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Abstract. Contemporary software systems contain a large number of
artifacts expressed in multiple languages, ranging from domain-specific
languages to general purpose languages. These artifacts are interrelated
to form software systems. Existing development environments insuffi-
ciently support handling relations between artifacts in multiple languages.

This paper presents a taxonomy for multi-language development envi-
ronments, organized according to language representation, representation
of relations between languages, and types of these relations. Additionally,
we present TexMo, a prototype of a multi-language development environ-
ment, which uses an explicit relation model and implements visualization,
static checking, navigation, and refactoring of cross-language relations.
We evaluate TexMo by applying it to development of a web-application,
JTrac, and provide preliminary evidence of its feasibility by running user
tests and interviews.

1 Introduction

Maintenance and enhancement of software systems is expensive and time con-
suming. Between 85% to 90% of project budgets go to legacy system operation
and maintenance [6]. Lientz et. al. [19] state that 75% to 80% of system and
programming resources are used for enhancement and maintenance, where alone
understanding of the system stands for 50% to 90% percent of these costs [25].

Contemporary software systems are implemented using multiple languages.
For example, PHP developers regularly use 1 to 2 languages besides PHP [1].
The situation is even more complex in large enterprise systems. The code base
of OFBiz, an industrial quality open-source ERP system contains more than
30 languages including General Purpose Languages (GPL), several XML-based
Domain-Specific Languages (DSL), config files, property files, and build scripts.
ADempiere, another industrial quality ERP system, uses 19 languages. ECom-
merce systems Magento and X-Cart utilize more than 10 languages each.1
Systems utilizing the model-driven development paradigm additionally rely on
multiple languages for model management, e.g., meta-modelling (UML, Ecore,
etc.) model transformation (QVT ATL, etc.), code generation (Acceleo, XPand,
etc.), and model validation (OCL, etc.).2

1 See ofbiz.apache.org, adempiere.com, magentocommerce.com, x-cart.com
2 See uml.org, eclipse.org/modeling/emf, omg.org/spec/QVT, eclipse.org/atl,
eclipse.org/acceleo, wiki.eclipse.org/Xpand, omg.org/spec/OCL respectively.
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(a) Declaration of the translate command
attached to a button.

(b) JavaScript code that is executed when-
ever the button is pressed.

Fig. 1. Declaration of a command and its use

We call software systems using multiple languages, Multi-Language Software
Systems (MLSS). Obviously, the majority of modern software systems are MLSSs.

Development artifacts in MLSS can be models, source code, property files, etc.
To simplify presentation, we refer to all these as mograms [18]. Mograms in MLSS
are often heavily interrelated. For example, OFBiz contains many hundreds of
relations across its languages [23,13]. Unfortunately, relations across language
boundaries are fragile. They are broken easily, as development environments
neither visualize nor statically check them.

Consider the following scenario. For simplicity of presentation we use a small
example. Our work, though, is not tight to a particular selection of languages,
or the particular example system.

Example Scenario. Bob develops a Safari web browser extension. The extension
contributes a button to Safari’s menu bar. Pressing the button translates the
current web-page to English using Google translate and presents it in a new tab.
Browser extensions are usually built using HTML, CSS and JavaScript. Bob’s
extension consists of three source code files: Info.plist, button.js, and global.html.

Plist files serve as an interface for the extension. They tell Safari what the
extension contributes to the UI. In Bob’s extension, the Plist file contains the
declaration of a translate command attached to a toolbar button (Fig. 1a).
JavaScript code contains logic attached to buttons, menus, etc. Bob’s button.js
forwards the current URL to Google’s translation service whenever the corre-
sponding button is pressed (Fig. 1b). Every extension contains a global.html file,
which is never displayed. It contains code which is loaded at browser start-up or
when the extension is enabled. It is used to provide code for extension buttons,
menus, etc. Bob’s global.html file (not shown here) contains only a single script
tag pointing to button.js.

In Fig. 1a the translate command for the button is defined. Fig. 1b shows
how the translate command is used in button.js in a string literal. This is an
example of a string-based reference to Info.plist. Such string-based references
are common in development of MLSSs.

Now, imagine Bob renaming the command in Info.plist from translate to
its Danish equivalent oversæt. Obviously, the browser plugin will not work
anymore since the JavaScript code in button.js is referring to a non-existing
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command. Symmetrically, the reference is broken whenever the “translate”
string literal is modified in the button.js file, without the corresponding update to
Info.plist. ��
Existing Integrated Development Environments (IDE) do not directly support
development of MLSSs. IDEs do not visualize cross-language relations (markers
left to line numbers and gray highlighting in Fig. 1). Neither do they check stat-
ically for consistency of cross-language relations, or provide refactorings across
mograms in multiple languages. We are out to change this and enhance IDEs
into Multi-Language Development Environments (MLDE).

This paper introduces a taxonomy of design choices for MLDEs (Sec. 2). The
purpose of this taxonomy is twofold. First, it serves as requirements list for
implementing MLDEs, and second it allows for classification of such. We argue
for the validity of our taxonomy by a survey of related literature and tools.

As the second main contribution, the paper presents TexMo (Sec. 3), an
MLDE prototype supporting textual GPLs and DSLs. It implements actions
for visualization of, static checking of, navigation along, and refactoring of inter-
language relations, and facilities to declare inter-language relations. Additionally,
TexMo provides standard editor mechanisms such as syntax highlighting. We po-
sition TexMo in our taxonomy and evaluate it by applying it to development of
an MLSS and user tests followed by interviews.

2 Taxonomy of Multi-language Development
Environments

Popular IDEs like Eclipse or NetBeans implement separate editors for every
language they support. A typical IDE provides separate Java, HTML, and XML
editors, even though these editors are used to build systems mixing all these
languages. Representing languages separately allows for an easy and modular
extension of IDEs to support new programming languages. Usually, IDEs keep
an Abstract Syntax Tree (AST) in memory and automatically synchronize it
with modifications applied to concrete syntax. IDE editors exploit the AST to
facilitate source code navigation and refactorings, ranging from basic renamings
to elaborate code transformations such as method pull ups.

Inter-language relations are a major problem in development of
MLSS [23,13,12]. Since they are mostly implicit, they hinder modification and
evolution of MLSS. An MLDE is an IDE that addresses this challenge by not
only integrating tools into a uniform working experience, as IDEs do, but also by
integrating languages with each other. MLDEs support across language bound-
aries the mechanisms implemented by IDEs for every language separately.

We surveyed IDEs, programming editors3, and literature to understand the
kind of development support they provide. We realized that 4 features, that
3 IDEs: Eclipse, NetBeans, IntelliJ Idea, MonoDevelop, XCode. Editors: MacVim,

Emacs, jEdit, TextWrangler, TextMate, Sublime Text 2, Fraise, Smultron, Tincta,
Kod, gedit, Ninja IDE. (See project websites at:
www.itu.dk/˜ropf/download/list.txt)

www.itu.dk/~ropf/download/list.txt
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Fig. 2. Taxonomy for multi-language development environments

visualization, navigation, static checking, and refactoring are implemented by all
IDEs and by some programming editors. Thus, in order to support developers
best, MLSS need to consider delivering these features across language boundaries
as their essential requirements:

1. Visualization. An MLDE has to highlight and/or visualize inter-language
references. Visualizations can range from basic markers, as for instance in
the style of Fig. 1 to elaborate visualization mechanisms such as treemaps [7].

2. Navigation. An MLDE has to allow navigating along inter-language relations.
In Fig. 1, the developer can request to automatically open button.js and jump
to line 8, when editing Info.plist. All surveyed IDEs allow to navigate source
code. Further, IDEs allow for source code to documentation navigation, a
basic multi-language navigation.

3. Static Checking. An MLDE has to statically check the integrity of inter-
language relations. As soon as a developer breaks a relation, the error is
indicated to show that the system will not run error free. All surveyed IDEs
provide static checking by visualizing errors and warnings.

4. Refactoring. An MLDE has to implement refactorings, which allow easy fix-
ing of broken inter-language relations. Different IDEs implement a different
amount of refactorings per language. Particularly, rename refactorings seem
to be widely used in current IDEs [21,31].

To address these requirements one needs to make three main design decisions:
a) How to represent different programming languages? b) How to inter-relate
them with each other? c) Using which kind of relations?

Systematizing the answers to these questions led us to a domain model char-
acterizing MLDEs. We present this model in Fig. 2 using the feature model-
ing notation [5,16]. An MLDE always represents mograms based on the their
language (Language Representation). Furthermore, an MLDE has to represent
inter-language relations (Relation Model Type). This feature is essential for
augmenting an IDE to an MLDE. Finally, an MLDE associates types to inter-
language relations (Relation Types). An IDE first becomes an MLDE if it sup-
ports inter-language relations, i.e., as it implements an instance of this model.

The following subsections detail and exemplify the fundamental MLDE char-
acteristics of our taxonomy. References to the surveyed literature are inlined.
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2.1 Language Representation Types

We consider two main types of language representation, lexical and syntactic lan-
guage representation. The former always works on an artifact directly without
constructing a more elaborate representation, whereas the latter is always based
on a richer data-structure representing mograms in a certain language. Syntac-
tic language representation can represent mograms per language, per language
group, or universally.

Lexical Representation. Most text editors, such as EMacs, Vim, and jEdit, im-
plement lexical representation. Mograms are loaded into a buffer in a language
agnostic manner. Syntax highlighting is implemented solely based on matching
tokens. Due to lack of sufficient information about the edited mogram such edi-
tors provide limited support for static checking, code navigation, and refactoring.

Syntactic Representation. Per Language. Typical IDEs represent mograms in
any given language using a separate AST, or a similar richer data structure cap-
turing a mogram’s structure; for instance Eclipse, NetBeans, etc. Unlike lexical
representation, a structured, typed representation allows for implementation of
static checking and navigation within and between mograms of a single language
but not across languages. The advantage using per language representation, com-
pared to per language group and universal representation, is that IDEs are easily
extensible to support new languages.

Using models to represent source code is getting more and more popular4. This
is facilitated by emergence of language workbenches such as EMFText, XText,
Spoofax, etc.5 The MoDisco [4] project, a model-driven framework for software
modernization and evolution, represents Java, JSP, and XML source code as
EMF models, where each language is represented by its own distinct model.
These models are a high-level description of an analyzed system and are used
for transformation into a new representation. The same principle of abstracting
a programming language into an EMF model representation is implemented in
JaMoPP [11]. Similarly, JavaML [3] uses XML for a structural representation
of Java source code. On the other hand, SmartEMF [12] translates XML-based
DSLs to EMF models and maps them to a Prolog knowledge base. The EMF
models realize a per language representation. Similarly, we represent OFBiz’
DSLs and Java using EMF models to handle inter-component and inter-language
relations [23].

Syntactic Representation. Per Language Group. A single model can represent
multiple languages sharing commonalities. Some languages are mixed or em-
bedded into each other, e.g., SQL embedded in C++. Some languages extend
others, e.g., AspectJ extends Java. Furthermore, languages are often used to-
gether, such as JavaScript, HTML, XML, and CSS in web development. Using
4 Language workbenches mostly use modeling technology to represent ASTs. There-

fore, we use the terms AST and model synonymously in this paper.
5 See www.languageworkbenches.net for the annual language workbench competition.

www.languageworkbenches.net
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a per language group representation allows increased reuse in implementation of
navigation, static checks and refactoring in MLDEs, because support for each
language does not need to be implemented separately.

For example, the IntelliJ IDEA IDE (jetbrains.com/idea), supports code com-
pletion for SQL statements embedded as strings in Java code. X-Develop [28,27]
implements an extensible model for language group representation to provide
refactoring across languages. AspectJ’s compiler generates an AST for Java as
well as for AspectJ aspects simultaneously. Similarly, the WebDSL famework
represents mograms in its collection of DSLs for web development in a single
AST [8]. Meta, a language family definition language, allows the grouping of
languages by characteristics, e.g., object-oriented languages in Meta(oopl) [14].
The Prolog knowledge base in [12] can be considered as a language group repre-
sentation for OFBiz’ DSLs, used to check for inter-language constraints.

Syntactic Representation. Universal. Universal representations use a single model
to capture the structure of mograms in any language. They can represent any ver-
sion of any language, even of languages not invented yet. Universal representations
use simple but generic concepts to represent key language concepts, such as blocks
and identifiers or objects and associations. A universal representation allows the
implementation of navigation, static checking, and refactoring only once for all
languages. Except for TexMo, presented in Sec. 3, we are not aware of any IDE
implementing a universal language representation.

The per group and the universal representations are generalizations of the
per language representation. Both represent multiple languages in one model.
Generally, there are two opposing abstraction mechanisms: type abstraction and
word abstraction [29]. Type abstraction is a unifying abstraction, whereas word
abstraction is a simplifying abstraction.

For example, both Java and C# method declarations can include modifiers,
but the set of the actual modifiers is language specific. The synchronized modifier
in Java has no equivalent in C#. Under the type abstraction, Java and C#
method declarations can be described by a Method Declaration type and an
enumeration containing the modifiers. In contrast, under the word abstraction,
Java and C# method declarations would be described by a common simple
Method Declaration type that neglects the modifiers. Obviously, in the type
abstraction Java and C# method modifiers are distinguishable, whereas in the
more generic word abstraction this information is lost.

Type abstraction is preferable for per group representations. Word abstraction
is preferred for universal representations. The choice of abstraction influences the
specificity of the representation, affecting the tools. Word abstractions are more
generic than type abstractions. For instance, more cross-language refactorings
are possible with the per group representation, while the refactorings in the
systems relying on the universal representation automatically apply to a wider
class of languages.

http://www.jetbrains.com/idea
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2.2 Relation Model Types

Software systems are implemented using multiple mograms. At the compilation
stage, and often only at runtime, a complete system is composed by relating
all the mograms together. Each mogram can refer to, or is referenced by, other
mograms. An MLDE should maintain information about these relations. We
observe four different techniques to express cross-language relations:

Explicit model. For example, mega-models [15], trace models [22,9], relation mod-
els [23], or macromodels [24]. All these are models linking distributed mograms
together.

Tags. Hypertext systems, particularly HTML code links substructures or other
artifacts with each other by tags. Tags define anchors and links within an ar-
tifact [10]. Hypertext systems interpret artifacts, anchors, and links. first after
interpretation a link is established.

Interfaces. Interfaces are anchors decoupled from artifacts. An interface contains
information about a development artifact’s contents and corresponding locations.
For example, OSGi manifest files or model and meta-model interfaces describe
component and artifact relations [13].

Search-based. There is no persistent representation of relations at all. Possible
relation targets are established after evaluating a search query. Search-based
relations are usually used to navigate in unknown data. For example, in [30]
relations across documents in different applications are visualized on user request
by searching the contents of all displayed documents.

2.3 Relation Types

Here we elaborate on relations between mograms in different languages. Since
we consider only textual languages all the following relation types relate strings.

Free relations are relations between arbitrary strings. They rely solely on hu-
man interpretation. For example, natural language text in documentation can
be linked to source code blocks highlighting that certain requirements are im-
plemented or that a programmer should read some documentation. Steinberger
et. al. describe a visualization tool allowing to interrelate information across do-
mains, even across concrete syntaxes [26]. Their tool visualizes relations between
diagrams and data.

Fixed relations: Relations between equal strings are fixed relations. Fixed rela-
tions occur frequently in practice. For example, the relation between an HTML
anchor declaration and its link is established by equality of a tag’s argument
names. Figure 1 shows an example of a fixed relation across language bound-
aries.

Waldner et. al. discuss visualization across applications and documents [30].
Their tool visualizes relations between occurrences of a search term matched in
different documents.
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String-transformation relations are relations between similar strings, or function-
ally related strings. For example, a Hibernate configuration file (XML) describes
how Java classes are persisted into a relational database. The Hibernate frame-
work requires that a field specified in the XML file has a corresponding get and
set method in the Java class. A string fieldName in a Hibernate configuration
file requires a getter with name getFieldName in the corresponding Java class.
Depending on the direction, a string-transformation relation either attaches or
removes get and capitalizes or decapitalizes fieldName.

Domain-Specific Relations (DSRs) are relations with semantics specific to a
given domain or project. DSRs are always typed. Additionally, DSRs can be free,
fixed or string-transformation relations. For example, a requirements document
can require a certain implementation artifact, expressing that a certain require-
ment is implemented. At the same time, some Java code can require a properties
file, meaning that the code will only produce expected results as soon as certain
properties are in place. We consider any relation type hierarchy domain-specific,
e.g., trace link classification [22].

The first three relation types, free, fixed, and string-transformation relations
are untyped. They are more generic than DSRs, since they only rely on physical
properties of relation ends. Fixed, string-transformation, and domain-specific re-
lations can be checked automatically, which allows to implement tools supporting
MLSS development, such as error visualization and error resolution.

3 TexMo as an MLDE Prototype

TexMo

Relation 
Model Type

Relation 
Types

Language 
Representation

Universal

Explicit 
Model

Free Fixed

Syntactic

Fig. 3. The feature model instance
describing TexMo in our taxonomy
of MLDEs

TexMo6 addresses the requirements listed in
Sec. 2 and it implements an instance of our
MLDE taxonomy. TexMo uses a key-reference
metaphor to express relations. In the example
of Fig. 1, the command declaration takes the
role of a key (Fig. 1a) and its uses are ref-
erence (Fig. 1b). TexMo relations are always
many-to-one relations between references and
keys. We summarize how TexMo meets the re-
quirements presented in Sec. 2:

1. Visualization. TexMo highlights keys and references using gray boxes, see
line 25 in Fig. 1a and line 8 Fig. 1b. Keys are labeled with a key icon and
references are labeled by a book icon; see Fig. 1 left to line numbers. Inspect-
ing markers reveals detailed information, e.g., how many references in which
files refer to a key, see Fig. 4b.

6 TexMo’s source code including the text model and the relation model is available
online at: www.itu.dk/˜ropf/download/texmo.zip

www.itu.dk/~ropf/download/texmo.zip
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(a) A broken relation between com-
mand declaration and its use, see
Fig. 1b.

(b) Detailed relation information attached to
a key marker.

Fig. 4. Visualization and information for inter-language relations

2. Navigation. Users can navigate from any reference to the referred key and
from a key to any of its references. Navigation actions are called via the
context menu.

3. Static checking. Fixed relations in TexMo’s relation model (RM) are stati-
cally checked. Broken relations, i.e., fixed relations with different string liter-
als as key and reference, are underlined red and labeled by a standard error
indicator in the active editor, see Fig. 4a.

4. Refactoring. Broken relations can be fixed automatically using quick fixes.
TexMo’s quick fixes are key centric rename refactorings. Applying a quick fix
to a key renames all references to the content of the key. Contrary, applying
a quick fix to a reference renames this single reference to the content of the
corresponding key.

On top of these multi-language development support mechanisms, TexMo pro-
vides syntax highlighting for 75 languages. GPLs like Java, C#, and Ruby, as
well as DSLs like HTML, Postscript, etc. are supported. Standard editor mech-
anisms like undo/redo are implemented, too.

Universal Language Representation. The TextModel. TexMo implements a uni-
versal language representation since such an MLDE is easily applicable for de-
velopment of any MLSS.

All textual languages share a common coarse-grained structure. The text
model (Fig. 5), an AST of any textual language, describes blocks containing
paragraphs, which are separated by new lines and which contain blocks of words.
Words consist of characters and are separated by white-spaces. The only model
elements containing characters are word-parts, separators, white-spaces, and
line-breaks. Blocks, paragraphs, and word blocks describe the structure of a
mogram. Separators are non-letters within a word, e.g., ’/’,’.’, etc., allowing rep-
resent of typical programming language tokens as single words.

TexMo treats any mogram as an instance of a textual DSL conforming to
Fig. 5. For example, a snippet of JavaScript code if(event.command == , line
8 in Fig. 1b, looks like: Block(Paragraph[WordBlock(Word[WordPart(“if”), Seperator-
Part(content:“(”), WordPart(“event”), SeperatorPart(“.”), WordPart(“command”), WhiteS-
pace(“ ”)]), ... ]) (using Spoofax [17] AST notation).
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Fig. 5. The open universal model for language representation

An Explicit Relation Model. TexMo uses an instance of the Relation Model
(RM) presented in Fig. 6 to keep track of relations between multi-language mo-
gram code. Our RM allows for relations between mogram contents (ElementKey
and ElementReference), between mogram contents and files (Artifacts) or compo-
nents (Components), and between files and components. This allows for example
to express relations in case mogram code requires another file, which occurs
frequently, e.g., in HTML code.

The RM instance is kept as a textual artifact. The textual concrete syntax
is not shown here, since the RM is not intended for human inspection. TexMo
automatically updates the RM instance whenever developers modify interrelated
mograms. That is, TexMo supports evolution of MLSS. Currently, the RM is
created manually. TexMo provides context menu actions to establish relations
between keys and references. Future versions of TexMo will integrate pattern
based mining mechanism [23,9] to supersede manual RM creation.

Relation Types. TexMo’s RM currently implements fixed and explanatory rela-
tions. Explanatory relations are free relations in our taxonomy. Keys and ref-
erences of fixed relations contain the same string literal. Figure 1 shows a fixed
relation and Fig. 4 shows a broken fixed relation. Explanatory relations allow
to connect arbitrary text blocks with each other, for example documentation
information to implementation code.

4 Evaluation

In this section we discuss TexMo’s applicability. First, we evaluate TexMo’s
language representation mechanism, i.e., its representation of mograms as text
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Fig. 6. TexMo’s explicit relation model

models. Second, we provide preliminary evidence on the feasibility of TexMo
by testing user acceptance. Furthermore, we discuss applicability of TexMo’s
relation model with respect to keeping inter-language relations while testers are
using TexMo.

The subject used for this evaluation is the open-source web-based bug-tracking
system, JTrac. JTrac’s code base consists of 374 files. The majority of files, 291,
contain source code in Java (141), HTML (65), property files (32), XML (16),
JavaScript (8), and 29 other source code files such as Shell scripts, etc. Similar
to many web-applications, JTrac implements the model-view-controller (MVC)
pattern. This is achieved using popular frameworks: Hibernate (hibernate.org)
for OR-Mapping and Wicket (cwiki.apache.org/WICKET/) to couple views and
controller code. The remaining 83 files are images and a single jar file. We did
not consider these files in our evaluation since they do not contain information
in a human processable, textual syntax. Clearly, JTrac is an MLSS.

4.1 Universal Language Representation

To evaluate TexMo’s universal language representation, we manually opened all
291 mograms with the TexMo editor to check if a correct text model can be
established. By correct we mean that any character and string in a source code
artifact has a corresponding model element in the text model, which in turn
allows the RM to interrelate mograms in different languages. The files used are
available at: www.itu.dk/˜ropf/download/jtrac_experiment.zip.

We concluded that all 291 source code files can be opened with the TexMo
editor. For all files a correct text model has been established.

4.2 User Test

To test user acceptance, we let 11 testers perform three typical development
tasks. The testers included 4 professional developers, 3 PhD students, and 4

http://www.hibernate.org
http://www.cwiki.apache.org/WICKET/
www.itu.dk/~ropf/download/jtrac_experiment.zip
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undergraduate students, with median 3 years of working experience as software
developers.

Using only a short tutorial, which explains TexMo’s features the testers had
to work on the JTrac system. First, they had to find and remove a previously
injected error, a broken fixed relation. Second, they had to rename a reference
and fix the now broken relation. Third, they had to replace a code block, which
removes two keys. We captured the screen contents and observed each tester.
After task completion, each tester filled out a questionnaire. Questions asked for
work experience, proficiency in development of MLSS using Java, HTML, and
XML. Additionally, two open questions on the purpose of the test and on the
usefulness of TexMo where asked. After the completion of questionnaires we had
a short, open discussion about TexMo where we took notes on tester’s opinions.

We conclude that the testers understand and use MLDE concepts. Seven
testers applied inter-language navigation to better understand the source code,
i.e., to inspect keys and references whenever an error was reported. Further-
more, another seven used rename refactorings to securely evolve cross-language
relations in JTrac. All testers were able to find all errors and to fix them. In
the following we quote a selection of the testers arguing about usefulness of
TexMo (we avoid quoting complete statements for the sake of brevity). Their
statements indicate that visualization, static checking, navigation and refactor-
ing across language boundaries are useful and that such features are missing in
existing IDEs.

Q: “Do you think TexMo could be beneficial in software development? Why?”
A1: “TexMo’s concepts are really convincing. I would like to have a tool like
this at work.”
A2: “Liked the references part and the checking. Usually, if you change the
keys/references you get errors at runtime [which is] kind of late in the process.”
A3: “[TexMo] improves debugging time by keeping track of changes on source
code written in different programming languages that are strongly related. I do
not know any tool like this.”
A4: “I see [TexMo] useful, especially when many people work on the same
project, and, of course, in case the projects gets big.”
A5: “I did development with Spring and a tool like TexMo would solve a lot of
problems while coding.”
A6: “In large applications it is difficult to perform renaming or refactoring tasks
without automated tracking of references. . . . If there would be such a reference
mechanism between JavaScript and C#, it would save us a lot of work.
A7:“[TexMo] solves [a] common problem experienced when software project
involves multiple languages.”

Robustness of the Relation Model. To run the user test and to demonstrate that
the RM can express inter-language relations in an MLSS, we established a RM
relating 9 artifacts containing 51 keys, 87 references, via 87 fixed relations with
each other. The RM relates code in Java, HTML, and properties files with each
other. We did not aim for a complete RM, since we focus on demonstrating
TexMo’s general applicability. After the testers had finished their development
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tasks, we inspected the RMs manually to verify that they still correctly interre-
late keys and references.

We conclude that TexMo’s RM is robust to modifications of the MLSS. Af-
ter modification operations, all relations in the RM correctly relate keys and
references across language boundaries.

A common concern of the testers related to replacing a code block containing
multiple keys with a new code block, where TexMo complains about a number
of created dangling references in corresponding files. We did not implement a
feature to automatically infer possible keys out of the newly inserted code, since
we consider this process impossible to automate completely.

4.3 Threats to Validity

The code base of JTrac might be to small to allow to generalize that any textual
mogram in any language can be represented using TexMo’s text model. However,
we think that nearly 300 source code files in 15 languages gives a rather strong
indication. The RM used for the user tests might be to small and incomplete.
We were not interested in creating a complete RM, but only concerned about
its general applicability.

To avoid direct influence on the testers in an oral interview, we used a written
questionnaire. All quotes in the paper are taken from this written data.

5 Related Work

Strein et. al. argue that contemporary IDEs do not allow for analysis and refac-
toring of MLSS and thus are not suitable for development of such. They present
X-Develop an MLDE implementing an extensible meta-model [28] used for a syn-
tactic per language group representation. The key difference between X-Develop
and TexMo is the language representation. TexMo’s universal language repre-
sentation allows for its application in development of any MLSS regardless of
the used languages. Similarly, the IntelliJ IDEA IDE implements some multi-
language development support mechanisms. It provides multi-language refactor-
ings across some exclusive languages, e.g., HTML and CSS. Unlike in TexMo,
these inter-language mechanisms are specific to particular languages since Intel-
liJ IDEA relies on a per language representation.

Some development frameworks provide tools to enhance IDEs. Our evaluation
case, JTrac relies on the web framework Wicket. QWickie (code.google.com/p/
qwickie), an Eclipse plugin, implements navigation and renaming support be-
tween inter-related HTML and Java files containing Wicket code. The drawback
of framework-specific tools is their limited applicability. QWickie cannot be used
for development with other frameworks mixing HTML and Java files.

Chimera [2] provides hypertext functionality for heterogeneous Software
Development Environments (SDE). Different programs like text editors, PDF
viewers and browsers form an SDE. These programs are viewers through which
developers work on different artifacts. Chimera allows for the definition of an-
chors on views. Anchors can be interrelated via links into a hyperweb. TexMo is

http://www.code.google.com/p/
http://www.qwickie
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similar in that models of mograms can be regarded as views where each model
element can serve as an anchor for a relation. Chimera is not dynamic. It does
not automatically evolve anchors while mograms are modified. Subsequent to
modifications, Chimera users need to manually reestablish anchors and adapt
the links to it. Contrary, TexMo automatically evolves the RM synchronously
to modifications applied to mograms. Only after deleting code blocks containing
keys, users need to manually update the dangling references.

Meyers [20] discusses integrating tools in multi-view development systems.
One can consider language integration as a particular flavor of tool integra-
tion. Meyers describes basic tool integration on file system level, where each
tool keeps a separate internal data representation. This corresponds to the per
language representation in our taxonomy. Meyers’ canonical representation for
tool integration corresponds to our universal language representation. Our work
extends Meyers work by identifying a per language group representation.

6 Conclusion and Future Work

We have presented a taxonomy of multi-language development environments,
and TexMo, an MLDE prototype implementing a universal language representa-
tion, an explicit relation model supporting free and fixed relations. The taxonomy
is established by surveying related literature and tools. We have also argued that
implementation of TexMo meets is design objectives and evaluated adequacy of
its design. By itself TexMo demonstrates that design of useful MLDEs is feasible
and welcomed. We reported very positive early user experiences.

To gather further experience, we plan to extend TexMo with string-transfor-
mation and domain-specific relations and compare it to an MLDE using a per
language representation. We realized that it is costly to keep an explicit RM
updated while developers work on a system, especially the larger a RM grows.
Therefore, we will experiment with a search-based relation model. This will also
overcome the vulnerability of an explicit RM to changes applied to mograms
outside the control of the MLDE.

Note, TexMo’s RM does not only allow the interrelation of mograms of differ-
ent languages but also of mograms in a single language. We do not focus on this
fact in this paper. However, this ability can be used to enhance and customize
static checks and visualizations beyond those provided by current IDEs without
extending compilers and other tools.

While working with TexMo we realized that a universal language represen-
tation is favorable if an MLDE has to be quickly applied to a wide variety of
systems with respect to the variety of used languages. Furthermore, there is a
trade-off between the language representation mechanism and the richness of
the tools an MLDE can provide. Basic support, like visualization, highlighting,
navigation and rename refactorings, can be easily developed on any language rep-
resentation, with very wild applicability if the universal representation is used.
More complex refactorings require a per group or a per language representation.

In future we plan to build support to automatically infer inter-language rela-
tions. Fixed and string-transformation relations can be automatically established
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by searching for equal or similar strings. This process is not trivial as soon as a
language provides for example scoping. Then inferring inter-language relations
has to additionally consider language specific scoping rules. Inferring domain-
specific relations has to rely on additional knowledge provided by developers, for
example as patterns [23], which explicitly encode domain knowledge. Inferring
free relations is probably not completely automatable but relying on heuristics
and search engines could result in appropriate inter-language relation candidates.
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