed-up
the neighborhood phase extension in seed-based heuristics.

Perspectives. Further work could include a complete evaluation of the redun-
dant index, including a study on the influence of the seed design. It should be
noted that our OpenCL code already works both on NVIDIA and AMD SDKs.
However, tests on ATI GPU cards (Radeon 5870) give now poor performance
(best result peaking at 39.6 Mw/s on a smaller index, not shown). We would
thus like to benchmark and optimize our code on other OpenCL platforms.
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1 ETH Zürich, Chair of Computational Science, Zürich, Switzerland
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3 ETH Zürich, Institute of Fluid Dynamics, Zürich, Switzerland

Abstract. We investigate parallel algorithms for the solution of the
shallow-water equation in a space-time framework. For periodic solu-
tions, the discretized problem can be written as a large cyclic non-linear
system of equations. This system of equations is solved with a Newton
iteration which uses two levels of preconditioned GMRES solvers. The
parallel performance of this algorithm is illustrated on a number of nu-
merical experiments.

1 Introduction

In this paper we consider the shallow water equation as a model for the behavior
of a fluid in a rectangular basin Ω = (0, Lx)×(0, Ly) which is excited periodically.
The excitation is caused by periodic swayings of the ground of the basin with a fre-
quency ω, imposing a periodic behavior of the fluid with the period T = 2π/ω [4].

In the classical approach to solve such problems, the transient behavior of
the fluid is simulated starting from an arbitrary initial state. This simulation is
continued until some periodic steady-state evolves.

We model the fluid in space-time Ω×[0, T ). We will impose periodic boundary
conditions in time. The discretization of the shallow water equations by finite
differences in space and time leads to a very large nonlinear system of equations
that requires parallel solution. The parallelization is done by domain decompo-
sition where the subdomains partition space and time in a natural way. This is a
large advantage over the classical approach where only space can be partitioned.
At the same time, the number of degrees of freedom is larger by O(T/Δt).

Approaches that admit parallelization in time exist but are quite recent and
not very popular yet. In the ‘parareal’ approach [6], the time interval [0, T ] is
divided in subintervals. On each of these the given system of ODEs is solved.
The global solution is obtained by enforcing continuity at the interfaces. Stoll
and Wathen [10] discuss an ‘all-at-once’ approach to solve a PDE-constrained
optimization problem. In this problem a state has to be controlled in such a way
that it is driven into a desired final state at time T . The discretization is by finite
elements in space and finite differences (backward Euler) in time. A symmetric
saddle-point problem has to be solved in this approach.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 302–312, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 Governing Equations

The shallow water equations with fringe forcing and Laplacian damping are given
by [4, 12]

∂ta(x, t) + (u ·∇)a = −a∇·u, x ∈ Ω, t > 0, (1a)

∂tu(x, t) + (u ·∇)u = −g∇h + εΔu− Λu, x ∈ Ω, t > 0, (1b)

u · n = 0, x ∈ ∂Ω, t > 0. (1c)

Equations (1a) and (1b) model conservation of mass and momentum, respec-
tively. Here, u is the velocity vector, h is the fluid surface level, z is the ground
level, and a is the depth of the fluid (Fig. 1),

h(x, t) = z(x, t) + a(x, t). (2)

h

a

z

Fig. 1. Illustration of the definition of the ground level z, the water depth a and the
surface level h (blue: the fluid surface h; red: the ground surface z)

The ground level z consists of a static part z0 and a forcing term f oscillating
with period T ,

z(x, t) = z0(x) + f(x, t), f(x, t) = f(x, t + T ).

The gravitational constant g in (1b) determines the phase velocity of the shallow
water waves as

√
ga. The fringe forcing −Λu is used to damp the waves along the

boundary ∂Ω of the computational domain such that it acts like a non-reflecting
outflow boundary condition. Λ(x) is zero away from the boundary such that
the forcing term has no effect in most of the interior of Ω. As x approaches
∂Ω, the fringe function Λ rises smoothly to a large value such that the forcing
term dominates the other terms in (1b) and we effectively solve the equation
∂tu ≈ −Λu which forces u rapidly toward zero.

The periodicity of the forcing term f(x, t) transfers to the solution

a(x, t) = a(x, t + T ), u(x, t) = u(x, t + T ), x ∈ Ω, t > 0. (3)
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These equations give rise to periodic boundary conditions in space and time
for our model (1) that we solve in Ω × [0, T ). Using the periodic boundary
conditions (3) together with (1c) we get from the conservation of mass (1a) that

0 =

∫
Ω

∂ta dx +

∫
Ω

∇·(au)dx = dt

∫
Ω

a dx +

∫
∂Ω

au · n dS = dt

∫
Ω

a dx, (4)

which means that the amount of fluid is conserved over time. This amount is
determined by the initial data.

3 Newton Iteration

Equations (1a)–(1b) can be writen in matrix form as

A(a,u)

[
a
u

]
=

[
0

−g∇z

]
(5)

where

A(a,u) =

[
∂t + u ·∇ + (∇·u)· 0

g∇ ∂t + (u ·∇) · −εΔ + Λ·

]
. (6)

We use Newton’s method to solve this nonlinear equation. To that end we lin-
earize (5) at (a�,u�). Substituting a = a� + δa and u = u� + δu in (5) and
omitting higher order terms we obtain

∂t(δa) + ∇δa · u� + δa ∇·u� + ∇a� · δu + a� ∇·δu = −∂ta� −∇(a�u�),

∂t(δu) + (δu ·∇)u� + (u� ·∇)δu + g∇δa + Λδu− εΔδu

= −∂tu� − (u� ·∇)u� − g∇h− Λu� + εΔu�,

which can formally be written as

H(a�,u�)

[
δa
δu

]
=

[
rh
ru

]
(7)

with

H(a�,u�) =

[
∂t + u� ·∇ + ∇·u�I (∇a�) · + a� ∇·

g∇ ∂t + ∂u
∂x

+ (u� ·∇) + Λ− εΔ

]
.

Here, ∂u/∂x denotes the Jacobian.
A formal algorithm for solving the nonlinear system of equations (5) now

reads.
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Algorithm 3.1. Newton iteration for periodic solutions of the shallow water
equation

1: Choose initial approximations (a(0),u(0)).
2: for k = 0, . . . , maxIt−1 do
3: Determine residuals according to (5)[

r
(	)
h

r
(	)
u

]
=

[
0

−g∇z

]
−A(a(	),u(	))

[
a(	)

u(	)

]
.

4: If ‖r(	)h ‖2 + ‖r(	)
u ‖2 < η2(‖a(	)‖2 + ‖u(	)‖2) then exit.

5: Solve

H(a(	),u(	))

[
δa

δu

]
=

[
r
(	)
h

r
(	)
u

]
for the Newton corrections δa, δu.

6: Update the approximations a(k+1) := a(	) + δa, u(k+1) := u(	) + δu.
7: end for

4 Discretization

We approximate the shallow-water equation (1) by finite differences in space and
time [3, 5]. To that end we define grid points

(xi, yj , tk) = (iΔx, jΔy, kΔt), Δx = Lx/Nx, Δy = Ly/Ny, Δt = T/Nt. (8)

Fig. 2. Grid points for u (�), v
(�), a (•). Here, Nx = Ny = 5.

In this and the following sections we write x =
(x, y) and u = (u, v). We approximate the
functions a, u, and v at points with (partly)
non-integer indices as indicated in Fig. 2,

a
(k)

i+ 1
2 ,j+

1
2

≈ a(xi+ 1
2
, yj+ 1

2
, tk),

u
(k)

i,j+ 1
2

≈ u(xi, yj+ 1
2
, tk),

v
(k)

i+ 1
2 ,j
≈ v(xi+ 1

2
, yj, tk).

The corresponding grids are called h-grid, u-
grid, and v-grid, with NxNy, (Nx−1)Ny, and
Nx(Ny−1) interior grid points, respectively.
Notice that values of u and v at grid points
on the boundary vanish according to (1c).

The finite difference equations correspond-
ing to (1) are defined in one of these grids. Function values of h, u, and v that
are required on another grid than where they are defined are obtained through
linear interpolation. In (1) derivatives in x- and y-direction are replaced by cen-
tral differences. The derivatives in time are discretized by a fourth-order ‘slightly
backward-facing’ finite difference stencil,
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∂

∂t
f(t) ≈ 1

12Δt
[3f(t+Δt) + 10f(t)− 18f(t−Δt) + 6f(t− 2Δt)− f(t−3Δt)] .

The systems (5) and (7) can now be transcribed in systems in the ∼NtNxNy

unknowns a
(k)

i+ 1
2 ,j+

1
2

, u
(k)

i,j+ 1
2

, and v
(k)

i+ 1
2 ,j

, see [3] for details. Most of the time in

Algorithm 3.1 is spent in step 5 in the solution of the linear system (7). The
straightforward second-order central difference 1

2Δt (f(t+Δt) − f(t−Δt)) could
also be used to approximate ∂f/∂t. It however has drawbacks. Most of all, it
splits the problem in two independent subproblems if Nt is even.

5 Numerical Solution

The system matrix H in (7) has a block structure typical for three-dimensional
finite difference discretizations (Fig. 3). The principal 3×3 block structure of H
stems from the three components a, u, and v. The components corresponding
to the spatial derivatives give rise to tridiagonal blocks. The components corre-
sponding to the temporal derivative entail cyclic blocks with five bands. These
bands can be seen quite well in Fig. 3 because the index in t-direction varies
more slowly than the indices of the spatial directions.

Fig. 3. MATLAB spy of H for Nx = Ny = 20 and Nt = 9. The most prominent 3×3
block structure stems from the three components a, u, and v. The diagonal blocks are
cyclic.

As H is non-symmetric we solve system (7) by the GMRES algorithm [9].
The preconditioner is based on the specific structure of H. In a first step, we
approximate H by replacing all diagonal and off-diagonal blocks with the closest
cyclic or Toeplitz blocks [1], i.e., the elements in each (off-)diagonal of a block
are replaced by the average of the respective (off-)diagonal. The cyclic Nt×Nt

blocks of the modified H can now be diagonalized by applying FFTs from left
and right. There are Nx(Ny−1) + (Nx−1)Ny + NxNy independent FFTs to be
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applied from either side. Notice that the eigenvalues of the cyclic blocks come
in complex conjugate pairs such that complex arithmetics is required in the
following steps.

After these diagonalizations, the matrix splits in N ′
t = (Nt−1)/2 separate

but complex spatial problems, corresponding to the individual Fourier modes
k = 0, . . . , N ′

t . In general, the systems are still too large to be factored. There-
fore, in the second step, we use preconditioned GMRES solvers to solve the Nt

systems of equations in parallel. We form the preconditioner with the same recipe
as before: quantities along the x-axis with equal y-coordinate are averaged to
make the tridiagonal blocks Toeplitz blocks. After the diagonalization by FFTs,
we arrive at Nt · Nx independent Ny × Ny problems which can be solved by
Gaussian elimination.

6 Parallelization

Our code is parallelized making use of Trilinos [2, 11], a collection of numeri-
cal software packages. We use the GMRES solver in the package AztecOO. As
AztecOO can only solve real valued systems, we additionally use the package
Komplex that generates an equivalent real valued problem out of a complex
problem by splitting real and imaginary parts. This is not optimal, because the
current implementation of this package explicitly generates the real valued sys-
tem, which uses again time and memory space. One could avoid this overhead
by using Belos, which is also able to solve complex systems (by means of generic
programming). Additionally we use the FFTW library for the Fourier transforms
and DGBTRF and DGBTRS from LAPACK to solve the banded systems.

In general, the matrices and vectors are distributed such that each process
gets approximately the same number of rows. For A and H, the spatial domain
is divided into mx intervals along the x-axis and my intervals along the y-axis.
The time domain is divided into mt intervals. Each process gets then equations
corresponding to all variables in one of these mxmymt blocks. Because of this
partitioning we set the number of processes equal to mxmymt.

To construct the small systems we need to average and then to perform a
Fourier transform in the time direction. To do this efficiently we need to have
the entries for a certain spatial point at all time steps local in one processor’s
memory. So, the matrix is redistributed in “stripes”, where each processor gets
all rows corresponding to all time steps for some quantities. To construct the
smallest systems we need to have the variables in x-direction grouped together
on one processor. During the solution process, we need to have the smallest
systems (each connect all y-values) local on one process, such that the (serial)
factorization and forward and backward substitution can be performed. While
the matrices need only to be redistributed in the beginning of each Newton
iteration step, the solution vectors and right hand sides have to be redistributed
prior to every outer GMRES iteration step. In the inner GMRES iterations the
vectors need only to be redistributed within the group of processes that solves a
certain system. Apart from the fact that each redistribution consumes time, it
also uses memory.
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Solving the Nt systems in parallel is not straightforward as their condition
numbers vary considerably. Some of the systems are diagonally dominant while
others are close to singular, cf. Fig. 7. It turned out that the iteration count
of one solve is a good prediction of the iteration count of the next solve of the
same system. This makes it possible to design a simple, adaptive, and effective
load balancing strategy and assign fewer or more processors to a solver. Notice
that the matrices split in Ny subblocks which makes the parallelization of these
solvers straightforward.

7 Experiments

For the numerical experiments, we use a configuration which yields a periodic
steady-state solution with a primary and a secondary wave system (Fig. 4). The
primary wave system is generated by a localized oscillation at the ground in
the shape of a Gaussian. These waves propagate toward the boundary of the
computational domain where they are damped out by the fringe forcing such
that no waves are reflected from the boundaries. The propagation of these waves
is non-uniform because the waves steepen and their speed is reduced in the more
shallow regions of the basin. A small submerged hill in the shallow region of
the basin leads to reflections of the primary waves. This results in a secondary
wave system which is centered at this hill. Figure 5 shows four snapshots of the
periodic steady-state solution taken at t = 0, T/4, T/2, and 3T/4, respectively.

The discretization parameters of the numerical experiments are listed in Ta-
ble 1. Note that case 3 uses fewer grid points in the t-direction due to memory
limitations.

Table 1. Discretization parameters for the numerical experiments

case Nx Ny Nt

1 100 100 99
2 200 200 99
3 400 400 39

All numerical experiments from Table 1 converge relatively fast (Fig. 6(a)).
The residual norm is reduced approximately by an order of magnitude per New-
ton iteration such that sufficiently converged solutions can be obtained typically
within less than ten Newton steps. In the wave system with a hill we observe
convergence problems at least in one case. To encounter them, we will in the fu-
ture increase the robustness of the Newton iteration by backtracking (line search,
damping) [8].

The numbers of outer GMRES iterations per Newton step is shown in Fig. 7a.
It increases successively with each Newton step. The number of inner GMRES
iterations (Fig. 7b) shows a strong dependence on the Fourier mode number k.
The required work for the small mode numbers is significantly larger than for
high mode numbers. This effect can be explained by the diagonal dominance of
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y

x

Fig. 4. Configuration for the numerical experiments with an oscillating perturbation
in the center and a small submerged hill in the shallow region of the basin (top left)

(a) t = 0 (b) t = T/4 (c) t = T/2 (d) t = 3T/4

Fig. 5. Snapshots of the converged periodic solution at different phases

the inner systems of equations. The mode number k corresponds physically to a
frequency and enters the inner systems as a factor on the diagonal entries. There-
fore, the inner systems for high mode numbers (high frequencies, k ≈ N ′

t) are
diagonally dominant and are easier to solve than the inner systems for small k.

The strong dependence between the mode number k and the number of inner
GMRES iterations could lead to a strong load imbalance for the parallel tasks.
Therefore, a dynamic scheduling of the inner GMRES solutions was used. It tries
to balance the workload across the parallel threads. To this end, the numbers of
inner iterations from the previous Newton step are used to estimate an optimal
distribution of the parallel tasks to the different threads.

The parallel performance of the solver was measured on the large Brutus
cluster at ETH Zurich1 with AMD Opteron 8380 Quad-Core CPUs and an

1 http://www.clusterwiki.ethz.ch/legacy/Brutus

http://www.clusterwiki.ethz.ch/legacy/Brutus
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(a) (b)

Fig. 6. Convergence of the residual norm over the Newton iterations: (a) without hill
(no secondary wave system), (b) with a hill (dotted blue: case 1, dashed green: case 2,
solid red: case 3)

(a) (b)

Fig. 7. Number of inner/outer GMRES iterations for case 1 without hill: (a) outer
GMRES iterations per Newton iteration (dotted blue: case 1, dashed green: case 2,
solid red: case 3), (b) inner GMRES iterations as a function of the mode number k
(blue ×: single instances of the inner GMRES; solid red: average over all instances of
the inner GMRES)

Infiniband QDR network. Typical turn-around times on 100 cores for case 3
were approximately 430 s. In these simulations, the spatial grid was decomposed
into 5 subdomains in each direction and the temporal direction was split into
4 intervals.

Figure 8 illustrates the speed-up and parallel efficiency of the solver by in-
creasing the number of cores from 1 to 100 for the case 1. In view of the relatively
small size of case 1, the relevant modules of the solver (solution, construction of
the preconditioner, and update of the Newton matrix) scale reasonably well. The
immediate drop in the efficiency from 1 to multiple processes is due to the reshuf-
fling of the data to localize the FFT’s which is not necessary for Nprocess = 1.
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(a) (b)

Fig. 8. (a) Parallel speedup and (b) efficiency for the solution of case 1 (green +:
initialization; red ◦: update; light blue �: preconditioner construction; violet •: solution;
dark blue ×: overall; dashed black: ideal speedup)

8 Conclusions

We have presented a concept for the parallelization of a periodic shallow-water
problem in space and in time. The presented results illustrate that the algorithm
converges quickly towards the steady-state solution of the problem. Numerical
experiments of different sizes show that the algorithm scales reasonably well.
Nevertheless, a more efficient preconditioner would improve the performance of
the present algorithm. It could be promising to further exploit the periodic-
ity of the sought solution by replacing, for instance, the finite-difference stencil
for the time derivative by a Fourier spectral method. This approach has been
investigated by the authors for a one-dimensional Burgers equation [7].

The proposed algorithm should be seen in the context of the current devel-
opment of supercomputers. The availability of more and more processing units
will require modern solvers for fluid dynamics problems to distribute the work
to ever more parallel threads. For a large class of fluid dynamics problems with
(quasi-) periodic steady-state solutions, this could be achieved by parallelizing
the time domain, in addition to a state-of-the-art domain decomposition in space.
The classical solution procedure consists of a (often explicit Runge-Kutta) time
stepping scheme that is executed for about five periods until the (quasi-) peri-
odic solution is reached. (Here, a period refers to the time for the slowest wave
to traverse the domain.) If the spatial grid is refined for accuracy reasons, the
CFL stability condition requires that the time step size is reduced proportion-
ally despite a smooth temporal behavior of the solution. Finally, parallelism is
restricted to the space dimension(s).

The space-time approach requires additional memory space to store the matrix
and preconditioner in the Newton step. But even if a space-time approach leads
to an increased overall workload, the turn-around time of the latter can be
reduced due to the increased parallelism.
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Abstract. A recently developed parallel three-dimensional flow solver
of the turbulent Navier-Stokes equations, based on Fluctuation Splitting
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1 Introduction

This paper presents the algorithmic and parallel features of EulFS, an implicit
Reynolds Averaged Navier Stokes equations (or, briefly, RANS) solver based on
a Fluctuation Splitting (FS) space discretization scheme and using a precondi-
tioned Newton-Krylov method for the integration. Although explicit multigrid
techniques have dominated the CFD arena for a long time, implicit methods
based on Newton’s rootfinding algorithm are recently receiving increasing atten-
tion because of their potential to converge in a very small number of iterations.
However, implicit CFD solvers require the implementation of well-suited conver-
gence acceleration techniques in order to be competitive with more conventional
solvers in terms of CPU cost [8]. In this study, special care is devoted to the
development of critical features of the implementation, such as the choice of the
preconditioning strategy for inverting the large nonsymmetric linear system at
each step of the Newton’s algorithm. The choice of the linear solver and the
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preconditioner can have a strong impact on the computational efficiency, espe-
cially when the mean flow and turbulence transport equations are solved in fully
coupled form, like we do in EulFS.

2 Governing Equations

Throughout this paper, we use standard notation for the kinematic and ther-
modynamic variables: u is the flow velocity, ρ is the density, p is the pressure,
T is the temperature, e and h are respectively the specific total energy and en-
thalpy, ν is the laminar kinematic viscosity and ν̃ is a scalar variable related
to the turbulent eddy viscosity via a damping function. The sound speed a is
the square root of the artificial compressibility parameter. In the simulations
this parameter is set equal to the freestream velocity. For compressible flows the
sound speed a is a function of temperature while for incompressible flows it is
taken constant and equal to the free-stream velocity. The mesh is partitioned
into nonoverlapping control volumes, drawn around each gridpoint by joining in
two space dimensions the centroids of gravity of the surrounding cells with the
midpoints of all the edges that connect that gridpoint with its nearest neighbors.

In the case of high Reynolds number flows, we account for turbulence effects
by the RANS equations that are obtained from the Navier-Stokes (NS) equations
by means of a time averaging procedure. The RANS equations have the same
structure as the NS equations with an additional term, the Reynolds’ stress ten-
sor, that accounts for the effects of the turbulent scales on the mean field. Using
Boussinesq’s approximation to link the Reynolds’ stress tensor to the mean ve-
locity gradient through the turbulent (or eddy) viscosity, the RANS equations
become formally identical to the NS equations, except for an “effective” viscos-
ity (and thermal conductivity), sum of the laminar and eddy viscosities (and
similarly for the laminar and turbulent termal conductivity), which appears in
the viscous terms. In the present study, the turbulent viscosity is modeled using
the Spalart-Allmaras one-equation model [7].

Given a control volume Ci, fixed in space and bounded by the control surface
∂Ci with inward normal n, we write the governing conservation laws of mass,
momentum, energy and turbulence transport equations as:∫

Ci

∂qi

∂t
dV =

∮
∂Ci

n · F dS −
∮
∂Ci

n ·GdS +

∫
Ci

s dV, (1)

where we denote by q the vector of conserved variables. For compressible flows,
we have q = (ρ, ρe, ρu, ν̃)

T
, and for incompressible, constant density flows, q =

(p,u, ν̃)T . In (1), the operators F and G represent the inviscid and viscous
fluxes, respectively. For compressible flows, we have

F =

⎛⎜⎜⎝
ρu
ρuh

ρuu + pI
ν̃u

⎞⎟⎟⎠ , G =
1

Re∞

⎛⎜⎜⎝
0

u · τ +∇q
τ

1
σ [(ν + ν̃)∇ν̃]

⎞⎟⎟⎠ ,
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and for incompressible, constant density flows,

F =

⎛⎝ a2u
uu + pI

ν̃u

⎞⎠ , G =
1

Re∞

⎛⎝ 0
τ

1
σ [(ν + ν̃)∇ν̃]

⎞⎠ ,

where τ is the Newtonian stress tensor. The source term vector s has a non-zero
entry only in the row corresponding to the turbulence transport equation, which
takes the form

cb1 [1− ft2] S̃ν̃ +
1

σRe

[
cb2 (∇ν̃)

2
]

+ − 1

Re

[
cw1fw −

cb1
κ2

ft2

] [ ν̃
d

]2
. (2)

For a description of the various functions and constants involved in (2) we refer
the reader to [7].

3 Solution Techniques

In the fluctuation splitting approach, the integral form of the governing equa-
tions (1) is discretized over each control volume Ci evaluating the flux integral
over each triangle (or tetrahedron) in the mesh, and then splitting it among its
vertices [4]. Therefore, we may write Eq. (1)∫

Ci

∂qi

∂t
dV =

∑
T�i

φT
i

where

φT =

∮
∂T

n · F dS −
∮
∂T

n ·GdS +

∫
T

s dV

is the flux balance evaluated over cell T and φT
i is the fraction of cell residual

scattered to vertex i. The space discretization of the governing equations leads
to a system of ordinary differential equations:

M
dq

dt
= r(q), (3)

where t denotes the pseudo time variable, M is the mass matrix and r(q) repre-
sents the nodal residual vector of spatial discretization operator, which vanishes
at steady state. The residual vector is a (block) array of dimension equal to
the number of meshpoints times the number of dependent variables, m; for a
one-equation turbulence model, m = d+ 3 for compressible flows and m = d+ 2
for incompressible flows, d being the spatial dimension. If the time derivative in
equation (3) is approximated using a two-point one-sided finite difference (FD)
formula we obtain the following implicit scheme:(

1

Δtn
V − J

)(
qn+1 − qn

)
= r(qn), (4)
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where we denote by J the Jacobian of the residual
∂r

∂q
. Eq. (4) represents a large

nonsymmetric sparse linear system of equations to be solved at each pseudo-time
step for the update of the vector of the conserved variables. The nonzero pattern
of the sparse coefficient matrix is symmetric, i.e. entry (i, j) is nonzero if and
only if entry (j, i) is nonzero as well; on average, the number of non-zero (block)
entries per row equals 7 in 2D and 14 in 3D. The analytical evaluation of the
Jacobian matrix though not impossible, is rather cumbersome. In a practical
implementation we adopt a two-step approach. In the early stages of the calcu-
lation, the RANS equations are solved in a loosely coupled fashion: the mean
flow solution is advanced over a single time step using an approximate (Picard)
Jacobian while keeping turbulent viscosity frozen, then the turbulent variable is
advanced over one or more pseudo-time steps using a FD Jacobian with frozen
mean flow variables. This procedure will eventually converge to steady state,
but never yields quadratic convergence. Once the solution estimate has become
sufficiently close to the sought steady state solution, which can be tested by
monitoring the norm of the nodal residual r, we let Δtn grow unboundedly so
that Newton’s method is recovered during the last steps of the iterative process.
The time step length is selected according to the Switched Evolution Relaxation
(SER) strategy as:

Δtn = Δtmin

(
Cmax, C0

||r(qn+1,0)||2
||r(qn+1,k)||2

)
, (5)

where Δt is the pseudo time-step based upon the stability criterion of the explicit
time integration scheme; C0 and Cmax are user defined constants that control
the initial and maximum pseudo time-steps used in the actual calculations.

4 3D Incompressible Turbulent Flow Simulations Past
the DPW3 Wing-1

This section presents the turbulent incompressible flow analysis of a three-
dimensiopnal wing. The geometry, illustrated in Fig. 1, was proposed in the
3rd Drag Prediction Workshop; we refer to this geometry as the “DPW3 Wing-
1”. Flow conditions are 0.5◦ angle of attack and Reynolds number based on the
reference chord equal to 5 106. The freestream turbulent viscosity is set to ten
percent of its laminar value.

Typical convergence histories obtained running the loosely coupled approach
in EulFS are displayed in Figs. 2(a) and 2(c). Ten iterations were performed on
the turbulence transport equation for each mean flow iteration. The residual his-
tories are characterized by an initial transient stage during which the residual of
the conservation equations remains almost constant, whereas the residual of the
turbulence transport equation shows ample oscillations. During this first stage,
turbulent viscosity builds up starting from its low, initial value. Afterwords,
all residuals start converging steadily towards machine zero. During the second
stage, the residuals undergo a reduction of about seven orders of magnitude in
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Ref. Area, S = 290322 mm2 = 450 in2

Ref. Chord, c = 197.556 mm = 7.778 in
Ref. Span, b = 1524 mm = 60 in

Mesh1: Larc Medium 4,476,969 grid pts
Mesh2: Cessna Fine 6,138,245 grid pts

Fig. 1. Geometry and mesh characteristics of the DPW3 Wing-1 problem

about 100 outer (i.e. nonlinear) iterations. Notice, however, that the loosely cou-
pled solution strategy may not be always capable to drive the nodal residuals
to machine zero. This is the third stage of the convergence, which is typically
observed when using the loosely coupled solution strategy; it is clearly visible
in Figs. 2(a) and 2(c). Using the solution obtained at the end of stage three as
the initial guess for the fully coupled approach using Newton’s algorithm, a very
limited number (of the order of ten) of outer iterations is generally needed to
bring all residuals down to machine accuracy, as shown in Figs. 2(b) and 2(d).

In all our experiments, the inner iterative solvers was GMRES(30) [6], i.e.
re-started every 30 inner iterations. On the finest available grid, see Fig. 2(d),
we tested various preconditioners available in the Petsc library [1] for GMRES,
including block Jacobi (BJ) and Additive Schwarz (ASM) with one or two levels
of overlap. An Incomplete Lower Upper ILU(l) factorization of level l was applied
to each subdomain. The results are summarized in Table 1. The column o-it gives
the number of outer iterations required by each preconditioner combination to
drive the mass conservation residual below 10−12 whereas the column i-it gives
the average number of iterations needed by the iterative solver to meet the
convergence criterion. In PETSc iterations are terminated when

||b−Axk||2 < max
(
10−5||b||2, 10−50

)
(6)

and x0 is the zero vector. The column labeled CPU reports the CPU solution
time in seconds required by each run. Finally, the “fill ratio” measures the num-
ber of non-zero entries in the ILU(l) factors with respect to those of the Jacobian
matrix and represents the memory occupation. All calculations were run on the
Matrix cluster located at the inter-university computing center CASPUR (Rome,
Italy). The Matrix cluster consists of 258 nodes, each equipped with two AMD
Opteron quadcore processors and interconnected with an InfiniBand technology
(20Gbit/sec). We used 72 cores to run the simulation on the Larc medium, and
96 cores on the Cessna Fine.

The number of inner iterations greatly varied depending on the length the
pseudo time step Δtn in Eq. (4), as visible in Figs. 2(b) and 2(d). There are two
possible causes of this phenomenon. Close to the steady-state, the convergence
criterion defined by Eqn. (6) becomes tighter because b = r (q) vanishes. Also,
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(a) Larc medium mesh: loosely coupled
solution strategy.

(b) Larc medium mesh: fully coupled so-
lution strategy.

(c) Cessna fine mesh: loosely coupled so-
lution strategy.

(d) Cessna fine mesh: fully coupled solu-
tion strategy.

Fig. 2. Convergence histories for the DPW3 Wing-1 problem

using very large steps the pseudo time term 1/Δtn in Eq. (4) vanishes and the
diagonal dominance of the linear system (4) being solved decreases making the
construction of a numerically stable ILU factorization more problematic.

Concerning the performance of the considered preconditioners, the basic ILU(0)
preconditioner did not enable the code to converge within the 1500 preset maxi-
mum number of inner GMRES iterations using either BJ or ASM. This happened
because the number of inner GMRES iterations required to achieve convergence
significantly increased when the pseudo-time term in Eq. (4) started to decrease
approaching zero. All present convergence requirements could instead be met by
using at least one level of fill. The best performance in terms of CPU-time was
achieved by using one level of fill: the BJ+ILU(1) combination was the fastest, and
slightly cheaper in terms of memory occupation than ASM(1)+ILU(1) even if the
latter required less inner iterations; doubling the level of overlap in ASM reduced
the number of inner iterations, but slightly increased the CPU cost. Augmenting
further the pattern of ILU(l) helped to reduce the average number of inner iter-
ations, but also increased the solution and memory costs of our solver. The last
column of Tab. 1 gives the percentage ratio between the time spent solving the lin-
ear system and the total running time averaged over all outer iterations. For the
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best preconditioner combinations in the case under study the time spent solving
the linear system was about the same as that required to compute the residual vec-
tor and to assemble the Jacobian matrix. However, this cost may vary depending
on the physical model being used, whether compressible or incompressible, and
the features of the mesh, such as the presence of high aspect ratio tetrahedra.

Table 1. Performance of selected preconditioners on the DPW3 Wing-1 (fine Cessna
mesh) problem

pc l fill ratio o-it CPU i-it ksp/total %

BJ 0 1 n.c. 3247.0 654 79.6
BJ 1 2.00818 10 1515.0 133 51.4
BJ 2 4.03536 11 1933.0 101 56.8
BJ 3 6.89511 11 2409.0 83 65.6

ASM(1) 1 0 n.c. 3539.0 699 81.6
ASM(1) 1 2.0994 11 1806.0 134 55.9
ASM(1) 2 4.40286 11 2018.0 91 59.9
ASM(2) 1 2.06889 11 1879.0 128 58.2
ASM(2) 2 4.25357 11 2116.0 86 62.3

5 Experiments with Multilevel Preconditioning

Notwithstanding their ease of parallelization, BJ and ASM methods have limited
algorithmic scalability. The data of Table 2 examine the parallel performance of
EulFS on the Matrix cluster located at the CASPUR computing center. We
report the total solution time spent to solve the DPW3 Wing-1 problem, the
elapsed time for solving the whole sequence of linear systems required by the
Newton’s iterations, and the average number of GMRES iterations. For con-
sistency of results, the statistics were obtained averaging on three runs. In our
experiment on 224 cores, we observed that more than 70% of the computa-
tional time was spent on solving linear systems, whereas only 55% on 96 cores.
The quasi-linear increase of the number of inner GMRES iterations, reported
in column four of Table 2, was mainly responsible of the overall lack of parallel
scalability.

Prompted by the need to enhance both the robustness and the scalability of
the linear solver in EulFS, we are investigating multilevel preconditioners based
on ILU factorization beside the preconditioners already available in PETSc. To
simplify the notation in the remainder of this Section, we first re-write the sparse
linear system to be solved at each Newton step as:

Ax = b. (7)

Following [2], we initially rescale and reorder the initial matrix A as

PTDlADrQ = Â (8)
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Table 2. Scalability results of the EulFS code on the DPW3 Wing-1 (fine Cessna mesh)
problem. The number of linear iterations is averaged over three runs, as we observed
little differences due to round-off errors.

Number of cores
Total simulation

time (sec)
Cumulative time
linear solver (sec)

Average number
linear iterations

96 1542 839 133.1
128 1418 864 139.4
160 1388 927 210.9
224 1176 853 250.7

which yields Âx̂ = b̂ for appropriate x̂, b̂. The initial step may consist of an
optional maxium weight matching [5].

By rescaling and performing a one-sided permutation, one attempts to im-
prove the diagonal dominance. Thereafter a symmetric reordering is applied to
reduce the fill-in bandwidth. The symmetric reordering can also be used without
an a priori matching step, only rescaling the entries and symmetrically permuting
the rows and columns. This is of particular interest for (almost) symmetrically
structured problems. Next, an inverse-based ILU factorization with static diag-
onal pivoting is computed. More precisely, during the approximate incomplete
factorization Â ≈ LDU with L and UT being unit lower triangular factors and
D a block diagonal matrix, the norms ‖L−1‖, ‖U−1‖ are estimated. If at factor-
ization step l a prescribed bound κ is exceeded, the current row l and column
l are permuted to the lower right end of the matrix. Otherwise the approxi-
mate factorization is continued. One single pass leads to an approximate partial
factorization

ΠT ÂΠ =

(
B F
E C

)
≈
(

LB 0
LE I

)(
DB 0
0 SC

)(
UB UF

0 I

)
≡ L1D1U1, (9)

with a suitable leading block B and a suitable permutation matrix Π , where
‖L−1

1 ‖ ≤ κ, ‖U−1
1 ‖ ≤ κ. The remaining system SC approximates C − EB−1F

and from the relations{
Bx̂1 + F x̂2 = b̂1
Ex̂1 + Cx̂2 = b̂2

⇒
{

x̂1 = B−1(b̂1 − F x̂2)

(C − EB−1F )x̂2 = b̂2 − EB−1b̂1
,

at each step of an iterative solver we need to store and invert only blocks with B
and SC ≈ C − EB−1F while for reasons of memory efficieny, LE, UF are dis-
carded and implicitly represented via LE ≈ EU−1

B D−1
B (resp. UF ≈ D−1

B L−1
B F ).

When the scaling, preordering and the factorization is successively applied to SC ,
a multilevel variant of (8) is computed. The multilevel algorithm ends at some step
m when either SC is factored completely or it becomes considerably dense and
switches to a dense LAPACK solver. After computing an m-step ILU decompo-
sition, for preconditioning we have to apply L−1

m AU−1
m . From the error equation

Em = A − LmDmUm, we see that ‖L−1
m ‖ and ‖U−1

m ‖ contribute to the inverse
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error L−1
m EmU−1

m . Monitoring the growth of these two quantities during the par-
tial factorization is essential to preserve the numerical stability of the solver.

The test-case that we consider is the compressible, subsonic flow past the
two-dimensional RAE2822 profile. Free-stream conditions are as follows: Mach
number M∞ = 0.676, Reynolds’ number based on chord: ReC = 5.7 · 106, angle
of attack: α∞ = 2.40◦. The computational mesh, which is shown in Figure 3, is
made of 10599 meshpoints and 20926 triangles. The simulation was started from
uniform flow and the solution advanced in pseudo-time using the approximate
linearization. Once the L2 norm of the residual was reduced below a preset
threshold, the fully coupled approach was put in place.

In the table shown in Figure 3, we report the number of iterations of GM-
RES(30) to reduce the initial residual by five orders of magnitude, starting from
the zero vector. The multilevel ILU needed five levels of factorization and we chose
a drop tolerance of 10−2 for both the L, U factors and the final Schur complement
matrix. In our runs, we tested different choices of static ordering (cf. Figure 4)
available in the ILUPACK software package [3]: the Reverse Cuthill-McKee, Min-
imum Degree orderings and the Multilevel Nested Dissection were the most effi-
cient, and compared equally well without Maximum Weight Matching, whereas

Ordering nnz(M)
nnz(A)

#GMRES(30)

amd 5.07 23
metisn 5.47 19
metise 5.54 18
rcm 5.77 18
mmd 5.36 18
amf 4.98 19

Fig. 3. Geometry of the RAE2822 profile and performance of the multilevel linear
solver. Acronyms for the built-in reordering schemes available in the ILUPACK pack-
age: amd=Approximate Minimum Degree, metisn=Metis Multilevel Nested Dissection
by nodes, metise=Metis Multilevel Nested Dissection by edges, rcm=Reverse Cuthill-
McKee, mmd=Minimum Degree, amf =Approximate Minimum fill.

(a) Nested Dissection ordering. (b) Reverse Cuthill-McKee ordering.

Fig. 4. Nonzero pattern of the multilevel preconditioner on the RAE2822 airfoil
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including this option, it did not enable us to converge within 500 iterations. We
observed that for reasonable value of the density of the preconditoner we could
achieve fast and stable convergence in GMRES, at low restart. The overall results
show that the proposed multilevel framework may be well-suited to use for solving
realistic (possibly large) compressible turbulent flow problems in Newton-Krylov
formulations.

6 Conclusions

In this paper we have illustrated the algorithmic and parallel features of a paral-
lel three-dimensional flow solver of the turbulent Navier-Stokes equations. The
presented CFD solver has a very high computational performance, that is high-
lighted by experiments on the calculation of the flow past the DPW3 Wing-1
configuration of the 3rd AIAA Drag Prediction Workshop. Preliminary encour-
aging experiments are shown with multilevel preconditioning for enhancing the
robustness of the inner linear solver. The theoretical and numerical results re-
ported in this study will contribute to highlight the potential and enrich the
database of implicit solvers in CFD simulations.
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Abstract. In this paper, we present the results of parallelizing the Lian
et al. discrete chaotic block encryption algorithm. The data dependence
analysis of loops was applied in order to parallelize this algorithm. The
OpenMP standard is chosen for presenting the parallelism of the algo-
rithm. We show that the algorithm introduced by Lian et al. can be
divided into parallelizable and unparallelizable parts. As a result of our
study, it was stated that the most timeconsuming loops of the algorithm
are suitable for parallelization. The efficiency measurement for a parallel
program is presented.

Keywords: parallelization, encryption, chaos-based algorithm, data de-
pendency analysis, OpenMP.

1 Introduction

One of the most important functional features of cryptographic algorithms is a
cipher speed. This feature is extremely important in case of block ciphers be-
cause they usually work with large data sets. Thus even not much differences of
speed may cause the choice of the faster cipher by the user. Therefore, it is so im-
portant to parallelize encryption algorithms in order to achieve faster processing
using multi-core processors and multi-processor systems. In recent years, besides
classical block ciphers such as Rijndael, Camellia or International Data Encryp-
tion Algorithm (IDEA), alternative approaches of constructing ciphers based on
the application of the theory of chaotic dynamical systems has been developed.
Nowadays, there are many descriptions of various block ciphers based on chaotic
maps, for instance [1], [2], [3], [4], [5], [6]. The important issue in chaotic ciphers
is program implementation. Unlike parallel implementations of classical block ci-
phers, for instance Rijndael [7], IDEA [8], there is no parallel implementations of
chaotic block ciphers. It looks like a research gap because only software or hard-
ware implementation will show real functional advantages and disadvantages of
encryption algorithms. Considering this fact, the main contribution of the study
is developing a parallel algorithm in accordance with OpenMP of the well-known
Lian et al. cipher (called further LSW cipher) [9] based on the transformations
of a source code written in the C language representing the sequential algorithm.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 323–332, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 The LSW Encryption Algorithm

The LSW algorithm was published by Lian et al. in 2005 [9]. It is an interesting
example of a discrete chaotic block cipher. It is based on chaotic standard maps
used as components for a confusion process, diffusion function, key generation
and distribution. The structure of the LSW cipher is shown in Fig. 1.

Fig. 1. Structure of the LSW encryption algorithm

The encryption and the decryption process is shown in Fig. 2, where P is a
plaintext, C is a ciphertext, Kc is a key for confusion process, Kd is a key for a
diffusion function.

The confusion process Ce(Pi,Kci) is firstly repeated for n times. Then together
with the diffusion function De(Mi,Kdi) are repeated for m times.

Pi, Mi and Ci are the plaintext, intermediate text and ciphertext of the ith

encryption process, respectively; m is the number of repetitions.
The encryption process is performed as follows:{
Pi+1 = Ci(P0 = P ; i = 0, 1, ...,m− 1)

Ci = De(Mi,Kdi) = De(C
n
e (Pi,Kci),Kdi)

This process is repeated for m times.
Similarly, the decryption process is performed in the following way:{
Ci+1 = Pi(C0 = C; i = 0, 1, ...,m− 1)

Pi = Cn
d (Mi,Kci) = Cn

d (Dd, (Ci,Kdi),Kci)
,

where Kci and Kdi are the ith confusion and diffusion key, respectively.
Encryption and decryption processes are symmetric; the encryption and de-

cryption keys are the same.
The diffusion function is defined as follows:{
c−i = Kdi

ck = pk ⊕ q[f(ck−1, L]
,
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where pk is the kth pixel in Mi, ck is the kth diffused pixel, L is the amplitude
of each pixel, c−1 is the original value of the diffusion function.

The inverse diffusion function is the following:{
c−i = Kdi

pk = ck ⊕ q[f(ck−1, L]
,

where parameters are the same as the ones defined for the diffusion function.

Fig. 2. Encryption and decryption processes of the LSW algorithm

More detailed description of the LSW cipher is given in [9] or [10].

3 Implementation Details of the Parallelization Process

It is necessary to prepare a C source code representing the sequential algorithm
working in the Elecronic Codebook (ECB), Cipher Block Chaining (CBC), Ci-
pher Feedback (CFB) and Counter (CTR) modes of operation before we start
parallelizing of the LSW encryption algorithm. The source code of the algo-
rithm in the essential ECB mode contains twenty two ”for” loops including no
I/O function.

In order to find dependences in program loops we have chosen Petit developed
at the University of Maryland under the Omega Project and freely available for
both DOS and UNIX systems. Petit is a research tool for analyzing array data
dependences [11], [12].

In order to present parallelized loops, we have used the OpenMP standard.
The OpenMP Application Program Interface (API) [13], [14] supports multi-
platform shared memory parallel programming in C/C++ and Fortran on all
architectures including Unix and Windows NT platforms.

The process of the LSW encryption algorithm parallelization can be divided
into the following stages:

1. carrying out the dependence analysis of a sequential source code in order to
detect parallelizable loops,

2. selecting parallelization and code transformation methods,
3. constructing parallel forms of program loops in accordance with the OpenMP

standard.
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There are the following basic types of the data-dependences that occur in ”for”
loops [15], [16], [17]: a Data Flow Dependence , a Data Anti-dependence, an
Output Dependence.

At the beginning of the parallelization process of the LSW algorithm, we
carried out experiments with the sequential LSW algorithm for a 5 megabytes
input file in order to find the most time-consuming functions of this algorithm. It
appeared that the algorithm has two computational bottlenecks enclosed in the
functions lsw enc() and lsw dec(). We created the lsw enc() function in order to
to enable enciphering the whichever number of data blocks and the lsw dec() one
for deciphering (by analogy with similar functions included in the C source code
of the classic cryptographic algorithms like DES- the des enc(), the des dec(),
LOKI91- the loki enc(), the loki dec or IDEA- the idea enc(), the idea dec()
presented in [18]).

The most time-consuming program loops included in these functions (the
first one is included in the lsw enc() function, the second one is enclosed in the
lsw dec()) are of the following forms:

3.1 Loop of the encryption process

for(l=0;l< PARALLELITY;l++){

copy(wskk,block[l]);

for (i=1;i<=iter;i++){

generatekey(&newkeyy,&startkey,i,iter);

randx=(int)newkeyy.randominitial*B_S;

randy=(int)(newkeyy.randominitial*2*B_S)%B_S;

permutation(block2[l],wskk,randx,randy);

diffusion(block2[l], newkeyy.diffinitial);

copy(wskk,block2[l]);

}

}.

3.2 Loop of the decryption process

for(l=0;l< PARALLELITY;l++){

copy(wskk,block[l]);

for (i=iter;i>=1;i--){

generatekey(&newkeyy,&startkey,i,iter);

randx=(int)newkeyy.randominitial*B_S;

randy=(int)(newkeyy.randominitial*2*B_S)%B_S;

invdiffusion(wskk, newkeyy.diffinitial);

invpermutation(block2[l],wskk,randx,randy);

copy(wskk,block2[l]);

}

}.
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The declaration of constants is as follows:

#define B_S 100 //denotes the block size( N x N)

#define PARALLELITY //denotes number of processors.

The declaration of variables is as follows:

int i, l, wsk=0;

unsigned char wskk[B_S][B_S], block[PARALLELITY][B_S][B_S];

unsigned char block2[PARALLELITY][B_S][B_S];

struct lswkey {

double confparam;

double confinitial;

double randomparam;

double randominitial;

double diffparam;

double diffinitial;

} startkey, newkeyy;.

Taking into account the form of loops 3.1 and 3.2 (the first loop calls the permu-
tation function (the permutation()) and the diffusion function (the diffusion()),
the second one does the inverse diffusion function (invdiffusion()) and the inverse
permutation function (the invpermutation()); the source code of both the diffu-
sion() and the invdiffusion(), and the permutation() and the invpermutation()
is characterized by a high degree of similarity), we examine only the 3.1 loop.
However, this analysis is valid also in the case of the 3.2 loop.

The actual parallelization process of the 3.1 loop consists of the four following
stages:

1. filling in the 3.1 loop by the body of the functions: the copy(), the genera-
tionkey(), the permutation() and the diffusion() (otherwise, we cannot apply
a data dependence analysis);

2. filling in the transformed loop by the body of the functions: the tentmap()
(included in the body of the generationkey()) and the diffusion() (included in
the body of the diffusion()) (in order to apply a data dependence analysis);

3. suitable variables privatization (l, i, j, k, m, n, prev, randy, randx, newkeyy,
wskk, confinitial, randominitial, diffinitial, initial, tmp) using OpenMP (based
on the results of data dependence analysis);

4. adding appropriate OpenMP directive and clauses (#pragma omp parallel
for private() shared()).

The steps above result in the following parallel form of 3.1 loop in accordance
with the OpenMP standard:

#pragma omp parallel for private(l, i, j, k, m, n, prev,

randy, randx, newkeyy, wskk, confinitial, randominitial,

diffinitial, initial, tmp)

shared(block2,block,startkey,iter,sinetable)
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for(l=0;l< PARALLELITY;l++){

copy(wskk,block[l]);

for(i=1;i<=iter;i++){

generatekey(&newkeyy,&startkey,i,iter);

randx=(int)newkeyy.randominitial*B_S;

randy=(int)(newkeyy.randominitial*2*B_S)%B_S;

permutation(block2[l],wskk,randx,randy);

diffusion(block2[l], newkeyy.diffinitial);

copy(wskk,block2[l]);

}

}.

The 3.2 loop was parallelized in the same way as the 3.1 loop.
We also parallelized the two other interesting loops. The first of them is en-

closed in the permutation function (the permutation()). The parallel form of this
loop according with the OpenMP standard is the following:

#pragma omp parallel for private(i,j,k,l)

shared(src,dst,randx,randy)

for (i=0;i<B_S;i++)

for (j=0;j<B_S;j++){

k=(int)floor((i + randx + j + randy))%B_S;

l=(int)floor((j + randy + sinetable[k]))%B_S;

if (l<0) l+=B_S;

if (k<0) k+=B_S;

dst[k][l]=src[i][j];

}.

The second one is included in the inverse permutation function (the invpermu-
tation()). The parallel form of this loop is presented bellow:

#pragma omp parallel for private(i,j,k,l)

shared(src,dst,randx,randy)

for (i=0;i<B_S;i++)

for (j=0;j<B_S;j++){

l=(int)ceil((j - (randy + sinetable[i])))%B_S;

k=(int)ceil((i - (randx +l + randy)))%B_S;

if (l<0) l=B_S+l;

if (k<0) k=B_S+k;

dst[k][l]=src[i][j];

}.

4 Experimental Results

In order to study the efficiency of the presented LSW parallel code we used the
computer with eight Quad-Core Intel Xeon processors E7310 - 1,60 GHz and
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the Intel C++ Compiler ver. 11.0 (that supports the OpenMP 3.0). The results
received for a 10 megabytes input file using two, four, eight, sixteen and thirty
two processors versus the only one have shown in Table 1.

Table 1. Speed-up of the parallel LSW algorithm in the ECB mode of operation

Number of
processors

Number of
threads

Speed-up of the
encryption

process

Speed-up of the
decryption

process

Speed-up of the
whole LSW
algorithm

1 1 1.00 1.00 1.00

2 2 1.95 1.99 1.47

4 4 3.70 3.80 1.98

8 8 6.70 6.90 3.05

16 16 7.30 7.60 3.19

32 32 7.00 7.50 3.09

The total running time of the LSW algorithm consists of the following opera-
tions: data receiving from an input file, round keys generation, data encryption,
data decryption, data writing to an output file (both encrypted and decrypted
text).

The total speed-up of the LSW parallel algorithm depends heavily on the six
factors:

1. the degree of parallelization of the loop included in the lsw enc() function
(3.1 loop),

2. the degree of parallelization of the loop included in the lsw dec() function
(3.2 loop),

3. the method of reading data from an input file,
4. the method of writing data to an output file,
5. the block size of the LSW encryption algorithm,
6. the number of iterations (rounds).

The results confirm that the loops included both the lsw enc() and the lsw dec()
functions are parallelizable with high speed-up (see Table 1).

The block method of reading data from an input file and writing data to
an output file was used. The following C language functions and block sizes
was applied: fread() function and 1024-bytes block for data reading and fwrite()
function and 512-bytes block for data writing. Using the fwrite() function is
especially important; choosing, for example, the fprintf() function we got much
longer time of executing our tasks.

During experiments we chose the block size equal to 100 (10 x 10) as well
as four iterations. Our tests showed that these parameters provide the best
encryption/decryption speed of the LSW encryption algorithm.

The parallelization of the 3.3 and 3.4 loops has only a minimal influence on
the speed-up value in case of the software implementation but can be useful for
hardware implementation of the parallel LSW algorithm.
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Table 2. Speed-ups of the parallel LSW algorithms in the CTR, CBC and CFB mode
of operation

Number of
processors

Number of
threads

Operation Speed-up of
the CTR
mode of

operation

Speed-up of
the CBC
mode of

operation

Speed-up of
the CFB
mode of

operation

1 1 Encryption 1.00 1.00 1.00

1 1 Decryption 1.00 1.00 1.00

2 2 Encryption 1.90 1.00 1.00

2 2 Decryption 1.95 1.95 1.95

4 4 Encryption 3.55 1.00 1.00

4 4 Decryption 3.65 3.65 3.65

8 8 Encryption 6.50 1.00 1.00

8 8 Decryption 6.70 6.60 6.60

16 16 Encryption 7.00 1.00 1.00

16 16 Decryption 7.20 7.00 7.00

32 32 Encryption 6.70 1.00 1.00

32 32 Decryption 7.00 6.70 6.80

Table 3. Speed-ups of the parallel LSW algorithm for the various plaintext (ciphertext)
sizes

Number of
processors

Number of
threads

Operation
Plaintext / Ciphertext size [kB]

64 128 256 512 1024 2048 4096 8192 16384

1 1 Encryption 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1 1 Decryption 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 2 Encryption 1.90 1.92 1.93 1.95 1.95 1.95 1.95 1.95 1.96

2 2 Decryption 1.96 1.96 1.96 1.97 1.97 1.98 1.98 1.99 1.99

4 4 Encryption 3.40 3.40 3.50 3.50 3.50 3.60 3.70 3.70 3.70

4 4 Decryption 3.70 3.70 3.70 3.70 3.70 3.80 3.80 3.80 3.80

8 8 Encryption 6.40 6.50 6.50 6.50 6.50 6.60 6.60 6.70 6.70

8 8 Decryption 6.70 6.80 6.80 6.80 6.80 6.90 6.90 6.90 6.90

16 16 Encryption 7.00 7.10 7.10 7.20 7.20 7.20 7.30 7.30 7.30

16 16 Decryption 7.30 7.40 7.40 7.40 7.50 7.50 7.60 7.60 7.60

32 32 Encryption 6.70 6.80 6.80 6.80 6.90 6.90 7.00 7.00 7.00

32 32 Decryption 7.30 7.30 7.30 7.40 7.40 7.40 7.50 7.50 7.50

In accordance with Amdahl’s Law [19] the maximum speed-up of the LSW
encryption algorithm is limited to 7.752, because the fraction of the code (the
whole code) that cannot be parallelized is 0.129.

We also parallelized the LSW encryption algorithm in the CTR, CBC and
CFB modes of operation (based on recommendation detailed described in [20])
(when it was possible). The results are presented in Table 2.

When the LSW algorithm operates in the ECB and CTR modes of operation,
both the encryption and decryption processes are parallelizable and speed ups
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of the whole algorithm are similar (see- Table 2). For the CBC and CFB modes
only the decryption process is parallelized so the values of speed-up are lower
than for the ECB and CTR modes of operation (see- Table 2).

In Table 3 we present speed-up of encryption and decryption processes for the
various sizes of plaintext (in the case of encryption process) and ciphertext (in
the case of decryption process). We modified data sizes of an input file starting
from 64 kilobytes up to about 16 megabytes. In conjuction with increase of data
sizes we obtained a little bit greater values of speed-ups both for encryption
and decryption processes as well as for two, four, eight, sixteen and thirty two
threads.

5 Conclusions

In this paper, we describe the parallelization process of the LSW algorithm
which was divided into parallelizable and unparallelizable parts. We have shown
that the ”for” loops included in the functions responsible for the encryption and
decryption processes are parallelizable.

Results obtained for encryption and decryption processes for various plaintext
and ciphertext sizes (in the range from 64 KB to 16 MB) confirm that the paral-
lelization strategy is effective and parallel enciphering and deciphering processes
are scalable.

The experiments have shown that the application of the parallel LSW al-
gorithm for multiprocessor and multi-core computers would considerably boost
the time of the data encryption and decryption. We believe that the speed-ups
received for these operations are satisfactory.

The parallel LSW algorithm can be also helpful for hardware implementations.
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Abstract. In this paper two parallel numerical algorithms for solution
of parabolic problems on graphs are investigated. The fully implicit and
predictor-corrector finite difference schemes are proposed to approximate
the differential equations on the given graph. The parallelization of the
discrete algorithm is based on the domain decomposition method. Scala-
bility analysis of the parallel algorithms is done. Some results of numer-
ical simulations are presented and the efficiency of the proposed parallel
algorithms is investigated.

Keywords: parallel algorithms, parabolic problem, graphs, finite-
difference method.

1 Introduction

We consider numerical algorithms for solving linear parabolic problems on an
arbitrarily branched structures. These structures can be described by using the
terminology of oriented graphs (E,P ), where E is a set of edges and P is a set
of branching points or vertices.

Many applied problems are described by reaction - diffusion – transport
equations on branched structures. Well-known examples are given by neuron sim-
ulation models which are based on the Hodgkin–Huxley reaction–diffusion sys-
tem. Basic parabolic PDEs are discretized in space by using the finite-difference
method. Different integration methods are used to solve the obtained systems of
ODEs. Since realistic neural networks involve stiff coupled PDEs, arising from
integration of individual neurons, global adaptive time-step integrators IDA and
CVODES are used in [5], a local variable time-step method is investigated in
[6]. Parallel versions of some algorithms, based on the domain decomposition
method, are investigated in [8].

Recently, the predictor-corrector and domain decomposition methods are
widely used to solve elliptic and parabolic PDEs in multidimensional domains
[12]. Such algorithms are well suited for parallel implementation. Similar tech-
niques also can be applied to solve PDE on graph structures (see [9,10] for related
discussions).

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 333–342, 2012.
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2 Formulation of the Discrete Model

On the graph (E,P ) we consider a system of parabolic linear problems for a set
of functions {uk(x, t)}:

∂uk

∂t
=

∂

∂x

(
dk

∂uk

∂x

)
− qkuk + fk, 0 < x < lk, k = 1, . . . ,K, (1)

uk(x, 0) = uk
0(x), k = 1, . . . ,K,

for sufficiently smooth functions dk, qk, fk. At the branch points pj ∈ P the
fluxes of the solution are conserved∑

ek∈N+ (pj)

dk
∂uk

∂x

∣∣∣
x=lk

=
∑

em∈N−(pj)

dm
∂um

∂x

∣∣∣
x=0

, ∀pj ∈ P, (2)

where by N±(pj) we denote the sets of edges, having x = 0 or x = lk as an end
point of edge at pj :

N+(pj) = {ek : ek = (pjs , pj) ∈ E, s = 1, . . . , Sj},
N−(pj) = {ek : ek = (pj , pjf ) ∈ E, f = 1, . . . , Fj}.

At all vertices of the graph the continuity constraints are satisfied

um(pj , t) = uk(pj , t), ∀pj ∈ P, em, ek ∈ N
±

(pj).

A detailed description of such models is given in [1,3].

2.1 The Fully Implicit Discrete Scheme

On each edge ek, k = 1, . . . ,K we define a discrete uniform spatial grid ωh(k)
and a uniform time grid ωτ . On the grids ωh(k)×ωτ we define discrete functions

Uk,n
j = Uk(xj , t

n), k = 1, . . . ,K, which approximate the solution uk(xj , t
n) on

edge ek at time moment tn. Differential equations (1) are approximated by the
standard implicit Euler finite difference equations (see, also [3,4,7,9]):

Uk,n
t̄ = ∂x̄

(
dk,n
j+ 1

2

∂xU
k,n
j

)
− qk,nj Uk,n

j + fk,n
j , xj ∈ ωh(k), k = 1, . . . ,K. (3)

The flux balance equations (2) are approximated by discrete conservation equa-
tions ∑

ek∈N+(pj)

[
dk,n
Nk− 1

2

∂x̄U
k,n
Nk

+
hk

2

(
Uk,n
Nk,t̄

+ qk,nNk
Uk,n
Nk
− fk,n

Nk

)]
(4)

=
∑

em∈N− (pj)

[
dm,n
1/2 ∂xU

m,n
0 − hm

2

(
Um,n
0,t̄ + qm,n

0 Um,n
0 − fm,n

0

)]
, ∀pj ∈ P.
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At all branch points the continuity constraints are satisfied

Um,n(pj) = Uk,n(pj), ∀pj ∈ P, em, ek ∈ N
±

(pj). (5)

The solution of finite volume scheme (3)–(4) is computed efficiently by using a
modified factorization algorithm (see [3]):

– First, using the modified forward factorization algorithm, function Uk,n is
expressed in the following form

Uk,n
j = γk,n

j V n
ks

+ αk,n
j V n

kf
+ βk,n

j , k = 1, . . . ,K, j = 0, . . . , Nk, (6)

where V n
j , j = 1, . . . , J are unknown values of the discrete solution at the

branch points. The complexity of the factorization algorithm is O(N1 + . . .+
NK).

– Second, by substituting equations (6) into discrete flux conservation equa-
tions (4) and using the the continuity conditions (5) we obtain a system of
linear equations AnVn = Fn, where Vn = (V n

1 , . . . , V n
J ) and An is a sparse

matrix of dimension J ×J Such systems can be solved very efficiently by di-
rect methods, targeted for linear systems with sparse matrix, or by iterative
algorithms, e.g. CG (Conjugate Gradient) type algorithms.

– During the final step, the discrete solution Uk,n is computed using (6) and
vector Vn. The complexity of this step is again O(N1 + . . . + NK).

Thus the total complexity of the sequential implicit algorithm is given by

W = Wf + Ws = O
(∑

k

Nk

)
+O

(
μmJ

)
,

where Wf is the complexity of the factorization algorithm, and Ws is the com-
plexity of solving the system of linear equations by using PCG (Preconditioned
Conjugate Gradient) method. The dimension of this system is J × J , m is the
number of non-zero elements per row, and μ is the number of PCG iterations.

2.2 The Predictor-Corrector Algorithm

In this section we consider algorithms, when equations on different edges of the
graph are decoupled and can be solved in parallel.

Predictor Algorithm

– First, we compute new values of the solutions at the branch points. The
explicit Euler approximation is used to discretize the flux balance equations
(2).

– Second, solutions at each graph edge are computed in parallel using the
implicit finite difference scheme (3) with the predicted values computed at
the first step as the interface boundary conditions.
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Corrector Algorithm

– The main idea is to drop the values of the solution at the branch points,
computed by the predictor algorithm, and to compute new values by using
the basic implicit discrete algorithm.

The complexity of the sequential predictor-corrector algorithm is given by

W = O
(∑

k

Nk

)
+O

(
J
)
.

3 Parallel Algorithms

3.1 Parallel Fully Implicit Algorithm

Parallelization of the algorithm (3)–(4) is done by using the domain decomposi-
tion method. Metis tool is applied to distribute the weighted edges of the graph,
where the weights are taken equal to the number of mesh points on the given
edge (see, Fig. 1). Thus the accuracy of approximation and stability of the par-
allel algorithm coincides with the same properties of the sequential algorithm. It
is well known that the convergence dynamics of the parallel iterative algorithm
PCG depends slightly on the rounding errors due to floating point arithmetic
and MPI data sending protocols.

Fig. 1. Domain decomposition scheme for the implicit algorithm

Let us consider the complexity and efficiency of the parallel algorithm. Mod-
ified factorization algorithm (6) is fully parallel, and the complexity of this step
is T1,p = Wf/p, where p is the number of processes.

Now let us evaluate the complexity of PPCG (Parallel PCG) algorithm, when
the diagonal preconditioner is used. After processing the forward factorization
step and calculating local matrix coefficients, processors exchange data on shared
vertices. The complexity of this step is T2,p = γ

(
α + vmβ

)
, where γ = γ(p) is

the biggest number of neighbours, some process shares vertices with, v is the
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biggest number of vertices, shared with the same neighbour, α is the message
startup time, β is the time required to send one element of data. We use asyn-
chronous data transfer and try to hide the costs of it by maximizing the part of
computations with local data before any send or receive operation.

During matrix-vector multiplication each process exchanges ghost elements of
vectors with neighbour processes. Thus the complexity of the parallel matrix-
vector multiplication is given by

T3,p = m
⌈J
p

⌉
+ γ

(
α + vβ

)
.

Parallel computation of the inner product of two vectors requires global commu-
nication among all processors during summation of local parts of the product.
We estimate the costs of broadcasting/reducing one item of data between p
processors by B1,p = RB(p)(α + β).

When the system of linear equations is solved, the neighbour processes ex-
change values of solutions on neighbour vertices and the costs of this step are
γ
(
α + vβ

)
.

Summing up the obtained estimates we compute the complexity of the parallel
fully implicit algorithm

Tp =
Wf

p
δ +

Ws

p
θδ + γ

(
α + v(m + 1)β

)
+ μ

(
2RB(p)(α + β) + γ

(
α + vβ

))
+ γ

(
α + vβ

)
,

where θ defines the quality of the load balancing of vertices, and δ = δ(pc) is
the retardation coefficient, which depends on the maximum number of cores
per processor. This coefficient should be taken into account, since the shared-
memory structure can become a bottleneck when too many cores try to access
the global memory of a node simultaneously. For the simplest data exchange
algorithm and assuming that α! β we obtain the estimate

Tp ≈
Wf

p
δ +

Ws

p
θδ + γα

(
μ + 2

)
+ 2RB(p)μα. (7)

It follows (7) that the efficiency of the implicit parallel algorithm depends on
the imbalance of distributed local vertices θ. We see that the efficiency of the
parallel algorithm should improve for an increased size of the problem, but the
effects of worse quality of data distribution θ and negative effects of memory
usage by cores can change this trend.

3.2 Parallel Predictor – Corrector Algorithm

The parallel predictor–corrector algorithm is obtained by using the domain de-
composition method. In order to minimize the amount of data exchanged among
processes, here we split edges, which connect vertices belonging to two different
processes (see Fig. 2). On such edges, the standard factorization algorithm for
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solution of systems of linear equations with three-diagonal matrices is modified
by two-side version of this algorithm. Processes should exchange two factoriza-
tion coefficients during implementation of this parallel version of factorization
algorithm, but the complexity of the algorithm is still 8N floating point opera-
tions.

Fig. 2. Domain decomposition scheme for the predictor-corrector algorithm

The complexity of the parallel predictor-corrector algorithm is given by (for
simplicity of analysis, we assume that θ = 1)

Tp =
W

p
δ + γ(α + 2β) ≈ W

p
δ + γα.

Since cluster communication start time α is much greater than a time required
to send one number β, and messages to be sent are extremely short in our case,
this evaluation can be simplified as shown. It follows from the obtained formula,
that the influence of the communication costs is small, when the problem size is
big enough.

The decrease in the efficiency of the parallel algorithm depends mostly on
the retardation coefficient δ. After simple computations we compute the ad-
ditional costs of the parallel algorithm Kp and get the following isoefficiency
function W :

Kp(W, p) = W (δ − 1) + pγ(p)α, W = Θ
(
pγ(p)/(1/Ep − δ)

)
.

Thus, if γ(p) ≤ γ0, then the scalability of the parallel algorithm is linear.

4 Computational Results

In this section, we present results of numerical experiments. The parabolic prob-
lem was solved on the graph presented in Fig. 3. It has 16089 edges and 15316
branching points. The lengths of the edges are distributed as 0.24 ≤ lk ≤
51.5, k = 1, . . . ,K. A uniform mesh is used to approximate parabolic equations.
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Fig. 3. The test structure of a neuron

Since the lengths of edges differ more than 200 times, balancing of sizes of local
tasks becomes a very important issue. We note that the quality of partitions
done by Metis is very close to 1.

Computations were performed on Vilkas cluster of computers at Vilnius Ged-
iminas Technical University, consisting of nodes with Intel R©CoreTM processor
i7-860 @ 2.80 GHz and 4 GB DDR3-1600 RAM. Each of the four cores can
complete up to four full instructions simultaneously.

Obtained performance results for the parallel implicit solver are presented in
Table 1. Here for each number of processors p = n × c, where n denotes the
number of nodes and c the number of cores per node, the coefficients of the
algorithmic speed up Sp = T0/Tp and efficiency Ep = Sp/p are presented. Tp

denotes the CPU time required to solve the problem by using p processors. Two
different space steps were used to generate the discrete spatial mesh.

In the last series of computations the influence of costs due to PPCG algo-
rithm was investigated, therefore the number of vertices was increased twice by
introducing additional vertices on each edge.

The results of computational experiments agree well with the theoretical
model of the complexity of the parallel implicit algorithm. The degradation of
the efficiency of the usage of cores for configurations n× 2 and n× 4 is obtained
due to the memory bus saturation and the efficiency of cores is even decreased
in a part of investigated cases as the problem size is increased. This trend is
opposite to a general scalability result that the efficiency of a parallel algorithm
is increasing when the size of a problem is increasing for a fixed number of pro-
cessors. More results on the theoretical and computational analysis of this effect
are given in [2,11].
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Table 1. Computational results for the parallel implicit solver

p(nxc) 1x2 2x1 1x4 2x2 4x1 2x4 4x2 8x1 4x4 8x2 8x4

θ 1.02 1.02 1.05 1.05 1.05 1.13 1.13 1.13 1.15 1.15 1.17
γ × v 1x5 1x5 4x4 4x4 4x4 6x4 6x4 6x4 6x4 6x4 7x3

h = 0.03, J = 15316, T0 = 1123

Tp 576 565 328 293 285 166 148 142 85 79 44
Sp 1.95 1.99 3.42 3.83 3.94 6.77 7.59 7.91 13.21 14.21 25.52
Ep 0.97 0.99 0.86 0.96 0.99 0.85 0.95 0.99 0.83 0.89 0.80

h = 0.015, J = 15316, T0 = 2172

Tp 1107 1089 620 559 546 312 284 276 161 150 83
Sp 1.96 1.99 3.50 3.89 3.98 6.96 7.65 7.87 13.49 14.48 26.17
Ep 0.98 1.00 0.88 0.97 0.99 0.87 0.96 0.98 0.84 0.91 0.82

θ 1.04 1.04 1.05 1.05 1.05 1.07 1.07 1.07 1.10 1.10 1.17
γ × v 1x5 1x5 3x3 3x3 3x3 5x4 5x4 5x4 8x5 8x5 7x3

h = 0.015, J = 30632, T0 = 2250

Tp 1152 1133 644 588 568 331 297 286 165 157 86
Sp 1.95 1.99 3.49 3.83 3.96 6.80 7.58 7.87 13.64 14.33 26.16
Ep 0.98 0.99 0.87 0.96 0.99 0.85 0.95 0.98 0.85 0.90 0.82

In Table 2, the performance results for the parallel predictor-corrector solver
are presented. We see, that the efficiency of the algorithm is very similar to
the one obtained for the parallel implicit algorithm. This result is explained
by the fact, that even for the parallel implicit algorithm the influence of data
communication costs was small in comparison with the efficiency reduction due
to the the memory bus saturation when 2 or 4 cores per node are used.

We also see some super-linear speed-up of the parallel algorithm when more
nodes (not cores) are used in computations. This effect is explained by a better
memory caching for smaller subproblems solved on each node. In order to test
the caching effect we have solved sequential test problems of sizes N , N/2, N/4
and N/8. We got the following CPU times (in seconds):

T1(N) = 945, T1(N/2) = 467, T1(N/4) = 225, T1(N/8) = 112.

These results clearly show the memory caching effect.
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Table 2. Computational results for the parallel predictor corrector solver

1x2 2x1 1x4 2x2 4x1 2x4 4x2 8x1 4x4 8x2 8x4

γ 4 4 8 8 8 13 13 13 12 12 10

h = 0.03, J = 15316, T0 = 946

Tp 479 470 275 241 234 137 126 114 69 62 33
Sp 1.97 2.01 3.44 3.92 4.04 6.90 7.50 8.29 13.70 15.24 28.64
Ep 0.99 1.01 0.86 0.98 1.01 0.86 0.94 1.04 0.86 0.95 0.89

h = 0.015, J = 15316, T0 = 1801

Tp 915 898 526 459 450 263 236 224 131 122 64
Sp 1.97 2.01 3.42 3.92 4.00 6.85 7.63 8.04 13.75 14.76 28.14
Ep 0.98 1.00 0.86 0.98 1.00 0.86 0.95 1.01 0.86 0.92 0.88

γ 6 6 9 9 9 10 10 10 10 10

h = 0.015, J = 30632, T0 = 1897

Tp 963 945 555 487 472 276 244 235 138 123 68
Sp 1.97 2.01 3.42 3.90 4.02 6.87 7.77 8.07 13.75 15.42 27.9
Ep 0.98 1.00 0.85 0.97 1.00 0.86 0.97 1.01 0.86 0.96 0.87

5 Conclusions

Two parallel numerical algorithms are developed for solution of parabolic prob-
lems on graphs. The fully implicit backward Euler and predictor-corrector finite
difference schemes are proposed to approximate the differential equation. The
parallelization of the discrete algorithms is based on the domain decomposition
method. Results of numerical simulations show a good scalability of both al-
gorithms. It is proved that the efficiency reduction occurs mainly due to the
memory bus saturation when 2 or 4 cores per node are used.

Acknowledgment. The authors would like to thank the referees for their con-
structive criticism which helped to improve the clarity of this note.
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3. Čiegis, R., Tumanova, N.: Finite-difference schemes for parabolic problems on
graphs. Lith. Math. J. 50(2), 164–178 (2010)
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Mi�losz Ciżnicki, Micha�l Kierzynka, Krzysztof Kurowski, Bogdan Ludwiczak,
Krystyna Napiera�la, and Jaros�law Palczyński
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Abstract. The algorithms for isosurface extraction have become crucial
in petroleum industry, medicine and many other fields over the last years.
Nowadays market demands engender a need for methods that not only
construct accurate 3D models but also deal with the problem efficiently.
Recently, a few highly optimized approaches taking advantage of modern
graphics processing units (GPUs) have been published in the literature.
However, despite their satisfactory speed, they all may be unsuitable in
real-life applications due to limits on maximum domain size they can
process. In this paper we present a novel approach to surface extraction
by combining the algorithm of Marching Tetrahedra with the idea of
Histogram Pyramids. Our GPU-based application can process CT and
MRI scan data. Thanks to domain decomposition, the only limiting fac-
tor for the size of input instance is the amount of memory needed to store
the resulting model. The solution is also immensely fast achieving up to
107-fold speedup comparing to a serial CPU code. Moreover, multiple
GPUs support makes it very scalable. Provided tool enables the user to
visualize generated model and to modify it in an interactive manner.

Keywords: isosurface extraction, marching tetrahedra, histogram pyra-
mids, multiple GPUs applications.

1 Introduction

Surface reconstruction from volumetric data is used to visualize and analyze the
output acquired from different types of material scanners, such as Magnetic Reso-
nance Imaging (MRI), Computed Aided Tomography (CT) or Positron Emission
Tomography (PET). Analysis of volumetric data is essential in many domains,
among which are medical applications, geoscience and computational geometry.
In petroleum engineering, Computed Tomography is used as a non-destructive
imaging method producing representation of the internal structure of pores in
reservoir rocks. Resulting 2D images are processed to generate 3D models of the
rock structure, which can be further used in reservoir simulations to estimate
the recovery factor. In medical imaging, creating a constant density 3D surface
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from 2D slice images enables to extract and visualize separately different kinds
of tissues, such as bones, soft tissues or muscles. 3D display gives an additional
insight into medical data and helps to make an accurate assessment of the pa-
tient. Isosurface extraction is also used in visualizations where the data itself
varies over time, e.g. in CFD simulations.

Surface reconstruction is a very computationally intensive process with high
memory requirements, as n3 vertices have to be analyzed for the data resolu-
tion of n. Moreover, the model is created for a given density at a time, so to
build a surface at a different density, the computations have to be repeated.
The implementations on standard serial devices such as CPUs are inefficient for
the demands of today’s market. In medical applications, the possibility of an-
alyzing the data interactively in the real time is crucial for the fast diagnosis
and treatment. In petroleum engineering, huge volumes of data produced from
rock scans have to be analyzed in a reasonable time. The implementations on
standard serial devices such as CPUs cannot meet such requirements. Therefore,
the research concentrates nowadays on highly parallel and power-efficient de-
vices. Since the problem of surface construction consists in performing intensive
local computations, it may be executed very efficiently on graphics cards, which
offer high memory bandwidth and hundreds of computational units capable of
performing massive local computations in parallel.

In this paper we present an efficient, GPU-based implementation of Marching
Tetrahedra – an algorithm for isosurface extraction that runs entirely on modern
graphics cards and as such is immensely fast. Memory complexity problem is
addressed by the algorithm of Histogram Pyramids [1,2]. In the experimental
study we show that our implementation outperforms serial code running on
CPU. Moreover, multiple GPUs support makes it very scalable, enabling to
create robust models for large amounts of data in a satisfactory time. Finally,
we provide the user with an application for viewing and manipulating generated
model.

2 Background

2.1 Isosurface Extraction Methods

There are several methods of extracting the isosurface from volumetric data.
One of the most popular is Marching Cubes (MC) [3]. The generated surface
separates voxels with value greater than V from the other voxels. The value of
a voxel usually describes the density of a material at a given point. MC divides
the input domain into cubes (hexahedrons) with input data voxels on the cubes’
vertices. Then, locally for every cube, it creates a part of the isosurface. Each
vertex of a cube can be in one of two states (vi > V or vi ≤ V ), hence, the
isosurface can intersect every cube in one of the 28 = 256 cases. However, the
method has a few drawbacks. First, its table of cases is ambiguous and as a result
special cases have to be considered. Nevertheless, some incorrect connections may
be generated anyway [4]. Secondly, the amount of memory needed for so called
lookup table makes it very hard to implement properly on a GPU.
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Another method for extracting the isosurface is Marching Tetrahedra (MT).
Its main idea is derived from MC, however, the difference lies in the division
of the volumetric data. Instead of creating virtual cubes, MT creates virtual
tetrahedra. As tetrahedron has only 4 vertices, the isosurface can intersect it
in only 24 = 16 different cases. MT eliminates the ambiguity of MC without
adding any special conditions. This property is particularly desirable for the
GPU architecture where the code is executed much more effectively if there are
no conditional statements. Furthermore, MT’s tiny lookup table fits in with the
GPU architecture much better allowing for better utilization of its parallel units.

In both methods, the upper bound of memory needed to store all the potential
vertices of the extracted isosurface is much higher than the memory needed for
vertices actually produced. This is a substantial problem for GPU computing
in which dynamic allocation of memory is hardly possible. In [2] the authors
showed that incorporating the algorithm of Histogram Pyramids [1] into GPU
implementation of MC may be very beneficial since the method allows to com-
pute the total amount of memory needed as well as facilitates parallel access to
the memory. Because MC and MT are analogous as it comes to memory access
patterns, we have decided to involve the idea of Histogram Pyramids into our
algorithm too.

2.2 Related Works

Ever since the computational power of graphics cards started to exceed the
capabilities of traditional CPUs, scientists around the world have been taking
advantage of this fact. As a result, there are a number of GPU-accelerated appli-
cations nowadays, including solutions addressing isosurface extraction problem.
Historically, the first approaches to the Marching Tetrahedra algorithm on GPU
used OpenGL and graphics pipeline to generate the isosurface. Pascucci [5] pre-
sented an implementation based on a table of edges and a table of cases. Similar
method was also used by Reck et al. [6]. It should be stressed, however, that
in both cases the computed mesh had to be rendered directly and therefore
could not be reused, e.g. in the next frame. Klein et al. [7] evade this limit by
using Open GL SuperBuffer objects to store the result of the surface extrac-
tion. The method, however, was able to handle relatively small instances only
due to its high memory consumption, which in turn was slightly enhanced by
Kipfer et al. [8]. Buatois et al. [9] introduced a few improvements to [5] and,
still using vertex shader units, was able to process bigger instances (up to 5
million tetrahedra) obtaining speedup of around 2 in comparison to serial CPU
code. Yet, with the advent of new graphics hardware came new possibilities.
The application presented by Tatarchuk et al. [10] certainly may be considered
as state-of-the-art in this area. It combines MC and MT to perform fast and
accurate isosurface extraction using geometry shader units available on DirectX
10 compliant GPUs. The solution, tested on ATI Radeon 4870, reached up to 24
million faces generated per second. Moreover, it allows the user to change the
isovalue on demand. However, its drawback lies again in memory consumption.
Maximum grid size for which the authors presented results was only 643. There
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are also a few solutions that focus mainly on volume rendering [11,12], and as
such do not place too much emphasis on isosurface extraction. Additionally, it is
worth noting that none of the cited works utilizes more than one GPU. Bearing
in mind all the limitations of previous methods, we set out to design and imple-
ment an algorithm that could efficiently extract isosurface, especially for large
datasets, using a single as well as multiple GPUs systems.

3 Marching Tetrahedra and the Idea of Histogram
Pyramids

The input data for the algorithm of Marching Tetrahedra is given as a regular
cubic 3D grid. Each vertex in the grid defines a 3D position with x, y, z co-
ordinates and a density value. MT constructs a set of triangles connecting the
vertices with a specific density value. These planar triangles approximate the iso-
surface (surface constructed for a given density, called isovalue) to be visualized.
The finer the grid, the closer the approximation to the actual surface, resulting
in a more accurate model. However, a finer grid produces more triangles and
hence memory and processing time requirements grow.

Marching Tetrahedra constructs the isosurface by splitting each grid cell into
6 tetrahedra. Although it would be possible to split the grid cell into 5 tetrahedra
(see [13]), we consider only the traditional approach in this paper. A tetrahedron
is defined by the values at its four vertices. Each vertex is classified as either
above or below given isovalue. If some vertices of a tetrahedron are below the
isovalue and some are greater than this value, the tetrahedron contributes to the
isosurface and eight different cases can be distinguished (see Figure 1), otherwise
the tetrahedron has no influence on the resulting isosurface. An edge between
two adjacent vertices is intersected by the isosurface if one vertex is above the
isovalue and the other is below. A position of the intersection is computed by
linear interpolation - proportionally to the ratio of the values at the vertices.

At the beginning of the algorithm it is not known whether given tetrahedra
will contribute to the resulting mesh or not. Hence, the amount of memory
to allocate is also unknown. Another problem arises when the tetrahedra are
processed simultaneously (e.g. on a GPU) and the results must be written to
the contiguous memory in parallel. It is possible to append results to the memory
by using an atomic address counter. Such solution, however, would decrease the
level of parallelism and ruin the performance (cf. Section 5). To address these
memory related problems we incorporated the idea of Histogram Pyramids into
the algorithm of MT.

The Histogram Pyramid is used to create the output stream of vertices (form-
ing the triangles of the isosurface) from the input stream of tetrahedra contribut-
ing to these vertices (cf. [2]). The idea of 1D Histogram Pyramid is presented in
Figure 2. The bottom of the pyramid is called the base layer, and contains the
sequence of input elements. Each input element corresponds to a single tetra-
hedron and contains the information about the number of triangles that are to
be produced by this tetrahedron. From the input layer, the Histogram Pyramid
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is built bottom-up, layer by layer. Each consecutive layer is half the size of its
predecessor. An element in a given layer is the sum of the two corresponding el-
ements from the layer below. Since there are no dependencies between elements
in the same layer, they can be calculated in parallel.

Fig. 1. Eight cases of tetrahedra. The figure comes from the website http://
paulbourke.net/geometry/polygonise/#tetra.

Afterward, the Histogram Pyramid is used to produce the output stream, i.e.
triangles comprising the surface. Since the last layer with only one element refers
to the total number of the triangles in the model, it is used to determine the
amount of memory needed. For each tetrahedron considered in this phase, the
Histogram Pyramid is traversed top-down to find the right place in the memory
for the output triangle. This eliminates the necessity of maintaining the atomic
counter of memory address.

Fig. 2. Histogram Pyramid construction
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4 Implementation of the Algorithm

Efficient implementation on a GPU is more demanding than standard CPU
programming. First, several kinds of memory with different capacities, charac-
teristics and access times need to be considered to choose a proper one for a given
task. Second, calculations are the most efficient when every thread performs the
same series of operations. Although conditional statements are allowed, they sig-
nificantly decrease the performance [14]. The latter was one of the reasons why
the Marching Tetraheda algorithm was chosen to be implemented. We decided
to develop our application using CUDA library.

Our first approach to the problem works as follows. The input data is stored
in the global memory as a 3D texture (cf. [14]). The domain is divided into blocks
of threads. Each block contains tx× ty × tz threads. Each thread from the block
is responsible for copying one corresponding voxel from the input domain to the
shared memory. The next stage is performed only by (tx− 1)× (ty− 1)× (tz− 1)
threads, since this is the number of cubes that may be constructed from fetched
data. Each thread divides the corresponding cube into six tetrahedra and creates
triangles according to MT. However, the main drawback of such straightforward
approach (without Histogram Pyramids) is unpredictable amount of memory
needed to store output vertices and lack of information which voxels actually
produce isosurface triangles. To round this problem, the program initially allo-
cated relatively large amount of memory (chosen beforehand) to provide storage
for all possible triangles. To assure the continuity of output vertex stream among
different threads, an atomic counter was introduced. The counter, incremented
every time a thread created a triangle, was treated as a memory offset. This
solution, however, turned out to be significantly slow. Therefore, we decided to
make use of the Histogram Pyramids method (HP). From this point onwards,
our algorithm consists of two phases: Histogram Pyramid construction and com-
putation of the polygonal mesh.

Our implementation uses 1D version of HP, since we found one dimensional
arrays as the best to manage on a GPU. The input data is represented in four-
dimensional space, where the first three dimensions refer to the position of a
cube in volumetric data and the fourth one identifies a tetrahedron within a
given cube. Hence, the position p in 1D HP input stream is calculated according
to the following formula:

p = (((x · ydim + y) · zdim + z) · wdim) + w (1)

where x, y, z indicate the position of a cube in the volumetric data, xdim, ydim,
zdim are corresponding sizes of the domain, w identifies tetrahedron within a
given cube and wdim is the size of this dimension (wdim = 6).

In order to construct the HP, the input domain is scanned by blocks of threads
in search for tetrahedra that will contribute to the output mesh. This time, a
single thread is launched for each tetrahedron. During this step the input stream



Efficient Isosurface Extraction on Multiple GPUs 349

of HP is filled with information determining the number of triangles to be created
by the corresponding tetrahedra, i.e. with integer numbers between 0 and 2. It
is worth noting that in order to save memory this information is stored using
only two bits. Subsequently, each level of the HP is computed in parallel. When
the top level of the HP is reached, the amount of memory needed to store the
isosurface is known. The memory is allocated and the algorithm proceeds to the
second phase.

The second phase is responsible for actual computation of the isosurface.
The program launches exactly one GPU thread for each triangle to be created.
The information about the number of threads is read from the top level of HP.
Each thread fetches the input voxels (based on its position p) and calculates
the triangle correspondingly. Next, it stores the results at its exclusive memory
address which is computed from the HP by a simple process of traversing its
structure. The advantage of this approach is that all the threads may execute
their operations independently (HP is read-only here) and this perfectly fits in
with the GPU architecture.

Fig. 3. Two exemplary screenshots of the application. The domain size in both cases
was 512 × 512 × 300. The panel on the right enables the user to manipulate the model
interactively, e.g. by changing the isovalue.

Bearing in mind that nowadays many workstations are equipped with more
than one GPU, we also designed and implemented multiple GPUs support. Its
main idea is that the input domain is not sent entirely to a single GPU, but
instead is divided into subdomains, each of which is processed independently.
Theoretically, each subdomain could be processed on a separated GPU, but in
practice, for large models, the number of subdomains is greater than the number
of GPUs available in the system. Hence, we implemented also a simple load
balancing mechanism. Each GPU that becomes idle receives a new portion of
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domain to compute. Its size depends on total amount of global memory available
on a given GPU. As parts of the model are generated on different GPUs, the
final model is merged in the main host memory (RAM), which, in fact, is the
only limiting factor for domain size that can be processed. If necessary, the final
model is send back to a graphics card that is in charge of displaying. On the other
hand, for small enough models that fit into single GPU memory, to avoid costly
data transfers through PCI-E bus, the model is entirely computed on a single
GPU and directly displayed using OpenGL Vertex Buffer Object. Exemplary
screenshots of the application are presented in Figure 3.

5 Results

5.1 Time Comparison to the Serial Implementation

In order to compare the performance of parallel and sequential implementations,
three versions of the algorithm were used: CPU-based sequential version of MT
(CPU-MT), GPU version of MT without HP (GPU-MT) and with HP (GPU-
MT-HP). Computations were performed on Intel Core 2 Quad 2.0GHz CPU
with a single NVIDIA GeForce GTX 285 graphics card. Tests were repeated 10
times and the average values are presented. For testing purposes ,,MRI of the
Skull Base” 1 dataset with different resolutions and different numbers of slices
was used. Results are presented in Table 1 and in Figure 4.

The results show that both GPU implementations of the MT method outper-
form its CPU equivalent, reaching the speedup of up to 107-fold (GPU-MT-HP).
While we are aware that our CPU implementation may be not optimal, the mea-
surements show the following general trend: the bigger the model the greater
speedup is achieved. Our algorithm generated here up to 28 million faces per
second which is slightly more than 24 million achieved by Tatarchuk et al. [10].
It is also clear that the algorithm using Histogram Pyramids is much more effi-
cient. Moreover, Figure 4 shows that the time needed by GPU-MT-HP is more
predictable. Since GPU-MT-HP requires less memory, we may conclude that it
dominates GPU-MT.

Table 1. Mean computational times (in seconds) of three implementations of the
MT algorithm for different domain sizes. The ,,speedup” rows were computed with
CPU-MT times as a reference.

1 http://www.mr-tip.com/serv1.php?type=slider&slide=MRI of the Skull Base



Efficient Isosurface Extraction on Multiple GPUs 351

Fig. 4. The impact of Histogram Pyramids on computational time[s] of the GPU-based
MT algorithm

5.2 Multi-GPU Test

The multi-GPU test was performed to see how the performance of the algorithm
depends on the number of graphics cards used. The GPU-MT-HP algorithm was
run on a computer equipped with NVIDIA Tesla S1070, i.e. 4 × GPU with 4GB
of RAM, 960 cores in total. Time measurement included: copying input data
to GPUs memory, model computation and transfer of results to back the host
memory. The domain size was constant (512 × 512 × 300). Tests were repeated
10 times and the average speedups in comparison to a single GPU were: 1.9,
2.6 and 3.3 for two, three and four GPUs, respectively. Since the jobs that are
processed on separated GPUs are independent (no communication needed), one
could expect a perfectly linear speedup. We have thoroughly checked the influ-
ence of load balancing which is, however, negligible here. The observed decrease
in performance is caused instead by a limited bandwidth of host memory as each
GPU requires transfers of a notable amount of data. Nevertheless, the test shows
that our implementation certainly benefits from multiple GPUs systems.

6 Conclusions

The paper presents an efficient parallel implementation of the Marching Tetra-
hedra algorithm for isosurface extraction. The method, optimized by using His-
togram Pyramids, runs entirely on graphics cards and as such is immensely
fast. Moreover, multiple GPUs support make the application very scalable. As
a result, it allows to analyze and visualize larger data sets, e.g. CT images rep-
resenting larger rock formations for reservoir simulations in oil&gas industry.
In medical imaging, faster computations allow the physicians to analyze the 3D
model of a patient at several density values. Furthermore, provided tool en-
ables the user to interactively manipulate on generated model, e.g. by switching
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between isovalues almost in real-time. Since one of our priority is to process real-
life rock formations, our future development will concentrate mainly on further
parallelization (CUDA+MPI) of presented method.
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Abstract. In this paper parallel implementation of stochastic inversion
of seismic tomography data was presented. Classical approach to travel
time tomography assumes straight line of seismic rays between sources
and receives points and isotropy of geological medium. Such simplifica-
tions are potential sources of inaccuracy of the obtained results of travel
time tomography. Stochastic methods can be free from these simplifica-
tions. On the other hand, this kind of algorithms requires huge number of
time consuming calculations. In this work parallelization of two stochas-
tic methods is presented. Different parallel algorithms was applied to
presented inversion problems. Obtained results show significant differ-
ences in parallel performance of presented inversion algorithms.

Keywords: seismic tomography, inverse problem, seismic anisotropy,
master-slave paradigm.

1 Introduction

Seismic travel time tomography is one of the most powerful tools to obtain dis-
tribution of elastic parameters in geological medium. Precise information about
these parameters can be helpful, especially in solving environmental engineering
problems, oil and gas exploitation or evaluations safety in mines. Traditional
tomography method commonly assumes simplified geological medium without
differences of velocity of seismic wave propagation in different direction and
straight line seismic rays between source and receive points. These assumptions
are necessary for linearization of inversion process. Stochastic methods are used
for solving inverse problems, where such assumptions are not necessary. Stochas-
tic methods, such as Monte Carlo method or genetic algorithms presented in this
paper, are examples of very time consuming algorithms. Parallelization of the
calculations is the only method, that can decrease time of calculation without
decreasing accuracy of the obtained results. This method is commonly used for
solving geophysical modeling and inversion problems (f.e. [2], [1]).

In this paper application of parallel computing of the inversion of the seismic
tomography data is presented. The most time-consuming part of the inversion
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in both presented methods is the modeling of the seismic wave propagations. It
is done for every data set in every iteration of the algorithm. High accuracy of
the obtained results requires huge amount of iterations.

2 Description of the Seismic Tomography Inversion
Algorithm

Inversion of seismic tomography data is a process, where velocity field is obtained
using observed travel times of wave’s propagation. It is strongly non-uniqueness
problem. For the simplest scheme of inversion velocity field can be estimate
using matrix decomposition or algebraic reconstruction technique [3]. In case
of anisotropy and wave propagation in real geological medium, calculation of
velocity field is extremely difficult. Stochastic type of inversion is done in this
case by evaluation of randomly chosen velocity model. It cause that the most time
consuming part of seismic inversion is calculation of seismic wave propagation,
so called forward problem.

Seismic anisotropy is phenomena of different velocities of wave propagation in
different directions. Several models of anisotropy exists: from the simplest one,
based on eclipse (ellipsoid in 3D), through transversally isotropy (VTI, HTI,
TTI), to the most general case, described by 21 coefficients of stiffness tensor. In
this work VTI (vertical transversally isotropy) model was ssumed. It is describe
by five stiffness tensor coefficients and density. This model describes seismic wave
propagation in finely laminated, horizontal layered medium (f.e. shales).

Forward problem was solved using the shortest path method. This method
is fast and stable and gives precise results for random velocity field. It is based
on Fermat’s law and Huygens’ principles. Description of this algorithm could be
find in [10], [5], [4].

Two stochastic methods of inversion were used to estimate values of stiff-
ness tensor coefficients and density: Monte Carlo method with and without local
searching and genetic algorithm. Objective function must minimize error func-
tion given by equation:

f(C) = ‖tobs, test(C, G)‖ (1)

where C – two dimensional distribution of stiffness tensor value,
G – geometry of acquisition (location of shooting and receive points)
tobs – observed travel time of primary seismic wave.

Error function have at least one global minimum equal to zero, because inverse
problem is always non-uniqueness, This function calculate error of reconstruc-
tion based on comparison between observed data (theoretical travel times) and
estimated from stiffness tensor distributions. Two norms of calculation error
function were used: mean of absolute values (L1) and RMS (L2) between both
time vectors. Ranking list of obtained solutions with the smallest errors was
updated in each iteration.
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2.1 Monte Carlo Method

Monte Carlo is classical algorithm, where evaluation is done for the value of pa-
rameters chosen randomly from bounded space. This algorithm is widely used for
solving geophysical inverse problem (f.e.[9]). It assumed, that only data sets with
the smallest error function are saved. Stop condition for Monte Carlo algorithm
was set, when maximum number of iteration was reached or the number of tested
data sets with error smaller than assumed was obtained. This algorithm was en-
hanced by local searching operator. Local searching operator shrink searching
space to subspace near considered data set, if there was change on ranking list
in previous iteration.

2.2 Genetic Algorithms

Genetic algorithms are global optimization method, which simulate evolution
process [8]. This method is commonly used in many seismic applications, f.e.
in ray tracing [11], inversion [6]. In this inversion floating coding was used for
code individuals – in this case, parameters of seismic velocity field. Main loop is
organized as follow (description after):

while condition is true
add new to population (M)
crossover (M)
mutation (S)
evaluate (S)
ranking list (M)
evolution (M)

end

(Main computational loop of genetic inversion of velocity of anisotropic medium.
Letters in blanket refer to the parallel algorithm and indicate which operations
are done by master node (M) and which can be done simultaneously (S).)

Main loop is executed until the condition evaluates to false. We assumed the
same stop condition for both Monte Carlo and genetic algorithms. Six various
operations on analyzed data are done in each iteration:

– changing value of individual’s component (stiffness tensor coefficient) with
assumed probability, that changes given value by adding randomly value
from normal distribution with assumed variation and zero mean (mutation);

– linear combination of the components of the two different data vector coef-
ficients (crossover);

– evaluation of each individual using norm L1 or L2 separately, which implies
two separate calculations for different populations;

– evolution by tournament mode, in which individuals of new population are
obtained from individual chosen randomly from old population;

– changing the worst individual by randomly chosen generated;
– ranking list, which guarantees surviving of the best individual even if it do

not pass to the next population during tournament mode.
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2.3 Example Results

The aim of the inverse algorithm was to obtain the velocity of primary wave in
horizontal layered geological medium built with three layers with vertical fault.
The height of the model was Z=150m and its width X was equal to 100m. It was
comprise of 150 velocity cells. Velocity of primary wave in vertical transversely
isotropy medium (VTI) is given by follow equation [13]:

v2
P (θ) =

1
2�

[
c33 + c44 + (c11 − c33) sin2 θ + D(θ)

]
D(θ) = {(c33 − c44)2 + 2

[
2(c13 + c44)2 − (c33 − c44)(c11 + c33 − 2c44)

] ·
· sin2 θ +

[
(c11 + c33 − 2c44)2 − 4(c13 + c44)2

]
sin4 θ}0.5 (2)

It caused that for each velocity cell four coefficients of stiffness tensor (c11, c13,
c33 and c44) and density have to be estimated. It gave 750 values of independent
variable to obtain. Parameters of the geological medium, that should be obtained
in inversion process, are presented in Table.1.

Table 1. Value of elastic parameters used for modeling and inversion

Parameter Layer 1 Layer 2 Layer 3
Type Isotropy Anisotropy Isotropy
c11[GPa] 8.0 16.6 20.0
c13[GPa] 2.0 6.5 4.0
c33[GPa] 8.0 10.3 20.0
c44[GPa] 3.0 3.0 8.0
Density [kg/m3] 2000 2000 2000

As it was shown on the picture below (Fig.1), if the number of iterations of
inversion procedure increases, differences between travel times, obtained from
estimated anisotropy parameters and values received from inversion procedure,
significantly decrease. Thus more iteration we perform, better results of stochas-
tic inversion we receive. The results obtained from inversion process are satis-
factory only for GAs. In this case one million iterations is not enough for obtain
acceptable solution using MC method.

Because average time of single evaluation is about 3 seconds, it is almost
impossible to estimate velocity field using single computer.

3 Parallel Implementation and Discussion

Many parallelization strategies exists for optimization problems [12]. In this work
two different parallel algorithms were developed to utilize parallel computational
environment in inversion of density and anisotropy components of the given geo-
logical model. In Monte Carlo inversion independent calculation of velocity field
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Fig. 1. Relationship between error of the best solution obtained during inversion pro-
cedure and the number of iteration (left - L1 norm, right - L2 norm). Number of
iteration in genetic algorithms mean number of evalueted individuals (number of pop-
ulation multiply number of individuals)

for a given parameter set were performed on different processes. Results of in-
version were after sent to a chosen computational process. In genetic algorithm,
parallelization was done by distribution of the population among all available
processes in each iteration. For such divided subpopulations the most compu-
tational expensive operations such as evaluation of the objective function and
mutation were performed by all processes separately. Computational results were
then sent to master process where ranking list together with other operations
listed before were preformed. The new population created in evolution stage were
then split and sent to computational processes. Operations described before were
performed until desire accuracy or assumed maximal amount of iterations was
reached.

For both algorithms statically task distribution was assumed. Static schedul-
ing for fine grain Monte Carlo inversion minimizes communication delay. Compu-
tational time for single objective function evaluation has almost the same values
so static task distribution maximizing resource utilization for both inversion
algorithms. Schemas of parallel algorithms are presented below (Fig.2).

Fig. 2. Schema of parallel inversion of velocity model for Monte Carlo (a) and genetic
algorithm (b)
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For both parallel algorithms commonly used parameters such as computa-
tional time, speedup and efficiency that describe parallel performance of the
algorithm was computed. Parallelization of Monte Carlo and genetic algorithms,
using MPI [7] library was tested on of IBM Blade machine with 8 computa-
tional nodes 2GHz and 4 GB RAM each. Inversion was performed for the model
described in previous chapter. Both algorithm performance similar number of
computation of velocity field: 5000 iterations of Monte Carlo algorithm were
assumed whereas for genetic algorithm velocity computation was done for 48
individuals in 100 iterations.

Monte Carlo inversion is an example of embarrassingly parallel algorithm,
where many independent tasks are solving simultaneously and there is no need
for coordination among task. This algorithm is fully scalable, its speedup in-
creases linear (Fig.3) and its efficiency is almost 100% (Fig.4). Fluctuation in
efficiency curves is mainly due to no equal dividing of computational problem
among processes. It can be also caused by slightly differences of computational
time of the single iteration of forward problem. Parallel genetic algorithm does

Fig. 3. Computational time and speedup for Monte Carlo and genetic inversion algo-
rithm

not present such excellent performances as Monte Carlo inversion. In this case
master slave paradigm was applied because of genetic operators which require
sequential processing. The need for sequential processing in every iteration of
genetic algorithm effect frequent synchronization and communication during cal-
culation. Moreover in this algorithm huge size of data sets has to be send before
each computational step which additionally decreases parallel performance of
genetic algorithm (see Fig.4) and decrease of efficiency among one and two com-
putational processes).

Two different algorithms were applied for the problem of inversion of ve-
locity field. Parallel computing represents a natural paradigm for Monte Carlo
methods. Analyses of parallel performance done for this algorithm show almost
100% utilization of computational resources. For communication intensive ap-
plications, such as genetic algorithm computational resources are not fully used.
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Fig. 4. Computational time and efficiency for Monte Carlo and genetic inversion algo-
rithm

The bottleneck of the genetic algorithm is existence of sequential code sections
and frequent communication that regard huge data sets. Modifications of mes-
sage size or frequency of communication may improve parallel performance for
genetic algorithm.
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Abstract. We present a parallel implementation of an agglomeration
scheme for the coarse-grid treatment in algebraic multigrid algorithms
for coupled systems. The association of the components of the solution
vector with different physical unknowns – bearing particular difficulties
to parallel agglomeration techniques – is considered through an appropri-
ate re-ordering of the components of the solution vector. A benchmark of
a system of mixed elliptic-hyperbolic character shows that the proposed
scheme allows to apply an agglomeration technique which is significantly
faster than conventional approaches based on a parallel direct solution
of the coarse-grid system.

1 Introduction

Parallel applications of AMG to linear systems reflecting the discretisation of
partial differential equations have been demonstrated to be efficient in many
areas of science and engineering. Most of the literature refers to scalar systems,
i.e. to systems where all components of the solution vector are associated with
a single physical unknown. Good scalability of algebraic multigrid (AMG) make
these methods also preferred techniques for coupled systems, i.e. for systems
where the components of the solution vector are associated with different physi-
cal unknowns, e.g. pressure and velocity in fluid flow problems. For this, certain
adjustments are necessary, but successful applications are reported e.g. for sys-
tems in oil reservoir simulations, see Clees and Ganzer [1]. An important aspect
of parallel AMG is the treatment of the coarse grids; it is common practice to
employ an iterative or direct solver for a sufficiently small system, see Chow [2].
But in particular if the number of nodes per process is not very large, this prac-
tice is often the reason for degraded parallel performance of AMG algorithms. An
alternative is an agglomeration scheme where the systems of parallel processes
are merged into one which is then solved by one process. It has been shown that
this approach is feasible and efficient for scalar systems, see e.g. Emans [3]. For
coupled systems, however, an efficient parallel implementation of an agglomera-
tion scheme is not a trivial extension since it should not ignore the association
of the components of the unknown vector with the physical unknowns. In this
contribution we will present such an efficient implementation and evaluate to
what extend and under which circumstances this method is recommendable.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 361–370, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 Algorithm and Implementation

Suppose we want to solve the linear problem

Ax = b (1)

where A ∈ Rn×n is regular, b ∈ Rn is some right-hand side vector and x ∈ Rn

the solution where n is the rank of A.
The pseudocode of a standard v-cycle AMG algorithm is shown in algorithm

1. The algorithm refers to the solution phase which has to be preceded by a
setup phase where the operators Al ∈ Rnl×nl (l = 1, ..., lmax) with system size
nl where nl+1 < nl holds for l = 1, ..., lmax − 1 are determined. Moreover, a
smoother Sl as well as a prolongation operator Pl ∈ Rnl×nl+1 and a restriction
operator Rl ∈ Rnl+1×nl have to be determined for each level l. It is common
practice in algebraic multigrid to choose Rl = PT

l and to follow the Galerkin
approach to generate the coarse-grid hierarchy recursively by

Al+1 = PT
l AlPl (l = 1, ..., lmax − 1). (2)

2.1 Parallel Coarse-Grid Treatment

Algorithm 1 requires the parallel solution of the coarse-grid system. This system
is still sparse in the sense that there is a number of zero elements in most of the
rows, but the matrix is significantly denser than the fine-grid matrix, see Chow
et al. [2]. The size of the system depends on the coarse-grid treatment scheme.

A common approach to the parallel solution of the coarse-grid system is the
truncated cycle where the (parallel) coarsening is terminated such that the coars-
est grid is distributed to all processes and each process owns at least a few un-
knowns. This distributed system can then be solved iteratively or directly in
parallel. As an iterative solver we use a block-Jacobi scheme where we compute

Algorithm 1. v-cycle AMG

x
(3)
l = AMG par(l, rl, x

(0)
l )

Input: level l, right-hand side rl, initial guess x
(0)
l

Output: approximate solution x
(3)
l

1: if l = lmax then
2: (parallel) solution of coarse-grid system: xl = A−1

l rl

3: else
4: (parallel) pre-smoothing: x

(1)
l = Sl(rl, Al,x

(0)
l )

5: restriction: rl+1 = P T
l (rl − Alx

(1)
l )

6: recursive solution of coarse-grid system: xl+1 = AMG(l + 1, rl+1, 0)

7: prolongation of coarse-grid solution and update: x
(2)
l = x

(1)
l + Plxl+1

8: (parallel) post-smoothing: x
(3)
l = Sl(rl, Al,x

(2)
l )

9: end if
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in the setup an LU factorisation of the part of the system matrix that reflects
the influences of the unknowns assigned to one process on each other; this can be
done entirely in parallel. In the solution phase, the values at the boundaries are
exchanged in each iteration and the factorisation is used to compute the solution
considering the exchanged values of the neighbouring domains. The advantage of
this method is that it is very easy to implement since the exchange routines are
identical to those used for the smoothers and the LU factorisation is provided
by most linear algebra libraries. The disadvantage is that the accuracy of the
solution is hard to control.

As a parallel direct solver for the coarse-grid system we use the existing library
MUMPS by Amestoy et al. [4]; this makes an own implementation obsolete. For
efficiency the matrix is factorised once in the setup phase while the factors are
reused in each iteration. The advantage of this method is that it is safer than
an iterative solver since the obtained solution is exact (up to rounding errors).

Both approaches described so far deviate from the idea of multigrid at that
point where the solution of the coarse-grid system by recursive application of
multigrid is substituted by an iterative or direct solution procedure; this is done
although the coarse-grid systems are still of considerable size. The only way to
stick more closely to the idea of multigrid is to merge the systems of domains
in an appropriate manner such that the coarsest system (of arbitrary small size)
can be solved by one process. Instead of terminating the coarsening process
at a certain level, the following modified setup applies: Before a new level is
constructed on all grids, it is checked if the number of nodes on each grid is
larger than the threshold parameter λ. If one grid is smaller, then a merging
step is done: Those grids with less nodes than the threshold are merged to the
grid of the neighbour with the smallest number of own nodes. This merging step
essentially comprises the merging of the system matrices. Its implementation
is complex since it is not only necessary to render external influences from the
merging neighbours internal ones, but also to update the boundary information
of those processes that are not involved in the merger itself, but are adjacent to
the merging processes. The algorithm of the solution phase, algorithm 1, has then
to be modified, too: Those processes that have no coarse-grid on level lmax + 1
(“vanishing processes”) send their rl+1 to an appropriate neighbour and skip
step 6 of algorithm 1. The other processes (if they have vanishing neighbours)
receive these messages before they perform the coarse-grid correction on level
l + 1, i.e. before step 6 of algorithm 1, and send the part of the coarse-grid
solution xl+1 that corresponds to the grid of the vanishing neighbours to these
neighbours after step 6 of algorithm 1. Before step 7 the vanishing processes
receive these messages as their xl+1 and continue.

2.2 AMG for Coupled Systems

For coupled systems with k physical unknowns the system matrix can be split
into k× k blocks where the block Aij reflects the influence of the unknown with
index j in the equation associated with the unknown with index i. We denote
the number of components of the unknown vector x in eqn. (1) associated with
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the physical unknown k by mk; we assume that the components are ordered by
physical unknowns, i.e. the first mk components are associated with the first
physical unknown, the components mk + 1, ...,mk + mk+1 with the second and
so on; for the components of the unknown vector on the initial grid (l = 1) this
ordering appears to be natural, and for the coarser grids it is natural to keep
this order as long as no mergers take place.

A =

⎛⎜⎝A11 . . . A1k

...
. . .

...
Ak1 . . . Akk

⎞⎟⎠ (3) P =

⎛⎜⎝P1 . . . 0
...

. . .
...

0 . . . Pk

⎞⎟⎠ (4)

The prolongation operator has a similar block-structure. Its non-zero block-
pattern reflects the fact that interpolation is only done between nodes associated
with the same physical unknown. This is a crucial property of an efficient scheme,
see Clees and Ganzer [1].

The application of one of the schemes with a truncated cycle can be im-
plemented easily since for both, the direct solver and the iterative solver the
ordering is irrelevant. The straight forward implementation of an agglomeration
scheme, however, would merge two systems in such a way that the nodes of
the first system keep their indices while the indices of the second system are
increased by the number of nodes of the first system, i.e. the unknown vector
contains first the unknowns of one system and then those of the second system.
This means that they are not ordered by physical unknown but by process.

For the agglomeration scheme there are therefore two principal types of im-
plementations: First, this order by process is maintained and a marker array
is defined which carries the information on the physical unknown the node is
associated with; this enables a distinction by physical unknown which is neces-
sary to maintain the properties of the prolongation operator. This marker array
would also be used in every situation where a distinction by physical unknown
is required, e.g. for the computation of the residual norms of the equations as-
sociated with the physical unknowns and for the smoothing sweep. This leads
to a more complex code where many loops cannot be vectorised since additional
if-branches have to be introduced.

The alternative we propose is a reordering of the variables after the merger as
shown in the lower part of Fig. 1. Again, it is not trivial to implement since not
only the relations within each process need to be adjusted, but the changes also
need to be communicated to the neighbours. Moreover, additional book-keeping
is required to ensure the correct placement of data during the solution phase
if two merging neighbours exchange the right-hand side or the solution vector
in the solution phase. The advantage of this concept compared to the approach
with the marker field is a more efficient and less complex code of the solution
phase.
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Fig. 1. Order of components of unknown vector before and after merger; top: merger of
scalar system (superscript: process, subscript: local numbering before merger), bottom:
merger of coupled system (a, b, c: different physical unknowns)

2.3 Implementation Issues

For the the truncated cycle schemes the coarsening process is terminated if one
local grid has less than λ = 250 nodes; the coarsening of the agglomeration
scheme is also terminated if the coarsest (global) grid has less than 250 nodes.
Grids of less than λ = 250 nodes are merged. For the iterative coarse-grid solver
we use 2 iterations for the block-Jacobi solver for p ≤ 4, 3 iterations for p = 8 and
4 iterations for larger number of processes. The association of the unknowns of
the linear system with different physical unknowns is taken into account by the
point-based coarse-grid selection scheme, see Clees and Ganzer [1]. The coarse-
grid correction schemes are applicable to various AMG schemes with e.g. differ-
ent coarse-grid selection schemes, cycling strategies, or smoothers. For various
AMG schemes the comparison of the coarse-grid techniques leads to similar
conclusions; with regard to limited space we have selected a Krylov-accelerated
AMG by Notay [5] to draw these conclusions and we skip a comparison to other
solvers for similar problems such as they are used e.g. by Starikovičius et al. [6]
and refer for such a comparison to Emans et al. [7].

In the Krylov-accelerated AMG, see Notay [5], AMG is used as a precondi-
tioner of an outer Krylov method. The main difference to conventional (fixed
cycle) AMG preconditioners such as algorithm 1 is that the coarse-grid system
is approximated by one or two iterations (depending on a termination criterion)
of an inner Krylov-solver that is preconditioned by AMG instead of being ap-
proximated by the multigrid scheme alone. We use the efficient implementation
of GCR that Notay [5] suggests as inner and outer Krylov-solver. For this al-
gorithm the double-pairwise aggregation, see again Notay [5], is applied: The
aggregates usually comprise four nodes; constant interpolation is applied such
that the computation of the coarse-grid system is very cheap since the compu-
tation of the elements of Al+1 in equation (2) reduces essentially to an addition
of rows of Al.
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3 Benchmark

3.1 Background and Details of the Benchmark Case

Our benchmark case is a short period of an unsteady three-dimensional simula-
tion of a full cycle of a four cylinder gasoline engine where the computational
domain comprises only one cylinder. The simulated period is part of the com-
pression phase of the engine cycle. The stroke of the cylinder is 81.4 mm, the
bore is 79.0 mm yielding a (maximum) volume of 0.4 l (per cylinder). The bench-
mark case consists of 20 time steps. The computational mesh with 290000 mostly
hexagonal cells is shown in Fig. 2. The fuel is octane; the combustion model is
based on an Eddy Break-up approach.

The fluid dynamics is modelled by the Navier-Stokes equations amended by
a standard k-ε turbulence model; the thermal and thermodynamic effects are
considered through the solution of the energy equation for enthalpy and the
computation of the material properties using the coefficients of air. The conser-
vation laws are discretised by means of finite volumes on an unstructured mesh.
The variable arrangement is collocated and the algorithm managing the cou-
pling of the variables and the non-linearity of the system of partial differential
equations is a pressure-enthalpy coupling based on SIMPLE, see Emans et al.
[7]. The coupled system we focus our attention on can be written as(

C Sh

Sp H

)(
p ′

h ′

)
=

(
c
g

)
(5)

where p ′ and h ′ are pressure and enthalpy updates, respectively; C and H
represent the discretised operators of pressure-correction and energy equation of
the SIMPLE scheme, the right-hand sides of these equations are c and g, and

Fig. 2. Slice (left) and surface (right) of the finite volume mesh of the benchmark case



AMG for Coupled Systems 367

Sh and Sp denote the coupling terms. Since the pressure-correction is an elliptic
problem and the energy equation is an hyperbolic one, the underlying system
is of mixed elliptic-hyperbolic type. The computing times we report on refer to
the solution of this coupled system alone; in each benchmark run 119 different
linear systems are treated, i.e. the 1-norm of the residual is reduced by a factor
of 1000.

The benchmarks are done within the environment of the software AVL FIRE(R)

2010 which uses the graph partitioning algorithm METIS for the domain decom-
position. The linear solver uses the same distribution and receives the linear sys-
tem in a distributed fashion. The parallelisation of AMG coarsening is simplified:
the aggregates are local to each process. The matrices are stored in compressed-
row storage (CRS) format, no external libraries (apart from MUMPS) are used.
The point-to-point communication relies on an asynchronous communication
pattern. For details of the implementation we refer to Emans [3].

For the measurements we used up to four nodes with 2 quad-cores (i.e. 8 cores
per node) of a Linux cluster equipped with Intel Xeon CPU X5365 (3.00GHz,
main memory 16GB, L2-cache 4MB shared between two cores) connected by
Infiniband interconnect (by Mellanox) with an effective bandwidth of around 750
MB/s and a latency of around 3.3 μs. The computational part of the program is
compiled by the Intel-FORTRAN compiler 10.1, the communication is performed
through calls to platform-MPI subroutines (C-binding). Computations with 1, 2,
and 4 processes were done on a single node – unless stated explicitly otherwise –,
for 8 and 16 processes we used 2 and 4 nodes respectively. The processes are
mapped to the available cores in a way that each process has sole access to one
4MB L2-cache. It is important to note that the MPI implementation uses the
shared memory space of one node for the communication between two processes
wherever possible. This means that all intra-node communication is done without
utilisation of the network interconnect.

3.2 Impact of Coarse-Grid Treatment on Convergence

Since the different coarse-grid treatment methods provide a different correction
on the coarsest grids, it is natural that the choice of the method influences
the convergence. The left diagram in Fig. 3 contains the accumulated iteration
count: it shows that the parallel solution by the direct solver leads to the best
convergence. The reason is that this approach guarantees that the system is
solved exactly (up to algorithm-related rounding errors) on level lmax. The con-
vergence with the iterative coarse-grid solver is the worst among the discussed
alternatives; this is a consequence of the lower accuracy of the coarse-grid cor-
rection on level lmax obtained by the iterative solver. The convergence of the
agglomeration approach lies in between the other methods; it does not guar-
antee the same quality of the solution as the direct solver on level lmax, but
it transfers an exact solution on the globally coarsest grid by multigrid to this
level. The convergence of the agglomeration scheme is almost as good as that of
the direct solver scheme.
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Fig. 3. Accumulated iteration count (left); computing time for setup phase (empty
symbols) and solution phase (filled, both middle), small symbols with dashed line: one
process per node; ratio tp/Tp (right)

3.3 Impact of Coarse-Grid Treatment on Performance

In the middle diagram of Fig. 3 the computing times (wall clock times) of the
setup phase and total computing time (for the linear solver) are plotted. It
can be seen that the setup of the coarse-grid treatment by agglomeration needs
more time than that of the alternatives; the difference grows with increasing
degree of parallelism. This is due to the fact that the agglomeration requires the
construction of additional levels, and due to the merging procedure. Both types
of steps include calculation tasks and communication which can be substantial
in relation to the cost of typical calculation tasks on these small grids. The
computing times of runs with the agglomeration scheme is faster for parallel
runs with more than four processes. This is because the solution phase of the
agglomeration method is significantly faster than those of the alternatives. We
have added the same calculations using one cluster node for each process to
the middle diagram, for up to four parallel processes. In the case of four parallel
processes this variant is about 30 % faster than our standard process distribution;
the difference is significantly larger for the solution phase, but there is hardly a
noticeable difference between the coarse-grid treatment schemes.

The right diagram of Fig. 3 shows the ratio of the total computing time tp with
p parallel processes and the total computing time using the parallel direct solver
for the coarse-grid treatment Tp with also p parallel processes. We normalise
the computing times in this way since a direct solver scheme is used in most
AMG implementations, e.g. by Notay [5]. Our benchmark shows that for process
numbers of up to four the parallel direct solution of the coarse-grid system is the
best choice (tp/Tp > 1). This is the consequence of the fact that this coarse-grid
treatment requires the construction of less levels than the agglomeration method
(5 compared to 7 in this case) and the direct parallel solver solves a comparatively
small system in this case (∼ 300 nodes for p = 2 compared to ∼ 2350 nodes for
p = 16); equally important is that the fast exchange that occurs through a shared
memory mechanism. For a higher degree of parallelism the performance of the
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Fig. 4. Ratio τl/τ1 (left; numbers in key: parallel processes), computing time for setup
and solution phase (middle; setup: empty symbols, solution: filled symbols; up to eight
processes on one machine, 16 processes: 2×8); ratio tp/Tp (right; empty symbols: 1×1,
1×2, 1×4, 1×8, 2×8; filled symbols: 8 processes distributed 2×4 to two machines)

runs with the parallel direct solver becomes more and more weak compared to
that of the other algorithms; this is related to the communication requirements
of MUMPS. These results show that the choice of the coarse-grid treatment can
reduce (or increase) the total computing time (for setup and solution phase) of
parallel AMG algorithms by about 10%.

A very sharp picture of the deviation from the desired typical multigrid be-
haviour can be obtained if we consider the time τl that is spent on all numerical
tasks associated with the particular level l (including the transfer of information
to and from the next coarser grid, accumulated over all solver calls in a bench-
mark run). In order to fit the data of runs with different number of processes
into one diagram, we have plotted the ratio τl/τ1, see left diagram in Fig. 4; the
iterative coarse-grid solver has been skipped since the parallel behaviour of this
scheme has already shown to be not satisfying. The curves of the parallel direct
solver show a clear increase at the coarsest grid indicating that the time spent
on this level does not decrease as it should be the case in ideal multigrid. The
agglomeration scheme comes closest to this ideal behaviour which is represented
by a straight line in these diagrams. Moreover, the time spent by the direct solver
on the coarsest level of this scheme is about one order of magnitude larger than
the time spent by the agglomeration scheme on this and all coarser levels!

The identical benchmark on a system of two more recent workstations equip-
ped with two six-core Intel X5670 (3.0 GHz, 6MB L3-cache), connected by an
LAN Ethernet with an effective bandwidth of around 11 MB/s and a latency of
around 80 μs, reveals the advantage and drawback of the direct solver. Comput-
ing times and tp/Tp for this calculation are shown in Fig. 4. The calculations with
eight parallel processes was done twice: Once with all processes on one machine
(1×8), and once distributed to two machines as 2×4. If all parallel processes
are located on one machine (1×2, 1×4, 1×8) the parallel direct solver is slightly
faster than the alternatives. But its performance depends heavily on a fast and
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fat connection between the involved processes: therefore the runs with the par-
allel direct solver are relatively slow as soon as the network interconnect has to
be used (2×4 and 2×8). The alternatives suffer far less from the slow network
interconnect where the agglomeration scheme is again the fastest method for all
AMG variants.

4 Conclusions

The agglomeration scheme, i.e. the solution of the coarsest system on one grid
comes closest to the ideal multigrid behaviour. In parallel calculation it shows a
much better convergence than truncated cycle schemes with an iterative solver.
A parallel direct solution of the distributed coarse-grid problem can be imple-
mented easily using existing libraries. Although the convergence of such schemes
appears not to be mitigated by the parallelisation, the parallel performance can
be worse than that of the corresponding agglomeration schemes since the direct
solution of the coarse-grid system takes up to one order of magnitude longer than
the equivalent computational work by the agglomeration scheme. This is true
on common cluster hardware with reasonably fast network interconnect and, to
a larger extend, on distributed systems with slower network interconnect.
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Abstract. In this paper several new approaches to parallelize multi-
objective optimization algorithm NSGA-II are proposed, theoretically
justified and experimentally evaluated. The proposed strategies are based
on the optimization and parallelization of the Pareto ranking part of the
algorithm NSGA-II. The speed-up of the proposed strategies have been
experimentally investigated and compared with each other as well as
with other frequently used strategy on up to 64 processors.
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1 Introduction

There are a lot of fields of industry and science which deal with complex op-
timization problems. Many of these problems have more than one objective
function to optimize, and different functions are often concurrent. Optimization
problems of this kind are called multi-objective optimization problems (MOPs).

In general a d -dimensional MOP with m objectives

f1(x), f2(x), . . . , fm(x)

is to find a vector
x∗ = (x∗

1, x
∗
2, . . . , x

∗
d)

which minimizes (maximizes) the objective vector

F(x) = (f1(x), f2(x), . . . , fm(x)).

Here x = (x1, x2, . . . , xd) is the decision vector. Without reducing generality we
will deal with MOPs which aim to minimize the objective vector since maxi-
mization problem can be easily transformed to minimization problem. In most
of the cases it is impossible to minimize all objectives, so there is no single opti-
mal solution to a given MOP, but a set of concurrent solutions exists, known as
Pareto set. The set of all possible decision vectors satisfying the constraints is
known as a search space [1]. We denote it by X. The set of all possible objective
vectors is called an objective space.
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2 Definitions and Notations

2.1 Dominance Relation

Two different decision vectors a and b from the search space X can be related to
each other in a couple of ways: either one dominates the other or none of them
is dominated by the other [2].

Definition. The decision vector a dominates the decision vector b (a # b) if [2]:

fi(a) ≤ fi(b), ∀i = 1, 2, . . . ,m

and at least one j ∈ (1, 2, . . . ,m) exists such that

fj(a) < fj(b).

Definition. The decision vector a weakly dominates the decision vector
b (a $ b) if

fi(a) ≤ fi(b), ∀i = 1, 2, . . . ,m.

Definition. The decision vector a is called a dominator of the decision vector
b if a # b.

Definition. The decision vector a is said to be indifferent to the decision vector
b (a�b) if

a � b and b � a.

The indifference relation is commutative – if a � b then b � a.
The dominance relation has the following properties [3]:

(i) reflexivity: x $ x,
(ii) antisymmetry: x $ y and y $ x if and only if x=y,

(iii) transitivity: if x $ y and y $ z then x $ z.

2.2 Pareto Ranking

In multi-objective optimization, each decision vector x is characterized by a vec-
tor of objective values F(x). Many algorithms cannot work with such a vector
information and need scalar fitness values instead. The fitness values are given
by a fitness function – a type of objective function that prescribes the optimality
of a particular decision vector so that the decision vector may be ranked against
all the others. An ideal fitness function correlates closely with the goal of opti-
mization. One of the most used methods to assign fitness values to a particular
decision vector is to count the number of its dominators. The function values
assigned in this fashion are called Pareto ranks and the assignment procedure –
Pareto ranking. A lower Pareto rank means a better solution fitness and the best
possible Pareto rank is 0 which can be assigned to a decision vector from the
Pareto set.
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Proposition. If the decision vector x dominates the decision vector y then the
Pareto rank of x is strictly smaller than the Pareto rank of y.

The proof follows from the transitivity property of the dominance relation.
Let’s suppose a set A consisting of N decision vectors. The Pareto ranking

procedure of the set A requires to pick the first vector and calculate how many
vectors dominate it, then to choose the second one, to do the same and so on.
This procedure requires N(N − 1) Pareto comparisons.

Let the set A is divided into two sets A1 and A2, and dom(A1 ⊗A2) denotes
the procedure of counting how many dominators each vector from the set A1

has in the set A2. Then the set A can be Pareto ranked by carrying out four
procedures: dom(A1 ⊗ A2), dom(A2 ⊗ A1), dom(A1 ⊗ A1) and dom(A2 ⊗ A2).
This approach has the same complexity N(N − 1).

3 NSGA-II Algorithm

The Non-dominated Sorting Genetic Algorithm (NSGA) was proposed by Srini-
vas and Deb [4], and was one of the first Multi-Objective Evolutionary (MOE)
algorithms which has been applied to various problems [5,6]. An updated version
of the algorithm (NSGA-II) was proposed by Deb et al. in [7].

NSGA-II is a genetic algorithm based on obtaining a new child population Q
from the parent population P by applying genetic operators (selection, crossover
and mutation). Typically both populations P and Q have the same size N . Both
populations P and Q are merged into one population R (of the size 2N), which
is Pareto ranked and reduced to the size N by removing vectors with the largest
Pareto ranks. In the case of selecting decision vectors with the same rank, a den-
sity estimation based on measuring the crowding distance [7] to the surrounding
vectors of the same rank is used to choose the most promising solutions [8]. The
reduced population R is used as a parent population P for the next generation.
The NSGA-II algorithm is given in Algorithm 1.

Algorithm 1

begin

Initialize(P);

gen = 0; // Reset counter of generations

while (gen < maxgen)

Q = MakeNewPop(P); // Create Q using P elements

R = Q + P; // Merge P and Q into one R

ParetoRanking(R); // Count dominators of R elements

P = Reduce(R, N); // Reduce R and save as P

gen = gen + 1; // Increase generations counter

end;

end.
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4 Parallelization of the NSGA-II Algorithm

4.1 Parallel Computing

Parallel computing deals with a principle that problems requiring a lot of com-
putational time can be often divided into smaller sub-problems and solved in
parallel. The main goal of the parallelism is to reduce execution time of the
algorithm utilizing more computing resources.

The performance of a parallel algorithm can be measured by a speed-up of
the algorithm. The speed-up is denoted by Sp and is defined as a ratio between
execution time of the best known sequential algorithm (T0) and the execution
time of the parallel algorithm using p processors (Tp) [9]:

Sp =
T0

Tp
.

The ideal speed-up is Sp = p but it is not always possible to obtain because of
reasons such as a time spent for communication between processors or presence
of parts of the algorithm which cannot be parallelized (sequential parts). Suppose
α is the fraction of the execution time a sequential algorithm spends on non-
parallelizable parts. The Amdahl’s law [10] states that the maximum speed-up
of the parallel algorithm is

Smax =
1

α

independent of the number of processors used.

4.2 Strategies to Parallelize NSGA-II

There are some works related to parallelization of NSGA-II algorithm [11,12,13].
Most of them use master-slave strategies and parallelize function evaluations.
However the NSGA-II algorithms can be separated into 3 general parts as shown
in Fig. 1.

(1) (2) (3)

Pareto ranking
Function evaluations & Other

genetic operations

Fig. 1. The general parts of the NSGA-II algorithm

The part (1) – the evaluation of the objective functions – is frequently the
largest part of the algorithm and intrinsically parallel. So the easiest way to
parallelize the NSGA-II algorithm is to evaluate the objectives by distributing
the population among all processors and leave the parts (2) and (3) (see Fig. 1)
sequential. We denote this strategy by Strategy 1.
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This strategy is good if evaluation of objectives requires relatively large amount
of time. For example if it requires 99 % of execution time of sequential algorithm
the maximum speed-up of the parallel algorithm is 100. But if evaluations of
functions require 95 % or 90 % of the execution time the maximum speed-up of
the algorithm is respectively 20 or 10. These estimations are based on Amdahl’s
law (see Section 4.1).

Another part of the algorithm requiring relatively more computational time
is part (2) – Pareto ranking and genetic operations. Therefore optimization and
parallelization of the part (2) can increase the maximum possible speed-up of
the algorithm.

After each generation the new parent population P is created by removing a
number of the worst decision vectors. Taking into account the proposition given
in Section 2.2 and the fact that removed decision vectors have the largest Pareto
ranks, we can state that the number of dominators of the remaining vectors
cannot be changed. This imply that we do not need to perform dom(P⊗P ) in any
generation except the first. We just need to calculate dom(P ⊗Q), dom(Q⊗Q)
and dom(Q⊗P ). Doing so the number of Pareto comparisons in any generation
is reduced by N(N − 1) except the first generation which complexity does not
changes.

Taking into account this statement, we propose three strategies to parallelize
NSGA-II algorithm.

Strategy 2. The population P is sent to all processors following the scheme
shown in Fig. 2. Each processor generates child population Q of the size N/p
(where p is the number of processors), evaluates objective functions and sends
information back to the 1st processor using the corresponding scheme (Fig. 3).

Step(1) Step(2) . . . Step(log2 p)

1 → 2 1 → 3 . . . 1 → (p/2 + 1)
2 → 4 . . . 2 → (p/2 + 2)

. . . . . .

. . . (p/2) → p

Fig. 2. The scheme for distributing data among the processors

Step(1) . . . Step(log2 p-1) Step(log2 p)

(p/2 + 1) → 1 . . . 3 → 1 2 → 1
(p/2 + 2) → 2 . . . 4 → 2

. . . . . .
p → (p/2) . . .

Fig. 3. The scheme for gathering data from the processors
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In the first step each processor calculates dom(Q⊗ P ) and dom(Q⊗Q). The
respective processors send child population Q and the vector of the Pareto ranks
of its elements to the respective processors. The receiving processor saves the
received population as Q’. In each other step the remaining processors perform
dom(Q⊗Q′) and dom(Q′ ⊗Q), combine Q and Q’ into one double-size Q and
send it together with the vector of dominators following the scheme. When the
last step is performed the 1st processor additionally has to perform dom(P ⊗Q)
in order to finish the Pareto ranking. In the first step processors have to perform

N

p

(
N

p
− 1

)
+

N2

p

Pareto comparisons and send

d(N + m)

p
+

N

p

double type variables. In the second step processors have to perform

2

(
N

p

)2

Pareto comparison and send

2
d(N + m)

p
+

N

p

double type variables. In each next step the number of Pareto comparisons in-
creases 4 times and the amount of data to send – 2 times. After the final step
the 1st processor has to perform N2 Pareto comparisons.

In the whole generation processors have to perform(
N

p

)2

+
N

p
+

N2

p
+ 2

(
N

p

)2(
1 + 2 + 4 + 8 + . . . +

p2

4

)
+ N2

Pareto comparisons and send(
d (N + m) +

N

p

)
(1 + 2 + 4 + ... + log2 p)

double type variables in log2 p data sending procedures, except the first genera-
tion, while 1st processor additionally has to perform dom(P ⊗P ) which requires
N(N − 1) Pareto comparison operations.

In this strategy all the processors have to wait while the 1st processor calcu-
lates dom(P ⊗ Q) at the final step of data transfer. To avoid this we propose
Strategy 3, which enables to parallelize the latter operation, but increases the
amount of data to send.

Strategy 3. In contrast with Strategy 2, using Strategy 3 in the first step
processors additionally calculate dom(P ⊗Q). This require

N2

p
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Pareto comparisons. Although the processors have additional data (vector of N
doubles) which must be transferred to the 1st processor, however it is not nec-
essary to perform N2 Pareto comparison operations at the end of data transfer
procedure.

In both strategies described above the processors generate child sub-
populations and send them whole. At the end of generation, a part of child
population is rejected. We propose Strategy 4 which rejects some elements of
child population before the data sending procedure.

Strategy 4. Performing the procedure dom(Q ⊗ P ) in the first step of data
sending procedure, decision vectors from Q, with Pareto ranks larger than maxi-
mum Pareto rank in P , are removed. Doing so there is a probability that the size
of Q will be reduced and time required for sending populations and performing
Pareto comparisons will be reduced. Note that reducing population 2 times, the
number of required Pareto comparisons is decreased by 4 times.

5 Experimental Investigation

The strategies described in the paper have been experimentally investigated by
solving benchmark problem ZDT1 [14] with 2 objectives and 10 variables. The
size of population was 512 and the number of generations performed – 250. Ten
independent runs have been made to estimate the average time of execution. The
evaluations of functions last about 90 % of the sequential algorithm execution
time. Parallel algorithm has been executed on 2, 4, 8, 16, 32 and 64 processors
and the speed-up of the algorithm has been measured. Hardware, containing 16
Intel(R) Core(TM) i5 CPU 760 @ 2.80GHz nodes with 4 cores on each and 4GB
of RAM, has been used during experimental investigation.

The results of the experiments (Fig. 4) show that the proposed strategies give
significant affect to the speed-up of the algorithm. Using Strategy 1 the speed-up
on 64 processors was 8.86 while usage of Strategy 2, Strategy 3 and Strategy 4
increases the speed-up to respectively 12.41, 16.9 and 23.25. Reduction of child
population in Strategy 4 gives a significant advantage – the speed-up increases
by 37.2 % comparing with the the Strategy 3. The speed-up of the algorithm
using Strategy 4 has been calculated with respect to the time of the sequential
algorithm with reduction of the child population.

The influence of the time required to evaluate objectives to the speed-up of the
algorithm has been investigated by solving MOPs requiring different amount of
time to evaluate objectives. It is natural that solving MOP requiring less time to
evaluate objectives, the speed-up of the algorithm should be lower. The MOPs,
requiring about 80, 70, 60 and 50 percent of sequential algorithm execution time
to evaluate the objectives have been chosen for the further investigation. The
computations have been performed on 16 processors. The results (Fig. 5) show
that reducing the amount of time required to evaluate objectives the speed-up
decreases in the same fashion for all strategies. However if only a half of time is
utilized to evaluate objectives the proposed strategies still have positive affect
to the performance of the parallel algorithm.
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Fig. 4. The speed-up of parallel NSGA-II algorithm using different strategies

Fig. 5. The influence of the amount of time required to evaluate objectives to the
speed-up of the algorithm

The speed-up of the algorithm is

Sp =
T0

Tp
=

1

α + 1−α
p

where α is a fraction of the execution time of non-parallelized part of the se-
quential algorithm. The values of α have been estimated from the results, and
are presented in Table 1. One can see in the table that α ≈ 1−β for Strategy 1,
where β is the fraction of time spent for objective function evaluations. For the
other strategies the values of α are lower what enables increase of the speed-ups.
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Table 1. Estimated values of α

CPU time for objectives
90% 80% 70% 60% 50%

Strategy 1 0.096 0.189 0.277 0.368 0.463
Strategy 2 0.055 0.094 0.135 0.179 0.227
Strategy 3 0.032 0.050 0.070 0.095 0.117
Strategy 4 0.014 0.025 0.041 0.058 0.065

6 Conclusions

In this paper we have presented the approach to optimize the Pareto ranking in the
Non-dominated Sorting Genetic Algorithm (NSGA-II) and make the algorithm
more suitable to parallelization. Also we have presented four strategies to paral-
lelize NSGA-II algorithm – the frequently used one which parallelize the evalu-
ation of objectives and three proposed which parallelize the Pareto ranking and
optimize communication between the processors. All strategies have been experi-
mentally investigated by solving multi-objective optimization problems using up
to 64 processors. The results of the experimental investigation show that the pro-
posed strategies give positive affect to the speed-up of the algorithm – the execu-
tion time has been reduced 23.25 times. Decreasing the amount of time required
to evaluate objectives the speed-up decreases in the same fashion for all strategies
used but the proposed strategies have positive affect to the performance of the
algorithm independent of the amount of time required to evaluate objectives.
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Abstract. The implementation of multiscale numerical simulations on
heterogeneous hardware architectures is presented in the paper. The sim-
ulations are composed of coupled micro and macro scale approaches,
which are implemented by using cellular automata and finite element
method respectively. Details of both of these methods are described in
the papers as well. The simulations were performed for the problem of
material heat treatment (macro scale) with simultaneous application of
grain growth calculation (micro scale). Comparison of quantitative re-
sults obtained by using separated and coupled computing methods are
presented in form of speedup and efficiency coefficients.

Keywords: heterogeneous computing, multiscale modelling, finite ele-
ment method, cellular automata.

1 Introduction

The development of reliable material models for metal forming simulations has
been in interest of scientists for a number of years. A series of deterministic mod-
els, based either on closed form equations describing the flow stress dependence
on external variables [1], or on differential equations describing the evolution of
internal variables [2] have been published in the scientific literature. These mod-
els are commonly used in simulations for the majority of metal forming processes
and give reasonably accurate results in macro scale. However, they fail to de-
scribe the material behaviour when some stochastic material phenomena occur
in micro scale. These phenomena are closely coupled and depend on each other
giving strong impact to higher scales. Therefore, multiscale modelling methods
are introduced to take into account material behaviour in many scales simul-
taneously. The multiscale modelling of material behaviour, during processes of
heating and cooling or under loading conditions, is a highly sophisticated numer-
ical problem. It requires many advanced algorithms solving a thermo-mechanical
issues in macro scale as well as algorithms simulating undergoing processes of
microstructure evolution e.g. strain localization [3], recrystallization [4] or phase
transformation [5] occurring in micro and nano scales. In many cases the cou-
pled Cellular Automata (CA) and Finite Element (FE) methods, as one com-
plex CAFE approach, are applied for numerical simulations [6], where the CA
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and FE methods are used in micro and macro scales respectively. However, the
mentioned methods are very time and memory consuming, which is caused by
detailed material representation and iterative character of calculations in both
scales. Many improvements were proposed to parallelize this computational pro-
cess [7,8]. A reliable review on efficient parallelization of FE is also presented in
[9]. Nevertheless, the most of the approaches, published in recent literature, solve
the computational problems in each scale separately and none of these methods
analyses the multiscale computing as one complex approach. On the other hand,
the recent trend on green computing [10], which aims at maximizing comput-
ing efficiency with simultaneous energy saving, forces to create new advanced
parallel solutions, which are based on heterogeneous hardware architectures like
CPU-GPU, Cell Broadband Engine Architecture or Field Programmable Gate
Arrays [11]. Thus, great majority of recent implementations of various numerical
algorithms is based on OpenCL standard [12]. This paper presents the details
of CAFE approach implemented using OpenCL standard as well. The following
section contains CA module description including architecture, kernel generation
and obtained results. The third section presents finite element method imple-
mentation, and participation of host and OpenCL device in calculations. The
combination of both of these methods and obtained quantitative results from
multiscale computing are presented in fourth section.

2 Realization of CA Module

CA module is responsible for numerical simulations of material phenomena in
microscale. The architecture of this part of the software was prepared to be used
as standalone computer system as well as an element of multiscale simulations
coupled with FEM module. Moreover, the usage of this module as programming
framework [13] was a very important aspect, which influenced the final structure
of classes and their functionality.

2.1 Functional Assumptions

CA are a powerful tool for solving sophisticated mathematical problems by
defining simple variables and rules applied on a space of neighbouring elements.
Moreover, algorithms based on CA are usually very well parallelized as Single
Program Multiple Data (SPMD) according to Flynn’s taxonomy. This makes
them acceptable for processing units composed of many computational cores
with shared access to global memory. Similar situation takes place in the case
of modelling of material phenomena, where a CA space represents discretized
material sample and particular models are described as a set of rules combined
in form of one program. Such program is performed as a single thread repre-
senting behaviour of one cell, which uses its own variables and data possessed
by its neighbours. The package of these data has to be synchronized with other
threads. That is why the logic and structure of the CA module are so crucial in
planning of device resources usage. The second reason is the bottleneck related
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to data transfer between host and OpenCL device, which is associated with a
significant time delay, influencing the efficiency of analysed approach. However,
in this paper the data transfers are not taken into account during assessment of
proposed approach efficiency.

2.2 Implementation Details

The architecture of CA classes is divided according to their functionality into
classes dedicated to constructing variables and rules of automaton, supporting
OpenCL kernels generation and managing the usage of devices memory. This
approach allows material engineers to define the algorithms modelling material
behaviour in micro scale and relieves them of thinking about efficiency, paral-
lelization and hardware architecture. This functionality is covered by Memory-
Manager class, which responses for organizing device resources and rewriting of
memory space for data arrays. These arrays originate from one of the OpenCL
constraints allowing the upstreaming of data to the device exclusively in form
of primitive types or arrays of primitive types. This restriction forces to rewrite
the object-oriented model into arrays of integers or floats. The classes within
the framework allow also to avoid the redundancy of data on different levels of
material description. Similar solution is presented in other Authors’ work [13],
where CA framework for multicore CPU processors is proposed). The assumed
OpenCL standard forces kernels to be implemented in specific language based on
C99. The DeviceRule class, which extends the Rule class is responsible for con-
vertion of C++ into C99 implementation, providing a bridge between a model
and a final code for heterogeneous hardware architectures. KernelManager class
combines all converted codes into a kernel, compile it and finally deploy it on
target OpenCL device.

2.3 Model Implementation and Kernel Creation

For the purposes of this paper the phenomenon of simple metallic material grains
growth in high temperatures was selected. It assumes that during heating of
material in high temperatures, particular grains inside material microstructure
change their volume dependently on current temperature and a curvature of
grain boundary. This phenomenon is reflected in CA rules by introducing the
probability of boundary motion for each cell using the following equation:

p = e
Qb
TR

k

kmax
(1)

where R - the universal gas constant, T - a current temperature, Qb - a boundary
diffusion activation energy, kmax - number of cells belonging to different grain,
k - number of neighbours. This material behaviour is very well known by scien-
tists, thus, it can be easily implemented and verified, offering reliable qualitative
and quantitative results [14]. The source codes listed and described in this sec-
tion present examples of implementation of kernel generation for this particular
model.
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Listing 1. The generated kernel of grain growth

#define NUM_CELL_REALS 1

#define NUM_GRAIN_INTS 5

#define DIMENSION 2

#define X_SIZE 1000

#define NUMBER_OF_CELLS 1000000

// random generator [15]

rand = MWC64X_NextUint(&rng);

//temperature

float Tem = 273.15 + T[nr];

// grain boundary mobility

float m = exp(-1 * (float)QB / (R * Tem));

// grain growth condition

if((float)( 20.0 * m * ((float)ngr_s / 9.0)) > rand)

GRAIN_W(gx, gy) = nr + 1;

else

GRAIN_W(gx, gy) = GRAIN(gx, gy);

The creation of the model begins from a definition of CA space parameters,
number of grains and initial values of internal variables. The process of the
initialization is held in the InitEvent, which is followed by specification of the
neighbourhood scheme. Then, the constructor of DeviceRule class is activated
to convert the C++ and pseudo codes model into OpenCL kernel (listing 1).
This kernel is the most essential part of computing process.

2.4 Performance

The specific character of the CA algorithms, including large number of condi-
tional statements as well as probabilistic dependencies between cells, makes it
almost impossible to reliably estimate performance in Gflops. Therefore, speedup
and efficiency were estimated on the basis of time measurements, which do not
include transfer of data from host to device memory. However, times of internal
data transfer from global to local memory of the device are included in this anal-
ysis, which for two dimensional memory allocation (in case of CA space) have
huge impact on final results (table1).

The calculations were performed on NVIDIA GTS 250 with 16 multiproces-
sors, 8 streaming processors (SP) each. The presented differences in time results
for the same size of local memory, but different x and y dimensions, is probably
caused by specific data alignment in global device memory. Nevertheless, this
conclusion is not confirmed directly. The obtained speedup and efficiency are
presented in figure 1.
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Table 1. Time of calculations for Grain Growth algorithm for 1000x1000 CA space

Local Size Time (s) Best time (s)

1x1 212.20 7212.20

1x2, 2x1 147.09, 194.93 147.09

1x4, 4x1, 2x2 180.74, 96.06, 138.07 96.09

1x8, 8x1, 2x4, 4x2 114.26, 58.66, 92.93, 131.97 58.66

2x8, 8x2, 4x4 57.91, 79.35, 87.84 57.91

4x8, 8x4 56.54, 53.16 53.16

8x8 33.79 33.79

Fig. 1. Estimated speedup and efficiency of OpenCL based CA module

3 Realization of FE Module

3.1 Problem Definition

Heat transfer problem was selected as an example of macro scale problem, which
influences other scales. It is solved by using the Finite Element Method. Dis-
tributed characteristics of temperature fields in transient form are obtained by
solving linear systems of partial differential equations:

[H ] {T }+ [C]
∂

∂t
{T }+ {P} = 0 (2)

where [H ] - heat conductivity matrix, [C] - heat capacity matrix, {P} - heat load
vector, {T } - nodal temperatures vector, t - time. The analysis of temperature
field was performed with 8-nodes square elements and integration scheme based
on 9-point Gaussian quadrature. Heat load vector, matrix capacity and thermal
conductivity matrices are defined by the following equations:

[H ] =

∫
v

k

((
∂{N}
∂x

)(
∂{N}
∂x

)T

+

(
∂{N}
∂y

)(
∂{N}
∂y

)T
)
dV +

∫
s

α{N}{N}T dS
(3)

where k is a conductivity coefficient, N - matrix of shape functions, α - convection
coefficient.
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[C] =

∫
v

cρ{N}{N}TdV (4)

where c is a specific heat, ρ - material density.

{P} =

∫
s

(−αT∞ + q) {N}dS (5)

where T∞ in an ambient temperature and q is a heat flux. Values of each ele-
ment of local matrices are placed in the appropriate places of global system of
equations. This procedure is performed in accordance to the number of nodes
in the corresponding element. Obtained sparse and symmetric systems of linear
equations can be efficiently solved using conjugate gradient method.

3.2 Implementation Details

The main workflow of FE module is presented in figure 2. All operations related
to FE mesh generation, pre-processing activities and assembly of the process are
performed on host side.

Fig. 2. The main workflow of FE module

The model does not implement grid deformation, which avoids necessity of
mesh refinement during calculations. This assumption allows single allocation
of an OpenCL device memory for sparse linear system. The Compressed Row
Storage (CRS) algorithm is applied to reduce the space held by the data and,
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simultaneously, to optimize a time required for data transfer between a host and
a device, being the key issue for gaining best performance. Gaussian quadrature
used to obtain components of the element’s matrices as well as the assembly of
global systems are performed on OpenCL device. Heterogeneous nature of the
model was obtained by controlling the flow of data by the host, and leaving
all of the numerical operations for OpenCL device. The necessary mechanisms
associated with memory management, matrix compression and the solution of
equations are provided by Vienna Computing Library (ViennaCL) engine, which
is a scientific computing library written in C++ and based on OpenCL standard,
allowing high-level access to the vast computing resources available on parallel
hardware architectures. Moreover, it supports common linear algebra operations
(BLAS levels 1, 2 and 3) and solving of large systems of equations by means of
iterative methods with optional preconditioner.

3.3 Performance

The tests were performed using NVIDIA GTX 260 for different values of global
size parameter, determining number of cores active during the calculations. Ob-
tained results shown satisfactory parallelization (figure 3) for this type of sophis-
ticated numerical problems. Nevertheless, the overall performance not exceeding
2GFlops requires further improvements and optimization of source codes.

Fig. 3. Estimated speedup and efficiency of OpenCL based FE module

4 Coupled CAFE Modelling

The CA and FE modules presented in previous sections were coupled together
to implement complex multiscale approach. The main workflow (figure 4) as-
sumes separated initialization of CA and FE. This process is followed by the
performance of macro scale calculations, which is justified by the behavior of
a real material, where microstructural phenomena are induced by macro scale
temperatures.

The main iteration of CAFE consists of subsequent performance of FE and
CA calculations, where FE influences CA by passing temperature values and CA
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Fig. 4. The main workflow of coupled CAFE approach

influences FE by returning modified coefficients of material thermal conductiv-
ity. All computational issues are performed on OpenCL device, while a host is
responsible for post-processing, visualization and analysis of results.

5 Results

The obtained qualitative results from coupled CAFE model were verified and
high reliability of implemented method was achieved. Therefore, in this section
only quantitative results (figure 5) are discussed. Two different graphic card
i.e. GTS250 and GTX260 were used for CA and FE separately to check the
influence of the device architecture on final speedup and efficiency. It occurred
that CA obtained better results on GTS250 and FE on GTX260. This is the
initial step to further investigation on determination of the best architecture for
given problem. The CAFE approach was tested on both devices as well, however
it obtained better efficiency on GTX260 (figure 5).

The measured timings shown that, besides computing procedures, the data
transfers between local and global device memories take a part in final efficiency.
However, the major influence on CAFE speedup and efficiency is contributed by
FE module, which is a result of very good parallelization of the main solver. The
applied FE solver achieves maximum speedup at 11.22 (this is only the feature of
Conjugate Gradient solver), while the same coefficient in the case of CA model
does not exceeded 6.3 with 0.1 efficiency. Therefore, the next step of research
will be focused on localization of all bottlenecks in the implemented software by
analysis of isoefficiency.
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Fig. 5. Estimated speedup and efficiency of OpenCL based CAFE

6 Conclusions

The OpenCL implementation of coupled CA and FE solvers was presented in
the paper. The qualitative results of material phenomena modelling proved high
reliability in comparison to results of real experiments. The obtained quantitative
results (timings, speedups and efficiencies) lead to two main conclusions:

– Coupled CAFE approach can be implemented on heterogeneous hardware
architectures, like GPGPUs, offering satisfactory performance, especially in
comparison to conventional CPU implementations.

– The definition of x and y local memory sizes in two dimensional problem (CA
model) influences times of performance, which may be caused by specific
alignment of data in a global memory and accompanying latencies in data
transfer.

The next step of the development of proposed approach assumes also addition of
nano scale modelling method as well as an attempt to estimation of performance
in GFlops.
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Abstract. EULAG (Eulerian/semi-Lagrangian fluid solver) is an estab-
lished computational model developed by the group headed by Piotr K.
Smolarkiewicz for simulating thermo-fluid flows across a wide range of
scales and physical scenarios.

In this paper we focus on development of the most time-consuming cal-
culations of the EULAG model, which is multidimensional positive defi-
nite advection transport algorithm (MPDATA). Our work consists of two
parts. The first part is based on the GPU parallelization using ATI Radeon
HD 5870 GPU, NVIDIA Tesla C1060 GPU, and Fermi based NVIDIA
Tesla M2070-Q, while the second one assumes the multicore CPU paral-
lelization using AMD Phenom II X6 CPU, and Intel Xeon E3-1200 CPU
with Sandy Bridge architecture. In our work, we use such standards for
multicore and GPGPU programming as OpenCL and OpenMP.

The GPU parallelization is based on decomposition of the algorithm
into several smaller tasks called kernels. They are executed in a FIFO or-
der corresponding to the dependency tree expressing data dependencies
between kernels. To optimize performance of the resulting implemen-
tation, we utilize the extensive vectorization of each kernel, as well as
overlapping of data transfer with computations.

At the same time, when considering CPU parallelization we focus on
multicore processing, vectorization and cache reusing. To achieve high ef-
ficiency of computations, the SIMD processing is applied using standard
SSE and new AVX extensions. In this paper we provide performance
analysis based on the Roofline Model, which shows inherent hardware
limitations for MPDATA, as well as potential benefit and priority of op-
timizations. In order to alleviate memory bottleneck and improve efficient
cache reusing, we propose to use the loop tiling technique.

1 Introduction

EULAG [3,5] (Eulerian/semi-Lagrangian fluid solver) is an established compu-
tational model developed by the group headed by Piotr K. Smolarkiewicz for
simulating thermo-fluid flows across a wide range of scales and physical scenar-
ios, such as numerical weather and climate prediction. EULAG is a representative
of the class of anelastic hydrodynamic models.

Preliminary studies of porting anelastic numerical models to modern archi-
tectures, including GPUs, were carried out in work [10]. Selected parts of this

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 391–400, 2012.
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model were ported to ATI Radeon HD 5870 and NVIDIA Tesla C1060 cards.
The achieved performance results show the potential gains in computing perfor-
mance on modern computer architectures. The problem of adapting the EULAG
model to modern hardware architectures was also brought up in [4]. The re-
sults achieved for porting selected parts of EULAG to NVIDIA GPUs, using an
automatic approach as well, unveil potential in running scientific applications,
including anelastic numerical models, on novel hardware architectures.

In this paper, we focus on parallelization of the most time-consuming algo-
rithm of the EULAG model, which is MPDATA [10]. Our work consists of two
parts. The first part is based on the GPU parallelization using NVIDIA and AMD
architectures, while the second one assumes the multicore CPU implementation.
In our work, we use such standards for multicore and GPGPU programming as
OpenCL and OpenMP.

2 Architecture Overview

Our research is based on two kind of architectures. The first one are GPUs, while
the second one are CPUs. We focus only on features of these architecture which
are used in our work.

2.1 Architecture of GPUs

Our research is focused on NVIDIA Tesla C1060 and M2070-Q, as well as ATI
Radeon HD 5870.

Architecture of NVIDIA Tesla. NVIDIA Tesla C1060 [6] includes 10 Thread
Processing Clusters (TPC). Every TPC contains 3 compute units. Each compute
unit consists of 8 processing elements, and 16KB of local memory. It gives a total
number of 240 available processing elements with a clock rate of 1296 MHz. It
provides a peak performance of 240∗1.296∗2 = 0.622 Tflop/s in single precision.
This graphics accelerator card includes 4 GB of global memory with the peak
bandwidth of 102.4 GB/s.

NVIDIA Tesla M2070-Q [6] is based on Fermi architecture, that supports fully
coherent L2 cache. It contains 448 available processing elements with a clock rate
of 1147 MHz, so the peak performance is 448 ∗ 1.147 ∗ 2 = 1.03 Tflop/s in single
precision. This graphics accelerator card includes 6 GB of global memory with
the peak bandwidth of 148.0 GB/s.

Architecture of ATI Radeon HD 5870. ATI Radeon HD 5870 [2] includes 20
compute units. Each compute unit consists of 16 processing elements, and 32KB
of local memory. Each of the processing element is built of 5 streaming processors.
It gives a total number of 1600 available streaming processors with a clock rate
of 850 MHz, and provides the peak performance of 1600∗0.850∗2 = 2.72 Tflop/s
in single precision. This accelerator card includes only 1 GB of global memory
with the peak bandwidth of 153.6 GB/s.
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2.2 Architecture of CPUs

Our research is based on AMD Phenom II X6 CPU, and Intel Xeon E3-1200
CPU.

Architecture of AMD Phenom II X6. AMD Phenom II X6 CPU [1] con-
tains of six cores with clock frequency of 3.2GHz. This CPU supports Streaming
SIMD Extensions (SSE), which can greatly increase performance when exactly
the same operations are to be performed on multiple data objects. Therefore,
the peak performance of AMD Phenom II X6 processor is 3.2 ∗ 6 ∗ 4 ∗ 2 = 153.6
Gflop/s in single precision with SSE enabled, and 3.2 ∗ 4 ∗ 2 = 38.4 Gflop/s
without SSE.

Architecture of Intel Xeon E3-1200. Intel Xeon E3-1200 [8] is based on
Sandy Bridge architecture, which is the first implementation of Intel Advanced
Vector Extensions (AVX). This processor includes four cores with clock fre-
quency of 3.4GHz. For Intel Xeon E3-1200 processor with AVX enabled, the
theoretical performance is 3.4 ∗ 4 ∗ 8 ∗ 2 = 217.6 Gflop/s in single precision, and
only 3.4 ∗ 4 ∗ 2 = 27.2 Gflop/s without AVX.

Intel Advanced Vector Extensions Overview. Before Sandy Bridge Intel
microarchitecture, the SIMD vectorization was provided by the Intel Streaming
SIMD Extensions (Intel SSE). Intel SSE instructions use eight 128-bit registers
where uniform type data can be packed, and enable operating on 4 float elements
per iteration instead of a single element. The Intel AVX [8] offers a significant
increase in the floating-point performance over previous generations of 128-bit
SIMD instruction set extensions. AVX increases the number of registers from 8
to 16 and width of the registers from 128 bits to 256 bits. The new ability to
work with 256-bit vectors enables operating on 8 float or 4 double elements per
iteration, instead of a single element.

3 The Scope of Our Research on the EULAG Model

One of the most time-consuming calculations [10] of the EULAG model is multi-
dimensional positive definite advection transport algorithm (MPDATA). In this
work, we take into account the linear version of MPDATA, which is based on
the following equation [7]:

Ψn+1
i = Ψn

i −
δt

νi

l(i)∑
j=1

F⊥
j Sj , (1)

where Ψ is a nondiffusive scalar field, Sj refers both to the face itself and its
surface area, νi is the volume of the cell containing vertex i, while F⊥

j is inter-
preted as the mean normal flux through the cell face Sj averaged over temporal
increment δt.
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The approximation of surface area S begins with specifying fluxes F⊥
j :

F⊥
j = 0.5(v⊥j + |v⊥j |)Ψn

i + 0.5(v⊥j − |v⊥j |)Ψn
j , (2)

where the advective normal velocity v⊥j is evaluated at the face Sj , and assumes
the following form:

v⊥j = Sj · 0.5[vi + vj ]. (3)

4 GPU Parallelization

The idea of GPU parallelization is based on decomposition of the MPDATA
algorithm into blocks. Each block represents a part (submatrix) of all matrices,
which are computed by one GPU task. Every task is a sequence of computational
kernels which compute different parts of the algorithm.

In our approach, we distinguish the following levels of GPU parallelization:

– MPDATA task decomposition into kernels;
– overlapping of data transfer with computations;
– computations on GPU excecuted by GPU threads (work-items in OpenCL

terminology).

Each MPDATA task is decomposed into 15 kernels, based on synchronization
points and data dependencies. Each kernel computes a different part of MPDATA,
and is configured in individual way considering the following OpenCL parame-
ters:

– number of global work-items;
– number of local work-items;
– number of dimensions of work-group;
– vector size.

These kernels are executed in a FIFO order corresponding to the dependency tree
expressing data dependencies between kernels. Fig. 1 shows the data dependency
tree of MPDATA.

One of the most important feature of modern GPU architecture is possibility
of overlapping data transfers with computations. It can be achieved by the stream
processing. In our approach, each stream consists of a sequence of following
instructions:

– sending data blocks from host memory to GPU global memory;
– computations performed by kernels;
– receiving data blocks from GPU global memory to host memory.

An example of stream processing on GPU that support overlapping of data
transfers with computations is shown in Fig. 2. In the ideal case (with no time
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Fig. 1. Data dependency tree of MPDATA for GPU parallelization

delay of communication), we can observe that the more number of streams the
more performance gaining can be achieved. Taking into account the time delay
of communication, the maximum performance of our parallelization is achieved
using four streams. This value was evaluated empirically.

Another level of parallelization are GPU threads called work-items. MPDATA
is executed by work-items that are grouped in work-groups. In our approach, we
use 1- or 2-dimensional work-groups. One of the biggest challenge here is provid-
ing the independence between work-groups because there is no synchronization
mechanisms between them.

5 Performance Analysis for GPU Parallelization

The algorithm was tested on the NVIDIA Tesla C1060 card, ATI Radeon HD
5870 and NVIDIA Tesla M2070Q. Table 1 shows the performance results for the
linear version of MPDATA with mesh of size 1024x1024, for 100 timesteps. As
we can see, 70.3% of data transfer is overlapped with 38.7% of computations on
C1060, while only 17.3% of data transfer is overlapped with computations on
ATI. The overall time of MPDATA execution is shorter by 25% on ATI than
on C1060, and by 29% on M2070Q than on ATI. The kernels time is shorter by
55% on ATI than on C1060, and by 14% on M2070Q than on ATI.
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Fig. 2. Overlapping of data transfer with computations

Table 1. Performance results for GPU parallelization of linear version of MPDATA

NVIDIA Tesla
C1060

ATI Radeon HD
5870

NVIDIA Tesla
M2070Q

Streams count 1 2 4 1 2 4 1 2 4

Exec. time [s] 0.505 0.454 0.445 0.354 0.345 0.336 0.292 0.269 0.239

Kernels time [%] 63.6 63.2 64.5 40.8 44.8 69.8 43 43.4 46.5

Comm. time [%] 36.4 38.8 35.5 59.2 55.1 30.2 57 56.6 53.5

Overlapping kern.
and comm. [%]

0 13.0 24.9 0 2.6 5.4 0 8.9 19.4

Kernel overlapped
[%]

0 21.2 38.7 0 4.7 7.7 0 20.3 41.6

Communication
overlapped [%]

0 33.5 70.3 0 4.2 17.8 0 15.6 36.2

6 CPU Parallelization

In this paper, when considering the CPU parallelization we focus on multi-
core processing, vectorization and cache reusing. It is necessary to provide the
load balancing of computations between available cores. For this aim, the whole
problem is divided into six and four equal chunks for AMD and Intel CPUs,
respectively. To achieve high efficiency of computations, it is required to apply
the SIMD processing and provide a suitable data allocation in the main memory.
The SIMD processing is applied manually, using the standard SSE and new AVX
extensions. Aligning data to vector lengths is always recommended. When using
SSE instructions, data should be aligned to 16 bytes. Similiarly, to achieve best
results using Intel AVX instructions on 32-byte vectors, data should be aligned
to 32 bytes. Therefore, each row of matrices is aligned to 16 and 32 bytes for
SSE and AVX, respectively.

Fig. 3 shows the data dependency tree of MPDATA for the CPU implementa-
tion. The linear version of MPDATA corresponds to the first three stages marked



Accelerate Computations in the EULAG Model 397

in Fig. 3 with f1, f2, and x’, which conventionally are computed as the following
sequence of steps:

f1: loading data; serial calculations; saving results;

f2: loading data; serial calculations; saving results;

x’: loading data; serial calculations; saving results.

In order to exploit parallel features of CPU architecture, another approach is
considered, which assumes the following steps:

f1: data partitioning; loading data; SIMD calc.; saving results;

f2: data partitioning; loading data; SIMD calc.; saving results;

x’: data partitioning; loading data; SIMD calc.; saving results.

Fig. 3. Data dependency tree of MPDATA for CPU parallelizatoin

7 Performance Analysis for CPU Parallelization Using
the Roofline Model

The algorithm was implemented using the OpenMP programming standard, as
well as SSE and AVX extensions on Intel Xeon E3-1200 and AMD Phenom II
X6. Table 2 shows the performance results of the linear version of MPDATA
with mesh of size 5120x5120. As we can see, the speedup is only about 2, even
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when using multicore and SIMD processing. In theory, the features of these
architectures should allow for achieving maximum speedups of 32 and 24 for Intel
and AMD CPUs, respectively. Therefore, we decided to use the Roofline Model
[9] to identify bottlenecks of implementing MPDATA on these architectures.

Table 2. Performance results for standard approach of MPDATA

Mesh size 5120x5120 Intel Xeon E3-1200
(4 cores + AVX)

AMD Phenom II X6
(6 cores + SSE)

time [s] speedup time [s] speedup

1 core without SIMD 0.16 - 0.21 -

multicore without SIMD 0.077 2.07 0.11 1.9

1 core with SIMD 0.079 2.02 0.16 1.3

multicore with SIMD 0.074 2.16 0.10 2.1

The Roofline Model shows inherent hardware limitations for a given kernel,
as well as potential benefit and priority of optimizations. It relates processor
performance to memory traffic. The model is based on the operational inten-
sity parameter Q meaning the amount of operations per byte of DRAM traffic
(flop/byte). The attainable performance Ra (flop/s) is then upper bounded by
both the peak performance Rmax (flop/s), and the product of the peak memory
bandwidth Bmax (byte/s), and the operational intensity Q:

Ra = min{Rmax, Bmax ∗Q} [flop/s] . (4)

Fig. 4 presents performance analysis for Intel Xeon E3 1270 CPU using the
Roofline Model. For stages f1, f2 and x’, the operation intensity can be expressed
as:

Q =
n ·m · 25

n · l · 4 · 11
= 0.56 [

op

byte
], (5)

where computing a problem of size n×m requires n·m·25 operations, and transfer
of 11 matrices of size n · l · 4 bytes. Consequently, the attainable performance is
only Ra = 0.56 [ op

byte ] · 21 [GB/s] = 11.7 [Gop/s] as compared to 108.8 [Gop/s]
of peak performance.

The Roofline Model shows that the memory traffic is bottleneck when imple-
menting MPDATA on multicore CPUs. To alleviate this limitation, we propose
to use the loop tiling technique as a way of providing the efficient cache reusing.
Thanks to that, partial results will be stored in cache, which reduces the mem-
ory bottleneck. This idea is presented in Fig. 5, where the size nBlockSize ×
mBlockSize of blocks has to be adjusted to the cache size.
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Fig. 4. The Roofline Model for Intel Xeon E3 1270

for n
nBlockSize

tiles //i dimension

for l
mBlockSize

tiles //j dimension

MPDATA block(...) {
loading data from main memory to cache;
stage 1 : parallel computations;
saving partial results in cache;
stage 2 : parallel computations;
saving partial results in cache;
(...)
saving final results in main memory for each block;

}

Fig. 5. The idea of block version of MPDATA

8 Conclusions and Future Work

The heterogeneous GPGPU computing is a promising approach for increasing
performance of numerical simulations of geophysical flows using the EULAG
model. Our implementation supports multiple streams processing, which allows
for overlapping data transfer with computations, as well as provides a significant
reduction in the use of GPU global memory space. The MPDATA task decom-
position allows for avoiding dependencies between work-groups. To achieve high
efficiency of computations, it is required to apply the SIMD processing using
dynamic size of vector.

The vector processing using the AVX extension allows for significant in-
crease of CPU performance. The standard approach does not give a high perfor-
mance. The obtained speedup is only about 2, even when using multicore and
SIMD processing. Therefore, the performance analysis is provided. The Roofline
Model shows that the memory traffic is bottleneck for the standard approach
to MPDATA implemented on CPU. The loop tiling allows for efficient cache
reusing to alleviate memory bottleneck. The block version of MPDATA requires
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additional calculations for each block, however, this overhead can be reduced by
storing partial results in cache.

Our parallelization of MPDATA is still under development. One of leading
approaches is using the autotuning technique which allows for algorithm self-
adapting to properties of a system architecture. The final result of our work will
be adaptation of MPDATA to hybrid architectures with CPUs and GPUs. In
this case, the first challenge is to provide high performance for each system’s
hybrid component, taking into account their properties. The second challenge
concerns data partitioning and load balancing across heterogeneous resources.
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Abstract. A novel parallel implementation of hybrid DNS (Direct Nu-
merical Simulation) code for simulating collision-coalescence of aerody-
namically interacting particles in a turbulent flow has been developed.
An important application of this code is to quantify turbulent collision-
coalescence rate of cloud droplets, relevant to warm rain formation,
under physically realistic conditions. The code enables performing high-
resolution DNS of turbulent collisions so the simulation results can be
used to begin addressing the question of Reynolds number dependence
of pair and collision statistics. The new implementation is based on MPI
(Message Passing Interface) library, and thus the code can run on com-
puters with distributed memory. This development enables to conduct
hybrid DNS with flow field solved at grid resolutions up to 5123 while
simultaneously track up to several million aerodynamically-interacting
droplets. In this paper we discuss key elements of the MPI implementa-
tion and present preliminary results from the high resolution simulations.
The key conclusion is that, for small cloud droplets, the results on pair
statistics and collision kernel appear to reach their saturation values as
the flow Reynolds number is increased.

1 Introduction

Turbulent collision-coalescence of cloud droplets is a necessary step for warm
rain initiation and development [19]. Rain drops are initiated and further grow
in size primarily by colliding with cloud droplets that result from water vapor
condensation on cloud condensation nuclei. The small size and small inertial re-
sponse time of cloud droplets imply that pair statistics (i.e. radial distribution
function RDF or droplet relative velocity) relevant to collision-coalescence are
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mainly determined by dissipation-range turbulence dynamics, making direct nu-
merical simulation [2,17] a meaningful approach for this particular application.
Due to the computational requirements, the domain size of DNS is typically in
the range of 10 cm to 1 m scale only. Such a domain covers the flow dissipation
range but an insufficient inertial subrange. As droplet size is increased, some
inertial subrange scales of fluid motion can also contribute to the pair statistics.
It is thus desirable to systematically increase the range of flow scales covered in
DNS and consequently the computational domain size [1] in order to fully simu-
late the dynamic interactions of droplets and small-scale turbulence. Increase in
domain size also implies an increase in the total number of simulated droplets.
Furthermore, a long simulation or multiple realizations are often necessary to
ensure a small statistical uncertainty of the computed pair statistics.

2 Methodology

Modeling of collision-coalescence of aerodynamically interacting droplets mov-
ing in a turbulent flow is a challenging task due to high computational cost and
numerical and physical complexities. Dynamic and kinematic statistics of turbu-
lent collision of cloud droplets depend primarily on the small-scale turbulent flow
characteristics (e.g., Kolmogorov scales), settling velocity, and particle inertia.
Statistical uncertainties of these physical quantities depend on the number of
droplets followed in time and space. Assuming the dissipation-range flow is fully
resolved, increasing the domain size translates to a higher flow Reynolds num-
ber, thus making simulations closer to physical conditions in turbulent clouds.
A larger domain requires also tracking of a larger number of droplets, under the
condition of a prescribed liquid water content (LWC).

The above considerations motivated us to utilize modern supercomputers with
architecture based on distributed memory. The key question is how to take ad-
vantages of large computational resources (i.e. CPUs and memory) through ef-
ficient parallel implementation. Our hybrid DNS combines a pseudo-spectral
simulation of turbulent air flow on a fixed spatial grid (Eulerian representation)
with numerical integration of the equation of motion for freely moving droplets
(Lagrangian representation). This combination of a large number of degrees of
freedom on fixed grid points and a large number of degrees of freedom associ-
ated with moving droplets presents a significant challenge to efficient parallel
implementation, as the two representations create different data structures that
require different data distribution methods on available processors. Another chal-
lenge is that the pseudo-spectral method involves three-dimensional Fast Fourier
transform (FFT) which requires global (i.e., whole-domain) data access or global
data communication. These factors make the code communication-intensive.

Several different parallelization techniques could be considered. For the grid-
based flow simulation, the most logical method is domain decomposition. For
particle tracking, two different strategies can be considered: the first assigns
to each processor a fixed subset of particles and their movements are handled
by integrating their equations of motion; alternatively, each processor can treat
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a fixed subset of particle pairs and particle-particle interaction forces. Some
quantitative evaluation of the efficiencies of these two approaches is given in [12].

Here we present our MPI implementation based on 1D domain decomposi-
tion. This approach distributes evenly tasks associated with the computation of
the turbulent flow field. The standard pseudo-spectral method is used to inte-
grate the incompressible Navier-Stokes equations in a cubic domain with peri-
odic boundary conditions. The Navier-Stokes equations are transformed into the
spectral space where time advancement is performed. Parallel implementation
of the 3D FFT based on 1D domain decomposition was developed in [6].

Several implementation issues related to the computation of particle trajec-
tories have to be resolved. The first is the interpolation of the fluid velocity at
the location of each particle, from the velocities at the fixed grid points. The
second is the proper implementation of periodic boundary conditions for moving
particles. The third is sending and receiving particles between neighboring sub-
domains when they cross the subdomain boundaries. Another is the detection
of collision events. These aspects and their parallel implementations were care-
fully discussed in [13]. When local droplet-droplet aerodynamic interactions are
considered [2], disturbance flow around each droplet has to be considered when
advancing the location of other droplets within a given distance. This requires
a significant data communication between neighboring domains [11].

3 Simulation Results

In this section, we present results obtained from our MPI code, including char-
acteristics of the background turbulent flow field, and kinematic and dynamic
statistics related to collision-coalescence of both aerodynamically-interacting and
noninteracting droplets.

3.1 Background Turbulent Flow

First we present results of the simulated turbulent flows at different grid res-
olutions. Figure 1a shows Taylor microscale Reynolds number as a function of
the grid resolution used. The Reynolds number is defined as Rλ =

√
15u′2τk/ν

where u′ is r.m.s. fluctuation velocity in a given direction, τk is Kolmogorov
time and ν is fluid viscosity. We have utilized two different large-scale forcing
schemes, namely, a stochastic forcing [15] and a deterministic forcing [16]. The
purpose was to examine whether the collision and pair statistics are affected by
the nature of large-scale forcing scheme. Using the deterministic forcing scheme
we reached Rλ = 205.2 at grid size 5123. Isihara et al. [10] and Donzis et al. [7]
performed simulations with even larger Taylor microscale Reynolds numbers but
their simulations were restricted to the single phase flow only. Figure 1b shows
compensated energy spectra of the turbulent flows, using the stochastic forcing
scheme, at several different mesh resolutions starting from 323 up to 10243. This
plot demonstrates that the dissipation-range spectra completely overlap when
Rλ > 100. The simulated flows at 5123 and above also show that a portion of
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Fig. 1. a) Simulated flow Taylor microscale Reynolds number, Rλ, as a function of
grid resolution and b) compensated energy spectra of the turbulent flows at dif-
ferent Rλ, using a stochastic large-scale forcing scheme. The line in a) indicates
Rλ = 3N2/3 [17].[5,4,8]

the inertial sub-range scales are correctly represented, since the universal scal-
ing (the line at 1.62) for the inertial subrange observed in experiments [9,14]
is reproduced. Clearly the range of simulated flow scales increases with the flow
Reynolds number (or grid resolution).

In Table 1, we list the flow statistics and indicate the computational domain
size if a physical dissipation rate of 400 cm2s−3 is assumed in a turbulent cloud.
Also listed is the number of droplets in the computational domain for a pre-
scribed LWC at 1 g/m3, assuming that the system is bidisperse with half of the
particles are 20 µm in radius and the other half 30 µm. These cloud droplet sizes
are most relevant to warm rain initiation, as condensation and gravitational col-
lision are both slow in growing these droplets and additional mechanism such
as effects of turbulence could become critical. A larger number of droplets will
reduce statistical uncertainty. In our previous OpenMP implementation, the to-
tal number of droplets in one single simulation might be limited by the amount
of available memory. The MPI code can handle a larger number of particles
(∼ 107) without such a technical restriction.

3.2 Parallel Performance

Parallel scalability of the new MPI implementation is evaluated using two mod-
ern supercomputers, i.e., Lynx and Chimera. Lynx is a single cabinet Cray XT5m
machine installed at National Center for Atmospheric Research (USA). The com-
puter has seventy-six nodes, each with twelve processors, on two hex-core AMD
2.2 GHz Opteron chips. Chimera at the University of Delaware contains 3,168
cores which are grouped in 66 nodes. Each node has 4 CPUs AMD Opteron
6164HE 12-core running at 1.7GHz.
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Table 1. Implications of increasing DNS grid resolutions. N is domain size (number
of grid points in one direction), < ε > is the average energy dissipation rate in DNS
units and u′ is r.m.s. of fluid velocity.

N Rλ < ε > Domain size (cm) u’ Number of droplets
(400 cm2/s3) LWC = 1g/m3

Stochastic forcing scheme

32 23.5 3646 6.0 7.08 1.0 × 103

64 43.3 3529 11.9 9.61 8.0 × 103

128 74.6 3589 23.9 12.61 6.6 × 104

256 120. 3690 48.1 16.18 5.4 × 105

512 204. 3900 97.5 20.84 4.5 × 106

1024 324. 3777 193.0 26.29 3.5 × 107

Deterministic forcing scheme

256 144.9 0.2011 26.32 17.56 2.6 × 105

512 205.2 0.2146 45.02 20.90 1.2 × 106

In the first test, the influence of compiler options on multi-CPU performance
of our MPI code is investigated. The runs were conducted on Lynx employing
two popular compilers, PGI and Intel. For each series of runs, all components
of the code were compiled with the highest optimization level. The simulations
employed a grid resolution of 5123 and 5 million of non-interacting particles.
The total number of processors was fixed to 64, but the number of processes
per node changed between runs. Figure 2a shows the average wall clock time
per time step from each run. The wall clock times for the flow solver and for
tracking particles are shown separately. We conclude that the total wallclock
time with the Intel compiler is shorter by 6 do 12 % than that with the PGI
compiler. The difference also depends on the distribution of processes between
nodes and is mainly related to particle tracking. Additionally, Fig. 2a shows
that the parallel efficiency drops (by more than 50%) as the number of pro-
cesses per node is increased, due to memory bus saturation in this multi-core
system.

In the second test, the speedup factors of the MPI implementation on two dif-
ferent machines are examined. The same testing problem is used, namely, 5123

flow grid and 5 million particles. The runs on Lynx were performed for two differ-
ent numbers of processes per node, i.e., 12 which uses the least number of nodes,
and 1 which corresponds to the best performance. The run with 128 processors
on Lynx was done with 2 processes per node, to insufficient number of nodes. The
runs employing all 12 processors per node were limited to 32 processes due to
the memory constraint. Figure 2b displays results from both Lynx and Chimera.
Also shown are the scalability data of the previous OpenMP implementation
conducted on the IBM Power 575 cluster (4064 POWER6 processors running at
4.7 GHz) at NCAR.
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Fig. 2. Scalability data of the MPI code for simulations at 5123 grid size with 5 mil-
lion (non-interacting) particles. Panel a): wall clock time obtained with two different
compilers on Lynx as a function of the number of processors per node (the total num-
ber of processes is fixed to 64). Panel b): speedup factors as a function of the number
of processors. Also speedup data of previous OpenMP implementation performed on
NCAR’s Bluefire are plotted.

3.3 Kinematic and Dynamic Statistics for Droplets

Figure 3 shows single-droplet r.m.s. fluctuation velocities in horizontal a) and
vertical b) direction, respectively. Thick lines represent the theoretical prediction
from [3,18]. For vertical direction the theoretical prediction have been developed
following the procedure from [3] for the horizontal direction.

For most cases, the droplet r.m.s velocities approach the corresponding fluid
r.m.s. velocity as the droplet radius is reduced. The horizontal droplet r.m.s
velocity drops more quickly with droplet size than the vertical velocity due to the
sedimentation [18]. This difference becomes more evident at larger flow Reynolds
numbers. Here the key point is that the single-droplet r.m.s. fluctuation velocity
increases with flow Reynolds number or simulation domain size as the fluid r.m.s.
velocity increases when more larger scales are included. The usual Reynolds
number scaling is u′ ≈ 0.5vkR

0.5
λ so the single-droplet r.m.s. velocity increases

monotonically with Rλ.
Droplet-droplet pair statistics, such as radial distribution function (RDF) [20]

and radial relative velocity are kinematic parameters directely proportional colli-
sion rate. The monodisperse pair statistics of nearly touching particles are shown
in Figs. 4a and 4b, along with results at other flow Reynolds numbers. For larger
droplets, the pair statistics increase with the flow Reynolds number. However, for
any given droplet size, there is a tendency of saturation, namely, the pair statis-
tics eventually become insensitive to flow Reynolds number. This saturation for
smaller droplets is reached at smaller flow Reynolds number, since the range of flow
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a) b)

Fig. 3. Single-droplet r.m.s. fluctuation velocity in a) horizontal and b) vertical di-
rection. Dashed thin lines mark r.m.s. fluctuation velocity of the fluid. Thicker lines
represent the theoretical prediction from [3,18].

scales affecting the pair statistics is more limited for smaller droplets due to their
smaller Stokes number. For example, saturation is observed to occur at Rλ ≈ 200
for 30 µm droplets. The gradual saturation of pair and collision statistics with Rλ

is further demonstrated in Fig. 5, where the statistics are plotted as a function of
Rλ. The dynamic collision kernel and RDF of the mondisperse system both show
evidence of saturation. This observed saturation justifies the hybrid DNS approach
using flow Reynolds numbers significantly less than those in real clouds.
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Fig. 4. a) Radial distribution function and b) relative velocity at contact r = R for
monodisperse pairs as a function of droplet size for different values of Rλ
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Fig. 5. a) Monodisperse RDF as a function of Rλ for three droplet sizes, b) dynamic
collision kernel of the mondisperse system (30µm) for different Rλ normalized by
2πRvGRAV where vGRAV is terminal velocity of the particles in the stagnant flow
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Finally, we show pair statistics for aerodynamically interacting (AI) droplets
[2] in Fig. 6. The results are normalized by corresponding values without aerody-
namic interactions (no-AI). Here we simulate bidisperse system where one set of
droplets is 50 µm in radius. The results show that the aerodynamic interaction
has a strong influence on the kinematic statistics for the pairs of very different
sizes, leading to a large reduction of < wr,12 > and a significant increase in g12.
In this case, the disturbance flow of the larger droplet significantly alters the
trajectory of the smaller droplet. When the pair are similar in size, the impact



High-Resolution Simulation of Turbulent Collision of Cloud Droplets 409

of aerodynamic interaction is relatively weak. While it is difficult to infer the
precise effect of Rλ due to large statistical uncertainty, we may conclude that
the flow Reynolds number effect is relatively weak for the cases considered here.

4 Summary and Conclusions

In this paper, we have reviewed a hybrid DNS approach designed to study turbu-
lent collision-coalescence of cloud droplets. A general question is whether such an
approach is justified for this application problem. As a first step to address this
question, we have implemented MPI in order to increase the range of flow scales
that can be simulated. We reviewed briefly various MPI implementation issues
associated with the turbulent flow simulation and with tracking the motion and
detecting pairwise interaction of droplets.

The MPI code is then used to simulate the flow and dynamics of droplets
at higher flow Reynolds numbers, using up to 10243 grid for the flow only sim-
ulations and up to 5123 grid for flows laden with droplets. The results show
that the inertial subrange of turbulence can be correctly reproduced at high grid
resolutions. As the flow Reynolds number or the computational domain size is
increased, the range of flow scales is also increased, leading to increased single-
droplet r.m.s. fluctuation velocities. However, we show that the pair statistics
and the dynamic collision kernel will reach their saturated values, at least to
the leading order in Rλ, if all relevant scales of fluid motion are included in the
flow simulation. This supports a fundamental assumption in the hybrid DNS,
namely, hybrid DNS at much lower flow Reynolds numbers compared to those
in real clouds can be used to quantity turbulent collision-coalescence of cloud
droplets. The Rλ dependence of pair and collision statistics found in previous
low-resolution simulations is a result of inadequate flow scale separation.

The MPI code is currently based on one-dimensional spatial domain de-
composition. We are currently extending the MPI implementation using two-
dimensional spatial domain decomposition, so that a much larger number of
distributed-memory processors can be used, to further increase the flow Reynolds
number or computational domain size. The ultimate goal is that all relevant
scales of small-scale turbulence can be simulated so the pair statistics and pair-
wise interactions of cloud droplets of radii 100 µm or less can be fully studied.
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Abstract. This article presents the parallelization of seismic ray trace
algorithm. The chosen Urdaneta’s algorithm is shortly described. It pro-
vides wavelength dependent smoothing and frequency dependant scatter-
ing thanks to the implementation of Lomax’s method for approximating
broad-band wave propagation. It also includes Vinje et al. wavefront prop-
agation technique that provides fairly constant density of rays. Then the
parallelized algorithm is preliminarily tested on synthetic data and the re-
sults are presented and discussed.

Keywords: raytrace, 2D seismic modeling, parallel algorithm.

1 Introduction

Ray trace algorithms are the techniques widely used in computer calculation and
simulation, whenever tracing rays needs to be performed. In computer graphics,
one of the most popular ray trace problems, these algorithms are implemented
to achieve high quality images of virtual scenes, including reflections, refractions,
shadows and more. Also in medicine ray trace algorithms are used to achieve
extremely high quality images in simulation or reconstruction [1]. In seismology,
the accuracy of ray trace algorithms is essential in successful seismic events local-
ization and inversion of seismic source parameters [2]. Furthermore, in seismic
modeling different ray trace algorithms have evolved during last years to sat-
isfy computation time and accuracy needs. Eikonal equation solving technique
has been developed in parallel systems and presented in [3]. Different approach
showed in [4] adapt staggered-grid, finite-difference scheme. Another promising
raytracing algorithm was introduced by Asakawa in [5] with later improvement
by W. Hao-quan [6].

Algorithms parallelization is one of the most important techniques to im-
prove computational speed. The development of multi-cored processors, highly
efficient graphic cards and cluster technologies offers programmers and computer
scientists significant acceleration of their algorithms with minimum costs [7]. Ur-
daneta presented sophisticated join of two techniques and his solution will be
briefly presented in this paper and analyzed in terms of calculation speed and
parallelization potential.
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2 Urdaneta’s Algorithm

2.1 Wavefront and Waverays

Lomax presented a new method for approximating broad-band wave propagation
in complex velocity models.[8] This approximation is done using Gaussian weight
curve (Fig. 1a). Then the Huygen’s principle provides wavepath bending Δŝ
from points x−1

v and x1
v (Fig. 1b). Advantages of this technique are: wavelength

dependent smoothing which increases wavepaths stability, frequency dependant
scattering and capability of handling large to small inhomogeneity sizes (Fig. 2).

Urdaneta in [9] has joined together Lomax’s waverays approximation method
with Vinje et al. [10] wavefront method. Wavefront is defined as a curve with
equal traveltime. Its construction presented by Vinje et al. implements different

a b

Fig. 1. Lomax’s wavelength-dependent weighting function is evaluated by averaging
velocities with Gaussian curve centered at point xv[9]

Fig. 2. Lomax’s raytracing is wavelength and frequency dependant: on the left fre-
quency was set to 500Hz, on the right to 10Hz. Rays are influenced by small inhomo-
geneities. Here they are also interpolated using Vinje et al. method.
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approach to parameters computation: instead of calculating each ray separately,
traveltimes and amplitudes are obtained from constructed wavefront. Propaga-
tion in medium is achieved by performing raytrace on preceding wavefront (Fig.
3a). If the distance between two successive rays is greater than predefined DSmax ,
a new ray is interpolated between two old ones. This interpolation is done using
third order polynomial. Grid values are calculated from surrounding waverays and
wavefront (Fig. 3b). New amplitudes are calculated in a similar way.

a b

Fig. 3. Wavefront construction presented by Vinje et al. Points at time τ + Δτ are
calculated from previous wavefront. If distance between new points is greater than
predefined DSmax a new point xs is interpolated (a). Traveltimes and amplitudes are
interpolated onto the grid as presented in figure b [9].

2.2 Urdaneta’s Algorithm

Urdaneta’s final algorithm begins with the definition of structure of ray in the
wavefront. This structure, called cube, is as followed:

– points x0 and x1 – positions of the beginning and the end of the ray, respec-
tively,

– angle – arriving angle of the ray at point x1,
– ampl – amplitude at the ray end,
– cf – flag that describes the ray status.

The maximum size of the wavefront is predefined. In case of exceeding this
value, an error message is sent and the algorithm stops. In the initialization
function, the first wavefront is defined – the ‘shot point’ – with starting points
x0 and proper angles. The propagation of wavefront is performed using Lomax’s
algorithm for waverays. The wave frequency and timestep are arbitrarly chosen.
For each ray in the wavefront array, a new position (point x1 ) and arriving
angle are calculated. Then, if there is self crossing wavefront or any ray is out
of borders, status flag is properly set. In next step, these rays are removed from
the array. Amplitudes, gridding and new rays interpolation are done using Vinje
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et al. methods. Finally, the wavefront proceeds to next timestep. It is complete
by replacing point x0 with x1. These calculations repeat until wavefront array
size is more than 4 (Fig. 4).

In order to calculate all arrivals times, selfcrossing check subroutine should
be deactivated, but, for the sake of simplicity and to reduce the computational
time, crossed rays are removed.

Fig. 4. Diagram of Urdaneta’s algorithm [9]

3 Algorithm Parallelization

3.1 CPU Utilization

Urdaneta’s algorithm has been implemented in C# (.NET 4.0) and tested using
synthetic velocity models. Before any parallelization, CPU workload should be
measured to get information, which procedures have the largest influence to
the computation speed. The ANTS Performance Profiler was used to obtain
CPU most time consuming function. Table 1 shows the results of this analysis.
Insignificant methods are omitted. The profiling and later tests was performed
using 512m x 512m synthetic isotropic velocity model, with 1600 grid nodes and
timestep equal 3ms. Shot-point was set to the x=256m and z=256m.
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The most time consuming procedure, according to profiler results, is gridding.
It takes about 80% of whole computation time for chosen set of parameters. This
procedure loops over every grid point on every wavefront step, so the size of the
grid has a major influence on raytrace computation time. Enlarging the number
of nodes will result in increasing gridding computation time.

Table 1. Results of Urdaneta’s algorithm time analysis with ANTS Performance
Profiler

Procedure Name CPU Time [%] CPU Time With Children[%] Hit Count

RaytraceTest 0.029 97.851 1
Gridding 76.964 79.811 56
PropagateWavefront 0.009 5.204 56
CalculatePropagation 0.079 5.173 5581
GetAvarageVelocity 2.345 5.044 16743
CheckForSelfCrossing 1.734 3.480 55
GetDistance 2.862 2.862 3648859
CheckIntersection 1.715 1.715 371403
CalculateAmplitudes 0.240 0.240 56

3.2 Parallelization Procedure

The major idea is to change the most time consuming process, gridding, into its
parallelized version by domain decomposition of the nodes grid. The gridding
procedure consists of loop over all grid nodes and this loop can be parallelized,
which means that grid nodes can be calculated simultaneously, e.g. in separated
threads. As Table 1 shows, gridding procedure was called 56 times during pro-
filing – each call for each of wavefronts. Therefore gridding procedure is moved
outside the main loop. Tests have showed that this can decrease the compu-
tation time by about 10%. Gridding function is then performed with another
loop over all calculated wavefronts, which are stored in array during wavefront
propagation (Fig. 5).

The Parallelization is made by creating a thread pool for each processor found
and performing gridding partially in each thread. Each processor works on part of
the grid and calculates nodes values using Vinje et al. interpolation method (Fig.
3b). This solution is possible, because there is no interaction between already
calculated wavefronts as well as between grid nodes.

3.3 Results of Preliminary Test

Parallelized algorithm was preliminarily tested on dual core processor. Synthetic
tests were made for different grid size, starting with 10x10 grid nodes up to
500x500. Results of tests are presented in Table 2.
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Fig. 5. Diagram of modified Urdaneta’s algorithm with parallelization

Table 2. Preliminary test results

Grid size gridding part [%] Computation time [ms] Acceleration
1 CPU 2 CPUs

10x10 44.09 156.00 140.40 1.111
20x20 76.51 358.80 249.60 1.438
30x30 87.80 702.00 436.80 1.607
40x40 92.63 1170.00 686.40 1.705
50x50 94.46 1778.40 998.40 1.781
60x60 96.44 2527.20 1388.40 1.820
70x70 96.88 3416.41 1872.00 1.825
80x80 97.58 4399.21 2418.00 1.819
90x90 98.25 5506.81 3010.81 1.829

100x100 98.79 6817.21 3697.21 1.844
150x150 99.47 15319.23 8174.41 1.874
200x200 99.63 26988.05 14414.43 1.872
250x250 99.82 42510.07 22604.44 1.881
300x300 99.85 60886.91 32370.06 1.881
350x350 99.87 83116.95 43960.88 1.891
400x400 99.90 108154.99 57486.10 1.881
450x450 99.94 136859.04 72680.53 1.883
500x500 99.93 169260.30 89996.56 1.881
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The tests proved that parallelization was done correctly. For each grid size
the acceleration is more than 1.85, except the small ones: small grid sizes are
calculated faster and parallelizable part takes less time, as presented in Table 2.
What is more, usually small grid sizes are considered as less relevant.

4 Summary and Future Work

This paper is an introduction to the subject of ray trace algorithms paralleliza-
tion, presenting the parallelization of one of the seismic ray trace algorithm.
It computes first arrival travel-times and amplitudes estimation in 2D medium
using Lomax’s ray trace method and Vinje et al wavefront propagation tech-
nique, both joined by Urdaneta. Parallelization has been done on the most time
consuming procedure, gridding, which has the most influence on the algorithm
speed. Preliminary tests on dual core CPU proved that acceleration is consider-
ably high for relatively dense grids of nodes. Future work will be done in several
areas of interest. Firstly, the presented parallel algorithm is going to be tested
on machines with more than two CPUs to prove its reliability. Secondly, pre-
sented technique will be compared to other popular travel time and amplitude
estimation techniques and their parallel versions in the matter of computation
time and errors. What is more, as the GPU calculations become more popular
and efficient, presented ray trace algorithm will be implemented and tested on
graphic hardware, also in context of server side calculations [11].
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Abstract. The paper presents several aspects of the computational per-
formance of the EULAG F90/95 code, originally written in Fortran 77.
EULAG is a well-established research fluid solver characterized by robust
numerics. It is suitable for a wide range of scales of the geophysical flows
and is considered as a prospective dynamical core of a future weather
forecast model of the COSMO consortium. The code parallelization is
based on Message Passing Interface (MPI) communication protocol. In
the paper, the numerical model’s parallel performance is examined using
an idealized test case that involves a warm precipitating thermal devel-
oping over an undulated terrain. Also the efficiency of the basic code
structures/subroutines is tested separately. It includes advection, elliptic
pressure solver, preconditioner, Laplace equation solver and moist ther-
modynamics. In addition, the effects of horizontal domain decomposition
and of the choice of machine precision on the computational efficiency
are analyzed.

1 Introduction

Numerical Weather Prediction (NWP) is based on mathematical models of fluid
dynamics, describing physical processes governing atmospheric flows. In prac-
tice, partial differential equations of the model are solved numerically in a 3-
dimensional space and time. What makes the NWP extremely complex is the
range of spatial scales involved. It spans from the microscale of turbulence and
in-cloud process (O(10−2 m)) to global scale of planetary flows (O(107 m)). One
of the consequences is the essential role of computer sciences in a development
of numerical tools for timely and reliable weather forecasting.

First, the need of realistic representation of weather processes requires pos-
sibly high resolution of model’s numerical grid. On the other hand, any useful
operational forecast has to be calculated in times much shorter than a prog-
nostic timescale. In practice, a forecast for about a week should be obtained
within a few hours. Therefore, a weather forecast model needs both possibly
large computer resources and robust and efficient numerical code to optimize
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these constrains. It is worth mentioning that with the continuous progress in
available computer resources contemporary regional weather models reach hori-
zontal resolution of O(103 m) which already allows for explicit representation of
convective processes.

The paper reports on work aimed at testing parallel performance of the EU-
LAG F90/95 code originally written in Fortran 77. The project is developed
within the frame of the “Conservative Dynamical Core” priority project of the
COSMO consortium. The project is focused on implementation of anelastic
non-hydrostatic model EULAG (Prusa et al. [1]) as a future high-resolution
dynamical core of the COSMO model (see [2]). The preliminary results were
presented in Piotrowski et al. [3]. The current paper focuses on the key prob-
lems of the computational efficiency and scalability of the EULAG code. Basic
discussion concerning EULAG scalability and computational performance was
presented by Prusa et al. [1] for numerical model configuration involving Held-
Suarez global climate (Held and Suarez [4]) and solar magneto-hydrodynamic
test cases. Here, the focus is on a performance of main EULAG procedures for
a simplified weather-like application of warm precipitating thermal rising above
a hill in a stably stratified atmosphere. It allows more realistic verification of
EULAG in a configuration employing curvilinear framework with phase-change
processes included. Additional aspects considered are the influence of machine
precision and the type of domain decomposition on the efficiency of the code.

2 Benchmark Experiment

2.1 Experiment Setup

The efficiency of the EULAG parallel code was tested using an idealized three-
dimensional benchmark experiment of a warm bubble developing in moist, sta-
ble and initially motionless atmosphere. Instead of Cartesian coordinates, a more
general curvilinear framework employing terrain-following coordinates (Gal-Chen
and Somerville [5]), typical for NWP applications, was imposed over a cosine-like
orography (see Fig. 1). The numerical experiments differ by grid number in hor-
izontal dimensions of the computational domain, while vertical grid number re-
mains the same. The grid number changes from 32×32×64 to 1024×512×64 grid
points (i.e. length × width × height) while the physical domain has a fixed size of
1000×1000×1000 meters. Total integration time is always 200 seconds and the in-
tegration step is 1 s. The radius of the warm air bubble is 80 meters, and the bubble
is located in the middle of the domain, 400 m above the ground. A positive buoy-
ancy of the bubble is imposed via the potential temperature excess. It reaches 3 K
in the center of the bubble and decreases to 0 K at its edge in a sine-like manner.
Ambient relative humidity is constant and equal to 92%. Under such conditions, a
relatively fast cloud formation due to saturation adjustment is obtained (see Fig.
2). A process of rain formation is based on Kessler parametrization (Grabowski
and Smolarkiewicz [6]).
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Fig. 1. The distribution of potential temperature perturbation (in Kelvins) after 30 s
(left) and 150 s (right) of thermal evolution. XZ crossection at Y=496 m is shown. Dash
pattern marks negative perturbation values. The orography is shown with a solid, bold
line.

Fig. 2. Cloud (left) and rain (right) water mixing ratio in [ g
kg

] after 150 s of ther-
mal development. Due to the saturation adjustment, a cloud condensation occurs and
precipitation starts to fall from the cloud.
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The parallelization of the code is based on two-dimensional horizontal de-
composition of the computational grid, where every subdomain spans the whole
vertical extent of the domain and a part of its horizontal area. This is a typical
approach in NWP modelling (EULAG version implementing three dimensional
domain decomposition was developed recently by Piotrowski et al. [7]). Each
subdomain has the same grid number. It is extended horizontally with a halo
(i.e. ghost cells) and the data involved are exchanged between the neighbor-
ing processes. The communication is provided by the Message Passing Interface
(MPI) protocol.

The study documents three types of experiments which consider (i) parallel
performance of the basic EULAG numerical procedures, (ii) the influence of
single precision computations and (iii) the influence of subdomain’s shape on
the numerical performance of the code.

2.2 Tools and Resources

The numerical model was tested on Cray XT4 supercomputer at the Swiss Na-
tional Supercomputing Center. Its architecture is based on an AMD Opteron
CPU running at a frequency of 2.3 GHz. Opteron nodes may access 8GB of
RAM. The CSCS XT4 system consists of 160 quad-core nodes giving 640 pro-
cessing elements. By default all cores per node were used. The tests employing
only one core per node are described in section 3.3. The system is managed by
Cray Linux operating system. Each process is executed on a separate, dedicated
core.

The executable code was generated using the Portland Group Inc. Fortran
90/95 compiler and linked with the available MPICH implementation of MPI
communication protocol. The source code was compiled and linked using by
default the third level of optimization, double precision computations and loop
vectorization.

The results of the experiments were collected using the CrayPat software. The
timing results are exclusive, meaning that the timing of a subroutine does not in-
clude timings of called subroutines. The results concerning MPI denote the time
spent on executing the MPI library functions. The measurements discussed in
section 3.3 were collected with the Integrated Performance Monitoring software.

2.3 Tested Subroutines

A set of the most complex and numerically expensive EULAG subroutines was
chosen for testing. It includes the procedures of dynamical core, that is an it-
erative elliptic pressure solver employing generalized conjugate residual method
(GCRK; Smolarkiewicz et al. [8]), advection subroutine (MPDATA3) employing
multidimensional positive defined transport algorithm (Smolarkiewicz et al. [9]).
The preconditioner (PRECON BCZ) and Laplace equation solver (LAPLC) are
the components of pressure solver (GCRK). Also the subroutine handling phase
changes (PRECIP) was tested.
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3 Results

3.1 Parallel Performance

First, we examined the scalability of EULAG procedures for different number
of processes ranging from 4 up to 512 while the grid number is constant and
equals 256×256×64 grid points. Thus, the total number of grid points is about
4.19×106. Although the simulated problem is idealized, its numerical complexity
is comparable with a typical problem of a regional numerical weather forecast.

Figure 3 (left) presents CPU average user time as a function of number of
processes, for different subroutines. For MPI the y-axis denotes the total MPI
communication cost. The figure shows that all computational subroutines scale
very close to the ideal scaling, which can be evaluated with an efficiency metric
(see [10]), adapted to our study:

EP =
4 · T4

P · TP

where P denotes the number of processes used and TP denotes average CPU
user time for P processes in the simulation. In the ideal case EP is 1. The
averaged efficiency EP , calculated from the Figure 3 is: 0.95 for GCRK, 0.91 for
MPDATA3, 0.89 for LAPLC, 1.01 for PRECON and 0.98 for PRECIP.

However, the MPI costs decrease significantly slower comparing with the com-
putational procedures. This results from the increase in the ratio of halo size to
subdomain’s grid size and shows that one should keep this ratio reasonably small.
Otherwise weaker MPI scalability becomes a bottleneck that decreases overall
parellel performance of the code and finally saturates it.

The MPI costs are investigated in more detail via analysis of the scalability of
some of its components (Fig. 3, right). Some of the procedures like MPI SEND
and MPI WAIT scale similarly to the overall MPI cost. There are, however, com-
ponents as, e.g. the MPI COMM SPLIT subroutine, which scale even weaker,
as its cost generally grow with the process number.

Additional series of experiments concerned a performance of the EULAG code
for different grid numbers, varying from 32×32×64 to 1024×512×64 grid points.
Figure 4 shows the scalability of the CPU average user time for the GCRK sub-
routine, for selected number of processes. The solid lines and the labels corre-
spond to tests employing the same grid- but different process numbers, all using
four cores per node. The basic conclusion is that for a wide scope of grid sizes,
used, the GCRK subroutine scales close to the ideal scaling. The dashed lines in
Fig. 4 correspond to additional tests employing one core per node and performed
with the computational domains of 64×32×64, 256×256×64 and 1024×512×64
grid points. The performance comparison is based on pairs of lines, a solid one
and a dashed one, that refer to the identical computational domain. There are
three such pairs and in each case the CPU average time of the experiment using
four cores per node is approximately two times longer than of the experiment
using one core per node. This fact suggests the presence of memory bus sat-
uration when four cores per node are used. It is a situation when the node’s
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Fig. 3. The scalability of selected EULAG subroutines in terms of the average execution
time (left). The scalability of selected MPI library subroutines in the context of EULAG
scalability (right).

Fig. 4. GCRK subroutine scalability for different domain sizes and for different number
of processes ranging from 4 to 512. The labels describe the grid size and concern only
tests marked with solid lines. For the description of dashed lines see section 3.1.
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Fig. 5. The comparison of EULAG performance in single and double precision

memory bus cannot handle on time data request from its cores and resulting
delays generally affect the GCRK performance. When only one core per node
is employed the user time of simulation decreases due to lower number of data
requests served by a node. The problem of memory bus saturation is generally
regarded as an important one in NWP context and is studied e.g. in the frame
of the current operational COSMO model development (Oliver Fuhrer, personal
communication).

3.2 EULAG Efficiency in Single and Double Precision

The results discussed above were obtained using double precision (DP) floating
point representation. Such degree of accuracy is commonly used for the NWP
simulations. In order to evaluate the EULAG scalability in single precision (SP),
a specific experiment was performed. One can expect that the numerical model
in single precision is capable to work about two times faster than in double preci-
sion. That results from several reasons. First, the amount of data to be sent and
received via MPI is approximately two times smaller whereas any constant com-
munication coefficient does not change. Second, the SSE (see [11]) registers (used
in loop vectorization) in SP perform two times more floating point operations
per processor’s cycle than in DP. Third, the memory bus bandwidth remains
the same whereas the byte size of floating point number decreases twice. From
the practical view point, however, the degree of precision may have an impact
on the number of iterations needed by iterative subroutines such as GCRK.

Figure 5 presents parallel performance of the EULAG code both in single
and double precisions. We examine CPU user average time for two numerically
expensive subroutines: GCRK and MPDATA3 (the timings do not include PRE-
CON BCZ, LAPLC and MPI execution time). It appears that single-precision
calculations are faster by an average factor 2.1 for MPDATA3 and 2.2 for GCRK.
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Table 1. The influence of subdomain shape on the average user time. The results are
normalized by reference values for the rectangular domain.

8x8 4x16 16x4

GCRK 100% 96% 109%
MPDATA3 100% 99% 105%
PRECIP 100% 90% 102%
PRECON BCZ 100% 97% 107%
LAPLC 100% 96% 109%
EULAG 100% 98% 111%

These results are better than suggested by the theoretical consideration above.
That may derive from cache performance as the number of data cache misses
(Sec. 3.3) decrease by a factor bigger than 2. Indeed in SP the cache is ca-
pable to store twice more floating numbers than in DP, so the data exchange
between RAM memory and the caches of different levels is less frequent and the
probability of a data miss event is smaller.

3.3 Influence of the Shape of Single Core Subdomains

Finally, the influence of a shape of subdomains served by a single core on EULAG
parallel performance is analyzed. The experiment was performed using a compu-
tational domain of 512×512×64 grid points and fixed number of processes. The
total number of 64 processes is arranged in 3 types of horizontal arrays: 8×8,
4×16 and 16×4.

Table 1 presents the results: user times for EULAG as a whole and for its
main subroutines, normalized by the values from the case employing the squared-
shaped subdomain (i.e. 8×8 computational grid). The table shows that subdo-
mains elongated in the x-direction increase slightly the computational efficiency
of the overall code by about 2%. It concerns also the subroutines of the dynami-
cal core, while the efficiency increase of PRECIP is 10%. Subdomains elongated
in the y-direction deteriorate the computational efficiency of the overall code
by about 11%, which is a significant value. It concerns also the subroutines of
the dynamical core. That suggests that the operational optimization of the EU-
LAG code may benefit from an optimization of the shape of the computational
subdomains served by a single core.

To explain this behavior, a study of relation between code timing and hard-
ware events was performed. Two expensive loops over a computational domain
were analysed: one loop from GCRK and one from PRECON BCZ. Their tim-
ings were compared with the number of hardware events PAPI L1 DCM (a hard-
ware signal that the processor failed to read or write a piece of data in the L1
cache and was forced to access the piece of data with much longer latency) and
PAPI L2 DCM [12]. The results are presented in Fig. 6. There is a strong correla-
tion between the execution time and the number of both hardware events, which
shows that the array operations in Fortran are non-symmetric i.e. adjacent data
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Fig. 6. The normalized user time, the normalized PAPI L1 DCM and PAPI L2 DCM
number of events for selected loop in the subroutine GCRK (left) and in the subroutine
PRECON BCZ (right). The x-axis consists of 5 tested grid configurations. The total
number of processes is 64.

in memory correspond to adjacent data in the x-direction. That explains higher
efficiency for subdomains elongated in x-direction.

4 Summary

This paper documents scalability of the EULAG model, a prospective dynamical
core of a future COSMO operational weather forecast model, for an idealized
weather–like benchmark experiment. The main procedures of the dynamical core
and an example physical parameterization of moist processes were examined.
The scalability of the computational procedures turned out to be close to the
ideal one, while the scalability of the MPI procedures is significantly weaker. In
consequence, the overall scalability of the numerical model depends on the ratio
of the halo size to the single core subdomain size. In EULAG simulations this
ratio should be kept possibly small, so that the MPI cost is small compared to
the cost of the dynamical kernel. Next, the memory bus saturation problem is
detected and its influence is quantified.

Tests for single precision floating point representation showed an increase of
EULAG performance by a factor 2.1 and 2.2 for the main dynamical core sub-
routines MPDATA3 and GCRK, respectively, comparing with double precision
calculations.

Finally, it was shown that the shape of computational subdomains served by
single core influences parallel performance of the EULAG, due to the asymme-
try of Fortran array operations. Optimization of that shape can benefit general
optimization of the model parallel performance.
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Abstract. This paper addresses the problem of solving linear algebraic
systems whose elements are nonlinear functions of parameters varying
within prescribed intervals. Evolutionary algorithm, differential evolu-
tion and two variants of simulated annealing are applied to approximate
the hull solution of such systems and compared in terms of accuracy and
efficiency. As the computation time for larger problems is significant, cal-
culations for optimisation problems in the family of equations are done in
parallel. Structural engineering case studies and numerical experiments
involving large uncertainties are carried out to demonstrate accuracy of
the metaheuristics and the impact of the parallelization.

1 Introduction

Imprecision, approximation, or uncertainties in the knowledge of the exact values
of physical and technical parameters can be modelled conveniently by intervals.
In interval analysis, an unknown or imprecise parameter p̃ is replaced by an
interval number p = [p, p] which bounds it. Then, the radius r(p) = (p − p)/2
is a measure for the absolute accuracy of the midpoint p̌ = (p + p)/2 considered
as an approximation of an unknown value p̃ contained in p. Intervals are also
commonly used to keep track of and handle rounding errors directly during the
calculation.

Now, consider parametric linear systems

A(p)x(p) = b(p), (1)

where A(p) is an n × n matrix, b(p) is n-dimensional vector, and aij(p), bi(p)

are nonlinear functions of p = (p1, . . . , pk)T which is a k-dimensional vector of
parameters. Solving such systems is an important part of many scientific and
engineering problems. If some of the parameters are assumed to be unknown
but bounded, pi ∈ pi (i = 1, . . . , k), the following family of parametric linear
system, usually called parametric interval linear system (PILS), is obtained

A(p)x(p) = b(p), p ∈ p. (2)
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The set of all solutions to the point linear systems from the family (2) is called
a parametric solution set and is defined as

Sp = {x ∈ �n | ∃ p ∈ p A(p)x = b(p)} . (3)

This set is generally of a complicated nonconvex structure [1]. In practise, there-
fore, an interval vector x∗, called the outer solution, satisfying �Sp ⊆ x∗ is
computed. It is closed and bounded if A(p) is nonsingular for each p ∈ p. An
interval vector x∗∗, called the inner solution, satisfying x∗∗ ⊆ �Sp can be calcu-
lated as well [12]. If inner and outer solutions are close, this shows good quality
of both of them. If, however, the outer solution is much wider than the inner
one, one or both of them are poor.

The tightest, w.r.t. the inclusion property, outer solution is called a hull so-
lution (or simply a hull) and is denoted by �Sp =

⋂
{Y | Sp ⊆ Y }. Computing

the hull solution is in general case NP-hard [11]. Some algorithms for its com-
putation were suggested in the literature, e.g., the combinatorial approach, the
monotonicity method of Rao & Berke [10], and the vertex sensitivity method
of Pownuk [8]. Although, they are often exact at small uncertainty, they do not
always give the hull and may underestimate, even at small uncertainties [6].

The problem of computing the hull solution can be written as a problem of
solving 2n constrained optimisation problems. The following theorem holds true.

Theorem 1. Let A(p)x(p) = b(p), p ∈ p, be a family of parametric linear
systems, and let

xi = min {xi(p) | x(p) ∈ Sp} , (4a)

xi = max {xi(p) | x(p) ∈ Sp} . (4b)

Then �Sp = [x, x]. �
Optimisation problems (4a) and (4b) are solved in this study using metaheuris-
tic strategies described in Section 2. Some of them (evolutionary optimisation,
simulated annealing and tabu search) have been already compared in [13] by the
authors. Here, more advanced metaheuristics are applied. They are competitive
with the EO method that performed the best in the previous comparison. Section
3 presents structural engineering case studies and numerical experiments. The
accuracy of the results and the convergence speed of the metaheuristics are anal-
ysed to give hints about their efficiency when solving parametric linear systems
with large parameter uncertainties. The paper ends with concluding remarks.

2 Parallel Metaheuristic Strategies

Fitness evaluation relies on solving parametric linear system. Firstly, to save
some CPU time, the modified version of Gaussian Elimination (GE) is used
here. The back-substitution step starts from the last equation and solves n −
i+ 1 equations, where i is the number of the optimisation problem (4a) or (4b).
Secondly, calculations for each of the equations can be done in parallel since they
are independent of each other.
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2.1 Evolutionary Optimisation

Population P consists of popsize individuals characterised by k-dimensional vec-
tors of parameters pi = (pi1, . . . , pik)

T
, where pij ∈ pj , i = 1, . . . , popsize,

j = 1, . . . , k. Elements of the initial population are generated at random based
on the uniform distribution. The 10% of the best individuals pass to the next
generation and the rest of the population is created by the non-uniform mu-
tation and arithmetic crossover [13]. It turned out from numerical experiments
that mutation rate rmut should be close to 1 (rmut=0.95), and the crossover rate
rcrs should be less than 0.3 (rcrs=0.25). Population size and the number of gen-
erations depend strongly on the problem size. General outline of the algorithm
is shown in Fig. 1.

Initialise P of popsize at random
while (i < n) do

Select P ′ from P ; Choose parents p1 and p2 from P ′

if (r[0,1] < rcrs) then Offspring o1 and o2 ←− Recombine p1 and p2
if (r[0,1] < rmut) then Mutate o1 and o2

end while

Fig. 1. Outline of an evolutionary algorithm

2.2 Differential Evolution

Since differential evolution (DE) was found to be a very effective optimisation
method, especially for continuous problems [3], it was interesting to compare it
with EO. DE itself can be treated as a variation of evolutionary algorithm, as
the method is founded on the principles of selection, crossover, and mutation.
However, in DE the main process focuses on the way new individuals are created.
Several strategies were defined for this operation [9]. Basic strategy [3], described
as /rand/1/bin (/a vector for a trial solution is selected in a random way/one
pair of other vectors is taken for mutation/binomial crossover is used) creates
a mutated individual pm as follows

pm = p1 + s(p2 − p3) , (5)

where s is a scale parameter called also an ”amplification factor”. After a series
of experiments, the best strategy for the problem of solving PILS appeared
to be a strategy described as /rand-to-best/1/bin. In this strategy a mutated
individual is created on the basis of the best solution found so far and three
other, randomly chosen individuals

pm = s(pbest − p1) + s(p2 − p3) . (6)

The mutated individual pm is then mixed with the original individual p with
a probability CR using the following binomial crossover

p′j =

{
pmj, if r � CR or j = rn
pj , if r > CR and j �= rn

, (7)
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where r ∈ [0, 1] is a random number and rn ∈ (0, 1, 2, ..., D) is a random index
ensuring that p′j is a at least an element obtained by pmj . After a series of
experiments, the following parameters values were taken s=0.8 and CR=0.9.

Initialise P of popsize at random
while (i < n) do

while (pm is not valid) do
Choose 3 individuals at random p1, p2, p3
Generate mutant pm from p and from p1, p2, p3

end while
p′ ←− Crossover(p, pm)
if (f(p′) > f(pi)) then pi+1 ←− p′ else pi+1 ←− pi

end while

Fig. 2. Outline of a differential evolution algorithm

2.3 Simulated Annealing

Preliminary results given by a standard simulated annealing (SA) algorithm ([3],
[5]) proved to be poor. Therefore, the authors developed a modified SA algorithm
(Fig. 3). It starts with p chosen as the best out of popsize solutions instead of
a random one. Additionally, inner (i = 0, . . . , n) and outer (j = 0, . . . , m)
iterations are used. After each outer iteration the current solution p is reset
to, pbest, the best solution found so far. The perturbed solution p′ is obtained
by altering a randomly chosen element pj of p = (p1, . . . , pj , . . . , pk)T . The
following parameters values were taken for all experiments: popsize=20, initial
temperature t0=0.9, and degradation ratio dr= 0.995.

Initialise P of popsize at random; t ←− t0
Find best solution p from P ; pbest ←− p
while (i < n) do

while (j < m) do
p′ ←− Perturbate(p)
if (f(p′) > f(pbest)) then p ←− p′ f(pbest) = f(p′); pbest ←− p;
else if (r < exp(|f(p′) − f(pbest)|/t) then p ←− p′; Decrease(t); t ←− tdr

end while
p ←− pbest

end while

Fig. 3. Outline of a simulated annealing algorithm

2.4 Adaptive Simulated Annealing

Despite various modifications applied to the standard SA algorithm, the obtained
results were much worse than those given by the evolution-based methods. Thus,
a more efficient version of the standard SA algorithm, Adaptive Simulated Algo-
rithm (ASA) in the version developed by Ingber ([4]) (see Fig. 4), was next used.
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The main idea behind self adaptive algorithms is to automatically adjust the pa-
rameters that control the annealing process of the SA algorithm. In ASA it is done
by the re-annealing process, which systematically rescales both annealing time
and annealing temperature. A new vector is created by altering an old solution as
follows

p′j = pj + yj

(
pj − p

j

)
, (8)

where yj = sgn(r− 0.5)tj

(
(1 + 1

tj
)|2r−1|− 1

)
and r ∈ [0, 1] is a random number.

The main parameter influencing the computation time in ASA is the limit of
generated states (Lgen) and the maximum number of states accepted before
quitting (Lacc).

Initialise p at random; t = t0
while (Stop condition is not met) do

while (i < Lgen) do
j = 0
p′ ←− CreateNew(p)
Accept or reject p′ according to acceptance function
if (j >= Lacc) then Reannealing

end while
Decrease(t)

end while

Fig. 4. Outline of an adaptive simulated annealing

3 Numerical Experiments and Results

The performance of the methods described in Section 2 is illustrated by numer-
ical solutions of three practical problems from structural engineering. For each
problem hull solution was achieved with global optimisation method [14] and
then solutions given by evolutionary optimisation (EO), differential evolution
(DE), simulated annealing (SA), and adaptive simulated annealing (ASA) were
compared. For the sake of the comparison a standard measure of overestimation
was used. For two intervals, such that [a] ⊆ [b], the measure is defined as [7]:

Oω([a], [b]) := 100%(1− ω([a])/ω([b])) , (9)

where ω([x]) gives the length of interval [x]. Since stochastic algorithms are used,
thus every algorithm performed 30 independent runs for each problem instance
and then average overestimation and standard deviation are provided.

3.1 Example 1 - One Bay Portal Frame

As a first example, the small but realistic problem coming from structural engi-
neering is considered. A one bay portal frame with partially constrained connec-
tions, shown in Figure 5, was initially analysed by Corliss et al. [2]. In their work,
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the authors have assembled a system of linear equations K ·x = F corresponding
to the portal frame. The global stiffness matrix K is a symmetric matrix with
the following elements (only upper triangular elements different from zero are
specified):

a11 = a66 = AbEb

Lb
+ 12EcIc

L3
c

a16 = −AbEb

Lb
, a22 = a77 = AcEc

Lc
+ 12EbIb

L3
b

a13 = a68 = 6EcIc
L2

c
, a27 = − 12EbIb

L3
b

a44 = α + 4EbIb
Lb

, a45 = 2EbIb
Lb

a24 = a25 = −a47 = −a57 = −a78 = 6EbIb
L2

b

a33 = a55 = a88 = α + 4EcIc
Lc

, a34 = a58 = −α

(10)

The elements of K are rational functions of the following parameters: material
properties Eb, Ec, cross-sectional properties Ab, Ac, Ib, Ic, lengths Lb, Lc, and
joint stiffness α. The right-hand vector F = (H, 0, 0, 0, 0, 0, 0, 0)

T
depends

only on the applied lateral load H .

Fig. 5. Simple one bay portal frame with partially constrained connections [2]

Nominal values of the parameters have been taken, as proposed in [2], and
uncertainties are given in Table 1. Substituting Lb and Lc with their nominal
values yields the problem of solving a parametric linear system

K(p)x(p) = F (p), (11)

where the parameter p = (Eb, Ec, Ab, Ac, Ib, Ic, α, H).
Comparison of the results of four metaheuristic strategies presented in Section

2 expressed as an average overestimation over the hull solution are given in
Table 2. Parameters for particular metaheuristics and computation time are
presented as well. All algorithms were coded in C++ using Microsoft Visual
Studio 2010 and ran on Intel Xenon X5570 processor with 2.93GHz clock. For
the differential evolution method two variants were calculated. In the first (DE1)
simple strategy /rand/1/bin/ was used, while in the second (DE2) strategy
/rand-to-best/1/bin was applied.
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Table 1. Parameters involved in the portal frame, their nominal values and
uncertainties

Parameter Nominal value Uncertainty

Young modulus Eb, Ec 2.9 · 107 lb/in2 (40%)

Second moment
Ib 510 in4 (40%)

Ic 272 in4 (40%)

Cross-area
Ab 10.3 in2 (40%)

Ac 14.4 in2 (40%)

External force H 5,305.5 lbs (100%)

Joint stiffness α 2.77461 ·108 lb-in/rad (40%)

Length
Lb 288 in

Lc 144 in

Table 2. Results for one bay portal steel frame with uncertainties given in Table 1

Method Parameters Average Standard Computation
values overestimation deviation time [s]

EO n = 200, popsize = 30 0.00% 0.00% 0.76
DE1 n = 200, popsize = 30 0.09% 0.13% 0.59
DE2 n = 200, popsize = 30 0.00% 0.00% 0.62
ASA Lgen = 1000, Lacc = 180 0.00% 0.00% 0.64
SA n = 1000, m = 180 0.27% 0.41% 0.56

Three of five algorithms gave the results which were very close to the hull
solution. Basic simulated annealing algorithm performed the worst. Differential
evolution strategy denoted as /rand-to-best/1/bin occurred to be better than
/rand/1/bin strategy.

3.2 Example 2 - Four-Bay Truss

As a second example, a finite element model for a four-bay two-floor truss, shown
in Fig. 6, is considered. There are 15 nodes, 38 elements. The truss is subjected to
equal downward forces of 20 kN at nodes 2, 3, and 4. It is assumed that all beams
have the same Young modulus E = 2.0 ·1011 Pa and the same cross-section area
A = 0.005 m2. The length of horizontal beams L = 10 m, and vertical beams are
a half of the horizontal ones. Material properties and loads are assumed to be
uncertain by 40% and 60%, respectively, resulting in 41 uncertain parameters.
The ranges for horizontal and vertical displacements of nodes 3 and 4 are shown
in Table 3.

For much larger example than the previous Example 1 differential evolution
outperformed other metaheuristics. The results achieved by both variants of DE
can be equally compared only with the results achieved by adaptive simulated
annealing.
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Fig. 6. Four-bay truss two-floor

Table 3. Results for four-bay two-floor truss with 40% uncertainty in material prop-
erties and 60% uncertainty in loads

Method Parameters Average Standard Computation
values overestimation deviation time [s]

EO n = 30, popsize = 16 18.32% 6.21% 163
DE1 n = 300, popsize = 30 1.37% 0.57% 153
DE2 n = 300, popsize = 30 0.01% 0.02% 155
ASA Lgen = 700, Lacc = 100 2.81% 1.04% 156
SA n = 15000, m = 500 21.14% 12.74% 135

3.3 Parallelisation

In order to shorten long computation time especially for Example 2 in the final
experiments the calculations for families of equations were done in parallel. Since
all algorithms were coded in C++ using Visual Studio 2010 thus the authors used
Parallel Patter Library (PPL) for the parallelisation of the main loop. Computa-
tion time for evolutionary optimisation method and simulated annealing utilising
only one, two and four processor units (CPU cores) are shown in Table 4.

Table 4. Computation time for different number of cores used for EO and SA

# cores Example1/EO Example1/SA Example2/EO Example2/SA

1 core 0.76s 0.56s 163s 131s
2 cores 0.42s 0.29s 74s 61s
2/1 ratio 1.81 1.93 2.20 2.15
4 cores 0.23s 0.21s 47s 52s
4/1 ratio 3.30 2.67 3.47 2.52

For evolutionary optimisation method, parallel processing of the main loop
on four cores allowed for the shortening of computation time by 3.3–3.5 times
compared to single CPU. The same parallelisation method applied for simulated
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annealing algorithm was not so effective, allowing for time shortening between
2.5–2.7 times. The results are a little bit surprising as the gain from using the
same number of cores was expected to be similar. Such difference can be caused
by Parallel Pattern Library algorithm for balancing the tasks, which for small
loops like in the presented experiments can have a significant scheduling over-
head. Calculations for two cores were done on the same four-cores processor,
but the number of concurrent tasks (MaxConcurrency) was limited to only two
tasks. Evidently the PPL algorithm allowed for using more than two cores for
running the two concurrent tasks, so the gain for Example 2 was about 2.2 times
than for single CPU.

4 Conclusions

The methods based on the theory of evolution (evolutionary algorithm and dif-
ferential evolution) along with adaptive simulated annealing occurred to be the
best heuristic methods for solving parametric interval linear system for relatively
small problem (Example 1). All those algorithms gave solutions, which were
equal or very close to the hull solution. For a much larger problem (Example 2)
differential evolution and adaptive simulated annealing outperformed evolution-
ary optimisation method, however, the computation time was significant. If the
time restriction was set to a half or smaller than original time, EO algorithm
gave similar results. Basic simulated annealing algorithm with some modifica-
tions performed very unstable. Sometimes it gave relatively good solutions, but
usually the results generated by it could be hardly compared to the others.

Parallelisation of the calculations allowed for a significant shortening of the
computation time for both evolutionary method and simulated annealing. Cer-
tainly, time saved in this way is limited by the number of equations that are to
be calculated and the processor units used. On the other hand, for more pro-
cessing units further improvement can be also achieved. Simultaneously with the
parallelisation of the calculation process for the family of equations, parallelisa-
tion can be also applied to the metaheuristics processes themselves, e.g. for the
evaluation of the fitness function. Naturally, it makes sense only for the meta-
heuristics operating on a population of solutions, like evolutionary algorithms or
differential evolution, not the ones operating on a single solution like simulated
annealing.
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Abstract. In this report, an approach to organization of calculations
in algorithms for solving systems of interval linear equations based on
the “interval extended zero” is proposed.This approach provides narrow-
est possible interval results. The “interval extended zero” method was
used earlier to solve systems of interval linear equations.It was shown
that it considerably reduces the undesirable excess width effect. How-
ever, successive research have shown that different interval results may
be obtained, if some calculations are organized differently. It is also shown
that the interval multiplication operation affects the width of the result-
ing intervals in a similar extent as interval division.

Keywords: System of interval linear equations, Interval extended zero
method, Organizing the calculations.

1 Introduction

The “interval extended zero” method was used to solve systems of interval linear
equations in [3,4,5]. It was shown that this method not only allows us to get much
narrower interval results than those obtained using classic interval division [7],
but also makes it possible to avoid inverted interval solutions. This method can
be naturally classified as a formal (algebraic) solution of interval linear systems
in the framework of interval extended zero method. Successive research have
shown that when using “interval extended zero” method different interval results
may be obtained from used algorithm if the interval calculations are organized
differently.

In the current report, three algorithms for solving systems of interval linear
equations are used as examples - Gaussian elimination algorithm, Gauss-Jordan
algorithm and LU algorithm. It is shown that the interval multiplication oper-
ation affects the width of the resulting intervals in a similar extent as interval
division.

The rest of the paper is set out as follows. In Section 2, we present and ana-
lyze the results obtained using classical interval extensions of above mentioned
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algorithms and extensions based on “interval extended zero” method. It is shown
that the use of “interval extended zero” method makes it possible to organize the
interval calculations in such a way that they provide narrowest possible inter-
val results. Section 3 presents the analysis of influence of interval multiplication
and division based on the “interval extended zero” method on the excess width
effect. Section 4 concludes with some remarks.

2 Organizing Calculations in Algorithms for Solving
Systems of Interval Linear Equations

A system of linear interval equations can be presented as follows:

[A][x] = [b], (1)

where [A] is an interval matrix, [b] is an interval vector and [x] is an interval
solution vector. There are several algorithms that can be used to solve the system
(1). The most popular is the Gaussian elimination algorithm [1] which consists
of two stages and in the interval form may be presented as follows:

– forward elimination:

[sik] = [aik]
[akk]

, (2)

[aij ] = [aij ]− [sik] · [akj ], [bi] = [bi]− [sik] · [bk], (3)

where 0 /∈ [akk] , k = 0, 1, ..., n− 1; i, j = k + 1, k + 2, ..., n,
– backward substitution:

[s] =

j=n∑
j=i+1

[aij ] · [xj ], [xi] =
([bi]− [s])

[aii]
, (4)

where 0 /∈ [aii] , i = 0, 1, ..., n− 1,

where [aii] are the elements of interval matrix [A], [bi] are the elements of interval
vector [b] and [xi] are the elements of the interval solution vector [x].

This algorithm was used in [5] to solve the Leontief’s input-output model [6]
in the interval setting. This model can be defined as follows:

(I − [A]′)[x] = [b],

where I is the identity matrix, [A]′ is the interval technical coefficient matrix, [b]
is the final interval production vector and [x] is the global interval production
vector.

Denoting I−[A]′ as [A] the system can be solved using Gaussian elimination al-
gorithm. In [5], all interval operations of division in (2) and (4) were replaced with
the so-called modified interval division (MID) based on the “interval extended
zero” method and the narrow interval solution of the system was obtained.

There are also two other often used algorithms of solving systems of linear
equations:
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– Gauss-Jordan algorithm [1]:

[sk] = [1]
[akk]

, [aij ] = [aij ]− [sk] · [akj ] · [aik] (5)

[bi] = [bi]− [sk] · [bk] · [aik] , [xk] = [bk] , (6)

where 0 /∈ [akk], k = 0, 1, . . . , n; j = k + 1, k + 2, . . . , n; i = 0, 1, . . . , n,
– LU algorithm [1], that consists of two stages:

– forward elimination, Doolittle algorithm [1]:
calculating the upper triangular matrix:

[aki] = [aki]− [akj ] · [aji], (7)

where k = 0, 1, . . . , n, i = k + 1, k + 2, . . . , n; j = 0, 1, . . . , k,
calculating the lower triangular matrix:

[sk] = [1]
[akk]

, [aik] = [aik]− [aij ] · [ajk], [aik] = [aik] · [sk], (8)

where 0 /∈ [akk], k = 0, 1, . . . , n; i = k + 1, k + 2, . . . , n; j = 0, 1, . . . , k,
– backward substitution:

calculating the upper triangular matrix:

[bk] = [bk]− [bi] · [aki] , (9)

where k = 1, 2, . . . , n; i = 0, 1, . . . , k,
calculating the vector of results:

[xk] =
[bk]− [aki] · [bi]

[akk]
, (10)

where k = n− 1, n− 2, . . . , 0; i = k + 1, k + 2, . . . , n.

These three algorithms have been used to solve the example of 6-sector economic
system from [8]:

A′ =

⎡
⎢⎢⎢⎢⎢⎣

[0.1389, 0.1396] [0.0804, 0.0806] [0.0033, 0.0036] [0.0001, 0.0001] [0.0321, 0.0327] [0.0052, 0.0054]
[0.1565, 0.1571] [0.5043, 0.5047] [0.5634, 0.5643] [0.3401, 0.3421] [0.2405, 0.2411] [0.2642, 0.2654]
[0.0001, 0.0002] [0.0004, 0.0005] [0.0067, 0.0069] [0.0013, 0.0015] [0.0090, 0.0090] [0.0145, 0.0149]
[0.0110, 0.0113] [0.0178, 0.0178] [0.0296, 0.0298] [0.0140, 0.0146] [0.1103, 0.1110] [0.0413, 0.0417]
[0.0214, 0.0216] [0.0749, 0.0750] [0.0917, 0.0917] [0.0490, 0.0490] [0.0400, 0.0402] [0.0454, 0.0458]
[0.0268, 0.0271] [0.0284, 0.0407] [0.0142, 0.0144] [0.0358, 0.0363] [0.1086, 0.1090] [0.0981, 0.0987]

⎤
⎥⎥⎥⎥⎥⎦

b = {[5000, 5200][91000, 92000][5200, 5500][1100, 1300][3400, 3600][5900, 6180]}T (11)

Interval division operations in (5), (8) and (10) were replaced with the mod-
ified interval division (MID) based on “interval extension zero” method (see
[4,5]). This method allows us to obtain much narrower interval results than
those obtained using classic interval division [7]. Six implementations have been
developed: Gaussian elimination algorithm that uses classic interval division
method in (2) and (4) (denoted as Gaussclas), Gaussian elimination algorithm
that uses MID operations in (2) and (4) (Gaussmod), Gauss-Jordan algorithm
that uses classic interval division in (5) (GJclas), Gauss-Jordan algorithm that
uses MID operations in (5) (GJmod), LU algorithm that uses classic interval
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division method in (8) and (10)) (LUclas) and LU algorithm that uses MID
operations in (8) and (10) (LUmod).

To estimate the quality of obtained results, we provide the special relative
index of uncertainty, RIU. It may serve as the quantitative measure of the excess
width effect. It was calculated on resulting vectors as a maximal value from all
elements: RIU = max((xm − x), (x − xm))/xm · 100%, where xm = (x + x)/2.
In the considered example, the value of RIUin calculated for the input matrix
is equal to 33.3%, for the input vector the value of RIUin is equal to 8.33%.

Table 1 contains the results obtained from the presented example. Gaussclas,
GJclas and LUclas algorithms provide widest interval results. The results ob-
tained using GJmod algorithm were only slightly narrower and the results ob-
tained from Gaussmod and LUmod algorithms were almost 2 times narrower than
those obtained with the use of algorithms based on the classic interval division.
It is seen that different algorithms provide different results when the modified
interval division (MID) based on the “interval extended zero” method is used.

Table 1. Results obtained for the example of 6-sector economic system

Gaussclas Gaussmod GJclas GJmod LUclas LUmod

[27941, 28914] [28286, 28564] [27941, 28914] [27957, 28896] [27941, 28914] [28286, 28564]

[226211, 232376] [228230, 230324] [226211, 232376] [226315, 232261] [226211, 232376] [228230, 230324]

[5815, 6225] [5926, 6113] [5815, 6225] [5817, 6223] [5815, 6225] [5926, 6113]

[9079, 9736] [9288, 9523] [9079, 9736] [9087, 9727] [9079, 9736] [9288, 9523]

[23674, 24687] [23981, 24375] [23674, 24687] [23689, 24670] [23674, 24687] [23981, 24375]

[17798, 21970] [18769, 20693] [17798, 21970] [17850, 21631] [17798, 21970] [18769, 20693]

RIU = 9.87% RIU = 4.87% RIU = 9.87% RIU = 9.57% RIU = 9.87% RIU = 4.87%

We can see that in all above algorithms the multiplication by the reversed

element from the diagonal ( [1]
[akk]

) is used. It is known [2] that division operation

is 5-10 times slower than the multiplication. Therefore, numerical algorithms
usually are developed in such a way that they reduce the number of division op-
erations. We can see that presented above algorithms use the minimal number
of divisions. Of course, such approach leads to the development of faster algo-
rithm, but it is not obvious that such algorithms can considerable reduce the
excess width effect, especially when using MID. To study this issue, we reorga-
nize the calculations using division operations instead of the multiplications:

– forward elimination of Gaussian elimination algorithm

[aij ] = [aij ]−
[aik] · [akj ]

[akk]
, [bi] = [bi]−

[aik] · [bk]

[akk]
, (12)

where 0 /∈ [akk]
(k)

, k = 0, 1, ..., n− 1; i, j = k + 1, k + 2, ..., n,
– calculation of the matrix [A] and vector [b] in the Gauss-Jordan algorithm

[aij ] = [aij ]−
[akj ] · [aik]

[akk]
, [bi] = [bi]−

[bk] · [aik]

[akk]
, (13)

where 0 /∈ [akk], k = 0, 1, . . . , n; j = k + 1, k + 2, . . . , n; i = 0, 1, . . . , n,
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– calculating the lower triangular matrix in the forward elimination of LU:

[aik] = [aik]− [aij ] · [ajk], [aik] = [aik]
[akk]

, (14)

where 0 /∈ [akk], k = 0, 1, . . . , n; i = k + 1, k + 2, . . . , n; j = 0, 1, . . . , k.

In the above algorithms, the multiplications by the reversed diagonal elements
of [A] were replaced with the division by the diagonal elements. The results
obtained with the use of modified algorithms are presented in Table 2. We can
see that Gaussclas, GJclas and LUclas algorithms provide exactly the same re-
sults as previously (see Table 1), but the results obtained by other modified
algorithms differ from those presented in Table 1. Both Gaussmod and GJmod

algorithms give much narrower results than those presented in Table 1, while
LUmod algorithm produces only slightly wider intervals.

Table 2. Results obtained for the example of 6-sector economic system after reorga-
nizing the calculations in the algorithms

Gaussclas Gaussmod GJclas GJmod LUclas LUmod

[27941, 28914] [28294, 28555] [27941, 28914] [28190, 28658] [27941, 28914] [28286, 28564]

[226211, 232376] [228367, 230179] [226211, 232376] [227809, 230735] [226211, 232376] [228227, 230325]

[5815, 6225] [5933, 6106] [5815, 6225] [5918, 6120] [5815, 6225] [5926, 6113]

[9079, 9736] [9303, 9507] [9079, 9736] [9259, 9552] [9079, 9736] [9288, 9524]

[23674, 24687] [24009, 24345] [23674, 24687] [23971, 24383] [23674, 24687] [23978, 24378]

[17798, 21970] [19198, 20256] [17798, 21970] [18797, 20653] [17798, 21970] [18766, 20693]

RIU = 9.87% RIU = 2.68% RIU = 9.87% RIU = 4.71% RIU = 9.87% RIU = 4.88%

We can see that when using classic interval division operation it doesn’t matter
how we organize the calculations and which algorithm we use to solve the systems
of interval linear equations - we always get same results. However, if we use the
MID operation based on “interval extended zero” method, the results depend
on the algorithm and the number of multiplication and division operations.

As the another example, let us consider the randomly generated 500-sector
economic system. Interval data have been generated as follows: the sum of the
elements in columns of the coefficient matrix couldn’t be greater than 1, therefore
the elements were generated in the range 0 ÷ 1/n, where n is the number of
rows in the matrix. Elements from the final production vector b were randomly
generated in the range 0 ÷ 2500000. The bounds of intervals were obtained as
follows: a′ij = a′ij − 0.05 · a′ij , a′ij = a′ij + 0.05 · a′ij . The values of RIUin for the
input matrix and vector were equal to 5%.

In Table 3, the values of RIU , calculation times and the sum of division and
multiplication operations for all algorithms in their original forms, that were
implemented with the use of expressions (2) - (10) are presented. Similarly to
previous example, the greatest value of RIU was obtained for the Gaussclas,
GJclas and LUclas algorithms. GJclas and GJmod algorithms were slowest, while
the other four algorithms were practically evenly fast. In all algorithms, the num-
bers of interval division operation are less than 0.003% of all interval operations.
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Table 3. Results obtained for the tested algorithms for 500-sector economic system
(RIUin = 5%)

Gaussclas Gaussmod GJclas GJmod LUclas LUmod

RIU [%] 14.88 6.827 14.88 14.87 14.88 6.827

time [s] 15.391 15.354 23.681 23.705 15.779 15.757

divisions (div) 999 999 500 500 1000 1000

multiplications (mul) 41916000 41916000 62999750 62999750 41916000 41916000

div/mul · 100% [%] 0.0024 0.0024 0.0008 0.0008 0.0024 0.0024

Applying the expressions (12) - (14) in the tested algorithms we obtain the
results presented in Table 4. We can see that the values of RIU obtained using
Gaussmod, GJmod and LUmod algorithms differ from those presented in Table 3.
The interval results obtained using Gaussclas, GJclas and LUclas algorithms are
the same as in Table 3. It is worth noting that although in the last case we have
much more interval divisions ( 0.3− 0.4% of all interval operations), the time of
calculations practically is not increased.

Table 4. Results obtained for the modified algorithms for 500-sector economic system
(RIUin = 5%)

Gaussclas Gaussmod GJclas GJmod LUclas LUmod

RIU%] 14.88 4.48 14.88 6.41 14.88 6.829

time [s] 15.340 15.456 23.454 23.339 15.239 15.634

divisions (div) 125250 125250 250500 250500 125250 125250

multiplications (mul) 41791250 41791250 62749250 62749250 41791250 41791250

div/mul · 100% [%] 0.3 0.3 0.4 0.4 0.3 0.3

The obtained results show that when using MID operation based on “interval
extended zero” method, it is very important to reorganize calculations to provide
as much divisions as possible divisions instead of multiplications. Since in the
algorithms of solving the systems of interval linear equations the numbers of
division operations are less than 0.5% of all operations, the impact on the speed
of the calculations will be marginal.

3 Interval Multiplication Operation as the Source of the
Excess Width Effect

Since the “interval extended zero” method reduces the excess width effect which
is caused mostly by the classic interval division operation, and taking into ac-
count obtained results, we can propose the thesis that the interval multiplication
affects the increase of intervals width in the same extent as the classic interval
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division does. To prove this thesis we shall use the following example. Consider
the following simplest algorithm:

[s] = [1]/ [α] , [yi] =

n∑
i=0

[xi] · [s] , (15)

We can also implement this algorithm differently:

[yi] =

n∑
i=0

[xi]

[α]
, (16)

In the algorithm (15), there is only one division and n multiplications, while in
the algorithm (16) there are n divisions without multiplications.

Table 5 contains the values of RIU and calculation times obtained for several
randomly generated interval vectors [x] with RIUin = 5%. The tests have been
carried out on AMD Athlon 3000+ 1.8GHz machine. The columns labeled as
mod contain results obtained for both algorithms implemented with the use of
MID based on “interval extended zero” method, whereas the columns labeled as
clas contain results obtained for algorithms implemented with the use of classic
interval division. In both algorithms, the values of RIU for clas implementations
are exactly the same. They are different however for the mod implementations.
The algorithm (15) with only one division provides much wider results than the
algorithm (16).

Hence, if we use the classic interval division it does not matter for a given
algorithm how many multiplication or division operations are in the use (as long
as their sum is the same) - the results will remain unchanged. However, if we use
the MID operation based on “interval extended zero” method, the results will
depend on the number of divisions. The more divisions and less multiplications,
the narrower interval results will be obtained. Hence, we can say that interval
multiplication operation increases the width of interval results in the same extent
as the interval division.

Of course, the algorithm (16) is slower, since there are more slow division op-
erations than in the algorithm (15). Since the MID operation based on “interval
extended zero” method is also more complicated than classic interval division,

Table 5. Results obtained from algorithms with classic division and MID operation
based “interval extended zero” method

Vector size
Algorithm (15) Algorithm (16)

mod clas mod clas
RIU [%] time [s] RIU [%] time [s] RIU [%] time [s] RIU [%] time [s]

10000 9.95 0.0002 17.41 0.0001 6.98 0.0016 17.41 0.0004

100000 6.17 0.0021 7.46 0.0027 3.56 0.0227 7.46 0.0040

1000000 19.06 0.0239 96.21 0.0254 15.04 0.1831 96.21 0.0427

10000000 17.77 0.2658 66.92 0.2822 13.98 1.9192 66.92 0.4505



446 L. Dymova and M. Pilarek

the mod implementation of the algorithm (16) is about four 4 times slower than
the clas implementation of this algorithm. In the case of the algorithm (15) there
is only one division operation and it practically does not affect the speed of the
algorithm.

4 Conclusion

This report is devoted to the organizing calculations in the solution of interval
linear systems using the “interval extended zero” method to reduce the excess
width effect. Three algorithms for solving the systems of interval linear equations
are used as an example. It is shown that we can not only obtain different interval
results using these algorithms, but the results will depend on the organization
of calculations. It is proved that the interval multiplication operation affects the
width of the resulting intervals in the same extent as the classic interval division.
In situations, where the speed of the calculations is not the most important factor
it is better to use more interval divisions operations instead of the multiplications
to obtain much narrower results with the use of the “interval extended zero”
method.
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Abstract. The paper deals with the interval backward finite difference
method for solving the one-dimensional diffusion equation with the po-
sition dependent diffusion coefficient and the boundary conditions of the
first type. The interval method considered is based on the conventional
backward finite difference method. Moreover, it takes into account a for-
mula of a local truncation error of the method. Such local truncation
error of the conventional method is bounded by the appropriate inter-
val values. In most scientific applications we cannot find the endpoints
of such intervals exactly and it is of great importance to approximate
them in the most accurate way. The paper presents a method of such
approximation.

Keywords: one-dimensional diffusion equation, position dependent dif-
fusion coefficient, backward finite difference method, interval methods.

1 Introduction

The initial-boundary value problems for partial differential equations are fre-
quently used to describe some physical processes. Therefore, the problems of
solving such equations were analyzed by many authors (see e.g. Manikonda, Berz,
Makino [7], Nagatou, Hashimoto, Nakao [9], Watanabe, Yamamoto, Nakao [11]).
The interval methods based on some finite difference schemes for solving the heat
(or diffusion) equation with the constant diffusion coefficient were proposed by
Jankowska and Marciniak in [5], [6], [8]. The paper presents a new interval ap-
proach to the solution of the diffusion equation with the diffusion coefficient
given as a function of position.

2 One-Dimensional Diffusion Equation and Interval
Backward Finite Difference Method

Consider the one-dimensional diffusion equation of the form

∂u

∂t
(x, t)− ∂

∂x

(
γ (x)

∂u

∂x
(x, t)

)
= 0, 0 < x < L, t > 0, (1)
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subject to the initial and boundary conditions

u (x, 0) = f (x) , 0 ≤ x ≤ L, (2)

u (0, t) = ϕ1 (t) , u (L, t) = ϕ2 (t) , t > 0, (3)

where γ = γ (x) is a diffusion coefficient. A function u = u(x, t) represents a
concentration distribution and it depends on one spatial variable x and time t.
The diffusion equations such as a diffusion coefficient is a function of position,
as well as concentration or time, are considered in detail in e.g. [1] and [2].

Now, we set the maximum time Tmax and choose two integers n and m.
Hence, for the the mesh constants h and k such as h = L/n and k = Tmax/m,
the grid points are (xi, tj), where xi = ih for i = 0, 1, . . . , n and tj = jk for
j = 0, 1, . . . ,m. Furthermore, we make the additional assumption on the function
γ = γ (x), i.e. γ ∈ C3 [0, L].

If we introduce the notation λ = k/h2, then the exact formula of the backward
finite difference scheme for solving (1) with (2)-(3) can be given as follows

−λγ
(
xi−1/2

)
u (xi−1, tj) +

(
1 + λγ

(
xi−1/2

)
+ λγ

(
xi+1/2

))
u (xi, tj)

−λγ
(
xi+1/2

)
u (xi+1, tj) = u (xi, tj−1) + ri,j ,

i = 1, 2, . . . n− 1, j = 1, 2, . . . ,m, (4)

with the error term of the form

ri,j = −1

2
k2 ∂

2u

∂t2
(xi, ηj)−

1

24
h2k

d

dx
γ (xi)

∂3u

∂x3
(ξi, tj)

− 1

24
hk

[
d3

dx3
γ
(
ζ
(+)
i

)
u
(
ζ̃
(+)
i , tj

)
+ 3

d2

dx2
γ
(
ζ
(+)
i

) ∂u

∂x

(
ζ̃
(+)
i , tj

)
+3

d

dx
γ
(
ζ
(+)
i

) ∂2u

∂x2

(
ζ̃
(+)
i , tj

)
+ γ

(
ζ
(+)
i

) ∂3u

∂x3

(
ζ̃
(+)
i , tj

)
(5)

− d3

dx3
γ
(
ζ
(−)
i

)
u
(
ζ̃
(−)
i , tj

)
− 3

d2

dx2
γ
(
ζ
(−)
i

) ∂u

∂x

(
ζ̃
(−)
i , tj

)
−3

d

dx
γ
(
ζ
(−)
i

) ∂2u

∂x2

(
ζ̃
(−)
i , tj

)
− γ

(
ζ
(−)
i

) ∂3u

∂x3

(
ζ̃
(−)
i , tj

)]
,

where

ξi ∈
(
xi−1/2, xi+1/2

)
, ηj ∈ (tj−1, tj) ,

ζ
(+)
i , ζ

(−)
i ∈

(
xi−1/2, xi+1/2

)
, ζ̃

(+)
i ∈ (xi, xi+1) , ζ̃

(−)
i ∈ (xi−1, xi) . (6)

Let us consider the error term (5) with (6) of the backward finite difference scheme.
Before we formulate the interval counterpart of (4) we make some additional as-
sumptions on values of the derivatives given in (5) in the midpoints (6).

We assume that for i = 1, 2, . . . , n− 1, j = 1, 2, . . .m, there exist the intervals

G
(0)
i , G

(1)
i , G

(2)
i , G

(3)
i , M

(+)
i,j , M

(−)
i,j , N

(+)
i,j , N

(−)
i,j , P

(+)
i,j , P

(−)
i,j , Q

(+)
i,j , Q

(−)
i,j , Qi,j ,

Si,j , such as the following relations hold
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a) for ζ
(+)
i , ζ

(−)
i ∈

(
xi−1/2, xi+1/2

)
,

γ
(
ζ
(+)
i

)
∈ G

(0)
i , γ

(
ζ
(−)
i

)
∈ G

(0)
i , (7)

d

dx
γ
(
ζ
(+)
i

)
∈ G

(1)
i ,

d

dx
γ
(
ζ
(−)
i

)
∈ G

(1)
i , (8)

d2

dx2
γ
(
ζ
(+)
i

)
∈ G

(2)
i ,

d2

dx2
γ
(
ζ
(−)
i

)
∈ G

(2)
i , (9)

d3

dx3
γ
(
ζ
(+)
i

)
∈ G

(3)
i ,

d3

dx3
γ
(
ζ
(−)
i

)
∈ G

(3)
i , (10)

b) for ζ̃
(+)
i ∈ (xi, xi+1) , ζ̃

(−)
i ∈ (xi−1, xi) ,

u
(
ζ̃
(+)
i , tj

)
∈M

(+)
i,j , u

(
ζ̃
(−)
i , tj

)
∈M

(−)
i,j , (11)

∂u

∂x

(
ζ̃
(+)
i , tj

)
∈ N

(+)
i,j ,

∂u

∂x

(
ζ̃
(−)
i , tj

)
∈ N

(−)
i,j , (12)

∂2u

∂x2

(
ζ̃
(+)
i , tj

)
∈ P

(+)
i,j ,

∂2u

∂x2

(
ζ̃
(−)
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∈ P
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i,j , (13)

∂3u

∂x3

(
ζ̃
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i , tj

)
∈ Q

(+)
i,j ,

∂3u

∂x3

(
ζ̃
(−)
i , tj
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(−)
i,j , (14)

c) for ξi ∈
(
xi−1/2, xi+1/2

)
, ηj ∈ (tj−1, tj) ,

∂3u

∂x3
(ξi, tj) ∈ Qi,j ,

∂2u

∂t2
(xi, ηj) ∈ Si,j . (15)

Then, the interval backward finite difference method can be given as follows(
1 + λΓ

(
X1/2

)
+ λΓ

(
X3/2

))
U1,j − λΓ

(
X3/2

)
U2,j = U1,j−1

+λΓ
(
X1/2

)
U0,j + R1,j,

i = 1, j = 1, 2, . . . ,m, (16)

−λΓ
(
Xi−1/2

)
Ui−1,j +

(
1 + λΓ

(
Xi−1/2

)
+ λΓ

(
Xi+1/2

))
Ui,j

−λΓ
(
Xi+1/2

)
Ui+1,j = Ui,j−1 + Ri,j ,

i = 2, 3, . . . n− 2, j = 1, 2, . . . ,m, (17)

−λΓ
(
Xn−3/2

)
Un−2,j +

(
1 + λΓ

(
Xn−3/2

)
+ λΓ

(
Xn−1/2

))
Un−1,j

= Un−1,j−1 + λΓ
(
Xn−1/2

)
Un,j + Rn−1,j ,

i = n− 1, j = 1, 2, . . . ,m, (18)

where

Ri,j = −1

2
k2Si,j −

1

24
h2kDΓ (Xi)Qi,j (19)

− 1

24
hk

[
G

(3)
i M

(+)
i,j + 3G

(2)
i N

(+)
i,j + 3G

(1)
i P

(+)
i,j + G

(0)
i Q

(+)
i,j

−G
(3)
i M

(−)
i,j − 3G

(2)
i N

(−)
i,j − 3G

(1)
i P

(−)
i,j −G

(0)
i Q

(−)
i,j

]
,
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and

Ui,0 = F (Xi) , i = 0, 1, . . . , n, (20)

U0,j = Φ1 (Tj) , Un,j = Φ2 (Tj) , j = 1, 2, . . . ,m.

Note that Xi, i = 0, 1, . . . , n, Tj , j = 0, 1, . . . ,m are intervals such that xi ∈ Xi

and tj ∈ Tj. Furthermore, F = F (X), Φ1 = Φ1 (T ), Φ2 = Φ2 (T ), DΓ = DΓ (Xi)
denote interval extensions of the functions f = f (x), ϕ1 = ϕ1 (t), ϕ2 = ϕ2 (t)
and dγ/dx (x), respectively.

The interval backward finite difference method can be also given in the fol-
lowing matrix form

CU (j) = D(j−1), j = 1, 2, . . . ,m, (21)

where U (j) = [U0,j , U1,j , . . . , Un,j ]
T ,

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1 ν3/2 0
... 0 0 0

ν3/2 μ2 ν5/2
... 0 0 0

0 ν5/2 μ3

... 0 0 0

· · · · · · · · · . . . · · · · · · · · ·

0 0 0
... μn−3 νn−5/2 0

0 0 0
... νn−5/2 μn−2 νn−3/2

0 0 0
... 0 νn−3/2 μn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (22)

μi = 1+λΓ
(
Xi−1/2

)
+λΓ

(
Xi+1/2

)
, νi±1/2 = −λΓ

(
Xi±1/2

)
, i = 1, 2, . . . , n−1,

(23)
and

D(j−1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1,j−1 + λΓ
(
X1/2

)
Φ1 (Tj) + R1,j

U2,j−1 + R2,j

U3,j−1 + R3,j

· · ·
Un−3,j−1 + Rn−3,j

Un−2,j−1 + Rn−2,j

Un−1,j−1 + λΓ
(
Xn−1/2

)
Φ2 (Tj) + Rn−1,j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (24)

For the interval backward finite difference method (21) with (22)-(24) we can
prove that if the assumptions (7)-(15) about the error term are met, then the
exact solution belongs to the interval solution obtained.

3 Error Term Approximation in the Interval Backward
Finite Difference Method

Consider the error term (19) of the interval backward finite difference method
(16)-(18). In this section we propose a method for the approximation of the
endpoints of the intervals given in (19).
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We start from the intervals G
(0)
i , G

(1)
i , G

(2)
i and G

(3)
i . Since for the function γ

given in (1) we assumed that γ ∈ C3 [0, L], then we can introduce the following
procedure

G
(0)
i = min

{
γ (s) : s ∈

(
xi−1/2, xi+1/2

)}
,

G
(0)

i = max
{
γ (s) : s ∈

(
xi−1/2, xi+1/2

)}
, (25)

G
(1)
i = min

{
dγ/dx (s) : s ∈

(
xi−1/2, xi+1/2

)}
,

G
(1)

i = max
{
dγ/dx (s) : s ∈

(
xi−1/2, xi+1/2

)}
, (26)

G
(2)
i = min

{
d2γ/dx2 (s) : s ∈

(
xi−1/2, xi+1/2

)}
,

G
(2)

i = max
{
d2γ/dx2 (s) : s ∈

(
xi−1/2, xi+1/2

)}
, (27)

G
(3)
i = min

{
d3γ/dx3 (s) : s ∈

(
xi−1/2, xi+1/2

)}
,

G
(3)

i = max
{
d3γ/dx3 (s) : s ∈

(
xi−1/2, xi+1/2

)}
. (28)

Since the function γ = γ (x) is known from (1), then the derivatives used in (26)-
(28) can be derived. Interval values of the interval extensions of the function
γ and its derivatives computed at Xi =

[
xi−1/2, xi+1/2

]
can be taken as the

intervals G
(0)
i , G

(1)
i , G

(2)
i and G

(3)
i , respectively.

Next we consider the intervals M
(+)
i,j and M

(−)
i,j such as u

(
ζ̃
(+)
i , tj

)
∈ M

(+)
i,j ,

u
(
ζ̃
(−)
i , tj

)
∈ M

(−)
i,j , where ζ̃

(+)
i ∈ (xi, xi+1) , ζ̃

(−)
i ∈ (xi−1, xi). We can choose

their endpoints in the following way

M
(+)
i,j ≈ min

{
u (xi, tj) , u

(
xi+1/2, tj

)
, u (xi+1, tj)

}
,

M
(+)

i,j ≈ max
{
u (xi, tj) , u

(
xi+1/2, tj

)
, u (xi+1, tj)

}
, (29)

M
(−)
i,j ≈ min

{
u (xi−1, tj) , u

(
xi−1/2, tj

)
, u (xi, tj)

}
,

M
(−)

i,j ≈ max
{
u (xi−1, tj) , u

(
xi−1/2, tj

)
, u (xi, tj)

}
. (30)

Then, for the intervals N
(+)
i,j and N

(−)
i,j such as ∂u/∂x

(
ζ̃
(+)
i , tj

)
∈ N

(+)
i,j ,

∂u/∂x
(
ζ̃
(−)
i , tj

)
∈ N

(−)
i,j , where ζ̃

(+)
i ∈ (xi, xi+1) , ζ̃

(−)
i ∈ (xi−1, xi), we pro-

pose to take

N
(+)
i,j ≈ min

{
N∗

i,j , N
∗
i+1/2,j , N

∗
i+1,j

}
, N

(+)

i,j ≈ max
{
N∗

i,j , N
∗
i+1/2,j , N

∗
i+1,j

}
,

(31)



452 M.A. Jankowska

N
(−)
i,j ≈ min

{
N∗

i−1,j , N
∗
i−1/2,j , N

∗
i,j

}
, N

(−)

i,j ≈ max
{
N∗

i−1,j , N
∗
i−1/2,j, N

∗
i,j

}
,

(32)
where

N∗
i,j =

∂u

∂x
(xi, tj) . (33)

For the finite difference approximation of ∂u/∂x we can use the formulas

∂u

∂x
(xi, tj) =

1

2h
(−3u (xi, tj) + 4u (xi+1, tj)− u (xi+2, tj)) + O

(
h2
)
, (34)

∂u

∂x
(xi, tj) =

1

12h
(−u (xi+2, tj) + 8u (xi+1, tj)− 8u (xi−1, tj) (35)

+u (xi−2, tj)) + O
(
h4
)
,

∂u

∂x
(xi, tj) =

1

2h
(3u (xi, tj)− 4u (xi−1, tj) + u (xi−2, tj)) + O

(
h2
)
. (36)

Now, for the intervals P
(+)
i,j and P

(−)
i,j such as ∂2u/∂x2

(
ζ̃
(+)
i , tj

)
∈ P

(+)
i,j ,

∂2u/∂x2
(
ζ̃
(−)
i , tj

)
∈ P

(−)
i,j , where ζ̃

(+)
i ∈ (xi, xi+1) , ζ̃

(−)
i ∈ (xi−1, xi), we pro-

pose to take

P
(+)
i,j ≈ min

{
P ∗
i,j , P

∗
i+1/2,j , P

∗
i+1,j

}
, P

(+)

i,j ≈ max
{
P ∗
i,j , P

∗
i+1/2,j , P

∗
i+1,j

}
, (37)

P
(−)
i,j ≈ min

{
P ∗
i−1,j , P

∗
i−1/2,j , P

∗
i,j

}
, P

(−)

i,j ≈ max
{
P ∗
i−1,j , P

∗
i−1/2,j , P

∗
i,j

}
, (38)

where

P ∗
i,j =

∂2u

∂x2
(xi, tj) . (39)

For the finite difference approximation of ∂2u/∂x2 we can use the formulas

∂2u

∂x2
(xi, tj) =

1

h2
(2u (xi, tj)− 5u (xi+1, tj) + 4u (xi+2, tj) (40)

−u (xi+3, tj)) + O
(
h2
)
,

∂2u

∂x2
(xi, tj) =

1

12h2
(−u (xi+2, tj) + 16u (xi+1, tj)− 30u (xi, tj) (41)

+16u (xi−1, tj)− u (xi−2, tj)) + O
(
h4
)
,

∂2u

∂x2
(xi, tj) =

1

h2
(2u (xi, tj)− 5u (xi−1, tj) + 4u (xi−2, tj) (42)

−u (xi−3, tj)) + O
(
h2
)
.

Next we consider the intervals Q
(+)
i,j , Q

(−)
i,j , Qi,j such as for ζ̃

(+)
i ∈ (xi, xi+1) ,

ζ̃
(−)
i ∈ (xi−1, xi), ξi ∈

(
xi−1/2, xi+1/2

)
we assumed that ∂3u/∂x3

(
ζ̃
(+)
i , tj

)
∈
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Q
(+)
i,j , ∂3u/∂x3

(
ζ̃
(−)
i , tj

)
∈ Q

(−)
i,j , ∂3u/∂x3 (ξi, tj) ∈ Qi,j , respectively. We pro-

pose to choose their endpoints as follows

Q(+)

i,j
≈ min

{
Q∗

i,j , Q
∗
i+1/2,j , Q

∗
i+1,j

}
, Q

(+)

i,j ≈ max
{
Q∗

i,j, Q
∗
i+1/2,j , Q

∗
i+1,j

}
,

(43)

Q(−)

i,j
≈ min

{
Q∗

i−1,j , Q
∗
i−1/2,j , Q

∗
i,j

}
, Q

(−)

i,j ≈ max
{
Q∗

i−1,j, Q
∗
i−1/2,j , Q

∗
i,j

}
,

(44)

Q
i,j
≈ min

{
Q∗

i−1/2,j , Q
∗
i,j , Q

∗
i+1/2,j

}
, Qi,j ≈ max

{
Q∗

i−1/2,j , Q
∗
i,j, Q

∗
i+1/2,j

}
,

(45)
where

Q∗
i,j =

∂3u

∂x3
(xi, tj) . (46)

For the finite difference approximation of ∂3u/∂x3 we can use the formulas

∂3u

∂x3
(xi, tj) =

1

2h3
(−5u (xi, tj) + 18u (xi+1, tj)− 24u (xi+2, tj) + 14u (xi+3, tj)

−3u (xi+4, tj)) + O
(
h2
)
, (47)

∂3u

∂x3
(xi, tj) =

1

2h3
(u (xi+2, tj)− 2u (xi+1, tj) + 2u (xi−1, tj)

−u (xi−2, tj)) + O
(
h2
)
, (48)

∂3u

∂x3
(xi, tj) =

1

2h3
(5u (xi, tj)− 18u (xi−1, tj) + 24u (xi−2, tj)− 14u (xi−3, tj)

+3u (xi−4, tj)) + O
(
h2
)
. (49)

Finally, we consider the interval Si,j such as for ηj ∈ (tj−1, tj) we have
∂2u/∂t2 (xi, ηj) ∈ Si,j . We propose to choose its endpoints as follows

Si,j = min
{
S∗
i,j−1, S

∗
i,j−1/2, S

∗
i,j

}
, Si,j ≈ max

{
S∗
i,j−1, S

∗
i,j−1/2, S

∗
i,j

}
, (50)

where

S∗
i,j =

∂2u

∂t2
(xi, tj) . (51)

For the finite difference approximation of ∂2u/∂t2 we can use the formulas

∂2u

∂t2
(xi, tj) =

1

k2
(2u (xi, tj)− 5u (xi, tj+1) + 4u (xi, tj+2)

−u (xi, tj+3)) + O
(
k2
)
, (52)

∂2u

∂t2
(xi, tj) =

1

12k2
(−u (xi, tj+2) + 16u (xi, tj+1)− 30u (xi, tj)

+16u (xi, tj−1)− u (xi, tj−2)) + O
(
k4
)
, (53)

∂2u

∂t2
(xi, tj) =

1

k2
(2u (xi, tj)− 5u (xi, tj−1) + 4u (xi, tj−2)

−u (xi, tj−3)) + O
(
k2
)
. (54)
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Remark 1. The stability criterion in the conventional backward finite difference
method (see e.g. [10]) for solving the equation (1) with (2)-(3) is of the form

k ≤ min
i=1,2,...,n−1

h2

2γ
(
xi+1/2

) . (55)

The numerical experiments show that it is a good practice to choose the stepsize
k such that the condition (55) is satisfied also for the interval scheme considered.

Remark 2. Note that in practice we have to approximate values of the unknown
function u = u (x, t) and its partial derivatives at (xi, tj) at some midpoints to
obtain the endpoints of the intervals given in the error term (19) of the interval
method (16)-(18) with (20). Let us first set the stepsizes h and k for the interval
scheme considered above, such that the condition (55) is satisfied. Then we take
h = h/2, k = k/2 and we solve (1) with (2)-(3) by the conventional backward
finite difference method to get the approximations ui,j of u (xi, tj). If we neglect
the appropriate error terms given in (34)-(36), (40)-(42), (47)-(49), (52)-(54)
and take ui,j instead of u (xi, tj), then we can approximate values u needed in
(29)-(30) and then the derivatives of u with the formulas of forward, central or
backward finite differences depending on the position (i, j) in the grid.

Remark 3. In most cases we cannot find the endpoints of the intervals given in
the error term of the interval method exactly. Hence, we cannot guarantee that
the interval solutions obtained are such that they include the exact solution.
The numerical tests on the initial-boundary value problems with the constant
diffusion coefficient, for which the analytical solution can be derived, show that
such inclusion takes place. If a diffusion coefficient γ is given as a function of
x, then the exact solution of (1) with (2)-(3) is known only for some selected
problems, i.e. for some special functions of diffusion coefficient and the appropri-
ate initial and boundary conditions. Otherwise, the exact solution is unknown.
Nevertheless, during the early stages of the interval method tune, we can com-
pare the interval solutions obtained for different values of stepsizes h and k with
themselves and also with the results obtained with other conventional methods
for solving the problems considered (e.g. the finite element method implemented
in ANSYS Multiphysics or COMSOL Multiphysics). We can also decrease values
of the left endpoint and increase values of the right endpoint of intervals of the
error term by some experimentally chosen percent value c (usually about 5% to
10%). In this way a probability that the error term interval includes the local
truncation error at a given point is higher.

4 Numerical Experiment

Let us consider the equation of the form (1) given as follows

∂u

∂t
(x, t)− ∂

∂x

(
ax

∂u

∂x
(x, t)

)
= 0, 0 < x < 1, t > 0. (56)
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If we take a = 1, then for the following initial and boundary conditions

u (x, 0) = exp (−x) , 0 ≤ x ≤ 1, (57)

u (0, t) = 1/(t + 1), u (1, t) = 1/(t + 1) exp (−1/(t + 1)) , t > 0, (58)

the exact solution of (56) with (57)-(58) is of the form

u (x, t) = 1/(t + 1) exp (−x/(t + 1)) . (59)

We set Tmax = 1. With the interval method applied in the floating-point interval
arithmetic (see also [3], [4]) we get the interval solutions of the widths shown
in Figure 1. Values of the exact solution and the interval solutions obtained for
h = 1E-2 and k = 5E-3 are given in Table 1.

Fig. 1. Widths of the interval solution U(x, t = 1) obtained with the interval method
for the problem (56) with (57)-(58) for different values of h and k

Table 1. Values of the exact solution and the interval solutions obtained with the
interval method, where h = 1E-2 and k = 5E-3

x u (x, t = 1) U (x, t = 1)

0.1 4.75614712250357000E-1 [ 4.75405842205227732E-1, 4.75796470818457326E-1]

0.2 4.52418709017979787E-1 [ 4.52271664459332143E-1, 4.52546903949482129E-1]

0.3 4.30353988212528904E-1 [ 4.30244276338300376E-1, 4.30449787853642838E-1]

0.4 4.09365376538990929E-1 [ 4.09282303081594987E-1, 4.09438015145119672E-1]

0.5 3.89400391535702434E-1 [ 3.89337880361153681E-1, 3.89455114773577802E-1]

0.6 3.70409110340858933E-1 [ 3.70363253442375306E-1, 3.70449293583545892E-1]

0.7 3.52344044859356717E-1 [ 3.52312139959008359E-1, 3.52372024631192384E-1]

0.8 3.35160023017819650E-1 [ 3.35140110422985753E-1, 3.35177496744453491E-1]

0.9 3.18814075810886647E-1 [ 3.18804685120776334E-1, 3.18822320179552737E-1]
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5 Conclusions

The author presents the interval scheme for solving the diffusion equation with
the diffusion coefficient given as a function of position and the boundary con-
ditions of the first type. Moreover, some kind of the error term approximation
of the conventional method is described. Since the endpoints of the error term
intervals are approximated, the interval method considered just verifies the con-
ventional method and we cannot guarantee that the exact solution belongs to
the interval solutions obtained. Nevertheless, as the numerical experiments con-
firm, the exact solution does belong to the interval solutions obtained with the
error term approximation proposed (see also Section 4).
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Abstract. Based on the libraries MPFR and MPFI for arbitrary pre-
cision real and arbitrary precision real interval computations and cor-
responding interfaces to the C++ class library C-XSC, the new data
type MpfciClass (multiple precision floating-point complex intervals)
and corresponding operations/functions for arbitrary precision com-
plex intervals have been implemented. Our new package allows to code
mathematical expressions for the complex interval data type in their
usual mathematical notation yielding easy to read and self-documenting
source code. Meanwhile, more than 30 elementary mathematical func-
tions have been realized. At any point of the program the user may
change the precision setting of the computation. The maximum preci-
sion of complex interval variables is only restricted by memory limita-
tions. Its exponent range is very large. To the knowledge of the authors
there is no comparable package (with respect to the features provided)
available worldwide. The new package is written in C++. It is freely
available from http://www2.math.uni-wuppertal.de/org/WRST/xsc/

cxsc software.html.

Keywords: arbitrary precision, complex intervals, complex interval
functions, C-XSC, MPFR, MPFI, reliable computations.

1 Introduction

Based on the ANSI C libraries MPFR [10] and MPFI [23] and corresponding inter-
faces [7, 5] to the C++ class library C-XSC [13–15] the new data type MpfciClass
and corresponding operations/functions for arbitrary precision complex intervals
have been implemented. Due to the C++ operator and function name overload-
ing feature the new package may be used in a very comfortable way. Formulas
and expressions may be written in their usual mathematical notation. The new
package also supplies the user with many different predefined constructors allow-
ing to mix usual numerical C-XSC data types (e.g. real, interval, cinterval
etc.) with the new advanced arbitrary precision data types. Computations of
e.g. a binary operation allow different precisions in the operands and a third
precision setting for the resulting value. The user can modify/control the preci-
sion setting in a convenient way. All the usual elementary mathematical func-
tions like the trigonometric functions, the inverse trigonometric functions, the
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hyperbolic and the inverse hyperbolic functions, logarithms and exponential func-
tions, ... all allowing arbitrary precision complex intervals as input arguments, are
provided by the package. The maximum precision of variables is only restricted
by memory limitations of the computer system. The exponent range is very large.
For example, the smallest value greater than 0 for the real part of an arbitrary
precision complex interval is 2**(-1073741823), a really tiny number compared to
the smallest positive double precision IEEE number. Arbitrary precision numbers
are represented internally as binary numbers and the precision setting refers to
the number of bits used for the mantissa. The package allows computations using
say only 35 bit significands but also say 500402 bit significands, if these precision
settings are demanded by the user.

Further details of the realization of the new package and of some of its pre-
decessors are presented in [3, 20, 4–6].

2 Using the Ansi C Library MPFR from within C-XSC

The MPFR library[10] provides arbitrary precision real arithmetic operations as
well as a rich set of mathematical functions. The results of all operations and
functions are guaranteed to be best possible with respect to the current precision
setting and the current rounding mode (both can be controlled by the user). The
usage of the library is cumbersome and error prone. This may be seen e.g. by
the following source code taken without modification from [11]:

#include <stdio.h>

#include <stdlib.h>

#include "mpfr.h"

int main (int argc, char *argv[])

{

mp_prec_t p = atoi (argv[1]);

mpfr_t a, b, c, d;

mpfr_inits2 (p, a, b, c, d, (mpfr_ptr) 0);

mpfr_set_str (a, "1e22", 10, GMP_RNDN);

mpfr_sin (a, a, GMP_RNDN);

mpfr_mul_ui (a, a, 173746, GMP_RNDN);

mpfr_set_str (b, "17.1", 10, GMP_RNDN);

mpfr_log (b, b, GMP_RNDN);

mpfr_mul_ui (b, b, 94228, GMP_RNDN);

mpfr_set_str (c, "0.42", 10, GMP_RNDN);

mpfr_exp (c, c, GMP_RNDN);

mpfr_mul_si (c, c, -78487, GMP_RNDN);

mpfr_add (d, a, b, GMP_RNDN);

mpfr_add (d, d, c, GMP_RNDN);

mpfr_printf ("d = %1.16Re\n", d);

mpfr_clears (a, b, c, d, NULL);

return 0;

}
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Here, the data type for arbitrary precision real numbers provided by the MPFR
library is mpfr_t.

For most readers this code is probably far away from being self-documenting.
You have to initialize all the arbitrary precision variables explicitly, you have to
use cumbersome function calls for the binary arithmetic operations, you do not
know which variables in a parameter list of a function call are input variables,
which ones are output quantities and you have to free the variables at the end
of your program explicitly. Do you immediately see which simple mathematical
formula is to be evaluated?

Using our new interface mpfrclass.hpp to make MPFR available within C-
XSC, a similar program may be coded as follows:

#include <iostream>

#include "mpfrclass.hpp" //arbitrary precision arithmetic

using namespace std;

using namespace MPFR;

using namespace cxsc;

//allow abbreviation MP for multiple precision real data type:

#define MP MpfrClass

int main() {

cout.precision(20); //decimal digits printed for mp numbers

PrecisionType p; //used to set current precision

for (;;) {

cout << "Precision: ";

cin >> p; //read number of bits to be used

cout << endl;

if (p <= 1) break;

MP::SetCurrPrecision(p); //p bit arithmetic is used

MP a("1E22"), b("17.1"), c("0.42"), d;

d= 173746*sin(a) + 94228*ln(b) - 78487*exp(c); //formula

cout << "Precision used: " << d.GetPrecision()

<< " d: " << d << endl;

}

return 0;

}

Now the mathematical notation (due to the C++ features of operation and
function name overloading) of the formula makes it easy to see what is going on.
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The comfortable interface to the MPFR library used in the preceding C-XSC
program is realized as a C++ class called MpfrClass.

The demonstrated effect of program simplification is even more pronounced
for source codes written to perform interval computations. It is worth to mention
that the original program also runs without changes in our C-XSC environment
(of course, the corresponding header file mpfrclass.hpp must be included to
allow the usage of the MPFR library from within C-XSC).

3 Remarks on the Realization/Implementation
of Complex Interval Functions

In this note we only deal with complex intervals given as rectangles in the com-
plex plane with sides parallel to the axes. For a different approach based on discs
in midpoint-radius representation see [18].

Our implementations of complex interval functions are based on the following
considerations: To a given complex interval argument

Z = X + i · Y ; X = [x1, x2], Y = [y1, y2]; (1)

with real intervals X,Y we want to compute for the complex function w = f(z)
with z = x + iy, w = u(z) + iv(z) = u(x, y) + iv(x, y) ∈ C a sharp complex
interval enclosure of the range of function values

W = f(Z) := {w |w = f(z) with z ∈ Z}. (2)

In general, the image W = f(Z) of Z is not a rectangle with sides parallel to the
axes. Thus, the best possible complex interval enclosure F (Z) = U(Z)+ i ·V (Z)
of W will be afflicted with (unavoidable) overestimation [16, p.16]. Figure 1
presents the typical situation. A method for the computation of the real interval
enclosures U, V for the real and imaginary parts, respectively, can now be derived
from the following theorem [2]:

With z = x+ i · y ∈ C, w = f(z) = u(x, y) + i · v(x, y), z = x+ i · y ∈ Z ⊂ C
we have Let f = u+i ·v : Z ⊂ G −→ C holomorph in the region G. Then the real
and imaginary part functions u(x, y) and v(x, y), resp. are harmonic functions
taking on their minimum and maximum values on the boundary of Z.

Let us denote the extremal point leading to the minimum value by m and
that leading to the maximum value by M . In general, the extremal points m,M
are not the corner points of the input interval Z. Thus, in many cases only one
coordinate of an extremal point will be a representable floating-point number.
As an illustrative example we present in Figure 2 for the principal value of
the inverse tangent function arctan(z) some input intervals Z where only the
y-coordinate of the corresponding point m is a representable number [16].

Let us consider e.g. the input interval denoted by Z1 = [x1, x2] + i[y1, y2] (see
Figure 2) in the first quadrant outside the unit circle. In this region for the real
part function u(x, y) of arctan(z) it holds

u(x, y) =
1

2
arctan

2x

1− x2 − y2
+

π

2
, (3)
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z-plane w-plane

U(Z)

V (Z)

F(Z) = U + i · V

ZY

X

W = f(Z)

Fig. 1. Mapping by a complex interval function F (Z) = F (X + iY )

and if for the x-coordinate mx of the point m we want to have x1 < mx < x2,
for a local minimizer m, the sufficient condition

∂u(x, y)

∂x
= 0

(
⇐⇒ y = +

√
1 + x2

)
must be fulfilled, yielding y1 = +

√
1 + m2

x. Thus, the resulting x-coordinate is

mx =
√

y21 − 1, which, in general, will not be a floating-point number. We have

to compute a lower bound for u(m) = u(
√

y21 − 1, y1) to find a lower bound
for the minimum of the real part function u(x, y) of arctan(z) over Z1. Similar
considerations apply for the maximum of u(x, y) as well as for the minimum
and maximum of the imaginary part function v(x, y). To compute bounds for
these values we evaluate the corresponding expressions (often in different parts
of the complex plane different expressions for the same quantity must be used
to avoid cancellation and/or significant overestimation) using arbitrary precision
real arithmetic and/or arbitrary precision real interval arithmetic. Details may
be found in [16, 17, 5]. For the real part function of the inverse cosine function
arccos(z) the procedure is exemplarily presented in detail in [6].

4 Using Arbitrary Precision Complex Intervals from
within C-XSC

To get familiar with the usage of arbitrary precision complex intervals let us
discuss a very simple but illustrative example: Let us compute enclosures to
different accuracies of the left hand side of the famous equation

eiπ + 1 = 0 (4)
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M? M?

M? M?

m

+10 x1 x2
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x0
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y

y =
√

1 + x2

Fig. 2. Location in the z-plane of the extremal points m,M on the boundary of Z for
the real part function u(x, y) of arctan(z). M? indicates that there are two possibilities,
i.e. additional information is necessary to be able to decide which one is M .

using our arbitrary precison complex interval package and let us verify for dif-
ferent precision settings that 0 is always an element of the computed results.

The data type for arbitrary precision complex intervals in C-XSC is called
MpfciClass. It is provided by the new interface file mpfciclass.hpp, where the
acronym mpfci is an abbreviation for multiple precision floating-point complex
intervals.

The constant π may be enclosed by calling the method MpfiClass::Pi().
This call returns (depending on the the current precision setting) an arbitrary
precision real interval (data type MpfiClass) containing π. The accuracy of the
enclosure is guaranteed to be best possible with respect to the current precision
setting of the computation.
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#include "mpfciclass.hpp" //arbitrary precision complex intervals

#define MP MpfciClass //MP short form for that data type

using namespace std;

using namespace cxsc;

using namespace MPFI; //arbitrary precision intervals

int main(){

cout << endl << "*** Compute res = exp(i*pi) + 1 ... " << endl;

cout << boolalpha;

MP I(0,1); //imaginary unit

MP res; //result of formula evaluation

bool zeroInResults=true;

for (int p= 50; p<2E6; p+= p) {

MP::SetCurrPrecision(p);

cout << "Current precision setting: "

<< MP::GetCurrPrecision() << " bits" << endl;

res= exp( I*MpfiClass::Pi() ) + 1;

//it holds exp(i*pi) = -1, i.e. res must contain 0

zeroInResults= zeroInResults && (0 <= res);

cout << " res: " << res << endl;

}

cout << "Last enclosure, diam( Re res + Im res ): "

<< diam( Re(res) + Im(res) ) << endl;

cout << "0 element of all computed results: "

<< zeroInResults << endl;

return 0;

}

Running the program produces the following (shortened) output:

*** Compute res = exp(i*pi) + 1 ...

Current precision setting: 50 bits

res: ([0, 8.88179e-16], [-3.43025e-15, 1.22465e-16])

Current precision setting: 100 bits

res: ([0, 7.88861e-31], [-2.98588e-30, 1.69569e-31])

Current precision setting: 200 bits

res: ([0, 6.22302e-61], [-2.37501e-60, 1.14200e-61])

Current precision setting: 400 bits

res: ([0, 3.87260e-121], [-1.48593e-120, 6.31080e-122])

... ...
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Current precision setting: 204800 bits

res: ([0, 1.13996e-61651], [-4.50739e-61651, 5.24363e-61653])

Current precision setting: 409600 bits

res: ([0, 1.29950e-123302], [-4.20965e-123303, 4.77704e-123302])

Current precision setting: 819200 bits

res: ([0, 1.68870e-246604], [-3.30692e-246604, 3.44788e-246604])

Current precision setting: 1638400 bits

res: ([0, 2.85171e-493208], [-6.45615e-493208, 4.95067e-493208])

Last enclosure, diam( Re res + Im res ): 1.42585e-493207

0 element of all computed results: true

The output shows - as expected - that 0 is always contained in the computed
results. The operator <= allows to check whether the left hand side (here the
point 0) is contained in the right hand side (here the arbitrary precision complex
interval res). The last but one line of the output tells us that the diameter of the
enclosure computed using a precision setting of about 1.6 million bits is smaller
than 1.5 · 10−493207. We can also see that doubling the current precision - as it
is done in each step of the loop - results in doubling the accuracy of the result
(the quality of the enclosure). Thus, from a numerical point of view, the results
are very satisfactory.

5 Conclusion

K. Petras states in [21, 22] that for realistic parameters the numerical compu-
tation (using complex arithmetic) of an integral representation for arithmetic-
average Asian options may lead to numerical cancellation of several hundred
decimal digits due to highly oscillatory integrands, emphasizing the need for
arbitrary precision complex interval packages.

Meanwhile, the possibility to work with arbitrary precision complex intervals
is an outstanding supplement to C-XSC provided by our new class MpfciClass.
To the knowledge of the authors there is no comparable software available
world wide. Our implementation is heavily based on the MPFR and MPFI
libraries. But both libraries do not offer direct support for complex func-
tion or complex interval function evaluations. Thus, the realization of com-
plex interval functions is still costly. But meanwhile a rather complete set of
mathematical functions are implemented (trigonometric, inverse trigonometric,
hyperbolic, inverse hyperbolic, logarithms, exponentials, power functions, ...)
all allowing arbitrary precision complex intervals as input arguments. Our
package extends C-XSC smoothly. E.g., it provides a lot of constructors and
allows to mix different numerical C-XSC data types when coding mathemat-
ical expressions. For more details see the extensive discussion in [5] (up to
now only available in German). The implementation of our new package as
well as many other C-XSC extensions are freely available from our website
http://www2.math.uni-wuppertal.de/org/WRST/xsc/cxsc_software.html.

http://www2.math.uni-wuppertal.de/org/WRST/xsc/cxsc_software.html
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4. Blomquist, F., Hofschuster, W., Krämer, W.: A Modified Staggered Correction
Arithmetic with Enhanced Accuracy and Very Wide Exponent Range. In: Cuyt,
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Abstract. The paper presents the author’s investigations in the field of
improving the performance of a multithreaded interval solver of equations
systems, targeted for underdetermined systems. New heuristics to choose
the interval Newton operator variant and bisection direction are pro-
posed. Numerical results for several benchmark problems are presented
and analyzed. Also some other tools and future possible improvements
are suggested.

Keywords: underdetermined systems, nonlinear equations, interval
computations, Newton operator, bisection, heuristic.

1 Introduction

Underdetermined systems of equations are systems of the form f(x) = 0, where
x ∈ [x, x] and f :Rn → Rm, m < n. Such systems are encountered e.g. in robotics
[16], stability theory of dynamical systems [20], differential equations solving [17]
or seeking the Pareto set of a multicriteria problem [15]. Solution sets of such
problems are not composed of isolated points, but are continuous manifolds and
finding all such solutions is an ill-posed problem. Interval methods are a feasible
approach to solve it as they can enclose the solution sets by a collection of boxes.
We skip the basic of interval calculus, referring to several textbooks on the topic
(e.g. [6], [8], [19]).

To the best knowledge of the author, the first paper considering applying
interval methods to underdetermined problems was due to Neumaier [18]. The
author developed a solver for this kind of problems and presented it in [11]. Sev-
eral features of the solver were investigated in subsequent papers. In particular,
shared-memory parallelization was considered [12], advanced uses of the Intel
TBB [3] library [14] and issues of the efficient convergence [13].

This paper considers heuristics for selection of proper interval tools in the
solver.

Motivation. Interval arithmetic provides several useful and powerful techniques
to solve nonlinear equations. In particular we get:

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 467–476, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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– various kinds of interval Newton operators (and different preconditioning
strategies for them, if useful),

– various kinds of consistency operators,
– other constraint satisfaction and constraint propagation tools.

Also, these techniques can often be parametrized in a few different ways.
It is known that crucial for the efficient application of interval methods to a

specific problem is developing a proper heuristic to choose appropriate interval
tools and parametrize them properly. For example, Merlet proposes a bunch of
sophisticated heuristics to solve robot-kinematics-related problems [16]. Inde-
pendently, Goualard and Jermann propose some methods to select the variables
for narrowing using the box-consistency operator [5].

For our problem, previous experiments (see [11], [13]) have shown that the com-
ponentwise Newton operator (Ncmp) [7] and Gauss-Seidel (GS) operator [8] per-
form the best, but their performance varies highly on different problems. Indeed,
when we look on Tables 1 and 2 in Section 4, below, the componentwise opera-
tor outperforms GS e.g. for Rheinboldt and Puma6 problems, but is much worse
for TwoCirc, Hippopede or Puma7. A clever heuristic to choose the operator or
switch between them seems necessary to deal with practical problems efficiently.

2 Generic Algorithm

Before we consider the developed heuristics, let us present the basic meta-
algorithm of the solver. It is the branch-and-prune (b&p) method that can be
expressed as follows (notation from [9] is used):

IBP (x(0); f)
// x(0) is the initial box, f(·) is the interval extension of the function f :Rn → Rm

// Lver is the list of boxes verified to contain a segment of the solution manifold
// Lpos is the list of boxes that possibly contain a segment of the solution manifold
L = Lver = Lpos = ∅ ;
x = x(0) ;
loop

process the box x, using the rejection/reduction tests ;
if (x does not contain solutions) then discard x ;
else if (x is verified to contain a segment of solution manifold) then push (Lver, x) ;
else if (the tests resulted in two subboxes of x: x(1) and x(2)) then

x = x(1) ;
push (L, x(2)) ;
cycle loop ;

else if (x is small enough) then push (Lpos, x) ;
if (x was discarded or stored) then

x = pop (L) ;
if (L was empty) then exit loop ;

else

bisect (x), obtaining x(1) and x(2);
x = x(1) ;
push (L, x(2)) ;

end if ;
end loop
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In previous papers, several rejection/reduction tests (mentioned in the above
pseudocode) have been considered. According to the experiences of [11] and [13]
we concentrate on two of them:

– the componentwise Newton operator with Herbort and Ratz heuristic to
choose pairs equation-variable for reduction [7],

– the Gauss-Seidel operator with a rectangular matrix; Gauss elimination with
full pivoting used for elements choice and inverse-midpoint preconditioning
[8], [11], [13].

The componentwise operator can be expressed by the following formula:

Ncmp(x, f, i, j) = midxj −
fi(x1, . . . ,xj−1,midxj ,xj+1, . . . ,xn)

∂fi
∂xj

(x1, . . . ,xn)
, (1)

while GS by:

GS(x, f, i, j) = x̌i −
(
Yi: · f(x̌1, . . . , x̌m,xm+1, . . . ,xn) + (2)

+

m∑
j=1,j �=i

Yi: · J:j · (xj − x̌j)
)
/(Yi: · J:i) .

We denote the midpoint x̌i = midxi for brevity and the Jacobi matrix as J
(while Y is the preconditioning matrix).

The differences between both operators can be summarized as follows:

– the componentwise operator linearizes the function wrt (with respect to) one
variable only at a time, while GS – wrt all of them,

– the componentwise operator tries to narrow all variables using all equations
(Herbort and Ratz heuristic [7]), while GS chooses m variables (out of n)
and uses only one equation for each of them,

– the componentwise operator – because of its essence – does not require any
preconditioning or other matrix operations.

In [11], we observed that for some problems the Ncmp operator is more efficient,
while GS – for other ones, but no explanation of this phenomenon was given.
Some hints were done later [13]. While the full explanation might be complex,
our current understanding of the phenomenon allowed us to develop an efficient
heuristic for choosing the operator, described below in Subsection 3.1.

3 Proposed Heuristics

In this paper the author concentrates on heuristics for two purposes: choosing
the proper Newton operator variant and choosing proper variable for bisecting.
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3.1 Choice of the Interval Newton Operator

From the current experience we can formulate the following observation: the
componentwise operator seems to be more efficient for larger values of the accu-
racy parameter ε, while GS – for smaller ones. Why is it so?

Please note the formulae for both operators: (1) and (2). We can interpret
them as follows: Ncmp uses the natural interval extension of f(·, ·, . . . , x̌j , ·, . . . , ·),
while GS – its centered form (see e.g. [6], [8]). It is a commonly known fact that
centered forms are more efficient than natural interval extensions for small boxes
(they converge quadratically with the interval’s diameter, while natural exten-
sions – converge linearly).

Ratschek and Rokne [19] proposed a simple heuristic: if the width of a box
exceeds 0.5/n (where n is the box’s dimension), then use the natural interval
extension; otherwise – a centered form.

Applying this heuristic results in a simple condition to choose the Newton
operator. However, preliminary experiments with checking if all components of
the box have diameters below the threshold value were rather discouraging.

As the operator is supposed to contract domains of m variables, we use the
Ncmp operator if at most (n − m) of the variables have diameters below the
threshold value and GS – otherwise. Please note, this reduces to checking all
components for well-determined systems, i.e. when n = m.

3.2 Choice of the Variable for Bisection

The most common procedure to choose the box’s component for bisection is
to take the longest one. It is used in the developed solver, also. Some authors
propose other policies to increase the efficiency, e.g. the maximal smear. Many
of other policies have been considered in [4].

In our opinion, most of the previous approaches have been based on a wrong
assumption – they tried to minimize the diameter of f(·) on boxes resulting from
bisection. But bisection is not the only and not the main tool used by the b&p
procedure. So, the objective of bisection should be to result in boxes that will
be narrowed by the Newton operator (or other rejection/reduction procedures)
easily.

What does that mean? Let us consider a trivial example – a problem with one
equation in two variables, e.g. 100 ·x1−x2 = 0 and the box x = [−2, 4]× [−1, 1].
How to bisect this box? Both, maximal diameter and maximal smear heuristics,
would advice to bisect the first component that would result in boxes [−2, 1]×
[−1, 1] (containing the whole solution set of x) and [1, 4]× [−1, 1] (containing no
solutions). Will it help the Newton operator? Such an operator will not be able
to narrow the domain of second variable (there is a solution for each x2 ∈ [−1, 1])
and if there were problems narrowing the first variable – they remain (because x2

was not narrowed)! However, if we bisect the second variable, obtaining [−2, 4]×
[−1, 0] and [−2, 4]× [0, 1], any Newton operator should narrow the domain for
x1 much easier than for the initial box.
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So, choosing minimal smear seems to be a good strategy. Yet, if we stick
to this policy, the b&p procedure might loose its convergence at all! To assure
convergence (in case the Newton operator fails to narrow some boxes anyway) we
have to bisect the longest component, if the difference between the components
has become too high.

The resulting heuristic will be described now. It is a bit complex and some of
its features have been adapted by a hit-and-miss process and could be improved,
certainly. Yet, as we can see in Section 4, it performs very well.

heuristic_choosing_a_variable_for_bisection

find the index jmax and diameter wmax of the component with maximal diameter;
find the index jmin and diameter wmin of the component with minimal diameter;
find the index jmaxunnarrowed and diameter wmaxunnarrowed of the longest

component not reduced by the last use of the Newton operator;
if (Newton reduced no components or wmax > 1.5 · wmaxunnarrowed)

then return jmax;
else if (wmaxunnarrowed > 8 · wmin) then return jmaxunnarrowed;
find the index j and diameter w of the variable with smallest maximal magnitude

of the Jacobi matrix in all rows;
if (w > 0.1) then return j;
else return jmaxunnarrowed;
end heuristic_choosing_a_variable_for_bisection

3.3 Other Tuning

Recent versions of the C-XSC library contain several improvements and allow
several low-level optimizations [10]. In all considered examples, the ordinary
floating-point arithmetic (no long accumulator or DotK algorithm) was used,
by setting opdotprec = 1. Other optimizations (following a very interesting
tutorial [10]) include:

– using approximate computations of the inverse-midpoint preconditioner,
– using BLAS and LAPACK routines,
– compiling the C-XSC library with high optimization level:

-O3 -finline-functions.

4 Computational Experiments

Numerical experiments were performed on a computer with 16 cores, i.e. 8 Dual-
Core AMD Opterons 8218 with 2.6GHz clock. The machine ran under control of
a Fedora 15 Linux operating system.ATLAS 3.9.11 was installed there for BLAS
libraries. The solver was implemented in C++, using C-XSC 2.5.1 library for
interval computations. The GCC 4.6.0 compiler was used and TBB 3.0 update 7.

According to previous experiences (see [12], [14]), 8 parallel threads were used
to decrease computation time. Please not that parallelization does not affect the
number of iterations, but the execution time, only.
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The following test problems were considered:

– TwoCirc [11], one equation in two variables, ε = 10−5,
– Hippopede [11], [18], two equations in three variables, ε = 10−7,
– Rheinboldt [11], [18], [20], five equations in eight variables, ε = 10−1,
– Puma7 [11], the classical Puma problem without the last equation; 7 equa-

tions in 8 variables, ε = 10−4,
– Puma6 [11], as Puma7, but without two last equations; 6 equations in 8

variables, ε = 0.05,
– Broyden8, Broyden12, a classical well-determined system used to see how

proposed heuristics work for well-determined case, 8 (resp. 12) variables/
equations, ε = 10−6.

The following notation is used in the tables:

– fun.evals, grad.evals, bisecs – numbers of functions evaluations, its gradients
evaluations and boxes bisections,

– bis.Newt, del.Newt – numbers of boxes bisected/deleted by the Newton step,
– pos.boxes, verif.boxes – number of elements in the computed lists of boxes

containing possible and verified solutions,
– Leb.pos., Leb.verif. – total Lebesgue measures of both sets,
– time – computation time in seconds.

For Table 6 we also add another row, called “speedup (GS)” – it is the speedup
obtained with respect to GS (Table 2), as variant of the algorithm, using the GS
operator can be considered a reference as being most popular.

Table 1. Results for algorithm variant using the Ncmp operator

problem TwoCirc Hippopede Rheinboldt Puma7 Puma6 Broyden8 Broyden12

fun.evals 801803 2699927388 139332688 154679461 11751927 1202377 427756353
grad.evals 401033 1152619116 25886660 60371164 4437504 369040 106687152
bisecs 198552 288139075 2580844 4311987 369791 22109 4423890
bis.Newt. 39 5 2297 8 0 955 21407
del.Newt. 0 112340464 486782 1421980 66128 13837 3111490
pos.boxes 191401 146307724 1948672 2197904 273448 627 72693
verif.boxes 7080 45988 21768 440 136 0 0
Leb.pos. 7e-6 4e-14 0.000159 4e-29 1e-8 1e-47 2e-70
Leb.verif. 0.506 0.0048 0.001677 5e-15 1e-13 0.0 0.0
time (sec.) < 1 1108 55 69 5 1 269

5 Other Investigations

We also tried to improve the performance by using some other commonly known
tools, specifically:

– linear relaxations and linear programming to narrow boxes, see e.g. [18],
– linear-programming preconditioners instead of inverse-midpoint ones [8],
– box-consistency enforcing procedures [5].
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Table 2. Results for algorithm variant using the GS operator

problem TwoCirc Hippopede Rheinboldt Puma7 Puma6 Broyden8 Broyden12

fun.evals 6784 15430086 31653840 3539627 3525810 138144 19516368
grad.evals 8006 17730152 35359380 4022044 3911952 232456 31298580
bisecs 2576 4414539 3509425 279139 324883 12822 1238334
bis.Newt. 4 0 463 274 64 1705 65772
del.Newt. 0 972032 765767 72988 65224 2739 322256
prcnd.evals 6784 7715043 6330768 505661 587635 17268 1626364
pos.boxes 160 2243236 1946582 116076 188328 0 0
verif.boxes 1200 49240 56433 21440 7040 1 1
Leb.pos. 3e-9 2e-16 4e-5 4e-32 2e-9 0.0 0.0
Leb.verif. 0.6039 0.0028 1e-4 3e-11 4e-8 2e-90 1e-117
time (sec.) < 1 25 120 11 10 1 213

Table 3. Results for algorithm variant using switching of both operators

problem TwoCirc Hippopede Rheinboldt Puma7 Puma6 Broyden8 Broyden12

fun.evals 5979 4031172 106971654 4129065 3971463 161708 29310470
grad.evals 6708 4632996 25870090 4598440 3536400 80840 9768708
bisecs 2092 1148235 2568787 321191 294679 4102 385608
bis.Newt. 39 5 2166 20 0 949 21420
del.Newt. 0 249784 708349 86228 60048 2123 248555
prcnd.evals 5528 2015068 1464963 578764 507672 1139 95595
pos.boxes 128 580680 1697860 140160 206032 0 0
verif.boxes 1061 16576 38351 20800 2736 1 1
Leb.pos. 2e-9 1e-16 0.000140 2e-32 2e-9 0.0 0.0
Leb.verif. 0.5471 0.0029 0.001676 7e-13 2e-11 9e-78 6e-96
time (sec.) < 1 6 64 12 9 < 1 28

Preliminary experiments were very discouraging and are not presented here. A
particular problem is that most present LP solvers are not multithreaded-safe.
The solver available in the C-XSC library [1] contains (at least for version 2.5.0)
several errors and did not tend to work at all. A popular GLPK 4.45 solver
computed correct results, but its calls had to be executed in a critical section as
it is not designed for multithreaded environments. Nevertheless, even for a single
thread the execution time for algorithm variants using linear relaxations were
longer than for the variant from Table 6; the number of gradients evaluations
happened to be slower, though.

It seems these tools are not ready to cooperate with interval algorithms, yet
– in particular multithreaded ones. Also box-consistency – contrary to results of
e.g. [5] – did not prove useful; even for well-determined problems Broyden8 and
Broyden12! This is going to be subject of further investigations.
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Table 4. Results for algorithm variant using switching of both operators and the
maximal smear coordinate bisection

problem TwoCirc Hippopede Rheinboldt Puma7 Puma6 Broyden8 Broyden12

fun.evals 18419 2052704408 n/a 42462885 13801087 178759 32294958
grad.evals 22347 2580554972 n/a 58244396 16011936 86640 10471716
bisecs 8607 644969291 n/a 4151399 1334327 4450 414563
bis.Newt. 35 9 n/a 28 0 963 21757
del.Newt. 0 194224012 n/a 986476 174048 2348 265587
prcnd.evals 17957 1026351616 n/a 6054944 2168328 1289 97834
pos.boxes 731 186228188 n/a 877744 702912 0 0
verif.boxes 3762 591496 n/a 25700 5048 1 1
Leb.pos. 1e-8 7e-15 n/a 3e-31 2e-9 0.0 0.0
Leb.verif. 0.6157 0.00023 n/a 9e-13 2e-11 2e-10 1e-95
time (sec.) < 1 3476 > 19268 135 38 < 1 30

Table 5. Results for algorithm variant using switching of both operators and the
heuristical bisection

problem TwoCirc Hippopede Rheinboldt Puma7 Puma6 Broyden8 Broyden12

fun.evals 5979 1184676 102257609 931861 3673215 96705 23364196
grad.evals 6708 1361164 24024215 976696 3236880 65712 8625492
bisecs 2092 329911 2365335 64635 269711 3153 337884
bis.Newt. 39 5 4264 32 0 953 21510
del.Newt. 0 69760 675343 19372 54280 1364 205614
prcnd.evals 5528 591820 1197803 121792 461464 1294 138663
pos.boxes 128 149952 1474309 19580 188208 0 0
verif.boxes 1061 21672 91553 12208 3744 1 1
Leb.pos. 2e-9 1e-17 0.000139 8e-33 2e-9 0.0 0.0
Leb.verif. 0.5471 0.0037 0.003043 3e-12 4e-11 5e-56 2e-114
time (sec.) < 1 2 58 3 8 < 1 27

6 Analysis of the Results

The proposed heuristic for switching between Newton operators (Table 3) clearly
resulted in an improvement of performance of the investigated solver. Times are
slightly worse that for Ncmp (Table 1) for Rheinboldt and Puma6 problems,
but they are never worse than for GS (Table 2). Moreover, for Hippopede and
Broyden12 problems, we obtained a dramatic speedup and results much better
than for any of the Newton operators used alone – either Ncmp or GS.

The heuristic for bisection (Table 5) did not result in speedup for TwoCirc
problem and only in a minor one for Puma6 or Broyden, but – again – speedup
for Hippopede and Puma7 was dramatic. This is in contrast with more classical
maximum smear heuristic (Table 4) or the heuristic proposed in [4] (used in
SONIC solver), for which we do not present the results as only for TwoCirc
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Table 6. Results for algorithm variant as in Table 5, using approximate matrix inver-
sion and highly tuned C-XSC

problem TwoCirc Hippopede Rheinboldt Puma7 Puma6 Broyden8 Broyden12

fun.evals 5981 1184684 102257609 931889 3673215 96705 23364196
grad.evals 6710 1361172 24024215 976724 3236880 65712 8625492
bisecs 2092 329911 2365335 64635 269711 3153 337884
bis.Newt. 39 5 4264 32 0 953 21510
del.Newt. 0 69760 675343 19372 54280 1364 205614
prcnd.evals 5530 591824 1197803 121796 461464 1294 138663
pos.boxes 128 149952 1474309 19580 188208 0 0
verif.boxes 1061 21672 91553 12208 3744 1 1
Leb.pos. 2e-9 1e-17 0.000139 8e-33 2e-9 0.0 0.0
Leb.verif. 0.5471 0.0037 0.003043 3e-12 4e-11 5e-56 2e-114
time (sec.) < 1 1 51 1 4 < 1 21

speedup (GS) n/a 25.0 2.35 11.00 2.5 n/a 10.14

problem any results have been obtained; for other ones too much memory was
required – as also for the Rheinboldt problem in Table 4.

Using the approximate inverse matrix computations and other library tuning
(Table 6), resulted yet in a significant speedup wrt Table 5. Differences in num-
bers of gradient evaluations, etc. are negligible, but present, so both tables are
presented separately.

A comment about Ncmp and GS. Please note the results for Puma6 problem in
Tables 1 and 2. The Ncmp operator requires more gradient evaluations (which
is equivalent to more iterations, i.e. more boxes considered), yet its execution
time is much shorter. This happens because Ncmp does not require costly matrix
operations, in particular preconditioner computations. Further development of
the C-XSC library (approximate matrix computations, smart use of BLAS and
LAPACK, sparse matrix types, etc.) may reduce this effect. On the other hand,
also for Ncmp there is a potential for improvement, e.g. parallel computing of
f(·) for different projections of a box; e.g. on a GPU.

7 Conclusions

Proposed heuristics resulted in a great improvement of the performance of in-
vestigated solver. They are based on two variants of the Newton operator and
clever choosing of box’s component for bisection; not some more sophisticated
techniques, like box-consistency or linear programming on linear relaxations.
The latter occurred to be inappropriate for multithreaded solvers; at least
currently.

The possibility of using LP preconditioners and other common tools – and
heuristics to choose between them – is going to be subject of further research.
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Abstract. This paper presents an application of interval methods for
simulation of a policy game played by four main agents of economy: profit
maximizing companies active on competitive market, the monopolistic
trade union (aggregated wage setters), the government and the central
bank. After reduction of companies as an active agent, the resulting
three agents decision system is modeled as a Stackelberg game with the
central bank as the leader and trade union and government as composite
followers, aggregated by means of the Nash solution. The simulation
of policy game is provided. A previously developed interval method is
applied to find Nash points rigorously.

Keywords: interval computations, non-cooperative game, Nash equi-
librium, economy modeling.

1 Introduction

The evaluation of policy before the implementation has a paramount significance
for policy makers. The development of tools to make these evaluations is there-
fore important. In recent years, simulation modeling based on game theory has
become a powerful tool to analyze hypothetical and actual policy changes. The
key notion in the game theory is a game solution (equilibrium of the game). And
finding this solution is not a simple problem. Interval methods [3], [5] are one of
the approaches to solve it – see [7], [8].

In our previous work [8], a reliable and efficient interval method has been
developed to find Nash solutions of non-cooperative games. From the another
side, the second author has proposed a model of policy game played by four main
agents of economy: perfectly rational profit maximizing companies active on
competitive market aggregated to one, the monopolistic trade union (aggregated
wage setters), the government and the central bank [11]. The present paper
describes an application of our interval method to find the solution in this policy
game.

2 The Model

Describing closed economy in [11] we adopted the Keynesian approach and de-
rived the single period model of economy using general AD/AS model expanded
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with four decision makers (agents). Models of this class are frequently used for
analysis of policy games, cf. [2]. The decision variables of our agents are the
level of employment, L, for profit maximizing companies, the nominal wage W ,
for the monopolistic trade union, the budget deficit B, for the government and
the supply of money M , for the central bank. When the decisions are made,
the economy ‘produces’ in the equilibrium state, the output Y , and the rate
of inflation Π . The assertion that companies are rational opens the possibility
to eliminate from further consideration the activity of first agent and using in-
stead ‘stiff’ equation describing their best response. Consequently the number of
agents is reduced by one and after appropriate calculation we have the following
explicit equations relating the output (in logs y) and rate of inflation Π to the
wage (in logs w), budget deficit B and supply of money (in logs m):

y = γ ·
(
m +

B

exp(m)
− w

)
+ (1− γ) · yc , (1)

Π = P − 1 = exp(p)− 1 ,

p = (1− γ) ·
(
m +

B

exp(m)

)
+ γ · w − (1− γ) · yc , (2)

where γ ∈ (0, 1) is the labor elasticity in short-run Cobb-Douglas production
function Y = LγK1−γ and

yc =
γ

1− γ
· ln(γ) + lnK . (3)

Basing on the above interactions in the economy, the primal (isolated) decision
problems of the remaining, active agents: the trade union, the government and
the central bank, are defined in [11] in the following way.

The decision problem of the trade union is a maximization of a weighted sum
of real wage W/P , and terms measuring trade union threshold violation:

TUp = (w − p) + α1 ·min(y − yTU , 0)− α2 ·max(Π −ΠTU , 0) , (4)

where 0 < α2 < α1 < 1.
The signs of terms describing threshold violation are selected in such a way

that the first term is smaller than zero when output is smaller than its threshold
yTU calculated by the trade union basing on accepted level of unemployment
and second – is smaller than zero when inflation is larger than the threshold
ΠTU . Using equations (1) and (2) we obtain the following decision problem of
the trade union:

find wo = arg max0≤w≤eTU = (1− γ) ·
(
w −m− B

exp(m)
+ yc

)
+ (5)

+α1 ·min
(
γ ·

(
m +

B

exp(m)
− w

)
+ (1− γ) · yc − yTU , 0

)
+

−α2 ·max
(

exp
(
(1− γ) ·

(
m +

B

exp(m)

)
+ γw − (1− γ) · yc

)
+

−1−ΠTU , 0
)

.
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Similar considerations laid to objective function of the government:

Gp = β1 ·min(B −BG, 0) + β2 ·min(y − yG, 0)− β3 ·max(Π −ΠG, 0) , (6)

where β1, β2, β3 > 0 and the decision problem of this agent:

find Bo = arg max0≤B≤Bm
G = β1 ·min(B −BG, 0) + (7)

+β2 ·min
(
γ ·

(
m +

B

exp(m)
− w

)
+ (1 − γ) · yc − yG, 0

)
+

−β3 ·max
(

exp
(
(1− γ) · (m +

B

exp(m)
) + γw − (1− γ) · yc

)
+

−1−ΠG, 0
)

.

And as the objective function of the central bank, we adopted the function de-
pending on terms measuring inflation and output (unemployment) target miss-
ing:

CB = −max(Π −ΠCB, 0) + δ ·min(y − yCB, 0) , (8)

The decision problem of the central bank was stated as:

find mo = arg maxm−≤m≤m+CB = (9)

−max
(

exp
(
(1− γ) · (m +

B

exp(m)
) +

+γw − (1 − γ) · yc
)
− 1−ΠCB, 0

)
+

+δ ·min
(
γ ·

(
m +

B

exp(m)
− w

)
+ (1− γ) · yc − yCB, 0

)
.

This completes the descriptive part of model – description of agents’ decision
problems with their decision instruments and interactions joining them. Now we
must model the rules (protocol) regularizing the behavior of agents. In other
words, we must describe cooperation-coordination mechanism in this economy.
We assume that the central bank is independent in its decisions and acts first
announcing the chosen supply of money. It acts as the leader. Knowing the level
of this external variable, the trade union and the government (followers) negoti-
ate the level of wage and the budget deficit. As a result, Nash-equilibrium of this
game [10], determined by the aggregate demand and the aggregate supply equa-
tions gives the employment, the output and the inflation. The essential tool in
analyzing the described game (so called Stackelberg one) is response mapping of
aggregate followers. Let (wN , BN ) denotes the Nash equilibrium in union – gov-
ernment negotiation. Having full information about decision problems of follow-
ers, the central bank is potentially able to compute r(mj) = (wN (mj), B

N (mj))
for the given set {mj} of money supplies that is to estimate response function:

m→ R(m) = (wN (m), BN (m)) . (10)
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Now the decision problem of the central bank takes the form:

find m = arg maxm−≤m≤m+CBS(m) = (11)

−max
(

exp
(
(1− γ) · (m +

BN (m)

exp(m)
) +

+γwN(m)− (1 − γ) · yc
)
− 1−ΠCB, 0

)
+

+δ ·min
(
γ ·

(
m +

BN (m)

exp(m)
− wN (m)

)
+ (1− γ) · yc − yCB, 0

)
.

R is a function, only when we assume that
(
wN (m), BN (m)

)
is unique for every

m. We do not have a formula for this function, but it can be computed by locating
the Nash equilibrium computationally. This is obtained by the algorithm from
[8], reminded in the following section.

3 The Algorithm

Let us recall the algorithm proposed in [8]. It is based on the branch-and-bound
schema (see e.g. [3], [5]) and can be described by the following pseudocode:

seek_Nash_equilibria (x(0); f1, . . . , fn)

// x(0) is the initial box,
// fi(·) is the interval extension of the function fi:RN → R, i = 1, ldots, n
// Lsol is the list of boxes verified to contain a Nash point
L = ∅;
Lsol = ∅;
enqueue (L, x(0));
while (L is nonempty)

dequeue (L, x);
process the box x, using the rejection/reduction tests;
if (x does not contain a solution) then discard x;
else if (x is verified to contain a solution) then enqueue (Lsol, x);
else if ( diam(x) ≤ ε) then enqueue (Lsol, x);
else

bisect (x), obtaining x(1) and x(2);

x = x(1);
enqueue (L, x(2));

end if;
end while

// Second phase
foreach (x in Lsol)

if (x cannot contain a Nash equilibrium) then discard x;
end foreach

As the problems to solve are relatively simple and have a low dimensionality, no
parallelization (as considered in [8]) is necessary.
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4 Implementation

Numerical experiments were performed on a computer with 16 cores, i.e. 8 Dual-
Core AMD Opterons 8218 with 2.6GHz clock. The machine ran under control of a
Fedora 14 Linux operating system, with Glibc 2.13. The solver was implemented
in C++, using C-XSC 2.5.0 library for interval computations. The GCC 4.5.1
compiler was used.

A few words have to be devoted to representation of players criteria. They
are non-smooth – functions min() and max() are used by the criteria several
times. Interval algorithms do not have to be modified significantly in this case
(see e.g. [5]), but the automatic differentiation code from C-XSC library (files
hess_ari.hpp and hess_ari.cpp) does not include functions min() and max().

Fortunately, already when doing the research described in [9] this problem has
been solved – the automatic differentiations class has been modified to include
proper operations. See Subsection 5.2 of [9] for more information.

5 Computational Experiments

Now, we present simulation results obtained using our interval method to find
the Nash equilibrium for hypothetical closed economy with described four agents.
We adopt the following values of parameters:

– for the production function: three values of gamma are considered: γ = 0.65,
γ = 0.7, γ = 0.75 and the capital K = 1251.7;
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– for primal decision problem of the trade union: weight of output α1 = 0.6,
output threshold yTU = 6.55, weight of inflation α2 = 0.3, inflation threshold
ΠTU = 0.1 (a rather modern trade union);

– for primal decision problem of the government: deficit threshold BG = 40,
weight of deficit β1 = 10, output threshold yG = 6.5, weight of output
β2 = 0.6, weight of inflation β3 = 0.7, inflation threshold ΠG = 0.08;

– for primal decision problem of the central bank: inflation threshold ΠCB =
0.05, output threshold yCB = 6.3, weight of output δ = 0.2 (a rather con-
servative central bank).

For each value of γ computations have been executed for 100 values of M –
uniformly distributed from 244.7 to 1808.0. The computations lasted less than
two seconds for each case. The shape of estimated composite function CBS(m)
is shown in Figure 1. Its maximal value is near zero and is realized by supply
of money M = 479.2 for γ = 0.65, M = 526.1 for γ = 0.7 and M = 619.8
for γ = 0.75. Goals of the central bank are met – inflation is below Π = 0.046
for γ = 0.65, Π = 0.040 for γ = 0.7, Π = 0.031 for γ = 0.75, and the output
Y = 665.1 (for all γ), is above threshold.

6 Conclusions and Future Work

The developed interval method for finding Nash equilibria proved to be useful
in the simulation of a simple economical model. It will be very interesting to
see if the method is efficient enough to handle a more complicated model that
will describe an economy in a more realistic way. This is going to be subject of
future research.

Other possible (and demanded) investigations include comparing results of the
Stackelberg game with a Nash game [4], where there is no leader, but the Nash
equilibrium of three players is localized. This would allow us to tell how beneficial
it is to be the leader; does the information priority give the actual supremacy or
not. Unfortunately, preliminary experiments occurred some problems due to the
well-known cluster effect (the solution or solutions is approximated by a great
deal of boxes that are difficult to analyze), so improving and tuning the solver
seems to be necessary for this application.

References

1. C-XSC interval library, http://www.xsc.de
2. Acocella, N., Di Bartolomeo, G.: Non-neutrality of monetary policy in policy

games. Working Paper no 49 (2002), Public Economics Department, University
of Rome La Sapienza

3. Hansen, E., Walster, W.: Global Optimization Using Interval Analysis. Marcel
Dekker, New York (2004)

4. Jerger, J.: How strong is the case for a populist central banker? A note. European
Economic Review 46, 623–632 (2002)

http://www.xsc.de


Applying an Interval Method for a Four Agent 483

5. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht
(1996)

6. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Henten-
ryck, P.: Standardized notation in interval analysis (2002),
http://www.mat.univie.ac.at/~neum/software/int/notation.ps.gz

7. Kreinovich, V., Kubica, B.J.: From computing sets of optima, Pareto sets and sets
of Nash equilibria to general decision-related set computations. Journal of Universal
Computer Science 16, 2657–2685 (2010)
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9. Kubica, B.J., Woźniak, A.: Using the Second-Order Information in Pareto-set Com-
putations of a Multi-criteria Problem. In: Jónasson, K. (ed.) PARA 2010, Part II.
LNCS, vol. 7134, pp. 137–147. Springer, Heidelberg (2012)

10. Nash, J.F.: Equilibrium points in n-person games. Proceedings of National Asso-
ciation of Science 36, 48–49 (1950)
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Abstract. Different kinds of computer arithmetic follow an abstract
mathematical pattern and are just special realizations of it. The basic
mathematical concepts are sketched here. The concepts of rounding, of a
screen, and of rounded arithmetic operations are defined in an axiomatic
manner fully independent of special data formats and encodings. These
abstract concepts are then applied and illustrated by the two elementary
models of computer arithmetic for real numbers and for real intervals. In
the latter case definition of the arithmetic operations as set operations
does not suffice. Executable formulas have to be derived. We also demon-
strate how this can be achieved. In an appendix we sketch a hardware
realization of interval arithmetic and show that most of what is needed
for it is already available on current x86-processors.

1 Introduction

A standard for floating-point arithmetic IEEE 754 was established in 1985. A
revision was published in 2008. A standard for interval arithmetic is just under
development. While these two standards have to consider data formats, encod-
ings, implementation, exception handling, and so on this study concentrates on
the mathematics of computer arithmetic. As usual mathematics is suited to focus
the understanding on the essentials.

Frequently mathematics is seen as the science of structures. Analysis carries
three kinds of structures: an algebraic structure, an order structure, and a topo-
logical or metric structure. These are coupled by certain compatibility properties,
as for instance: a ≤ b⇒ a + c ≤ b + c.

It is well known that floating-point numbers and floating-point arithmetic do
not obey the rules of the real numbers R. However, the rounding is a monotone
function. So the changes to the order structure are minimal. This is the reason
why the order structure plays a key role for an axiomatic approach to rounded
computations.

This paper is restricted to the two elementary models that are covered by
the two IEEE arithmetic standards, computer arithmetic on the reals and real
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intervals. Abstract settings of computer arithmetic for higher dimensional spaces
like complex numbers, vectors and matrices for real, complex, and interval data
can be developed following similar schemes. For more details see [6] and the
literature listed there.

2 Computer Arithmetic Axioms

We begin this study by listing a few well-known concepts and properties of
ordered sets.

Definition 1. A relation ≤ in a set M is called an order relation, and {M,≤}
is called an ordered set1 if for all a, b, c ∈M the following properties hold:

(O1) a ≤ a (reflexivity),
(O2) a ≤ b ∧ b ≤ c ⇒ a ≤ c (transitivity),
(O3) a ≤ b ∧ b ≤ a ⇒ a = b (antisymmetry).

An ordered set M is called linearly or totally ordered if in addition

(O4) a ≤ b ∨ b ≤ a for all a, b ∈M (linearly ordered).

An ordered set M is called

(O5) a lattice if for any two elements a, b ∈M , the inf{a, b} and the sup{a, b}
exist.

(O6) It is called conditional completely ordered if for every bounded subset S ⊆
M , the inf S and the supS exist.

(O7) An ordered set M is called completely ordered or a complete lattice if for
every subset S ⊆M , the inf S and the supS exist.

With these concepts the real numbers R are defined as a conditional complete
linearly ordered field.

In the definition of a complete lattice, the case S = M is included. Therefore,
inf M and supM exist. Since they are elements of M , every complete lattice has
a least and a greatest element.

If a subset S ⊆ M of a complete lattice {M,≤} is also a complete lattice,
{S,≤} is called a complete sublattice of {M,≤} if the two lattice operations inf
and sup in both sets lead to the same result, i.e., if

for all A ⊆ S, infM A = infS A and supM A = supS A.

Definition 2. A subset S of a complete lattice {M,≤} is called a screen of M ,
if every element a ∈M has upper and lower bounds in S and the set of all upper
and lower bounds of a ∈M has a least and a greatest element in S respectively.
If a minus operator exists in M , a screen is called symmetric, if for all a ∈ S
also −a ∈ S.

1 Occasionally called a partially ordered set.
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As a consequence of this definition a complete lattice and a screen have the same
least and greatest element. It can be shown that a screen is a complete sublattice
of {M,≤} with the same least and greatest element, [6].

Definition 3. A mapping : M → S of a complete lattice M onto a screen
S is called a rounding if (R1) and (R2) hold:

(R1) for all a ∈ S, a := a (projection).

(R2) a ≤ b⇒ a ≤ b (monotone).

A rounding is called downwardly directed resp. upwardly directed if for all a ∈
M

(R3) a ≤ a resp. a ≤ a (directed).

If a minus operator is defined in M, a rounding is called antisymmetric if

(R4) (−a) = − a, for all a ∈M (antisymmetric).

The monotone downwardly resp. upwardly directed roundings of a complete
lattice onto a screen are unique [6].

Definition 4. Let {M,≤} be a complete lattice and ◦ : M ×M → M a binary

arithmetic operation in M . If S is a screen of M , then a rounding : M → S
can be used to approximate the operation ◦ in S by

(RG) a ◦ b := (a ◦ b), for a, b ∈ S.

If a minus operator is defined in M and S is a symmetric screen of M , then

a mapping : M → S with the properties (R1,2,4) and (RG) is called a
semimorphism2.

Semimorphisms with antisymmetric roundings are particularly suited transfer-
ring properties of the structure in M to the subset S. It can be shown that
semimorphisms leave a number of reasonable properties of ordered algebraic
structures (ordered field, ordered vector space) invariant.

If an element x ∈M is bounded by a ≤ x ≤ b with a, b ∈ S, then by (R1) and

(R2) the rounded image x is bounded by the same elements: a ≤ x ≤ b,

i.e., x is either the least upper (supremum) or the greatest lower (infimum)
bound of x in S. Similarly, if for x, y ∈ S the result of an operation x ◦ y is
bounded by a ≤ x ◦ y ≤ b with a, b ∈ S, then by (R1), (R2), and (RG) also

a ≤ x ◦ y ≤ b, i.e., x ◦ y is either the least upper or the greatest lower bound
of x ◦ y in S. If the rounding is upwardly or downwardly directed the result is
the least upper or the greatest lower bound respectively.

2 The properties (R1,2,4) and (RG) of a semimorphism can be shown to be neces-
sary conditions for a homomorphism between ordered algebraic structures. For more
details see [6].
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3 Two Elementary Models

3.1 Floating-Point Arithmetic

The set {R∗,≤} with R∗ := R ∪ {−∞,+∞} is a complete lattice. Let F denote
the set of finite floating-point numbers and F∗ := F ∪ {−∞,+∞}. Then F∗ is a
screen of {R∗,≤}. The least element of the set R∗ and of the subset F∗ is −∞
and the greatest element is +∞.

Definition 5. With a rounding : R∗ → F∗ arithmetic operations ◦ in F∗

are defined by

(RG) a ◦ b := (a ◦ b), for a, b ∈ F∗ and ◦ ∈ {+,−, ∗, /},

with b �= 0 in case of division.3

If a and b are adjacent floating-point numbers and x ∈ R with a ≤ x ≤ b, then
because of (R1) and (R2) also a ≤ x ≤ b, i.e., there is never an element of

F between an element x ∈ R and its rounded image x. The same property
holds for the operations defined by (RG): If for x, y ∈ F, a ≤ x ◦ y ≤ b then by

(R1), (R2), and (RG) also a ≤ x ◦ y ≤ b, for all ◦ ∈ {+,−, ∗, /}, i.e., x ◦ y is
either the greatest lower or the least upper bound of x ◦ y in F.

Frequently used roundings : R∗ → F∗ are antisymmetric. Examples are
the rounding to the nearest floating-point number, the rounding toward zero,
or the rounding away from zero. A semimorphism transfers a number of useful
properties of the real numbers to the floating-point numbers. The mathematical
structure of F even can be defined as properties of R which are invariant with
respect to semimorphism, [6].

For the monotone downwardly resp. upwardly directed roundings of R∗ onto
F∗ often the special symbols ) resp. * are used. These roundings are not
antisymmetric. They are related by the property:

) (−a) = −* a and * (−a) = − ) a. (1)

Arithmetic operations defined by (RG) and these roundings are denoted by )◦
and *◦ , respectively, for ◦ ∈ {+,−, ∗, /}. These are heavily used in interval
arithmetic.

3.2 Interval Arithmetic

Interval arithmetic over the real numbers deals with closed4 and connected sets
of real numbers. An interval is denoted by an ordered pair [a1, a2]. The first
element is the lower bound and the second is the upper bound. An interval
can be bounded or unbounded. If a bound is −∞ or +∞ the bound is not an

3 In real analysis division by zero is not defined. It does not lead to a real number.
4 A set of real numbers is called closed, if its complement is open.
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element of the interval. Such intervals may also be written as (−∞, a] or [b,+∞)
or (−∞,+∞). The set of bounded real intervals is denoted by IR. The set of
bounded and unbounded real intervals is denoted by IR. With respect to the
subset relation as an order relation the set of real intervals {IR,⊆} is a complete
lattice. The subset of IR where all finite bounds are floating-point numbers of
F is denoted by IF. {IF,⊆} is a screen of {IR,⊆}. In both sets IR and IF the
infimum of a subset of IF is the intersection and the supremum is the interval
hull5. The least element of both sets IR and IF is the empty set ∅ and the
greatest element is the set R = (−∞,+∞).

The most frequently used rounding of IR onto IF is the upwardly directed
rounding denoted by ♦ : IR→ IF. It is characterized by the following properties:

(R1) ♦ a = a , for all a ∈ IF (projection),

(R2) a ⊆ b ⇒ ♦ a ⊆ ♦ b, for a , b ∈ IR (monotone),

(R3) a ⊆ ♦ a , for all a ∈ IR (upwardly directed).

The result of the monotone upwardly directed rounding ♦ is unique. For a =
[a1, a2] ∈ IR it is ♦ a = [) a1, * a2].

An interval a= [a1, a2] is frequently interpreted as a point in R2. This very
naturally induces the order relation ≤ of R2 to the set of intervals IR. For
two intervals a = [a1, a2] and b = [b1, b2] the relation ≤ is defined by a ≤ b
:⇔ a1 ≤ b1 ∧ a2 ≤ b2.

For the ≤ relation for intervals compatibility properties hold between the al-
gebraic structure and the order structure in great similarity to the real numbers.
For instance:

(OD1) a ≤ b ⇒ a + c ≤ b + c, for all c.
(OD2) a ≤ b ⇒ −b ≤ −a .
(OD3) [0, 0] ≤ a ≤ b ∧ c ≥ [0, 0] ⇒ a ∗ c ≤ b ∗ c.
(OD4) [0, 0] < a ≤ b ∧ c > [0, 0] ⇒ [0, 0] < a/c ≤ b/c ∧ c/a ≥ c/b > [0, 0].

Definition 6. For intervals a, b ∈ IR arithmetic operations ◦ ∈ {+,−, ∗, /} are
defined as set operations

a ◦ b := {a ◦ b | a ∈a ∧ b ∈ b}. (2)

Here for division we assume that b �= [0, 0]. a/[0, 0] is defined to be the empty
set ∅ for any a ∈ IR.

Using (1) it is easy to see that the monotone upwardly directed rounding ♦ :
IR → IF is antisymmetric, i.e.,

(R4) ♦ (−a) = − ♦ a , for all a ∈ IR (antisymmetric).

Arithmetic operations in IR are inclusion isotone, i.e., a ⊆ b ⇒ a ◦ c ⊆ b ◦ c or
equivalently

5 Which is the convex hull in the one dimensional case.
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(OD5) a ⊆ b ∧ c ⊆ d ⇒ a ◦ c ⊆ b ◦ d , for all ◦ ∈ {+,−, ∗, /} (inclusion
isotone).

For a = [a1, a2] ∈ IR we obtain by (2) immediately

−a := 6(−1)∗a= [−a2,−a1]. (3)

Definition 7. With the upwardly directed rounding ♦ : IR → IF binary arith-
metic operations in IF are defined by semimorphism:

(RG) a ♦◦ b := ♦ (a ◦ b), for all a, b ∈ IF and all ◦ ∈ {+,−, ∗, /}.

Here for division we assume that a/b is defined.

If an interval a ∈ IF is an upper bound of an interval x ∈ IR, i.e., x ⊆ a ,
then by (R1), (R2), and (R3) also x ⊆ ♦ x ⊆ a . This means ♦ x is the least
upper bound, the supremum of x in IF. Similarly if for x , y ∈ IF, x ◦ y ⊆ a
with a ∈ IF, then by (R1), (R2), (R3), and (RG) also x ◦ y ⊆ x ♦◦ y ⊆ a , i.e.,

x ♦◦ y is the least upper bound, the supremum of x ◦ y in IF. Occasionally the
supremum x ♦◦ y of the result x ◦y ∈ IR is called the tightest enclosure of x ◦y .

Arithmetic operations in IF are inclusion isotone, i.e.,

(OD5) a ⊆ b ∧ c ⊆ d ⇒ a ♦◦ c ⊆ b ♦◦ d , for all ◦ ∈ {+,−, ∗, /} (inclusion
isotone).

This is a consequence of the inclusion isotony of the arithmetic operations in IR,
of (R2) and of (RG).

Because of the definition of the operations x ◦ y in IR as set operations (2)

the operations x ♦◦ y for intervals of IF defined by (RG) are not practicable.
The step from the definition of interval arithmetic by set operations to com-
puter executable operations still requires some effort. This holds in particular
for product sets like complex intervals and intervals of vectors and matrices, [6].
We sketch it here for the most simple case of floating-point intervals.

3.3 Executable Interval Arithmetic

For bounded, nonempty real intervals a and b ∈ IR arithmetic operations are
defined as set operations by a ◦ b := {a ◦ b | a ∈a ∧ b ∈ b}. Here for 0 /∈ b,
a◦ b is a continuous function of both variables. a and b are closed intervals. The
product set a × b is a simply connected, bounded and closed subset of R2. In
such a region the continuous function a ◦ b takes a minimum and a maximum as
well as all values in between. Therefore

a ◦ b = [ min
a∈a ,b∈b

{a ◦ b}, max
a∈a ,b∈b

{a ◦ b}] = [inf(a ◦ b), sup(a ◦ b)],

i.e., for a , b ∈ IR, 0 /∈ b,a ◦ b is again an interval of IR.

6 An integral number a in an interval expression is interpreted as interval [a, a].
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Actually the minimum and maximum is taken for operations with the bounds.
For bounded intervals a = [a1, a2] and b = [b1, b2] the following formula holds
for all operations with 0 /∈ b in case of division:

a ◦ b =

[
min

i,j=1,2
(ai ◦ bj), max

i,j=1,2
(ai ◦ bj)

]
for ◦ ∈ {+,−, ∗, /}. (4)

We demonstrate this in case of addition. By (OD1) we obtain a1 ≤ a and
b1 ≤ b ⇒ a1 + b1 ≤ inf(a + b). On the other hand inf(a + b) ≤ a1 + b1. From
both inequalities we obtain by (O3): inf(a + b) = a1 + b1. Analogously one
obtains sup(a + b) = a2 + b2. Thus

a+b = [ min
a∈a ,b∈b

{a + b}, max
a∈a ,b∈b

{a + b}] = [inf(a+b), sup(a+b)] = [a1 + b1, a2 + b2].

Similarly by making use of (OD1,2,3,4) for intervals of IR and the simple sign
rules −(a ∗ b) = (−a) ∗ b = a ∗ (−b),−(a/b) = (−a)/b = a/(−b) explicit
formulas for all interval operations can be derived.

Now we get by (RG) for intervals of IF

a ♦◦ b := ♦ (a ◦ b) =

[
) min

i,j=1,2
(ai ◦ bj), * max

i,j=1,2
(ai ◦ bj)

]
and by the monotonicity of the roundings ) and * :

a ♦◦ b =

[
min

i,j=1,2
(ai )◦ bj), max

i,j=1,2
(ai *◦ bj)

]
.

For bounded and nonempty intervals a = [a1, a2] and b = [b1, b2] of IF the unary
operation −a and the binary operations addition, subtraction, multiplication,
and division are shown in the following tables. There the operator symbols for
intervals are simply denoted by +,−, ∗, and /.

Minus operator −a = [−a2,−a1].

Addition [a1, a2] + [b1, b2] = [a1 )+ b1, a2 *+ b2].

Subtraction [a1, a2]− [b1, b2] = [a1 )− b2, a2 *− b1].

Multiplication [b1, b2] [b1, b2] [b1, b2]
[a1, a2] ∗ [b1, b2] b2 ≤ 0 b1 < 0 < b2 b1 ≥ 0

[a1, a2], a2 ≤ 0 [a2 �∗ b2, a1 �∗ b1] [a1 �∗ b2, a1 �∗ b1] [a1 �∗ b2, a2 �∗ b1]

a1 < 0 < a2 [a2 �∗ b1, a1 �∗ b1] [min(a1 �∗ b2, a2 �∗ b1), [a1 �∗ b2, a2 �∗ b2]

max(a1 �∗ b1, a2 �∗ b2)]

[a1, a2], a1 ≥ 0 [a2 �∗ b1, a1 �∗ b2] [a2 �∗ b1, a2 �∗ b2] [a1 �∗ b1, a2 �∗ b2]
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Division, 0 /∈ b [b1, b2] [b1, b2]
[a1, a2]/[b1, b2] b2 < 0 b1 > 0

[a1, a2], a2 ≤ 0 [a2 �/ b1, a1 �/ b2] [a1 �/ b1, a2 �/ b2]

[a1, a2], a1 < 0 < a2 [a2 �/ b2, a1 �/ b2] [a1 �/ b1, a2 �/ b1]

[a1, a2], 0 ≤ a1 [a2 �/ b2, a1 �/ b1] [a1 �/ b2, a2 �/ b1]

In real analysis division by zero is not defined. In interval arithmetic, however,
the interval in the denominator of a quotient may contain zero. So this case has
to be considered also.

The general rule for computing the set a/b with 0 ∈ b is to remove its zero
from the interval b and perform the division with the remaining set.7 Whenever
zero in b is an endpoint of b, the result of the division can be obtained directly
from the above table for division with 0 /∈ b by the limit process b1 → 0 or b2 → 0
respectively. The results are shown in the following table. Here, the parentheses
stress that the bounds −∞ and +∞ are not elements of the interval. When zero

Division, 0 ∈ b b = [b1, b2] [b1, b2]
[a1, a2]/[b1, b2] [0, 0] b1 < b2 = 0 0 = b1 < b2
[a1, a2] = [0, 0] ∅ [0, 0] [0, 0]

[a1, a2], a1 < 0, a2 ≤ 0 ∅ [a2 �/ b1,+∞) (−∞, a2 �/ b2]
[a1, a2], a1 < 0 < a2 ∅ (−∞,+∞) (−∞,+∞)

[a1, a2], 0 ≤ a1, 0 < a2 ∅ (−∞, a1 �/ b1] [a1 �/ b2,+∞)

is an interior point of the denominator, the set [b1, b2] splits into the distinct sets
[b1, 0] and [0, b2], and the division by [b1, b2] actually means two divisions. The
results of the two divisions are already shown in the table for division by 0 ∈ b.

However, in the user’s program the two divisions appear as a single operation,
as division by an interval [b1, b2] with b1 < 0 < b2, an operation that delivers
two distinct results.

A solution to the problem would be for the computer to provide a flag for
distinct intervals. The situation occurs if the divisor is an interval that contains
zero as an interior point. In this case the flag would be raised and signaled to the
user. The user may then apply a routine of his choice to deal with the situation
as is appropriate for his application. This routine could be: return the entire set
of real numbers (−∞,+∞) as result and continue the computation, or set a flag
and continue the computation with one of the sets and ignore the other one,
or put one of the sets on a list and continue the computation with the other
one, or modify the operands and recompute, or stop computing, or some other
action.

7 This is in full accordance with function evaluation: When evaluating a function over
a set, points outside its domain are simply ignored.
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An alternative would be to provide a second division which in case of division
by an interval that contains zero as an interior point generally delivers the result
(−∞,+∞). Then the user can decide when to use which division in his program.

In the operations defined so far it was assumed that the operands a and b are
nonempty and bounded. Four kinds of extended intervals come from division by
an interval of IF that contains zero:

∅, (−∞, a], [b,+∞), and (−∞,+∞).

To extend the operations to these more general intervals the first rule is that any
operation with the empty set ∅ returns the empty set. Then the above tables
extend to possibly unbounded intervals of IF by using the standard formulae
for arithmetic operations involving ±∞ together with one rule that goes beyond
standard rules for ±∞:

0 ∗ (−∞) = (−∞) ∗ 0 = 0 ∗ (+∞) = (+∞) ∗ 0 = 0.

This rule is not a new mathematical law, it is merely a short cut to compute the
bounds of the result of multiplication on unbounded intervals.8

4 Interval Arithmetic in Higher Dimensional Spaces

The axioms for computer arithmetic shown in section 2 also can be applied to
define computer arithmetic in higher dimensional spaces like complex numbers,
vectors and matrices for real, complex, and interval data.

If M in section 2 is the set of real matrices and S ⊆ M the set of floating-
point matrices, then the definition of arithmetic operations in S by (RG) ideally
requires exact evaluation of scalar products of vectors with floating-point com-
ponents. Indeed very effective algorithms have been developed for computing
scalar products of floating-point vectors exactly, [6].

If M in section 2 is the set of intervals of real vectors or matrices, respectively,
then the set definition of arithmetic operations in M by (2) does not lead to an
interval again. The result a ◦ b := {a ◦ b | a ∈a ∧ b ∈ b} is a more general set.
It is an element of the power set9 of vectors or matrices, respectively. To obtain
an interval the upwardly directed rounding from the power set onto the set
of intervals of M has to be applied. With it arithmetic operations for intervals
of M are defined by

(RG) a ◦ b := (a ◦ b), ◦ ∈ {+,−, · · · }.

The set S of intervals of floating-point vectors or matrices, respectively, is a
screen of M . To obtain arithmetic for intervals of S once more the monotone
upwardly directed rounding, now denoted by ♦ is applied:

(RG) a ♦◦ b := ♦ (a ◦ b), ◦ ∈ {+,−, · · · }.

8 Intervals of IF are closed and connected sets of real numbers. So multiplication of
any such interval by 0 can only have 0 as the result.

9 The power set of a set M is the set of all subsets of M .
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This leads to the best possible operations in the interval spaces M and S. So for
intervals in higher dimensional spaces generally an additional rounding step is
needed. It can be shown that in all relevant cases these best possible operations
can be expressed by executable formulas just using the bounds of the intervals.
Showing this for more complicated applications (e.g. complex interval matrices)
requires development of a more general theory of computer arithmetic and more
extensive studies of the applications. For details see [6] and the literature listed
there.

5 Appendix

5.1 Hardware for Interval Arithmetic

The following figure gives a brief sketch of what hardware support for interval
arithmetic may look like. It would not be hard to realize it in modern technology.

The circuitry broadly speaks for itself. The interval operands are loaded in
parallel from a register file or a memory access unit. Then, after multiplexers
have selected the appropriate operands, the lower bound of the result is computed
with rounding downwards and the upper bound with rounding upwards with the
selected operands. If in case of multiplication both operands contain zero as an
interior point a second multiplication is necessary. In the figure it is assumed
that the two multiplications are performed sequentially and that the results
are delivered to the lower part of the circuitry. They are then forwarded to a
comparison unit. Here for the lower bound of the result the lower and for the
upper bound the higher of the two products is selected. This lower part of the
circuitry could also be used to perform comparison relations.

Table 1 shows the control signals for the operand selection by the multiplexers.
These signals are computed from the signs of the bounds of the interval operands
a = [a1, a2] and b = [b1, b2]. A negative sign is a 1. A bar upon a logical
value means inversion. In the expressions a dot stands for a logical and, and a
plus for a logical or. In case of multiplication the signal ms is zero if only one
product pair is to be computed, and it is one if a second product pair is to be
computed.

Every operand selector signal can be realized by two or three gates! For more
details see [3] or [6].

Table 1. Operand selection signals

os oa1 oa2 ob1 ob2
+ 0 1 0 1
− 0 1 1 0
∗ sb2 + sa1 · sb1 + ms sb1 + sa1 · sb2 + ms ms(sa2 + sa1 · sb2) sa1 + sa2 · sb1 + ms
/ sb2 + sa1 · sb1 sb1 + sa2 · sb2 sa1 + sa2 · sb1 sa2 + sa1 · sb1
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64-bit
1-bitc = [c1, c2]

lower bound upper bound

Register File
(or memory access unit)
pairs of reals

a1 a2

sa1 sa2

b1 b2

sb1 sb2
zero

za1

zero

za2

zero

zb1

zero

zb2

0 1 0 1 0 1 0 1oa1 oa2 ob1 ob2
a1|a2 =: al a1|a2 =: au b1|b2 =: bl b1|b2 =: bu

al �◦ bl au �◦ bu

◦ ∈ {+,−, ∗, /}c1 c2

a1 �∗ b2 a2 �∗ b1 a1 �∗ b1 a2 �∗ b2

a1 �∗ b2 ≤ a2 �∗ b1 a1 �∗ b1 ≥ a2 �∗ b2

0 1 0 1
c1 c2

operands: a = [a1, a2], b = [b1, b2], result: c = [c1, c2].
s: sign, z: zero, o: operand select.

Fig. 1. Circuitry for Interval Operations

5.2 Interval Arithmetic on X86-Processors

It is interesting to note that most of what is needed for fast hardware support
for interval arithmetic is already available on current x86-processors.

On an Intel Pentium 4, for instance, eight registers are available for words
of 128 bits (xmm0, xmm1, . . ., xmm7). The x86-64 processors even provide 16
such registers. These registers can hold pairs of double precision floating-point
numbers. They can be viewed as bounds of intervals. Parallel operations like +,
−, ·, /, min, max, and compare can be performed on these pairs of numbers.
What is not available and would be needed is for one of the two operations to
be rounded downwards and the other one rounded upwards. Even shuffling of
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bounds is possible under certain conditions. This is half of operand selection
needed for interval arithmetic. So an interval operation would need two such
units or to pass this unit twice. Also nearly all of the data paths are available on
current x86-processors. Thus full hardware support of interval arithmetic would
probably add very very little to a current Intel or AMD x86 processor chip.

Full hardware support of fast interval arithmetic on RISC processors may
cost a little more as these lack pairwise processing. But most of them have two
arithmetic units and use them for super scalar processing. What has to be added
is some sophisticated control.

References

1. American National Standards Institute / Institute of Electrical and Electronics En-
gineers: A Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754-
1987, New York (1985) (reprinted in SIGPLAN 22(2), 9–25, 1987); Also adopted as
IEC Standard 559:1989

2. American National Standards Institute / Institute of Electrical and Electronics En-
gineers: A Standard for Radix-Independent Floating-Point Arithmetic. ANSI/IEEE
Std. 854-1987, New York (1987)

3. Kirchner, R., Kulisch, U.: Hardware support for interval arithmetic. Reliable Com-
puting 12(3), 225–237 (2006)

4. Kulisch, U.: Implementation and Formalization of Floating-Point Arithmetics. IBM
T. J. Watson-Research Center, Report Nr. RC 4608, 1–50 (1973); Invited talk at
the Caratheodory Symposium, September 1973 in Athens, published in: The Greek
Mathematical Society, C. Caratheodory Symposium, 328–369 (1973), and in Com-
puting 14, 323–348 (1975)

5. Kulisch, U.: Grundlagen des Numerischen Rechnens - Mathematische Begründung
der Rechnerarithmetik, Bibliographisches Institut, Mannheim Wien Zürich (1976)
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Abstract. There are different methods for interval comparison used in
modeling, optimization and decision making in interval setting. These
methods make it possible to compare intervals with real valued bounds.
Nevertheless, in practice, for example in the rule-base evidential reason-
ing in interval setting, the problem of comparing intervals with interval
bounds arises. In this report, a method for comparison of intervals with
interval bounds is proposed and illustrated using numerical examples.
This method is based on the mathematical tools of the Dempster-Shafer
theory of evidence.

Keywords: Intervals with interval bounds, Interval comparison,
Dempster-Shafer theory of evidence.

1 Introduction

The problem of interval comparison is of perennial interest, because of its di-
rect relevance in practical modeling and optimization of real world processes.
Moreover, sometimes in practice we meet situations when intervals with interval
bounds must be compared. For example, the developed in [3] trading system
based on the synthesis of Fuzzy Sets theory (FST ) and the Dempster-Shafer
theory (DST ) provides the results in the form of belief intervals which must
be compared to generate buying or selling signals. It is easy to show that if in-
put data in this system are presented by intervals, the final estimates of buying
or selling signals will be belief intervals with interval bounds, which should be
compared to select final buying or selling signals.

Therefore, in this report we propose a method for comparing intervals with
interval bounds based on the method for the comparison of usual interval with
real valued bounds. To compare intervals with the real valued bounds, usually
the quantitative indices are used (see reviews in [5] and [7]).

In the current report, we use the DST formalism to get the results of interval
comparison in the interval form. The reason behind this is that all arithmetic
operations on intervals provide interval results. Therefore, it seems quite natural
to expect an interval result of interval comparison too.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 496–503, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



A Method for Comparing Intervals with Interval Bounds 497

Here we present some basic definitions of DST needed for the subsequent
analysis.

The origins of the Dempster-Shafer theory go back to the work by A.P. Demp-
ster [1,2] who developed a system of upper and lower probabilities. Following this
work his student G. Shafer [6] included in his 1976 book “A Mathematical The-
ory of Evidence” a more thorough explanation of belief functions.

Assume A are subsets of X. It is important to note that a subset A may
be treated also as a question or proposition and X as a set of propositions or
mutually exclusive hypotheses or answers. A DS belief structure has associated
with it a mapping m, called basic assignment function, from subsets of X into a
unit interval, m : 2X → [0, 1] such that m(∅) = 0,

∑
A⊆X

m(A) = 1. The subsets of

X for which the mapping does not assume a zero value are called focal elements.
In the framework of classical Dempster-Shafer approach, it is assumed that

the null set is never a focal element.
In [6], Shafer introduced a number of measures associated with DS belief

structure. The measure of belief is a mapping Bel : 2X → [0, 1] such that for
any subset B of X

Bel(B) =
∑

∅�=A⊆B

m(A). (1)

It is shown in [6] that m can be uniquely recovered from Bel. A second measure
introduced by Shafer [6] is a measure of plausibility. The measure of plausibility
associated with m is a mapping Pl : 2X → [0, 1] such that for any subset B of X.

Pl(B) =
∑

A∩B �=∅
m(A). (2)

It is easy to see that Bel(B) ≤ Pl(B). DS provides an explicit measure of ig-
norance about an event B and its complementary B as a length of an interval
[Bel(B),Pl(B)] called the belief interval (BI). It can also be interpreted as im-
precision of the “true probability” of B [6].

The rest of the paper is set out as follows. In Section 2, we describe the method
for interval comparison using DST proposed in [5]. Section 3 presents a method
for comparison of intervals with interval bounds. Section 4 concludes with some
remarks.

2 Interval Comparison Using DST

Since we have presented the method for interval comparison with the use of DST
earlier in [5] in detail, in this section only its brief description is performed. There
are only two non-trivial cases of interval locations which we call overlapping and in-
clusion cases (see Fig.1) deserve to be considered. Let A = [a1, a2] and B = [b1, b2]
be independent intervals and a ∈ [a1, a2], b ∈ [b1, b2] be random values distributed
on these intervals. As we are dealing with usual intervals, the natural assump-
tion is that the random values a and b are distributed uniformly. There are some
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Fig. 1. The examples of interval relations

subintervals which play an important role in our analysis. For example (see Fig.
1a), the falling of random a ∈ [b1, b2], b ∈ [a1, a2] into subintervals [a1, b1], [b1, a2],
[a2, b2] may be treated as a set of independent random events.

Let us consider the case of overlapping intervals (Fig.1a). Only four mutually
exclusive events may take place in considered situation: H1 : a ∈ [a1, b1]&b ∈
[a2, b2], H2 : a ∈ [a1, b1]&b ∈ [b1, a2], H3 : a ∈ [b1, a2]&b ∈ [b1, a2], H4 : a ∈
[b1, a2]&b ∈ [a2, b2]. For the probabilities of events H1–H4 from the simple geo-
metric reasons we obtain

P (H1) =
b1 − a1
a2 − a1

b2 − a2
b2 − b1

, P (H2) =
b1 − a1
a2 − a1

a2 − b1
b2 − b1

,

P (H3) =
a2 − b1
a2 − a1

a2 − b1
b2 − b1

, P (H4) =
a2 − b1
a2 − a1

b2 − a2
b2 − b1

. (3)

It can easily be proved that

P (H1) + P (H2) + P (H3) + P (H4) = 1. (4)

Thus, in the sense of DST , the probabilities P (Hi), i = 1 to 4, can be used
to construct a basic assignment function m. It has been shown in [5] that in the
case of overlapping intervals (a1 < b1 and a2 < b2), there are only two interval
relations which make a sense: A < B and A = B. It is easy to see that events H1,
H2 and H4 may be considered as the “strong” evidences of A < B, otherwise H3

can be treated as only the “weak” evidence of A < B because it simultaneously
is the witness of A = B. In the DST notation, we obtain:

m(A < B) = P (H1) + P (H2) + P (H4),m(A < B,A = B) = P (H3). (5)

Then from (3), (4) and (5) we get

Bel(A < B) = m(A < B) = 1− P (H3) = 1− (a2 − b1)
2

(a2 − a1) (b2 − b1)
, (6)

Pl(A < B) = m(A < B) + m(A < B,A = B) = 1. (7)

In the similar way, the pair of estimations for A = B has been inferred:

Bel(A = B) = 0, P l(A = B) = P (H3) =
(a2 − b1)

2

(a2 − a1) (b2 − b1)
. (8)
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Then belief intervals BI may be presented as follows:

BI(A < B) = [Bel(A < B), P l(A < B)] = [Bel(A < B, 1]. (9)

So using an approach based on DST , we obtain the interval estimations for the
degree of interval inequality and equality. It is worth noting that introduced
interval form of interval comparison estimations is a real embodiment of usually
implicitly expressed, but pivotal requirement of interval arithmetic: the result of
interval operation should be an interval too.

Let us consider the inclusion case (Fig. 1b). In this case we have three possible
events: H1 : a ∈ [a1, a2]&b ∈ [b1, a1], H2 : a ∈ [a1, a2]&b ∈ [a1, a2], H3 : a ∈
[a1, a2]&b ∈ [a2, b2].

Since b1 ≤ a1, in this case the relation A > B may become true. For instance,
there are no doubts that A > B if b1 < a1 and b2 = a2. We can observe the
elementary evidences of events A < B, A = B, A > B in this situation and we
can take them into account to construct the Bel and Pl functions using nearly
the same reasoning as in the case of overlapping intervals. Finally, we get

BI(A < B) = [Bel(A < B), P l(A < B)] =

[
b2 − a2
b2 − b1

,
b2 − a1
b2 − b1

]
, (10)

BI(A = B) = [Bel(A = B), P l(A = B)] =

[
0,

a2 − a1
b2 − b1

]
, (11)

BI(A > B) = [Bel(A > B), P l(A > B)] =

[
a1 − b1
b2 − b1

,
a2 − b1
b2 − b1

]
. (12)

It is shown in [5] that in both cases (overlapping and inclusion) there is always an
intersection of the belief intervals representing equality and inequality relations.
Thus, the structure of obtained results makes it possible to use the simplest
method for the belief intervals comparison similar to the approach by Moore [4].
In a nutshell, if A and B are belief intervals, we say A < B if a1 ≤ b1, a2 ≤ b2
and at least one of the last two inequalities is strong.

Indeed, several real valued criteria may be applied in order to make a reason-
able final choice when comparing intervals basing on the degrees to which one
interval is greater/smaller than other [5].

3 The Use of DST for Comparison of Intervals with
Interval Bounds

Here we use the described above method for interval comparison to develop a
method for the comparison of intervals with interval bounds.

Let us consider such interval [B] =
[
[bL], [bU ]

]
, where [bL] = [bL, b

L
] and

[bU ] = [bU , b
U

]. This interval [B] can be treated as a continuous set {[x]} of

usual intervals [x] = [xL, xU ] such that xL ∈ [bL, b
L

] and xU ∈ [bU , b
U

].

Since it is possible that b
L ≥ bU (see Fig. 2), it is important to note that this

set of intervals should comprise only regular intervals, i.e., such that xL ≤ xU .
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Fig. 2. Interval with overlapping interval bounds

Similarly, the interval [A] =
[
[aL, āL], [aU , āU ]

]
can be presented by the set

{[y]} of regular intervals [y] = [yL, yU ] such that yL ∈ [aL, aL] and yU ∈ [aU , aU ].
It seems obvious that generally if we have to compare the intervals [B] and

[A], all intervals from the set {[x]} should be compared with those from the set
{[y]}.

On the other hand, it is clear that this problem can be simplified, as to
compare [B] and [A] it is enough to compare only the intervals presented by the
bounds of interval bounds of intervals [B] and [A].

For example, for the interval [A] =
[
[aL, āL], [aU , āU ]

]
we have four such

intervals: [aL, aU ], [aL, āU ], [āL, aU ], [āL, āU ] if āL ≤ aU or [aL, aU ], [aL, āU ],
[aU , āL], [āL, āU ] if āL > aU . We shall denote these intervals as [a]i, i = 1, 2, 3, 4.

Obviously, for the interval [B] =
[
[bL], [bU ]

]
we have four similar intervals [b]i,

i = 1, 2, 3, 4, too.
Therefore, to compare intervals [B] and [A] we should compare each of four de-

fined above intervals belonging to [B] with each of four similar intervals belonging
to [A]. Then using the described above method for comparison of usual inter-
vals, we obtain sixteen estimates in the form of belief intervals: BI([b]i > [a]j),
BI([b]i < [a]j), BI([b]i = [a]j), i, j = 1, 2, 3, 4.

To get the final estimates, we propose to use the following averaging:

BI([B] > [A]) =
1

16

4∑
i=1

4∑
j=1

BI([b]i > [a]j), (13)

BI([B] < [A]) =
1

16

4∑
i=1

4∑
j=1

BI([b]i < [a]j), (14)

BI([B] = [A]) =
1

16

4∑
i=1

4∑
j=1

BI([b]i = [a]j). (15)

Obviously, the resulting BI([B] > [A]), BI([B] < [A]) and BI([B] = [A]) are
usual belief intervals. Therefore, to compare them, the method described in the
previous section can be applied.

The proposed method is based on the averaging and can be treated as a
heuristic approach. Therefore, let us consider some numerical example which
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confirm its validity. In our analysis, we shall use the intuitively clear Moore’s
assumption [4]: if A = [a, a] and B = [b, b] are regular intervals, we say A < B if
a ≤ b and a ≤ b and at least one of the last two inequalities is strong.

Example 1
Let us consider the following intervals with interval bounds:

[A] = [[0, 3], [5, 8]], [B] = [[1, 3], [5, 8]] and [C] = [[2, 3], [5, 8]] (see Fig.3).

Fig. 3. Interval with overlapping interval bounds. Example 1.

As the right interval bounds of these intervals are equal, aU = bU = cU and
aL < bL < cL we can conclude that [A] < [B] < [C].

Using our method we have obtained:

BI([B] > [A]) = [0.263, 0.786], BI([B] < [A]) = [0.201, 0.698],
BI([B] = [A]) =[0, 0.535],
BI([C] > [B]) =[0.258, 0.805],BI([C] < [B]) = [0.179, 0.706],
BI([C] = [B]) =[0, 0.563],
BI([C] > [A]) =[0.306, 0.811], BI([C] < [A])= [0.172, 0.666],
BI([C] = [A]) = [0, 0.523].

It is clear that according to the Moore’s assumption

BI([B] = [A]) < BI([B] < [A]) < BI([B] > [A]) and therefore [B] > [A],
BI([C] = [B]) < BI([C] < [B]) < BI([C] > [B]) and therefore [C] > [B],
BI([C] = [A]) < BI([C] < [A]) < BI([C] > [A]) and therefore [C] > [A].

Since these results lead to [A] < [B] < [C], we can say that our method provides
the true result.

Example 2
Let us compare the intervals:

[A] = [[0, 3], [5, 8]], [B] = [[0, 3], [4, 8]], [C] = [[0, 3], [3, 8]] (see Fig.4).

Since the left interval bounds of these intervals are equal, cU = b
U

= aU and
cU < bU < aU , we can conclude that [C] < [B] < [A].

Using our method we have obtained

BI([B] > [A]) = [0.221, 0.659], BI([B] < [A]) = [0.330, 0.769],
BI([B] = [A]) =[0, 0.449],
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Fig. 4. Interval with overlapping interval bounds. Example 2.

BI([C] > [B]) = [0.266, 0.596], BI([C] < [B]) = [0.406, 0.731],
BI([C] = [B]) =[0, 0.328],
BI([C] > [A]) = [0.221, 0.575], BI([C] < [A]) = [0.425, 0.769],
BI([C] = [A]) = [0, 0.354].

According to the Moore’s assumption we have:

BI([B] = [A]) < BI([B] > [A]) < BI([B] < [A]) and therefore [B] < [A],
BI([C] = [B]) < BI([C] > [B]) < BI([C] < [B]) and therefore [C] < [B],
BI([C] = [A]) < BI([C] > [A]) < BI([C] < [A]) and therefore [C] < [A].

We can see that our method gives the true result: [C] < [B] < [A].

Example 3
In this case, we deal with the type of intervals shown in Fig. 5.:

[A] = [[0, 5], [4, 8]], [B] = [[0, 5], [3, 8]], [C] = [[0, 5], [2, 8]] (see Fig.5).

Fig. 5. Interval with overlapping interval bounds. Example 3.

The left interval bounds of these intervals are equal, cU = b
U

= aU and cU <
bU < aU . Then we can conclude that [C] < [B] < [A].
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Using our method we get:

BI([B] > [A]) = [0.297, 0.633], BI([B] < [A]) = [0.367, 0.695],
BI([B] = [A]) =[0, 0.336],
BI([C] > [B]) = [0.298, 0.638], BI([C] < [B]) = [0.362, 0.695],
BI([C] = [B]) =[0, 0.340],
BI([C] > [A]) = [0.276, 0.599], BI([C] < [A]) = [0.401, 0.703],
BI([C] = [A]) = [0, 0.323].

According to the Moore’s assumption we have:

BI([B] = [A]) < BI([B] > [A]) < BI([B] < [A]) and therefore [B] < [A],
BI([C] = [B]) < BI([C] > [B]) < BI([C] < [B]) and therefore [C] < [B],
BI([C] = [A]) < BI([C] > [A]) < BI([C] < [A]) and therefore [C] < [A].

We can see that our method gives the true result: [C] < [B] < [A].
These three examples make it possible to say that the developed method for

comparison of intervals with interval bounds is reliable enough and provides true
results.

4 Conclusion

The mathematical tools of the Dempster-Shafer theory of evidence are used
to develop a method for usual interval comparison which provide the results
of comparison in the form of belief intervals. This method is used as the base
for developing the method for comparison of intervals with interval bounds. The
presented numerical examples make it possible to say that the developed method
for comparison of intervals with interval bounds is reliable enough and provides
true intuitively obvious results.
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Abstract. The technique for order preference by similarity to ideal so-
lution (TOPSIS) currently is one of most popular methods for Multiple
criteria decision making (MCDM).This technique was primary devel-
oped for dealing with only real-valued data. In some cases, determining
precisely the exact values of local criteria is difficult and as a result their
values are considered as intervals. There are several papers devoted to
interval extensions of TOPSIS in the literature, but these extensions
are not completed as ideal solutions are presented by real values, not by
intervals.

In this report, we show that these extensions may lead to the wrong
results especially in the case of intersection of some intervals representing
the values of criteria. Therefore, we propose a new direct approach to
interval extension of TOPSIS method which is free of limitations of
known methods.

Keywords: Interval extension, TOPSIS method.

1 Introduction

The technique for order performance by similarity to ideal solution (TOPSIS)
[5], is one of known classical MCDM method. It was first developed by Hwang
and Yoon [2] for solving a MCDM problem.

The basic principle of the TOPSIS method is that the chosen alternative
should have the shortest distance from the positive ideal solution and the farthest
distance from the negative ideal solution. There exist a large amount of literature
involving TOPSIS theory and applications. In classical MCDM methods, the
ratings and weights of criteria are known precisely. A survey of these methods
has been presented in [2]. In the classical TOPSIS method, the performance
ratings and the weights of criteria are given exact values.

Nevertheless, sometimes determining precisely the exact values of criteria is
difficult and as a result, their values are presented by intervals.

Jahanshahloo et al. [3,4], extended the concept of TOPSIS method to de-
velop a methodology for solving MCDM problem with interval data. The main
limitation of this approach is that the ideal solutions are presented by real val-
ues, not by intervals. The similar approach to determining ideal solutions is used
in [13].
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In this report, we show that these extensions may lead to the wrong results
especially in the case of intersection of some intervals representing the values of
criteria.

Therefore, we propose a new direct approach to interval extension of TOPSIS
method which is free of the limitations of known approaches.

The rest of the paper is set out as follows. In Section 2, we present the basics
of TOPSIS method and its known interval extension. Section 3 presents the
direct interval extension of TOPSIS method. The results obtained using the
method proposed in [3,4] are compared with those obtained by the proposed
new method. Section 4 concludes with some remarks.

2 The Basics of TOPSIS Method and Known Approach
to Its Interval Extension

The classical TOPSIS method is based on the idea that the best alternative
should have the shortest distance from the positive ideal solution and the farthest
distance from the negative ideal solution. It is assumed that if each local criterion
takes monotonically increasing or decreasing variation, then it is easy to define
an ideal solution.

The positive ideal solution is composed of all the best achievable values of local
criteria, while the negative ideal solution is composed of all the worst achievable
values of local criteria.

Suppose a MCDM problem is based on m alternatives A1, A2,...,Am and
n criteria C1, C2,...,Cn. Each alternative is evaluated with respect to the n
criteria. All the ratings are assigned to alternatives with respect to decision
matrix D[xij ]n×m, where xij is the rating of alternative Ai with respect to the
criterion Cj . Let W = [w1, w2, ..., wn] be the vector of local criteria weights
satisfying

∑n
j=1 wj = 1.

The TOPSIS method consists of the following steps:

1. Normalize the decision matrix:

rij =
xij√∑m
k=1 x

2
kj

, i = 1, ...,m; j = 1, ..., n. (1)

Multiply the columns of normalized decision matrix by the associated weights:

vij = wj × rij , i = 1, ...,m; j = 1, ..., n. (2)

2. Determine the positive ideal and negative ideal solutions, respectively, as
follows::

A+ = {v+1 , v+2 , ..., v+n } =
= {(maxi vij |j ∈ Kb), (mini vij |j ∈ Kc)},

(3)

A− = {v−1 , v−2 , ..., v−n } =
= {(mini vij |j ∈ Kb), (maxi vij |j ∈ Kc)},

(4)

where Kb is the set of benefit criteria and Kc is the set of cost criteria.
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3. Obtain the distances of the existing alternatives from positive ideal and
negative ideal solutions: two Euclidean distances for each alternatives are, re-
spectively, calculated as follows:

S+
i =

√∑n
j=1 (vij − v+j )2, i = 1, ...,m,

S−
i =

√∑n
j=1 (vij − v−j )2, i = 1, ...,m.

(5)

4. Calculate the relative closeness to the ideal alternatives:

RCi =
S−
i

S+
i +S−

i

, i = 1, 2, ...,m, 0 ≤ RCi ≤ 1. (6)

5. Rank the alternatives according to the relative closeness to the ideal alter-
natives: the bigger is the RCi, the better is the alternative Ai.

In [3,4], an interval extension of classical TOPSIS method is proposed. This
approach may be described as follows.

Let [xL
ij , x

U
ij ] be an interval value of jth criterion for ith alternative (xL

ij and xU
ij

are the lower and upper bounds of interval, respectively), W = [w1, w2, ..., wn] be
the weight vector satisfying

∑n
j=1 wj = 1. Then D[[xL

ij , x
U
ij ]]n×m is the interval

valued decision matrix. The method proposed in [3,4] consists of the following
steps:

1. Normalizing the decision matrix using the following expressions:

rLij =
xL
ij(

m∑
k=1

((xL
kj)2 + (xU

kj)
2)

) 1
2

, i = 1, ...,m; j = 1, ..., n, (7)

rUij =
xU
ij(

m∑
k=1

((xL
kj)2 + (xU

kj)
2)

) 1
2

, i = 1, ...,m; j = 1, ..., n. (8)

2. Taking into account the importance of criteria, the weighted normalized
interval decision matrix is obtained using the following expressions:

vLij = wj × rLij , vUij = wj × rUij , i = 1, ...,m; j = 1, ..., n.

3. The positive and negative ideal solutions are obtained as follows:

A+ = {v+1 , v+2 , ..., v+n } =
=
{

(maxi v
U
ij |j ∈ Kb ), (mini v

L
ij |j ∈ Kc

}
,

(9)

A− = {v−1 , v−2 , ..., v−n } =
=
{

(mini v
L
ij |j ∈ Kb ), (maxi v

U
ij |j ∈ Kc

}
.

(10)
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4. The separation of each alternative from the positive ideal solution is calcu-
lated using the n -dimensional Eucludean distance:

S+
i =

⎧⎨⎩∑
j∈Kb

(vLij − v+j )2 +
∑
j∈Kc

(vUij − v+j )2

⎫⎬⎭
1
2

, i = 1, ...,m. (11)

Similarly, the separation from the negative ideal solution is calculated as follows:

S−
i =

⎧⎨⎩∑
j∈Kb

(vUij − v−j )2 +
∑
j∈Kc

(vLij − v−j )2

⎫⎬⎭
1
2

, i = 1, ...,m. (12)

5. Calculate the relative closeness to the ideal alternatives:

RCi =
S−
i

S+
i + S−

i

, i = 1, 2, ...,m, 0 ≤ RCi ≤ 1. (13)

6. Rank the alternatives: according to the relative closeness to the ideal alter-
natives, the bigger is the RCi: the better is the alternative Ai.

3 The Direct Interval Extension of TOPSIS Method

3.1 The Problem Formulation

We can see that in expressions (9) and (10) the maximal and minimal values
achievable in intervals (the bounds of intervals [vLij , v

U
ij ]) are used instead of

corresponding maximal and minimal interval values themselves. It is implicitly
assumed that the bounds of intervals may represent their interval values. Never-
theless, such approach seems to be justified only in the case when there are no
any intersections of these intervals. In the cases, when such intersection exist,
this approach may lead to wrong results. For example, let us consider two inter-
vals [x11]=[5, 7] and [x21]=[0, 10] which represent the ratings of alternatives A1

and A2 with respect to the benefit criterion C1.
Then using expressions (9) and (10) we get v+1 = 10 and v−1 = 0, whereas using

any method for interval comparison (see below) we obtain that [x11] > [x21]
and for the positive and negative interval ideal solutions we get: [v]+1 =[5,7] and
[v]−1 =[0,10], respectively. We can see that v+1 =10 is not even included in [v]+1 .

Therefore, a more correct approach to calculation of ideal solutions is repre-
senting them in the interval form using the expressions:

A+ = {[v+L
1 , v+U

1 ], [v+L
2 , v+U

2 ], ..., [v+L
n , v+U

n ]} =
=
{

(maxi[v
L
ij , v

U
ij ]

∣∣j ∈ Kb), (mini[v
L
ij , v

U
ij ] |j ∈ Kc)

}
,

(14)

A− = {[v−L
1 , v−U

1 ], [v−L
2 , v−U

2 ], ..., [v−L
n , v−U

n ]} =
=
{

(mini[v
L
ij , v

U
ij ]

∣∣j ∈ Kb), (maxi[v
L
ij , v

U
ij ] |j ∈ Kc)

}
.

(15)
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As there are no any type reductions (representation of intervals by real values)
in (14) and (15) we call our approach Direct Interval Extension of TOPSIS
method.

As in (14) and (15) the minimal and maximal intervals must be chosen, the
main difficulty in the implementation of the above method is the problem of
interval comparison.

3.2 Interval Comparison

The problem of interval comparison is of perennial interest, because of its direct
relevance in practical modeling and optimization of real-world processes.

To compare intervals, usually the quantitative indices are used (see reviews in
[8] and [7]). Wang at al. [9] proposed a simple heuristic method which provides
the degree of possibility that an interval is greater/lesser than another one.

For intervals B = [bL, bU ], A = [aL, aU ], the possibilities of B ≥ A and A ≥ B
are defined in [9,10] as follows:

P (B ≥ A) =
max

{
0, bU − aL

}
−max

{
0, bL − aU

}
aU − aL + bU − bL

, (16)

P (A ≥ B) =
max

{
0, aU − bL

}
−max

{
0, aL − bU

}
aU − aL + bU − bL

. (17)

The similar expressions were proposed earlier by Facchinetti at al. [1] and by
Xu and Da [11]. Xu and Chen [12] showed that the expressions proposed in [1,9]
and [11] are equivalent ones.

A separate group of methods is based on the so-called probabilistic approach
to interval comparison (see review in [7]). The idea to use the probability inter-
pretation of interval is not a novel one. Nevertheless, only in [7] the complete
consistent set of interval and fuzzy interval relations involving separated equal-
ity and inequality relations developed in the framework of probability approach
is presented. Nevertheless, the results of interval comparison obtained using ex-
pressions (16) and (17) generally are similar to those obtained with the use of
probabilistic approach to the interval comparison.

The main limitations of described above methods is that they provide an
extent to which an interval is greater/lesser than another one if they have a
common area (the intersection and inclusion cases should be considered sepa-
rately [7]). If there are no intersections of compared intervals, the extent to which
an interval is greater/lesser than another one is equal to 0 or 1 regardless of the
distance between intervals. For example, Let A=[1,2], B=[3,4] and C=[100,200].
Then using described above approaches we obtain: P (C > A)=P (B > A)=1,
P (A > B)=0.

Thus, we can say that in the case of overlapping intervals the above methods
provide the possibility (or probability) that an interval is grater/lesser than
another one and this possibility (or probability) can be treated as the strength
of inequality or (in some sense) as the distance between compared intervals.
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On the other hand, the above methods can not provide the measure of intervals
inequality (distance) when they have no a common area.

Of course, the Hamming distance

dH =
1

2

(∣∣aL − bL
∣∣ +

∣∣aU − bU
∣∣) (18)

or Euclidean distance

dE =
1

2

(
(aL − bL)2 + (aU − bU )2

) 1
2 (19)

can be used as the distance between intervals, but these distances give no infor-
mation about which interval is grater/lesser.

Hence, they can not be used directly for interval comparison especially when
an interval is included into another one.

Therefore, here we propose to use directly the operation of interval subtraction
[6] instead of Hamming and Euclidean distances. This method makes it possible
to calculate the possibility (or probability) that an interval is grater/lesser that
another one when they have a common area and when they do not intersect.

So for intervals A = [aL, aU ] and B = [bL, bU ], the result of subtraction is the
interval C=A−B=[cL, cU ]; cL = aL− bU , cU = aU − bL. It is easy to see that in
the case of overlapping intervals A and B, we always obtain a negative left bound
of interval C and a positive right bound. Therefore, to get a measure of distance
between intervals which additionally indicate which interval is grater/lesser, we
propose here to use the following value:

ΔA−B =
1

2

(
(aL − bU ) + (aU − bL)

)
. (20)

It is easy to prove that for intervals with common center, ΔA−B is always equal
to 0. Really, expression (20) may be rewritten as follows:

ΔA−B =

(
1

2
(aL + aU )− 1

2
(bU + bL)

)
. (21)

We can see that expression (21) represents the distance between the centers of
compared intervals A and B. This is not a surprising result as Wang at al. [9]
noted that most of the proposed methods for interval comparison are “totally
based on the midpoints of interval numbers”. It easy to see that the result of
subtraction of intervals with common centers is an interval centered around 0.
In the framework of interval analysis, such interval is treated as the interval 0.

More strictly, if a is a real value, then 0 can be defined as a− a. Similarly, if
A is an interval, then interval zero may be defined as an interval A −A=[aL −
aU , aU − aL] which is centered around 0. Therefore, the value of ΔA−B equal
to 0 for A and B having a common center may be treated as a real valued
representation of interval zero.

In Table 1, we present the values of P (A ≥ B), P (B ≥ A) (see expres-
sions (16),(17)), the Hamming dH and Euclidean dH distances (see expressions
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(18),(19)) between Ai and B and ΔAi−B for intervals A1 = [4, 7], A2 = [5, 8],
A3 = [8, 11], A4 = [13, 16], A5 = [18, 21], A6 = [21, 24], A7 = [22, 25] and
B = [7, 22] placed as it is shown in Fig.1. The numbers in the first row in Table
1 correspond to the numbers of intervals Ai, i=1 to 7.

Fig. 1. Compared intervals

Table 1. Results of interval comparison

Method 1 2 3 4 5 6 7

P (A ≥ B) 0 0.06 0.22 0.5 0.78 1 1

P (A ≤ B) 1 0.94 0.78 0.5 0.22 0 0

dE 10.82 10 7.81 6 7.81 10 10.82

dH 9 8 6 6 6 8 9

ΔA−B -9 -8 -5 0 5 8 9

We can see that the values of ΔAi−B are negative when Ai ≤ B and be-
come positive for Ai ≥ B. These estimates coincide (at least qualitatively) with
P (Ai ≥ B) and P (B ≥ Ai). So we can say that the sign of ΔAi−B indicates
which interval is greater/lesser and the values of abs(ΔAi−B) may be treated
as the distances between intervals since these values are close the to the values
of dE and dH in both cases: when intervals have a common area and when the
there is no such an area.

3.3 The Comparison of the Direct Interval Extension of TOPSIS
Method with the Know Method

Using ΔA−B, it is easy to obtain from (14),(15) the ideal interval solutions

A+ = {[v+L
1 , v+U

1 ], [v+L
2 , v+U

2 ], ..., [v+L
1 , v+U

n ]},

A− = {[v−L
1 , v−U

1 ], [v−L
2 , v−U

2 ], ..., [v−L
1 , v−U

n ]}.
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Since ΔA−B is the subtraction of the midpoints of A and B, the values of S+
i

and S−
i may be calculated as follows:

S+
i = 1

2

∑
j∈KB

(
(v+L

j + v+U
j )− (vLij + vUij)

)
+

+ 1
2

∑
j∈KC

(
(vLij + vUij)− (v+L

j + v+U
j )

)
.

(22)

S−
i = 1

2

∑
j∈KB

(
(vLij + vUij)− (v−L

j + v−U
j )

)
+

+ 1
2

∑
j∈KC

(
(v−L

j + v−U
j )− (vLij + vUij))

)
.

(23)

Finally, using expression (13) we obtain the relative closeness RCi to the ideal
alternative.

Let us consider an illustrative example.
Suppose we deal with three alternatives Ai, i=1 to 3 and four local criteria Cj ,

j=1 to 4 presented by intervals in Table 2, where C1 and C2 are benefit criteria,
C3 and C4 are cost criteria. Suppose, for the sake of simplicity that local criteria
are of equal importance (wi = 1

n , i=1 to n). To stress the advantages of our
method we chose the example in which many intervals representing the values
of ratings intersect.

Table 2. Decision table

C1 C2 C3 C4

A1 [6, 22] [10, 15] [16, 21] [18, 20]

A2 [15, 18] [8, 11] [20, 30] [19, 28]

A3 [9, 13] 12, 17] [42, 48] [40, 49]

Then using the known method for interval extension of TOPSIS method
[3,4] (expressions (7)-(17)) we obtain R1=0.5311, R2=0.6378, R3=0.3290 and
therefore R2 > R1 > R3, whereas with the use of our method (expressions (7),
(8), (22), (23) and (13)) we get R1=0.7688, R2=0.7528, R3=0.0717 and therefore
R1 > R2 > R3.

We can see that there is a considerable difference between the final ranking
obtained by the known method and using our method based on the direct ex-
tension of TOPSIS method. This can be explained by the fact that the method
proposed in [3,4] has some limitations concerned with the presentation of inter-
vals by real values in the calculation of ideal solutions and using the Euclidean
distance when intervals intersect.

4 Conclusion

A new approach to the solution of MCDM problems with the use of TOPSIS
method in the interval setting is proposed. This method called “direct interval
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extension of TOPSIS method” is free of the limitations of known method. It
is shown that the presentation of intervals by real values in the calculation of
ideal solutions used in the framework of known method may lead to the wrong
results as well as the use of the Euclidean distance when intervals representing
the values of local criteria intersect. Using the numerical example, it is shown
that the proposed “direct interval extension of TOPSIS method” may provide
the final ranking of alternatives which is substantially differ from the results
obtained using the known method.
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Abstract. The problem of solving linear systems whose coefficients are
nonlinear functions of parameters varying within prescribed intervals is
investigated. A new method for outer interval solution of such system
is proposed. In order to reduce memory usage, nonlinear dependencies
between parameters are handled using revised affine arithmetic. Some
numerical experiments which aim to show the properties of the proposed
method are reported.

Keywords: Parametric Linear Systems, Nonlinear Dependencies, Outer
Interval Solution, Revised Affine Arithmetic.

1 Introduction

The problem of solving parametric linear systems arises in many scientific areas.
When the parameters are uncertain but bounded and take arbitrary values from
given intervals, a family of parametric linear systems is obtained. This family,
called a parametric interval linear system, contains an infinite number of real
linear systems. Therefore, solving the parametric interval linear system is to
bound all possible solutions to the systems from the family.

Depending on how the parameters are involved in a linear system, parametric
systems with affine-linear dependencies between the parameters and parametric
linear systems with nonlinear (non-affine) dependencies between the parame-
ters can be considered. Linear dependencies were investigated e.g. by Hladik [5],
Popova [12], Rump [16], Shary [17] and Skalna [18]. Systems with nonlinear de-
pendencies were considered e.g. by El-Owny [2], Popova [12] and Skalna [21].
Solving the latter involves computing an interval enclosure of the range of non-
linear functions over the domain of the parameters. To obtain tight range en-
closures, generalised affine arithmetic was used in [2], generalised (extended)
interval arithmetic was used in [12] and standard affine arithmetic was used
in [21]. Generalised interval arithmetic provides sharp range enclosure for mono-
tone functions. However, this methodology is not efficient for the general case.
Affine arithmetic ([3]), revised affine arithmetic ([6], [7], [10]) or generalised affine
arithmetic ([2], [4]) can be more appropriate in that case.

This paper presents a new method for computing an enclosure for the solu-
tion set of parametric linear systems involving arbitrary nonlinear dependencies.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 513–522, 2012.
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Revised affine arithmetic, used to determine the bounds on the range of non-
linear functions, is introduced briefly in Section 4. Section 5 contains a general
outline of the algorithm for computing an outer enclosure. Numerical exam-
ples presented in Section 6 illustrate the computational aspects of the proposed
method. The paper ends with concluding remarks.

2 Parametric Interval Linear Systems

The following notations are used. Vectors are denoted by lower case italic letters
and matrices are denoted by capital italic letters. Interval quantities are distin-
guished by writing them in bold. �n, �n×m denote, respectively, the set of real
n-dimensional vectors and the set of real n×m matrices. A real compact inter-
val a = [a, a] = {x ∈ � | a � x � a}. The midpoint of an interval a is defined
as ǎ = (a + a)/2 and the radius r(a) = (a − a)/2. The set of all real compact
intervals is denoted by ��. Then, by ��n, ��n×m denote, respectively, the set
of all n-dimensional interval vectors and the set of all interval n ×m matrices.
Square brackets are used to denote the range of a real function. Additionally,
ρ(·) stands for a spectral radius.

Now consider a linear algebraic system

A(p)x(p) = b(p) ,

where A(p) ∈ �n×n, b(p) ∈ �n, and Aij(p), bi(p) (i, j = 1, . . . , n) are nonlinear
functions of a k-dimensional vector of parameters p ∈ �k.

When some of the parameters are assumed to be uncertain and vary within
prescribed intervals pi � pi (i = 1, . . . , k), a family of parametric linear systems:

A(p)x(p) = b(p), p ∈ p , (1)

is obtained. This family is usually called a parametric interval linear system.
The set of solutions to all the systems from the family (1) is called a parametric

(united) solution set and is defined as:

Sp = S(A(p), b(p), p) := {x(p) | A(p)x(p) = b(p), for some p ∈ p} . (2)

In general, a parametric solution set has a very complicated structure, it does
not even need to be convex. If A(p) is non-singular for every p ∈ p, then the
parametric solution set is bounded. For a nonempty bounded set S ∈ P�n, the
interval hull, that is the tightest interval vector containing S, is defined as

�S =
⋂
{Y ∈ ��n, |S ⊆ Y } ∈ ��n.

The interval hull of the parametric solution set is considered as an (interval)
hull solution of the problem (1). It is quite expensive to obtain the hull solution,
therefore an interval vector x∗ ⊇ �Sp ⊇ Sp, called an outer interval solution, is
computed instead, and the goal for x∗ is to be as narrow as possible.
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3 Outer Interval Solution

It is easy to see that for arbitrary non-singular matrix R ∈ �
n×n and vector

x0 ∈ �n

Ax = b⇔ x− x0 = (I −RA)(x− x0) + R(b− Ax0) . (3)

Based on the above equivalence, a non-iterative method for outer interval enclo-
sure of parametric interval linear system is proposed.

Theorem 1. Consider parametric linear system (1). Let R ∈ �n×n be an arbi-
trary non-singular matrix and let x0 ∈ �n. Denote D = |I − [{RA(p) | p ∈ p}] |.
If ρ(D) < 1 then

Sp ⊆ x0 + (I −D)−1| [{R(b(p)−A(p)x0) | p ∈ p}] |[−1, 1].

Proof. Let x ∈ Sp, then A(p)x = b(p) for some p ∈ p. From (3) it follows that

x− x0 = (I −RA(p))(x − x0) + R(b(p)−A(p)x0),

which implies

|x− x0| = |(I −RA(p))(x− x0) + R(b(p)−A(p)x0)| �
� |(I −RA(p))(x− x0)|+ |R(b(p)−A(p)x0)| �
� |(I −RA(p))||(x− x0)|+ |R(b(p)−A(p)x0)|. (4)

The above inequality can be rewritten into

(I − |(I −RA(p))|)|x − x0| � |R(b(p)−A(p)x0)|. (5)

Since I − RA(p) ∈ I − [{RA(p) | p ∈ p}], thus |I − RA(p)| � D and, according
to the theory of nonnegative matrices, ρ(|I −RA(p)|) � ρ(D). If ρ(D) < 1, then
ρ(|I−RA(p)|) < 1 and (I−|I−RA(p)|)−1 � 0. Thus, premultiplying both sides
of (5) by (I − |I −RA|)−1 yields

|x− x0| � (I − |I −RA(p)|)−1|R(b(p)−A(p)x0)| �
� (I −D)−1| [{R(b(p)−A(p)x0) | p ∈ p}] |,

which means

x ∈ x0 + (I −D)−1| [{R(b(p)−A(p)x0) | p ∈ p}] |[−1, 1].

./
Usually, the best choice for R is the numerically computed inverse of the midpoint
matrix Ǎ and x0 ≈ Rb̌.

In what follows, the method for outer interval enclosure described by Theorem
1 will be called the M1 method. It can be proved that the M1 method coincides
with the direct method presented in [21] if R = Ǎ−1. Namely, one can show
that if R = Ǎ−1 then I − |I −D| = 〈D〉. Otherwise, those two methods produce
different results.
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Remark: The necessary condition for the M1 method, as well as for other similar
methods, is that the spectral radius of the respective matrix is less than 1. Here,
it is required that ρ(|I − D|) < 1. According to Proposition 4.1.1 from [11],
the following equivalence holds: ρ(|Ǎ−1|r(A)) < 1 iff Ǎ−1A is an H-matrix.
Moreover, from Proposition 3.7.3 (see [11]) it follows that Ǎ−1A is an H-matrix
iff Ǎ〈A〉 is regular and Ǎ〈A〉−1e > 0, where e = (1, . . . , 1)T . Since ρ(|I−ǍA|) <
ρ(|Ǎ−1|r(A)), the latter condition can be useful to verify whether the assumption
imposed on the spectral radius is fulfilled. Numerical experiments confirm the
usefulness of this approach.

4 Revised Affine Arithmetic

The M1 method requires the enclosure of the range of the function
C(p) = RA(p) and z(p) = R(b(p) − A(p)x0) on the domain p ∈ ��

k. In this
paper, the bounds on those ranges are computed using revised affine arithmetic.

Revised affine arithmetic (RAA) ([6], [7], [10]), [22]) is a modification of stan-
dard affine arithmetic (AA) ([3], [22]). RAA has lower memory requirements
which is an important feature when solving large problems or during a long chain
of computations. RAA keeps track of correlations between quantities, therefore it
is able to provide much tighter bounds for the computed quantities than conven-
tional interval arithmetic. In RAA, a partially unknown quantity x is represented
by an affine form of a constant length

x̂ = x0 + x1ε1 + . . . + xnεn + ex[−1, 1] ,

which consists of two parts: a first degree polynomial of length n and a cumulative
error ex[−1, 1] (ex > 0 is called an error variable) which represents the errors
introduced by performing non-affine operations. In rigorous computations, it is
also used to accumulate rounding errors inherent in floating-point arithmetic.
The central value x0, the coefficients xi (called partial deviations) and ex are
finite floating-point numbers, and εi ∈ [−1, 1] are dummy variables. The radius
of a revised affine form r(x̂) =

∑n
i=1 |xi|+ ex.

All the standard arithmetic operations as well as other classical functions are
redefined for revised affine forms, so that they result straightforwardly in affine
forms. At the end of any computation, the resulting affine form x̂ is transformed
into the interval [x̂] = [x0 − r(x̂), x0 + r(x̂)] which is the tightest interval that
contains all possible values of x̂, assuming that each εi varies independently over
its domain [22].

5 Algorithm and Implementation Issues

The M1 method is described in Algorithm 1. The overall computation cost is
O(n3). The computations were performed using the author’s own software which
implements operations on intervals and on affine forms using upward rounding
only. This allows one to reduce computation time.
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Algorithm 1. (Method for outer interval solution)

1. Ǎ = A(p̌); b̌ = b(p̌)
2. R ≈ Ǎ−1; x0 = Rb̌
3. D = |I −� {RA(p) | p ∈ p} |
4. z = |� {R(b(p) − A(p)x0)} |
5. G ≈ (I −D)−1

6. x∗ = x0 + G · z[−1, 1]

In order to further reduce the width of the result obtained using the above
algorithm, parametric version of the well known Jacobi iteration is applied.

Remark: As can be seen from Algorithm 1, the method requires calculating
the inverses of Ǎ and M . In fact, some numerically computed approximations
R ≈ Ǎ and G ≈ M are obtained. To find out how the approximation errors
influence the final result, a more time-consuming version of the algorithm can
be used. It differs from the method presented in Algorithm 1 in that the real
matrices Ǎ and M are converted into interval ones A→ A, M →M , and then
their interval inverses are used in computations.

6 Numerical Experiments

In this section, the quality of the solution enclosures given by the new M1
method is presented. The results of the M1 method are compared to the results
obtained using the following methods: Rump’s parametric fixed-point iteration
(RPFPI) ([2], [12]), Bauer-Skeel (BS) method [5], Hansen-Bliek-Rohn method [5]
and Interval-Affine Gaussian Elimination [1]. All of them are polynomial com-
plexity methods for solving parametric interval linear systems. The hull solution
(computed using global optimisation methods [19], [20]) is given as a reference
solution. The percentage by which the hull solution is overestimated by outer
enclosure is measured as OM = 100 · (1 − r(Sp)/r(x∗

M )), where M stand for
the name of the respective method. For clarity, the results presented below in-
clude the result given by the M1 method and the best result obtained using the
remaining methods.

Example 1 (Three-dimensional parametric linear system)⎛⎝−(p1 + 1)p2 p21(p3 − p4) −p2
p5/
√
p2p4 p2(p2 − p3) 1

p1p2 (p1 − p3)p5
√
p2

⎞⎠ ·
⎛⎝x1

x2

x3

⎞⎠ =

⎛⎝ p1
p21 − p2p3
−2p3

⎞⎠ . (6)

All the parameters are considered to be uncertain with uncertainty ranging from
2% to 18% in their nominal values: p1 = 1.2, p2 = 2.2, p3 = 0.51, p4 = p5 =
0.4. The results, given to 5 decimals, obtained for selected uncertainties are
presented in the Table 1. The summary of the results obtained for the entire
range (2%− 18%) of uncertainty is depicted in Fig. 1.
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Table 1. Solution of the system (6) with 2%, 6%, 10% and 18% uncertainty in all
parameters

x x∗
M1 x∗

BS �Sp OM1 OBS

2% uncertainty

x1 [0.61255, 0.73299] [0.60965, 0.73352] [0.62032, 0.72918] 9.6% 12.1%

x2 [0.49967, 0.58609] [0.49751, 0.58663] [0.50396, 0.58416] 7.2% 10.0%

x3 [−2.12049, −1.853] [−2.12099, −1.84683] [−2.11430, −1.86828] 8.0% 10.3%

6% uncertainty

x1 [0.32168, 1.06148] [0.26428, 1.07946] [0.49552, 0.95536] 37.8% 43.6%

x2 [0.31014, 0.80559] [0.26980, 0.81361] [0.40842, 0.74086] 32.9% 38.9%

x3 [−2.81291, −1.24995] [−2.83450, −1.13459] [−2.62992, −1.58915] 33.4% 38.8%

10% uncertainty

x1 [0.14222, 1.26479] [0.03637, 1.30772] [0.46134, 1.05614] 47.0% 53.2%

x2 [0.20138, 0.92475] [0.12818, 0.95480] [0.38165, 0.80640] 41.3% 48.6%

x3 [−3.22753, −0.89186] [−3.28554, −0.68430] [−2.86095, −1.51343] 42.3% 48.2%

18% uncertainty

x1 [−6.45933, 8.04476] [−11.06525, 12.41151] [0.34568, 1.71831] 90.5% 94.2%

x2 [−3.62232, 4.87106] [−6.36777, 7.44823] [0.29313, 1.17828] 89.6% 93.6%

x3 [−16.51497, 11.97641] [−24.46694, 20.49209] [−4.38845, −1.27018] 89.1% 93.1%

x1 x2 x3

Fig. 1. Summary of the results for system (6) (uncertainty: 2% − 18%)

As can be seen, the overestimation of the enclosure increases rapidly with
increase of the width of parameter intervals. This is probably due to the poor
enclosure of the range of the respective nonlinear functions. This in turn follows
from the fact that in an RAA computation, the error term produced by nonlinear
operations became more important as the range of the operands became wider.
Nevertheless, it is worth noting that the M1 method always yield better results
than the remaining methods considered here.

Example 2 (Simple planar frame). Consider a simple planar frame with three
support types and external load uniformly distributed along the horizontal beam
(see e.g. [9], [14]). Similar to the previous example, all the parameters are con-
sidered to be uncertain. The problem is solved with uncertainty ranging from
1% to 70%. The parametric linear system Ax = b describing the frame is given
by the following relations (elements not listed below are equal to zero):
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1
2a11 = a12 = a21 = a65 = −a74 = l12

a22 = 2l12 + 2l23, a33 = 3l24 + 2l23, a66 = l12 + l24

a23 = a32 = −2l23, a68 = l23, a86 = l24

a47 = a48 = a54 = a55 = a56 = −a61 = −a71 = a72 = −a83 = 1

b =
(
0, 0, − 3

8ql
3
24, 0, ql24, ql24(l12 + 1

2 l24, 0, 1
2ql

2
24

)
.

(7)

Table 2 lists the results for moments and reactions of the planar frame sys-
tem with: a) 1% uncertainty in all parameters, b) 2% uncertain lengths and
30% uncertain load and c) 20% uncertainty in all parameters. In case a), the
results show a good sharpness of the enclosures for most of the solution compo-
nents. Only the two last components (horizontal reactions Rx

1 and Rx
3) are more

Table 2. Solutions for moments and reactions for the planar frame system with: a) 1%
uncertainty in all parameters, b) 2% uncertain lengths and 30% uncertain load and c)
20% uncertainty in all parameters

x x∗
M1 x∗

BS �Sp OM1 OBS

a) 1% uncertainty in all parameters

M1 [0.24466, 0.25533] [0.24466, 0.25537] [0.24479, 0.25529] 1.6% 2.0%

M21 [−0.51063, −0.48936] [−0.51070, −0.48936] [−0.51059, −0.48959] 1.3% 1.6%

M24 [−1.01720, −0.98285] [−1.01726, −0.98286] [−1.01710, −0.98310] 1.0% 1.2%

Ry
1 [−0.76980, −0.73026] [−0.76990, −0.73019] [−0.76973, −0.73072] 1.3% 1.8%

Ry
3 [6.66853, 6.83165] [6.66828, 6.83180] [6.66989, 6.83089] 1.3% 1.5%

Ry
4 [3.95927, 4.04062] [3.95929, 4.04072] [3.96010, 4.04010] 1.7% 1.8%

Rx
1 [−0.68732, −0.64652] [−0.68751, −0.64636] [−0.68420, −0.64953] 15.0% 15.7%

Rx
3 [0.64651, 0.68732] [0.64636, 0.68751] [0.64953, 0.68420] 15.0% 15.7%

b) 2% uncertain lengths and 30% uncertain load

M1 [0.20186, 0.29807] [0.20185, 0.29830] [0.20578, 0.29681] 5.4% 5.6%

M21 [−0.59541, −0.40449] [−0.59583, −0.40447] [−0.59361, −0.41155] 4.6% 4.9%

M24 [−1.18059, −0.81957] [−1.18103, −0.81957] [−1.17778, −0.82973] 3.6% 3.7%

Ry
1 [−0.90217, −0.59795] [−0.90277, −0.59768] [−0.89941, −0.61122] 5.3% 5.5%

Ry
3 [5.59427, 7.90650] [5.59316, 7.90739] [5.65854, 7.87074] 4.3% 4.4%

Ry
4 [3.33125, 4.66787] [3.33120, 4.66870] [3.36600, 4.64600] 4.2% 4.3%

Rx
1 [−0.93187, −0.40482] [−0.93292, −0.40414] [−0.79948, −0.54331] 51.4% 51.6%

Rx
3 [0.40476, 0.93187] [0.40414, 0.93292] [0.54331, 0.79948] 51.4% 51.6%

c) 20% uncertainty in all parameters

M1 [0.09780, 0.39890] [0.09516, 0.41640] [0.16081, 0.37349] 29.4% 33.8%

M21 [−0.77776, −0.21966] [−0.80657, −0.21655] [−0.74699, −0.32162] 23.8% 27.9%

M24 [−1.43620, −0.58421] [−1.45800, −0.58825] [−1.38123, −0.69798] 19.8% 21.4%

Ry
1 [−1.29885, −0.22341] [−1.34574, −0.18894] [−1.24498, −0.43857] 25.0% 30.3%

Ry
3 [4.67728, 8.89420] [4.56259, 8.96834] [5.28269, 8.52968] 23.0% 26.3%

Ry
4 [2.85445, 5.09986] [2.86117, 5.14258] [3.24000, 4.84000] 28.7% 29.9%

Rx
1 [−2.66291, 1.12482] [−2.77403, 1.22653] [−1.10665, −0.38984] 81.1% 82.1%

Rx
3 [−1.13239, 2.66291] [−1.22653, 2.77403] [0.38984, 1.10665] 81.1% 82.1%
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sensitive to the variations of the parameters. Solutions for moments and reac-
tions of the planar frame system with 2% uncertain lengths and 30% uncertain
load (case b)) look quite reasonable despite the large uncertainty in the load.
Except for the very sensitive components of the horizontal reactions Rx

1 and Rx
3 ,

the overestimation for other solution components has increased by only about
three and a half times. In this case, the result of the M1 method is very similar
to the best result produced by the remaining methods. Finally, in case c), it
can be seen that the overestimation is still acceptable; the uncertainty of the
result, except for the horizontal reactions Rx

1 and Rx
3 which, as already shown,

are very sensitive to the variations of the parameters, is at the similar level as
the uncertainty of the parameters. In this case, the result of the M1 method is
noticeably better than the results of the remaining methods.

The summary of the results obtained for the entire range (1% − 70%) of
uncertainty is shown in Figure 2. One can see that the overestimation starts to
grow rapidly for uncertainties larger than 40%.

Fig. 2. Summary of the results for planar frame (uncertainty: 1% − 70%)

7 Conclusions

A new method M1 for solving parametric interval linear systems with nonlinear
dependencies was suggested in Section 3. Revised affine arithmetic was used to
compute ranges of nonlinear functions, required by the M1 method. The M1
method was compared with other, polynomial complexity, methods for solving
parametric interval linear systems, including Rump’s parametric fixed point it-
eration, to evaluate its performance. It turned out to be the best among all
considered methods.

Moreover, it was demonstrated that the M1 produce sharp enclosures for small
parameter uncertainties. However, the overestimation increases, sometimes very
rapidly, with increasing the width of parameter intervals. The reason for this is
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that in affine arithmetic an approximation error of nonlinear operations increases
as the ranges of the operands get wider. To obtain sharper enclosures one may
subdivide parameter intervals or use other tools for bounding ranges. Which way
to choose requires additional study for efficiency and accuracy.
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Abstract. A way of constructing the interval method of second order
for solving one dimensional wave equation is presented in the paper. The
central difference interval method for the hyperbolic Partial Differential
Equation is taken into consideration. The suitable Dirichlet and Cauchy
conditions are satisfied for the string with fixed endpoints. The estima-
tions of discretization errors are proposed. The method of floating-point
interval arithmetic is studied. The numerical experiment is presented.

Keywords: Interval method, Floating-Point Interval Arithmetic, Wave
equation, Difference method, Initial-boundary value problems.

1 Introduction

Interval methods for solving the initial value problem in Ordinary Differential
Equations (ODE) have been presented for example in papers [1], [2], [3] and
[4]. The studies on ODE have been extended to Partial Differential Equations
(PDE) in context to interval methods of floating point interval arithmetic.

The paper is devoted to the central difference interval method for solving PDE
together with boundary and initial conditions. The main point of construction
interval methods is to contain all numerical errors into obtained solutions. The
backward and central difference interval methods for solving hyperbolic PDE
were presented at GAMM [5] and ICNAAM [6] Conferences. Both methods con-
cern the error of an initial condition of order O(h) and the estimations of errors
which are depended on a velocity v (a parameter of the wave equation). The
another way of errors estimation of discretization method is presented in the pa-
per. It is assumed that an initial condition with local truncation error is O(h4)
and estimations of errors do not depend on velocity v.

2 The Wave Equation

The string, as an example of the one dimensional wave equation, is taken into
consideration [7] and [8], with following assumptions:

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 523–532, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. The vibrating string

– the string is well flexible and homogeneous (mass of string per unit length $
is a constant),

– the tension T of the string is constant and larger than the force of gravity
(no other external forces act on the string),

– damping effects are neglected,
– the amplitude is not too large,
– each inside point of the string can move only in the vertical direction.

If the string is stretched between two points (see Fig. 1) where x = 0 and
x = L and u = u(x, t) denotes the amplitude of the string’s displacement, then
u satisfies the wave equation

v2
∂2u(x, t)

∂x2
− ∂2u(x, t)

∂t2
= 0, (1)

in the region where 0 < x < L and time t > 0, where v2 = T
� = const.

Since the ends of string are secured to the x-axis, u must also satisfy the
Dirichlet boundary conditions, for t > 0, given by

u(0, t) = 0, (2)

u(L, t) = 0,

The initial position and velocity of the string are given by the Cauchy initial
conditions at the time t = 0

u(x, 0) = ϕ(x) (3)

∂u(x, t)

∂t

∣∣∣∣
t=0

= ψ(x).

for 0 < x < L, where ϕ(x) and ψ(x) are given functions.

3 The Central Difference Method

To set up the central difference method the positive numbers n and m, which
adequately describe number of points x and t, are selected. The space-time grid
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with the mesh points (xi, tj) is received, where Δx = h > 0 and Δt = k > 0
such that

xi = i · h, h =
L

n
> 0, i = 0, 1, . . . , n, (4)

tj = j · k, k > 0, j = 0, 1, . . . ,m.

The Taylor series for each interior mesh point (xi, tj) are used to obtain the
central difference formulas

∂2u(xi, tj)

∂x2
=

u(xi+1, tj)− 2u(xi, tj) + u(xi−1, tj)

h2
− h2

12
· ∂

4u(ξi, tj)

∂x4
,

(5)

∂2u(xi, tj)

∂t2
=

u(xi, tj+1)− 2u(xi, tj) + u(xi, tj−1)

k2
− k2

12
· ∂

4u(xi, ηj)

∂t4
,

where ξi ∈ (xi−1, xi+1) and ηj ∈ (tj−1, tj+1), for i = 1, 2, . . . , n − 1 and j =
1, 2, . . . ,m− 1.

Substituting the formulas (5) into the wave equation (1), gives

2

(
v2

k2

h2
− 1

)
u(xi, tj) + u(xi, tj−1) + u(xi, tj+1)− (6)

−v2
k2

h2
(u(xi−1, tj) + u(xi+1, tj)) =

k4

12
· ∂

4u(xi, ηj)

∂t4
− v2

h2k2

12
· ∂

4u(ξi, tj)

∂x4
.

Neglecting the truncation errors in the formula (6) the central difference method
is generated

2

(
v2

k2

h2
− 1

)
u(xi, tj) + u(xi, tj−1) + u(xi, tj+1)− (7)

−v2
k2

h2
(u(xi−1, tj) + u(xi+1, tj)) = 0,

for i = 1, 2, . . . , n− 1 and j = 1, 2, . . . ,m− 1.
The boundary conditions (2), for j = 1, 2, . . . ,m− 1, give

u(x0, tj) = 0, (8)

u(xn, tj) = 0.

The initial conditions (3), for i = 1, 2, . . . , n− 1, we can write as follows

u(xi, t0) = ϕ(xi), (9)

u(xi, t1) = ϕ(xi) + kψ(xi) +
k2

2
v2ϕ′′(xi) +

k3

6
v3ϕ′′′(xi),

To obtain the second equation in the formula (9) the derivative

∂u(xi, tj)

∂t

∣∣∣∣
t=0
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by the forward difference approximation of third order the Taylor series in the
variable t about t1 for points (xi, t1) is replaced

u(xi, t1) = u(xi, t0) + k · ∂u(xi, t0)

∂t
+

k2

2
· ∂

2u(xi, t0)

∂t2
+ (10)

+
k3

6
· ∂

3u(xi, t0)

∂t3
+

k4

24
· ∂

4u(xi, η̃i)

∂t4
,

where η̃i ∈ (t0, t1) for i = 1, 2, . . . , n− 1.
If the first equation in the formula (9) is differentiated twice in respect to x

(see [9]) then we can write

∂2u(xi, t0)

∂t2
= v2

∂2u(xi, t0)

∂x2
= v2

d2ϕ(xi)

dx2
= v2ϕ(xi)

′′,

and we have
∂2u(xi, t0)

∂t2
= v2ϕ(xi)

′′, (11)

Analogously, if d3ϕ(xi)
dx3 exists, then we can write

∂3u(xi, t0)

∂t3
= v3ϕ(xi)

′′′. (12)

Substituting (11), (12) and the first equation (9) into formula (10), gives

u(xi, t1) = ϕ(xi) + kψ(xi) +
k2

2
v2ϕ′′(xi) +

k3

6
v3ϕ′′′(xi) +

k4

24
· ∂

4u(xi, η̃i)

∂t4
(13)

where η̃i ∈ (t0, t1) for i = 1, 2, . . . , n− 1.
Neglecting the truncation error, the second dependence of the formula (9) is

obtained.

4 The Central Difference Interval Method

In conventional difference methods the truncation errors frequently are neglected.
The idea of the interval methods is to involve these errors into interval solution.

We consider the central difference method (7) and the second initial condition
(9) together with their truncations errors.

The truncation error EM of method is in the form

EM =
k4

12
· ∂

4u(xi, ηj)

∂t4
− v2

k2h2

12
· ∂

4u(ξi, tj)

∂x4
, (14)

where
ξi ∈ (xi−1, xi+1) for i = 1, 2, . . . , n− 1,
ηj ∈ (tj−1, tj+1) for j = 1, 2, . . . ,m− 1.

The approximation error EC of the second initial condition (9) is defined as

EC =
k4

24
· ∂

4u(xi, η̃i)

∂t4
, (15)
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where
η̃i ∈ (t0, t1) for i = 1, 2, . . . , n− 1.

To obtain the interval method the estimations of truncations errors EM and

EC are needed. To obtain estimations of
∂4u(ξi,tj)

∂x4 and
∂4u(xi,ηj)

∂t4 in (14), the wave
equation (1) twice with respect to x and twice with respect to t is differentiated:

∂4u(xi, tj)

∂x4
=

1

v2
· ∂

4u(xi, tj)

∂x2∂t2
,

∂4u(xi, tj)

∂t4
= v2

∂4u(xi, tj)

∂x2∂t2
. (16)

for i = 1, 2, . . . , n− 1 and j = 1, 2, . . . ,m− 1.
Let ∣∣∣∣∂4u(xi, tj)

∂x2∂t2

∣∣∣∣ ≤M

for each mesh point (xi, tj), where i = 0, 1, . . . , n and j = 0, 1, . . . ,m.
Then

∂4u(xi, tj)

∂x2∂t2
∈ [−M,M ]. (17)

The relation (17) into formulas (16) is put as follows

∂4u(xi, tj)

∂x4
∈ 1

v2
[−M,M ],

∂4u(xi, tj)

∂t4
∈ v2[−M,M ],

Thus, these relations for ξi ∈ (xi−1, xi+1), ηj ∈ (tj−1, tj+1), where i = 0, 1, . . . , n
and j = 1, 2, . . . ,m− 1 are in the forms

∂4u(ξi, tj)

∂x4
∈ 1

v2
[−M,M ], (18)

∂4u(xi, ηj)

∂t4
∈ v2[−M,M ].

Putting the relations (18) into (14) gives

EM ∈ k2

12
(h2 + k2v2)[−M,M ]. (19)

The derivative ∂4u(xi,η̃i)
∂t4 in (15) for η̃i ∈ (t0, t1), i = 1, 2, . . . , n − 1, is a special

case of derivative
∂4u(xi,ηj)

∂t4 in (14) for ηj ∈ (tj−1, tj+1), j = 1, 2, . . . ,m−1. Then

the estimation of
∂4u(xi,ηj)

∂t4 is true for ∂4u(xi,η̃i)
∂t4 . Putting the second relation (18)

into (15) gives

EC ∈
k4v2

24
[−M,M ]. (20)

To obtain the estimations of truncations errors EM (19) and EC (20) the value
M is needed. For the purpose of estimation value M the Taylor series for the
formulas (5) are used as follows
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∂2

∂t2

( ∂2u(xi, tj)

∂x2

)
=

u(xi+1, tj+1)− 2u(xi+1, tj) + u(xi+1, tj−1)

h2k2
−

− k2

12h2
· ∂

4u(xi+1, η̂j)

∂t4
− (21)

− 2
(u(xi, tj+1)− 2u(xi, tj) + u(xi, tj−1)

h2k2
− k2

12h2
· ∂

4u(xi, η̃j)

∂t4

)
+

+
u(xi−1, tj+1)− 2u(xi−1, tj) + u(xi−1, tj−1)

h2k2
− k2

12h2
· ∂

4u(xi−1, η̌j)

∂t4
−

− h2

12
· ∂2

∂t2

(
∂4u(ξi, tj)

∂x4

)
,

and

∂2

∂x2

( ∂2u(xi, tj)

∂t2

)
=

u(xi+1, tj+1)− 2u(xi, tj+1) + u(xi−1, tj+1)

k2h2
−

− h2

12k2
· ∂

4u(ξ̂i, tj+1)

∂x4
− (22)

− 2
(u(xi+1, tj)− 2u(xi, tj) + u(xi−1, tj)

k2h2
− h2

12k2
· ∂

4u(ξ̃i, tj)

∂x4

)
+

+
u(xi+1, tj−1)− 2u(xi, tj−1) + u(xi−1, tj−1)

k2h2
− h2

12k2
· ∂

4u(ξ̌i, tj−1)

∂x4
−

− k2

12
· ∂2

∂x2

(
∂4u(xi, ηj)

∂t4

)
,

where ηj η̂j , η̃j , η̌j ∈ (tj−1, tj+1) for j = 1, 2, . . . ,m− 1,

and ξi, ξ̂i, ξ̃i, ξ̌i ∈ (xi−1, xi+1) for i = 1, 2, . . . , n− 1.
Let

∂4u(xi, tj)

∂x2∂t2
=

∂4u(xi, tj)

∂t2∂x2

together with (17) for each mesh point (xi, tj), where i = 0, 1, . . . , n and j =
0, 1, . . . ,m. Neglecting truncations errors in formulas (21) and (22) we can write
them as

∂2

∂t2

(∂2u(xi, tj)

∂x2

)
0 u(xi+1, tj+1)− 2u(xi+1, tj) + u(xi+1, tj−1)

h2k2
−

− 2
u(xi, tj+1)− 2u(xi, tj) + u(xi, tj−1)

h2k2
+ (23)

+
u(xi−1, tj+1)− 2u(xi−1, tj) + u(xi−1, tj−1)

h2k2

and

∂2

∂x2

(∂2u(xi, tj)

∂t2

)
0 u(xi+1, tj+1)− 2u(xi, tj+1) + u(xi−1, tj+1)

k2h2
−

− 2
u(xi+1, tj)− 2u(xi, tj) + u(xi−1, tj)

k2h2
+ (24)

+
u(xi+1, tj−1)− 2u(xi, tj−1) + u(xi−1, tj−1)

k2h2
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The right hand sides of the approximations (23) and (24) are the same, then
constance M we can write as follows (see [10])

M 0 s

h2k2
max
i,j

∣∣∣ u(xi+1, tj+1)− 2u(xi, tj+1) + u(xi−1, tj+1)−

− 2(u(xi+1, tj)− 2u(xi, tj) + u(xi−1, tj)) + (25)

+ u(xi+1, tj−1)− 2u(xi, tj−1) + u(xi−1, tj−1)
∣∣∣

where i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m− 1 and s = 1.5 (in this case is assumed
that the approximation errors in (21) and (22) are not greater than 50% ). The
terms u(xi, tj) for i = 1, 2, . . . , n− 1 and j = 1, 2, . . . ,m− 1 are calculated from
the conventional central difference method.

Summarizing, the central difference interval method is obtained as follows

2

(
V 2K

2

H2
− 1

)
U(Xi, Tj) + U(Xi, Tj−1) + U(Xi, Tj+1)− (26)

−V 2K
2

H2
(U(Xi−1, Tj) + U(Xi+1, Tj)) = EM ,

for i = 1, 2, . . . , n− 1 and j = 1, 2, . . . ,m− 1,
where EM is given by the formula

EM ∈ K2

12
(H2 + K2V 2)[−M,M ]. (27)

The boundary conditions (2), for j = 1, 2, . . . ,m, are as follows

U(X0, Tj) = [0, 0], (28)

U(Xn, Tj) = [0, 0].

The initial conditions (3), for i = 1, 2, . . . , n− 1, are given as

U(Xi, T0) = Φ(Xi), (29)

U(Xi, T1) = Φ(Xi) + KΨ(Xi) +
K2V 2

2
Φ′′(Xi) +

K3V 3

6
Φ′′′(Xi) + EC ,

where EC is given by the formula

EC ∈
K4V 2

24
[−M,M ]. (30)

Value M is calculated by the formula (25).
These relations are satisfied for each mesh point (xi, tj) ∈ (Xi, Tj), where

(Xi, Tj) are interval representations (see [11] and [12]) of the suitable mesh points
(xi, tj). The functions U,Φ, Ψ and the values K,H, V are interval extension of
functions u, ϕ, ψ and values k, h, v respectively.
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To find the interval solution at the mesh points of the grid we have to solve
the system of (m − 1) × (n − 1) interval linear equations. This system we can
write in the form ⎡⎢⎢⎢⎢⎢⎣

I
A I
I A I

. . .
. . .

. . .

I A I

⎤⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎣

U2

U3

...

...
Um

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

R2

R3

...

...
Rm

⎤⎥⎥⎥⎥⎥⎥⎦ (31)

where I is identity matrix (n− 1)× (n− 1), A is tridiagonal matrix in the form

A =

⎡⎢⎢⎢⎢⎣
2(Γ 2 − 1) −Γ 2

−Γ 2 . . .
. . .

. . .
. . . −Γ 2

−Γ 2 2(Γ 2 − 1)

⎤⎥⎥⎥⎥⎦
(n−1)×(n−1)

(32)

where Γ = V · KH .
Vectors Uj and Rj , for j = 2, 3, . . . ,m, are adequately vectors of unknowns

and constants and can be presented as follows

Uj = [U1,j, U2,j, . . . , Un−1,j]
T
, Rj = [R1,j , R2,j , . . . , Rn−1,j]

T
. (33)

Elements of vector Rj , for j = 2, 3, . . . ,m, (together with the Dirichlet (28) and
the Cauchy (29)) are obtained by the formulas

i = 1, j = 2 :

Ri,j = EM − 2(Γ 2 − 1)(Φ(H) + KΨ(H) + EC) + Γ 2Φ(jH) +

+ KΨ(jH) + EC − Φ(H),

i = 2, 3, . . . , n− 2, j = 2 :

Ri,j = EM + Γ 2(Φ((i − 1)H) + KΨ((i− 1)H) + EC)−
− 2(Γ 2 − 1)(Φ(iH) + KΨ(iH) + EC) +

+ Γ 2(Φ((i + 1)H) + KΨ((i + 1)H) + EC)− Φ(iH),

i = n− 1, j = 2 : (34)

Ri,j = EM + Γ 2(Φ((i − 1)H) + KΨ((i− 1)H) + EC)−
− 2(Γ 2 − 1)(Φ(iH) + KΨ(iH) + EC)− Φ(iH),

i = 1, 2, . . . , n− 1, j = 3 :

Ri,j = EM − (Φ(iH) + KΨ(iH) + EC),

i = 1, 2, . . . , n− 1, j = 4, 5, . . . ,m :

Ri,j = EM .

To solve the interval linear systems of equations (31) interval algorithm based
on Gaussian elimination with complete pivoting is used.
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5 The Floating-Point Interval Arithmetic

The conventional calculations on the computer give solutions with errors. There
are initial-data errors, data representation errors, rounding errors and errors of
methods. The results are obtained with the use of IntervalArithmetic unit written
by professor Andrzej Marciniak in the Delphi Pascal language. This unit allows
to represent all input data in the form of intervals and make all calculations in the
floating-point interval arithmetic. Some standard interval functions can be used
to obtain the results in the form of intervals. Summarizing, the interval methods
for solving PDE with using floating-point interval arithmetic give solutions, in
form of intervals, which contain all possible numerical errors.

6 Numerical Experiment

We consider an example of the string (with adequately assumptions), which
satisfied equation (1) for x ∈< 0, π > and t > 0.

Three following parameters v are given: v1 = 10−3, v2 = 10−2, v3 = 10−1.
The boundary conditions (2) at the time t > 0 are as follows

u(0, t) = 0,

u(π, t) = 0,

and initial conditions for t = 0 and x ∈< 0, π > are given by

u(x, 0) = 0

∂u(x, t)

∂t

∣∣∣∣
t=0

= sin(x).

Table 1. Maximum widths of interval solutions for v1 = 10−3, v2 = 10−2, v3 = 10−1

n = m 10 20 30 40 50 60 70 80
v

10−3 3 · 10−2 1 · 10−2 4 · 10−3 2 · 10−3 1 · 10−3 1 · 10−3 8 · 10−4 6 · 10−4

10−2 3 · 10−2 1 · 10−2 4 · 10−3 2 · 10−3 1 · 10−3 1 · 10−3 8 · 10−4 6 · 10−4

10−1 3 · 10−2 1 · 10−2 4 · 10−3 3 · 10−3 2 · 10−3 1 · 10−3 9 · 10−4 7 · 10−4

7 Conclusions

The interval methods of floating point interval arithmetic guarantee correct dig-
its in obtained solutions. The main point is to make good estimations of trun-
cation errors. The presented approximation of an initial condition (with local
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truncation error O(h4)) allows to make estimation error together with estimation
error of the central difference method for the wave equation. In this case the main
point is find one value M (25) which appears in estimations of errors for the wave
equation (27) and the initial condition (30).

The larger value v in the wave equation could be considered if the estimations
of errors do not depend on velocity v.

Three algorithms for the large system of interval linear equations in the form
(31) had been tested of floating point interval arithmetic: the GaussJordan elim-
ination, the Gaussian elimination without and with complete pivoting. The best
solutions (which have the minimal widths of interval solutions) are obtained by
interval method based on Gaussian elimination with complete pivoting.
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Abstract. The automatic optimization of Cellular Automata (CA)
models often requires a large number of time-consuming simulations be-
fore an acceptable solution can be found. As a result, CA optimization
processes may involve significant computational resources. In this paper
we investigate the possibility of speeding up a CA calibration through the
approach of meta-model assisted search, which is widely used in many
fields. The adopted technique relies on inexpensive surrogate functions
able to approximate the fitness corresponding to the CA simulations.
The calibration exercise presented here refers to SCIARA, a CA for the
simulation of lava flows. According to the preliminary results, the use of
meta-models enables to achieve a significant gain in computational time.

Keywords: Cellular Automata, Model Calibration, Meta-modelling.

1 Introduction

In many fields, Cellular Automata (CA) models are considered a valuable tool
for simulating the dynamic evolution, over time and space, of systems whose
behaviour emerges from local interactions. In most CA models of real complex
systems: (i) each cell corresponds to a portion of a real space (e.g. a location on
the Earth’s surface); (ii) the states of the cell correspond to spatial characteristics
which are important to the model (e.g. slope, temperature); (iii) the transition
function models some local interactions among the system components; (iv) each
CA step corresponds to an interval of time. In addition, the transition function
is often dependent on some scalar parameters (e.g. [1,2]).

The reliability of such parameterized CA models is maximized by some stan-
dard procedures, such as model calibration. The calibration process consists of
finding the values of the model parameters that are not exactly known and can-
not be directly measured, in such a way that the model itself better mimics the
observed dynamic of the system under consideration. Since the search space is
usually large, automated methods have been developed by defining calibration as
an optimization problem in which the solution in terms of parameter values must
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maximise an objective function (i.e. the fitness measure). At present, many op-
timization algorithms have been exploited for the automatic calibration of CAs,
ranging from techniques based on exhaustive exploration of the search space to
the use of heuristics such as Evolutionary Algorithms (EA) [2,3]. Usually, such
a search process requires a large number of fitness evaluations (i.e. CA simula-
tions) before an acceptable solution can be found. Unfortunately, carrying-out
CA simulations of real complex systems is often computationally expensive. A
typical way to deal with the resulting cost of the optimization process is the
use of parallel computing [2]. An additional strategy can be based on inexpen-
sive surrogate functions able to approximate the fitness corresponding to the
CA simulations. Such an approach, known as meta-model assisted (or surrogate
assisted) optimization, has been widely applied in engineering design but, to our
knowledge, its advantages in calibrating CA have not yet been tested. In the
present study this opportunity is explored with reference to the calibration of
SCIARA [4,5], which is a CA for the simulation of lava flows. In particular, the
paper presents some preliminary results of an empirical investigation aimed at
highlighting in CA calibration the benefits of some typical meta-models, namely
the Artificial Neural Network (ANN), the General Regression Neural Network
(GRNN) and a simple second order polynomial approximation.

The paper is organised as follows. In section 2 the CA calibration problem is
formalized. Section 3 outlines the tested meta-modelling approaches within an
evolutionary search. Section 4 illustrates the results of the numerical experiments
and section 5 concludes the paper outlining possible future work.

2 Optimization of Cellular Automata

In many applications of the CA modelling approach the cells’ transition function
depends on a vector of constant parameters p = [p1, . . . , pn]T , which belongs to
a space Λ (e.g. [1,2]). In particular, the overall transition function Φ gives the
global configuration Ω(t+1) (i.e. the set of all cell states) at the step t + 1 as:

Ω(t+1) = Φ(Ω(t), p) (1)

The iterative application of Φ, starting from an initial configuration Ω(0), leads
to the CA simulation:

Ω(0) Φ−→ Ω(1) Φ−→ · · · Φ−→ Ω(t) =⇒ Ω(t) = Φt(Ω(0),p) (2)

where the dependence of the automaton configuration at the time step t on both
the initial configuration and the parameters is explicit, with the other automaton
characteristics (i.e. the model structure) being fixed.

The model can be optimized with respect to p to maximise the agreement be-
tween the simulated patterns and the real ones. To formalize the problem, let us
suppose the existence of a spatio-temporal dataset V̄ collecting some automaton
configurations, which come from an experiment of the real system behaviour. In
particular, let V̄ be composed by a sequence of q configurations:
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V̄ =
{
Ω̄(k) : k ∈ {0, τ1, . . . , τq}

}
(3)

where τi indicates the instant of time in which the configuration Ω̄(i) is known.
Starting from Ω̄(0), and given a vector p of parameters, the process (2) can be
executed for the computation of the q − 1 configurations:

V =
{
Ω(k) : k ∈ {τ1, . . . , τq}

}
(4)

where Ω(j) = Φj(Ω̄(0), p). The agreement θ between the real and simulated
processes is usually measured by a suitable fitness function:

θ = Θ
(
V̄, V

)
= Θ

(
V̄ , p

)
(5)

Therefore, the calibration consists of the following maximisation problem:

max
p∈Λ

Θ
(
V̄, V

)
(6)

which involves finding a proper value of p that leads to the best agreement
between the real and simulated spatio-temporal sequences.

Given the form of the fitness function, different heuristics and in particular
EAs have been used to tackle the automatic solution of problem (6) [2,3]. In this
paper a Genetic Algorithm (GA) [13] assisted by different types of fitness approx-
imation models was adopted. The GA is used to evolve a randomly initialized
population, whose generic chromosome is a vector encoding an n-dimensional
vector of parameters p. The i-th element of the chromosome is obtained as the
binary encoding of the parameter pi, using a suitable number of bits and given
its set of definition. Each chromosome can be decoded in a vector of parameters
p and, through performing a CA simulation, the function Θ can be computed.

3 Metamodel-Assisted Evolutionary Optimization

In the meta-model assisted GA, the original fitness evaluations are partly re-
placed by the fitness estimates provided by less expensive models. This allows to
reduce the number of CA simulations needed to evaluate the individuals that are
generated by the standard genetic operators during the evolutionary search. In
the meta-model assisted evolutionary optimization, two main approaches exist
for building the surrogate fitness function. In particular, in the so-called off-line
learning the model is built before the optimization starts exploiting existing data
(e.g. patterns available from previous optimization runs). A different strategy,
named online learning, consists of constructing the surrogate fitness model us-
ing data that are generated during the optimization process. Since the latter
approach has been reported to be more successful and reliable than the former
[6], it has been adopted in this study.

In the present application, the CA simulations carried out during the evolu-
tionary search provide a training set Ts:
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Ts =
{
〈θ(1), p(1)〉, 〈θ(2), p(2)〉, . . . , 〈θ(nt), p(nt)〉

}
(7)

where each fitness value θ(i) corresponds to a parameter vector p(i). Thus, on
the basis of the patterns in Ts a meta-model Θ̂ can be dynamically built for
evaluating the candidate solutions generated by the EA, that is for the estimation
of the unknown fitness value corresponding to a vector p:

θ̂ = Θ̂ (p) (8)

In the case of online model building, either a global meta-model or a local one
can be used [7]. However, often an accurate global approximation of the true
fitness function is difficult to obtain. This is particularly true when dealing with
high-dimensional and multimodal fitness landscapes [7]. In these cases, local
meta-models can be constructed using a suitable subset of the training patterns
in Ts. For example, a surrogate of the real fitness can be constructed for each
individual p to be evaluated using only the k nearest neighbours of p in Ts.
As an alternative, the set Ts can be partitioned in subsets (e.g. using the k-
means clustering) and a local meta-model can be constructed for each of them.
Clearly, a local meta-model can potentially be more accurate. However, the cost
of training a number of local surrogates should be compared with the cost of
the true fitness evaluation. Nevertheless, a CA simulation is often much more
expensive than building a local surrogate.

As mentioned above, the use of meta-models in place of CA simulations may
significantly reduce the overall computational cost of the CA optimization pro-
cess. However, an optimum for the meta-model not always is also an optimum
for the true fitness function. Therefore, to avoid convergence to false optima,
the surrogate-assisted optimization should also use, in some way, the true fitness
function. On the other hand, the involvement of the latter should be minimized
due to its high computational cost. A trade-off is provided by a suitable evolu-
tion control strategy [7]. In particular, two different approaches are commonly
adopted. The first is the individual-based control, which was adopted in this
paper and consists of using the true fitness function to evaluate some of the
individuals produced at each generation (i.e. the controlled individuals). The
second is a generation-based control, in which all the individuals of some gen-
erations (i.e. the controlled generations) are evaluated through the true fitness
function. In the case of individual-based control, different strategies can be used
to choose the controlled individuals. In this paper the so-called best strategy was
adopted, which consists of assigning their exact fitness to some of the individuals
that are the best according to the meta-model.

Below, the different meta-modelling techniques that were tested for the opti-
mization of SCIARA are briefly described.

3.1 Feed Forward ANN

The use of ANNs is one of the most common approaches in meta-model assisted
EAs [7]. In this study, a feedforward multilayer perceptron (MLP) has been used
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as a SCIARA surrogate during the calibration process. The MLP architecture
was determined comparing many different fully connected networks on a training
set obtained from previous SCIARA runs. The adopted MLP has one input layer
with 5 units (as explained below in more detail, SCIARA has 5 parameters to
calibrate), two hidden layers with 7 and 2 units respectively, and one output
neuron. Formally, it can be described by the following equation:

θ̄(p) = f

⎛⎝h(2)∑
j=1

wj f

⎛⎝h(1)∑
k=1

w
(2)
kj f

(
n∑

i=1

w
(1)
ik p̄i + w0k

)
+ w0j

⎞⎠ + w0

⎞⎠ (9)

where θ̄ is the normalized CA fitness estimate, f(x) = 1/(1 + e−x) is the lo-
gistic activation function, h(1) and h(2) are the number of hidden units, p̄i are
the normalized CA parameters and w are the unknown weights to be learned.
The resilient back-propagation (RProp) algorithm [8] was used for training the
network. In particular, to improve the generalization ability of the MLP an early
stopping approach [9] was adopted by splitting the set Ts into a training set and
a validation set.

3.2 General Regression Neural Network

The name GRNN indicates the Nadaraya-Watson Kernel Regression Estimator
[10,11]. As shown by Specht in [12], the method can be interpreted as an ANN.
Adopting the most used Gaussian kernel, the GRNN gives an estimation of the
fitness θ(p) corresponding to the CA parameter vector p as:

θ(p) =

nt∑
i=1

θ(i) exp

⎛⎝− n∑
j=1

| pj − p
(i)
j |2

2σ2
j

⎞⎠
nt∑
i=1

exp

⎛⎝− n∑
j=1

| pj − p
(i)
j |2

2σ2
j

⎞⎠ (10)

where nt is the number of training points in Ts, θ(i) is the i-th fitness value
obtained by a previous CA simulation based on the parameter vector p(i). In
Equation (10) the so-called bandwidths σi are positive numbers to be estimated
on the basis of the training data. A high bandwidth corresponds to a low sensi-
tivity of the estimated fitness to the distance from the sampling points. Hence,
the use of bandwidths larger than optimal leads to over-smoothing of data. Con-
versely, smaller than optimal values of σi produce overfitting of data. In the
present application the σi (one value for each CA parameter to optimize) were
determined using the conjugate gradient (CG) method to minimize the mean
squared error (MSE) of the model. The latter was computed according to the
k-fold cross-validation approach in which the training data set Ts is partitioned
into k subsets: one of them is used as a validation data set to calculate the MSE,
and the remaining k − 1 subsets are used as training data. The cross-validation
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process is repeated k times (i.e. the number of the so-called folds), with each of
the k subsets used exactly once as validation data. The k MSEs from all folds
are then averaged to produce a single MSE.

3.3 Polynomial Approximation

The adopted polynomial surrogate is the following Quadratic Polynomial Ap-
proximation (QPA):

θ(p) = β0 +
∑

1≤i≤n

βi pi +
∑

1≤i≤j≤n

β(n−1+i+j) pi pj = βT p̃ (11)

where:
β = [β0, β1, . . . , βnv−1]T (12)

is the vector collecting the nv = (n + 1)(n + 2)/2 model coefficients and:

p̃ = [1, p1, p2, . . . , p1p2, . . . , p
2
n]T (13)

is the vector of the CA parameters mapped into the polynomial model. In this
study, the model coefficients β are estimated using the least square method.

In particular, an ad-hoc local quadratic meta-model is built for each individual
p on the basis of its ns ≥ nv nearest neighbours in Tt.

4 Calibration Benchmark Tests and Discussion

The approach outlined above has been applied to the last release of SCIARA,
a CA model for lava flows simulation. The model, which is described in detail
in [5], is based on a square grid and accounts for the relevant physical pro-
cesses involved in the macroscopic phenomenon. In brief, a specific component
of the transition function computes lava outflows from the central cell towards
its neighbouring ones on the basis of the altitudes, lava thickness and tempera-
tures in the neighbourhood. The model is based on a Bingham-like rheology and
therefore the concepts of critical height and viscosity are explicitly considered.
In particular, lava can flow out if and only if its thickness overcomes a critical
value (critical height), so that the basal stress exceeds the yield strength. The
critical height mainly depends on the lava temperature according to a power law.
Moreover, viscosity is accounted in terms of flow relaxation rate, being this latter
the parameter of the distribution algorithm that influences the amount of lava
that actually leaves the cell. Two mechanisms determine at each time-step the
new cell temperature. The first one takes into account the mass and energy ex-
change between neighbouring cells, while the second updates the temperature by
considering thermal energy loss due to lava surface irradiation. The temperature
variation, besides the change of critical height, may lead to the lava solidification
which, in turn, determines a change in the morphology. In SCIARA the transi-
tion function depends on some scalar parameters, invariant in time and space.
Among these are: rs, the relaxation rate at the temperature of solidification;
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Table 1. Parameters object of calibration, explored ranges and target values

Parameter Explored range Target value
for calibration

rs [0, 1] 0.096
rv [0, 1] 0.853
hs [m] [1, 50] 13.67
hv [m] [1, 50] 1.920
pc [0, 100] 8.460

rv, the relaxation rate at the temperature of extrusion; hs, the critical height
at the temperature of solidification; hv, the critical height at the temperature
of extrusion; pc, the “cooling parameter”, which regulates the thermal energy
loss due to lava surface irradiation. Once that the input to the model has been
provided, such as parameter values, orography, vents and the effusion rates as a
function of time, SCIARA can simulate the lava flow. The simulation stops when
the fluxes fall below a small threshold value. However, before using the model
for predictive applications, the parameters must be optimized for a specific area
and lava type. To this end, the following fitness measure was defined:

θ =
m(R ∩ S)

m(R ∪ S)
(14)

where R and S represent the areas affected by the real and simulated event,
respectively, while m(A) denotes the measure of the set A. Note that θ ∈[0,1];
its value is 0 if the real and simulated events are completely disjoint, being
m(R ∩ S)=0; it is 1 in case of perfect overlap, being m(R ∩ S) = m(R ∪ S).

For the calibration task the meta-models mentioned above were used to sup-
port a standard genetic algorithm (SGA) [13]. In the latter, a population of
bit-strings, each encoding a candidate solution p = [rs, rv, hs, hv, pc], is evolved
through the iterative application of the operators of selection, recombination and
mutation. In particular, each of the SCIARA parameters was encoded on a string
of 10 bits using the intervals shown in Table 1. The SGA used the standard 1-
point crossover applied with probability pc = 0.8, while the mutation consisted
of a bit flipping with a fixed probability per bit defined as pm = 1/nb, being
nb the number of bits composing the individual. The standard Roulette Wheel
Selection [13] was applied together with an elitist replacement scheme, that is
the best individual in the population was always preserved from generation to
generation. Moreover, all the GAs operated on a population of 50 individuals.

In the calibration exercise discussed here the different heuristics were applied
on a real event occurred on Mt. Etna (Sicily, Italy) in 2001 which is described in
details in [4]. However, the target final configuration was obtained with SCIARA
itself, using the set of parameters shown in Table 1. This guarantees the existence
of a zero-error solution of the calibration problem, thus allowing for an unbiased
evaluation of the calibration procedures. In Figure 1 two examples of landscapes
generated by the fitness defined in Equation (14) are depicted. In particular, each
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Fig. 1. Example of rugged fitness landscapes generated by SCIARA. The surfaces refer
to a neighbourhood of the target point shown in Table 1.

Table 2. Overview of the calibration results obtained assigning to each search algorithm
a budget of 1000 SCIARA evaluations. The statistics were computed on 10 independent
run of each algorithm.

π Average Min Max Std. Dev.

SGA - 0.816 0.738 0.888 0.007

0.1 0.886 0.702 0.961 0.105
MLP-GA 0.2 0.924 0.868 0.957 0.036

0.3 0.907 0.774 0.956 0.076

0.1 0.924 0.908 0.955 0.018
GRNN-GA 0.2 0.910 0.819 0.964 0.057

0.3 0.881 0.812 0.931 0.045

0.1 0.917 0.843 0.952 0.043
QPA-GA 0.2 0.889 0.816 0.920 0.044

0.3 0.908 0.874 0.955 0.032

of the two surfaces was obtained executing about 1000 SCIARA simulations in a
neighbourhood of the target point shown in Table 1. As can be seen, the fitness
landscape is significantly rugged. This tends to slow down the convergence of op-
timization heuristics and makes the case of SCIARA particularly suited to test
the benefits of the meta-model assisted optimization. In fact, as found in previous
studies [14], one of the advantages of surrogate models lies in their capability of
smoothing irregular fitness landscapes to prevent the search from getting stuck in
local optima. As mentioned above, the meta-model assisted GAs were based on
an individual-based control strategy. In particular, at the first generation all the
individuals were evaluated using a SCIARA simulation. Then, at the subsequent
generations: (i) all the offspring individuals were pre-evaluated using the surrogate
model; (ii) a fixed fraction π of the best offsprings (according to the meta-model)
was re-evaluated using a SCIARA simulation. In particular, three different value
of π were considered, namely 0.1, 0.2 and 0.3. Besides the SGA, three types of
surrogate-assisted versions were tested: (i) the MLP-GA, based on the MLP de-
scribed in section 3.1; (ii) the GRNN-GA, based on the GRNN described in section
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Fig. 2. Charts a), b) and c) refer to different value of the ratio π of controlled individ-
uals at each generation. Figure d) shows the number of SCIARA simulations that were
required to achieve the same fitness obtained by the SGA with 1000 simulations.

3.2; (iii) the QPA-GA, based on the QPA model described in section 3.3. For each
type of heuristic search, 10 independent runs were carried out. As shown in Ta-
ble 2, the SGA achieved an average fitness value of θ = 0.816 and a maximum of
θ = 0.888. All the meta-model assisted GAs were able to outperform the SGA. In
particular, all the heuristics under comparison provided, for different values of π,
a final average θ ≈ 0.92 and a maximum θ ≈ 0.96. It is important to remark that,
because of its nature, a small gain in the fitness defined by Equation (14) corre-
sponds to a significant difference in the final map of the lava invasion. Figures 2-a,
b and c show the average behaviour of the meta-model assisted algorithms during
the search process, together with the behaviour of the SGA. Interestingly, for any
number of SCIARA simulations the surrogate-assisted heuristics attained an av-
erage fitness significantly higher than that of the SGA. This can also be observed
from the different point of view highlighted in Figure 2-d. The latter shows the
number of simulations that were needed to the assisted heuristics to achieve, on
average, the same fitness given by the SGA after 1000 simulations.
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5 Conclusions and Future Work

The preliminary results of this study indicate that the automatic optimization
of CA models can greatly benefit by the use of meta-models. Nevertheless, there
may be significant potential for further improvements. In particular, a promising
direction to explore is that of local search. Once there is a surrogate in analytical
form, it is possible to locally improve an individual using classical gradient-based
methods. Eventually, the locally optimized vector of parameters can be encoded
back into the population according to a Lamarckian evolutionary approach.
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Abstract. Our recent minimal model of cooperation (K. Kulakowski
and P. Gawronski, Physica A 388 (2009) 3581) is modified as to allow
for time-dependent altruism. This evolution is based on reputation of
other agents, which in turn depends on history. We show that this mod-
ification leads to two absorbing states of the whole system, where the
cooperation flourishes in one state and is absent in another one. The
effect is compared with the results obtained with the model of indirect
reciprocity, where the altruism of agents is constant.

Keywords: cooperation, altruism, reputation, Prisoner’s Dilemma,
reciprocity, simulation.

1 Introduction

The Prisoner’s Dilemma (PD) is a canonical example of a game where mutual
cooperation is not profitable for an individual player and simultaneously it is
profitable for a society. This paradoxical aspect and the wide set of situations
where PD applies makes it a central point in game theory. On the sociologi-
cal side, PD is considered as one of three generic games which represent three
paradigmatic interaction situations; coordination and inequality are two others
[1]. As a rule, PD is investigated in the frames of game theory, i.e. decisions are
made on the basis of calculated payoffs. However, many scholars indicated that
these frames are too narrow [1,2,3,4]. Here we are interested in a model of pos-
sible cooperation where both aspects are captured, the normative one and the
rational one. Our starting point is the social mechanism of competitive altruism
[5,6], where individuals compete for most altruistic partners. This mechanism
was the basis of our previous minimal model of cooperation, where players dif-
fered in altruism; the latter was defined as a willingness to cooperate [7]. The
agents’ behaviour was encoded in the form of their time-dependent reputation.
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Our nice result was that altruistic players were rewarded by cooperation of other
agents. In this way, the classical deficiency of altruistic strategy - being abused
by selfish free-riders - was evaded in our model.

The aim of this paper is to build into the model the fact that people learn,
and their willingness to cooperate is modified by their personal experience. The
dynamics of one’s willingness to cooperate is at the core of the phenomenon of
competitive altruism. It is clear that in competing with others, one must modify
own behaviour as to outperform the rivals. Therefore, individual altruisms should
vary as well, if the second premise is to be included to the model. Having this in
mind, we propose here two schemes of varying the players’ altruism after each
game. According to our first option, say A, altruism is updated in the same way as
the reputation in [7], only somewhat slower. This small difference seems realistic:
we change our opinions on other people almost immediately after getting new
information about them. Also, the difference is dictated by our aim to compare
the results with those in [7], where altruism of each agent was constant. Second
option B introduces a modification which is suggested by Scheff theory of shame
and pride [8,9]. According to this theory, a mutual respect of two agents expressed
by their cooperation enhances their self-evaluation, what in turn reinforces their
willingness to cooperate. On the other hand, a cooperating agent is humiliated
when meets a defection, what reduces her/his willingness to cooperate.

How these modifications of altruism influence the ability of the population
to cooperate? In the option A, strategies of cooperation and of defection are
equivalent, then the solution should be symmetric with respect to interchange of
these strategies. As we explain in detail in the next section, in the option B two
succesful cooperators have their altruisms increased, but this event can happen
with the probability equal to, roughly, squared concentration of cooperators.
If this concentration is initially 1/2, the process should be neutralized by a
decrease of altruism of an unsuccessful cooperator. Below we show that this is not
the case; the rules, apparently symmetric, promote the cooperation. Actually,
it seems that the coupling between the willingnesses to cooperate of different
players is more general than the effect of competitive altruism or of the loops
of shame and pride. This coupling can be viewed as a general ability of a set of
players to establish a social norm of cooperation, and this norm in turn allows
to define a social group. The role of norms in establishing social groups and
societies is much too wide a subject to be discussed here [3,10]. Instead, we refer
only to the definition of a social norm [11], which clearly underlines the role of
mutual expectation of agents: once they believe they recognize the attitudes of
the others, a germ of a norm is established.

This ambiguity suggests, that it is desirable to look for another mechanism,
not due to the modification of altruism, which leads to an enhancement of co-
operation. Our choice is to check the scenario where altruism of each agent is
constant, but the modification of reputation depends on the reputation of co-
player. In this way, the parameter controlling the change of reputation of agent
i is just the reputation of i’s coplayer j. This choice, marked here as option C, is
motivated by the mechanism of indirect reciprocity and punishment, discussed,
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e.g., in [12]. In other words, the modification of reputation in a game with an
agent with bad reputation remains small.

The outline of the paper is as follows. In the next section we explain the
original version of the model [7] and options A, B and C considered here. In the
third section numerical results are described. There we demonstrate that when
altruism is varied, all players defect or all cooperate in the stationary state. This
bistability with two homogeneous states is the main result of the paper. We show
also, that for the option C, cooperation is promoted.

2 The Model

The system is equivalent to a fully connected graph of N nodes, with a link
between each pair of agents at the nodes. Each agent i is endowed with two
parameters: altruism εi and reputation Wi. Initial values of the parameters are
selected randomly from homogeneous distributions: ρ(εi) is constant for E1 <
εi < E2, otherwise ρ(εi) = 0, and ρ(Wi) is constant for V1 < Wi < V2, otherwise
ρ(Wi) = 0.

During the simulation, a pair of nodes (i, j) is selected randomly. The proba-
bility that i cooperates with j is

P (i, j) = F (εi + Wj) (1)

where F (x) = 0 if x < 0, F (x) = x if 0 < x < 1 and F (x) = 1 if x > 1. In [7],
it was only reputations Wi, Wj what evolved in time. If i cooperated, her/his
reputation was transformed as Wi → (1 + Wi)/2, otherwise Wi → Wi/2. Here
we set Wi to change in the same way.

Moreover - and this is a new element - we allow also the altruism to change.
In the option A, this change is ruled according to a similar prescription. If i, j
play, the altruism of j varies as

εj → εj + (±1/2− εj)x (2)

where 0 < x < 1 is a parameter which measures the velocity of change of
altruism, the sign +1 applies if i cooperates and the sign −1 - if i defects. In
other words, the altruism εj increases if j meets cooperation, decreases otherwise.
As long as x < 1/2, the time evolution of altruism is slower than the one of
reputation. Here we set x = 0.1. Larger values of x just speed up the changes of
agents’ altruism.

In the option B, it is only the rule of variation of εi what is changed with
respect of the option A. Namely, if both i and j cooperate, their altruism
increase as

εi → εi + (1/2− εi)x (3)

εj → εj + (1/2− εj)x (4)
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If i cooperates and j defects, then the altruism of i is reduced as

εi → εi + (−1/2− εi)x (5)

whilst εj is not changed. When both i and j defect, nothing is changed.
In the option C, altruism remains constant, as in [7]. The velocity of the

variation of reputation of i is controlled by the reputation of her/his coplayer j.
Namely, when i cooperates, then her/his reputation Wi changes as

Wi →Wi(1 − zWj) + zWj (6)

where z is a parameter, which controls the speed of this change. When i defects,

Wi →Wi(1 − zWj). (7)

3 Results

For the option A, the problem is symmetric with respect to an interchange of
the strategies: cooperation and defection. When also the initial distributions of
both reputation and altruism are symmetric (V1 + V2 = 1 and E1 + E2 = 0),
this symmetry should be preserved also in the solution. This is so, however, only
in the statistical sense. For each simulation, the system breaks the symmetry
spontaneously and the time evolution leads to one of two homogeneous states,
where each agent adopts the same strategy. In one of these two states, all agents
cooperate; in another, all defect. The process of spontaneous symmetry breaking
is visible in Fig. 1. There, we show the probability distributions of reputation
and altruism for N = 103 agents at the early stage of the process, after 104

games. For the symmetric initial state where ε̄ = 0 and V1 = V2 = 0.5, the result
obtained numerically as an average over 103 systems, each after 105 games, is
that the probability of the state ”all cooperate” is 0.48. As a rule, this probability
is found to be close to 0.5 at the straight line W̄ = 1/2− ε̄. Above this line all
cooperate, below this line all defect, except the vicinity of the line (of width about
0.1 for N = 103), where the probability of the state ”all cooperate” changes
continuously from 0 to 1. This means that a manipulation of the initial state
(ε̄, W̄ ) modifies the final result, which still remains homogeneous. In particular,
when the initial value of ε̄ is shifted by 0.1 downwards, all defect; upwards, all
cooperate. The properties of the boundary W̄ = 1/2− ε̄ are a consequence of the
adopted form of P (i, j), but the homogeneity of stationary states comes from
the system dynamics. The results are obtained for x = 0.1; an increase of x just
speeds the process up. For x = 1/2, the time dependent mean square root of
reputation and altruism remain equal, when decreasing to zero.

For the option B, we observe the same homogeneous states ”all cooperate” or
”all defect”, but the probabilities of these states are different. Again we use the
same initial reputation for all agents, and the same statistics. For each system
of N = 103 agents we made three runs, each of 100 timesteps, with different
initial conditions: i) V1 = −0.5 and V2 = 0.3, ii) V1 = −0.4 and V2 = 0.4, iii)
V1 = −0.3 and V2 = 0.5. While the initial conditions ii) are neutral, the case i)
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Fig. 1. The reputation distribution n(W ) for an exemplary system of N = 103 agents,
evolving according to the option A, at the early stage after 104 games. Here, the initial
distribution of altruism is symmetric (case ii)). After a relatively quick development of
groups of agents with good and bad reputation, slowly those of good reputation start
to dominate - the right maximum grows larger.

promotes defection and the case iii) promotes cooperation. For the option A, the
same initial conditions served to demonstrate the symmetry of two strategies.
However, for the option B we observe that in the case ii) cooperation prevails.
The obtained numbers for i) are Wi = 0 for all agents, and the average εi for
each system is −0.19 ± 0.15. In the case iii) all cooperate, and their altruism
is +0.5. In the case ii) we get again two homogeneous states: ”all cooperate”
with probability 0.88, ”all defect” with probability 0.12. In the former state, the
altruism of all agents is maximal: 0.5. In the latter, for each system the average
ε is −0.15± .11. Note that in the option B, the altruism of uncooperative agents
remains unchanged, hence its spread in the uncooperative phase. An exemplary
plot of the altruism in this case is shown in Fig. 2. Again, these results are
obtained for x = 0.1. When x increases to 1, the average altruism ε drops to its
minimal value -0.5 almost linearly with x.

For the option C, calculations are made for the three above given initial con-
ditions and the same statistics. In this option, the altruism of each agent remain
unchanged, then for the initial conditions i) and iii) a permanent bias is present
in the system towards defection and cooperation, respectively. However, the sys-
tem evolution (Eqns. 6 and 7) produces another bias, always towards coopera-
tion. Clearly, there is no homogeneous phase here. The obtained values of mean
reputations for each of 103 systems are practically the same. These results are
shown in Fig. 3, as dependent on the parameter z. To demonstrate the character
of the latter bias, we show also in Fig. 4 an example of the plots of probability of
a common cooperation (R), of a common defection (U), of cooperating but be-
ing defected (S) and of defecting a cooperating co-player (T). Plots of the same
character were shown in [7] for the symmetric case where altruism is constant.
As we see in the plots, in the option C the cooperation is promoted.
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Fig. 2. The altruism distribution n(ε) for an exemplary system of N = 103 agents,
evolving according to the option B. After 105 games, the distribution is almost stable.
Here, the initial distribution of altruism promotes defection (case i)).

4 Discussion

The result of our simulation is that once the altruism is allowed to evolve, in
long time limit the simulated players adopt one strategy, the same for the whole
population. This strategy is either to cooperate, or to defect. For the adopted
initial distributions of εi and Wi, basically the final outcome is determined by
the initial mean values W̄ ≡ (V1 + V2)/2 and ε̄ ≡ (E1 + E2)/2 as follows: once
W̄ + ε̄ > 1/2, the final strategy is to cooperate, otherwise the strategy is to
defect. This is true except the case when W̄ + ε̄ ≈ 1/2. In this case it is possible
that the whole population defects or cooperates; the respective probabilities vary
with W̄ + ε̄. This result is new and completely different from the case x = 0,
considered previously [7]. It is different also from the results obtained above for
the model of indirect reciprocity, where altruism does not vary. In the latter
model the mechanism which stabilizes cooperation is that agents with small
(bad) reputation, even if defected, do not influence the reputation of co-players.

As remarked above, the time evolution of human general attitudes to coop-
erate is expected to vary slower than the opinions on particular co-players, and
it seems reasonable to believe that the former is driven by the latter. We would
like to stress that as a rule, what is observed in social phenomena is an inter-
play of transient effect with different characteristic times. Then, conclusions of
modeling should be related rather to the direction of the process than to the
stationary state in the long time limit. In particular, our model takes into ac-
count a coupling between an agent’s experience on the behaviour of the others
and the overall willingness of this agent to cooperate. Our results indicate that
the feedback is positive; more cooperation bears more altruism what in turn
leads to more cooperation. As a rule, an agent’s experience that cooperation is
met in most cases leads to a general belief that to cooperate is an accepted
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Fig. 3. Mean value of reputation after 105 games for a system of N = 103 agents
evolving according to the option C, against the parameter z which controls the speed
of evolution of reputation. Three curves are for three cases of initial conditions, i), ii)
and iii) from the bottom to the top. The statistics is collected for 103 systems.
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Fig. 4. The probabilities of four outcomes of Prisoner’s Dilemma game for the system
evolving according to the option C. Here, the initial distribution of altruism is sym-
metric (case ii)). The statistics is collected for an exemplary system of N = 103 agents
after 106 games.

social norm. Then, in our theories on experimental data we should consider
rather the direction of the process than its stationary stage. One of experiments
of this kind was conducted in the Swiss army [13], within the Prisoner’s Dilemma
scheme. There, platoons of males were formed in a random way for 4-week period
of officer training. Having finished the training, individuals believed that mem-
bers of their own platoons were more willing to cooperate, than others. More
data on social experiments can be found in [14].



550 A. Jarynowski, P. Gawroński, and K. Ku�lakowski
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Abstract. The paper presents the idea and the initial outcomes of in-
tegrating MATSim, a multi-agent transport simulation system, with the
DVRP Optimizer, an application for solving the Dynamic Vehicle Rout-
ing Problem. First, the justification for the research is given and the
state of the art is outlined. Then, MATSim is presented with a short
description of the recent results in areas related to the one proposed in
the paper, followed up by the discussion on the DVRP Optimizer func-
tionality, architecture and implemented algorithms. Next, the process of
integrating MATSim and the DVRP Optimizer is presented, with the
distinction of two phases, the off-line and on-line optimization. Then,
a description of the off-line optimization is given along with the results
obtained for courier and taxi services in urban areas. The paper ends
with conclusions and future plans.

Keywords: dynamic, on-line, vehicle routing, optimization, DVRP,
multi-agent, traffic flow, simulation, MATSim.

1 Introduction

The Vehicle Routing Problem (VRP) [1,2] is among the most complex and fun-
damental components of modern fleet management. From the very beginning,
research on VRP was focused on providing solutions aimed at cost efficiency
while skipping other aspects of routing. However, nowadays companies must be
not only cost effective, but also more open for the customer. Consequently, they
offer more sophisticated and flexible services concerning also the timeliness and
responsiveness to changing customers’ needs. This leads ultimately to the Dy-
namic Vehicle Routing Problem (DVRP) [3], where the time dimension is one
of the main concerns.

Despite the huge technical potential for running dynamic optimization, the
existing routing software concerns mainly static routes, and transportation man-
agement is mainly performed by human planners and dispatchers, even in large
companies [3]. The main problem is that throughout the decades of research on
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VRP, the great emphasis was put on heuristics accuracy and speed, whereas
simplicity and flexibility were out of focus [4]. As a consequence, the best state-
of-the-art algorithms give very good results for many theoretical test instances of
the static VRP, but they are hard to adapt to the dynamic real-world problems.

Therefore, it is necessary to focus the future research on realistic VRPs. But
this requires the development of a system that will be able to simulate various
real-world vehicle routing problems thus allowing for both testing optimization
algorithms and planning transport services. Such a realistic simulation has to
incorporate realistically modelled dynamism of customer demand, traffic flow
phenomena and fleet management operations. Especially the optimization of
transport services in urban areas is extremely challenging due to high dynamics
of traffic flow resulting in continuously changing travel times and often, depend-
ing on the type of services, in high volatility of demand (e.g. taxi). Moreover,
when considering city-logistics policies, many additional and often mutually con-
flicting objectives appear as, for example, the reduction of the negative influence
on the environment and on the local society, or the positive influence on city
development.

In the recent years several approaches that combine vehicle routing and traffic
simulation have been proposed and implemented. In one of the first works in this
field Regan et al. [5] have proposed a simplified simulation framework for evalu-
ation of dynamic fleet management systems for the truckload carrier operations.
Taniguchi et al. [6] have analysed integration of vehicle routing optimization
and traffic simulation for optimization of city-logistics oriented problems. An-
other attempt is an application of the AIMSUN simulator for optimization of
the VRP in cities by Barcelo et al. [7]. Liao et al. [8] have developed a system
for evaluation DVRP strategies using real-time information. Unfortunately, all
these approaches are only partial solutions, as they do not include realistic de-
mand modelling and simulation. This limits their application mainly to problems
with static and known a priori demand. As a consequence, it is impossible, for
instance, to model the impact of traffic or transport service availability on cus-
tomer demand. Moreover, the systems were used only for small-scale problems,
where a road network was of limited size and the number of customers was small.

2 Multi-Agent Simulation and the DVRP

One possible solution to overcome the deficiencies of the existing solutions is to
use a system that allows for detailed modelling of complex interdependencies
between the three main components, that is customer demand, traffic flow and
vehicle fleet, and that is able to run large-scale simulation. The first requirement
implies use of a multi-agent simulation approach that includes all the actors
and components, that is inhabitants that generate traffic in a network and, as a
customers, create demand for services which are provided by companies which
in turn have vehicles that are dispatched to serve the customers’ requests and
thus also participate in traffic generation. The services may be connected with
transport of passengers (e.g. taxi) or goods (e.g. courier).
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Since fast and realistic traffic flow simulation is the key issue, before choosing
a concrete simulation system, four popular traffic simulators, namely MATSim,
TRANSIMS, VISSIM and SUMO, had been tested [9,10]. All the systems ex-
cept for SUMO gave, after calibration, correct results. However, comparing the
systems’ functionality, MATSim (Multi-Agent Transport Simulation) [11] offers
the most comprehensive set of features concerning the research goals. First of
all, it is a multi-agent activity-based microsimulation system for daily transport
demand analysis. Secondly, due to a fast and efficient traffic simulation, it is able
to conduct analyses for large scenarios, even concerning a whole country. Last
but not least, MATSim modularity and openness (open-source software) allow
for extending and adjusting its functionality to one’s needs.

In recent years MATSim has been applied in several research works that
are to some extend related with the one proposed. Dobler [12] has looked at
the so-called within-day replanning approaches for MATSim. In the resulting
implementation, synthetic travellers are able to change their routes and/or their
future activity locations. Rieser [13] has investigated and implemented a public
transit (pt) module for MATSim, where passengers, beeing able to plan pt routes,
can walk to pt stops, where they wait until they are picked up by a corresponding
pt vehicle; the pt vehicle drops them off at their destination, from where they
continue, either to another pt vehicle or to their next activity. Neumann et al.
[14] have implemented a simple control strategy for bus drivers, which implies
that a bus would delay itself if the bus behind is delayed. Schroeder et al. [15]
have simulated synthetic firms that generate demand for shipments. On the other
hand, concerning passenger transport, Ciari et al. [16] have used MATSim for
the estimation of car sharing demand. That study does, however, not include
an implementation of actual car sharing in MATSim. Overall, despite many
advances there is a considerable gap between the current MATSim capabilities
and what is needed for the DVRP simulation. This paper will look at this gap
in more detail.

3 The DVRP Optimizer

3.1 Properties and Possible Applications

The DVRP Optimizer is a program written in JAVA for solving the DVRP. The
optimizer is intended to be as general as possible and to work on customizable
instances of the DVRP. The program is constantly being developed and currently
supports different versions of the DVRP that can be described as the Dynamic
Multi-Depot Vehicle Routing Problem with Time Windows and Time-Dependent
Travel Times and Costs. As of now it can be used for the one-to-many (many-
to-one) vehicle routing, while the many-to-many problems are only supported if
trips are not shared (like in taxi services). Currently, it is only possible to solve
problems with hard time windows while soft time windows are not supported.

Concerning the dynamism of requests, the optimizer supports not only on-line
submissions but also on-line modifications and cancellations by the customers.
A request can also be rejected by the company due to, for instance, a shortage of
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resources to serve it. However, operations other than submission of new requests
are not included into benchmark instances as this leads to the open problem of
results non-comparability (discussed by Flatberg et al. [17]). Thus, it is hard to
evaluate the efficiency of the proposed algorithms provided that these operations
are permitted.

The next enhancements are connected with the inclusion of time-dependent
travel times and costs which are represented as functions of both the departure
time from an origin vertex tDij(t) and the arrival time at a destination vertex

tAij(t). Although it is common practice to provide travel time data dependent
on the departure time, more elaborated strategies of dispatching vehicles require
the provision of travel times depending on the arrival time. By default, the travel
time data is provided in a form of 3D matrices, tDijk or tAijk respectively, where
i, j denote a pair of origin-destination vertices while k is a time step within
a considered time horizon (the time horizon is divided into time intervals of
equal size, e.g. 15 minutes). The travel times are then approximated by linear
interpolation from the input data. It is possible to supply only the travel times
on the departure time tDijk , in that case, the travel times on the arrival time are
calculated according to the relation

tAij(t + tDij(t)) = tDij(t) . (1)

In order to obtain correct optimization results it is necessary that the input
travel time data meets the FIFO property. It means that if two vehicles start
from vertex i and go to vertex j, then the vehicle which starts earlier will always
arrive earlier at the destination. Therefore, the input data is validated against
the following constraints (ε > 0):

tDij(t + ε) > tDij(t)− ε (2)

tAij(t + ε) < tAij(t) + ε (3)

Another important feature of the DVRP Optimizer is its flexibility in reassign-
ing requests to vehicles. There exist four different pre-defined strategies for
reassignment:

– Never – a request is never reassigned to another vehicle
– Only planned routes – a request may be reassigned to another vehicle only

if a vehicle to which the request is already assigned has not started yet
– Time horizon – a request may be reassigned unless it is planned to be served

within a specified time horizon (e.g. 2 hours)
– Always – a request assignment is subject to change as long as the assigned

vehicle has not started out for serving it

Selection of the strategy depends on the problem properties. From the drivers’
point of view, for example, the most preferable is the first option (Never) since
they prefer less changeable routes. On the other hand, the more flexible the
strategy is (e.g. Always) the more cost-effective and customer-oriented routes
are. To achieve even higher customizability of the strategies, it is possible to
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differentiate requests on whether it is a pickup or a delivery and then to apply
a different reassignment strategy to each of these two types of requests.

Due to the considerable flexibility of the model, the current implementation
of the DVRP Optimizer can be applied to a wide spectrum of the real-world
DVRP examples, such as long-distance courier mail, distribution of heating oil,
taxi services, feeder services for the Demand Responsive Transport systems (e.g.
mini-buses) and others.

3.2 Algorithms

By default, the DVRP Optimizer uses a memetic algorithm, consisting of an
evolutionary algorithm and a local search procedure, for solving the DVRP.
Nonetheless, the current version of the system is open for extending it with
other optimization approaches, such as tabu search or simulated annealing. The
implemented memetic algorithm can be characterized in brief as follows:

– Genotype coding – for each vehicle a list of requests to be served
– Crossing-over – exchanges routes of a randomly chosen vehicle between two

parent individuals; since exchanging routes may lead to invalidity of the both
newly created genotypes, a repair procedure is executed removing doubled
requests and adding missing ones

– Mutation – exchanges requests within/between routes
– Selection for reproduction – roulette wheel or tournament selection; both

with fitness scaling functions
– Succession – with (e.g. elitist succession) or without overlapping populations
– Termination criterion – different possible criteria (that may be combined):

generations count, convergence threshold, total fitness evaluations count etc.
– Local search – steepest ascent hill climbing algorithm with the neighbour-

hood search operator exchanging requests within/between routes

At the beginning, the memetic algorithm is run to get the initial solution for all
advance (i.e. known a priori) requests. Then, each time the optimizer is notified
of any change in the whole system (such as request modifications, travel times
updates or vehicle breakdowns) only the local search procedure needs to be run.
The DVRP Optimizer does not use insertion heuristics since their applicability
is limited to those cases when only new immediate requests may appear while
everything else in the system (e.g. already submitted requests, travel times/costs)
is static. One should note that as long as changes in the system are not very
dynamic, the local search algorithm is sufficient for updating solutions. However,
when the dynamism is high, it may be necessary to re-run the whole memetic
algorithm.

3.3 General System Architecture

In order to keep all necessary data up to date and to calculate valid and effi-
cient routes, the DVRP Optimizer has to be coupled in a real-time mode with
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Fig. 1. Data flow between the system components

external modules (Fig. 1). Each of these modules is responsible for a specific do-
main of the routing process. The customer service module informs the optimizer
about changes in the customer demand, the fleet management module notifies
of changes in the state of the vehicle fleet, while the third one, traffic monitor-
ing, provides the DVRP Optimizer with the current traffic data and calculates
time-dependent shortest paths. Provided that the communication is carried out
in real-time, each time any change in the system occurs, the DVRP Optimizer is
instantly notified of it, which allows for immediate reaction to a new situation by
replanning vehicle routes/schedules. As soon as new plans has been calculated,
they are sent to the external modules.

4 MATSim and the DVRP Optimizer Integration

4.1 The Idea

Integrating the DVRP Optimizer with MATSim allows for the simulation-based
evaluation of different dynamic vehicle routing algorithms as well as planning
of various DRT services in MATSim. In both cases MATSim is responsible for
the multi-agent simulation of the transport system with a high level of detail.
Besides simulating traffic flow, MATSim serves as a platform for simulating
a vehicle fleet and customer demand. Each time a change in demand, traffic
conditions or fleet availability occurs, the DVRP Optimizer is informed about it
and re-plans routes. After the routes are re-planned, the DVRP Optimizer sends
new routes and schedules to MATSim.

The above-presented approach may be implemented in two steps:

1. Off-line optimization – combines the time-dependent travel times and costs
resulting from simulation in MATSim with external data sources describing
supply and demand (i.e. vehicles, depots, customers, requests, etc.); this step
requires sequential execution of simulation in MATSim and then estimation
of the time-dependent travel times/costs prior to the off-line optimization

2. On-line optimization – runs concurrently both the simulation and optimiza-
tion processes that are integrated and interacting with each other.
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The data flow between MATSim and the DVRP Optimizer is presented in Fig. 2.
The black flows are used in the off-line optimization, whereas the grey ones are
additionally required for the on-line optimization. As of now, the first step, the
off-line optimization, has been completed and is described later in this section.

4.2 Estimation of Time-Dependent Travel Times and Costs

Prior to the off-line optimization, the MATSim simulation results describing the
time-dependent link travel times have to be converted into the time-dependent
travel times/costs for the VRP graph according to the following steps:

1. Map depots and customers (requests) to links within the MATSim network
model. These links form a set of vertices V in the VRP graph G(V,A); a set
of arcs A consists of all ordered pairs of the vertices.

2. For each arc (i, j) in A and for each time step k find the shortest-time (or
least-cost) path in the MATSim network for a vehicle departing at time step
k and calculate the corresponding travel cost cDijk. This step is done by means
of one of the shortest path search algorithms available in MATSim [18].

3. Based on Eq. 1 calculate travel times on the arrival time tAijk. Alternatively,
one may use a backward shortest path search, which gives more accurate
results, but at the cost of longer computation time.

4.3 Results for the Off-Line Optimization

In order to validate the above-presented approach and to assess the efficiency and
correctness of the proposed algorithms, a set of tests was designed and carried
out (Tab. 1). In the tests, four different networks and two kinds of services
were used. Although all the networks were artificially created, their layouts are
typical for urban areas, and the generated traffic is also characteristic for cities.
Also the requests were designed in such a way that they would imitate real
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Table 1. Properties of the test cases

1 grid 62 170 courier 100 49 49
2 custom 129 326 courier 100 52 52
3 spider's web 57 208 taxi 100 95 n/a
4 custom 93 276 taxi 100 96 n/a

Immediate
requests

Pickup
requests

No
Network
layout

Nodes Links
Service

type
Requests

Table 2. Best results obtained for the test cases

No Type TD TT
static 13728 17192 (+25,2%)

dynamic 14766 17342 (+17,4%)
static 22435 26351 (+17,5%)

dynamic 23879 28133 (+17,8%)
static 54017 53778 (-0,4%)

dynamic 54307 54327 (+0,0%)
static 95579 96406 (+0,9%)

dynamic 96451 97158 (+0,7%)

 Averaged TT

3

4

1

2

services within urban areas (e.g. the advance-to-immediate requests ratio, time
windows, pickup-to-delivery ratio). The size of a network influences the speed of
estimating time-dependent travel times/costs since the computation time of the
shortest path search depends on the number of nodes and links; however, in case
of the off-line optimization, it does not affect the the routing algorithm speed
which is dependent (mostly) on the number of submitted requests.

The test procedure was carried out according to the following rules:

– Prior to the off-line optimization, for each test case the MATSim simulation
was carried out, and then the time-dependent travel times and costs matrices
were calculated with a 15-minute resolution. It was assumed that the travel
costs are equal to the travel times.

– Tests instances were run both as the static and dynamic VRP.
– Each test instance was run with time-dependent travel times (TD TT ) and

with constant (a 24-hour average) travel times (averaged TT ). In the latter
case, the obtained results were then re-evaluated using the time-dependent
travel times to show the real costs considering changeable road conditions.

Comparing the results for the courier services tests (Tab. 2), one can see that
the precise knowledge of travel times leads to much better results. By knowing
the time-dependent travel times, it is possible to arrange schedules in a way
which minimises travelling along arcs at the moment they are at their highest-
level of congestion. Moreover, it is very likely that solutions calculated with the
averaged travel times may not satisfy all the constraints; in the experiments,
almost all solutions violated the time window constraints, and in extreme cases,
the total lateness (being after a time window is closed) was almost 1.5 hours.
Comparing dynamic vs. static mode, it is clear that, in case of courier services,
having known all the requests in advance, one can yield better results.
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Different results were obtained for the taxi services tests. First of all, the
solutions found for the averaged and the time-dependent travel times are similar
concerning the cost of travelling. This is due to the properties of taxi services –
taxi services work more in a request-response manner with narrow time windows
for serving requests, which makes it impossible to flexibly change the order of
requests and thus to avoid traversing arcs when they are congested. This is also
one of the reasons of smaller differences when comparing dynamic vs. static mode
than it was for the courier services test cases. However, the real difference lies in
constraint satisfaction – the solutions obtained with the averaged travel times
were always violating some of the time windows. This means that when using
averaged travel times, some of the customers were always served too late.

Since the tests were carried out for instances created specifically for traffic
simulation in MATSim, it is impossible to directly compare the results of this re-
search with other studies, however, some similarities may be shown. Both Ichoua
et al. [19] and Van Woensel et al. [20], using popular VRP test instances, proved
that knowledge of accurate travel times results in substantial improvement of
solutions. The scale of this improvement depends on many factors, including the
level of time-dependency. In the second study cost decrease was 25% on average,
which is similar to the outcomes for the courier services (Tab. 2).

5 Conclusions and Future Work

In this paper, an application of MATSim as a multi-agent simulation platform
for DVRP optimization is presented. The approach takes into account several
factors which are essential for finding optimal routes in the real world, like traffic
in urban areas, and which are missing in the classical VRP models. The results
show that the lack of accurate travel-time data may lead not only to higher
costs, but also to numerous violations of time-window constraints, which in the
end results in the deterioration of service quality.

The implemented off-line optimization approach is an important step towards
the full integration of MATSim with the DVRP Optimizer. The authors work
on creating an on-line optimization system that will serve for planning taxi
and Demand Responsive Transport services in MATSim, according to the idea
presented in Section 4.1. Additionally, it will be possible to adapt such a system
to serve as a simulation framework for carrying out very detailed evaluations of
different dynamic time-dependent vehicle routing algorithms. Both applications
seem very important, appealing and timely.
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Abstract. The simulation of drug release from a heterogeneous sys-
tem is described in the article. Three phenomena were considered in the
simulation: solvent flow through the pores of the media, drug dissolu-
tion and diffusion to the external environment. Cellular Automata (CA)
were used to model the drug carrier and all processes. New diffusion
algorithms were proposed. The simulation and laboratory results were
compared and it was shown that they have a high level of similarity.

Keywords: Cellular Automata, controlled drug delivery, diffusion, dis-
solution.

1 Introduction

Controlled drug release has attracted great interest over the last few years. The
basis of this concept concerns the precise delivery of highly accurate drug doses
at the appropriate time and place in the human body. In the case of bone disease,
it may be necessary to fill the gaps with implants containing appropriate active
pharmaceutical ingredient.

The development of computers has created a temptation to replace some of
the in-vitro or in-vivo experiments with simulation. Numerous papers dealing
with the problem of drug release simulation from homogeneous carriers can be
found in [1–6]. Commonly used tools are cellular automata (CA) [7] and the
Monte Carlo method. In [1] the authors proposed a 3D cellular automaton to
simulate drug release from biodegradable microspheres. This simulation includes
a process of material degradation and drug diffusion. The algorithm for diffusion
is based on Brownian motions [8] and is called random walk. In [2, 3] the authors
used Monte Carlo to create a model where calculations were conducted for a 2D-
cross-section of the carrier and a ’life expectancy’ parameter was introduced to
simulate drug or solid material dissolution. Work on the model was continued by
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Gopferich and Siepmann. There are far fewer papers concerning heterogeneous
than homogeneous systems. One of them is [9], where the authors proposed a
model of drug release, forming a 3D multi-layer microstructure with microcham-
bers, based on CA. In [10], the authors present their research on the structural
optimization of drug release devices in the form of an array with microchambers.

The purpose of this article, described in detail in Section 2, is to use cellular
automata, presented in Section 3, to model drug release from a heterogeneous
carrier in the form of a cylinder. In this study particular attention is paid to three
main physical processes: solvent flow (Section 4), drug dissolution (Section 5)
and diffusion (Section 6). In the model described in this article, the material is
non-degradable and the drug is released through pores in the diffusion process.
The modified random walk method and the new diffusion algorithms with the
Margolus neighborhood have been tested. The random walk algorithm has been
extended by the possibility of changing the rate of diffusion.

2 Formulation of the Problem

In the case of controlled drug release, one of the most important pieces of infor-
mation is the profile of the drug released at that time. This helps to determine
how quickly active pharmaceutical ingredient should be released and therefore
allows the optimal dose to be chosen. The aim of the project was to create a
simulation of drug release from a heterogeneous, cylindrical carrier. Inside the
molder, there was a separate phase containing the drug. Such a simulation should
return a release profile.Drug release is extremely complex, however, three main
physical processes may be distinguished and modeled. Cellular Automata (CA)
have been used to model three physical phenomena: the inflow of water through
the pores to the interior molder, drug dissolution, drug diffusion outside the
molder through the pores.

3 Use of Cellular Automata

In order to simulate the drug release, a cellular automaton was used. A cellular
automaton has a two-dimensional lattice, which represents a cross-section of the
molder. The CA is constructed on a 200 x 200 lattice. In the automaton, each
cell is a square. In the model there are five types of cells: PORE, SOLVENT
(buffer), MATERIAL, SOLID DRUG, DISSOLVED DRUG.

The inner circle of radius r = 30 represents part of the drug carrier that
contains active pharmaceutical ingredient in a solid form. In contrast, the outer
circle has a radius of the value r = 90 and contains cells of MATERIAL. Other
cells, located outside the circle, are SOLVENT. DISSOLVED DRUG cells that
cross the border of the carrier are summed. This sum divided by total number
of DRUG cells is called a drug release amount.



Application of Cellular Automata to Simulate Drug Release 563

Fig. 1. Cellular automata representing a cross-section of the drug carrier

4 CA Models of Water Flow

There are many ways to describe the fluid motion of the particles [11], for exam-
ple Euler’s method or Lagrange’s method. However solving differential equations
is always a complex and time-consuming task. Therefore, as a result of attempts
to simplify the modeling of fluid flow, a method based on cellular automata is
proposed as a substitute for continuous models. With the advent of the lattice-
gas model cellular automata [12], there has been a huge breakthrough in the
simulation of water flow in the pores. The main method of this group of models
is the Lattice-Boltzmann method (LBM).

One of the models for the transport of fluids was developed by Frish, Has-
slacher and Pomeaou. It is a two-dimensional model of the lattice-gas known
as FHP. The cellular automaton in the macroscopic scale isotropic, represents
Navier-Stokes equations for low Mach numbers [13]. The advantage of this model
is the simple implementation of complex boundary conditions, which involves
the possible application of this method to simulate fluid flow through the porous
structure of the medium.

5 Drug Dissolution Algorithm

The aim of the dissolution process is to change the SOLID DRUG cells into
DISSOLVED ones. Only then may the diffusion process take place. All solid
drug cells in CA have a parameter (a lifetime) corresponding to their solubility,
which can take natural values starting from 1. If, at the current iteration, a
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solid drug cell has at least one solvent cell neighbor, then the parameter is
decremented. When the life time is zero, then the cell state is changed to a
dissolved drug.

6 Drug Diffusion Algorithms

Generally, implemented diffusion algorithms can be divided into two groups:
on the one hand, methods based on the Moore neighborhood (Brownian mo-
tion, naive diffusion) and on the other hand, algorithms which operate on
the Margolus neighborhood (HPP-gas, TM-gas, block rotation). This is an
interesting type of neighborhood in which the iteration consists of two parts.
Neighborhoods are shown in Figure 2.

Fig. 2. Margolus neighborhood in even (a) and odd (b) parts of iteration; (c) - Moore
neighborhood

6.1 Diffusion on the Moore Neighborhood

The article [1] describes the process of drug diffusion from a spherical, homo-
geneous carrier. Diffusion is implemented as a random process which imitates
Brownian motions. The von Neumann neighborhood is used in the model. During
a single iteration, a drug molecule performs 400 position changes with randomly
selected SOLVENT neighbors.

To implement a diffusion algorithm in the simulation, the Moore neighborhood
was proposed due to its greater number of neighbors (possible directions of
particle movements) . In fact, the particle may move in any direction, therefore
the choice of the Moore neighborhood seems to be appropriate.

A parameter specifying the number of particle location changes during
one iteration was added to the program. Changes in this parameter mean a
change in the rate of diffusion [14]. In fact, the diffusion rate varies for different
physical systems, therefore it is important to take it into account in the simu-
lation. In the simplest case, described in [15], this parameter equals one. This
algorithm is called naive diffusion due to [15].
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6.2 Diffusion on the Margolus Neighborhood

All the methods are described in [15]. The first, called block rotation, is a non-
deterministic method. The transition rule is the same for each part of the iter-
ation: all cell blocks from the current iteration part are rotated by 90 degrees
clockwise or counterclockwise (with the same probability). The second method
is called TM-gas. If there are two molecules on the first diagonal of a block and
two cells in solvent state on the second, there is a collision. If there is no collision,
the block is rotated 90 degrees clockwise at even parts and counterclockwise at
odd parts [15]. Another method, HPP-gas, is similar to the previous one. Cells
from a block change their state (molecules to solvent, solvent to molecules) if
there is a collision. In other cases, the block is rotated 180 degrees at both parts
of the iteration [15].

Unfortunately, it is impossible to apply these methods to drug release simula-
tion without modification because they would result in MATERIAL and SOLID
DRUG cells movement. Models with the Margolus neighborhood need modifica-
tions which take interactions between moving drug particles and static obstacles
into account. All the combinations that may occur in a cell block were analyzed
and new transition rules were added. In the case of the TM-gas algorithm, a
new situation has been defined as a collision. If, at current iteration part, drug
cell rotation is blocked by an obstacle, then there is a collision. In this situation
the rotation is abandoned. Similarly, if obstacles prevent drug molecules rotat-
ing 180 degrees in the HPP-gas algorithm, then collision rules are applied. In
this situation dissolved drug particles are rotated 90 degrees in randomly chosen
directions (if there is a choice). In he Block Rotation algorithm, if an obstacle
makes rotation in a drawn direction impossible, then it is continued in the op-
posite direction. If there are two DISSOLVED DRUG cells in a block and one
obstacle, then at least one molecule changes position. New transition rules are
simply a description of particle reflection from static obstacles.

7 Results

Before the results are presented, the drug release velocity should be defined.
This is a change in the quantity of the drug at the time [16]. However, while
calculating the first derivative of the data representing the profile of the release,
it appears that velocity is not constant. In most cases, it is the highest in the
first stage. This part of the profile is almost a straight line. At the end of the
release process, velocity gradually decreases. In this work, another definition of
velocity has been applied. This is a slope (in degrees) of the profile at a point
where there was a 50-percent drug release.

To determine how the number of particle location changes during one iteration
in Brownian diffusion affects the release velocity, a series of simulations was
carried out. The collected data is shown in Figure 3. Each time the solubility
parameter has a value of 1.
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Fig. 3. Relationship between the number of particle location changes during one iter-
ation and drug release velocity in Brownian motion diffusion

It was observed that the following function can be adjusted to the results:

s =
−1

3.89 · 10−5 · (x + 337.51)
+ 75.37 (1)

Where s is the drug release velocity (slope in degrees), and x is the number of
dissolved drug particle location changes during one iteration.

The impact on the simulation results of solvent flow through the pores was also
examined. The profile of drug release in the system where pores were empty at
the beginning of the simulation and the second profile, where pores were already

Fig. 4. Relationship between the drug solubility parameter and drug release velocity
(naive diffusion method)
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flooded, were compared. It appeared that the inflow time is small, compared
to the time of diffusion and dissolution, and does not affect the results. In the
laboratory experiments the lag time can be observed. This inconsistency between
experiments and simulation may be caused by too simplistic model: the pore size
and the single solvent particle are to large. This is because of limited CA lattice
size. Preservation of original proportion requires much bigger lattice and this
affects a computation time.

Drug solubility is the number of milligrams of a substance that can be dis-
solved in 100 milliliters of solvent. By contrast, the solubility, as a parameter of
the program, is the number of iterations during which the DRUG cell must have
at least one SOLVENT neighbor to become a DISSOLVED DRUG.

For each diffusion model (Brownian, naive, block rotation, modified TM-gas
and HPP-gas) series of simulation for different values of the solubility parameter
was carried out. Each simulation was repeated several times to obtain reliable
results. For each diffusion method the exponent relationship between the solu-
bility parameter and velocity was obtained. The results for naive diffusion are
shown in Figure 4.

It was observed that modified TM-gas and HPP-gas diffusions have a serious
drawback - a tendency to block part of the drug inside the carrier. The drug
may loop back in pores as shown in Figure 5. The total amount of the released
drug is about 90%.

Block rotation diffusion was found to be similiar to Brownian diffusion with
low number of particle chages during one iteration.

Simulation results were compared with laboratory tests (drug release from
a hydroxyapatite, cylindrical, heterogeneous carrier). Profiles of a drug called
pentoxifylline and the simulation results (time-calibrated) are shown in Figure
6. The similarity of profiles was calculated using the discrepancy index [1]:

Ic =

(∑N
t=1 (Et − St)2/N∑N

t=1 (Et)2/N

) 1

2

(2)

Where Et is the laboratory result at the time t, St is a simulation result at the
time t, N is the number of measurements. Ic is a real value between 0 and 1.
Lower numbers (less than 0.2) signify better compatibility of results [1].

The parameter Ic for the data given in Figure 6 was 0.0577.

Fig. 5. Drug particle looped back in pores (HPP-gas method)
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Fig. 6. Comparison of the laboratory results of pentoxifylline released from heteroge-
neous, cylindrical molder and the time-calibrated simulation results

8 Conclusions

The created program allows drug release from a heterogeneous molder to be sim-
ulated. Three main processes necessary for drug release were included: inflow of
water through the pores, drug dissolution and diffusion. The program can control
diffusion speed (random walk method), solubility and the porosity of the carrier.

Diffusion algorithms on the Margolus neighborhood were developed so that
they can be used in systems where static obstacles are present. It was shown
that the use of modified HPP-gas and TM-gas methods does not guarantee
100% drug release from the carrier. Block rotation diffusion was found to be
similiar to Brownian diffusion but it is harder to implement because of Margolus
neighborhood. Therefore the Brownian motion diffusion seems to be a better
solution.

The process of solvent flow does not affect the simulation results. Most likely
this is caused by too simplified model and to small CA lattice.

The simulation and laboratory results were compared and it was shown that
they have a high degree of similarity.
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Abstract. The simulation of evacuation of pedestrians from skyscraper
is a situation where the symmetry analysis method and equations of fluid
dynamics finds to be very useful. When applied, they strongly reduce the
number of free parameters used in simulations and in such a way speed up
the calculations and make them easier to manage by the programmer and
what is even more important, they can give a fresh insight into a prob-
lem of evacuation and help with incorporation of ”Ambient Intelligent
Devices” into future real buildings. We have analyzed various, simplified,
cases of evacuation from skyscraper by employing improved ”Social Force
Model”. For each of them we obtained the average force acting on the
pedestrian as a function of the evacuation time. The results clearly show
that both methods mentioned above, can be successfully implemented in
the simulation process and return with satisfactory conclusions.

Keywords: symmetry analysis, pedestrian evacuation.

1 Introduction

Analytical models of socio-technical systems which use sets of local parameters
may be significantly simplified, when the number of parameters is reduced to
smallest number of relevant ones. The symmetry analysis method (SAM) offers
such a possibility (described in [1]) because the behavior of social systems under
the action of some external conditions may be regarded as similar to the behavior
of solid states under the action of temperature or external electric or magnetic
fields. Both systems are complex, containing many interacting elements, and are
realized in strictly defined spaces. Very often these spaces are strongly restricted,
and because of these restrictions not all types of evolutions of these systems are
allowed. When these spaces are symmetrical (crystals are good examples of such
situation) the symmetry considerations conducting in the frame of theory of
groups and their representations are able to predict the types of behavior of the
systems, which are permitted by the symmetry of these spaces. The SAM [1]
was successfully used for many years to significantly simplify the descriptions of
different type of phase transitions in crystals. The discussion of coexistence of
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different types of system behavior, leading to different properties of the system
are based on the assumption, that different functions describing these properties
of the system should have the same symmetry. From the theory of representation
we know, that these functions should belong to the same irreducible represen-
tation of space symmetry group. It gives the powerful instrument to discussions
of complex behavior of the systems, because we have the possibility to extract
all limitations of free parameters needed for description of the models. The lo-
cal parameters such as the resultant force acting on each pedestrian and their
velocities are related by the symmetry conditions and expressed by the smallest
number of relevant coefficients.

The SAM was applied to investigate what is the influence of space symmetry
on the quality of crowd evacuation plans and number of model parameters used
in crowd behavior simulation for a football stadium and one floor of multi-
floor skyscraper [2],[3] and football stadium [4]. The simulations were performed
within the Social Force Model designed by Helbing in 2000 [5], developed by J.
Malinowski. He introduced in the program the symmetry adapted vector field
calculated by the symmetry analysis method as one of the forces acting on the
pedestrian during evacuation and the possibility of evacuation from complicated
space [3]. The last, new version of the program offers possibility of introducing
individual, physical parameters of the agents. (Appendix).

In this paper the problem of evacuation from multi-floor skyscraper is dis-
cussed. As the important parameter for safe evacuation not only the time of
evacuation, but also the average force acting on individual during evacuation
is regarded. Such discussion is possible only by using the developed Helbing
method, which for big number of individuals distributed on many floors of
skyscraper is time-consuming. Taken into account the translational symmetry
of skyscraper the discussion of evacuation may be limited only to one ”cell” of
the structure - it means only to two floors connected by staircases ( different
geometry depending on the building architecture is possible) - independently
on the number of skyscraper floors. This allow to perform the calculations with
smaller number of individuals which significantly reduce the amount of parame-
ters used in simulations and in this way the time of simulation and to apply the
results to the whole building.

2 The Analysis of Skyscraper Evacuation

The translational symmetry used in simulation leads to significant reduction of
its time. There is no need to consider the whole building during calculations, but
only ”one unit cell” of it and what we mean by unit cell is shown in the Fig.1
below it is simply two identical floors that are next to each other and connected
by the staircase.

As it can be seen changes in the number of unit cells used in simulations
do not have an influence on the average force acting on the pedestrian so the
translational symmetry has done its work - there is a clear, visible advantage of
using it in the calculations.
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Fig. 1. ”Unit cells” of the skyscraper

Fig. 2. Average force per pedestrian as a function of evacuation time for different
number of unit cells

The constant density of agents which ensures comfortable evacuation of
skyscraper may be obtained by introducing time shift between start of evacua-
tion from different floors. The optimal value of this time shift may be calculated
from continuity equation as the function of building geometry parameters and
social system parameters (for example the number of pedestrian on each floor,
their possible velocities...). In this simple model because of collective movements
of agents, similarly to the description of charge movement in a crystal under
electric field drift, the average quantity of vector velocity (speed) of each agent
at the staircase vs is assumed to be constant and the same for each agent. The
directions of agents vector velocities stay in agreement with, recalculated by
improved Helbing model, fields of displacements.
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The time shift between the beginning of evacuation of first floor and the
next floor, which guarantees the smooth evacuation with constant density of
evacuated individuals, should be:

Δt = tf − ts (1)

where tf is the time of evacuation of one floor (discussed for example in [3]),
ts is the time needed for leaving the staircase which connect two floors. The
evaluation of tf for a given number of pedestrians located on a specific floor
with symmetry considerations, was discussed in [3].

The continuity equation and geometry of the building leads to the relations:

vf ∗ cf = vs ∗ cs; vs = vf ∗
cf
cs

(2)

where vf and vs are speeds of agents at the exit from the floor and at the staircase
correspondingly, cf is the width of exit and cs is the width of the staircase.

The time ts needed for covering the staircase length ls is given as:

vs ∗ ts = ls; ts =
ls
vs

; ls =
ls ∗ cs
vf ∗ cf

(3)

then

Δt = tf − ts = tf −
ls ∗ cs
vf ∗ cf

(4)

Evaluation of this time shift and sending the information about the accident
to given floor at proper time requires high quality ambient intelligence device
(AID), which is able to follow and keep in memory the number of pedestrian
on given skyscraper floor, and to use this information for determination of floor
evacuation, and appropriate time shift.

In this work the simulations of evacuation with calculated time shift are real-
ized in skyscrapers with different staircases. In each case the average force acting
on the agent as the function of evacuation time is calculated and compared with
similar results got from simulations when the evacuation starts from different
floors at the same time. The simplest models, with the same width of exits and
staircases are investigated here. The results are presented at the figures showed
below.

Fig.1 and Fig.2 show two types of evacuation routes (the difference lies in the
length of escape path) which can often be found at the back of the building - fire
escape ladder. On the other hand in the Fig.3 we deal with a standard staircase
that can be seen in the block of flats as well as in dormitory. The helical staircase
in Fig.4 differs from the one in Fig.3 only in the shape of the stairs.

3 Summary

As it can be seen in the presented figures imposing the time shift between start
of the evacuation from different floors makes the time of the evacuation longer,
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Fig. 3. Average force per pedestrian as a function of evacuation time - fire escape
ladder

Fig. 4. Average force per pedestrian as a function of evacuation time - fire escape
ladder
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Fig. 5. Average force per pedestrian as a function of evacuation time - standard stair-
case

Fig. 6. Average force per pedestrian as a function of evacuation time - helical staircase
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but significantly reduces the average force acting on the pedestrian. The good
organized evacuation should optimally balance with these two parameters. The
reduction of press acting on evacuated induced by properly predicted delay in the
information about start of evacuation may be realized for different type of stair-
cases. Such prediction occurs possible by using AMI devices and simplification of
calculations following from taken into account the symmetry of the skyscraper.
Therefore there is a visible need to put more effort in such investigations, so that
the intelligent ambient devices found their places in future building industry.

Simulations with different evacuation parameters will be realized in the future.

Appendix. The evacuation of the skyscraper is simulated by using the Helbing
”social forces” model [5], which was taken as a starting point to model presented
in this paper.

mi
dvi

dt
= mi

v0i e
0
i (t)− vi(t)

τ
+

∑
j( �=i)

fij +
∑
W

f iW (5)

Equation 5 on right side has a sum of three forces acting on human during
evacuation simulation. Second and third one describe sum of repel forces from
all other mans and sum of repel forces from all walls and all obstacles inside the
evacuated space. First force is the most interesting at this stage. In general it
describes in which direction each person should go. In simple case like empty
room with some doors, this force can be easily calculated as a sum of attract
forces from all doors. Here is also the place for the implementation of vector field
calculated by symmetry considerations. This assumption is inadequate with more
complicated geometry of the building. Figure 7 shows the example when such
approach leads to situation when pedestrian will stick for eternity in dead end.

Fig. 7. The ”dead-end”

In approach presented in this paper floor space was divided into cells (this
got nothing in common with ”cellular automata” approach to such kind of sim-
ulations!). Every cell can contain obstacle, free space or exit. Every cell that
contain free space have vector of desirable velocity connected with it, calculated
according to schema described below. Any person that stands inside particular
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Fig. 8. Final field of velocities

cell takes this vector as his desirable velocity. Unlike in cellular automata ap-
proach in this approach ”cell” can contain one or more persons and any direction
of velocity. Single cell size depends on building geometry only. To make a sim-
ulation of an evacuation of single room, small number (like 7x6 for example) of
cells is more than enough. Figure 8 show example of such table presenting the
final field of velocities. These vectors can be calculated using ı̈£¡ray casting̈ı£¡
method as shown in paper [6].
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Abstract. Fusarium Graminearum is responsible for Fusarium head
blight (FHB) infection which reduces world-wide cereal crop yield. As a
consequence of mycotoxin production in cereal grain, it has also serious
negative impact on both human and animal health. The main objective
of this study is to develop a mechanistic and conceptual metaphor of
Fusarium growth. Our model is based on a new realization of Graph of
Cellular Automata paradigm (GCA) used before for simulating anasto-
mosing rivers and the process of angiogenesis in solid tumors. We demon-
strate that GCA model is a very universal metaphor, which can also be
used for mimicking Fusarium type of growth. To enable 3-D interactive
simulations of realistic population ensembles (105-107 plant and fungal
cells), the GCA model was implemented in GPGPU CUDA environment
resulting in one order of magnitude speedup.

Keywords: Cellular Automata, GPGPU, complex networks, fungi
modelling.

1 Introduction

Fusarium Graminearum is one of the main causal agents of Fusarium head blight
(FHB) infection. It attacks cereal crops resulting in a significant grain yield
reduction. The epidemic, which took place in North America from 1998 to 2000,
costs almost $3 billion. Another effect of this plague is the contamination of
grain with mycotoxins, which is extremely harmful for animals and humans.
The infection is initiated by deposition of spores on or inside spike tissue [1].

Wheat heads are the most susceptible to infection during anthesis. Other factors
favoring infection are high humidity and temperature. Initially, the fungus does
not penetrate the epidermis. As shown in [1], at this stage it develops on the
external surfaces of florets and glumes and grows towards susceptible sites within
the inflorescence. Other roads of colonization of internal tissue include stomata
and underlying parenchyma, partially or fully exposed anthers, openings between
the lemma and palea of the spikelet or floret during dehiscence and through the
base of the wheat glumes where the apidermis and prenchyma are thinwalled [1].

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part II, LNCS 7204, pp. 578–587, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. The images demonstrating Fusarium Graminearum penetrating wheat stem (a)
and proliferating on nutrient rich agar well (b). The stem cross-section is displayed.
The fluorescent, bright spots correspond to infected sites. (courtesy of Dr Shea Miller
and Dr Margaret Balcerzak).

Several mechanisms contribute to the formation of mycelium inside plant tis-
sue. Fusarium growth is highly polarized and hyphae can extend at their tips
only. It makes that hyphae is able to attain very high extension rates. Mycelium
is able to adapt to local conditions by transporting nutrients from regions where
they can be absorbed (living tissue) to the starving sites. A part of mycelium
that cannot receive enough nutrients can be degraded and the whole colony can
break down onto separated fragments. All these properties make that fungi are
very flexible and can actively search the environment for nutrients. To investi-
gate the character of this growth in various conditions and develop new species of
grain which are resistant on Fusarium infections, laboratory experiments should
be guided by the results from computer simulations. In fact, there are no ex-
act models of biological phenomena due to inevitable simplifications of complex
and nonlinear behavior and difficulties in perfect matching of model parame-
ters. However, even approximated computer models allow for fast penetration of
parameter space narrowing regions of interest for laboratory experiments.
Cellular Automata is a very efficient modeling paradigm for simulating vari-

ety of natural phenomena [2]. The most popular CA system is represented as a
regular mesh of cells. The cells change their states according to predefined rules
of local interactions. The automaton state depends on the states of its nearest
neighbors. Cellular Automata is inherently parallel - all the states of CA system
can be updated simultaneously. It gives the opportunity to achieve high compu-
tational speed on SIMD (Single Instruction Multiple Data) type of architectures
e.g. [5], [6] such as GPGPU processors. It is worth to emphasize that Cellular
Automata can be treated as kind of framework that can be modified to meet
requirements of modelled phenomena (e.g. [3], [4]).
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Modern GPUs contain up to hundreds of processing cores. A single GPU
can outperform the modern CPUs in solving variety of SIMD implementable
problems [7]. GPGPU computing has received great attention after introducing
Nvidia CUDA technology [7] and OpenCL standard [8]. Both these environ-
ments allow for GPU programming using C-like programming language as well
as libraries and drivers that manage programs that run on graphic cards.
Dense mycelia located in a uniform environment, e.g., in Petri dishes, can be

represented by continuum density fields of Hyphal distribution and substrate
concentration. Thus, the Mycelium proliferation at large spatial scales can be
modeled by solving numerically a system of partial differential equations (e.g.
[9]). However, when mycelium network is sparse and grows in inhomogeneous en-
vironment with non-uniformly distributed substrates, the application of discrete
modeling is much more appropriate.
Discrete models based on Cellular Automata were applied for simulating fun-

gal growth several times, e.g., [10], [11]. Boswell at al. [12] proposed a hybrid
cellular Automata model. His model uses cellular automata to represent hyphae
network but for substrates distribution a continuous approach is applied. All CA
models exploit relatively simple domain for mycelium development such as soil.
The case, in which the environment has more sophisticated spatial structure,
such as wheat stalk or ear of grain, was not considered yet.
In this paper we propose a model based on a Cellular Automata paradigm.

We employ the Graph of Cellular Automata [13], [14], [15], which is an extension
of classic Cellular Automata approach. The model was tested in simple domains
in 2D and 3D spaces. We present the issues of GPU implementation of the model
and the speedups obtained.
This paper is structured as follows. Section 2 contains description of the model

including explanation of the idea of the Graph of Cellular Automata. The follow-
ing section contains simulation results with comments. At the end we summarize
the conclusions.

2 Model Description

The model of Fusarium that we present here, utilizes the Graph of Cellular
Automata modeling tool, which combines Cellular Automata with graphs. This
approach was developed for modeling anastomosing river systems [13]. Later it
was generalized to cover a class of phenomena that consist of a consuming (or
producing) environment and transportation network that supplies (or removes)
nutrients to/from the system. The approach was also successfully applied for
modeling tumour-induced angiogenesis [14], [15].
While the CA mesh models the environment, the graph of CA represents a

transportation network. The graph of CA is constructed over the regular mesh
of CA by defining additional relationships between neighboring cells (see Figure
2). All the transportation processes are modeled in the network of connected
CA cells – the graph of cells. Diffusion and migration processes occur in the CA
environment while linear transportation phenomena in the CA graph. Graph and
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Fig. 2. Graph of Cellular Automata is constructed over regular mesh of CA by estab-
lishing additional relationships between the CA mesh and the CA graph

regular mesh are processed separately in a different manner (asynchronously and
synchronously). The CA cells, that belong to the CA graph, are the pin points
between these two parts of the model.
In this paper we present how the Graph of Cellular Automata can be used

to model infection proliferation of Fusarium Graminearum in a plant tissue.
The mycelium of Fusarium Graminearum is represented by the graph of cells.
The plant tissue is modeled by a regular mesh of Cellular Automata. Mycelium
develops its network by invading sites of the plant tissue, what is represented by
cells of the CA mesh attached to the CA graph.
Plant tissues covered by the mycelium are poisoned by mycotoxins. Then, the

plant cells are killed and all the nutrients are drained out. The mycelium can be
degraded locally as the result of lack of nutrients. This part of network will be
removed after a short period of time or transmuted into spores. The nutrients
can be transported due to diffusion inside mycelium network from the regions
rich with nutrients to the starving parts.
We made the following assumptions to the model:

– both Fusarium and plant need nutrients to survive,
– the distribution of nutrients inside a single cell is homogeneous,
– the hyphal tips of the fungus grow randomly, mainly in a straight lines with
small directional changes (similarly as in [12])
– mycelia cells are immobile,
– the branching of existing hyphae is a random process (following [16]),
– branching could happen in the network nodes only,
– Fusarium produces enzymes responsible for degrading the cell walls [1], [12]
at a constant rate,
– there are two mechanisms responsible for nutrients transportation inside
Fusarium: passive (diffusion) and active directed toward the tips,
– nutrients might be absorbed from the plant only when the corresponding
cell walls have been already degraded.

The plant cells (environment – represented by CA mesh) are characterized by
the following states (at time step t):

– Sptij - the CA state (possible values are: Healthy, Attacked, Destroyed, Dry)
– Nptij - the amount of nutrients
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– At
ij - the amount of enzymes degrading the cell walls

– Atij – a threshold over which the cell walls are destroyed
– Ppij – nutrients production or consumption rate
– Dpij – nutrients diffusion coefficient in the plant
– Dpeij – enzymes degrading the cell walls diffusion rate

Fusarium cells (CA graph) are characterized by the following states:

– Sf t
ij – the CA state (possible values are: Tip, Active, Inactive)

– Nf t
ij – the amount of nutrients

– Cflij – nutrients consumption rate
– Nftij – nutrients threshold below which the Fusarium cell becomes inactive
– Dfpij – passive translocation rate
– Dfaij – active translocation speed
– Dfaciji – active translocation cost
– Usij – nutrients uptake rate
– Ucij – nutrients uptake cost
– Afpij – rate of production of the enzymes degrading the plant cell walls
– Bij– probability of branching
– Gij – probability of growing

The algorithm has a simple structure, which is typical for the Cellular Automata
approach, (see Fig. 3). In the consecutive steps, the procedures that represent
both biological and transportation processes, are executed.
The following processes are included in the model (see Figure 3):

– Fusarium development: A network of mycelium is formed by creating and
developing sprouts.The process of growth of each sprout is stimulated by
its “tip” motion. The “tip” is located at sprout end. Each “tip” can grow
at acute angle to the direction of hyphal growth. The probability of such
event depends on nutrients in the hyphae and parameter Gij . Active hyphae
cell might branch and form a new sprout with a probability proportional to
nutrients and parameter Bij .
In our model, the “tip” is represented by a cell that belongs to the CA
graph with state Sf t

ij marked as Tip. The “tip” cell is located at the sprout
top and it does not have any successor. The sprout grows by choosing a
new cell in the neighborhood of the “tip” cells and the new edge is formed
between the old and a new “tip” cell (procedure graphGrow()). The Tip
state label is removed from the previous “tip” cell and given to the new one.
When nutrient density in Fusarium cell (Nf t

ij) drops below a given thresh-
old Nftij , the cell alters its state into Inactive and after some (randomly
chosen) period of time it is removed from the CA graph. This process may
result in mycelium network fragmentation.
– Enzymes production:
Fusarium produces enzymes (mycotoxins) that destroy immunological mech-
anisms and secretes acid fluid which dissolve the walls of cells. It opens
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the way to the nutrients located in the cell body. Active cells that be-
long to the CA graph produce enzymes and acid fluids at a constant rate
Afpij∗δt (procedure graphNodesProduceConsume()).The enzymes and acid
substances are distributed to the neighborhood via diffusion with diffusion
coefficient Dpeij (procedure cellsDistribute()). It establishes a gradient
of enzyme/acid saturation in the vicinity of the CA graph cells. When en-
zymes/acid concentration in the plant cell is higher than a given threshold
Atij , the cell becomes “Destroyed” and the nutrients uptake is possible.
– Nutrients uptake and transport inside Fusarium: The CA graph cell, that
is marked as “Active”, uptakes nutrients from the corresponding CA cell
only if this cell is in the “Destroyed” state. It means that nutrients can be
transferred from the plant cell to the mycelium network. The cost of uptake
is non-zero i.e. not all nutrients are passed to the mycelium.
The nutrients are transported inside mycelium ( graphNodesDistribute())
via two transport mechanisms: passive — 1D diffusion — and active — the
motion of nutritive substances towards the tips. Transport occurs only be-
tween those graph cells that are marked as “Active”.

The model has been implemented in 2D and 3D spaces. In both cases, the simu-
lation procedures are the same except some implementation issues of the access
to the data structures.
At this stage we ignore all defense mechanisms of the plant as well as their

interaction with toxic substances that impair these mechanisms. In all the sim-
ulations which results are commented in the following section, the plant cells
neither produce nor consume nutrients (Ppij = 0)). Diffusion of substances in
plant tissue was also omitted in order to simplify the model (Dpij = Dpeij = 0).

Fig. 3. The block scheme of the main part of the model implementation
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2.1 Implementation

Initially, the model was implemented in C++ on a single CPU in a serial mode.
This version was designed to test the coherence and compatibility of model as-
sumptions and provides a reference point to its GPU implementation. Simulation
results are visualized by using the Amira package [www.amira.com].
The targeted implementation environment is GPU board with CUDA inter-

face. Each procedure presented in Figure 3 is executed as one CUDA kernel.
In the prototype implementation all data required by the code are kept in the
slow global memory. In case of it extensive use, large delays can be expected.
The common approach to increase the efficiency is employing much faster shared
memory, which is located on the GPU chip. The limited access to data stored is
the cost of such the operation. Data located in the shared memory is accessible
by other threads in the same block only. On the other hand, the CA model imple-
mentation does not require many data reads and writes. Most variables are read
just once, processed and than stored again. In such the case the shared memory
does not help too much to achieve greater efficiency. Therefore, to avoid sophis-
ticated and troublesome coding the first approach, exploiting global memory,
was implemented.

3 Results of Simulation

Figures 4a and 5 demonstrate simulation results in 2D and 3D spaces and vi-
sualized with Amira software. Initially, nutrients are uniformly distributed in
the whole domain. The plant cells invaded by mycelium are also attacked with
mycotoxins and acid substances. After dissolution of protective layer, nutrients
are absorbed by mycelium. In Fig.4a we show the snapshot from simulation
in 2D space compared to the microscopic image of Fusarium Graminearum 22
hours after inaculation growing in similar nutrient rich environments (Fig. 4b).
One can observe visual similarity of these two pictures. In Fig.4a the mycelium

Fig. 4. a) A snapshot of mycelium network generated by the model. Dead areas of
plant tissues are marked in blue. b) The microscopic image of Fusarium Graminearum
growing in a nutrient rich environment (courtesy of Dr Shea Miller).
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Fig. 5. A snapshot from 3D simulation. Plant tissue is not visualized for clarity.

Table 1. Average execution time and speed-ups obtained for optimized GPU code ver-
sion versus CPU implementation. Tests were performed for various size of CA mesh.
The time was measured from the start to the moment where Fusarium network reached
certain size: 5000 nodes, 100000 nodes and an optional size after 5000 steps of simula-
tion.

CA size Network
nodes

Optimized
CPU [s]

GPU [s] Speedup over
optimized
CPU

2500 5500 14.906 0.48 31.05
2500 100000 189.234 0.52 363.91

10k 5400 13.769 0.57 24.16
10k 109000 212.969 0.64 332.76
10k 500000 911.109 0.72 1265.43

40k 5000 16.016 0.95 16.86
40k 103000 205.563 1.04 197.66
40k 625000 1159.047 1.19 973.99

160k 5000 23.36 2.51 9.31
160k 100000 202.188 2.64 76.59
160k 555000 1039.531 2.85 364.75

network is presented together with distribution of nutrients in the plant tissue.
The areas of reduced nutrient concentration are marked in blue. The mycelial
cells may be degraded if they do not receive sufficient nutrition level. We can
see several small fragments of mycelium that surrounds one large network. The
large network can survive due to transport of nutrients inside mycelium body.
As shown in Fig.5, in 3D domain and nutrient rich environment, the mycelium
network forms a globule of uniform density.
Several performance tests were conducted in order to measure the speedup of

the computations. In each case a simulation with different starting parameters
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has been carried out. The performance of prototype CUDA application utilizing
the NVIDIA GeForce GTX 295 graphics card was compared with an optimized
C++ program run on a personal computer with a 2.16 GHz Intel processor
(single thread execution). As the execution path is random and computation
time highly depends on the number of graph nodes, average results from multiple
runs have been collected. The tests were performed for one set of configuration
parameters. Simulations were conducted until the Fusarium network reached a
certain size (about 5000 nodes and 100000 nodes). Additionally, other tests were
run through 5000 time-steps and final size of Fusarium network was considered.
Table 1 collects averaged execution times and speedup measured for this test.
The results are very promising. Speedups of at least one order of magnitude are
observed.
Summarizing, the prototype CUDA implementation, which uses only the slow-

est global memory and has no algorithmic optimizations applied, works over one
order of magnitude faster than the standard CPU implementation.

4 Conclusions

We have demonstrated that the Graph of Cellular Automata model can be used
as an interesting metaphor for modeling systems consisting of producing en-
vironment and transportation network. Previously this simulation method was
successfully applied for modeling anastomosing river and vascular system devel-
oped by tumor-induced angiogenesis. We show that very similar schema can be
applied for modeling proliferation of mycelium. This fact proves that GCA ap-
proach can be considered as an interesting universal tool for modeling complex
biological phenomena connected with the phenomenon of directed growth. The
potential of the GCA modeling scheme in simulating really large system was
confirmed by its efficient implementation in GPGPU environment which gives
at least one order of magnitude speedup in comparison to CPU implementation.
Having in mind that not the full power of GPU was exploited a possible room
for improvement still exists.
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Abstract. Foraminifera are unicellular organisms which are widespread
especially in marine environments. They produce protective shells (called
tests) around their cell bodies, and these may be hardened by either se-
creted CaCO3 or by the agglutination of sediment grains from the en-
vironment. Such mineralized shells readily fossilize, which makes them
useful in paleo/environmental and related geological applications. The
morphology of foraminiferal chambers emerges from a cascade of complex
genetically-controlled processes ultimately controlled through the inter-
actions among morphogenetic components. From studies on the mor-
phogenesis and movements of foraminiferan pseudopodia, we presume
that actin meshwork, microtubules, plasma membrane and their various
associated proteins all contribute to chamber formation. Here, we ap-
ply dissipative particle dynamics (DPD) simulation techniques to model
interactions between the plasma membrane and actin meshwork to test
their role in the formation of cell body and test architecture. The present
studies mark the first stage of “in silico” experiments aimed at devel-
oping an emergent model of foraminiferal chamber formation and shell
morphogenesis.

Keywords: foraminifera, dissipative particle dynamics, cell physiology,
complex fluids.

1 Introduction

Computer modeling can be a powerful approach to achieve a better understand-
ing of complex dynamic systems. Building a computer model of any phenomenon
requires in-depth analyses of all involved processes and serves as a virtual lab-
oratory for experiments testing the effects of varying the magnitude of those
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processes on the emergent properties of the complex system. The strength of
modeling is that it provides predicted observation of simulated processes that
otherwise are out of spatial and/or temporal scales for any direct examination.

Following this approach, we have applied the dissipative particle dynamics
(DPD) method ([1], [2], [3]) to simulate foraminiferal shell morphogenesis. Pro-
cesses that “shape” foraminiferal shells are most likely similar in every cell in
living organisms. The novelty of our approach is to gather selected components
and phenomena into one computational framework. Our aim is to build a virtual
tool that can give insight into processes that control the shapes of newly formed
foraminiferal chambers.

Foraminifera are a familiar group of unicellular eukaryotic organisms (king-
dom Protista) distributed worldwide mostly in marine and brackish habitats,
although freshwater species are known to exist. These organisms produce pro-
tective shells (properly called “tests” because they are sometimes vested by pro-
toplasm) to protect their relatively large and sensitive cell body and its nucleus.
While much of the structural template for the test consists of organic material
produced and fashioned by the cells, various taxonomic groups further fortify and
harden the test with agglutinated mineral grains selected from the sediment, or
by secreted CaCO3. These mineralized shells are long lived and readily fossilize.
As a result, foraminifera have left an impressive fossil record that shows very
specific distributions of forms in both time and space that make them perfect tar-
gets for micropalaeontologic, biostratigraphic, paleoecologic, paleoceanographic,
and paleoclimatologic studies (e.g. [4], [5]).

The shells of living and fossil foraminifera display a variety of test shapes and
patterns (Fig. 1). They grow by iterative, successive formation of chambers at-
tached to an embryonic shell, called the proloculus. The theoretical morphology
of foraminiferal shells has been studied for more than 40 years ([6], [7], [8]), using
models that construct the theoretical morphospace employing geometrical op-
erations parameterized by ratios of translation and rotations. However, to date
such models have not been able to simulate shells that reveal complex growth
patterns, e.g., switching from one coiling mode to another during their virtual
ontogenesis. Topa and Tyszka ([9], [10], [11]) demonstrated that the limited ca-
pacities of these models were a result of neglecting the role of the aperture in
the process of chamber formation. The moving reference model [10] uses the
aperture as a reference point with respect to which a new chamber is located
(see Fig. 1). This assumption comes from the fact that the aperture (or multiple
apertures) are shell openings responsible for communication between an inter-
nal cell body and external microhabitat explored by pseudopodial extensions
called granuloreticulopodia ([5], [12], [13]). The same apertures define the initial
position of successive chambers during shell growth.

Recent investigations aim at constructing a new emergent model of chamber
formation (see [10]). Shapes of foraminiferal chambers emerge from the cascade
of complex morphogenetic processes, basically controlled by genetic information.
A new chamber follows a shape of the primary organic membrane ([14], [18]),
and we presume that the primary organic membrane is shaped by cytoskeletal
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Fig. 1. Simulation of foraminiferal shells applying the moving reference model. Black
dots represent foraminiferal apertures. Upper row presents external views of shells.
Lower row shows cross-sections of these shells, showing their internal architecture.
1. uniserial chamber arrangement; 2: biserial; 3: planispiral; 4: low trochospiral (low
helicoidal); 5: triserial high trochospiral. Such real shells range from 0.05 to 2 mm.
Some complex foraminifera are much larger and reach up to several centimeters.

filaments and their associated motors and cross-linking proteins [15]. To gain
insight into chamber morphogenesis, we need a technique that enables us to
model the interactions between components responsible for cell architecture, such
as a plasma membrane, sub-membrane actin filament meshwork, microtubules,
and various associated proteins (e.g. [16], [17], [15]). The plasma membrane and
its associated cytoplasm and extracellular domains can be classified as a complex
fluid composed of liquid and suspended solid structures, making it amenable for
study by Dissipative Particle Dynamics, one of the computer modeling methods
frequently employed to study such fluids ([1], [2], [3]).

The DPD model consists of a set of particles that move off-lattice interacting
with each other through the three type of forces: repulsive conservative force,
dissipative force and stochastic force [1]. From a physical point of view, each par-
ticle can be regarded not as a single molecule but rather as a cluster of molecules.
One of the most attractive features of the DPD technique is its enormous ver-
satility in constructing simple models of complex fluids. For example, a simple
Newtonian fluid can be made “complex” by adding additional interactions be-
tween fluid particles. Different particle-particle interactions can be introduced
to model various other types of fluids. Polymers may be modeled as chains of
molecules linked by springs.

The DPD method was applied to model selected phenomena associated with
biological cells and tissues, as well as their components, such as plasma mem-
branes, which can be approximated as complex fluids. For example, Basan et al.
[19] proposed a DPD model for investigating the properties of tissue. Cells in
this model were represented by DPD particles that adhere to each other, expand
in volume, divide after reaching a specific size checkpoint, and undergo apoptosis
at a constant rate, which ultimately leads to a steady-state homeostatic pres-
sure in the tissue. Blood cells and the properties of blood flow have also been



DPD Model of Foraminiferal Chamber Formation 591

investigated using the DPD approach. Fedosov et al. [21] modeled the behavior
of red blood cell membranes, and Filipovic et al. [22] investigated various blood
flow properties. Similarly, Boryczko and Dzwinel [23] tested the application of
DPD to model blood flow in capillaries. Other investigations have been devoted
to modeling of the cell membrane - lipid bilayer. Lipowsky et al. intensively stud-
ied the properties of lipid bilayers with various particles based on computational
methods, including DPD ([24], [25], [20]). In their models, the lipid bilayer was
formed from short chains of DPD particles; each chain consisted of hydrophilic
”head” particles and hydrophobic ”tail” particles. These chains self-organized
into well-ordered bilayer structures due to strong repulsion parameters between
water and hydrophobic particles. This approach was used in other models that
investigated various properties of lipid bilayers and their behavior under various
conditions ([26], [27], [28]).

Here, we present a preliminary DPD model of interactions between the actin
meshwork, plasma membrane, and a solid wall as a part of processes most likely
happening during foraminiferal chamber formation. The ultimate goal is to ob-
tain a realistic model of the primary organic membrane shaped by pseudopodial
cytoskeleton structures, such as an actin meshwork and microtubules.

2 Model

The DPD method was introduced to simulate the hydrodynamic behavior of
complex fluids [1]. The elementary units of the DPD model are soft particles with
mass m0 and radius of interaction r0. Their evolution is governed by Newton’s
equations of motion:

dri
dt

= vi,mi
dvi

dt
= fi. (1)

The force fi acting on a particle is given by the sum of a conservative force, a
dissipative force and a random force [2]:

fi =
∑
j �=i

(FC
ij + FD

ij + FR
ij) (2)

A particle i interacts only with other particles j located at a distance less than
a certain cutoff radius rc.

The conservative force FC
ij acts as soft repulsion force along the line of centers

and it is defined as [2]:

FC
ij = aij(1−

|rij |
r0

)r̂ij (3)

where:

– aij is the maximum repulsion force between particle i and particle j,
– r0 is the diameter of DPD particles,
– rij = ri − rj ,
– r̂ij =

rij
|rij | .
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The dissipative force FD
ij [2] removes energy from the system by decreasing the

velocity if the two particles in relation to each other. The force does not affect
particles that either move parallel to each other or overlap. By slowing down
fast moving particles, the dissipative force makes the system more controllable
and predictable.

FD
ij = −γij(1 −

|rij |
r0

)2(r̂ijvij)r̂ij (4)

where:

– γij — friction coefficient that scales dissipative force.

The random force compensates for the loss of kinetic energy due to the dissipative
force. It provides for the random motion of particles [2]:

FR
ij =

√
2γijkBT (1− |rij |

r0
)ξij r̂ij (5)

where:

– ξij — a random variable with zero mean and unit variance,
– kB — Boltzmann’s constant,
– T — desired equilibrium temperature on the system in Kelvin.

In the DPD method, the particle radius rc defines the length scales for the
simulation. We assume that a single particle represents a volume equal to 3
water molecules [26]. Thus, the rc is approximately equal to 0.7nm. All other
dimensions in our model are related to r0, and later in the text, these values
are expressed in r0 units. Density of these particles are set to 3 per unit volume
(ρr3c = 3). The time scale is much more difficult to evaluate in DPD. Usually it is
individually calculated from other parameters as a diffusion rate [26] or thermal
velocity [29].

Our model focuses on the influence of an underlying actin meshwork on plasma
membrane behavior. At this stage the model is significantly simplified. The sys-
tem consists of a partly opened box made of wall particles that cannot move
(see Figure 2) and acts as a kind of ”virtual shell”. The box and space above is
filled with liquid particles and actin filament - polymer chains. One of the walls
of the box is made of a flexible membrane, which models the plasma membrane
of a newly formed chamber. The membrane is made of particles that initially
are organized in a regular mesh (see Figure 3B). Each membrane particle is con-
nected with its four neighbors via discrete spring potentials, with connections
that remain unchanged during the simulation. Additionally the bond angle po-
tential is defined for every three membrane particles that form a straight line.
These connections also remain unchanged during the simulation. The membrane
sheet is attached to the hard walls also by spring potentials but with different
k1 parameters. All other types of particles interact with walls by applying the
conservative repulsion force.

In this model, several types of particles are introduced (see Fig. 2):
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Fig. 2. System configuration tested during model development

– fluid (water) particles (F — vizualized with green color)
– actin particles (A — grey)
– membrane particles (M — yellow)
– wall particles (W — red)

The actin meshwork is composed of particle chains (see Figure 3A). Between
neighboring particles in chains additional spring force is defined (see Figure 3C):

FS
ij = −k1(rij − r0) (6)

where:

– k1 is the spring constant (as in Hook’s law),
– r0 is the unstretched length between two neighbouring particles in chain.

In order to prevent chains from excessive bending we define an additional three-
particle potential that straightens chains of particles, which follows the con-
cept of bond angle potential introduced by Shilcock and Lipowsky [24] (see
Figure 3 D).

UB(i− 1, i, i + 1) = k2(1− cos(φ − φ0)) (7)

Various properties of particles in the model are defined through the conservative
repulsion parameter aij . For water particles, we used a standard value of 25 (in
units of kBT

r0
) (following [3]). Actin particles repulse each other with a conser-

vative force of the same value as the repulsive parameter aAA
ij = 25. The spring

constant kA
1 for chains of actin particles is set to 200, and the bending potential

parameter kA
2 is set to 20. Membrane particles also interact each other with the

repulsive parameter aMM
ij = 25. Spring and bending parameters are: kM

1 = 100

and kM
2 = 20. Membrane particles that are initially located on the edge of the

mesh are connected to the walls with spring constant kMW
1 = 200.

Spring and bending potentials are responsible for shapes and structures of
actin chains and the membrane. Mutual interactions between fluid, actin mesh-
work, plasma membrane, and walls of the ”virtual” chamber are controlled
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Fig. 3. Structures made of bounded particles and their potentials: A) actin meshwork
modeled as chains of particles, B) regular mesh of membrane particles, C) two-body
spring potential, D) three-body angle potential

mainly by the repulsive conservative force parameter a. In our experiments we
focus on analyzing the behavior of the virtual actin meshwork for different sets
of repulsive force parameters:

– aAM — interaction between actin particles and membrane particles,
– aAW — interaction between actin particles and wall particles,
– aAF — interaction between actin particles and fluid particles.

In all simulations, the step of integration is set to typical value δt = 0.04 that
follows Groot and Warren [3] suggestions. The simulations involve about 40 000
particles. For integration of Newton’s equation of motion we use Velocity Verlet
scheme. The model was implemented in C++ language for Linux platform. Algo-
rithms are parallelized with OpenMP API. Results are visualized with OpenGL
library.

3 Results

Figure 4 presents sample results of our simulations. Fluid and wall particles are
removed for clarity. Parameters of conservative force was set to the following
values: Fig.4A aAW = 6, aAM = 6, aAF = 12, Fig.4B — aAW = 12, aAM =
6, aAF = 12. Actin filaments fill all available space and act on the membrane
so as to deform it. In both cases, it can be observed that single actin filaments
have penetrated through the membrane, due to fact that actin and membrane
particles are ”soft” particles that can interpenetrate. This effect can be controlled
by modifying the conservative force parameter.

Figure 5 presents results of ”in silico” experiments conducted on a model
actin meshwork. Simulations were performed for different sets of the repul-
sive force parameter: Fig. 5A: aAW = 50, aAM = 2, aAF = 25 and Fig. 5B:
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Fig. 4. Sample results of simulation with actin meshwork (grey) influencing membrane
shape (yellow), see text for details

Fig. 5. Sample results of ”in silico” experiments (see text for details)

aAW = 25, aAM = 2, aAF = 50. We observed different behaviors of the actin
meshwork and plasma membrane. Fig. 5A shows attachment of actin filaments
to the membrane. The meshwork is also strongly repulsed from the walls. The
simulation in Fig 5B shows a strong repulsion between actin and fluid particles
compressing the meshwork into a globular tangle of filaments.

4 Conclusions

We present a preliminary version of our DPD model of foraminiferal chamber
morphogenesis. Our model, at this stage of its development, focuses on sim-
ulating the actin filament meshwork. We represented it by a set of particle
chains connected with two kind of potentials: spring and bending. Actin filaments
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interact with the membrane which is made of particles also connected with spring
and bending potentials. We are searching for proper behavior of the modeled
system by modifying parameters of the conservative force. Our future works will
focus on:

– improving the membrane model by incorporating the lipid bilayer model
defined by Lipovsky et al. [24];

– introducing microtubules as a main morphogenetic component;
– modeling mechanical properties of membrane in contact with microtubules.
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Abstract. The contemporary problem of ’greening’ urban transport,
in its complexity, calls for multi-faceted solutions, including a range of
inputs, from theoretical modelling to resource planning and monitor-
ing. This paper offers a contribution to scenario assessment, through a
computational model of heterogeneous urban traffic flows. Built on a
cellular-automaton framework, it considers, in particular, the inclusion
of pedal-bicycles in the specific case of a city with an incomplete dedi-
cated bicycle lane network, where close road sharing takes place between
motorised and non-motorised vehicles. Generic spatial and behaviour
components of the model have been defined and a simulation framework
built based on those. Application of this framework is demonstrated for
the case of an intersection of two one-way streets.

Keywords: traffic flow modelling, cellular automata, bicycles.

1 Introduction

In recent times, the push towards transport sustainability, within the wider
background of today’s environmental concerns, has brought about increased in-
volvement with non-motorised modes of transport, by policy-makers, researchers
and participants alike [13]. The health and social benefits of these are also sig-
nificant [5]. In this context, understanding the physical properties of traffic flow
including bicycles is of interest, both in support of promoting and planning for
integration in developed countries and for the alleviation of congestion and im-
provement in safety in developing countries [15]. This paper describes a cellular
automaton-based modelling method for modelling heterogeneous traffic on arbi-
trary network elements and its application to a particular scenario, with results
that illustrate how the model can be used. The remainder of this section gives an
overview of existing models for mixed traffic including bicycles. Section 2 is ded-
icated to summarising the spatial modelling method used and the corresponding
movement rules. Following that, Section 3 describes how the single-lane one-way
road intersection model is defined using that method. Simulation results are pre-
sented in Section 4. Section 5 concludes the paper, by summarising the results
and placing them in the context of future work.
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Since the seminal publications on the application of cellular automata (CA) to
traffic flow modelling in the early nineties [12,1], that type of model has been widely
used in the context of transportation science. Traffic heterogeneity, which is of in-
terest to us, is found in its simplest CA form in models where the (one-cell-wide)
vehicles can have different lengths (expressed in cells). In models that employ this
technique, the mix represented is always that of smaller and larger motorised ve-
hicles, as is the case in the network model by [3] or in [2] and [4], where particular
rules are employed to simulate interactions within a mix of trucks and cars, at an in-
tersection and a roundabout, respectively. A mix of vehicles with different widths,
which generally contains non-motorised vehicles, however, presents a modelling
problem that cannot be solved by simple use of one-dimensional CA models.

Models for mixed motorised and non-motorised flows must be appropriate for
the particular traffic mix and the manner in which the flows are composed. Thus,
models of mixed traffic in India must represent flows arising from an absence
of lateral positioning rules, i.e. flows that are “homogeneously heterogeneous”;
models of mixed bicycle and motorised traffic in China are required to reflect
flows on roads with dedicated bicycle lanes that accommodate several bicycles
travelling abreast alongside motorised traffic lanes; and models for Dublin have
to deal with predominantly single-file bicycle traffic sharing mostly narrow lanes
with motor vehicles, in the absence of bicycle-specific controls. Accordingly, the
models reviewed in [9], including [7], aimed to reproduce the broadly heteroge-
neous traffic typical of Indian cities, mostly through spatially continuous simu-
lation. [6] and [11] developed CA models with multiple cell occupancy, reflecting
size and shape of different vehicles, for traffic with those same characteristics,
on a stretch of road. The Chinese conditions are tackled in a model by [8], where
the idea to use a discrete form of the Burgers equation as a basis for CA update
rules [14], is applied to bicycle traffic, for which it is quite suitable, since it allows
multiple occupancy of cells. [10] use the same model for the study of interac-
tions between car and bicycle flows at an intersection. The car-following model
described in [17] allows for interactions between motorised and non-motorised
vehicles in two dimensions and includes impact of other vehicles positioned lat-
erally and behind, when determining the behaviour of any individual unit.

2 General Model

In [16] we introduced a general spatial model definition method, which facilitates
the transposition of natural geometric representations of network elements or sec-
tions into abstract representations in a systematic way. Figure 1 shows examples
of all the constructs that are used with this method. Their descriptions follow.

1. The one-dimensional cellular automaton space (OCAS) is the basic building
block. A vehicle on a network constructed using this method is always moving
along an OCAS1. An OCAS consists of cells that are all the same size, but the

1 In the case of lateral movements, e.g. lane-changing, the vehicle would ‘hop’ into
another OCAS. While considered in the general model, such movements are not
dealt with here.
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Fig. 1. Examples of spatial model constructs

cells belonging to one OCAS can be of a different size to the cells belonging
to another OCAS (e.g. OCAS a and OCAS b in Figure 1). Differently sized
vehicles are accommodated by OCASes with different cell sizes.

2. An OCAS can connect to another OCAS with the same cell size, so that
a vehicle moves from the last cell of the first OCAS onto the first cell of
the second OCAS (e.g. in Figure 1 OCAS i is connected to OCAS d).If an
OCAS connects to more than one other OCAS (as is the case with OCAS d in
Figure 1, which connects to OCASes f and e), this causes a divergence. Simi-
larly, more than one OCAS connecting to a single OCAS form a convergence
(OCASes f and g connecting to OCAS h is an example).

3. OCASes can run across each other, or intersect (for example, OCAS c and
OCAS f intersect in Figure 1).

4. OCASes can belong to the same road (OCASes a and b in Figure 1 belong
to the same road). OCASes on the same road may overlap, as in the last
example, which means that two vehicles, if each is moving on one of the
OCASes, cannot pass each other.

5. One final construct allowed by the modelling method is overlap between cells
within an OCAS itself. This serves the purpose of imposing a slow-down on a
vehicle passing through the overlapping cells (an example is shown in Figure
1, in OCAS c: the tree cells starting, respectively, at lines lCB1, lCB2 and
lCB3 and ending, respectively, at lines lCE1, lCE2 and lCE3 all overlap with
each other2.

The behaviour model is based on the Nagel-Schreckenberg (N-S) update rules
[12]. These can be formulated as follows:

2 The example of overlap within an OCAS in Figure 1 is for demonstration purposes,
as it is needed only where it models delay in areas of interaction with other OCASes.
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1. Acceleration: if vi < vMAX and vi < di, vi → vi + 1
2. Slowing: if di < vi , vi → di
3. Randomisation: with probability pR, vi → vi − 1
4. Vehicle motion: each vehicle is advanced vi cells

where i is a vehicle’s identifying index, vi is the ith vehicle’s velocity (in cells per
unit of time), di is the number of free cells to the nearest vehicle ahead of the ith

vehicle (in cells) and vMAX is the maximal velocity. The first three rules update
the velocity (e.g. vi → vi + 1 means that velocity vi is increased by 1). The
first two are based around velocity limit min(vMAX, di) imposed jointly by the
maximal velocity and the distance to the vehicle ahead, while rule 3 introduces
stochasticity. The fourth rule prescribes that the ith vehicle be moved along the
CA space by vi cells in the appropriate direction. The updates are synchronous,
which means that rules 1-3 are applied to all vehicles in the system, followed by
movement of all vehicles in the system, at each time step.

Our model builds on these rules, extending them in a number of ways:

– The rules are applied both to bicycles and cars. Each type of vehicle has
a separate vMAX value.

– Instead of counting the free cells to the nearest vehicle ahead, the model
counts the number of un-impinged cells ahead. An impinged cell is that for
which any overlapping cell (including itself) is occupied. The implementation
represents overlaps between cells with bits, which makes the checking of
impingement efficient.

– Another three factors are added to contribute to the velocity limitation.
1. proximity of an intersection at which it is going to turn
2. proximity of a conflict point (either an OCAS merge or an intersection

of OCASes)
3. (in the case of cars only) the longitudinal proximity of a bicycle in an

OCAS on the same road and adjoining the car’s OCAS
The three factors are quantified in Table 1.

Table 1. Velocity limits on approach to turn/conflict/bicycle, chosen so as to allow
vehicles to reach the velocity of 1 at the last cell before turn/bicycle and 0 before
unresolved conflict, while decelerating, at most, by 1. The table is for maximal velocity,
vMAX, of 3 for cars and 2 for bicycles. The numbers in the first row represent the
number of steps ahead that would cause entry into turn or conflict on bring a car
beside a bicycle.

6 5 4 3 2 1 0

Max velocity of turning bicycle - - - - 1 1 -
Max velocity of turning car - 2 2 2 1 1 -
Max velocity of bicycle at conflict - - - 1 1 0 -
Max velocity of car at conflict 2 2 2 1 1 0 -
Max velocity of car near bicycle - 2 2 2 1 1 1
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– For the navigation of divergences vehicles are simply assigned probability
of turning values. As part of the specification of a spatial element, conflicts
are characterised by a resolution rule, where one OCAS has priority and
the other must give way. The model applies a ‘soft yield’ to all conflict
situations where a vehicle has to give way. This means that it inspects for
any arriving vehicles in the conflicting OCAS and if it deduces, based on the
other vehicle’s velocity, distance and the rules for vehicle behaviour, that the
other vehicle cannot, in the next time step, reach a cell that overlaps with
it’s own path, the inspecting vehicle advances. The inspecting vehicle only
avoids crashes but does not attempt to clear the intersection quickly enough
to ensure it is not obstructing other vehicles.

Armed with this set of rules for traversing any combination of spatial items
defined using the method described earlier, vehicles do not need to learn any
additional behaviour, even for the simulation of traffic on arbitrarily complex
networks.

3 Intersection of Two Single-Lane Roads

Figure 2 shows the geometry of two spatial elements, a straight road stretch
and an intersection of two one-way roads, and how these have been reduced to
a number of representative OCASes of interest. From the picture, the following
information was extracted to form the abstract model of the space. The abstract
model, with information types numbered to match the corresponding spatial
model construct descriptions in Section 2, follows.

1. List of OCASes deduced from the pictures. For stretch of road in Figure 2a:
car and bicycle OCAS, CSR{50} and BSR{100}. For intersection in Figure
2b: CSN{2} (car south-north3), CSW{4O} (car south-west), BSN{4} (bicy-
cle south-north), BSW{4O} (bicycle south-west), CEW{2} (car east-west),
CEN{4O} (car east-north), BEW{4} (bicycle east-west), BEN{4} (bicycle
east-north). The number of cells in the OCAS is given in curly brackets,
followed by an O if some of the cells in the OCAS overlap. Bicycle OCAS
length is half the length of a car OCAS; bicycle OCAS width is half the
width of a car OCAS.

2. List of all existing and potential OCAS connections, which implicitly pro-
vides information on convergences and divergences. These do not occur in the
road stretch, while in the intersection they are found as follows: an external
bicycle OCAS may be connected to OCAS pair (BSN, BSW) or to (BEW,
BEN), while an external car OCAS may be connected to OCAS pair (CSN,
CSW) or to (CEW, CEN), each of those four cases forming a divergence;
OCAS pairs (BSN, BEN), (BSW, BEW), (CSN, CEN) and (CSW, CEW)
may each be connected to an external OCAS of the appropriate vehicle type,
to form a convergence.

3 These directions are taken to be north upwards on the page etc.
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a) b)

Fig. 2. Spatial model of (a) a road stretch and (b) an intersection of two one-way
streets. The road stretch consists of two OCASes: as bicycle one 100 cells long and
a car one 50 cells long, which run alongside each other. The element consists of four
pairs of OCASes: south-north (SN), south-west (SW), east-west (EW) and east-north
(EN). Each pair includes a narrower bicycle OCAS to the left (when viewing in the
direction of movement) and a car wider OCAS to the right, to reflect the positional
discipline with which cyclists share roads in cities like Dublin. The division of only
bicycle OCASes into cells is shown, to avoid clutter in the picture. The bicycle SW
OCAS (BSW) consists of four overlapping cells (BSW1, BSW2 etc.) and so does the
bicycle EN (BEN) OCAS. Bicycle SN and EW OCASes have 4 non-overlapping cells
each. The car OCASes, although this is not shown in the picture, SN and EW have 2
non-overlapping cells each, while SW and EN have 4 overlapping cells each.

3. Information on all the conflicts in the spatial element. An example of such
a conflict is that occurring between the car SW OCAS and the bicycle SN
OCAS in the intersection. This particular conflict can be described fully
with information about the affected cell ranges: cells 1-4 of the CSW OCAS
and 2-3 of the BSN OCAS; and about direction of conflict: from the left for
CSW OCAS and from the right for BSN OCAS. There are 13 conflicts in
the intersection and none in the road stretch.

4. Information on any bicycle OCAS adjoining a car OCAS: adjoining pairs are
(BSR, CSR), (BSN, CSN), (BSW, CSW), (BEW, CEW) and (BEN, CEN).

5. An impingement table, recording all overlaps between cells, transposed from
the graphical representation of the OCASes. The entries are binary, indicating
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overlap/no overlap between each pair of cells. The impingement table for the
stretch of road consists of zeroes only.

This information, extracted from the geometric representation of a spatial ele-
ment, is used by the vehicles in applying the update rules.

4 Simulation Scenario and Results

The simulation scenario spatial model is shown in Figure 3. It consists of an
intersection element and four straight road elements, like those in Figure 2.

Fig. 3. Schematic repre-
sentation of simulation
scenario space. The inter-
section from Figure 2b is
connected to 4 stretches
of road from Figure 2a to
form the shape of a ’+’.
The arrows show the di-
rection of flow for each
stretch of road.
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Fig. 4. CSN (car south-north) flow as a function of car
insertion probability, for several values of bicycle insertion
probability. All pI = 0 in EW direction and all pT = 0.

Maximal velocities of 3 and 2 for cars and bicycles, respectively, were used.
With Nagel and Scheckenberg [12] real-life value assignments of 7.5m cell lengths
and 1s time steps, this corresponds to 81km/h and 27km/h, which can be consid-
ered reasonable upper limits for an urban setting. The randomisation parameter
used is 0.1. Insertion of vehicles at the beginning of the east and south roads,
takes place at each time step, before rule application, with a certain probability
of insertion for each OCAS. A new vehicle is placed on the initial stretch of
road at position vMAX − 1 or the farthest unimpinged cell, whichever is lesser
on the south and east end of the simulation space. Simulations were run for two
priority cases: one where priority is given to vehicles on the east-west road and
one where priority is given to vehicles on the south-north road.

As simulations have shown that flow values do not increase for values of
insertion probability greater than 0.7 hence the diagrams do not include higher
insertion probability values.

Figure 4 shows the car flow (number of cars that pass a certain point in the
road per unit of time) values for CSN OCAS, as a function of car SN insertion
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Fig. 5. Flow capacities as a function of other flows. The capacities are shown for each
OCAS in the intersection in the case of priority given to the east-to-west road.
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probabilities (probability of vehicle insertion onto the CSN OCAS of the south
road section), for a selection of bicycle input probabilities for the BSN OCAS.
The CSN OCAS capacity, which is the CSN OCAS flow value at insertion prob-
ability of 0.7, falls with the presence of bicycles on the BSN OCAS, since cars
slow down in the presence of bicycles, according to the behaviour rules.

The capacity information has been extracted from simulation results for each
OCAS in the intersection, as affected by single flows on other OCASes in the
intersection. Figure 5 shows the results of this extraction for the case of east-
to-west flow priority. The dramatic effect of most of the other flows on all the
non-priority OCASes is immediately noticeable. Also, the BEN flow is negatively
affected by the CEW and CEN flows, even though it is on the priority road,
because “local” priority lies with cars sharing the same road.

5 Conclusion

The method developed for transferring the geometry of modelled infrastructure
into an abstract representation is designed to facilitate scalability of the repre-
sented network and the systematic incorporation of new network elements into
the model for heterogeneous traffic. A two one-way road intersection is modelled
using this method as an example of the model’s application and to demonstrate
the utility of the model in reproducing qualitative relationships between the
many flows of a network segment.

Further work will involve the development of a catalogue of network elements
and investigation of interactions between bicycle and motorised flows on a large
network. Because comprehensive real data, and especially single-vehicle data, for
heterogeneous traffic and inter-modal interactions in a network are not readily
available, initial quantitative assessment of results will be based on sensitivity
analysis of network simulation result ranges and emergent properties respect to
un-doubtable relations such as the fact that bicycles move more slowly than
cars, that cars slow down (rather than speed up) in the presence of bicycles on a
narrow shared street and the patterns of cross flow found on real streets. This, in
combination with flow data, which is available for some scenarios, may provide
a basis for the model’s successful calibration. If it proves to be insufficient, data
collection by the authors may be required.

Acknowledgement. This work is funded by the Irish Research Council for
Science, Engineering and Technology (IRCSET), through an ’Embark Initiative’
postgraduate scholarship, addressing the ’greening’ of city transport.
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Abstract. This paper presents a concept of incorporating information
flow control (IFC) mechanisms into service-oriented systems. As opposed
to existing IFC proposals, commonly imposing requirements hard or im-
possible to achieve in service-oriented environments (such as analysis of
the application code), our solution fully complies with the Service Ori-
ented Architecture (SOA) model. We present how IFC can be managed
in an SOA system by using ORCA security policy language. We also
describe two possible implementations of such SOA-specific IFC mecha-
nisms using cryptographic keys and poly-instantiated web services.

1 Introduction

Service Oriented Architecture (SOA [8]) is today a well-known paradigm for de-
veloping large scale distributed systems which can run complex computations
and take requests from many users distributed all over the world. One of the key
problems in such systems concerns security issues. However, most of the security
solutions provided today for the SOA systems only take access control issues
into consideration. The approaches used for modeling security restrictions suffer
from lack of information dissemination control after access to this information
has been once authorized. Allowing a service uncontrolled use of any received
confidential information (e.g. when further invoking other services) causes a seri-
ous risk of unauthorized information dissemination. Thus, information flow con-
trol (IFC [4]) mechanisms are an imperative security requirement which must be
addressed where any sensitive information is processed in an SOA environment.
Informally, IFC requires the system to ensure noninterference [5] which identifies
the authorized information flow in the following way: low security level outputs
of a program may not be directly affected by its high security level (confidential)
inputs. Low level data can never be influenced by high level data in such a way
that someone is able to determine the high level data from the low level output.
The real world case of using IFC for securing information often arises in the
context of HIS (Health Information Systems). Let us consider a hospital using
SOA-based software to manage his day-to-day activities and patients’ medical
data. This information is often highly confidential and must be released only to
authorized medical personnel. Several hospital departments, such as cardiology,
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accounting or main pharmacy, share different information regarding patients and
their Electronic Health Records. However, specific information categories must
be released only to the authorized departments and under strict control, e.g. as
personal treatment data must not be available to the accounting department. It
is the responsibility of IFC to ensure this.

One can observe that the IFC idea of controlling access to data is somehow
similar to goals of Digital Right Management (DRM) technologies and languages
such as XrML [3]. They are used to control access to various types of digital
media. To some extent, both DRM and IFC have similar goals. However, DRM
focus is on copyright protection, while IFC is focused on controlling information
propagation across a system. Thus, in practice, IFC requires specific approaches
and solutions.

There is some ongoing research on how to implant IFC in service-oriented sys-
tems. The main difficulty arises from the fact that the knowledge necessary to
precisely analyze and understand the exact information flow can be derived from
the source code only [10]. Knowing the source code, we can analyze what data
is received at the input, how this data is processed and at which output channel
it is delivered. This effectively gives us a chance to recognize and stop unautho-
rized information flow. Source code analysis, however, is known to be difficult
to perform, time consuming and generating additional costs [15]. Moreover, it
is impractical for service-oriented systems, since the SOA implementations offer
full autonomy of services possibly originating from third-party providers. Thus,
it is hard or impossible to externally enforce IFC mechanisms inside the applica-
tion code of provided services. Moreover, there is usually no direct way to verify
the presence of IFC mechanisms inside the service.

The language-based IFC approach focuses on using special languages for defin-
ing flow control restrictions. For example, the approach presented in [7] offers
direct control on how information is processed using static analysis of informa-
tion flow through Jif (Java information flow). Jif is used to certify programs
to permit only authorized information flows. There are also proposals of using
type calculus for IFC [12,13]. The main drawback of all these approaches is the
requirement for source code developers to use specific languages.

Another approach, the trust-based [11,16], is more suitable for service-oriented
systems. This approach assumes assigning a trust level to applications. This
level reflects knowledge about formerly performed IFC inspection of possible
unauthorized internal information flows. Knowing a trust level of each service,
sensitive information can be disseminated to trusted applications (services) only.
The main problem of this approach is no guarantee that a trust level (arbitrary
assigned to the service by any external entity) is appropriate, since no global
trust certification authorities exist so far. Moreover, the SOA paradigm allows
the implementation of a given service to change without any notice to the service
consumer. This will require to reassign the trust level on each change. It will still
be necessary to detect possible implementation changes before using services to
forbid information flow that would become unauthorized due to such changes.
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All the approaches described above impose strong requirements of internal con-
trol of service implementation. Since one of fundamental properties of the SOA
model is autonomy of services, provided by third party vendors and being unlikely
under any internal control, these approaches are of limited use in service-oriented
environments and, in practice, have never been successfully applied there. In this
paper, we present a novel approach of incorporating the information flow control in
SOA systems. We introduce the concept of Lightweight IFC as a simplification of
the general IFC problem, aimed at controlling service-oriented interactions with-
out sacrificing the autonomy of services. Compared to existing solutions, this pro-
posal offers full compliance with the SOA processing model and does not require
any source code analysis. We also describe, how information flow control can be
managed in an SOA system by using a security policy language and environment.
Finally, we describe two possible implementations of the proposed IFC concept
using cryptographic keys and poly-instantiated web services.

Our concept of IFC in SOA is closer to obligation and capability concepts for
controlling communication between services, rather than to pure access control.
We focus on labeling messages and services with a security level and information
category [1]. The security level represents the degree of desired data confiden-
tiality, while the information category determines the possible scope of its usage.
Labeling is governed by a new type of security policy rules. Only services with
security labels corresponding to message labels are allowed to process messages.

This paper is organized as follows. In section 2, we present the main idea
of our proposal. The proposal is then formalized in section 3. In section 4, we
describe two possible implementations of our proposal. Concluding remarks are
finally given in section 5.

2 Problem Formulation

In SOA, we can perceive the IFC as a problem of controlling how the low and high
level data is disseminated among services. If we consider the whole SOA system
as a single program and services as processing units, the proposed perspective
can be used to project the current IFC approaches to the service-oriented envi-
ronment. This conforms to the SOA model, since in an SOA environment we are
expected to invoke a given service, knowing only its external interface and the
presumed functionality it claims to offer. The internal structure of the service is
unknown.

Thus, to enforce flow control in an SOA environment we introduce the fol-
lowing IFC properties: (1) proper isolation between information belonging to
different security levels in communication between particular services, (2) dy-
namic control of information input (from communication) to services — what
we call invocation IFC, and (3) ability to prevent a service which has received
a sensitive information from passing it outside (e.g. save it to an external stor-
age or send it to other services) without our control (i.e. with different security
levels) — output IFC.

Next, we will describe how these properties can be effectively provided in a
service-oriented environment.
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2.1 Lightweight IFC for SOA

The main idea of our proposal is to impose control over the interactions between
services with the use of a system-wide IFC policy. Services will be unable to
compromise security levels assigned to data, i.e. they will not reuse (resend) the
sensitive data with lower security levels. To accomplish that idea we will use
a distributed policy enforcement model of ORCA framework [2]. That model
(actually basing on former proposals of [6] and [14]) distinguishes several key
components which are used to enforce security policy restrictions. Policy En-
forcement Point (PEP) components are communication intermediaries between
services. PEP activities are managed by security policy rules which define restric-
tions on service accessibility and communication protection. The policy rules are
specified in a security policy language. Among other security policy languages,
ORCA policy language is the first to support SOA-specific requirements, such
as automatic negotiation of security attributes (namely obligations and capa-
bilities) for dynamic service composition. ORCA policy language can be easily
extended for the need of controlling information flow between web services.

In order to fulfill the isolation property we extend message format exchanged
between services with security labels which are composed of a numerical secu-
rity level and an information category name. The Policy Decision Point (PDP)
grants similar labels (clearance) to particular services, according to the IFC pol-
icy. The invocation IFC is enforced by PEP modules, by allowing a service to
process a message only if the message label and the service label (or any of the
granted labels) match.

The output IFC property requires that a services cannot redistribute the re-
ceived sensitive information in an unauthorized manner. Due to the fundamental
assumption of autonomy of services, there is nothing we can truly do in SOA
to absolutely control what the service actually does with received information.
However, at the communication layer, we can externally control of which part of
the rest of the whole system a given service communicates with. In practice there
is no need to analyze the internal structure (source code) of services, but only
to control all the input and output communication for a given service. Briefly,
the output IFC requires an output from a service to go only through controlled
communication channels.

Having achieved all three IFC properties one can create a SOA system with
control of information dissemination, not absolute, yet sufficient for most service-
oriented processing. We call this lightweight information flow control for web
services.

It can be noticed that the concept of Lightweight IFC is a simplification of
the general mandatory access control model [12], intended here to control only
service-oriented interactions. No “read up” (excess of authorization) and no “write
down” (decrease of information security level) are allowed for accessing the in-
formation from service invocations and responses during a whole communication
session.

A simple illustration of providing IFC in the lightweight manner for a service-
based system is presented in Figure 1. This figure depicts two communication
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sessions, one initiated by Client1 and the other – by Client2. Each session involves
several services. Not all services here are authorized to participate in the data
flow from both clients. The information from a particular client request is only
accessible to such services that have been granted according clearance labels by
the security policy. For example, Service3 cannot process requests from Client1,
due to incompatibility of the security label of invocation requests originated
from Client1 and Service3’s clearance labels. However, Service4 being granted
an appropriate clearance level can be involved in that session. Service1 and
Service2 are allowed to process information from both sessions.

Fig. 1. Lightweight IFC example

More details on how to control the distribution of information from particular
client sessions and how to accomplish the isolation of data flows labeled with
different security labels are presented in the following section.

3 Formal Model

In order to formalize the proposal we outline here the essential part of the
Lightweight IFC model. First, we will specify general rules which organize se-
curity level relations. Then, we will present how these rules are implemented in
ORCA.

Let us define a security label Λ = 〈L,C〉, where L is a security level, and C is a
set of information categories. Information category is not related to any security
level. Information categories are necessary to organize information in information
domains (such as financial or medical data domains). Security levels are integer
values (higher value denotes higher level) organized in relations presented below
along with Figure 2. For simplicity of the presentation we consider only a single
information category in this figure.

Each interaction message (invocation request or response) is labeled with a
security label. Currently, in ORCA, we assign one label to a whole message,
however, this can be easily extended to labeling separately particular parts of
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the same message. For instance, the security level of the invocation request
sent from Service1 to Service2 is denoted by Q1. The response sent back to
Service1 is labeled with a security level denoted by R1. Initially, for each session,
the initiator (actually PEP of the original client starting the session) labels
its requests (Q0) according to the IFC policy (Q0 = EOUT

0 , where EOUT
0 is the

security level assigned to the client by the policy).
Each service is assigned an interval of security levels one for incoming mes-

sages (for Service1 denoted by 〈EINmin
1 , EINmax

1 〉) and one for outgoing messages
(denoted by 〈EOUTmin

1 , EOUTmax
1 〉).

Fig. 2. Security levels assigned to the services

In the Lightweight IFC framework the following relations must always hold:
IFC1: EINmin

i ≤ Qi−1 ≤ EINmax
i

IFC2: EOUTmin
i ≤ Ri−1 ≤ EOUTmax

i

IFC3: EOUTmin
i ≤ Qi ≤ EOUTmax

i

IFC4: EINmin
i ≤ Ri ≤ EINmax

i

IFC5: Qi ≥ Qi−1, i.e. no “write-down” is allowed on nested invocations
IFC6: Ri−1 ≥ Qi−1, – no “write-down” on response

For each incoming request, its security level Qi−1 is verified against relation
IFC1, for outgoing response Ri−1 – against relation IFC2, for outgoing nested
request Qi – against relation IFC3, and for incoming nested response Ri – against
relation IFC4. Additionally, relations IFC5 and IFC6 allow us to hold proper
security levels during nested invocations, which is crucial to ensure IFC at the
communication layer. Since Qi−1 ≤ EINmax

i (from IFC1), then there is no read-up
on inbound message.

ORCA IFC security policy rules define what security level and information
category is a service authorized for. A service can be authorized for a range of
security levels and a set of information categories. Sample security policy rules
governing IFC for Service1 are presented below in ORCA language:

Serv i ce1 can accept inbound IFC with category={A}
and { security_level_in_min =2, security_level_in_max=3}.

Serv i c e1 must use outbound IFC with category={A}
and { security_level_out_min=3, security_level_out_max =3}.

According to these rules the service is not allowed to receive incoming messages
other than labeled with information category A and security level 2 or 3. Also,
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any outgoing messages will be automatically labeled with that category and
security level 3.

4 Implementations

Now, we will complement our proposal with a description of two implementa-
tions. The first one uses cryptography to control the information flow between
system entities, ensuring that an unauthorized service will not be able to de-
crypt the received information (message). The second one makes use of distinct
instances of each service (one for each authorized level) and redirects the infor-
mation to the appropriate instance, according to message labels.

4.1 Cryptographic/Cryptographically-Driven Isolation

The first IFC implementation uses asymmetric encryption to restrict access to
the information inside messages. The whole body of the SOAP message is en-
crypted. The idea is to ensure that only services authorized for specific labels
are able to decrypt information from given messages.

PEP components, as we already know, are intermediaries which intercept
messages and put some security controls on them. These components are now
responsible for intercepting and cryptographically secure outgoing messages re-
garding security label. Each security label has a pair of keys assigned. One key
is for encrypting (KOUT

s ) and the corresponding one is for decrypting (KIN
s ).

These key pairs are dynamically generated and distributed by the policy execu-
tion environment (PDP in ORCA) to the PEP components during the service
registration process. The key distribution is governed by the ORCA IFC security
policy rules.

The main advantage of this solution is the ability to process messages carry-
ing data with different security labels by the same service instance, as long as
the instance has been granted (by the policy execution framework) appropriate
cryptographic keys. However, if multiple communication sessions are processed
simultaneously, there is necessity to maintain a session identifier for nested invo-
cations to correctly label the outbound messages (the session identification may
involve the service cooperation). Not knowing the source code, we need to trust
the service not to tamper the session identifier on nested invocations. In the next
subsection, we present another solution which overcomes this drawback.

4.2 Poly-instantiated Services

Another implementation of the proposed IFC concept uses poly-instantiated
services. Here, a given service may be launched into multiple instances. Each in-
stance is automatically labeled with a given security label which is designated by
the security policy written in ORCA. Each service instance can receive and pro-
cess only incoming requests with corresponding security labels. The invocation
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Fig. 3. Multiple service instances

IFC property is achieved by using PEP as an intermediary. Since PEP compo-
nents control all inbound and outbound messages from and to a given service
instance, even untrustworthy services cannot cause information leakage dissemi-
nating messages to services which do not have necessary security clearance. The
output IFC property is achieved by labeling (again via PEP) all the messages
sent by a given service instance (i.e. responses or nested invocation requests).
It is easy to observe that those outbound messages can further be received only
by instances having a proper security label. Finally, the isolation property is
achieved here, as PEP will not allow a given instance to receive inappropriately
labeled requests.

Figure 3 presents a model of poly-instantiated service, where a PEP compo-
nent controls simultaneous interactions, differently labeled, using two distinct
instances of the same service. Each service instance is created and further con-
trolled by PEP. PEP also dispatches incoming requests to the proper service
instance with respect to security labels assigned to the incoming requests and
each service instance.

The poly-instantiated approach allows us not to worry about isolation of con-
current sessions processed by the same service. Since another instance can be
created for each communication session, no additional mechanisms are needed
to maintain a proper security level for each session.

The main drawback of this solution, comparing to the previous one, is much
larger resource utilization, as several instances of each service obviously consume
more resources. There are, however, possible optimizations on the number of
service instances. For example, it is possible to use resource utilization metrics
and control the number of instances which can be launched and running at the
same time.

Currently, a prototype implementation of Lightweight IFC extension of ORCA
framework [2] has been developed for WCF platform [9]. We make use of stan-
dard IEndpointBehavior interface to control creation of service instances. Fig-
ure 4 shows the essential part of the implemented application dispatching mech-
anism. In the presented solution, ORCA PEP gains control over the creation
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of service instances with the use of PerCallInstanceContextProvider class
(line 3) which implements InstanceContextProvider interface. The newly cre-
ated object will dispatch one service instance per each invocation (per-call
behavior). Employing our own implementation of InstanceContextProvider
interface enforces inevitable interception of incoming and outgoing messages
(ServiceMessageInspector) and allows processing only the messages conform-
ing to the instance’s security label (ServiceParameterInspector).

Listing 1.1. Control of service instances in ORCA PEP

1 pub l i c void ApplyDispatchBehavior ( Serv iceEndpoint endpoint ,
EndpointDispatcher endpointDispatcher )

{
2 _cacheDispatcher .RunAs = PEPState . S e r v i c e ;
3 endpointDispatcher . DispatchRuntime .

InstanceContextProv ider = new
PerCal l InstanceContextProv ide r ( ) ;
. . .

4 endpointDispatcher . DispatchRuntime . MessageInspectors .Add(
new Serv i ceMessage In spec tor ( ) ) ;
5 fo r each ( DispatchOperat ion d ispatchOperat ion in

endpointDispatcher . DispatchRuntime . Operations )
{

6 d ispatchOperat ion . ParameterInspectors .Add(
new Serv i ceParamete r In spec to r ( ) ) ;

}
}

5 Conclusions

In this paper, we have proposed a novel security policy definition framework for the
SOA-compliant environments. The presented framework differs from most existing
policy frameworks in focusing on aspects crucial for the SOA-based systems, such
as full autonomy of service implementation, dynamicity of service compositions
and support for interaction obligations and capabilities, among others.

The proposed Lightweight IFC is a solution focused only on controlling which
services participate in information processing. Even untrustworthy services can
be involved in the processing without the need of source code analysis, im-
practical or impossible in service-oriented environments. This solution has been
experimentally verified using WCF platform [9].

Further work will be focused on development of automated mechanisms for
IFC policy verification, concerning analysis of access control and security clear-
ance assignments across the system, and detection of clearance conflicts (inco-
herent assignments) between particular services.

Acknowledgment. The research presented in this paper was partially sup-
ported by the European Union in the scope of the European Regional Develop-
ment Fund program no. POIG.01.03.01-00-008/08.
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Abstract. FaDe service is a novel proposal of failure detection service
based on the REST paradigm for the SOA environment. Modularity of
architecture allows to build generic service that can be further optimized.
FaDe service is fully distributed and provide two communication proto-
cols (gossip, Kademlia) that allow FaDe nodes to cooperate efficiently
and make FaDe very scalable. Failure monitoring is based on accrual fail-
ure detector which provides flexibility in the context of different client
expectations considering the speed and accuracy of detections.

Keywords: failure detection, REST paradigm, distributed systems, ser-
vice oriented architecture.

1 Introduction

Distributed systems, as a computing platform constitute a very promising
research and business area due to their availability, economic aspects and scal-
ability. The intense development of Grids, P2P networks, cluster and high-
speed network topologies give the possibility to allocate an enormous amount
of resources to distributed applications at a reasonably low cost. Their level of
parallelism can improve the performance of existing applications and raise the
processing power of distributed systems to a new, higher level. Unfortunately,
those systems are failure prone and the probability that a failure occurs during
computations is higher than in traditional systems. Moreover, failures of un-
derlying communication network have a great impact on system behavior and
condition. There are many techniques to prolong the time in which the com-
ponent will work correctly or even avoid failure by introducing new rigorous
technology procedures. These efforts are often very expensive and cannot ensure
full reliability of the system. Therefore, to overcome the problem one should
construct a fault tolerant mechanism to detect unavoidable failures and make
their effects transparent to a user.

Fault tolerance can be achieved by introducing a certain degree of redundancy,
either in time or in space. A common approach consists of replicating vulnerable
components of the systems. The replication can guarantee, to a large extent,
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continuous availability of resources and continuity of work, but must be com-
plemented with a failure detection mechanism. Chandra and Toueg presented
a concept of failure detectors [2], as an abstract mechanism that supports an
asynchronous system model. In [3] authors propose a new type of a failure de-
tector, called accrual failure detector. It provides a non-negative accrual value
representing the current suspicion level of the monitored process, which can be
further interpreted by the application. A general survey of the above mentioned
failure detectors can be found in [6,10,1].

Service-oriented architecture software is an increasingly popular model of soft-
ware development nowadays [4]. It provides separation of some independent
components (services), which can cooperate with each other through well de-
fined interfaces. The target network environment for this type of architecture is
a wide area network environment, characterized by high dynamics of changes of
parameters describing it, and susceptibility to failures of its individual elements
(nodes, links).

The scalable Web service FaDe, which allows a very flexible failure detection
of individual nodes, services running on them, or the unavailability of resources
provided by these services is presented below. The proposed solution takes into
account various aspects, both those concerning the environment in which fail-
ure detection will be performed, as well as those relating to client expectations
relative to this type of service.

The remaining part of this paper is structured in the following way. In Section
2 the general concept of FaDe service is presented. Section 3 describes the
architecture of the FaDe service node. In Section 4 main aspects of the failure
detection module are discussed. External interfaces are described in Section 5. In
Section 6 related work is presented. Finally, Section 7 brings concluding remarks
and summarizes the paper.

2 FaDe General Concept

Mechanisms that increase reliability are usually built into the application. This
approach makes it impossible to reuse the same component, it is also contrary
to a service-oriented approach. An independent Web service that provides func-
tionality involving failures detection in a distributed environment can be used
by different clients without having to re-implement it in every single individ-
ual application. Such an approach also allows for more efficient use of available
resources like network bandwidth or power computing.

This approach, however, requires the adoption of some additional assumptions
about how the failure detection serviceworks.First, such a servicemust assume the
existence of clients with varying preferences for speed and accuracy of detection
failure. This means that a simple binary response will not always be adequate to
meet their demands. In this context, a concept in which the mechanism for moni-
toring services will be based on accrual failure detector [3] was adopted. It gives the
possibility of transferring responsibility for the interpretation of the result to the
client, which, depending on its individual preferences to decide by itself whether
the answer returned by the service means a failure or not.
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Fig. 1. FADE schema

Another important assumption is the one concerning the ease of setup and
adjustment the service to the environment in which it operates. The WAN envi-
ronmentm characterized by high dynamics and variability, will have an impact
on the service efficiency. Therefore, the service itself should be constructed in
such a manner that its configuration and tuning to the existing conditions is
relatively easy and automatic. Another aspect that can not be overlooked is
scalability. In contrast to the services running on the local network, which by
definition are limited to a certain area, distributed services dedicated to wide
area networks must take into account the possibility of their expansion over a
wide geographical area. In this context, scalability is a key element that must
be considered.

Finally, one should mention the need of service resilience to its own failures.
As stated in the introduction, a distributed environment is prone to various types
of failures. If a failure detection service operating in such an environment is to be
an element that provides reliability of the application , it should not introduce
additional risks associated with its susceptibility to its own failure. Mechanisms
that can reduce this risk are e.g. redundancy of key components and decentral-
ization. Responsibility dispersal of monitoring the individual components will
minimize the effect of so-called “single point of failure”.

Given the above assumptions the failure detection service (FaDe), dedicated
to the distributed environment was proposed.

Figure 1 presents a sample FaDe service schema. In this case, the FaDe ser-
vice consists of four nodes. They are connected and communicate with each other
in order to exchange information about connection topology and monitored ser-
vice states. The FaDe nodes monitor three services, both WS-* compliant and
REST-based [5]. It is worth noting that FaDe nodes can monitor services that
provide SOAP or REST type interfaces. It is transparent to the client, which
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node monitors a particular service. Moreover one can distinguish three type of
clients: standard, ad-hoc and callback which use the FaDe service in different
manner. In general, clients can inquire the FaDe service about the status of
the monitored services. Depending on the type of the request, an appropriate
action is performed.

3 FaDe Node Architecture

A single instance of the FaDe service (FaDe node) consists of several functional
components. Modular architecture allows easy modification of every single com-
ponent, or even the substitution to a new one that provides compatible interface.

The Internal Communication component is a module that is responsible for
communication with other nodes that form a distributed failure detector. Its
purpose is to exchange information between the FaDe nodes. The information
refers to both the state of monitored services and the internal configuration
of the FaDe service. This communication can be realized with two different
protocols: gossip-based and Kademlia-based. As this is out of the scope of this
paper, we will not discuss different characteristics of these protocols. From the
client point of view, it is transparent which protocol is used.

The Client Interaction component provides external interfaces compliant to
WS-* standards and the REST paradigm. The next component,

The Configurationmanages the service’s configuration process. It implements
a mechanism that can accept different source of configuration data: XML local
file, online Web interface or REST based API calls, and set up the service nodes
accordingly.

The Monitoring component is the one directly responsible for monitoring the
services. It works by communicating with the monitored services in a manner
specified in the configuration with the specified frequency. Based on the results of
this message exchange the state of the monitored services can by determined by
the core component. The next section describes this mechanism in more details.

4 Failure Monitoring

As mentioned above, the failure detection abstract mechanism is used to detect
service failures. To imagine the basic idea behind this mechanism, consider a
failure detector FD and services S1 and S2. Service S1 by using FD tries to
evaluate if service S2 is crashed or alive. If failure detector’s response is crashed,
then service S1 suspects S2. A failure detector that makes no mistakes and even-
tually suspects all failed services is called a perfect failure detector. However, this
requirements are very difficult to be fulfilled in practice, due to the asynchronous
nature of real systems. So, one can weaken safety (completeness) or liveness (ac-
curacy) properties to construct an unreliable failure detector [2], which can be
used to detect failures in an asynchronous system.

A binary value, indicating that the service is working properly or is suspected
of the failure is a traditional response of failure detector. It is sufficient when its
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clients have similar expectations for speed and accuracy of detection. Unfortu-
nately, when the demands of different clients against these criteria are different,
the binary response may be inadequate. As that is the case of the FaDe service,
we decided to implement the accrual failure detector [3].

4.1 Failure Detector Response

The typical binary model of a failure detector response has serious limitations
when considering failure detection as a generic service. These restrictions come
from the fact that some clients require aggressive detection even at the cost of
accuracy, while others are interested in more conservative detection with a low
level of false suspicions instead of fast but inaccurate decisions. By using binary
response generated by a failure detection service, it is generally impossible to
fulfill these requirements. It is because the timeout threshold that marks the
line between the correct and crashed process should be different.

The accrual failure detector assumes delegation of the decision about the
node’s crash to the end user application. The failure detection module only
provides a non-negative calculated real value, that can be further interpreted by
the application. This value represents the current suspicion level of the monitored
node (Figure 2). Depending on the threshold assumed by the client, this value can
be interpreted both as a correct or a crashed state of the monitored service. The
accrual failure detector differs from traditional ones, which interpret the state of
the process by itself and return a binary response (correct/crashed) (Figure 2).
Thus, in our case, by adopting different thresholds, various clients express their
different expectations considering failure detection speed and accuracy.

As an example of an accrual failure detector application the problem of assign-
ing independent tasks to certain nodes can be discussed. The scheduler, i.e. the
master node responsible for assigning tasks, must decide which node to choose
as a worker — that is the node that executes the task. In case of failure, the
scheduler is also responsible for detecting such a situation and reassigning the
task to a new worker. At the beginning of task execution, the master node is
interested in a fast response (aggressive detection) about the operational status
of the worker, while the cost of a wrong suspicions can be neglected. As time goes

(a) (b)

Fig. 2. Interpretation of failure detector response
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by, the cost of task abortion and rescheduling due to failure suspicion grows, so
false suspicion should be reduced as much as possible. Thus, the master node
requires more accurate information about the crashes of workers executing tasks
for some time already. In these two situations, the binary response of tradi-
tional failure detector is not grained enough, as the master node may require an
aggressive detection and a conservative one at the same time.

4.2 Interpretation of the FaDe Response Value

As stated in the previous section, the value returned by the FaDe service
must be interpreted by the client. To explain this, lets consider the original
function proposed in [3] for the calculation of the suspicion level ϕ(tnow) =
−log10(Plater(tnow − tsend)), where tsend is the arrival time of the last heartbeat,
tnow is the current time, and Plater(t) is the probability that a heartbeat will
arrive more than t time units after the previous one.

Thus, ϕ value can be interpreted as follows. Having given threshold φ = 1
and assuming that the process will be considered a suspect if ϕ ≥ φ then the
probability of a false suspicion of the process by the detector will be about 10.
For φ = 2, the probability will be 1%, for φ = 3, 0.1%, etc.

The FaDe service can use various functions to calculate suspicion level. For
the moment, there are five different proposals implemented and extensive test
are performed in order to choose the most suitable ones.

4.3 The Monitoring Pattern

A widely used method to perform failure detection is a heartbeat technique. This
method is based on periodical probing nodes, in order to determine their status or
signaling own status to them. This popular technique is based on the assumption
about the maximum delivery time and uses timeouts to decide which node should
be suspected as the crashed one. One can distinguish two types of heartbeating
depending on who is the active side of the message exchange. The first and the
most simple approach is when the node sends messages (“I am alive”) about
its condition to failure detectors by itself. It is often called the push method,
as the monitored process continuously advertises (pushes) its state. The second
approach is based on interrogation (polling) and is called the pull method. In this
scenario the failure detector asks (“Are you alive?”) about the status of the node
and waits for the node’s answer. This method is considered to be better than
push one, because it allows better control of monitoring. The latter approach is
also more appropriate in the case of a failure detection service, which should be
an active part in the monitoring process. Therefore, the FaDe service performs
monitoring using the pull model. Since the detection quality, undertaken using
this mechanism, is dependent on the characteristics of the network environment
in which the monitoring process is being implemented, FaDe service offers a
wide range of optional parameters, which allow to adjust this process.
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4.4 The Response of the Monitored Service

Despite the fact that the FaDe service is dedicated to monitoring RESTful ser-
vices, it also allows to monitor services built in accordance with WS-* standards
that use the SOAP protocol. However, this was an additional functionality that
was realized in order to extend the group of clients interested in using the FaDe
and requires the modification of a monitored service. Thus we focus only on
services built in accordance with the REST paradigm.

The FaDe service uses HTTP as a communication protocol. In order to min-
imize the overhead of monitoring we decided to use the HEAD HTTP command
in instead of GET or OPTIONS. It should be noted that this is an operation
that does not change the status on the server side. Response to the HEAD
request should contain only the HTTP header (Fig. 3). It does not contain a re-
source representation, and thus network traffic is reduced significantly, and the
service response with the correct code is sufficient to conclude that the service
is available. The OPTIONS method, which returns even less information, was
not chosen because of very frequent lack of implementation of this method. The
GET method was rejected because of the need to send in response the whole
representation of the resource.

FaDe request:
HEAD / http://test.com/
Host: fd.itsoa.pl
[other headers]

Monitored service response:
HTTP/1.1 200 OK
[other headers]

Fig. 3. Monitoring interaction

By default, the FaDe service can monitor any URI that points to a node,
a service or a resource. Optionally, the monitored service may specify a
X-Monitored-Resource header to inform the FaDe service about an alternative
URI, dedicated for monitoring purposes. The choice of HTTP allows the FaDe
service to monitor traditional web servers without any modification, because of
native support for the HTTP HEAD command response.

4.5 Client Requests

The FaDe service offers three different methods to obtain information about
the state of monitored services: standard query, callback query and ad-hoc query.
The client of the service chooses one of them according to its own expectations
and preferences. These request types complement each other, creating a com-
plete and consistent interface. Below each one of them has been presented and
characterized.

Standard query. A basic method for obtaining information from the FaDe
service. In this scenario it is assumed that a service client orders monitoring
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of certain service. From now on, the service is continuously monitored by
FaDe. At any time, any client may request information about the state of
this service by sending standard query to any FaDe node. The node will
respond accordingly, or redirect the client request to another FaDe node.

Callback query. Sending continuous requests about the status of monitored
service to FaDe is not always the best solution. Often, the client requires
only information about specific change of the service state. This event-based
approach allows to react to such a change in the proper way and not engage
itself too much in the process of monitoring. Such a scenario can be realized
through callback queries. Client registers a callback request and depicts the
type of change it expects from the monitored service. If the situation de-
scribed by the client takes place, it is informed about that fact by the FaDe
service.

Ad-hoc query. In some situations, the client is only interested in one-time fast
information on a service’s state. For this purpose, a mechanism of Ad-hoc
queries has been made available. These queries are handled by FaDe in a
different manner than the other two described earlier. Verification of the
service availability is carried out in a simplified manner, consisting of send-
ing a single monitoring message. If the service response will be received in
predefined time period it is assumed that the service is available. Otherwise,
service failure is suspected.

5 Interfaces

When creating a service, it is very important to define appropriate interfaces,
that can ensure the interaction with the client service. As the FaDe service is
consistent with the REST paradigm it implies that the service interface can be
described by a tree of available resources. The tree also clearly sets out what
resources are available to the client and how it can access and modify them. The
resource tree of the FaDe service is presented in Figure 4. The client can access
specified resources of FaDe using appropriate HTTP command and URI.

Fig. 4. FADE resource tree

Figure 5presents a sample interaction scenario. Client sends a request (GET)
to an appropriate FaDe resource (/services/...) as it is interested in the state
of service located at http://test.com/. In response the FaDe instance sends
the 200 OK HTTP code indicating, that the information about the requested
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Client request:
GET /services/{http://test.com/}
Host: fd.itsoa.pl
[other headers]

FaDe response:
HTTP/1.1 200 OK
[other headers]

<service>
<uri>http://test.com/</uri>
<correct>0.075322</correct>

</service>

Fig. 5. Client query about state of the service

service is available at this node. The body contains an XML structure that
describes the details. The tag <correct> includes information about suspicion
level of monitored service. The closer the value is to 0, the higher the probability
the service is working correctly.

6 Related Work

Although FaDe is the first proposal of RESTful failure detection service, there
are frameworks for failure detection in the SOA environment that uses SOAP
protocol. FT-SOAP [8] and FAWS [7] are the solutions that consist of a group
of replica services that are managed by external components. Unfortunately,
these frameworks consist of dedicated components that represent single points
of failure within the system. FTWeb [11] has components that are responsi-
ble for calling concurrently all the replicas of the service and analyzing the
responses processed before returning them to the client. Thema [9] is an ex-
ample of framework that can tolerate Byzantine faults. The Lightweight Fault
Tolerance Framework for Web Services [13] achieve fault tolerance through a
consensus-based replication algorithm. Finally, WS-FTA [12]is an infrastructure
that adapts existing WS-* standards and by providing specialized components
allows to tolerate failures.

7 Conclusion

In conclusion, the presented FaDe service allows the detection of failures in a
distributed service-oriented environment. Thanks to compliance with the REST
architectural style, the service is lightweight and uses available network resources
sparingly. Due to resource-oriented approach, its interface is simple, clear and
allows easy integration with other services. The ability to accept SOAP requests
as well, as the ability to monitor not only RESTful services, makes the FaDe
service a very versatile proposal. By using a mechanism based on the accrual
failure detector concept, the service provides flexibility in the context of client
expectations related to the accuracy and time of failure detection.
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Abstract. When a business process executed in a SOA environment can-
not fully achieve its goal, it should perform a compensation of its already
completed activities. This method is widely used by the standards related
to the executing of business processes in SOA environments. Many of the
specifications relative to the types of process coordination, execution lan-
guages and notations which are used to design business processes are based
on this approach. Unfortunately, there is no specification which provides
mechanisms that guarantee the possibility of compensation. The lack of
such mechanisms may lead to the situations which in the BPMN standard
are defined as "hazardous". They occur when an execution of a process can
neither be completed nor fully compensated. The result of this process is
undetermined, inconsistent with intentions of a designer of a process and
can lead to the loss of consistency. These cases often enforce manual en-
gagement in resolving the situation and are a serious problem if we deal
with numerous instances of processes.

This article focuses on this issue, presents its analysis as well as a
solution to it.

1 Introduction

Most of the standards related to the executing of a long-term business process
take into account the mechanisms of compensation. These mechanisms are in-
tended to reverse the effects of the activities performed by the process up to
the moment at which the cancellation of this process is decided, and when these
activities cannot be simply aborted. Unfortunately, in the environments where
business processes are executed concurrently, due to the isolation relaxation, the
compensation of the previously completed activities might be impossible. This
can lead to the loss of consistency and require manual response. Preventing such
cases, or at least reducing them is essential for the business-to-business (B2B) or
business-to-customer (B2C ) applications, which operate in a SOA environment.

This article proposes a solution to this problem which takes into account
the current industrial specifications and standards related to the coordination of
business processes in SOA environments. In section 2 the approaches to compen-
sation presented in standards and specifications have been analyzed. In section
3, the business process model that takes into account these standards has been
presented. Based on this model, the problem of providing the possibility of com-
pensation (compensability), together with an appropriate motivation example, is
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characterized in section 4. Section 5 presents the proposal of a solution providing
compensability. Finally, the experimental results are presented in section 6. The
sections 7 and 8 are respectively discussing related works and a conclusion1.

2 Compensation and the Standards

The approach to compensation varies between standards. Some of the specifica-
tions such asWS-BA [9] assume that eachWeb Service used by the business process
is responsible for compensating its activities. In the case of this specification the
compensation is triggeredby a simple message which is sent to the Web Service. An
application that performs the process has no knowledge about how the compensa-
tion is performed, and also does not have any impact on it. This approach is similar
to the rollback of transaction within the database management system, when the
implementation of the rollback is beyond the definition of the transaction.

A completely different solution is used in the business process definition lan-
guage WS-BPEL [4]. In this case, the compensation activities are a part of the
process definition. The application is responsible for performing these activities
and their implementation.

In the latest version of the specification BPMN [1], which is used for busi-
ness process modeling, another solution has been proposed. On the one hand,
a business process designer can define certain compensation for each of the ac-
tivities undertaken within the process. On the other hand, a coordination type
(eg, compliant with the WS-BA) can be declared which will be used to coordi-
nate the so-called transactional subprocesses. Therefore it can be stated that the
BPMN specification tries to combine both approaches with the compensation.
Consequently, the system approach in which the knowledge of the compensation
is on the side of Web Services and compensation is run through the mecha-
nisms of coordination, and the procedural approach in which the knowledge of
the compensation for particular parts of the process is contained in its defini-
tion. The inclusion of both approaches in the BPMN specification is a strong
signal that both solutions are complementary and both should be taken into
account. Furthermore, it is the confirmation of the fact that the executing of
business processes, which must have certain properties, may not only be based
on a simple execution of their definitions, but it also requires (in particular for
the transactional subprocesses) the support of the coordination mechanisms.

3 Business Process Model

In further considerations we assume the following model of business process. A
business process PB consists of the activities

PB = {A1, A2, . . . , An} ; Ai ∈ A
where A is the set of all activities.
1 The research presented in this article was partially supported by the European Union

in the scope of the European Regional Development Fund (ERDF) program no.
POIG.01.03.01-00-008/08.
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Each activity Ai can have the related compensation activity A′
i. For such case

we use the following notation:A′
i � Ai. The symbol � indicates that the activity

A′
i is a compensation activity related to the Ai activity.
The Ac denotes the set of activities which have related compensation ac-

tivities, while the set of the activities that do not have related compensation
activities will be denoted as AN . For such activities the following conditions are
met: AN ∪Ac = A and AN ∩ Ac = Ø.

Moreover, further conditions are also fulfilled:

∀Ai ∈ Ac∃A′
i ∈ AN , A′

i � Ai

∀Ai ∈ AN¬∃A′
i ∈ A, A′

i � Ai

Note that the compensation activity may not have its own compensation activ-
ities, because it belongs to AN .

Each activity Ai ∈ A may be an action, subprocess or just a collection of
other activities.

Ai = ai ∨ ppi ∨ {Ai1 , Ai2 , . . . , Ain} ; Aij ∈ A
By action ai we understand the smallest, indivisible, unit of a business process.
An example of the action can be a Web Service invocation.

A subprocess consists of activities:

ppi = {Ai1 , Ai2 , . . . , Ain} ; Aij ∈ A
We assume that the subprocess can have properties, which are declared and
which require the use of coordination mechanisms which are beyond the defini-
tions of subprocess activities. BPMN uses the term of a transactional subprocess
in this case. We also use this term to a part of the process which uses coordination
mechanisms.

The transactional subprocess may result in an approval or cancellation. In the
case of a cancellation of transactional subprocess ppi it is required to perform
all compensation activities A′

ij such that A′
ij � Aij ; Aij ∈ ppi.

We assume that the transactional subprocess can have the following properties
provided by the coordination mechanisms: optionality (which determines the
impact of the failure of the transactional subprocess on the success of the parent
transactional subprocess), independence (which determines the impact of the
failure of the parent transactional subprocess on the success of the transactional
subprocess) and compensability. The purpose of the first two properties is to
simplify the definition of business processes, by moving parts of its implementa-
tion into the system coordination mechanisms. These properties were discussed
in details by us in [10] and are not considered in this paper.

4 Compensability

The third property, which may be required by the subprocess is compensability.
As it has been already mentioned, a cancelation of transactional subprocess ppi
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determines the need of compensation for all activities Ai ∈ Ac, which are the
components of transactional subprocess ppi and that have been completed until
the decision to cancel that subprocess has been made. A situation in which
only some of these activities will be compensated can lead to inconsistency and
therefore is highly undesirable. Compensability aims to eliminate such cases,
thus it can be defined as follows.
Definition 1. The compensability property of transactional subprocess ppi

is ensuring capabilities to perform all compensation activities A′
ij such that

A′
ij � Aij , where Aij ∈ ppi, until the time when the transactional subprocess

ppi is completed.
It is well known that the primary and most common task of compensation A′

i,
such that A′

i � Ai, is to reverse partially of fully the effects of activity Ai.
Therefore, it can be assumed that the activity Ai prepares the possibility of
compensation A′

i, and in the case of isolated processing, there are no risks
of compensation A′

i failure. Unfortunately, the assumption that the executing
of business processes in SOA environments has the isolation property, is neither
possible nor desirable [12,11]. Therefore, we have to take into account the concur-
rent execution of business processes, as well as the isolation relaxation, and we
have to assume that the compensation activities may be at risk. Consequently,
the following example explaining this problem is going to be considered.
Example 1. Let’s assume that the aim of transactional subprocess pp1 is to
exchange a pre-booked hotel room. For this purpose, it has the following two
activities: A11 – cancellation of a reservation for room X, and A12 – making
a reservation for room Y. Both activities are performed by invoking the appro-
priate Web Services. Let’s assume that each of these activities has a related
compensation activity. For activity A11 there is a defined compensation activity
A′

11 which reserves the released room, while for activity A12 there is a corre-
sponding compensation activity A′

12 which cancels the room reservation. The
effects of invocations made to each of the Web Services are immediately visible
to other processes.

Let’s assume that after activity A11 , concurrently executed subprocess pp2

reserves room X, and then commits. Additionally, let’s suppose that activity A12

could not be completed due to the fact that the room Y was already occupied.
As a result, transactional subprocess pp1 decides to cancel itself. Unfortunately,
full cancellation of the process is not possible. Due to the room X being reserved
by the process pp2, the compensation A′

11 cannot be performed.
The example above shows that ensuring compensability requires additional

mechanisms which are beyond the transactional subprocess definition, and which
take into account the activities performed by the concurrent processes.

5 Providing Compensability – Subprocess as a Contract

5.1 Contract Negotiations

To provide compensability, the mechanisms responsible for coordination should
process the transactional subprocesses as a contract. The parties to this contract
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are the application that executes the subprocess and all participants of the sub-
process (e.g. Web Service providers) which are responsible for the execution of
the compensation activities. As it has been mentioned in previous sections, the
information about the compensation activities may come from different sources.

On the one hand, the knowledge about the compensation may belong to the
process definition. In this case the compensation is assigned either to a simple
activity that can be an action (e.g. single Web Service invocation) or to a complex
activity (e.g. a BPEL scope element), which consists of many sub-activities. On
the other hand, this knowledge could be embedded in the implementation of the
Web Services used by the process, thus located on the Web Service providers’
side. In this case the compensation may be assigned either to a single Web
Service invocation or to a series of Web Service invocations (e.g. that are a
part of a single WS-BA activity). Regardless of the origin of this information,
compensation A′

j , can be strictly assigned to the single activity Ai.
The coordination mechanisms responsible for providing compensability must

ensure that activity Ai, such that Ai ∈ Ac, will be performed only if the pos-
sibility of the execution of activity A′

i, such that A′
i � Ai, is guaranteed. The

declarations of such possibility may be granted by the activity providers, in the
broad sense, which are responsible for the compensation activities. The granting
of such declaration should be the necessary condition to start activity Ai. The
lack of such declaration (when it is not possible to guarantee the feasibility of
a compensation) must lead either to a suspension of activity Ai (until the mo-
ment when the declaration will be granted), or to a cancellation of transactional
subprocess ppi, such that Ai ∈ ppi. A party which must require such declaration
is dependent on the location of the information concerning the compensation.
Depending on whether the compensation is declared in the process definition or
if it is included in the implementation of the Web Service, the requesting party
should be an application which executes that process or the provider of this Web
Service.

The feasibility declaration of compensation A′
i will be denoted by D(A′

i).
According to the standards mentioned earlier, compensation activity A′

i, such
that A′

i � Ai, can take place only for activities Ai, which have been completed.
Therefore, the coordination mechanisms, which are responsible for compensabil-
ity, should provide the opportunity to exempt the provider of A′

i from the D(A′
i),

when activity Ai is aborted.
Regardless of which party requests D(A′

i), it is always obtained for the par-
ticular instance of transactional subprocess ppk such that Ai ∈ ppk. It is very
important because these declarations must be valid until the end of the instance
of transactional subprocess ppk. The completion of the transactional subprocess
instance is connected with the termination of the contract and therefore, it allows
to exempt the provider of A′

i from D(A′
i).

In summary, the processing of activity Ai ∈ Ac should be implemented as
follows: (1) Before the start of activity Ai, a request for D(A′

i), where A′
i � Ai,

is sent to the provider of activity A′
i. (2) Upon receipt of D(A′

i), activity Ai can
be launched. (3) If the activity Ai is aborted and canceled then the information,
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which exempts the provider of A′
i from the given D(A′

i), is sent to the provider of
activity A′

i. (4) In the case of aborting or committing of transactional subprocess
ppk, the information about the subprocess completion is sent to each provider
of activity A′

i, such that Ai ∈ ppk.

5.2 Maintaining the Contract

The task of the provider, which has compensation A′
i and operates on the basis

of the coordination mechanisms providing compensability of subprocesses, is not
only to verify whether the A′

i execution is possible and to grant D(A′
i), but also

to guarantee that possibility for the entire duration of transactional subprocess
ppk, which contains the activity Ai, such that A′

i � Ai.
In section 4 has been mentioned that the primary risks to the compensation

are the lack of isolation and concurrent processes performing activities threaten-
ing the compensation. For these reasons it may be impossible to fulfill declaration
D which was given earlier. This means that the provider of A′

i should have an
impact on the execution of all the activities that might prevent the execution of
compensation A′

i.
We have to note that the description of how to determine if activity Aj may

prevent the execution of compensation A′
i is an issue that goes beyond the scope

of this paper, for example it may be related to semantic conflicts.
A service provider who receives a request to perform activity Aj which may

prevent the execution of compensation A′
i may respond in several different ways.

In the simplest scenario it may suspend activity Aj until the completion of
subprocess ppk which contains activity Ai and which might require the execution
of compensation A′

i. However, in case of long-term business processes which
use autonomous activities provided by the service providers, other solutions are
required. Most authors of works which relate to the control of concurrent business
processes [3,11,12] argue that, in SOA environments, the solution should be
based on the optimistic approach, and the locks should be significantly reduced
or eliminated.

When we use the optimistic approach, we can take into account the fact that
activity Aj , which introduces the risk to compensation A′

i may belong to Ac. In
this case, the form of compensation activity A′

j may be used by the service provider
to choose an appropriate response to the execution request of activity Aj .

In order to consider the issue the example 1 will be analysed again. Let us
assume that activity A21 of the concurrently executed subprocess pp2 made
reservation of room X. Compensation activity A′

21 for activity A21 cancels the
room reservation. The execution of activity A21 introduces the risk to compens-
ability for transactional subprocess pp1 , but as long as the subprocess pp2 is
active, there is a possibility to eliminate this risk by the cancellation of subpro-
cess pp2 and the compensation of its activities.

Considering the above, we can distinguish two types of risks to the compens-
ability: relative and absolute.
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– If activity Aj , which introduces the risk to compensation A′
i, has a compen-

sation A′
j which eliminates this risk, then we talk about a relative risk to

the compensability.
– If activity Aj , which introduces the risk to compensation A′

i, has a compen-
sation A′

j , which does not eliminate the risk, or does not have any compen-
sation, or has a compensation A′

j which is unknown, then we talk about an
absolute risk to the compensability.

When the provider receives a request to perform activity Aj ∈ ppk, which intro-
duces a relative risk to the compensability of subprocess ppi, activity Aj may
be started, however only if the coordination mechanisms allow the control of
subprocess ppk approval. In this case the execution of activity Aj causes the
approval of subprocess ppk to be dependent on the approval of subprocess ppi.
Subprocess ppi is, in this case, preceding subprocess ppk. Cancellation of sub-
process ppi forces the prior cancellation of subprocess ppk, while the approval of
subprocess ppi is a necessary condition for the approval of subprocess ppk.

In summary, the execution request of activity Aj , belonging to subprocess
ppm, which is sent to the provider of this activity should be handled by the
provider in the following way: (1) It is verified whether activity Aj introduces
a risk to compensation A′

i for any active subprocess ppn, where A′
i ∈ ppn, and

there are active D(A′
i). (2) If activity Aj does not introduce any risk to any

compensation, then the execution of activity Aj can be started. (3) If there are
active subprocesses ppn, for which activity Aj introduces a risk to the subpro-
cess compensability, then for each subprocess ppn it is determined if the risk is
relative or absolute. (4) If there are absolute risks to the compensability of any
subprocess ppn, then the execution of activity Aj must be suspended until the
completion of each subprocess ppn. (5) If there are only relative risks to the
compensability of subprocesses ppn, then the execution of activity Aj can be
started. In this way, each subprocess ppn becomes preceding to subprocess ppm.

At the approval (or cancellation) stage of the subprocess, this solution requires
the cooperation of all the activity providers, which are used by the subprocess,
and the application, which is responsible for the execution of the subprocess. The
cooperation is required due to the fact that the execution of the activities which
introduce relative risks to the compensation couses the subprocess to have other
preceding subprocesses, on which itwill be dependent. The cooperationmay be im-
plemented in accordance to the two-phase commit protocol. Its first phase is used
to obtain the confirmation from providers that the subprocess has no other pre-
ceding subprocesses and could be committed, while the second phase is intended
to send the confirmation to providers about the fact of the subprocess completion.

6 Experimental Results

The coordination mechanisms responsible for the compensability of the trans-
actional subprocesses have been implemented and their impact on processing of
business processes in SOA environments has been tested. For this purpose, we
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Fig. 1. Test results

have used the BProCORE (Business Process CORdination Environment) [10],
which has been created under the project IT-SOA [5].

Testing scenarios were as follows. Transactional subprocesses were run in 10
parallel series. Each series consisted of 20 subprocesses. The Web Services pro-
vided by a single service provider (the hotel) was used by each subprocess. The
aim of the process was to replace the booked hotel room. Thus, each subprocess
invoked the Web Service two times: at the beginning to release the reservation
of a random room, and then to reserve another random room. If both operations
were successful then the subprocess was committed, if the second operation failed
then the subprocess was aborted by an appropriate compensation. The hotel had
only twenty rooms. 10% of them were occupied at the beginning of each test.
Due to the concurrent execution of subprocesses there were situations when the
compensation activities were at risk. The purpose of the tests was the evaluation
of coordination mechanisms responsible for compensability.

Three different configurations of the test environment were applied. In the
first one, our coordination mechanisms, based on the optimistic approach, were
used. In the second configuration, the pessimistic approach was used. In this
configuration any activity, which introduced a risk to the compensation, was
blocked. In the third one, the coordination mechanisms were not used.

The test results are shown in figure 1. The first chart (a) shows the number
of compensated subprocesses. The second one (b) presents the number of sub-
processes, which finished in a hazardous state. The third graph (c) shows the
duration of the test. The configurations described above are marked on the figure
as: optimistic, pessimistic and none, respectively. The test results lead to the con-
clusion that the coordination mechanisms can significantly reduce the number
of subprocesses, which end in a hazardous state. Unfortunately, the mechanisms
of coordination lead to the cases in which the processes are dependent on each
other. In such cases, withdrawal of one of the subprocesses leads to the with-
drawal of all the preceded subprocesses. This leads naturally to a reduction in
the number of processes that are successfully committed. The observed percent-
age increase in the number of processes that need to be aborted as a result of the
coordination mechanisms is 22%, which is about 6% of the total number of the
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subprocesses in the test. The tests also included the pessimistic approach. The
obtained results show, that it guarantees the compensability of subprocesses and
does not lead to cascading aborts. Unfortunately, these advantages come at a
price of a very poor performance.

7 Related Works

Recently a number of works related to the coordination mechanisms of con-
current business processes in SOA environments have been published. Some of
them consider the general coordination of transactional processes by focusing on
the need to simplify their implementation [8] or refer to the atomicity failure of
composite Web services [6]. Only a few of them [7] [2] propose concrete solutions
which aim at providing the coordination mechanisms that maintain consistency
in Web Services Transactions. The authors of these papers propose the solutions
that are based on WS-BA specification and extend its protocols by additional
messages that allow to take transactional dependencies into account. We argue
that these solutions are limited to the cases in which compensation depends on
the service, which activity has to be compensated. The approach proposed in
this paper is more general and closer to the real needs of the developers of busi-
ness processes. It also takes into account the situations where the definition of
compensation is a part of a process definition, as it is in the case of BPMN and
BPEL industrial specifications.

8 Conclusion

The conducted experiments have shown that the mechanisms of the subprocesses
coordination designed and implemented by us significantly reduce the number
of subprocesses, which end up in a hazardous state. Therefore, it may be useful
in SOA environments where compensability is essential.

It should be noted that our work on coordination mechanisms that provide
compensability will continue. The coordination mechanisms developed by us,
provide compensability but do not guarantee it. The reason for this is the op-
timistic approach. It allows a situation in which the transactional subprocesses
are dependent on each other – a graph of their precedence creates a cycle. In
the case of cancellation of one of these subprocesses, there is no correct order
of their compensation - one of these subprocesses has to end in a hazardous
state. The simplest solution is of course the use of a locking approach, however,
due to a low performance and the inappropriateness of this solution for a SOA
environment, it is not satisfying.
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Abstract. The paper describes analysis of application servers interop-
erability that considers both the available level of integration and the re-
quired level of development complexity. Development complexity ranges
from simple GUI operations to changes of undocumented features in con-
figuration files. We verify if an integration can be established on a given
level of development complexity, rather than verify if it is objectively
feasible. The information indicates whether an integration task can be
performed by a non-expert developer, which influences development cost
and effort. We focus our work on the Web services standards as leading
solutions in service integration. We designed a dedicated test environ-
ment that covered Web services based application servers, and helper
tools for communication monitoring. We present results and conclusions
from performed experimental studies. Detailed results were registered in
a web system that supplies descriptions covering specification of appli-
cation servers, used standards, and configuration options.

Keywords: interoperability, SOA, Web services, heterogeneous systems.

1 Introduction

The Service Oriented Architecture (SOA) approach improved development of
applications but requires resolution of interoperability issues, as services are
usually deployed on heterogeneous runtime platforms. Web services standards
(WS*) [3] were proposed and widely adopted in SOA applications, which signif-
icantly improved the integration process.

Despite the general success of WS*, difficulties in effective service integration
still exist. Standards contain open points that may be freely interpreted by
vendors. A vendor may include specific extensions or implement only selected
standards and configuration options [8]. Integration of concrete services is a
challenging task that requires detailed analysis of configuration options, software
versions and selection of standards.

Considering the difficulties, we performed experimental interoperability verifi-
cation of WS* based application servers, which covers analysis of achieved level
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of integration as well as analysis of required level of development complexity.
The complexity may range from a simple use of IDE GUI options, through man-
ual modifications of standard configuration options, to hacking undocumented
features in runtime platforms. Each test is described in detail by specifying used
application servers, WS* standards and detailed configuration options.

The results are useful in improvement of the software engineering process
as they describe the complexity of development using concrete standards and
application servers. The complexity, in turn, influences the whole development
process, including cost, time and necessary skills of the development team.

The rest of the paper is organized as follows. The next section describes re-
lated work in Web services interoperability. Sect. 3 discusses interoperability
attributes and our selection of standards and application servers. The infras-
tructure for interoperability testing is described in Sect. 4. Sect. 5 overviews
results of experiments. Finally, Sect. 6 concludes the paper.

2 Related Work

Interoperability analysis is a wide research area that supplies results in both aca-
demic and industrial fields. [11] overviews existing interoperability metrics and
proposes a contemporary interoperability definition as an outcome of approxi-
mately thirty definitions proposed during decades of research. This work defines
interoperability as the ability of systems, units, or forces, to provide services to,
and accept services from, other systems, units, or forces, and to use the services
so exchanged to enable them to operate effectively together.

2.1 Interoperability Metrics and Levels

Usually, metrics define levels of interoperability that represent different aspects
of system integration; ranging from low-level data transmission to integration
of enterprise applications. For example, Levels of Information Systems Inter-
operability (LISI) [11] defines five interoperability levels: isolated, connected,
functional, domain and enterprise. [9] proposes an interoperability assessment
model that covers definitions of interoperability levels and evaluation functions.

Ontologies and the semantic description of information are recognized as im-
portant mechanisms for automated integration of software systems. The GIS3T
concept (Semantics, Standards, Science and Technology) [21] leverages Semantic
Web and Web services for data fusion, integration and management of informa-
tion. [5] proposes a dedicated Glossa language that enables semantics in auto-
mated exchanges of information, and integration of the language with SQL-based
database engines. [15] compares existing mechanisms of service discovery (WS-
Dynamic Discovery, UDDI, ebXML) in the context of service interoperability
and semantic description.

[18] discusses both the opportunities, and difficulties, of using semantics in
achieving interoperability of enterprice architecture. The work is correlated with
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Fig. 1. The general model of the development process and runtime interoperability

European Interoperability Framework [19] that attempts to integrate public ad-
ministration, enterprises and citizens, on a pan-European level. Another Euro-
pean project, the Interoperability Network of Excellence [20] collected existing
results of interoperability analysis from both academic and industrial research.

In our work, we do not propose a new interoperability metric, but rather
analyze development and runtime features of WS* integration. Fig. 1 shows the
general model of development and runtime phases of integration. The integration
considered in this work corresponds to level 1 (Connected) in LISI or level 2
(Data/Object) in LCI (Layers of Coalition Interoperability) [11].

2.2 Development of Heterogeneous WS* Systems

Web services cover over fifty standards, recommendations and notes. They are
concerned with both basic communication capabilities (SOAP, WSDL), and
extended functionality in the fields of reliability, transactions, security and oth-
ers [17] [14]. Standards anticipate alternative configuration options, which
enables flexible configuration, but may simultaneously result in interface in-
consistencies. Considering the proliferation of standards, versions and options,
application servers usually implement only a selection of them [2]. Consequently,
there is a threat that heterogeneous servers will not interoperate.

Web Services Interoperability Organization has been established by leading
vendors of WS* application servers [22] to resolve interoperability difficulties.
The organization addresses the problem of incompatibilities in WS* implemen-
tations, and issues additional interoperability profiles [6] that refine existing
standards and define constraints for communication. [10] [12] are examples of
industry-focused analysis that discuss issues of .NET and Java integration.

2.3 Existing Tests of WS* Interoperability

In some cases; standard organizations performed conformance tests of runtime
platforms that implement standards, or issued test suites that should verify
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standard conformance. The testing process is based on test assertions that specify
the contents of messages generated by runtime platforms during WS* commu-
nication.

The World Wide Web Consortium executed tests for selected versions of
SOAP, WSDL and WS-Addressing standards during development of the stan-
dards [7] [13]. SOAP 1.2 and SOAP 2.0 which were equipped with test assertions
and candidate implementations and were tested for conformance with the stan-
dards. W3C also supplied test suites for the WSDL and WS-Addressing stan-
dards. WS-I Organizations supplies Test Assertion Documents that specify the
contents of communication for each profile [4]. It is assumed that an implemen-
tation must meet the assertions to conform with a profile specification. Microsoft
Corporation’s issued tests focused on the Windows Communication Foundation
environment [16] that aimed at verifying communication possibilities within this
specific environment. The Java-based implementation of Metro WS* was also
enriched with test assertions for selected issues [1]. We used selected test cases
as models for the design of the tests presented in this work.

Existing test suites show some drawbacks in the context of heterogeneous
application development. Typically, test results do not specify complexity, work-
load, and the configuration options required to perform a test. Consequently,
non-expert developers may find it difficult to reproduce integrations that re-
quire expert knowledge. Our work differs in that we analyze additional features,
such as development complexity, and perform cross-platform and cross-standards
tests.

3 Interoperability Analysis Model

Most standards are available in different versions and anticipate alternative con-
figuration options. Both are an important issue in service integration, considering
that servers may implement standards partially, and option mismatches may oc-
cur. Additionally, servers enable you to configure platform specific options that
may influence the contents of external communication. Configuration options
were set individually for each integration during attempts to invoke a service.
Detailed values were registered in test reports available in our web system, as
described later.

Considering standards, options and WS* servers, each integration is described
by the following data:

– integrated servers - contains specification of server-side and client-side servers,
which covers description of runtime platforms, supporting libraries and soft-
ware versions.

– used standards - specifies which WS* standards were used in an integration
– used configuration options - specifies detailed configuration options that con-

cern either standards, servers or the communication itself, for example used
invocation style (RPC/Document) or communication mode (synchronous,
asynchronous).
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Fig. 2. Exemplary configuration options of WSDL, WS-Addressing Core and WS-
Addressing WSDL Binding

A concrete integration is rated for development and runtime interoperability of
invocation. Fig. 2 shows exemplary configuration options that may be specified
for an integration.

3.1 Selected Servers for Evaluation

The servers that were selected for experiments must implement appropriate WS*
extended standards and support a common set of configuration options and
versions. Many sources [10] [2] indicate that Java and .NET are leading envi-
ronments for WS* implementations. Java Web services API includes JAX-RPC
and JAX-WS, while JAX-WS is more recent and more interoperable. Analyzing
Microsoft .NET products, WCF API is advised, as ASP.NET Web services are
considered obsolete and might impair interoperability. Therefore, further consid-
erations were narrowed to JAX-WS and WCF.NET libraries.

Considering the above, we selected the following servers for evaluation:

– JBoss 5.1.0.GA (+ native, Metro, Apache CXF) - supports WS by an aux-
iliary JBossWS module.

– Apache Geronimo 2.2.0 - uses Apache Axis2 1.5.1 WS* stack implementa-
tion, enables hosting on Jetty or Tomcat web containers.

– IBM WebSphere Community Edition 2.1.1.3 - supplies a narrowed imple-
mentation of WS* stack as compared to the commercial version, used in
basic WS configuration during experiments.

– Microsoft Internet Information Services 5.1 supplies implementation of WS*
with custom extensions in the .NET environment, WCF 4.0 stack was used
during experiments.

3.2 Interoperability Attributes

The tests aimed at verifying both the achieved level of integration, and the
required complexity of the development process. The testing process did not
intend to establish integration in each case, but rather to verify if an integration
is feasible within a given amount of work and user experience.
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We considered two major attributes of interoperability rating in our tests:

Scope describes whether two modules can exchange data correctly. The measure
corresponds to achieving a given level of interoperability in more universal
interoperability metrics like level 1 (Connected) in LISI (Levels of Informa-
tion Systems Interoperability) or level 2 (Data/Object) in LCI (Layers of
Coalition Interoperability) [11].

Simplicity describes necessary configuration and development effort of achiev-
ing an integration. We considered both client-side and server-side configura-
tion in the analysis.

The scope metric uses detailed ratings in range [0..5] associated with relevant
runtime events as follows. 5 - no erroneous events were detected during tests, 4 -
an internal problem occurred and was handled (logs contain an internally thrown
exception, a warning message), 3 - discrepancies from standards in communica-
tion (a missing field/attribute, an additional field/attribute, a value different
than specified), 1 and 2 - failures in certain conditions (runtime crash, lost com-
munication, hang-up), 0 - failures in all tested conditions.

Simplicity of configuration was calculated from independent ratings of the
client-side and the server-side. Each side was rated in range [1..3]. Rate 3 was
given if standard configuration and tool-generated code was used. Rate 2 was
given if standard API was used for adjustment of code or configuration. Rate 1
was given if the generated code contained errors and low-level API was used to
develop communication code by hand. The final rating of client-server integration
was scaled to range [0..5], where 5 denotes the simplest configuration and 0
denotes the most difficult configuration.

4 Test Environment

Theoretically, IDE environments should be functional enough to implement ad-
equate integrations. In practice, however, the environments typically cover only
selected features of system configuration. For example, they allow us to specify
that a given standard must be used, but do not allow us to specify detailed con-
figuration options. Usually, we rely on standard features of IDE environments,
but make customized adjustments of IDE-generated code and configuration in
some cases. We refrained from using low level API, such as Dispatch in JAX-WS
or AXIOM in Axis. The use of this kind of API may improve interoperability, but
requires higher development skills, which contradicts with the obvious purpose
of minimizing development complexity.

We prepared a WSDL description of services and used adequate tools in differ-
ent environments (NetBeans, SvcUtil.exe) to generate client-side and server-side
communication code. We verified WS-I Basic Profile 1.1 conformance, using the
SoapUI tool, for tests with basic SOAP and WSDL standards. Tests that used ex-
tended standards (WS-Addressing, WS-ReliableMessaging) were not conformed
with WS-I Basic Profile 1.1, as the used profile version did not contain rules for
those standards.

Each test case consisted of a simple client and service. Services were the passive
side of the tests and were organized according to a common scheme: namespaces
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were created for each test service and filled with code skeletons automatically
generated from WSDL contracts. Each skeleton was then extended to return
appropriate values.

The test environment communicates with the user by a presentation layer,
consisting of two web pages. WSListTestSets, being the default site, allows us
to choose and start execution of one of available test sets. The second page,
WSExecuteTestSet, presents results after completion of a test. Concrete test
cases were inspired by selected tests from [13] [7] [16].

The test environment was installed on a virtual machine in the Virtual Box
3.1.8 runtime platform. The solution provided a number of benefits, including
a relatively simple management of environment copies, simple redeployment of
basic configuration, and protection against system corruption because of incor-
rect configuration changes. We ran instances of client-side and server-side using
different IP addresses in the same virtual machine system.

The test environment was enriched with sniffing software used for verification
and analysis of communication, including NirSoft SocketSniff, TamoSoft Com-
mView, WireShark. Tool selection depended on the particular case of verified
servers and standards. It had to be adjusted because of various drawbacks in
tool operation; for example, WireShark and NirSoft do not support loopback
sniffing in MS Windows, in which case we used TamoSoft and CommView.

5 Aggregated Results of Tests

Using the designed methodology, and the test environment; we performed exper-
iments that covered integration of the selected servers in various configurations.
The results of the performed experiments, together with the attempted com-
plexity levels and the achieved interoperability scope have been registered in our
system at:

http://www.as-interoperability.eti.pg.gda.pl
During the experiments, we rated the interoperability of each environment

from both the client-side and the server-side. We considered the following stan-
dards during analysis: SOAP 1.1, WSDL 1.1, WS-Addressing 1.0, WS-Reliable
Messaging 1.1, WS-Policy and WS-I BasicProfile conformance. Experiments pro-
gressed from basic SOAP communication to more advanced WS* protocols.

5.1 Results for Java-Based Environments

The JBoss Application Server enabled/s us to use different WS* communication
libraries. We analyzed three independent libraries during experiments: Oracle
Metro, JBoss Native and Apache CXF.

Metro is considered to be a reference implementation of the WS* stack that
can/should offer the highest interoperability. Metro works correctly as a client-
side library, in nearly all cases reaching a rating of 4 or 5 for both scope and
simplicity. It failed in only one case - integration with JBoss Native library.
As a server-side library, however, it was able to integrate with approximately
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40% of clients. This results from a very restrictive policy if discrepancies from
standards are detected in communication received from the client-side. For WS-
ReliableMessaging, we were able to integrate the library with only itself. The
configurations were verified up to simplicity level 2 or 3.

The JBoss Native library presented lower interoperability in our conducted
experiments, as compared to Metro. As a client-side library, it cooperated cor-
rectly within WS-I BasicProfile, in which case it reached level 4 or 5 of integration
scope. It failed, however, in most other cases, (that is) for standards that extend
the scope of WS-I BasicProfile. On the server-side, the library was capable of
cooperation with itself and all Metro-compliant services.

Apache CXF was the third library tested within the JBoss Application Server.
The library integrated well on the client side within WS-I Basic Profile. In ex-
tended standards, the library was interoperable only in some cases. It integrated
with Microsoft WCF well, but failed to integrate with Java-based services in
most cases. Consequently, integrations received a wide range of rates from 0 to
5. As a server-side library, it integrated/s well as it accepts and handles many
discrepancies from standards in client-side communication.

Apache Geronimo is another Java-based implementation tested. The tests cov-
ered basic SOAP communication and WS-Addressing only, in which the library
presented high interoperability for both client-side and server-side. Development
of communication in extended standards requires the use of AXIOM (that is a
low-level API). We decided to test integrations within a relatively high develop-
ment simplicity, and so refrained from using AXIOM. Consequently, integrations
in extended standards were rated as scope 0 and simplicity 3. Probably, the in-
tegration is possible if advanced programming is applied.

Test of IBM WebSphere AS were performed using Community Edition that
supports standards within WS-I Basic Profile only. Therefore, tests were nar-
rowed to basic standards. All integrations were successful for both the client-side
and the server-side and were rated as simplicity and scope 4 or 5.

5.2 Results for Microsoft .NET WCF

During experiments, we integrated .NET WCF with various Java-based environ-
ments on an assumed development complexity, and effort, level. As a client-side
library, .NET WCF integrates seamlessly with Java-based environments for ser-
vices compliant with WS-I BasicProfile. The integrations were rated as scope 5
and simplicity 4.

We were not able, however, to establish successfull integrations in extended
WS* standards in most cases within the attempted development complexity.
During communication analysis, we identified an empty wsa:action header sent
by WCF, which might be the reason for integration failures. Considering WS-
Addressing, JBoss AS + CXF was the only Java-based environment that in-
tegrated with WCF. WS-ReliableMessaging communication was successfully es-
tablished with JBoss AS + Metro in one from many alternative configurations. In
other cases, we were not able to establish integration from within the attempted
development complexity.
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As a server-side library, .NET WCF integrated well with Java-based clients
in most cases. It should be noted that the clients were deployed on servers that
support relatively new WS* communication standards. .NET WCF requires that
clients handle WS-Addressing and WS-Policy apart from the basic SOAP stan-
dard, which may cause difficulties in integration with older versions of software.
The integrations were rated as scope 5 and simplicity 4.

Asynchronous communication requires an additional comment in the case
of .NET and Java WS* integration, as the environments supply different ap-
proaches for this communication model: JAX-WS implements the concept inter-
nally, using traditional synchronous invocations for communication; the .NET
WCF environment supplies a decenter model with alternative notification mech-
anisms (sampling, delegate callback and implicit callback). Consequently, asyn-
chronous communication between the two environments can not be relied on, in
most cases, even if synchronous communication works correctly. Interoperability
problems are a known issue, described in[10] a few years ago.

6 Conclusions and Future Work

Results of interoperability tests lead to a number of detailed conclusions. As
might be expected, integration of services with basic SOAP/WSDL standards
is relatively simple for both Java-based and .NET-based environments. How-
ever, establishing integration using advanced WS* standards depends highly on
detailed configuration settings and selected standards. Largest difficulties were
encountered during integration of .NET and Java-based environments using WS-
ReliableMessiging and asynchronous communication. We assumed that services
conform to WS-I profiles where applicable. The WS-I organization is an impor-
tant initiative improving integration of heterogeneous environments.

Experimental evaluation of interoperability in various areas of WS* stan-
dards will be an important element of future work. Workflow and transactions
related standards seem an interesting area of analysis, as the standards depend
on many lower-level ones. The structure of standard dependencies has already
been described by academic and industry bodies, which gives background for a
systematic classification and testing of higher-level standards. Additionally, we
consider categorization of interoperability results to determine configurations in
which integration can be achieved with a relatively low effort. We believe that the
results will increase the efficiency of software development and advance research
in Web services interoperability.

The work was supported in part by the Polish Ministry of Science and Higher
Education under research project number N N519 172337.
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Abstract. Network anomalies refer to situations when observed net-
work traffic deviate from normal network behaviour. In this paper, we
propose a general framework which assumes the use of many different
attack detection methods and show a way to integrate their results. We
checked our approach by the use of network topology analysis methods
applied to communication graphs. Based on this evaluation, we have
proposed a measure called the AttackScore, which assesses the risk of
an on-going attack and distinguishes between the effectiveness of the
analytic measures used to detect it.

Keywords: Service Oriented Architecture, Security, Anomaly Detection.

1 Introduction

The most intensively explored approach to unknown threats detection is anomaly
detection. Anomaly detection can be described as an alarm for strange system
behavior. The concept stems from a paper fundamental to the field of security -
An Intrusion Detection Model, by Dorothy Denning [4]. The aim of the anomaly
detection is discovering of all abnormal states of the system in relation to the net-
work traffic, users activity and system configuration that may indicate violation
of security policy [8]. The general idea of protecting computer systems security
with anomaly detection mechanisms is very simple, however implementation of
such systems has to deal with a lot of practical and theoretical problems. The
security assessment of a network system requires applying complex and flexible
mechanisms for monitoring values of system attributes, effective computational
mechanisms for evaluating the states of system security and the algorithms of
machine learning to detect new intrusions pattern scenarios and recognize new
symptoms of security system breach [8]. There are three fundamental sets of at-
tributes that are considered in anomaly detection: basic (packet data), content
(payload) and traffic (statistics)[5,8].

2 Related Works

The earliest anomaly detection-based approach, proposed by Denning, employs
statistics to construct a point of reference for system behavior. The training
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of an anomaly detection sensor is accomplished by observing specific events in
the monitoring environment such as system calls, network traffic or application
usage, over a designated time period [10]. In many situations one would re-
quire constant training of detection system. The example of statistical anomaly
detection is e.g. Haystack [11], Intrusion Detection Expert System (IDES)[12]
Next-Generation Intrusion Detection Expert System (NIDES) [13]. Research
done by Kruegel et al. [14] presents approach to find the description of a sys-
tem using a payload byte distribution and extracted packet header features. The
key aspect of this work is that we provide a quantitative evaluation of different
approaches in a single evaluation framework to improve anomaly detection by
parallel processing. Some previous work [15] demonstrate that combining mul-
tiple detection algorithms does offer an increase in performance over individual
detectors. Besides, Gao et al. [3] proposed using an combination of different
detection algorithms to build a more accurate model for continuously arriving
data and proved theoretical improvement over each single algorithm. However,
their work did not consider how to pick the best combination of algorithms.
This paper propose distributed traffic pattern analysis to improve the anomaly
detection in high speed networks where large quantities of network packets are
exchanged by hundreds and thousands of network nodes. The evaluation of de-
tection methods has been performed using a simulation of the Internet Worm
attack traces. Compared with earlier works, the presented proposition is more
specific in defining the traffic anomaly models.

3 Experiential Evaluation of Distributed Anomaly
Detection

Network traffic show some quantitative and topological features that appear to
be invariant and characteristic for given network. These distinct features con-
cern topology of network communication, considered as origin-destination flows
graph, the distribution of data volumes and the in/out ratio of data sent be-
tween nodes [9]. There is also a detectable dependence between worm prop-
agation algorithm, and communication pattern disturbance[8]. Network traffic
can be observed and analyzed according to several characteristic values such as:
number of bytes send/received per second, number of packets, number of IP des-
tinations, average packet size, etc.. Changing value of these parameters may be
viewed as an important source of information about network host of link state.
This correlation between network traffic and security breaches has been used in
several network intrusion detection systems. For example the following relations
between security incident type and observed network traffic parameters change
were observed by Anukool Lakhina et al.[1]:

Proposed distributed anomaly detection method will gather information about
communication within the network. Then the existing communication patterns
will be discovered. The system will be viewed as a graph consisting of nodes
and edges which appear if there exists data flow between given pair of nodes.
The observation of communication patterns allows to tune the system and track
anomalies which are hard to detect on the basis of traffic observations alone.
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Table 1. Relations between security incident type and observed network traffic pa-
rameters

Security Incident Traffic anomaly observed

ALPHA Single source and destination address are dominant
with the noticeable number of bytes, number of packets
values increase.

DOS,DDOS Large increase of number of packet with the same
(IP,port) pair in the destination address while the
distribution of source addresses remains almost un-
changed.

SCAN Increase of flows with the same source address and var-
ious combinations of (IP,port) in destination address.
Packets with the similar size are dominant.

WORM Flows with one dominant port in destination address
can be observed.

3.1 Modelling Internet Worm for Anomaly Detection Method
Evaluation

Internet worms are programs that self-propagate across a network exploiting
security or policy flaws in widely-used services [1]. The taxonomies of malware
distinguish several types of Internet worms, but there are two major classes of
them, scan-based worm and email worms which require some human interaction
to propagate and thus propagate relatively slowly. Scan-based worms propagate
by generating IP addresses to scan and compromise any vulnerable target com-
puter . This type of worms could propagate much faster than email worms [2].
For example, Slammer in January 2003 infected more than 90% of vulnerable
computers in the Internet within just 10 minutes [3]. The basis of our Internet
worm modeling is the classical epidemic model [6]. The experimental test bed is
assumed to be a homogeneous network any infectious host has the equal prob-
ability to infect any susceptible host in the system. Once a host is infected by a
disease, it is assumed to remain in the infectious state forever. Two experiments
been proposed to evaluate distributed anomaly detection method:

1. Sequential Scanning: This scenario lets each newly infected system choose a
random address and, then scans sequentially from there.

2. Hit-list worm: A hit-list worm first scans and infects all vulnerable hosts
on the hit-list, then randomly scans the entire network to infect others. It
has been assumed that the hit-list comprises the well known address to an
infected host.

Common assumptions for all experiments performed are:

– N= 1000 - The total number of host hosts in experimental network
– V=30 - The population of vulnerable hosts in experimental network. It has

been assumed that the number of vulnerable hosts is approximately 3% of
all population [5]



Traffic Pattern Analysis for Distributed Anomaly Detection 651

– I=100 - Average scan rate. The average number of scans an infected host
sends out per unit time (time window).

The normal communication activity for experimental network has been modelled
using Barabasi scale-free network model [7] with γ = 3. It was also assumed that
the communication is being observed in consecutive time windows with some per-
turbations during normal network operation which reflect the everyday variance
of communication. We have generated realistic communication patterns which
join the variance with the properties of a scale-free network. The worm related
communication patterns has been added to these normal patterns according to
the abovementioned Sequential-scanning and Hit-list scenarios.

3.2 Evaluated Anomaly Detection Algorithms

The idea behind our approach to traffic anomaly detection was to apply struc-
tural network analysis in order to compare the topology of communication net-
work during normal operation and during an ongoing attack. We have applied
the analysis of role-set structure of a network based on the similarity of link pro-
files among its nodes. In general structural equivalence measures may be divided
into three groups:

– Match measures assuming matching between all pairs of node profiles, usu-
ally based on set similarity measures like Jaccard Coefficient etc.

– Correlation measures based on correlation measures applied to node profiles
(which are treated as vectors): Cosine, Pearson, Spearman.

– Distance measures measuring the distance between points in n-dimensional
space which represent node profiles.

For our experiments we have chosen seven structural equivalence measures:

– Match measures: Jaccard, Phi, Braun and Blanque
– Correlation measures: Pearson, Inner Product
– Distance measures: Euclidean, Bhattacharyya Distance

The interpretation of the results returned by the match and correlation measures
is that they are similarity metrics. From the other hand, the distance metrics are
the opposite bigger distance stands for more dissimilarity. From this point on,
we will refer to all the measures as similarity measures as in fact- we use them
to assess how the actual structure of communication network differs from the
one emerging from normal system operation. To allow the comparison between
the used measures all results were normalized.

3.3 Structural Equivalence Measures during Normal Network
Operation

First step in our analysis was to assess the performance of our similarity measures
under assumption that there is no attack, and the changes in the communication
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Table 2. Structural similarity between communication networks during normal oper-
ation

Time
step

Jaccard Phi Braun,
Blanque

Pearson Inner
Product

Euclidean Bhatt.
Distance

1 0,851 0,875 0,992 0,903 0,717 0,770 0,670

2 0,910 0,923 0,998 0,919 0,787 0,802 0,679

3 1,000 1,000 0,990 1,000 1,000 0,864 0,702

4 0,948 0,954 1,000 0,964 0,871 0,813 0,681

5 0,847 0,872 0,987 0,869 0,688 0,782 0,676

Mean
value

0,911 0,925 0,998 0,931 0,813 0,806 0,682

Std de-
viation

0,058 0,048 0,005 0,046 0,113 0,032 0,011

network structure reflect normal operation. The simulation was carried on for
six consecutive time windows. For each of these windows the communication
network with links reflecting message exchanges between nodes) was created.
Table 1 presents the structural similarity between the first and the consecutive
time windows as assessed by seven similarity and distance measures.

We assume that the similarity and distance values around the mean value
reflect normal network operation. We define an attack as a situation when the
similarity differs from the mean value computed on the basis of history more
than doubled standard deviation (this attack threshold may be of course tuned
in the case of real systems in order to reflect the changes in given network during
normal operation). This restrictive assumption may eventually lead to the false
attack detection, in the case of data taken from Table 1 this is Bhattacharyya
Distance in step 4 or Braun and Braun and Blanque in step 6. In order to avoid
false alarms caused any of the measures, we assume that an attack must be
confirmed by at least two of them.

3.4 Anomaly Detection

In the second step of our experiments we have checked the influence of Hit-list
and Sequential Scanning attacks on the network topology. Fig. 1 presents the
results obtained for the first 5 time steps of an ongoing sequential attack.

An immediate consequence of the first infections is the scanning procedure
performed by the infected nodes which inevitably leads to the emergence of hubs
in communication network which disturbs the network structure and results in
visible changes in similarity and distance measures. We can see the growing
difference between attacked communication networks and the normal patterns
of communication recorded prior to the attack. The only exception is the Inner
Product measure, which seems not to distinguish between normal and attacked
networks. Note, that distance measures have growing values for older phases of
the attack, while match and correlation measures (interpreted as similarity) are
decreasing. The same is visible on Fig. 2 which shows similar results for a hit-list
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Fig. 1. Similarity and distance measures between normal communication network and
the network under sequential attack

Table 3. Attack detection (time steps)

Jaccard Phi Braun,
Blanque

PearsonInner
Prod-
uct

Euclidean Bhatt.
Distance

Seq.
scanning
detected
in step:

4 4 2 5 6 5 4

Hit-list
detected
in step:

3 5 2 5 6 5 4

attack. Despite similarities we can also see the differences between Fig. 1 and
Fig. 2 they reflect the fact that both modeled attacks have different dynamics,
the hit-list worms use the local address lists at first. In result, the number of
infected nodes is not so rapid as in the case of hit-list, which is reflected by the
moderate (when compared to Fig. 1) change of our measures.

The results presented on the Fig. 1 and Fig.2 may be confronted with the
values presented in Table 1, which allows to determine the time step in which
each of the measures will report an attack (Table 3).

3.5 Algorithm Aggregation

From Table 3 we can notice that our measures have different performance for
each of the considered attacks, there are also differences in the case of attack
detection during sequential scanning and hit-list attacks. We define similarity



654 G. Kolaczek and K. Juszczyszyn

Fig. 2. Similarity and distance measures between normal communication network and
the network under hit-list attack

between our measures in terms of their decisions about attack detection. For
any two measures m1 and m2their similarity is defined by comparing the total
number of their decisions and the number of decisions in which they have agreed:
A00 and A11 are the number of cases where both measures decided that there is
respectively no attack and attack, while A01 and A10 are the numbers of cases
in which they did not agree.

SIM(m1,m2) =
A00 + A11

A00 + A11 + A01 + A10
(1)

Table 4 shows the results for all pairs of measures on the basis of our exper-
iments (the similarity matrix with respect to the decisions of the measures is
symmetrical).

Single attack alert (raised by only one measure) may be caused by the nor-
mal fluctuations occurring during normal network operation and should not be
treated as security breach. We assume that we must get confirmation by at least
two of the measures. However, (Tab.4) some of them show close similarity of
their results, which fact should be taken into account. In our approach we use a
form of ”weighted voting” which leads to generation of joint opinion of the mea-
sures about the attack. The following rules are applied: 1. At least two measures
must positively recognize the attack. 2. When condition 1. is fulfilled a special
measure, called Attack Score (AS) is applied to all the measures which raise an
alarm.

AS =
1

nA2

nA∑
j=1

nA∑
i=1

(
1− Sim

(
mattack

i ,mattack
j

))
(2)
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Table 4. Similarity between attack detection measures

Jaccard Phi Braun,
Blanque

PearsonInner
Prod-
uct

Euclidean Bhatt.
Distance

Jaccard 1,000 0,833 0,750 0,750 0,583 0,750 0,917

Phi 1,000 0,583 0,917 0,750 0,917 0,917

Braun,
Blanque

1,000 0,500 0,333 0,500 0,667

Pearson 1,000 0,833 1,000 0,833

Inner
Product

1,000 0,833 0,667

Euclidean 1,000 0,833

Bhatt.
Distance

1,000

Table 5. Attack detection (time steps)

Time window: 1 2 3 4 5 6

Seq. scanning 0 0 0 0,111 0,170 0,217

Hit-list 0 0 0,125 0,148 0,170 0,217

In the above equation nA is the total number of measures which confirm the
attack (lets call them mattack

1 , mattack
2 ,mattack

nA
). Thus, AS computes the sum of

similarities for all possible pairs of attack-reporting measures complemented to
1, then returns their average value. Self-similarity of the measures is zeroed. In
this way, if the similarity of the scored measures is high, SA will be significantly
lower, then in the case they are behaving in a different way. In result SA promotes
the attack reports confirmed by a measures which show different behavior.

The AS reaches its highest value, when all the measures agree about the attack
(for our experiment it was 0,217). However it promotes the results returned by
the measures which differ from each other in the context of normal network
communication. This can be seen in the case of the fourth time window where
AS is lower for (Jaccard, Phi, Bhattacharyya Distance) in Seq.Scanning then it
is for (Jaccard, Braun-Blanque, Bhattacharyya Distance) in HitList case. This
is because the higher difference between the measures recognizing the HitList
attack. The higher attack score reflects that it is recognized by the measures
which use not the same definition of the structural connection pattern of the
network. Moreover, our framework is general and may be applied in the case of
measures which differ from each other according to algorithms, nature and the
grounding data.

4 Conclusions and Future Work

We have presented an original approach which allows to us different measures
for the detection of abnormal network communication patterns. It was tested
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on a large network which reflects the scale-free pattern and statistics of the
networks detected in different forms of communication . We have also proposed
the application of graph structural equivalence measures to the detection of
attacks and tested it on the simulated attack occurring in the sample network.
Our framework will be further developed in the following directions:

– Detecting the attack type: from the figs 1 and 2 we may notice that different
type of attack result in different behavior of our detection. In result the
attacks led by various algorithms may be distinguished from each other.

– Instead of simple structural network measures used in our test case, the other
sophisticated methods may be applied. Our framework is flexible enough to
accommodate and reflect the differences between the measures used.

– SA definition as a weighted voting approach leaves space for checking the
interplay between the attack threshold level and the effectiveness of the
method.

The first application for our approach will be a SOA system providing educa-
tional and administrative services at the Wrocaw University of Technology. The
software agents collecting data about normal communication patterns in the
system will be developed [15].

Acknowledgements. The research presented in this work has been partially
supported by the European Union within the European Regional Development
Fund program no. POIG.01.03.01-00-008/08.

References

1. Asokan, N., Niemi, V., Nyberg, K.: Man-in-the-middle in tunnelled authentication
protocols. Technical Report 2002/163, IACR ePrint archive (2002)

2. Balasubramaniyan, J.S., Garcia-Fernandez, J.O., Isacoff, D., Spafford, E., Zam-
boni, D.: An Architecture for Intrusion Detection Using Autonomous Agents. In:
Proceedings of the 14th Annual Computer Security Applications Conference (1998)

3. Li, P., Gao, D., Reiter, M.K.: Automatically Adapting a Trained Anomaly Detector
to Software Patches. In: Balzarotti, D. (ed.) RAID 2009. LNCS, vol. 5758, pp. 142–
160. Springer, Heidelberg (2009)

4. Denning, D.E., Edwards, D.L., Jagannathan, R., Lunt, T.F., Neumann, P.G.: A
prototype IDES: A real-time intrusiondetection expert system. Technical report,
Computer Science Laboratory, SRI International, Menlo Park (1987)

5. Kolaczek, G., Pieczynska-Kuchtiak, A., Juszczyszyn, K., Grzech, A., Katarzyniak,
R.P., Nguyen, N.T.: A Mobile Agent Approach to Intrusion Detection in Network
Systems. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI),
vol. 3682, pp. 514–519. Springer, Heidelberg (2005)

6. Onnela, J.P., Saramaki, J., Szabo, G., Lazer, D., Kaski, K., Kertesz, J., Barabasi,
Hyvönen, A.L.: Structure and tie strengths in mobile communication networks.
Proceedings of the National Academy of Sciences 18, 7332–7336 (2007)

7. Park, J., Barabási, A.L.: Distribution of node characteristics in complex networks.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica 104(46), 17916–17920 (2007)



Traffic Pattern Analysis for Distributed Anomaly Detection 657

8. Patcha, A., Park, J.-M.: An overview of anomaly detection techniques: Existing
solutions and latest technological trends. Computer Networks 51(12), 3448–3470
(2007)

9. Scott, J.: Social Network Analysis: A Handbook, 2nd edn. Sage, London (2000)
10. Anderson, D., Lunt, T.F., Javitz, H., Tamaru, A., Valdes, A.: Detecting Unusual

Program Behavior Using the Statistical Component of the Next-generation In-
trusion Detection Expert System (NIDES), Computer Science Laboratory, SRI
International, Menlo Park, CA, USA SRI-CSL-95-06 (May 1995)

11. Smaha, S.E.: Haystack: An intrusion detection system. In: Proceedings of the
IEEE Fourth Aerospace Computer Security Applications Conference, Orlando, FL,
pp. 37–44 (1988)

12. Lunt, T.F., Tamaru, A., Gilham, F., Jagannathm, R., Jalali, C., Neumann, P.G.,
Javitz, H.S., Valdes, A., Garvey, T.D.: A Real-time Intrusion Detection Expert
System (IDES), Computer Science Laboratory, SRI International, Menlo Park,
CA, USA, Final Technical Report (February 1992)

13. Kruegel, C., Mutz, D., Robertson, W., Valeur, F.: Bayesian event classification
for intrusion detection. In: Proceedings of the 19th Annual Computer Security
Applications Conference, Las Vegas, NV (2003)

14. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix
processes. In: Proceedings of the IEEE Symposium on Research in Security and
Privacy, Oakland, CA, USA, pp. 120–128 (1996)

15. Ko�laczek, G.: Multiagent Security Evaluation Framework for Service Oriented Ar-
chitecture Systems. In: Velásquez, J.D., Ŕıos, S.A., Howlett, R.J., Jain, L.C. (eds.)
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Smith, Edmund I-681
Smyk, Adam I-396
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