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Abstract. In this paper, we propose a graph pattern matching frame-
work that produces both a standalone compiled and an interpreter-based
engine as a result of a uniform development process. This process uses
the same pattern specification and shares all internal data structures,
and nearly all internal modules. Additionally, runtime performance mea-
surements have been carried out on both engines with exactly the same
parameter settings to assess and reveal the overhead of our interpreter-
based solution.
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1 Introduction

As model transformation undoubtedly plays an immense role in the process of
model-driven development, efficiency and scalability are, therefore, important
issues. In many state-of-the-art tools [1,2], model transformations are governed
by imperative control flow statements, which apply declarative rules as basic
transformation units. Such tools offer the usual advantages of declarativity like
an easily understandable specification language, and readily available solutions
provided by the underlying execution engine for many performance-critical tasks,
whose optimal implementation requires years of specialized expertise. One such
task is the efficient checking of the application conditions of rules, which requires
identifying those parts in the system model on which the rule is executable.

This application condition checking process (as well as several other subtasks
in bidirectional model synchronization and on-the-fly consistency checking sce-
narios) can be described as a general pattern matching problem. In this context, a
pattern consists of constraints, and the matching process determines those parts
of the underlying model that fulfill all these constraints. Structural constraints

� Supported by the Postdoctoral Fellowship of the Alexander von Humboldt Founda-
tion and associated with the Center for Advanced Security Research Darmstadt.

�� Supported by the ‘Excellence Initiative’ of the German Federal and State Govern-
ments and the Graduate School of Computational Engineering at TU Darmstadt.

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 368–383, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Unification of Compiled and Interpreter-Based Pattern Matching Techniques 369

express restrictions that can be checked by using the services of the modelling
layer (e.g., type checks, navigation along links), while non-structural constraints
are handled by some other means (like integer or textual comparison). The rest
of the paper will focus on handling structural constraints, which corresponds to
the graph pattern matching problem [3]. Nonetheless, our approach is left open
w.r.t. the integration of non-structural constraints as well.

When implementing a pattern matching engine, developers must decide on
several important issues (see Sec. 2) already in the early phase of design, which
are hardly modifiable in later development phases as they have radical conse-
quences on the overall architecture. One of these critical topics is the decision
whether a compiled or an interpreter-based engine is to be built.

A compiled engine only consists of program code that is directly executable on
a certain platform without an extra module for performing pattern matching. A
compiled engine typically features better runtime performance, as the algorithms
are represented as machine or byte code of the underlying execution system and
no operation handling layer is needed. In contrast, an interpreter-based engine
requires a specific module (the interpreter), which is responsible for executing
the operations needed to perform pattern matching. Such a technique could offer
more flexibility (e.g., model-sensitive performance optimization [4]) and provide
additional services such as high-level debug support, as the interpreter can access
and exploit runtime information more easily.

There exists a large variety of advanced compiled pattern matcher imple-
mentations [1,5], and several sophisticated interpreter-based approaches [2,6] in
different rule-based model transformation tools. Although some of them provide
solutions for both cases, the resulting engines can be considered to be separate
programs. The following statement [7] is, therefore, still valid: “Interpretation
and code generation are often seen as two alternatives, not as a continuum”. In
order to allow different combinations of these alternatives, techniques are needed
that handle compiled and interpreter-based pattern matchers in a uniform and
tightly integrated way.

In this paper, we propose a pattern matching framework that can produce
both a standalone compiled and an interpreter-based engine as a result of a
uniform development process, which shares (i) the pattern specification, (ii) all
internal data structures, and (iii) all internal activities except for one engine-
specific module. Furthermore, applying exactly the same settings in this uniform
process wherever possible, runtime performance measurements are carried out on
both engines to assess and reveal the overhead of our interpreter-based solution.
To our best knowledge, our proposed approach can be considered the first pattern
matcher to support both a compiled and an interpreter-based setup in a unified,
configurable and integrated manner and can, therefore, be easily embedded and
used by different rule-based model transformation tools.

The remainder of the paper is structured as follows. Related work is discussed
in Section 2. Section 3 introduces basic metamodelling terminology, pattern spec-
ification constructs, and the process of pattern matching. Sections 4 and 5 present
our data structures and algorithms used in the unified pattern matching engine.
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Section 6 gives a quantitative assessment and performance comparison of our
compiled and interpreter-based engines. Section 7 concludes our paper.

2 Design Space of Pattern Matchers and Related Work

A widely deployable pattern matching engine should support many different ap-
plication scenarios like the execution of rule-based model transformations on a
desktop computer, as well as performing security monitoring tasks on an embed-
ded system. As the computational power and the amount of available resources
of these architectures significantly differ, the development of a pattern matcher
requires considering several design issues that influence the applicability and
performance of the approach.

The design space of pattern matching engines can be characterized by the
following properties:

(1) Dependency on separate pattern matching modules. The first
property, which has the closest relation to the topic of this paper, expresses
whether pattern matching requires a specific interpreter (I), or can be per-
formed without any separate modules in a standalone manner as a compiled
program (C).

(2) Existence and granularity of intermediate data structures. Pat-
tern matching interpreters and code generators that produce compiled engines
usually operate on data structures with different granularity. One group of solu-
tions directly processes the declarative, pattern specification either in a low-level
form as an abstract syntax tree representation (AST), or in a high-level form
as a pattern definition (P). The other group operates on a preprocessed (and
typically optimized) intermediate data structure, which can either be a low-level
byte code representation (BC), or a high-level search plan (SP).

(3) Generation schedule of intermediate data structures. When inter-
mediate data structures are used by the pattern matcher, their generation sched-
ule can also be an important design decision due to its time consuming nature.
Intermediate data structures can be calculated clearly at compile time (CT), at
runtime in an on-demand fashion (OD) by using a caching mechanism, or at
runtime (RT) before each pattern matching process.

(4) Availability of model sensitive pattern matching strategies. The
size and the structure of the underlying model often influence the runtime per-
formance of a pattern matcher. As both characteristics can significantly change
as a transformation proceeds, the runtime selection of a pattern matching strat-
egy in a model sensitive (MS) way (i.e., by using statistics from the model) is a
feasible optimization compared to approaches that rely only on metamodel-level,
domain-specific (DS) information.

(5) Incrementality. As matches for a given pattern are often requested
several times during the life cycle of several application scenarios, exploiting the
reuse of already calculated matches is a feasible optimization possibility. In this
sense, batch engines (B) restart the pattern matching process from scratch at
each invocation, while incremental approaches (I) store a set of (partial) matches,
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and update this set according to a defined schedule that depends on changes in
the underlying model.

(6) Implementation/target language. As the applicability of a pattern
matcher in a specific environment is largely determined by the implementation
language of the interpreter, or the target language of the code generator, this
property has also been included in our survey. The categorization here indicates
support for a single (1) or multiple (*) languages.

(7) Reusability in different modelling spaces. Another important factor,
in the evaluation of pattern matchers, is their reusability in different modelling
environments. In this sense, an engine can operate on non-standard (NS) or
standard (S) (e.g., EMF, MDR) model repositories. In the latter case, a star (*)
suffix is added, if a tool provides clear interfaces to several standard modelling
environments.

(8) Model access. When a tool operates in a standard compliant modelling
environment, the underlying model can be accessed via tailored (T) or reflec-
tive (R) interfaces, which obviously affects both the runtime performance, and
the resource (disk and memory) demand of an approach.

As a categorization of general model transformation tools is already avail-
able [8], this survey, which cannot be complete due to space restrictions, focuses
on the pattern matching modules of state-of-the-art, rule-based transformation
engines, and systematically compares them based on the previously listed cri-
teria, which has been preceded by a manual inspection of the available source
code (or a related publication). Table 1 presents the evaluation of these pattern
matchers, which are enumerated in alphabetical order.

Table 1. Tool comparison

Tool name (1) (2) (3) (4) (5) (6) (7) (8)

ATL [2] I BC CT DS B 1 S* R

Epsilon [9] I AST N/A DS B 1 S* R

Fujaba @ KS [1] C SP CT DS B 1 S* T

Fujaba @ PO [10] I SP RT MS B 1 S T – R

GReAT [11] I C P N/A DS B 1 NS T

GrGen [5] C SP OD MS B 1 NS N/A

Groove [12] I SP OD MS B I 1 NS N/A

Henshin [13] I P N/A DS B 1 S R

PROGRES [14] I C BC OD DS B I * NS N/A

VIATRA [15,6] I SP OD DS MS B I 1 NS S T

Our approach I – C SP CT OD – RT DS B 1 S T

Perfect tool I – C BC,SP CT – OD – RT DS – MS B – I * NS – S* T – R

The N/A mark shows if a categorization is non-applicable, while the ‘–’ nota-
tion is used to express that a tool is able to cover the whole range of values in an
integrated and configurable manner. The last two lines represent the evaluation
of our current approach, and a hypothetic ideal pattern matching engine that
could be deployed in many different application scenarios.
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Table 1 clearly shows that many aspects of the ideal solution have already been
solved separately by the different existing tools; however, the coverage of design
space ranges along several properties is still not satisfactory. The main challenge
here is that each of the above-mentioned design space properties represents a
decision that is hard-wired into the tool architecture making reengineering tasks
difficult in this context.

3 Modelling Concepts and Data Structures

In this section, we introduce basic metamodelling terminology required to present
our approach, define concepts related to pattern specification, and illustrate the
process of pattern matching and its runtime data structures.

3.1 Metamodels and Models

A metamodel is the specification of the concepts and relationships in a certain
domain. Figure 1(a) depicts an excerpt of the metamodel from a case study [16]
for the GraBaTs’09 transformation tool contest [17], which poses a program
comprehension challenge based on the Eclipse Java Development Tools (JDT)
API [18]. Using the common UML class diagram notation, parts that are relevant
for our running example are depicted. The metamodel has been taken unchanged
from the case study, and defines concepts as classes (e.g., a CompilationUnit).
Classes can inherit from other classes (e.g., every MethodDeclaration is a
BodyDeclaration), can contain attributes (every Name has an fqn as an at-
tribute of type String), and can reference other classes (CompilationUnits
contain arbitrary many AbstractTypeDeclarations, which each have exactly
one SimpleName). Attributes and references are referred to as structural features
in the rest of the paper.

A model is an abstraction of a system, created with an intended goal in mind.
In alignment with the UML notation, nodes and edges are referred to as objects
and links, respectively. A model that is expressed using concepts specified in a
metamodel is said to conform to the metamodel. Figure 1(b) depicts a model,
which corresponds to the Eclipse JDT representation of a Java class Client with
a single public method, which returns a Client.

3.2 Pattern Specification

This subsection introduces the concepts needed for specifying patterns. The
following definitions are based on [19].

A pattern is a set of constraints over a set of variables. A variable is a place-
holder for an object in a model. Interface variables constitute a subset of all
variables used in a pattern, and represent the variables that can be accessed
outside of the pattern. All other local (i.e., non-interface) variables can only be
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(a) An excerpt of the metamodel of the Eclipse JDT

cu:CompilationUnit

typeDecl:
TypeDeclaration

methodDecl:
MethodDeclaration

modifier:Modifier

- public = true

name:SimpleName

- fqn:  String = "Client"

typeName:SimpleName

- fqn:  String = "Client"

type:
SimpleType

+name

+modifiers

+returnType
+bodyDeclarations

+name
+types

(b) A sample model

Fig. 1. An excerpt of the metamodel of the Eclipse JDT API and a sample model

accessed and used internally in the pattern. A constraint specifies a condition
on a set of variables that must be fulfilled by the objects, which are assigned to
the variables during pattern matching. A constraint consists of a constraint type
and a set of variables (also referred to as parameters in this context), for which
the constraint must hold. In the following, an explicit reference to the type of a
constraint shall be denoted by adding a ‘type’ suffix.

The pattern matcher has a pluggable infrastructure for the constraints that
can be used for specifying patterns.1 In this paper, only a subset of constraints
is presented. The support for extending the framework with constraints for at-
tribute handling, positive and negative pattern invocations is already available,
however, the implementation for pattern calls is still a task for the future.

A class constraint (cls) restricts the type of the objects that can be assigned
to its single parameter. A structural feature constraint (sf) prescribes the ex-
istence of a link, which connects the assigned objects and conforms to a given
structural feature. Both constraints cls and sf have references to types in the
corresponding metamodel. A Boolean constraint must evaluate to true for the
assigned values to its single parameter.

The textual specification of patterns, used in this paper, is defined by the
following simplified EBNF grammar:

patternSpecification ::= "pattern" signature "=" body

signature ::= NAME "(" interfaceVariables ")"

body ::= "{" constraint* "}"
constraint ::= NAME typeReference? "(" variables ");"

typeReference ::= "<" NAME ">"

1 Quantifiers can be defined at runtime in our framework, when the pattern matching
is invoked, and consequently, they are not part of the pattern specifications.
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interfaceVariables ::= variables

variables ::= ( NAME ",")* NAME

NAME ::= [a-zA-Z]+

Example. The graphical representation and the textual specification of pattern
publicMethods2 are presented in Fig. 2. This pattern requires the existence of
a compilation unit CU, which has a type declaration TD with a public method
declaration MD. Pattern publicMethods has three interface variables CU, TD, and
MD (line 1). The class constraint on line 3 prescribes that variable CU must be
mapped to a CompilationUnit. The structural feature constraint on line 10 re-
quires a types reference that connects the objects that are assigned to variables
CU and TD. The Boolean constraint on line 16 prescribes that the object assigned
to variable PublicTagmust be true. Please note that (i) the order of constraints
(rows) in the textual representation of a pattern is arbitrary, (ii) constraints on
references and attributes are handled in a uniform way (line 13), and (iii) the
pattern matcher has access to all the properties of a metamodel element (infor-
mation whether a class is abstract, a reference is a composition, etc.) via the
references maintained in the class and structural feature constraints.

pattern publicMethods (CU, TD, MD)

CU:
CompilationUnit

TD:
TypeDeclaration

MD:
MethodDeclaration

Mod:Modifier

PublicTag:
boolean

«Constraint»
{PublicTag
     == 
    true}

public

modifiers

bodyDeclarations

types

1 pattern publicMethods(CU,TD,MD) = {
2 // Class constraints
3 cls <CompilationUnit >(CU);
4 cls <TypeDeclaration >(TD);
5 cls <MethodDeclaration>(MD);
6 cls <Modifier >(Mod);
7 cls <boolean >( PublicTag);
8
9 // Structural feature constraints

10 sf<types >(CU,TD);
11 sf<bodyDeclarations >(TD,MD);
12 sf<modifiers >(MD ,Mod);
13 sf<public >(Mod,PublicTag);
14
15 // Boolean constraints
16 true(PublicTag);
17 }

Fig. 2. Pattern publicMethods in a graphical and textual representation

3.3 Pattern Matching and Runtime Data Structures

Pattern matching is the process of determining mappings for all variables in a
given pattern, such that all constraints in the pattern are fulfilled. The mappings
of variables to objects are collectively called a match, which can be a complete
match when all the variables are mapped, or a partial match in all other cases.

An adornment represents binding information for a sequence of variables and
is indicated in the textual syntax by a sequence of letters B and F of the same
length, which appears as a superscript on the name of the concept to which

2 A more complex example scenario can be found in [4].
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the adornment is attached. The letter B or F in an adornment, means that the
variable in that position is bound or free, respectively.

When pattern matching is invoked, interface variables can be already bound
to objects to restrict the search. The corresponding binding information of all
interface variables is called a pattern adornment.

An operation represents a single atomic step in the matching process and it
consists of a constraint and a constraint adornment. A constraint adornment
prescribes which parameters must be bound when the operation is executed.
A check operation has only bound parameters. An extension operation has free
parameters, which get bound when the operation is executed.

Example. Suppose a matching process for the pattern publicMethods (Fig. 2)
is to be run on the model of Fig. 1(b), with the interface variable CU bound to the
compilation unit cu at pattern invocation. This single mapping itself constitutes
a partial match, and the corresponding pattern adornment is BFF,3 since only
the first interface variable has been bound. When the pattern matching process
terminates, a complete match is returned, which maps variables CU, TD, MD, Mod,
and PublicTag to objects cu, typeDecl, methodDecl, modifier, and a Boolean
true value, respectively.

4 Workflow of Compiled Pattern Matching

This section presents the workflow for generating a compiled pattern matching
engine. In this process, a pattern matcher class is generated for every pattern.
Although an adornment is part of runtime binding information, the generated
engine must be prepared to handle a fixed set of pattern adornments, which
are selected in advance at compile time. For each selected pattern adornment,
a method that performs the actual pattern matching is generated into the cor-
responding pattern matcher class according to the approach depicted in Fig. 3,
which operates as follows:

Section 4.1 For each constraint type used in the pattern specification, the set
of allowed constraint adornments is calculated.

Section 4.2 For each pair of constraint and allowed constraint adornment, an
operation is loaded.

Section 4.3 Operations are filtered and ordered by a search plan algorithm to
produce an efficient search plan.

Section 4.4 Based on the search plan, generators are created, which control
the code generation process.

When the pattern matcher is invoked at runtime, the pattern adornment is de-
termined and used to select and execute the corresponding generated method.4

The selected method performs the complete pattern matching process, collecting

3 The pattern adornment only contains binding information for interface variables (CU,
TD and MD in this example).

4 If no such method exists, an exception is thrown, which might initiate a pattern
matcher regeneration process.
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constraint 
types (CT)

constraint 

calculate allowed 
adornments

 allowed 
adornments

operation 
loader

 set of 
operations

search plan 
algorithm

 search 
plan

generator 
builder

type

shared

generators

Java

4.1

4.2 4.3 4.4

compiler-specific

compiler-
specific

Fig. 3. Process for producing a compiled pattern matching engine

complete matches in a result set. The following subsections discuss the steps of
the process in detail.

4.1 Allowed Adornment Calculation

In general, not every possible adornment is valid for every constraint type. Our
framework allows the underlying modelling layer to define the set of allowed
adornments for every available constraint type in a configurable way. For pre-
sentation purposes, standard Ecore/EMF is assumed as the modelling layer in
the following: A structural feature constraint type, referring to a bidirectional
reference, would allow adornments BB, BF, and FB, where BB means checking the
existence of a link, while BF and FB denote forward and backward navigations,
respectively. In the case of unidirectional references, only BB and BF adornments
make sense. Analogously, only BB and BF adornments are allowed for structural
feature constraint types referring to an attribute. Only the adornment B is al-
lowed for class and Boolean constraint types.5

Example. The framed part of Figure 4(a) shows the complete list of constraint
types and allowed adornments for pattern publicMethods. Lines 1–5 show that
class constraint types have the adornment B as type checks can be performed
only on a bound parameter. Line 6 represents a check for the existence of a
types link, while line 7 means a forward navigation along a link of type types.

4.2 Operation Loading

The operation loader prepares all the operations that might be needed to execute
pattern matching by iterating through all constraints of a pattern. It looks up the
allowed adornments for the type of the constraint, and creates a new operation
for each combination of constraint and allowed adornment.

Example. Figure 4(a) lists the set of operations that might be needed to calculate
matches for pattern publicMethods. For example, line 1 shows that variable CU
must already be mapped to an object before a corresponding type check can
be performed. Line 7 expresses that a forward navigation along types links is
executable only when an object has already been bound to variable CU.

5 The set of allowed adornments for standard MOF/JMI, in contrast to Ecore/EMF,
would also allow FF for associations, and F for class constraint types. Similarly, a
modelling layer with additional EMF services could also support an extended set of
allowed adornments for EMF supporting e.g., FB for indexed attributes.
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(a) Operations (b) Search plan for the sample pattern
publicMethods

Fig. 4. Data structures used by both engines

4.3 Search Plan Generation

Operations are filtered and ordered by a search plan algorithm to produce effi-
cient search plans. Due to space restrictions, search plans generation techniques
like [1,4,6] and their details (e.g., cost functions, optimization algorithms) are
not discussed in this paper.

A search plan is defined as a sequence of operations satisfying the following
conditions:

1. Each constraint in the pattern has exactly one corresponding operation in
the search plan.

2. Each variable that must be bound according to the constraint adornment of
an operation is either already bound in the pattern adornment, or appears
as a free variable in one of the preceding operations.

3. Each variable that must be free according to the constraint adornment of
an operation is not bound in the pattern adornment and does not appear in
any of the preceding operations as free variables.

4. Each extension operation must be immediately followed by class check oper-
ations that perform the type checking of the free variables of the extension
operation.

Example. Figure 4(b) shows a search plan for pattern publicMethods, when the
first interface variable (CU) is bound when pattern matching is invoked. The
search plan has been derived from the set of operations (Fig. 4(a)) by filtering
and reordering, and it fulfills all conditions 1–4. The constraint adornment on
line 3, for example, is valid, as CU, which must be bound, is indeed bound in
the pattern adornment. Similarly, TD, which must be free, is free in the pattern
adornment, and does not appear in any preceding operation as a free variable.
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4.4 Code Generation for a Compiled Pattern Matcher

The final step is code generation, which is controlled by a set of different genera-
tors that each maintain a link to a template.6 As depicted in detail in Fig. 5 for
the pattern adornment BFF, a method generator references a series of operation
generators, responsible for navigation in the model (e.g., lines 2 and 5), which in
turn reference variable generators, that store the determined values for variables
on the JVM stack (e.g., lines 3–4 and 6–7). A match generator is responsible for
the code that should be executed when a (complete) match is found (line 15).
Code generation is initiated by starting the template of the method generator.

Method Generator (BFF)

Operation 
Generator

Variable 
Generator

Operation 
Generator Variable 

Generator
Operation 
Generator

next

Variable 
Generator

Operation 
Generator

Variable 
Generator

Operation 
Generator Match 

Generator

next

next

next

Fig. 5. Generated code to handle pattern matching

5 Workflow of Interpreter-Based Pattern Matching

Interpreter-based engines typically carry out all their pattern matching related
tasks at runtime. As such, the pattern specification should be considered as a
starting point when the matching process is invoked. Furthermore, in order to
avoid any dependencies on generated data structures, interpreter-based pattern
matchers typically use a reflective API of the modelling layer to access objects
and to navigate along links.

In contrast to this general tendency, our interpreter-based solution (whose
workflow is presented in Fig. 6) uses tailored interfaces (just like the compiled
pattern matcher) to completely eliminate the performance effects that would be
caused by the different model access strategies, and thus, to enable a fair quan-
titative comparison of our compiled and interpreter-based engine variants. This
requires generated operation classes (and a loader class), which are subclasses
of their generic counterparts and are produced at compile time (as shown by
the solid arrows). A generated operation, thus, represents an atomic step in the
pattern matching process and uses a tailored interface for model access purposes.

6 Velocity is used as a template language and engine.
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constraint 
types (CT)

constraint 

calculate allowed 
adornments

 allowed 
adornments

operation 
loader

 set of 
operations

search plan 
algorithm

 search 
plan

generator 
builder

type

shared

generators
4.2 4.3

generated 
operation 

loader

 set of 
generated 
operations

extends extends

interpretercompile time

runtime

interpreter-
specific

interpreter-specific

5

Fig. 6. Process for producing an interpreter-based engine

Although generated operations are produced at compile time, all the remain-
ing activities are executed at runtime as highlighted by dashed arrows in Fig. 6.
The runtime part of the interpreter-based pattern matching approach, which
reuses all parts from Sec. 4 that are shaded in grey, works as follows:

Section 4.2. When the pattern matcher is invoked, a (generated) operation
is loaded for each pair of constraint and allowed constraint adornment. As
constraints are part of the pattern, this behaviour completely aligns with
the expectation that an interpreter-based engine should start processing the
pattern specification at runtime.

Section 4.3. Operations are filtered and ordered by a search plan algorithm to
produce a search plan. The algorithm is obviously influenced by the pattern
adornment, that has been determined by examining which interface variables
have been mapped to objects in the model at pattern invocation.7

Section 5. Finally, the interpreter performs pattern matching by executing the
search plan. The details of this interpreter module are presented in the re-
maining part of this section.

The interpreter uses a match array for storing the current match and the oper-
ations in the search plan. Every operation has a link to the next operation and
a mapping, that identifies the slots in the match array, which correspond to the
parameters of the operation.

When the interpreter is invoked, it prepares the initial match array, whose
size is determined by the number of variables in the pattern. The initial match
array is filled according to the input mapping of interface variables to objects
in the model, and is passed to the first operation in the search plan. When an
extension operation is performed, the structural feature is traversed forwards
(BF) or backwards (FB) to bind the corresponding free variable, the type of the
accessed object is validated, and the execution is passed on to the following
operation for subsequent processing together with the extended match array.
For a check operation, the operation is performed and, in case of success, the
current match array is simply left unchanged and passed on. When the match

7 Search plans can be cached and reused depending on the configuration settings.
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array passes beyond the last operation, it represents a complete match and
is stored in a result set. A single match array is used for storing all (partial)
matches, and only complete matches are copied and stored in a result set.

This behaviour is a depth-first traversal8 of a state space (just like the com-
piled approach), where a state represents the processing of a partial match by
an operation. The state space can alternatively be described as a tree, whose
root is the initial match, while internal nodes and leaves correspond to partial
and complete matches, respectively.

6 Measurement Results

In this section, we present measurement results from comparing our compiled
engine with our interpreter-based pattern matching engine, both produced via
a uniform process, using our framework as discussed in Sec. 4 and Sec. 5. The
pattern used for the measurements is from [16] and describes all classes, excluding
inner classes, that contain at least one public static method, whose return type
is the same as the class itself. Five models (Set0 – 4) of different size were taken
unchanged from the same case study.

A 1.57 GHz Intel Core2 Duo CPU with 2.96 GB RAM was used for all mea-
surements. Windows XP Professional SP 3 and Java 1.6 served as the underlying
operating system and virtual machine, respectively. The maximum heap size was
set to 1536 MB. User time, which is the amount of time the CPU spends per-
forming actions for a program, was measured. On the used machine, this could
only be measured with a precision of ±12.625 ms. As a single pattern matching
task takes less time than this value, each measurement was performed as a series
of blocks. In a measurement block, the pattern matching task of the compiled
engine was performed 100 times, while in the case of the interpreter-based en-
gine, search plan generation and pattern matching were executed 500 times, and
20 times, respectively.9 This block-based measurement was repeated 50 times in
all cases to provide stable average values.

The generated search plans and resulting matches in both cases were validated
manually to be equivalent. To obtain a fair comparison, search plan generation
and pattern matching were measured separately for the interpreter.

Table 2 presents the measured execution times. The first column indicates
the model used (Set0 – 4), the second and third columns the size of the model
in number of Java classes and objects, respectively. The fourth column denotes
the corresponding state space size in number of states, the fifth column the time
(ms) for the compiled engine, while the last two columns show the time (ms) for
search plan generation and pattern matching for the interpreter-based engine.

8 Alternative strategies (e.g., breadth-first traversal) would typically duplicate match
arrays during the execution of extension operations, which would cause an increased
memory consumption.

9 The only reason for selecting different block length values was to have raw data
approximately on the same scale, which already belongs to the measureable range.
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Table 2. Measurement results

Java Model State Compiled
classes size space PM SP PM

# # # ms ms ms
Set0 14 70447 232 0.03 0.12 0.19
Set1 40 198466 549 0.08 0.12 0.53
Set2 1605 2082841 37348 12.99 0.12 41.91
Set3 5769 4852855 94300 31.17 0.41 142.34
Set4 5984 4961779 103122 36.01 0.84 230.38

Interpreter based

Table 2 shows that the compiled engine, which represents algorithms in a
byte code form, and thus, requires no operation handling tasks to be executed,
outperformed the interpreter-based engine in all cases, and was about 4–6 times
faster. For the interpreter-based engine, the time spent for search plan generation
increased for the larger models (Set3 and Set4), which are loaded into memory
prior to search plan generation. We believe this is caused by garbage collection,
which becomes necessary due to the substantial difference in size of the models
as compared to Set0 or Set1.

In order to clarify the exact reason for the large execution times of the
interpreter-based engine in case of large models, and to justify our assumption
on the role of garbage collection, further measurements should be performed in
the future with larger heap size settings, on more patterns and on different appli-
cation domains e.g., like the ones mentioned in [20]. An additional comparison
using reflective interfaces for our engines would also be interesting. Further-
more, other dimensions could be measured including memory footprint, number
of loaded classes and RAM consumption.

Note that the main goal of our measurements was neither to quantitatively
analyze pattern matchers with search plans [4,20], nor to draw any conclusion
regarding the performance of compiled and interpreter-based engines in general,
nor to repeatedly justify the obvious comparative statements about the runtime
superiority of compiled techniques, but to assess the exact extent of performance
differences between our pattern matcher variants. In our measurements, both
variants accessed the EMF-based modeling layer via the same tailored interfaces.
Additionally, they applied the same algorithm to produce the same search plan,
which resulted in the same state space traversed in the same depth-first order.
We think that this unified measurement setup could only be achieved by using
a framework-based solution, and any modification in this setup would introduce
performance influencing factors that are independent from the main issue under
investigation (i.e., the exact effects caused by the selection of our compiled or
interpreter-based engine).

7 Conclusion

In this paper, we proposed a pattern matching framework that can produce both
a standalone compiled and an interpreter-based engine in a uniform process that
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shares all internal data structures and the majority of modules. As main advan-
tages, our framework-based solution (1) eases the task of reengineering a tool
with respect to its pattern matcher module, and (2) enables a switching possibil-
ity between the compiled and interpreter-based engines at runtime. Additionally,
we carried out performance measurements on both engines with the same pa-
rameter settings to assess the overhead of our interpreter-based solution.

The proposed approach has been implemented in the context of the Democles
project, whose goal is to provide a model-based pattern matcher implemen-
tation, which integrates several advanced pattern matching algorithms in one
framework, and can be embedded into different tools. Contributions of this pa-
per cover one aspect of this project, which was to present the unified process for
handling compiled and interpreter-based pattern matchers. The model-sensitive
search plan algorithm of the pattern matcher has been published in [4]. The
interpreter additionally supports (a yet unpublished) step by step execution
possibility, which can be the basis of a high-level debugger in the future.
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Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–
485. Springer, Heidelberg (2004)

13. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp.
121–135. Springer, Heidelberg (2010)
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