
On Model Subtyping

Clément Guy1, Benoît Combemale1, Steven Derrien1,
Jim R.H. Steel2, and Jean-Marc Jézéquel1

1 University of Rennes1, IRISA/INRIA, France
2 University of Queensland, Australia

Abstract. Various approaches have recently been proposed to ease the manipu-
lation of models for specific purposes (e.g., automatic model adaptation or reuse
of model transformations). Such approaches raise the need for a unified theory
that would ease their combination, but would also outline the scope of what can
be expected in terms of engineering to put model manipulation into action. In
this work, we address this problem from the model substitutability point of view,
through model typing. We introduce four mechanisms to achieve model substi-
tutability, each formally defined by a subtyping relation. We then discuss how to
declare and check these subtyping relations. This work provides a formal refer-
ence specification establishing a family of model-oriented type systems. These
type systems enable many facilities that are well known at the programming lan-
guage level. Such facilities range from abstraction, reuse and safety to impact
analyses and auto-completion.

Keywords: SLE, Modeling Languages, Model Typing, Model Substitutability.

1 Introduction

The growing use of Model Driven Engineering (MDE) and the increasing number of
modeling languages has led software engineers to define more and more operators to
manipulate models. These operators are defined in terms of model transformations ex-
pressed at the language level, on the corresponding metamodel. However, new modeling
languages are still generally designed and tooled from scratch with few possibilities to
reuse structure or model manipulations from existing modeling languages.

To address the need for a more systematic engineering of model transformations, var-
ious approaches have recently been proposed. These approaches include model transfor-
mation reuse [1,2,3,4,5,6] and automatic model adaptation [7,8,9,10]. Although these
approaches do meet their goals, they remain somewhat disconnected from each other,
and lack a unified theory enabling both their combination and comparison. Such a for-
malization would also help defining the scope of what can be expected (from a engi-
neering point of view) to put model manipulation into action.

In this paper, we tackle the problem from the model substitutability point of view,
through model typing. Model typing provides a well-defined theory that considers mod-
els as first-class entities, and typed by their respective model types [3]. In addition to the
previous work on model typing focusing on the typing relation (i.e., between a model

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 400–415, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



On Model Subtyping 401

and its model types), we introduce four model subtyping relations. These relations pro-
vide model substitutability, that is they enable a model typed by A to be safely used
where a model typed by B is expected, A and B being model types.

This work provides a formal reference specification establishing a family of model
type systems. These type systems enable many facilities that are well known at the pro-
gramming language level, ranging from abstraction, reuse and safety to auto-completion.

This paper is structured as follows. We first illustrate the need for a systematic engi-
neering for model manipulation using examples from the optimizing compilation com-
munity (Section 2). We then provide some background on MDE and model typing as
introduced by Steel et al. [3] in Section 3. In Section 4 we formally define four model
subtyping relations, based on two criteria: the structure and the considered subset of
the involved model types. Section 5 addresses the ways to declare and check these sub-
typing relations. Section 6 classifies existing approaches providing reuse facilities for
model manipulation with respect to the specification of model-oriented type systems
provided in sections 4 and 5. Finally, Section 7 concludes the paper and summarizes
our ideas for future work.

2 Illustrative Examples

Optimizing compilers have always used abstractions (i.e., models) of the compiled pro-
gram to apply numerous analyses, which are often tedious to implement. Thus, opti-
mizing compilation seems a good candidate when looking for a domain in which model
manipulation engineering facilities would be valuable.

Most analyses performed by optimizing compilers leverage sophisticated algorithms
implemented on different types of compilers’ intermediate representations (IRs). Im-
plementation of such algorithms is known to be a tedious and error-prone task. As a
consequence, providing modularity and reuse is a crucial issue for improving compiler
quality but also compiler designer productivity.

Dead Code Elimination (DCE) is an example of such an algorithm. It is a classical
compiler optimization which removes unreachable code from the control flow graph of
a program (e.g., the else branch of a if whose condition is always true) [11]. Although
the DCE algorithm is relatively straightforward, there exist more complex analyses,
such as those leveraging abstract interpretation techniques [12]. Such analyses can infer
accurate invariants over the values of the variables of the analyzed program. These
invariants can then be used to detect possible program errors (e.g., buffer overflows) or
to offer program optimization opportunities.

As with many compiler optimizations, the scope of applicability of these algorithms
is wide, including most imperative programming languages. We consider three exam-
ples of such languages: two compiler IRs, the GeCoS and the ORCC IRs; and a toy
procedural language, Simple. GeCoS1 is a retargetable C compiler infrastructure tar-
geted at embedded processors. ORCC2 is a compiler for CAL3, a dataflow actor lan-
guage in which actions are described with a standard imperative semantics. Both IRs are

1 Cf. http://gecos.gforge.inria.fr
2 Cf. http://orcc.sourceforge.net/
3 Cf. http://ptolemy.eecs.berkeley.edu/papers/03/Cal/index.htm

http://gecos.gforge.inria.fr
http://orcc.sourceforge.net/
http://ptolemy.eecs.berkeley.edu/papers/03/Cal/index.htm


402 C. Guy et al.

metamodel-based: models conforming to these metamodels are used as abstractions of
the compiled program. Finally, Simple is a language on which is defined P-Interproc4,
an interprocedural analyzer implementing several abstract interpretation analyses.

Rather than being reimplemented for each targeted languages (e.g., GeCoS IR, ORCC
IR and Simple), we would expect DCE and our abstract interpretation analyses to be
defined once and then reused across these languages. Of course, this reuse should be
done safely and should be transparent for the programmer. More precisely, the only
thing the programmer should care about when building his compilation flow is whether
his model is eligible (or not) for a given model manipulation.

Facilities such as abstraction (hiding unnecessary details from the programmer),
reuse (sharing a model manipulation between different metamodels), and safety (for-
bidding erroneous reuse) could be provided by a type system specifically targeted at
models. Such a model-oriented type system would greatly help in increasing both pro-
grammers productivity and model-oriented software quality.

3 Background

In this section, we first present the MOF (Meta-Object Facility) metalanguage, the ba-
sis for metamodels, and thus model manipulation operators. We then present model
types as introduced by Steel et al. [3] on which we base our model subtyping relations.
Finally, we discuss the limits of the model subtyping relation proposed by Steel et al.

3.1 Model Driven Engineering

The Meta-Object Facility. (MOF) [13] is the OMG’s standardized meta-language,
i.e., a language to define metamodels. As such it is a common basis for a vast majority
of model-oriented languages and tools. A metamodel defines a set of models on which
it is possible to apply common operators. Therefore, model substitutability must take
into account MOF and the way it expresses metamodels.

Figure 1 displays the structure of EMOF (Essential MOF) which contains the core
of the MOF meta-language in the form of a class diagram. EMOF supports the defini-
tion of the concepts and relationships of a metamodel using Classes and Propertys.
Classes can be abstract (i.e., they cannot be instantiated) and have Propertys and
Operations, which declare respectively attributes and references, and the signatures of
methods available from the modeled concept. Classes can have several superclasses,
from which they inherit all Propertys and Operations. A Property can be composite
(an object can only be referenced through one composite Property at a given instant),
derived (i.e., calculated from other Propertys) and read-only (i.e., cannot be modified).
A Property can also have an opposite Property with which it forms a bidirectional
association. An Operation declares the Types of the exceptions it can raise and ordered
Parameters. Propertys, Operations, and Parameters are TypedElements; their type
can be either: a Datatype (e.g., Boolean, String, etc.) or a Class. Parameters,
Propertys and Operations are Multiplicity Elements. As such, they have a multi-
plicity (defined by a lower and an upper bound), as well as orderedness and uniqueness.

4 Cf. http://pop-art.inrialpes.fr/interproc/pinterprocweb.cgi

http://pop-art.inrialpes.fr/interproc/pinterprocweb.cgi


On Model Subtyping 403

Property
isComposite: Boolean = false
isDerived: Boolean = false
isReadOnly: Boolean = false 

Class
isAbstract: Boolean = false

{ordered} 0..*
ownedAttribute

0..1
opposite

NamedElement
name: String

0..*
superClass

Type TypedElementtype
1

DataType
owner

Classifier

MultiplicityElement
lower: Natural = 1 
upper : UnlimitedNatural = 1
isUnique : Boolean = true 
isOrdered : Boolean = false

Operation Parameter

{ordered} 0..*
ownedOperation

ownedParameter
{ordered} 0..*

0..*
raisedException

Fig. 1. The EMOF core with class diagram notation

Metamodels can be seen as class diagrams, each of their concepts being instantiable
by objects belonging to models. However, metamodel concepts are also instances of
MOF elements and thus a metamodel can be drawn as an object diagram where each
concept is an instance of one of the MOF elements (e.g., classes Class or Property).

Because model subtyping takes place at the metamodel level, the latter representation
facilitates the definition of model subtyping relations by depicting metamodels and their
contained concepts as objects with attributes and properties. Thus, we will use the object
diagram representation in preference to the more common class diagram one.

3.2 Model Typing

Model Types were introduced by Steel et al. [3], as an extension of object typing to
provide abstraction from object types and enable model manipulation reuse.

Definition 1. (Model type) A type of a model is a set of types of objects which may
belong to the model, and their relations.

MOF classes are closer to types (interfaces) than to object classes, thus a model type is
closely related to a metamodel. The difference between model types and metamodels
lies in their respective relations with models. A model has one and only one metamodel
to which it conforms. This metamodel contains all the types needed to instantiate ob-
jects of the model. Conversely, a model can have several model types which are subsets
of the model’s metamodel.

Because model types and metamodels share the same structure, it is possible to ex-
tract the type of a model from its metamodel (we call the model type containing all
the types from a model’s metamodel the exact type of the model). Figure 2 represents
a model m1 which conforms to a metamodel MM1 and is typed by model types MTA

and MTB, MTB being the exact type of m1 extracted from MM1. Both metamodels and
model types conforms themselves to MOF.

MOF delegates the definitions of contracts (e.g., pre and post-conditions or invari-
ants) to other languages (e.g., OCL, the Object Constraint Language [14]). Hence nei-
ther the original paper on model typing [3] nor this one considers contracts in subtyping
relations, but focuses on features of object types contained by model types.



404 C. Guy et al.

�������	
������
�������������
������������
���������������

���

��

��

��

���
���

���

��

������������!! ��������!!

��"

������������!!

��
��

Fig. 2. Conformance, model typing and model subtyping relations

Substitutability is the ability to safely use an object of type A where an object of
type B is expected. Substitutability is supported through subtyping in object-oriented
languages. However, object subtyping does not handle type group specialization (i.e.,
the possibility to specialize relations between several objects and thus groups of types).5

Such type group specialization have been explored by Kühne in the context of MDE [16].
Kühne defines three model specialization relations (specification import, conceptual
containment and subtyping) implying different level of compatibility. We are only in-
terested here in the third one, subtyping, which requires an uncompromised mutator
forward-compatibility, e.g., substitutability, between instances of model types.

Model Type Matching is a model subtyping relation proposed by Steel et al. to enable
safe model manipulation reuse in spite of limits of object subtyping. To this end, they
use the object type matching relation defined by Bruce et al. [17], which is more flexible
than subtyping. For more details, we refer the reader to Steel’s PhD thesis [18].

Definition 2. (Model type matching proposed by Steel et al. [3]) Model Type MTB

matches model type MTA if for each object type C in MTA there is a corresponding object
type with the same name in MTB such that every property and operation in MTA.C also
occurs in MTB.C with exactly the same signature as in MTA.C.

Limits of Model Type Matching. However, model type matching as presented by
Steel et al. is subject to some shortcomings. First, the type rules they present, and their
implementation in Kermeta6, violate their definition of type matching by permitting
the relaxation of lower multiplicities, i.e. by allowing a non-mandatory attribute to be
matched by a mandatory one, which could potentially lead to an invalid model.

In addition, and more significantly, finding a model type common to several model
types (e.g., GeCoS IR, ORCC IR and Simple) is not always possible, even if they
share numerous concepts (e.g., concepts used in DCE). This impossibility is due to
structural heterogeneities between the metamodels [19]. Figure 3 presents such hetero-
geneities between excerpts from the GeCoS IR and the ORCC IR metamodels repre-
senting foreach (from ORCC IR) and for loops (from GeCoS IR, and thus C). The

5 We refer the reader interested in the type group specialization problem to the Ernst’s paper [15].
6 Cf. http://www.kermeta.org

http://www.kermeta.org


On Model Subtyping 405

��������

	

����

������

���������

������
	

�

����������������
	

�

����������

	

�

(a) foreach loop in ORCC IR

��������

�����
	

��	
	������

	

����������

	

�����������

	

����������

���	������

�
������	�


	

�	
����

(b) for loop in GeCoS IR

Fig. 3. Extracts of ORCC IR and GeCoS IR metamodels

former (Figure 3(a)) is a simpler loop than the latter (Figure 3(b)), iterating only by
steps of one on a given variable between bounds, where a C for can have complete
code blocks as initialization, step and test.

Thus to reuse a model manipulation (e.g., DCE), a subtyping mechanism should
provide for the definition of an adaptation, needed to bind different structures to a single
one on which the manipulation is defined. In our example, such an adaptation could be
the transformation of foreach loops into more generic for loops, using the variable and
the lower bound to produce an initialization block, the variable and the upper bound to
produce a test block, and automatically producing a step block with a step of one.

This adaptation should be able to adapt back the result of the manipulation, because
this manipulation could modify the model it processes or return a result containing
elements of the model. For example, DCE modifies the representation of the program by
removing code. Once the optimization has been processed on a common representation,
it should be possible to adapt back the structure to impact the result of DCE in the
original structure (i.e., an ORCC IR or GeCoS IR model).

Although defining common optimizations on a minimal dedicated structure seems to
best fit the need for modularity and reuse, we need to consider the presence of legacy
code. For example, DCE is already implemented for the GeCoS IR. Reusing this im-
plementation on ORCC IR would avoid the creation of a generic model type and the
reimplementation of the optimization. However, the GeCoS IR does not contain only
the concepts required for DCE. More particularly, it contains concepts which do not
exist in ORCC IR (e.g., pointers). Therefore, a model subtyping mechanism should be
able to accept a subtype which only possesses the concepts of the supertype required
for the reuse of a specific model manipulation.

4 Model Subtyping Relations

Object-oriented type systems provide important systematic engineering facilities, in-
cluding abstraction, reuse and safety. We strongly believe that these facilities can also
be provided for model manipulation through a model-oriented type system. However,
the existing model subtyping relation has shown some limitations.

For this reason, in this section we review four subtyping relations between model
types, based on two criteria: the presence of heterogeneities between the two model



406 C. Guy et al.

types (Subsections 4.1 and 4.2) and the considered subset of the model types (Sub-
sections 4.3 and 4.4). Such a model subtyping relation is pictured in Figure 2 by the
generalization arrow between model types MTA and MTB. Through this subtyping re-
lation, models typed by MTA are substitutable to models typed by MTB, i.e., model
manipulations defined on MTB can be safely reused on model typed by MTA.

4.1 Isomorphic Model Subtyping

An obvious way to safely reuse on a model typed by MTB a model manipulation from
a model type MTA is to ensure that MTB contains substitutable concepts (e.g., classes,
properties, operations) for those contained by MTA. As mentioned in Section 3, it is not
possible to achieve type group (or model type) substitutability through object subtyping.

MOF Class Matching. Thus, we use an extended definition of object type matching
introduced by Bruce et al. [17] and used by Steel et al. to define their model type match-
ing relation. Our object type matching relation is similar to, but stricter than the latter,
because class names must be the same, as must lower and upper bounds of multiplicity
elements. Moreover, every mandatory property in the matching type requires a corre-
sponding property in the matched type, in order to prevent model manipulation from
instantiating a type without its mandatory properties.

Definition 3. (MOF class matching) MOF class T ′ matches T (written T ′ <# T) iff:

1 T.name = T ′.name
2 T ′.isAbstract ⇒ T.isAbstract
3 ∀op ∈ T.ownedOperation,∃S′ ∈ SuperClasses(T ′) such that ∃op′ ∈ S′.owned

Operation and:
3.1 op.name = op′.name
3.2 op′.type <# op.type∨op.type<: op′.type
3.3 ∀p ∈ op.ownedParameter,∃p′ ∈ op′.ownedParameter such that:

(a) ∃U ′ ∈ SubClasses(p′.type) such that U ′ <# p.type∨ p.type <: p′.type
(b) p.rank = p′.rank
(c) p.lower = p′.lower
(d) p.upper = p′.upper
(e) p.isUnique = p′.isUnique

3.4 ∀e′ ∈ op′.raisedException,∃e∈ op.raisedException such that e′ <# e∨e′ <: e
4 ∀a∈ T.ownedAttribute,∃S′ ∈ SuperClasses(T ′) such that ∃a′ ∈ S′.ownedAttribute

such that:
4.1 a.name = a′.name
4.2 a′.isReadOnly ⇒ a.isReadOnly
4.3 a.isComposite = a′.isComposite
4.4 a′.type <# a.type∨ (a′.type <: a.type∧a.isReadOnly)
4.5 a.lower = a′.lower
4.6 a.upper = a′.upper
4.7 a.opposite 
= void ⇒ a′.opposite 
= void ∧ a.opposite.name = a′.opposite.

name
4.8 a.isUnique = a′.isUnique



On Model Subtyping 407

5 ∀a′ ∈ T ′.ownedAttribute, a′.lower > 0 ⇒ ∃S ∈ SuperClasses(T ) such that ∃a ∈
S.ownedAttribute∧a.name= a′.name

Where SuperClasses(T ), is the set of all superclasses of T , SubClasses(T ), the set of
all its subclasses, both including T and <: is the object subtyping relation.

Model Type Matching. Given the conditions under which objects may be substitutable
in the context of a model type, we can define a model type matching relation which en-
sures the safe type group substitutability. Based on the definition of MOF class match-
ing, we redefine the model type matching relation as follows:

Definition 4. (Model type matching) The model type matching relation is a binary
relation � on ModelType, the set of all model types, such that (MTB,MTA) ∈� (also
written MTB � MTA) iff ∀TA ∈ MTA,∃TB ∈ MTB such that TB <# TA.

The model type matching relation can be seen as a kind of subgraph isomorphism which
takes into account the MOF specificities (e.g., inherited properties and operations). For
this reason we call isomorphic model subtyping relation a relation which satisfies the
matching relation.

4.2 Non-isomorphic Model Subtyping

The fact that MTB does not match MTA does not mean that it is not appropriate for
substitution. Indeed, the condition for safely substituting a model m for another is that
m contains all the necessary information expected to be handled safely by the called
model manipulation or to access the desired features. But this information can be under
another form than expected (e.g., with different class names) in which case m may be
substitutable if the expected form of the information is retrieved.

Model Adaptation is the process of retrieving the information from a model in the
form expected. It consists in adapting a model mB into a model mA which can be handled
by the operation or through which it is possible to access to the desired feature. Thus a
model adaptation is a way to create a model type matching relation between two model
types. A model adaptation is a function defined at the model type level and applied
on models. It takes a model mB typed by MTB and returns a model mA with the same
information, but in the form defined by MTA, i.e., a model whose type matches MTA.

Definition 5. (Model adaptation) A model adaptation is a function adaptMTA from
MTB to MTC, where MTA, MTB and MTC are model types and such that MTC � MTA.

One way to achieve such an adaptation is to implement a model transformation from
MTB to MTA, in which case MTC = MTA. Another way is by adding missing types and
derived properties from MTA to MTB, creating a new model type MTC with MTC � MTB

and MTC � MTA. This is the approach followed by Sen et al. [5].

Bidirectional Model Adaptation , that is coupled forward adaptation from MTB to
MTA and backward adaptation from MTA to MTB may be needed, depending whether
the adaptation is done to reuse an endogenous or an exogenous model manipulation [20].



408 C. Guy et al.

If the adaptation to MTA is done in order to reuse an endogenous manipulation, a
backward adaptation is necessary in order to reflect changes made to the adapted model
on the original model. Conversely, a backward adaptation is not necessary if the reused
feature is an exogenous manipulation.

The forward and backward adaptation together form a bidirectional adaptation, which
enables the adaptation of a model typed by MTB into a form which fits the expected
model type MTA but also to reflect the result in the original model. Moreover, a roundtrip
adaptation, i.e., applying the forward adaptation then the backward adaptation to the re-
sult should lead to an unchanged model. To this end, we use here rules defined by Foster
et al. for well-behaved lenses (i.e., bidirectional transformation operators) [21].

Definition 6. (Bidirectional model adaptation) A bidirectional model adaptation
adaptMTA between model types MTB and MTA comprises a function adaptMTA ↗ from
MTB to MTC and a function adaptMTA ↘ from MTB ×MTC to MTB, where MTC is a
model type such that MTC � MTA and:

– adaptMTA ↗ (adaptMTA ↘ (mB,mC)) = mC,∀(mB,mC) ∈ MTB ×MTC

– adaptMTA ↘ (mB,adaptMTA ↗ (mB)) = mB,∀mB ∈ MTB

Bidirectional adaptation can be provided through bidirectional transformations. Bidi-
rectional transformations are studied in different disciplines of computer science (e.g.,
MDE, graph transformations and databases) to synchronize two data structures (a source
and a view) [22,23]. In our case, the source is the model typed by MTB found in a context
where a model typed by MTA (our view) is expected.

4.3 Total Model Subtyping

When a model of type MTB can be used in every context in which a model of type MTA

is expected, we talk about total substitutability. Therefore, a subtyping relation which
guarantees total substitutability is a total subtyping relation.

Definition 7. (Total subtype) MTB is a total subtype of MTA if any model typed by
MTB can be safely used everywhere a model typed by MTA is expected.

4.4 Partial Model Subtyping

Conversely, a partial subtyping relation enable a model typed by MTB to be used in
a given context (e.g., a given model transformation) where a model typed by MTA is
expected. This notion of usage context have been introduced by Kühne in order to define
in which cases a specialization relation holds, while it does not hold in the general
case [16]. Typically, a partial subtyping relation enables a model typed by MTB to be
substituted for a model a of type MTA in the context of the call m(a) if MTB contains
the required features for m, even if MTB is not a total subtype of MTA.

Definition 8. (Partial subtype) MTB is a partial subtype to MTA wrt. f if models typed
by MTB can be safely used where a model typed by MTA is expected to use the feature
f .



On Model Subtyping 409

��������	
���
���������

������� �������

���

����
������������	�� ����
���������	��

(a) Total subtyping

�������	


	����	

���

������������������������

(b) Partial non-isomorphic subtyping

Fig. 4. Two different scenarios of the reuse of DCE between ORCC IR and GeCoS IR

Here, f can be an attribute or an operation from the model or a model manipulation
that takes the model as argument. MTB is a partial subtype to MTA wrt. f if MTB is a
total subtype of MTf , where MTf is a model type which contains only the necessary
information to apply or access f safely and such that MTA is a total subtype of MTf . We
call MTf the effective model type of f .

Definition 9. (Effective model type) The effective model type MTf of a feature f ex-
tracted from a model type MTA is the model type which contains all the required features
to access or call f and such that MTA � MTf .

This effective model type can be processed using a function which analyzes the model
type and extracts its required subset to access a given feature.

Definition 10. (Effective model type extraction) The effective model type extraction
function is a function extractEffectiveMT(MTA, f ), with MTA a model type and f a
required feature belonging to MTA, and such that MTf = extractEffectiveMT(MTA, f )
is the effective model type of f extracted from MTA.

One possible way to extract this required subset is to use an approach like the one pro-
posed by Sen et al. [5]. They compute a metamodel (called the effective metamodel)
from a larger metamodel using the footprint of a model manipulation, i.e., the set of
types and features touched by the manipulation. This footprint can be processed stat-
ically, by analyzing the code of the model manipulation or dynamically using a trace
of the execution of the operation [24]. The dynamic footprint is more accurate because
it contains only the types and features of the objects which have been touched by the
operation, whereas the static footprint contains all the types and features which may be
touched by the operation. However, the dynamic footprint is also costlier and cannot be
used for static type checking (cf. Section 5.2).

4.5 Definition of Subtyping Relations for Model Types

From these two criteria (isomorphism of the structures and totality of the subtyping), we
define four model subtyping relations to provide model substitutability. In the following
MTA and MTB are model types and ModelType is the set of all model types.

The first model subtyping relation is the total isomorphic subtyping relation, to
which the three others refer. MTB is a total isomorphic subtype of MTA if it contains one



410 C. Guy et al.

matching object type for every object type of MTA, i.e., if MTB � MTA. For example,
such a subtyping relation could hold between GeCoS IR and a model type extracted
from GeCoS IR by selecting only the relevant concepts for Dead Code Elimination
(DCE). In Figure 4(a), where the DCE arrow represent the DCE model manipulation
defined on a dedicated model type, this case is represented by the generalization arrow
between GeCoS IR and the DCE dedicated model type.

Definition 11. (Total isomorphic subtyping relation) The total isomorphic subtyping
relation is the matching relation, denoted MTB � MTA.

A partial isomorphic subtyping relation wrt. feature f holds between MTB and MTA

if MTB contains matching object types for every object type belonging to the effective
model type of f extracted from MTA, i.e., MTB is partial isomorphic subtype of MTA

wrt. feature f if MTB is a total isomorphic subtype of the effective model type of f
extracted from MTA.

Definition 12. (Partial isomorphic subtyping relation) The partial isomorphic sub-
typing relation wrt. the feature f is a binary relation � f on ModelType such that
(MTB,MTA) ∈<: f (also written MTB � f MTA) iff MT ′ � extractEffectiveMT(MTA, f ).

MTB is a total non-isomorphic subtype of MTA if there is a adaptation able to adapt
every model typed by MTB in a model typed by a total isomorphic subtype of MTA. This
adaptation must be bidirectional, or it would be impossible to reuse endogenous model
manipulations from MTA and the subtyping relation would not be total. Figure 4(a)
represents such a subtyping relation between ORCC IR and the model type dedicated
to DCE mentioned above. Loops from the latter are isomorphic to GeCoS IR ones, thus
they cannot be isomorphic to loops from the former. Therefore an adaptation is needed,
as the one described earlier (see 3.2).

Definition 13. (Total non-isomorphic subtyping relation) The total non-isomorphic
subtyping relation is a binary relation �∼ on ModelType such that (MTB,MTA) ∈ �∼
(also written MTB

�∼ MTA) iff ∃adaptMTA a bidirectional adaptation from MTB to MTC

such that MTC � MTA.

Finally, model type MTB is a partial non-isomorphic subtype of MTA wrt. the feature
f if there is an adaptation able to adapt a model typed by MTB in a model typed by
a total isomorphic subtype of the effective model type of f extracted from MTA. This
adaptation must be bidirectional if f is an endogenous feature. Such a partial non-
isomorphic subtyping relation is pictured in Figure 4(b), where ORCC IR is subtype
of GeCoS IR through an adaptation to the effective model type of DCE extracted from
GeCoS IR.

Definition 14. (Partial non-isomorphic subtyping relation) The partial
non-isomorphic subtyping relation wrt. the feature f is a binary relation �∼ f on
ModelType such that (MTB,MTA) ∈ �∼ f (also written MTB

�∼ f MTA) iff ∃adaptMTA

an adaptation from MTA to MTC such that MTC � extractEffectiveMT(MTA, f ) and
adaptMTA is a bidirectional adaptation if f is an endogenous model manipulation.



On Model Subtyping 411

5 Putting Subtyping Relations to Work

Defining model subtyping relations is not sufficient to build a type system. Indeed,
a type system implements one or more subtyping relations and provides ways to de-
clare and check them. Thus, we discuss here the ways to declare and check subtyping
relations and the respective drawbacks and advantages of these approaches for an im-
plementation of a model-oriented type system.

5.1 Declaration of Subtyping Relations

Subtyping relations can be declared in two ways: explicitly and implicitly. We call a
subtyping relation declaration explicit when a syntactic construct is used to state the
subtyping relation. Conversely, if the type system infers the subtyping relation from the
information it can gather about the types or the use which is done from their instances,
the declaration of the subtyping relation is implicit. In addition, the declaration of the
subtyping relation can take place either at the definition of a type or after the definition
of the subtype and the supertype involved in the subtyping relation.

The way to declare model subtyping relations may affect the possibilities that these
relations offer through the type system. For example, a non-isomorphic model subtyp-
ing relation can be declared implicitly. To this end, a tool able to infer adaptations is
necessary. Such inference can be done through patterns which are known to be safe
or using ontologies to find corresponding class or feature names. However, an implicit
adaptation mechanism will be more limited in terms of possible adaptations than an
explicit one, which let the user define its adaptation based on its knowledge of the two
model types involved. On the other hand, an explicit adaptation mechanism needs ap-
propriate syntactic constructs and analyses to ensure that an adaptation is safe.

Declaration of a subtyping relation at the definition of a type is a kind of documenta-
tion, letting know what are the subtypes or supertypes of the defined type. Conversely,
it is not always possible or desirable to add this information in a type, particularly if
the subtyping relation is required for a very specific use (e.g., a partial subtyping rela-
tion for a single model manipulation) or legacy code where existing model types should
be modified. In such cases, declaring the subtyping relation after the definition of the
involved types may be a solution.

Finally, declaration of a subtyping relation explicitly at the definition of a model
type could allow inheritance. That is, reuse of the structure of the supertype, with the
possibility to redefine or modify it in the subtype without breaking model subtyping.
Moreover, if explicit declaration at the definition is the only way to declare model sub-
typing relations, it prevents from the type system to use subtyping relations which are
unknown from the user, and thus prevents from accidental substitutability.

5.2 Checking of Subtyping Relations

Checking of the subtyping relations is the verification that a subtyping relation holds.
Regardless of the way the subtyping relation is declared, this check can be processed
either at design time, i.e., during the compilation or interpretation process, or at runtime.



412 C. Guy et al.

Here again, the way to check model subtyping relations can impact the facilities pro-
vided for model manipulations. On the one hand, design time (or static) check enables
earlier detection (i.e., than runtime check) of type errors and programming mistakes
and thus earlier user feedback. It also enables tools to provide more facilities, such
as type-based compiler optimizations, auto-completion or impact analyses. Moreover,
compared to runtime checking, design time checking needs significantly fewer tests to
achieve the same level of runtime safety.

On the other hand, runtime checking can be processed with more precise type infor-
mation. When the program is running, the actual type of a variable is known rather than
its declared type. Although possibly slower because of the process of the check during
the execution of the program, dynamic checking enables valid programs which would
be forbidden by a static type checker because of a lack of information. In the context of
model types, knowing the actual model would enable the extraction of its model type
and would possibly enable subtyping relations forbidden by a static type checker.

6 Discussions

Several approaches have been proposed in the last decade to provide engineering fa-
cilities for model manipulation reuse. We show in this section how the fthe different
model subtyping mechanisms (i.e., total/partial and isomorphic/non-isomorphic model
subtyping, declaration and checking) defined in this paper can be used to classify these
approaches through a unified theory. Figure 5 summarizes this classification. The ques-
tion marks indicate the lack of information about the given mechanism.

6.1 Isomorphic vs. Non-isomorphic Subtyping Relations

To the best of our knowledge, the only approach using an isomorphic subtyping relation
is the bidirectional subset of the adaptation DSL proposed by Babau et al. [9,10]. All

Total / partial Iso / non-iso At / after defini-
tion

Explicit / implicit Checking Legacy tool
reuse

Varró et al. [1] Total Non-iso (Class renam-
ing)

After Implicit ? No

Cuccurru et al. [2] Total Non-iso (Abstract class
renaming)

After Explicit (Genericity and
explicit object subtyp-
ing)

? Yes

Steel et al. [3] Total Non-iso (Class renam-
ing, multiplicities con-
traction)

After Implicit At compile-time, with
possible runtime type
errors

Yes

Sanchez Cuadrado
et al. [4]

Total Non-iso (Class renam-
ing, multiplicities con-
traction)

After Explicit (Binding DSL) ? Yes

Sen et al. [5] Partial (Ef-
fective meta-
model)

Non-iso (Potentially
any adaptation)

After Explicit (Static intro-
duction)

At compile-time, with
possible runtime type
errors

Yes

De Lara et al.
[6,7,8]

Total Non-iso (Class renam-
ing, navigation and fil-
tering of properties, n−
to−1 bindings)

After (Binding),
At definition
(Specialization)

Explicit (Binding DSL) ? No

Babau et al. [9,10] Total (Bidi-
rectional
subset)

Iso (Bidirectional sub-
set)

After Explicit (Adaptation
DSL)

? Yes

Fig. 5. Classification of different model manipulation reuse approaches



On Model Subtyping 413

other approaches either let class names vary or go further, enabling adaptations such as
n− to− 1 concepts binding or navigation and filtering of features. The latter use dif-
ferent mechanisms to bind the subtype to its supertype and express the adaptation (e.g.,
adaptation and binding DSLs or static introduction). The rarity of isomorphic subtyping
relations can be explained by the restrictions such relations impose, restrictions which
can be safely relaxed in some cases, e.g., class names modification.

6.2 Total vs. Partial Subtyping Relations

Excepting one approach which allows the extraction of the effective metamodel from a
model manipulation [5], all existing approaches are total. To be total a non-isomorphic
subtyping relation must handle bidirectional adaptation. Bidirectionality is tackled in
existing approaches by almost isomorphic relations [1,2,3,4,9] or by generating an
adapted model manipulation rather than adapting the model [6,7,8].

6.3 Declaration of Subtyping Relations

All the existing approaches declare the subtyping relation or binding after the definition
of the two model types (or their equivalent). However, de Lara et al. authorize spe-
cialization of model types (called concepts in their terminology) using a mechanism
close to inheritance (i.e., at definition) [6]. Only two approaches declare subtyping
relations implicitly [1,3] whereas the others use explicit mechanisms mainly through
DSLs [4,6,7,8,10,9], with the exception of the approaches from Cuccuru et al. [2] and
Sen et al. [5] which use respectively genericity and static introduction.

6.4 Checking of Subtyping Relations

Little is said about the checking of the subtyping relations, apart from the work of Steel
et al. [3], in which subtyping relations are checked at compile time. De Lara et al. [6]
mention a notion of valid binding, but do not formalize it.

6.5 Legacy Tools Reuse

One group of our examples, abstract interpretation analyses, are implemented in an
existing tool (P-Interproc). Among the existing approaches, some need to specifically
define the model manipulation to be reused [1], or to process it in order to generate
an adapted model manipulation [6,7,8]. By doing so, they prevent from reusing exist-
ing model manipulations which have not been defined using their own mechanisms or
which sources are not available. The other approaches, which enable a subtyping rela-
tion with a legacy tool, are the ones with the fewest possible adaptations [2,3,4,10,9],
or without any guarantee on the bidirectionality of such adaptations [5].

7 Conclusion and Perspective

This paper provides a review of the overall scope of model substitutability through
model typing. To this end we analyze the subtyping relation between two model types
wrt. both their structure, and the context of the need for such a substitutability.



414 C. Guy et al.

First, to be substitutable a model must be structurally equivalent to the expected
one.Such a structural equivalence can be achieved if the structures of the two model
types are isomorphic, or thanks to an adaptation making the two structures isomorphic.

Second, such an isomorphism can be total, i.e., achieved between the whole struc-
tures of the two model types, allowing a substitution of the corresponding models in
every possible context where the substitution is necessary. Otherwise, partial model
substitutability can be achieved according to a given context. In other words, the iso-
morphism can be achieved between a model type and the effective model type of the
feature to be reused, i.e., the subset of the model type used in a given context.

From these distinctions, we define four model subtyping relations providing dif-
ferent kinds of model substitutability: total isomorphic, partial isomorphic, total non-
isomorphic and partial non-isomorphic. We review existing approaches to model ma-
nipulation reuse wrt. these subtyping relations. It appears that few existing approaches
use partial subtyping relations or enable adaptations to handle complex structural het-
erogeneities between model types. Moreover some approaches forbid the reuse of legacy
tools. More importantly, most of the approaches lack of a way to forbid erroneous reuse.

In addition to the comparison of existing approaches, the subtyping relations intro-
duced in this paper provide a specification of a family of model type systems that can
be implanted in a MDE CASE tool to enable safe reuse of model manipulations. In
this context, we thus discuss ways to declare a subtyping relation, and how to check it.
Depending on the chosen subtyping relation, as well as the way to declare and check
it, these type systems enable many facilities that are well known at the programming
language level, such as type-based compiler optimizations and auto-completion.

As a direct perspective of this work, we plan to refactor the existing model typing in
Kermeta to support the subtyping relations identified in this paper. To this end, we plan
to integrate the state-of-the-art of the existing approaches and to study how the work of
Vignaga et al. [25], focusing on the typing of the relations between models as functions,
can be combined with our subtyping relations.

Acknowledgement. This work has been partially supported by VaryMDE, a collab-
oration between Inria and Thales Research and Technology, and by the French ANR
BioWIC (ANR-08-SEGI-005). The authors thank the anonymous reviewers for their
constructive feedback which helped us to considerably improve the article.

References

1. Varró, D., Pataricza, A.: Generic and Meta-transformations for Model Transformation En-
gineering. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML 2004. LNCS,
vol. 3273, pp. 290–304. Springer, Heidelberg (2004)

2. Cuccuru, A., Mraidha, C., Terrier, F., Gérard, S.: Templatable Metamodels for Semantic Vari-
ation Points. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA. LNCS, vol. 4530,
pp. 68–82. Springer, Heidelberg (2007)

3. Steel, J., Jézéquel, J.M.: On model typing. SoSyM 6(4) (2007)
4. Sánchez Cuadrado, J., García Molina, J.: Approaches for Model Transformation Reuse: Fac-

torization and Composition. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008.
LNCS, vol. 5063, pp. 168–182. Springer, Heidelberg (2008)



On Model Subtyping 415

5. Sen, S., Moha, N., Mahé, V., Barais, O., Baudry, B., Jézéquel, J.-M.: Reusable model trans-
formations. SoSyM 11(1) (2010)

6. de Lara, J., Guerra, E.: From types to type requirements: genericity for model-driven engi-
neering. SoSyM (2011)

7. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Generic Model Transformations: Write Once,
Reuse Everywhere. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 62–77.
Springer, Heidelberg (2011)

8. Wimmer, M., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger, W., Cuadrado, J.,
Guerra, E., de Lara, J.: Reusing model transformations across heterogeneous metamodels.
In: International Workshop on Multi-Paradigm Modeling (2011)

9. Kerboeuf, M., Babau, J.-P.: A DSML for reversible transformations. In: OOPSLA Workshop
on Domain-Specific Modeling (2011)

10. Babau, J.-P., Kerboeuf, M.: Domain Specific Language Modeling Facilities. In: MoDELS
Workshop on Models and Evolution (2011)

11. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools,
2nd edn. Addison-Wesley (2006)

12. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL (1977)

13. OMG: Meta Object Facility (MOF) 2.0 Core Specification (2006)
14. OMG: UML Object Constraint Language (OCL) 2.0 Specification (2003)
15. Ernst, E.: Family Polymorphism. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS,

vol. 2072, pp. 303–326. Springer, Heidelberg (2001)
16. Kühne, T.: On model compatibility with referees and contexts. SoSyM (2012)
17. Bruce, K.B., Schuett, A., van Gent, R., Fiech, A.: Polytoil: A type-safe polymorphic object-

oriented language. ACM TOPLAS 25(2) (2003)
18. Steel, J.: Typage de modèles. PhD thesis, Université de Rennes 1 (April 2007)
19. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schoenboeck, J., Schwinger, W.:

From the Heterogeneity Jungle to Systematic Benchmarking. In: Dingel, J., Solberg, A. (eds.)
MODELS 2010. LNCS, vol. 6627, pp. 150–164. Springer, Heidelberg (2011)

20. Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electronic Notes in Theoretical
Computer Science 152 (2006)

21. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators for bidi-
rectional tree transformations: A linguistic approach to the view-update problem. ACM
TOPLAS 29(3) (2007)

22. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidirectional
Transformations: A Cross-Discipline Perspective. In: Paige, R.F. (ed.) ICMT 2009. LNCS,
vol. 5563, pp. 260–283. Springer, Heidelberg (2009)

23. Hu, Z., Schürr, A., Stevens, P., Terwilliger, J.F.: Bidirectional transformation ”bx” (dagstuhl
seminar 11031). Dagstuhl Reports 1(1) (2011)

24. Jeanneret, C., Glinz, M., Baudry, B.: Estimating footprints of model operations. In: ICSE
(2011)

25. Vignaga, A., Jouault, F., Bastarrica, M., Bruneliére, H.: Typing artifacts in megamodeling.
SoSyM (2011)


	On Model Subtyping
	Introduction
	Illustrative Examples
	Background
	Model Driven Engineering
	Model Typing

	Model Subtyping Relations
	Isomorphic Model Subtyping
	Non-isomorphic Model Subtyping
	Total Model Subtyping
	Partial Model Subtyping
	Definition of Subtyping Relations for Model Types

	Putting Subtyping Relations to Work
	Declaration of Subtyping Relations
	Checking of Subtyping Relations

	Discussions
	Isomorphic vs. Non-isomorphic Subtyping Relations
	Total vs. Partial Subtyping Relations
	Declaration of Subtyping Relations
	Checking of Subtyping Relations
	Legacy Tools Reuse

	Conclusion and Perspective
	References




