

Lecture Notes in Computer Science 7349
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Antonio Vallecillo Juha-Pekka Tolvanen
Ekkart Kindler Harald Störrle
Dimitris Kolovos (Eds.)

Modelling Foundations
and Applications
8th European Conference, ECMFA 2012
Kgs. Lyngby, Denmark, July 2-5, 2012
Proceedings

13

Volume Editors

Antonio Vallecillo
Universidad de Málaga, ETSI Informática
Campus de Teatinos, Bulevar Louis Pasteur 35, 29071 Málaga, Spain
E-mail: av@lcc.uma.es

Juha-Pekka Tolvanen
MetaCase
Ylistönmäentie 31, 40500 Jyväskylä, Finland
E-mail: jpt@metacase.com

Ekkart Kindler
Harald Störrle
Technical University of Denmark
Department of Informatics and Mathematical Modelling
Richard Petersens Plads, 2800 Kgs. Lyngby, Denmark
E-mail: {eki, hsto}@imm.dtu.dk

Dimitris Kolovos
University of York, Department of Computer Science
Deramore Lane, York, YO10 5GH, United Kingdom
E-mail: d.kolovos@cs.york.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31490-2 e-ISBN 978-3-642-31491-9
DOI 10.1007/978-3-642-31491-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012940653

CR Subject Classification (1998): D.2.1-2, D.2.4-5, D.2.7, D.2.11, D.2, D.3, F.3, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 2012 European Conference on Modelling Foundations and Applications
(ECMFA 2012) was held at the Technical University of Denmark (DTU), Kgs.
Lyngby, Denmark, during July 2–5, 2012.

ECMFA is the key European conference aiming at advancing the techniques
and furthering the underlying knowledge related to model-driven engineering.
Model-driven engineering (MDE) is a software development approach based on
the use of models for the specification, design, analysis, synthesis, deployment,
testing and maintenance of complex software systems, aiming to produce high-
quality systems at lower costs. In the past seven years, ECMFA has provided
an ideal venue for interaction among researchers interested in MDE both from
academia and industry. The eighth edition of the conference covered major ad-
vances in foundational research and industrial applications of MDE.

In 2012, the Program Committee received 106 abstracts, which finally ma-
terialized into 81 full paper submissions. From these, 20 Foundations track pa-
pers and 10 Applications track papers were accepted for presentation at the
conference and publication in these proceedings. This indicates the level of com-
petition that occurred during the selection process. The submission and the
reviewing processes were administered by EasyChair, which greatly facilitated
these tasks. Papers on all aspects of MDE were received, including topics such
as architectural modeling and product lines, code generation, domain-specific
modeling, metamodeling, model analysis and verification, model management,
model transformation and simulation. The breadth of topics and the high quality
of the results presented in these accepted papers demonstrate the maturity and
vibrancy of the field.

The ECMFA 2012 keynote speakers were Henrik Lönn, from VOLVO Tech-
nology in Sweden, and Ed Seidewitz, from Model Driven Solutions in the USA.
Abstracts of their talks are included in these proceedings. We thank them very
much for accepting our invitation and for their enlightening talks.

We are grateful to our Program Committee members for providing their
expertise and quality and timely reviews. Their helpful and constructive feedback
to all authors is most appreciated. We thank the ECMFA Conference Steering
Committee for their advice and help. We also thank our sponsors, both keynote
speakers and all authors who submitted papers to ECMFA 2012. Alfred Hofmann
and the Springer team were really helpful with the publication of this volume.

July 2012 Antonio Vallecillo
Juha-Pekka Tolvanen

Ekkart Kindler
Harald Störrle

Dimitris Kolovos

Organization

Program Committee

Jan Øyvind Aagedal Norse Solutions
Vasco Amaral FCT, Universidade Nova de Lisboa, Portugal
Terry Bailey Vicinay Cadenas, S.A.
Stephen Barrett Concordia University, Canada
Mariano Belaunde Orange R&D
Reda Bendraou INRIA Bretagne Atlantique Rennes, France
Jorn Bettin SoftMetaWare
Xavier Blanc Bordeaux 1 University, France
Behzad Bordbar University of Birmingham, UK
Marco Brambilla Politecnico di Milano, Italy
Jordi Cabot INRIA-École des Mines de Nantes, France
Tony Clark Middlesex University, UK
Benoit Combemale IRIT CNRS
Diarmuid Corcoran Ericsson AB
Zhen Ru Dai University of Applied Science Hamburg,

Germany
Juan Antonio De La Puente Universidad Politécnica de Madrid, Spain
Zinovy Diskin University of Waterloo, Canada
Gregor Engels University of Paderborn, Germany
Anne Etien University of Lille and INRIA Lille

Nord-Europe, France
Stephan Flake Orga Systems GmbH, Germany
Robert France Colorado State University, USA
Mathias Fritzsche SAP Research CEC Belfast, UK
Jesus Garcia-Molina Universidad de Murcia, Spain
Sebastien Gerard CEA, LIST
Marie-Pierre Gervais LIP6 and Université de Paris 10 Nanterre,

France
Martin Gogolla University of Bremen, Germany
Jeff Gray University of Alabama, USA
Esther Guerra Universidad Autónoma de Madrid, Spain
Michael R. Hansen Technical University of Denmark, Denmark
Reiko Heckel University of Leicester, UK
Markus Heller SAP Research Karlsruhe, SAP AG, Germany
Andreas Hoffmann Fraunhofer, Germany
Teemu Kanstrén VTT
Gabor Karsai Vanderbilt University, USA

VIII Organization

Thomas Kuehne Victoria University of Wellington, New Zealand
Jochen Kuester IBM Research
Vinay Kulkarni Tata Research Development and Design Centre,

India
Ivan Kurtev University of Twente, The Netherlands
Roberto Erik Lopez-Herrejon Institute for Systems Engineering and

Automation, Johannes Kepler University,
Austria

Dragan Milicev University of Belgrade, Serbia
Parastoo Mohagheghi SINTEF, Norway
Birger Møller-Pedersen University of Oslo, Norway
Tor Neple Norse Solutions AS
Alfonso Pierantonio University of L’Aquila, Italy
Ivan Porres Åbo Akademi University, Finland
Olli-Pekka Puolitaival F-Secure Corporation
Arend Rensink University of Twente, The Netherlands
Laurent Rioux THALES R&T
Tom Ritter Fraunhofer FOKUS, Germany
Louis Rose The University of York, UK
Julia Rubin IBM Research at Haifa, Israel
Bernhard Rumpe RWTH Aachen University, Germany
Andrey Sadovykh Softeam
Houari Sahraoui DIRO, Université de Montréal, Canada
Bernhard Schaetz TU München, Germany
Douglas Schmidt Vanderbilt University
Andy Schürr TU Darmstadt, Germany
Bran Selic Malina Software Corp.
Renuka Sindhgatta IBM Research - India
John Slaby Raytheon Company
Jim Steel The University of Queensland, Australia
Alin Stefanescu University of Pitesti, Romania
Gabriele Taentzer Philipps-Universität Marburg, Germany
Francois Terrier CEA, LIST
Juha-Pekka Tolvanen Metacase
Salvador Trujillo IKERLAN Research Centre
Andreas Ulrich Siemens AG
Antonio Vallecillo University of Malaga, Spain
Ragnhild Van Der Straeten Vrije Universiteit Brussel, Belgium
Pieter Van Gorp Eindhoven University of Technology,

The Netherlands
Marten J. Van Sinderen University of Twente, The Netherlands
Hans Vangheluwe McGill University
Daniel Varro Budapest University of Technology and

Economics, Hungary
Cristina Vicente-Chicote Technical University of Cartagena, Spain

Organization IX

Markus Voelter Independent
Michael Von Der Beeck BMW Group
Edward Willink Eclipse Modeling Project
Manuel Wimmer Business Informatics Group, Vienna University

of Technology, Austria
Tao Yue Carleton University and Simula Research

Laboratory
Gefei Zhang arvato systems
Olaf Zimmermann IBM Research GmbH
Steffen Zschaler King’s College London, UK

Additional Reviewers

Abbors, Fredrik
Al-Lail, Mustafa
Ali, Shaukat
Almeida, Marcos
Anjorin, Anthony
Aranega, Vincent
Bajwa, Imran
Bapodra, Mayur
Barat, Souvik
Barroca, Bruno
Baudry, Benoit
Blouin, Arnaud
Brucker, Achim D.
Brunelière, Hugo
Burgueño, Loli
Büttner, Fabian
Cadavid, Juan
Cichos, Harald
Criado, Javier
Cuccuru, Arnaud
Dang, Duc-Hanh
De Lara, Juan

De Mol, Maarten
Di Ruscio, Davide
Duddy, Keith
El Kouhen, Amine
Eramo, Romina
Espinazo-Pagán, Javier
Fatemi, Hassan
Fazal-Baqaie, Masud
Fritzsche, Mathias
Gerth, Christian
Haber, Arne
Hamann, Lars
Hesari, Shokoofeh
Horst, Andreas
Horváth, Ákos
Ingles-Romero, Juan F.
Iovino, Ludovico
Izsó, Benedek
Jalali, Arash
Jnidi, Rim
Khan, Tamim
Kuhlmann, Mirco

Lauder, Marius
Liu, Qichao
Look, Markus
Mallet, Frédéric
Monperrus, Martin
Noyrit, Florian
Pedro, Lúıs
Planas, Elena
Radermacher, Ansgar
Rath, Istvan
Rossini, Alessandro
Saller, Karsten
Sanchez, Oscar
Soltenborn, Christian
Strüber, Daniel
Sun, Wuliang
Truscan, Dragos
Wouters, Laurent
Wozniak, Ernest
Ziane, Mikal

Table of Contents

Executable UML: From Multi-domain to Multi-core 1
Ed Seidewitz

Models Meeting Automotive Design Challenges . 2
Henrik Lönn

A Commutative Model Composition Operator to Support Software
Adaptation . 4

Sébastien Mosser, Mireille Blay-Fornarino, and Laurence Duchien

Comparative Study of Model-Based and Multi-Domain System
Engineering Approaches for Industrial Settings . 20

Anjelika Votintseva, Petra Witschel, Nikolaus Regnat, and
Philipp Emanuel Stelzig

Strengthening SAT-Based Validation of UML/OCL Models
by Representing Collections as Relations . 32

Mirco Kuhlmann and Martin Gogolla

Model Interchange Testing: A Process and a Case Study 49
Maged Elaasar and Yvan Labiche

An Internal Domain-Specific Language for Constructing OPC UA
Queries and Event Filters . 62

Thomas Goldschmidt and Wolfgang Mahnke

Combining UML Sequence and State Machine Diagrams for Data-Flow
Based Integration Testing . 74

Lionel Briand, Yvan Labiche, and Yanhua Liu

Model Transformations for Migrating Legacy Models: An Industrial
Case Study . 90

Gehan M.K. Selim, Shige Wang, James R. Cordy, and
Juergen Dingel

Derived Features for EMF by Integrating Advanced Model Queries 102
István Ráth, Ábel Hegedüs, and Dániel Varró

A Lightweight Approach for Managing XML Documents with MDE
Languages . 118

Dimitrios S. Kolovos, Louis M. Rose, James Williams,
Nicholas Matragkas, and Richard F. Paige

XII Table of Contents

Bridging the Gap between Requirements and Aspect State Machines to
Support Non-functional Testing: Industrial Case Studies 133

Tao Yue and Shaukat Ali

Badger: A Regression Planner to Resolve Design Model
Inconsistencies . 146

Jorge Pinna Puissant, Ragnhild Van Der Straeten, and Tom Mens

Aspect-Oriented Modeling of Mutual Exclusion in UML State
Machines . 162

Gefei Zhang

TexMo: A Multi-language Development Environment 178
Rolf-Helge Pfeiffer and Andrzej W ↪asowski

On-the-Fly Emendation of Multi-level Models . 194
Colin Atkinson, Ralph Gerbig, and Bastian Kennel

Specifying Refinement Relations in Vertical Model Transformations 210
Jan Rieke and Oliver Sudmann

Model-Based Automated and Guided Configuration of Embedded
Software Systems . 226

Razieh Behjati, Shiva Nejati, Tao Yue, Arnaud Gotlieb, and
Lionel Briand

Lightweight String Reasoning for OCL . 244
Fabian Büttner and Jordi Cabot

Domain-Specific Textual Meta-Modelling Languages for Model Driven
Engineering . 259

Juan de Lara and Esther Guerra

Metamodel Based Methodology for Dynamic Component Systems 275
Gabor Batori, Zoltan Theisz, and Domonkos Asztalos

Bidirectional Model Transformation with Precedence Triple Graph
Grammars . 287

Marius Lauder, Anthony Anjorin, Gergely Varró, and Andy Schürr

A Timed Automata-Based Method to Analyze EAST-ADL Timing
Constraint Specifications . 303

Tahir Naseer Qureshi, De-Jiu Chen, and Martin Törngren

Code Generation Nirvana . 319
Petr Smolik and Pavel Vitkovsky

A Plug-in Based Approach for UML Model Simulation 328
Alek Radjenovic, Richard F. Paige, Louis M. Rose,
Jim Woodcock, and Steve King

Table of Contents XIII

MADES: A Tool Chain for Automated Verification of UML Models of
Embedded Systems . 340

Alek Radjenovic, Nicholas Matragkas, Richard F. Paige,
Matteo Rossi, Alfredo Motta, Luciano Baresi, and
Dimitrios S. Kolovos

Time Properties Verification Framework for UML-MARTE Safety
Critical Real-Time Systems . 352

Ning Ge and Marc Pantel

Unification of Compiled and Interpreter-Based Pattern Matching
Techniques . 368

Gergely Varró, Anthony Anjorin, and Andy Schürr

OCL-Based Runtime Monitoring of Applications with Protocol State
Machines . 384

Lars Hamann, Oliver Hofrichter, and Martin Gogolla

On Model Subtyping . 400
Clément Guy, Benôıt Combemale, Steven Derrien,
Jim R.H. Steel, and Jean-Marc Jézéquel

BOB the Builder: A Fast and Friendly Model-to-PetriNet
Transformer . 416

Ulrich Winkler, Mathias Fritzsche, Wasif Gilani, and Alan Marshall

Solving Acquisition Problems Using Model-Driven Engineering 428
Frank R. Burton, Richard F. Paige, Louis M. Rose,
Dimitrios S. Kolovos, Simon Poulding, and Simon Smith

Author Index . 445

Executable UML:

From Multi-domain to Multi-core

Ed Seidewitz

Vice President, Model Driven Architecture Services a Model Driven Solutions
(a division of Data Access Technologies, Inc.), United States

ed-s@modeldriven.com

Abstract. Modeling problem domains independently of technology do-
mains is the basis for software that is adaptable to both changing business
requirements and advancing technical platforms. Moreover, implementa-
tion-independent executable models allow problem-domain validation to
be built right into agile conversations with customers. These validated
models can then be compiled to a target implementation platform of
choice.

But, unlike traditional programming, executable modeling abstracts
behavior from the problem domain, rather than abstracting from
hardware computational paradigms. In particular, executable models
naturally embrace concurrency, because problem domain behavior is con-
current. And, as we move into an era of multiple cores, dealing with
concurrency is rapidly moving from a peripheral to a central issue in
mainstream programming.

Our programming languages today, on the other hand, are too plat-
form specific, still based too much on, and abstracting too little from,
traditional sequential, von Neumann hardware architectures. What we
need is a way to model problem domains that can then be compiled to
the highly concurrent multi-core platforms around the corner as easily
as the traditional platforms of yesterday. This is exactly what executable
modeling offers.

Work over the last few years has now provided new standards for
precise execution semantics for a subset of UML and an associated action
language. Taking advantage of these new standards, executable UML
holds out the promise of addressing some fundamental issues for the
next generation of programming - from multi-domain to multi-core.

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Models Meeting Automotive Design Challenges

Henrik Lönn

Systems and Architecture, Department of Mechatronics & Software
Volvo Technology, Gothenburg, Sweden

henrik.lonn@volvo.com

Abstract. Automotive systems are increasingly complex and critical.
Their development accounts for a considerable share of the budget, both
in terms of cost and time. The development process is complex, involving
multiple development teams in varying disciplines, roles, departments,
companies and locations, each using their own tools and notations.

One contribution to meeting these challenges is to use a common
ontology that integrates information according to recognized patterns,
an Architecture Description Language. The purpose of EAST-ADL
is to capture engineering information related to automotive electri-
cal/electronic (E/E) system development, from early phase to final
implementation. The system implementation is represented using AU-
TOSAR, i.e. EAST-ADL is complementary to AUTOSAR, adding in-
formation beyond the software architecture to serve engineering work
already in early phases.

The EAST-ADL model has a core part representing the E/E system,
which interfaces to an Environment model for near and far environment.
Extensions for cross-cutting concerns or evolving modelling concepts an-
notate the core elements with these additional aspects. One of the Exten-
sions concerns dependability and captures information related to safety.
Another extension captures system timing using events, event chains and
timing constraints.

The EAST-ADL system model is organized in 4 abstraction levels,
see Figure 1, from the Vehicle Levels abstract and solution-independent
feature models over the Analysis Levels hardware independent functional
models and the Design Levels hardware-allocated functional architecture
to the Implementation Level AUTOSAR software and hardware archi-
tecture.

Based on an agreed modelling approach such as AUTOSAR and
EAST-ADL, research and development on modelling technology, tools
and methodology for automotive EE system development can continue
more efficiently. Such results will allow the multitude of company spe-
cific approaches to be leveraged and gradually replaced by off-the shelf
solutions.

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 2–3, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Models Meeting Automotive Design Challenges 3

�

��

��

�

�

�������1���

���������	���� �

�%�����	���� �

�2������������	���� �

��

&�
��

�
��

��
��1

�
��

�.���������������������������� �

.��������%����������������� �

�+�#��,��
������������3

�

�

��������	���� �

�
�

�

��������%����������������� �

�

,�
4�

���
�

��
��

���
��

��
"�

���
��

��
��

��
��

"�
���

��
���

�
��

��
�…

����������.������1���

��������

�+�#��,��
0������3

�+�#��,��
�3

�

�
�

�
�

� �
�

&��������

Fig. 1. EAST-ADL organization - core, plant and extensions

A Commutative Model Composition Operator

to Support Software Adaptation�

Sébastien Mosser1, Mireille Blay–Fornarino2, and Laurence Duchien3

1 SINTEF IKT, Oslo, Norway
sebastien.mosser@sintef.no

2 I3S – UMR CNRS 7271 (formerly 6070), University Nice
Sophia-Antipolis, France
blay@polytech.unice.fr

3 INRIA Lille–Nord Europe, LIFL – UMR CNRS 8022,
University of Lille 1, France
laurence.duchien@inria.fr

Abstract. The adaptive software paradigm supports the definition of
software systems that are continuously adapted at run-time. An adapta-
tion activates multiple features in the system, according to the current ex-
ecution context (e.g., CPU consumption, available bandwidth). However,
the underlying approaches used to implement adaptation are ordered, i.e.,
the order in which a set of features are turned on or off matters. Assuming
feature definition as etched in stone, the identification of the right sequence
is a difficult and time–consuming problem.We propose here a composition
operator that intrinsically supports the commutativity of adaptations. Us-
ing this operator, one can minimize the number of ordered compositions
in a system. It relies on an action–based approach, as this representation
can support preexisting composition operators as well as our contribution
in an uniform way. This approach is validated on the Service–Oriented
Architecture domain, and is implemented using first–order logic.

1 Introduction

The “adaptability” of a software is defined through its capability to react to
changes and consequently to adapt itself to new environments [24]. Adaptation
is now considered as a first–class problem [19], and software must be developed
with the ability of being adapted during their whole life–cycle, to properly sup-
port the emergence of new technologies and the obsolescence of legacy ones.
Adaptation mechanisms strongly rely on composition operators to support the
introduction (or removal) of new features inside adaptive systems [15]. For exam-
ple, the detection of a sudden drop in network bandwidth turns on a cache fea-
ture, and thus triggers the composition of cache artifacts (i.e., model elements)

� This work is partially funded by the EU Commission through the REMICS project
(contract number 257793), the SINTEF strategic project MODERATES, the French
Ministry of Higher Education and Research, Nord–Pas de Calais Regional Council
and FEDER through the Contrat de Projets Etat Region Campus Intelligence Am-
biante (CPER–CIA) 2007-2013.

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 4–19, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Commutative Model Composition Operator 5

with the existing system. Existing approaches used to support such composi-
tions rely on order–dependent operators, e.g., aspect weaving [12] or functional
composition [1]. Thus, the order in which features are turned on or off matters.

This order–dependency triggers several issues in the context of adaptive sys-
tems, as the designer has to explicitly control this order. The model elements
associated to a feature F are composed with the existing system s as soon as the
adaptation engine identifies a situation that requires F to be present in s. An
immediate problem is the adaptation of unforeseen elements introduced by other
features which lead to unexpected results (so-called fragile point-cut problem in
the aspect-oriented literature [9]). Thus, the implementation of such feature as-
sets is difficult: it must take into account the implementation of all the other
feature assets to be sure that its composition produces the expected system.

In this paper, we propose a new composition operator (called paral-
lel, and denoted as ||) that allows designers to minimise the number
of ordered compositions (and the associated issues, e.g., non–deterministic
result if two compositions cannot commute). Using this operator, it is possible
to reify that several features are turned on independently of each others, ensur-
ing commutativity at the composition level, by construction. Such a property
helps to tame the complexity of feature definition, guarantees the determinism
of the computed result and also ensures the consistency of the composed system,
whatever the order of composition used at the implementation level is.

2 Motivations and Challenges

Motivations. The starting point of this study is the modelling of a Car Crash Cri-
sis Management System (Cccms), started in 2010. This case study was designed
as a prototypical usage of aspect–oriented modelling techniques [13], involving
multiple concerns that had to be composed in a non–trivial way with respect
to the requirements document. During the elaboration of our response to this
case study [21], we encountered several situation where multiple and different
concerns had to be composed on the same element in the original model. Actu-
ally, this situation happened 40 times in this case study, and up to 5 concerns
were composed on these shared join points (SJP). Thus, up to 5! = 120 combina-
tions can be used if we consider these compositions as sequential. More critically,
these sequences do not lead to the same result, as some of them cannot commute
safely! The designer has to identify which order has to be used for each SJP.

The second step that triggers our researchof a new operator to support composi-
tion is the study of dynamic adaptation in the context of business processes.Where
themodels handledby theCccmswere “simply” designmodels (i.e., static),we de-
scribe in [22] a process used to support the dynamic adaptation and un-adaptation
of runningbusiness processes.According to a “models@run.time”point of view, the
adaptation of a running system is assimilated to the composition of newmodel ele-
ments with themodel associated to the running system, and the propagation of the
adaptedmodel at the run-time level.But contrarily to theCccms, in this case, there
is no human-in-the-loop to control the order of compositions. Based on Complex–
Event Processing (CEP) techniques, the adaptation engine automatically triggers

6 S. Mosser, M. Blay–Fornarino, and L. Duchien

System

F1 F2 F3 F4

F5 F6 F7 F8

Runtime Context

Adaptation
Engine

System'

F1 F2 F3 F4

F5 F6 F7 F8

F (off)

F (on)

Composition
Engine

monitors

triggers

Feature
definition

F1 F8...

uses

replace

Fig. 1. Intrinsic relation between adaptation and composition

the needed composition, without any human intervention, as depicted in Fig. 1.
We consider here a system s as the result of the composition of a set of features
(here s = {F1, F2, F4, F7}). The adaptation engine monitors at run-time the ex-
ecution context, and according to changes in this context, identify the new set of
feature needed in the system (s′ = {F1, F4, F5, F6}). It triggers the composition
engine to properly compose all these features in order to build the adapted system
s′. Then, the old system is replacedby the newly composed one, and the adaptation
loop continue.As a consequence, the potential non-determinismof the composition
process is a critical issue. The adaptation engine identifies a set of features needed
in the system (e.g., a cache, a local database, a low-energy consumptionwifi driver)
according to the current context, and if the composed system depends on the way
these features are composed (i.e., their order), the result of the adaptation pro-
cess in not predictable. As amatter of fact, additional knowledge has to be a-priori
stored in the adaptation engine to patch the composition directive generated by
the CEP engine. This knowledge introduces ordering constraints needed to enact
a correct sequence of compositions.

Running example. To illustrate our proposition, and for the sake of concision,
we restrict the problem to its essence and use a simple model m to represent the
system to be adapted. The associated class–diagram is depicted in Fig. 2(a).
This model initially contains two classes C1 and C2. We also consider the two
following adaptations:

S: This adaptation introduces a class SC in the given model, and adds an
inheritance relation between all the top-level1 classes and SC. It is a simpli-
fication of the modifications needed to introduce an Observable pattern into
a model.

A: This adaptation introduces a class AC in the given model, and adds an ag-
gregation relation between all the top-level classes and AC. This adaptation
can be used to add a persistence manager at the higher level of abstraction
and then supports instance persistence through polymorphism.

1 A top–level class is defined here as a class that does not inherits from another one,
i.e., at the top-level of the inheritance hierarchy.

A Commutative Model Composition Operator 7

m

C1 C2

(a) m

mS

C1 C2

SC

(b) mS = S(m)

mA

C1 C2

AC
a1 a2

(c) mA = A(m)

Fig. 2. Feature composition: F (μ)

mSA

C1 C2

SC

AC
a1 a2

(a) mSA = S(A(m))

mAS

C1 C2

SC

AC
a3

(b) mAS = A(S(m))

m'

C1 C2

SC

AC
a1 a2

(c) m′ = ?

Fig. 3. Sequential composition (S •A �= A • S)

Such adaptations represent de facto new features to be introduced (i.e., com-
posed) in the model. Batory et al. [2] use modern mathematics to model features
and their introduction: (i) programs are constants, and (ii) features are func-
tions that produce a program when applied to a program. Thus, we consider here
a program tantamount a model, and we denote as F (μ) the fact that the model
elements associated to the feature F are composed with the model μ (i.e., F is a
model transformation). We depict in Fig. 2(b) and Fig. 2(c) the two previously
described features, separately composed with m.

According to this representation, the explicit ordering of feature introduction
is modelled through functional composition: (F • G)(μ) = F (G(μ)). In sequen-
tial composition, the commutativity of features depends on their internal defi-
nitions. As A and S both (i) modify all the available top-level classes and (ii)
introduce a new one, their sequential composition cannot commute, as represented
in Fig. 3(a) and Fig. 3(b). This issue highlights the fact that • is not commu-
tative by essence: the order of the composition impacts the obtained model. As
a consequence, this compositional model cannot be used to produce the model
depicted in Fig. 3(c) without changing the implementation of A or S.

Challenges. An obvious solution is to consider that the features should not use
quantified definitions (i.e., avoid constructions like “for all top level classes do
. . . ”) but instantiated definitions instead (i.e., use only constructions like “for
C1 and C2, do . . . ”). Unfortunately, this approach scale with difficulty (in the
Cccms case study, a feature had to be applied at 27 different places), and does

8 S. Mosser, M. Blay–Fornarino, and L. Duchien

not allow one to reuse a feature from a system to another one (usually, these
selectors are implemented as XPath expression to dynamically identify model
elements). Thus, to produce the model m′, where A and S are introduced inde-
pendently of each others, we need to define an explicitly unordered composition
operator, denoted as ||. This operator is complementary to the • one, as it en-
sures commutativity of features composition when such a property is needed.
Several challenges need to be faced to define ||:
C1: Adaptation re-usability. To support the reuse of an adaptation, a designer

must be able to define an adaptation independently of the concrete models
element defined in the targeted system (e.g., using quantifiers, “for all . . . ”).

C2: Adequacy with “usual” composition operator such as aspects weaving or fea-
tures composition. The key idea is not to reinvent the wheel. We aim to
propose a new operator that complements the others when an ordering is
not explicitly needed.

C3: Adaptation Isolation & Determinism. If at the requirements level two fea-
tures are not expressed as joint (i.e., there is no explicit ordering dependen-
cies between them), the composition operator must be able to reflect this
decision and consequently ensure a deterministic result.

C4: Inconsistency detection. Through usual composition operator, both S • A
and A • S lead to consistent (but different) models after composition. The
composition operator must be able to identify inconsistencies that can be
introduced during the process, if any.

The contribution of this paper aims to tackle these challenges, through the def-
inition of a parallel composition operator, denoted as ||. We assume that the
features used to implement adaptations are based on property selection (e.g.,
“for all model elements like this, do that”), as this writing style supports feature
re-usability into multiple systems (C1). On the one hand, if a designer knows the
composition order associated to a given set of features, he/she can use existing
composition operators to implement the composition (C2). On the other hand,
when such an order is not explicit, the application of a feature F must not im-
pact the application of feature F ′, for all input models (C3). Nevertheless, as
such isolated composition may lead to inconsistencies, we provide an automated
mechanism to identify inconsistencies in the composed result (C4).

3 An Action–Based Approach

Inspired by cutting–edges researches on the modelling research field (e.g., Prax-
is), we use an action–based approach to represents models. According to this par-
adigm, “Every model can be expressed as a sequence of elementary construction
operations. The sequence of operations that produces a model is composed of the
operations performed to define each model element.” [4]. This section formalises
the action–orientation used to support the definition of both || and • (formally
defined in Sec. 4).

A Commutative Model Composition Operator 9

Formalising Actions. The Praxis method [4] defines four operations to model
models, allowing one to (i) create a model element, (ii) delete a model element,
(iii) set a property in a model element (setProperty) and finally (iv) set a reference
from a model element to another one (setReference). We propose here a general-
isation of the approach where the expressiveness is dedicated to the handling of
attributed graphs. Consequently, we are not restricted to class-based models, and
this definition works for any type of artifact that can be represented by a graph
(the validation example relies on behavioural model initially modelled as business
processes). That is, we consider a model as a set of model elements (i.e., nodes), in-
terconnected through relations (i.e., edges). Sets are intrinsically unordered, and
do not contain duplicates. Using first–order logic as underlying foundations, we
define the following closed terms (i.e., actions) to interact with a given model:

– addn(N,Kind): introduces a node N in the model. Kind specializes the node
(e.g., a class, a UML annotation).

– adde(N,N ′,Kind): defines an edge from N to N ′ in the model. Kind spe-
cializes the reified relation (e.g., inheritance, aggregation).

– dele(N,N ′,Kind): deletes the edge from N to N ′, according to its Kind (as
several relations of different kinds may exist between two nodes).

– deln(N): deletes the node N in the model.

Models as Action Sets. We define a model as a tuple of four action sets (Eq. 1).
A model μ ∈ M is composed by (i) a set of node additions An, (ii) a set
of edges additions Ae, (iii) a set of edge deletions De and finally (iv) a set
of node deletions Dn. In our example, node kinds are restricted to {Cl} (for
“class”), and relation kinds are defined in {Ag, In} (respectively “aggregation”
and “inheritance”). For example, considering each class as a node, the model
depicted in Fig. 2(a) is reified in Eq. 2.

μ = (An, Ar, Dr, Dn) ∈ M (1)

m = ({addn(C1, Cl), addn(C2, Cl)}, ∅, ∅, ∅) (2)

The union of two models is used to combine several models into a single one. It
is defined as the distribution2 of the usual set union operator into each contained
set:

μ = (An, Ae, De, Dn)∪ (A′
n, A

′
e, D

′
e, D

′
n) = (An∪A′

n, Ae∪A′
e, De∪D′

e, Dn∪D′
n)

Relations with action sequences. We do not use plain action sequence represen-
tation to avoid permutations issues. Using such a representation, two different
action sequences (s0, s1) that lead to the same model are considered as non–
equal, where our set–driven representation (μ) ensures unicity:

s0 = [addn(a, Cl), addn(b, class)], s1 = [addn(b, Cl), addn(a, Cl)], s0 �= s1

μ = ({addn(a, Cl), addn(b, Cl)}, ∅, ∅, ∅)
2 One can notice that such a distribution can also be used to implement others model
combination operator (e.g., intersection, difference).

10 S. Mosser, M. Blay–Fornarino, and L. Duchien

The underlying idea is that a sequence of actions always respects the following
steps: it (i) adds nodes, (ii) adds edges between these nodes, (iii) deletes existing
edges and finally (iv) deletes isolated nodes. In a given step, the internal ordering
does not matter (adding x before y is not relevant with regard to the final model).
Thus, one can see our representation as a canonical form of an action sequence
mandatory to build a given model: the division into four subsets supports this
partial ordering.

Consistency. Using this representation, model consistency is ensured according
to several logical rules. As the detection of inconsistencies in models is a dedi-
cated research field [3], we always assume in this paper that the handled models
are consistent. For a given model μ = (An, Ar, Dr, Dn), this property is ensured
according to the following rules:

P1: “Related elements existence”. An action that adds a relation between two
elements (here classes) C and C′ assumes that these two classes are added
with the associated actions in An (Eq. 3).

P2: “Deletion of existing relations”. An action that deletes a relation between
two elements C and C′ with a givenKind assumes that this relation is added
in Ae (Eq. 4).

P3: “Deletion of isolated elements”. An action that deletes an element C assumes
that all relations involving C are deleted in De (Eq. 5).

adde(C,C
′,) ∈ Ae ⇒ addn(C,Cl) ∈ An ∧ addn(C

′, Cl) ∈ An (3)

dele(C,C
′, k) ∈ De ⇒ adde(C,C

′, k) ∈ Ae (4)

deln(C) ∈ Dn ⇒
{ ∀adde(C,X,Kcx) ∈ Ae, ∃dele(C,X,Kcx) ∈ De

∧ ∀adde(Y,C,Kyc) ∈ Ae, ∃dele(Y,C,Kyc) ∈ De
(5)

4 Using Actions to Support || and •
In this section, we present how the model representation described in the pre-
vious section supports feature introduction, and the definition of both • and ||
operators.

Using Actions to Introduce Features. Using a functional approach, base models
are considered as constants (e.g., μ ∈ M), and features are defined as functions
that map an input model μ into an enriched model μ′. Thus, introducing a
feature F into a model μ means to use the latter as the input of the former:
μ′ = F (μ). In our approach, we propose to consider F as a two steps function:
(i) the copy of the input model μ into the output one and (ii) the generation
of the actions necessary to modify μ and then produce the expected model as
output, denoted as ΔF (μ). Our action–based representation of models allows
the designer to represent these elements in an endogenous way, as both μ and
ΔF (μ) are modelled as sets of actions. Thus, we obtain μ′ as the following:
μ′ = F (μ) = μ ∪ΔF (μ).

A Commutative Model Composition Operator 11

For example, we consider here the feature S described in the previous section.
Assuming a function named top that returns the set of top-level classes discovered
in its input, one can implement ΔS as the following: for an input model μ, it (i)
adds the SC class and then (ii) generates the addition of an inheritance relation
between all top-level classes and SC.

ΔS : M → M
μ �→ ({addc(SC,Cl)}, {adde(X,SC, In)|X ∈ top(μ)}, ∅, ∅)

Thus, the introduction of S in m (Fig. 2(b)) is modelled as the following:

m = ({addn(C1, Cl), addn(C2, Cl)}, ∅, ∅, ∅)
ΔS(m) = ({addc(SC,Cl)}, {adde(C1, SC, In), adde(C2, SC, In)}, ∅, ∅)

mS = S(m) = m ∪ΔS(m)

= ({addc(SC,Cl), addn(C1, Cl), addn(C2, Cl)},
{adde(C1, SC, In), adde(C2, SC, In)}, ∅, ∅)

As said in the consistency paragraph, we assume to work with consistent models
and features. Thus, the introduction of a feature into a model always leads to a
consistent model: let μ a consistent model, and F a given feature. Even if ΔF (μ)
may be inconsistent (e.g., deleting a class that is added in μ and not in ΔF (μ),
violating P3), the result of its union with m is therefore consistent.

4.1 Sequential Composition: •
Using F and G as two features, and μ a model, we define the functional compo-
sition operator • as the following:

G(μ) = μ ∪ΔG(μ)

(F •G)(μ) = F (G(μ)) = G(μ) ∪ΔF (G(μ)) = μ ∪ΔG(μ)︸ ︷︷ ︸
G(μ)

∪ ΔF (μ ∪ΔG(μ)︸ ︷︷ ︸
G(μ)

)

The operator holds the following properties, and thus behaves as the “usual”
operator:

– Identity: Let Id be the identity feature3, and F a given feature. F = F • Id.
– Idempotence: Let F be a feature. In the general case, F (F (μ)) �= F (μ)
– Commutativity: this property cannot be ensured in the general case, and its

implementation–dependent. It can be ensured if and only if the two functions
F and G are orthogonal. In the general case, F •G(μ) �= G • F (μ).

Running example. We now consider ΔA, the function used to implements the
previously defined A feature:

ΔA : M → M
μ �→ ({addn(AC, class)}, {adde(X,AC,Ag())|X ∈ top(μ)}, ∅, ∅)

3 ∀μ ∈ M, ΔId(μ) = (∅, ∅, ∅, ∅) ⇒ Id(μ) = μ.

12 S. Mosser, M. Blay–Fornarino, and L. Duchien

With this function and the previously defined one ΔS , one can build the model
mSA depicted in Fig. 3(a), which represents (S •A)(m).

ΔA(m)=({addn(AC,Cl)}, {adde(C1, AC,Ag(a1)), adde(C2, AC,Ag(a2))}, ∅, ∅)
mA = A(m) = m ∪ΔA(m)

= ({addn(AC,Cl), addn(C1, Cl), addn(C2, Cl)},
{adde(C1, AC,Ag(a1)), adde(C2, AC,Ag(a2))}, ∅, ∅)

top(mA) = {AC,C1, C2}
ΔS(ma) = ({addn(SC,Cl)},

{adde(C1, SC, In), adde(C2, SC, In), adde(AC, SC, In)}, ∅, ∅)
mSA = S(A(m)) = m ∪ΔA(m) ∪ΔS(m ∪ΔA(m)) = mA ∪ΔS(mA)

= ({addn(AC,Cl), addn(C1, Cl), addn(C2, Cl), addn(SC,Cl)},
{adde(C1, AC,Ag(a1)), adde(C2, AC,Ag(a2)),

adde(C1, SC, In), adde(C2, SC, In), adde(AC, SC, In)}, ∅, ∅)

4.2 Parallel Composition: ||
Using F and G as two features, and μ a model, we define the parallel composition
operator || as the following:

F (μ) = μ ∪ΔF (μ), G(μ) = μ ∪ΔG(μ)

(F ||G)(μ) = F (μ) ∪G(μ) = μ ∪ΔF (μ) ∪ΔG(μ)

As the || operator is defined over set union, it holds the following properties:

– Identity: considering Id as the identify feature and F as a given feature,
(F ||Id)(μ) = μ ∪ΔF (μ) ∪ (∅, ∅, ∅, ∅) = F (μ).

– Idempotence: let F be a given feature. F ||F (μ) = F (μ) ∪ F (μ) = F (μ).
– Commutativity: the operator relies on set union, which is commutative.

(F ||G)(μ) = (G||F)(μ) = μ ∪ΔF (μ) ∪ΔG(μ).

When applied to the previous example, one can build the model m′ depicted in
Fig. 3(c) as the following:

m′ = (A||S)(m) = m ∪ΔA(m) ∪ΔS(m)

= ({addn(AC,Cl), addn(C1, Cl), addn(C2, Cl), addn(SC,Cl)},
{adde(C1, AC,Ag(a1)), adde(C2, AC,Ag(a2)),

adde(C1, SC, In), adde(C2, SC, In)}, ∅, ∅)

4.3 Impact on Model Consistency

The previously described definition of feature composition assumes their consis-
tency: for a given model μ and any feature F , the composition of F with μ always
leads to a consistent model (i.e., a model that respects the Pi constraints).

A Commutative Model Composition Operator 13

•: the sequential composition operator is consistent by construction: it simply
chains the compositions.

||: the parallel composition operator works on a different basis (i.e., model
union), and then may lead to inconsistent models.

Let F and G two consistent features. For a given model μ, we ensure by construc-
tion that both F (μ) and G(μ) are also consistent. But their parallel composition
μ′ = F (μ) ∪G(μ) may be inconsistent, according to the following rules:

P1: “Related elements existence”. This property is violated if and only if a feature
adds a relation that involves an element deleted by another feature.

P2: “Deletion of existing relations”. This property can be violated if and only
if a feature F deletes a relations added in another feature F ′. Such a situ-
ation also implies a violation of P1 (F ′ defines a relation between unknown
elements).

P3: “Deletion of isolated elements”. This property is violated since a feature
deletes an element used by the other one in a newly added relation (see P1).

In fact, the computation of an inconsistent resulting model (after the composi-
tion) identifies an issue in the features: they cannot be composed in parallel as is,
as one relies on the other. It is then a typical use case for a sequential composi-
tion (•). It tackles challenge C4, as such erroneous situation can be automatically
detected (e.g., through the satisfaction of a logical predicate).

5 Implementation and Validation

In this section, we describe how the approach is implemented in a logical lan-
guage, and emphasize the need for using the || operator in the context of a
complex case study.

5.1 Implementation

We provide a reference implementation of the approach4. This framework
supports the definition of features as Prolog predicates, and includes a Domain–
Specific Language (DSL) to express compositions. This language is domain inde-
pendant, as it relies on the action sequences previously defined, reifying models
as attributed graphs. The engine compiles compositions expressed through the
DSL into logical predicates (using ANTLR5), and supports their execution in
a Prolog interpreter (SWI-Prolog6). At run-time, SWI-Prolog provides the JPL
framework, which implements a bidirectional Java/Prolog bridge. Thus, the en-
gine can be connected to any tool reachable through the Java language, e.g.,
the Eclipse Modeling Framework (EMF). The implementation of the running
example used in this paper is available in the code repository7.

4 http://www.gcoke.org
5 http://www.antlr.org/ (version 3.3)
6 http://www.swi-prolog.org/ (version 5.10.4)
7 http://code.google.com/p/gcoke/source/browse/trunk/lines/ase_xp/

http://www.gcoke.org
http://www.antlr.org/
http://www.swi-prolog.org/
http://code.google.com/p/gcoke/source/browse/trunk/lines/ase_xp/

14 S. Mosser, M. Blay–Fornarino, and L. Duchien

Listing 1.1. Ordered composition (•): msa �= mas

� �

1 composition ordered(m) {

2 a(model: m) => (output: m_a);

3 s(model: m_a) => (output: m_sa);

4 } => (m_sa);
� �

Listing 1.2. Parallel composition (||): m′ = (A||S)(m) = (S||A)(m)
� �

1 composition parallel (m) {

2 s(model: m) => (output: m_p);

3 a(model: m) => (output: m_p);

4 } => (m_p);
� �

Using the engine, one can express compositions using the DSL. We represent in
Lst. 1.1 how the framework supports ordered compositions (•). A composition is
named (here ordered), and consumes models (here m) to produces new ones (here
m sa). The way such models are produced is represented as a set of composition
directives: line 2 implements the application of the feature a using m as input
model, and storing its output into m a. A directive is triggered as soon as all its
input artifacts are available (i.e., existing or computed by another directive). The
parallel composition operator is implemented as the absence of order between
directives (Lst. 1.2, next page). In a composition named parallel, we only
declare that s and a use the model m as input, and store their result in m prime

(lines 2 and 3). In front of such a declaration, the engine computes each set
of actions independently, and will perform the union of the generated actions
sequences before executing it. If an inconsistency is detected (which is not the
case here), an error is raised to the designer.

5.2 Validation

We focus here on the Cccms case study, as it is the largest one we used to
validate the || operator. The case study was designed by Kienzle et al. [13] as a
reference framework to compare different aspect–oriented modelling approaches.
This example is a real-life example, involving thousands of model elements ac-
cording to real-life business processes. In this context, the considered models to
be composed reify business processes, i.e., behavioural models. The business pro-
cesses involved in the Cccms

8 are modelled as graphs, where nodes are activities
and relations implement a partial order between these activities. The case study
defines hundreds of activities scheduled by thousands of relations, which makes
the example suitable for “real–life” complexity. We instantiated two variants of
the requirements: (i) a system that only fits the business requirements and (ii)
a system that includes several non–functional (NF) concerns. The final system

8 http://www.adore-design.org/doku/examples/cccms/start

http://www.adore-design.org/doku/examples/cccms/start

A Commutative Model Composition Operator 15

(including NF concerns) defines 146 compositions. As stated in the motivations
of this paper, we identified up to 40 shared join points in this study (∼ 27%).
On these points, up to 5 concerns had to be composed, leading to 120 potential
sequences of composition. This situation triggers a humongous amount of veri-
fications to be checked on the composed system, which is modelled as a set of
dense graphs (hundreds of nodes, thousands of relations). Thus, the execution of
checkers to verify the consistency of the composed system costs a lot of resource
and CPU–time, as the verifications rely on the systematic check of each path
defined in a given graph (subject to combinatorial explosion).

While designing the Cccms, instead of systematically using the • operator
and manage all the complexity by hand, we used the || operator to support the
compositional approach. The requirement document stated that the features
were supposed to be orthogonal, and as a consequence the || operator perfectly
implements this intention. The inconsistency detection mechanism (applied on
action sequence instead of large graphs) was then used to identify the situations
where an order should be defined. Results are summarised in Tab. 5.2.

– The business version uses 24 features and defines 28 composition directives
to build the complete system. It can then be considered as a large simplifi-
cation of the expected system. In this version, only 2 composition directives
where identified as conflicting, and actually had to be explicitly ordered (i.e.,
implements a • composition). All the other compositions can be computed
independently. This point illustrates that from a business point of view,
the absence of ordering is really important. Applying these features as an
ordered sequence can produce unexpected results, like the ones shown in
Fig. 3. Through sequential composition, designers would had to (i) check
the composed system to verify that the obtained result does not contain such
feature interactions and/or (ii) avoid the usage of quantifiers to anticipate
such situations.

– The introduction of NF concerns includes in our case five additional features,
dealing with security, persistence and statistical logging. In this configura-
tion, we use 146 composition directives to build the complete system (busi-
ness + NF). Up to 73% of these directives were unordered in this case study.
The others requires an order to meet the requirement specifications. For ex-
ample, we had to introduce security features after all the others to secure the
complete process. It is important to notice that this need was not explicitly
documented in the requirements, but accurately detected by the inconsis-
tency detection mechanism. This point highlights the complementarity of
the sequential and parallel composition operators.

Table 1. Composition directives used in the Cccms

System #Composition #Ordered #Parallel

Business 28 2 (7%) 26 (93%)
Business + NF 146 39 (27%) 107 (73%)

16 S. Mosser, M. Blay–Fornarino, and L. Duchien

6 Related Works

Modern mathematics were proposed as a support of feature–oriented software
development [2]. This algebraic representation allows the usage of equation opti-
misers to rewrite the compositions in an efficient way [16]. It is possible to reify
the interaction of a feature and another one [17] using mathematical derivative
function. Another lead is to use commuting diagrams [14] to explore the different
composition orders. The way features are composed together can be constrained
through the usage of design constraint rules, expressed as attributed gram-
mars [18]. A “valid” composition is consequently identified as a word recognised
by the design constraint grammar (identifying conflicting features upstream).
The contribution of this paper complements these works, as it also reify com-
positions as mathematical expressions. The major difference with these works is
the definition of a commutative and idempotent composition operator.

The opposite approach of the one described in this paper is to analyse the set
of available features and to automatically identify the needed composition order,
as implemented by the CAPucine framework [25]. Using CAPucine, a Feature
Diagram (FD [8]) is used to express the business variability of a given system.
Using an aspect–oriented modelling approach, features are bound to assets that
implement aspect models: a fragment of model to be added (i.e., advice) and a
selector used to identify where this fragment should be added (i.e., point-cut).
CAPucine analyses the given elements according to two directions: from the
FD to the models and (i) from the models to the FD. On the one hand, the latter
analyses the set of selectors against the set of model fragments, and identifies
hidden dependencies between features that were not expressed in the FD. On
the other hand, the former verifies for each constraints expressed in the FD (e.g.,
“F requires F ′”) if the implementation follows it (i.e., the selector defined in
F matches elements defined in the fragment of model associated to F ′). These
analysis are complementary to the parallel composition operator, as one can
use it to automatically discriminate the features that requires a sequential (•)
composition and the features that rely on the parallel operator (||). Thus, it is
possible to (i) detect hidden ordering with CAPucine and (ii) ensure that
others features are composed in isolation.

Another lead to ensure commutative composition is followed by the model
transformation community [5]. In this work, the key idea is to analyse the set of
model elements impacted (e.g., read, modified, deleted) by a given transforma-
tion τ , and then reason about these different sets to check if two transformations
may commute. This reasoning capabilities are formalised using set theory, and
dedicated to model–transformation. Such an analysis ensures the consistency of
models after a parallel composition. Thus, this approach complements ours: a
posteriori inconsistency detection can be avoided at run-time if commutativity
safety can be proved. However, our composition operator ensures the parallel
application of a set of features, by construction, whatever their definition.

Model weaving can also be considered as a way to support adaptation. This
paradigm relies on aspect weaving at the model level. In this context, it is pos-
sible to use optimisation techniques to select the best model to be woven with

A Commutative Model Composition Operator 17

the current one [26]. But intrinsically, these approaches implements an aspect
weaving algorithm, which is by nature not commutative. Our approach is thus
complementary to these ones, as one can implement our || operator in such a
framework and then support unordered composition.

More specifically, the Mata approach [27] supports the weaving of models
aspects using a graph–based approach. This approach supports powerful conflict
detection mechanisms, used to support the “safe” composition of models [23].
The underlying formal model associated to this detection is based on critical pair
analysis [7]. Initially defined for term rewriting systems and then generalised to
graph rewriting systems, critical pairs formalise the identification of a minimal
example associated to a potentially conflicting situation. This notion supports
the development of rule–based systems, identifying conflicting situations such as
“the rule r will delete an element matched by the rule r′” or “the rule r generates
a structure which is prohibited according to the existing preconditions”. This
work is complementary with the one presented in this paper, as it can be used
to handle inconsistencies in a more detailed way.

7 Conclusions and Perspectives

In this paper, we introduced a new composition operator (denoted as ||), that
enables the parallel composition of existing features. Using an action–based ap-
proach, we formally defined this new operator and the existing ones (e.g., se-
quential), as well as its prototypical implementation using a logical language. We
identified four challenges, accurately tackled by the approach. The operator sup-
ports feature re-usability (C1), and complements the existing ones (to be used
when an order is needed, C2). It also ensures determinism in the composition
(C3), as the composition order does not matter when || is used. Finally, incon-
sistency detection mechanisms are provided to ensure the safety of the parallel
composition (C4). The operator was validated in the context of SOA business
processes, illustrating how it scales in front of large systems.

Immediate perspectives of this work are to apply the operator to multiple ap-
plication domains. We plan to focus on the two following research fields, which
highly rely on compositions to support their adaptation: (i) Cloud–computing
and (ii) Internet of Things. For the former, it is known that the design of effi-
cient distributed systems is a tedious task. The use of composition algorithms to
support their adaptation according to a step-wise approach tames such a com-
plexity, and ensure properties in the composed result (difficult to be checked by
humans). In the context of the remics

9 project, we are dealing with the migra-
tion of legacy systems into cloud-based application. In this context, the need for
adaptation is double: (i) models of legacy applications have to be adapted w.r.t
models of clouds to enact a cloud version of the application, and (ii) at run-time,
run-time models have to be adapted to accurately use the power of the cloud
(e.g., “elasticity”, which refers to an unlimited resource provisioning capability).
The Internet of Things domains is driven by the multiplication of embedded

9 http://remics.eu/, EU FP7, STREP.

http://remics.eu/

18 S. Mosser, M. Blay–Fornarino, and L. Duchien

devices (e.g., sensors, smartphone, Pda, tablet PC). Intrinsically, the Internet
of Things aims to compose multiple devices into an autonomic entity, able to
reconfigure itself at run-time [6], according to changes in its environment (e.g.,
a more accurate display device is discovered, and the application is reconfigured
to broadcast the main content to this new device) [20]. These two application
domains will support large-scale experimentation of the || operator, based on
real case studies provided by industrial partners.

References

1. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Transactions on Software Engineering 30, 2004 (2004)

2. Batory, D.S.: Using Modern Mathematics as an FOSD Modeling Language. In:
Smaragdakis, Y., Siek, J.G. (eds.) GPCE, pp. 35–44. ACM (2008)

3. Blanc, X., Mougenot, A., Mounier, I., Mens, T.: Incremental Detection of Model
Inconsistencies Based on Model Operations. In: van Eck, P., Gordijn, J., Wieringa,
R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 32–46. Springer, Heidelberg (2009)

4. Blanc, X., Mounier, I., Mougenot, A., Mens, T.: Detecting Model Inconsistency
through Operation-Based Model Construction. In: Schäfer, W., Dwyer, M.B.,
Gruhn, V. (eds.) ICSE, pp. 511–520. ACM (2008)

5. Etien, A., Muller, A., Legrand, T., Blanc, X.: Combining IndependentModel Trans-
formations. In: Shin, S.Y., Ossowski, S., Schumacher, M., Palakal, M.J., Hung, C.C.
(eds.) SAC, pp. 2237–2243. ACM (2010)

6. Fleurey, F., Morin, B., Solberg, A.: A Model-driven Approach to Develop Adaptive
Firmwares. In: Giese, H., Cheng, B.H.C. (eds.) SEAMS, pp. 168–177. ACM (2011)

7. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of Typed Attributed Graph
Transformation Systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg,
G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002)

8. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) - Feasibility Study. Tech. rep., The Software
Engineering Institute (1990), http://www.sei.cmu.edu/reports/90tr021.pdf

9. Kastner, C., Apel, S., Batory, D.: A Case Study Implementing Features Using
AspectJ. In: Proceedings of the 11th Int. Software Product Line Conference, pp.
223–232. IEEE Computer Society, Washington, DC (2007)

10. Katz, S., Mezini, M., Kienzle, J. (eds.): Transactions on Aspect-Oriented Software
Development VII - A Common Case Study for Aspect-Oriented Modeling. LNCS,
vol. 6210. Springer, Heidelberg (2010)

11. Katz, S., Ossher, H., France, R., Jézéquel, J.-M. (eds.): Transactions on Aspect-
Oriented Software Development VI, Special Issue on Aspects and Model-Driven
Engineering. LNCS, vol. 5560. Springer, Heidelberg (2009)

12. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An Overview of AspectJ. In: Lee, S.H. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

13. Kienzle, J., Guelfi, N., Mustafiz, S.: Crisis Management Systems: A Case Study for
Aspect-Oriented Modeling. In: T. Aspect-Oriented Soft. Dev. [10], pp. 1–22

14. Kim, C.H.P., Kästner, C., Batory, D.: On the Modularity of Feature Interactions.
In: Procs of the 7th Int. Conf. on Generative Programming and Component Engi-
neering, pp. 23–34. ACM, New York (2008)

http://www.sei.cmu.edu/reports/90tr021.pdf

A Commutative Model Composition Operator 19

15. Kniesel, G.: Type-Safe Delegation for Run-Time Component Adaptation. In: Guer-
raoui, R. (ed.) ECOOP 1999. LNCS, vol. 1628, pp. 351–366. Springer, Heidelberg
(1999), doi:10.1007/3-540-48743-3 16

16. Liu, J., Batory, D.: Automatic Remodularization and Optimized Synthesis of
Product-Families. In: Karsai, G., Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286,
pp. 379–395. Springer, Heidelberg (2004)

17. Liu, J., Batory, D.S., Nedunuri, S.: Modeling Interactions in Feature Oriented
Software Designs. In: Reiff-Marganiec, S., Ryan, M. (eds.) FIW, pp. 178–197. IOS
Press (2005)

18. McAllester, D.: Variational Attribute Grammars for Computer Aided Design (Re-
lease 3.0). Tech. rep. MIT (1994)

19. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing Adaptive
Software. Computer 37, 56–64 (2004)

20. Morin, B., Barais, O., Jezequel, J.M., Fleurey, F., Solberg, A.: Models@ Run.time
to Support Dynamic Adaptation. Computer 42(10), 44–51 (2009)

21. Mosser, S., Blay-Fornarino, M., France, R.: Workflow Design Using Fragment Com-
position – Crisis Management System Design through ADORE. In: T. Aspect-
Oriented Software Development [10], pp. 200–233

22. Mosser, S., Hermosillo, G., Le Meur, A.F., Seinturier, L., Duchien, L.: Undoing
Event-Driven Adaptation of Business Processes. In: 8th International Conference
on Services Computing (SCC 2011), pp. 1–8. IEEE, Washington DC (2011)

23. Mussbacher, G., Whittle, J., Amyot, D.: Semantic-Based Interaction Detection in
Aspect-Oriented Scenarios. In: RE, pp. 203–212. IEEE Computer Society (2009)

24. Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime Software Adaptation: Frame-
work, Approaches, and Styles. In: Companion of the 30th Int. Conf. on Software
Engineering, ICSE Companion 2008, pp. 899–910. ACM, New York (2008)

25. Parra, C., Cleve, A., Blanc, X., Duchien, L.: Feature-Based Composition of Soft-
ware Architectures. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285,
pp. 230–245. Springer, Heidelberg (2010)

26. White, J., Gray, J., Schmidt, D.C.: Constraint-Based Model Weaving. In: T.
Aspect-Oriented Software Development VI [11], pp. 153–190

27. Whittle, J., Jayaraman, P.K., Elkhodary, A.M., Moreira, A., Araújo, J.: MATA:
A Unified Approach for Composing UML Aspect Models Based on Graph Trans-
formation. In: T. Aspect-Oriented Software Development VI [11], pp. 191–237

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 20–31, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Comparative Study of Model-Based and Multi-Domain
System Engineering Approaches for Industrial Settings

Anjelika Votintseva, Petra Witschel, Nikolaus Regnat, and Philipp Emanuel Stelzig

Siemens AG, Otto-Hahn-Ring 6, Munich, Germany
{anjelika.votintseva,petra.witschel,

nikolaus.regnat,philipp.stelzig}@siemens.com

Abstract. A typical approach for the development of multi-domain systems of-
ten carries the risk of high non-conformance costs and time-consuming re-
engineering due to the lack of interoperability between different domains. In its
research project “Mechatronic Design”, the Siemens AG develops an inte-
grated, model-based and simulation-focused process to perform a frontloading
engineering approach for multi-domain systems.

The paper presents two use cases from this project as two implementation
approaches to system modeling and simulation being synchronized at early de-
sign phases. Both use cases utilize the standardized system modeling language
SysML and the multi-domain simulation language Modelica. One use case eva-
luates the standardized OMG SysML4Modelica profile for transformation be-
tween SysML and Modelica. The other use case uses a Modelica independent
and proprietary profile aiming at more flexible usage. For both approaches, ad-
vantages and disadvantages are identified and compared. Depending on the
project objectives, the general suitability of the approaches is also judged.

Keywords: model-based system engineering, simulation, multi-domain sys-
tems, SysML, Modelica, comparative study, industrial use cases.

1 Introduction

Model-based systems engineering (MBSE) is the formalized application of modeling
to support system requirements, design, analysis, verification and validation activities
beginning in the conceptual design phase and continuing throughout development and
later life cycle phases [1]. It is especially challenging to manage the development of
multi-domain systems. In the present context, by multi-domain systems we under-
stand those involving both multiple technical disciplines (like mechanics, electrics,
software) and different engineering methods (e.g. in this context, architecture descrip-
tion, system simulation). MBSE enables an integrated process to develop constituent
parts of such systems in an integrated way. In addition to descriptive models, using
executable models allows system architects to run simulations. Within the internal
company-wide research project of Siemens AG called “Lighthouse Project Mecha-
tronic Design” (LHP MDE), an integrated, model-based and simulation-focused
process is under development to perform a frontloading engineering approach for
multi-domain products.

Comparative Study of Model-Based and Multi-domain System Engineering Approaches 21

Our paper exemplifies how system modeling and system simulation can be used
and synchronized at early design phases for concept evaluation and functional design.
With the design of an electrical car (eCar) and the development of medical equipment
(Artis Floorstand), two use cases of LHP MDE are examined in more details, where
different development groups follow different approaches. For description of the sys-
tem model, in the both use cases the standardized system description language SysML
[2] has been used which is based on the unified modeling language UML [3]. SysML
is currently becoming an industrial standard in the domain of system modeling as it
allows consistent structuring of complex systems with easily understandable graphical
visualization. The quantitative analysis has in both cases been performed with the
Modelica language [4]. Modelica is very suitable for multi-domain simulations, as it
allows to model – in an object-oriented way – any system that can be described by
differential algebraic equations. It is possible to create Modelica models graphically
and textually, what makes it particularly well-suited for automatic transformations.
SysML and Modelica are increasingly used in different projects at Siemens AG.

Research is already performed to combine UML-based system description with
Modelica-based simulation. In [5] a UML Profile called ModelicaML is presented
which enables integrated modeling and simulation of system requirements and design.
Another profile named SysML4Modelica [6] concentrates on the combination be-
tween SysML and Modelica. Problems in developing complex multi-domain systems
are tackled in further works. For example, Model Integrated Mechatronics (MIM) [7]
is an architecture that promotes model integration for different kinds of artifacts al-
lowing concurrent engineering of mechanical, electronic and software components. It
simplifies the integrated development process by using the construct of Mechatronic
Components. The Functional (Digital) Mockup [8] approach is synergistic design
synchronization, model execution and analysis, providing a tight integration of me-
chanics with electronics and software and a smooth integration of dependability pre-
dictions during the early development phases.

This paper is structured as follows. In Section 2, the two application areas eCar and
Artis Floorstand are introduced together with their development processes. Section 3
contains implementation details. The comparison of the proposed approaches is per-
formed in Section 4. Section 5 concludes and gives an outlook for future works.

2 Application Areas and Proposed Development Processes

This section provides an overview of the selected use cases – eCar and Artis Floors-
tand. The development processes proposed within these use cases are outlined togeth-
er with exemplary workflows justifying the chosen ways of tool integration.

2.1 Use Case eCar

The use case eCar is related to the development of a hypothetical electrical vehicle
[9]. In our sample model we concentrate on the level of functional architecture and
abstract logical design to show how architectural decisions at early development stag-
es can be analyzed and compared. As an example of an early decision, we consider

22 A. Votintseva et al.

the question if a concept with one or two electric motors is more advantageous. In one
concept, a single electrical motor, connected via a mechanical differential to the front
wheels of the vehicle, is used. In the other concept, two independent motors are indi-
vidually attached to the front wheels. This choice of concepts visualized in Fig. 1
(left-hand) has impact on a variety of non-functional requirements like efficiency,
battery range, drive comfort and costs. One focus of our works was the evaluation of
battery consumption under control of a new SW component, an adaptive cruise con-
trol (ACC). The car in front was assumed to drive according to the New European
Drive Cycle (NEDC) shown in Fig. 1 (right-hand). This example demonstrates the
integration of software and environment models in modern multi-domain systems.

Fig. 1. Abstract models for the sample multi-domain system eCar and an input drive cycle

In this use case, the standardized SysML4Modelica profile [6] was evaluated. The
specification of the profile describes how to represent elements of Modelica within
SysML. Using this approach, a system architect can select an appropriate level of
detail, which is then transformed automatically into Modelica.

Development Process
A typical eCar development process contains such phases as requirements, functional
architecture, logical architecture, physical and software design, integration and testing
activities. A generic system model can be configured into different product configura-
tions containing instances of physical elements and software implementations, as well
as other product parameters. After a product configuration is specified within SysML,
some parts of the model required for the further analysis are decorated with the do-
main-specific stereotypes and tags (in this case from the SysML4Modelica profile).
This can be applied to whole components or just to some model elements (blocks or
their properties). After that, Modelica simulation models are generated automatically
for different product configurations. Components from software design are inserted
into UML projects where they are developed further. Selected results from the do-
main-specific analysis are transferred back to the system model, e.g. as product
parameters or component properties.

Comparative Study of Model-Based and Multi-domain System Engineering Approaches 23

Exemplary Workflow
In the use case eCar, we have assumed a workflow starting from SysML, where the
different kinds and levels of the system architecture are developed and different kinds
of analysis are managed (e.g., validation activities are specified and mapped to tools,
dependencies are defined between artifacts).

Fig. 2. Exemplary system engineering workflow with feedback in the use case eCar

In the use case eCar, a system architect performs the following steps (see Fig. 2):

1. develop a high level architecture in SysML,
2. add details to the components,
3. select a part of the system to be analyzed with additional tools by marking these

elements with specific stereotypes (SysML4Modelica),
4. (automatically) transform this part of the system to the target language and pass the

resulting model to the simulation experts for the further analysis.

The simulation experts then delivers the results of the analysis back to the system
architect, who updates the system with the parameters from the simulation results.

2.2 Use Case Artis Floorstand

The use case Artis Floorstand refers to a particular configuration from the Artis prod-
uct family of C-arm systems produced by Siemens Healthcare which are most notably
used in angiography as carriers for imaging devices. A characteristic feature of these
systems is that the mechanical structure is mainly fixed and further development often
concentrates on improving the performance or studying other non-functional aspects.
Typical challenges arising in the development are e.g. reaching higher rotation speed
(e.g. from 20°/s to 45°/s) to allow a faster imaging process and reduce patient expo-
sure to radiation, or better positioning accuracy (e.g. a maximum tolerance of ±2° for
rotational movements instead of ±5°) for higher imaging quality. To this end, the
influence of certain design decisions has to be analyzed as early as possible. For in-
stance, how big are the resulting torques when accelerating the C-arm to higher rota-
tion speeds? Can these torques be generated by the electric motors used so far? What
is the benefit of more costly, yet more precise gears? How does smaller clearance or

24 A. Votintseva et al.

higher stiffness in the gears affect positioning accuracy? During the early develop-
ment stages all architectural decisions need to consider such non-functional aspects
and therefore a tradeoff analysis has to be made, with multi-body simulations being
most suitable for a first quantitative analysis.

Traditionally, parts of this development process were based on textual system spe-
cifications. However, with increasing system complexity, this approach was found to
be unsatisfactory. Thus, the main aim of our work was to show the benefit of SysML
models against pure textual specifications and evaluate how these SysML models can
be used for early system simulations to support design decisions with a high-level
tradeoff analysis.

For multi-body simulation aspects Modelica was used but as the evaluation of dif-
ferent simulation tools and languages was still ongoing it was decided that the
SysML4Modelica profile will not be applied. Instead, we tried to include information
needed for the simulation purposes in the SysML model in a way that allows a simple
export into the simulation tool of choice. Most importantly however, we found that
information being specific to any particular physical or mathematical model or simu-
lation environment would clutter the SysML model with information that is of no use
for the system architect. Also, the system architect cannot be expected to be an expert
in physical or mathematical modeling.

Fig. 3. High-level SysML representation for Artis Floorstand

Development Process
The selected development process for this use case contains the phases: requirements,
identification of key hazards, description of the system functionalities and structure,
and finally system simulation to verify the requirements. As part of the system struc-
ture definition, different views (mechanical, electrical, etc.) are created.

For this use case with a higher level of complexity in the system specifications, it
appears more suitable to transfer only a “skeleton” of a simulation model to the

Comparative Study of Model-Based and Multi-domain System Engineering Approaches 25

simulation expert out of the system model. This skeleton should reflect the system’s
physical structure, and be connected to the essential design parameters stored in the
SysML model. The simulation expert extends the skeleton to a complete simulation
model, exploiting his expertise in physical and mathematical modeling, to cope with
the simulation requirements.

Fig. 4. Exemplary workflow “From SysML to simulation” in the use case of Artis Floorstand

Exemplary Workflow
A system architect of this use case performs the following steps (shown in Fig. 4):

1. develop the high-level architecture in SysML,
2. add simulation relevant data and mark them using dedicated stereotypes,
3. (automatically) create a Modelica skeleton model for the respective SysML com-

ponents, as well as their connections.

This relieves the simulation expert from the burden of getting the simulation relevant
information from a text based document or by interviewing the system architect. The
simulation expert then proceeds as follows:

1. open the Modelica skeleton model (he got from the system architect),
2. add missing data to the skeleton, e.g. by editing the connect-equations and connec-

tors,
3. perform the simulation with the essential design parameters being taken from the

SysML model,
4. communicate the simulation results and findings to the system architect.

Given the completed simulation model, the system architect then has the possibility to
study the system performance under variations of the essential design parameters
(trade-off simulations) over which the Modelica model remains coupled to the SysML
model. In particular, this can be done autonomously by the simulation expert.

26 A. Votintseva et al.

3 Implementation Details

This section presents details how the development processes are realized in the differ-
ent use cases. Aspects of system modeling over different development cycles are re-
garded in more details. Benefits from reuse and refinement of models of different
abstraction levels are discussed.

3.1 Use Case eCar

In the eCar use case, during the first stage of system development, a low-fidelity model
of the system interfaces is constructed. In this stage, the models focus on the analysis of
basic information and energy flow. As interfaces are defined in SysML, system simula-
tions are continuously used to evaluate if the interfaces contain all relevant information
and reflect the natural technical variables used by the domain experts to design the
components. As the design process continues, individual component models are itera-
tively enriched by more details. In the late stages of a multi-domain development
process, the system simulation is used for testing of hardware components. SysML in-
formation is used as a central hub for keeping the various component and test revisions
synchronized with the system simulation. In this example, physical design refers to
mechanical and electronic components modeled with a Modelica tool. Software design
addresses software architecture developed with a UML tool.

Fig. 5. Introducing a new function (ACC) into existing architecture

Fig. 5 shows an abstract representation of a part of the logical architecture with a
sample software component for the ACC function intended to be mapped to one of
the electronic control units (ECUs). It also shows some examples for variants of phys-
ical constituents of an electrical car and their ECUs as well as variants of software
algorithms and drive cycles (inputs for ACC sensors) specified via the generalization
relation. To configure specific products, one of the variants for each constituent is

Comparative Study of Model-Based and Multi-domain System Engineering Approaches 27

selected and connections between these specialized blocks are defined within the
SysML internal block diagrams. A variant PMSMMotorAssembly of an electromotor,
BatteryAssembly and Chassis from the physical design, as well as product configura-
tions for 1-motor and 2-motor and all their elements (blocks, connectors etc.) are
marked with SysML4Modelica stereotypes. These elements are translated automati-
cally into Modelica models. The ECU with ACC software is connected to “physical
parts” as an instance of the abstract interface block (ACC) containing the reference to
the output of the functionality evaluation for a specific drive cycle. Fig. 1 (left-hand)
shows the simulation models generated out of the product configurations in SysML.

3.2 Use Case Artis Floorstand

A major insight of the use case Artis Floorstand is that different levels of abstraction
of simulation models should be kept well separated from the system description. If the
system description is refined, also the simulation models have to be refined accor-
dingly. In the approach of this use case, the reuse of physical and mathematical mod-
els depends on the nature of the refinement. If the system architect refines the SysML
model in the sense that block diagrams are added or deleted, reuse of the physical and
mathematical models added to the Modelica skeleton by the simulation expert is
ensured through the use of preserved areas in the generated Modelica code skeleton.

Fig. 6. SysML Internal Block diagram showing mechanical connections

Moreover, physical and mathematical models added by the simulation expert can
be reused for subsequent studies if stored appropriately (e.g. in libraries). Otherwise,
the reuse of simulation models has to be judged by the simulation expert. Especially
in the case when the structure of the SysML model is changed (e.g., a block is
divided into several parts), it is not clear whether the corresponding physical and
mathematical models are still compatible with the new system structure. A major
advantage of the strict separation of system description and physical and mathemati-
cal modeling is that the simulation expert has all the freedom to exploit his expertise,
while consistency with the system description is ensured by automatically generated

28 A. Votintseva et al.

Modelica skeletons. The same goes for the essential design parameters that are in-
cluded in the system description. However, the simulation expert has to use these
parameters manually, which is acceptable as long as the number of such parameters
is small.

The following elements store the simulation relevant data within the SysML model:

• Internal block diagrams were used to model specific views of the system like the
mechanical view (shown in Fig. 6).

• Block properties not only for models of the system parts but also as specific me-
chanical joints (e.g. revolute or prismatic). Also dedicated stereotypes and icons
were used to make such elements distinguishable on diagrams.

• Mechanical connections modeled via associations marked with a dedicated stereo-
type «mechanics» which also included specific color setting to make them easily
visible on diagrams.

• Attributes for block properties added to store additional information (e.g. weight,
size) for system parts.

All these elements and diagrams are of interest to the system architect but are also
relevant for simulation purposes; they are used to generate Modelica skeletons but
could also be easily used as input for any other simulation language.

4 Comparison of the Proposed Approaches

In this section, advantages and shortcomings of the proposed approaches as well as
challenges regarding their suitability in industrial settings are discussed. The follow-
ing benefits are found to be common for the both approaches.

• SysML models allow for consistent structuring of complex technical systems and
an easy-to-understand visualization of the structure and behavior.

• Major improvements are observed in the collaboration between the requirements
engineering and the system engineering departments. This stems from the fact that
requirements may be connected more easily to the components or subsystems.

• The generation of Modelica code (skeletons) out of a SysML model is another
major improvement since the simulation expert is provided with a consistent struc-
ture of the system and no longer has to infer the structure himself.

This makes the collaboration between developers of different phases formal and with
less or no communication errors.

The differences of the approaches are described in the following subsection and
summarized in Table 1.

4.1 Advantages and Disadvantages of both Approaches

The approach used in the use case eCar is seen to have advantages concerning infor-
mation distribution and collocation thanks to a SysML-based overall system descrip-
tion structured into development phases, levels of abstraction/details, and considered

Comparative Study of Model-Based and Multi-domain System Engineering Approaches 29

aspects/analysis. Especially, the possibility of early evaluation of the system design
through the combination of SysML animation and Modelica simulation in a frontload-
ing approach saves development costs and time. However the synchronization be-
tween SysML and Modelica seems to be very challenging, because the current version
of the SysML4Modelica profile allows transforming the complete Modelica models
into SysML. This level of detail in the SysML4Modelica profile is not relevant for the
high-level system architecture. It cannot be assumed that a system architect has the
detailed knowledge of the semantics (and usage) of Modelica specific elements, nor
of physical or mathematical modeling. In the case when the SysML model is intended
to play the role of a container of the complete information, this will make the system
description too complex and difficult to manage.

The reasonable usage of the standardized transformation SysML4Modelica is that
each system architect is free to choose the level of details for the intended transforma-
tion, which he wants and is able to capture in the system description. It is not required
that he uses the complete SysML4Modelica profile. Similarly, in this way the trans-
formation is not restricted to a limited set of predefined interfaces, but can be refined
at any time of the development.

An essential drawback of this approach is that the synchronization interfaces be-
tween SysML and Modelica, while defined with the help of stereotypes in SysML, are
not distinguishable within Modelica anymore. This makes the automation of the feed-
back step (when results of the simulation are fed into the system description) chal-
lenging and still not standardized. The “feedback”-interfaces must be distinguishable
within Modelica models to avoid that the whole Modelica model is mapped to the
SysML model. Another drawback of this approach can be the limitations for the simu-
lation experts when the generated simulation models need to be modified while keep-
ing them compliant with the original model in SysML. Moreover this standardized
profile can only be used only with Modelica-based simulation environment.

To showcase the approach of Artis Floorstand, a prototype model transformation
script was implemented that allowed generation of Modelica skeletons based on spe-
cifically stereotyped SysML elements. This was justified by the request that the sys-
tem descriptions shall not be contaminated with simulation-specific data, owing to the
fact that the roles of system architect and simulation expert are normally assigned to
two different people or departments. A big advantage of the approach is therefore that
the persons working on the architecture or the simulation only need to know their own
language (e.g. SysML or Modelica) and respective tools but not both. The simulation
expert retains the full flexibility in setting up physical and mathematical models for
the system, both of different levels of abstraction and different levels of detail, while
the SysML model is not overloaded with simulation-specific data. In addition, consis-
tency between the structure of the SysML-based system description and the simula-
tion models is ensured through the automatic generation of Modelica code skeletons.
Another collaborative benefit is that a system architect can reuse the simulation mod-
els established by the simulation expert independently from the expert’s support for
trade-off analyses.

One drawback of the concept is the effort needed to identify the necessary informa-
tion that is relevant to connect it to the simulation (most notably Modelica connector

30 A. Votintseva et al.

classes). This task would remain highly project specific, but also strongly tied to the
simulation that should be performed. The concept may therefore only be feasible for
projects or problem classes where the simulation goal is clearly identified as both the
SysML model as well as the transformation rules needs to be tailored to fit this goal.

Table 1 summarizes the comparison of the considered approaches.

Table 1. Assessment of comparison aspects for the two approaches

 Approaches used in
Aspects for comparison eCar Artis Floorstand
Complexity within SysML representation probably high always low
Completeness of generated simulation
models

complete is
possible

only code
frames

Flexibility of changing simulation models low high
Selection of the interfaces to simulation flexible fixed
Flexible selection of simulation tools fixed language possible
Synchronization efforts between formalisms high low
Usability may be complex easy
Area of application universal project specific

4.2 Challenges in Industrial Practice

The both procedures for the use cases described above carries specific challenges
especially in an industrial setting:

• It has to be decided which information should be modeled within the system de-
scription language and the simulation model. A system architect must be able to
identify the goal of the simulation at different development phases and specify si-
mulation relevant attributes in a non intrusive way. Thus, a trade-off between the
following aspects is the most challenging:

─ A system architect should not be challenged with loads of simulation specific
elements within his SysML model.

─ The SysML model needs to contain enough data that allows the generation of a
meaningful simulation model.

• As most multi-domain systems are designed in increasingly large teams, interfaces
are often set up at early design stages, and later can be modified corresponding to
new requirements or other changes in the environment. This implies rework on the
existing models. On the other hand the cooperation between different stakeholders
must be as easy as possible to provide a fast reply to the external changes.

• The multi-domain design community is more and more following iterative design
processes with a need of iteration results (e.g. from the component level) to be fed
back to the system description. Therefore, the model transformation tools need to
have two-way capabilities also handling conflicts during synchronization.

Comparative Study of Model-Based and Multi-domain System Engineering Approaches 31

5 Conclusion and Outlook

In this paper two multi-domain systems engineering approaches, integrating model-
based system description and simulation, have been compared. Each of the two ap-
proaches shows advantages that justify its application in the specific project setting
but also reveals some weaknesses that have to be minimized. As a result of this case
study we see the following focus for the future work. The challenges of synchroniza-
tion between SysML and Modelica need to be explored in more detail. The possibility
for the automatic updates of the system models with the results of the simulation
should be investigated. And we plan to evaluate the usage of the SysML4Modelica
profile in other use cases with the aim to identify the extent to which simulation de-
tails can be effectively managed within the SysML model.

References

1. International Council on Systems Engineering (INCOSE): Systems Engineering Vision
2020, Document No. INCOSE-TP-2004-004-02, Version 2.03 (2007),

 http://www.incose.org/ProductsPubs/pdf/
SEVision2020_20071003_v2_03.pdf

2. Object Management Group: OMG Systems Modeling Language (OMG SysML), V.1.2,
OMG formal specification formal/2010-06-02 (June 2010),

 http://www.sysml.org/docs/specs/OMGSysML-v1.2-10-06-02.pdf
3. Object Management Group: Unified Modeling Language: Superstructure, V.2.3, for-

mal/2010-05-05 (2010), http://www.omg.org/spec/UML/2.3/
4. Fritzson, P.A.: Principles of object-oriented modeling and simulation with Modelica 2.1.

John Wiley & Sons, Inc. (2004)
5. Schamai, W., Fritzson, P.: Paredis, C., Pop, P.: Towards Unified System Modeling and Si-

mulation with ModelicaML: Modeling of Executable Behavior Using Graphical Notations.
In: Proc. of the 7th Modelica Conference, Como, Italy, September 20-22 (2009)

6. Paredis, C., et al.: An Overview of the SysML-Modelica Transformation Specification. In:
Proc. of the 20th Anniversary INCOSE Int. Symp., Chicago, IL, July 12-15 (2010)

7. Thramboulidis, K.: Model Integrated Mechatronics – Towards a new paradigm in the de-
velopment of manufacturing systems. IEEE Transactions on Industrial Informatics 1(1)
(2005)

8. Enge-Rosenblatt, O., et al.: Functional Digital Mock-Up and the Functional Mock-up Inter-
face – Two Complementary Approaches for a Comprehensive Investigation of Heterogene-
ous Systems. In: Proc. of the 8th Int. Modelica Conference (2011)

9. Votintseva, A., Witschel, P., Goedecke, A.: Analysis of a Complex System for Electrical
Mobility Using a Model-Based Engineering Approach Focusing on Simulation. Procedia
Computer Science 6, 57–62 (2011)

Strengthening SAT-Based Validation

of UML/OCL Models
by Representing Collections as Relations

Mirco Kuhlmann and Martin Gogolla

University of Bremen, Computer Science Department
Database Systems Group, D-28334 Bremen
{mk,gogolla}@informatik.uni-bremen.de

Abstract. Collections, i. e., sets, bags, ordered sets and sequences, play
a central role in UML and OCL models. Essential OCL operations like
role navigation, object selection by stating properties and the first order
logic universal and existential quantifiers base upon or result in collec-
tions. In this paper, we show a uniform representation of flat and nested,
but typed OCL collections as well as strings in form of flat, untyped
relations, i. e., sets of tuples, respecting the OCL particularities for nest-
ing, undefinedness and emptiness. Transforming collections and strings
into relations is particularly needed in the context of automatic model
validation on the basis of a UML and OCL model transformation into
relational logic.

1 Introduction

Models are a central means to master complex systems. Thus, for developing
systems, building precise models is a main concern. Naturally, the examination
of the validity of complex systems must be supported via tracing and checking
model properties.

We employ the Unified Modeling Language (UML) and its accompanying tex-
tual constraint and query language OCL (Object Constraint Language) for the
description of models. For automatically analyzing and validating models, we
utilize relational logic. Relational logic is efficiently implemented in Alloy [11]
and its interface Kodkod [19] which transforms relational models into boolean
satisfiability (SAT) problems. As a consequence, our task consists in transform-
ing our source languages UML and OCL as well as the considered model prop-
erties into structures and formulas of the target language relational logic. This
way, we enable SAT-based validation of UML/OCL models. We have started to
implement the transformation from UML/OCL to relational logic in a so-called
model validator [13] which has been integrated into our UML-based Specification
Environment (USE) [8].

In this paper, we focus on a vital aspect of UML/OCL models, namely the
handling of OCL collection kinds (set, bag, ordered set, and sequence)1 and

1 One collection kind (e. g., set) can be manifested in different concrete collection types
(e. g., Set(Integer) and Set(Bag(String))).

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 32–48, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Strengthening SAT-Based Validation of UML/OCL Models 33

strings. OCL collections and collection operations play a central role in the
language. They are crucial for building precise UML/OCL models which can
be successfully analyzed and checked. For instance, the evaluation of existen-
tially and universally quantified formulas is based upon collections of values
like in Person.allInstances->exists(p|p.age<18). Another naturally used
operation is role navigation which results in collection values, e. g., when the
allowed states of a structural model given in form of a class diagram have to
be restricted and the restriction involves two classes and an association nav-
igation path between the classes, the association path will be evaluated in
OCL through a collection expression. The following example ensures a min-
imum salary by collecting the employees of all companies using navigation:
Company.allInstances.employee->forAll(e| e.salary>3000).

The example model shown as a UML class diagram in Fig. 1 emphasizes the
use of strings and different types of collections. A university is located in a spe-
cific state encoded by a two character string, e. g., ‘DK’ or ‘US’. A person may
have several postal and e-mail addresses andmay be enrolled in a university.While
postal addresses are always unordered (Set(String)), the e-mail addresses of a per-
son can be prioritized by using an ordered set of addresses, or be retained without
any prioritization by using a set. The abstract type Collection(String) allows for
determining the concrete type (OrderedSet(String) or Set(String)) at runtime.

Fig. 1. Example UML Class Diagram with String and Collection Type Attributes

The following example OCL invariant further constrains the model. It requires
each person who is a student at a university to have a postal address in the same
state the university is located. For this purpose, it checks whether the string
representing the university’s location also occurs at any position in at least one
postal address string of the student.

context Person inv AccessibleStudents:

self.university.isDefined implies

self.addresses->exists(a|

Set{1..a.size}->exists(i|a.substring(i,i+1)=self.university.state))

However, when comparing UML and OCL, our source languages for describing
models, and relational logic, our direct target language utilized for automatic
model validation, we observe an impedance mismatch: (a) OCL offers four col-
lection kinds whereas relational logic and its implementation Alloy directly sup-
port only relations, i. e., sets of flat tuples; “other structures (such as lists and

34 M. Kuhlmann and M. Gogolla

sequences) are not built into Alloy the way sets and relations are” (see p. 158
in [11]) (b) OCL is a typed language whereas plain relational logic is untyped.
This means that the OCL type system has to be represented in relational logic
and the missing collection kinds have to be encoded as sets. (c) The lack of
“higher-order relations” implies that “collections of collections” which often oc-
cur in UML/OCL models are not directly supported in Alloy [1]. Consequently,
the challenge is to respect all involved OCL particularities in the translation
which means that nested collections as well as OCL type rules, the undefined
value, and empty collections deserve special attention.

We present a uniform transformation which respects all language inherent dif-
ferences between UML/OCL collections and flat relations of relational logic. Fur-
thermore, we enable the representation of structured string values in relational
logic. A comprehensive representation of UML/OCL collections and strings in
relational logic is the premise for the translation of collection and string oper-
ations and, hence, a comprehensive approach to automatic UML/OCL model
validation utilizing Kodkod and SAT solving. However, there is currently no
other SAT-based approach which supports models like the example depicted in
Fig. 1 or the related OCL constraint.

The rest of this paper is structured as follows. Section 2 associates the content of
this paper with the SAT-based model validation context. The central Sect. 3 will
show how OCL collections and strings are represented as relations. First, we in-
troduce the approach considering exemplary transformations. Then, we illustrate
the underlying transformation algorithms. After a discussion of performance im-
plications in Sect. 4 and related work Sect. 5, we conclude with Sect. 6.

2 Model Validation via SAT Solving: Context

Our validation approach bases upon checking model properties by inspecting the
properties of model instances (snapshots), e. g., the existence or non-existence of
specific snapshots allows conclusions about the model itself. As shown in Fig. 2,
the USE model validator allows developers to automatically analyze properties
of their UML/OCL models by translating them into relational structures, i. e.,
bounded relations and relational formulas, which can be handled by the model
finder Kodkod. In addition to a model, the properties under consideration, usu-
ally given in form of OCL expressions, as well as user-configurations with respect
to the search space are transformed and handed over to Kodkod.

Kodkod in turn employs SAT solvers to find a solution, i. e., proper instanti-
ations of specified relations, fulfilling the given formulas. Found SAT instances
are therefore translated back into instances of the specified relations. In the end,
the model validator transforms the relational instances into instances of the
UML/OCL model and visually presents the found solution in form of an object
diagram to the developer.

Since UML/OCL collections and strings values play a central role in precisely
specified models, corresponding validation approaches must support the four
collection kinds and their peculiarities as well as strings in order to provide a

Strengthening SAT-Based Validation of UML/OCL Models 35

Fig. 2. Transformation process involving the USE model validator

comprehensive validation platform. The transformation algorithm discussed in
this paper has been implemented in the model validator enabling the definition
of meaningful OCL constraints on the one hand, and user-defined properties
which are to be inspected on the other hand.

3 Transforming Collections and Strings into Relations

Relational logic describes formulas whose evaluation is based on flat relations
with different arities, i. e., sets of tuples with atomic components, since relational
logic forbids nested relations. Beside boolean and integer operations, relational
logic naturally supports set operations like union and set comprehension. A
central operation is the relational join for accessing specific components (i. e.,
columns) of tuples and for connecting tuples of different relations.

Relations generally have the same properties as OCL sets which are unordered
and do not allow duplicate elements.2 Thus, there is a straightforward way to
translating non-nested sets into unary relations, e. g., Set{2,1,3} can be repre-
sented by the relation [[3],[1],[2]]. On the other hand, the following char-
acteristics of OCL collections must be respected:

– Bags and sequences require the support of duplicate elements.
– Ordered sets and sequences require the support of ordered elements.
– All collection kinds require the support of nested collections.

A universally applicable transformation must cover all of these properties.

3.1 The Basic Idea

In this subsection we consider the first two named properties (support of dupli-
cate and ordered elements), nested collections, and strings as well as the handling
of undefined and empty values in greater detail. The comparability of collection
and string values must be preserved by their relational representation. This es-
sential aspect is discussed at the end of this subsection.

2 Henceforth, the term ‘set’ refers to an OCL set.

36 M. Kuhlmann and M. Gogolla

Fig. 3. Distinction of OCL collections and the corresponding translation into relations

Handling of Flat Collections. In Fig. 3 we illustrate the properties of the
four OCL collection kinds based on three concrete literals, in each case. The OCL
literals – depicted in white boxes – involve duplicate elements and elements in
a particular order. Two literals are equal (EQ), i. e., they represent the same
value, or are not equal (NE). For instance, while Bag{7,8} equals Bag{8,7}, the
collection value OrderedSet{7,8} does not equal OrderedSet{8,7}.

Collection literals describing the same value should naturally yield the same
(identifying) relational representation which are shown in grey boxes and by grey
connecting lines. The translation assigns an index 1 ≤ i ≤ n to each element
of a collection with n elements, determining an explicit element position. See,
for example, the relational representation of the value Sequence{7,8,7}. The
corresponding relational representation relates the index 1 to the first element
(7), index 2 to the second element (8) and index 3 to the last element (7).

The depicted, grey relations reveal four distinctive features of the transforma-
tion which do not directly result from the collection properties, but from explicit
design decisions:

– The elements of a set or bag are indexed in the respective relational repre-
sentation, although sets and bags are intrinsically unordered and sets do not
include duplicate elements.

– m duplicates of element e in a bag occur m times in the respective relational
representation.3

– The elements of sets and bags are sorted in the resulting relations based
on the natural order of integer values. For example, considering the literals
Set{7,8} and Set{8,7}, the integer value 7 always precedes the value 8 in
the relational representation of both sets.

3 An alternative would be tuples counting element occurrences (e. g., [e,m]).

Strengthening SAT-Based Validation of UML/OCL Models 37

– The special index 0 indicates a typing tuple that determines the collection
kind a relation represents (set, bag, ord, seq).

The first two features (an order for sets resp. bags and retention of explicit
duplicates) directly follow from our intention to define a uniform transformation
with no exceptional cases and resulting case distinctions, clearly simplifying
(a) the representation of nested collections, and (b) the translation of OCL
collection operations into relational logic. The last two aspects (sorting elements
and explicit typing) allow us to compare OCL collection values in relational logic
through an explicit sorting of their elements, as we will discuss at the end of this
subsection.

Handling of Nested Collections and Strings. In the case of nested collec-
tions, the elements of a collection are in turn collections. In order to encapsulate
the individual collections, i. e., to determine which value belongs to which collec-
tion, there must be an additional indicator. Following our uniform translation,
a natural way to representing collection type elements is the use of a new index
column, as shown in the following example:

Set{7} --> [[0,set], the relation represents a set

[1,7]] the first element is 7

Set{8,9} --> [[0,set], the relation represents a set

[1,8], the first element is 8

[2,9]] the second element is 9

Sequence{Set{7},

Set{8,9}} --> [[0,seq,seq], the relation represents a sequence4

[1,0,set], the first element is a set

[1,1,7], the first element of the set is 7

[2,0,set], the second element is a set

[2,1,8], the first element of the set is 8

[2,2,9]] the second element of the set is 9

The support of OCL collections also allows for representing string values. While
strings may be seen as atomic values (e. g., ’Ada’ --> [[Ada]]), it is often
necessary to consider a string as a value with an inner structure. Thus, because
there is a need in OCL for manipulating and querying strings, they are treated
like sequences of characters and are identified by a respective string typing tuple
(e. g., ’Ada’ --> [[0,str],[1,A],[2,d],[3,a]]). A set of strings can thus be
seen as sequences of values nested in a set:

Set{’Ada’,’Bob’} --> [[0,set,set],

[1,0,str], [1,1,A], [1,2,d], [1,3,a],

[2,0,str], [2,1,B], [2,2,o], [2,3,b]]

4 Since all tuples of a relation must have the same arity, we use the collection kind
indicator (e. g., seq) to fill typing tuples until they yield the required number of
components. Multiple indicators in one typing tuple, thus, have no special meaning.

38 M. Kuhlmann and M. Gogolla

In OCL, sets, bags, sequences and ordered sets are specializations of Collection,
and all basic types are subtypes of OclAny. Thus, for example, we can create
collections including elements of type Collection(OclAny):

Set{Sequence{5,6,5},Set{’Ada’,7,’Bob’,8}} =

Set{Set{7,8,’Ada’,’Bob’},Sequence{5,6,5}} -->

[[0,set,set,set],

[1,0,set,set],

[1,1,1,7],

[1,2,1,8],

[1,3,0,str],[1,3,1,A],[1,3,2,d],[1,3,3,a],

[1,4,0,str],[1,4,1,B],[1,4,2,o],[1,4,3,b],

[2,0,seq,seq],

[2,1,1,5],

[2,2,1,6],

[2,3,1,5]]

If string and non-string basic types are mixed, the non-string basic type values
are brought into the complex string representation by handling them as if they
were strings of length one with an absent typing tuple, e. g., the integer value 7
is represented as [1,7] instead of [7].

The translation result of the previous example is a relation that represents a
set including collections of sequences. Each additional nesting level adds a further
index column to the relation. The fourth column determines the character or
integer value. The third column determines the position of the characters in a
string. The second column determines the position of a string within a collection.
The first column determines the position of the collection in the outer set.

For instance, the tuple [1,3,2,d] determines ’d’ to be the second character
of the third element (’Ada’) in the first element (Set{7,8,’Ada’,’Bob’}) of
Set{Set{7,8,’Ada’,’Bob’},Sequence{5,6,5}}.

Undefined and Empty Collections. Empty collections are naturally repre-
sented by the absence of further tuples besides the typing tuple. Undefined (un)
collections on the other hand yield a characteristic relational representation. This
representation allows us to identify at which nesting level an undefined value
occurs (c. f. the three different levels in the following example). Furthermore,
undefined values are not accompanied by typing tuples, since the information
which concrete type an undefined value represents is irrelevant.

Set{Undefined, Set{}, Set{Undefined, Set{}, Set{Undefined}}} -->

[[0,set,set,set], the relation represents a set
[1,un,un,un], the first element is an undefined collection
[2,0,set,set], the second element is an empty set
[3,0,set,set], the third element is a set
[3,1,un,un], its first element is an undefined collection
[3,2,0,set], its second element is an empty set
[3,3,0,set], its third element is a set
[3,3,1,un]] which includes an undefined value

Strengthening SAT-Based Validation of UML/OCL Models 39

Making Ordered Relations Comparable. In Fig. 3 we depicted the equal-
ity and inequality of specific collection literals. Since sets and bags are intrinsi-
cally unordered, we obtain the properties: Set{7,8}=Set{8,7} and Bag{7,8}=

Bag{8,7}. Accordingly, an equality check regarding the relational representation
of both sets and both bags, respectively, must evaluate to true. We can achieve a
general valid comparability at the relational level (a) by sorting the elements of
the relational representations of sets and bags on demand (e. g., in the case of an
equality check, or the casting operation Set::asSequence()), or (b) by sorting
the elements already during the creation process. We applied the latter strategy
which results in a unique representation of equal collection values through direct
sorting:

Set{7,8} --> [[0,set],[1,7],[2,8]] <-- Set{8,7} and
Bag{7,8} --> [[0,bag],[1,7],[2,8]] <-- Bag{8,7}

SAT-based validation implies bounded search spaces, i. e., at the UML level,
a limited set of covered model instances. Hence, the set of participating val-
ues (boolean, integer, enumeration, character, or object type)5 is finite. This
allows us to create a total order on all available values and to define a sort-
ing algorithm with respect to the precedence of these values. Within the pre-
vious example of nested collections with mixed basic type values, the literals
Set{7,8,’Ada’,’Bob’} and Set{’Ada’,7,’Bob’,8} yield the same relational
representation after sorting the elements (integer precedes string). The example
shows three further properties of the sorting algorithm:

– The sorting of sets and bags has a recursive nature, i. e., sorting is applied
at each nesting level. Before an outer set or bag can be sorted, its elements
must have been sorted.

– Sequences, ordered sets and strings are never sorted, since the order of their
elements (or characters, respectively) is significant (e. g., Sequence{5,6,5}<>
Sequence{5,5,6}). If they, however, include set or bag valued elements,
these sets and bags have to be sorted (e. g., Sequence{Set{8,7},Set{2,1}}=
Sequence{Set{7,8},Set{1,2}}).

– Beside basic values, also strings and collections obtain an explicit precedence,
based on the collection kind, number of elements (or characters, respec-
tively), and precedence of their elements (or characters), e. g., ’Bo’ < ’Ada’,
’Ada’ < ’Bob’, Set{7} < Bag{7}, Set{7} < Set{1,2}, and Set{1,2} <

Set{7,8}.

The need for typing tuples directly follows from the need for comparability.
Since the values Bag{7,8} --> [[0,bag],[1,7],[2,8]] and Set{7,8} -->

[[0,set],[1,7],[2,8]] are not equal, a relational representation without typ-
ing tuples would lead to an invalid conclusion for equality:

Set{7,8} --> [[1,7],[2,8]] <-- Bag{7,8} �

5 The character type includes the alphabetic characters which are needed to create
string values. The basic predefined type Real is currently not supported.

40 M. Kuhlmann and M. Gogolla

3.2 Realization of the Transformation Algorithms

In this section, we explain the details of translating UML/OCL collections into
relations by considering the relevant transformation algorithms. Since the al-
gorithm for constructing strings at the relational level is a special case of the
creation of flat sequences, we focus on the general handling of collections.

First, we consider the core algorithm describing the creation of collection
values. Then, we go into details of sorting collections which is needed in the
context of sets and bags.

The Collection Creation Algorithm. The algorithm for creating UML/OCL
collections in their relational representation includes two main aspects: (a) Each
given element which should be included into the collection and is already avail-
able in a relational representation is incrementally indexed and added to the re-
sulting relation. Duplicate elements are discarded if the resulting relation should
represent a set or ordered set. (b) Relations representing sets or bags are sorted
in the end. In this case, the following sorting algorithms become relevant. For
details see Algorithm 1 in the appendix.

The Collection Sorting Algorithms. The central sorting algorithm includes
the main activities for sorting relations representing sets or bags. It takes all
possible pairs of elements existing in the given relation and determines which el-
ement precedes the other. The number of predecessors an element possesses then
determines its new position in the sorted relation. The element without prede-
cessors obtains the first position (index 1), and an element with x predecessors
becomes the x+ 1th element in the sorted relation. For details see Algorithm 2
in the appendix.

The precedence of two complex, collection-valued elements is determined by
a further algorithm which respects the following precedence rules: undefined
collections precede sets, sets precede sequences, sequences precede bags, bags
precede ordered sets; in the case of collections of the same kind, the number of
elements within these collections becomes relevant; if the numbers are identical,
the precedence of the elements within the two considered collections must be
recursively determined. For details see Algorithm 3 in the appendix.

The recursive calculation of element precedences may end at different levels
of nested values. For example, consider the following pairs of collections:

A: Set{Set{Set{7}}}, Bag{Set{Set{7}}}

B: Set{Set{Set{7}}}, Set{Set{Bag{7}}}

C: Set{Set{Set{7}}}, Set{Set{Set{8}}}

In each case the left side precedes the right side. While in pair A the precedence
can be directly determined (sets precede bags), pair B demands a nested (recur-
sive) comparison until the elements Set{7} and Bag{7} at the second nesting
level are reached. In the case of pair C, the final level of recursion is reached,
i. e., the level at which only simple values occur (7 and 8).

Strengthening SAT-Based Validation of UML/OCL Models 41

As mentioned before, each validation task given to the USE model validator
describes a finite user-defined universe of simple values (i. e., boolean, integer,
enumeration, character, or object type). As a consequence, the precedence of
these simple values can always be specified via a total order relation.6 Given
such a total order relation and two simple values, the precedence of both values
can directly be calculated. For details see Algorithm 4 in the appendix.

4 Discussion

A bounded search space of the model validator (resp. Kodkod) requires bounded
relations and thus bounded collection representations. Kodkod considers the set
of all available (user-defined) simple values as a universe of atoms. Relations
are bounded to a set of possible tuples by determining a set of possible atoms
(a domain) for each column of the relation tuples. For instance, a relation that
represents the type Set(Set(Boolean)) yields tuples of the form:

[index 1, index 2, value], with

index1 ∈ Domain1 = {0, 1, ..., x, un}, where x is a user defined maximum number,

index2 ∈ Domain2 = {0, 1, ..., x, un, set}, and
value ∈ Domain3 = {true, false, un, set}.
There are |Domain1| ∗ |Domain2| ∗ |Domain3| possible tuples which can be in-
cluded by an instance of the considered relation. As we have explained before,
each nesting level of collections adds one additional column to the respective re-
lation, increasing its arity by one. A nesting depth of n implies a relation of arity
n+2 (or n+3 if strings are involved). Consequently, each additional nesting level
considerably increases the search space and correspondingly reduces the SAT
solving performance. Furthermore, Kodkod limits the maximum arity of involved
relations und thus the maximum nesting depth: |universe|max arity < 231 − 1.
Future work will comprise the optimization of the search space by bounding the
possible tuples to OCL collection specific patterns.

There is also potential for optimization with respect our representation of
OCL collections as flat relations. However, our aim is to present a universally
defined and applicable approach in this paper. A concrete implementation can
naturally realize several optimizations like discarding typing tuples, if the collec-
tion types can be statically determined, i. e., Collection is not involved, or using
a simple representation of OCL sets and strings in form of unary relations, if
only non-nested collections and no complex string values are needed. That is,
while our approach supports all OCL collections structures, it can be thinned
out as required.

In order to inspect the performance implications in the context of a complete
implementation of our approach, let us consider the class diagram shown in Fig. 4

6 In the case of values which do no yield a natural order, the model validator explicitly
induces one, e. g., the order of objects is determined by the order the corresponding
object identifiers are declared within the model validator, independent of the classes
they instantiate.

42 M. Kuhlmann and M. Gogolla

Fig. 4. UML Class with a Set-valued Attribute

which models persons with a set of lucky numbers, as well as the following OCL
invariant which demands that people have unique sets of lucky numbers. Please
note that in our approach for transforming UML and OCL models into rela-
tional models, classes are translated into unary relations, holding atoms which
represent object identifiers. Attributes are translated into relations connecting
object identifiers with attribute values, plus relational constraints ensuring at-
tribute values of the specified type. In the case of collection-valued attributes, an
object is related to each individual tuple of the corresponding collection value.
An example instance of the attribute relation Person_luckyNumbers is shown
at the end of this section.

context p:Person

inv uniqueLuckyNumbersSets:

Person.allInstances->forAll(p1,p2|

p1.luckyNumbers=p2.luckyNumbers implies p1=p2)

--> (sketch of a translation into relational logic)

(all p1:Person, p2:Person |

p1.Person_luckyNumbers=p2.Person_luckyNumbers => p1=p2)

First, we use the model validator to automatically translate this UML and OCL
model into a relational model, and initiate a search for valid instances in the
context of 4, 8, and 12 person objects. Then, we repeat this procedure for nested
attribute types. Table 1 reveals the corresponding search times. The second
column yields the results for a simple set representation using unary relations,
e. g., Set{7,8} --> [[7],[8]] instead of the complex representation discussed
in this paper, e. g., Set{7,8} --> [[0,set],[1,7],[2,8]].

Table 1. Comparison of SAT Solving Performance regarding different Nesting Levels

#Persons Set(Int) (simple) Set(Int) Set(Set(Int)) Set(Set(Set(Int)))

4 62ms 437ms 2200ms 14955ms

8 109ms 764ms 5132ms 62540ms

12 140ms 1326ms 16497ms 140522ms

In the context of type Set(Set(Integer)) and 4 required person objects, we, for
example, obtain the following class and attribute relation instances as a result
which are automatically transformed by the model validator into the object
diagram shown in Fig. 5.

Strengthening SAT-Based Validation of UML/OCL Models 43

Fig. 5. Solution in the context of 4 Objects and Type Set(Set(Integer))

Person=[[p1],[p2],[p3],[p4]]

Person_luckyNumbers=[

[p1,0,set,set,set],[p1,1,un,un,un],

[p2,un,un,un,un],

[p3,0,set,set,set],

[p4,0,set,set,set],

[p4,1,0,set,set],

[p4,2,0,set,set],[p4,2,1,un,un],[p4,2,2,1,1],[p4,2,3,1,2]]

5 Related Work

Our paper has connections to many related works. The collection kinds set,
bag and list (sequence) are considered in the context of functional programming
in [10,23] whereas our approach is designed for object-oriented design and mod-
eling. The Object Query Language OQL [7] uses three (set, bag, list) of the
four OCL collections in the same way as they are employed in OCL but without
defining a formal semantics. [16] makes a proposal to complete the OCL collec-
tions in a lattice-like style leading to union and intersection types. The work
concentrates on the OCL collection kind set.

General type and container constructors similar to sets or bags are considered
for database design using ER modeling in [9]. [4] represents the OCL standard
collections with an extended OCL metamodel allowing for practical tool support
with the aim of code generation. [6] studies fundamental properties of OCL col-
lections in order to establish a new generalization hierarchy and focusses of the
relationship between sets and ordered sets. [22] proposes a unified description
of OCL collection types and OCL basic data types. [14] translates OCL into
Maude and represents OCL collections by introducing new algebraic sorts with-
out considering the complete OCL type system. A mapping of non-nested OCL
collections and strings into bit-vector logic is done in [17]. In [5] the authors
describe a staged encoding of OCL strings that performs reasoning on string
equalities and string lengths before fully instantiating the string.

Our approach is based on relational logic which is implemented in the powerful
Alloy system described in [11]. Alloy supports non-nested sets and sequences
modeled as functions mapping integer (indices) to the sequence elements. The

44 M. Kuhlmann and M. Gogolla

UML2Alloy approach presented in [1] tackles the translation of UML and OCL
concepts into Alloy. The authors sketch the possibility to describe sequences,
bags and ordered sets via Alloy structures, but do not discuss further details
like the preservation of collection comparability. While the representation of
nested collections in Alloy is not possible, because of the lack of higher-order
relations and restrictions with respect to available Alloy structures, the Alloy
interface Kodkod [19] which we utilize in our approach allows users to handle
plain relations with arbitrary contents.

Alloy and Kodkod are used for many purposes. [3] translates conceptual mod-
els described in OntoUML for validation purposes into Alloy. In [12] model-
ing languages and their formal semantics, in [21] enterprise architecture models
based on ontologies are specified and analyzed with Alloy. Kodkod has been uti-
lized for executing declarative specifications in case of runtime exceptions in Java
programs [15], reasoning about memory models [20], or generating counterexam-
ples for Isabelle/HOL a proof assistant for higher-order logic (Nitpick) [2]. [18]
use Kodkod for checking the consistency of models described with basic UML
concepts.

6 Conclusion

We have discussed a uniform representation of strings and nested, typed collec-
tions in form of flat, untyped sets respecting the OCL particularities for nesting,
undefinedness and emptiness. Collections are a central modeling feature in UML
and OCL for model inspection and model validation and verification. We have
successfully implemented this approach in our model validator and applied it in
several middle-sized examples.

As future work, we want to check the approach with larger case studies. In
particular, we have to check whether efficiency improvement may be made by
factoring out type information from the collection instances. A small benchmark
for checking collection and string values could be developed. With respect to
OCL, one might propose an OCL simplification based on the experience with
the difficult handling of undefinedness in order to shorten the gap between the
source and target languages.

Furthermore, the concepts for sorting collections at the relational level which
we have discussed in this paper can be reused for standardizing correspond-
ing OCL sort operations. Such operations could deterministically lead from un-
ordered collections to sorted collections, e. g.,

Set{1,2,3}->sort = OrderedSet{1,2,3} = Set{2,3,1}->sort,
Bag{1,2,2,3}->sort = Sequence{1,2,2,3} = Bag{2,1,2,3}->sort, and
Set{OrderedSet{2,1}, OrderedSet{1,2}}->sort =

OrderedSet{OrderedSet{1,2}, OrderedSet{2,1}}.

However, also ordered collections (which are not necessarily sorted) need some-
times to be sorted, so that we propose using this sort operation for all four
collection kinds.

Strengthening SAT-Based Validation of UML/OCL Models 45

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to Alloy. SoSyM 9(1), 69–86 (2010)

2. Blanchette, J.C., Nipkow, T.: Nitpick: A Counterexample Generator for Higher-
Order Logic Based on a Relational Model Finder. In: Kaufmann, M., Paulson, L.C.
(eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)

3. Braga, B.F.B., Almeida, J.P.A., Guizzardi, G., Benevides, A.B.: Transforming On-
toUML into Alloy: towards conceptual model validation using a lightweight formal
method. ISSE 6(1-2), 55–63 (2010)

4. Bräuer, M., Demuth, B.: Model-Level Integration of the OCL Standard Library
Using a Pivot Model with Generics Support. ECEASST 9 (2008)

5. Büttner, F., Cabot, J.: Lightweight String Reasoning for OCL. In: Vallecillo, A., et
al. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 240–254. Springer, Heidelberg (2012)

6. Büttner, F., Gogolla, M., Hamann, L., Kuhlmann, M., Lindow, A.: On Better
Understanding OCL Collections or An OCL Ordered Set Is Not an OCL Set. In:
Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 276–290. Springer, Heidelberg
(2010)

7. Cattell, R.G.G., Barry, D.K.: The Object Data Standard: ODMG 3.0. Morgan
Kaufmann (2000)

8. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69, 27–34
(2007)

9. Hartmann, S., Link, S.: Collection Type Constructors in Entity-Relationship Mod-
eling. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007.
LNCS, vol. 4801, pp. 307–322. Springer, Heidelberg (2007)

10. Hoogendijk, P.F., Backhouse, R.C.: Relational Programming Laws in the Tree,
List, Bag, Set Hierarchy. Sci. Comput. Program. 22(1-2), 67–105 (1994)

11. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press
(2006)

12. Kelsen, P., Ma, Q.: A Lightweight Approach for Defining the Formal Semantics of
a Modeling Language. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 690–704. Springer, Heidelberg (2008)

13. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive Validation of OCL Models
by Integrating SAT Solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS
2011. LNCS, vol. 6705, pp. 290–306. Springer, Heidelberg (2011)

14. Roldan, M., Duran, F.: Dynamic Validation of OCL Constraints with mOdCL.
ECEASST 44 (2011)

15. Samimi, H., Aung, E.D., Millstein, T.: Falling Back on Executable Specifications.
In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 552–576. Springer, Hei-
delberg (2010)

16. Schürr, A.: A New Type Checking Approach for OCL Version 2.0? In: Clark, A.,
Warmer, J. (eds.) Object Modeling with the OCL. LNCS, vol. 2263, pp. 21–41.
Springer, Heidelberg (2002)

17. Soeken, M., Wille, R., Drechsler, R.: Encoding OCL Data Types for SAT-Based
Verification of UML/OCL Models. In: Gogolla, M., Wolff, B. (eds.) TAP 2011.
LNCS, vol. 6706, pp. 152–170. Springer, Heidelberg (2011)

18. Van Der Straeten, R., Pinna Puissant, J., Mens, T.: Assessing the Kodkod Model
Finder for Resolving Model Inconsistencies. In: France, R.B., Kuester, J.M., Bor-
dbar, B., Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 69–84. Springer,
Heidelberg (2011)

46 M. Kuhlmann and M. Gogolla

19. Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

20. Torlak, E., Vaziri, M., Dolby, J.: MemSAT: checking axiomatic specifications of
memory models. SIGPLAN Not. 45, 341–350 (2010),
http://doi.acm.org/10.1145/1809028.1806635

21. Wegmann, A., Le, L.-S., Hussami, L., Beyer, D.: A Tool for Verified Design using
Alloy for Specification and CrocoPat for Verification. In: Jackson, D., Zave, P.
(eds.) Proc. First Alloy Workshop (2006)

22. Willink, E.D.: Modeling the OCL Standard Library. ECEASST 44 (2011)
23. Wong, L.: Polymorphic Queries Across Sets, Bags, and Lists. SIGPLAN No-

tices 30(4), 39–44 (1995)

http://doi.acm.org/10.1145/1809028.1806635

Strengthening SAT-Based Validation of UML/OCL Models 47

A Collection Creation and Sorting Algorithms

The presented algorithms abstract from complex language characteristics of re-
lational logic and are designed to clarify the overall activities for creating and
sorting UML/OCL collections at the relational level.

collectionCreation(colKind, . . . elements)
input: the required collection kind (colKind ∈ {set,bag,ord,seq}),

a list of elements already available in relational representation
output: a collection of kind colKind including the properly ordered elements
newCol ← []
index ← 1
for each e in elements do
if colKind is bag or sequence or e does not already exist in newCol then
indexed e ← add index as first component to each tuple of e
newCol ← newCol ∪ indexed e
index ← index + 1

end
end
newCol ← newCol ∪ typing tuple
if newCol is set or bag then
return complexSort(newCol)

else
return newCol

end

Algorithm 1: Creating relations for representing UML/OCL collections

complexSort(col)
input: an unsorted relation col representing a set or bag
output: a relation with sorted elements
predecessorMap ← empty map
for each e1, e2 in col do
if complexPredecessor(e1,e2) = e1
or (complexPredecessor(e1 ,e2) = Undefined

and original e1 position < original e2 position) then
predecessorMap.add(e1,e2)

end
end
positionMap ← empty map
for each e in col do
positionMap.add(e, |predecessorMap(e)|+1)
modified e ← e with topmost index replaced by positionMap(e)
col ← col with e replaced by modified e

end
return col

Algorithm 2: Sorting relations representing sets or bags

48 M. Kuhlmann and M. Gogolla

complexPredecessor(e1 , e2)
input: two complex elements
output: the preceding element
if e1 is a singleton, i. e., a relation including just a simple value then
return simplePredecessor(e1 , e2)

else
if e1 is undefined and e2 is undefined then return Undefined end
if e1 is undefined and e2 is not undefined then return e1 end
if e1 is not undefined and e2 is undefined then return e2 end

if e1 is a set and e2 is not a set then return e1 end
if e1 is not a set and e2 is a set then return e2 end

if e1 is a sequence and e2 is not a sequence then return e1 end
if e1 is not a sequence and e2 is a sequence then return e2 end

if e1 is a bag and e2 is not a bag then return e1 end
if e1 is not a bag and e2 is a bag then return e2 end

if e1 has less elements than e2 then return e1 end
if e2 has less elements than e1 then return e2 end
relevantElement ← null
for each position i in e1 and e2 do
e1 elem ← element at position i of e1
e2 elem ← element at position i of e2
if complexPredecessor(e1 elem, e2 elem) = Undefined then
continue

else
if complexPredecessor(e1 elem, e2 elem) = e1 elem then
return e1

else
return e2

end end end end
return Undefined

Algorithm 3: Determining the precedence of elements

simplePredecessor(TO, e1, e2)
input: a binary relation TO specifying a total order for all simple values

so that if [x,y] ∈ TO, x is the direct predecessor of y,
two simple elements

output: the preceding element
if e1 = e2 then
return Undefined

else if [e1,e2] ∈ closure(TO) then
return e1

else
return e2

end

Algorithm 4: Determining the precedence of simple values

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 49–61, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Model Interchange Testing: A Process and a Case Study

Maged Elaasar1 and Yvan Labiche2

1 IBM Canada Ltd, Rational Software, Ottawa Lab
770 Palladium Dr., Kanata, ON. K2V 1C8, Canada

melaasar@ca.ibm.com
2 Carleton University, Department of Systems and Computer Engineering

1125 Colonel By Drive, Ottawa, ON K1S5B6, Canada
labiche@sce.carleton.ca

Abstract. Modeling standards by the Object Management Group (OMG)
enable the interchange of models between tools. In practice, the success of such
interchange has been severely limited due to ambiguities and inconsistencies in
the standards and lack of rigorous testing of tools’ interchange capabilities. This
motivated a number of OMG members, including tool vendors and users, to
form a Model Interchange Working Group (MIWG) to test and improve model
interchange between tools. In this paper, we report on the activities of the
MIWG, presenting its testing process and highlighting its design decisions and
challenges. We also report on a case study where the MIWG has used its
process to test the interchange of UML and SysML models. We make
observations, present statistics and discuss lessons learned. We conclude that
the MIWG has indeed defined a rigorous, effective and semi-automated process
for model interchange testing, which has resulted in more reliable interchange
of models between participating tools.

Keywords: Model, Interchange, MOF, UML, SysML, XMI, OCL.

1 Introduction

Model Driven Architecture (MDA) [1] is an approach to the development of systems
advocated by the Object Management Group (OMG). MDA encourages the
specification of system functionality as models. A model organizes information based
on a metamodel. A metamodel describes the concepts and relationships of a modeling
language, like UML [2] and BPMN [3]. A metamodel is itself organized based on a
modeling language called MOF [4]. The OMG standardizes many modeling
languages, including the aforementioned. One of the main challenges of the OMG has
been representing models in a machine-independent format that allows their
interchange between modeling tools. This led to the definition of XMI [5], a standard
for representing MOF-based models in XML.

Many modeling tools have implemented XMI since its introduction. However, the
success of XMI as an interchange format has been severely limited (Section 6) for
two main reasons. First, XMI defines a set of complex mapping rules between MOF
and XML (e.g., properties whose values are the default values are not serialized) that

50 M. Elaasar and Y. Labiche

have not been consistently implemented by tools. Second, in an attempt to be flexible,
XMI provides a number of mapping options (e.g., a property may be serialized as an
XML element or an XML attribute.), making it harder for tools that implement
different options to interchange models.

However, other important reasons for the limited success of model interchange has
in fact little to do with XMI itself. First, modeling language specifications do not
clearly define how their diagrammatic notation maps to their metamodel. This often
leads to tools representing models (typically defined through diagrams) differently
using the metamodel. Second, for logistical and/or competitive reasons, tool vendors
are not necessarily motivated to improve their model interchange support.

This dismal state of model interchange had long motivated the OMG to seek a
solution. An early attempt to define a test suite for interoperability certification was
not successful due to lack of support and resources. More recently, a number of OMG
members formed a Model Interchange Working Group (MIWG) with the goal of
testing and improving interoperability between tools. The group had more success due
to the following reasons: (i) market pressure from large users who use multiple tools
(e.g., the US Department of Defense—DoD); (ii) involvement of major tool vendors
who could instigate change; (iii) involvement of experts as neutral parties to interpret
and fix the standards; (iv) available resources and technology to automate some of the
testing activities; (v) agreement among the parties involved to carry out the testing
activities in private and to control the publicity of the results so as to be able to share
proprietary information.

In this paper, we report and reflect on the activities of the MIWG. In particular,
we present a rigorous model interchange testing process defined by the MIWG. The
process allows the definition and execution of test cases (creating models, exporting
them, then importing them) using participating tools. We discuss the process’s
design decisions, challenges and tool support. In addition, we report on a case study
where the process was used to test model interchange between tools supporting two
standard modeling languages, namely UML and SysML [6] (a profile of UML). We
describe the executed test cases and highlight interesting results and lessons
learned.

The rest of this paper is structured as follows: Section 2 describes the entire model
interchange testing process; strategies that were used to improve the scalability of the
testing process are described in Section 3; Section 4 reports on a case study involving
the interchange testing of UML and SysML models; a discussion of the results and
outstanding issues is provided in Section 5; Section 6 highlights related work. Finally,
conclusions and future work are discussed in Section 7.

2 Model Interchange Testing Process

The first task of the MIWG was to define a process for model interchange testing
between tools of a given modeling language. The focus was on testing the interchange
of models, which are instances of MOF-based metamodels, hence interchangeable
with XMI. Out of scope was the interchange of the diagrammatic notation, which is

 Model Interchange Testing: A Process and a Case Study 51

still defined informally with text and pictures (a problem that the OMG is trying to
address with the new Diagram Definition specification [7]).

The MIWG testing process, depicted in Figure 1 with a UML activity diagram,
involves defining and executing a number of model interchange test cases. Each test
case is designed to test an area of a modeling language. The area under test could be
large (e.g., UML Sequence Diagrams) or small (e.g., specific types of Actions in
UML Activity Diagrams). Test case execution entails defining a reference model,
exporting it from one tool and importing it into another. The incremental testing
process involves four roles (represented by the activity diagram’s swim lanes in
Figure 1). These roles can be played by one or more of the parties who participate in
the process. As indicated in the diagram, the roles are MIWG, which defines test
cases, producer and consumer who use their tools to export/import models, thereby
executing test cases, and implementer who resolves issues detected by the process.
Each role and the activities it performs are further discussed below.

Fig. 1. The MIWG testing process (for one test case)

The process is initiated by the MIWG defining test cases that cover areas of a
modeling language for which the MIWG feels it important that tools provide accurate
interchange. Then, for each test case, a small exemplary reference model that covers
the tested area is created. A reference model, typically defined by an expert who is
familiar with the syntax of the related area, is specified with one or more diagram
images representing the concrete syntax of the model, and an XMI file representing
the abstract syntax of the model. Since it would be tedious to produce these artifacts
manually, one of the participating tools is used to produce drafts. If necessary, the
MIWG may edit these drafts manually using a simple text or image editor. As a
byproduct of this activity, the MIWG sets guidelines for test case definition to avoid
ambiguities (e.g., a missing visibility symbol in a UML diagram means an element’s
visibility is not set vs. being notationally elided). These guidelines are documented
either on the diagrams (as notes) or on the MIWG’s wiki [8] (when applicable to
several diagrams). A reference model is only declared ready after having been
validated by the MIWG. Identified issues are resolved by an implementer who can

52 M. Elaasar and Y. Labiche

either be the MIWG (for issues with test cases) or a relevant standard’s revision task
force (RTF) (for issues with that standard). Notice that the reference model serves as a
test oracle [14], which is an artifact that determines the expected representation of a
model exported from a producer tool when a test case is executed.

Once its reference model is ready, execution of a test case starts. The first step is
for each participating vendor (referred to as a producer in Figure 1) to manually
recreate (as opposed to import) the reference model using capabilities of his/her tool.
If the tool does not support some of or all the areas being tested, the producer can
provide documentation about those limitations, along with any possible workarounds.
Then, the producer exports the model as XMI and the diagrams as images. After that,
the producer compares the exported XMI to the reference one, identifies issues and
analyzes them. Depending on the root causes of the issues, they get resolved by an
implementer who can be the producer (for differences with the reference model), the
MIWG or a relevant standard RTF.

Once the exported artifacts by a producer are available, each of the other
participants (referred to as a consumer in Figure 1) proceeds to the importing step. In
this step, a consumer creates a model by importing the exported XMI of the producer
then recreating similar diagrams by dragging imported model elements onto them.
Notice that diagrams are either not included in the XMI exports or included in a
proprietary format within XMI:extension tags, and therefore not necessarily imported
by the consumer tool, thus the need to manually creating the diagrams. If the
consumer tool does not support some of the areas being tested, it can provide
documentation about those limitations, along with any possible workarounds. After
that, the consumer exports the diagrams as images for comparison with the reference
images. Although not required by the process, exporting the imported model to XMI
for comparison with the reference XMI can be done. During the comparison, issues
are identified, analyzed, and eventually resolved by an implementer who can be the
consumer (for issues related to importing the XMI file or differences with the
reference diagrams not caused by the producer), the producer, the MIWG, or a
relevant standard RTF.

Based on the description of the MIWG testing process given above, and
assuming N tools are involved and T test case specifications (i.e., reference models)
are created, we note that the process involves N exports for each of the T test cases,
followed by N-1 imports for each export. This gives the process a linear scalability
of [T.N] on export, but a polynomial scalability of [T.N.(N-1)] on import. We also
note that the process is parameterized by the following parameters: the standards
being tested, the participant tools and the test cases. Since some or all of these
parameters may be subject to revision during a testing period, partly to address
identified issues, the testing process may need to be re-executed multiple times,
hindering scalability. Finally, we note that some of the activities of the process, like
issue identification and analysis, are done manually, which makes them tedious and
error-prone. In the following section, we discuss how the MIWG improved the
scalability of its process.

 Model Interchange Testing: A Process and a Case Study 53

3 Improving Scalability of the Testing Process

Although the MIWG testing process (as defined in Section 2) was found to be
reasonably effective (Section 4) in resolving the most egregious problems of model
interchange (e.g., inconsistent XMI support), its execution required excessive effort.
The polynomial scalability on import (a tedious activity that includes manually
creating and comparing diagrams) was prohibitive. The consensus of the group was
that testing N-1 imports per export may no longer be necessary once the main
roadblocks of model interchange were resolved. Instead, the group agreed that
validating the exported models by comparing them to the reference models, along
with testing the import of the reference models only, may suffice going forward.

The activity diagram in Figure 2 shows the revised MIWG testing process. Notice
that after validation of the reference model by the MIWG, both producers and
consumers can proceed with their activities and that the import activity involves only
the reference model (not the exports by the other N-1 producers). As a result, the
process goes from N-1 to 1 import per consumer, giving the revised process a linear
scalability of [T.N] on import. However, the process may reveal issues where exports
deviate from reference models regardless of whether consumer tools can handle the
deviation. Therefore, the revised process provides weaker, less direct evidence that
tools can interchange models. In contrast, using the original process, all N participants
might incorrectly, though consistently, export and import a model and therefore no
interchange problem would be exposed among those participants.

Fig. 2. The revised MIWG testing process (for one test case)

Another change in the revised process, highlighted by grey diamonds in Figure 2,
is automating the validation of XMI files and their comparison to the reference XMI.
The MIWG developed a web-based tool called the Validator [9] (hosted by the US
National Institute of Standards and Technology) to automate this task. The tool
(Figure 3) allows uploading an exported XMI file and comparing it to the
corresponding reference XMI. The result is a detailed report outlining: (a) compliance
issues with the relevant metamodel (found by checking type, multiplicity, and OCL

54 M. Elaasar and Y. Labiche

constraints) and XMI (found by checking the XMI rules) and (b) differences with the
reference model (found by structurally comparing the two models).

In fact, comparing the two models was initially attempted at the text level by
converting both files to Canonical XMI [11], a dialect of XMI contributed by the
MIWG. Recall from Section 1 that XMI has many options, increasing both its
flexibility and complexity. The Canonical dialect of XMI eliminates these options by
fixing their values (e.g., a root XMI element is always required, all properties must be
specified as XML elements except those in the XMI namespace, like xmi:id, and
uuids are mandatory). Once in that dialect, files could be compared side by side to
show text deltas. However, comparison by this method reports low level deltas (e.g.,
line x has changed) that are hard to analyze. Consequently, the group switched to
structural comparison, where models are treated as graphs of elements and compared
hierarchically. The elements in both graphs are matched by their type, qualified
names and/or other characteristics. This method reports higher level deltas (e.g.
attribute x has a different value) that are much easier to understand and analyze.

Fig. 3. The Validator Tool: the our-export.xmi file was uploaded and tested against test case 2
(left); validation results (excerpt) are reported (right)

4 Case Study: Interchange of UML and SysML Models

The MIWG validated its testing process by interchanging UML 2.3 and SysML 1.2
models using XMI 2.1. The goal was to assess whether the process was effective in
testing and improving interoperability between participating tools through the
identification and resolution of model interchange issues. We describe the setup and
execution of this case study. We also report on and analyze its results.

 Model Interchange Testing: A Process and a Case Study 55

4.1 Case Study Setup

The MIWG chose UML and SysML (a profile of UML) mainly because of market
pressure from influential users (like DoD). Moreover, both languages are large,
complex and popular making them good candidates for testing model interchange and
validating the testing process. Table 1 shows the tools that participated in this case
study, along with their vendors and latest tested versions.

The case study involved defining a test suite consisting of 16 test cases,
summarized in Table 2. Twelve of these were for UML and five were for SysML
(TC12 pertained to both UML and SysML). Notice that SysML tests alone would not
have sufficed since not all of UML is used by SysML Most test cases were defined
with multiple diagrams. They were also designed to be small in size (to permit easy
checking) yet maximize coverage of their language areas. The interested reader is
referred to [8] for more details on the test cases and their actual coverage of UML and
SysML model elements.

For each test case, the MIWG chose a tool with which to define a reference model.
The chosen tool was typically one that supported most (if not all) of the required
notation and XMI syntax for the test case. However, for practical reasons, the choice
of the tool was more often motivated by the fair distribution of workload between the
MIWG members. The gaps in support and the (notation and XMI) imperfections were
overcome with manual edits using an image or a text editor. The effort required to
produce the reference model varied with the complexity of the test case and the
group’s level of expertise with the relevant areas of the specifications. It mainly
involved manual inspection of the diagrams and the XMI and checking their validity
against the specifications. In some cases, this was partially automated with the model
validation features of some tools. As the group gained experience, defining valid
reference models became easier.

In addition, during reference model definition, some information in the XMI was
found to be not representable in the notation (e.g., the visibility of UML classes or
which library of primitive types was used). In this case, notes were added to the
diagrams to document them. (A note was used rather than a UML comment since the
latter would appear in the XMI.) In some cases, the MIWG documented guidelines
that applied to all test cases of the case study on its wiki [8].

Table 1. The tools participating in the case study

Vendor Tool Version

Atego Artisan® Studio 7.2m

IBM RSx 8.0.3

IBM/Sodius IBM Rhapsody 7.6.x

No Magic MagicDraw 17.0

SOFTEAM Modelio 2.4.19

Sparx Systems Enterprise Architect 9.1

56 M. Elaasar and Y. Labiche

Table 2. Test cases of UML and SysML

UML Test Cases SysML Test Cases
TC1–Simple Class Model TC7–State Machines TC10–Blocks

TC2–Advanced Class Model TC8–Use Cases TC 11-Requirements

TC3–Profile Definition & App. TC9–Interactions TC12a–Activity Swim Lanes

TC4–Simple Activity Model TC12b–Activity Swim Lanes TC14-Parametrics

TC5–Advanced Activity Model TC13–Instance Specifications TC16-Allocations

TC6–Composite Structure TC15–Structured Activity Nodes

4.2 Case Study Execution

The case study was carried out over the course of 30 months and in two separate
phases. In the first phase, which spanned the first 21 months, the MIWG executed the
original testing process as defined in Section 2. Based on 16 test cases and 6
participating tools, a total of 96 (16x6) exports and 480 (16x6x5) imports were run, at
least once each. Some had to be rerun multiple times as standards, test cases and/or
tools were being revised. This alerted the group to the process’s scalability problems.
Hence, in the second phase, which spanned the next 9 months, the MIWG decided to
switch to the revised process as defined in Section 3. In contrast to the first phase, a
total of 192 (16x2x6) imports had to be run only in this phase.

4.3 Case Study Results

Before discussing the results, it is important to note that no tool-specific results will
be disclosed, in accordance to an agreement among the MIWG members. In fact, the
MIWG originally tried to keep a tool capability matrix but that quickly proved
problematic because it was (i) commercially sensitive and (ii) hard to maintain,
especially since tools continuously undergo revision that may positively or negatively
impact their model interchange support. Instead, the MIWG agreed to give the general
public the ability to assess tools on their own at any time. Specifically, the MIWG
made the exported test case models from each tool available [8]. These models can be
compared to the reference models using the Validator tool [9], which was used during
the revised process in this case study. These assessments may be used for evaluating
the interchange capabilities/limitations of a particular tool, as part of a tool selection
process, or to set expectations for the use of a tool in a project.

In the remainder of this section, we report on the overall results of this case
study. During the first phase, the exported and imported models were validated and
compared to the reference models manually by the participants. This helped
uncover major issues, especially with the tools’ support of the UML metamodel and
SysML profile, which hindered the successful interchange of models. For example,
it showed that tools represented models with similar diagrams differently using the
metamodel and/or profile. It also showed that tools were not consistently using the

 Model Interchange Testing: A Process and a Case Study 57

official URLs. Some effort was spent at the beginning to address these issues to
unblock interchange.

Additionally, it was observed that some tools exported extra model elements
(e.g., container elements) that were not required by test cases. Although legal
according to the UML/SysML standard, such elements were sometimes not
expected by consumer tools. Similarly, some producer tools exported non-standard
information (e.g., diagrams) in the XMI files. This was legal when such information
was enclosed in XMI: extension elements to allow a consumer tool to ignore it. The
MIWG proposed that producer tools use the XMI:exporter tag to specify their tool
name. This can help consumer tools recognize and optionally process these
extensions if they can.

Furthermore, we observed that the case study achieved good test coverage of UML
and SysML standards (59% of UML metaclasses and 55% of SysML stereotypes).
However, we also observed that tools were not consistent in their support of some
areas of the standards. This could be attributed to ambiguities in these standards
and/or to bugs in the tools. For example, tools did not have consistent default values
for the multiplicity of a UML typed element or for the visibility of a UML
packageable element. The MIWG clarified to vendors that the former should be 1..1
and the latter should be public. Another example was the names of SysML
stereotypes that were sometimes different in XMI from those shown in the graphical
notation when applied to UML elements.

During the second phase of the case study, consumers manually analyzed and
reported on their imports of reference models. On the other hand, producers
reported on their exports using the Validator tool, which allowed them to: (a)
analyze their conformance to the (XMI, MOF and modeling language) standards
and (b) compare them to the reference models. Figure 4 shows the results of the
conformance analysis. The lines represent the average number of (all occurrences of
all) issues/bugs reported by tools for their first (dashed line) and their last (solid
line) export of each test case (on average vendors exported each test case 3-4 times
due to bug fixes and/or changes in reference models). The average number of issues
across all test cases was 65 at the start and 52 at the end (a drop of 20%). However,
the number increased for some test cases (e.g., 9) due to ambiguities in related areas
of UML (e.g., sequence diagrams) that made most tools inconsistent with it. Best
results were achieved for Class and Instance diagrams (test cases 1, 2 and 11) and
SysML requirements (test case 13).

On the other hand, when comparing the exported models to the reference ones
(Figure 5), we observe that the average number of differences across all test cases
was 26 at the start and 24 at the end (a drop of 8%). (The lines in Figure 5 represent
the average number of differences reported by tools for each test case.) However,
we note that differences did not always decrease (e.g., test case 4, 10 and 15). While
this might be due to human error while recreating the reference models (e.g.,
naming elements differently), it could also be a symptom of the complexity of some
areas of the standards (e.g., advanced activities), which causes implementation
difficulties.

58 M. Elaasar and Y. Labiche

Fig. 4. Issues related to conformance to standards before and after case study

Fig. 5. Differences to reference models before and after case study

5 Discussion

The case study, presented in Section 4, shows that the MIWG testing process is
effective for assessing model interchange between tools. It also shows that tool
vendors can work together to improve model interchange. Versions of participating
UML and SysML tools, available now on the market, are more interoperable than
they were when the MIWG initiated its work, although there is certainly room for
further improvement. Interoperability can directly benefit users as it may significantly
improve quality and productivity and increase the investment in models.

The MIWG finds that XMI is an adequate model interchange mechanism.
Nonetheless, the group admits that XMI 2.1 is a complex standard, though much of
the complexity has been reduced in XMI 2.4 with the definition of Canonical XMI, as
a result of this case study. The group also finds that most of the remaining interchange
issues relate to either ambiguities/inconsistencies in the UML/SysML standards or
bugs in the tools’ support of these standards, rather than with the tools’ XMI support.
For example, a handful of issues have been logged against UML sequence diagrams
that the standard does not fully define how they map to the UML metamodel. Another
issue is against SysML, where one of the UML constraints (on property
Property::partWithPort) does not apply in the context of SysML.

One of the challenges of model interchange that has surfaced in this case study is
that tools differ in the versions of the standards they support. For example, while most
participating tools have moved to UML 2.3, some have not, while others have moved

 Model Interchange Testing: A Process and a Case Study 59

to 2.4 already. Those that did not move still managed to participate by manually
editing their models. However, the authors1 recommend that the testing process only
moves to a newer version of a standard when a significant number of participating
tools have moved to it. The authors also recommend that standards remain backward
compatible in their minor revisions to motivate vendors to adopt them quicker.

Regarding the MIWG process, the authors note that the revised process is still quite
labor intensive. Specifically, it requires expertise in defining and validating the
reference models. Fortunately, once those models are defined, they can be reused by
new tools. The process also requires the MIWG to manually analyze issues reported
by the Validator tool to identify root causes. Furthermore, by not importing the
exported models directly, the revised process provides a weaker proof of interchange.
It may also expose bugs in producer tools that could have been tolerated by importer
tools in the original less scalable process. Therefore, the authors recommend that the
original process still be initially executed, at least once per test case, before switching
to the more scalable revised process. Finally, the process focuses on testing the
syntactical interchange of models only. It does not include testing the semantics,
which relate to how models are used (e.g., executed).

6 Related Works

Although everyone who is working, or has worked, in a MDA context has anecdotal
evidence that there are issues with model interchange, there has been very little
published work that systematically studies those issues.

Alanen et al. [14] performed a simple case study whereby they created a simple
class diagram (not focusing on specific features of the modeling language) using six
different UML modeling tools. They then exported the diagram to XMI and manually
compared, using a text editor, the six generated XMI files. They observed some
discrepancies in the files and concluded (like the MIWG) that one of the main issues
when practicing model interchange was the different versions of XMI and UML
standards supported by tools. They advocated the need for a compliance test suite for
checking XMI compatibility, which is an outcome of the MIWG work.

Persson et al. studied XMI compatibility between six commercial and three open
source modeling tools [15], using one model (class diagram). They showed that XMI-
based model interchange between UML modeling tools was weakly supported in
practice. In a different publication [16], they experimented with two industrial size
models, one commercial tool for creating the models and three open source tools to
interchange with. The experimental procedure was the following, for each of the two
models: (1) create the model using the commercial tool; (2) export the model to XMI
and check conformance to the XMI standard using available automated XML
checkers; (3) import the XMI using each of the three open source software tools
(some imports failed even after changing the input XMI file to something expected by
the tool) and visually check the diagram obtained; (4) export from the open source
software, possibly fixing the generated XMI file; (5) import (back) into the

1 Some comments made by the authors of this paper are not necessarily the ones of the MIWG.

60 M. Elaasar and Y. Labiche

commercial tool; and (6) visually compare the obtained diagram with the one they
started the process with. They reported that manually fixing the XMI files was
necessary so they conformed to the XMI standard, and sometimes fixes were
insufficient to successfully complete the process. They concluded that model
interchange based on XMI was not mature enough to be used in an industrial setting.
They conducted a similar study in 2006 [17], using a different set of
producer/consumer tools and a much simpler class diagram model (without focusing
on important features of the language), and confirmed the limitations of the
export/import, although they noticed an improvement when using the new XMI 2.0.

More recently, Eichelberger et al. [18] report on a comprehensive survey of the
compliance of current modeling tools to the UML standard, focusing on a large set
(476) of UML modeling features. With respect to XMI, they studied the structural
compliance of exported XMI files to the XMI standard. They report that only four out
of 68 tools have an acceptable level of compliance. With respect to XMI, they report
that 47% of the tools do not pass the structural XMI validity test, 3% (i.e., two) tools,
pass the XMI validity test, while the remaining 50% offer no XMI at all. They did not
however try to import the XMI files into other tools.

In summary, some have attempted to study model interchange with XMI before.
They differ from the process we discuss in this paper in one or more of the following
ways: (i) They did not specifically and systematically define targeted reference
models (they instead used available models); (ii) They did not necessarily
systematically investigate pairs of producer/consumer tools; (iii) They did not involve
the vendors of the producer/consumer tools to investigate and fix the root causes of
encountered issues; (iv) They did not try to automate parts of the process.

7 Conclusion and Future Work

Modeling standards enable automated exchange of modeling information among
tools. Due to errors and ambiguities with those standards and the lack of rigorous
testing between tools, the full benefit of model interchange could not be realized. The
MIWG has defined and validated a rigorous incremental model interchange testing
process. The process has been fine tuned to scale with the number of participating
tools. It has also been used in a case study to assess UML and SysML model
interchange between six tools. A suite of 16 test cases has been defined and executed.
The case study has led to improving interoperability between these tools as well as
these tools’ conformance to the standards (by 20%). The MIWG has also made the
process public and partially repeatable to allow interested communities to assess the
interchange capabilities and limitations of participating tools for their purposes.

Going forward, the MIWG plans to test other model interchange situations, like
importing XMI files conforming to older versions of the standards or importing
fragmented models with cross references. Another area of future work is round trip
(export-import-change-export-import) testing. Yet another area is testing diagram
interchange (when language-specific diagram definition standards become available

 Model Interchange Testing: A Process and a Case Study 61

and implemented). Finally, newer versions of UML/SysML/XMI specifications will
be tested, in addition to other standards (e.g., UPDM [12] and SoaML [13] profiles).

Acknowledgements. The authors would like to thank the entire MIWG team for the
great work this paper reports on. The authors would also like to particularly
acknowledge the following MIWG members: Peter Denno (NIST) and Pete Rivett
(Adaptive), for reviewing this paper.

References

1. Model Driven Architecture,
http://en.wikipedia.org/wiki/Model-driven_architecture

2. Unified Modeling Language, Superstructure v2.4.1.,
http://www.omg.org/spec/UML/2.4.1

3. Business Process Model and Notation v2.0.,
http://www.omg.org/spec/BPMN/2.0/

4. Meta Object Facility Core v2.4.1., http://www.omg.org/spec/MOF/2.4.1/
5. MOF 2 XMI Mapping v2.4.1., http://www.omg.org/spec/XMI/2.4.1/
6. Systems Modeling Language, v1.2., http://www.omg.org/spec/SysML/1.2/
7. Diagram Definition v1.0 FTF Beta 2.,

http://www.omg.org/spec/DD/1.0/Beta2/
8. MIWG Wiki, http://www.omgwiki.org/model-interchange
9. NIST Validator, http://syseng.nist.gov/se-interop/sysml/validator

10. OMG Object Constraint Language v.2.3.1.,
http://www.omg.org/spec/OCL/2.3.1/

11. Canonical XMI, FTF Beta 1, http://www.omg.org/cgi-bin/doc?ptc/12-
01-01

12. Unified Profile for DoDAF and MODAF v2.0.,
http://www.omg.org/spec/UPDM/2.0/

13. Service Oriented Architecture Modeling Lang. v1.0.,
http://www.omg.org/spec/SoaML/1.0/

14. Alanen, M., Porres, I.: Model Interchange Using OMG Standards. In: Proc. of the 31st
EUROMICRO Conf. on Soft. Eng. and Advanced Apps., pp. 450–459 (September 2005)

15. Persson, A., Gustavsson, H., Lings, B., Lundell, B., Mattsson, A., Ärlig, U.: OSS tools in
a heterogeneous environment for embedded systems modelling: an analysis of adoptions
of XMI. In: Proc. of the 5th Workshop on Open Source Software Engineering (May 2005)

16. Persson, A., Gustavsson, H., Lings, B., Lundell, B., Mattsson, A., Ärlig, U.: Adopting
Open Source Development Tools in a Commercial Production Environment—Are we
Locked-in? In: Proc. of 10th EMMSAD (June 2005)

17. Lundell, B., Lings, B., Persson, A., Mattsson, A.: UML Model Interchange in
Heterogeneous Tool Environments: An Analysis of Adoptions of XMI 2. In: Wang, J.,
Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 619–630.
Springer, Heidelberg (2006)

18. Eichelberger, H., Eldogan, Y., Schmid, K.: A Comprehensive Survey of UML
Compliance in Current Modelling Tools. In: SE 2009. LNI, vol. 143, pp. 39–50 (2009)

An Internal Domain-Specific Language

for Constructing OPC UA Queries
and Event Filters

Thomas Goldschmidt and Wolfgang Mahnke

ABB Corporate Research Germany,
Industrial Software Systems Program

{thomas.goldschmidt,wolfgang.mahnke}@de.abb.com

Abstract. The OPC Unified Architecture (OPC UA) is becoming more
and more important for industrial automation products. The develop-
ment of OPC UA components is currently supported by the use of SDKs
for OPC UA. However, these SDKs provide only low level support for cre-
ating OPC UA based applications. This leads to higher development ef-
forts. The domain-specific metamodel defined by OPC UA defines serves
as a good basis for creating domain-specific languages on a higher ab-
straction level. This has the potential of reducing development efforts.
In this paper, we focus on the event filter and query part of OPC UA.
Current SDKs only provide interfaces for constructing an object tree
for these queries and event filters programmatically. Creating and main-
taining these object structures is tedious and error prone. Therefore, we
introduce an internal DSL approach for constructing OPC UA queries
and event filters based on the OPC UA information model and the Lan-
guage Integrated Queries (LINQ) feature available in .Net.

1 Introduction

The OPC Unified Architecture (OPC UA) is becoming more and more important
for industrial automation products. It is a central component to modern indus-
trial applications. Classic OPC (OLE for Process Contol) defined an industry-
wide adopted set of standards for accessing and distributing data in industrial
systems. With the more recent OPC UA, new facilities like a unified address
space model, service oriented interfaces and an extensible metamodel have been
introduced. This allows OPC UA to be used from small embedded systems, in-
dustrial controllers, Distributed Control Systems (DCS) up to Manufacturing
Execution Systems (MES) and Enterprise Resource Planning (ERP) systems.

The development of OPC UA components is currently supported by the use
of special software development kits (SDKs) for OPC UA. These SDKs provide
means for developing code that deals with the creation and navigation in the
OPC UA information model, registration of monitors for value changes and
calling of defined methods as well as connection and session handling. However,
one of the largest drawbacks of working directly with these SDKs is that they

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 62–73, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Internal DSL for Constructing OPC UA Queries and Event Filters 63

often focus on dealing with technical interfaces rather than providing an easier
programming model for developers. The OPC specification already proposes
that higher level languages such as a graphical information modeling language
[1] may be used to efficiently develop OPC UA applications. However, apart from
the already mentioned graphical modeling of information models including code
generation from it [2,3,4] no DSL support is provided by currently available
OPC UA SDKs. More specifically, there is currently no support for defining
OPC UA queries and event filters on a higher level of abstraction. Developers
have to create them using object structures programmatically. This code, that
accesses elements from the address space, has to deal with node identifiers or
browse names that are mostly passed as string variables. During design time it
is therefore not checked if the specific nodes and/or variables that code accesses
actually exist in the used address space. Furthermore, the code is very lengthy
and not clearly structured. This leads to error prone implementations and thus
additional test effort while developing these OPC UA components.

In our previous work [5] we analyzed the different use cases in OPC UA devel-
opment which may be improved by developing and using a DSL for them. One of
the use cases where we identified the largest impact at a relatively low additional
development effort was the creation of DSL for query and event filter creation.
Therefore, we decided to build an internal DSL for this use case. Internal DSLs
[6] are based on the syntax of a host language and add additional language con-
structs to that language which are in a compile step mapped towards structures of
the host language. The advantage of such internal DSL is that existing IDEs can
be reused without extensions and programmers do not need to learn a new syn-
tax. A language feature of C#/.Net that is designed to be used in such a way is
the Language Integrated Queries (LINQ) [7] feature. It provides a concrete syntax
that is similar to SQL and uses a closuremechanism underneath. A query specified
in LINQ is internally translated into an expression tree based on such a closure.

The contribution of this paper is an internal domain-specific language that
facilitates LINQ to specify OPC UA queries and event filters. We provide a
mapping specification of LINQ constructs to those used on OPC UA queries
and event filters. Based on a generated object model of the target information
model developers get code completion and error recognition for their specified
queries. Furthermore, we demonstrate how the LINQtoOPCUA generator, which
we developed, facilitates LINQ expression trees to instantiate the abstract syntax
objects of OPC UA queries and event filters.

The remainder of this paper is structured as follows. A short introduction
to OPC UA including its event filters and queries is given in Section 2. The
query/event filter DSL that we designed is introduced in Section 3. A critical
discussion of our DSL is presented in Section 4. Section 5 concludes this paper
and outlines future work.

2 OPC Unified Architecture

OPC UA provides a secure, reliable, high-performing communication infrastruc-
ture to exchange different types of data in industrial automation. That includes

64 T. Goldschmidt and W. Mahnke

current data like measurements (e.g. from a temperature sensor) and setpoints
(e.g. for defining the desired level of a tank), events (e.g. device lost connection)
and alarms for abnormal conditions (e.g. a boiler reached a critical level). In ad-
dition, it provides the history of current data (e.g. the temperature trend the last
day or the last ten years) and of events (what events of a certain type occurred
the last five days). In order to provide semantic with the data, also meta data
is exchanged in terms of an information model. In Figure 1 depicts an example
of an OPC UA address space.

AC800MType

Object

Variable

HasComponent

HasProperty

HasSubtype

HasTypeDefinition

ObjectType

VariableType

BaseObjectType

TempSensor1

SerialNumber

Temperature

AnalogItemType

Notation

DeviceType

TemperatureSensorType

Temperature

PropertyType

SerialNumber

EngineeringUnits

EngineeringUnits

EngineeringUnits

Controls
(ControllerType ->

FieldBusType)

ControllerType

ConnectedTo
(FieldBusType ->

DeviceType)

References:
Controls

FieldBusType

TypeName

ReferenceType (from -> to)

References:
ConnectedTo

Fig. 1. Example of an Address Space in OPC UA

On the right hand of Figure 1 the type system is shown, with object types
in a type hierarchy. For example, the DeviceType is an abstract object type
representing all kinds of devices. It defines a variable called SerialNumber. A
subtype TemperatureSensorType adds the Temperature variable, including the
EngineeringUnits. Variables are typed as well, like the Temperature of type
AnalogItemType defined by the OPC Foundation. This type adds a property
to the variable containing the EngineeringUnits. On the left hand an instance of
the TemperatureSensorType, TempSensor1, is shown. The instances contain the
concrete values, like the temperature measured by TempSensor1.

OPC UA is based on a client server model where the client asks for data and
the server delivers the data. The client has the option to read and write the data,
but also to subscribe to data changes or event notifications. In addition, the client
can browse the address space of the server and read the meta data information.
For large and complex address spaces the client also has the capability to query
the address space for information, for example asking for all temperature sensors
that are currently measuring a temperature larger than 25 ◦C.

Clients can subscribe to events by subscribing to objects marked as event
notifiers, which already provides some filtering based on how the objects are

An Internal DSL for Constructing OPC UA Queries and Event Filters 65

structured in the address space. In addition, they can specify an event filter to
define the event fields they want to receive as well as define the events they are
interested in. To provide information about the structure of events supported by
the server, the server provides an event type hierarchy. It uses the concept of ab-
stract object types to define the event type hierarchy and variables to define the
fields of events. In case of alarms concrete object types are used, as alarms can be
represented in the address space in order to configure alarms, for example specify-
ing the limit for an alarm. Figure 2 shows an example of an event type hierarchy.
The BaseEventType is defined by the OPC UA specification [1], and the DeviceS-
tatusType is a subtype providing the HealthStatus of a device. Clients can, for ex-
ample, define an event filter for the HealthStatus reaching a critical level.

DeviceStatusType

MessageBaseEventType PropertyType

Source

...

HealthStatus

Message

Warning: Self-heating

Health OK

Warning: Needs calibration

...

Source

TempSensor1

TempSensor1

TempSensor22

….

HealthStatus

120

0

150

….

...

...

...

...

….

Events

Fig. 2. Example of an Event Type Hierarchy in OPC UA

2.1 Event Filter Creation

Event filters in OPC UA are used in the creation of event subscriptions to define
which kinds of events are relevant for a certain subscription. The specification
[8] only defines the service interface used for registering such filters. Current
OPC UA SDKs implement this service and provide a class which resembles the
abstract syntax tree of the expressions. The specification informatively provides
examples for concrete syntaxes (graphical, table-based or text based) for event
filters. As OPC servers can be relatively thin and should not bother with ex-
tensive expression parsing, the OPC Foundation intentionally used the abstract
syntax on the interface for these filters. However, users should not directly deal
with the abstract syntax, but should use a nicely designed concrete syntax for
defining these filters. Currently none of the SDKs implements a concrete syntax
for event filters.

2.2 Query Creation

Similar to the event filtering mechanism the OPC UA specification defines query
services on an abstract interface level. Concrete syntaxes are informatively pro-
posed, but there is currently no implementation of any of these syntaxes by
existing SDKs.

In contrast to the event filters, for which handlers are already implemented
in the SDK and OPC UA stack, queries are mostly routed down to the server

66 T. Goldschmidt and W. Mahnke

implementation. On this layer the abstract syntax should then be mapped down
to whatever query mechanism the underlying data source uses. This could for
example be an SQL like language. In this case this use case is also relevant for
server implementations.

2.3 Queries and Event Filters Metamodel

The OPC UA specification [8] already proposes that there should be a concrete
syntax for event filters and queries. Both languages provide query like constructs,
such as select and where clauses. OPC UA SDKs provide means for programmat-
ically creating select, when and where clauses. However, writing the code that
creates them causes a lot of overhead as each single select, where clause and all
operands have to be instantiated and parametrized and then plugged together.

ContentFilter

filterOperator1

FilterOperator FilterOperand

filterOperands 1..*

Equals IsNull

typeId : NodeId
qualifiedName : browsePath[1..*]
attributeId : IntegerId
indexRange : NumericRange

SimpleAttributeOparand

selectClauses
1..*

EventFilter

whereClause

0..1

nodeId : NodeId
browsePath : RelativePath

AttributeOperand

value : BaseDataType

LiteralOperand

index : UInt32

ElementOperand

maxDataSetsToReturn :Counter
maxReferencesToReturn :Counter

QueryFirst

filter
0..1

relativePath : RelativePath
attributeId : IntegerId
indexRange : NumericRange

QueryDataDescription

typeDefinitionNode : ExpandedNodeId
includeSubtypes : Boolean

NodeTypeDescription

nodeTypes1..*

dataToReturn1..*

GreaterThan

LessThan

GreaterThanOrEqual

LessThanOrEqual

Like

Not

Between

InList

And

Or

Cast

BitwiseAnd

BitwiseOr

InView

OfType RelatedTo

Fig. 3. Metamodel of the OPC UA queries and event filtes services

Figure 3 depicts a metamodel which we derived from the specification of the
queries and event filter services given in [8]. SDKs implement this metamodel as
classes of an abstract syntax. These classes are then instantiated and plugged
together to create queries and event filters. Listing 1 gives an example construct-
ing an event filter based on these classes using the OPC Foundation .Net SDK.
Node identifiers and property names have to be provided as string parameters
and the object tree is also constructed manually. The OPC UA specification
defines that such constructs have to be validated and sanity-checked by servers
that receive them at runtime. However, there is currently no way of checking
their validity already at the time of development.

An Internal DSL for Constructing OPC UA Queries and Event Filters 67

Listing 1. Example code that creates an OPC UA event filter that selects the message,
the source and the health status of all events of type DeviceStatusType that have a
HealthStatus greater than 100.

EventFilter eventFilter = new EventFilter() ;

SimpleAttributeOperand selectClause0 = new SimpleAttributeOperand () ;
Opc.Ua.QualifiedNameCollection browsePath ;

// Select Event Field Message
selectClause0 .AttributeId = Attributes.Value;
selectClause0 .TypeId = DeviceStatus.NodeId;
Opc.Ua.QualifiedName propName = new Opc.Ua.QualifiedName(”Message” , 0);
browsePath = new QualifiedNameCollection() ;
browsePath .Add(propName);
selectClause0 .BrowsePath = browsePath;

// Select Event Field Source
SimpleAttributeOperand selectClause1 = new SimpleAttributeOperand

{ AttributeId = Attributes.Value,
TypeId = DeviceStatus.NodeId };

propName = new Opc.Ua.QualifiedName(”Source” , 0);
browsePath = new QualifiedNameCollection() ;
browsePath .Add(propName);
selectClause1 .BrowsePath = browsePath;

// Select Event Field HealthStatus
SimpleAttributeOperand selectClause2 = new SimpleAttributeOperand

{ AttributeId = Attributes.Value,
TypeDefinitionId = DeviceStatus.NodeId };

propName = new Opc.Ua.QualifiedName(”HealthStatus” , 1);
browsePath = new QualifiedNameCollection {propName};
selectClause2 .BrowsePath = browsePath;

ContentFilter cf = new ContentFilter () ;

ContentFilterElement cfe = new ContentFilterElement {
FilterOperator = FilterOperator.GreaterThan};

propName = new Opc.Ua.QualifiedName(”HealthStatus” , 1);
SimpleAttributeOperand op1 = new SimpleAttributeOperand(

DeviceStatus.NodeId, propName);
LiteralOperand op2 = new LiteralOperand(100u);
cfe .SetOperands(new List<FilterOperand> { op1, op2 });
cf .Elements.Add(cfe) ;

// Add to f i l te r
eventFilter. SelectClauses .Add(selectClause0);
eventFilter. SelectClauses .Add(selectClause1);
eventFilter. SelectClauses .Add(selectClause2);
eventFilter.WhereClause = cf ;

3 The Query/Event Filter DSL

OPC UA client applications are often written using C#/.Net. C# provides a
feature called “language integrated queries” (LINQ). LINQ provides a concrete,
SQL-like syntax that is directly integrated into C#. It is intended to be mapped
to specific query languages such as SQL depending on the target purpose. To
achieve this, LINQ includes means for accessing the expression trees of these
queries directly from the code. This enables us to create a mapping from LINQ
to OPC UA event filters / queries.

68 T. Goldschmidt and W. Mahnke

For the design of the DSL we tried to keep as close as possible to the seman-
tics of the original LINQ while achieving a complete coverage of features provided
by OPC UA. Our approach assumes that there is are node classes available for
the part of the address space for which queries are specified. These node classes
can easily be generated using the tools available from the OPC Foundation [4],
CommServer [2] or Unified Automation [3]. The generator takes a XML based de-
scription of the address space as input and generates the appropriate classes for
the Object Types, Reference Types, etc. Alternatively the classes can be devel-
oped manually. For a manual implementation it is important that there is a clear
mapping between the developed classes and the NodeIds defined in the address
space. Based on the generated or manually developed classes and the correspond-
ing mapping, we translate the classes used in the LINQ expressions to NodeIds.
The NodeIds are then used in the event filter and query elements that are then
passed to the OPC UA stack.

The architecture of our mapping approach is depicted in Figure 4. The (gener-
ated) address space classes serve as in input data source for the LINQ processor.
Based on these classes it is possible to formulate queries in an SQL-like manner.
At compile time, the LINQ expression parser creates a LINQ expression tree
[9] from this query code. This tree can be accessed at runtime. From this run-
time representation the LINQToOPCUA generator instantiates the appropriate
classes from OPC UA which resemble the event filter or query.

Application Specific
Information Model

Code Generator

Generated Information
Model Classes

Linq Data
Source

Dev.

Visual
Studio

R

R

Custom Query
Code

Linq expression
parser

Linq Expression
AST

LinqToOPCUA
Generator EventFilter

QueryFirst

Legend

Storage
Active
Component

Data Flow
R

Communication

Fig. 4. Architecture of the LINQ for OPCUA prototype

Event filters and queries reuse the same elements such as ContentFilters and
SimpleAttributeOperands as illustrated in Figure 3. However, the structure of a
query differs from the one of an event filter. Still we were able to use the same
syntax based on LINQ for both use cases as shown in the following subsections.

3.1 Event Filter

As shown in Figure 3 an event filter consists of two major parts, where clauses
and select clauses. The former are ContentFilter elements that are common with
the ones used in queries (see Section 3.3). The latter are specific to event filters

An Internal DSL for Constructing OPC UA Queries and Event Filters 69

and contain SimpleAttributeOperands. Used in this context, the SimpleAttribu-
teOperands refer to attributes of the filtered EventType. For example, a custom
event type DeviceStatusType may specify, in addition to generic event attributes
such as Message and Source, an additional custom attribute HealthStatus. These
attributes may then be selected in the select clauses of an event filter to be in-
cluded in the message returned by the subscription.

We map these OPC UA select clauses to the select clause available in LINQ.
In this select clause we construct an anonymous type (using new { ... }). The
members of this type can now be formed by properties from the event type class.
This class is given by an initial, typed result list that is specified in the from .. in
.. part of the LINQ query. Listing 2 gives an example for such a query. The basic
result list query specifies to filter for the DeviceStatusType. Based on the usage
of that class in from cEvent in query the select part references the attributes
Message, Source and HealthStatus of DeviceStatusType. The where clause part
is handled as described in Section 3.3.

Listing 2. LinqToOpcua example showing the creation of an event filter. This state-
ment corresponds to the about 30 lines of code shown in Listing 1 without using the
DSL.

var query = new List<DeviceStatus> { };
Expression<Func<IEnumerable<object>>> linqExp = () =>
from cEvent in query where cEvent.HealthStatus > 100

select new { cEvent.Message , cEvent.Source , cEvent.HealthStatus };
EventFilter eventFilter = getEventFilter(linqExp);

The LINQToOPCUA generator uses the LINQ expression tree as input. Using
a tree walker approach it traverses the expression tree and instantiates the ap-
propriate OPC UA objects. The objects for the select clause are created when
traversing aMethodCallExpression referring to the Select method. Then, for each
MemberExpression within this clause it instantiates a SimpleAttributeOperand.
The NodeId for the operand is looked up based on the class used for the expres-
sion’s source. For the example given in Listing 2 this is the DeviceStatusType as
this is the type of the cEvent variable used in the select clause.

3.2 Query

In contrast to event filters the query service (QueryFirst) does not use SimpleAt-
tributeOperands as select clause. It rather uses so called QueryDataDescriptions
that are connected to NodeTypeDescriptions. The latter is comparable to the
from clause of SQL. Therefore, a natural match to map this to LINQ is the cor-
responding from ... in ... construct in LINQ. Thus, for each of these constructs
one entry in the nodeTypes collection is added.

Listing 3 shows an example OPC UA query using LINQ based on the informa-
tion model described in Figure 1. The NodeTypeDescriptions derived from this
query are: The type of controllers, which is ControllerType, the type of the Con-
trols reference, which is FieldBusType and the type of ConnectedTo which is of

70 T. Goldschmidt and W. Mahnke

type DeviceType. We defaulted the includingSubtypes attribute of the NodeType-
Descriptions to true as we considered this the major use case. For specifying
the omission of subtypes we use the NoSubTypes() method as shown with con-
trollers list.

Listing 3. LinqToOpcua example showing the creation of a query

/// Example 3: Get ControllerType.SerialNumber, FieldBusType.TypeName,
/// DeviceType.SerialNumber where a controller controls a field bus and the field bus
/// has a connected device and the field bus has a TypeName = ‘PB’ or ‘FF’ and
/// the temperature sensor ’ s engineering unit is ‘ ‘Kelvin’ ’ and the temperature
/// is greater than 256.
var controllers = new List<Controller> { };

Expression<Func<IEnumerable<object>>> linqExp = () =>
from controller in NoSubTypes(controllers)
from fieldbus in (controller .Controls)
from devices in fieldbus.ConnectedTo
where (fieldbus.TypeName == ”PB” && fieldbus.TypeName == ”FF”) &&

device is TemparatureSensor &&
((TemparatureSensor)device) .Temparature.EngineeringUnit = ”Kelvin” &&
((TemparatureSensor)device) .Temparature.Value > 256

select new { controller .SerialNumber, FieldBusType .TypeName, DeviceType.SerialNumber };

The elements to be returned from a query are specified by the dataToReturn
reference pointing to a list of QueryDataDescriptions. We map this list to the
select clause of the LINQ query. Its relativePath is directly derived from the
C# MemberExpressions. In the query example (Listing 3) these are Controller-
Type:SerialNumber, FieldBusType:TypeName and DeviceType:SerialNumber.

Note that we default the attributeId to value as we consider this is the most
frequent use case. If other attributes shall be returned by the query (like NodeId,
EventNotifier, etc.) we provide additional methods for specifying this (e.g.,
NodeId(controller.SerialNumber)). The filter clause of a query is handled the
same way as the where clause in event filters.

3.3 Content Filter

We map ContentFilters to where clauses in LINQ. In the LINQ expression tree
they occur as MethodCallExpression (“Where”) expressions. ContentFilter el-
ements consist of two types of elements, one FilterOperator and one or more
FilterOperands. Most of the operands are also available in C# in a similar way.
Therefore, we define a mapping from these operators to the OPC UA operators
as shown in Table 1. For some of the operators there is no suitable counterpart in
C#. For these operators we provide methods taking the appropriate parameters
(e.g., InView()).

The operands of a ContentFilter a defined by the operands of the respec-
tive C# expression. We create LiteralOperand for literal expressions like (“FF”
or 256) and SimpleAttributeOperands for MemberExpressions respectively. The
nodeId of the involved elements available from the (generated) node classes and
can therefore easily be extracted from the involved objects during translation.

An Internal DSL for Constructing OPC UA Queries and Event Filters 71

Table 1. Operator Mapping from LINQ to OPC UA

LINQ Construct LINQ syntax OPC UA Event Filter Construct

ExpressionType.AndAlso && FilterOperator.And
ExpressionType.OrElse || FilterOperator.Or
ExpressionType.Or | FilterOperator.BitwiseOr
ExpressionType.And & FilterOperator.BitwiseAnd
ExpressionType.Convert (Type)obj FilterOperator.Cast
ExpressionType.Equal == FilterOperator.Equals
ExpressionType.GreaterThan > FilterOperator.GreaterThan
ExpressionType.GreaterThanOrEqual >= FilterOperator.GreaterThanOrEqual
ExpressionType.LessThan < FilterOperator.LessThan
ExpressionType.LessThanOrEqual <= FilterOperator.LessThanOrEqual
MethodCallExpression (“Like”) Like(op1,op2) FilterOperator.Like
ExpressionType.Not ~/! FilterOperator.Not
ExpressionType.TypeIs is FilterOperator.OfType
MethodCallExpression (“Between”) Between(op1,op2,op3) FilterOperator.Between
MethodCallExpression (“InList”) InList(op1,op2[]) FilterOperator.InList
MethodCallExpression (“InView”) InView(op1,view) FilterOperator.InView
ExpressionType.NotEqual != null FilterOperator.IsNull

3.4 FilterOperator.RelatedTo

A special operator not defined in the mapping given in Table 1 is the RelatedTo
operator. The OPC UA specification [8] defined this operator as follows:

TRUE if the target Node is of type Operand[0] and is related to a NodeId
of the type defined in Operand[1] by the Reference type defined inOperand
[2]. Operand[0] orOperand[1] can also point to an elementReferencewhere
the referred to element is another RelatedTo operator. This allows chain-
ing of relationships (e.g. A is related to B is related to C). [...]

This concept is similar to join operations in SQL. However, LINQ queries can
already be based on a connected object model where direct references between
objects are modeled as properties of the respective classes. Therefore, a join op-
eration can be specified in a much more concise manner. For example, joining two
sets of objects ControllerType and FieldBusType results in the following LINQ
expression: from controller in controllers from fieldbus in controller.Controls.
This will result in a join of controllers with their related fieldbusses.

Instead of explicitly writing all RelatedTo filters required for an OPC UA
query we derive them from the from clauses of the LINQ query automatically.
For example, given the from clause specified in Listing 3 we can derive the follow-
ing nested RelatedTo filter: RelatedTo(ControllerType, RelatedTo(FieldBusType,
DeviceType, ConnectedTo), Controls). As the form clause then is used for the
specification of NodeTypeDescriptions as well as RelatedTo clauses we get a con-
cise, easy to read LINQ query including both parts.

OPC UA allows to filter for specific sub types within RelatedTo filters. For ex-
ample, a filter might specify RelatedTo(FieldBusType, TemperatureSensorType,
ConnectedTo) where TemperatureSensorType is a subtype of DeviceType. To
achieve this kind of filtering an additional expression in the where clause is re-
quired. For the mentioned example, we would need to add the following: device
is TemperatureSensorType.

72 T. Goldschmidt and W. Mahnke

4 Discussion

In order to evaluate our DSL we analyzed it w.r.t. its applicability and usability.
We defined the following research questions to help us with this assessment.

Is the DSL development approach powerful enough to enable the de-
velopment of a complex DSL? Being a query language, LINQ can be mapped
to other languages the like. OPC UA event filters and queries are a perfect match
for this mapping. DSLs for other purposes would much likely be developed using
a different concrete syntax.

How complex is the creation of the DSL using the approach? Through
the LINQ expression trees which are available directly from the LINQ statement
via reflection, a DSL can be created by implementing a visitor pattern which can
be created with little effort. The effort for implementing and testing the visitor
was about 3 days.

Can developers effectively use the created DSL? As the syntax of LINQ
is pretty close to SQL which is a well-known query language, most developers
will be able to immediately use the DSL without too much learning overhead.
Especially due to code completion and static type checking in LINQ queries,
developers can quickly learn the usage of the DSL compared approaches using
a purely string based query language. We evaluated our DSL by going through
all query examples described in the specification [8] and developing the cor-
responding LINQ queries. As a result all of the examples could be expressed
with our language. OPC UA allows to have its information models extended by
new properties and references not only on type level but also on instance level.
Therefore, there may be references for which no code was generated from the
information model, yet. To use our DSL also in these cases we provide helper
methods that generically access references and properties of within an address
space as shown in Listing 4. Of course, some big advantages, i.e., the type safety
and code completion features of our DSL are not available in this scenario.

Is the development with the DSL more efficient than creating lower
level code? Even though an additional component, i.e., the LINQtoOPCUA
generator needs to be maintained, efficiency should be higher than developing
queries in lower level code. Especially, as the reduction in amount of lines of
code is about an order of magnitude. The queries described as reference in the
specification [8] could be expressed using LINQ with 3 to 10 lines of code.

Does it make sense to have this DSL for OPC UA? The OPC UA spec-
ification already proposes to use some kind of DSL for this use case. Using the
LINQ-based solution provides a lightweight solution for it. Being an internal DSL
that is well integrated into the IDE, consisting only of a few additional mapping
classes, the effort for creating and maintain this DSL amortizes quickly. Thus,
projects using the Event Filter or Query mechanisms benefit from the use of this
DSL.

An Internal DSL for Constructing OPC UA Queries and Event Filters 73

Listing 4. LinqToOpcua generic access

from controller in controllers
from fieldbus in NavigateReference (Controller , ”Controls”)
from device in NavigateReference (fieldbus , ”ConnectedTo”)
select new {ControllerSN = GetProperty(controller , ”SerialNumber”) ,

FieldbusName = GetProperty(fieldbus , ”TypeName”) ,
DeviceSN = GetProperty(device , ”SerialNumber”) };

5 Conclusions and Future Work

In this paper, we presented a DSL for developing OPC UA event filters and
queries based on (generated) information model classes and LINQ. We facili-
tate the existence of information model classes which exist for OPC UA object
types, their properties and references to base LINQ queries on them. Having
the information model accessible on code level allows for type safe definition of
LINQ queries. Using a such queries and the corresponding information model
as input we can instantiate the appropriate classes given by OPC UA SDKs.
Furthermore, as LINQ is a part of the standard .Net programming model many
developers are already familiar to its syntax. Having a defined mapping to OPC
UA allows them to reuse their knowledge in the automation domain.

Future work will deal with introducing the LINQToOPCUA DSL in current
OPC UA development projects within ABB. Based on the experience gained in
these projects we will be able to improve the DSL and assess its usability and
impact on developer efficiency.

References

1. OPC Foundation: OPC UA Specification: Part 3 - Address Space Model (2010),
http://opcfoundation.org/UA/Part3

2. CommServer: OPC UA Address Space Model Designer (2011),
http://www.commsvr.com

3. Unified Automation GmbH: UaModeler (2011),
http://www.unified-automation.com

4. OPC Foundation: OPC UA SDK 1.01 (2011),
http://www.opcfoundation.org

5. Goldschmidt, T., Mahnke, W.: Evaluating domain-specific languages for the devel-
opment of OPC UA based applications. In: 7th Vienna International Conference on
Mathematical Modelling (MATHMOD)Special Session Modelling and Model Trans-
formation in Automation Technologies (2012)

6. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional (2010)
7. Marguerie, F., Eichert, S., Wooley, J.: LINQ in action. Manning Publications Co.,

Greenwich (2008)
8. OPC Foundation: OPC UA Specification: Part 4 - Services (2010),

http://opcfoundation.org/UA/Part4

9. Torgersen, M.: Querying in C#: how language integrated query (LINQ) works. In:
Companion to the 22nd ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems and Applications Companion, OOPSLA 2007, pp. 852–853. ACM,
New York (2007)

http://opcfoundation.org/UA/Part3
http://www.commsvr.com
http://www.unified-automation.com
http://www.opcfoundation.org
http://opcfoundation.org/UA/Part4

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 74–89, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Combining UML Sequence and State Machine Diagrams
for Data-Flow Based Integration Testing

Lionel Briand1, Yvan Labiche2, and Yanhua Liu2

1 Centre for Security, Reliability, and Trust (SnT), University of Luxembourg, Luxembourg
lionel.briand@uni.lu

2 Carleton University, SQUALL Lab, 1125 Colonel By Drive, Ottawa, ON, K1S5B6, Canada
{labiche,yliu}@sce.carleton.ca

Abstract. UML interaction diagrams are used during integration testing.
However, this will typically not find all integration faults as some incorrect be-
haviors are only exhibited in certain states of the collaborating classes during
interactions. State machine diagrams are typically used to model the behavior of
state-dependent objects. This paper presents a technique to enhance interaction
testing by accounting for state-based behavior as well as data-flow information.
UML sequence and state machine diagrams are combined into a control-flow
graph to then generate integration test cases, adapting well-known coupling-
based, data-flow testing criteria. In order to assess our technique, we developed
a prototype tool and applied it on a small case study. The results suggest that
the proposed technique is more cost-effective than the most closely related ap-
proach reported in the literature, which only relies on control flow analysis.

Keywords: UML 2, Interaction diagram, State machine, Data flow, Coupling,
Integration testing.

1 Introduction

In an object-oriented system, objects collaborate to provide functionalities. Even
when classes have been unit tested thoroughly, unexpected failures may arise when
they collaborate, leading to the identification of integration faults. Class integration
testing focuses on class interactions to ensure functional correctness.

The Unified Modeling Language (UML) has become the de-facto standard for
analysis and design of object-oriented software systems [1]. A number of papers (e.g.,
[2-7]) have proposed test case generation strategies from different UML design arti-
facts: interaction diagrams (sequence or communication diagrams) have been used to
test class integration [2], interaction diagrams along with state machine diagrams have
been used for state-based integration testing [3, 5, 7], and state machine diagrams
have been used to perform unit testing [4].

The interactions among different instances can be specified using UML sequence
diagrams, which are therefore suitable diagrams for integration testing [2]. However,
testing interactions among classes based solely on those diagrams is not enough to
find all integration faults as some incorrect behaviours are only exhibited in certain

 Combining UML Sequence and State Machine Diagrams 75

states of the collaborating objects during an interaction. This has somewhat been con-
firmed [8] since experimental results show that test suites derived from sequence
diagrams and test suites derived from state machines find complementary sets of
faults. Others showed that combining sequence and state information leads to detect-
ing faults in the implementation of guard conditions and that such faults would not
necessarily be found by solely using sequence diagrams [7]. Thus, one of our objec-
tives is to generate class integration test cases from a combination of sequence and
state machine diagrams, as suggested by others [9], so as to fully exercise the state-
based behavior of interacting objects to uncover state-dependent interaction faults.

Note that a system under test may have several sequence diagrams to model its use
cases. Our approach will not take all sequence diagrams as inputs. Instead, we only
focus on one use case / sequence diagram at a time (e.g., one could start with the most
critical ones). Additionally, our approach relies on model elements such as messages,
guards, triggers, and actions that have remained unchanged in all versions of UML 2
to date. Unless necessary, we therefore do not indicate any specific version of UML 2
and simply refer to UML in the remainder of the paper.

Adequacy criteria are used to avoid exhaustive testing, which is often impractical
(if even feasible), while gaining sufficient confidence in the system under test. One of
our objectives is to offer a set of adequacy criteria for our test model built by combin-
ing sequence and state machine diagrams. Previous research, both theoretical and
empirical, has revealed that data- and control-flow strategies may be complementary.
Since previous test case generation strategies, comparable to ours, rely on control-
flow criteria, we define data-flow criteria for our test model.

The rest of the paper is organized as follows. Section 2 discusses related work. We
then propose a comprehensive methodology to combine UML sequence and state
machine diagrams in one test model to conduct coupling-based, data-flow analysis. A
set of mapping rules from a UML sequence diagram and state machine diagrams to
the test model are formalized by using OCL (Section 3): rules match messages in
sequence diagrams to state machine transitions, integrating state machine information
into a control flow graph derived from a sequence diagram. Data flow information is
analyzed based on the input models, operation signatures and operation contracts, and
coupling data-flow criteria are applied to derive test cases (Section 4). A prototype
tool has been developed to semi-automate the methodology. A case study is reported
in section 5, where we study the cost-effectiveness of our approach and compare it to
a previously published one. Conclusions and future work are outlined in section 0.

2 Related Work

There is a plethora of testing techniques based on one or more of the most used UML
diagrams: class, activity, sequence, state machine diagrams. For instance, a quick
search (conducted in March 2011) on Inspec and Engineering Village databases for
papers published between 2007 and 2011 with keywords “testing”, “UML”, and “se-
quence diagram” (to be searched in titles, abstracts and keywords) resulted in a list of
more than 36 unique publications. It is not our intent here to discuss them all, or even
list them all, since most of them do not relate closely to our objective: How can we
account for the fact that messages in sequence diagrams can be received by objects in

76 L. Briand, Y. Labiche, and Y. Liu

different states? Furthermore, none of these papers attempts to apply data-flow crite-
ria. We rather focus below on the few published approaches that attempt to combine
sequence and state machine diagrams [3, 7, 10-16].

One approach is to combine the class, sequence and state machine diagrams to create
a test model, a form of control flow graph with data-flow information [7]. Data-flow
information pertains to variable assignments from sequence diagrams (i.e., arguments
passed to messages, return values used to set variables) and post-conditions of opera-
tions triggered by messages. In the combination process, a sequence diagram becomes a
control flow graph, that is extended thanks to state machine diagrams (the ones of the
classes whose instances are used in the sequence diagram) as follows: if a message in a
sequence diagram fires at least one transition in a state machine, the extended control
flow graph contains as many nodes/messages as transitions that can potentially be fired,
thereby specifying the alternative behaviours that can be triggered. Only control flow
criteria (i.e., node, edge, path coverage) are then used to derive test sequences: the data
flow information is not used for test case selection; data flow information is used to
identify test inputs. A similar combination procedure is described by Ali et al. [3]
though from UML 1.x statecharts and collaboration diagrams. No data-flow criterion is
used to select test cases. Other similar combinations have been proposed [12, 13], some-
times extending Ali et. al. procedure. Again, only control flow criteria are used to select
test cases. Instead of sequence diagrams, some authors combine statecharts and activity
diagrams (e.g., [14, 15]). The combination procedures are similar to the ones previously
mentioned, and only control flow criteria are used. Sokenou suggests that for each
sequence of messages identified in a sequence diagram, an initialization sequence be
identified from statecharts [16]. This requires, similarly to the approaches discussed so
far, that we identify in which states messages in sequence diagrams can be triggered and
received.

The main differences between these works and our work are twofold: we create a
different control flow graph test model, and use data-flow test criteria, which they do
not. With respect to the latter difference, although previous test models sometimes
contain data-flow information [7] (though to a lesser extent as they do not identify
uses and definitions of variables for instance), data-flow information is not used to
build test sequences (i.e., using data-flow adequacy criteria). Rather it is used to help
find test inputs for test sequences derived from control-flow criteria. With respect to
the construction of the test models, our approach is different in one or more of the
following ways: we support the UML 2 notation to a larger extent (e.g., not all pre-
vious approaches support asynchronous messages or “par” combined fragments); we
believe our solution is more flexible since we make fewer assumptions with respect to
the consistency between the sequence and the state machine diagrams (e.g., some
previous works assume that the sequence of messages received by a lifeline is a legal
sequence of transitions in the state machine describing the behaviour of the lifeline’s
object, whereas we acknowledge their could be some inconsistencies between the two
depending on the level of details the designer put in the diagrams); our test model
accurately represents nested calls (it is not possible in previous test models to identify
which message triggers which other messages—calls are flattened, similarly to [17]).
This latter difference about the test model is very important since without information
on nested calls, it is impossible to apply criteria specifically targeting interactions
between callers and callees.

 Combining UML Sequence and State Machine Diagrams 77

Another related work [10] relies on AUML sequence and state machine dia-
grams—AUML is at the same time an extension of UML for specifying agents and
testing interactions between them, and a subset of the UML notation. The authors
transform those diagrams into a Maude (formal) model, which is used as test model.
There is, however, no combination of the sequence and state machine diagrams since
the Maude’s rewriting rules are only derived from the state machines describing the
behaviour of the communicating agents.

Sequence diagrams are also used as test objectives to trigger sequences of transi-
tions in state machines [6, 11, 18-20]. In essence, the authors rely on existing, user-
defined (control-flow) test objectives specified as sequence diagrams whereas we
intend to (semi-)automatically identify (data-flow) test objectives.

Other related work extends the information provided in sequence diagrams with
possible polymorphic messages, i.e., messages that can potentially trigger polymor-
phic calls [21], instead of state information. This work is complementary to ours and
we will study the possibility of combining both approaches in our future work.

Earlier most cited works in the domain include test case generation from UML 1.x
collaboration diagrams [2], from communicating finite state machines [5], from
communicating UML 1.x statecharts [22]. Our work differs as we combine sequence
and state machine diagrams into one test model and use data-flow testing criteria.

3 Message/Event/Action Control Flow Graph (MEACFG)

We transform a sequence diagram and state machine diagrams (of the classes in-
volved in the sequence diagram) into a control flow graph—our test model—which
we model as an activity diagram. We describe the construction of our test model in
two steps, for illustration purposes only (i.e., our tool generates the test model in one
step): we represent the control flow relationship among the messages of the UML
sequence diagram (section 3.1) and add state information from state machine dia-
grams, matching messages in sequence diagrams to state machine transitions (section
3.2). The figures in this section and in section 4 illustrate different, un-related abstract
examples, instead of one running example, as this allows us to present the main as-
pects of our approach in a condensed way: a (real) running example illustrating the
same aspects would involve much larger diagrams that would not fit in a conference
paper. Section 4 describes the use of the test model to generate test cases.

3.1 From a UML Sequence Diagram to a Control Flow Graph

A message control flow graph (MCFG) represents a UML sequence diagram using
the UML activity diagram notation. Executable nodes in the MCFG for a sequence
diagram correspond to messages in the sequence diagram, while control nodes show
the sequence of execution of messages and object nodes show data-flow. In the fol-
lowing, UML metaclasses are written in courier font.

MCFG nodes are of three types: control nodes, executable nodes, and object nodes.
A control node can be one of the following: initial node, final node, fork node, join
node, decision node, and merge node. Each MCFG has a single initial node and final

78 L. Briand, Y. Labiche, and Y. Liu

node. An executable node in the MCFG is an Action node, which may be a Structu-
redActivityNode or a CallOperationAction (specializations of Action), corres-
ponding to a message in the sequence diagram that either triggers other messages or
not, respectively. A structured activity node contains several executable nodes, con-
trol nodes, and object nodes, which indicates a call hierarchy among messages in the
sequence diagram. Each structured activity node has its own initial and final nodes.
CallOperationActions and StructuredActivityNodes can have pre- and post-
conditions. An ObjectNode is used in an Activity to indicate object flow. In the
MCFG, object nodes are used to specify input and output parameters for each opera-
tion shown in the sequence diagram and show object flow between actions (class
Pin). An ActivityPartition records the target of a message/call whereas we can get
the source of a message/call from its nesting node in the MCFG. If a node corres-
ponding to a message is nested in a structured activity node, then the structured activi-
ty node is the source of the message.

We assume the ExecutionSpecification (a.k.a. activation bar in UML 1.x) is
specified on the lifeline of the sequence diagram. This is to ensure that we can unam-
biguously identify messages that trigger each other. For instance, Fig. 1 (a) does not
have execution specifications and is ambiguous as it can correspond to either figure
(b) or (c): in figure (a), one does not know whether message m4 is invoked by m1 or
m3. Since some CASE tools, such as IBM RSA, support ExecutionSpecification,
we consider this a reasonable assumption.

a:A b:B

m1

m2

m3

m4

a:A b:B

m1

m2

m3

m4

a:A b:B

m1

m2

m3

m4

 (a) (b) (c)

Fig. 1. Usefulness of execution specifications

The construction of a MCFG for a sequence diagram is detailed below where we
show how each important UML sequence diagram construct is transformed into a
MCFG construct. To facilitate the discussion, we use the example of Fig. 2: sequence
diagram (left) and corresponding MCFG (right); where node m1 (MCFG) denotes
message m1 (sequence diagram), pre- and post-conditions of the operation invoked by
message m1 are constraints associated with node m1, and g1 is a guard condition. Ste-
reotypes conform to UML notations [23]: a StructuredActivityNode has a <<Struc-
tured>> stereotype; the pre- and post-conditions of a node (obtained from the class
diagram) have <<localPrecondition>> and <<local-Postcondition>> stereotypes;
nodes inside a LoopNode have <<LoopSetup>>, <<LoopTest>>, and <<LoopBody>>
stereotypes for each section of a LoopNode, respectively. Additional examples illu-
strating the transformation can be found in [24].

 Combining UML Sequence and State Machine Diagrams 79

Each synchronous message that does not trigger any other message is transformed
into a CallOperationAction. A synchronous message that triggers other messages is
transformed into a StructuredActivityNode, containing activity nodes correspond-
ing to the messages it triggers. In Fig. 2, m1 invokes m2 and therefore m1 is trans-
formed into a StructuredActivityNode that contains an ActivityNode representing
m2: more specifically m1 contains a loop since m2 appears in a loop combined fragment
(loops are discussed below). Structured activity node m1 has two input pins, for the
two parameters of message m1 in the sequence diagram.

UML defines different message sorts, two basic forms of which are operation calls
and signals. If a message is an operation call, the pre- and post-condition of the mes-
sage are those of the operation. If a message is a signal, i.e., the specification of an
asynchronous communication between objects, it is realized by an operation, usually
called the signal handler. There are two ways to specify the handler of a signal. One is
to declare an operation with stereotype <<signal>>, which has the same name as the
signal, in the class or interface to indicate the receipt of the signal. In this case, the
pre- and post-conditions of a signal are those of the signal handler operation. Another
way is to use a signal as a trigger of a transition in the receiver’s state machine. The
actions on the transition are the handlers of the signal. In this case, the signal is just a
trigger to invoke the handlers and its pre- and post-conditions are empty.

If a message does not have a sender lifeline or is sent by an actor, we specify a
node contained by the activity corresponding to that sequence diagram. If a message
is sent several times to the same object, we create several nodes in the MCFG.

par

alt

a:A c:Cb:B

m1(a,b)

loop
result=m2()

[1,3] [g1]

m3()

m4()

[g2]

ref Interaction -N
[else]

m3
<<structured>> m1

LoopNode

a:String b:Integer

MCFG(Inter
action -N)

[else]

m4

[g2]

<<loop setup >>

<<loopVariableInput >>
count =0 <<loop test >>

(count <=1
or (count <=3
and g 1))

<<loop body >>

m2

result:Integer

<<localPrecondition >>
{a>0 and b >0}

Fig. 2. A sequence diagram and its corresponding MCFG

80 L. Briand, Y. Labiche, and Y. Liu

par combined fragments and asynchronous messages denote concurrent execu-
tions, which we specify with fork and join nodes. In Fig. 2, the sequence diagram is
made of a par combined fragment (to divide the sequence of messages m1 and m3
from the alternative combined fragment containing m4). Additionally, in the first part
of the par combined fragment, message m1 is asynchronous. This results in two fork
nodes and two join nodes in the activity diagram. It is important to note that, referring
to Fig. 2, although the sequence diagram does not specify when the asynchronous call
m3 will eventually finish (and return), the corresponding MCFG does indicate that m3
will not finish after m1. The behaviour specified in the MCFG therefore does not nec-
essarily correspond to what was initially intended in the sequence diagram. We made
this decision anyway since we needed to specify a behaviour that is possibly coherent
with the sequence diagram. Plus, without additional information about m1 and m3 (e.g.,
expected execution times) it is not possible to specify exactly the same behaviour as
in the sequence diagram: we do not know where to place the merge node for the asyn-
chronous message. As a result, some data flow information may not be accurate: ei-
ther false positive or false negative. Only additional case studies will tell us the extent
of the impact of our decision. Future work could look into using the MARTE profile
when specifying the sequence diagram to obtain a more consistent MCFG.

A loop combined fragment is specified with a LoopNode, and its setup, test, and
body sections [1, 23], specified inside the structured activity node with different ste-
reotypes (Fig. 2). The loop body is a structured activity node containing nodes for the
messages inside the loop combined fragment. Nothing in a loop combined fragment
really corresponds to a loop setup, which is therefore empty. The test section is a Boo-
lean expression evaluated before or after the body section, depending on the value of
attribute isTestedFirst of the loop node object [23]. Since a loop combined frag-
ment is a ‘while’ loop, attribute isTestFirst is set to true for each loop node in the
MCFG. In a loop combined fragment, the guard may include a lower and an upper
number of iterations as well as a Boolean expression. After the minimum number of
iterations has executed, if either the Boolean expression is false or the maximum
number of iterations is reached1, then the loop terminates [23]. In Fig. 2, [1, 3] de-
notes the minimum and maximum number of iterations, and [g1] indicates the Boo-
lean expression to be satisfied. To model such a complex condition in the MCFG, we
add a variable, named count with stereotype <<loopVariableInput>> [1], to the loop
node to count the number of iterations (Fig. 2). Although not shown in Fig. 2, all
paths inside the body section of the loop node finish with an activity node increment-
ing variable count. Then, we can write the test section of the loop node as follows2:

count <= minimum or

(count <= maximum and Boolean_expression_in_loop_combined_fragment).

An alt combined fragment denotes alternative flows of messages, each flow being
specified in an interaction operand. This is rendered in our MCFG with a decision

1 If there is only one number, the loop executes a fixed number of times. If there is no mini-

mum and maximum numbers, the loop lower and upper bounds are considered to be 0 and
infinity, and the Boolean expression solely determines the number of iterations.

2 This general form can be modified if the loop combined fragment has only a min and max
number of iterations, only a fixed number of iterations, or only a Boolean expression.

 Combining UML Sequence and State Machine Diagrams 81

node with as many outgoing edges as interaction operands, and a merge node for
merging the different flows. Each outgoing edge of the first decision node has a
guard, the one of the corresponding interaction operand. An opt combined fragment
is a specific case that specifies only one interaction operand.

A break combined fragment specifies a behaviour triggered only under a specific
condition and otherwise skipped. When the condition is true, and the corresponding
behaviour finishes, the flow jumps to the end of the enclosing interaction fragment
(some behaviour of the enclosing interaction fragment is skipped). So a break com-
bined fragment is represented as a decision node with two outgoing edges: one skip-
ping the conditional behaviour and one flowing to the conditional behaviour. The
flow after the conditional behaviour does not merge the skipping flow (as in an opt).
Instead, it merges a control node that corresponds to the end of the enclosing interac-
tion fragment. This can be one of the following: (1) a decision (merge) node if the
enclosing interaction fragment is an alt or an opt combined fragment; (2) a join node
if the enclosing interaction fragment is a par combined fragment; (3) a node right
after a loop node, if the enclosing interaction fragment is a loop combined fragment;
(4) the final node of the activity diagram, if none of the above applies.

An InteractionUse interaction fragment refers to an interaction, i.e., another se-
quence diagram. This is modeled in our MCFG as a CallBehaviorAction named
after the InteractionUse name (Fig. 2). This CallBehaviorAction can have input
and output pins if the InteractionUse has actual parameters.

There are other types of combined fragments, namely critical, neg, assert,
strict, seq, ignore and consider. These are considered to be less used by modelers
and we do not account for them. Future work will look into that issue.

Messages in a sequence diagram may have parameters and return values. This is
modeled in our MCFG as InputPins and OutputPins of nodes (either CallOperatio-
nAction or StructuredActivityNode) corresponding to messages. For an in parame-
ter, an InputPin is added to the node, with appropriate type obtained from the class
diagram. For an out parameter or a return value, an OutputPin is added to the node.
If a parameter is an inout parameter, we add both an InputPin and an OutputPin.
These pins are useful for identifying definitions and uses of variables in the MCFG. In
Fig. 2, parameters a and b of message m1 are modeled as two input pins with corres-
ponding types, shown at the boundary of the structured activity node m1. Similarly,
the return value of message m2 is modeled as an output pin of node m2, which indi-
cates that m2 delivers a value back to m1.

The MCFG also contains notes describing pre- and post-conditions of operations,
obtained from the class diagram: one example is illustrated in Fig. 2 for node m1.

A sequence diagram may show recursive calls, which are not handled in our
MCFG generation. However, we consider that the behaviour models we are dealing
with are not at the level of detail where recursion would appear. Indeed, we consider
recursion to be a low-level design decision (algorithm) whereas we are using analysis
and high-level design models as input.

82 L. Briand, Y. Labiche, and Y. Liu

3.2 Adding State Information

A message in a sequence diagram can trigger transitions in some state machines. Add-
ing state information to the MCFG is to identify, as accurately as possible, the transi-
tions in state machines that may be fired by messages.

In UML one can add a StateInvariant on a Lifeline to specify conditions that
hold before or after a message or sequence of messages. If such information is availa-
ble, we can precisely identify which transition(s) in the state machine of the target
object of the message(s) is actually triggered by the message. If the actions resulting
from firing a transition are not shown in the sequence diagram (i.e., the message firing
the transition should trigger messages corresponding to actions), this information can
be added to the MCFG (i.e., nested node). The obtained MEACFG combines the be-
haviours specified in a sequence diagram and state machines.

If state invariants are not specified on lifelines, we proceed as follows. For each
MCFG node n, that corresponds to message m, if the behaviour of the receiver of m is
not specified by a state machine, then we do not modify the MCFG. Should the oppo-
site occur, we look at the state machine, and identify transitions that m triggers. (Note
that we only support explicit triggers and do not handle completion events in the state
machine.) Then, we add to the MCFG the behaviour(s) specified in the state machine
when m triggers those transitions. Three different situations can occur:

Case 1: Node n is a CallOperationAction instance, i.e., m does not invoke any in-
terclass message. (We assume that intra-class messages may have been omitted to
simplify the sequence diagram, but that interclass messages should always be speci-
fied.) The transitions fired by m should not have any (interclass) operations or signals
as actions (consistency between the diagrams). However, it is possible that the transi-
tions have intra-class operations or signals as actions. What the message is doing to
the object may be specified in the state machine but not in the sequence diagram.
Therefore, the transitions that m can trigger are those without any action or those with
intra-class operations or signals as actions.

Case 2: Node n is a StructuredActivityNode instance (except loop nodes), i.e., m
invokes other messages, and the messages triggered by m should match some se-
quences of transition actions in the state machine of the recipient of m (consistency
between the diagrams). The transitions that m can fire are those with actions matching
the messages triggered by m.

Case 3: No matching is possible. In this case, we consider there is an inconsistency
between the diagrams, which has to be resolved by the user.

Fig. 3 illustrates cases 1 and 2 for the same state machine (left). In Fig. (a), MCFG
node m1 is an action node representing message m1 in the sequence diagram. Since m1
doesn’t invoke any inter-class message, both transitions t1 (no resultant action) and
t2 (the resultant action is an intra-class operation) in the state machine correspond to
the sequence diagram (assuming action a1() is an intra-class action, whereas m2()
and m3() are not). In Fig. (b), m1 is a structured activity node corresponding to mes-
sage m1 in the sequence diagram: m1 invokes messages m2 and m3. Therefore, transi-
tion t3 in the state machine is the behaviour triggered by m1 in this sequence diagram
as messages invoked by m1 match the sequence of actions (m2 and m3) on t3.

 Combining UML Sequence and State Machine Diagrams 83

Once we have identified transition(s) matching a message m, state, guard condition,
and additional action information on the transitions are added to the MCFG, produc-
ing the MEACFG. If there is only one identified transition, the source state and target
state of the transition are transformed into Boolean expressions that are associated
with the incoming and outgoing edges of the executable node n in the MEACFG re-
spectively. This is the case of Fig. 3 (b), and the procedure above leads to Fig. 4 (b).
The format of the Boolean expressions is [objectName.state = stateName] where
objectName is derived from the lifeline of the sequence diagram, and stateName is
obtained from the state machine diagram of the object. If a class has a state attribute,
we use it in the Boolean expression directly. Otherwise, a state attribute is added to
the class implicitly for generating test cases and deriving test oracle.

If there are actions on the transition, m invokes operations. Thus, n is a structured
activity node, and contains nodes specifying invoked actions. The first action on the
transition is connected to the outgoing edge of the initial node in n, and the outgoing
edge of the last action is connected to the flow final node. Actions connect to each
other according to their written order on the transition.

If there is more than one identified transition that message m can fire, a decision
node is added to specify alternative paths resulting from several fired transitions. Each
path corresponds to one of those transitions. For each transition, and therefore for
each outgoing edge from the decision node, the approach described above is applied.
The paths then merge into another decision node. This is illustrated in Fig. 4 (a) that is
derived from Fig. 3 (a): the alternatives indicate that what happens in the MCFG node
m1 in Fig. 3 (a) depends on whether the state of the object is S1 (m1 is triggered as part
of transition t1 and the new state is S2) or S2 (m1 is triggered as part of transition t2,
which triggers a1, and the new state is S3).

a:A b:B

m1()

a:A b:B

m1()

c:C

m2()

d:D

m3()

(a) (b)

m1

m2

m3

Fig. 3. Illustrating the recovery of state information

4 Coupling-Based Testing of Class Interactions

The MEACFG test model is more complete than previous attempts (i.e., a larger por-
tion of the UML standard is accounted for), as discussed in section 2. With this test
model, one can use control-flow adequacy criteria as in previous works, but also data-
flow criteria as discussed below.

S1 S2
m1()

S3

m1() /
c.m2(), d.m3()

t1

t2t3

m 1() / a1()
m1

84 L. Briand, Y. Labiche, and Y. Liu

Coupling-based data-flow criteria for integration testing of procedural software
[25] have been adapted to class integration testing [26]. We adapt them to model-
based integration testing, and use them to generate integration test cases. In a nutshell,
the criteria [25, 26] are to exercise paths between the last definitions of variables be-
fore calls to and returns from the called operation, and the first uses of variables after
calls to and returns from the called operation. Due to space constraints we refer the
reader to [24-26] for more details on these criteria. What matters and requires a de-
tailed discussion is how we identify definitions and uses of variables in a MEACFG,
which we discuss below and illustrate with Fig. 5: (a) sequence diagram and (b) cor-
responding MEACFG (definitions and uses are indicated on the side of the diagram,
for illustration purposes only). (The corresponding class diagram is not shown.)

A MEACFG is a control flow graph showing sequences of executions of opera-
tions (nodes) and calls between these operations (structured activity nodes). A struc-
tured activity node (e.g., node m1) is a caller message/operation and its nested nodes
(e.g., node m3) are called messages/operations: each pair (n1, n2) in the MEACFG
where n1 is a structured activity node and n2 is a node (either structured activity or
not) representing a message denotes a call, n2 being the call site, i.e., the place in the
control flow indicating the call; for instance pairs (m1, m2), (m1, m3) and (m1, m4)
represent the three calls m1 makes, m2, m3, and m4 denoting call sites.

As discussed earlier, actual parameters, mapping formal ones, and return values
become pins. For instance, actual parameter pf1 of operation m1, maps to formal In-
teger parameter pa1, and becomes an input pin to structured activity node m1. With
respect to data-flow, input pins denote uses whereas output pins denote definitions.

All the formal parameters of a caller message are specified as being defined in the
initial node of the corresponding structured activity node, e.g., formal parameter pa1
is defined in the initial node of structured activity node m1. Additionally, any local
variable in a structured activity node is considered to be defined in the initial node of
that structured activity node, e.g., lP, and at for m1. We consider a variable to be local
when it is not an attribute or reference that can be accessed (directly or through a
navigation) from the context object executing the corresponding (enclosing) opera-
tion/message. The return value of a structured activity node, if there is one, is also
specified as being defined at the initial node of the structured activity node, e.g. ret
for node m1. These ensure that if our analysis does not detect any definition of such
variables/parameters between the initial node of the structured activity node and a call
site (where one of the variables would be passed as an actual parameter) we have at
least one coupling-definition involving the use of that variable at the call site. This is

 (a) (b)

Fig. 4. MEACFG: MCFG plus state information

 Combining UML Sequence and State Machine Diagrams 85

a conservative heuristic to ensure that uses of variables/parameters are exercised by
the testing criteria. This may however result in coupling-definitions that do not exist,
e.g., if there is a definition between the initial node of the structured activity node and
the call site that we cannot detect, the coupling-definition we identify with our heuris-
tic is not the right one. Only case studies will tell us the extent of false-positives. Such
a heuristic is necessary since we decided to work only from models, which are, in
essence, abstractions.

This data flow information is solely retrieved from operation signatures (from the
class diagram). Additional data flow information is identified from guard conditions
(e.g., alt and loop combined fragments), state invariants, and operation contracts.
Guard conditions such as g1 and g2 in Fig. 5, if expressed in OCL, can be analyzed
automatically to identify the variables, formal parameters, attributes, links they mani-
pulate, and which translate into uses on edges in the MEACFG. For the analysis of
OCL expressions, we rely on a previous work [4] where the authors defined a set of
rules to systematically analyze OCL expressions and identify definitions and uses of
model elements (attributes, links, collections, …). Possible types of uses and defini-
tions have been formally specified using OCL expressions, based on the MEACFG
metamodel, which can be found in [24] along with illustrating examples.

m6()

alt at=m2()

c1:C1 c2:C2 c3:C3 c4:C4 c5:C5

m1(pf1)

[g1]

[g2]
m3(pa1)

ret=m4(at, lP) m5(lArg)

ret

ret2

<<structured >> m1

m2

m3
[g2]

[g1]

<<structured>> m4

m5

m6

Def: pa1, lP, at, ret

pa1:Integerpf1:Integer

at :String

Use: pa1

lP:Integer

Use: lP, at
Def: ret

lArg:Integer

Use:lArgDef: lArg , ret2

at :String

rRet:Boolean

Def: at

 (a) (b)

Fig. 5. Illustrating data flow in MEACFG

For the MEACFG, annotated with data-flow information as discussed above,
coupling-based testing criteria [25, 26], and a graph algorithm to identify test objec-
tives for these criteria (typically definition-clear paths) and then test paths (i.e., com-
plete paths, from start node to end node, in the MEACFG), can be readily applied.
Given such test objectives and test paths, our approach relies on manual identification
of test inputs to make test paths executable. In the future we will investigate a solution
to automatically identify such test inputs [7, 27]. What we presented above applies
directly to the notion of parameter coupling, i.e., when two operations interact
through parameters. Other types of coupling [25], e.g., shared variable coupling

86 L. Briand, Y. Labiche, and Y. Liu

(which in our context can translate into attribute coupling), can be accounted for in a
similar way.

5 Case Study

To conduct our case study we implemented our approach as an Eclipse plugin using
IBM Rational Software Architect (RSA). It is based on EMF (to model the
MEACFG) and RSA’s model-to-model transform engine (to create a MEACFG from
a sequence diagram and related state machine diagrams). More details about the tool
architecture are available in [24].

To validate our approach, we compared it with SCOTEM [3], as our approach is
closely related to it. In doing so we want to investigate whether using data-flow crite-
ria (our approach) improves fault detection over control-flow criteria (SCOTEM).
Indeed, the SCOTEM approach supports four control-flow testing criteria to generate
test paths: Single-Path, Transition, n-Path, and Path testing criteria. Another compari-
son that could be investigated is with [7] though, as described above, this approach
covers a smaller subset of the UML notation and relies on additional assumptions
about the modeling methodology. We defer this comparison to future work.

We therefore use the same case study system as the one used to evaluate
SCOTEM: the Arithmetic Tutor (AT) system. To determine the effectiveness of our
approach, we seeded faults into the code, using mutation operators, as has been done
in numerous similar experiments and showed to be an adequate way of comparing
testing techniques [28]. We used the same mutant programs as in the SCOTEM case
study since (1) these mutants were carefully selected to be varied (in terms of opera-
tors and locations in the source code) and lead to interaction faults, and (2) this will
allow us to precisely compare the effectiveness of the two approaches. We refer the
reader to [3, 24] for more details on this aspect. Overall, 49 mutants were generated
by using 12 mutation operators.

The AT case study teaches a variety of arithmetic operations to students and pro-
vides self-evaluation of learning activities. It can be run in two modes: training and
assessment. In the training mode, the AT system provides complete, step-wise gradual
explanations for arithmetic operations. Students can choose any type and complexity
of arithmetic operations to learn. In the assessment mode, the AT system randomly
generates a set of operations to evaluate the arithmetic skills of a student, and the
complexity of generated problems is dynamically adjusted according to the student
performance. The detailed performance for each session is logged and the history
record of the student is updated at the end of each session.

The AT system that we consider, and that was used in [3], is an incomplete design
and implementation, which is a simple version of the assessment mode that generates
basic arithmetic operations only, such as addition, subtraction, multiplication, and
division. The problems are generated randomly by the AT system (complexity of
generated problems are not taken into account in our case study). The AT case study
is implemented in Java, and contains nine classes (including 42 methods, 339 LOC):
five of them are specified with state machines (with more than one state). The UML

 Combining UML Sequence and State Machine Diagrams 87

sequence and state machine diagrams are available in [24], where the constructed
MEACFG (with data flow information) can also be found.

Since different test suites for the different criteria could result in different mutation
scores, to provide a meaningful evaluation and also facilitate the comparison with the
SCOTEM approach, we adopted the SCOTEM strategy and chose 10 randomly se-
lected adequate test suites for each testing criterion and calculated the minimum, av-
erage, and maximum mutation scores for each of them. For each criterion, the 10
adequate test suites have the same test paths (in the MEACFG). What differ are the
test inputs to execute the paths.

Test suites generated for the Coupling-Defs criterion have six paths, which de-
tected 45 to 49 mutants. The mutation score of a Coupling-Defs adequate test suite
was 98% on average. Call-Sites, Coupling-Uses, and Coupling-Paths criteria generat-
ed 18, 18, and 27 test paths, respectively, and adequate test suites were all able to
detect all mutants, which is probably due to the fact that the case study is simple.

A qualitative investigation of alive mutants when using Coupling-Defs showed that
the mutation operators modified conditional statements. These correspond to guards
in MEACFG edges, and since Coupling-Defs does not necessarily cover those edges,
the corresponding adequate test suites may miss the mutants.

A comparison between SCOTEM and our approach is summarized in Table 1. The
table reports on the different criteria supported by the two approaches, the number of
paths (i.e., test cases) the criteria require, and the mutation score achieved (on average
over 10 adequate test suites).

Table 1. SCOTEM vs. our approach

SCOTEM MEACFG
Criteria Number of

Test paths
Mutant scores on
average

Criteria Number of
Test paths

Mutant scores on
average

Single-Path 1 75% Coupling-Defs 6 98%
Transition 3 91% Call Sites 18 100%
n-Path (n=82) 82 95% Coupling-Uses 18 100%
Path 162 100% Coupling-Paths 27 100%

Single-Path and Transition criteria (SCOTEM), with one and three tests respective-
ly, can only detect less than 91% mutants, and n-Path only kills 95% of the mutants
with many more tests (82). However, Coupling-Defs (MEACFG) kills 98% mutants
with six test paths only. When applying Call Sites, Coupling-Uses and Coupling-
Paths criteria (MEACFG), we only need 18 to 27 test paths to kill all the mutants.
However, to achieve 100% mutation score following the SCOTEM approach, one
needs to execute all the 162 paths, which is much more expensive and may turn out to
be impossible for a larger system. We analyzed mutants that remain alive when fol-
lowing the SCOTEM approach, and we noticed that they are state-related faults: an
object is in a wrong state before receiving a message, or the states of the sending and
receiving objects of a message contradict the specification of the message. Given that
the data-flow criteria specifically focus on definition and uses of variables and some
of the variables specified in the MEACFG are specifically modeling changes of states
(e.g., in conditions), it is not surprising that data-flow adequate test suites have more

88 L. Briand, Y. Labiche, and Y. Liu

chances (with fewer tests) to find those faults. The results of this case study show that
coupling data-flow criteria are effective for selecting test paths from the MEACFG to
detect state faults. Though the case study used is admittedly simple, it nevertheless
shows a significant improvement over SCOTEM, which was our objective.

6 Conclusion

Testing interactions among classes based on UML interaction diagrams may not find
all integration faults as some incorrect behaviors may only be exhibited in certain
states of the collaborating classes during an interaction. Additionally, data-flow test-
ing criteria are known, in general, to complement control-flow ones. Hence, this paper
has presented a comprehensive approach to conduct state-based integration testing
based on coupling data-flow testing criteria. The approach consists in combining in-
formation from a UML 2 sequence diagram and state machine diagrams (of the
classes whose instances are involved in the sequence diagram) and then generating a
control flow graph (a UML activity diagram). It does so while supporting a large por-
tion of the UML 2 sequence and state machine notations. This graph is annotated with
data-flow information, also derived from the UML model (operation signatures, mes-
sage and transition guards, operation contracts), and is used as a test model to derive
test cases according to well known coupling-based, data-flow testing criteria.

The approach has been implemented in a tool and used in a case study to compare
it with the closely related SCOTEM approach. Results show that accounting for state
and coupling-based, data-flow information when deriving tests from sequence dia-
grams is more cost-effective at finding faults than simply relying on control-flow
information (SCOTEM).

Several venues for future work can be identified. Among them we can mention ex-
perimenting with our approach using case study systems of varying complexities,
comparing the cost and effectiveness of the different criteria, comparing it with
SCOTEM, and comparing our approach with other approaches (e.g., [7]).

References

[1] Pender, T.: UML Bible. Wiley (2003)
[2] Abdurazik, A., Offutt, J.: Using UML Collaboration Diagrams for Static Checking and

Test Generation. In: Evans, A., Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS,
vol. 1939, pp. 383–395. Springer, Heidelberg (2000)

[3] Ali, S., Briand, L.C., Rehman, M.J., Asghar, H., Zafar, Z., Nadeem, A.: A State-based
Approach to Integration Testing based on UML Models. IST 49(11-12), 1087–1106
(2007)

[4] Briand, L.C., Labiche, Y., Lin, Q.: Improving the Coverage Criteria of UML State Ma-
chines Using Data Flow Analysis. STVR 20(3), 177–207 (2010)

[5] Gallagher, L., Offutt, A.J., Cincotta, A.: Integration testing of object-oriented compo-
nents using finite state machines. STVR 16(4), 215–266 (2006)

[6] Pelliccione, P., Muccini, H., Bucchiarone, A., Facchini, F.: TeStor: Deriving Test Se-
quences from Model-based Specifications. In: ACM CBSE, pp. 267–282 (2005)

 Combining UML Sequence and State Machine Diagrams 89

[7] Bandyopadhyay, A., Ghosh, S.: Test input generation using UML sequence and state
machines models. In: IEEE ICST, pp. 121–130 (2009)

[8] Kansomkeat, S., Offutt, J., Abdurazik, A., Baldini, A.: A comparative evaluation of
tests generated from different UML diagrams. In: ACIS SNPD, pp. 867–872 (2008)

[9] Wu, Y., Chen, M.-H., Offutt, A.J.: UML-Based Integration Testing for Component-
Based Software. In: Erdogmus, H., Weng, T. (eds.) ICCBSS 2003. LNCS, vol. 2580,
pp. 251–260. Springer, Heidelberg (2003)

[10] Mokhati, F., Badri, M., Badri, L., Hamidane, F., Bouazdia, S.: “Automated testing se-
quences generation from AUML diagrams: a formal verification of agents’ interaction
protocols”. IJAOSE 2(4), 422–448 (2008)

[11] Pickin, S., Jard, C., Jeron, T., Jezequel, J.-M., Le Traon, Y.: Test synthesis from UML
models of distributed software. IEEE TSE 33(4), 252–268 (2007)

[12] Sarma, M., Mall, R.: Automatic generation of test specifications for coverage of system
state transitions. IST 51(2), 418–432 (2009)

[13] Wu, C.-S., Chang, W.-C., Kim, S., Huang, C.-H.: Generating State-based Polymorphic
Interaction Graph from UML Diagrams for Object Oriented Testing. In: IAENG
IMECS, pp. 726–731 (2011)

[14] Barisas, D., Bareiša, E.: A Software Testing Approach Based on Behavioral UML
Models. ITC 38(2), 119–124 (2009)

[15] Swain, S.K., Mohapatra, D.P., Mall, R.: Test Case Generation Based on State and Ac-
tivity Models. JOT 9(5), 1–27 (2010)

[16] Sokenou, D.: Generating Test Sequences from UML Sequence Diagrams and State Dia-
grams. In: GI Jahrestagung, pp. 236–240 (2006)

[17] Garousi, V., Briand, L.C., Labiche, Y.: Control Flow Analysis of UML 2.0 Sequence
Diagrams. In: ECMFA, pp. 160–174 (2005)

[18] Ledru, Y., du Bousquet, L., Bontron, P., Maury, O., Oriat, C., Potet, M.-L.: Test Pur-
poses: Adapting the Notion of Specification to Testing. In: IEEE ASE, pp. 127–134
(2001)

[19] Li, L., Zhongsheng, Q., He, T.: Test purpose-based test generation for Web applica-
tions. In: IEEE NDT, pp. 238–243 (2009)

[20] En-Nouaary, A., Liu, G.: Timed test cases generation based on test purposes expressed
as message sequence charts. In: IEEE ICTTA, pp. 585–586 (2004)

[21] Zeng, Y., Chen, L.-P., Chai, Y.-X., Zhou, X.: UML-based approach to generate poly-
morphic testing sequence and its implementation. In: WRI WCSE, pp. 251–255 (2009)

[22] Hartmann, J., Imoberdorf, C., Meisinger, M.: UML-Based Integration Testing. In: ACM
ISSTA, pp. 60–70 (2000)

[23] OMG, UML 2.0 Superstructure Specification, Object Management Group, Final
Adopted Specification ptc/03-08-02 (2003)

[24] Liu, Y.: Combining UML 2.0 sequence and state machine diagrams for control- and da-
ta-flow based integration testing, M.A.Sc. thesis, Carleton University (2009)

[25] Jin, Z., Offutt, A.J.: Coupling-based Criteria for Integration Testing. STVR 8(3), 133–
154 (1998)

[26] Briand, L.C., Labiche, Y., Wang, Y.: A comprehensive and systematic methodology for
client-server class integration testing. In: IEEE ISSRE, pp. 14–25 (2003)

[27] Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.C.: A Search-based OCL Constraint Solver
for Model-based Test Data Generation. In: IEEE QSIC (2011)

[28] Andrews, J.H., Briand, L.C., Labiche, Y., Namin, A.S.: Using Mutation Analysis for
Assessing and Comparing Testing Coverage Criteria. IEEE TSE 32(8), 608–624 (2006)

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 90–101, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Model Transformations for Migrating Legacy Models:
An Industrial Case Study

Gehan M.K. Selim1, Shige Wang2, James R. Cordy1, and Juergen Dingel1

1 School of Computing, Queen’s University, Kingston, Ontario, Canada, K7L3N6
2 Electrical and Controls Integration Lab, General Motors Research & Development, Warren,

Michigan, USA, 48090
{gehan,cordy,dingel}@cs.queensu.ca, shige.wang@gm.com

Abstract. Many companies in the automotive industry have adopted MDD in
their vehicle control software development. As a major automotive company,
General Motors has been using a custom-built, domain-specific modeling lan-
guage, implemented as an internal proprietary metamodel, to meet the modeling
needs in its control software development. As AUTOSAR (AUTomotive Open
System ARchitecture) is being developed as a standard to ease the process of
integrating components provided by different suppliers and manufacturers,
there is a growing demand to migrate these GM-specific, legacy models to
AUTOSAR models. Given that AUTOSAR defines its own metamodel for var-
ious system artifacts in automotive software development, we explore using
model transformations to address the challenges in migrating GM legacy mod-
els to their AUTOSAR equivalents. As a case study, we have built a model
transformation using the MDWorkbench tool and the Atlas Transformation
Language (ATL). This paper reports on the case study, makes observations
based on our experience to assist in the development of similar types of trans-
formations, and provides recommendations for further research.

Keywords: Model Driven Development (MDD), model transformations,
AUTOSAR, transformation languages and tools, automotive control software.

1 Introduction

MDD is a relatively new software development methodology that uses models for
software specification and communication. In MDD, software development is a se-
quence of model transformations where abstract models are successively converted
into detailed models, and eventually into code. Model transformations are imple-
mented using a model transformation language, which can be declarative, imperative,
or hybrid. While a declarative language yields a compact specification, an imperative
language is more capable of specifying complex transformations.

As one of the early MDD adopters in industry, General Motors (GM) has created a
domain-specific modeling language, implemented as an internal proprietary metamo-
del, for Vehicle Control Software (VCS) development. The metamodel defines mod-
eling constructs for vehicle control software development, including schedules and
interfaces. VCS models conforming to this metamodel have been used in several ve-
hicle production domains at GM, such as body control and monitoring.

 Model Transformations for Migrating Legacy Models: An Industrial Case Study 91

Recently, AUTOSAR (the AUTomotive Open System ARchitecture) [2] has been
developed as an industry standard to facilitate integration of software components
from different manufacturers and suppliers and enable exchangeability and interope-
rability among them. AUTOSAR defines its own metamodel with a well-defined
layered architecture and interfaces. Since converging to AUTOSAR is a strategic
direction for future modeling activities, transforming GM legacy models to their
equivalent AUTOSAR models becomes essential. Model transformation is a key
enabling technology to achieve this convergence objective.

Despite the existence of studies in MDD industry adoption [19][23], no transfor-
mation is reported to have migrated legacy models in the automotive industry. To test
the practicality of using transformations for migrating industrial legacy models, we
have implemented a transformation of GM legacy models to AUTOSAR models.

The rest of this paper is organized as follows. Section 2 discusses the process con-
text in which our transformation is implemented. Section 3 describes the source and
target metamodels of the transformation. Section 4 details the transformation devel-
opment. Section 5 discusses our experiences and issues that require further research.
Section 6 provides a summary, a comparison to related work and future work.

2 VCS Development, Models and Model Transformations

Applying transformation requires understanding of the development process, which
provides a context for the transformation. The VCS development process is described
as a V-diagram (Fig. 1). The stages on the left-hand side of the V-diagram are design
and implementation activities, and the stages of the right-hand are integration and vali-
dation activities. The design starts from system requirements models, which are de-
composed into hardware and software subsystem requirements models. The subsystem
requirements models then are assigned to engineering groups for refinement into de-
sign models and then implemented by hardware and software components. These im-
plemented components are integrated into Electronic Control Units (ECUs), configured
for a designated vehicle product. The components are then tested at various levels
against their models on the same level on the left-hand side of the V-diagram.

Different types of models in different formalisms are manipulated in the VCS de-
velopment process. For example, control models use differential equations and tim-
ing-variation functions; software models use dataflow diagrams or class diagrams;
and architecture models use annotated block diagrams. Selected modeling tools (e.g.,
Simulink, Rhapsody) and languages (e.g., UML, AADL) are used for modeling.

The transformations used in the VCS development process can be horizontal or
vertical transformations. Horizontal transformations manipulate models at the same
abstraction level but possibly in different formalisms, e.g. transforming a Matlab Sta-
teflow state machine into a UML state machine. Such transformations are normally
used to verify integration of subsystems to realize a system function. The source and
target modeling languages may have different syntax, but must share similar seman-
tics. Vertical transformations manipulate models at different abstraction levels, e.g.
generating a deployment model from software and hardware architecture models.
Vertical transformations are usually more complex than horizontal transformations
due to the different semantics of the source and target models.

92 G.M.K. Selim et al.

Fig. 1. V-Diagram for the VCS development process

3 Source and Target Metamodels

In this study, our models are those generated and used at the software subsystem de-
sign stage in the VCS development process. The source metamodel is an internal,
proprietary GM metamodel which we will refer to as the GM metamodel. The target
metamodel is the AUTOSAR System Template [2]. To simplify the exercise without
losing generality, a subset of the two metamodels is manipulated in the transforma-
tion. Specifically, we focus on the modeling elements related to the software compo-
nents’ deployment and interactions, as discussed below.

3.1 The GM Metamodel

Fig. 2 illustrates the meta-types in the GM metamodel1 that represent the physical
nodes, deployed software components and their interactions. The PhysicalNode type
specifies a physical node on which software is deployed. A PhysicalNode may con-
tain multiple Partition instances, each of which defines a processing unit or a memory

Fig. 2.The subset of the GM metamodel used in our transformation

1 The metamodel has been altered for reasons of confidentiality. However, the relevant as-

pects required for the purpose of this paper have all been preserved.

Scheduler Service

1
1..* 1..*

1..*

provided

required

PhysicalNode Partition Module
1 1* *

 Model Transformations for Migrating Legacy Models: An Industrial Case Study 93

partition on which software is deployed. Multiple Module instances can be deployed
on a single Partition. The Module type is the atomic, reusable element in a product
line and can contain multiple Scheduler instances. The Scheduler type is the basic
unit for software scheduling and manages services provided or required by behavior-
encapsulating entities. Thus, each Scheduler may provide or require many Services.

3.2 The AUTOSAR Metamodel

The AUTOSAR metamodel is defined as a set of templates, each of which is a collec-
tion of classes used to specify an AUTOSAR artifact. The System template [3] is used
to capture the configuration of a system or an Electronic Component Unit (ECU). An
ECU is a physical unit on which software is deployed. When used for the configura-
tion of an ECU, the template is referred to as the ECU Extract. Fig. 3. shows the me-
tatypes in the ECU Extract that capture software deployment on an ECU.

softwareComposition 1

swMapping * 0..1 1..*

ecuInstance 1

mapping 1

component
0..1

* 1

softwareComposition

component 1..*

connector 1..*

port 1..*

System

SystemMapping SoftwareComposition CompositionType

PortPrototype ComponentPrototype

ConnectorPrototype

SwcToEcuMapping

EcuInstance

Fig. 3. The AUTOSAR System Template containing relevant types used by our transformation

The ECU extract contains the System type which aggregates SoftwareComposition
and SystemMapping elements. The SoftwareComposition type points to the
CompositionType type which eliminates any nested software components in a Softwa-
reComposition instance. The SoftwareComposition type models the architecture of the
software components deployed on an ECU, their ports, and the ports’ connectors.
Software components are modeled using the ComponentPrototype type; ports are
modeled using the PPortPrototype type or RPortPrototype type for providing or re-
quiring services; connectors are modeled using the ConnectorPrototype type.

The SystemMapping type binds the software components to ECUs and the data
elements to signals and frames. The SystemMapping type aggregates the SwcToEcu-
Mapping type, which maps ComponentPrototype elements to an EcuInstance. Ac-
cording to AUTOSAR, only one SwcToEcuMapping instance should be created for
every processing unit or memory partition in an ECU.

94 G.M.K. Selim et al.

4 GM-to-AUTOSAR Model Transformation

We implement a GM-to-AUTOSAR model transformation to demonstrate the practi-
cality of adopting transformations in the automotive industry. We rationalize our
choice of the tool and language and we summarize the pragmatics of the chosen lan-
guage. We then discuss the transformation rules and implementation details. Our
transformation takes as inputs the source GM metamodel, the target AUTOSAR sys-
tem template, and an input GM model. The output is an AUTOSAR model.

4.1 Selecting Model Transformation Tool and Language

Several tools and their accompanying languages have been considered for implement-
ing the transformation including IBM Rational Asset Manager (RAM) [13], the Ru-
lesComposer add-on for IBM Rhapsody [14], and MDWorkbench [18].

After investigating the candidate tools, we concluded that IBM RAM and Rules
Composer are not suitable for this transformation. RAM is a repository-based tool that
offers APIs to create relationships between repository assets (e.g. models). The APIs
can manipulate a model as a whole, not the individual model elements. As fine-
grained manipulations are essential for our transformation, the support provided by
RAM is not sufficient. RulesComposer is a rule-based model-to-text generator. Rules
are specified as templates composed of static text and placeholders. When executed,
the static text is copied into the output, and the placeholders are extracted from the
input models. When defining rules, one must ensure that the template generates well-
formed XMI files. Thus, defining the template is time-consuming and error-prone.
Moreover, the rule templates can be very verbose, and thus, difficult to maintain.

MDWorkbench is an Eclipse-based tool for developing model-to-model transfor-
mations using the Atlas Transformation Language (ATL) [1] or the Model Query
Language (MQL) [18]. ATL has declarative and imperative constructs, while MQL
has imperative constructs only. MDWorkbench can manipulate models conforming to
the metamodels registered in the tool (e.g. AUTOSAR) using rules defined in ATL
and MQL. Thus, we choose MDWorkbench to implement the transformation. ATL
was chosen rather than MQL because ATL provides flexibility to mix-and-match
declarative and imperative constructs in the same rule definition.

4.2 ATL Pragmatics

In ATL, a model transformation is defined as a set of rules and helpers. Rules specify
the creation of output model elements. Helpers are used to modularize a transforma-
tion. ATL defines four types of rules and two types of declarative helpers.

Rule Types. The four types of rules are matched rules, lazy rules, unique lazy rules,
and called rules. A matched rule specifies how a source pattern is transformed to a
target pattern. Matched rules are executed in the order of their specification and are
automatically executed once for each matching pattern. A lazy rule is a rule that is
executed only when called for a matching pattern and can be called multiple times for

 Model Transformations for Migrating Legacy Models: An Industrial Case Study 95

any match in the input model. A unique lazy rule is a rule that is executed only when
called and can be called at most once for any match in the input model. A called rule
is a parameterized rule that is executed only when called and creates an element in the
output model without matching any source patterns. The four kinds of rules have an
optional imperative code block to specify complicated functionality.

Matched rules are suitable for automatic detection of all pattern matches in the in-
put model and creation of their corresponding target patterns; lazy rules and unique
lazy rules are suitable for selective pattern matching, with consideration of the num-
ber of times these rules should be run; and called rules are suitable for creating output
model elements that do not match any input model elements.

Helper Types. The two types of helpers are functional helpers and attribute helpers. A
functional helper is a parametric function that is evaluated each time it is called. An
attribute helper is a non-parametric function that is evaluated only in the first call. An
attribute helper is more efficient to implement a non-parametric functionality. Other-
wise, a functional helper can implement a parametric functionality.

4.3 Model Transformation Design and Development

Our transformation rules were crafted in consultation with domain experts at GM to
realize the required mappings between the metamodels. For reasons of confidentiality,
we present a simplified version of the actual rules. Let M be the input GM model and
M’ the to-be-generated output AUTOSAR model. The rules are defined as follows:

1. For every element physNode of the PhysicalNode type in M, generate an
element sys of the System type, an element swcompos of the SoftwareCom-
position type, a containment relation (sys, swcompos), an element compos-
Type of the CompositionType type, a relation (swcompos, composType), an
element sysmap of the SystemMapping type, a containment relation (sys,
sysmap) and an element ecuInst of the EcuInstance type in M’;

2. For every element partition of the Partition type in M, generate an element
swc2ecumap of the SwcToEcuMapping type and a containment relation
(sysmap, swc2ecumap) in M’;

3. For every containment relation (physNode, partition) in M, generate a rela-
tion (swc2ecumap, ecuInst) in M’;

4. For every element mod of the Module type in M, generate an element comp
of the ComponentPrototype type in M’;

5. For every containment relation (partition, mod) in M, generate a containment
relation (composType, comp) and a relation (sw2ecumap, comp) in M’;

6. For every relation (sched, svc) of the provided type between a sched element
of the Scheduler type and a svc element of the Service type with a contain-
ment relation (mod, sched), generate a pPort element of the PPortPrototype
type and a containment relation (composType , pPort) in M’;

7. For every relation (sched, svc) of the required type between a sched element
of the Scheduler type and a svc element of the Service type with a contain-
ment relation (mod, sched), generate a rPort element of the RPortPrototype
type and a containment relation (composType, rPort) in M’.

96 G.M.K. Selim et al.

(a) Sample input GM model

(b) Output AUTOSAR model for (a)

Fig. 4. (a) Sample GM input model and (b) its corresponding AUTOSAR output model

Fig. 4 demonstrates the required transformation from a sample GM model (Fig. 4
(a)) to its expected output AUTOSAR model (Fig. 4(b)) based on the above men-
tioned rules. The PhysicalNode element is mapped to a System element, an EcuIns-
tance element, a SystemMapping element, a SoftwareComposition element, and a
CompositionType element (Rule 1). The Partition elements are mapped to the
SwcToEcuMapping elements (Rule 2), each of which is associated with the generated
EcuInstance element (Rule 3). The Module elements are mapped to the Compo-
nentPrototype elements aggregated by a CompositionType element and referred to by
their corresponding SwcToEcuMapping elements (Rules 4-5). The Scheduler element
aggregating a provided Service is mapped to a PPortPrototype element (Rule 6). The
other Scheduler element is mapped in a similar manner (Rule 7).

The transformation development follows an iterative, incremental process. First, a
simple GM model is created in the MDWorkbench model editor. Then, a transforma-
tion is implemented to transform the input GM model into an AUTOSAR model. The
AUTOSAR model is then validated and if the transformation is correct, the process is
repeated with additional types in the input model and additional transformation rules.
If the output model contains errors, the transformation is analyzed and fixed.

<<EcuInstance>>
physNode

<<CompositionType>>
physNode

<<SwcToEcuMapping>>
partition1

<<Component
Prototype>>

mod1

<<PPortPrototype>>
Sched1

<<SwcToEcuMapping>>
partition2

<<SoftwareComposition>>
physNode

<<RPortPrototype>>
Sched2

<<Componen
tPrototype>>

mod2

<<System>>
physNode

<<SystemMapping>>
physNode

<<PhysicalNode>>
physNode

<<Partition>>
partition1

<<Partition>>
partition2

<<Module>>
mod1

<<Scheduler>>
Sched1

<<Module>>
mod2

<<Scheduler>>
Sched2

<<Service>>
ProvSvc1

<<Service>>
ReqSvc1

 Model Transformations for Migrating Legacy Models: An Industrial Case Study 97

Validation is performed manually. For an input GM model, an expected output
AUTOSAR model is created in the MDWorkbench Model Editor. The transforma-
tion‘s output model is compared with the manually-created model. Equivalence of the
models implies a correct transformation.

4.4 The Transformation Implementation Using ATL

The GM-to-AUTOSAR transformation contains two ATL matched rules and 9
functional helpers implementing the 7 rules in Section 4.3. We also define 6 attribute
helpers to access the model attribute values. Table 1 lists the matched rules and func-
tional helpers and their implemented rules in Section 4.3.

Table 1. Matched rules and functional helpers and the implemented rules

Matched Rule (MR)/ Functional Helper (FH) Corresponding Rules: Section 4.3
MR1: createComponent 4
MR2: initSysTemplate 1
 FH1: initEcuInst 1
 FH2: createSwc2EcuMappings
 FH3: initSingleSwc2EcuMapping

2-3

 FH4: addComponents 5
 FH5: getAllPPortsInEcu
 FH6: createPPort

6

 FH7: getAllRPortsInEcu
 FH8: createRPort

7

 FH9: getAllSWCinEcu 5

The matched rule createComponent maps Module elements to Compo-

nentPrototype elements. The matched rule initSysTemp maps a PhysicalNode
element to a System element, a SystemMapping element, a SoftwareComposition
element and a CompositionType element by calling the 9 functional helpers to im-
plement rules 1-3 and 5-7. The helper initECUInst initializes an EcuInstance
element. The helper initSingleSwc2EcuMapping initializes a SwcToEcu-
Mapping instance. The helper createSwc2EcuMappings creates a list of
Swc2EcuMapping elements corresponding to all the Partition elements in the input
model. The helper getAllSwcInEcu creates the containment relation between the
CompositionType elements and the ComponentPrototype elements. The helper add-
Components creates the relation between the SwcToEcuMapping elements and their
corresponding ComponentPrototype elements. The helper getAllPPortsInEcu
creates a PPortPrototype element using the helper createPPort for Schedulers
with at least one provided Service. Similar helpers generate RPortPrototype elements.

The ATL predefined function resolveTemp connects the ComponentPrototype
elements created by the createComponent matched rule to the CompositionType
elements created by the initSysTemp matched rule.

98 G.M.K. Selim et al.

Implementing the transformation revealed some insights on using MDWorkbench
and ATL in industrial applications. Both the GM and the AUTOSAR metamodels are
complex in structure. To process models conforming to complex metamodels, ATL
provides flexibility of using declarative and imperative constructs to implement com-
plex transformations. Moreover, since the output models have many relationships
among model elements, decisions on where an element should be created in the trans-
formation such that it will be accessible for the downstream transformation are re-
quired. One such example is the relation between the SoftwareComposition element
and the ComponentPrototype element. The transformation can be either specified as
one rule or modularized as many rules. Although modularization requires that the
order of the rules be consistent with their dependencies, ATL mitigates this drawback
through the resolveTemp function which allows a rule to reference the elements
that are yet to be generated by other rules regardless of their specification order.
However, the resolveTemp function makes the transformation less readable and
difficult to debug, so the function should be used only when necessary.

For validation, sample GM models were created in the MDWorkbench Model Edi-
tor, including the model in Fig. 4(a), and were used for evaluation. The output models
were verified as described in Section 4.3. The transformation was found to produce
the expected output models. Sample GM models were used for validation instead of
actual GM models since many of the actual GM models did not conform to the GM
metamodel, which represents a major challenge for adopting MDD in industrial envi-
ronments.

5 Discussion

Based on our case study, we present open issues requiring further investigation for
successful adoption of model transformations in the automotive industry. Recommen-
dations for MDD tool and language development are also discussed.

5.1 Interoperability of MDD Tools

One of the major challenges encountered in our study was the lack of interoperability
between commercial tools for developing transformations. Specifying the model
transformation using ATL was not straightforward due to the formats of the manipu-
lated metamodels. ATL can only manipulate MOF [21] or Ecore [23] metamodels,
which the GM metamodel in Rhapsody native format is not compatible with. This
required the conversion of the GM metamodel to a compatible format.

MDWorkbench has a Rhapsody connector that allows importing the GM metamo-
del into MDWorkbench and converting it to Ecore format. To avoid the issue of dual
license from different vendors with different licensing policies with such an approach,
we addressed the problem using XMI. An Ecore metamodel is essentially an XMI file
and Rhapsody has an XMI toolkit to export Rhapsody metamodels to XMI files. Ex-
porting the GM metamodel using the XMI toolkit generated an XMI file that does not
conform to the Ecore meta-metamodel. To create an Ecore version, we import the

 Model Transformations for Migrating Legacy Models: An Industrial Case Study 99

XMI into RulesComposer as a metamodel, which creates an Ecore metamodel and an
Eclipse plugin project. Exporting the project from RulesComposer to MDWorkbench
as a plugin generates a registered GM Ecore metamodel.

Blanc et al. [5] decomposed the interoperability problem into two concerns: the
compatibility of the exchanged models, and the definition of an exchange mechanism.
Their study proposed an architecture to address these two concerns. Implementing
transformations between tools manipulating models that conform to different meta-
models was proposed in [6], [4]. Kolovos et al. [15] proposed a framework that
supports composing model management tasks with software development tasks in
coherent workflows. Although these solutions have been integrated into IDEs, they are
not fully automated in applications. MDD tools and transformation languages deserve
further research to support easy integration and interoperability with each other.

5.2 Optimization in Model Transformations

Our transformation mapped GM models representing a deployment of the software
components on physical nodes to their equivalent AUTOSAR models. The transfor-
mation exercised one mapping between the two metamodels and generated an
AUTOSAR model reflecting the deployment configuration. From the deployment
perspective, there are other design options that may yield a more desirable deploy-
ment in the output AUTOSAR model with respect to some utility function.

Solutions exist to support optimization during the transformation. Schätz et al. [22]
proposed a formalized approach to explore the design space using rule-based trans-
formations. Intermediate models were represented using a relational formalization and
rules were represented using predicates. Drago et al. [9] proposed the QVT-Rational
framework to explore design options which optimize quality metrics. First, a domain
expert specifies the metamodels to be manipulated, the quality metrics of interest, the
quality-prediction tool chain and the method for design feedback generation. Then, a
designer specifies desirable values for quality metrics and asks QVT-Rational for
design solutions. Tools that target industry use need to support scalable design-space
exploration to aid developers in exploring design options of the generated model.

5.3 Dealing with Semantic Differences between Metamodels

Identifying which target metamodel elements best represent a given source metamo-
del element can be a difficult task. Reasons include: (1) the precise semantics of a
metamodel may not have been documented sufficiently and only be fully known to
metamodel developers themselves; consultation of these developers may be time con-
suming or even impossible. (2) The lack of support in metamodel evolution often
means that the metamodels contain redundancies or inconsistencies. (3) The mapping
of source to target elements is dependent on the transformation’s purpose, because it
determines to what extent aspects of model semantics can be removed (e.g., for ab-
straction), preserved (e.g., for refactorings) or refined (e.g., for code generation).

100 G.M.K. Selim et al.

To facilitate transformation development, techniques to (1)enforce documenting
metamodel semantics, (2) suggest mappings between metamodels using similarity
matching or "learning" [17], [20], and (3) validate transformations are of high interest.

6 Conclusions and Future Work

In this study, we present a solution to migrating legacy VCS design models using
model transformations in the automotive industry. The study has two major goals: (1)
exploring the practicality of using model transformations in an industrial context to
map between industrial metamodels and (2) benefitting GM by supporting automated
convergence to AUTOSAR. The implemented transformation converts domain-
specific GM models to their equivalent AUTOSAR models. We discussed the trans-
formation context in the development process. Based on our experiences, we discuss
which tool and language are appropriate for implementing the transformation, the
challenges encountered and open issues that need further investigation.

Research studies on adopting MDD in industry have been published [19], [23], but
a few investigated adopting transformations in industry. Daghsen et al. [8] trans-
formed AUTOSAR timing models to classical scheduling models to perform timing
analysis. Giese et al. [12] used triple graph grammars to synchronize between SysML
system engineering models and AUTOSAR software engineering models. Our
study differs from other studies in that the two manipulated metamodels are complex,
industrial metamodels, which allows us to draw realistic conclusions regarding the prac-
ticality of adopting transformations in industry. Our study considers the entire trans-
formation development process, from tool and language selection to transformation
creation and validation. Future work includes extending the transformation to the full
GM metamodel and using white-box or black-box testing [11], [16] for validation.

Acknowledgements. This work is supported in part by NSERC, as part of the
NECSIS Automotive Partnership with General Motors, IBM Canada and Malina
Software Corp.

References

[1] Atlas Transformation Language – ATL, http://eclipse.org/atl/
[2] AUTOSAR Consortium. AUTOSAR, http://AUTOSAR.org/
[3] AUTOSAR Consortium. AUTOSAR System Template,

http://AUTOSAR.org/index.php?p=3&up=1&uup=3&uuup=
3&uuuup=0&uuuuup=0/AUTOSAR_TPS_SystemTemplate.pdf

[4] Bezivin, J., Brunelière, H., Jouault, F., Kurtev, I.: Model engineering support for tool in-
teroperability. In: Workshop in Software Model Engineering (WiSME), Montego Bay,
Jamaica (2005)

[5] Blanc, X., Gervais, M.-P., Sriplakich, P.: Model Bus: Towards the Interoperability of
Modelling Tools. In: Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003. LNCS,
vol. 3599, pp. 17–32. Springer, Heidelberg (2005)

[6] Brunelière, H., Cabot, J., Clasen, C., Jouault, F., Bézivin, J.: Towards Model Driven
Tool Interoperability: Bridging Eclipse and Microsoft Modeling Tools. In: Kühne, T.,
Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 32–47.
Springer, Heidelberg (2010)

 Model Transformations for Migrating Legacy Models: An Industrial Case Study 101

[7] Cottenier, T., Berg, A., Elrad, T.: The Motorola WEAVR:Model weaving in a large in-
dustrial context. In: Aspect-Oriented Software Development (AOSD), Vancouver, Can-
ada (2007)

[8] Daghsen, A., Chaaban, K., Saudrais, S., Leserf, P.: Applying holistic distributed sche-
duling to AUTOSAR Mmethodology. In: Embedded Real-Time Software & Systems
(ERTSS), Toulouse, France (2010)

[9] Drago, M.L., Ghezzi, C., Mirandola, R.: Towards Quality Driven Exploration of Model
Transformation Spaces. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011.
LNCS, vol. 6981, pp. 2–16. Springer, Heidelberg (2011)

[10] Eclipse Modelling Framework (EMF), http://wiki.eclipse.org/EMF
[11] Fleurey, F., Baudry, B., Muller, P.-A., Le Traon, Y.: Qualifying input test data for mod-

el transformations. Software System Modelling (SoSyM) 8(2), 185–203 (2007)
[12] Giese, H., Hildebrandt, S., Neumann, S.: Model Synchronization at Work: Keeping

SysML and AUTOSAR Models Consistent. In: Engels, G., Lewerentz, C., Schäfer, W.,
Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 555–579.
Springer, Heidelberg (2010)

[13] IBM Corporation. IBM Rational Asset Manager (RAM),
 http://www01.ibm.com/software/rational/products/ram/

[14] IBM Corporation. IBM Rational Rhapsody, http://www.ibm.com/
 developerworks/downloads/r/rhapsodydeveloper/index.html

[15] Kolovos, D., Paige, R., Polack, F.: A framework for composing modular and interoper-
able model management tasks. In: Model Driven Tool & Process Integration (MDTPI),
Berlin, Germany (2008)

[16] Küster, J., Abd-El-Razik, M.: Validation of model transformations - First experiences
using a white box approach. In: Model Development, Validation & Verification (MoD-
eVa), Genova, Italy, pp. 62–77 (2006)

[17] Mandelin, D., Kimelman, D., Yellin, D.: A Bayesian approach to diagram matching
with application to architectural models. In: Intl. Conf. on Software Engineering
(ICSE), Shanghai, China, pp. 222–231 (2006)

[18] Sodius. MDWorkbench, http://www.mdworkbench.com/
[19] Mohagheghi, P., Dehlen, V.: Where Is the Proof? - A Review of Experiences from Ap-

plying MDE in Industry. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008.
LNCS, vol. 5095, pp. 432–443. Springer, Heidelberg (2008)

[20] Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and merg-
ing of Statechart specifications. In: Intl. Conf. on Software Engineering (ICSE), Minne-
apolis, USA, pp. 54–64 (2007)

[21] Object Management Group (OMG): Meta Object Facility (MOF) Specification — Ver-
sion 1.4 (April 2002)

[22] Schätz, B., Hölzl, F., Lundkvist, T.: Design-space exploration through constraint-based
Mmodel transformation. In: Engineering of Computer Based Systems (ECBS), Oxford,
UK, pp. 173–182 (2010)

[23] Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Chapter 5 Ecore Modeling
Concepts. In: Eclipse Modeling Framework, 2nd edn. Addison-Wesley Professional
(2009)

[24] Teppola, S., Parviainen, P., Takalo, J.: Challenges in the deployment of model driven
development. In: Intl. Conf. on Software Engineering Advances (ICSEA), Porto, Por-
tugal, pp. 15–20 (2009)

Derived Features for EMF
by Integrating Advanced Model Queries�

István Ráth, Ábel Hegedüs, and Dániel Varró

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

1117 Budapest, Magyar tudósok krt. 2
{rath,hegedusa,varro}@mit.bme.hu

Abstract. When designing complex domain-specific languages, meta-
models are frequently enriched with derived features that correspond to
attribute values or references (edges) representing computed informa-
tion in the model. In the popular Eclipse Modeling Framework, these
are typically implemented as imperative Java code.

In the paper, we propose to integrate the EMF-IncQuery model
query framework to the Ecore metamodeling infrastructure in order to
facilitate the efficient and automated (re-)computation of derived at-
tributes and references over EMF models. Such an integration allows
to define derived features using an expressive graph-based model query
language [1], and offers high performance and scalability thanks to the in-
cremental evaluation technique of EMF-IncQuery [2]. In addition, our
approach offers to automate two typical associated challenges of EMF
tools: (1) values of derived features are immediately recalculated upon
model changes and (2) notifications are sent automatically to other EMF
model elements to report changes in derived features.

1 Introduction

The design of complex domain-specific languages (e.g. in the automotive or
avionics domains) frequently necessitate the use of advanced metamodeling tech-
niques. Metamodels are complemented with well-formedness constraints, which
enable the validation of the consistency of instance models with respect to such
constraints, thus allowing to spot design flaws early in the development process.
Derived features, which correspond to attribute values or references (edges) that
represent computed information in the model, also proved to be useful in com-
plex metamodeling scenarios. For instance, they frequently serve as auxiliary
(helper) functions when implementing model simulators, and they also allow to
compact the storage of the model.

In the popular Eclipse Modeling Framework (EMF), these derived features
are most often implemented as user-defined algoritms computed by imperative
� This work was partially supported by the CERTIMOT (ERC_HU-09-01-2010-0003)

project, the grant TÁMOP (4.2.2.B-10/1–2010-0009) and the János Bolyai Scholar-
ship.

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 102–117, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Derived Features for EMF by Integrating Advanced Model Queries 103

Java code. Unfortunately, (1) most existing techniques re-calculate values of
derived features in EMF models on-demand (i.e. when corresponding getters
are called), which hinders integration into user interfaces where changes in the
values of derived features should immediately be reflected. Furthermore, (2) it
is challenging to properly implement notification propagation between (a chain
of) derived features upon value changes, which is necessary when components or
model elements are required to depend upon a derived feature. Finally, (3) as the
calculation of derived features is always started from scratch (not taking previous
computations and changes into account), it is also challenging to implement
complex queries in Java in a way that does not severely impact the overall
performance.

The advanced model query framework EMF-IncQuery has proved to be
efficient in the incremental re-validation of well-formedness constraints over large
models [2] scaling up to millions of elements1. Its expressive, declarative graph-
based query language offers high level of reuse in queries [1]. In the paper, we
propose to seamlessly integrate the EMF-IncQuery framework to the Ecore
metamodeling infrastructure, in order to facilitate the efficient and automated
computation of derived attributes and references over EMF models.

Our proposed approach, which is fully implemented and documented2, offers
to automate the entire workflow of developing derived features in EMF. In the
approach, (1) derived features are defined using an expressive graph-based model
query language and are calculated by an algorithm that (2) listens to all incoming
notifications that impact on the computation, (2) issues outgoing notifications
when the value of the derived feature changes, (3) keeps an up-to-date cache
that is refreshed based on incoming notifications and used for computing out-
going notification. Finally, (4) since outgoing notifications may cause incoming
notifications, the algorithm also stabilizes such notification loops.

In the rest of the paper, Section 2 provides a brief overview on derived features
in EMF models. Then, we propose to use a graph based model query language
to define derived features for EMF in Section 3. Section 4 provides a detailed
architecture and core algorithms to synthesize notifications for derived features
based upon incremental query evaluation. Additional issues for seamless inte-
gration to the EMF infrastructure are discussed in Section 5. Finally, Section 6
overviews related work and Section 7 concludes our paper.

2 Derived Features in EMF

Derived features in EMF models represent information that can be calculated
from other model elements and typically represent an aggregate view of the
model. Essentially, we distinguish between derived attributes and derived refer-
ences (representing “virtual” connections between model elements). In our ex-
ample, both are represented graphically by the derived stereotype in Figure 1.
1 The current paper does not include performance specific contribu-

tions to the EMF-IncQuery framework, we kindly refer the reader to
http://viatra.inf.mit.bme.hu/performance for additional details.

2 http://viatra.inf.mit.bme.hu/incquery/examples/derivedfeatures

http://viatra.inf.mit.bme.hu/performance
http://viatra.inf.mit.bme.hu/incquery/examples/derivedfeatures

104 I. Ráth, Á. Hegedüs, and D. Varró

Fig. 1. The metamodel of the Schools domain

In the current paper, we illustrate our approach on a simple demonstration
domain of Schools (encoded in EMF’s Ecore language as illustrated in Figure 1)
that manage Courses involving Teachers, and enroll their students assigned to
Years and SchoolClasses. The metamodel contains simple EAttributes (like e.g.
name of a Teacher or the startingDate of the school Year) and regular EReferences
such as the school of a Teacher. More importantly for the sake of this paper, it
also contains three derived features:

– numberOfTeachers is a derived attribute of School representing a counter for
the total number of Teachers belonging to the School as represented by the
corresponding school EReference;

– lastYear is a derived reference from School to Year, and points to the last
academic Year stored in the model, which can be calculated from the start-
ingDate of all Years;

– teachersWithMostCourses represent the busiest teachers of the School, i.e.
those who teach the most courses.

Derived features in EMF are not maintained explicitly in instance models, but
calculated on-demand by hand-written code. These calculations are frequently
supported by ad-hoc Java implementations integrated directly into the EMF
model representation, which significantly reduces the portability and compati-
bility of the metamodel.

Unfortunately, developers may encounter additional key challenges when aim-
ing to use derived features in EMF models:

– Performance. Depending on the complexity of the semantics of derived
features, their evaluation may impose a severe performance impact (since
complex calculations and extensive model traversal may be necessary for ex-
ecution). Note that this scalability issue is especially important when derived
feature values need to be re-evaluated many times and will affect all other
software layers using the model code, including the user interface, model
transformations, well-formedness validators etc.

Derived Features for EMF by Integrating Advanced Model Queries 105

– Notifications. Due to the difficulty of propagating notifications for derived
features, derived features are typically re-evaluated on demand. This may
also manifest as model changes not (properly) triggering user interface up-
dates. Note that EMF defines the notifications for derived features as well,
however, it is the programmer’s responsibility to create notifications. Since
the values of derived features are usually not cached, proper notifications
including the old values (e.g. setting a single value or removing from a list)
are hard to implement. Furthermore, notifications of one derived feature may
cause new notifications, leading to notification loops, the programmer must
ensure that these are stabilized in order to avoid infinite loops.

Our proposal, namely, the integration of an advanced model query framework
EMF-IncQuery provides a solution for all of these challenges using a high-
level graph-based query language for defining derived value calculations. As the
performance characteristics of the EMF-IncQuery engine have been shown to
be agnostic of query complexity and model size [2], derived features of com-
plex semantics and inter-dependencies can be used without severe evaluation
performance degradation. Additionally the update propagation mechanism of
EMF-IncQuery (using delta monitors [3]) will be connected to the EMF No-
tification layer so that the application software components are automatically
kept up-to-date about the value changes of derived features.

3 Definition of Derived Features as Model Queries

We now propose to use the graph pattern based model query language of EMF-
IncQuery as the specification language for derived features of EMF models.
Therefore a brief introduction to this query language is provided first, followed
by a detailed description on how this general purpose query language is adapted
to specify derived features.

3.1 Model Queries by Graph Patterns: An Overview

Graph patterns [4] are an expressive formalism used for various purposes in
model-driven development, such as defining declarative model transformation
rules, capturing general-purpose model queries including model validation con-
straints, or defining the behavioral semantics of dynamic domain-specific lan-
guages. A graph pattern (GP) represents conditions (or constraints) that have
to be fulfilled by a part of the instance model. A basic graph pattern consists
of structural constraints prescribing the existence of nodes and edges of a given
type, as well as expressions to define attribute constraints. A negative application
condition (NAC) defines cases when the original pattern is not valid (even if all
other constraints are met), in the form of a negative sub-pattern. A match of
a graph pattern is a group of model elements that have the exact same config-
uration as the pattern, satisfying all the constraints (except for NACs, which
must not be satisfied). The complete query language of the EMF-IncQuery
framework is described in [1], while several examples will be given below.

106 I. Ráth, Á. Hegedüs, and D. Varró

3.2 Derived Features as Model Queries

Sample derived features First, we demonstrate on an example how the graph pat-
tern teachersWithMostCourses(S,T) (Figure 2) can be used to express the calcula-
tion of the derived EReference teachersWithMostCourses (connecting School and
Teacher in Figure 1), that is, to identify those teachers who have the maximum
number of Course instances assigned (through the Teachers.courses reference).

1 pattern teacherWithMostCourses(S, T)=
2 {
3 School.teachers (S,T);
4 neg pattern moreCourses(S,T) = {
5 Teacher .courses (T,C) # N;
6 School.teachers (S,T2);
7 Teacher .courses (T2,C2) # M;
8 check(M > N);
9 }

10 }

Fig. 2. Model query to define teachersWithMostCourses in graphical and textual syntax

This model query formulated as a graph pattern has two parameters: S and
T , denoting the source and the target end of the derived EReference. The query
defines the designated set of teachers by combining a NAC and cardinality con-
straints. It expresses that a teacher T belongs to this set if and only if there
is no other teacher T 2 whose number of courses M (calculated by counting the
number of elements connected along the courses reference) would be larger than
the number of courses N (counted as before) of teacher T . The right side of
Figure 2 shows the corresponding textual syntax.

Model queries for derived features numberOfTeachers and lastYear are defined
similarly in Figure 3. The definition of the latter contains some additional inter-
esting language elements.

– The modifier shareable prescribes that different (but type consistent) pattern
variables are allowed to be bound to the same model elements (e.g. D1 and
D2 can be bound to the same date element).

– Y =/= Y2 checks that the two model elements bound to variables Y and Y 2
are different.

– Using the find keyword, graph patterns are allowed to reuse other graph pat-
terns. Therefore, if a derived feature is defined as a model query by a corre-
sponding graph pattern, this derived feature can be reused in other queries,
and thus, in other derived features. In fact, we will discuss in Section 5 that
even legacy derived features (defined by Java code) can participate in such
usage with appropriate notification mechanisms.

Derived features can be defined as model queries using the graph pattern based
language of EMF-IncQuery if the following three well-formedness rules are
met by corresponding query definitions:

Derived Features for EMF by Integrating Advanced Model Queries 107

1 pattern numberOfTeachers(S,N)=
2 {
3 School .teachers (S,T) # N;
4 }

1 pattern lastYear (S,Y)= {
2 find years(S,Y);
3 neg shareable pattern laterYear(S,Y)= {
4 find years(S,Y);
5 find startingDateOfYear(Y,D1);
6 find years(S,Y2);
7 find startingDateOfYear(Y2,D2);
8 check(D1 < D2);
9 Y =/= Y2;

10 } }

Fig. 3. Model queries for numberOfTeachers and lastYear

1. Each graph pattern should have exactly two parameters. In case of derived
attributes, the first parameter denotes the corresponding EClass of the at-
tribute, while the second parameter denotes the value of the parameter itself
(see numberOfTeachers). In case of derived references, the first parameter
denotes the source (i.e. the container EClass) while the second parameter
denotes the target of the EReference.

2. First parameter: always input. General model queries allow the same pattern
to be used with either input or output parameters (i.e. parameter bindings
can be carried out at execution time), in case of derived features, the first
parameter (referring to the container) should always be an input parameter,
which is a bound to a type-compliant contextual EMF object (e.g. S is bound
in all three graph patterns above). This restriction is conceptually equivalent
to the context element of an OCL constraint.

3. Restrictions on result set. In case of a derived features with explicit lower and
upper bounds (e.g. 1..* or 0..1), the result set of the model query should com-
ply with these restrictions. While upper bounds can be enforced by omitting
results, the violation of lower bound is logged only as warnings.

In the actual query language, rules 1 and 2 are can be satisfied either by using ex-
actly two query parameters, or by using pattern annotations for multi-parameter
queries that explicitly specify which of the parameters is the context and which
one will correspond to the target (or value). Furthermore, the adherence to all
three rules are checked at editing time by a built-in query language validator
in the EMF-IncQuery tooling. In summary, the modular nature of the EMF-
IncQuery language aims to allow the language engineer to construct a library
of cross-referencing queries without copy-paste reuse.

4 From Incremental Query Evaluation to Notifications
for Derived Features

In this section, we outline how the incremental query features of the
EMF-IncQuery framework are integrated to notification-based applications in
transparent way, by mapping changes of the results sets to notification objects for
derived features. We present an architectural overview and an algorithm to carry
out this mapping.

108 I. Ráth, Á. Hegedüs, and D. Varró

4.1 Incremental Evaluation of Queries

The key to efficient evaluation and change notification for derived features is
the incremental graph pattern matching infrastructure of the EMF-IncQuery
framework (introduced in [3]). The internal architecture is shown in Figure 4.

Fig. 4. The EMF-IncQuery architecture

The input for the incremental graph
pattern matching process is the EMF
instance model and its notification
API. Callback functions can be reg-
istered through this API for instance
model elements that receive notifica-
tion objects (e.g. ADD, REMOVE,
SET etc.) when an elementary manip-
ulation operation is carried out.

Based on a query specification,
EMF-IncQuery constructs a Rete
rule evaluation network [3] that pro-
cesses the contents of the instance
model to produce the query result
at its output node. Query results are
then post-processed by auto-generated
query components to provide a type-
safe access layer for easy integration
into applications. This Rete network
remains in operation as long as the
query is needed: it continues to re-
ceive elementary change notifications
and propagates them to produce query result deltas through its delta monitor
facility, which are used to incrementally update the query result. These deltas
can also be processed externally, which is a key feature for the integration of
derived features (Section 4.2).

By this approach, the query results (i.e. the match sets of graph patterns) are
continuously maintained as an in-memory cache, and can be retrieved directly.
Even though this imposes a slight performance overhead on model manipulation,
and a memory cost proportional to the cache size (approx. the size of match
sets), EMF-IncQuery can evaluate very complex queries over large instance
models very efficiently. These special performance characteristics [2] address the
scalability challenge (Section 2) as long as enough memory is available, as they
allow EMF-IncQuery-based derived features to be evaluated incrementally,
even for complex queries over large instance models.

4.2 Integration Architecture

To support derived features, the outputs of the EMF-IncQuery engine are to
be integrated into the EMF model access layer at two points: (1) query results are

Derived Features for EMF by Integrating Advanced Model Queries 109

provided in the getter functions of derived features, and (2) query result deltas
are processed to generate EMF Notification objects that are passed through the
standard EMF API so that application code can process them transparently.
The overall architecture of our approach is shown in Figure 5.

Fig. 5. Overview of the integration architecture

The application accesses both the model and the query results through the
standard EMF model access layer – hence, no modification of application source
code is necessary. In the background, as a novel component type, derived feature
handlers are attached to the EMF model plugin that integrate the generated
query components (pattern matchers). This approach follows the official EMF
guidelines of implementing derived features and is identical to how ad-hoc Java
code, or OCL expression evaluators are integrated.

When an EMF application intends to read a derived feature (B1), the current
value is provided by the corresponding derived feature handler (B2) by simply
retrieving the value from the cache of the related query. When the application
modifies the EMF model (A1), this change is propagated to the generated query
components of EMF-IncQuery along notifications (A2), which may update the
delta monitors of the derived features (A3). Changes of derived features may in
turn trigger further changes in the results sets of other derived features (A4).

Illustrative example. Figure 6 illustrates a detailed elaboration EMF-IncQuery
feature handlers, which process elementary model manipulation notifications to
update, and generate notifications for derived features. The figure corresponds
to a case where the user created a new Teacher for a School through the Edi-
tor which is essentially a School.getTeachers().add(teacher) method call on the
Model. During the add method, the School EObject sends an ADD notification
to the Notification Manager, which will notify the EMF-IncQuery Query Engine
about the model modification. The Query Engine updates the match sets of each
query and registers the match events in the Deltamonitor. Once it’s finished with
updating the Rete network, it invokes the callback method of each IncqueryFea-
tureHandler. Each handler has a Deltamonitor from which it retrieves the found

110 I. Ráth, Á. Hegedüs, and D. Varró

and lost match events since the last callback to processes them. During the
processing, the handler may send notifications of its own that are propagated to
listeners. Anytime the derived feature value is retrieved from the model (e.g. get-
NumberOfTeachers), the handler is accessed for the current value of the feature,
which is returned directly.

Fig. 6. Elaboration of the execution

4.3 From Changes of Match Sets to Notifications

We now explain the notification processing and propagation procedure in algo-
rithmic detail. For the sake of simplicity, we introduce an auxiliary discriminator
variable Kind whose value represents three distinct cases:

– single and many correspond to derived references of target multiplicity 1
and *, respectively (lastYear and teachersWithMostCourses in Figure 3);

– counter corresponds to the simplified case where a value of the derived
attribute is defined as the match set size of a query (see numberOfTeachers
in Figure 3).

– More complex derived feature kinds with an arbitrary, deterministic iteration
algorithm can also be handled by the approach.

The main part of our derived feature handler algorithm is an event loop that
is called by the EMF-IncQuery query engine each time the underlying Rete
network is updated as a result of some model manipulation (see Algorithm 1).

The algorithm is initialized with the following input variables (line 1): (1)
the EObject Source whose derived feature is handled; (2) the derived Feature;
(3) the DeltaMonitor for the query matcher; and (4) the previously mentioned
discriminator value Kind. Each handler stores an internal value for the feature,
initialized in line 2 depending on Kind. Finally, the handler uses two global
variables: pU for storing partial events and the set N of unsent notifications.

Derived Features for EMF by Integrating Advanced Model Queries 111

Algorithm 1. Main event loop
1: let S ← Source, F ← Feature, DM ← DeltaMonitor, k ← Kind � Input variables
2: let (k = single)?iV ← null : (k = counter)?iV ← 0 : iV ← ∅ � Internal value init
3: let pU ← null, N ← ∅ � Global variables
4: function eventloop
5: let pU ← null
6: let found← processFoundMatches(DM.matchFoundEvents) � Processing found events
7: let DM.matchFoundEvents← DM.matchFoundEvents \ found � Removing events
8: let lost ← processLostMatches(DM.matchLostEvents) � Processing lost events
9: let DM.matchLostevents← DM.matchLostevents \ lost � Removing events

10: if partialUpdate �= null then � Stored value not yet used, handle partial match event
11: let N ← N ∩ notification(SET, null, pU)
12: let iV ← pU � Updating value
13: end if
14: while N �= ∅ do � Notification sending loop
15: let n← N [0]
16: let N ← N \ n
17: S.eNotify(n) � Sending notification through source
18: end while
19: end function

Algorithm 2. Processing match-found events
1: function procesFoundMatches(events)
2: let P ← ∅
3: for all e ∈ events do
4: if e.source = S then
5: let target← e.target � Extracting feature target from event
6: if k = counter then
7: let N ← N ∩ notification(SET, iV, iV + 1)
8: let iV ← iV + 1 � Updating value of repeating algorithm
9: else if k = single then

10: let pU ← target � Storing value for later processing
11: else if k = many then
12: let N ← N ∩ notification(ADD, null, target)
13: let iV ← iV ∩ target � Updating value
14: end if
15: end if
16: let P ← P ∩ e
17: end for
18: return P
19: end function

The event loop starts from line 4, it first resets the partial event store, then
processes matches found since the last execution of the loop (line 6). These events
are supplied by the delta monitor of the query and removed after processing is
finished. Similarly, the matches lost since the last execution are also processed
(line 8) and removed after. When a derived feature with single kind is used
and only a match-found event occurs without a match-lost event, an additional
processing step is required to handle the partial event (line 11). This occurs when
the query did not lose any matches since the last event loop, but a new match
is found. This translates to a notification representing the setting of the feature
value from null to pU (line 12). Finally, if there are any unsent notifications
(line 14), the first notification n in the list N is sent through the Source EObject.
By separating the notification sending from the calculation of the derived feature
value, the notification loop is stabilized, since new notifications caused by n are
simply added to the list N , which will be depleted after all, if causal circularity
between the definitions of derived features is avoided.

112 I. Ráth, Á. Hegedüs, and D. Varró

Algorithm 3. Processing match-lost events
1: function processLostMatches(events)
2: let P ← ∅
3: for all e ∈ events do
4: if e.source = S then
5: let target← e.target � Extracting feature target from event
6: if k = counter then
7: let N ← N ∩ notification(SET, iV, iV − 1)
8: let iV ← iV − 1 � Updating value of repeating algorithm
9: else if k = single then

10: let N ← N ∩ notification(SET, target, pU) � Using stored value
11: let iV ← target � Updating value
12: let pU ← null � Resetting stored value
13: else if k = many then
14: let N ← N ∩ notification(REMOV E, target, null)
15: let iV ← iV \ target � Updating value
16: end if
17: end if
18: let P ← P ∩ e
19: end for
20: return P
21: end function

New matches. The handling of match-found events is detailed in Algorithm 2.
The processFoundMatches function iterates through the match-found events
(line 3), and extracts the target object from the event (line 5), if the source
EObject of the event equals Source. Depending on the Kind of the feature, a
notification is created and the internal value is updated (line 7 for counter and
line 12 for many). For single kind features, the target object is stored for later
usage (line 10). Finally, the list of processed events is returned.

Lost matches. The handling of match-lost events is similar to the processing of
match-found events, see Algorithm 3. The processLostMatches function it-
erates through the match-lost events (line 3), and extracts the target object from
the event (line 5), if the source EObject of the event equals Source. Depending
on the Kind of the feature, a notification is created and the internal value is
updated (line 7 for counter and line 14 for many). For single kind features,
the stored value of pU is used for creating the notification (line 10). Finally, the
list of processed events is returned at the end of the function.

Summary. In summary, the combined pattern matching and notification process-
ing process ensures that EMF-IncQuery-based derived features behave exactly
as normal features of EMF instance models. This addresses the final, integration-
related challenge of Section 2), by ensuring that user interfaces, model validators
etc. can safely depend on such derived features, without on-demand querying.

5 Integration Issues with EMF Tooling

5.1 Integration with Ecore

In the prototype implementation of our proposal, we integrated our approach to
the EMF Tooling by a code generator that supports the automatic generation

Derived Features for EMF by Integrating Advanced Model Queries 113

of integration code for our components (EMF-IncQuery derived feature han-
dlers). The input of the code generator is a simple generator model (referencing
the EMF genmodel for the domain) that crosslinks derived features with EMF-
IncQuery query specifications (which are stored as EMF models thanks to the
Xtext2-based tooling).

Fig. 7. Sample generated code for derived feature handler instantiation and getter

The generated integration code (Figure 7) consists of (a) the instantiation of
derived feature handlers (in the constructor of EObjects), which ensures that
their lifecycle is tied to the hosts, to enable their garbage collection together
with the instance model itself; (b) getter implementations that delegate calls to
the appropriate function of the feature handler object, and wrap the result in
unmodifiable ELists to ensure that any attempt to write to derived features will
result in a runtime exception.

5.2 Integration with Legacy Java Code for Derived Features

In practice, a complete refactoring of an EMF-based tool to exclusively use
EMF-IncQuery-based derived features might not be realistic. Hence, we im-
plemented an additional derived feature adapter (Figure 8) as a lightweight add-
on component for EMF model plugins, which can be used to augment existing
derived feature implementations (regardless of whether Java or OCL is used).

The basic concept motivated by a suggestion in the Eclipse FAQ3 is analogous
to the previous discussion. The language engineer can add a few lines of Java code

3 http://wiki.eclipse.org/EMF/Recipes#Recipe:_Derived_Attribute_Notifier

http://wiki.eclipse.org/EMF/Recipes#Recipe:_Derived_Attribute_Notifier

114 I. Ráth, Á. Hegedüs, and D. Varró

Fig. 8. Derived feature handlers

to the generated EMF model plugin: these derived feature adapters attach lis-
teners (through the EMF Notification API) to the (explicitly specified) features
a derived feature depends on, and receive notifications when model changes are
registered (steps 1-2-3 in Figure 8). These notification objects are then processed
and converted into new notification objects for the derived feature, propagating
through the manager to application code (steps 4-5-6-7 in Figure 8).

This approach has additional key advantages: (1) notification support can be
added – with a small implementation effort – to “legacy” derived features, without
having to re-write them in EMF-IncQuery; (2) queries specified in EMF-
IncQuery (whether for derived features, or on-the-fly validation purposes, or
within model transformations) can reference derived features seamlessly.

6 Related Work

Model queries over EMF. There are several technologies for providing declarative
model queries over EMF, e.g. EMF Model Query 2 [5] and EMF Search [6]. Other
graph pattern based techniques like [7,8] have been successfully applied in an
EMF context. But none of these support incremental evaluation, therefore they
cannot be used for integrating derived features in the way we proposed.

OCL evaluation approaches. OCL [9] is a standardized navigation-based query
language, applicable over a range of modeling formalisms. Taking advantage of
the expressive features and wide-spread adoption of OCL, the project Eclipse
OCL provides a powerful query interface that evaluates OCL expressions over
EMF models. However, backwards navigation along references in EMF can still
have low performance [2], which may influence the performance of OCL evalua-
tion without additional support.

Aiming at incremental evaluation, the impact analysis (IA) approach for OCL
constraints [10] is functionally similar to our approach (but conceptually differ-
ent in terms of underlying incremental algorithm) in using change notifications
to identify constraints that should be re-evaluated, although it does not cache
partial matches. An added feature of our approach is to automatically provide

Derived Features for EMF by Integrating Advanced Model Queries 115

notifications for derived features (which could be – but currently is not – imple-
mented for OCL tools). As future work, we aim to compare IA and our approach
and even combine the benefits of our current implementation with the benefits
of existing OCL-based solutions.

Cabot et al. [11] present an approach for incremental runtime validation of
OCL constraints and uses promising optimizations, however, it works only on
boolean constraints, and as such it is less expressive than our technique.

An interesting model validator over UML models [12] incrementally re-eval-
uates constraint instances whenever they are affected by changes, however the
approach is only applicable in environments where read-only access to the model
can be easily recorded, unlike EMF. Additionally, the approach is tailored for
model validation, general-purpose model querying is not viable.

Balsters [13] presents an approach for defining database views in UML models
as derived classes using OCL. The derived classes in this case are the result set of
queries, which is similar to the match sets provided by EMF-IncQuery. Note,
that while the OCL approach does not offer incrementality, an EMF-IncQuery
based approach would.

Derived features. There are several approaches that make extensive use of de-
rived features or provide additional support for their usage.

The PROGRES language [14] allows the rule-based programming of graph
rewriting systems. It uses derived attributes for encoding node properties con-
cerning aspects of dynamic semantics. The language includes support for defining
how these derived attributes are calculated, and also uses functional attribute
dependencies that would allow similar implementation as described in Section 5.
However, PROGRES has not been adapted to EMF up to our best knowledge.
The FUJABA [15] tool suite also supports derived edges by path expressions in
a non-incremental way.

In [16] Diskin describes a theoretical model synchronization framework that
uses derived references for propagating changes between corresponding models.
The derived attributes defined in the framework are queries, similarly to our
approach, although algebraic and not incrementally updated.

Scheidgen [17] presents a MOF tool that allows the definition of derived fea-
tures using OCL. It handles derived attributes and operations as custom code
provided by the user and redirects calls using reflection, thus incrementality is
not supported.

JastEMF [18] is a semantics-integrated metamodeling approach for EMF. It
uses derived features as side-effect free operations (i.e. queries) and refers to
them as the static semantics of the model. Therefore, our query-based approach
could be integrated with JastEMF without problems.

ConceptBase.cc [19] is a database system for metamodeling and method en-
gineering. It allows the definition of active rules that react to events and can
update the database or call external routines. Using this functionality, it would
be possible to create derived features in models that are updated incrementally
based on the data stored in the ConceptBase.cc database. On the other hand,
this framework has not been applied in an EMF context.

116 I. Ráth, Á. Hegedüs, and D. Varró

In a previous tool paper of ours [20], we give an architectural overview of the
entire EMF-IncQuery tool where derived features are listed as one of the new
features of the tool. The current paper provides all the technical details on using
incremental queries for derived features in EMF.

7 Conclusion

We proposed to seamlessly integrate the EMF-IncQuery framework to the
EMF infrastructure in order to facilitate the efficient and automated computa-
tion of derived attributes and references over EMF models by advanced model
queries. Our approach (1) allows to define derived features using an expressive
graph-based model query language, (2) offers high performance and scalability
thanks to the incremental evaluation technique of EMF-IncQuery [2], and (3)
automatically provides notifications to and from derived features which has to
be implemented manually in an EMF application.

Future work. Our current research directions include the application of query-
based derived features for handling soft interconnections in EMF models and for
managing virtual EMF objects derived from query result sets. Furthermore, the
EMF-IncQuery framework is under active development, with derived feature
support being only one of its many capabilities.

Acknowledgements. We would like to thank E.D. Willink for his suggestions
on improving the paper and the anonymous reviewers for their helpful comments.

References

1. Bergmann, G., Ujhelyi, Z., Ráth, I., Varró, D.: A Graph Query Language for EMF
Models. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 167–182.
Springer, Heidelberg (2011)

2. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös,
A.: Incremental Evaluation of Model Queries over EMF Models. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 76–90.
Springer, Heidelberg (2010)

3. Ráth, I., Bergmann, G., Ökrös, A., Varró, D.: Live Model Transformations Driven
by Incremental Pattern Matching. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.)
ICMT 2008. LNCS, vol. 5063, pp. 107–121. Springer, Heidelberg (2008)

4. Varró, D., Balogh, A.: The Model Transformation Language of the VIATRA2
Framework. Science of Computer Programming 68(3), 214–234 (2007)

5. The Eclipse Project: EMF Model Query 2, http://wiki.eclipse.org/EMF/Query2
6. The Eclipse Project: EMFT Search,

http://www.eclipse.org/modeling/emft/?project=search
7. Biermann, E., Ermel, C., Taentzer, G.: Precise Semantics of EMF Model Trans-

formations by Graph Transformation. In: Czarnecki, K., Ober, I., Bruel, J.-M.,
Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 53–67. Springer,
Heidelberg (2008)

http://wiki.eclipse.org/EMF/Query2
http://www.eclipse.org/modeling/emft/?project=search

Derived Features for EMF by Integrating Advanced Model Queries 117

8. Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and scalability by in-
terpreting story diagrams. In: Proceedings of GT-VMT 2009, vol. 18. ECEASST
(2009)

9. The Object Management Group: Object Constraint Language, v2.3.1. (January
2012), http://www.omg.org/spec/OCL/2.3.1/

10. Uhl, A., Goldschmidt, T., Holzleitner, M.: Using an OCL impact analysis algorithm
for view-based textual modelling. ECEASST 44 (2011)

11. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual
schemas. J. Syst. Softw. 82(9), 1459–1478 (2009)

12. Groher, I., Reder, A., Egyed, A.: Incremental Consistency Checking of Dynamic
Constraints. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013,
pp. 203–217. Springer, Heidelberg (2010)

13. Balsters, H.: Modelling Database Views with Derived Classes in the UML/OCL-
framework. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS,
vol. 2863, pp. 295–309. Springer, Heidelberg (2003)

14. Schürr, A.: Introduction to PROGRESS, an Attribute Graph Grammar Based
Specification Language. In: Nagl, M. (ed.) Graph-Theoretic Concepts in Computer
Science. LNCS, vol. 411, pp. 151–165. Springer, Heidelberg (1990)

15. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In: Proc. ICSE 2000,
pp. 742–745 (2000)

16. Diskin, Z.: Model Synchronization: Mappings, Tiles, and Categories. In: Fernandes,
J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491, pp.
92–165. Springer, Heidelberg (2011)

17. Scheidgen, M.: On implementing MOF 2.0 new features for modelling language
abstractions (2005)

18. Bürger, C., Karol, S., Wende, C., Aßmann, U.: Reference Attribute Grammars for
Metamodel Semantics. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE
2010. LNCS, vol. 6563, pp. 22–41. Springer, Heidelberg (2011)

19. Jeusfeld, M.A., Jarke, M., Mylopoulos, J.: Metamodeling for Method Engineering.
The MIT Press (2009)

20. Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhelyi, Z., Varró, D.: Integrat-
ing Efficient Model Queries in State-of-the-Art EMF Tools. In: Furia, C.A., Nanz,
S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 1–8. Springer, Heidelberg (2012)

http://www.omg.org/spec/OCL/2.3.1/

A Lightweight Approach for Managing XML

Documents with MDE Languages

Dimitrios S. Kolovos, Louis M. Rose,
James Williams, Nicholas Matragkas, and Richard F. Paige

Department of Computer Science, University of York,
Derramore Lane, Heslington, York, YO10 5GH, UK

{dkolovos,louis,jw,nikos,paige}@cs.york.ac.uk

Abstract. The majority of contemporary model management languages
that support MDE tasks (such as model transformation, validation and
code generation) require models to be captured using metamodelling
architectures such as Ecore and MOF. In practice, a limited subset of
modelling tools – with the exception of some UML tools – build atop
such architectures. For many modelling languages and tools outside of
the UML/Ecore/MOF family, plain XML is a widely-used model stor-
age and exchange format. In this paper, we argue for the importance of
integrating XML-based models in the MDE process. We identify the chal-
lenges involved in integrating XML-based models into MDE processes,
and we present a technical solution that addresses these challenges, which
enables developers to perform a wide range of model management tasks
on models captured in XML.

1 Introduction

Model Driven Engineering (MDE) focuses on elevating machine-processablemod-
els to first-class artefacts of the software development process.MDE is technology-
agnostic in the sense that it does not prescribe a specific architecture or framework
atopwhichmodels should be captured, or a particular format in which they should
be stored. Therefore, in principle, any structured machine-processable document
can play the role of a model in an MDE process.

The majority of recent research on MDE has focused on 3-level metamodelling
architectures where models conform to metamodels which are defined in terms
of architecture / framework-specific metamodelling languages such as MOF [1]
or Ecore [2]. As a result, most contemporary model management languages that
support tasks such as model transformation, code generation, model validation
etc., require models to be captured atop such architectures. In practice how-
ever, very few modelling tools actually use MOF/Ecore to manage and store
their models; XML appears to be the most commonly used model persistence
format [3].

Although XML is clearly inferior for MDE purposes to elaborate object-
oriented metamodelling architectures from a technical perspective, due to its
popularity and simplicity, it has the potential of lowering the entry barrier and

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 118–132, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Lightweight Approach for Managing XML Documents 119

playing the role of a stepping stone for the wider adoption of automated model
management and MDE. In an effort to make model management languages and
MDE techniques more accessible to XML-literate developers, in this paper we
propose a lightweight approach for providing first-class support for managing
XML documents within Epsilon [4], a mature and well-established family of
model management languages. By first-class in this context, we mean support
for XML documents in their native standard W3C DOM1 representation, and
not through an implicit or a behind-the-scene injection to a proprietary repre-
sentation (e.g. as instances of an Ecore-based XML metamodel) that Epsilon
already provides support for.

The remainder of the paper is organised as follows. In Section 2 we discuss
the importance of XML for MDE and highlight the need for providing first-
class support for XML documents in model management languages. In Section
3 we discuss how we implemented such support in the context of Epsilon and in
Section 4 we present a case study that illustrates using languages of the Epsilon
platform to perform model management tasks on XML documents. In Section 5
we discuss related work and in Section 6 we conclude and provide directions for
further work on this subject.

2 Background and Motivation

XML is ubiquitous in the world of software: a vast number of off-the-shelf tools
either use XML as a native format for storing structured data they manage,
or provide import/export capabilities from/to XML. Also, literally hundreds of
modelling languages have been defined atop XML [3] such as the Systems Biology
Markup Language (SBML)2, the Financial products Markup Language3 and
exchange formats such as the Graph Exchange Language4. This is consistent with
the experience obtained through our interaction with industrial collaborators,
which also indicates that XML is particularly popular as a native representation
format for bespoke modelling tools developed in-house.

Compared to contemporary metamodelling architectures such as EMF and
MOF, plain XML is technically inferior as it only supports capturing tree-
structured metadata and does not provide support for types. XML Schema
remedies these limitations by adding support – among other – for formalising
cross-references between XML elements, and for defining complex and primitive
types but is still geared more towards the concrete representation rather than
towards the abstract syntax of the metadata it models.

Despite its technical limitations, we argue that plain XML has the potential to
lower the entrance barrier for developers that have not been previously exposed
to MDE; it can be used to enable developers to capture primitive models that
contain domain-specific information of interest and start managing them in an

1 http://www.w3.org/DOM/
2 http://sbml.org/
3 http://www.fpml.org/
4 http://www.gupro.de/GXL/

http://www.w3.org/DOM/
http://sbml.org/
http://www.fpml.org/
http://www.gupro.de/GXL/

120 D.S. Kolovos et al.

automated manner with MDE languages, without requiring them to first become
familiar with metamodelling architectures such as EMF and MOF. In the sequel,
and if automated model management (e.g. code generation, model transforma-
tion, validation) appears to be delivering results, a transition to a contemporary
metamodelling architecture that addresses the limitations of XML is the next
logical step.

In the following sections we demonstrate an approach for contributing first-
class support for managing plain XML documents to the Epsilon family of MDE
languages. Our aim with this work is to render MDE languages useful and attrac-
tive to developers that are experienced with XML but not with metamodelling
architectures, thus providing means that lower the entrance barrier to MDE.

2.1 Epsilon

Epsilon [4] is a mature and well-established family of interoperable languages for
model management. Languages in Epsilon can be used to manage models of di-
verse metamodels and technologies. At the core of Epsilon is the Epsilon Object
Language (EOL) [5], an OCL-based imperative language that provides features
such as model modification, multiple model access, conventional programming
constructs (variables, loops, branches etc.), user interaction, profiling, and sup-
port for transactions. Although EOL can be used as a general-purpose model
management language, its primary aim is to be reused in task-specific languages.
Thus, a number of task-specific languages have been implemented atop EOL, in-
cluding those for model transformation (ETL), model comparison (ECL), model
merging (EML), model validation (EVL), model refactoring (EWL) and model-
to-text transformation (EGL).

With regard to the types of models supported, Epsilon provides the Epsilon
Model Connectivity (EMC) layer that offers a uniform interface for interacting
with models of different modelling technologies. Currently, EMC drivers have
been implemented to support EMF [2] (XMI 2.x), MDR [6] (XMI 1.x) and Z [7]
specifications in LaTeX using CZT [8] Also, to enable users to compose complex
workflows that involve a number of individual model management tasks, Epsilon
provides ANT [9] tasks and an inter-task communication framework discussed
in detail in [10].

3 Managing XML Documents in Epsilon

In this section we illustrate how we have implemented first-class support for
managing XML documents in all the languages provided by Epsilon to perform
tasks such as model transformation, validation, comparison, refactoring, merging
and code generation.

3.1 The Epsilon Model Connectivity Layer

The Epsilon Model Connectivity (EMC), shown in Figure 1, is an abstrac-
tion layer for managing models in Epsilon. Via EMC, the model management

A Lightweight Approach for Managing XML Documents 121

Epsilon Object Language (EOL)

Epsilon Model Connectivity (EMC)

EMF
(XMI 2.x)

MDR
(XMI 1.x)

Z (CZT) XML

Transformation
Language (ETL)

Validation
Language (EVL)

Migration Language (Flock)

Model-to-Text
Language (EGL)

Refactoring
Language (EWL)

Comparison
Language (ECL)

Merging
Language (EML)

Unit Testing Framework (EUnit)

Fig. 1. Overview of the architecture of Epsilon

languages of Epsilon can query and modify models of varying modelling tech-
nologies without needing to be aware of the low-level details of each technology.

EMC enables developers to implement drivers – essentially classes that im-
plement the IModel interface of Figure 2 – to support diverse modelling tech-
nologies. This work illustrates the design and implementation of an additional
driver (on top of the existing drivers for managing EMF, MDR and Z models)
for interacting with schema-less XML documents.

In addition to abstracting over the technical details of specific modelling
technologies, EMC facilitates the concurrent management of models expressed
with different technologies. For instance, Epsilon can be used to transform an
EMF-based model into an MDR-based model, to perform inter-model valida-
tion between a Z model and an EMF model, or to develop a code generator that
consumes information from an EMF-based and an XML model at the same time.

3.2 The Plain XML EMC Driver

To support management of XML documents with languages of the Epsilon fam-
ily, a new driver has been implemented atop EMC. The XML driver uses the
standard W3C DOM Java implementation as the underlying representation for
XML documents and this, combined with the ability of Epsilon languages to in-
voke Java operations enables developers to access the complete standard DOM
API5 in their model management programs.

By contrast to drivers for 3-tier architectures such as EMF/MOF, in this
driver, in the absence of a metamodel or a schema, the developer needs to assist
Epsilon in navigating the XML model and performing type coercion / cast-
ing. Therefore, the plain XML driver (shaded box in Figure 1) uses predefined
naming conventions to allow developers to programmatically access and modify
XML documents in an elegant and concise way. It is worth noting that providing
support for XML documents in Epsilon did not require any other changes beyond

5 http://www.w3.org/DOM/

http://www.w3.org/DOM/

122 D.S. Kolovos et al.

allContents() : Object[*]
getAllOfKind(type:String) : Object[*]
getAllOfType(type:String) : Object[*]
owns(element : Object) : Boolean
getTypeOf(element : Object) : String
hasType(name:String) : Boolean
isInstantiable(type:String) : Boolean
knowsAboutProperty(element:Object, property:String) : Boolean
...

IModel
name : String
alias : String[*]

getOwningModel(element:Object) : IModel
getModelByName(name:String) : IModel

ModelRepository

*models

invoke(value:Object)

IPropertySetter
object: Object
property: String

invoke(object:Object, property:String) : Object
IPropertyGetter

propertysetter propertygetter

Fig. 2. The Model Connectivity Layer of Epsilon

the addition of the XML driver. This section outlines the supported conventions
using the document of Listing 1.1 as a running example.

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <library>
3 <book title="Eclipse Modeling Framework" pages="744">
4 <author>Dave Steinberg</author>
5 <author>Frank Budinsky</author>
6 <author>Marcelo Paternostro</author>
7 <author>Ed Merks</author>
8 <published>2009</published>
9 </book>

10 <book title="Eclipse Modeling Project: A Domain-Specific
Language (DSL) Toolkit" pages="736">

11 <author>Richard Gronback</author>
12 <published>2009</published>
13 </book>
14 <book title="Official Eclipse 3.0 FAQs" pages="432">
15 <author>John Arthorne</author>
16 <author>Chris Laffra</author>
17 <published>2004</published>
18 </book>
19 </library>

Listing 1.1. Example XML document

A Lightweight Approach for Managing XML Documents 123

Accessing Elements by Tag Name. The t_ prefix before the name of the
tag is used to represent a type, instances of which are all the elements with that
tag. For instance, t_book.all can be used to retrieve all elements tagged as
<book> in the document, t_author.all to retrieve all <author> elements
etc. Also, if b is an element with a <book> tag, then b.isTypeOf(t_book)
shall return true.

1 // Get all <book> elements
2 var books = t_book.all;
3

4 // Get a random book
5 var b = books.random();
6

7 // Check if b is a book
8 // Prints ’true’
9 b.isTypeOf(t_book).println();

10

11 // Check if b is a library
12 // Prints ’false’
13 b.isTypeOf(t_library).println();

Listing 1.2. Accessing elements by tag name

Getting and Setting Attribute Values of Elements. An attribute name,
prefixed by a_, can be used as a property of the element object. For example,
if b is the first book of the XML document of Listing 1.1, b.a_title will
return EMF Eclipse Modeling Framework. Attribute properties are readable
and writable.

In this example, b.a_pages will return 744 as a string. For 744 to be
returned as an integer, the i_ prefix should be used instead (i.e. b.i_pages.
The driver also supports the following prefixes: b_ for boolean, s_ for string
(alias of a_) and r_ for real values.

1 // Print all the titles of the books in the library
2 for (b in t_book.all) {
3 b.a_title.println();
4 }
5

6 // Print the total number of pages of all books
7 var total = 0;
8 for (b in t_book.all) {
9 total = total + b.i_pages;

10 }
11 total.print();
12

13 // ... the same using collect() and sum()
14 // instead of a for loop
15 t_book.all.collect(b|b.i_pages).sum();

Listing 1.3. Getting and setting attribute values

124 D.S. Kolovos et al.

Getting/Setting the Text of an Element. The .text property can be used
to read/write the value of the textual content of an element.

1 for (author in t_author.all) {
2 author.text.println();
3 }

Listing 1.4. Getting and setting the text of an element

Accessing the Parent of an Element. The .parentNode read-only prop-
erty can be used to retrieve the parent node of an element.

1 // Get a random book
2 var b = t_book.all.random();
3

4 // Print the tag of its parent node
5 // Prints ’library’
6 b.parentNode.tagName.println();

Listing 1.5. Getting the parent of an element

Retrieving the Children of an Element. The .children read-only prop-
erty can be used to retrieve all the child-nodes of an element.

1 // Get the <library> element
2 var lib = t_library.all.first();
3

4 // Iterate through its children
5 for (b in lib.children) {
6 // Print the title of each child
7 b.a_title.println();
8 }

Listing 1.6. Getting the children of an element

Getting Child Elements with a Specific Tag Name. Using what has been
discussed so far, this can be achieved using a combination of the .children
property and the select/selectOne() EOL operations. However, the driver
also supports e_ and c_-prefixed shorthand properties for accessing one or a
collection of elements with the specified name respectively. e_ and c_ properties
are read-only.

1 // Get a random book
2 var b = t_book.all.random();
3

4 // Get its <author> children using the
5 // .children property
6 var authors = b.children.select(a|a.tagName = "author");
7

8 // Do the same using the shorthand

A Lightweight Approach for Managing XML Documents 125

9 authors = b.c_author;
10

11 // Get its <published> child and print
12 // its text using the
13 // .children property
14 b.children.selectOne(p|p.tagName = "published").text.

println();
15

16 // Do the same using the shorthand
17 // (e_ instead of c_ this time as
18 // we only want one element,
19 // not a collection of them)
20 b.e_published.text.println();

Listing 1.7. Getting children with a specific tag name

Creating New Elements. The standard new operator can be used to create
new elements in the XML document.

1 // Check how many <books> are in the library
2 // Prints ’3’
3 t_book.all.size().println();
4

5 // Creates a new book element
6 var b = new t_book;
7

8 // Check again
9 // Prints ’4’

10 t_book.all.size().println();

Listing 1.8. Creating new elements

Add a Child to an Existing Element. The .appendChild(child) op-
eration can be used to add a child-node to an element. If the node to be added
is already a child of another node, it is first detached from its previous parent.

1 // Create a new book
2 var b = new t_book;
3

4 // Get the library element
5 var lib = t_library.all.first();
6

7 // Add the book to the library
8 lib.appendChild(b);

Listing 1.9. Adding a child to an existing element

Setting the Root Element of an XML Document. The .root property
of the model can be used to set the root element of an XML document.

126 D.S. Kolovos et al.

1 XMLDoc.root = new t_library;

Listing 1.10. Setting the root element of an XML document

The XML driver also supports (optional) caching so that expensive operations
such as collecting all elements with a particular tag do not need to be performed
repetitively.

3.3 Alternative Design Choices

As discussed above, the plain XML driver presented in this section makes use
of particular naming conventions – such as the t_, and c_ prefixes – to specify
XML model element types, to distinguish between child elements and attribute
values, to specify the expected result type when retrieving children of an element
by name (single element vs. collection of elements), and to perform type-casting
of the values of attributes. Given that Epsilon is dynamically typed, the pre-
fixes could have been eliminated in an alternative design, but this would have
introduced several inconveniences, which are now discussed.

Ordinarily, Epsilon throws a runtime error when trying to use undefined vari-
ables or types of model element that do not exist. These runtime errors provide
valuable information to users, alerting them to problems with their programs.
Schema-less models, such as plain XML models, do not provide type information.
Without the t_ prefix for XML model element types, the EOL interpreter would
become unable to distinguish between undefined variables and XML model ele-
ment types. Consequently, undefined variables would have to be treated as XML
model element types, and the user would not be alerted to the potential error in
their program. In addition, had we not used c_ and e_ to distinguish between
single and multiple children, all child element navigations would need to return
a collection of elements. Also, explicitly specifying attribute value type-casting
using the i_, r_, b_ prefixes avoids unintended type casts.

In our view, employing these prefixes makes up to an extent for the lack of
a formal metamodel and makes code easier – albeit slightly more verbose – to
write and maintain.

4 Case Study

In this section we present a case study that demonstrates how the XML driver
that was presented in the previous section can be used to validate and transform
the XML-based OO model of Listing 1.11 to a respective EMF-based UML
model. This case study has been intentionally kept simple for brevity reasons.

1 <?xml version="1.0"?>
2 <model>
3 <class name="Customer">
4 <property name="name" type="String"/>
5 <property name="address" type="Address"/>
6 </class>

A Lightweight Approach for Managing XML Documents 127

7 <class name="Invoice">
8 <property name="serialNumber" type="String"/>
9 <property name="customer" type="Customer"/>

10 <property name="items" type="InvoiceItem" many="true"
/>

11 </class>
12 <class name="InvoiceItem">
13 <property name="quantity" type="Integer"/>
14 <property name="product" type="Product"/>
15 </class>
16 <class name="Product">
17 <property name="name" type="String"/>
18 <property name="unitPrice" type="Float"/>
19 </class>
20 <class name="Address">
21 <property name="number" type="String"/>
22 <property name="postCode" type="String"/>
23 </class>
24 <datatype name="String"/>
25 <datatype name="Integer"/>
26 <datatype name="Float"/>
27 </model>

Listing 1.11. OO model captured using XML

Listing 1.12 illustrates a constraint expressed using the Epsilon Validation
Language (EVL) which checks that the type of each property in the XML model
of Listing 1.11 corresponds to a defined type (class or datatype). Line 2 defines
that the constraint applies to all elements tagged as property and line 5 checks
that there is an element tagged as datatype or class whose name matches
the value of the type attribute of the property. If such an element is not
found, in lines 7-9 a diagnostic message is produced.

1 import "util.eol";
2 context t_property {
3 constraint TypeMustBeDefined {
4

5 check : typeForName(self.a_type).isDefined()
6

7 message : "Property " + self.a_name + " of class " +
8 self.parentNode.a_name + " is of unknown type: " +
9 self.a_type

10 }
11 }

Listing 1.12. XML validation constraint expressed in EVL

Listing 1.13 illustrates a model-to-model transformation expressed using the
Epsilon Transformation Language (ETL) that transforms the XML model of
Listing 1.11 to an EMF-based UML model. The transformation consists of 4 rules

128 D.S. Kolovos et al.

which transform elements tagged as model, class, property and datatype
to respective Models, Classes, Properties and DataTypes in the target UML
model. This transformation illustrates how EMC enables programs in all Epsilon
languages to manage models that conform to different technologies concurrently.

1 import "util.eol";
2

3 rule t_model2Model
4 transform s : XML!t_model
5 to t : UML!Model {
6

7 t.packagedElement.addAll(s.children.equivalent());
8 }
9

10 rule t_class2Class
11 transform s : XML!t_class
12 to t : UML!Class {
13

14 t.name = s.a_name;
15 t.ownedAttribute.addAll(s.children.equivalent().
16 select(e|e.isTypeOf(UML!Property)));
17 }
18

19 rule t_property2Property
20 transform s : XML!t_property
21 to t : UML!Property {
22

23 t.name = s.a_name;
24 var type = typeForName(s.a_type);
25 t.type = type.equivalent();
26

27 if (s.b_many) { t.upper = -1; }
28

29 if (not type.isTypeOf(XML!t_datatype)) {
30 var association = new UML!Association;
31 association.ownedEnds.add(t);
32 var opposite = new UML!Property;
33 opposite.type = s.parentNode.equivalent();
34 association.ownedEnds.add(opposite);
35 UML!Model.all.first().packagedElement.
36 add(association);
37 }
38

39 }
40

41 rule t_datatype2DataType
42 transform s : XML!t_datatype
43 to t : UML!DataType {
44

A Lightweight Approach for Managing XML Documents 129

45 t.name = s.a_name;
46

47 }

Listing 1.13. XML to UML transformation expressed in ETL

1 operation typeForName(type : String) {
2 return allTypes().selectOne(t|t.a_name = type);
3 }
4

5 operation allTypes() : Sequence {
6 return XML!t_class.all.includingAll(XML!t_datatype.all);
7 }

Listing 1.14. Utility methods (util.eol) used in Listings 1.13 and 1.12

5 Related Work

The importance of XML has been recognised by the developers of the Eclipse
Modelling Framework (EMF) and as a result EMF provides support for manag-
ing schema-based XML documents. To support schema-based XML documents,
EMF provides a built-in transformation that can produce an Ecore metamodel
from an XML schema, a parser that can parse XML files that conform to an
XSD into in-memory models that conform to the respective Ecore metamodel,
and a serialiser that can then persist in-memory models back to XML. While
Ecore and XSD share many common features such as being able to define com-
plex structures (e.g. through EClasses in Ecore and Complex Types in XSD),
inheritance, references with cardinality etc. they also differ in some respects.
For instance, XSD can define anonymous complex types while Ecore cannot de-
fine anonymous EClasses, EMF models can contain multiple root objects while
XML documents can only have one root node, Ecore does not have equivalent
constructs for the XSD <choice> element or the mixed feature, etc. In an
effort to compensate for these differences, the XSD to Ecore transformation em-
ploys conventions that, while necessary, can lead to non-straightforward Ecore
metamodels.

For example, the XML Schema of listing 1.15 is transformed into the Ecore
metamodel illustrated in Figure 3. In the Ecore metamodel the reader can ob-
serve the ItemType and ItemType1 EClasses which have been generated by the
anonymous complex types in lines 8 and 21 of the XSD. Also, in order for a
developer to access the text content of an item element, they need to query the
mixed feature of ItemType (or ItemType1) – which is not straightforward for
a developer with no EMF expertise.

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
3

4 <xs:element name="invoice">

130 D.S. Kolovos et al.

5 <xs:complexType>
6 <xs:sequence>
7 <xs:element name="item">
8 <xs:complexType mixed="true">
9 <xs:sequence>

10 <xs:element name="unitPrice" type="xs:float"
/>

11 </xs:sequence>
12 </xs:complexType>
13 </xs:element>
14 </xs:sequence>
15 </xs:complexType>
16 </xs:element>
17 <xs:element name="order">
18 <xs:complexType>
19 <xs:sequence>
20 <xs:element name="item">
21 <xs:complexType mixed="true">
22 <xs:sequence>
23 <xs:element name="quantity" type="xs:int"/>
24 </xs:sequence>
25 </xs:complexType>
26 </xs:element>
27 </xs:sequence>
28 </xs:complexType>
29 </xs:element>
30 </xs:schema>

Listing 1.15. Example XML Schema

The Atlas Transformation Language (ATL) provides support for schema-less
XML documents through an injection transformation that converts an XML
document to a respective EMF model that conforms to a simple Ecore-based
XML metamodel, and an extraction transformation that does the reverse. As
such, the syntax for managing XML documents in ATL is particularly verbose
as illustrated by Listings 1.16 and 1.17.

1 XML!t_book.all.first().a_title.println();

Listing 1.16. EOL statement that prints the title of the first book

1 XML!Element.allInstances()->select(e|e.name = ’book’)->
first()

2 .children->select(c|c.oclIsTypeOf(XML!Attribute)
3 and c.name = ’title’)->first().value.println();

Listing 1.17. Equivalent ATL statement that prints the title of the first book

Xlinkit [11] is a tool for checking consistency issues in distributed docu-
ments. Using Xlinkit, developers can specify cross-document constraints that
can be automatically evaluated to reveal inconsistencies. For the specification of

A Lightweight Approach for Managing XML Documents 131

Fig. 3. Ecore metamodel generated from the XML Schema of Listing 1.15

constraints, Xlinkit defines an XML-based language that uses XPath [12] for
document navigation. Listing 1.18 demonstrates an exemplar Xlinkit constraint
that applies on a UML and a Java model and states that for each class in the
UML model, a class with the same name must exist in the Java model. In our
view, the main shortcoming of this approach is that the concrete syntax of the
expression language is based on XML and that, as illustrated in Listing 1.18,
results in lengthy and challenging to read and maintain specifications.

1 <globalset id="classes"
2 xpath="//Foundation.Core.Class[@xmi.id]"/>
3 <globalset id="javaclasses" xpath="/java/class"/>
4 <consistencyrule id="r1">
5 <forall var="c" in="classes">
6 <exists var="j" in="javaclasses">
7 <equal
8 op1="c/Foundation.Core.ModelElement.name/text()"
9 op2="j/@name"/>

10 </exists>
11 </forall>
12 </consistencyrule>

Listing 1.18. Example Xlinkit constraint

6 Conclusions and Further Work

In this paper we have highlighted the importance of XML in the context of MDE;
in particular we have discussed the role of XML both as a legacy format in which

132 D.S. Kolovos et al.

a significant amount of data is already encoded, and as a means of lowering the
entrance barrier for newcomers in MDE. Following that we illustrated a technical
solution for adding first-class support for XML to the Epsilon MDE platform so
that plain XML documents can be used in a wide range of MDE tasks such as
model validation, transformation, comparison, merging and code generation as
they are and without needing to first transform them to models that conform to
metamodelling architectures such as MOF or EMF.

Although in this paper we have illustrated a solution for adding support for
managing XML documents to a particular family of model management lan-
guages, it is worth noting that this approach is also directly applicable to other
model management languages (such as ATL[13] or MOFScript[14]) that provide
a layer of indirection between the language run-time and the concrete modelling
technologies they support.

Acknowledgements. The work in this paper was supported by the Euro-
pean Commission via the MADES and INESS projects, co-funded under the
7th Framework programme (grants #218575 (INESS), #248864 (MADES)).

References

1. Object Management Group. Meta Object Facility (MOF) 2.0 Core Specification,
http://www.omg.org/cgi-bin/doc?ptc/03-10-04

2. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modelling
Framework. 2nd edn. Eclipse Series. Addison-Wesley Professional (December 2008)

3. CoverPages. XML Applications and Initiatives (June 2005),
http://xml.coverpages.org/xmlApplications.html

4. Eclipse Foundation. Epsilon Modeling GMT component,
http://www.eclipse.org/gmt/epsilon

5. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Object Language (EOL).
In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

6. Sun Microsystems. Meta Data Repository, http://mdr.netbeans.org
7. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-

Hall (March 1996)
8. Community Z Tools, http://czt.sourceforge.net
9. The Apache Ant Project, http://ant.apache.org

10. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: A Framework for Composing Modular
and Interoperable Model Management Tasks. In: Proc. Workshop on Model Driven
Tool and Process Integration (MDTPI), ECMDA, Berlin, Germany (June 2008)

11. Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: xlinkit: A Consistency
Checking and Smart Link Generation Service. ACM Transactions on Internet Tech-
nology 2(2), 151–185 (2002)

12. W3C. XML Path Language (XPath), Official Web-Site,
http://www.w3.org/TR/xpath

13. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

14. Oldevik, J.: MOFScript User Guide,
http://www.eclipse.org/gmt/mofscript/
doc/MOFScript-User-Guide.pdf

http://www.omg.org/cgi-bin/doc?ptc/03-10-04
http://xml.coverpages.org/xmlApplications.html
http://www.eclipse.org/gmt/epsilon
http://mdr.netbeans.org
http://czt.sourceforge.net
http://ant.apache.org
http://www.w3.org/TR/xpath
http://www.eclipse.org/gmt/mofscript/doc/MOFScript-User-Guide.pdf
http://www.eclipse.org/gmt/mofscript/doc/MOFScript-User-Guide.pdf

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 133–145, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Bridging the Gap between Requirements and Aspect
State Machines to Support Non-functional Testing:

Industrial Case Studies

Tao Yue and Shaukat Ali

Certus Software V&V Center, Simula Research Laboratory
P.O. Box 134, 1325, Lysaker, Norway
{tao,shaukat}@simula.no

Abstract. Requirements are often structured and documented as use cases while
UML state machine diagrams often describe the behavior of a system. State
machines capture rich and detailed behavior of a system, which can serve as a
basis for many automated activities such as automated test case and code
generation. The former is of interest in this paper. Non-functional behavior can
be modeled using standard UML state machines, but usually results in complex
state machines. To cope with such complexity, Aspect-Oriented Modeling
(AOM) is often recommended. AspectSM is a UML profile defined to model
crosscutting behavior on UML state machines called as aspect state machines
with the focus of supporting model-based test case generation for non-
functional behavior. Hence, an automatic transition from use cases to aspect
state machines would provide significant, practical help for testing system
requirements. In this paper, we propose an approach to automatically generate
aspect state machines from use cases for the purpose of non-functional testing.
Our approach is implemented in a tool, which we used for two industrial case
studies. Results show that high quality aspect state machines can be generated,
which can be manually refined at a reasonable cost to support testing.

Keywords: Use Case Modeling, UML, Aspect State Machine, Model-Based
Testing (MBT), State-based Testing.

1 Introduction

Model-based testing (MBT) has attracted much attention in both industry and
academia, as indicated by a large number of MBT tools produced in recent years [1].
MBT however relies on complete and precise models for executable test case
generation. Developing such models has always been a challenge, especially for
large-scale industrial systems, and entails a thorough domain understanding and solid
modeling expertise. Oftentimes, developing such models is difficult for Software
Quality Assurance teams as they are often not sufficiently acquainted with modeling.
On the other hand, these teams are comparatively much more familiar with writing
textual use cases and the application domain.

This paper is part of an automated methodology (aToucan [2, 3]) to assist the
development of high-level models from use case models (UCMods). The aToucan

134 T. Yue and S. Ali

tool relies on a number of existing technologies and is built as an Eclipse plug-in.
aToucan involves three steps. 1) Requirements engineers manually define use cases
complying with a use case modeling approach, Restricted Use Case Modeling
(RUCM) [4, 5], which relies on a use case template and a set of restriction rules for
textual Use Case Specifications (UCSs) to reduce the imprecision and incompleteness
inherent to UCSs. We have conducted two controlled experiments with human
subjects [5] to evaluate RUCM and results indicate that RUCM, though it enforces a
template and restriction rules, has enough expressive power, is easy to use, and helps
improve the understandability of use cases. 2) aToucan reads these textual UCSs to
identify Part-Of-Speech (POS) and grammatical relation dependencies of sentences,
and then records that information into an instance of UCMeta (our intermediate
metamodel). UCMeta complies with the restrictions and use case template of RUCM,
is currently composed of 108 metaclasses, and is implemented as an Ecore model,
using Eclipse EMF [6]. During this transformation, the Stanford Parser [7] is used as
a Natural Language (NL) parser in aToucan. 3) Transform the instance of UCMeta
into UML models. The generation of UML models relies on Kermeta [8]. Due to
space limitation, the detailed description of aToucan is given in [2] and we omit it
from this paper.

We have proposed an approach [9], as part of the aToucan framework, to
automatically generate standard, system-level UML state machines from use case
models. The focus of this work is however on generating aspect state machines in
AspectSM, a UML profile which was defined to model crosscutting behavior on
UML state machines with the focus of supporting model-based non-functional testing
[10]. AspectSM has been evaluated both empirically (through controlled experiments,
e.g., [11-13]) and practically (via real industrial case studies, e.g., [10]) to be
applicable. These models are subsequently refined such that executable test cases can
be generated using our MBT tool, TRansformation-based tool for Uml-baSed Testing
(TRUST) [14]. The TRUST tool has been successfully applied to two industrial case
studies for model-based functional and non-functional testing [14]. In this paper, we
performed two industrial case studies: a video conference system from Cisco Systems
Inc, Norway [15] and a subsea oil production system from FMC Technologies [16]
were performed, to evaluate UML state machines and aspect state machines modeling
non-functional behaviors generated by aToucan. The generated state machines were
evaluated by domain experts, who assessed them to mostly conform to the existing,
manually developed state machines.

The rest of the paper is organized as follows. In Section 2, we briefly discuss
RUCM, AspectSM and the running example being used to exemplify the
transformation. The transformation approach is discussed in Section 3. The industrial
case studies are discussed in Section 4. The related work is presented in Section 5 and
Section 6 concludes the paper.

2 Background

In this section, we briefly, due to space limitation, review the use case modeling
approach RUCM (Section 2.2) and AspectSM (Section 2.3). A running example will
be presented in Section 2.1 to exemplify RUCM and the transformations.

 Bridging the Gap between Requirements and Aspect State Machines 135

2.1 Running Example

The running example is a simplified subsystem (called Saturn) of a communication
system (Video Conferencing System (VCS)) developed by Cisco Systems Inc,
Norway [15], which is a leading global provider of telepresence, high-definition video
conferencing and mobile video products and services. This subsystem is the industrial
case study used to evaluate this work (Section 4).

The core functionality of a VCS is sending and receiving multimedia streams. The
use case diagram capturing main use cases of the simplified subsystem Saturn is given
in Figure 1. Saturn deals with establishing video conferencing calls, disconnecting
calls, and starting/stopping presentations. It can also receive requests for establishing
calls, disconnecting calls, and starting/stopping presentations from other video
conferencing systems (Endpoints) participating in a videoconference. The endpoints
communicating with Saturn are modeled as secondary actors in the use case diagram.

Fig. 1. Use case diagram of Saturn

2.2 RUCM

RUCM encompasses a use case template and 26 well-defined restriction rules [4].
Rules are classified into two groups: restrictions on the use of NL, and rules enforcing
the use of specific keywords for specifying control structures. The goal of RUCM is
to reduce ambiguity and facilitate automated analysis. Two controlled experiments
evaluated RUCM in terms of its ease of application and the quality of the analysis
models derived by trained individuals [4, 5]. Results showed that RUCM is overall
easy to apply and that it results in significant improvements over the use of a standard
use case template (without restrictions to the use of NL), in terms of the quality of
derived class and sequence diagrams. UCSs documented with RUCM of use cases
AdaptCallRate and CheckNetworkConnection (Figure 1) are presented in Table 1 and
Table 2. UCSs of the other use cases in Figure 1 are provided in [9] for a reference.

136 T. Yue and S. Ali

2.3 AspectSM

Using the AspectSM profile [10], we model crosscutting behaviors as a UML state
machine with stereotypes, which is called as aspect state machine and hence reduce
modeling effort when compared to modeling crosscutting directly on UML state
machines. The readability of models is then improved as crosscutting behavior that
tends to be redundant when modeled directly is clearly separated out and expressed
once. This profile was developed by augmenting many of the concepts in existing
UML state machine profiles for AOM in order to achieve the specific goal of
supporting automated, model-based non-functional testing. Due to the space
limitation, we didn’t provide stereotypes and their attributes in this paper, however,
their details can be found in [10].

Table 1. Use case AdaptCallRate

Use Case Name AdaptCallRate
Brief Description The system adjusts the call rate based on the quality of services of the network.
Precondition Network connection is established.
Primary Actor Timer
Basic Flow 1) The system VALIDATES THAT the network is experiencing packet loss.

2) The system gradually decreases conference call rate to the minimum call rate.
Postcondition: The system is in a degraded mode.

Specific Alt. Flow
(RFS Basic flow 1)

1) The system gradually increases conference call rate up to the maximum call rate.
Postcondition: The system is in the normal operation mode.

Table 2. Use case CheckNetworkConnection

Use Case Name CheckNetworkConnection
Brief Description The system checks the network connection.
Precondition The system is idle.
Basic flow 1) The system VALIDATES THAT Network connection is OK.

Postcondition: The network connection is checked.
Specific Alt. Flow
(RFS Basic flow 1)

1) The system sends a failure message to User. 2) ABORT.
Postcondition: The system is idle.

3 Approach

The transformation from the textual UCMod to the instance of UCMeta is not
discussed in this paper, but provided in [2] for a reference. In this section, we
however only focus on the transformation from instances of UCMeta to the base and
aspect state machines. We present detailed transformation rules in Section 3.1. The
steps required for transforming generated state machines into the state machines that
can be used for automated test case generation are presented in Section 3.2.

3.1 Transformation

Before generating aspect state machines, we should first identify crosscutting
behaviors. Two heuristics should be followed to identify crosscutting behavior use
cases (CUSs) in the use case model. First, if a use case is included more than once or

 Bridging the Gap between Requirements and Aspect State Machines 137

extends more than one use cases, it is a candidate CUS. A user later on can always
manually identify crosscutting behavior. The rest of the section describes how to
generate the base state machine and after that, how to generate aspect state machine(s)
for identified crosscutting behaviors.

3.1.1 Generating Base State Machine
The transformation from an instance of UCMeta to a base state machine involves
three rules, summarized in Table 3. These rules are adapted from [9], where we
described the transition to standard UML state machines. The difference between
generating a base state machine in the context of aspect-oriented modeling and a
standard UML state machine is that when generating the base state machine,
identified crosscutting behaviors should not be specified in the base state machine, as
they are modeled as aspect state machines. Subscripts on rule numbers (Column 1,
Table 3) indicate the type of the rule: "c" and "a" denote composite and atomic rules,
respectively; a composite rule is decomposed, whereas an atomic rule is not. The
automatically generated base state machine diagram for the use case model presented
in Section 2.1 is provided in Figure 2.

Table 3. Summary of transformation rules for generating the base state machine for the system

Rule # Description
1a a) Generate an instance of UML StateMachine, as the base state machine, for the use case model. The

name of the state machine should be the name of the system (e.g., ‘Saturn’) plus ‘base state machine’. b)
Generate the initial state (instance of Pseudostate with PseudostateKind = initial) for the state
machine. c) Generate an instance of State, named as ‘start’, representing the start state of the state
machine. d) Generate an instance of Transition. Its trigger is named as ‘construct’. This transition
connects the initial state to the start state.

2c Invoke rules 2.1-2.4 to process each use case of the use case model that is considered as not specifying
crosscutting behaviors.

2.1a Generate an instance of State for the precondition of the use case, as long as such a state has not been
generated, which is possible because two use cases might have the same preconditions.

2.2a Generate an instance of State for the postcondition of the basic flow of the use case, as long as such a state
has not been generated.

2.3a If the use case does not include any other use case, then connect the state corresponding to the precondition
to the state representing the postcondition of the basic flow of the use case with the transition whose trigger
is the name of use case. Otherwise, invoke rule 3.

2.4c Process the postcondition of each alternative flow of the use case.
2.4.1a Generate an instance of State for the postcondition of each alternative flow.
2.4.2a Connect the state corresponding to the precondition of the basic flow to the states corresponding to the

postconditions of the alternative flows with transitions whose triggers are the name of use case.
3c Process Include relationships between use cases. Notice that use cases capturing identified crosscutting

behaviors are not processed with the following rules, as separate rules will be applied to generate aspect state
machines for them (Section 3.1.2).

3.1a Connect the precondition of the included use case to the postcondition of the flow of events where the
included use case is included in the including use case through a transition. Connect the precondition of the
included use case to the postconditions of the alternative flows of the included use case.

3.2a If there is a sequence of included use cases in the including use case, then link all the preconditions of the
included use cases sequentially, and then link the precondition of the last use case to the postcondition of the
including use case through transitions.

Rule 1 generates an instance of UML StateMachine for a UCMod, which can then
be visualized as a state machine diagram, the initial state (an instance of
Pseudostate), the start state (an instance of State), and the transition (an instance of
Transition) from the initial state to the start state.

138 T. Yue and S. Ali

Fig. 2. Generated base state machine

Composite rule 2 invokes rules 2.1-2.4 to process each use case of the UCMod.
Notice that we generate a single, system-level base state machine for the whole
UCMod. We generate an instance of State for the precondition (Rule 2.1) and each
postcondition (Rule 2.2), but making sure that no duplicate state is generated. Since
the precondition of a use case indicates what must happen before the use case can
start and the postconditions of the use case specify what must be satisfied after the use
case completes, we define Rule 2.3 to generate a transition between the state derived
from the precondition and the state derived from the postcondition of the basic flow.
Rule 2.4 processes the postcondition of each alternative flow of the use case. Notice
that RUCM enforces that each flow of events (both basic flow and alternative flows)
of a UCS contains its own postcondition. This characteristic of RUCM makes the
transformation (Rule 2.4) systematic. When generating transitions, how to determine
the guard condition, trigger, and effect is described in [9], due to space limitation.
Rule 3 processes each include relationship of the UCMod.

3.1.2 Generating Aspect State Machines
In this section, we describe the transformation for generating aspect state machines.
Generated aspect state machines for two CUSs in Figure 1 are shown in Figure 3 and
Figure 4, respectively. Notice that the base state machine has to be generated before
the rules are applied to generate any aspect state machine. We generate an aspect state
machine with stereotypes from AspectSM for each identified crosscutting behavior.

Rule 1 generates an instance of UML StateMachine, stereotyped with
<<Aspect>>, which can then be visualized as a state machine diagram. Stereotype
<<Aspect>> has two attributes: name and baseStateMachine, which represent the
name of the aspect and the base state machine, on which the aspect is applied ([10]).
The name of <<Aspect>> is the name of the included use case (extending use case)
and the baseStateMachine should refer to the base state machine. Notice that we
generate a single base state machine for the system. Therefore, the multiplicity of
attribute baseStateMachine of <<Aspect>> is always 1. For example, both the name

 Bridging the Gap between Requirements and Aspect State Machines 139

of the aspect state machine and the name of <<Aspect>> are ‘AdaptCallRate’ when
generating the aspect state machine for use case AdaptCallRate, and the aspect state
machine refers to its base state machine (Figure 2), though this information is not
shown in Figure 3. Rule 2 generates the initial state (an instance of Pseudostate).

Rule 3 generates a state stereotyped with AspectSM stereotype <<Pointcut>>. A
pointcut in AspectSM selects one or more joinpoints with similar properties, where
advices can be applied [10]. Six attributes are defined for stereotype <<Pointcut>> in
AspectSM: name, type, selectionConstraint, beforeAdvice, afterAdvice, and
aroundAdvice. The name of the pointcut state and <<Pointcut>> is generated as string
“SelectStates X’, where X can be any number uniquely identifying a state in the
aspect state machine. Notice that it is possible to have more than one state stereotyped
with <<Pointcut>>. For example, as shown in Figure 3, the pointcut state
SelectedStates1 is generated for use case AdaptCallRate. Two pointcut states
SelectedStates1 and SelectedStates2 are generated for use case
CheckNetworkConnection.

Fig. 3. Generated aspect state machine for use case AdaptCallRate

The type and selectionConstraint of the pointcut should be determined by the
following three rules:

• If the CUS extends all the use cases or is included by all the use cases in the
base state machine, then the type of the pointcut is ‘All’, and the
selectionConstraint should be equal to empty. As shown in Figure 3, state
SelectedStates1 selects all the states in the base state machine through the
<<Pointcut>> attribute type, since use case AdaptCallRate extends all the use
cases except the other crosscutting use case CheckNetworkCondition. There is
no point to assign a value to selectionConstraints as all the use cases are
selected.

• If the CUS extends a subset of the use cases or is included by a subset of the
use cases in the base state machine, then the type is ‘Subset’, and the
selectionConstraint should be a list of the names of the states generated for
the preconditions and postconditions of the use cases either including or being
extended by the CUS in the base state machine. For example, as shown in
Figure 4, state SelectedStates1 selects a subset of the states in the base state
machine: The system is in a conference call. and The presentation

140 T. Yue and S. Ali

is started. and The system is idle. (Figure 2). The reason of selecting
these three states from the base state machine is that they were generated for
either the preconditions or the postconditions of use cases
MakeConferenceCall, JoinConferenceCall, and StartPresentation, which all
include use case CheckNetworkConnection (Figure 1).

• If the CUS extends one use case or is included by one use case in the base
state machine, then the type of the pointcut is ‘One’, and the
selectionConstraint of the pointcut should be the states generated for the
precondition and postconditions of the use case either including or being
extended by the CUS in the base state machine.

Though there are three types of advices in AspectSM, in our transformation only
beforeAdvice is used to introduce the precondition of the CUS as additional
state invariants, through stereotype <<Before>>, to the selected states of the base state
machine. As shown in Figure 3 and Figure 4, beforeAdvice is introduced to the state
invariants of the selected states through state SelectedStates1. Notice that
AspectSM has three types of advice (i.e., Before, After and Around). In our context,
we only use Before, but we could have used After, which can bring the same
semantics to the generated aspect state machines, as we discussed in our previous
work [10] where AspectSM is discussed in details.

Fig. 4. Generated aspect state machine for use case CheckNetworkConnection

Rule 4 generates the transition (an instance of Transition) from the initial state to
the pointcut state. Rule 5 handles the postcondition of the basic flow of the CUS.
There are two situations for applying this rule:

• If the CUS is an extending use case, generate a state for the postcondition, as
long as such a state has not been generated in the base state machine. This
newly generated state should be stereotyped with AspectSM stereotype
<<Introduction>> showing that this state will be introduced in the base state
machine. Otherwise, a pointcut state should be generated to point to the
existing state in the base state machine. Rule 3 should be followed to generate
values for the attributes of stereotype <<Pointcut>>. For example, as shown in
Figure 3, state The system is in a degraded mode. is generated,

 Bridging the Gap between Requirements and Aspect State Machines 141

corresponding to the postcondition of the basic flow of use case
AdaptCallRate (Table 1). Also generate a transition stereotyped with
<<Introduction>> to connect the pointcut state either to the newly generated
state or the pointcut state pointing to the existing state in the base state
machine (Rule 5). The trigger of the transition should be the name of the
CUS. The guard is the conjunction of all the conditions of the condition
sentences in the basic flow of the use case. The effect of the transition should
be the last step of the basic flow. For example, in Figure 3, a transition
between SelectedStates1 and The system is in the degraded mode. is
generated with trigger AdaptCallRate, guard The system is experiencing
packet loss., and effect The system gradually decreases conference
call rate to the minimum call rate.

• If the CUS is an included use case, a self-transition stereotyped with
<<Introduction>> is generated for the pointcut state (Rule 3). The trigger of
the transition should be the name of the included use case. The guard is the
conjunction of all the conditions of the condition sentences in the basic flow
of the CUS. The effect of the transition should be the last step of the basic
flow. For example, as shown in Figure 4, a self-transition for
SelectedStates1 is generated, with trigger CheckNetworkConnection and
guard Network connection is OK. Notice that when the last step of the basic
flow of the use case is a condition check sentence (containing keyword
VALIDATES THAT), we don’t generate an effect for the transition. This is
because condition check sentences are considered as representing system
internal interactions [5].

Rule 6 handles alternative flows of the CUSs in a similar fashion as for base state
machine (Rule 2.4, Table 3). The difference is that, when a new state is generated for
the postcondition of an alternative flow, stereotype <<Introduction>> should be
always applied; when an existing state is identified in the base state machine for the
postcondition, then a pointcut state should be generated in the aspect state machine
and it should point to the existing state in the state machine through attribute
selectionConstraint of <<Pointcut>>. For example, as shown in Figure 4, a
transition is generated between SelectedStates1 and SelectedStates2 as state The
system is idle. has been generate as a state in the base state machine (Figure 2). In
Figure 3, a state The system is in the normal operation mode. is generated and
a transition between states SelectedStates1 and The system is in the normal
operation mode.

Rule 7 handles the situation when a CUS includes other use cases and these use
cases are only connected to the CUS. In such case, Rule 2.3 and Rule 3 in Table 3,
used for generating the base state machine, should be applied. As for Rule 7, the
difference is that whenever a new state or transition is generated, stereotype
<<Introduction>> should be applied and whenever an existing state is identified in
base state machine, a poincut state should be generated.

3.2 Transition to State Machines for Automated Test Generation

The following steps should be followed to refine the generated base and aspect state
machines so that they can be used as an input to automatically generate test cases.

142 T. Yue and S. Ali

1. The generated base and aspect state machines have to be manually refined by a
user. More specifically, in the generated state machines, missing transitions and
states should be added, extra states and transitions should be removed, and
incorrect ones should be modified. For the generated aspect state machines, the
user additionally has to refine elements related to AspectSM.

2. Add state invariants using the Object Constraint Language (OCL) [17] for each
state of the generated state machines based on the actual state variables of a
system.

3. Map all the triggers of all the state machine diagrams to the actual API calls of
the SUT so that the API of the system can be invoked while executing test cases
generated from the state machines.

4. Last, it is also required to replace textual guard conditions of the generated state
machines with corresponding OCL constraints, based on the state variables
and/or input parameters of the triggers associated with the guards.

4 Industrial Case Studies

Our goal here is to assess 1) whether the tool does generate system-level state
machine diagrams based on UCMods, 2) whether our transformation rules are
semantically complete, 3) whether our transformation rules lead to state machine
diagrams that are syntactically correct, and 4) whether the automatically generated
state machine diagrams can be refined by test engineers to support MBT with a
reasonable effort. Regarding point 3, syntactic correctness means that a generated
state machine diagram conforms to the UML 2.2 state machines notations. Regarding
point 2, semantic correctness means that a generated state machine diagram correctly
represents its UCMod; all the constructs that are related to the transformation in the
UCMod are correctly transformed by following the transformation rules and no
redundant model elements are generated.

Regarding the first three evaluation points, two large-scale, network-based and
distributed systems, respectively from the communication domain and the maritime
and energy sectors are used to evaluate our approach. One is a Video Conference
System (VCS) and the other is a Subsea Oil Production System (SOPS).

VCS contains four endpoints, which are of the same functionalities. These
functionalities are modeled as the same set of use cases. Each endpoint has 10 use
cases; in total the whole system contains 40 use cases. The core functionality of the
system manages the sending and receiving of multimedia streams. Audio and video
signals are sent through separate channels and there is also a possibility of
transmitting presentations in parallel with audio and video. Presentations can be sent
by only one conference participant at a time and all others receive it. Each of the VCS
endpoint is operated by a human actor. A timer is needed to periodically initiate the
adaption of call rate. Eight crosscutting concerns (e.g., Standby, Do Not Disturb,
Noise Cancellation) were specified and transformed into aspect state machines using
our approach.

SOPSs are large-scale, integrated, distributed, and highly configurable systems of
systems for managing exploitation of oil and gas production fields, with various field
layouts ranging from single satellite wells to large multiple sites (more than 50 wells).

 Bridging the Gap between Requirements and Aspect State Machines 143

SOPS has four different types of systems, three of which are located above the sea
level and the other is located in subsea. These systems have distinct functionalities
and are connected through different types of communication media. Due to the reason
that we had no access to all the requirements of these systems, we were not able to
specify the UCSs of all the systems. Only 12 out of 65 representative use cases were
specified. We modeled the following six crosscutting concerns (e.g., Operation Mode
Exchange, Runtime Configuration, Data Update Mechanism Switch) using RUCM
and they are transformed into aspect state machines using our approach.

In total, 14 aspect state machines were generated and we carefully examined them,
and we could verify that the generated state machines were syntactically correct and
mostly but not entirely semantically complete. Due to space limitation and
confidential issues, we are not able to provide more detailed information about these
two industrial case studies.

5 Related Work

We conducted a systematic literature review [18] on transformations of textual
requirements into analysis models, represented as class, sequence, state machine, and
activity diagrams. A carefully designed paper selection procedure in scientific
journals and conferences from 1996 to 2008 and Software Engineering textbooks
identified 20 primary studies (16 approaches). The method proposed here is based on
the results of this review, with a focus on automatically deriving state machine
diagrams from UCMods.

A series of methods is proposed in [19] (one of the primary studies of our
systematic review [18]) to precisely capture requirements and then manually
transform requirements into a conceptual model composed of object models (e.g.,
class diagrams), dynamic models (i.e., state machines and sequence diagrams), and
functional diagrams. The approach does not purport to provide a solution for
transforming requirements into analysis models. Instead, it proposes a set of
techniques for users to precisely specify requirements and conceptual models, and
also proposes a process to guide the users in deriving the conceptual models from the
requirements. No transformation method is reported in the paper.

Somé [20], another primary study of our systematic review, proposes an approach
to generate finite state machines from use cases in restricted Natural Language (NL).
The approach requires the existence of a domain model. The domain model serves
two purposes: a lexicon for the NL analysis of use cases, and the structural basis of
the state transition graphs being generated. The domain model acts as the lexicon for
NL analysis of the use cases, because the model elements of the domain model are
used to document the use cases. For example, actors of the use cases refer to the
classes of the domain model. Interactions between the system and the actors are
defined as one type of use case operations (also including branching statements, use
case inclusion statements) which correspond to class operations in the domain model.
An algorithm is described in the paper to explain how to automatically transform the
use cases plus the domain model into state machines. A working example is used to
explain the approach. No case study is presented to evaluate the approach.

144 T. Yue and S. Ali

In summary, none of the existing approaches is able to fully and automatically
generate either standard UML state machine diagrams or aspect state machines from
requirements, which is what we are proposing in the paper.

6 Conclusion

The success of Model-based testing (MBT) relies on developing complete and precise
input models. Especially to support modeling system non-functional behavior such as
robustness and security, which is typically crosscutting functional behavior and thus
modeling such behavior directly with functional behavior is not scalable since it leads
to redundant and cluttered models. To cope with this issue, usually Aspect-oriented
Modeling (AOM) is recommended to model crosscutting behavior. In this paper, we
focused on a UML 2.0 profile (AspectSM), which supports comprehensive aspect
modeling for UML 2.0 state machines (aspect state machines) and enables automated
non-functional testing. As with other Aspect-Oriented Modeling (AOM) approaches,
AspectSM can potentially offer several benefits such as: enhanced modularization,
easier evolution of models, increased reusability, reduced modeling effort, and
improved readability [11-13]. Developing such aspect state machines from scratch is
a challenging task, especially when testers are not acquainted with modeling. To
assist the initial modeling required for MBT, we propose an approach to transform
use case specifications into UML state machines and aspect state machines.

A precise and rigorous use case modeling approach (RUCM) was proposed in [4]
and was used in this paper, as part of aToucan [2, 3, 9], to automatically generate
UML and aspect state machines from use cases. We evaluated our approach on two
industrial case studies and we assessed the quality of generated base and aspect state
machines and found them largely consistent. Our industry partners benefited not only
from the executable test cases, but also from the system specification expressed as
UML and aspect state machines and precise requirements expressed with RUCM. All
these activities took no more than few hours, including documenting the use case
model and refining the generated base and aspect state machines.

References

1. Shafique, M., Labiche, Y.: A Systematic Review of Model Based Testing Tool Support.
Carleton University. Technical Report SCE-10-04

2. Yue, T., Briand, L.C., Labiche, Y.: Automatically Deriving a UML Analysis Model from a
Use Case Model. Simula Research Laboratory. Technical Report 2010-15 (2010)

3. Yue, T., Briand, L.C., Labiche, Y.: An Automated Approach to Transform Use Cases into
Activity Diagrams. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA
2010. LNCS, vol. 6138, pp. 337–353. Springer, Heidelberg (2010)

4. Yue, T., Briand, L.C., Labiche, Y.: A Use Case Modeling Approach to Facilitate the
Transition towards Analysis Models: Concepts and Empirical Evaluation. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 484–498. Springer, Heidelberg
(2009)

 Bridging the Gap between Requirements and Aspect State Machines 145

5. Yue, T., Briand, L., Labiche, Y.: Facilitating the Transition from Use Case Models to
Analysis Models: Approach and Experiments. Accepted for publication in Transactions on
Software Engineering and Methodology, TOSEM (2011)

6. Eclipse Modeling Framework (EMF),
http://www.eclipse.org/modeling/emf/

7. The Stanford Natural Language Processing Group. The Stanford Parser version 1.6
8. Triskell team, http://www.kermeta.org/
9. Yue, T., Ali, S., Briand, L.: Automated Transition from Use Cases to UML State Machines

to Support State-Based Testing. In: France, R.B., Kuester, J.M., Bordbar, B., Paige, R.F.
(eds.) ECMFA 2011. LNCS, vol. 6698, pp. 115–131. Springer, Heidelberg (2011)

10. Ali, S., Briand, L., Hemmati, H.: Modeling Robustness Behavior Using Aspect-Oriented
Modeling to Support Robustness Testing of Industrial Systems. Accepted for publication
in the Journal of Software and Systems Modeling (2011)

11. Ali, S., Yue, T., Briand, L.: Empirically Evaluating the Impact of Applying Aspect State
Machines on Modeling Quality and Effort. Simula Research Laboratory. Technical Report
2011-06 (2011)

12. Ali, S., Yue, T., Briand, L.: Does Aspect-Oriented Modeling Help Improve the Readability
of UML State Machines? Simula Research Laboratory. Technical Report 2010-11 (2011)

13. Ali, S., Yue, T.: Comprehensively Evaluating Conformance Error Rates of Applying
Aspect State Machines for Robustness Testing. In: ACM International Conference on
Aspect-Oriented Software Development (AOSD)

14. Ali, S., Hemmati, H., Holt, N.E., Arisholm, E., Briand, L.C.: Model Transformations as a
Strategy to Automate Model-Based Testing - A Tool and Industrial Case Studies. Simula
Research Laboratory. Technical Report (2010-01) (2010)

15. Cisco Norway (Tandberg), http://www.tandberg.no/
16. FMC Technologies, http://www.fmctechnologies.com/
17. OMG: OCL 2.0 Specification. Final Adopted Specification
18. Yue, T., Briand, L.C., Labiche, Y.: A systematic review of transformation approaches

between user requirements and analysis models. Requirements Engineering 16 (2011)
19. Insfrán, E., Pastor, O., Wieringa, R.: Requirements Engineering-Based Conceptual

Modelling. In: Requirements Engineering, pp. 61–72
20. Some, S.S.: An approach for the synthesis of state transition graphs from use cases, pp.

456–462. CSREA Press

Badger: A Regression Planner

to Resolve Design Model Inconsistencies

Jorge Pinna Puissant1, Ragnhild Van Der Straeten2,3, and Tom Mens1

1 University of Mons, 20 Place du Parc, Mons, Belgium
{jorge.pinnapuissant,tom.mens}@umons.ac.be

2 Vrije Universiteit Brussel, Brussel, Belgium
rvdstrae@vub.ac.be

3 Université Libre de Bruxelles, Brussel, Belgium

Abstract. One of themain challenges in model-driven software engineer-
ing is to deal with design model inconsistencies. Automated techniques to
detect and resolve these inconsistencies are essential. We propose to use
the artificial intelligence technique of automated planning for the purpose
of resolving software model inconsistencies. We implemented a regression
planner in Prolog and validated it on the resolution of different types of
structural inconsistencies for generated models of varying sizes. We dis-
cuss the scalability results of the approach obtained through several stress-
tests and discuss the limitations of our approach.

Keywords: automated planning, inconsistency resolution, model,
scalability.

1 Introduction

One of the main challenges in model-driven software engineering (MDE) is to
deal with evolving models, and to provide automated mechanisms to support
this evolution [23]. A particular point of attention is to manage inconsistencies
in software models [20]. Such model inconsistencies are inevitable, because a soft-
ware system’s description is composed of a wide variety of diverse models, some
of which are developed and maintained in parallel. Our research does not focus on
the activity of model inconsistency detection, that has become well-established.
Instead, we address the resolution of model inconsistencies. In particular, we fo-
cus on more automated ways to resolve a selection of previously identified model
inconsistencies through the generation of so-called resolution plans.

To do this, we use the technique of automated planning [19] originating from
the field of artificial intelligence. This technique allows the generation of possible
resolution plans through an automated planner without the need of manually
writing resolution rules. In [18] we used the progression planner called FF [7,8].
Using this planner in the context of inconsistency resolution suffers from various
scalability problems and lack of expressiveness, making the approach unusable
in practice. To address the aforementioned limitations we present here a new
planner called Badger1, a regression planner implemented in Prolog.

1 The name Badger comes from the honey badger, an animal that is able to run
backwards.

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 146–161, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Badger: A Regression Planner to Resolve Design Model Inconsistencies 147

This paper is structured as follows. Section 2 introduces the problem of model
inconsistency resolution and presents a motivating example. Section 3 introduces
automated planning. Section 4 explains the automated planner Badger that we
implemented for resolving model inconsistencies. Its scalability to large models
is assessed in Section 5. Section 6 discusses the threats to validity, Section 7
presents the related work and Section 8 concludes this paper.

2 Model Inconsistency Resolution

A wide variety of modeling languages, domain-independent as well as domain-
specific, exists. As a consequence, there are many different kinds of, often inter-
related, models that can suffer from many types of inconsistencies. In this paper
the Unified Modeling Language (UML) is used to express design models because
it is the de-facto general-purpose modeling language [17]. Its visual notation
consists of a set of different diagram types, such as class diagrams, sequence
diagrams and statecharts, each expressing certain aspects of a software system.
These diagrams are interrelated and inconsistencies in and between them can
arise easily.

In this article, we will restrict ourselves to the subset of the UML metamodel
for class diagrams shown in Figure 12. Table 1 lists a set of 13 structural model
inconsistency types we will consider based on the elements occurring in this
metamodel and on the well-formedness constraints of the UML 2.3 metamodel
expressed in OCL [2, 6, 17, 22, 25]). Each entry in Table 1 consists of an id fol-
lowed by the metamodel element on which the constraint is specified in the
UML specification. Next, a short description of the inconsistency type is given,
followed by the page number of the UML Superstructure document [17] where
the inconsistency type can be found.

name:Text
visibility:VisibilityKind

Package

name:Text

Association
name:Text
visibility:VisibilityKind
upper:Number
lower:Number
isreadonly:Boolean
aggregation:AggregationKind
iscomposite:Boolean

Property

name:Text
visibility:VisibilityKind

Class

name:Text
visibility:VisibilityKind

Operation
name:Text
visibility:VisibilityKind
direction:ParameterDirectionKind

Parameter

Generalization

packagedelementpackagedelement

packagedelement

ownedoperation

ownedattribute

ownedparameter

ownedend

navigableownedend type

generalization

general

* *

*

0..1 0..1

1 *

*

*

1

2..*0..1

0..1 * 0..1*

1..

1 *

0..1

0..1
public
private
protected
package

«enumeration»

VisibilityKind

in
inout
out
return

«enumeration»

ParameterDirectionKind

none
shared
composite

«enumeration»

AggregationKind

Fig. 1. Simplified fragment of the UML metamodel for class diagrams

2 Because our approach relies on a metamodel independent representation, it can be
used with other structural models as well.

148 J. Pinna Puissant, R. Van Der Straeten, and T. Mens

Table 1. List of considered structural model inconsistency types

id model element description of the inconsistency type (see [17])
I1 Association Only binary associations can be aggregations (p. 39)
I2 Element Elements that must be owned must have an owner (p. 65)
I3 Named

Element
If a NamedElement is not owned by a Namespace, it does not have a visibility
(p. 101)

I4 Multiplicity
Element

A multiplicity must define at least one valid cardinality that is greater than
zero. (p. 97)

I5 Multiplicity
Element

The lower bound must be a non-negative integer literal (p. 97)

I6 Multiplicity
Element

The upper bound must be greater than or equal to the lower bound (p. 97)

I7 Classifier The general classifiers are the classifiers referenced by the generalization
relationships (p. 54)

I8 Classifier Generalization hierarchies must be directed and acyclic. A classifier can not
be both a transitively general and transitively specific classifier of the same
classifier (p. 54)

I9 Classifier A classifier may only specialize classifiers of a valid type (p. 54)
I10 Property A multiplicity on an aggregate end of a composite aggregation must not have

an upper bound greater than 1 (p. 127)
I11 Property Only a navigable property can be marked as readOnly (p. 128)
I12 Property The value of isComposite is true only if aggregation is composite (p. 128)
I13 Operation An operation can have at most one return parameter (p. 107)

Consider as a motivating example the simple class diagram shown in Fig-
ure 2. The diagram contains two structural inconsistency occurrences, one of
type “I10: Multiplicity composition constraint” and one of type “I13: Opera-
tion return constraint” (see Table 1). The occurrence of I10 arises because the
composite association (represented by a black diamond) between classes Car

and Wheel has an upper multiplicity greater than 1 (namely 2) at the compos-
ite end, which is in contradiction with the fact that a part in the composition
cannot be shared between multiple components. An occurrence of I13 occurs
when an operation in a class returns more than one parameter. The operation
getDiameter():float,integer of class Wheel has two return parameters.

+ getDiameter():float,integer

- pressure:float

Wheel

+ turnRight():void
+ turnLeft():void

- model:string
- manufactor: string

Car

0 .. 2 4

Fig. 2. Class diagram with 2 inconsistency occurrences

Each inconsistency occurrence can be resolved by several resolutions. For ex-
ample, changing the upper multiplicity from 2 to 1 can resolve the occurrence of
I10, while replacing the composite association by a regular association resolves
the inconsistency occurrence as well. The occurrence of I13 can be resolved by
removing one of both return parameters or by changing one of the return pa-
rameters into an input parameter.

Badger: A Regression Planner to Resolve Design Model Inconsistencies 149

3 Automated Planning

Our aim is to tackle the problem of inconsistency resolution by generating possi-
ble resolutions without the need of manually writing resolution rules or writing
any procedures that generate possible resolutions. The approach needs to enable
the resolution of multiple inconsistency occurrences at once and to perform the
resolution in a reasonable time. In addition, the approach needs to be generic,
i.e., it needs to be easy to apply it to different modeling languages. In [24] we
explored the usage of model finders for this purpose. In this article, we use
Automated Planning instead.

Automated planning aims to generate plans, i.e., sequences of actions that
lead from an initial state to a state meeting a specific predefined goal. Each
planning approach consists of a representation language to describe the problem
domain, a problem, an algorithm describing the mechanism to solve the problem,
and a sequence of generated plans produced as output of the algorithm.

The problem domain (e.g., model inconsistency resolution) is expressed as a
set of possible actions (e.g., to change a model). A possible action specifies a
valid way to go from one state to another. The action is composed of a precon-
dition that specifies the conditions that must hold in order for the action to be
applicable, and an effect that specifies the changes to be made to the current
state.

The problem that needs to be solved in the problem domain (e.g., an incon-
sistent model such as the one in Figure 2) is expressed by an initial state and
a desired goal. The initial state represents the current state of the world (the
inconsistent model). The desired goal is a partially specified state that describes
the world that we would like to obtain (a consistent model).

A generated plan is a sequence of actions, generated automatically by the
planning algorithm, to transform the initial state into a state that satisfies the
desired goal.

Many algorithms exist to solve planning problems. A first approach consists
in translating the problem and its domain into a satisfiability problem, and using
a model checker or SAT solver to find a solution [9]. A second way consists in
using a state space search algorithm. The state space can be traversed through
progression planning or regression planning. Progression planning performs a
forward search that starts in the initial state and tries to find a sequence of
actions that reaches a goal state. Regression planning starts from the goal state
and searches backwards to find a sequence of actions that reaches the initial
state.

4 Badger

We have chosen to implement a regression planner, because it depends on the
size of the desired goal and works only with relevant actions. A relevant action
is an action that contributes to the achievement of the goal. The search space of
a regression planner will be significantly smaller than the one of a progression

150 J. Pinna Puissant, R. Van Der Straeten, and T. Mens

planner, as the latter depends mainly on the size of the initial state and does
not exclude irrelevant actions.

We implemented the planner algorithm in Prolog, since Prolog’s built-in back-
tracking mechanism allows the planner to easily generate multiple resolution
plans among which the user can choose the most suitable one.

4.1 Problem and Problem Domain

The initial state is expressed as a conjunction of logic literals that represents the
input model. We specify the models using Praxis [2], a language that represents
models and model changes as sequences of elementary model operations (create,
addProperty, addReference, delNode, remProperty, remReference). Praxis
comes with a suite of Eclipse plugins: a plugin to reason about ECore and XMI
models; a plugin to generate class diagram models of varying sizes [15]; and a
model inconsistency detection engine [2]. As an example, the class Car of the
class diagram model of Figure 2 is represented as follows3:

create(c1, class).

addProperty(c1, name, ‘Car’).

create(att1, property).

addProperty(att1, name,‘model’).

addReference(att1, type,string).

addReference(c1, ownedattribute, att1).

create(att2, property).

addProperty(att2, name,‘manufactor’).

addReference(att2, type,string).

addReference(c1, ownedattribute, att2).

create(op1, operation).

addProperty(op1, name,‘turnRight’).

addReference(c1, ownedoperation,op1).

create(op2, operation).

addProperty(op2, name,‘turnLeft’).

addReference(c1, ownedoperation,op2).

This way of representing models offers several advantages. The elementary model
operations are metamodel independent, i.e., they can be used together with any
kind of structural metamodel. The second parameter of each model operation
refers to an element of the metamodel (e.g., class, ownedattribute,parameter,
ownedoperation).

The desired goal is a partially specified state that represents the objective
to be reached, namely the absence of model inconsistencies, as a negation of
inconsistency occurrences. An inconsistency occurrence is detected if it matches
the pattern defined by the inconsistency type. Table 2 presents all logic opera-
tors that are allowed to specify the desired goal, inspired by the list of common
constructs found in inconsistency types [5, 16, 21]. Our approach does the strict

3 In principle, each of the listed model operations should also have a timestamp that
we have left out for the sake of readability.

Badger: A Regression Planner to Resolve Design Model Inconsistencies 151

minimum to accomplish this goal. For example, if the user wants to solve the
inconsistency “the lower multiplicity must be greater than 0”, Badger will pro-
poses 1 as solution to avoid an infinite number of possibilities.

Table 2. Logic Operators. Although the operators value comparison, property compar-
ison and counting are only shown with the > function, the other comparison functions
can be used as well : <, ≥, ≤, =, �=

Name
Negative Syntax not(P)
literal Semantics ¬P

Example not(lastAddProperty(ae2,iscomposite,‘true’))

Conjunction
Syntax [P, Q]

Semantics P ∧ Q
Example [lastAddProperty(c1,name,‘Vehicle’),

lastAddProperty(c2,name,‘Aircraft’)]

Disjunction
Syntax or [P, Q]

Semantics P ∨ Q
Example or [lastAddProperty(c1,name,‘Vehicle’),

lastAddProperty(c1,name,‘Aircraft’)]
Universal Syntax forall(P,Q)

quantification Semantics ∀x(P (x) ⇒ Q(x))
Example forall(lastCreate(X,class), lastAddProperty(X,name,Y))

Existential Syntax exists(P)
quantification Semantics ∃xP (x)

Example exists(lastCreate(X,class))
Value Syntax compare(P,>,v)

comparison Semantics ∀n ∈ N(P (n) ∧ v ∈ N ∧ n > v)
Example compare(lastAddProperty(ae1,lower mult,X),>,0)

Property Syntax compare(P,>,Q)
Comparison Semantics ∀n,m(P (n) ∧ Q(m) ∧ n > m)

Example compare(lastAddProperty(ae1,upper mult,X),>,
lastAddProperty(ae1,lower mult,Y))

Counting
Syntax count(P,>,v)

Semantics (|{x|P (x)}| > v ∧ v ∈ N)
Example count(lastAddReference(assID,member,X),>,2)

Transitive Syntax nav(From, Kind, To)
Navigability Semantics (Kind(From,To) ⇒ nav(From,Kind, To))∨

∃c(nav(From,Kind, c) ∧ nav(c,Kind, To) ⇒ nav(From,Kind, To))
Example nav(c1,generalization,c9)

As an example, the desired goal to resolve an inconsistency occurrence of type
I10 is specified below as a negation of this inconsistency occurrence, using the
logic operators of Table 2. It disallows the upper bound of the multiplicity on
the aggregate end of a composite aggregation to be greater than 1.

or [not(lastAddProperty(prop1,aggregation,‘composite’)),

not(compare(lastAddProperty(prop1,upper,X),>,1))]

The use of prefix last in model operation lastAddProperty is needed to point to
those operations in the model that are not followed by other operations canceling
their effects [2]. Using the negation of the inconsistency occurrences in the desired
goal will only be able to resolve inconsistency occurrences that have already been
identified previously. For this detection, we can rely on the detection approach
proposed by [2].

152 J. Pinna Puissant, R. Van Der Straeten, and T. Mens

A possible action specifies a valid way to go from one state to another. The
action is composed of a precondition (pre) that specifies the conditions that must
hold in order for the action to be applicable, and an effect (eff) that specifies
which Praxis model operations will be added to the current state. The validity
of an action (can) is verified by using a metamodel that imposes constraints
on the model. The metamodel needed to validate the set of actions is specified
as a set of logic facts in Prolog: fact mme represents the metamodel elements;
mme property represents the properties of the specified metamodel element and
the kind of value that is used (e.g., text, boolean, int); mme reference rep-
resents the relationships between two metamodel elements, and the name that
this relationship has. The metamodel used in this paper corresponds to the one
shown in Figure 1.

The logic rules below specify the possible action setProperty. The pre rule
states that the old property must exist before it can be changed. The can rule is
used to verify that the new value is correctly typed and that is different from the
old value. The eff rule expresses the two model operations changing the value
of a property.

pre(setProperty(Id,MME,Property,OldValue,NewValue),

[lastAddProperty(Id,Property,OldValue)]).

can(setProperty(Id,MME,Property,OldValue,NewValue)) :-

mme_property(MME,Property,Type),

call(Type,NewValue),

NewValue \== OldValue.

eff(setProperty(Id,Property,OldValue,NewValue),

[remProperty(Id,Property,OldValue),

addProperty(Id,Property,NewValue)]).

4.2 The Algorithm

The algorithm used by Badger is based on the ones explained in [3]. Badger
uses a recursive best-first search (RBFS) to recursively generate a state space
and search for a solution in that state space. RBFS is a best-first search that
explores the state space by expanding the most promising node. To do this
the algorithm needs 3 functions: a successor function, an evaluation function
and a solution function. The successor function generates the child nodes of a
particular node, and is used to generate the state space. It strongly depends on
the problem to be solved. The evaluation function f evaluates the child nodes
to find the most promising one. It is defined as the sum of a heuristic function h
and a cost function g: f(n) = h(n) + g(n) where h(n) is the minimal estimation
of the cost to reach a solution from the node n, and g(n) is the actual cost of
the path to reach n. The solution function checks if a particular node is one of
the solutions. These 3 functions are independent of the search algorithm, which
means that we can also use other best-first search algorithms (e.g. A*, iterative-
deepening A*, memory-bounded A*). We have chosen to use RBFS because it

Badger: A Regression Planner to Resolve Design Model Inconsistencies 153

only keeps the current search path and the sibling nodes along this path, making
its space complexity linear in the depth of the search tree.

The heuristic function used by Badger is a known planner heuristic that
ignores the preconditions. Every action becomes applicable in every state, and
a single literal of the desired goal can be achieved in one step. Remember that
the desired goal is a conjunction/disjunction of logic literals that represents one
or more negations of inconsistency occurrences. This implies that the heuristic
can be defined as the number of unsatisfied literals in the desired goal. The
cost function used by Badger is the user-specified cost of applying each action.
These costs affect the order in which the plans are generated. The user can, for
example, give more importance to actions that add and modify model elements
than to actions that delete model elements.

The solution function used by Badger checks if there are no more unsatisfied
literals in the desired goal.

The successor function is the most complex one and is at the heart of
the planning algorithm and proceeds as follows: (i) select a logic operator from
the desired goal and generate a literal that satisfies this operator; (ii) analyse
the effect (the eff rule) of each action to find one that achieves this literal;
(iii) validate (the can rule) if the selected action can be executed; (iv) protect
the already satisfied literals by checking if the execution of the selected action
does not undo a previously satisfied literal; (v) regress goals through actions by
adding the preconditions of the action (the pre rule) as new literals in the goal
and by removing the satisfied literals from the goal.

4.3 Generated Plans

The generated plans produce a sequence of actions that transform the initial,
inconsistent model into a model that does not have any of the inconsistency oc-
currences specified in the desired goal. Moreover, the generated resolution plans
do not lead to ill-formed models (that do not conform to their metamodel) as
long as all metamodel constraints are given as part of the problem specification.

Two complete resolution plans, each containing only two actions, that solve
the inconsistency occurrences of the motivating example are given below:

1. setProperty(pro1,upper,2,1)

2. setProperty(par1,direction,‘return’,‘in’)

1. setProperty(pro1,aggregation,‘composite’,‘none’)

2. delNode(par1, parameter)

If we unfold the effects of each action from a resolution plan, we obtain a se-
quence of elementary Praxis model operations, that can be applied directly to
transform the inconsistent model into a consistent one. For the first plan above,
this sequence of operations looks as follows:

1. remProperty(pro1,upper,2)

2. addProperty(pro1,upper,1)

154 J. Pinna Puissant, R. Van Der Straeten, and T. Mens

3. remProperty(par1,direction,‘return’)

4. addProperty(par1,direction,‘in’)

The number of actions proposed to resolve an inconsistency occurrence involving
the modification of a reference in the desired goal depends on the size of the initial
state (i.e., it depends on the number of model elements). This negatively affects
the performance of the algorithm and the number of generated resolution plans.
To avoid generating many resolution plans that each refer to a concrete model
element (e.g., one of the many classes in a class diagram), we introduced the
notion of temporal elements as an abstraction of such a set of concrete model
elements. A temporal element is represented as a tuple (+other,X,Y) where
X is the model element type (e.g. class) and Y is the set of model elements
of this type that cannot be used as part of the proposed resolution. Once the
resolution plan is generated, the user can replace the temporal element by a
concrete element that does not belong to Y, to avoid re-introducing the same
inconsistency occurrence.

In order to assess whether Badger generates meaningful resolution plans, we
manually verified all plans (between 3 and 10) generated for 5 very small class
diagram models. The plans corresponded to what we expected, though we did
not always agree with the order in which the plans were generated. By modifying
the cost function g(n), however, we can easily adapt the order according to the
user’s preferences. As will be discussed in section 6, carrying out a controlled
user study with Badger to determine the most suitable order of the generated
resolution plans is left as future work. In the next section, we report on the
scalability of Badger for resolving structural model inconsistencies.

5 Scalability Study

Due to the unavailability of a sufficiently large sample of realistic UML models,
we make use of an existing model generator that was proposed, mathematically
grounded and validated in [15]. This model generator enables us to study the
impact of the size of the models on the approach. It also enables us to apply our
approach to a large set of models with a wide range of different sizes.

We used the model generator to create 941 models with model sizes rang-
ing from 21 to 10849 model elements (i.e., elements obtained using the Praxis
elementary operation create). Obviously, the generated models also contain ref-
erences (from 21 to 11504) and properties (from 40 to 22903), obtained using
the elementary operations addProperty and addReference, respectively.

These experiments were carried on a 64-bit computer with 2.53GHz Intel Core
2 Duo processor and 4Gb RAM. We used the 64-bit version of SWI-Prolog 6.0.2,
running on the Ubuntu 11.04 operating system. All timing results obtained were
averaged over 10 different runs to account for performance variations.

5.1 Experimental Results

In a first experiment, we have run Badger on all generated models and com-
puted the timing results for generating a single resolution plan. We analysed

Badger: A Regression Planner to Resolve Design Model Inconsistencies 155

the relation between the number of model elements and the time (in seconds)
needed to resolve only one inconsistency occurrence of a particular type. In order
to compare the timing results for different inconsistency types, we repeated the
experiment for each of the 13 considered inconsistency types shown in Table 1.

Fig. 3. Comparison of execution time (y-axis, expressed in seconds) per model size
(x-axis, expressed as number of model elements) for resolving a single inconsistency
occurrence in 941 different models. Different colours and symbols represent different
inconsistency types.

The results of the experiment are visualised in Figure 3. The time needed to
resolve occurrences of a particular inconsistency type mainly depends on the size
of the model and on the number of logic literals in the desired goal. For example,
I13 requires 4 literals and takes on average 4.2 times longer than I5 that only
uses 1 literal.

We fitted four different types of parametric regression models with 2 param-
eters to the data: a linear model, a logarithmic model, a power model and an
exponential model. The goodness of fit of each type of model was verified using
the coefficient of determination R2. Its value is always between 0 and 1, and a
value close to 1 corresponds to a good fit. Table 3 shows the obtained R2 values.
In order to easily distinguish the best regression models, values higher than 0.90
are indicated in italics, while values higher than 0.95 are indicated in boldface.
In addition, per inconsistency type the regression models with the highest R2

value are marked with (*).
By analysing Table 3 we observe that the logarithmic regressionmodels provide

the worst results. In contrast to the three other considered types of regressionmod-
els, itsR2 values are always lower than 0.8. For these reasons, we exclude this type
of regressionmodel from the remainder of the analysis of our results. Based on the
R2 values the linear models appear to be the best in all cases (with an R2 > 0.95
in 10 out of 13 cases). A visual interpretation also confirms that the linear mod-
els are the best match. The exponential and power models are also very good fits,
with R2 values that are always close to or above 0.9.

156 J. Pinna Puissant, R. Van Der Straeten, and T. Mens

Table 3. R2 values of four different parametric regression models used to fit the timing
results

Linear Log Power Exponential

y = a + b x y = a + b ln(x) y = a xb y = a eb x

I1 0.935 (*) 0.741 0.891 0.892
I2 0.930 (*) 0.668 0.872 0.927
I3 0.950 (*) 0.687 0.888 0.910
I4 0.981 (*) 0.789 0.934 0.902
I5 0.987 (*) 0.767 0.933 0.923
I6 0.975 (*) 0.764 0.918 0.926
I7 0.975 (*) 0.737 0.898 0.943
I8 0.965 (*) 0.686 0.843 0.935
I9 0.975 (*) 0.736 0.894 0.941
I10 0.975 (*) 0.778 0.936 0.907
I11 0.981 (*) 0.752 0.929 0.908
I12 0.942 (*) 0.754 0.906 0.905
I13 0.977 (*) 0.718 0.888 0.923

In a second experiment, we studied how the generation of resolution plans
with Badger scales up when resolving multiple inconsistencies of different types
together. For each considered model, we resolved together one occurrence of each
of the 13 inconsistency types. Because not all models have at least one occurrence
of inconsistency type I8, during our analysis we distinguished between models
containing 12 inconsistency occurrences (excluding I8) and models containing
13 occurrences.

Figure 4 (top part) presents the results of this experiment. The resolution
time only increases slightly as the model size increases. None of the fitted re-
gression models provide an R2 value higher than 0.25. The execution time is
lower for 12 inconsistency occurrences (mean = 0.268, median = 0.265) than for
13 occurrences (mean = 0.341, median = 0.336). Another factor that determines
the execution time is the number of actions in the resolution plan. For resolv-
ing 12 inconsistency occurrences, we require between 8 and 11 actions (median
=10), while for 13 occurrences we need between 9 and 12 actions (median = 11).
In addition, the resolution time increases as the number of actions increases, as
shown in the box plots of Figure 4 (bottom part).

In a third experiment, we studied how the generation of a resolution plan with
Badger scales up if we want to resolve multiple inconsistency occurrences of the
same type together. To test this, we generated a very large model containing
more than 10,000 elements and a large number of inconsistency occurrences of
each type. We excluded inconsistency type I8 because the generated model did
not contain enough occurrences of this type. For each of the remaining 12 incon-
sistency types we computed the time required to resolve an increasing number
of occurrences (ranging from a single one to 70). Figure 5 visualizes the results.
Given the rapid increase of execution time as the number of inconsistency occur-
rences increases, we fitted quadratic models (second degree polynomial), power
models and exponential models to the data. The adjusted R2 (to account for
a different number of parameters in the regression models) was very high for
the 3 types of models. The quadratic models had the best fit, with an adjusted
R2 > 0.95 in all cases, followed by the exponential models (> 0.92 in all cases,

Badger: A Regression Planner to Resolve Design Model Inconsistencies 157

0.1

0.2

0.3

0.4

0.5

12 incons.
9 actions

12 incons.
10 actions

12 incons.
11 actions

13 incons.
10 actions

13 incons.
11 actions

13 incons.
12 actions

Fig. 4. Top: Time comparison (y-axis, in seconds) per model size (x-axis, in number of
model elements) for resolving multiple inconsistencies of different types in 941 different
models. Bottom: Boxplots showing effect of number of actions on execution time.

Fig. 5. Execution time (y-axis, in seconds) per number of inconsistency occurrences of
the same type (x-axis) for resolving multiple inconsistency occurrences in a very large
model. Different colours and symbols represents different inconsistency types.

158 J. Pinna Puissant, R. Van Der Straeten, and T. Mens

and > 0.95 in 5 out of 12 cases). The different growth rates observed in Figure 5
reflect the complexity of the inconsistency type to be resolved. For example, the
inconsistency types whose resolution only requires the change of property values
take less time than those that need changes to references between model ele-
ments, because of the additional multiplicity constraints required for the latter.

6 Threats to Validity

Our approach has only been stress-tested on class diagram models. However, the
fact that we rely on a metamodel independent representation (using sequences
of Praxis elementary model operations) makes it straightforward to apply it to
other types of structural models as well. We considered only a limited set of
inconsistency types, but tried to include a variety of different expressions and
elementary model operations. It remains an open question whether and how the
approach can be generalised to non-structural inconsistencies and models.

The regression planner we implemented for doing our experiments may still
contain some bugs we are not aware of. To carry out our experiments, we relied
on an external model generator [15]. This may cause a bias as the generated
models may not look like “real” models. This bias is limited since the model
generator relies on the Boltzmann random sampling method that generates, in
a scalable way, uniform samplings of any given size.

Our planner generates all possible resolution plans one after another, thanks
to Prolog’s backtracking mechanism. In this article we only evaluated the scal-
ability for generating a single plan on a wide variety of models containing a
wide range of different inconsistencies. In order to make the approach useful in
practice, the resolution that the user actually prefers should be one of the first
generated resolution plans. The order in which resolution plans are generated
can be modified easily by modifying the cost function of the planner algorithm,
as explained in section 4. In addition, entire resolution plans can be omitted
by attaching an infinite weight to certain actions. Assessing what would be the
most suitable parameters for the cost function in practice requires a controlled
user study, which is left as future work.

7 Related Work

Several approaches have been proposed to resolve model inconsistencies. In our
previous work [14] we specified resolution rules manually, which is an error-prone
process. Automatic generation of inconsistency resolution actions aims to resolve
this problem. Nentwich et al. [16] achieve this by generating resolution actions
automatically from the inconsistency types. The execution of these actions, how-
ever, only resolves one inconsistency occurrence at a time. As recognised by the
authors, this causes problems when inconsistency occurrences and their resolu-
tions are interdependent. Mens et al. [13] propose a formal approach based on
graph transformation to analyse these interdependencies.

Badger: A Regression Planner to Resolve Design Model Inconsistencies 159

Xiong et al. [25] define a language to specify inconsistency rules and the
possibilities to resolve the inconsistencies. This requires inconsistency rules to
be annotated with resolution information. Almeida da Silva et al. [1] propose
an approach to generate resolution plans for inconsistent models, by extending
inconsistency detection rules with information about the causes of the inconsis-
tency, and by using manually written functions that generate resolution actions.
In both approaches inconsistency detection rules are polluted with resolution
information.

Instead of explicitly defining or generating resolution rules, a set of models
satisfying a set of consistency rules can be generated and presented to the user.
Egyed et al. [6] define such an approach for resolving inconsistency occurrences
in UML models. Given an inconsistency occurrence and using choice genera-
tion functions, their approach generates possible resolution choices, i.e., possible
consistent models. The choice generation functions depend on the modeling lan-
guage, i.e., they take into account the syntax of the modeling language, but they
only consider the impact of one consistency rule at a time. Furthermore these
choice generation functions need to be implemented manually.

In [24] we use Kodkod, a SAT-based constraint solver using relational logic,
for automatically generating consistent models. While the approach guarantees
correctness and completeness (within the considered lower and upper bounds of
the relations defined in the problem), a major limitation is its poor performance
and lack of scalability.

Küster and Ryndina [11] introduce the concept of side-effect expressions to
determine whether or not a resolution introduces a new inconsistency occurrence.
They attach a cost to each inconsistency type to compare alternative resolutions
for the same inconsistencies. Other authors also use the automatic resolution
to solve different kinds of software engineering problems. For example, Jose et
al. [10] present an algorithm based on a reduction to the maximal satisfiability
problem, to automatically locate a set of potential cause of error in C programs.
Demsky and Rinard [4] present an approach to automatically detect and resolve
errors in data structures. Mani et al. [12] collect runtime information for the
failing transformation in a model transformation program, and compute repair
actions for the input model.

8 Conclusion

In this article we used automated planning, a logic-based approach originating
from artificial intelligence, for the purpose of model inconsistency resolution. We
are not aware of any other work having used this technique for this purpose.

We implemented a regression planner in Prolog. It requires as input a model
and a set of inconsistency occurrences. In contrast to other inconsistency res-
olution approaches, the planner does not require the user to specify resolution
rules manually or to specify information about the causes of the inconsistency.
To specify models in a metamodel-independent way, and to be able to reuse an
existing model generator, we relied on the Praxis language [2].

160 J. Pinna Puissant, R. Van Der Straeten, and T. Mens

We have stress-tested our approach on 941 automatically generated UML
class diagram models of varying sizes using a set of 13 structural inconsistency
types based on OCL constraints found in the UML metamodel specification.
Our approach for resolving inconsistency occurrences appears to be linear in
the size of the model, and scales up to models containing more than 10000
model elements. The execution time also increases as the number of actions
in the resolution plan increases. With respect to the number of inconsistency
occurrences, the approach is quadratic in time. However, controlled user studies
are still needed to adapt the cost function and evaluate the preferred order of
the generated resolution plans.

Acknowledgments. This work has been partially supported by (i) the F.R.S. –
FNRS through FRFC project 2.4515.09 “ResearchCenter on Software Adaptabil-
ity”; (ii) research project AUWB-08/12-UMH “Model-Driven Software
Evolution”, an Action de Recherche Concertée financed by the Ministère de la
Communauté française - Direction générale de l’Enseignement non obligatoire et
de la Recherche scientifique, Belgium; (iii) the Interuniversity Attraction Poles
Programme – Belgian State – Belgian Science Policy.

References

1. Almeida da Silva, M.A., Mougenot, A., Blanc, X., Bendraou, R.: Towards Auto-
mated Inconsistency Handling in Design Models. In: Pernici, B. (ed.) CAiSE 2010.
LNCS, vol. 6051, pp. 348–362. Springer, Heidelberg (2010)

2. Blanc, X., Mougenot, A., Mounier, I., Mens, T.: Detecting model inconsistency
through operation-based model construction. In: Proc. Int’l Conf. Software Engi-
neering, vol. 1, pp. 511–520 (2008)

3. Bratko, I.: Prolog programming for artificial intelligence. Addison-Wesley (2001)
4. Demsky, B., Rinard, M.C.: Automatic detection and repair of errors in data struc-

tures. In: Int’l Conf. on Object Oriented Programming, Systems, Languages and
Applications, pp. 78–95. ACM (2003)

5. Egyed, A.: Automatically detecting and tracking inconsistencies in software design
models. IEEE Trans. Software Eng. 37(2), 188–204 (2011)

6. Egyed, A., Letier, E., Finkelstein, A.: Generating and evaluating choices for fixing
inconsistencies in UML design models. In: Proc. Int’l Conf. Automated Software
Engineering, pp. 99–108. IEEE (2008)

7. Hoffmann, J.: FF: The Fast-Forward Planning System. The AI Magazine (2001)
8. Hoffmann, J., Nebel, B.: The FF Planning System: Fast plan generation through

heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)
9. Jiménez Celorrio, S.: Planning and Learning under Uncertainty. PhD thesis, Uni-

versidad Carlos III de Madrid (2010)
10. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum sat-

isfiability. In: Proc. Conf. on Programming Language Design and Implementation,
pp. 437–446. ACM (2011)

11. Küster, J.M., Ryndina, K.: Improving Inconsistency Resolution with Side-Effect
Evaluation and Costs. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.)
MODELS 2007. LNCS, vol. 4735, pp. 136–150. Springer, Heidelberg (2007)

Badger: A Regression Planner to Resolve Design Model Inconsistencies 161

12. Mani, S., Sinha, V.S., Dhoolia, P., Sinha, S.: Automated support for repairing
input-model faults. In: Int’l Conf. on Automated Software Engineering, pp. 195–
204. ACM (2010)

13. Mens, T., Van Der Straeten, R.: Incremental Resolution of Model Inconsistencies.
In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 111–
126. Springer, Heidelberg (2007), doi:10.1007/978-3-540-71998-4 7

14. Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting and Resolving Model
Inconsistencies Using Transformation Dependency Analysis. In: Wang, J., Whittle,
J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 200–214.
Springer, Heidelberg (2006)

15. Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform Random Generation
of Huge Metamodel Instances. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 130–145. Springer, Heidelberg (2009)

16. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with re-
pair actions. In: Proc. 25th Int’l Conf. Software Engineering, pp. 455–464. IEEE
Computer Society (May 2003)

17. Object Management Group. Unified Modeling Language: Superstructure version
2.3. formal/2010-05-05 (May 2010)

18. Pinna Puissant, J., Mens, T., Van Der Straeten, R.: Resolving model inconsisten-
cies with automated planning. In: 3rd Workshop on Living with Inconsistencies in
Software Development. CEUR Workshop Proceeding (September 2010)

19. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn.
Prentice-Hall (2010)

20. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineering:
Survey and open research issues. In: Handbook of Software Engineering and Knowl-
edge Engineering, pp. 329–380. World Scientific (2001)

21. Van Der Straeten, R.: Inconsistency management in model-driven engineering: an
approach using description logics. PhD thesis, Vrije Universiteit Brussel (2005)

22. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using Description
Logic to Maintain Consistency between UML Models. In: Stevens, P., Whittle, J.,
Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 326–340. Springer, Heidelberg
(2003)

23. Van Der Straeten, R., Mens, T., Van Baelen, S.: Challenges in Model-Driven Soft-
ware Engineering. In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol. 5421,
pp. 35–47. Springer, Heidelberg (2009)

24. Van Der Straeten, R., Pinna Puissant, J., Mens, T.: Assessing the Kodkod Model
Finder for Resolving Model Inconsistencies. In: France, R.B., Kuester, J.M., Bor-
dbar, B., Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 69–84. Springer,
Heidelberg (2011)

25. Xiong, Y., Hu, Z., Zhao, H., Song, H., Takeichi, M., Mei, H.: Supporting automatic
model inconsistency fixing. In: Proc. ESEC/FSE 2009, pp. 315–324. ACM (2009)

Aspect-Oriented Modeling of Mutual Exclusion

in UML State Machines

Gefei Zhang�

arvato systems Technologies GmbH
gefeizhang@acm.org

Abstract. Mutual exclusion is a very common requirement in parallel
systems. Yet its modeling is a tedious task in UML state machines, one
of the most popular languages for behavior modeling. We present HiLA,
an aspect-oriented extension of UML state machines, to address this
problem. In HiLA, mutual exclusion can be modeled in a highly modular
and declarative way. That is, the logic of mutual exclusion is modeled
at a dedicated place rather than by model elements scattered all over
the state machine, and the modeler only needs to specify which states to
mutually exclude rather than how to exclude them.

1 Introduction

UML state machines [9] are widely used for modeling software behavior. They
are considered as simple and intuitive, and even deemed to be “the most popular
modeling language for reactive components” [3]. Actually, UML state machines
also exhibit some modularity problems. In particular, modeling synchronization
of parallel regions, e.g. mutual exclusion of states, is often a tedious task using
plain UML. The synchronization logic has to be specified imperatively, the in-
volved model elements are often scattered all over the model, thus the resulting
state machine is hard to read and prone to error, for an example see [13]. Due to
the popularity of UML state machines as well as the importance of parallelism
and synchronization, it is desirable to enhance UML state machines by language
constructs which allow mutual exclusion to be modeled in a modularized and
intelligible way.

Given the cross-region nature of parallelism, Aspect-Oriented Modeling is a
promising paradigm for modeling region synchronization in UML state machines.
The language of High-Level Aspects (HiLA, [11]) is an aspect-oriented UML
extension, which improves the modularity of state machines considerably. Com-
pared with other approaches of aspect-oriented state machines, such as [1,2,7,8],
the distinguishing feature of HiLA is that HiLA aspects are semantic. That is,
HiLA aspects are defined as modification of the behavior of the base machine
rather than its (abstract) syntax. This way, the modeler only needs to specify
what to do instead of how to do it.

� Sponsored by Ludwig-Maximilians-Universität München and the EU project
ASCENS, 257414.

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 162–177, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Aspect-Oriented Modeling of Mutual Exclusion in UML State Machines 163

The semantic approach of HiLA is also valuable for modeling region syn-
chronization. In previous work [11,13], we showed how HiLA supports highly
modular modeling of passive waiting, i.e., the region about to enter a critical
state passively waiting for the “blocking” state (in another region) to be left or-
dinarily, as designed in the base machine. In this paper, we extendHiLA to cover
another kind of mutual exclusion, which we call active commanding, where the
blocking state is deactivated immediately, so that the waiting region can enter
its critical state at once. Both strategies have realistic use cases, see e.g. [13,14]
In both cases, using HiLA reduces the complexity of mutual-exclusion modeling
considerably.

The rest of this paper is organized as follows: in the following Sect. 2 we give
an overview of syntax and semantics of UML state machines, and show why the
support for mutual-exclusion modeling provided by plain UML is insufficient. A
brief overview of HiLA is given in Sect. 3.1, before in Sect. 3.2 the HiLA solution
of modeling mutual exclusion is presented. Our implementation of HiLA aspects
(weaving) is outlined in Sect. 4. Finally, we discuss some related work and draw
conclusions.

2 UML State Machines

A UML state machine provides a model for the behavior of an object or compo-
nent. Figure 1 shows a state machine modeling (in a highly simplified manner)
the behavior of a player during a part of a game.1 The player—a magician—
starts in a state where she has to chose a NewLevel. Upon completion of the
preparations she is transferred into the Play state which contains two concur-
rent regions, modeling two different concerns of the magician’s intelligence. The
upper region describes her possible movements: in each level the player initially
starts in an entrance hall (Hall), from there she can move to a room in which
magic crystals are stored (CrystalRoom) and on to a room containing a Ladder.
From this room the player can either move back to the hall or, after fighting
with some computer figure and winning, exit the level.

The lower region specifies the magician’s possible behaviors. She may be Idle,
gathering power for the next fight, Spelling a hex, or Fighting. She may escape
from the fight and try to spell another hex, or, if she wins the fight in the Ladder

room, wins the level and move on to another level. Any time while Playing, she
can leave the game and quit.

2.1 Syntax and Informal Semantics

We briefly review the syntax and semantics of UML state machines according to
the UML specification [9] by means of Fig. 1. A UML state machine consists of re-
gions which contain vertices and transitions between vertices. A vertex is either
a state, which may show hierarchically contained regions; or a pseudo state reg-
ulating how transitions are compound in execution. Transitions are triggered by

1 This example is inspired by [15].

164 G. Zhang

Hall
do / takeCrystal

CrystalRoom

toHall

Ladder
entry / init
NewLevel

Level
Won

Idle fight
entry / spellHex

Fighting

escape

train Spelling

toCrystalRoom toLadder
[enoughCrystal]
/ losePower

Play

quit

nextLevel

«prioritized» quit

Fig. 1. Example: UML state machine

events and describe, by leaving and entering states, the possible state changes of
the state machine. The events are drawn from an event pool associated with the
state machine, which receives events from its own or from different state machines.

A state is simple, if it contains no regions (such as NewLevel in Fig. 1); a state
is composite, if it contains at least one region; a composite state is said to be
orthogonal if it contains more than one region, visually separated by dashed lines
(such as Play). A region may also contain state and other vertices. A state, if
not on the top-level itself, must be contained in exactly one region. A composite
state and all the states directly or recursively contained in it thus build a tree.

Each state may2 show an entry behavior (like spellHex in Spelling) and an exit
behavior (not shown here), which are executed on activating and deactivating
the state, respectively; a state may also show a do activity (like in CrystalRoom),
which is executed while the state machine sojourns in this state. Transitions
are triggered by events (toCrystalRoom, fight), show guards (enoughCrystal), and
specify effects to be executed when a transition is fired (losePower). Completion
transitions (e.g., the transition leaving NewLevel) are triggered by an implicit
completion event emitted when a state completes all its internal activities. Events
may be deferred (not shown here), that is, put back into the event pool if they
are not to be handled currently. By executing a transition its source state is
left and its target state entered; transitions may also be declared to be internal
(not shown), thus skipping the activation-deactivation scheme. An initial pseudo
state, depicted as a filled circle, represents the starting point for the execution of
a region. A final state, depicted as a circle with a filled circle inside, represents the
completion of its containing region; if all top-level regions of a state machine are
completed then the state machine terminates. Transitions to and from different
regions of an orthogonal composite state can be synchronized by fork (not shown
here) and join pseudo states, presented as bars. For simplicity, we omit the other
pseudo state kinds (entry and exit points, shallow and deep history, junction,
choice, and terminate).

2 In the following, we require that each state does have an entry and an exit action,
which, however, may be NOP, doing nothing.

Aspect-Oriented Modeling of Mutual Exclusion in UML State Machines 165

At run time, states get activated and deactivated as a consequence of transi-
tions being fired. The active states at a stable step in the execution of the state
machine form the active state configuration. Active state configurations are hi-
erarchical: when a composite state is active, then exactly one state in each of its
regions is also active; when a substate of a composite state is active, so is the
containing state too. The execution of the state machine can be viewed as differ-
ent active state configurations getting active or inactive upon the state machine
receiving events. Note that for any given region, at most one direct substate of
the region can be active at any given time, because a state configuration can
contain at most one direct substate of the region.

For example, an execution trace, given in terms of active state configura-
tions, of the state machine in Fig. 1 might be (NewLevel), (Play, Hall, Idle), (Play,
Hall, Spelling), (Play, Hall, Fighting), (LevelWon), followed by the final state, which
terminates the execution.

Note that events received by a state machine are stored in an event pool. The
UML Specification [9] does not enforce any order to dispatch the events. The
concrete dispatching strategy is deliberately delegated to the concrete imple-
mentation. Events may be prioritized, though a standard notation for priorities
is not defined. In HiLA, we assume the concrete implementation to be able
to handle two priorities: high and normal, and notate high-priority events with
stereotype �prioritized�. For example, in Fig. 1, when an event quit is received,
and state Play is active, then the event is handled immediately (and the game is
over), even though there may be other events waiting in the pool.

2.2 Mutual Exclusion in UML State Machines

Mutual exclusion is a very common feature in parallel systems. Yet it is fairly
difficult to model in plain UML.

To prevent two states (from two different regions, see above) from being si-
multaneously active, we can actually distinguish two strategies: passive waiting
and active commanding. Suppose states s1 and s2 are to be mutually excluded,
the containing region being r1 and r2, r1 �= r2, respectively. Suppose s1 is active,
and, if not for the mutual exclusion requirement, the current event would now
cause a transition to be fired and, as a consequence, s2 would be activated. Now
we can actually apply two strategies to achieve mutual exclusion:

– In passive waiting, region r2 would wait passively for s1 to become inactive.
Mutual exclusion is achieved by delaying an ordinary transition of the origi-
nal state machine. The waiting region has no influence on the time it has to
wait.

– In active commanding, an additional event (not available in the original state
machine) is sent, so that s1 will immediately and be left, and s2 is activated
right thereafter. This strategy activates s2 as soon as possible, interrupting
whatever s1 may be undertaking.

166 G. Zhang

entry / init
NewLevel Ladder

defer / toCrystalRoom
Hall

defer / train
Idle

defer / escape
Fighting

Level
Won

toCrystalRoom toLadder
[enoughCrystal]
/ losePower

toHall

CrystalRoom
entry / c++
exit / c−−
do / takeCrystal

fightspell Spelling

escape [c==0]

[c==0] entry / c++;

exit / c−−;
 spellHex

entry / c=0
Play

quit

nextLevel

«prioritized» quit

[c==0]

Fig. 2. Mutual exclusion in plain UML: passive waiting

Both strategies have realistic use cases, see e.g. [13,14]. Unfortunately, both are
hard to model using plain UML.

As an example, assume for the above example a mutual-exclusion rule that
requires the magician not to spell a hex in the crystal room. That is, in Fig. 1,
the states CrystalRoom and Spelling must not be simultaneously active. A possible
implementation of passive waiting to achieve the mutual exclusion is modeled
in Fig. 2. A variable c is introduced and used to control the access to the two
critical states: it is initialized as 0 in the entry action of Play, increased whenever
CrystalRoom or Spelling is activated, and decreased whenever one of the two states
is deactivated. The three transitions that activate the two states (from Hall to
CrystalRoom, from Idle to Spelling, and from Fighting to Spelling), are extended by a
guard, such that they are only fired when c equals 0, which means that the other
critical state is currently inactive and the mutual exclusion rule is satisfied. A
subtle point is that we have to declare the events toCrystalRoom, spell, and escape

to be deferrable in the states Hall, Idle, and Fighting respectively. In this way the
transitions are only postponed if the other critical state is active, and will be
automatically resumed without requiring the events to be sent again. Otherwise
the events would be lost in case exactly one of the critical states were active, since
the event would then be taken from the event pool without firing a transition.
Overall, the model elements we introduced make one region passively wait until
some state in another region is left.

The other strategy, active commanding, is modeled in Fig. 3. In addition to
variable c and the related entry and exit actions introduced above, new junc-
tions, states and prioritized signals are also necessary. In the upper region, the
(compound) transition from Hall to CrystalRoom is only enabled if c equals to 0,
which means that the other critical state, Spelling, is inactive hence activating
CrystalRoom would not break the mutual-exclusion rule. On the other hand, if c
is not 0, i.e. Spelling is active, then Wait1 is activated. Within its entry action,
a signal stopS is sent to the state machine itself and, due to the high priority
(indicated by stereotype �prioritized�), handled immediately. Since Spelling is ac-
tive, the transition to Idle is fired, which means Spelling now becomes inactive.
The transition sends then an event cntn1, which is also handled immediately in

Aspect-Oriented Modeling of Mutual Exclusion in UML State Machines 167

LadderHall
CrystalRoom

entry / c++
exit / c−−
do / takeCrystal

Wait2
entry / outCR;

Wait3
entry / outCR;

FightingIdle

Level
Won

quit
entry / init
NewLevel toLadder

[enoughCrystal]
/ losePower

Wait1
entry / stopS;

toHall

toCrystalRoom

[c==0]

[else]

/ cntn1

fight

[else]

[else]

[c==0]

spell

[c==0] escape

Spelling
entry / c++;
 spellHex
exit / c−−;

nextLevel

cntn1

entry / c=0
Play

outCR / cntn2

stopS
«prioritized»

«prioritized»

cntn2

cntn2
«prioritized»

«prioritized» quit

«prioritized»

«prioritized»

Fig. 3. Mutual exclusion in plain UML: active commanding

the upper region, where the transition from Wait1 to CrystalRoom is fired. Now
CrystalRoom is active. The active state configuration consists of Play, CrystalRoom,
and Idle. The function of Wait2 and Wait3 is similar. Overall, the Wait* states, the
case distinctions, and the additional, prioritized events build up a mechanism for
transitions in one region to send events which can actively influence the behavior
of another region.

In both cases, it is obviously unsatisfactory that modeling even such a simple
mutual exclusion rule requires modification of many model elements, scattered
all over the state machine. The modification of the behavior is even in such a
relatively simple example hard to understand. Furthermore, it is easy to intro-
duce errors which are hard to find. Such modeling makes maintenance difficult,
the models are complex and prone to errors.

3 Modeling Mutual Exclusion with HiLA

As a possible solution of UML state machines’ modularity problems, the language
High-Level Aspects (HiLA, [11,16]) was defined as an aspect-oriented extension
for UML state machines. HiLA provides high-level constructs for declarative, as
opposed to imperative, behavior modeling.

3.1 HiLA in a Nutshell

The concrete syntax of a HiLA aspect is shown in Fig. 4 and explained in
the following. Syntactically, a HiLA aspect is a UML template containing at
least a name, a pointcut and an advice. The template parameters allow easy
customization, so that aspects for functionalities such as logging, transactions
or mutual exclusions can easily be reused in many places.

168 G. Zhang

goto T2 if C2

«pointcut»

«advice»

«before»
State*

«after»
State*

{Constraint}

AdvBody goto T1 if C1

«aspect»
Name Par2

Par1

Fig. 4. HiLA: concrete syntax

An aspect is applied to a UML state machine, which is called the base machine.
An aspect defines some additional or alternative behavior of the base machine at
some points in time during the base machine’s execution. The behavior is defined
in the advice of the aspect; the points in time to execute the advice are defined
in the pointcut. The advice (stereotype �advice� in Fig. 4) also has the form of a
state machine, except that 1) transitions may carry out a special kind of action
and 2) the final states may carry a label. The “body” of the advice, i.e. the
part without the initial vertex, the final states, and the connecting transitions,
models the behavior to carry out.

The special actions are called commanding actions. A commanding action has
the form @X goto Y, and means that if state X (in the base machine) is active,
then it should be deactivated, and state Y (in the base machine) should be
activated. A label consists of a state, which should be activated when the advice
is finished and the execution of the base machine should be resumed. We refer
to this state as the resumption state of the final state. The label may optionally
be guarded by a resumption constraint, which is indicated by the keyword if and
has the form (like|nlike) StateName* where StateName is the set of the qualified
names of the base machine’s states. like S is true iff after the resumption all states
contained in S will be active, otherwise nlike S is true.

The pointcut (�pointcut�) specifies the “interesting” points in time when the
advice is executed. The points in time may be 1) when a certain state of the
base machine is just about to become active or 2) a set of states has just been
left. The semantics of a pointcut can be regarded as a selection function of the
base machine’s transitions: a pointcut �before� s selects all transitions in the
base machine whose firing makes state s active, and a pointcut �after� S selects
those transitions whose firing deactivates S.

Overall, an aspect is a graphical model element stating that at the points
in time specified by the pointcut the advice should be executed, and after the
execution of the advice the base machine should resume execution by activating
the state given by the label of the advice’s final state, when the conditions given
there are satisfied. For �before� and �after� pointcuts, this “point in time” is
always the firing of a transition; we say that this transition is advised by the
advice.

Aspect-Oriented Modeling of Mutual Exclusion in UML State Machines 169

3.2 Modeling Mutual Exclusion with HiLA

Since states to mutually exclude are always in different, parallel regions, mutual
exclusion is actually a special case of cross-region communication. HiLA pro-
vides elegant solutions for modeling cross-region communication in general and
mutual exclusion in particular. For the very common feature of mutual exclusion,
reusable templates for its modeling are defined.

«before»

T

«before»

S

«pointcut»

«advice»

goto tgt if nlike S,T

«aspect»
MutexByWaiting

S,T: State

Fig. 5. HiLA template modeling mutual exclusion by passive waiting

Passive Waiting. The basic idea of aspect-oriented modeling of passive waiting
is to define an aspect to interrupt the execution of the transition that would
otherwise break the mutual-exclusion requirement, and to delay the resumption
from the aspect until the other critical state is inactive again.

In HiLA, passive waiting is modeled by (instances of) the template shown
in Fig. 5. The template takes two State parameters, S and T. The pointcut is a
shortcut of “�before� S or �before� T”, and specifies all the points in time when
either S or T is just about to get active. In such moments the advice is executed,
which contains an empty body and simply conducts the base machine to resume
the advised transition (by going to its target), when after the resumption the
states S and T would not be both active (condition nlike S, T). Compared with
the UML solution, the imperative details of mutual exclusion are now transpar-
ent for the modeler, the modeling is non-intrusive, the semantics of the aspect
(template) is much easier to understand hence less error-prone. Instantiating the
template by binding S to Enchanted and T to CrystalRoom elegantly prevents our
magician from entering the crystal room while being enchanted and also from
becoming enchanted while in the CrystalRoom.

Active Commanding. Active commanding not only modifies the behavior of
the region that has to wait, but the blocking state (contained in another region)
is also deactivated immediately. In HiLA, we use a commanding action (see
Sect. 3.1) to achieve this behavior.

Figure 6(a) shows an aspect template for modeling mutual exclusion by active
commanding. Before state S or T becomes active, the advice is executed, in
which state S is told to move to X and T to move to Y. Note that this actually
means “before S becomes active tell T to move to Y” (because in this moment
S cannot be active, and the @S event will be simply discarded) and “before T

becomes active tell S to move to X”. Instantiating the template by binding S to

170 G. Zhang

«before»

T

«before»

S

«pointcut»

«advice»

«aspect»
MutexByCommanding

/@S goto X;
 @T goto Y

S,T,X,Y: State

(a) Template

«before»

CrystalRoom

«pointcut»

«advice»

«aspect»
MutexByCommandingInstance

«before»

Spelling

/@CrystalRoom goto Hall;
 @Spelling goto Idle

(b) Instance

Fig. 6. HiLA: mutual exclusion by active commanding

CrystalRoom, T to Fighting, X to CrystalRoom, and Y to Spelling yields the concrete
aspect shown in Fig. 6(b), which models the active-commanding implementation
of mutual exclusion in our example. Again, compared with the UML solution,
the HiLA solution is higher-level and much more easier to construct and to
comprehend.

4 Weaving

Weaving is the process of transformation the base machine to incorporate the
behavior modeled in aspects. In the following, we show the weaving techniques to
implement the execution resumption from aspect to base machine and to imple-
ment commanding actions. These techniques are essential for the implementation
of mutual-exclusion aspects. Note however, the techniques were designed for very
general HiLA aspects, of which mutual-exclusion aspects are just special cases.
See also [15] for other techniques used in the weaving process of HiLA, such
as tracking the last active state configuration (used in implementing �after� as-
pects) or removing pseudo-states (used to handle with syntax variations of UML
state machines).

In the following, we first present a simple transformation of the base machine
to allow us to track active states during the base machine’s execution. We then
describe in Sect. 4.2 how an aspect is woven if it is the only aspect advising a
given transition. Even on this simplistic stage, correct implementation of execu-
tion resumption and commanding events necessitates some elaborate techniques.
Then, in Sect. 4.3, we expand the basic-weaving techniques to cover weaving of
multiple aspects as well.

Notation. Given an aspect α, we refer to the set of the advice’s top-level
final states as F(α). We assume that the final states contained in F(α) are
numbered. For each f ∈ F(α), num(f) returns its number, cond(f) returns its
resumption condition, and label(f) returns its label. Given a number num(f),
we write F (num(f)) to get f . Given a transition t, we refer to its source, target,
guard, and action as src(t), tgt(t), guard(t), and eft(t), respectively.

Aspect-Oriented Modeling of Mutual Exclusion in UML State Machines 171

4.1 Tracking Active States

In plain UML, the information of which states are currently active is not pro-
vided by any built-in language construct. On the other hand, this information
is essential for the implementation of HiLA aspects modeling cross-region com-
munication. We therefore extend the entry and exit action of each state in the
base machine before actual weaving. The purpose of the extension is to store for
each state in a variable if it is currently active or not. That is, for each state s
in the base machine, we define a boolean variable as, which is initialized to be
false, and set it to be true and false in the entry and exit action of s, respectively.
This way, as is true iff s is active. This idea is shown in Fig. 7.

entry / a
exit / b

S =⇒ entry / a; a_S = true
exit / b; a_S = false

S

Fig. 7. Transformation for tracking active states

With this transformation, it is very easy to determine for a given set of states
if all states contained in it are active. We ignore in this paper the details, and
simply use impl(cond(f)) to notate the correct implementation of checking if the
resumption condition of a final state is satisfied.

4.2 Weaving a Single Aspect

In HiLA, aspects are woven as a composite state containing (an implementation
of) the advice. The composite state is inserted into each transition advised by
the aspect.

Basic Idea. The basic idea of weaving a �before� aspect3 is shown in Alg. 1.
For each transition τ of the base machine, we assume it is advised by at most
one aspect, which we call α. We first remove τ from the base machine, and
replace it by the model elements we are going to insert. We insert a new state
Asp into the base machine, insert an implementation of the advice into (the only
region of) Asp (line 5), and set the completion event, which we notate as *, as
deferrable (line 6). The “implementation” is a copy of the advice, except that
commanding actions need a more involved implementation, see below. We also
insert a junction j, and connect it with Asp by a transition. For each f ∈ F(α),
we still have to resolve its label since labels are not defined in UML. To this
end, we extend the effect of the transition t leading to f by an action to store
num(f) in a variable gt (line 10), insert a transition t′′ from j to the label state
of f (line 11), and guard (line 12) this transition so that it is only enabled when
gt is equal to the number of f (which means f was the final state where the
execution of the advice terminated) and the resumption condition is satisfied.

3 In this work it suffices to consider only �before� aspects, because only these are
needed to model mutual exclusion. In the case of �after� aspects, state Asp is slightly
more involved, see [15].

172 G. Zhang

Algorithm 1. Weaving a single aspect to transition

Require: each transition advised by at most one aspect
1: for each transition τ do
2: if τ advised by aspect α then
3: removeTransition(τ)
4: Asp ← insertState
5: insertAdvice(α,Asp)
6: setDefer(Asp, *)
7: j ← insertJunction; t′ ← insertTransition(Asp, j);
8: for f ∈ F(Asp) do
9: t ← transition σ, such that tgt(σ) = f
10: eft(t) ← eft(t) · ′gt ← num(f)′ � store the number of final state
11: t′′ ← insertTransition(j, label(f))
12: guard(t′′) ← ′gt = num(f) ∧ impl(cond(f))′

13: end for
14: end if
15: end for

As an example, Fig. 8(b) shows the result of weaving the very general aspect
(we assume the pointcut to be a �before� pointcut, though) given in Fig. 4 to
a transition as given in Fig. 8(a). At run time, after the execution of AdvBody,
the transition to one of the final states inside Asp is fired, and the final state is
activated. Then, depending on the value of gt, the transition from Asp to T1, T2
or Y is activated in the right moment, i.e., when the resumption condition is also
satisfied.

Commanding Actions. In HiLA, the advice of an aspect may contain com-
manding actions. Basically, the “command” is implemented by an event sent to
the base machine itself, to be handled by the addressee. To ensure that the event
is handled immediately, we need to prioritize the handling of the event.

Commanding actions may be carried out by transitions within the advice.
Recall that we insert an implementation of the advice into (a region) of the
state Asp (Alg. 1, line 5). Actually the implementation is simply a copy of the
advice, except that transitions sending commanding events need a more involved
implementation, as will be explained in the following.

We require that the transition executing an commanding action have a state
as its target. Note that we do not lose generosity due to this requirement, since
all pseudo-states as transition targets can be eliminated by a semantic-preserving
normalization process, see [11, Ch. 5]. Recall that a commanding action has the
form @X goto Y, and that it causes state X to go to Y (both defined in the base
machine) immediately. We refer to the source vertex of the transition as V, which
may or may not be a state, and refer to the target state as S, see Fig. 9(a), where
we assumed V is also a state.

While weaving, this transition is not simply copied into the state Asp, but
transformed as follows: we insert into the region containing V and S a junction
j, a state Waiting and connection transitions. Note trigger cntn of the transition

Aspect-Oriented Modeling of Mutual Exclusion in UML State Machines 173

X Y

(a) Advised transition

X T1

[gt == 1 && impl(C1)]

T2

[gt == 2 && impl(C2)]
defer *

Asp

AdvBody / gt = 2
/ gt = 1

(b) Result

Fig. 8. Weaving a single �before� aspect

SV /@X goto Y

(a) Transition in the advice

SV entry / toY
Wait cntn

[a_X]

[else]
«prioritized»

(b) Weaving result: transition

Y
entry / a_X = true
exit / a_X = false

X
«prioritized»

/ cntntoY

(c) Weaving result: addressee

Fig. 9. Weaving: commanding action

from Wait to S has a high priority. Additionally, in the region containing X and
Y, a transition t from X to Y is also inserted. The trigger of transition t is an
event toY, which has high priority and will be handled as soon as received.

At run time, when the transition leaving V is fired, one of the two following
cases applies: if X is active (i.e. if aX is true), then state Wait is activated, and,
within its entry action, the signal toY is sent. Since X is active, and toY has a
high priority, the transiton to Y is handled immediately, which means X becomes
inactive, a signal cntn is sent, and Y gets active. Back in the upper region, Wait

is active, cntn has a high priority, therefore the transition to T is fired, and the
execution of the advice is finished. On the other hand, if X is not active when
t1 is fired, then Y is simply activated, just “as usual”, and the mutual-exclusion
requirement is not violated.

Applying the above algorithms to our example, weaving an instance of Fig. 5
with S bound to CrystalRoom and T bound to Spelling to the base machine given
in Fig. 1 yields a result that is very similar to Fig. 2, and weaving Fig. 6(b) to the
base machine yields a result very similar to Fig. 3. Since the weaving techniques
are designed for general HiLA aspects, the weaving result of very simple advice
may exhibit some overhead. We consider optimization to be an interesting piece
of future work.

4.3 Multiple Aspects

Obviously, only in trivial systems it applies (as assumed above) that a transition
is advised by at most one aspect. In any realistic system, multiple aspects may
be interacting, i.e. advising the same transition. In such cases, it is essential for
the weaving algorithm to help determine or even reconcile potential conflicts.

174 G. Zhang

Algorithm 2. Weaving multiple aspects

1: � General case: multiple aspects advising one transition
2: for each transition τ do
3: A ← {α | α advising τ}
4: if A �= ∅ then
5: removeTransition(τ)
6: Asp ← insertState
7: setDefer(Asp, *)
8: j ← insertJunction; t′ ← insertTransition(Asp, j);
9: for each α advising τ do
10: insertAdvice(α,Asp);
11: for f ∈ F(Asp) do
12: t ← transition σ, such that tgt(σ) = f
13: eft(t) ← eft(t) · ′gt(α) ← num(f)′ � store the number of final state
14: end for
15: end for
16: F ← ⋃

α∈A F(α)
17: for g ∈ ⋃

f∈F label(f) do

18: t′′ ← insertTransition(j, g)
19: guard(t′′) ← ′ ∧

α∈A F (gt(α)) = g ∧ impl(cond(F (gt(α))))′

20: end for
21: Err ← insertState
22: te ← insertTransition; guard(te) ← ′else′

23: end if
24: end for

Resumption. When a transition is advised by multiple aspects, it is important
to ensure that all aspects (i.e. their advice) are executed, and that the aspects
specify the same resumption state to go to after the execution. If they specify
different resumption states, it is a conflict. To this end, we extend the algo-
rithm presented in Sect. 4.2 to Alg. 2. For each advising aspect, we insert an
implementation of its advice into a region of Asp (line 10). Therefore, Asp is in
general an orthogonal state, containing a multitude of regions, to be executed in
parallel at run time. Instead of inserting a transition from junction j to label(f)
for each final state f (Alg. 1, line 7), we now insert a transition to each state g
such that g is the resumption state of some final state of the advice of any of
the aspects (line 18). The guard of the transition ensures that the transition is
enabled iff in each the region, the actual resumption state is really the target of
the transition (line 19).4 Otherwise, if different resumption states are specified
by different aspects, this is a conflict situation. In this situation, state Exception

is activated, inserted to the base machine by in lines 21 and 22.

Commanding Actions. The idea of weaving commanding actions shown in
Sect. 4.2 also works for multiple aspects. If a state is addressee of multiple com-
manding actions, then multiple transitions will be introduced. It is important,

4 Recall that F (gt(α)) returns the gt(α)-th final state of (the advice of) aspect α.

Aspect-Oriented Modeling of Mutual Exclusion in UML State Machines 175

though, to generate different event names for the different transitions. This way,
conflicting is eliminated.

5 Related Work

HiLA is a semantic approach, i.e., HiLA aspects define modifications of the
semantics of the base machine. Therefore, the semantics of an aspect can be de-
scribed in a purely behavioral manner. The modeler only needs to specify what
to do (in this paper: what to mutually exclude), and no longer has to specify
how do to it in imperative details, since the details are hidden behind the weav-
ing algorithms and thus transparent to the modeler. In comparison, prevalent
approaches of incorporating aspect-orientation into UML state machines, such
as [1,2,7,8], are mainly syntactic. Aspects typically define transformations of the
(abstract syntax) of the base model. It is therefore the modeler’s job to define
aspects (modifications of the syntax of the base machine) such that the overall
behavior of the modified base machine is the desired one.

The semantics of such syntactic aspects are usually defined by by graph
transformation systems, such as Attributed Graph Grammar (AGG, [10]). Con-
sistency checks are supported by a confluence check of the underlying graph
transformation, see e.g. [7]. Due to the syntactic character of the aspects, this
check is also syntactic: there may be false alarms if different weaving orders lead
to syntactically different but semantically equivalent results. In contrast, in our
approach described above, the error state is only entered when the resumption
variables are really conflicting.

The pointcut language JPDD [6] also allows the modeler to define “stateful”
pointcuts. Compared with HiLA, a weaving process is not defined. State-based
aspects in reactive systems are also supported by the Motorola WEAVR tool [17].
Their aspects can be applied to the modeling approach Rational TAU5, which
supports flat, “transition-centric” state machines. In comparison, HiLA is also
applicable to UML state machines, that in general include concurrency. Ge et
al. [5] give an overview of an aspect system for UML state machines. They do
not give enough details for a thorough comparison, but it appears that the HiLA

language is significantly stronger the theirs, and that the issues presented in this
paper are not addressed by their solution.

To the author’s knowledge, declarative modeling of mutual exclusion is not
directly supported by the above approaches.

6 Conclusions and Future Work

We have presented how HiLA, an aspect-oriented extension of UML, can be
applied to model mutual exclusion in UML state machines, as well as weav-
ing techniques used to implement mutual-exclusion aspects. Using HiLA, both
passive waiting and active commanding can be modeled highly modularly and

5 http://ibm.com/software/awdtools/tau/

http://ibm.com/software/awdtools/tau/

176 G. Zhang

declaratively. That is, mutual-exclusion is modeled at a dedicated place rather
than by model elements scattered all over the state machine, and the modeler
only has to specify which states to mutually exclude rather than how to do it.
Moreover, our implementation minimizes potential conflicts between aspects by
weaving interacting aspects into parallel regions of a composite state.

Currently we are working on an extension of the tool Hugo/HiLA [11] to
automate the weaving process of commanding aspects. Future work includes
investigation of how HiLA can help model interactive user interfaces [12] more
modularly, as well as techniques of factorizing aspects out of plain UML state
machines.

References

1. Ali, S., Briand, L.C., Arcuri, A., Walawege, S.: An Industrial Application of Ro-
bustness Testing Using Aspect-Oriented Modeling, UML/MARTE, and Search
Algorithms. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS,
vol. 6981, pp. 108–122. Springer, Heidelberg (2011)

2. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: the Theme Ap-
proach. Addison-Wesley (2005)

3. Drusinsky, D.: Modeling and Verification Using UML Statecharts. Elsevier (2006)

4. Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.): MODELS 2007. LNCS,
vol. 4735. Springer, Heidelberg (2007)

5. Ge, J.-W., Xiao, J., Fang, Y.-Q., Wang, G.-D.: Incorporating Aspects into UML
State Machine. In: Proc. Advanced Computer Theory and Engineering (ICACTE
2010). IEEE (2010)

6. Hanenberg, S., Stein, D., Unland, R.: From Aspect-Oriented Design to Aspect-
Oriented Programs: Tool-Supported Translation of JPDDs into Code. In: Barry,
B.M., de Moor, O. (eds.) Proc 6th Int. Conf. Aspect-Oriented Software Develop-
ment (AOSD 2007), pp. 49–62. ACM (2007)

7. Jayaraman, P.K., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model Composition
in Product Lines and Feature Interaction Detection Using Critical Pair Analysis.
In: Engels et al. [4], pp. 151–165

8. Mahoney, M., Bader, A., Elrad, T., Aldawud, O.: Using Aspects to Abstract and
Modularize Statecharts. In: Proc. 5th Int. Wsh. Aspect-Oriented Modeling, Lisboa
(2004)

9. OMG, Unified Modeling Languague Superstructure, Version 2.4.1. Specification,
Object Management Group (2011),
http://www.omg.org/spec/UML/2.4.1/Superstructure/

10. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003.
LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004)

11. Zhang, G.: Aspect-Oriented State Machines. PhD thesis, Ludwig-Maximilians-
Universität München (2010)

12. Zhang, G.: Aspect-Oriented UI Modeling with State Machines. In: Van den Bergh,
J., Sauer, S., Breiner, K., Hußmann, H., Meixner, G., Pleuss, A. (eds.) Proc. 5th Int.
Wsh. Model-Driven Development of Advanced User Interfaces (MDDAUI 2010),
pp. 45–48 (2010)

http://www.omg.org/spec/UML/2.4.1/Superstructure/

Aspect-Oriented Modeling of Mutual Exclusion in UML State Machines 177

13. Zhang, G., Hölzl, M.: HiLA: High-Level Aspects for UML State Machines. In:
Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 104–118. Springer, Heidelberg
(2010)

14. Zhang, G., Hölzl, M.: Improving the Modularity of Web-Application Models with
Aspects (submitted, 2012)

15. Zhang, G., Hölzl, M.: Weaving Semantic Aspects in HiLA. In: Hirschfeld, R., Tan-
ter, É., Sullivan, K.J., Gabriel, R.P. (eds.) Proc. 11th Int. Conf. Aspect-Oriented
Software Development (AOSD 2012), pp. 263–274. ACM (2012)

16. Zhang, G., Hölzl, M., Knapp, A.: Enhancing UML State Machines with Aspects.
In: Engels et al. [4], pp. 529–543

17. Zhang, J., Cottenier, T., van den Berg, A., Gray, J.: Aspect Composition in the
Motorola Aspect-Oriented Modeling Weaver. Journal of Object Technology 6(7),
89–108 (2007)

TexMo: A Multi-language Development
Environment

Rolf-Helge Pfeiffer and Andrzej Wąsowski

IT University of Copenhagen, Denmark
{ropf,wasowski}@itu.dk

Abstract. Contemporary software systems contain a large number of
artifacts expressed in multiple languages, ranging from domain-specific
languages to general purpose languages. These artifacts are interrelated
to form software systems. Existing development environments insuffi-
ciently support handling relations between artifacts in multiple languages.

This paper presents a taxonomy for multi-language development envi-
ronments, organized according to language representation, representation
of relations between languages, and types of these relations. Additionally,
we present TexMo, a prototype of a multi-language development environ-
ment, which uses an explicit relation model and implements visualization,
static checking, navigation, and refactoring of cross-language relations.
We evaluate TexMo by applying it to development of a web-application,
JTrac, and provide preliminary evidence of its feasibility by running user
tests and interviews.

1 Introduction

Maintenance and enhancement of software systems is expensive and time con-
suming. Between 85% to 90% of project budgets go to legacy system operation
and maintenance [6]. Lientz et. al. [19] state that 75% to 80% of system and
programming resources are used for enhancement and maintenance, where alone
understanding of the system stands for 50% to 90% percent of these costs [25].

Contemporary software systems are implemented using multiple languages.
For example, PHP developers regularly use 1 to 2 languages besides PHP [1].
The situation is even more complex in large enterprise systems. The code base
of OFBiz, an industrial quality open-source ERP system contains more than
30 languages including General Purpose Languages (GPL), several XML-based
Domain-Specific Languages (DSL), config files, property files, and build scripts.
ADempiere, another industrial quality ERP system, uses 19 languages. ECom-
merce systems Magento and X-Cart utilize more than 10 languages each.1
Systems utilizing the model-driven development paradigm additionally rely on
multiple languages for model management, e.g., meta-modelling (UML, Ecore,
etc.) model transformation (QVT ATL, etc.), code generation (Acceleo, XPand,
etc.), and model validation (OCL, etc.).2

1 See ofbiz.apache.org, adempiere.com, magentocommerce.com, x-cart.com
2 See uml.org, eclipse.org/modeling/emf, omg.org/spec/QVT, eclipse.org/atl,
eclipse.org/acceleo, wiki.eclipse.org/Xpand, omg.org/spec/OCL respectively.

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 178–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://ofbiz.apache.org
http://adempiere.com
http://magentocommerce.com
http://x-cart.com
http://uml.org
http://eclipse.org/modeling/emf
http://omg.org/spec/QVT
http://eclipse.org/atl
http://eclipse.org/acceleo
http://wiki.eclipse.org/Xpand
http://omg.org/spec/OCL

TexMo: A Multi-language Development Environment 179

(a) Declaration of the translate command
attached to a button.

(b) JavaScript code that is executed when-
ever the button is pressed.

Fig. 1. Declaration of a command and its use

We call software systems using multiple languages, Multi-Language Software
Systems (MLSS). Obviously, the majority of modern software systems are MLSSs.

Development artifacts in MLSS can be models, source code, property files, etc.
To simplify presentation, we refer to all these as mograms [18]. Mograms in MLSS
are often heavily interrelated. For example, OFBiz contains many hundreds of
relations across its languages [23,13]. Unfortunately, relations across language
boundaries are fragile. They are broken easily, as development environments
neither visualize nor statically check them.

Consider the following scenario. For simplicity of presentation we use a small
example. Our work, though, is not tight to a particular selection of languages,
or the particular example system.

Example Scenario. Bob develops a Safari web browser extension. The extension
contributes a button to Safari’s menu bar. Pressing the button translates the
current web-page to English using Google translate and presents it in a new tab.
Browser extensions are usually built using HTML, CSS and JavaScript. Bob’s
extension consists of three source code files: Info.plist, button.js, and global.html.

Plist files serve as an interface for the extension. They tell Safari what the
extension contributes to the UI. In Bob’s extension, the Plist file contains the
declaration of a translate command attached to a toolbar button (Fig. 1a).
JavaScript code contains logic attached to buttons, menus, etc. Bob’s button.js
forwards the current URL to Google’s translation service whenever the corre-
sponding button is pressed (Fig. 1b). Every extension contains a global.html file,
which is never displayed. It contains code which is loaded at browser start-up or
when the extension is enabled. It is used to provide code for extension buttons,
menus, etc. Bob’s global.html file (not shown here) contains only a single script
tag pointing to button.js.

In Fig. 1a the translate command for the button is defined. Fig. 1b shows
how the translate command is used in button.js in a string literal. This is an
example of a string-based reference to Info.plist. Such string-based references
are common in development of MLSSs.

Now, imagine Bob renaming the command in Info.plist from translate to
its Danish equivalent oversæt. Obviously, the browser plugin will not work
anymore since the JavaScript code in button.js is referring to a non-existing

180 R.-H. Pfeiffer and A. Wąsowski

command. Symmetrically, the reference is broken whenever the “translate”
string literal is modified in the button.js file, without the corresponding update to
Info.plist. ��
Existing Integrated Development Environments (IDE) do not directly support
development of MLSSs. IDEs do not visualize cross-language relations (markers
left to line numbers and gray highlighting in Fig. 1). Neither do they check stat-
ically for consistency of cross-language relations, or provide refactorings across
mograms in multiple languages. We are out to change this and enhance IDEs
into Multi-Language Development Environments (MLDE).

This paper introduces a taxonomy of design choices for MLDEs (Sec. 2). The
purpose of this taxonomy is twofold. First, it serves as requirements list for
implementing MLDEs, and second it allows for classification of such. We argue
for the validity of our taxonomy by a survey of related literature and tools.

As the second main contribution, the paper presents TexMo (Sec. 3), an
MLDE prototype supporting textual GPLs and DSLs. It implements actions
for visualization of, static checking of, navigation along, and refactoring of inter-
language relations, and facilities to declare inter-language relations. Additionally,
TexMo provides standard editor mechanisms such as syntax highlighting. We po-
sition TexMo in our taxonomy and evaluate it by applying it to development of
an MLSS and user tests followed by interviews.

2 Taxonomy of Multi-language Development
Environments

Popular IDEs like Eclipse or NetBeans implement separate editors for every
language they support. A typical IDE provides separate Java, HTML, and XML
editors, even though these editors are used to build systems mixing all these
languages. Representing languages separately allows for an easy and modular
extension of IDEs to support new programming languages. Usually, IDEs keep
an Abstract Syntax Tree (AST) in memory and automatically synchronize it
with modifications applied to concrete syntax. IDE editors exploit the AST to
facilitate source code navigation and refactorings, ranging from basic renamings
to elaborate code transformations such as method pull ups.

Inter-language relations are a major problem in development of
MLSS [23,13,12]. Since they are mostly implicit, they hinder modification and
evolution of MLSS. An MLDE is an IDE that addresses this challenge by not
only integrating tools into a uniform working experience, as IDEs do, but also by
integrating languages with each other. MLDEs support across language bound-
aries the mechanisms implemented by IDEs for every language separately.

We surveyed IDEs, programming editors3, and literature to understand the
kind of development support they provide. We realized that 4 features, that
3 IDEs: Eclipse, NetBeans, IntelliJ Idea, MonoDevelop, XCode. Editors: MacVim,

Emacs, jEdit, TextWrangler, TextMate, Sublime Text 2, Fraise, Smultron, Tincta,
Kod, gedit, Ninja IDE. (See project websites at:
www.itu.dk/˜ropf/download/list.txt)

www.itu.dk/~ropf/download/list.txt

TexMo: A Multi-language Development Environment 181

Multi-Language
Development Environment

Relation
Types

Language
Representation

Lexical Syntactic

Relation
Model Type

Explicit
Model

Tags

Search-
Based

Interfaces

Free

Fixed

Domain-
Specific

String
Transformation

mandatory

alternative
(xor)

or

Legend

per
Language

per
 Group

Universal

Fig. 2. Taxonomy for multi-language development environments

visualization, navigation, static checking, and refactoring are implemented by all
IDEs and by some programming editors. Thus, in order to support developers
best, MLSS need to consider delivering these features across language boundaries
as their essential requirements:

1. Visualization. An MLDE has to highlight and/or visualize inter-language
references. Visualizations can range from basic markers, as for instance in
the style of Fig. 1 to elaborate visualization mechanisms such as treemaps [7].

2. Navigation. An MLDE has to allow navigating along inter-language relations.
In Fig. 1, the developer can request to automatically open button.js and jump
to line 8, when editing Info.plist. All surveyed IDEs allow to navigate source
code. Further, IDEs allow for source code to documentation navigation, a
basic multi-language navigation.

3. Static Checking. An MLDE has to statically check the integrity of inter-
language relations. As soon as a developer breaks a relation, the error is
indicated to show that the system will not run error free. All surveyed IDEs
provide static checking by visualizing errors and warnings.

4. Refactoring. An MLDE has to implement refactorings, which allow easy fix-
ing of broken inter-language relations. Different IDEs implement a different
amount of refactorings per language. Particularly, rename refactorings seem
to be widely used in current IDEs [21,31].

To address these requirements one needs to make three main design decisions:
a) How to represent different programming languages? b) How to inter-relate
them with each other? c) Using which kind of relations?

Systematizing the answers to these questions led us to a domain model char-
acterizing MLDEs. We present this model in Fig. 2 using the feature model-
ing notation [5,16]. An MLDE always represents mograms based on the their
language (Language Representation). Furthermore, an MLDE has to represent
inter-language relations (Relation Model Type). This feature is essential for
augmenting an IDE to an MLDE. Finally, an MLDE associates types to inter-
language relations (Relation Types). An IDE first becomes an MLDE if it sup-
ports inter-language relations, i.e., as it implements an instance of this model.

The following subsections detail and exemplify the fundamental MLDE char-
acteristics of our taxonomy. References to the surveyed literature are inlined.

182 R.-H. Pfeiffer and A. Wąsowski

2.1 Language Representation Types

We consider two main types of language representation, lexical and syntactic lan-
guage representation. The former always works on an artifact directly without
constructing a more elaborate representation, whereas the latter is always based
on a richer data-structure representing mograms in a certain language. Syntac-
tic language representation can represent mograms per language, per language
group, or universally.

Lexical Representation. Most text editors, such as EMacs, Vim, and jEdit, im-
plement lexical representation. Mograms are loaded into a buffer in a language
agnostic manner. Syntax highlighting is implemented solely based on matching
tokens. Due to lack of sufficient information about the edited mogram such edi-
tors provide limited support for static checking, code navigation, and refactoring.

Syntactic Representation. Per Language. Typical IDEs represent mograms in
any given language using a separate AST, or a similar richer data structure cap-
turing a mogram’s structure; for instance Eclipse, NetBeans, etc. Unlike lexical
representation, a structured, typed representation allows for implementation of
static checking and navigation within and between mograms of a single language
but not across languages. The advantage using per language representation, com-
pared to per language group and universal representation, is that IDEs are easily
extensible to support new languages.

Using models to represent source code is getting more and more popular4. This
is facilitated by emergence of language workbenches such as EMFText, XText,
Spoofax, etc.5 The MoDisco [4] project, a model-driven framework for software
modernization and evolution, represents Java, JSP, and XML source code as
EMF models, where each language is represented by its own distinct model.
These models are a high-level description of an analyzed system and are used
for transformation into a new representation. The same principle of abstracting
a programming language into an EMF model representation is implemented in
JaMoPP [11]. Similarly, JavaML [3] uses XML for a structural representation
of Java source code. On the other hand, SmartEMF [12] translates XML-based
DSLs to EMF models and maps them to a Prolog knowledge base. The EMF
models realize a per language representation. Similarly, we represent OFBiz’
DSLs and Java using EMF models to handle inter-component and inter-language
relations [23].

Syntactic Representation. Per Language Group. A single model can represent
multiple languages sharing commonalities. Some languages are mixed or em-
bedded into each other, e.g., SQL embedded in C++. Some languages extend
others, e.g., AspectJ extends Java. Furthermore, languages are often used to-
gether, such as JavaScript, HTML, XML, and CSS in web development. Using
4 Language workbenches mostly use modeling technology to represent ASTs. There-

fore, we use the terms AST and model synonymously in this paper.
5 See www.languageworkbenches.net for the annual language workbench competition.

www.languageworkbenches.net

TexMo: A Multi-language Development Environment 183

a per language group representation allows increased reuse in implementation of
navigation, static checks and refactoring in MLDEs, because support for each
language does not need to be implemented separately.

For example, the IntelliJ IDEA IDE (jetbrains.com/idea), supports code com-
pletion for SQL statements embedded as strings in Java code. X-Develop [28,27]
implements an extensible model for language group representation to provide
refactoring across languages. AspectJ’s compiler generates an AST for Java as
well as for AspectJ aspects simultaneously. Similarly, the WebDSL famework
represents mograms in its collection of DSLs for web development in a single
AST [8]. Meta, a language family definition language, allows the grouping of
languages by characteristics, e.g., object-oriented languages in Meta(oopl) [14].
The Prolog knowledge base in [12] can be considered as a language group repre-
sentation for OFBiz’ DSLs, used to check for inter-language constraints.

Syntactic Representation. Universal. Universal representations use a single model
to capture the structure of mograms in any language. They can represent any ver-
sion of any language, even of languages not invented yet. Universal representations
use simple but generic concepts to represent key language concepts, such as blocks
and identifiers or objects and associations. A universal representation allows the
implementation of navigation, static checking, and refactoring only once for all
languages. Except for TexMo, presented in Sec. 3, we are not aware of any IDE
implementing a universal language representation.

The per group and the universal representations are generalizations of the
per language representation. Both represent multiple languages in one model.
Generally, there are two opposing abstraction mechanisms: type abstraction and
word abstraction [29]. Type abstraction is a unifying abstraction, whereas word
abstraction is a simplifying abstraction.

For example, both Java and C# method declarations can include modifiers,
but the set of the actual modifiers is language specific. The synchronized modifier
in Java has no equivalent in C#. Under the type abstraction, Java and C#
method declarations can be described by a Method Declaration type and an
enumeration containing the modifiers. In contrast, under the word abstraction,
Java and C# method declarations would be described by a common simple
Method Declaration type that neglects the modifiers. Obviously, in the type
abstraction Java and C# method modifiers are distinguishable, whereas in the
more generic word abstraction this information is lost.

Type abstraction is preferable for per group representations. Word abstraction
is preferred for universal representations. The choice of abstraction influences the
specificity of the representation, affecting the tools. Word abstractions are more
generic than type abstractions. For instance, more cross-language refactorings
are possible with the per group representation, while the refactorings in the
systems relying on the universal representation automatically apply to a wider
class of languages.

http://www.jetbrains.com/idea

184 R.-H. Pfeiffer and A. Wąsowski

2.2 Relation Model Types

Software systems are implemented using multiple mograms. At the compilation
stage, and often only at runtime, a complete system is composed by relating
all the mograms together. Each mogram can refer to, or is referenced by, other
mograms. An MLDE should maintain information about these relations. We
observe four different techniques to express cross-language relations:

Explicit model. For example, mega-models [15], trace models [22,9], relation mod-
els [23], or macromodels [24]. All these are models linking distributed mograms
together.

Tags. Hypertext systems, particularly HTML code links substructures or other
artifacts with each other by tags. Tags define anchors and links within an ar-
tifact [10]. Hypertext systems interpret artifacts, anchors, and links. first after
interpretation a link is established.

Interfaces. Interfaces are anchors decoupled from artifacts. An interface contains
information about a development artifact’s contents and corresponding locations.
For example, OSGi manifest files or model and meta-model interfaces describe
component and artifact relations [13].

Search-based. There is no persistent representation of relations at all. Possible
relation targets are established after evaluating a search query. Search-based
relations are usually used to navigate in unknown data. For example, in [30]
relations across documents in different applications are visualized on user request
by searching the contents of all displayed documents.

2.3 Relation Types

Here we elaborate on relations between mograms in different languages. Since
we consider only textual languages all the following relation types relate strings.

Free relations are relations between arbitrary strings. They rely solely on hu-
man interpretation. For example, natural language text in documentation can
be linked to source code blocks highlighting that certain requirements are im-
plemented or that a programmer should read some documentation. Steinberger
et. al. describe a visualization tool allowing to interrelate information across do-
mains, even across concrete syntaxes [26]. Their tool visualizes relations between
diagrams and data.

Fixed relations: Relations between equal strings are fixed relations. Fixed rela-
tions occur frequently in practice. For example, the relation between an HTML
anchor declaration and its link is established by equality of a tag’s argument
names. Figure 1 shows an example of a fixed relation across language bound-
aries.

Waldner et. al. discuss visualization across applications and documents [30].
Their tool visualizes relations between occurrences of a search term matched in
different documents.

TexMo: A Multi-language Development Environment 185

String-transformation relations are relations between similar strings, or function-
ally related strings. For example, a Hibernate configuration file (XML) describes
how Java classes are persisted into a relational database. The Hibernate frame-
work requires that a field specified in the XML file has a corresponding get and
set method in the Java class. A string fieldName in a Hibernate configuration
file requires a getter with name getFieldName in the corresponding Java class.
Depending on the direction, a string-transformation relation either attaches or
removes get and capitalizes or decapitalizes fieldName.

Domain-Specific Relations (DSRs) are relations with semantics specific to a
given domain or project. DSRs are always typed. Additionally, DSRs can be free,
fixed or string-transformation relations. For example, a requirements document
can require a certain implementation artifact, expressing that a certain require-
ment is implemented. At the same time, some Java code can require a properties
file, meaning that the code will only produce expected results as soon as certain
properties are in place. We consider any relation type hierarchy domain-specific,
e.g., trace link classification [22].

The first three relation types, free, fixed, and string-transformation relations
are untyped. They are more generic than DSRs, since they only rely on physical
properties of relation ends. Fixed, string-transformation, and domain-specific re-
lations can be checked automatically, which allows to implement tools supporting
MLSS development, such as error visualization and error resolution.

3 TexMo as an MLDE Prototype

TexMo

Relation
Model Type

Relation
Types

Language
Representation

Universal

Explicit
Model

Free Fixed

Syntactic

Fig. 3. The feature model instance
describing TexMo in our taxonomy
of MLDEs

TexMo6 addresses the requirements listed in
Sec. 2 and it implements an instance of our
MLDE taxonomy. TexMo uses a key-reference
metaphor to express relations. In the example
of Fig. 1, the command declaration takes the
role of a key (Fig. 1a) and its uses are ref-
erence (Fig. 1b). TexMo relations are always
many-to-one relations between references and
keys. We summarize how TexMo meets the re-
quirements presented in Sec. 2:

1. Visualization. TexMo highlights keys and references using gray boxes, see
line 25 in Fig. 1a and line 8 Fig. 1b. Keys are labeled with a key icon and
references are labeled by a book icon; see Fig. 1 left to line numbers. Inspect-
ing markers reveals detailed information, e.g., how many references in which
files refer to a key, see Fig. 4b.

6 TexMo’s source code including the text model and the relation model is available
online at: www.itu.dk/˜ropf/download/texmo.zip

www.itu.dk/~ropf/download/texmo.zip

186 R.-H. Pfeiffer and A. Wąsowski

(a) A broken relation between com-
mand declaration and its use, see
Fig. 1b.

(b) Detailed relation information attached to
a key marker.

Fig. 4. Visualization and information for inter-language relations

2. Navigation. Users can navigate from any reference to the referred key and
from a key to any of its references. Navigation actions are called via the
context menu.

3. Static checking. Fixed relations in TexMo’s relation model (RM) are stati-
cally checked. Broken relations, i.e., fixed relations with different string liter-
als as key and reference, are underlined red and labeled by a standard error
indicator in the active editor, see Fig. 4a.

4. Refactoring. Broken relations can be fixed automatically using quick fixes.
TexMo’s quick fixes are key centric rename refactorings. Applying a quick fix
to a key renames all references to the content of the key. Contrary, applying
a quick fix to a reference renames this single reference to the content of the
corresponding key.

On top of these multi-language development support mechanisms, TexMo pro-
vides syntax highlighting for 75 languages. GPLs like Java, C#, and Ruby, as
well as DSLs like HTML, Postscript, etc. are supported. Standard editor mech-
anisms like undo/redo are implemented, too.

Universal Language Representation. The TextModel. TexMo implements a uni-
versal language representation since such an MLDE is easily applicable for de-
velopment of any MLSS.

All textual languages share a common coarse-grained structure. The text
model (Fig. 5), an AST of any textual language, describes blocks containing
paragraphs, which are separated by new lines and which contain blocks of words.
Words consist of characters and are separated by white-spaces. The only model
elements containing characters are word-parts, separators, white-spaces, and
line-breaks. Blocks, paragraphs, and word blocks describe the structure of a
mogram. Separators are non-letters within a word, e.g., ’/’,’.’, etc., allowing rep-
resent of typical programming language tokens as single words.

TexMo treats any mogram as an instance of a textual DSL conforming to
Fig. 5. For example, a snippet of JavaScript code if(event.command == , line
8 in Fig. 1b, looks like: Block(Paragraph[WordBlock(Word[WordPart(“if”), Seperator-
Part(content:“(”), WordPart(“event”), SeperatorPart(“.”), WordPart(“command”), WhiteS-
pace(“ ”)]), ...]) (using Spoofax [17] AST notation).

TexMo: A Multi-language Development Environment 187

Fig. 5. The open universal model for language representation

An Explicit Relation Model. TexMo uses an instance of the Relation Model
(RM) presented in Fig. 6 to keep track of relations between multi-language mo-
gram code. Our RM allows for relations between mogram contents (ElementKey
and ElementReference), between mogram contents and files (Artifacts) or compo-
nents (Components), and between files and components. This allows for example
to express relations in case mogram code requires another file, which occurs
frequently, e.g., in HTML code.

The RM instance is kept as a textual artifact. The textual concrete syntax
is not shown here, since the RM is not intended for human inspection. TexMo
automatically updates the RM instance whenever developers modify interrelated
mograms. That is, TexMo supports evolution of MLSS. Currently, the RM is
created manually. TexMo provides context menu actions to establish relations
between keys and references. Future versions of TexMo will integrate pattern
based mining mechanism [23,9] to supersede manual RM creation.

Relation Types. TexMo’s RM currently implements fixed and explanatory rela-
tions. Explanatory relations are free relations in our taxonomy. Keys and ref-
erences of fixed relations contain the same string literal. Figure 1 shows a fixed
relation and Fig. 4 shows a broken fixed relation. Explanatory relations allow
to connect arbitrary text blocks with each other, for example documentation
information to implementation code.

4 Evaluation

In this section we discuss TexMo’s applicability. First, we evaluate TexMo’s
language representation mechanism, i.e., its representation of mograms as text

188 R.-H. Pfeiffer and A. Wąsowski

Fig. 6. TexMo’s explicit relation model

models. Second, we provide preliminary evidence on the feasibility of TexMo
by testing user acceptance. Furthermore, we discuss applicability of TexMo’s
relation model with respect to keeping inter-language relations while testers are
using TexMo.

The subject used for this evaluation is the open-source web-based bug-tracking
system, JTrac. JTrac’s code base consists of 374 files. The majority of files, 291,
contain source code in Java (141), HTML (65), property files (32), XML (16),
JavaScript (8), and 29 other source code files such as Shell scripts, etc. Similar
to many web-applications, JTrac implements the model-view-controller (MVC)
pattern. This is achieved using popular frameworks: Hibernate (hibernate.org)
for OR-Mapping and Wicket (cwiki.apache.org/WICKET/) to couple views and
controller code. The remaining 83 files are images and a single jar file. We did
not consider these files in our evaluation since they do not contain information
in a human processable, textual syntax. Clearly, JTrac is an MLSS.

4.1 Universal Language Representation

To evaluate TexMo’s universal language representation, we manually opened all
291 mograms with the TexMo editor to check if a correct text model can be
established. By correct we mean that any character and string in a source code
artifact has a corresponding model element in the text model, which in turn
allows the RM to interrelate mograms in different languages. The files used are
available at: www.itu.dk/˜ropf/download/jtrac_experiment.zip.

We concluded that all 291 source code files can be opened with the TexMo
editor. For all files a correct text model has been established.

4.2 User Test

To test user acceptance, we let 11 testers perform three typical development
tasks. The testers included 4 professional developers, 3 PhD students, and 4

http://www.hibernate.org
http://www.cwiki.apache.org/WICKET/
www.itu.dk/~ropf/download/jtrac_experiment.zip

TexMo: A Multi-language Development Environment 189

undergraduate students, with median 3 years of working experience as software
developers.

Using only a short tutorial, which explains TexMo’s features the testers had
to work on the JTrac system. First, they had to find and remove a previously
injected error, a broken fixed relation. Second, they had to rename a reference
and fix the now broken relation. Third, they had to replace a code block, which
removes two keys. We captured the screen contents and observed each tester.
After task completion, each tester filled out a questionnaire. Questions asked for
work experience, proficiency in development of MLSS using Java, HTML, and
XML. Additionally, two open questions on the purpose of the test and on the
usefulness of TexMo where asked. After the completion of questionnaires we had
a short, open discussion about TexMo where we took notes on tester’s opinions.

We conclude that the testers understand and use MLDE concepts. Seven
testers applied inter-language navigation to better understand the source code,
i.e., to inspect keys and references whenever an error was reported. Further-
more, another seven used rename refactorings to securely evolve cross-language
relations in JTrac. All testers were able to find all errors and to fix them. In
the following we quote a selection of the testers arguing about usefulness of
TexMo (we avoid quoting complete statements for the sake of brevity). Their
statements indicate that visualization, static checking, navigation and refactor-
ing across language boundaries are useful and that such features are missing in
existing IDEs.

Q: “Do you think TexMo could be beneficial in software development? Why?”
A1: “TexMo’s concepts are really convincing. I would like to have a tool like
this at work.”
A2: “Liked the references part and the checking. Usually, if you change the
keys/references you get errors at runtime [which is] kind of late in the process.”
A3: “[TexMo] improves debugging time by keeping track of changes on source
code written in different programming languages that are strongly related. I do
not know any tool like this.”
A4: “I see [TexMo] useful, especially when many people work on the same
project, and, of course, in case the projects gets big.”
A5: “I did development with Spring and a tool like TexMo would solve a lot of
problems while coding.”
A6: “In large applications it is difficult to perform renaming or refactoring tasks
without automated tracking of references. . . . If there would be such a reference
mechanism between JavaScript and C#, it would save us a lot of work.
A7:“[TexMo] solves [a] common problem experienced when software project
involves multiple languages.”

Robustness of the Relation Model. To run the user test and to demonstrate that
the RM can express inter-language relations in an MLSS, we established a RM
relating 9 artifacts containing 51 keys, 87 references, via 87 fixed relations with
each other. The RM relates code in Java, HTML, and properties files with each
other. We did not aim for a complete RM, since we focus on demonstrating
TexMo’s general applicability. After the testers had finished their development

190 R.-H. Pfeiffer and A. Wąsowski

tasks, we inspected the RMs manually to verify that they still correctly interre-
late keys and references.

We conclude that TexMo’s RM is robust to modifications of the MLSS. Af-
ter modification operations, all relations in the RM correctly relate keys and
references across language boundaries.

A common concern of the testers related to replacing a code block containing
multiple keys with a new code block, where TexMo complains about a number
of created dangling references in corresponding files. We did not implement a
feature to automatically infer possible keys out of the newly inserted code, since
we consider this process impossible to automate completely.

4.3 Threats to Validity

The code base of JTrac might be to small to allow to generalize that any textual
mogram in any language can be represented using TexMo’s text model. However,
we think that nearly 300 source code files in 15 languages gives a rather strong
indication. The RM used for the user tests might be to small and incomplete.
We were not interested in creating a complete RM, but only concerned about
its general applicability.

To avoid direct influence on the testers in an oral interview, we used a written
questionnaire. All quotes in the paper are taken from this written data.

5 Related Work

Strein et. al. argue that contemporary IDEs do not allow for analysis and refac-
toring of MLSS and thus are not suitable for development of such. They present
X-Develop an MLDE implementing an extensible meta-model [28] used for a syn-
tactic per language group representation. The key difference between X-Develop
and TexMo is the language representation. TexMo’s universal language repre-
sentation allows for its application in development of any MLSS regardless of
the used languages. Similarly, the IntelliJ IDEA IDE implements some multi-
language development support mechanisms. It provides multi-language refactor-
ings across some exclusive languages, e.g., HTML and CSS. Unlike in TexMo,
these inter-language mechanisms are specific to particular languages since Intel-
liJ IDEA relies on a per language representation.

Some development frameworks provide tools to enhance IDEs. Our evaluation
case, JTrac relies on the web framework Wicket. QWickie (code.google.com/p/
qwickie), an Eclipse plugin, implements navigation and renaming support be-
tween inter-related HTML and Java files containing Wicket code. The drawback
of framework-specific tools is their limited applicability. QWickie cannot be used
for development with other frameworks mixing HTML and Java files.

Chimera [2] provides hypertext functionality for heterogeneous Software
Development Environments (SDE). Different programs like text editors, PDF
viewers and browsers form an SDE. These programs are viewers through which
developers work on different artifacts. Chimera allows for the definition of an-
chors on views. Anchors can be interrelated via links into a hyperweb. TexMo is

http://www.code.google.com/p/
http://www.qwickie

TexMo: A Multi-language Development Environment 191

similar in that models of mograms can be regarded as views where each model
element can serve as an anchor for a relation. Chimera is not dynamic. It does
not automatically evolve anchors while mograms are modified. Subsequent to
modifications, Chimera users need to manually reestablish anchors and adapt
the links to it. Contrary, TexMo automatically evolves the RM synchronously
to modifications applied to mograms. Only after deleting code blocks containing
keys, users need to manually update the dangling references.

Meyers [20] discusses integrating tools in multi-view development systems.
One can consider language integration as a particular flavor of tool integra-
tion. Meyers describes basic tool integration on file system level, where each
tool keeps a separate internal data representation. This corresponds to the per
language representation in our taxonomy. Meyers’ canonical representation for
tool integration corresponds to our universal language representation. Our work
extends Meyers work by identifying a per language group representation.

6 Conclusion and Future Work

We have presented a taxonomy of multi-language development environments,
and TexMo, an MLDE prototype implementing a universal language representa-
tion, an explicit relation model supporting free and fixed relations. The taxonomy
is established by surveying related literature and tools. We have also argued that
implementation of TexMo meets is design objectives and evaluated adequacy of
its design. By itself TexMo demonstrates that design of useful MLDEs is feasible
and welcomed. We reported very positive early user experiences.

To gather further experience, we plan to extend TexMo with string-transfor-
mation and domain-specific relations and compare it to an MLDE using a per
language representation. We realized that it is costly to keep an explicit RM
updated while developers work on a system, especially the larger a RM grows.
Therefore, we will experiment with a search-based relation model. This will also
overcome the vulnerability of an explicit RM to changes applied to mograms
outside the control of the MLDE.

Note, TexMo’s RM does not only allow the interrelation of mograms of differ-
ent languages but also of mograms in a single language. We do not focus on this
fact in this paper. However, this ability can be used to enhance and customize
static checks and visualizations beyond those provided by current IDEs without
extending compilers and other tools.

While working with TexMo we realized that a universal language represen-
tation is favorable if an MLDE has to be quickly applied to a wide variety of
systems with respect to the variety of used languages. Furthermore, there is a
trade-off between the language representation mechanism and the richness of
the tools an MLDE can provide. Basic support, like visualization, highlighting,
navigation and rename refactorings, can be easily developed on any language rep-
resentation, with very wild applicability if the universal representation is used.
More complex refactorings require a per group or a per language representation.

In future we plan to build support to automatically infer inter-language rela-
tions. Fixed and string-transformation relations can be automatically established

192 R.-H. Pfeiffer and A. Wąsowski

by searching for equal or similar strings. This process is not trivial as soon as a
language provides for example scoping. Then inferring inter-language relations
has to additionally consider language specific scoping rules. Inferring domain-
specific relations has to rely on additional knowledge provided by developers, for
example as patterns [23], which explicitly encode domain knowledge. Inferring
free relations is probably not completely automatable but relying on heuristics
and search engines could result in appropriate inter-language relation candidates.

Acknowledgements. We thank Kasper Østerbye, Peter Sestoft and David
Christiansen for discussion and feedback on models for representation of lan-
guage groups and for feedback on the TexMo prototype. EMFText developers
have provided technical support during TexMo’s development. Chris Grindstaff
has developed the Color Editor (gstaff.org/colorEditor), parts of which were
reused for TexMo’s syntax highlighting. Last but not least, we also thank all the
testers participating in the experiment.

References

1. Zend Technologies Ltd.: Taking the Pulse of the Developer Community,
http://static.zend.com/topics/
zend-developer-pulse-survey-report-0112-EN.pdf (February 2012)

2. Anderson, K.M., Taylor, R.N., Whitehead Jr., E.J.: Chimera: Hypermedia for Het-
erogeneous Software Development Enviroments. ACM Trans. Inf. Syst. 18 (July
2000)

3. Badros, G.J.: JavaML: A Markup Language for Java Source Code. Comput. Netw.
33 (June 2000)

4. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: A Generic and Extensi-
ble Framework for Model Driven Reverse Engineering. In: Proc. of the IEEE/ACM
International Conference on Automated Software Engineering (2010)

5. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications (2000)

6. Erlikh, L.: Leveraging Legacy System Dollars for E-Business. IT Professional 2
(May 2000)

7. de Figueiredo Carneiro, G., Mendonça, M.G., Magnavita, R.C.: An experimental
platform to characterize software comprehension activities supported by visualiza-
tion. In: ICSE Companion (2009)

8. Groenewegen, D.M., Hemel, Z., Visser, E.: Separation of Concerns and Linguistic
Integration in WebDSL. IEEE Software 27(5) (2010)

9. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: Inter-modelling: From Theory
to Practice. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010,
Part I. LNCS, vol. 6394, pp. 376–391. Springer, Heidelberg (2010)

10. Halasz, F.G., Schwartz, M.D.: The Dexter Hypertext Reference Model. Commun.
ACM 37(2) (1994)

11. Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Closing the Gap between
Modelling and Java. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009.
LNCS, vol. 5969, pp. 374–383. Springer, Heidelberg (2010)

12. Hessellund, A.: SmartEMF: Guidance in Modeling Tools. In: Companion to the
22nd ACM SIGPLAN Conference on Object-Oriented Programming Systems and
Applications Companion (2007)

http://www.gstaff.org/colorEditor
http://static.zend.com/topics/zend-developer-pulse-survey-report-0112-EN.pdf
http://static.zend.com/topics/zend-developer-pulse-survey-report-0112-EN.pdf

TexMo: A Multi-language Development Environment 193

13. Hessellund, A., Wąsowski, A.: Interfaces and Metainterfaces for Models and
Metamodels. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.)
MODELS 2008. LNCS, vol. 5301, pp. 401–415. Springer, Heidelberg (2008)

14. Holst, W.: Meta: A Universal Meta-Language for Augmenting and Unifying Lan-
guage Families, Featuring Meta(oopl) for Object-Oriented Programming Lan-
guages. In: Companion to the 20th annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (2005)

15. Jouault, F., Vanhooff, B., Bruneliere, H., Doux, G., Berbers, Y., Bezivin, J.: Inter-
DSL Coordination Support by Combining Megamodeling and Model Weaving. In:
Proceedings of the 2010 ACM Symposium on Applied Computing (2010)

16. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Tech. rep., Carnegie-Mellon
University Software Engineering Institute (1990)

17. Kats, L.C.L., Visser, E.: The Spoofax Language Workbench: Rules for Declarative
Specification of Languages and IDEs. In: OOPSLA (2010)

18. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels (2008)

19. Lientz, B.P., Swanson, E.B., Tompkins, G.E.: Characteristics of Application Soft-
ware Maintenance. Commun. ACM 21 (June 1978)

20. Meyers, S.: Difficulties in Integrating Multiview Development Systems. IEEE
Softw. 8 (1991)

21. Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it.
In: Proc. of the 31st International Conference on Software Engineering (2009)

22. Paige, R.F., Drivalos, N., Kolovos, D.S., Fernandes, K.J., Power, C., Olsen, G.K.,
Zschaler, S.: Rigorous Identification and Encoding of Trace-Links in Model-Driven
Engineering. Softw. Syst. Model. 10 (October 2011)

23. Pfeiffer, R.-H., Wąsowski, A.: Taming the Confusion of Languages. In: France,
R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698,
pp. 312–328. Springer, Heidelberg (2011)

24. Salay, R., Mylopoulos, J., Easterbrook, S.: Using Macromodels to Manage Collec-
tions of Related Models. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE
2009. LNCS, vol. 5565, pp. 141–155. Springer, Heidelberg (2009)

25. Standish, T.A.: An Essay on Software Reuse. IEEE Trans. Software Eng. (1984)
26. Steinberger, M., Waldner, M., Streit, M., Lex, A., Schmalstieg, D.: Context-

Preserving Visual Links. IEEE Transactions on Visualization and Computer
Graphics (InfoVis 2011) 17(12) (2011)

27. Strein, D., Kratz, H., Lowe, W.: Cross-Language Program Analysis and Refactor-
ing. In: Proc. of the 6th IEEE International Workshop on Source Code Analysis
and Manipulation (2006)

28. Strein, D., Lincke, R., Lundberg, J., Löwe, W.: An Extensible Meta-Model for
Program Analysis. IEEE Trans. Softw. Eng. 33 (September 2007)

29. Wagner, S., Deissenboeck, F.: Abstractness, Specificity, and Complexity in Software
Design. In: Proc. of the 2nd International Workshop on the Role of Abstraction in
Software Engineering (2008)

30. Waldner, M., Puff, W., Lex, A., Streit, M., Schmalstieg, D.: Visual Links Across
Applications. In: Proc. of Graphics Interface (2010)

31. Xing, Z., Stroulia, E.: Refactoring practice: How it is and how it should be sup-
ported — an Eclipse case study. In: Proc. of the 22nd IEEE International Confer-
ence on Software Maintenance (2006)

On-the-Fly Emendation of Multi-level Models

Colin Atkinson, Ralph Gerbig�, and Bastian Kennel

University of Mannheim, Mannheim, Germany
{atkinson,gerbig,kennel}@informatik.uni-mannheim.de

Abstract. One of the main advantages of multi-level modeling envi-
ronments over traditional modeling environments is that all ontological
classification levels are treated in a uniform way and are all equally avail-
able for immediate, on-the-fly modification. However, such flexibility is
a two-edged sword, since a minor change in a (meta-) ontological level
can have a dramatic impact on other parts of the ontology (i.e. collection
of ontological levels) - requiring a large number of “knock-on” changes
to keep the overall ontology correct. To effectively exploit the modeling
flexibility offered by multi-level modeling environments therefore, mod-
elers need semi-automated support for emending ontologies to keep them
consistent in the face of changes. In this paper we describe a model emen-
dation architecture and illustrate how it can help modelers maintain the
correctness of an ontology.

Keywords: multi-level emendation, orthogonal classification architec-
ture, ontological classification, linguistic classification.

1 Introduction

Although meta-modeling is now a widely practiced activity in software engineer-
ing, and meta-models play a pivotal role in advanced model-driven development
projects, most contemporary modeling environments still place unnecessary lim-
itations on the way meta-models can be defined, evolved and applied. This is
because most environments are still based on the idea of applying a two-level
physical platform to a logical multi-level modeling hierarchy in a fixed and un-
changeable way. Traditional modeling environments apply the physical platform
to the M2 and M1 levels of the OMG model hierarchy so that the M2 level is
the frozen type level (i.e. hardwired into the platform) and the M1 level is the
editable instance data. Meta-modeling environments (such as language engineer-
ing environments) apply the platform to the M3 and M2 levels so that M3 is the
frozen type level and the M2 level is the evolvable instance data. This approach
is fine as long as users are content to work within the single evolvable level sup-
ported by a tool, but it requires complex transformations and recompilations to
be performed as soon as they wish to make the results of their work applicable

� Ralph Gerbig was supported by Deutsche Forschungsgemeinschaft (DFG) as part of
SPP 1496 “Reliably Secure Software Systems”.

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 194–209, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On-the-Fly Emendation of Multi-level Models 195

to lower logical levels not supported by the tool. These transformations and re-
compilations required to “deploy” a model are not only cumbersome and time
consuming, they are also error prone. To support such scenarios tools like Edapt
[4] in the EMF universe exist.

Multi-level modeling aims to overcome this problem by making all logical
classification levels editable and evolvable as linguistic instance data in a uni-
form and level-agnostic way. It is still based on a two-level physical platform,
but the frozen type model (the linguistic model) is specially designed to support
multiple logical (a.k.a ontological) levels at the linguistic instance level below.
This so called Orthogonal Classification Architecture (OCA) therefore supports
two distinct forms of classification, organized in two orthogonal dimensions -
linguistic classification which is supported directly by the underlying physical
platform and ontological classification which is supported within the evolvable
linguistic level. By arranging for all end user modeling and meta-modeling ser-
vices (e.g. DSL definition and application capabilities) to be supported within
the ontological levels all modeling capabilities at all classification levels become
equally accessible, editable and evolvable as instance data within the tool.

This so called ”real-time” (meta-)modeling capability provides tremendous
flexibility and evolvability advantages for model-driven development, and makes
it easier to use models at run-time to drive the execution of systems in an adapt-
able and knowledge-driven way. However, it also creates tremendous problems
for modelers to keep a model up-to-date whenever changes are made, and to en-
sure that an ontology (the collection of ontological data across all the ontological
levels) remains consistent. Since the number of ontological levels is unlimited, a
change to a model element in one ontological level (i.e. a model) could have an
impact on a large number of elements over an unlimited number of lower and
higher ontological levels. The effective use of this extra flexibility is therefore con-
tingent on the multi-level modeling environment providing dynamic, real-time
(i.e. on-the-fly) support for propagating the effects of a change to the affected
parts of the ontology. Sometimes this may be performed automatically, but in
most cases the tool needs to obtain further input from modelers about the in-
tended effects of changes.

In terms of today’s software engineering environments, this capability most
closely resembles the idea of refactoring that is used to improve the quality of
software engineering artifacts [5]. Refactoring involves the enactment of various
kinds of enhancements to a software artifact to change it into a new form. It
has traditionally been applied to code or architecture artifacts but there is in-
creasing awareness of the value of applying it at the level of models [12,3] and
ontologies [9,7]. However, refactoring as recognized in traditional software engi-
neering environments differs from the on-the-fly changes required in multi-level
modeling environments in one important and fundamental aspect - the former
are performed with the specific goal of retaining the original meaning of the arti-
fact concerned, while the latter are performed with the specific goal of changing
the meaning of a currently invalid ontology to make it valid again. We therefore
use the term “emendation” rather than “refactoring” to characterize the process

196 C. Atkinson, R. Gerbig, and B. Kennel

of evolving a multi-level model, on the fly, to restore it to a state of validity
since this precisely captures the intent and nature of the process. Emendation is
defined as “an alteration designed to correct or improve“ in the Miriam-Webster
English dictionary [10]. We believe this therefore represents the most accurate
term for describing the process of (and associated techniques for) making changes
to an ontology (i.e. a set of ontological levels) in order to bring it back to a state
of correctness after a user-induced change.

As well as introducing the notion and goals behind model emendation the
contribution of this paper is to present an architecture for automatic emendation
support and an initial prototype we have developed to support it. The remainder
of this paper is structured as follows: in the next section we first introduce multi-
level modeling (Section 2). In the section after that ontology consistency and the
resulting requirements for an emendation service are outlined (Section 3). After
identifying the ontology consistency requirements, an architecture which can
support emendation of multi-level models and our prototypical implementation
are presented (Section 4). Afterwards, we show how semi-automatic emendation
support can help a modeler on a small example of an online pet store (Section
5). The paper then closes with a discussion of future work (Section 6) and a
conclusion (Section 7).

2 Multi-level Modeling

Multi-level modeling supports the creation of ontologies containing an arbitrary
number of classification levels (i.e. models) unlike traditional modeling environ-
ments like MOF or Ecore, where the number of classification (i.e. meta-) levels
is fixed and limited. This is an advantage when a modeler is modeling a domain
with more than two inherent classification levels. With traditional approaches
a modeler can only capture two levels, the meta-model and the meta-model in-
stance. The key to supporting multi-level modeling is the so called Orthogonal
Classification Architecture (OCA) in which (the majority of) model elements
have two fundamental types rather than one as illustrated in Figure 1 - an on-
tological type, defined by the modeled problem domain at L1, and a linguistic
one defined by the level-spanning modeling language at L2. Traditional modeling
environments mix up these two kinds of classification. For example, in Ecore the
meta-levelM3 usually describes the available language constructs which are then
instantiated at level M2 andM1 to capture the domain of interest. In contrast, in
a multi-level modeling environment, linguistic and ontological (i.e. domain) clas-
sification are separated into two distinct classification dimensions as illustrated
in Figure 1. Linguistic classification is indicated through vertically dotted instan-
tiation arrows whereas ontological classification is indicated through horizontally
dashed classification arrows. This orthogonality gives the architecture on which
multi-level modeling bases its name [1](Orthogonal Classification Architecture).
Linguistic classification does not only provide a linguistic type but also linguistic
attributes (e.g. potency) called traits. Ontological attributes provided through
a model element’s ontological type are called attributes.

On-the-Fly Emendation of Multi-level Models 197

Fig. 1. The pet store web shop ontology

From the diagram in Figure 1 it is clear that model elements residing in the
middle levels of ontologies, e.g. Dog, are simultaneously an instance of a type
at a higher ontological level, PetType, and types for model elements on lower
ontological levels, Lassie and Rover, at the same time. To capture this class/object
duality of model elements the term “clabject” which is a composite of the words
“class” and “object” is introduced.

Every ontological model element in L1, the so called ontology, has an annota-
tion in the form of a superscript. This number is the element’s potency. Features
(attributes and methods) and attribute values also have a potency. The notion
of potency allows a clabject to be instantiated over a predefined number of onto-
logical levels, depending on the properties of the subject of the model. Potencies
can have either a non-negative integer value or ∗ value representing infinity or
unlimited. If a clabject has an integer potency, p, every instance of that clabject
at the lower level must have potency p-1. Thus, a clabject with potency 0 can
have no instances. A clabject with ∗ potency can have instances with any integer
potency or with ∗ potency. The example in Figure 1 shows the potencies of all
model elements. All elements at level O0 have a potency of 3, their instances at
level O1 have potency 2 and their instances at level O2 have potency 1. Feature
potency specifies over how many levels a feature can endure over, i.e. be passed
on to instances. That is why this value is also called durability. A feature with
durability 1 exists in the following level only, a feature with durability 2 in the
following 2 levels and so on. The value potency (mutability) determines over
how many levels an attribute can be changed. A value with mutability 0 cannot
be changed on the next level while a value with mutability 1 can be changed on
the next level. In terms of traditional modeling languages like UML, clabjects
with potency 1 correspond to traditional types and clabjects with potency 0
correspond to traditional objects. No equivalent in the UML can be found for
clabjects with potencies higher than 1.

Another major difference between multi-level modeling environments and tra-
ditional modeling technologies is that one can change all levels of a multi-level
model at the same time. Changes on one level immediately effect all other lev-
els. We usually refer to this concept as real-time (meta-)modeling. In traditional
meta-modeling environments the meta-model is fixed when editing a meta-model

198 C. Atkinson, R. Gerbig, and B. Kennel

instance (i.e. a model). Moreover, when editing a meta-model, instances of that
model are usually not directly accessible. Because only two levels are ever avail-
able for modeling (usually the meta-model and model), we refer to such environ-
ments as two-level modeling environments. The limitations of such environments
make it difficult for a language engineer to alter more than one level on-the-fly
during model creation. When all model levels are equally available for modeling
at all times new possibilities for creating, debugging and extending domain-
specific modeling languages are created.

Figure 1 shows an ontology which classifies different kinds of pets and their
instances. Level O0 defines the ontological type PetType with Potency 3 which
is the basis for all types of pets, e.g. dogs or cats. Having a potency of 3 enables
PetType to be instantiated over the next three levels. PetType owns the attribute
Rating which expresses the rating of a pet. The durability of 3 states that the
rating attribute must exist on the next three levels. The mutability of the at-
tribute is not shown because it is the same as the durability (the default). Thus
the mutability of Rating is also 3. The category Dog is instantiated on O1 as
instance of PetType. Dog is further subdivided into SmallDog and MediumDog
as subtypes of Dog. These ontological types from O1 are used to create Rover
and Lassie as instances at level O2. The potency 1 of the elements on O2 states
that these can be instantiated on one more level which is not shown here. In ad-
dition to their ontological type every model element in the ontological levels also
has a linguistic type, clabject, indicated through the dotted vertical instantiation
arrows.

3 Ontology Consistency Semantics

The central premise when emending an ontology after a user-induced change is
that the ontology was correct before the change occurred and shall be correct
again afterwards. Two questions are of fundamental importance for the following
discussion:

1. What does it mean for an ontology to be “correct”?
2. How can the ontology “break”, i.e. which aspects of the correctness can be

violated by a change?

We define two concepts for the informal meaning of correctness. First, an ontol-
ogy is consistent if there is no information inside the ontology that contradicts
another statement in the ontology. Second, an ontology is complete if it is con-
sistent and all the statements inside the ontology are true. The detailed formal
definition of all concepts presented in this paper can be found in [6].

The difference between consistency and completeness stems from the maturity
of the ontology. If a clabject has potency two, the statement is that there are
(or will be) instances of the clabjects instances. If those 2nd order instances
are not present yet, the ontology is not complete. If there are no contradictions
otherwise, it is nevertheless consistent. The focus of this paper is to restore
ontology consistency by applying emendation operations.

On-the-Fly Emendation of Multi-level Models 199

3.1 Ontology Consistency

Building up on the informal definition of consistency above, the property of
ontology consistency is split up in two parts:

REQ 1: All classification relationships have to be correct, i.e. an instance has
to be an instance of its type according to multi-level classification semantics.

REQ 2: All generalization relationships have to be correct, i.e. the classified
model (i.e. ontological level) has to respect the claims implied by the boolean
traits of the generalization.

Classifications point from the instance to the type and generalizations are state-
ments about the instances of the sub- and supertypes. So for the consistency of
one model, the classifications of the models itself as well as the generalizations
of the classifying model are relevant. If the subject model is at the top of the
model stack, it has no classifications or classifying model. So the top model is
always consistent by definition. Figure 2 gives an overview of the constraints.

Fig. 2. Ontology consistency dependencies

3.2 Classification Correctness

The correctness of a classification requires the instance to be an instance of the
type according to multi-level classification semantics. For an instance to be an
instance of the type, it has to define all the properties defined by the type1 and
have a conforming potency. Conforming potency means that the potency is one
lower than the type’s potency. In case the type’s potency is ∗ the instance’s po-
tency has to be ∗ or any positive natural number. Having all properties means
that for every feature its type defines, the instance has to define a conforming
feature. For every mandatory connection the type takes part in, the instance has
to take part in a corresponding connection. Connection participation is manda-
tory if the connection has a potency greater than zero and the multiplicity of the

1 The notion of instance actually has a more refined meaning, including different kinds
of instances depending on whether they define more properties than needed by the
type or not. See [6] for details. Strictly speaking the rules presented here are valid
only for isonymic classification relationships

200 C. Atkinson, R. Gerbig, and B. Kennel

other end of the connection is greater than zero. Both features and connection
participation are properties that can be inherited from supertypes. To conform
a feature has to match the name and conform to the durability of the type’s
corresponding feature. If the feature is an attribute, the value potency has to
conform and if the type’s attribute has 0 mutability the value has to be the
same. So the requirements of classification correctness can be summarized as:

REQ 1.1: The potency of the instance has to conform to the type’s potency.
REQ 1.2: For every feature of the type the instance has to have a conforming

feature.
REQ 1.3: For every mandatory connection the type participates in, the in-

stance has to participate in a conforming one.

3.3 Generalization Correctness

The correctness of a generalization requires that the classified domain respects
the constraints imposed by the boolean traits of the generalization. Formally, the
correctness of a generalization also requires that every instance of the subtype2

is also an instance of the supertype. This constraint is true by definition as the
properties of the supertype are always a subset of the properties of the subtype. A
generalization can have three boolean traits: disjoint, complete and intersection.
Although their type is boolean, these traits do not need to be set, this means
that a generalization can choose between three alternatives3:

1. it can state that it is disjoint,
2. it can state that it is not disjoint or
3. it can make no statement about disjointness.

The difference between the second and the third is that the third does not impose
any constraints whereas the second states that the opposite of disjointness is true.
So detailed requirements of generalizations are:

REQ 2.1: If the generalization is disjoint there must not be an instance of
the supertype that is an instance of more than one of the subtypes. If the
generalization is not disjoint, there has to be an instance of the supertype
that is an instance of more than one of the subtypes.

REQ 2.2: If the generalization is complete, there must not be an instance of the
supertype that is not an instance of any of the subtypes. If the generalization
is not complete, there has to be an instance of the supertype that is not an
instance of any of the subtypes.

REQ 2.3: If the generalization is an intersection, there must not be an instance
of all the supertypes that is not an instance of the subtype. If the generaliza-
tion is not an intersection, there has to be an instance of all the supertypes
that is not an instance of the subtype.

2 There may be more than one subtype, or more than one supertype.
3 On the example of disjoint.

On-the-Fly Emendation of Multi-level Models 201

4 Suggested Emendation Service Architecture

The architecture for context sensitive ontology emendation support, displayed
in Figure 3, consists of 3 components, the multi-level model, the emendation
service and the impact analyzer. The emendation service subscribes to changes
in the ontology. It is unimportant how the changes to the ontology are actually
performed (e.g. via code, graphical editor, tree structure editor etc.). Once the
emendation service is notified of a change to the ontology, it asks the impact
analyzer to compute all model elements which are effected by this change. For
impact analysis, the classification semantics and the resulting requirements pre-
sented earlier in this work are used. If the computation reveals an impact on
more than the changed model element, the emendation service is triggered. This
then suggests operations which can be performed to rectify the situation and
asks the user to select which is the most appropriate. Alternatively the user can
cancel the actions that are about to be executed by the emendation service.
After configuration, the emendation service executes the emendation operations
which are needed to keep the model consistent. If no impact on other than the
changed model element is calculated by the impact analyzer the emendation
services does not act. The architecture shows that the configuration information
for the impact analyzer and the emendation service is loosely coupled and can
be changed on the fly while using a multi-level modeling environment.

Fig. 3. The suggested emendation service architecture

Some changes to an ontology are hard to support with an automatic emen-
dation service in an appropriate way. One of these cases is the introduction of
a connection with a multiplicity with a lower bound higher than “1”. In such a
case all instances of the clabject at the opposite end of this connection end must
have added a connection to an instance of the clabject at the connection end
with the lower bound higher than “1”. It is very hard to automatically guide
a user through such a process because, for example, the clabjects to which the
instance clabject needs to be connected may not exist at the time of the change.
In such cases automated emendation is not recommended and model validation
is preferred. After saving the multi-level model, all model elements with incon-
sistencies are marked and in some cases automatic fixes are provided for the

202 C. Atkinson, R. Gerbig, and B. Kennel

indicated problems. However, such model validation approaches are beyond the
scope of this paper.

At the time of writing, a prototype implementation of this proposed emenda-
tion architecture is implemented in the Melanie [13] multi-level modeling tool.
The consistency rules and emendation operations are currently hard coded into
the tool but this will be changed in future versions. Melanie provides automatic
and context sensitive emendation support and a limited number of classifica-
tion related emendation operations. However, the number of these operations is
continually growing. Support for automatically applying recorded emendation
operations to other, deployed ontologies (e.g. [9]) is not implemented at the mo-
ment. The user does not explicitly need to invoke the emendation mechanism
to get assistance while editing a model. All changes to the edited ontology are
permanently tracked and evaluated. As soon as a user performs an operation on
a classification relationship that requires mandatory changes to more than the
currently edited model element, he/she automatically receives assistance from
Melanie’s emendation service. A dialog or sophisticated wizard, depending on
the operation, can be displayed to guide the user through the process of emenda-
tion. The collected input from the user is then used to configure the emendation
service before execution. If the user does not want any assistance he can simply
switch off the emendation support via the user interface. In addition to the emen-
dation service Melanie provides basic model validation services and operations
to fix errors which are invoked when a multi-level model is saved.

Fig. 4. Screenshot of the emendation support offered by Melanie. The attribute
LikesChildren is added to MediumDog.

On-the-Fly Emendation of Multi-level Models 203

Figure 4 shows the dialog that a user receives, after performing an operation
which effects more than the directly changed model-element. Here the user added
the feature LikesChildren to the clabject MediumDog. The impact analyzer has
noticed that this change can potentially effect the instances of MediumDog which
is Lassie in this case. Additionally, this could also effect the superclass Dog. If
the user also wants to change the clabject Dog its ontological type PetType,
and the instances of SmallDog namely Rover are effected as well. Hence, the
displayed dialog offers the options “Change Subtypes”, “Change Supertypes”,
“Change Ontological Types” to configure the emendation service. In this case the
user decides to not change the supertype which is indicated by the not selected
“Change Supertypes” option in the “Add Model Element” dialog. After selecting
“OK” the emendation operations are performed. If the user selects “Cancel” and
explicitly states by doing so that no action is desired, the emendation service
will perform no action. The example shown here is quite simple. More extensive
support in the form of wizards guiding a user through a multi-staged emendation
process can be provided if appropriate.

5 Case Study: Emendation of an Online Pet Store

In this section we show how multi-level model emendation services can help
a modeler keep an online pet store [2] correct in the face of ongoing changes.
The chapter is organized according to refactoring operation categories proposed
by Opdyke [11]: “Creating a Program Entity”, “Deleting a Program Entity”,
“Changing a Program Entity” and “Moving a Member Variable”. The follow-
ing list of emendation operations is not exhaustive but rather a starting point
illustrating the need and use of emendation operations. However, the operations
in the following subsections where chosen to cover the most common operations
which are executed on an ontology during evolution. Figure 5 shows the pet
store ontology described in the previous multi-level modeling introduction. A
shop sells different PetTypes. In the beginning only Dogs are sold. These are
divided into MediumDog and SmallDog with two instances - Lassie and Rover.
This ontology builds the basis for the web store because all content of the web
store is generated out of this ontology. Therefore, changing the ontology changes
the content in the web store. Throughout the case study changes in the pet
store’s environment need to be reflected in the ontology. After a short expla-
nation of the reason for the change, the nature of the applied abstract change

Fig. 5. The initial pet store ontology

204 C. Atkinson, R. Gerbig, and B. Kennel

operation (highlighted in italics) applied is described, the violated requirements
are enumerated and the automated steps suggested by the emendation service
are elaborated.

5.1 Adding New Pets and LikesChildren Attribute - Creating a
Program Entity

The web store decides to sell dogs as well as cats. Thus on O1 Cat is instan-
tiated from PetType and two subclasses HairyCat and GroomedCat are added.
From these two subclasses Max and Moritz are instantiated. Adding a new clab-
jects does not violate any ontology consistency rules as the new model elements
do not participate in a classification relationship or effect any model elements
participating in a classification relationship. Adding new clabjects through in-
stantiation does not effect the classification relationship between a type and the
new instance as all rules for classification are automatically satisfied by the in-
stantiation operation. Thus, the impact analyzer calculates no impact on the
changed ontology and does not invoke the semi-automated emendation support.
However, the process of instantiating an instance from a type can be interpreted
as an emendation operation itself, because a new model element together with a
classification relationship are created and setup to automatically fulfill all sub-
requirements of REQ1.

Fig. 6. The pet store ontology after adding cats and the LikesChildren attribute

Furthermore, some customers reported that it is useful to know if a Medi-
umDog is suitable for parents. Hence, the pet store owner decides to add the
LikesChildren attribute to the MediumDog model element. The introduction of
new features can violate the classification relationship consistency rule REQ1.2
which states that an instance needs to have one conforming feature for each
feature of the type. Changing the number of features, whether by adding or re-
moving them, breaks this requirement for the clabject in the role as instance and
type. The clabject’s types need to have the feature added so that the clabject

On-the-Fly Emendation of Multi-level Models 205

has one conforming feature for each feature of the type and the instances need
to have the new feature added for the same reason. In this case the impact an-
alyzer detects a violation between MediumDog and Lassie because MediumDog
now owns the feature LikesChildren which is not owned by Lassie. The user is
automatically assisted in fixing this by adding the attribute to all instances of
MediumDog. MediumDog is not involved in any other classification relationships,
either as type or instance so no further changes are needed. Figure 6 shows the
resulting ontology with cats and the LikesChildren attribute added.

5.2 Changing the Potency of PetType, LikesChildren and Rating -
Changing a Program Entity

Later the pet store decides that no instances of model elements at level O2 are
needed. Hence, the potency of PetType is changed from 3 to 2 to fix the number
of available model levels to three. A change to the potency of a clabject violates
REQ1.1 which defines that an instance’s potency has to conform to the potency
of its type. Such a change means the model element’s potency does not conform
to the type’s potency anymore and the instance’s potency does not conform to
the model element’s anymore. The impact analyzer detects this change to the
potency of PetType and calculates that a change to the potency violates the
classification relationships it takes part in. Thus, it offers to change the potency
of all model elements which are instances of PetType - Dog, Cat, MediumDog,
SmallDog, HairyCat, GroomedCat, Lassie, Rover, Max, Moritz.

Fig. 7. The Ontology after changing the potency of PetType, Rating and LikesChildren

Additionally the pet store owner decides to also change the durabilities of
Rating and LikesChildren. Changing traits of a feature violates REQ1.2 in relation
to name, durability, mutability and value because these are used to define the
conformance of features. By changing one of these the number of conforming
features between a model element and its types and instances changes. This can

206 C. Atkinson, R. Gerbig, and B. Kennel

be fixed by changing all features that conformed before the change so that these
still conform after the change. The potencies are recalculated and changed as
shown in Figure 7.

5.3 Deleting Rating and HairyCat - Deleting a Program Entity

After having added cats to the pet store, the owner notices that these are very
poorly rated by users which is not good for his business. This leads to the
decision to remove the Rating attribute from the pet store. To do so the attribute
is removed from the PetType model element in the store’s ontology. Deleting a
feature can violate the classification relationship requirement REQ1.2 as the
number of features changes. The clabject now has fewer features than its type
and the instances have more than the changed clabject. Again this is detected by
the impact analyzer which calculates that the consistency rules for all instances
of PetType are violated. To restore consistency after the change to the ontology,
the emendation service offers to automatically remove the attribute from Dog,
Cat, Lassie, Max and Moritz.

Fig. 8. The pet store ontology after removing the Rating attribute

To avoid the danger of accidents during the approaching New Years Eve the
pet store owner decides to temporarily remove hairy cats from the web store.
This leads to the removal of HairyCat. Deleting a clabject does not violate any
classification requirements as long as it does not provide attributes to instances
by taking part in an inheritance relation ship. This would lead to a violation
of REQ1.2 which could for instance be fixed by deleting the feature provided
through the clabject to the instances. In this case HairyCat does not provide
any attributes through inheritance thus no emendation operation for preserving
classification semantics need to be enacted. However, the emendation service
could notice the deletion of HairyCat and offer to also delete its instances to save
the modeler the manual editing effort. Figure 8 shows the new ontology without
the Rating attribute, the HairyCat clabject and its instance Max.

On-the-Fly Emendation of Multi-level Models 207

5.4 Moving LikesChildren - Moving a Member Variable

After various complaints about incidents between cats bought in the pet store
and children of customers, the pet store owner sees the need to also capture
whether cats are suitable for children. Hence the already existing attribute
LikesChildren is moved from MediumDog to PetType. A move operation of a fea-
ture or clabject is a delete operation on the source and an add operation at
the target. Thus the previous presented emendation operations for creation and
deletion of a program entity can be applied as the same requirements for clas-
sification relationships are violated. The impact analyzer detects the violations
introduced through the delete and add operation and notifies the emendation
service that all instances of PetType violate at least one of the classification re-
lationship consistency requirements. To fix this, the emendation service offers to
add the attribute LikesChildren to Dog, Cat, Rover, Max and Moritz. The resulting
ontology is shown in Figure 9.

Fig. 9. The pet store ontology after moving the LikesChildren attribute and Lassie
clabject

6 Future Work

This paper has presented an overview of our initial realization of the idea of on-
the-fly emendation support for multi-level models. A method to flexibly configure
the emendation service and impact analyzer needs to be developed. Furthermore,
a study on how to most effectively support modelers during the change of a
model is required. It is important to provide modelers with as much support as
possible but not in a way that the automated emendation service decreases their
efficiency.

When considering the evolution of a model the question of how to transport
these changes to other models arises. We believe the multi-level modeling ap-
proach described in this paper comes closer to the notion of “mogram” defined
by Kleppe [8] than any other meta-modeling approach available today. In short,

208 C. Atkinson, R. Gerbig, and B. Kennel

a mogram is a software program written using a modeling language instead of a
programming language. This claim is based on the fact that our multi-level mod-
els are completely self contained DSL-based packages of information which can
exist side by side in the same execution environment. The traditional modeling
approach with a centralized meta-model requires models to be “deployed” to a
central model repository and reconfigured before they can be interpreted. In our
approach a DSL can be used in a multi-level model environment without con-
figuration or deployment of any separate meta-model. This is similar to starting
e.g. a Java program in the Java Virtual Machine. In this case no prior setup of
the VM is needed and different versions of a program can run side by side. In
this sense multi-level models are closer to mograms than traditional two-level
models. However, treating every model as a closed piece of software also has a
disadvantage. All models basing on the same version of a language can differ
from each other as they do not have a central and fixed meta-model. Thus a
mechanism to transport the refactoring operations to other deployed multi-level
models is needed. We are currently investigating the recording of refactoring
changes and automatic application to other multi-level models.

7 Conclusions

The paper presents initial investigations into the provision of on-the-fly emen-
dation support for multi-level models (i.e. ontologies) based on the orthogonal
classification architecture. In contrast to today’s model refactoring technologies
which only support the changing of meta-models and the subsequent application
of these changes to model instances the approach presented here modifies all lev-
els of a model simultaneously. A second novelty of the approach is that a model,
whilst being edited, is continuously monitored for changes so that emendation
support operations can be proactively suggested by the emendation service. In
contrast, traditional model refactoring approaches require modelers to explicitly
request refactoring support. These changes are then recorded and transported
to other model instances. To do so current approaches need to generate a cum-
bersome model transformation which updates the dependent model levels in a
subsequent, decoupled refactoring step. In conclusion, we hope these initial in-
vestigations into on-the-fly emendation will provide the foundation for a much
more sophisticated automated emendation support that can make the vision of
truly real-time meta-modeling become a reality.

References

1. Atkinson, C., Gutheil, M., Kennel, B.: A Flexible Infrastructure for Multilevel
Language Engineering. IEEE Transactions on Software Engineering (2009)

2. Basler, M., Brydon, S., Nourie, D., Singh, I.: Introducing the Java Pet Store 2.0
Application (2007),
http://java.sun.com/developer/technicalArticles/J2EE/petstore/

http://java.sun.com/developer/technicalArticles/J2EE/petstore/

On-the-Fly Emendation of Multi-level Models 209

3. Brosch, P., Seidl, M., Wieland, K., Wimmer, M., Langer, P.: The operation
recorder: specifying model refactorings by-example. In: OOPSLA Companion, pp.
791–792 (2009)

4. Eclipse Foundation: Edapt (2012), http://www.eclipse.org/edapt/
5. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,

Boston (1999)
6. Kennel, B.: A Unified Framework for Multi-Level Modeling. Ph.D. thesis, Univer-

sity Mannheim (2012)
7. Klein, M., Noy, N.F.: A component-based framework for ontology evolution. In:

Workshop on Ontologies and Distributed Systems at IJCAI 2003 (2003)
8. Kleppe, A.: Software Language Engineering: Creating Domain-specific Languages

Using Metamodels. Addison-Wesley (2009)
9. Maynard, D., Peters, W., Sabou, M., dÁquin, M.: Change management for meta-

data evolution. In: International Workshop on Ontology Dynamics (IWOD) ESWC
2007 Workshop (2007)

10. Miriam-Webster: Definition of Emendation (2012),
http://www.merriam-webster.com/dictionary/emendation

11. Opdyke, W.F.: Refactoring object-oriented frameworks. Ph.D. thesis, Champaign,
IL, USA, uMI Order No. GAX93-05645 (1992)

12. Reimann, J., Seifert, M., Aßmann, U.: Role-Based Generic Model Refactoring. In:
Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part II. LNCS,
vol. 6395, pp. 78–92. Springer, Heidelberg (2010)

13. University of Mannheim - Software Engineering Group: MelaniE -
Multi-level modeling and ontology engineering Environment (2012),
http://www.eclipselabs.org/p/melanie

http://www.eclipse.org/edapt/
http://www.merriam-webster.com/dictionary/emendation
http://www.eclipselabs.org/p/melanie

Specifying Refinement Relations
in Vertical Model Transformations�

Jan Rieke�� and Oliver Sudmann

University of Paderborn, Heinz Nixdorf Institute,
Zukunftsmeile 1, 33102 Paderborn, Germany

{jrieke,oliversu}@uni-paderborn.de

Abstract. In typical model-driven development processes, models on
different abstraction levels are used to describe different aspects. When
developing a mechatronic system, an abstract system model is used to
describe everything that is relevant to more than one of the disciplines
involved in the development. The discipline-specific implementation is
then carried out using different concrete discipline-specific models.

During the development, changes in these discipline-specific models
may affect the abstract system model and other disciplines’ models.
Thus, these changes must be propagated to ensure the overall
consistency. Bidirectional model transformation and synchronization tech-
niques aim at automatically resolving such inconsistencies.

However, most changes are discipline-specific refinements that do not
affect other disciplines. Therefore, vertical model transformations also
have to take into account that these refinements must not be propa-
gated. Current model transformation techniques, however, do not pro-
vide sufficient means to specify and detect whether a change is just a
refinement.

In this paper, we propose a way to formally define such refinements.
These definitions are then used by the model transformation engine to
automatically synchronize models of different abstraction levels.

Keywords: Vertical Model Synchronization, Triple Graph Grammars
(TGG), Refinement/Abstraction, Mechatronic System Design.

1 Introduction

The development of mechatronic systems, from modern household appliances to
transportation systems, requires the close collaboration of multiple disciplines,
such as mechanical engineering, electrical engineering, control engineering, and
software engineering. First, an abstract, discipline-spanning system model is cre-
ated by an interdisciplinary team of engineers. Next, this system model is trans-
formed into different concrete, discipline-specific models, which engineers from
� This work was developed in the course of the Collaborative Research Center 614 –

Self-optimizing Concepts and Structures in Mechanical Engineering – University of
Paderborn, funded by the Deutsche Forschungsgemeinschaft.

�� Supported by the International Graduate School Dynamic Intelligent Systems.

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 210–225, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Specifying Refinement Relations in Vertical Model Transformations 211

each discipline now alter to implement the system. As changes to a discipline-
specific model may affect the discipline-spanning system model and other disci-
plines’ models, avoiding inconsistencies is crucial.

To automatically synchronize the different models used during the develop-
ment, a concept is needed to bidirectionally propagate changes between the
different models. If, for instance, one discipline-specific model is significantly
changed, these changes must be propagated to the system model, and from there
to the other discipline-specific models. Bidirectional model-to-model transforma-
tion techniques are a promising approach for such scenarios.

However, not all changes affect the overall consistency. If an engineer per-
forms a change to their discipline-specific model, such a change may either be a
discipline-specific refinement, which must not be propagated to other models, or
a discipline-spanning relevant change, which also affects the system model and
other disciplines’ models. This is due to the differing levels of abstraction between
the system model and the discipline-specific models: For one abstract model,
there exist several consistent concrete models. In other words, in a consistency
mapping from a system model to a discipline-specific model, discipline-specific
refinements are all changes that can be performed on the discipline-specific model
so that it still corresponds to the system model. Thus, such a mapping from an
abstract model to a more concrete model is a 1-to-n mapping.

In a conceptual view, we have an abstract language A (the system model’s
meta-model) and a concrete language B (the discipline-specific meta-model).1
To transform a word a ∈ A to a word b ∈ B, we use an initial transformation
function I ⊆ (A → B). However, as B is more concrete than A, a consistency
relation R contains more elements than I and is not a function: I ⊆ R ⊆ (A×B).
An operation op ∈ (B → B) is a consistency-preserving refinement iff ∀a ∈ A, b ∈
B : (a, b) ∈ R ⇒ (a, op(b)) ∈ R, i.e., both the concrete model before and after
the operation map to the same abstract model.

Therefore, when defining such a vertical2 model transformation, we also have
to consider non-functional consistency relations. Existing model transformation
approaches (e.g., [16,7,11]), however, do not provide sufficient support for that,
because they mostly work for functional relations only. Even if the transforma-
tion language allows specifying non-functional mappings, it is not well supported
by the synchronization algorithm. Furthermore, it is time-consuming and error-
prone to define all possible refinements directly in the consistency relation by
hand, and doing so makes the consistency relation difficult to maintain.

Thus, we suggest an inductive approach: We take the functional transforma-
tion relation I as a fixed input, manually define a set of consistency-preserving
refinement operations, and combine both to compute the consistency relation
R. In practical scenarios, such an approach is more flexible, because the

1 We use “language” and “meta-model” (as well as “word” and “model”) interchange-
ably here. For a more formal comparison of both concepts, see Amelunxen and
Schürr [1].

2 Horizontal transformations map between models of the same abstraction level, ver-
tical transformations map between models of different abstraction levels [15].

212 J. Rieke and O. Sudmann

consistency-preserving refinement operations can be defined by discipline ex-
perts who do not need to know the transformation language. Only the initial,
functional transformation I is defined by a transformation engineer.

To sum up, our approach works as follows. First, we formally define an initial
transformation function I, and discipline-specific refinements in terms of in-place
model transformation rules. Each of these so-called refinement rules describes a
change to a model that is considered to be a refinement operation. Second, we
apply these refinement rules on the initial, functional transformation relation I,
generating an altered consistency relation R that also covers these refinement
operations. To perform model synchronization with such non-functional con-
sistency relations, we present an improved synchronization algorithm based on
Triple Graph Grammars (TGGs) [17], a rule-based formalism for declaratively
specifying relations between models.

The paper is structured as follows. The running example is presented in Sec. 2.
Furthermore, we give details about the development of mechatronic systems
and the models and tools in use. In Sec. 3, we describe the foundations of the
model synchronization technique we use. In Sec. 4, we introduce the language
to define refinements and explain how to derive the consistency relation R. The
required extensions to the model synchronization algorithm are described in
Sec. 5. Finally, we discuss related work in Sec. 6 and conclude the paper in Sec. 7.

2 Running Example

As an example, we consider the RailCab research project3. Its vision is that,
in the future, the schedule-based railway traffic will be replaced by small, au-
tonomous RailCabs, which transport passengers and goods on demand, being
more energy efficient by dynamically forming convoys.

When developing a mechatronic system, a team of engineers from all involved
disciplines (mechanical engineering, electrical engineering, control engineering,
and software engineering) starts developing an abstract system model. Here, an
interdisciplinary specification language called CONSENS [5] is used.

Fig. 1 shows parts of the RailCab’s active structure, which is part of the system
model and shows of which elements the system consists and how these system
elements interact. RailCabs can communicate with each other using the Commu-
nication Module, allowing negotiating the formation of convoys. When forming a
convoy, all following RailCabs have to change the control strategy for the velocity
to avoid collisions: Instead of using the Velocity Controller that uses a reference
speed v∗

RailCab and the actual speed vRailCab to calculate the acceleration force
F ∗, RailCabs now use the Distance Controller that uses a reference distance d∗

and the actual distance d to the preceding RailCab as input [12].
A state diagram in the system model specifies the communication protocol

to negotiate convoys (Fig. 2). When a RailCab in noConvoy state receives a cre-
ateConvoy message from another RailCab approaching from behind, it switches
to the convoyLeader state in at most 500 ms. Vice versa, a RailCab may form a
3 Neue Bahntechnik Paderborn/RailCab: http://www-nbp.uni-paderborn.de/

http://www-nbp.uni-paderborn.de/

Specifying Refinement Relations in Vertical Model Transformations 213

Configuration
Control

d*

convoy state

Velocity Control

Distance
Controller

Velocity
Controller

Distance
Observer

 Ftraction

Traction Unit

 F*

d

d

d*

v*RailCab

 F*

v*RailCab

convoy
coordination

convoy
coordination

vRailCabvRailCab

RailCab (cut-out)

system element information flow energy flow

Communication
Module

Fig. 1. Parts of the active structure of the RailCab system

convoy with a RailCab in front by sending a createConvoy message and switching
to convoyFollower. Convoys may be canceled by a breakConvoy message.

The different disciplines use this system model as the basis for their discipline-
specific refinements and implementation. During the development, however, in-
consistencies between the system model and the different discipline-specific mod-
els may arise. Consider the following process as an example.

1. The discipline-specific models are generated from the system model by dif-
ferent initial model transformations. Initial MATLAB/Simulink and State-
flow models are derived for the control engineering. Software engineers use
MechatronicUML models [10] for defining the structure and behavior for the
discrete parts of the software, especially the communication behavior.

2. The disciplines’ engineers start refining their models. E.g., the control engi-
neer defines how to switch between the two control strategies. Due to safety
and comfort reasons, sudden steps in the acceleration force F ∗ must be
avoided. Thus, this reconfiguration of controllers requires some time. There-
fore, so-called fading states are introduced in the control engineering models
in which the actual reconfiguration takes place. This change does not affect
other disciplines. Therefore, it must not be propagated to the system model.

3. The software engineer identifies a weakness within the original behavior:
The convoy negotiation protocol does not allow the leader RailCab to re-
ject a convoy proposal for safety reasons, e.g., when transporting dangerous
cargo. Thus, the behavior in the software model is extended by modifying
the corresponding state diagram, now allowing the rejection of convoys.

convoyFollower noConvoy

/breakConvoy breakConvoy/

createConvoy//createConvoy

noConvoy convoyLeader

max. transition time = 500 ms

state event logical relationship time attributes

max. transition time = 500 ms

max. transition time = 200 msmax. transition time = 200 ms

Fig. 2. State diagram describing the convoy communication behavior of the RailCab

214 J. Rieke and O. Sudmann

4. Next, this modification is propagated to the system model.
5. Finally, this modification is propagated to the control engineering models,

retaining the discipline-specific refinements of step 2.

There are two challenges in this process. First, the added fading states in step
2 are just discipline-specific refinements, as they do not affect other disciplines.
Thus, they must not be propagated to the abstract system model. However,
existing model transformation techniques would simply propagate these changes,
as they do not recognize them as refinements. Second, in step 5 some parts of the
control engineering model have to be modified according to the changes in the
system model. However, the changed state diagram of the system model cannot
be simply copied to the control engineering model, as this target model has
already undergone some changes in the meantime which must not be overwritten
(the addition of fading states in step 2). The challenge is to update the model
in a way that these discipline-specific refinements are not destroyed or become
invalid, but are reasonably integrated with the changes from the system model.

Fig. 3 shows in detail how the different behavioral models evolve during this
development process (the MechatronicUML model and the transformation to it
are not important for the comprehension of this paper and have been removed
for presentation purposes). First, discipline-specific models are generated from
the system model using Triple Graph Grammar transformations (step 1, also
marked with ➀ in Fig. 3). For software engineering, a MechatronicUML model
is generated, which contains a Real-Time Statechart that specifies the behav-
ior for the convoy management (➀ left). For control engineering, we generate
initial MATLAB/Simulink and Stateflow models, e.g., a Stateflow chart for the
convoy management (➀ right). As the meta-modeling concepts for state-based
behavior are similar in the CONSENS language and the Stateflow language, this
transformation is straightforward.

Before we explain the rest of this process in Sect. 4 and 5, we give an intro-
duction to Triple Graph Grammars, the model transformation language we use
to define the mapping to the disciplines’ models.

3 Foundations of Triple Graph Grammars

Bidirectional model transformation techniques are a promising approach for au-
tomatically synchronizing the different models during the development. Here,
we use a concept called Triple Graph Grammars (TGGs) [17]. TGGs are a rule-
based formalism that allows us to specify how corresponding graphs or models
can be produced “in parallel” by linking together two graph grammar rules from
two different graph grammars. More specifically, a TGG rule is formed by insert-
ing a third graph grammar rule to produce the so-called correspondence graph
that links the nodes of the other two graphs. Thus, a TGG is a graph grammar
that defines a language of corresponding graph triples. TGGs can be interpreted
for different transformation and synchronization scenarios. Before we describe
these scenarios, let us consider the structure of TGG rules.

Specifying Refinement Relations in Vertical Model Transformations 215

v1.0

v1.1 convoyFollow
er

noC
onvoy

/breakC
onvoy

breakC
onvoy/

createC
onvoy/

/createC
onvoy

noC
onvoy

convoyLeader

state
event

logical
relationship

200 m
s

200 m
s

500 m
s

500 m
s

tim
e attributes

convoyFollow
er

noC
onvoy

/breakC
onvoy

breakC
onvoy/

createC
onvoy/

/createC
onvoy

noC
onvoy

convoyLeader

200 m
s

200 m
s

500 m
s

w
aitForR

esponse

convoyA
ccept/

receivedC
onvoy

P
roposal

/convoyA
ccept 500 m

s

/convoyR
eject

convoyR
eject/

D
iscipline-S

panning S
ystem

 M
odel (C

O
N

S
E

N
S

)
C

ontrol E
ngineering (M

A
TLA

B
/S

tateflow
)

1

5

v1.0
C

E

convoyFollow
er

noConvoy
convoyLeader

send(createConvoy)

send(breakConvoy)

createConvoy

breakConvoy

1
2

nam
e

state
event

transition w
ith

execution order
initial

translation
1

2

v1.0
S

E

v1.1
S

E

Softw
are

Engineering

1

34

v1.2
C

E

convoyFollow
er

noConvoy

convoyLeader

fading_N
2L

fading_L2N
fading_F2N

fading_N
2F

receivedConvoyProposal
w

aitForResponse

send(reject
Convoy)

createConvoy

send(break
Convoy)

breakConvoy

send(create
Convoy)

rejectConvoy

1
1

1
2

2
2

convoy
Accept

send(
convoyAccept)

after(500m
s)

after(200m
s)

after(500m
s)

after(200m
s)

v1.1
C

E

convoyFollow
er

noConvoy
convoyLeader

fading_N
2F

fading_N
2L

fading_F2N
fading_L2N

send(create
Convoy)

send(break
Convoy)

createConvoy

breakConvoy

1
2

after(500m
s)

after(200m
s)

after(500m
s)

after(200m
s)

Fig. 3. Evolution of the different models during the development process

216 J. Rieke and O. Sudmann

3.1 Triple Graph Grammar Rules
Fig. 4 illustrates a TGG rule, State to State, which is taken from a TGG that
defines the mapping between CONSENS and MATLAB/Stateflow.

c_s:State :State2State sf_s:State

:StateChart :StateChart2StateFlow :StateFlow
++

++ ++ ++
++

++ ++

:ownedStates :states

CONSENS Correspondence MATLAB/Stateflow

name = sf_s.name name = c_s.name

Fig. 4. TGG Rule State to State

TGG rules are non-deleting graph grammar rules that have a left-hand side
(lhs) and a right-hand side (rhs) graph pattern. The nodes appearing on the
lhs and the rhs are called context nodes, displayed by white boxes. The nodes
appearing on the rhs only are called produced nodes, displayed by green boxes,
labeled by “++”. Accordingly, there are context edges, displayed by black arrows,
and produced edges, displayed by green arrows and “++” labels.

In TGGs, graphs are typed and attributed. When working with models and
meta-models in terms of MOF, this means that the host or instance model con-
tains objects and links that are instances of classes and references of a given meta-
model. Accordingly, the nodes and edges in the rules are typed over the classes
and references in a meta-model. Nodes are labeled in the form “Name:Type”.
For instance, the nodes in the left column of rule State to State are typed by
the classes StateChart and State from the CONSENS meta-model. The edge is
typed over the reference ownedStates.

The columns of a TGG rule describe model patterns of different meta-models
and are called domains. The left-column production states that when there is
a StateChart in CONSENS, we can add a State and a link between them. The
right column of the rule represents the graph grammar production for creating
States in MATLAB/Stateflow. In the middle, there is the production of the
correspondence structure between the models.

Our TGG rules further introduce the concept of attribute constraints and
application conditions (depicted by yellow, rounded rectangles in Fig. 4). At-
tribute constraints are attached to nodes and have expressions of the form
〈prop〉 = 〈expr〉, where 〈prop〉 is a property of the node’s type class, and 〈expr〉
is an OCL expression that must conform to the type of 〈prop〉. Node names can
be used as variables in the OCL expression. Attribute constraints constrain the
attribute value of an object. E.g., rule State to State has two constraints that
express that a state’s name has to be equal to the name of the opposite state.

We defined a set of TGG rules to transform between CONSENS and MAT-
LAB/Stateflow. Rule State to State (Fig. 4) defines how CONSENS states cor-
respond to Stateflow states. Rule Transition to Transition (Fig. 5) describes how
transitions between states in CONSENS map to transitions in Stateflow. The
maximum duration of a transition is represented by an annotation in Stateflow.

Specifying Refinement Relations in Vertical Model Transformations 217

:Transition :Transition2Transition :Transition

from:State :State2State :State
++

++ ++ ++

++

++ ++

:outgoingTransition :outgoing

to:State :State2State :State

++ ++:incomingTransition :incoming
dur:Duration

++ an:Annotation
++

value = dur.maxtime

property = „maxduration“

++ :outgoing

CONSENS Correspondence MATLAB/Stateflow

maxtime = an.value

++ ++

Fig. 5. TGG Rule Transition to Transition

3.2 Application Scenarios

A TGG defines a language of corresponding graph (or model) triples. However,
we want to use TGGs for a model-to-model transformation. To do so, we can
interpret TGGs for different application scenarios. One scenario, called forward
transformation, is to create one “target” graph corresponding to a given “source”
graph. In this case, to apply a TGG rule, it is interpreted as follows: First, the
context pattern of the rule is matched to bound model elements, which are objects
and links that were previously matched by another rule application. Second, the
source produced pattern is matched to yet unbound parts in the source model.
If a matching respecting these conditions is found, the produced target and
correspondence patterns are created. Doing so, the final transformation result
is a valid graph/model triple that is an element of the language defined by the
TGG. The backward direction works accordingly, reversing the notion of source
and target. We refer to Greenyer and Kindler [8] for further details on TGGs
and the binding semantics.

Our TGG engine interprets attribute constraints (of the form 〈prop〉 = 〈expr〉)
as assignments in the target domain. If a TGG rule shall support both transfor-
mations directions, assignments must be specified for both directions.

In a situation where a triple of corresponding models is given and a change
occurs in one domain model, this change can be propagated by incrementally
updating only the affected parts of the model. This is also called model synchro-
nization, and in general works in two steps: First, for every changed or deleted
element in the source model, we check whether the rule application that trans-
lated this element is still valid. If it is not valid any more, the rule application
is revoked by deleting the produced elements in the target model and removing
the bindings of the source produced elements. Second, for every source model
element that is not bound yet (i.e., elements that were added or whose bindings
have been removed in the first step), we try to apply new rules as in a regular for-
ward transformation. This is necessary to ensure that the synchronization result
is again a valid graph/model triple. The backward direction works accordingly.

4 Defining Refinements

In step 2 of the process, the control engineers implement the controllers using
MATLAB/Simulink and Stateflow. Especially, they modify the Stateflow model

218 J. Rieke and O. Sudmann

by incorporating additional states which describe the fading behavior when
switching between the controller configurations (➁ in Fig. 3). Such a change is
considered a discipline-specific refinement, as it does not affect other disciplines.
Therefore, it must neither be propagated to the discipline-spanning system model
nor to the other disciplines. However, when using existing model transformation
techniques, these additional states would be nevertheless propagated back to the
system model: When synchronizing the models, the TGG Rule State to State (see
Fig. 4) is applicable for the new intermediate states. The TGG rule Transition to
Transition is also applicable for the new transitions.

A transformation engine can deal with hierarchical refinements (like adding
sub-states or subcomponents) by simply ignoring everything “below” an exist-
ing element. We described in our previous work [6] how this can be achieved
using relevance annotations to mark elements subject to the transformation.
However, for complex, non-hierarchical refinements as described above, this is
not sufficient. Thus, we need another means to specify refinements. We pro-
pose that discipline experts define a set of refinement rules that describe which
kinds of changes to a discipline-specific model are regarded as discipline-specific
refinements. Generally, a refinement rule formally describes a refinement by a
precondition (left-hand side) and a replacement (right-hand side).

Fig. 6 shows a refinement rule in concrete syntax which defines that adding an
intermediate state is a discipline-specific refinement. It describes that a transition
may be replaced by a combination of a transition, a state and another transition.
In addition, it is specified by a constraint that the new state and transitions must
not violate the maximum duration of the original transition. Furthermore, no
other incoming or outgoing transitions are allowed for the intermediate state.

This refinement rule covers the addition of the fading states. Using this rule,
we can add this refinement to the consistency relation R, so the model synchro-
nization can detect that adding the fading states is a refinement. However, as
described later, it is important to store the information that a refinement took
place, i.e., that the transition createConvoy/ in the system model (v1.0 in Fig. 3)
now corresponds to the transition-state-transition combination in the control
engineering model (v1.1CE).

Basically, a refinement rule is a graph transformation rule. When choosing
the language to define refinements, we sought to cover as many refinements as
possible on the one hand and, on the other hand, not making the language

state1 state2@maxduration:d1
--

d1 >= d2

++State

Transition

Constraint

--
++

d1 >= d2

++

state1

intermediateState

after(d2)
state2

++
Addition

Deletion

forbidden

XX

X

Fig. 6. Refinement rule (concrete syntax) for adding intermediate states in the State-
flow control engineering model

Specifying Refinement Relations in Vertical Model Transformations 219

too complex to make analyses impractical. We identified several different refine-
ments from different disciplines (e.g., fault-tolerance patterns like triple modular
redundancy, functional partitioning of components, load balancing) which can
be described in terms of such graph transformation rules. However, it remains
to be investigated further whether we may need a more sophisticated language
for other refinements which we have not identified, yet.

Our goal was that these refinement rules should be integrated into the con-
sistency relation R, so that the model transformation engine itself can deal with
refinements without fundamental changes to the synchronization algorithm. In
this way, formal properties of TGGs like correctness or completeness are still
valid and we do not have to heavily modify the existing synchronization tool.
We therefore add the information from the refinement rules to the TGG rule set
that defined the initial transformation I, creating an altered TGG rule set for
the consistency relation R.

The basic idea is to check where refinement rules match in the original TGG
rules in the target domain. Whenever a refinement rule’s precondition can be
found in a TGG rule, we create a copy of that TGG rule and apply the refinement
rule in this TGG rule copy. In this way, we derive new TGG rules which map
the same source pattern to the refined target pattern. Consider the refinement
rule from Fig. 6. This refinement rule’s precondition (left-hand side) matches in
the target domain of the TGG rule Transition to Transition (Fig. 5). We now copy
that TGG rule and apply the refinement rule onto its target domain. That means
that we delete every node and edge from the TGG rule which match deleted
elements in the refinement rule, and create new nodes and edges for everything
that is created by the refinement rule. Furthermore, we create constraints in the
new TGG rule for constraints in the refinement rules. Fig. 7 shows the resulting
refined TGG rule. This new TGG rule now matches whenever a refinement
according to the refinement rule took place in the target model. This rule matches
at the respective refined model elements; thus, the models are consistent in terms
of the new synchronization rule set.

Next, we describe how the improved synchronization applies this relation R
and deals with subsequent incremental updates that may affect refinements.

:Transition :Transition2Transition :Transition

from:State :State2State :State
++

++ ++ ++
++

++ ++

:outgoingTransition :outgoing

to:State :State2State :State

:incoming

:State

++ ++

:incomingTransition

dur:Duration
++

++

out:Transition
++

:incoming

:outgoing

++

++

CONSENS Correspondence MATLAB/Stateflow

dur.maxtime >=
out.after outgoing->size() = 1 and

incoming->size() =1

Fig. 7. TGG Rule Transition to Transition (refined, with intermediate state)

220 J. Rieke and O. Sudmann

5 Model Synchronization with Refinements

Let us have a look at how the improved model synchronization algorithm deals
with refinements that are introduced to the models. Fading states were added
to the Stateflow model (➁ in Fig. 3). As the model was changed, a (backward)
synchronization is triggered to propagate the change to the system model, and
from there to all other affected disciplines.

As described in Sect. 3, model synchronization algorithms work in two steps:
First, for everything that has been deleted (or inconsistently changed) in one
model, the corresponding elements in the other model are also deleted. Second,
for everything that has been added (or inconsistently changed), new correspond-
ing elements are created. In this case, the control engineer deleted the transition
from the noConvoy to the convoyLeader state and added a new fading state fad-
ing_N2L and two transitions. Thus, the synchronization would also delete the
corresponding transition from the system model and then add new elements,
which is what we want to avoid.

In our previous work, we proposed an improved model synchronization ap-
proach [9]. The main idea is not to delete such corresponding parts right away,
but to mark them for deletion first, so they can be reused later, i.e., in subsequent
rule applications. Previous model synchronization approaches would simply cre-
ate new corresponding parts when new elements are transformed. Our improved
synchronization tries to reuse elements marked for deletion instead: it performs
a search in the set of elements marked for deletion and tries to reuse fitting
elements; if they fit, they are not deleted. Only if no fitting elements that are
marked for deletion can be found, new elements are created. Finally, elements
marked for deletion that could not be reused are actually destroyed. For details
of the improved synchronization algorithm, please refer to Greenyer et al. [9].

In this case, this improved algorithm works as follows. First, as the transition
from the noConvoy to the convoyLeader state has been deleted from the Stateflow
model, the corresponding transition in the system model is marked for deletion.
Next, we try to apply new rules. Here, the new, refined TGG rule (Fig. 7) is
applicable: It matches the transition in the system model that has been marked
for deletion, and it also matches the new fading state and the new transitions in
the Stateflow model. We can now apply this rule: In the CONSENS model, we
reuse the transition marked for deletion, and we bind the elements of the refine-
ment in the Stateflow model. As result, we have applied the refined TGG rule
in backward direction without performing any changes to the CONSENS model
just by reusing elements marked for deletion. The models are now consistent in
terms of the TGG. This is exactly what we wanted to achieve: We have derived
a new TGG rule which covers the refinement case described by the refinement
rule. Furthermore, when later changes make the refinement invalid, e.g., when
the time constraint is violated, the model transformation engine can detect this
by checking the validity of the application of the refined TGG rule.

Note that we have to add precedences to the TGG rules. When propagating
changes to the abstract model, we want to use these refined rules primarily, as
applying the original, non-refined TGG rules would propagate the refinement

Specifying Refinement Relations in Vertical Model Transformations 221

to the abstract model, which we wanted to avoid. When propagating to the
concrete model, we do not want to use the new rules, as we need a functional,
deterministic transformation. Thus, we only use the initial rule set.

Let us have a look at the next steps in the development process. As explained
before, the software engineers work on their model, too. They change the be-
havior of the software by adding the possibility to reject a convoy proposal (➂
in Fig. 3). This is a discipline-spanning relevant change, as it also affects, for
instance, the controller implementation in the control engineering. Thus, it is
propagated back to the system model (➃): The state diagram is extended by
two states waitForResponse and receivedConvoyProposal and new transitions and
messages (see v1.1 of the system model in Fig. 3). Instead of switching to the
state convoyFollower directly after a createConvoy message is send, the follower
RailCab switches to the new state waitForResponse. There, it waits for the leader
RailCab to accept or to reject the convoy proposal. The leader RailCab receives
the createConvoy message and changes to the new state receivedConvoyProposal,
in which it decides whether it accepts or rejects the proposal. If the convoy pro-
posal is accepted, the leader RailCab changes its state to convoyLeader and the
follower RailCab changes to the state convoyFollower. If the proposal is rejected,
both RailCabs return to the state noConvoy.

These changes then must be propagated to other affected disciplines. Thus,
the control engineering model also has to be updated to reflect the changed
communication behavior (➄). In the example, the createConvoy/ transition was
changed in the system model during the synchronization in ➃. To transform this
change, a naïve synchronization would first revoke the respective rule application
by deleting the corresponding elements in the Stateflow model, and then try to
retransform the affected elements. However, this createConvoy/ transition in the
system model corresponds to a refinement introduced in v1.1CE (the combination
of the transition createConvoy, the state fading_N2L and the transition to the
convoyLeader state in the control engineering model, which are bound by the
refined TGG rule). Revoking the rule would destroy the complete refinement
(see Fig. 8 b)).

As such an information loss must be prevented, we again use our improved
synchronization. First, we revoke rules by marking for deletion. For instance,
the fading_N2L state and its incoming and outgoing transition are marked for
deletion due to the revocation of the refined TGG rule. Next, we transform the
new elements in the system model to the control engineering model.

In general, there may be several possibilities to reuse elements previously
marked for deletion, which leads to differently updated models; all of them are
consistent according to the consistency relation. The synchronization may not be
able to decide automatically which is the most reasonable. In our example, the
question is where the newly added states waitForResponse and receivedConvoyRe-
quest should be added: before (Fig. 8 c)) or after the fading states (Fig. 8 d))?
Of course, an expert can quickly see that d) is the correct way of updating, as
the controller strategy must not be switched before every RailCab has actually

222 J. Rieke and O. Sudmann

a) b)

noConvoy

convoyLeader

receivedConvoyProposal

send(reject
Convoy)

send(convoy
Accept)

send(create
Convoy)

2

12

createConvoy

2

noConvoy convoyLeader

fading_N2L

fading_L2N

createConvoy

breakConvoy

1

send(create
Convoy)

2

after(500ms)

after(200ms)

d)c)

noConvoy

convoyLeader

fading_N2L receivedConvoyProposal

createConvoy

send(reject
Convoy)

send(convoy
Accept)

send(create
Convoy)

noConvoy

convoyLeader

fading_N2L

receivedConvoyProposalcreateConvoy

send(reject
Convoy)

send(convoy
Accept)

send(create
Convoy)

12

12

1

2

2 1

after(500ms)

after(500ms)

Fig. 8. Excerpts from Stateflow model: a) before updating; updated in different ways:
b) lost fading state, c) “wrong” propagation of the change, d) correctly updated

approved the formation of a convoy. An automatic synchronization, however,
cannot decide this.

Thus, our improved synchronization algorithm explicitly computes all reuse
possibilities, rates them with respect to information loss, and asks the user in
ambiguous cases which of the update possibilities is the correct one [9]. In the
example, the refinement in the control engineering model that has been marked
for deletion (consisting of the transition createConvoy, the state fading_N2L and
the transition to the convoyLeader state) may be reusable as the correspond-
ing control engineering part for three new transitions in the system model v1.1
(createConvoy/, /rejectConvoy, and /convoyAccept). However, the deleted refine-
ment is not reusable as is. Some additional modifications have to be made to
make it reusable in a certain case. For instance, when reusing elements marked
for deletion as corresponding part for the new transition createConvoy/ (which
would result in Fig. 8 c)), the target of the outgoing transition must be modified
to point to the state receivedConvoyProposal.

We can sort the different update possibilities by the amount of modifications
that must be made to reuse the elements: the less modifications must be made,
the more likely is that this is a reasonable reuse possibility. In the example,
we can reuse the refinement for the transition createConvoy/ (see Fig. 8 c)), as
the source of the transition (the noConvoy state) is the same as before, but we
must alter the target state. We can also reuse the refinement for the transition
/convoyAccept (see Fig. 8 d)), as the target of the transition is the same (the
convoyLeader state). It is, however, unreasonable to reuse the refinement for
the transition /convoyReject, as neither the source nor the target state is the
same as before. Thus, the expert can now decide between two reasonable reuse
possibilities that are depicted in Fig. 8 c) and d).

Specifying Refinement Relations in Vertical Model Transformations 223

6 Related Work

In MDA, a platform description model (PDM) is used to define the model trans-
formation from an abstract PIM to a concrete PSM. In general, one PIM element
may be mapped to more than one corresponding representation in the PSM. So-
called mark models annotate the PIM and tell the model transformation which
mapping to use. In contrast, our solution provides a way to capture alternative
implementations using refinement rules in terms of the PSM. These alternatives
are then automatically integrated into the model transformation. However, right
now, we only use these refinements rules to derive model transformation rules
which are not used in initial model transformations, but only match manually
performed refinements. Therefore, we plan on extending our approach so that the
refinement rules can be used for a) automatically deriving a mark meta-model
and using a mark model to trigger alternative mappings (refinements), and b)
to actively propose such possible refinements to the user.

If a refined TGG rule is applicable, its original rule will also be applicable.
Here, we solve this by adding precedences. However, when having several model
transformation rules applicable at the same elements in the source model, we
have to determine which one to execute in general. Thus, we need to identify
these conflicting rules. Therefore, we plan to include approaches like the critical-
pair analysis, as described by Hermann et al. [13].

However, most solutions which implement an MDA-like process are limited
to the concrete application scenario and/or models and tools. Only few publica-
tions deal with developing general solutions, e.g., to improve the usage of mark
models, and only few model transformation solutions exist which deal with sim-
ilar aspects as described in this paper. Körtgen [14] developed a synchronization
tool for the case of a simultaneous evolution of both models. Although it does
not incorporate a concept to define refinement operations, it also allows having
several conflicting rules, i.e., rules that are all applicable at the same position.
In a step-by-step, highly interactive process, the user may decide which alterna-
tives should be applied. Our aim is to avoid unnecessary user interaction where
that is possible. For ambiguous cases, however, we would also like to incorporate
better means for user interaction into our synchronization tool.

A different approach in general is to create a single unified modeling nota-
tion, which includes all modeling means from all disciplines. This avoids defining
model-to-model mappings, but requires a) view definitions and b) complex static
semantics to ensure “internal” model consistency. Thus, the general model con-
sistency problem remains. Several publications deal with inconsistency handling
in a unified notation, e.g., Egyed et al. [4] or Atkinson et al. [2]. Although there
is no fundamental conceptual drawback in using such a unified notation, our
approach seems more reasonable from a practical and technical perspective in
our setting, because most tools use their own model formats, anyway. Further-
more, such a unified notation is difficult to maintain. However, a more extensive
discussion about this is outside the scope of this paper.

224 J. Rieke and O. Sudmann

7 Conclusion and Discussion

In many model-based development processes, vertical model transformations
map between models of different abstraction levels. If changes occur to a concrete
model, these changes may be either relevant changes that affect the abstract
model or model-specific refinements. Existing model synchronization approaches
do not provide sufficient means to specify such refinement relations. In this paper,
we have shown how in-place model transformation rules can be used to define
refinements. We use this set of rules as input to a TGG-based synchronization
approach, so that refinements can be automatically detected and will not be
propagated. We have shown how this technique helps ensuring model consistency
in a synchronization scenario in systems engineering.

At the moment, the refinement rules have to be defined manually, which can be
a significant effort. Solutions exist which are able to identify and generalize actual
model changes, e.g. Brosch et al. [3]. We plan on incorporating such approaches
to (semi-)automatically derive refinement rules from examples.

We evaluated the approach using different disciplines’ models from the Rail-
Cab research project. We identified and successfully modeled several refinements
with our approach, e.g., redundancy patterns in structural models like UML
component diagrams or block-based diagrams like Matlab/Simulink, and refined
behaviors in behavioral models like statecharts or activity diagrams. However,
we have yet to further evaluate the suitability and the efficiency of the approach
in other domains, e.g., by performing industrial case studies.

Our approach only works if a refinement rule affects only one TGG rule. If
this is not the case, more sophisticated computations are necessary to derive the
refined TGG rules; this is subject to future research. As this occurs especially
in complex TGGs that map between models that are unsimilar in its modeling
principles, our technique will currently meet its limits in such a case.

There may be more than one reasonable solution to prevent the loss of ex-
isting refinements. In such ambiguous cases, user interaction is required. As fu-
ture work, we plan on investigating how this user interaction can become more
intuitive and easy to use. Furthermore, by storing and analyzing previous user
decisions, we may be able to further improve the automation in ambiguous cases.

References

1. Amelunxen, C., Schürr, A.: Formalising model transformation rules for UML/MOF
2. IET Software 2(3), 204–222 (2008)

2. Atkinson, C., Stoll, D., Bostan, P.: Orthographic Software Modeling: A Practi-
cal Approach to View-Based Development. In: Maciaszek, L.A., González-Pérez,
C., Jablonski, S. (eds.) ENASE 2008/2009. CCIS, vol. 69, pp. 206–219. Springer,
Heidelberg (2010)

3. Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M., Kappel, G., Rets-
chitzegger, W., Schwinger, W.: An Example Is Worth a Thousand Words: Com-
posite Operation Modeling By-Example. In: Schürr, A., Selic, B. (eds.) MODELS
2009. LNCS, vol. 5795, pp. 271–285. Springer, Heidelberg (2009)

Specifying Refinement Relations in Vertical Model Transformations 225

4. Egyed, A., Letier, E., Finkelstein, A.: Generating and evaluating choices for fixing
inconsistencies in UML design models. In: ASE 2008, pp. 99–108 (2008)

5. Gausemeier, J., Frank, U., Donoth, J., Kahl, S.: Specification technique for the
description of self-optimizing mechatronic systems. Research in Engineering De-
sign 20(4), 201–223 (2009)

6. Gausemeier, J., Schäfer, W., Greenyer, J., Kahl, S., Pook, S., Rieke, J.: Man-
agement of cross-domain model consistency during the development of advanced
mechatronic systems. In: Proc. of the 17th Int. Conf. on Engineering Design (2009)

7. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling 8(1) (2009)

8. Greenyer, J., Kindler, E.: Comparing relational model transformation technolo-
gies: Implementing Query/View/Transformation with Triple Graph Grammars.
Software and Systems Modeling 9(1), 21–46 (2010)

9. Greenyer, J., Pook, S., Rieke, J.: Preventing Information Loss in Incremental Model
Synchronization by Reusing Elements. In: France, R.B., Kuester, J.M., Bordbar,
B., Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 144–159. Springer, Hei-
delberg (2011)

10. Greenyer, J., Rieke, J., Schäfer, W., Sudmann, O.: The Mechatronic UML de-
velopment process. In: Tarr, P.L., Wolf, A.L. (eds.) Engineering of Software, pp.
311–322. Springer, Heidelberg (2011)

11. Hearnden, D., Lawley, M., Raymond, K.: Incremental Model Transformation for
the Evolution of Model-Driven Systems. In: Wang, J., Whittle, J., Harel, D., Reg-
gio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 321–335. Springer, Heidelberg
(2006)

12. Henke, C., Tichy, M., Schneider, T., Böcker, J., Schäfer, W.: Organization and
control of autonomous railway convoys. In: Proc. of the 9th Int. Symposium on
Advanced Vehicle Control (2008)

13. Hermann, F., Ehrig, H., Orejas, F., Golas, U.: Formal Analysis of Functional Be-
haviour for Model Transformations Based on Triple Graph Grammars. In: Ehrig,
H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372,
pp. 155–170. Springer, Heidelberg (2010)

14. Körtgen, A.T.: Modellierung und Realisierung von Konsistenzsicherungswerkzeu-
gen für simultane Dokumentenentwicklung. Ph.D. thesis, RWTH Aachen Univer-
sity (2009)

15. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electronic Notes in
Theoretical Computer Science 152, 125–142 (2006)

16. Object Management Group (OMG): MOF Query/View/Transformation (QVT)
1.0 Specification (2008), http://www.omg.org/spec/QVT/1.0/

17. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–
163. Springer, Heidelberg (1995)

http://www.omg.org/spec/QVT/1.0/

Model-Based Automated and Guided
Configuration of Embedded Software Systems

Razieh Behjati1,2, Shiva Nejati1, Tao Yue1,
Arnaud Gotlieb1, and Lionel Briand1,3

1 Simula Research Laboratory, Lysaker, Norway
2 University of Oslo, Oslo, Norway

3 University of Luxembourg
{raziehb,shiva,tao,arnaud,briand}@simula.no

Abstract. Configuring Integrated Control Systems (ICSs) is largely
manual, time-consuming and error-prone. In this paper, we propose a
model-based configuration approach that interactively guides engineers
to configure software embedded in ICSs. Our approach verifies engineers’
decisions at each configuration iteration, and further, automates some
of the decisions. We use a constraint solver, SICStus Prolog, to auto-
matically infer configuration decisions and to ensure the consistency of
configuration data. We evaluated our approach by applying it to a real
subsea oil production system. Specifically, we rebuilt a number of existing
verified product configurations of our industry partner. Our experience
shows that our approach successfully enforces consistency of configura-
tions, can automatically infer up to 50% of the configuration decisions,
and reduces the complexity of making configuration decisions.

Keywords: Product configuration, Model-based software engineering,
Constraint satisfaction, UML/OCL.

1 Introduction

Modern society is increasingly dependent on embedded software systems such as
Integrated Control Systems (ICSs). Examples of ICSs include industrial robots,
process plants, and oil and gas production platforms. Many ICS producers follow
a product-line engineering approach to develop the software embedded in their
systems. They typically build a generic software that needs to be configured for
each product according to the product’s hardware architecture [5]. For example,
in the oil and gas domain, embedded software needs to be configured for various
field layouts (e.g., from single satellite wells to large multiple sites), for individ-
ual devices’ properties (e.g., specific sensor resolution and scale levels), and for
communication protocols with hardware devices.

Software configuration in ICSs is complicated by a number of factors. Em-
bedded software systems in ICSs have typically very large configuration spaces,
and their configuration requires precise knowledge about hardware design and
specification. The engineers have to manually assign values to tens of thousands
of configurable parameters, while accounting for constraints and dependencies

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 226–243, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Model-Based Automated and Guided Configuration 227

between the parameters. This results in many configuration errors. Finally, the
hardware and software configuration processes are often isolated from one an-
other. Hence, many configuration errors are detected very late and only after
the integration of software and hardware.

Software configuration has been previously studied in the area of software
product lines [20], where support for configuration largely concentrates on re-
solving high-level variabilities in feature models and their extensions [18,13,11],
e.g., the variabilities specified for end-users at the requirements-level. Feature
models, however, are not easily amenable to capturing all kinds of variabili-
ties and hardware-software dependencies in embedded systems. Furthermore,
existing configuration approaches either do not particularly focus on interac-
tively guiding engineers or verifying partial configurations [19,6], or their notion
of configuration and their underlying mechanism are different from ours, and
hence, not directly applicable to our problem domain [16,14].

Contributions. We propose a model-based approach that helps engineers cre-
ate consistent and error-free software configurations for ICSs. In our work, a
large amount of the data characterizing a software configuration for a particular
product is already implied by the hardware architecture of that product. Our
goal is, then, to help engineers assign this data to appropriate configurable pa-
rameters while maintaining the consistency of the configuration, and reducing
the potential for human errors. Specifically, our approach (1) interactively guides
engineers to make configuration decisions and automates some of the decisions,
and (2) iteratively verifies software and hardware configuration consistency. We
evaluated our approach by applying it to a subsea oil production system. Our
experiments show that our approach can provide certain types of user guidance
in an efficient manner, and can automate up to 50% of configuration decisions for
the subjects in our experiment, therefore helping save significant configuration
effort and avoid configuration errors.

In Section 2 we motivate the work and formulate the problem by explaining
the current practice in configuring ICSs. We give an overview of our model-
based solution in Section 3. SimPL methodology [5] for modeling families of
ICSs is briefly presented in Section 4. We present our model-based approach to
the abovementioned configuration problems in Section 5. An implementation of
our approach as a prototype tool is presented in Section 6. An evaluation of the
approach using our prototype tool is given in Section 7. In Section 8, we analyze
the related work. Finally we conclude the paper in Section 9.

2 Configuration of ICSs: Practice and Problem Definition

Figure 1 shows a simplified model of a fragment of a subsea production system
produced by our industry partner. As shown in the figure, products are com-
posed of mechanical, electrical, and software components. Our industry partner,
similar to most companies producing ICSs, has a generic product that is config-
ured to meet the needs of different customers. For example, different customers
may require products with different numbers of subsea Xmas trees. A subsea

228 R. Behjati et al.

Xmas tree in a subsea oil production system provides mechanical, electrical, and
software components for controlling and monitoring a subsea well.

Product configuration is an essential activity in ICS development. It involves
configuration of both software and hardware components. Currently, software
and hardware configuration is performed separately in two different departments
within our industry partner. In the rest of this paper, whenever clear from the
context, we use configuration to refer either to the configuration process or to
the description of a configured artifact.

The software configuration is done in a top-down manner where the configura-
tion engineer starts from the higher-level components and determines

«HwComponent»
xt1: XmasTree

«artifact»
semAppA: SemApplication

s1: Sensor s2: Sensor v1: Valve

«ICSystem»
toySps: SubseaProdSystem

«communication path»
controls/monitors

«HwComputingResource»
semA: SubseaElectronicModule

Fig. 1. A fragment of a
simplified subsea production
system

the type and the number of their constituent
(sub)components. Some components are invariant
across different products, and some have parame-
ters whose values differ from one product to an-
other. The latter group, known as configurable
components, may need to be, further, decomposed
and configured. The configuration stops once the
type and the number of all the components and the
values of their configurable parameters are given.

For example, software configuration for a fam-
ily of subsea production systems starts by identi-
fying the number and locations of SemApplication
instances. Each instance is then configured accord-
ing to the number, type, and other details of de-
vices that it controls and monitors. To do this, the
configuration engineer (the person who does the
configuration) is typically provided with a hardware configuration plan. How-
ever, she has to manually check if the resulting software configuration conforms
to the given hardware plan, and that it respects all the software consistency
rules as well. In the presence of large numbers of interdependent configurable
parameters this can become tedious and error-prone. In particular, due to lack
of instant configuration checking, human errors such as incorrectly entered con-
figuration data are usually discovered very late in the development life-cycle,
making localizing and fixing such errors unnecessarily costly.

In short, the existing configuration support at our industry partner faces the
following challenges (which seem to be generalizable to many other ICSs [5]): (1)
Checking the consistency between hardware and software configurations is not
automated. (2) Verification of partially-specified configurations to enable instant
configuration checking is not supported. (3) Engineers are not provided with suf-
ficient interactive guidance throughout the configuration process. In our previous
work [5], we proposed a modeling methodology to properly capture and docu-
ment, among other things, the software-hardware dependencies and consistency
rules. In this paper, we build on our previous work to develop an automated
guided configuration tool that addresses all the above-mentioned challenges.

Model-Based Automated and Guided Configuration 229

3 Overview of Our Approach

Figure 2 shows an overview of our automated model-based configuration ap-
proach. In the first step, we build a configurable and generic model for an ICS
family (the Product-line modeling step). In the second step, the Guided configu-
ration step, we interactively guide users to generate the specification of particular
products complying with the generic model built in the first step.

During the product-line modeling step, we provide domain experts with a
UML/MARTE-based methodology, called SimPL [5], to manually create a
product-line model describing an ICS family. The SimPL methodology enables
engineers to create product line models from textual specifications and the scat-
tered domain experts knowledge. These models can then be utilized to automate
the configuration process. They include both software and hardware aspects as
well as the dependencies among them. The dependencies are critical to effective
configuration. Currently, most of these dependencies exist as tacit knowledge
shared by a small number of domain experts, and only a fraction of them, mostly
those related to software, have been implemented in the existing tool used by
our industrial partner. Our domain analysis [5], however, showed that failure
to capturing all the dependencies have led to critical configuration errors. We
briefly describe and illustrate the SimPL methodology in Section 4.

Specification of
an ICS family

Product-line
modeling

Generic model
(SimPL model)

Guidance

Product
specification

Configuration
data from

user

Domain expert
knowledge

Guided
configuration

Fig. 2. An overview of our configuration approach

During the configuration step, engineers create full or partial product specifi-
cations by resolving variabilities in a product-line model. In our work, configu-
ration is carried out iteratively, allowing engineers to create and validate partial
product specifications, and interactively, guiding engineers to make decisions at
each iteration. Therefore, our approach alleviates two shortcomings of the exist-
ing tool discussed in Section 2. Our configuration mechanism enables engineers
to resolve variabilities in such a way that all the constraints and dependencies
are preserved. At each iteration, the engineer resolves some of the variabilities
by assigning values to selected configurable parameters. Our configuration en-
gine, which is implemented using a constraint solver, automatically evaluates the
engineer’s decisions and informs her about the impacts of her decision on the yet-
to-be-resolved variabilities, hence, guiding her to proceed with another round of

230 R. Behjati et al.

configuration. In Sections 5 and 6, we describe in details how the configuration
step is designed and implemented, respectively.

4 Product-Line Modeling

In the first step of our approach in Figure 2, we use the SimPL modeling method-
ology [5] to create a generic model of an ICS family. The SimPL methodology
enables engineers to create architecture models of ICS families that encompass,
among other things, information about variability points in ICS families.

The SimPL methodology organizes a product-line model into two main views:
the system design view, and the variability view. The system design view presents
both hardware and software entities of the system and their relationships using
the UML class diagram notation [1]. Classes, in this view, represent hardware or
software entities distinguished by MARTE stereotypes [2]. The dependencies and
constraints not expressible in class diagrams are captured by OCL constraints
[3]. The variability view, on the other hand, captures the set of system variabil-
ities using a collection of template packages. Each template package represents
a configuration unit and is related to exactly one class in the system design
view. Template parameters of each template package in the variability view are
related to the configurable properties of the class related to that package. Tem-
plate packages and template parameters are inherent features in UML and are
intended to be used for the specification of generic structures. In the reminder of
this section, we first describe a small fragment of a subsea product-line model,
which is used as our running example. Then, using our running example, we pro-
vide a model-based view on the essential configuration activities mentioned in
Section 2.

4.1 A Subsea Product-Line Model

Figure 3 shows a fragment of the SimPL model for a subsea production sys-
tem1, SubseaProdSystem. In a subsea production system, the main computation
resources are the Subsea Electronic Modules (SEMs), which provide electronics,
execution platforms, and the software required for controlling subsea devices.
SEMs and Devices are contained by XmasTrees. Devices controlled by each SEM
are connected to the electronic boards of that SEM. The electronic boards are
categorized into four different types based on their number of pins. Software
deployed on a SEM, referred to as SemAPP, is responsible for controlling and
monitoring the devices connected to that SEM. SemAPP is composed of a num-
ber of DeviceControllers, which is a software class responsible for communicating
with, and controlling or monitoring a particular device. The system design view
in Figure 3 represents the elements and the relationships we discussed above.

1 This is a sanitized fragment of a subsea production case study. For a complete model,
see [5].

Model-Based Automated and Guided Configuration 231

System
Design View

Variability View

Fig. 3. A fragment of the SimPL model for the subsea production system

The variability view in the SimPL methodology is a collection of template
packages. The upper part in Figure 3 shows a fragment of the variability view
for the subsea production system. Due to the lack of space we have shown only
two template packages in the figure. As shown in the figure, the package Sys-
temConfigurationUnit represents the configuration unit related to the class Sub-
seaProdSystem in the system design view. Template parameters of this package
specify the configuration parameters of the subsea production system, which
are: the number of XmasTrees, and SEM applications (semApps). Some of the
other configurable parameters in Figure 3 are: the number and type of device
controllers in a SemAPP as shown in SemAppConfigUnit using the template pa-
rameter controllers, the number of SEMs and devices in a XmasTree, etc.

As mentioned earlier, the SimPL model may include OCL constraints as well.
Two example OCL constraints related to the model in Figure 3 are given below.

context Connection inv PinRange
self.pinIndex >= 0 and self.sem.eBoards->asSequence()->

at(self.ebIndex+1).numOfPins > self.pinIndex

context Connection inv BoardIndRange
self.ebIndex >= 0 and self.ebIndex < self.sem.eBoards->size()

The first constraint states that the value of the pinIndex of each device-to-SEM
connection must be valid, i.e., the pinIndex of a connection between a device
and a SEM cannot exceed the number of pins of the electronic board through
which the device is connected to its SEM. The second constraint specifies the
valid range for the ebIndex of each device-to-SEM connection, i.e., the ebIndex
of a connection between a device and a SEM cannot exceed the number of the
electronic boards on its SEM.

4.2 Configuration Activities in a Model-Based Context

As mentioned in Section 2, configuration involves a sequence of two basic ac-
tivities: (1) specifying the type and the number of (sub)components, and (2)

232 R. Behjati et al.

determining the values for the configurable parameters of each component, while
satisfying the constraints and dependencies between the parameters. We ground
our configuration approach on the SimPL methodology and redefine the notion of
configuration in modelling terms as follows: Given a SimPL model, configuration
is creating an instance model (i.e., product specification in Figure 2) conforming
to the classes, the dependencies between classes, and the OCL constraints spec-
ified in that SimPL model. Such instance model is built via two activities (1)
creating instances for classes that correspond to configurable components, and
(2) assigning values to the configurable parameters of those instances. For exam-
ple, to configure the subsea system in Figure 3, we need to first create instances
of XmasTree, SEM, Device, and SemApp, and then assign appropriate values to
the configurable variables of these instances. Note that value assignment may
imply instance creation as well. Specifically, a configurable parameter can rep-
resent the cardinality of an association. Assigning a value to such a parameter
automatically implies creation of a number of instances to reach the specified
cardinality.

5 Interactive Model-Based Guided Configuration

The outcome of the configuration step in Figure 2 is a (possibly partial) model of
a product that is consistent with the SimPL model describing the product family
to which that product belongs. In our approach, SimPL models are described
using class-based models, while the product models are object-based. A product
model is consistent with its related SimPL model when:

– Each object in the product model is an instance of a class in the SimPL model.
– Two objects of types C1 and C2 are connected only if there is an association

between classes C1 and C2 in the SimPL model.
– The object model satisfies the OCL constraints of the SimPL model.

The above consistency rules are invariant throughout our configuration process,
i.e., they hold at each configuration iteration even when the product model is
defined partially. In this section, we first describe how our approach guides the
user at each configuration iteration while ensuring that the above rules are not
violated. We then demonstrate how a constraint solver can be used to main-
tain the consistency rules throughout the entire configuration process, and to
automatically perform some of the configuration iterations.

5.1 Guided and Automated Configuration

The product configuration process is a sequence of value-assignment steps. At
each step, a value is assigned to one configurable parameter. A configurable pa-
rameter can represent (1) a property in an instance of a class, (2) the size of
a collection of objects in an instance of a class, or (3) the concrete type of an
instance.

Model-Based Automated and Guided Configuration 233

A configuration is a collection of value-assignments, from which a full or par-
tial product model can be generated. A configuration is complete when all the
configurable parameters are assigned a specific value, and is partial otherwise.
Each configurable parameter has a valid domain that identifies the set of all
values that can be assigned to that configurable parameter without violating
any consistency rule. Below, we describe the guidance information that our tool
provides to the user at each iteration of the configuration process.

Valid domains. At each iteration, the tool provides the user with the valid
domains for all the configurable parameters. Such domains are dynamically
recomputed given previous iterations. The values that the user provides should
be within these valid domains, or otherwise, the user’s decision is rejected and
he receives an error message. For example, the valid domain for the config-
urable parameter pinIndex is initially 0..63. Therefore, if a user assigns to this
parameter a value outside 0..63 his decision will be rejected.

Decision impacts. If the user’s decision is correct, the decision is propagated
through the configuration to identify its impacts on the valid domains of other
configurable parameters. This may result in pruning some values from the valid
domains of some configurable parameters. For example, the valid domain for
the type of an eBoard in a SEM is initially {8_PIN, 16_PIN, 32_PIN, 64_PIN}
(the set of all literals in the enumeration ElecBoard). If a user configures a Con-
nection in a SEM by assigning 2 to ebIndex, and 13 to pinIndex, then according
to the OCL invariant PinRange (defined above), the third eBoard in that SEM
must at least have 14 pins. Therefore, such a value-assignment removes 8_PIN
from the valid domain of the type of the third eBoard, resulting in the pruned
valid domain {16_PIN, 32_PIN, 64_PIN}.
The impacts of the decisions are then reported to the user, in terms of reduced
valid domains.

Value inference. After value-assignment propagation and pruning, the tool
checks if the size of any valid domains is reduced to one. The configurable
parameters with singleton valid domains are set to their only possible value.
This enables automatic inferences of values for some configurable parame-
ters, therefore, saving a number of value-assignment steps from the user. For
example, in Figure 3 there is a one-to-one deployment relationship between
SEM and SemApp. As a result, whenever the user creates a new instance of
SEM the tool automatically creates a new instance of SemApp and correctly
configures in it the cross-reference to the SEM. Inferring a value for a config-
urable parameter that represents the size of an object collection, is followed
by automatically creating and adding to that collection the required number
of objects.

5.2 Constraint Satisfaction to Provide Guidance and Automation

The main computation required for providing the aforementioned guidance and
automation is the calculation of valid domains through pruning the domains of

234 R. Behjati et al.

all the yet-to-be-configured parameters after each configuration iteration using
the user’s configuration decision.

In our approach, we use a constraint solver over finite domains to calculate
the valid domains. In this approach, the configuration space of a product fam-
ily forms a constraint system composed of a set of variables, x1, ..., xn, and a
set of constraints, C, over those variables. Variables represent the configurable
parameters, and get their values from the finite domains D1, ...,Dn. A finite do-
main is a finite collection of tags, that can be mapped to unique integers. We
extract the finite domains of variables from the types of the configurable param-
eters, enumerations, multiplicities, and OCL constraints in the SimPL model.
The constraint set C includes both the OCL constraints and the information,
e.g., multiplicities, extracted from the class diagrams in the SimPL model. A
configuration in this scheme corresponds to a (possibly partial) evaluation of the
variables x1, ..., xn. Using a constraint solver the consistency of a configuration
w.r.t the constraint set C is checked, and the valid domains, D∗1, ..., D∗n, for all
the variables are calculated.

At each value-assignment step during the configuration, a value vi is assigned
to a variable xi. This value assignment forms a new constraint c : xi = vi,
which is added to the constraint set C. The added constraint is then propagated
throughout the constraint system to identify the impacts of the assigned value
on other variables, and to prune and update the valid domains of those variables.
This process is realized through a simple and efficient Constraint Programming
technique called constraint propagation [15]. Constraint propagation is a mono-
tonic and iterative process. During constraint propagation, constraints are used
to filter the domains of variables by removing inconsistent values. The algorithm
iterates until no more pruning is possible.

Assigning a value to a variable representing the size of a collection relates to
adding items to, or removing items from the collection. Adding an item to a
collection implies introducing new variables to the constraint system. Similarly,
removing items from a collection implies removing variables from the constraint
system. As a result, to identify the impacts of changing the size of a collection,
new variables have to be added or removed during constraint propagation. This
is possible as constraint propagation does not require the set of initial variables
to be known a priori. However, the process is no longer monotonic in that case
and may iterate forever. In our application, the number of added variables is
always bounded, avoiding any non-termination problems.

In our approach, we allow users to modify the previously assigned values
as long as the modification does not give rise to any conflict. Since we always
keep valid domains of all the configurable parameters up-to-date, conflicts can
be detected simply by checking whether the new value is still within the valid
domain of the modified configurable parameter. In the following section, we
further elaborate on the design of a tool implementing the configuration process
presented above.

Model-Based Automated and Guided Configuration 235

6 Prototype Tool

Figure 4 shows the architecture of the configuration engine that provides the
guidance and automation mentioned in Section 5. Inputs to the engine are the

Config. content
generator

Constraint
model

generator

Interactive UI

SICStus Prolog

Query
generator

Guidance
provider

Inference
Engine

Validated
decision

Prolog
constraint/

query

Reduced
domains

Constraint
model

Configuration
Manager

Guidances Report on
Inferences

Configuration Engine

Configuration
Data from user

Generic
Model

Fig. 4. Architecture of the configuration tool

generic model of the product
family, and the user-provided con-
figuration data. The configura-
tion process starts by loading the
generic model. From the loaded
model, the configuration engine
extracts the first set of the con-
figurable parameters. These con-
figurable parameters are presented
to the user via the interactive
user interface for collecting con-
figuration decisions. In addition,
the configuration engine generates
a constraint model from the input
model of the product family. This
constraint model is implemented
in clpfd, a library of the SICStus
Prolog environment [8,4]. In clpfd, each configurable parameter is represented
by a logic variable, to which is associated a finite set of possible values, called
a finite domain. After the generic model is loaded, the configuration engineer
starts an interactive configuration session for entering configuration decisions.

The configuration engine iteratively and interactively collects configuration
decisions from the user. At each iteration, the user enters the values for one or
more configurable parameters. Using the domains of the configurable parameters,
the consistency of the configuration decisions is checked. If the entered values
are all consistent, the Query generator is invoked to create a new Prolog query
representing a constraint system that contains all the constraints created from
the collected configuration decisions. This Prolog query is then used to invoke
constraint propagation in order to prune the domains. The new domains serve
as inputs to the Inference engine, which implements the inference mechanism
explained in Section 5.1 to infer values, and the Guidance provider, which reports
the impacts of configuration choices (e.g., updated domains).

6.1 The clpfd Library of SICStus Prolog

Choosing Prolog as a host language for developing our configuration engine has
several advantages. First, Prolog is a well-established declarative and high-level
programming language, allowing fast prototyping for building a proof-of-concept
tool, and containing all the necessary interfaces to widely-used programming
languages such as Java or C++. In our tool development, we have used the
jasper library that allows invoking the SICStus Prolog engine from a Java
program. Second, as it embeds a finite domains constraint solver through the

236 R. Behjati et al.

clpfd library, this allows us to benefit from a very efficient implementation of
constraint propagation [9], and all the available constructs (e.g., combinatorial
constraints) that have been proposed for handling other applications.

6.2 Mapping to clpfd

To use the finite domains constraint engine of SICStus Prolog, we need to trans-
late an ICS product specification into clpfd. This requires: (1) translating the
SimPL model characterizing the ICS family, and (2) translating the instance
model representing the product.

In the first translation, we create a Prolog/clpfd program capturing the UML
classes, the relationships between the classes, and the OCL constraints of the
SimPL model. Our approach for this translation is very similar to a generic
UML/OCL to Prolog translation given by [7]. Briefly, we map UML classes
and relationships to Prolog compound terms, and every OCL (sub)expression
to a Prolog rule whose variables correspond to the variables of the given OCL
(sub)expression.

In the second translation, given an instance model, we create a SICStus Pro-
log query to evaluate conformance of the instance model to its related SimPL
model (consisting of classes, their relationships, and OCL constraints) captured
as a Prolog program as discussed above. To build such query, we map each in-
stance in the given instance model to a Prolog list, and map every configurable
parameter of that instance to an element of that list. A configurable parameter
that is not yet assigned to a value becomes a variable in the list. For example, a
SICStus Prolog query related to an instance model looks like check_product(AIs,
Ids), where AIs is the list representation of all instances, and Ids is the list of the
identifiers of instances. The query generator in our tool is responsible for gen-
erating these two lists from the instances created and configured by the user.
Given the query check_product(AIs, Ids), the constraint engine checks whether
the instance model specified by AIs and Ids conforms to the input SimPL model,
and if so, it provides the valid domains for all the variables in AIs. Note that the
calculation of the valid domains terminates because AIs contains a finite number
of variables (as the number of the instances in the product are finite), and all
variables take their values from finite domains.

7 Evaluation

To empirically evaluate our approach, we performed several experiments which
are reported in this section. The experiments are designed to answer the following
three main research questions:

1. What percentage of the value-assignment steps can be saved using our au-
tomated configuration approach?

2. How much do the valid domains shrink at each iteration of configuration?
3. How long does it take to propagate a user’s decision and provide guidance?

Model-Based Automated and Guided Configuration 237

Saving a number of value-assignment steps is expected to reduce the configura-
tion effort, and reduction of the domains decreases the complexity of decision
making. Therefore, answers to the first two research questions provide insights
on how much configuration effort can be saved. Answering the third research
question provides insights into the applicability and scalability of our technique.

To answer these questions we designed an experiment in which we rebuilt
three verified configurations from our industry partner using our configuration
tool. One configuration belongs to the environmental stress screening (ESS) test
of the SEM hardware, which we refer to in this section as the ESS Test. The
other two are the verified configurations of two complete products, which we
refer to in this section as Product_1 and Product_2. Table 1 summarizes the
characteristics of these configurations. We performed our experiments using the
simplified generic model of the subsea product family given in Section 4. Number
of objects and variables in Table 1 are calculated w.r.t that simplified model.

Table 1. Characteristics of the rebuilt configurations

XmasTrees # SEMs # Devices # Objects # Variables
ESS Test 1 1 111 226 343

Product_1 9 18 453 1396 2830
Product_2 14 28 854 2619 5307

We report in Sections 7.1-7.3 the evaluation and analysis that we performed
on the experiments to answer the above research questions. At the end of this
section, we also discuss some limitations, directions for future work, and the
generalizability of our approach.

7.1 Inference Percentage

The configuration effort required for creating the configuration of a product is
expected to be proportional to the number of configuration iterations and the
number of value-assignment steps. Automating the latter is therefore expected
to save configuration effort and minimize chances for errors. To measure the ef-
fectiveness of our approach in reducing the number of value-assignment steps, we
have defined an inference rate which is equal to the number of inferred decisions
divided by the total number of decisions:

inference rate =
inferences

manual_decisions + inferences
(1)

Table 2 shows the inference rates in each case.

Table 2. Inference rates

Manual decisions # Inferred decisions Inference rate (%)
ESS Test 373 16 4.11

Product_1 1459 1426 49.42
Product_2 2802 2783 49.82

238 R. Behjati et al.

Note that the inference rate for Product_1 and Product_2 is very close to 50
%. This is because of the structural symmetry that exists in the architecture of
the system. Structural symmetry is achieved in a product when two or more com-
ponents of the system have identical or similar configurations. We have modeled
the structural symmetries using two OCL constraints. One specifies that each
XmasTree has two SEMs (twin SEMs) with identical configurations (i.e., identi-
cal number and types of electronic boards and devices connected to them). The
other specifies that all the XmasTrees in the system have similar configurations
(e.g., all have the same number and types of devices). The first OCL constraint
applies to both Product_1 and Product_2, while the second applies to Prod-
uct_2 only. As a result, the inference rate for Product_2 is slightly higher than
that for Product_1. Neither of the OCL constraints applies to the ESS Test,
which contains only one XmasTree and one SEM. Therefore, it shows a very low
inference rate. In general, the architecture of the product family, and charac-
teristics of the product itself (e.g., structural symmetry) can largely affect the
inference rate.

Our experiment shows that our approach can automatically infer a large num-
ber of consistent configuration decisions specially for products with some degree
of structural symmetry. Assuming automated value-assignments have similar
complexity to manual ones, our approach can save about 50% of the configura-
tion effort of Product_1 and Product_2.

7.2 Reduction of Valid Domains

Pruned domains are the output of constraint propagation. Pruning of the do-
mains decreases the complexity of decisions to be made. As part of our exper-
iment, we measured how the domains shrink after each constraint propagation
step. Such reduction of the domains is measured by comparing the size of each
pruned domain before and after constraint propagation. This is possible and
meaningful because all the domains are finite. Table 3 shows the average re-
duction of domains for each case. Reduction rate in the table is defined as the
proportion of the reduction size (i.e., number of distinct values removed from
a domain) to the initial size of the domain (i.e., the number of distinct values
in a domain). In the calculations in Table 3 we have not considered domain
reductions that resulted in inferences. This result shows that the domains of
variables can be considerably reduced when a value is assigned to a dependent
variable. Specifically, it shows that, on average, after each value-assignment step
37.98% of the values of the dependent variables are invalidated. Without such
a dynamic recomputation of valid domains, there would be a higher risk for the
user to make inconsistent configuration decisions. Moreover, comparing the in-
ference rate from Table 2 and the reduction rate from Table 3 over the three
cases suggests that while structural symmetry can highly affect the inference
rate, it does not have a large impact on the reduction rate.

Model-Based Automated and Guided Configuration 239

Table 3. Average shrinking of the domains

Count* Avg. initial domain size Avg. reduction size Avg. reduction rate (%)
ESS Test 732 30.557 13.803 45.17
Product_1 2564 62.125 21.367 34.39
Product_2 7557 35.97 14.205 39.49

Avg. over all cases: 37.98
* total number of domains that have been pruned or reduced.
Avg.: the average over all reduced domains in the whole configuration.

7.3 Constraint Propagation Efficiency

Providing automation and guidance as part of the interactive configuration pro-
cess requires the underlying computation to be sufficiently efficient for our ap-
proach to be practical.

Fig. 5. Constraint propagation time grows
quadratically with the number of vari-
ables (with a coefficient of determination
of 0.9994)

We define the efficiency of our ap-
proach as the amount of time needed
for validating and propagating the user
decision. For this purpose, we have
measured at each constraint propa-
gation step the execution time, and
the number of variables in the con-
straint system. Figure 5 shows the
average time required for propagat-
ing user decisions after each value-
assignment step. As shown in this
figure, for products with less than 1000
variables, it takes, on average, less than
one second to validate and propagate
the decision. However, this time grows
polynomially with the number of variables, which itself is proportional to the
number of instances.

Since in our experiment we have used a simplified model of the product family,
we expect that for a complete model of the system the number of instances and
the number of variables be much higher than that in this experiment. However,
our experiment shows that not all of these variables are dependent on each other.
To provide an insight into the level of dependency between variables, for each
case, we can compute the average number of reduced domains. The average num-
ber of reduced domains is 1.8 (2564 from Table 3 divided by 1459 from Table 2)
for Product_1 and, 2.7 for Product_2. In other words, on average, each variable
in Product_1 (Product_2) is dependent to less than two (three) other variables.
The polynomial (O(n2)) growth of the execution time is, however, due to our
current implementation, in which, we compute the valid domains of all variables
(not only the dependent variables) by creating a new constraint propagation
session after each value-assignment step. Therefore, we expect that by optimiz-
ing our implementation and incrementally adding new constraints to an existing
constraint propagation session we can significantly improve the efficiency of our
approach. Such an optimization requires an additional preprocessing step before

240 R. Behjati et al.

creating queries and invoking the constraint solver. This needs to be investigated
in more depth and is left for future research.

7.4 Discussion

Limitations and directions for future work. The inference rate and the reduction
rate, in addition to be affected by the architecture of the product family, are
affected by the order in which the decisions are made. An optimal order of
applying configuration decisions can be defined as the order which can result
in the maximum inference rate and reduction rate. The optimal order can be
reported to the user as additional guidance. Our current implementation does
not provide such a guidance and therefore the results reported in this paper are
probably, a lower bound for potential configuration effort savings. It is therefore
important that in the future we support the optimization of the ordering to
maximize inferred decisions and the reduction of domains. Devising criteria and
heuristics for finding such optimal order is one direction of our future work.

Another research question is "How useful is the guidance provided by our ap-
proach?". Answering this question requires conducting an experiment involving
human subjects. This experiment is also part of future work.

Generalizability of our approach. Like any other model-based engineering ap-
proach, the effectiveness of our approach depends on the quality of the input
generic models. Our configuration approach can be used to configure only the
variabilities that are captured in the generic model of the product family. Sim-
ilarly, the approach can validate the decisions and automatically infer decisions
only based on the dependencies that are captured in the model. Our evalua-
tion in this paper shows that the SimPL methodology and notations that we
proposed in [5] enables the creation of models of the required quality.

The use of a constraint solver over finite domains limits our approach to the
constraints that capture restrictions on variables with finite domains. Constraint
solvers over continuous domains are available to overcome this limitation but
their integration with an efficient finite domains solver is still an open research
problem [10]. Moreover, as we have not encountered this type of constraint with
our industry partner, we don’t expect this to be a restriction in our context.

8 Related Work

Most of the existing work on constraint-based automated configuration in
product-line engineering focuses on resolving variabilities specified by feature
models [17] and their extensions [12]. Basic feature models cannot express com-
plex variabilities or dependencies required for configuring embedded systems [5].
However, extended feature models that allow attributes, cardinalities, references
to other features, and cloning of features are, as mentioned in [11], as expressive
as UML class diagrams and can be augmented by OCL or XPath queries to
describe complicated feature relationships as well.

Model-Based Automated and Guided Configuration 241

We compare our work with the existing automated configuration and veri-
fication tools proposed for extended feature models since these are the closest
to our SimPL models. FMP [11] is an Eclipse plug-in that enables creation and
configuration of extended feature models. FMP can verify full or partial config-
urations for a subset of extended feature models, specifically those with boolean
variables and without clonable features. FAMA [6] drops this limitation and
can verify extended feature models with variables over finite domains. However,
FAMA is more targeted towards the verification and analysis of feature models.
Therefore, it does not handle validating partial configurations or help build full
configurations iteratively. Finally, Mazo et. al. [19] use constraint solvers over
finite domains to analyze extended feature models. This approach is the closest
to ours as it can handle all the advanced constructs in extended feature models,
and further enables verification of full and partial configurations.

The main limitation of all of the above approaches is that none of them
supports verification and analysis of complex constraints such as those in Section
4.1. These constraints express complex relationships between individual elements
or collections of elements and are instrumental in describing software/hardware
dependencies and consistency rules in embedded systems. Our tool, in addition
to verifying these constraints, provides interactive guidance to help engineers
effectively build configurations satisfying these constraints. Finally, to the best of
our knowledge, none of the above approaches have been applied to nor evaluated
on real case studies.

More recently, constraint satisfaction techniques have been used to automate
configuration in the presence of design or resource constraints [16,14]. The main
objective is to search through the configuration space in order to find optimized
configurations satisfying certain constraints. Our work, however, focuses on inter-
actively guiding engineers to build consistent product configurations, a problem
that we have shown earlier in our paper to be important in practice. We do not
intend to replace human decision making during configuration. Instead, we plan
to support engineers when applying their decisions in order to reduce human
errors and configuration effort.

In contrast to related work in [16,14], we enable users to interact with the
constraint solver during the search. This is because supporting user guidance
and interactive configuration are paramount to our approach. As a result, we
require a technique that is fast enough for instant interaction with users and
therefore cannot rely on dynamic constraint solving, which the authors in [16]
have shown to be orders of magnitude slower than the SICStus CLP(FD) library.
As for DesertFD in [14], it neither provides user guidance nor enables interactive
configuration.

9 Conclusion

In this paper, we presented an automated model-based configuration approach
for embedded software systems. Our approach builds on generic models created
in our earlier work, i.e., the SimPL models, and uses constraint solvers to inter-
actively guide engineers in building and verifying full or partial configurations.

242 R. Behjati et al.

We evaluated our approach by applying it to a real subsea production system
where we rebuilt three verified configurations of this system to evaluate three
important practical factors: (1) reducing configuration effort, (2) reducing pos-
sibility of human errors, and (3) scalability. Our evaluation showed that, in our
three example configurations, our approach (1) can automatically infer up to
50% of the configuration decisions, (2) can reduce the size of the valid domains
of the configurable parameters by 40%, and (3) can evaluate each configuration
decision in less than 9 seconds.

While our preliminary evaluations demonstrate the effectiveness of our ap-
proach, the value of our tool is likely to depend on its scalability to very large
and complex configurable systems. In particular, being an interactive tool, its
usability and adoption will very much depend on how fast it can provide the
guidance information at each iteration. Our current analysis shows that the
propagation time grows polynomially with the size of the product. But we no-
ticed in our work that after each iteration only a very small subset of variables
are affected. Therefore, if we could reuse the analysis results from the previous
iterations, we could possibly improve the time it takes to analyze each round
significantly.

References

1. UML Superstructure Specification, v2.3 (May 2010)
2. Marte (2012), http://www.omgmarte.org/
3. Object Constraint Language (2012), http://www.omg.org/spec/OCL/2.2/
4. Sicstus Prolog Homepage (February 2012), http://www.sics.se/sicstus/
5. Behjati, R., Yue, T., Briand, L., Selic, B.: SimPL a product-line modeling method-

ology for families of integrated control systems, Tech. Repo 2011-14, SRL (2011),
http://simula.no/publications/Simula.simula.746

6. Benavides, D., Segura, S., Trinidad, P., Ruiz Cortés, A.: Fama: Tooling a framework
for the automated analysis of feature models. In: VaMoS (2007)

7. Cabot, J., Clarisó, R., Riera, D.: Verification of uml/ocl class diagrams using con-
straint programming, Washington, DC, USA, pp. 73–80 (2008)

8. Carlsson, M., Mildner, P.: Sicstus prolog – the first 25 years. CoRR, abs/1011.5640
(2010)

9. Carlsson, M., Ottosson, G., Carlson, B.: An Open-Ended Finite Domain Constraint
Solver. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 191–
206. Springer, Heidelberg (1997)

10. Collavizza, H., Rueher, M., Van Hentenryck, P.: A constraint-programming frame-
work for bounded program verification. Constraints Journal (2010)

11. Czarnecki, K., Kim, P.: Cardinality-Based Feature Modeling and Constraints: A
Progress Report. In: Proceedings of the International Workshop on Software Fac-
tories at OOPSLA (2005)

12. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature
models and their specialization. In: Software Process: Improvement and Practice
(2005)

13. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against
well-formedness ocl constraints. In: GPCE 2006, pp. 211–220 (2006)

http://www.omgmarte.org/
http://www.omg.org/spec/OCL/2.2/
http://www.sics.se/sicstus/
http://simula.no/publications/Simula.simula.746

Model-Based Automated and Guided Configuration 243

14. Eames, B.K., Neema, S., Saraswat, R.: Desertfd: a finite-domain constraint based
tool for design space exploration. Design Autom. for Emb. Sys. 14(2), 43–74 (2010)

15. Van Hentenryck, P., Saraswat, V.A., Deville, Y.: Design, implementation, and eval-
uation of the constraint language cc(fd). Selected Papers from Constraint Program-
ming: Basics and Trends (1995)

16. Horváth, Á., Varró, D.: Dynamic constraint satisfaction problems over models.
Software and Systems Modeling (November 2010)

17. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Spencer Peterson, A.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-
90-TR-21 (1990)

18. Lopez-Herrejon, R.E., Egyed, A.: Detecting Inconsistencies in Multi-View Models
with Variability. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA
2010. LNCS, vol. 6138, pp. 217–232. Springer, Heidelberg (2010)

19. Mazo, R., Salinesi, C., Diaz, D., Lora-Michiels, A.: Transforming attribute and
clone-enabled feature models into constraint programs over finite domains. In:
ENASE (2011)

20. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus
(2005)

Lightweight String Reasoning for OCL

Fabian Büttner� and Jordi Cabot

AtlanMod, École des Mines de Nantes - INRIA, Nantes, France
{fabian.buettner,jordi.cabot}@inria.fr

Abstract. Models play a key role in assuring software quality in the model-
driven approach. Precise models usually require the definition of OCL ex-
pressions to specify model constraints that cannot be expressed graphically.
Techniques that check the satisfiability of such models and find corresponding
instances of them are important in various activities, such as model-based testing
and validation. Several tools to check model satisfiability have been developed
but to our knowledge, none of them yet supports the analysis of OCL expressions
including operations on Strings in general terms. As, in contrast, many industrial
models do contain such operations, there is evidently a gap.

There has been much research on formal reasoning on strings in general, but
so far the results could not be included into model finding approaches. For model
finding, string reasoning only contributes a sub-problem, therefore, a string rea-
soning approach for model finding should not add up front too much compu-
tational complexity to the global model finding problem. We present such a
lightweight approach based on constraint satisfaction problems and constraint
rewriting. Our approach efficiently solves several common kinds of string con-
straints and it is integrated into the EMFtoCSP model finder.

Keywords: OCL, String data type, Model Finding.

1 Introduction

Model-driven Engineering (MDE) is a popular approach to the development of software
based on the use of models as primary artifacts. To precisely describe the conceptual
structure of a model, the Object Constraint Language (OCL) [22] has been widely ac-
cepted as a de-facto standard. In a nutshell, OCL allows to express model constraints
using a first-order logic like language for objects.

Naturally, the increased precision comes along with an increased complexity of the
models. This raises the need for systematic approaches to model validation, model ver-
ification, and model-based testing. Model finding (also called model instantiation) is an
important problem in this context. It considers the question if a given model (including
constraints) is satisfiable, and if it is satisfiable, to identify one instance of the model.
While in model verification, model finders are typically used to show unsatisfiability
when reasoning about implications between different constraints, the focus in model-
based testing is typically on finding satisfying instances, which can be used to test a
system which is based on the model.

� This work has been partly funded by the European Project CESAR.

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 244–258, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Lightweight String Reasoning for OCL 245

The community has developed several approaches and tools for automated model
finding for OCL-annotated models. To deal with the computational complexity of the
problem (which is undecidable in general), most of them are based on some underlying
formalism for which sophisticated decision procedures and tools exist, such as first-
order logic and satisfiability modulo theory (SMT), relational logic, propositional logic,
and constraint satisfaction problems (CSP).

While these approaches cover an extensive subset of OCL, to our knowledge none
of them supports the String data type and its OCL operations. The primitive data types
typically supported are Integer and Boolean. Given that, on the contrary, several ‘real
life’ models actually do contain constraints over strings, there is evidently a gap that
needs to be addressed. However, we need to be aware that, when compared to models
that only contain Integer primitive values, adding strings to the subject of reasoning
introduces another level of complexity.

There are several works that address string reasoning, some focused on checking
grammar satisfiability as a stand-alone problem, others on path analysis for string-
manipulating programs. However, in the context of model finding and, in particular,
model-based testing, string reasoning only contributes a sub-problem to the overall
search problem. Therefore, there is a trade-off between the completeness of the string
reasoning procedures and the overall model finding performance.

In this paper we present a lightweight approach to integrate constraints over
bounded strings into model finding using constraint rewriting and Boolean and inte-
ger constraints. It is a two-step approach that first reasons about the lengths of the
strings, then infers constraints on the individual elements of the strings (their char-
acter variables). In general, our approach can be implemented in any off-the-shelf
solver that supports reasoning about linear constraints. We included it in the OCL
model finder EMFtoCSP [14], the successor of UMLtoCSP [7], which is based on the
ECLiPSeconstraint logic programming environment.

For many common constraint constellations, our approach is scalable and shows
good performance, and we claim that it is suited for several practical applications that
do not pose hard, non-tractable string constraints. We provide experimental results that
show that models with more than a thousand strings can be found within seconds.

Paper Organization. In Sect. 2, we first discuss the state of the art for the topic.
Section 3 then formally presents our approach. In Sect. 4 we discuss its limits and
scalability, and present experimental results of our implementation of the approach in
the tool EMFtoCSP. Section 5 concludes our contribution and identifies future work.

2 State of the Art

In this section, we describe the state of the art in model finding for OCL-annotated
models in general and its translation into constraint satisfaction problems, and we put
our work in the context of general formal reasoning techniques for strings.

2.1 Model Finding

The model finding (or model instantiation) problem for models with constraints can
be defined as follows: Let M be a model defining structural elements such as classes,

246 F. Büttner and J. Cabot

associations, and attributes. Let CM be a set of constraints over M. Let I(M) denote
the (possibly infinite) set of models (instances) of M. The pair (M, CM) is called
satisfiable iff there exists a least one instance σ ∈ I(M) such that σ |= ĉi holds for
each ci ∈ CM, where we assume ĉi to be a logical representation of ci that can be
evaluated on σ. A model that is not satisfiable is called unsatisfiable. If a model is
satisfiable, one is typically interested in a satisfying instance of it, too.

Model finding is important in several tasks within the model-driven approach. It is
required in the validation and testing of systems based on the model (to systematically
specify test cases), validation and testing of model transformations [3,23], as well in the
validation and verification of the model itself. Model finding has also been applied to
verify the correctness of model transformations as transformation models (e.g., [6,5]).

The community has developed several approaches and tools for automated model
finding for models with OCL constraints. To deal with the computational complexity of
the problem (which is undecidable for OCL in general), most of them are based on some
underlying formalism for which sophisticated decision procedures and tools exists, such
as, first-order logic and SMT [9], relational logic [2,19], propositional logic [25], ge-
netic algorithms [1], graph grammars [27] and constraint satisfaction problems [7]. All
of these approaches support a more or less extensive subset of OCL (e.g., including
quantifiers and collections), but, to our knowledge, the support of the String data type is
very limited. [12] supports strings, but requires the user to specify an explicit procedure
for the construction of potential strings and is not a black box model finding approach.
[1] considers strings, but the approach, which is based on genetic algorithms, is focused
on test case generation only and is (intentionally) not exhaustive. A promising approach
is our view is [18], where the authors propose an encoding of OCL strings for the re-
lational logic solver Kodkod. However, to our knowledge, this encoding still requires
a constant maximum number of boolean variables, equal for all string variables (even
when this length is only required for a single string).

We want to emphasize that most of the underlying formalism and solvers employed
in the aforementioned approaches do support bounded bitvectors or sequences. Thus,
theoretically, strings can be translated straightforwardly into these formalisms. How-
ever, unless considerably small upper bounds are imposed on string lengths, this quickly
leads to extreme search spaces, with considerable effects on the runtime of the solvers
and the decidability of the search problem in practice. Furthermore, this also prevents
them from taking into account the String semantics on the symbolic level to reduce the
search space up front.

2.2 Model Finding as a CSP

A constraint satisfaction problem (CSP) can be defined by a tuple

(V, C)

where V = {v1 ∈ D1, . . . , vm ∈ Dm} is a set of variables vi and their domains Di,
and C is a set of constraints over V . Where clear from the context, we will omit variable

Lightweight String Reasoning for OCL 247

domains in the following. A constraint has the form P (x1, . . . , xn) where P denotes
an n-ary predicate on x1, . . . , xn ∈ V . An assignment β of values to variables satisfies
a constraint P (x1, . . . , xn) if P

(
β(x1), . . . , β(xn)

)
is true. If β satisfies all constraints

in C, it is a solution to P . We say a CSP is consistent (or feasible) if it has a solution,
and inconsistent (or infeasible) if it does not.

Typical constraints employed in CSPs include a combination of arithmetic expres-
sions, mathematical comparison operators and logical operators. Common techniques
for the resolution of CSPs are based on backtracking and constraint propagation. CSPs
can be represented in constraint logic programming, which embeds constraints into a
logic program.

Eventually, the notion of the model finding problem in MDE is similar to the notion
of a CSP, but it is based on a more complex structure (the variables are objects, links,
etc.). In [7] a translation of the model finding problem for OCL-annotated models into
a CSP is described. Given a M and a set of OCL constraints CM, the approach defines
how to infer a CSP P that is consistent iff. 〈M, CM〉 is satisfiable. The solutions to
P correspond to instances of M. Technically, the derived CSP P consists of two sub-
problems

Pstructure = (Cardinalities ,CardinalityConstraints)

and
Pglobal = (Instance, InstanceConstraints)

where the solutions of the first sub-problem are (potentially) valid sizes for the sets of
objects and links. The variables of the second sub-problems include lists of objects and
links. Iterating the solutions to the first sub-problem (by backtracking), these lists are
instantiated (i.e., a length is assigned to them) in the second sub-problem.

In a nutshell, two kinds of constraints are employed in the second sub-problem. The
first kind includes constraints over Boolean and integer arithmetic, for which constraint
propagation is available in most constraint programming languages. The second kind in-
cludes specific constraints to represent, for example, navigation operations. The deriva-
tion of these constraints can be implemented, for example, using suspended goals.

We have implemented our String reasoning approach in EMFtoCSP [10], which is
the successor of UMLtoCSP [7] and supports EMF metamodels as well as UML mod-
els. Other approaches that also express model finding in terms of constraint program-
ming include [21,20,8].

2.3 Formal String Reasoning

Reasoning on strings has been performed in various formalisms, both for bounded and
unbounded strings. Solvers for Satisfiability Modulo Theories (SMT) commonly sup-
port theories that can be used to represent strings, such as arrays and bit-vectors. Also, as
a string is only a specific case of a list, any theory of lists can be applied, too. Recently,
a working group for the development of a theory for strings and regular languages has
been formed [4].

248 F. Büttner and J. Cabot

In addition to the theory-based approaches, several approaches reason about string
using finite automata and regular expression, e.g., [17,16,13,26]. [15] incorporates
regular languages into a CSP. In [28] the authors perform path analysis for String-
manipulating programs using SMT, employing a two step approach similar to ours,
determining an approximation of string lengths in the first step first.

In comparison to these approaches, our approach is less complex in the sense that
it performs symbolic reasoning only over the lengths of strings. Due to its two-step
nature, it is not suited to solve real hard (NP-hard), non-tractable string problems in
reasonable time. However, it efficiently solves several less hard string problems with
minimal overhead, which makes it suitable for embedding into a more general model
finding procedure.

3 Lightweight String Reasoning for OCL

We now present our approach for solving OCL constraints that use the OCL data type
String and its operations. Our approach can be easily integrated into existing approaches
to satisfiability checking (model finding) of models and OCL constraints such as the
ones presented in Sect. 2.

At its core, we formulate the problem as a CSP. We provide five constraint predicates
for strings that can be used to translate OCL constraints containing string expressions.
These five predicates correspond directly to five core operations of the OCL data type
String, namely equality (=), size, substring, concat, and indexOf. Our five constraints
predicates are resolved into constraints on integers and Booleans in two rewriting steps
(described as constraint handling rules, which we introduce below). Fig. 1 depicts this
process and will be explained in the following.

We assume an OCL model and its constraints have been translated into a CSP P =
(V, C) (e.g., as described in [7], c.f. Sect. 2.2). V includes variables of type String and C
includes constraints over these variables. In the first step, we infer additional constraints
on the lengths of the individual string variables. The second step then translates the
string constraints into constraints on the elements of the strings (i.e., their characters).
The result of this two-step process is a CSP that can be solved using off-the-shelf solvers
for linear constraints.

More formally, we first employ a rewriting operation C � Clength (described in
Sect. 3.4) that extends C by additional constraints over the lengths of all string variables
in V . Then, we require that a solution to the length sub-problem is chosen, which intro-
duces a potential choice point in a backtracking search process. We refer to the set of
constraints in which the length variables are bound to fixed lengths as Clength,i � Cinst,i,
where i shall number the different solutions of the length sub-problem.

The second rewriting operation Clength,i � Cinst,i then (a) unifies all symbolic string
variables si with lists of individual element variables 〈si,1, si,2, . . .〉, and (b) rewrites
the semantics of the string constraints into into Boolean and integer constraints over
the element variables. The solutions to (V, Cinst,i) are solutions to P . If Cinst,i has no
solution, the next valid solution i + 1 to the length sub-problem must be selected. If
there is not further solution to the length subproblem, P is inconsistent.

Lightweight String Reasoning for OCL 249

backtracking

consistent

inconsistent

(choice point)

CHR processing*

CHR processing*

Translation to CSP

element labeling*
(choice point)

length labeling*

P = ({. . . , si, . . .}, C)

Plen = ({. . . , si, . . .}, C ∪ Clen)

Pinst,i = ({. . . , 〈si,1, . . . , si,n〉 . . .}, Cinst)

Model with OCL constraints that contain String operations

Fig. 1. The decision procedure for CSP with String constraints, including CHR processing. All
processing steps (indicated with a star) are supposed to perform constraint propagation on linear
and Boolean constraints.

The remaining section first describes the five OCL operations supported more pre-
cisely in Sect. 3.1. We provide our five String constraint predicates in Sect. 3.2. Sect. 3.3
gives a short primer on the constraint handling rules formalism, which we employ to
define the two rewriting steps in Sections 3.4 and 3.5. We provide a complete derivation
example in Sect. 3.6.

3.1 Considered OCL String Operations

The OCL specification [22] defines several operations for the data type String. In this
work we consider a subset of five important core operations: the length of a string
(s1.concat(s2)), the concatenation of two strings (s1.concat(s2) resp. s1 + s2), the in-
dexed substring of a string (s1.substring(i, j)), and the containment of a string in an-
other one (s1.indexOf(s2)).

In accordance with the OCL specification, we assume the semantics of the core
operations as follows: Let A be the set of characters, and A∗ be the set of all strings (se-
quences of characters). The semantics of this core can be described by a set of interpre-
tation functions I(size) : A∗ → N, I(concat) : A∗×A∗ → A∗, I(=) : A∗ ×A∗ → B,
I(substring) : A∗ × N × N → A∗, and I(indexOf) : A∗ × A∗ → N, as follows.
I(size)(s) is defined to be the length of the sequence s (and can be 0). I(=)(s1, s2) is
true iff s1 and s2 have the same lengths and are equal element-wise, and false other-
wise. I(concat)(s1, s2) is s1 ◦ s2 (concatenation of sequences). I(substring)(s, i, j) is
the subsequence from i to j, and is only defined for 1 ≤ i ≤ j ≤ |s| according to the
OCL specification. I(indexOf)(s1, s2) is the index of the first occurrence of s2 in s1

when s1 is non-empty and 0 otherwise. In OCL, no string is a substring of the empty
string (not even the empty string).

250 F. Büttner and J. Cabot

3.2 String Constraints

We define five string constraint predicates that are sufficient to express OCL constraints
that use the core operations on strings as a CSP. They correspond directly to the opera-
tions (cf. Sect. 3.1). Examples for the encoding follow after this section.

Let s, s1, . . . s3 denote string variables, and l, i ,and j denote integers. The five
constraints are len(s, l) – the length of s is l, eq(s1, s2, b) – s1 and s2 are equal iff. b is
true, con(s1, s2, s3) – s3 is the concatenation of s1 and s2, sub(s1, i, j, s2) – s2 is the
substring of s1 from i to j, and idx(s1, s2, i) – the number i is either the first position
at which s2 occurs in s1, or 0 if s2 does not occur in s1.

Notice that the string equality constraint has a reified form, which is necessary to
deal with string equality in the linear and propositional reasoning. For example, the
OCL constraint s1 = s2 implies s1 = s3 would be expressed as

P =
({s1, s2, s3}, {(b1 → b2), eq(s1, s2, b1), eq(s1, s3, b2)}

)
where → is assumed as a predefined constraint over two Booleans.

3.3 Constraint Handling Rules

To describe the rewriting operations on constraints, we employ Constraint Handling
Rules (CHR), which is a well-known formalism and has several implementations avail-
able. However, our rewriting rules can also be implemented in other ways easily. As we
make only very limited use of the formalism, we only introduce a simplified form here.
For a thorough presentation of the formalism we refer to [11] and [24]. In our restricted
context, a constraint handling rule has one of the three syntactic forms.

rulename @ c1, . . . , cm ⇐⇒ c′1, . . . c
′
n

rulename @ c1, . . . , cm =⇒ c′1, . . . c
′
n

rulename @ c1, . . . , ck \ ck+1, . . . , cm =⇒ c′1, . . . c′n

where ci and c′i are constraints that typically share some variables. The common se-
mantics of these rules is that they match a pattern of constraints c1, . . . , cm in the con-
straint store (which, in our case, is the set of constraints in the CSP). The constraints
in the pattern are related by their common variables, for example, as in the pattern
c1(s, i), c2(s, j). The first kind of rules above is called a simplification rule. It removes
the matched constraints c1, . . . , cm from the constraint store and replaces them by new
constraints c′1, . . . c′n. The second kind is called a propagation rule, which also adds
c′1, . . . c

′
n to the imposed constraints, but also keeps c1, . . . , cm in the store. The third

kind is called a simpagation rule and is a mixture of the former two. It keeps c1, . . . , ck,
but replaces ck+1, . . . , cm by c′1, . . . c

′
n. The execution of a set of CHR rules is termi-

nated when no more rules can be applied. For propagation rules, the CHR environment
ensures that such rules are applied only once per match of their pattern.

3.4 First Rewriting Step: The Length Sub-problem

We now define the rules that infer linear additional constraints over the lengths of the
string variables. This constitutes the first rewriting step in our approach (cf. Fig. 1).

Lightweight String Reasoning for OCL 251

Definition 1. Length Inference Rules

len-dom @ len(s, l) =⇒ 0 ≤ l ≤ MaxLen

len-one @ len(s, l1) \ len(s, l2) ⇐⇒ l1 = l2

eq-len @ eq(s1, s2, r), len(s1, l1), len(s2, l2) =⇒ r → l1 = l2

con-len @ con(s1, s2, s3), len(s1, l1), len(s2, l2), len(s3, l3) =⇒ l3 = l1 + l2

sub-len @ sub(s1, i, j, s2), len(s1, l1), len(s2, l2) =⇒ l2 = (j−i+1),
1 ≤ i ≤ j ≤ l1

idx-len @ idx(s1, s2, i), len(s1, l1), len(s2, l2) =⇒ i �= 0 → l1 ≥ l2,
l1 = 0 → i = 0

eq-refl @ eq(s, s, b) ⇐⇒ b ↔ true

eq-one @ eq(s1, s2, b1) \ eq(s1, s2, b2) =⇒ b1 ↔ b2.

The propagation rule len-dom constrains all strings to be finite, using a maximum
length MaxLen that can be any positive number. For example, given MaxLen = 100,
the CSP ({s}, len(s, l)}) would be rewritten to ({s}, len(s, l), 0 ≤ l ≤ 100}). The
simpagation rule len-one removes multiple lengths constraints for the same string
and replaces them by linear constraints over the length variables. For example, P =({s}, len(s, l1), len(s, 4), l1 ≤ 3}) would be rewritten to

({s}, len(s, l1), l1 ≤ 3, l1 =
4
)

– which a linear constraint solver would detect as unsatisfiable for any l1. The prop-
agation rule eq-len poses conditional equality. The rules con-len, sub-len, and idx-len
generate the expected constraints in the same manner. Finally, the simplification rules
eq-refl and eq-one include reflexivity and tertium non datur into the length inference.

Please note that we included the last two rules, eq-refl and eq-one for practical rea-
sons only, as a performance optimization (these rules add only little overhead in terms of
constraint processing). They are theoretically not required, because equality of strings
will be translated into pair-wise equality of their elements (see below). On the contrary,
we do not include transitivity (and neither symmetry) here, in order to keep the approach
lightweight, as transitivity can lead to an exponential number of equality constraints.
Theoretically, eq(s1, s2, true) is of course transitive (and eq(s1, s2, b) is symmetric),
because the equality on the element variables has exactly these properties. We found,
however, that turning these properties into rules produces too much overhead for the
kind of (lightweight) string problems we consider.

When no more of the rules in Def. 1 can be applied (i.e., the execution of these
rules has terminated), a ground assignment of all length variables has to be selected.
In general, this introduces a choice point. Consider, for example, if we derived P =({s1, s2}, {len(s1, l1), len(s2, l2), 1 ≤ l1 ≤ 4, 1 ≤ l2 ≤ 4, s1 = s2 − 1}), the choices
for l1, l2 would be 1, 2 and 2, 3. Assuming we select 1, 2 first, we would proceed with
the CSP P =

({s1, s2}, len(s1, 1), len(s2, 2)
)

3.5 Second Rewriting Step: Resolve String Constraints to Element Constraints

Given that a solution to the length sub-problem has been selected (i.e., all length vari-
ables have ground values), the following rule unifies all string variables with lists of

252 F. Büttner and J. Cabot

element variables, where each element variable is constrained to be in the range of the
alphabet A, for which charnums is assumed to assign a corresponding set of integers
from 1 to |A|.
Definition 2. Structural Instantiation Rule

len-inst @ len(s, n) ⇐⇒
s = 〈x1, . . . , xn〉, x1 ∈ charnums(A), . . . , xn ∈ charnums(A)

After all string variables have been instantiated using rule len-inst, all string constraints
in C are finally replaced (⇔) by linear and Boolean constraints on the individual ele-
ment variables using the following rewrite rules.

Definition 3. Linear Representation Rules

eq-inst @ eq(〈x1, . . . , xn〉, 〈y1, . . . , yn〉, r) ⇐⇒
r ↔

(∧
1≤i≤n xi = yi

)

con-inst @ con(〈x1, . . . , xm〉, 〈y1, . . . , yn〉, 〈z1, . . . , zm+n〉) ⇐⇒((∀1≤i≤m xi = zi

)
,
(
∀1≤j≤n yj = zm+j

))

sub-inst @ sub(〈x1, . . . , xm〉, i, j, 〈y1, . . . , yn〉) ⇐⇒
∀0≤l≤(n−m)

(
i = l + 1 → (∧

1≤k≤n xk+l = yk

))

idx-inst @ idx(〈x1, . . . , xm〉, 〈y1, . . . , yn〉, i) ⇐⇒
∀0≤l≤(n−m)

(
r′ ↔ (∧

1≤k≤n xk+l = yk

)
,

r′ → pl = l + 1,¬r′ → pl = 0
)
,

i = min∗(p0, . . . , p(n−m))

where ∀ is used to express a set constraints and b ↔ ∧
(. . .) is used to represent that

b is constrained to be the result of the conjunction of a set of Boolean values. r′ and pl

are fresh variables and min∗ is the usual minimum function on natural numbers with
the exception that 0 is regarded as the largest number.

The rule eq-inst poses one Boolean constraint that r is equal to the Boolean value of
the conjunction of the element-wise equality of both strings. The rule con-inst poses
one equality constraint for each element of the concatenated string. The rule sub-inst
poses one constraint for each possible offset l of y in x. Please notice that we can safely
assume m and n to be ground values, whereas i and j can be variables. The rule does not
pose further constraints on j, because j has already been expressed dependent on i by
rule sub-len before (see Def. 1). Rule idx-inst is of similar nature, only that it introduces
one integer variable pl per possible offset of y in x, which is constrained to be either the
position of y in x or 0. The result of i is then expressed by the (modified) minimum of
these values. This minimum can be rewritten syntactically into basic linear constraints.

Lightweight String Reasoning for OCL 253

After the rules of Def. 3 have been applied, the resulting CSP contains only relational
and arithmetic constraints on Boolean and integer values. It can be solved using off-the-
shelf solvers.

3.6 Derivation Example

To illustrate the definitions so far, we now provide a complete derivation example that
shows (i) how an OCL constraint is expressed in terms of our string constraints, (ii) how
the length inference takes place, and (iii) how the constraints are finally resolved for a
given length assignment. We consider the following OCL constraint:

s1 = (s2 + s3). substring(2, 3) and(s2 + s3). size() < 10

It can be represented as a CSP in a straight-forward manner using the constraints previ-
ously introduced. Because constraints predicates cannot be nested, the CSP requires two
additional string variables s4, s5 to express the results of the subexpressions s2 + s3 and
(s2 + s3). substring(2, 3). This means that, while we are eventually interested in three
strings, s1,s2, and s3, we have to regard five strings in the CSP. Note that a len constraint
with a free length variable is included for each string. Let MaxLen = 1000. We assume
the built-in reified Boolean resp. linear constraints ∧(x, y, b) and <(x, y, b), for which
the third argument is the truth value of x ∧ y resp. x < y. The resulting CSP is({s1, . . . , s5}, { len(s1, l1), len(s2, l2), len(s3, l3), len(s4, l4),

len(s5, l5),∧(b1, b2, true), eq(s1, s5, b1),
con(s2, s3, s4), sub(s4, 2, 3, s5), <(l4, 10, b2)}

) (1)

We assume that propagation on Boolean predicates will unify b1 = true and b2 = true
from ∧(b1, b2, true). The rewriting rules for lengths apply as follows: len-dom infers
a range constraint for each string length, eq-len infers l1 = l5, con-len infers a linear
constraint l4 = l2 + l3, sub-len infers the linear constraints l5 = 2 and 1 ≤ i ≤ j ≤ l4.
Assuming that the linear constraints propagate their bounds, the simplified resulting
CSP is ({s1, . . . , s5}, { len(s1, 2), len(s2, l2), len(s3, l3), len(s4, l4),

len(s5, 2), eq(s1, s5, true), con(s2, s3, s4),
sub(s4, 2, 3, s5), 0 ≤ l2 < 10, 0 ≤ l3 < 10,
l4 = l2 + l3, 3 ≤ l4 < 10}).

with l1 and l5 being removed from the variables (as l1 = l5 = 2), At this point, no more
rules are applicable until we select a solution to the length sub-problem({l2, . . . l4},≤ l2 ≤ 10, 0 ≤ l3 < 10, l4 = l2 + l3, 3 ≤ l4 < 10}) (2)

We assume the assignment {l1 �→ 2, l2 �→ 2, l3 �→ 3, l4 �→ 3, l5 �→ 2} is chosen and
apply rule len-inst. The CSP to solve is now({ s1,1, s1,2, s2,1, s2,2, s3,1, s4,1, s4,2, s4,3, s5,1, s5,2},

{ eq(s1, s5, true), con(s2, s3, s4), sub(s4, 1, 3, s5),
sub(〈s4,1, s4,2〉, 1, 3, 〈s5,1, s5,2〉),
s1,1, s1,2, s2,1, s2,2, s3,1, s4,1, s4,2, s4,3, s5,1, s5,2 ∈ charnums|A|})

with s1 = 〈s1,1, s1,2〉, s2 = 〈s2,1, s2,2〉, s3 = 〈s3,1〉, 〈s4,1, s4,2, s4,3〉, and 〈s5,1, s5,2〉.

254 F. Büttner and J. Cabot

For this example, the resolving of the rules eq-inst, con-inst, and sub-inst finally
unifies several variables, leaving a CSP that is solved (i.e., a CSP for which every as-
signment of character numbers to the element variables is a solution).({s1,1, s1,2, s2,1, s2,2, s3,1}, {s1,1, s1,2, s2,1, s2,2, s3,1 ∈ charnums|A|})
All |A|5 solutions to this CSP are solutions to the original CSP (1) under the assignment
of {l2 �→ 2, l3 �→ 1, l4 �→ 3)} to the length subproblem (2) with (s1, 〈s1,1, s1,2〉),
(s2 = 〈s2,1, s2,2〉, s3 = 〈s3,1〉, s4 = 〈s2,1, s1,1, s1,2〉, s5 = 〈s1,1, s1,2〉. Naturally, in
other cases not all assignments to the final CSP are solutions to the problems. In general,
search must be performed for a solution. The impact of this search on the scalability of
our approach is discussed in the next section.

4 Limits and Scalability

The rewriting rules presented in the previous section do not constitute a self-contained
decision procedure. They have to be combined with a solver that is capable to reason
about propositional logic and bounded integer constraints, for which decision proce-
dures are available in various solvers. The presented constraint handling rules are ter-
minating and confluent. This means that, in theory, every CSP on strings with bounded
lengths can be solved using our approach if it can be expressed using the provided string
constraint predicates and other decidable constraints. In this section, we first provide
some experimental results that we gathered using our implementation of the approach,
then we discuss scalability aspects in more generality.

4.1 Experimental Results

As mentioned before, we have implemented the described reasoning approach in
our model finder EMFtoCSP, using the constraint handling rules support of the
ECLiPSesolver. We now employ the model depicted class diagram in Fig. 2 and the
following OCL constraints to illustrate performance and scalability aspects of our ap-
proach and implementation.

Worker

employees

1..*
domain : String firstName : String

lastName : String
idSuffix : String
email : String

employer

1

Company

Fig. 2. Example Class Diagram annotated with OCL Constraints for its Strings

The example contains (conditional) string equality, concatenation, and and contain-
ment constraints. Due to the existential and universal quantifiers in EmailsUnique (all
workers within a company must have the distinct email addresses) and OneSame (at
least two workers must share first and last name), a quadratic number of of condi-
tional equality constraints is posed. Both invariants are considerably hard in terms of
computational complexity, which is why we have added them to our experiment. The
constraint EmailStructured determines the structure of the email attribute in terms of
concatenation.

Lightweight String Reasoning for OCL 255

context Company inv EmailsUnique:
worker->forAll(w1,w2 | w1.email = w2.email implies w1 = w2)

context Company inv OneSame:
worker->exists(e1,e2 | e1 <> e2 and

e1.firstName = e2.firstName and
e1.lastName = e2.lastName)

context Worker inv EmailStructured:
email = firstName + '.' + lastName + '.' +

idSuffix + '@' + employer.domain
context Worker inv NoAt:

firstName.indexOf('@') = 0 and
lastName.indexOf('@') = 0

EMFtoCSP translates the model and its constraints into a CSP as described in Sect. 2.2.
In our extended version, the OCL constraints are translated using the string constraints
introduced in the previous section. Recall that the original approach consists of two sub-
problems Structure and Global. In the version with string support, the length inference
is included into the global sub-problem (i.e., it adds further constraints to this sub-
problem). The element labeling then constitutes a new, third sub-problem Strings.

Table 1 show the runtimes and linear constraint propagations performed by
ECLiPSefor different instance sizes of the above example. The tests were conducted
on a typical office 2.2Ghz laptop running ECLiPSe6.0 on Windows 7. All tests used a
maximum string lengths of 1,000.

The table differentiates the runtimes and propagation counts for the CHR processing
and the final labeling (i.e., the assignment of ground character values to the elements
of all strings). For each test cases we constrained the workers to be evenly distributed
among the companies. The table illustrates several aspects. First, we can see that the
actual character labeling does not consume a significant amount of time once the con-
straint handling rules have been processed and the linear constraints have been posted.

Furthermore, we can observe that the runtimes for the cases where few companies
have many workers consume the most processing time. This is due to the quadratic
number of equality constraints that results from the OCL invariants EmailsUnique and
OneSame. For the second row in Table 1 more than 30,000 conditional equality con-
straints are posed in the Global sub-problem. If the number of workers per company
is less high, EMFtoCSP scales better, for example, when the ratio is 1:10, as in the
third row.

Table 1. Experimental Results

Instance CHR Processing Character Labeling
companies workers strings cpu time propagations cpu time propagations

1 10 41 0.1s 3,112 ≤ 0.1s 3,360
1 100 401 10.1s 220,192 1.1s 963,600

10 100 410 0.7s 31,120 ≤ 0.1s 33,600
50 100 450 0.4s 14,000 ≤ 0.1s 3,200

150 300 1,350 2.3s 42,000 ≤ 0.1s 9,600
10 300 1,210 11.7s 219,520 0.6s 440,800

256 F. Büttner and J. Cabot

4.2 General Discussion

In general, we can distinguish three categories for the solving of the CSP, where the
distinction between the second and third case depends on the capabilities of he solver
employed. In a nutshell, our approach works very efficiently in the first category, and
less efficient in the others. We have conducted several experiments using our imple-
mentation of the approach in EMFtoCSP and the ECLiPSesolver, and found that several
typical patterns of constraints encountered in models fall into the first case (and so does
the previously presented example).

1. The optimal case: No backtracking is required, every valid length assignment yields
a solved CSP on the string elements after applying our rewriting rules and perform-
ing constraint propagation. In this case, even very high numbers for the maximum
string length (e.g., 1000) can be chosen.

2. In the length search case, not every valid length assignment yields a con-
sistent CSP on the string elements, but the inconsistency of a chosen
length assignment is detected by the solver without actually labeling the el-
ements. A simple example for this case is given by the OCL constraint
s.indexOf('@') = 0 and s.indexOf('@') <> 0, whose unsatisfia-
bility is not recognized before instantiating the s to its element variables1. The
ECLiPSesolver, for example, however detects that the resulting CSP (the third one
in Fig. 1) is consistent without backtracking through the possible assignments of
values to the element variables, leaving MaxLen choices for the solver before re-
porting inconsistency. For constraints that fall into this case, the maximum string
length must be set to a reasonable small value for practical applications.

3. The labeling trap: In this case, the inconsistency is not detected before actually
labeling the element values. To ease the labeling trap in practice, the search proce-
dure can be split to perform a two-pass run, where the first pass tries at most one
assignment to the element variables for each solution to the length problem. In the
second pass, the element labeling is repeated without restrictions. This tweak to
the search space traversal helps to circumnavigate the labeling trap for insufficient
string lengths.

However, for most constraint patterns typically encountered in ‘real live’ situations,
the labeling trap is not a problem. In fact, as stated before, several common constraint
patterns fall even into the first category. Summarizing, we state that our approach is
perfectly suited to efficiently handle lightweight string problems that have many solu-
tions, while it is not suited to solve non-tractable string problems (which, in general,
are NP-hard), that only have few solutions, and for which the employed solver runs into
the labeling trap.

5 Conclusion

In the previous sections, we have presented an approach that translates OCL String
constraints into a constraint satisfaction problem that can be solved using off-the-shelf
solvers, and which can be integrated easily into existing model finding approaches and

1 We assume the constraint is translated straightforwardly using two separate idx constraints.

Lightweight String Reasoning for OCL 257

tools for OCL without adding too much overhead to the underlying decision procedures.
Our approach is lightweight in the sense that it efficiently finds solutions for many com-
mon OCL constraint constellations and it is suited to handle models with thousands of
strings. Due to its two-step nature, we can efficiently handle strings of potentially long
lengths, which otherwise would lead to search space explosion when directly encoding
all strings as bitvectors of the maximum length. We therefore claim that our approach
is suited for various practical (‘real world’) applications. It is, however, not suited to
tackle hard, non-tractable string constraints that only have few solutions. These must
be addressed either by one-step bit-blasting approaches or by formal regular language
reasoning and theorem provers that can handle an appropriate theory.

So far we considered an important subset of OCL string operations. We expect that
the remaining operations (e.g., toLowerCase, at, characters, <) can be encoded in the
same manner. To our knowledge, we are the first ones that integrate reasoning on String
constraints into model finding for OCL-annotated models. We have implemented our
results into the EMFtoCSP (formerly UMLtoCSP) tool and provided some experimental
results. While we used constraint handling rules as a formalism to define our constraint
rewriting rules, our approach can be easily implemented in other ways, for example,
using suspended goals in constraint logic programming.

As the next step, we will evaluate the effect of using different solvers, for our final
CSPs on the element variables and compare their suitability with the constraint logic
programming approach. In particular, we hope to apply our approach to the Kodkod
encoding of OCL in [18], in order to directly compare the bit-blasting approach and our
two-step approach. Furthermore, we will evaluate the applicability and performance of
our approach using further, more extensive case studies.

References

1. Ali, S., Iqbal, M.Z.Z., Arcuri, A., Briand, L.C.: A Search-Based OCL Constraint Solver for
Model-Based Test Data Generation. In: QSIC, pp. 41–50 (2011)

2. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A Challenging Model Trans-
formation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

3. Baudry, B., Ghosh, S., Fleurey, F., France, R.B., Traon, Y.L., Mottu, J.M.: Barriers to sys-
tematic model transformation testing. Commun. ACM 53(6), 139–143 (2010)

4. Bjorner, N., Nieuwenhuis, R., Veith, H., Voronkov, A. (eds.): Decision Procedures in Soft,
Hard and Bio-ware - Follow Up, vol. 1(7). Dagstuhl Reports (2011)

5. Büttner, F., Cabot, J., Gogolla, M.: On Validation of ATL Transformation Rules By Transfor-
mation Models. In: Weißleder, S., Lúcio, L., Cichos, H., Fondement, F. (eds.) Proceedings of
MoDeVVa 2011. ACM Digital Library (2012), doi:10.1145/2095654.2095666

6. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and validation of declarative model-
to-model transformations through invariants. Journal of Systems and Software 83(2), 283–
302 (2010)

7. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of UML/OCL
models using constraint programming. In: Stirewalt, R.E.K., Egyed, A., Fischer, B. (eds.)
Proceedings of Automated Software Engineering, ASE 2007. ACM (2007)

8. Cadoli, M., Calvanese, D., De Giacomo, G., Mancini, T.: Finite Satisfiability of UML Class
Diagrams by Constraint Programming. In: Proc. of the CP 2004 Workshop on CSP Tech-
niques with Immediate Application (2004)

9. Clavel, M., Egea, M., de Dios, M.A.G.: Checking Unsatisfiability for OCL Constraints. Elec-
tronic Communications of the EASST 24, 1–13 (2009)

258 F. Büttner and J. Cabot

10. The EMFtoCSP tool. Website,
http://code.google.com/a/eclipselabs.org/p/emftocsp/

11. Frühwirth, T.W.: Constraint Handling Rules. In: Podelski, A. (ed.) Constraint Programming:
Basics and Trends. LNCS, vol. 910, pp. 90–107. Springer, Heidelberg (1995)

12. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environment for
validating UML and OCL. Sci. Comput. Program. 69(1-3), 27–34 (2007)

13. Golden, K., Pang, W.: Constraint Reasoning over Strings. In: Rossi, F. (ed.) CP 2003. LNCS,
vol. 2833, pp. 377–391. Springer, Heidelberg (2003)

14. González, C.A., Büttner, F., Clarisó, R., Cabot, J.: EMFtoCSP: A Tool for the Lightweight
Verification of EMF Models. In: Proc. of Formal Methods in Software Engineering: Rigorous
and Agile Approaches (FormSERA), Workshop at ICSE (to appear, 2012),
http://www.formsera.org/FormSERA

15. Grahne, G., Nykänen, M., Ukkonen, E.: Reasoning about Strings in Databases. J. Comput.
Syst. Sci. 59(1), 116–162 (1999)

16. Hooimeijer, P., Veanes, M.: An Evaluation of Automata Algorithms for String Analysis.
In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 248–262. Springer,
Heidelberg (2011)

17. Kiezun, A., Ganesh, V., Guo, P.J., Ernst, M.D., Hooimeijer, P., Ganesh, V., Guo, P.J., Ernst,
M.D.: HAMPI: A solver for string constraints. In: International Symposium on Software
Testing and Analysis (2009)

18. Kuhlmann, M., Gogolla, M.: Strengthening SAT-Based Validation of UML/OCL Models by
Representing Collections as Relations. In: Kolovos, D. (ed.) ECMFA 2012. LNCS, vol. 7349,
pp. 32–48. Springer, Heidelberg (2012)

19. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive Validation of OCL Models by Inte-
grating SAT Solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011. LNCS,
vol. 6705, pp. 290–306. Springer, Heidelberg (2011)

20. Malgouyres, H., Motet, G.: A UML model consistency verification approach based on meta-
modeling formalization. In: Proceedings of the 2006 ACM Symposium on Applied Comput-
ing, SAC 2006, pp. 1804–1809. ACM, New York (2006),
http://doi.acm.org/10.1145/1141277.1141703

21. Maraee, A., Balaban, M.: Efficient Reasoning About Finite Satisfiability of UML Class Dia-
grams with Constrained Generalization Sets. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.)
ECMDA-FA. LNCS, vol. 4530, pp. 17–31. Springer, Heidelberg (2007),
http://dl.acm.org/citation.cfm?id=1768765.1768767

22. OMG: Object Constraint Language Specification, version 2.3.1 (Document formal/2012-01-
01) (2012)

23. Sen, S., Baudry, B., Mottu, J.-M.: Automatic Model Generation Strategies for Model Trans-
formation Testing. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 148–164. Springer,
Heidelberg (2009)

24. Sneyers, J., Weert, P.V., Schrijvers, T., Koninck, L.D.: As time goes by: Constraint Handling
Rules. TPLP 10(1), 1–47 (2010)

25. Soeken, M., Wille, R., Drechsler, R.: Encoding OCL Data Types for SAT-Based Verification
of UML/OCL Models. In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp.
152–170. Springer, Heidelberg (2011)

26. Veanes, M., de Halleux, P., Tillmann, N.: Rex: Symbolic Regular Expression Explorer. In:
ICST, pp. 498–507. IEEE Computer Society (2010)

27. Winkelmann, J., Taentzer, G., Ehrig, K., Küster, J.M.: Translation of Restricted OCL Con-
straints into Graph Constraints for Generating Meta Model Instances by Graph Grammars.
Electr. Notes Theor. Comput. Sci. 211, 159–170 (2008)

28. Bjørner, N., Tillmann, N., Voronkov, A.: Path Feasibility Analysis for String-Manipulating
Programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 307–
321. Springer, Heidelberg (2009), http://dblp.uni-trier.de,
doi: http://dx.doi.org/10.1007/978-3-642-00768-2_27

http://code.google.com/a/eclipselabs.org/p/emftocsp/
http://www.formsera.org/FormSERA
http://doi.acm.org/10.1145/1141277.1141703
http://dl.acm.org/citation.cfm?id=1768765.1768767
http://dblp.uni-trier.de

Domain-Specific Textual Meta-Modelling

Languages for Model Driven Engineering

Juan de Lara and Esther Guerra

Universidad Autónoma de Madrid (Spain)

Abstract. Domain-specific modelling languages are normally defined
through general-purpose meta-modelling languages like the MOF. While
this is satisfactory for many Model-Driven Engineering (MDE) projects,
several researchers have identified the need for domain-specific meta-
modelling (DSMM) languages providing customised meta-modelling
primitives aimed at the definition of modelling languages in a specific
domain, as well as the construction of meta-model families.

In this paper, we discuss the potential of multi-level meta-modelling
for the systematic engineering of DSMM architectures. For this purpose,
we present: (i) several primitives and techniques to control the meta-
modelling facilities offered to the users of the DSMM languages, (ii) a
flexible approach to define textual concrete syntaxes for DSMM lan-
guages, (iii) extensions to model management languages enabling the
practical use of DSMM in MDE, and (iv) an implementation of these
ideas in the metaDepth tool.

Keywords: Model-Driven Engineering, Deep Languages, Domain-
Specific Meta-Modelling, Textual Concrete Syntax, Multi-Level Trans-
formations.

1 Introduction

Model-Driven Engineering (MDE) promotes an active use of models throughout
the software development. These models are sometimes defined using general-
purpose languages like the UML, but for restricted, well-known domains, it is
also frequent the use of Domain-Specific Modelling Languages (DSMLs).

In current MDE practice, DSMLs are built by the language designer using
a meta-model defined with a general-purpose meta-modelling language, like
the MOF. This meta-model describes the instances that the users of the lan-
guage can build in the immediate meta-level below. Thus, DSMLs usually com-
prise two meta-levels: the definition of the DSML and its usage. More recently,
several researchers [9,16] have pointed out the utility of using domain-specific
meta-modelling (DSMM) languages as a means to provide domain-specific meta-
modelling primitives to customize families of similar DSMLs, e.g., for expressing
traceability [16], variability [16] or to define domain-specific process modelling
notations [9] and DSML profiles [13]. In this case, the language spans three meta-
levels: definition of the DSMM language for a specific domain, definition of the

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 259–274, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

260 J. de Lara and E. Guerra

DSML by using the constructs provided by the DSMM language, and usage of
the DSML. Unfortunately, existing approaches to DSMM are generally based on
a two meta-level setting and the definition of ad-hoc “promotion” transforma-
tions between models and meta-models, which makes the adoption of DSMM
cumbersome in practice. Moreover, there is no general framework for defining
DSMM languages with integrated MDE support.

In this paper, we propose multi-level meta-modelling [5] as an underlying
framework for DSMM, and discuss mechanisms to facilitate its adoption in MDE
projects. Multi-level meta-modelling allows the definition of deep languages,
which can be instantiated in more than one meta-level. In this way, the users
of the language perform DSMM as, in each meta-level, the constructed models
are instances of the upper meta-level but also meta-models w.r.t. the meta-level
below. In our context, this means that a DSML is naturally defined as an in-
stance of a DSMM language, and at the same time, it acts as a meta-model for
lower meta-levels (i.e., it defines a language). Moreover, we provide: (a) means
to customize the meta-modelling features that will be offered to the users of the
DSMM languages, (b) a flexible way to define textual concrete syntaxes at every
meta-level, and (c) model management languages able to work in a multi-level
setting, enabling the use of DSMM in MDE projects (for space constraints we
just show the use of model transformations). The framework is supported by
MetaDepth [6], a multi-level meta-modelling tool supporting deep characteri-
zation through potency [5], and dual ontological/linguistic typing.

Paper Organization. Sec. 2 discusses related research, exposing motivations and
needs in the area. Sec. 3 applies multi-level meta-modelling to DSMM and iden-
tifies some challenges: how to customise the DSMLs in a DSMM framework
(Sec. 4), how to define a concrete syntax for the DSMLs (Sec. 5), and how to
manipulate models in a multi-level setting (Sec. 6). Finally, Sec. 7 concludes.

2 Related Work

Several researchers have pointed out the benefits of using DSMM languages. For
example, the traceability modelling language [16] (TML) is a DSMM language
used to express the allowed traces and constraints between several meta-models.
Its rationale is that TML users do not need the full power of EMF or MOF
to construct trace meta-models, but they benefit from specific meta-modelling
primitives like Trace and TraceLink. Other DSMM languages are described
in [16] to express variability over DSMLs, and to extend DSMLs with inter-
faces for model reuse. However, no general framework for defining such DSMM
languages is proposed. Instead, they use two meta-levels and define ad-hoc “pro-
motion” transformations between models (e.g., a TML model) and meta-models
(the resulting trace meta-model). These transformations are a way to emulate
three meta-levels within two, hindering the construction of DSMM languages.

In [8], the authors present a language to declare component types with ports,
which can be instantiated choosing a number of port instances. This DSMM
language is defined in a two meta-level framework extended with capabilities to

DSMM Languages for MDE 261

instantiate the components, emulating the existence of two meta-levels within
one. The price to pay is that one has to manually encode support for the def-
inition of class/features/data types and their instantiation, the definition and
evaluation of constraints, and the emulation of inheritance within a single meta-
level.

In [13], the UML profiling mechanism is adapted for EMF-based DSMLs. This
is another example of DSMM as users need a language to define new profiles and
apply them at the meta-level below. Again, a two meta-level setting forces the
use of workarounds. In this case, they emulate the existence of attribute instances
at the lowest meta-level by the run-time adaptation of the meta-model, injecting
new attribute types and classes.

Instead of emulating several meta-levels within two [8] or using artificial
workarounds [13,16], we claim that a more natural way to define DSMM
languages is the native use of multi-level meta-modelling, also known as deep
meta-modelling [6]. Previously, Jablonski et al. [9] used multiple levels to build
domain-specific process modelling notations. However, their approach is restricted
to meta-modelling, and does not consider the language concrete syntax or its
manipulation through model management languages, hindering its use in MDE.

Here, we propose some mechanisms to handle these deficiencies based on
some multi-level meta-modelling techniques developed originally by Atkinson
and Kühne [3]. There are several multi-level meta-modelling frameworks [1,2,12].
For example, DeepJava [12] extends Java to allow multiple instantiations,
whereas the main concern in [1] is the efficient navigation between meta-levels.
In [2], the authors discuss the visualization of multi-level languages but do not
consider linguistic extensions or the integration with model management lan-
guages. All these frameworks either do not consider concrete syntaxes [1,12] or
do not integrate model manipulation languages enabling their use for MDE [2].

Although there are many approaches to define textual concrete syntaxes for
DSMLs [7,10], their definition for DSMM languages poses new challenges. For
instance, there is the need to define the concrete syntax for models several meta-
levels below, for which the concrete types that will be available in the models are
unknown in advance. Sometimes, it is also necessary to extend the predefined
concrete syntax for a particular DSML built using a DSMM language. This
enables a progressive refinement of concrete syntaxes at different meta-levels.

Altogether, our contribution is a comprehensive framework to define DSMM
language environments based on multi-level meta-modelling. Our approach cov-
ers the definition of textual concrete syntaxes, a fine grained customization of
the meta-modelling facilities offered to the DSMM language users, and model
management languages tailored to a multi-level setting.

3 Deep Meta-Modelling for Domain-Specific
Meta-Modelling

In DSMM, users are not given the full power of a general-purpose meta-modelling
language, but a more suitable meta-modelling language that contains primitives
of the domain, and that is restricted for a particular meta-modelling task.

262 J. de Lara and E. Guerra

VAT@1: double
price: double

Product
@2 Ecommerce model

VAT=8.0

Pen: Product

Stationer’s model @1

VAT=8.0
caliber: double
length: double

Nail: Product

Hardware’s model @1

Book:
Product

VAT=16.0
title: String

Publication:
Product

Magazine
: Product

Author

name: String
author

*
books

Bookshop’s model @1

price=5.0

parker: Pen

WHSmith model @0

price=0.1
caliber=0.1
length=10

n1: Nail

DoItBest model @0 Amazon model @0

KL: Book
title=“King Lear”
price=30.0

WS: Author
name=“William
Shakespeare”

author books

DSMM
language
definition

system 1 system 2 system 3

(a)

(b)

(c)

(f) (d)

(e)

(g)

DSMM
language

usage
=

DSML
definition

DSML
usage

Fig. 1. Definition of a DSMM language for e-commerce (a). Using the language with
increasing degrees of extension: no extension (b,c), property extensions (d,e), concept
extensions (f,g).

For instance, assume we need to model information systems for e-commerce
in various domains. For this purpose, we can build a specialized meta-modelling
language that facilitates the construction of DSMLs for each one of these do-
mains. An over-simplified definition of such a meta-modelling language and some
of its uses for different scenarios are shown in Fig. 1. Model (a) defines the DSMM
language, which is made of a single class Product. This language can be used
to define a DSML for a stationer system (model (b)), for which we just use the
primitives of the domain (e.g., we create an instance of Product called Pen).
Finally, this DSML can be used to define the items in a particular stationery
store (i.e., we can create instances of Pen, as done in model (c)).

In this way, the definition of a DSML spans three meta-levels: the Stationer
model is an instance of Ecommerce, and WHSmith is an instance of Stationer.
Therefore, it is natural to use a multi-level framework to support the definition
and usage of our DSMM language, as these frameworks natively support instan-
tiation across several meta-levels without recurring to artificial workarounds. In
a multi-level framework, elements retain both a type facet which allows their in-
stantiation in the next meta-level, and an instance facet as they are instances of
an element at the meta-level above. Thus, model elements become clabjects (from
the union of “class” and “object”) enabling a more uniform way of modelling [3].

DSMM languages normally comprise three meta-levels. To enforce this depth
in a multi-level framework, we can use deep characterization through the con-
cept of potency [3]. The potency is an integer number that can be attached to
models, clabjects, attributes and references. If an element is not explicitly given
a potency, it receives the one of its immediate container. The potency of an ele-
ment gets decremented at each meta-level, and when it reaches zero, the element

DSMM Languages for MDE 263

cannot be instantiated further. Thus, the definition of our DSMM language has
potency 2 (see model (a) in Fig. 1, its potency is indicated by ’@2’), it gets
instantiated into models with potency 1 (middle models), and the instances of
these have potency 0 and therefore cannot be instantiated in subsequent meta-
levels. In this way, the DSMM language user is effectively performing DSMM
because he builds models with potency 1, which are instantiated as models of
potency 0.

The potency is also a way for the deep characterization of properties, in order
to control the meta-level in which they can be assigned a value. For example, in
our DSMM language, all products will receive a price. Hence, Product declares
an attribute price with potency 2, so that it will receive a value two meta-levels
below (i.e., each pen has its own price). The potency of the attribute is not
explicit, but it is received from the enclosing model. In contrast, the VAT is the
same for all products of the same type, hence it has potency 1.

DSMM languages are used to build meta-models for related but different
domains. Hence, a particular domain may need to extend the meta-modelling
concepts offered by the DSMM language with new domain-specific properties.
For example, model (d) in Fig. 1 shows that, in the hardware domain, we need
to increase the attributes offered by Product. In particular, Nails need to de-
fine their caliber and length. These two attributes are specific for nails and
therefore cannot be included in the definition of Product as they are not general
for every domain. Similarly, we may also need to declare domain-specific con-
straints, e.g., stating that the caliber should be larger than 0.1. Finally, some
domains may need to make available new primitives to the users of the DSMLs.
For instance, in the bookshop domain, the manipulated products are Books,
which have exactly one Author (see model (f) in Fig. 1). The concept of Author
is not included in the DSMM language, and hence we need to include it in the
meta-model for bookshops. This is only possible if the DSMM language provides
facilities to define new clabjects, references and multiplicities. Moreover, one
may wish to group several products in an inheritance hierarchy. For example,
both Magazines and Books have a title and share the same VAT value.

The previous linguistic extensions can be supported by a multi-level frame-
work if we use a dual ontological/linguistic typing for the model elements. The
ontological typing is a relation within the domain, and refers to the type of which
an element is instance. For example, the ontological type of Pen is Product, and
the ontological type of parker is Pen. Hence, ontological meta-modelling is con-
cerned with describing the concepts in a certain domain and their properties [4].
All elements in the top-most model (model (a) in Fig. 1) and some elements in
the domain-specific meta-models (e.g., Author) may not have ontological type. In
contrast, all elements have a linguistic type, which refers to the meta-modelling
primitive used to create the element. For example, the linguistic type of Product,
Pen and parker is clabject, while the linguistic type of books is reference.

One can interpret the union of the three models in each column of Fig. 1 as
being conformant to a linguistic meta-model, as shown in Fig. 2(a) (the linguistic
meta-model is only partially shown). In our approach, a linguistic extension is

264 J. de Lara and E. Guerra

VAT: double

ProductType

price: double

ProductInstance

ClassType Instance

Feature Slot
ftype

type

ptype

*

*

*

*

* supers
* *

Type facet Instance facet

Explicit modelling of meta-modelling facilities

VAT= 8.0

Nail: ProductType

price= 0.1

n1: ProductInstance

caliber:
Feature

length:
Feature

value2
: Slot

value1:
Slot

(a) (b)

Clabject
* supers

Instance Type
potency: int

VAT@1: double
price: double

Product

VAT=8.0
caliber: double
length: double

Nail: Product

@1

price=0.1
caliber=0.1
length=10

n1: Nail

@0

type

*

*

@2

type

type

Linguistic meta-model

*
Feature

co
nf

or
m

an
t t

o

Fig. 2. Defining a DSMM language using: (a) 3 levels and dual typing, (b) 2 levels

an element without ontological typing, like Author or the caliber attribute in
Nail. The dual ontological/linguistic typing is very convenient for DSMM as it
makes available standard meta-modelling facilities at each meta-level.

Alternatively, Fig. 2(b) shows the definition of our DSMM language using
only two meta-levels. This solution makes necessary to explicitly model the de-
sired meta-modelling facilities, and to manually encode the machinery to emu-
late built-in support for instantiation and constraint checking. Thus, one should
build mechanisms taking care of type conformance, data types, definition and
evaluation of constraints, and so on.

Altogether, deep meta-modelling facilitates the construction of DSMM lan-
guages. However, the following challenges remain:

– We need mechanisms to control the linguistic extensions offered by the
DSMM languages, as not any extension may be valid in any domain.

– To be usable in practice, we need to provide a suitable concrete syntax
for the DSMM languages and for the DSMLs defined with them. Ideally,
both syntaxes should be defined once together with the DSMM language
definition, and it should be possible to refine or extend them to take into
account the particularities of specific domains.

– To enable the integration of DSMM in MDE projects, we need appropriate
model management languages able to work in this multi-level setting.

These three challenges are tackled in the next three sections.

4 Customising the Meta-Modelling Facilities

Designers need to control the way in which the designed DSMM languages will
be used and extended. For this purpose, we propose the use of tags to identify
the non-extendable language elements, and the use of constraints to ensure a

DSMM Languages for MDE 265

certain extensibility degree. We will illustrate both control mechanisms using
the textual syntax of the metaDepth [6] tool. For example, the listing shown in
Fig. 3 defines our DSMM language for e-commerce systems (lines 1–7), its usage
to define a stationer’s model (lines 8–10), and an instance of this (lines 12–14),
corresponding to models (a, b, c) in Fig. 1.

1 strict Model Ecommerce@2 {
2 strict Node Product {
3 VAT@1 : double;
4 price : double;
5 minPrice: $self.price > 0$
6 }
7 }

8 Ecommerce Stationer {
9 Product Pen { VAT = 8; }

10 }
11

12 Stationer WHSmith {
13 Pen parker { price = 5.0; }
14 }

Fig. 3. Definition and use of the DSMM language for e-commerce in MetaDepth

The top-model Ecommerce lacks ontological type and hence is declared using
the keyword Model (line 1). This model defines clabject Product using the key-
word Node (line 2). Potencies are specified using the “@” symbol. Constraints
can be defined using Java or the Epsilon Object Language (EOL), a variant
of OCL that permits side effects [11]. For example, the constraint minPrice in
line 5 demands a positive price for the products. It receives potency 2 from the
model, therefore it will be evaluated two meta-levels below. The model instan-
tiated in lines 8–10 has Ecommerce as ontological type, which is used instead of
the keyword Model.

By default, the meta-models built with a DSMM language can be extended
with new primitives (i.e., new clabjects), and any element in the meta-models
can be extended with new features. To fine tune the extensibility of a DSMM
language, our first proposal is a tagging control mechanism to identify the non-
extensible elements. In this way, if the model with the DSMM language definition
is tagged as strict, it will not be possible to add clabjects without an ontological
typing in the next meta-level. If a clabject is tagged strict, their instances are
forbidden to define new attributes, references or constraints. In the previous
listing, both the Ecommerce model and the Product node are strict. Thus, we
can use the DSMM language to build the stationer’s model in Fig. 1, but not
the hardware model (as Product instances cannot be extended) or the bookshop
model (as Author has no ontological type).

If an element is not tagged strict, then we may need to control its allowed
linguistic extensions. For example, we may like each Product instance at potency
1 to declare an attribute acting as identifier, which will receive a value at potency
0. Even though we could declare such a field at meta-level 2 with potency 2, here
we may wish to let the decision of the attribute name and type (e.g., String or
int) to the meta-level 1. For this purpose, we propose defining constraints that
can make use of facilities of the linguistic meta-model. Fig. 4 shows a constraint,
with potency 1, demanding the linguistic extension of all Product instances
with some attribute tagged as identifier. The method newFields belongs to the
API of metaDepth’s linguistic meta-model, and returns a collection with the
new attributes declared in a meta-level. The method isId checks if a field is

266 J. de Lara and E. Guerra

an identifier. As this constraint has potency 1, it will be evaluated at the next
meta-level, where the DSMM language is used.

1 Node Product {
2 ...
3 extid@1: $self.newFields(). exists(f | f.isId())$
4 }

Fig. 4. Constraint demanding a linguistic extension

Finally, as the next section shows, we can also control the allowed linguistic
extensions syntactically through the design of an appropriate concrete syntax.

5 Designing the Concrete Textual Syntax

Even though deep meta-modelling enables DSMM, our goal is building DSMM
languages, and therefore we need to design a concrete syntax for them (in addi-
tion to their abstract syntax). In the previous section, we used the default textual
concrete syntax that metaDepth makes available to model uniformly at every
meta-level. However, this syntax usually leads to verbose model specifications,
while we may prefer a more compact, domain-specific representation. For exam-
ple, instead of creating instances of Product using Product Pen{VAT=8;}, we
may like a more concise syntax for product instantiation like Pen(8%).

DSMM model @2

DSML model @1

Model @0

Syntax
Templates @1

Syntax
Templates @2

Refining
Templates @1

defined on defines syntax for

Fig. 5. Defining the concrete syntax

Should the designer only had to de-
fine the syntax of the DSMM language,
he may use existing tools for describ-
ing textual syntaxes like xText [15],
TCS [10] or ANTLR [14]. However, as
Fig. 5 illustrates, a multi-level architec-
ture poses some challenges that these
tools are not able to deal with, since the
designer has to provide a syntax for the
languages built with the DSMM lan-
guage as well. In this way, when defin-
ing a DSMM language, the designer has
to provide both the syntax of the mod-
els at meta-level 1 (i.e., of the domain-
specific meta-models) and the syntax of the models at level 0 (i.e., of the meta-
model instances). For this purpose, we assign to each concrete syntax definition
a potency governing the meta-level at which it is to be used. Thus, the syntax
with potency 1 will be used in the next meta-level, and the one with potency
2 will be used two meta-levels below. Moreover, it should be possible to refine
the syntax initially defined for the models at meta-level 0, in order to introduce
domain-specific constructs and describe the syntax of any linguistic extension.

Following this idea, we have created a template-based language to define tex-
tual concrete syntaxes in metaDepth. Using this language, the syntax of each

DSMM Languages for MDE 267

clabject is defined through a template, which has a potency attached, controlling
the meta-level at which the template will be applied. Another template declares
the syntax of the model itself. As an example, Fig. 6 shows to the left the defini-
tion of the concrete syntax for our example DSMM language, whereas the right
corresponds to the syntax for models at meta-level 0.

1 Syntax for Ecommerce [”.ecommerce mm”] {
2 template@1 TEcommerce for Model Ecommerce:
3 ”id ’{’ &TProduct∗ ’}’”
4 template@1 TProduct for Node Product:
5 ”id ’(’ #VAT ’%’ ’)’”
6 }

7 Syntax for Ecommerce [”.ecommerce”] {
8 template@2 DeepProds for Model Ecommerce:
9 ”typename id ’{’ &DeepProd∗ ’}’”

10 template@2 DeepProd for Node Product:
11 ”typename id ’(’ #price ’e’ ’)’”
12 }

Fig. 6. Defining the concrete syntax for models at levels 1 (left) and 0 (right)

The first line in the definition to the left declares the language to which
the syntax applies (the Ecommerce model) as well as the associated file exten-
sion (ecommerce mm). Its two templates have potency 1, therefore they corre-
spond to the syntax of the DSMM language (i.e., the templates will be used in
the next meta-level). In particular, lines 2–3 define the syntax of the instances
of the Ecommerce model, whereas lines 4–5 define the syntax of the clabject
Product. The keyword “id” stands for the identifier of an element (see lines 3
and 5), whereas the attributes of a clabject can be referenced by using the prefix
“#” (like VAT in line 5). Templates can refer to other templates, as in line 3,
where it is indicated that the instances of Ecommerce can contain zero or more
Product instances (“&TProduct*”). Using this textual syntax, we can specify
the Stationer model as Stationer{ Pen(8%) }.

The right of the same listing declares the syntax for the models at meta-level
0, which will be stored in a separate file with extension ecommerce. In this case,
all templates have potency 2. At this point, we do not know the model type
for which the syntax is defined, but we only know that it will be an indirect
instance of Ecommerce (line 8). To access the name of the concrete type we use
the keyword “typename”, which is interpreted by the parser to check that it is
an indirect instance of Ecommerce (line 9). The same applies to the definition of
templates for clabjects (lines 10–11). With this syntax we can write Stationer
WHSmith { Pen parker(5.0e) } to instantiate model Stationer.

Templates can include “semantic” actions (e.g., to initialize fields of the cre-
ated clabjects) and may have several syntactic expressions. For instance, we can
insert in line 12 of the previous listing ‘‘typename id’’ with ‘‘#price = 0’’

to permit defining products without a price, which gets initialized to 0.
Finally, similar to [7], we can use a single template to define the syntax of

several clabjects in the same inheritance hierarchy. Thus, if a clabject does not
have an associated template, it uses the template of its closest ancestor in the
inheritance hierarchy. A useful keyword in this case is “type”, which gets substi-
tuted by the name of the clabject. For example, given a clabject “B” inheriting
from “A”, and a template attached to “A” with body ‘‘type id’’, then writ-
ing “A a” creates an A instance, while typing “B b” creates a B instance. As

268 J. de Lara and E. Guerra

a difference with “typename”, “type” is used for direct types (i.e., at adjacent
meta-levels) expecting exactly A or B. In contrast, “typename” is used for in-
direct types (i.e., at non adjacent meta-levels) and induces a checking that the
name typed in place of “typename” is an indirect instance of the clabject the
template is attached to.

5.1 Customising the Meta-Modelling Facilities at the Syntax Level

In Section 4, we showed how to customise the extensibility of a DSMM lan-
guage at the abstract syntax by identifying strict (i.e., non-extensible) elements
and constraining the kind of allowed extensions. These design decisions should
be reflected in the concrete syntax of the DSMM language as well, to discard
forbidden extensions syntactically even before than semantically.

Our template language provides the following keywords to customise the al-
lowed extensions for a DSMM language at the concrete syntax: flingext to allow
declaring new fields with no ontological type, lingext to allow the addition of
new clabjects with no ontological type, constraint for declaring constraints,
and super to define new inheritance relations for clabjects. Moreover, two ad-
ditional keywords allow defining how these extensions should be instantiated at
level 0: flinginst for field instances and linginst for clabject instances.

For example, the listing shown to the left of Fig. 7 provides a concrete syntax
enabling the definition of new fields and constraints in the instances of Product,
due to the expression in line 6. Moreover, line 10 enables the instantiation of
those extra fields in indirect instances of Product. Note that, this time, the
concrete syntaxes of models at levels 0 and 1 are defined together, and have
associated the same file extension. The listing to the right of the figure shows
the definition of two models using this concrete syntax. The model Hardware
in lines 1–7 (in the column to the right of Fig. 7) is an instance of Ecommerce,
while the model in lines 9–11 is an instance of Hardware.

1 Syntax for Ecommerce [”.ecommerce”] {
2 template@1 TEcommerce for Model Ecommerce:
3 ”id ’{’ &TProduct∗ ’}’”
4 template@1 TProduct for Node Product:
5 ”id ’(’ #VAT ’%’ ’)’ ’{’
6 (flingext ’;’ | constraint)∗ ’}’ ”
7 template@2 DeepProds for Model Ecommerce:
8 ”typename id { &DeepProd∗ }”
9 template@2 DeepProd for Node Product:

10 ”typename id ’(’ #price ’e’ flinginst∗ ’)’ ”
11 }

1 Hardware {
2 Nail (8.0%){
3 caliber : double;
4 length : double;
5 bigger : $self.caliber>=0.1$
6 }
7 }
8

9 Hardware DoItBest {
10 Nail n1(0.1e caliber=0.1 length=10)
11 }

Fig. 7. Extensible textual syntax (left), and its use (right)

The listing to the left of Fig. 8 illustrates the use of lingext to allow the
definition of new clabjects at meta-level 1 (line 4), and the use of supers to
allow inheritance between instances of Product (line 7). The right of the same

DSMM Languages for MDE 269

figure uses this syntax to define model (f) in Fig. 1. In the listing, Magazine
(line 18) and Book (line 19) inherit from Publication, Book defines a new field
author (line 20), and there is a new clabject Author with no ontological type
(lines 22–24).

1 Syntax for Ecommerce [”.ecommerce”] {
2

3 template@1 TEcommerce for Model Ecommerce
:

4 ”id ’{’ (&TProduct | lingext)∗ ’}’ ”
5

6 template@1 TProduct for Node Product:
7 ”id (’(’ #VAT ’%’ ’)’)? (’extends’ supers)?
8 (’;’ | ’{’ (flingext ’;’ | constraint)∗ ’}’) ”
9

10 ...
11 }
12

13

14 Bookshop {
15 Publication (16%){
16 title : String;
17 }
18 Magazine extends Publication;
19 Book extends Publication {
20 author : Author;
21 }
22 Node Author {
23 name : String;
24 }
25 }

Fig. 8. Syntax template allowing inheritance and new clabjects (left), and its use (right)

5.2 Refining the Syntax of Domain-Specific Modelling Languages

Even if the DSMM language defines a syntax for the instances of the created
domain-specific meta-models, the builder of a particular domain-specific meta-
model may wish to design a special concrete textual syntax for some of the
instantiated clabjects or for the linguistic extensions (see Fig. 5).

For example, we can design a template especially for Nails, as Fig. 9 shows.
This template would be defined by the builder of the stationer’s domain-specific
meta-model at meta-level 1, and attached to it. The template refines the de-
fault one defined for products, so that the instances of Nail can be defined
using this more specialised syntax (in addition to the default one). Hence, we
can write n1(0.1e, 0.1, 0.1), in addition to Nail n1(0.1e caliber=0.1

length=0.1). In order to disable the instantiation of nails using the latter, more
general syntax, we should add the modifier overwrite to template TNail.

1 template@1 TNail for Node Nail:
2 ”id ’(’ #price ’e’, #caliber, #length ’)’ ”

Fig. 9. Refining the syntax template for nails at level 1

To conclude, as an implementation note, our template language for specifying
concrete syntaxes has been implemented using a meta-model, whereas its con-
crete syntax has been specified with itself through bootstrapping. The parser
generation relies on ANTLR [14]. Moreover, metaDepth includes a registry of
parsers and automatically selects the appropriate parser according to the file
extension of the model to be loaded.

270 J. de Lara and E. Guerra

6 Model Management for DSMM Languages

To integrate DSMM languages in MDE, we need to provide suitable model man-
agement languages able to deal with multiple meta-levels. In metaDepth we
have adapted the Epsilon family of model management languages1 to work in a
multi-level setting. Hence, we can define model manipulation operations and con-
straints for DSMM languages using the Epsilon Object Language (EOL), code
generators working at several meta-levels using the Epsilon Generation Language
(EGL), and model-to-model transformations spanning several meta-levels using
the Epsilon Transformation Language (ETL). As the working scheme and chal-
lenges are similar in all cases, we will illustrate our solution only in the context
of model-to-model transformations.

As an example, assume we want to generate a graphical user interface that
allows the customers of an e-commerce system to select the products (at level
0) they want to buy. For this purpose, we need to transform the products to a
model representation of the graphical user interface, from which we can generate
code for different platforms like Java Swing or HTML. Based on this example, in
the following we illustrate the four typical transformation scenarios in a multi-
level setting: deep transformations, co-transformations, refining transformations
and reflective and linguistic transformations.

Deep Transformations. Oftentimes, a transformation needs to be defined us-
ing the meta-model of the DSMM language, and applied to the instances of the
DSMLs built with it (i.e., at the bottom level). This scenario is depicted to the
right of Fig. 10. In this case, the transformation definition needs to use indirect
types because the direct types at level 1 are unknown when the transformation
is defined. For example, if we want to generate a graphical user interface for any
model of products at level 0, we would like to define the transformation only once
at meta-level 2 together with the DSMM language definition. The left of Fig. 10
shows the ETL deep transformation to achieve this goal, which will be executed
on indirect instances of the Ecommerce model. Rule Product2CheckButton cre-
ates a CheckButton for each indirect instance of Product (lines 3–8). The rule
is annotated with the top-level meta-model needed by the transformation (line
1), and the level at which the transformation is to be executed (line 2). The post
block (lines 10–15), which is executed when the transformation finishes, creates
the GroupBox for the checkbuttons and the container Window.

Co-transformations. In this kind of transformations, a model and its meta-
model need to be transformed at the same time, as the right of Fig. 11 illustrates.
Here, the same transformation has to deal with direct and indirect instances of
the clabjects in the meta-model of the DSMM language; therefore, a mechanism
is needed to select the level at which the rules will be applied.

As an example, we may wish to generate a menu for each product type de-
fined at level 1, and checkbuttons for each product instance at level 0. For this
purpose, we can use the transformation in Fig. 11. Line 1 imports the previous

1 See http://www.eclipse.org/epsilon/

DSMM Languages for MDE 271

1 @metamodel(name=Ecommerce,file=Ecommerce)
2 @model(potency=0)
3 rule Product2CheckButton
4 transform pr : Source!Product
5 to cb : Target!CheckButton {
6 cb.name := pr.name()+’ cbutton’;
7 cb.text := pr.name()+’(’+pr.price+’)’;
8 }
9

10 post {
11 var wd: Target!Window := new Target!Window();
12 var gb: Target!GroupBox := new Target!GroupBox();
13 wd.children := gb;
14 gb.children.addAll(Target!CheckButton.all());
15 }

Product

Nail

@2

@1

CheckBtn
@1Pr2ChBtn

@2

n1
@0

cb
@0

execution

Fig. 10. Deep transformation example (left) and scheme (right)

transformation which transforms the products at level 0. Then, rule
ProductType2Menu is executed for each Product at level 1. The level at which
the rule is executed is specified by the model alias, before the ‘!’ symbol (see line
4). Hence, we use Level0 for a model with potency 0 and Level1 for a model
with potency 1. We can also use the alias Source to refer to the source model
regardless its potency. This is the alias used in the listing of Fig. 10, where the
annotation in line 2 forces the execution of the transformation on models with
potency 0. Hence, our framework implicitly makes available all (meta-)∗-models
of the context model for the transformation.

Refining Transformations. Sometimes, a deep transformation needs to be
refined for particular instances defined at level 1. This situation is depicted to
the right of Fig. 12. For example, if we decide to transform the instances of
Nail in a different way to consider the specific attributes that we added to it
(caliber and length), we need to refine the transformation rule defined for
Products in Fig. 10. The refined rule is shown in Fig. 12. The rule extends
Product2CheckButton, but it is refined for type Nail. To support this kind of
transformations, we adapted ETL to allow extending a rule if the child rule trans-
forms a direct or indirect instance of the clabject type transformed by the parent
rule. The child rule will be applied whenever is possible, executing the body of
the rules of both parent and child. In our example, rule Nail2CheckButton will

1 import ’file:///Prod2GUI.etl’;
2

3 rule ProductType2Menu
4 transform pr : Level1!Product
5 to mn : Target!Menu {
6 mn.name := pr.name()+’ menu’;
7 mn.text := pr.name()+’(’+pr.VAT+’)’;
8 }

Product

Nail

n1
@0

CheckBtn
@1

cb
@0

execution

Menu

PrT2Menu
@1

Pr2ChBtn
@2

menu

@2

@1

Fig. 11. Co-transformation example (left) and scheme (right)

272 J. de Lara and E. Guerra

1 import ’file:///Prod2GUIDeep.etl’;
2

3 @metamodel(name=Ecommerce,file=Ecommerce.mdepth
)

4 @model(potency=0)
5 rule Nail2CheckButton
6 transform pr : Source!Nail
7 to mn : Target!CheckButton
8 extends Product2CheckButton {
9 mn.name := pr.name()+’ check nail’;

10 mn.text := pr.name()+’(’+pr.price+’,
11 caliber=’+pr.caliber+’, length=’+pr.length+’)’;
12 }

Product

Nail

@1

CheckBtn
@1Pr2ChBtn

@2

@2

Nail2ChBtn
@1

Pin

1 Ch kBt
@0

n1

@0

p1

c_p1: CheckBtn
text=“p1(5)”

execution
c_n1: CheckBtn

text=“n1(5, caliber=…”

Fig. 12. Refining transformation example (left) and scheme (right)

be executed for instances of Nail, whereas rule Product2CheckButton will be
executed for indirect instances of Product that are not instances of Nail.

Reflective and Linguistic Transformations. When defining a deep trans-
formation, we may want to account for the linguistic extensions that can be per-
formed at level 1. For this purpose, the transformation language needs reflective
capabilities to access any new declared field, and it has to be possible to perform
queries using linguistic types (i.e., Node, Edge and Model). The combination of
these two capabilities enables the construction of generic transformations, appli-
cable at any meta-level, and to elements of any ontological type. The working
scheme of this kind of transformations is shown to the right of Fig. 13.

1 rule Product2CheckButton
2 transform pr : Level0!Product
3 to cb : Target!CheckButton {
4 cb.name := pr.name()+’ cbutton’;
5 cb.text := pr.name()+’(price=’+pr.price+’ ’;
6 for (f in pr.newFields())
7 cb.text := cb.text+f.name()+’= ’+
8 f.getValue()+’ ’;
9 cb.text := cb.text+’)’;

10 }
11

12 rule Node2Label
13 transform pr : Level0!Node
14 to cb : Target!Label {
15 guard: not pr.isKindOf(Level0!Product)
16 cb.name := pr.name()+’ label’;
17 cb.text := pr.name()+’(’;
18 for (f in pr.fields())
19 cb.text := cb.text+f.name()+’= ’+
20 f.getValue()+’ ’;
21 cb.text := cb.text+’)’;
22 }

Product

Book

@2

@1

CheckBtn
@1Pr2ChBtn

@2

Author

N
od

e
ct

Node2Lbl
@2 Label

b1
@0

cb
@0

executiona1

C
la

bj
ec

t

lbl

Fig. 13. Linguistic transformation example (left) and scheme (right)

The listing in Fig. 13 shows a transformation with one reflective rule and
another one defined on a linguistic type. Rule Product2CheckButton is reflective.
It gets executed for each indirect instance of Product at level 0, creating a
CheckButton. The rule takes into account that Product instances at level 1

DSMM Languages for MDE 273

may have been extended with new attributes. Thus, the rule iterates on the
new attributes in line 6 (returned by newFields), concatenating their name and
value. Technically, this reflection is possible because ETL is also reflective, being
able to call transparently methods of the metaDepth API.

In its turn, rule Node2Label uses linguistic typing, being applicable to all Node
instances (all elements) of potency 0 which are not indirect instances of Product
(forbidden by the guard in line 15). In this way, if we apply this transformation to
the Amazon model in Fig. 1, we obtain one CheckButton (the transformation of
the KL book by rule Product2CheckButton) and one Label (the transformation
of the WS author by Node2Label).

In the presented transformation examples, the target language has two meta-
levels. We also allow DSMM languages as target, and currently we only support
rules specifying the creation of direct instances of clabjects. One may consider
abstract rules specifying the creation of indirect instances, which would need to
be refined at level 1 stating which clabject to instantiate. This is left for future
work.

7 Discussion and Future Work

In this paper, we have presented our approach to define DSMM languages sup-
porting the flexible definition of a textual concrete syntax, a fine control of the
exposed meta-modelling facilities, and integration in MDE projects by making
available multi-level model management languages.

We also discussed the typical transformation scenarios in a multi-level setting
(deep transformations, co-transformations, refining transformations and linguis-
tic/reflective transformations) and illustrated their support using ETL. These
scenarios apply to other model management languages and tasks as well. In par-
ticular, they apply to the definition of textual syntaxes: at the top-level, we can
define syntactic templates for level 0 models (similar to deep transformations),
or for both level 0 and level 1 models (similar to co-transformations); we can add
refining templates at level 1 (like in refining transformations); and we can define
templates dealing with linguistic extensions (as in linguistic transformations).
Each model management language needs to provide appropriate constructs to
deal with each scenario, namely: the ability to select the meta-level at which
a certain operation is to be applied (e.g., potencies for rules and templates),
the ability to select clabjects of specific meta-levels (e.g., aliases Level0 and
Level1 in rules), the possibility to obtain indirect instances of clabjects (trans-
parently in our case), to access clabjects by their linguistic type (e.g., Node) and
to reflectively access linguistic extensions (e.g., method newFields).

We are currently using metaDepth to define DSMM languages in different
domains: component-based systems, web engineering and mobile devices. We
are also exploring the definition of visual syntaxes for DSMM languages, and
extending the integration of the tool with multi-level meta-modelling languages.

274 J. de Lara and E. Guerra

Acknowledgements. This work was funded by the Spanish Ministry of Econ-
omy and Competitivity (project “Go Lite” TIN2011-24139) and the R&D pro-
gramme of the Madrid Region (project “e-Madrid” S2009/TIC-1650).

References

1. Aschauer, T., Dauenhauer, G., Pree, W.: Representation and Traversal of Large
Clabject Models. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795,
pp. 17–31. Springer, Heidelberg (2009)

2. Atkinson, C., Gutheil, M., Kennel, B.: A flexible infrastructure for multilevel lan-
guage engineering. IEEE Trans. Soft. Eng. 35(6), 742–755 (2009)

3. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Trans.
Model. Comput. Simul. 12(4), 290–321 (2002)

4. Atkinson, C., Kühne, T.: Model-driven development: A metamodeling foundation.
IEEE Software 20(5), 36–41 (2003)

5. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Soft-
ware and System Modeling 7(3), 345–359 (2008)

6. de Lara, J., Guerra, E.: Deep Meta-modelling with MetaDepth. In: Vitek, J. (ed.)
TOOLS 2010. LNCS, vol. 6141, pp. 1–20. Springer, Heidelberg (2010)

7. Espinazo-Pagán, J., Menárguez, M., Garćıa-Molina, J.: Metamodel Syntactic
Sheets: An Approach for Defining Textual Concrete Syntaxes. In: Schieferdecker,
I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol. 5095, pp. 185–199. Springer,
Heidelberg (2008)

8. Herrmannsdörfer, M., Hummel, B.: Library concepts for model reuse. Electron.
Notes Theor. Comput. Sci. 253, 121–134 (2010)

9. Jablonski, S., Volz, B., Dornstauder, S.: A meta modeling framework for domain
specific process management. In: COMPSAC 2008, pp. 1011–1016 (2008)

10. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual
concrete syntaxes in model engineering. In: GPCE. ACM (2006)

11. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Object Language (EOL).
In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

12. Kühne, T., Schreiber, D.: Can programming be liberated from the two-level style?
– Multi-level programming with DeepJava. In: OOPSLA 2007, pp. 229–244 (2007)

13. Langer, P., Wieland, K., Wimmer, M., Cabot, J.: From UML Profiles to EMF
Profiles and Beyond. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011. LNCS,
vol. 6705, pp. 52–67. Springer, Heidelberg (2011)

14. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Bookshelf (2007), http://www.antlr.org/

15. xText, http://xtext.org
16. Zschaler, S., Kolovos, D.S., Drivalos, N., Paige, R.F., Rashid, A.: Domain-Specific

Metamodelling Languages for Software Language Engineering. In: van den Brand,
M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 334–353. Springer,
Heidelberg (2010)

http://www.antlr.org/
http://xtext.org

Metamodel Based Methodology
for Dynamic Component Systems

Gabor Batori1, Zoltan Theisz2, and Domonkos Asztalos1

1 Software Engineering Group, Ericsson Hungary Ltd.
{gabor.batori,domonkos.asztalos}@ericsson.com

2 evopro Informatics and Automation Ltd.
zoltan.theisz@evopro.hu

Abstract. MBE solutions, including their corresponding MDA frameworks,
cover many parts of industrial application development processes. Although
model based development methodologies are in abundance, fully integrated,
domain specific methodologies still find their niche in specialized application
scenarios. In this paper, such an alternative methodology will be presented that
targets reconfigurable networked systems executing on top of interconnected het-
erogeneous hardware nodes. The methodology covers the whole development cy-
cle; it even utilizes a configuration model for component reconfigurability, and
also involves a first-order logic based structural modeling language, Alloy, in the
analysis of component deployment and reconfiguration. The methodology is sup-
ported by both a metamodel based tooling environment within GME and a robust
distributed middleware platform over Erlang/OTP. Due to its special applicability,
the methodology is limited in scope and scaling, though core parts have been suc-
cessfully showcased in a sensor network demonstrator of the IST project RUNES.

1 Introduction

Dynamic component systems provide a versatile platform for creating autonomic dis-
tributed peer-to-peer applications in various industrial domains. A particularly chal-
lenging case of these domains is the area of intelligent sensor networks, that combine
sensory and effectory facilities within their control loops. Due to the frequent recon-
figuration of software components, this field of applicability is characterized by the
inherent complexity of such environments; therefore creating an effective, high-quality
software development methodology that seriously unburdens the day-to-day tasks of
application developers is a rather ambitious endeavor. However, the Reconfigurable
Ubiquitous Network Embedded Systems (RUNES) IST project [1] successfully ad-
dressed this challenge by providing a common distributed component-based platform
architecture on top of heterogeneous networks of computational nodes. The RUNES
middleware platform [2] is accompanied by a corresponding model-based software de-
velopment methodology and tooling support. In effect, the approach and the imple-
mented framework are based on well–known concepts of Model-Integrated Computing
[3] and support a rapid application development environment in GME [4]. Nevertheless,
the validation and eventual verification of the produced dynamic networked components
turn out to be a rather ambitious endeavor, which requires detailed software engineer-
ing know-how. Hence, the original RUNES MBE methodology [5] had to be extended

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 275–286, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

276 G. Batori, Z. Theisz, and D. Asztalos

by some practical, formal logic based techniques in Alloy [6] in order to establish an
overarching metamodel based methodology. This covers the whole development cy-
cle, including formal scenario validation and better quality insurance for some MBE
modeling tasks by eliminating non-trivial dynamic errors or failure situations that may
frequently reoccur in the application design of reconfigurable component systems.

The paper is structured as follows: Section 2 provides a background on the techni-
cal domain of networked reconfigurable component systems, establishing this way the
conceptual frame for the rest of the paper. In Section 3, the metamodel based devel-
opment process is presented covering the whole life-cycle of component applications.
Next, Section 4 describes, in relative details, the modeling assets used in the various
stages of the development process, from scenario analysis up to its validation. Then,
Section 5 mentions some of the case studies and Section 6 gives some insight onto the
practical side of the methodology. Finally, in Section 7, the conclusions are provided.

2 Networked Reconfigurable Dynamic Component System

The architecture of the targeted networked reconfigurable dynamic component system
consists of a reflective, reconfigurable middleware model of the component system and
a corresponding Component Run-Time Kernel (CRTK) that provides the management
APIs. The reflective components are linked together by their interfaces, they communi-
cate via message sending and store their meta-data in a distributed database within the
middleware. Each computational node incorporates an instance of the CRTK, which
provides the basic middleware APIs of component management. These architectural
concepts are mirrored by an effective reference implementation, called ErlCOM [7],
which runs on Ericsson’s Erlang/OTP distributed infrastructure [8] utilizing Mnesia [9]
for the distributed database.

The component is the basic unit of the system that corresponds to an active actor-like
process, it owns snippets of executable code and has a uniquely registered name in the
middleware’s global registry. The components are organized into caplet hierarchies the
root of which is occupied by a capsule, which is the main process entity of the node. The
caplets’ main purpose is to provide supervisory facilities for the maintenance of robust-
ness and longevity of the whole component system. The supervisory decisions are taken
according to a set of predefined constraints stored within a particular component frame-
work. The interaction between components is carried out via pure message passing that
is managed by the bindings representing the behavioral policy of the communication
channels. The bindings are also components with special communication properties.
Message passing is synchronous; messages can be intercepted both before they enter
the interfaces of the recipients and after the replies have left those same interfaces. The
pre- and post-actions of the bindings constitute a list of additional transformations on in-
dividual messages. Bindings are created when a receptacle, that is, a required interface,
of a particular component is to be bound to a provided interface of another component,
provided that their compatibility has been checked and validated. Finally, both com-
ponents and bindings possess explicit state information which is stored as metadata in
the global repository within the distributed middleware deployed over the networked
nodes.

Metamodel Based Methodology for Dynamic Component Systems 277

3 Development Process

Professional software developments are always accompanied by corresponding devel-
opment processes that safeguard industrial scale applicability of the chosen technology.
Although there is a plethora of such MBE approaches, e.g. Rational Unified Process, the
ambition level of our process design was influenced by the aim of being able to cover all
stages of component based application development, including generative metamodel-
ing technologies and scenario validation and verification. The overview of the process
stages are depicted in Figure 1. The process is layered into five stages; namely, Sce-
nario, Application Model, Platform Model, Code Repository and Running System. The
arrows of the non-iterative part of the process, connecting together the artifacts of the
various stages, are labeled by sequence numbers in accordance to their timing. Here,
the stages are only briefly introduced, the assets these stages are operating on will be
described in Section 4.

Fig. 1. MBE development process

The Scenario evaluates and finalizes a set of scenario descriptions by establishing
the scope of the application domain. Based on our experience, real-life distributed ap-
plications usually involve intense interactions among application components, thus both
structural and interaction modeling are of equally importance. Therefore, the Applica-
tion Domain Model is created to cover the scenario in such a way that all use case details
are taken adequately into account and all stakeholders’ roles have been discovered.

The roles make up the basic elements of the interaction model, hence the dynamicity
of the use cases must be translated into corresponding Message Sequence Charts (MSC).
The Application Domain Model and the Interaction Model must be detailed enough so

278 G. Batori, Z. Theisz, and D. Asztalos

that quality investigations could be carried out in order to check the feasibility of the
design. Moreover, this stage involves many creative decisions, so both arrow 1 and 2 in
Figure 1 are dotted, this way showing that the activity is mainly manual in nature.

The Interaction Model is transformed into a FSM Model and then a further trans-
lation maps it onto the RUNES Component Model. The solid arrow indicates that
the translation is executed via non-trivial graph transformations as reported in [5].
The Application Domain Model usually requires creative refinements and only semi-
automatically (dotted line) can be translated into a RUNES Component Model.

The Platform Model stage has been conceived to support total semantics elaboration,
that is, the RUNES Component Model is extended by the semantics of the platform, the
components and the FSMs. This step involves some manual coding in Erlang so that
the total executable specification of the application can be fully established.

The final application model takes into consideration the distributed nature of the
application; hence, a Deployment Model is also getting populated. It entirely specifies
the total component allocation of the application over the available hardware nodes of
the underlying network.

The Code Repository is the stage which copes with source code management. The
code production is fully automated, which is indicated by dashed lines, and the resulted
code snippets of the components are stored within the global repository of the middle-
ware as modules ready to be loaded. The Deployment Model is translated into an initial
run-time configuration which is deployed over the participating ErlCOM nodes. Any
changes of the component configuration at run-time are managed by the Deployment
Tool, which continuously updates the Deployment Model.

The Deployment Tool implements a kind of metamodel-driven component manage-
ment, which generalizes policy-based network management in such a way that the in-
formation model used by the network management infrastructure mirrors the software
assets of the component based system produced during the generative model transla-
tors. In effect, it establishes a soft real-time synchronization loop between the GME
model repository and the running component application. In other words, the Deploy-
ment Tool, which is a protocol independent abstraction of GANA’s Decision Making
Element [10], first deploys the initial component configuration of the application then
it constantly readapts the component configuration by listening to both application and
middleware notifications and by observing all changes within the Deployment Model
stored inside the model repository. Therefore, with the control logic properly estab-
lished, the Deployment Tool is able to manage both re-active and pro-active component
reconfigurations as reported in [5,11].

The Alloy based model verification step extends this standard operation of the De-
ployment Tool. It contains two additional model transformations; one that originates
from the RUNES Component Model and another that takes a compatible RUNES De-
ployment Model and it turns them into a configuration scenario that can be verified
within Alloy Analyzer [12]. The model transformations produce configuration scenar-
ios, which include both the structural and the behavioral specifications of the
application. However, only those parts of the FSM action semantics are kept from the
total dynamic behavior that either directly relate to important control logic elements
of the scenario or which belong to the operations provided by the underlying ErlCOM

Metamodel Based Methodology for Dynamic Component Systems 279

middleware. These steps simplify, though, more precisely specify when and with which
parameters the application invokes the operations of the CRTK. Hence, the validation
of a particular scenario investigates mainly the evolution of the application from the
point of view of its component reconfigurations that are allowed by the semantics of
the ErlCOM middleware. The results of this verification step provide useful hints to the
run-time autonomic control mechanisms which will either be embedded into the appli-
cation or be defined as explicit rules of the policy engine. The validation and verification
step is rather iterative in nature, which is luckily well supported by Alloy Analyzer.

4 Modeling Assets

4.1 Interaction Model

Large-scale networked systems can be efficiently represented by a large number of in-
teracting services. By combining all those services an entity is getting involved in the
complete behavior specification for that particular entity can be established. Hence, our
service concept is effectively based on the interaction patterns between cooperating
entities. The notion of a role describes the contribution of an entity within a given in-
teraction pattern. In our methodology we follow a particular service oriented approach
[13], which maps service specifications onto a set of interconnected components, each
of them having an internal Finite State Machine (FSM), and a corresponding pool of
abstract communication channels. This techniques also incorporates an effective state
machine synthesis algorithms so that scenarios can be easily turned into a corresponding
set of FSMs, that fully specify the intended dynamic behavior of the specified system
(see Figure 2). The state machine generation is carried out automatically and relies on
two types of MSCs, the basic MSCs and the high level MSCs (HMSC). The output
of the transformation is one FSM per role within the domain model; that is, the FSM
implementing the respective role’s contribution to the services it is associated with. The
FSMs are incorporated in stage Application Model.

Fig. 2. Service-based interaction model

4.2 Structural Model

The core part the component metamodel is illustrated in Figure 3. The metamodel mir-
rors the constituents of the networked reconfigurable dynamic component systems (see

280 G. Batori, Z. Theisz, and D. Asztalos

Section 2). Hence, Components, short for ErlCOMComponent, are encapsulated units
of functionality and deployment, which interact with each other only via interfaces and
receptacles. Interfaces are defined by a list of related operation signatures and associ-
ated data types. Components can also provide multiple interfaces, this way embodying
a clear separation of concerns (e.g. between base functionality and component manage-
ment). Capsules and Caplets are platform containers providing access to the run-time
APIs. Bindings ensure consistent connection setup between a compatible Interface and
a Receptacle. The compatibility checks take into account the list of Operations describ-
ing the service specification of a particular Interface or Receptacle. The Operations are
further specified by their signatures containing the list of incoming parameters and the
outgoing ReturnValue if it exists. The component model itself is complemented by two
other architecture elements: component frameworks and reflective extensions. Compo-
nentFrameworks (CF) are groupings of Components with embedded constraints that
guarantee that only "meaningful" component configurations can be built. All entities
of the metamodel (Component, Capsule, Interface, Receptacle, Binding, Component-
Framework) can store arbitrary <key,value> attributes, which describe the reflective
behavior of the ErlCOM middleware. Component interactions can be intercepted at the
Bindings by pre- and post-actions to enable additional processing on the level of indi-
vidual messages. These last two features of the middleware are specified in a different
part of the component metamodel. The structural model of a component application is
designed in stage Platform Model.

Fig. 3. Structural metamodel

4.3 Behavior Model

The component behavior description is formalized in an abstract model of action se-
mantics (see Figure 4). This Behavior Model is rather generic, though it provides a
selection attribute for specifying the modeled behavior within the selected implemen-
tation language(s). The entities that can contain behavior descriptions are the Interface
and the Component. A fully specified component model is later translated into the cho-
sen target implementation language(s) by language optimized model interpreter(s). By

Metamodel Based Methodology for Dynamic Component Systems 281

Fig. 4. Behavior metamodel

this means, Components can be operationally described in various programming lan-
guages; however, they must rely on the same modeling framework. A language specific
model interpreter processes only those parts of a component model which contain rele-
vant information for the desired target language environment. Therefore, the metamodel
embodies various code snippets; the snippets are later woven together into executable
component implementations by the corresponding model interpreters. Although this
facility is rather versatile, over the ErlCOM CRTK only Erlang has been used as the
language of executable specification of dynamic behavior. The core building blocks of
such a specification are as follows:

– Init - Initialization code for a component, an interface or the system.
– Body - Executable specification of the operation of an interface. The signature of

the operation is defined in the model and automatically generated by the interpreter.
– StateAction - Specifies the action semantics inside an FSM state which is automat-

ically injected into the corresponding connection point within the generated FSM.

4.4 Deployment Model

The complete synthesized platform specific application model contains both the struc-
tural configuration and the behavioral semantics of all the constituent components,
including their interconnecting bindings and component framework constraints. That
model represents the functional view of the application; however, it neither specifies
how the application is deployed on the available networked nodes nor how it has to
start. Therefore, the deployment configuration (see Figure 5) must be modeled, too. The
deployed component configuration, which contains the complete synthesized platform
specific application model and the initial configuration of the components, is called
in our methodology as the total synthesized platform specific distributed application
model.

From the point of view of out model based framework, one of the most important
elements of the deployment infrastructure is the Deployment Tool. The schematics of
the Deployment Tool based reconfiguration is shown in Figure 6. The Deployment Tool

282 G. Batori, Z. Theisz, and D. Asztalos

Fig. 5. Deployment metamodel

analyzes the initial component configuration of the total synthesized platform specific
application model and creates the needed ErlCOM run-time elements by invoking the
corresponding operations of the ErlCOM API. (The complete ErlCOM API semantics,
including dynamic behavior of the middleware, has been published in [7]) After the
initial deployment has been completed the application starts running and the ErlCOM
CRTK continuously monitors all component reconfiguration and in case of observable
component changes events are sent containing descriptive notifications to the Deploy-
ment Tool. The Deployment Tool keeps track of the actual component configuration
of the running system by updating the total synthesized platform specific RUNES ap-
plication model. Deployment Tool plug-ins can also execute policy based rules either
re-actively or pro-actively. Any corrective changes on the modeled component config-
uration of the component application will be reflected by the run-time deployment.

4.5 Validation and Verification Model

Distributed reconfigurable component systems are complex by nature, hence, the impor-
tance of formal description techniques in system design is well known. In our method-
ology, we have based the formal model analysis on the usage of Alloy [6], a first order
logic based description language, that is powered by SAT solvers. This formal descrip-
tion technique has been successfully used for modelling various complex systems in a
wide range of application domains. It has been applied in [14] for the analysis of some
critical correctness properties that should be satisfied by any secure multicast protocols.
The idea of applying Alloy for component based system analysis was also suggested
by Warren et al. [15], where OpenRec’s Alloy model is investigated. This Alloy model
served as a conceptual basis for our own Alloy component model, which specifies all the
core items of the ErlCOM metamodel and middleware semantics, including structural
elements, the precise dynamics of finite state machines and the major concepts of the
deployment metamodel, in their first order logic based semantics. The precise definition
of this Alloy model,that enables the detailed analysis of dynamic component behavior
has been published in [16]. There are similar techniques that aim to identify various
types of dynamic system reconfigurations [17]; however, our approach is a better fit

Metamodel Based Methodology for Dynamic Component Systems 283

Fig. 6. Deployment Tool based component reconfiguration

for the networked reconfigurable dynamic component systems. Nevertheless, all these
attempts provide a rather good categorization of various problems and corresponding
solutions related to dynamic software evolution. Considering the tooling support, Aydal
et al. [18] found Alloy Analyzer one of the best analysis tools for state-based model-
ing languages, which has been a serious concern in our selection of Alloy for scenario
validation and verification purposes.

The graphical visualization of the structural model of a scenario example in Al-
loy Analyzer is depicted in Figure 7. It shows a model that represents a snapshot of a
dynamically evolving component configuration of a sensor network scenario example
taken from the RUNES project [1]. The components (black hexagons) have been de-
ployed over a cross shaped capsule (gray pentagons) topology. The connections among
the capsules of this topology are indicated by green arrows. The internal resources, here
the maximum number of deployed components/bindings, of the capsules are limited in
capacity. The concrete mapping of the components and bindings (white rhombuses)
onto the capsules, at a particular instance of time, is visualized by the brown and red
arrows, respectively.

Regarding the dynamic behavior of the FSMs, Figure 8 shows the state machine
of the NetworkDriver component as an example from the same scenario. The initial
status of the FSM is given by the start state (black ellipse) and the initial transition
(white rectangle). The other states are represented by gray colored ellipses, while the
transitions are shown via red rectangles.

Due to page limitation, this paper cannot detail on a full analysis example (simplified
example is reported in [16]), so the validation/verification session is only summarized.
Basically, such a session is carried out within Alloy Analyzer and it is driven by the
Alloy model of the scenario under investigation. Validation only generates a set of po-
tential runs of the scenario, while verification also injects logical properties into the Al-
loy specification of the component application before it looks for counter-examples, and
locates them if found. In general, the approach helps to analyze configuration sequences
so that they both comply with some application constraints and avoid non-trivial pitfalls.
The result of these analyses is fed back to the control logic of the Deployment Tool (see
Section 4.4).

284 G. Batori, Z. Theisz, and D. Asztalos

Fig. 7. Structural analysis model

Fig. 8. Dynamic analysis model

5 Case Studies

There had been many prototypical case studies during the frame of the RUNES IST [1]
project. The aim of the studies had been to successively evaluate the methodology and
its applied modeling and platform technology. The efforts of this continuous evalua-
tion resulted in the process described in Section 3. The final RUNES demonstrator [19]
based around a scaled down model of the road tunnel scenario consisting of ten TMote
Sky motes and an embedded Gateway hardware, which connected the motes to a local
visualization infrastructure, had been mostly developed following this process and rely-
ing on the available modeling assets. The Alloy based verification has been an internal
research activity aimed to exploit the results of the RUNES project and directly targeted
scenario verification and validation in Alloy. One of such a scenario validation use case

Metamodel Based Methodology for Dynamic Component Systems 285

has been reported publicly in [16]. Finally, this validation step has been integrated into
our methodology.

6 Evaluation

Every methodology has its limits, our approach not being an exception. The research
challenges of the RUNES project focused on the effective component based software
generation in the domains of embedded systems and sensor networks. Therefore, the
resulting methodology and tooling had to satisfy these challenges. The final demon-
strator had been developed following the described process, however, not all the code
assets could be automatically generated for each hardware nodes. The limitation was
due to the non-existence of ErlCOM CRTK on the TMote Sky motes. Although se-
mantically correct FSMs had been generated for the ErlCOM simulation of the mote
CRTK, these code snippets had to be manually ported to the target platform. Though,
we regard it as a platform limitation that may change in the future. Concerning our ver-
ification and validation efforts, we have hit the same practical barriers that are all too
known in the model checking community. Without applying adequate abstraction sce-
nario use cases are impossible to be analyzed verbatim from the development model.
Our practical approach relied on case-by-case scenario selection and expert validation
via Alloy Analyzer, however much of the Alloy description can be produced from the
scenario models.

7 Conclusion

This paper disseminated a multi-stage, metamodel based software development method-
ology for the domain of networked reconfigurable dynamic component systems. After
the brief introduction of the underlying technology, the steps of the development process
have been explained, then, the various model assets have been described one-by-one.
Although the production part of the development methodology had been thoroughly
tested within the RUNES IST project, the validation/verification part is still under fur-
ther investigation. The results are promising, but we are fully aware of the limitations
of first order logical based verification tools and the related scalability issues. Neverthe-
less, we firmly believe that this proposed MBE methodology well served the original
challenges of our motivation.

References

1. Arzén, K.-E., Bicchi, A., Dini, G., Hailes, S., Johansson, K.H., Lygeros, J., Tzes, A.: A
component-based approach to the design of networked control systems. European Journal of
Control (2007)

2. Costa, P., Coulson, G., Mascolo, C., Picco, G.P., Zachariadis, S.: The RUNES Middleware:
A reconfigurable component-based approach to networked embedded systems. In: Proc. of
the 16th Annual IEEE International Symposium on Personal Indoor and Mobile Radio Com-
munications (PIMRC 2005), Berlin, Germany (September 2005)

286 G. Batori, Z. Theisz, and D. Asztalos

3. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development of embed-
ded software. Proceedings of the IEEE 91, 145–164 (2003)

4. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G.,
Sprinkle, J., Volgyesi, P.: The generic modeling environment. In: Proceedings of WISP 2001,
Budapest, Hungary, pp. 255–277 (May 2001)

5. Batori, G., Theisz, Z., Asztalos, D.: Domain Specific Modeling Methodology for Recon-
figurable Networked Systems. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.)
MODELS 2007. LNCS, vol. 4735, pp. 316–330. Springer, Heidelberg (2007)

6. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press, London
(2006)

7. Batori, G., Theisz, Z., Asztalos, D.: Robust reconfigurable erlang component system. In:
Erlang User Conference, Stockholm, Sweden (2005)

8. Armstrong, J.: Making reliable distributed systems in the presence of software errors. SICS
Dissertation Series 34 (2003)

9. Mattsson, H., Nilsson, H., Wikström, C.: Mnesia – A Distributed Robust DBMS for Telecom-
munications Applications. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 152–163.
Springer, Heidelberg (1999)

10. Prakash, A., Theisz, Z., Chaparadza, R.: Formal Methods for Modeling, Refining and Ver-
ifying Autonomic Components of Computer Networks. In: Gavrilova, M.L., Tan, C.J.K.,
Phan, C.-V. (eds.) Transactions on Computational Science XV. LNCS, vol. 7050, pp. 1–48.
Springer, Heidelberg (2012)

11. Batori, G., Theisz, Z., Asztalos, D.: Configuration aware distributed system design in erlang.
In: Erlang User Conference, Stockholm, Sweden (2006)

12. Jackson, D.: Alloy analyzer (2008), http://alloy.mit.edu/
13. Krüger, I.H., Mathew, R.: Component Synthesis from Service Specifications. In: Leue, S.,

Systä, T.J. (eds.) Scenarios. LNCS, vol. 3466, pp. 255–277. Springer, Heidelberg (2005)
14. Taghdiri, M., Jackson, D.: A Lightweight Formal Analysis of a Multicast Key Management

Scheme. In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS, vol. 2767, pp.
240–256. Springer, Heidelberg (2003)

15. Warren, I., Sun, J., Krishnamohan, S., Weerasinghe, T.: An automated formal approach to
managing dynamic reconfiguration. In: 21st IEEE International Conference on Automated
Software Engineering (ASE 2006), Tokyo, Japan, pp. 37–46 (September 2006)

16. Theisz, Z., Batori, G., Asztalos, D.: Formal logic based configuration modeling and verifica-
tion for dynamic component systems. In: MOPAS 2011 (2011)

17. Walsh, D., Bordeleau, F., Selic, B.: A Domain Model for Dynamic System Reconfigura-
tion. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 553–567.
Springer, Heidelberg (2005)

18. Aydal, E.G., Utting, M., Woodcock, J.: A comparison of state-based modelling tools for
model validation. In: Tools 2008 (June 2008)

19. 5th RUNES Newsletter, p. 6 (2007),
http://www.socrades.eu/Documents/objects/file1201161327.23

http://alloy.mit.edu/
http://www.socrades.eu/Documents/objects/file1201161327.23

Bidirectional Model Transformation

with Precedence Triple Graph Grammars

Marius Lauder�, Anthony Anjorin�, Gergely Varró��, and Andy Schürr

Technische Universität Darmstadt, Real-Time Systems Lab,
Merckstr. 25, 64283 Darmstadt, Germany

name.surname@es.tu-darmstadt.de

Abstract. Triple Graph Grammars (TGGs) are a rule-based technique
with a formal background for specifying bidirectional model transfor-
mation. In practical scenarios, the unidirectional rules needed for the
forward and backward transformations are automatically derived from
the TGG rules in the specification, and the overall transformation pro-
cess is governed by a control algorithm. Current implementations either
have a worst case exponential runtime complexity, based on the number
of elements to be processed, or pose such strong restrictions on the class
of supported TGGs that practical real-world applications become infeasi-
ble. This paper, therefore, introduces a new class of TGGs together with
a control algorithm that drops a number of practice-relevant restrictions
on TGG rules and still has a polynomial runtime complexity.

Keywords: triple graph grammars, control algorithm of unidirectional
transformations, node precedence analysis, rule dependency analysis.

1 Introduction

The paradigm of Model-Driven Engineering (MDE) has established itself as a
promising means of coping with the increasing complexity of modern software
systems and, in this context, model transformation plays a central role [3]. As in-
dustrial applications require reliability and efficiency, the need for formal frame-
works that guarantee useful properties of model transformation arises. This is
especially the case for bidirectional model transformation, where defining a pre-
cise semantics for the automatic manipulation and synchronization of models
with a corresponding efficient tool support is quite challenging [4]. Amongst
the numerous bidirectional model transformation approaches surveyed in [18],
the concept of Triple Graph Grammars (TGGs) features not only solid formal
foundations [5,12] but also various tool implementations [7,11,12].

TGGs [16] provide a declarative, rule-based means of specifying the consis-
tency of source and target models in their respective domains, and tracking

� Supported by the ’Excellence Initiative’ of the German Federal and State Govern-
ments and the Graduate School of Computational Engineering at TU Darmstadt.

�� Supported by the Postdoctoral Fellowship of the Alexander von Humboldt Founda-
tion and associated with the Center for Advanced Security Research Darmstadt.

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 287–302, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

288 M. Lauder et al.

inter-domain relationships between model elements explicitly by automatically
maintaining a correspondence model. Although TGGs describe how triples con-
sisting of source, correspondence, and target models are simultaneously derived,
most practical software engineering scenarios require that source or target mod-
els already exist and that the models in the correspondence and the opposite
domain be consistently constructed by a unidirectional forward or backward
transformation. As a consequence, TGG tools that support bidirectional model
transformation (i) rely on unidirectional forward and backward operational rules,
automatically derived from a single TGG specification, as basic transformation
steps, and (ii) use an algorithm that controls which rule is to be applied on which
part of the input graph. As a TGG rule in the specification might require con-
text elements created by another TGG rule, the control algorithm must consider
these precedences/dependencies at runtime when (a) determining the order in
which graph nodes can be processed, and (b) selecting the rule to be applied.

In this paper, we introduce a node precedence analysis to provide a global view
on the dependencies in the source graph and to guide the transformation process.
Additionally, we combine the node precedence analysis with a rule dependency
analysis to support the control algorithm in determining the node processing
order and selecting the next applicable rule. This approach can now exploit
global dependency information, and perform an iterative, top-down resolution
which is more expressive (can handle a larger class of TGGs) and fits better
into future incremental scenarios. Finally, we prove that the improved control
algorithm is still correct, complete, and polynomial.

Section 2 introduces fundamental definitions using our running example while
Sect. 3 discusses existing TGG batch algorithms. Sect. 4 presents our rule de-
pendency and node precedence analysis, used by the TGG batch algorithm pre-
sented in Sect. 5. Finally, Sect. 6 gives a broader overview of related bidirectional
approaches and Sect. 7 concludes with a summary and future work.

2 Fundamentals and Running Example

In this section, all concepts required to formalize and present our contribution
are introduced and explained using our running example.

2.1 Type Graphs, Typed Graphs and Triples

We introduce the concept of a graphs, and formalize models as typed graphs.

Definition 1 (Graph and Graph Morphism). A graph G = (V,E, s, t) con-
sists of finite sets V of nodes, and E of edges, and two functions s, t : E → V
that assign each edge source and target nodes. A graph morphism h : G → G′,
with G′ = (V ′, E′, s′, t′), is a pair of functions h := (hV , hE) where hV : V → V ′,
hE : E → E′ and ∀e ∈ E : hV (s(e)) = s′(hE(e)) ∧ hV (t(e)) = t′(hE(e)).

Bidirectional Model Transformation with Precedence TGGs 289

Definition 2 (Typed Graph and Typed Graph Morphisms).

type type´

g

TG

G G´
A type graph is a graph TG = (VTG, ETG, sTG, tTG).
A typed graph (G, type) consists of a graph G together with
a graph morphism type: G → TG.
Given typed graphs (G, type) and (G′, type′), g : G → G′ is
a typed graph morphism iff the diagram commutes.

These concepts can be lifted in a straightforward manner to triples of connected

graphs denoted as G = GS
hS←− GC

hT−→ GT as shown by [6,12]. In the following,
we work with typed graph triples and corresponding morphisms.

Example. Our running example specifies the integration of company structures
and corresponding IT structures. The TGG schema (Fig. 1) is the type graph
triple for our running example. The source domain is described by a type graph
for company structures: A Company consists of a CEO, Employees and Admins. In
the target domain, an IT structure (IT) provides PCs and Laptops in Networks

controlled by a Router. The correspondence domain specifies valid links between
elements in the different domains.

hasPC

IT Company

Network

PC

CEO

Admin

Employee

Router

C2I

E2P

A2R

em
pl

oy
s

has

routes

owns

source domain correspondence domain target domain

c2i

a2r

e2p

i2c

r2a

p2e

worksFor

contains

Laptop
hasLaptop

E2L e2l l2e

Fig. 1. TGG Schema for the integration of a company with its IT structure

A schema conform (typed graph) triple is depicted in Fig. 2. The company ES

has a CEO named Andy for whom administrator Ingo works. Additionally, Andy
employs Tony and Marius. The corresponding IT structure ES-IT consists of a
router WP53 for the network ES-LAN with a PC PC65 and a laptop X200.

ES:Company

Andy:CEO

Ingo:Admin

Marius:Employee

e1:employs

correspondence domain

Tony:Employee

ES-LAN:Network

WP53:Router

cl1:C2I

cl2:A2R

o:owns

target domain

e2:employs

w:worksFor

h:has

X200:Laptop
PC65:PC

r:routes

cl3:E2P

cl4:E2L

ci:c2i

ar:a2r

ep:e2p pe:p2e

ra:r2a

Ic:i2c

hp:hasPC
hl:hasLaptop

el:e2l le:l2e

c:contains

ES-IT:IT

source domain

Fig. 2. A TGG schema conform triple

290 M. Lauder et al.

2.2 Triple Graph Grammars and Rules

The simultaneous evolution of typed graph triples such as our example triple
(Fig. 2) can be described by a triple graph grammar consisting of transformation
rules. This is formalized in the following definitions.

Definition 3 (Graph Triple Rewriting for Monotonic Creating Rules).

G G´

L R

PO
m m´

A monotonic creating rule r := (L,R), is a pair of typed
graph triples such that L ⊆ R. A rule r rewrites (via adding
elements) a graph triple G into a graph triple G′ via a match

m : L → G, denoted as G
r@m� G′, iff m′ : R → G′ is defined

by building the pushout G′ as denoted in the diagram.

Elements in L denote the precondition of a rule and are referred to as context
elements, while elements in R \ L are referred to as created elements.

Definition 4 (Triple Graph Grammar). A triple graph grammar TGG :=
(TG,R) consists of a type graph triple TG and a finite set R of monotonic
creating rules. The generated language (G∅ denotes the empty graph triple) is

L(TGG) := {G | ∃ r1, r2, . . . , rn ∈ R : G∅
r1@m1� G1

r2@m2� ...
rn@mn� Gn = G}.

Example. The rules depicted in Fig. 3 build up an integrated company and
IT structure simultaneously. Rule (a) creates the root elements of the models
(a Company with a CEO and a corresponding IT), while Rule (b) appends ad-
ditional elements (an Admin and a corresponding Router with the controlled
Network). Rules (c) and (d) extend the models with an Employee, who can
choose a PC or a Laptop. We use a concise notation by merging L and R of
a rule, depicting context elements in black without any markup, and created
elements in green with a “++” markup.

c:Company it:IT cl:C2I ci:c2i ic:i2c
++ ++ ++ ++ ++

ceo:CEO

h:has

++
++

Rule (a)

a:Admin n:Network

cl1:C2I

cl2:A2R

c:Company

ceo:CEO r:Router

h:has

w:worksFor

ci:c2i ic:i2c

ar:a2r ra:r2a

r:routes

o:owns

++ ++ ++
++

++ ++
++

++
c:contains

++

it:IT

Rule (b)

e:Employee

cl1:C2I c:Company

ceo:CEO

p:PC cl2:E2P

it:IT
h:has

em:employs

ci:c2i ic:i2c

ep:e2p pe:p2e

c:contains

hp:hasPC

++ ++ ++
++ ++

++ ++

n:Network

Rule (c)

e:Employee

cl1:C2I c:Company

ceo:CEO

l:Laptop cl2:E2L

it:IT
h:has

em:employs

ci:c2i ic:i2c

el:e2l le:l2e

c:contains

hl:hasLaptop

++ ++ ++
++ ++

++ ++

n:Network

Rule (d)

Fig. 3. Rules (a)–(d) for the integration

Bidirectional Model Transformation with Precedence TGGs 291

2.3 Derived Operational Rules

The real potential of TGGs as a bidirectional transformation language lies in the
automatic derivation of operational rules. Such operational rules can be used
to transform a given source domain model to produce a corresponding target
domain model and vice versa. Although we focus in the following sections only
on a forward transformation, all concepts and arguments are symmetric and can
be applied analogously for the case of a backward transformation.

It has been proven by [5,16] that a sequence of TGG rules, which describes a
simultaneous evolution, can be uniquely decomposed into (and conversely com-
posed from) a sequence of source rules that only evolve the source model and
forward rules that retain the source model and evolve the correspondence and
target models. These operational rules serve as the building blocks used by a
control algorithm for unidirectional forward and backward transformation.

Definition 5 (Derived Operational Rules). Given a TGG = (TG,R) and
a rule r = (L,R) ∈ R, a source rule rS = (SL, SR) and a forward rule
rF = (FL, FR) can be derived according to the following diagram:

SR =

SL = LS

RS

R =

L = LS

RS

LC

RC

LT

RT

L

R

L

R

FR =

FL = RS

RS

LC

RC

LT

RT

id

L

R

L

R

source rule rS forward rule rF TGG rule r

Example. From Rule (c) of our running example (Fig. 3), the operational rules
rS and rF depicted in Fig. 4 can be derived. The source rule extends the source
graph by adding an Employee to an existing CEO in a Company, while the forward
rule rF transforms an existing Employee of a CEO by creating a new E2P link
and a PC in the corresponding Network.

e:Employee

c:Company

ceo:CEO

h:has

em:employs

++
++

e:Employee

cl1:C2I c:Company

ceo:CEO

p:PC cl2:E2P

it:IT
h:has

em:employs

ci:c2i ic:i2c

ep:e2p pe:p2e

c:contains

hl:hasPC

++ ++ ++
++ ++

++ ++

n:Network

e:Employee

cl1:C2I c:Company

ceo:CEO

p:PC cl2:E2P

it:IT
h:has

em:employs

ci:c2i ic:i2c

ep:e2p pe:p2e

c:contains

hl:hasPC

++ ++
++

++ ++

n:Network

source rule rS forward rule rF TGG rule r

Fig. 4. Source and forward rules derived from Rule (c)

292 M. Lauder et al.

3 Related Work on TGG Control Algorithms

Constructing forward (and conversely backward) transformations from opera-
tional rules requires a control algorithm that is able to determine a sequence of
forward rules to be applied to a given source graph. The challenge is to specify
a control algorithm that is correct (only consistent graph triples are produced),
complete (all consistent triples, which can be derived from a source or a target
graph, can actually be produced), efficient (runtime complexity scales polyno-
mially with the number of nodes to be processed), and still expressive enough
for real-world applications. To better understand this challenge, we discuss how
existing algorithms handle the source graph of our example triple (Fig. 2).

(I) Bottom-Up, Context-Driven and Recursive: An established strat-
egy is to transform elements in a bottom-up context-driven manner, i.e., to start
with a random node and check if all context nodes (dependencies) are already
transformed before the selected initial node can be transformed. If a context
node is not yet transformed, the algorithm transforms it, by recursively check-
ing and transforming its context. Context-driven algorithms always start their
transformation process with an arbitrarily selected node, without “knowing” if
this was a good choice, i.e., if the node can be transformed immediately or if
the input model as a whole is even valid. Such algorithms are correct, but, in
general, have problems with completeness due to wrong local decisions.

(I.a) Backtracking: A simple backtracking strategy could be employed to
cope with wrong local decisions. For our example, a first iteration over all nodes
would determine that only ES together with Andy can be transformed by applying
Rule (a). In a second iteration the algorithm would determine again in a trial
and error manner that only Ingo can be transformed next with Rule (b), as
neither Tony nor Marius can be transformed using Rule (c) or (d) (a Network is
missing in the opposite domain). Finally, Tony and Marius can be transformed.
This algorithm is correct and complete as shown in [5,16] but has exponential
runtime and is, therefore, impractical for real-world applications.

It is, however, possible to guarantee polynomial runtime of the context-driven
recursion strategy by restricting the class of supported TGGs appropriately as
in case of the following approaches.

(I.b) Functional Behavior: Demanding functional behavior [7,9] guarantees
that the algorithm can choose freely between applicable rules at every decision
point and will always get the same result without backtracking. Although func-
tional behavior might be suitable for fully automatic integrations, our experience
with industrial partners [14,15] shows that user interaction or similar guidance
(e.g., configuration files) of the integration process is required and leads natu-
rally to non-functional sets of rules with certain degrees of freedom [13,14,15].
Please note that our running example is clearly non-functional due to Rules
(c) and (d), which can be applied to the same elements on the source side,
but create different elements on the target side. Therefore, depending on the
choice of rule applications, different target graphs are possible with our running
example. Demanding functional behavior is a strong restriction that reduces
the expressiveness and suitability of TGGs for real-world applications [12,17].

Bidirectional Model Transformation with Precedence TGGs 293

Nevertheless, such a strategy has polynomial runtime and its applicability can
be enforced statically via critical pair analysis [6].

(I.c) Local Completeness: Algorithms that allow a non-functional set of
rules to handle a larger set of scenarios exploit the explicit traceability to cope
with non-determinism and non-bijectivity [19], while still guaranteeing complete-
ness for a certain class of TGGs. Hence, [12] demands local completeness, i.e.,
that a local decision between rules that can transform the current node cannot
lead to a dead-end. This means that a local choice (which can be influenced by
the user or some other means) might actually result in different output graphs,
which are, however, always consistent, i.e., in the defined language of the TGG
(L(TGG)). For our running example, we could start with an arbitrary node, e.g.,
Ingo. According to Rule (b), a CEO and a Company are required as context and
Rule (a) will thus be applied to ES and Andy. After processing Ingo, Tony and
Marius can be transformed in an arbitrary order, each time making a local choice
if a PC (Rule (c)) or Laptop (Rule (d)) is to be created. Furthermore, a dangling
edge check is introduced in [12] to further enlarge the class of supported TGGs
via a look-ahead to prevent wrong local decisions that would lead to “dangling”
edges that can no longer be transformed. Note that our running example is not
local complete, as it cannot be decided whether an Admin or an Employee should
be transformed first (Rules (c) and (d) demand an element on the target side
that can only be created by Rule (b)). For this reason, the algorithm might fail
if it decides to start with one of the Employees. In this case, Rules (c) and (d)
would state that ES and Andy are required as context and have to be transformed
first. This is, however, insufficient as a Network must be present in the target
domain as well. This context-driven approach fails here as transforming ES and
Andy with Rule (a) does not guarantee that the employees Marius and Tony can
be transformed. The problem here is that context-driven algorithms only regard
the given input graph for controlling the rule application and do not consider
cross-domain context dependencies such as Network in this case.

(II) Top-Down and Iterative: In contrast to context-driven recursive strate-
gies, which lack a global view on the overall dependencies and seem to be un-
suitable for an incremental synchronization scenario, algorithms can operate in
a top-down iterative manner exploiting a certain global view on the whole input
graph instead of arbitrarily choosing a node to be transformed.

(II.a) Correspondence-Driven: The algorithm presented by [11] requires
that all TGG rules demand and create at least one correspondence link, i.e., a
hierarchy of correspondence links must be built up during the transformation.
The correspondence model can be used to store dependencies between links in
this case and is interpreted as a directed acyclic graph, which is used to drive
and control the transformation. This algorithm is both batch and incremental
but it is unclear from [11] for which class of TGGs completeness can be ensured.

(II.b) Precedence-Driven: A precedence-driven strategy defines and uses
a partial order of nodes in the source graph according to their precedence, i.e.,
the sorting guarantees that the nodes can only be transformed in a sequence
that is compatible with the partial order.

294 M. Lauder et al.

4 Rule Dependency and Precedence Analysis for TGGs

In this section, we present a node precedence analysis that provides a partial
order required for a precedence-driven strategy, together with a rule dependency
analysis that partially solves the problem of cross-domain context dependencies
caused by context elements in the domain under construction.

4.1 Rule Dependency Analysis

To handle cross-domain context dependencies, we utilize the concept of sequential
independence as introduced by [6], to statically determine which rules depend
on other rules. The intuition is that a rule r2 depends on another rule r1, if r1
creates elements that r2 requires as context.

Definition 6 (Rule Dependency Relation �R). Given rules r1 = (L1, R1)

L1

R1

L2

R2

D
f

h g

and r2 = (L2, R2), r2 is sequentially dependent on r1
iff a graph D and morphisms f, h exist, such that there
exists no morphism g as depicted to the right, i.e., at
least one element required by r2 (an element in L2), is
created by r1 (this element is in R1 but not in L1).
The precedence relation �R ⊆ R × R is defined for a given TGG as follows:

r1 �R r2 ⇔ r2 is sequentially dependent on r1.

In practice, �R can be calculated statically by determining all possible intersec-
tions of R1 and L2. If at least one element in an intersection is not in L1 then
r2 is sequentially dependent on r1 (i.e., r1 �R r2).

Example. For the TGG rules of our running example (Fig. 3), the following
pairs of rules constitute �R: Rule (a) �R Rule (b), Rule (a) �R Rule (c),
Rule (a) �R Rule (d), Rule (b) �R Rule (c), and Rule (b) �R Rule (d).

4.2 Precedence Analysis

The following definitions present our path-based node precedence analysis which
is used to topologically sort the nodes in a source graph and thus control the
iterative transformation process:

Definition 7 (Paths and Type Paths). Let G be a typed graph with type
graph TG. A path p between two nodes n1, nk ∈ VG is an alternating sequence
of nodes and edges in VG and EG, respectively, denoted as p := n1 · eα1

1 · n2 ·
. . . · nk−1 · eαk−1

k−1 · nk, where αi ∈ {+,−} specifies if an edge ei is traversed from
source s(ei) = ni to target t(ei) = ni+1 (+), or in a reverse direction (–). A type
path is a path between node types and edge types in VTG and ETG, respectively.
Given a path p, its type (path) is defined as typep(p) := typeV (n1) ·typeE(e1)α1 ·
typeV (n2) · typeE(e2)α2 · . . . · typeV (nk−1) · typeE(ek−1)

αk−1 · typeV (nk).

For our analysis we are only interested in paths that are induced by certain
certain patterns present in the TGG rules.

Bidirectional Model Transformation with Precedence TGGs 295

Definition 8 (Relevant Node Creation Patterns). For a TGG = (TG,R)
and all rules r ∈ R, where r = (L,R) = (LS ← LC → LT , RS ← RC → RT).
The set PathsS denotes all paths in RS (note that LS ⊆ RS).
The predicates contextS : PathsS → {true, false} and
createS : PathsS → {true, false} in the source domain are defined as follows:
contextS(pr) := ∃ r ∈ R s.t. pr is a path between two nodes nr, n

′
r ∈ RS :

n’r
++

nr pr

(nr ∈ LS) ∧ (n′
r ∈ RS \ LS), i.e., a rule r in R contains

a path pr which is isomorphic to the node creation pattern
depicted in the diagram to the right.

createS(pr) := ∃ r ∈ R s.t. pr is a path between two nodes nr, n
′
r ∈ RS :

n’r
++

nr pr
++ (nr ∈ RS \LS)∧ (n′

r ∈ RS \LS), i.e., a rule r in R contains
a path pr which is isomorphic to the node creation pattern
depicted in the diagram to the right.

We can now define the set of interesting type paths, relevant for our analysis.

Definition 9 (Type Path Sets). The set TPathsS denotes all type paths of
paths in PathsS (cf. Def. 8), i.e., TPathsS := {tp | ∃ p ∈ PathsS s.t. typep(p) =
tp}. Thus, we define the restricted create type path set for the source domain
as TPcreate

S := {tp ∈ TPathsS | ∃ p ∈ PathsS ∧ typep(p) = tp ∧ createS(p)},
and the restricted context type path set for the source domain as
TPcontext

S := {tp ∈ TPathsS | ∃ p ∈ PathsS ∧ typep(p) = tp ∧ contextS(p)}.
In the following, we formalize the concept of precedence between nodes, indicating
that one node could be used as context when transforming another node.

Definition 10 (Precedence Function PFS). Let P := {�,
.
=, ·�·} be the set

of precedence relation symbols. Given a TGG = (TG,R) and the restricted type
path sets for the source domain TPcreate

S ,TPcontext
S . The precedence function for

the source domain PFS : {TPcreate
S ∪ TPcontext

S } → P is computed as follows:

PFS(tp) :=
� iff tp ∈ {TPcontext

S \ TPcreate
S }

.
= iff tp ∈ {TPcreate

S \TPcontext
S }

·�· otherwise
Example. PFS for our running example consists of the following entries:
Rule (a): PFS(Company · has+ · CEO) = .

= and PFS(CEO · has− · Company) = .
=

Rule (b): PFS(Company · has+ · CEO · worksFor− · Admin) = � and
PFS(CEO · worksFor− · Admin) = �

Rules (c) and (d): PFS(Company · has+ · CEO · employs− · Employee) = � and
PFS(CEO · employs− · Employee) = �

Restriction. As our precedence analysis depends on paths in rules of a given
TGG, the presented approach requires TGG rules that are (weakly) connected
in each domain. Hence, considering the source domain, the following must hold:
∀ r ∈ R, ∀ n, n′ ∈ RS : ∃ p ∈ PathsS between n and n′.

296 M. Lauder et al.

Based on the precedence function PFS , relations �S and
.
=

∗
S can now be defined

and used to topologically sort a given input graph and determine the sets of
elements that can be transformed at each step in the algorithm.

Definition 11 (Source Path Set). For a given typed source graph GS, the
source path set for the source domain is defined as follows:
PS := {p | p is a path between n, n′ ∈ VGS ∧ typep(p) ∈ {TPcreate

S ∪TPcontext
S }}.

Definition 12 (Precedence Relation �S). Given PFS, the precedence func-
tion for a given TGG, and a typed source graph GS . The precedence relation
�S ⊆ VGS × VGS for the source domain is defined as follows: n �S n′ if there
exists a path p ∈ PS between nodes n and n′ such that PFS(typep(p)) = �.

Example. For our example triple (Fig. 2), the following pairs constitute �S :
(ES �S Ingo), (ES �S Tony), (ES �S Marius), (Andy �S Ingo), (Andy �S Tony),
and (Andy �S Marius).

Definition 13 (Relation
.
=S). Given PFS, the precedence function for a given

TGG, and a typed source graph GS . The symmetric relation
.
=S⊆ VGS × VGS

for the source domain is defined as follows: n
.
=S n′ if there exists a path p ∈ PS

between nodes n and n′ such that PFS(typep(p)) = .
=.

Definition 14 (Equivalence Relation
.
=

∗
S). The equivalence relation

.
=

∗
S is

the transitive and reflexive closure of the symmetric relation
.
=S.

Example. For our example triple (Fig. 2), the following equivalence classes
constitute

.
=

∗
S : {Andy, ES}, {Ingo}, {Tony}, and {Marius}.

Definition 15 (Precedence Graph PGS). The precedence graph for a given
source graph GS is a graph PGS constructed as follows:
(i) The equivalence relation

.
=

∗
S is used to partition VGS into equivalence classes

EQ1, . . .EQn which serve as the nodes of PGS, i.e., VPGS := {EQ1, . . . ,EQn}.
(ii)The edges in PGS are defined as follows:

EPGS := {e | s(e) = EQi, t(e) = EQj : ∃ ni ∈ EQi, nj ∈ EQj with ni �S nj}.
Example. The corresponding PGS constructed from our example triple is de-
picted in Fig. 5(a) in Sect. 5.

5 Precedence TGG Batch Algorithm

In this section, we present our batch algorithm (cf. Algorithm 1) and explain
how the introduced rule dependency and node precedence analyses are used
to efficiently transform a given source graph. For a forward transformation (a
backward transformation works analogously), the input for the algorithm is a
graphGS , the statically derived rule dependency relation �R, and the precedence
function for the source domain PFS .

Procedure transform determines a graph triple GS ← GC → GT as out-
put. The first step (line (2)) of the algorithm is to build the precedence graph

Bidirectional Model Transformation with Precedence TGGs 297

Algorithm 1. Precedence TGG Batch Algorithm

1: procedure transform(GS ,�R,PFS)
2: PGS ← buildPrecedenceGraph(GS,PFS)
3: while (PGS contains equivalence classes) do
4: readyNodes ← all nodes in equiv. classes in PGS without incoming edges
5: readyNodes ← sort readyNodes utilizing �R

6: for (node n in readyNodes) do
7: transformedNodes ← chooseAndApplyRule(n)
8: if transformedNodes �= ∅ then
9: PGS ← remove all nodes in transformedNodes from PGS
10: break
11: end if
12: end for
13: if transformedNodes = ∅ then
14: terminate with error � Local Completeness Criterion violated
15: end if
16: end while
17: return GS ← GC → GT

18: end procedure

PGS according to Def. 15. Note that the procedure buildPrecedenceGraph

will terminate with an error if there is a cycle in the precedence graph and it is
thus impossible to sort the elements of the source graph according to their de-
pendencies. Starting on line (3), a while-loop iterates over equivalence classes in
PGS until there are none left. In the while-loop, the set readyNodes contains all
nodes that can be transformed next, i.e., whose context elements have already
been transformed (line (4)). This set is determined by taking all nodes in the
equivalence classes of PGS , which do not have incoming edges (dependencies).
On line (5), readyNodes is sorted according to the partially ordered relation �R,
i.e., the rules that can be used to transform nodes in readyNodes are determined,
sorted with �R and reflected in readyNodes. This could be achieved by assigning
an integer to each rule according to the partial order of �R and then selecting
the largest number of all rules that translate n ∈ readyNodes for n.1 Next, a
for-loop iterates over the sorted readyNodes (line (6)). On line (7) the procedure
chooseAndApplyRule is used to determine and filter the rules as presented
in [12], allowing for user input or choosing arbitrarily from the final applica-
ble rules. If a rule could be successfully chosen and applied to transform n on
line (7), a non-empty set of transformedNodes is returned that is used to update
PGS on line (9). In this case, the for-loop is terminated and the while-loop is re-
peated with the updated and thus “smaller” PGS . If transformedNodes is empty,
the for-loop is repeated for the next node in readyNodes. If transformedNodes,
however, remains empty on line (13), we know that no node in readyNodes has
been transformed and that the algorithm has hit a dead-end. This can only

1 If it is not possible to sort readyNodes due to cycles in �R, this additional analysis
supplies no further information and readyNodes remains unchanged.

298 M. Lauder et al.

happen for TGGs that violate the Local Completeness Criterion (cf. algorithm
strategy I.c in Sect. 3) and are not in the class of supported TGGs.

Example. To demonstrate the presented algorithm, we apply a forward trans-
formation for the source graph of our example triple depicted in Fig. 2. Given as
input is GS , the rule dependency relation �R (depicted as a graph in Fig. 5(b)),
and the precedence function PFS (cf. example for Def. 10). On line (2), the prece-
dence graph PGS for GS , depicted in Fig. 5(a), is built. PGS is acyclic, hence the
transformation can continue.

ES:Company Andy:CEO

Ingo:Admin Marius:Employee Tony:Employee

(a)

Rule (a)

Rule (c)
Rule (b)

Rule (d)

(b)

Fig. 5. PGS for the input graph (left) and relation �R for all rules (a)–(d) (right)

On line (4), the set readyNodes is determined, consisting in this case of the nodes
ES and Andy from a single equivalence class of PGS . On line (5), only one rule can
be used to transform both nodes and, therefore, the sorting is trivial. On line (6)
ES or Andy is chosen randomly, and in either case, the only candidate rule is
Rule (a) (Fig. 3), which can be directly applied on line (7). Again in either case,
transformedNodes contains both nodes as Rule (a) transforms ES and Andy simul-
taneously. PGS is updated on line (9) to consist of three unconnected equivalence
classes Ingo, Tony, and Marius, and the for-loop terminates. In the second iter-
ation through the while-loop, readyNodes now contains all these three elements
and will be sorted according to �R on line (5). This time, the sorting reveals that
Ingo must be transformed before Tony and Marius as Rules (c) and (d) both
require a Network as context in the target domain, which can only be created by
applying Rule (b) first, i.e., Rule (b)�RRule (c), Rule (b)�RRule (d) (Fig. 5(b)).
The for-loop in line (6), therefore, starts with Ingo. Applying Rule (b) (line (7))
puts Ingo in transformedNodes, PGS is updated on line (9) to now contain only
Tony and Marius and the for-loop is terminated with the break on line (10).
In the third iteration, readyNodes contains Tony and Marius, and no sorting is
needed as Rules (c) and (d) do not depend on each other. On line (6) Tony could
be randomly selected first and (arbitrarily or via user input) Rule (c) could
be chosen to be applied on line (7). After updating PGS again and breaking
out of the for-loop, only Marius remains untransformed. Similar to the penulti-
mate iteration, Rule (d) could be selected and applied this time. Updating PGS
on line (9) empties the precedence graph, which terminates the while-loop on
line (3). The created graph triple depicted in Fig. 2 is returned on line (17).

Bidirectional Model Transformation with Precedence TGGs 299

Formal Properties of the Precedence TGG Batch Algorithm

In the following we argue that the presented algorithm retains all formal prop-
erties stipulated in [17] and proved for the context-driven algorithm of [12].

Definition 16 (Correctness, Completeness and Efficiency).
Correctness: Given a source graph GS , the transformation algorithm either
terminates with an error or produces a graph triple GS ← GC → GT ∈ L(TGG).
Completeness: For all triples GS ← GC → GT ∈ L(TGG), the transformation
algorithm produces a consistent triple GS ← G′

C → G′
T ∈ L(TGG) for the input

source graph GS .
Efficiency: According to [17], a TGG batch transformation algorithm is efficient
if its runtime complexity class is O(nk), where n is the number of nodes in the
source graph to be transformed and k is the largest number of elements to be
matched by any rule r of the given TGG.

All properties are defined analogously for backward transformations.

Theorem. Algorithm 1 is correct, complete and efficient for any source-local
complete TGG [12].

Proof.
Correctness: If the algorithm returns a graph triple, i.e., does not terminate
with an error, it was able to determine a sequence of source rules r1S , r2S , . . . , rnS

that would build the given source graph GS and, thus, the corresponding se-
quence of forward rules r1F , r2F , . . . , rnF that transform the given source graph
(Def. 5). The Decomposition and Composition Theorem of [5] guarantees that
it is possible to compose the sequence r1S , r2S , . . . , rnS , r1F , r2F , . . . , rnF to the
sequence of TGG rules r1, r2, . . . , rn which proves that the resulting graph triple
is consistent, i.e., GS ← GC → GT ∈ L(TGG). ��
Completeness: Showing completeness is done in two steps: First of all, we
consider the algorithm without the additional concept of rule dependencies via
the relation �R.

The remaining algorithm transforms nodes with the same concepts (e.g., dan-
gling edge check) as the previous algorithm in [12], but iteratively in a fixed
sequence, for which we guarantee, by definition of the precedence graph (cf. 15),
that the context of every node is always transformed first. As the context-driven
strategy taken by the algorithm in [12] is able to transform a model by arbitrarily
choosing an element and transforming its context elements in a bottom-up man-
ner (cf. Sect. 3), the fixed sequence taken by our algorithm must be a possible
sequence that could be chosen by the algorithm in [12]. Algorithm 1 can, there-
fore, be seen as forcing the context-driven algorithm to transform elements in one
of the possible sequences, from which it can arbitrarily choose. This shows that
all completeness arguments from [12] can be transferred to the new algorithm,
i.e., Algorithm 1 is complete for the class of local complete TGGs.

In a second step, we now consider the algorithm with the additional relation
�R and, therefore, the capability of handling specifications with cross-domain

300 M. Lauder et al.

context dependencies as in our running example. We have shown in Sect. 3 that
the algorithm presented in [12] cannot cope with such specifications as they vio-
late the local-completeness criterion. We can, hence, conclude that Algorithm 1
is more expressive than the previous context-driven algorithm as it can handle
certain TGGs that are not local complete. We leave the precise categorization
of this new class of TGGs to future work. ��
Efficiency: Building the precedence graph PGS on line (2), essentially a topo-
logical sorting, is realizable in O(nl), where l is the maximum length of relevant
paths according to PFS . Note that l can be at most of size k (the largest number
of elements to be matched by any rule r of the given TGG), thus we can estimate
this with O(nk). The while-loop starting on line (3) iterates through PGS , which
will be decreased every time by at least one node from an equivalence class. The
while-loop is, thus, run in the worst-case (equivalence classes in PGS all consist-
ing of exactly one node) n times. In the while-loop, we select equivalence classes
without incoming edges in line (4). This can be achieved in O(n) by iterating
through PGS . Building the topological order on line (5) requires inspecting all
nodes in readyNodes and their appropriate rules in O(n). The for-loop starting
on line (6) iterates in the worst-case over all nodes in readyNodes where updating
PGS on line (9), requires traversing all successor nodes which is at most n − 1
(i.e., O(n)). As argued in [12], transforming a node, i.e., checking all conditions
and performing pattern matching (line (7)), is assumed to run in O(nk) (cf.
Def. 16). Summarizing, we obtain: nk + n · (n+ n+ n · (nk + n)) ∈ O(nk). ��
As TGGs are symmetric [8], all arguments can be transferred analogously to
backward transformations.

6 Related Work on Alternative Bidirectional Languages

Complementing our related work on TGG batch algorithms (cf. Sect. 3), we now
focus on alternative bidirectional languages that share and address similar chal-
lenges as TGGs but take fundamentally different strategies. As bidirectionality is
a challenge in various application domains and communities, there exists a sub-
stantial number of different approaches, formalizations and tools [18]. The lenses
framework is of particular interest when compared to TGGs, as [8] has shown
that incremental TGGs can be viewed as an implementation of a delta-based
framework for symmetric lenses. Although we have presented a batch algorithm
for TGGs, our ultimate goal is to provide a solid basis for an efficient incremen-
tal TGG implementation. As compared to existing lenses implementations for
string data or trees such as Boomerang [2], TGGs are better suited for MDE
where model transformations operate on complex graph-like structures. Similar
to TGGs, GRoundTram, a bidirectional framework based on graph transforma-
tions [10], aims to support model transformations in the context of MDE. There
are, however, a number of interesting differences: (i) While GRoundTram de-
mands a forward transformation from the user and automatically generates a
consistent backward transformation, TGGs (in this respect similar to lenses)
provide a language from which both forward and backward transformations

Bidirectional Model Transformation with Precedence TGGs 301

are automatically derived. Both approaches face a different set of non-trivial
challenges. (ii) GRoundTram uses UnQL+, which is based on the graph query al-
gebra UnCAL, with a strong emphasis on compositionality, while TGGs are rule-
based algebraic graph transformations. (iii) GRoundTram maintains traceability
in an implicit manner while TGGs create explicit typed traceability links between
integrated models, which can be used to store extra information for incremental
model synchronization or manual reviews. In contrast to both Boomerang and
GRoundTram, TGGs adhere to the fundamental unification principle in MDE
(everything is a model) and as such, a bidirectional model transformation spec-
ified as a TGG is a model which is conform to a well defined TGG metamodel.
Unification has wide-reaching consequences including enabling a natural boot-
strap and higher order transformations. Finally, TGGs served as an inspiration
and basis for the standard OMG bidirectional transformation language QVT
and can be regarded as a valid implementation thereof [18].

7 Conclusion and Future Work

In this paper, an improvement of our previous TGG batch algorithm was pre-
sented. We introduced a novel node precedence analysis of TGG specifications
combined with a rule dependency analysis to further support the batch transfor-
mation control algorithm in determining the node processing order. The result is
an iterative batch transformation strategy in a top-down manner with increased
expressiveness. We have shown that this algorithm runs in polynomial runtime
and complies to the formal properties for TGG implementations according to
[17], and, therefore, is well-suited for real-world applications where efficiency is
almost as important as the reliability of the expected result.

As a next step, we shall implement the presented algorithm as an extension of
our current batch implementation in our metamodeling tool eMoflon2[1], and
start working on an efficient incremental TGG algorithm based on our rule
dependency and node precedence analyses. Finally, providing a rule checker that
decides at compile time if a given TGG can be transformed by our algorithm is
a crucial task to improve the usability of our tool.

References

1. Anjorin, A., Lauder, M., Patzina, S., Schürr, A.: eMoflon: Leveraging EMF and
Professional CASE Tools. In: Heiß, H.U., Pepper, P., Schlingloff, H., Schneider, J.
(eds.) Proc. of MEMWe 2011. LNI, vol. 192. GI (2011)

2. Bohannon, A., Foster, J., Pierce, B., Pilkiewicz, A., Schmitt, A.: Boomerang: Re-
sourceful Lenses for String Data. ACM SIGPLAN Notices 43(1), 407–419 (2008)

3. Czarnecki, K., Helsen, S.: Feature-based Survey of Model Transformation Ap-
proaches. IBM Systems Journal 45(3), 621–645 (2006)

4. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidi-
rectional Transformations: A Cross-Discipline Perspective. In: Paige, R.F. (ed.)
ICMT 2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009)

2 http://www.moflon.org

http://www.moflon.org

302 M. Lauder et al.

5. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving
Bidirectional Model Transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE
2007. LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, New York (2006)

7. Giese, H., Hildebrandt, S., Lambers, L.: Toward Bridging the Gap between Formal
Semantics and Implementation of Triple Graph Grammars. In: Lúcio, L., Vieira,
E., Weißleder, S. (eds.) Proc. of MoDeVVA 2010, pp. 19–24. IEEE (2010)

8. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correct-
ness of Model Synchronization Based on Triple Graph Grammars. In: Whittle,
J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 668–682.
Springer, Heidelberg (2011)

9. Hermann, F., Golas, U., Orejas, F.: Efficient Analysis and Execution of Correct and
Complete Model Transformations Based on Triple Graph Grammars. In: Bézivin,
J., Soley, M.R., Vallecillo, A. (eds.) Proc. of MDI 2010. ICPS, vol. 482, pp. 22–31.
ACM (2010)

10. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Nakano, K.: GRoundTram: An Integrated
Framework for Developing Well-Behaved Bidirectional Model Transformations. In:
Alexander, P., Pasareanu, C., Hosking, J. (eds.) Proc. of ASE 2011, pp. 480–483.
IEEE (2011)

11. Kindler, E., Rubin, V., Wagner, R.: An Adaptable TGG Interpreter for In-Memory
Model Transformations. In: Schürr, A., Zündorf, A. (eds.) Proc. of Fujaba Days
2004, pp. 35–38 (2004)

12. Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended Triple Graph Grammars
with Efficient and Compatible Graph Translators. In: Engels, G., Lewerentz, C.,
Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765,
pp. 141–174. Springer, Heidelberg (2010)

13. Königs, A.: Model Transformation with Triple Graph Grammars. In: Proc. of MTIP
2005 (2005)

14. Lauder, M., Schlereth, M., Rose, S., Schürr, A.: Model-Driven Systems Engineer-
ing: State-of-the-Art and Research Challenges. Bulletin of the Polish Academy of
Sciences, Technical Sciences 58(3), 409–422 (2010)

15. Rose, S., Lauder, M., Schlereth, M., Schürr, A.: A Multidimensional Approach for
Concurrent Model Driven Automation Engineering. In: Osis, J., Asnina, E. (eds.)
Model-Driven Domain Analysis and Software Development, pp. 90–113. IGI (2011)

16. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–
163. Springer, Heidelberg (1995)

17. Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars. In: Ehrig, H., Heckel,
R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425.
Springer, Heidelberg (2008)

18. Stevens, P.: A Landscape of Bidirectional Model Transformations. In: Lämmel, R.,
Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 408–424. Springer,
Heidelberg (2008)

19. Stevens, P.: Bidirectional Model Transformations in QVT: Semantic Issues and
Open Questions. SoSym 9(1), 7–20 (2008)

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 303–318, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Timed Automata-Based Method to Analyze
EAST-ADL Timing Constraint Specifications

Tahir Naseer Qureshi, De-Jiu Chen, and Martin Törngren

KTH – The Royal Institute of Technology, Stockholm, Sweden
{tnqu,chen,martin}@md.kth.se

Abstract. The increasing development complexity of automotive embedded
systems has led to industrial needs of improved information management, early
verification and validation of a system etc. EAST-ADL; an automotive-specific
architectural description language provides a structured model-based approach
for information management throughout the development process. A method to
formally analyze consistency of EAST-ADL based timing constraint specifica-
tions using timed-automata is presented. A mapping scheme providing a basis
for automated model-transformations between EAST-ADL and timed-automata
is the main contribution. The method is demonstrated with a case study of a
brake-by-wire system. Guidelines for extending the mapping framework are
also provided.

Keywords: Model-based development, EAST-ADL, Timed-Automata,
UPPAAL, Timing Constraints.

1 Introduction

Model-based development (MBD), i.e. the use of computerized models for different
activities [1], is being applied in various engineering domains to manage complexities
and increase development efficiency. In case of automotive embedded control
systems, MBD is being used extensively in many different forms such as automatic
code generation from design models using tools like Simulink. Traditionally, the
development starts with algorithm (e.g. control algorithm for fuel control) formaliza-
tion followed by steps like rapid prototyping, generation of production code,
hardware-in-the-loop (HIL) testing and final calibrations [2]. The process is efficient
for single ECUs (Electric Control Units) but several issues related to timing, interface
and communication occur during ECU integration [2]. There is a need for efficient
information management and integration of models, tools and languages related to
different views and abstraction levels. The views can be product-related, such as
hardware, software and infrastructure, or concern related, such as safety, dependabili-
ty etc. Information traceability, reusability of solutions, early verification and valida-
tion, reduced time and cost are examples of the intended benefits from an efficient
information management and integration.

One approach to deal with multiple views and structured information management
is to base the development on a comprehensive system model to which the views can

304 T.N. Qureshi, D.-J. Chen, and M. Törngren

be related. There exist several generic as well as domain-specific solutions. SysML1 ,
EAST-ADL (Electronics Architecture and Software Technology- Architecture De-
scription Language) [3] and AUTOSAR (AUTomotive Open System ARchitec-
ture) [4] are examples of such solutions. EAST-ADL is automotive specific having a
broad coverage of system lifecycle and specification support with different views and
concerns in a well-structured manner. It is also aligned with AUTOSAR and other
automotive standards such as ISO26262 [5]. It relies on external tools for activities
like analysis of specifications related to functionality, requirements or safety, verifica-
tion and validation etc. Wide industrial acceptance of EAST-ADL is hindered by its
limited tool support.

The presented work is motivated by the fact that ensuring consistency between the
constraints specified for different parts of a system can lead to decreased integration
issues. A method which paves a way for automated model-transformation between
EAST-ADL and timed automata is presented in this paper. It is shown that EAST-
ADL timing constraint specifications and the execution behavior of a component can
be abstracted as a network of timed-automata. The main contribution is a mapping
framework based on pre-defined timed-automata templates, its usage as well as exten-
sion guidelines for checking specification consistency. A case-study of a brake-by-
wire system is used to demonstrate the usage of the framework with PapyrusUML[6]
and UPPAAL[7] as the tools for modeling and analysis respectively.

2 EAST-ADL and Timing Extension – Concept and Notations

EAST-ADL evolved through several European projects during the last decade com-
plementing the best industrial practices such as Hardware-In-Loop (HIL) and Soft-
ware-In-Loop (SIL) simulations with the goal to provide an architectural description
language to facilitate the development of automotive embedded systems. The core of
the EAST-ADL language definition [3] consists of structural specifications at four
different abstraction levels (namely vehicle, analysis, design and implementation).
For example product line features (end-to-end functionality) and their variations are
specified at the vehicle level whereas the detailed design of functional components,
connections and allocations to various hardware components is carried out at the
design level. The core supports hierarchical specifications of a system with the
concepts of function types and prototypes together with various types of ports and
connectors with automotive specific attributes. Specifications of requirements,
dependability, variability, and behavioral and timing constraints are supported by
corresponding language extensions which refer to the core functional artifacts of
EAST-ADL. This modular approach not only separates the definition of functional
and non-functional aspects but also enables the use of existing tools for various
development activities.

The presented work focuses on a subset of EAST-ADL artifacts applicable to the
design level of abstraction and described as follows:

1 http://www.omgsysml.org/#Specification

Method to Analyze EAST-ADL Timing Constraint Specifications 305

Fig. 1. EAST-ADL core structure and behavior extension

The core and behavior artifacts focused in this paper are shown in Fig. 1 where the
artifacts prefixed with Behavior:: are part of the behavior annex and the rest belongs
to the core language definition.. The behavior of a function (FunctionType or Design-
FunctionType in Fig. 1) can be classified as the execution behavior and the internal
behavior. EAST-ADL relies on external representations like Simulink for internal
behavior representation and specifies its execution behavior in the form of triggering
information (determined by the triggerPolicy of the associated FuncitonTrigger) i.e. if
a function is event triggered (e.g. arrival of data at its port) or time-triggered. The
behavior of an EAST-ADL function has three main steps consisting of reading data at
input ports, performing computations and writing data on the output port. All func-
tions have run-to-completion semantics i.e. a function runs all the steps before it starts
to execute again. All the functions run concurrently unless specified by the designer.
Moreover, the ports of an EAST-ADL function have single-sized overwritable and
non-consumable buffer semantics.

Fig. 2. Events and event chains in EAST-ADL

306 T.N. Qureshi, D.-J. Chen, and M. Törngren

The timing extension of EAST-ADL is derived from TADL (Time Augmented De-
scription Language) [12]. It can be used to specify the timing constraints on the ex-
ecution behavior of a function and precedence between different functions. As shown
in Fig. 2 the timing extension is based on the concepts of events and event chains.
EventFunction, EventFunctionFlowPort and EventFunctionClientServerPort are the
three event kinds referring to the triggering of a function by some sort of dispatcher,
arrival of a data at a port and service requested (or received) by a client-server port
respectively.

Fig. 3. EAST-ADL timing constraints

A function or a group of functions perform some kind of transformation of data
present at their input ports and send the output through their output ports. Event
chains and the constraints applied on them as well as individual events enable a de-
signer to specify end-to-end timing constraints such as the minimum and maximum
time allowed from the occurrence of one event called stimulus to the occurrence of
another event called response. An event chain can further be refined into smaller
event chains called strands (parallel chains) or segments (sequenced). The constraints
addressed in this paper are shown in Fig. 3. The periodicity of an event occurrence is
an example of possible constraints on the events shown as PeriodicEventConstraint in
Fig. 3. In addition to above it is also possible to specify constraints on internal beha-
vior (shown as FunctionBehavior in Fig. 1). For additional information, the readers
are referred to [3, 9, 12].

3 Timed Automata and UPPAAL

Timed automata (TA) [8] is essentially an automata augmented with clock and time
semantics to enable formal model-checking of real-time systems. It has been used for

PrecedenceConstraint

preceeding[1]:DesignFunctionPrototype
Successive[1..*]:DesignFunctionPrototype

TimingConstraint

lower[0..1]:TimeDuration
Upper[0..1]:TimeDuration

ExecutionTimeConstraint

variation[1]:TimeDuration
targetDesignFunctionType[0..1]:DesignFunctionType
targetDesignFunctionPrototype[0..1]:DesignFunctionPrototype

EventConstraint

event[0..1]:Event

TimeDuration

value[1]:float

PeriodicEventConstraint

period[1]:TimeDuration
jitter[1]:TimeDuration
minimumArrivalTime[1]:TimeDuration

ArbitraryEventConstraint

minimumArrivalTime[1..*]:TimeDuration
maximumArrivalTime[1..*]:TimeDuration

DelayConstraint

Scope[0..1]:EventChain
nominal[0..1]:TimeDuration

InputSynchronizationConstraint

width[0..1]:TimeDuration

OutputSynchronizationConstraint

width[0..1]:TimeDuration

Reaction
Constraint

AgeTiming
Constraint

Method to Analyze EAST-ADL Timing Constraint Specifications 307

modeling and verification of several systems and scenarios. Let C be a set of clocks,
 a set of clock constraints in the form where , , , , , , . A timed-automata TA is a tuple , , , ∑, , where,

• L is a finite set of locations, nodes or states.
• Lo is the initial location.
• ∑is a set of actions
• ∑ 2 is a set of edges or transition.
• : assigns invariants to locations

The semantics of timed-automata is a transition system where state and pairs (l,u), and
transition are defined by rules , , for a non-negative real , , , , , , 0
where

• u ,v denote functions known as clock assignments mapping to . In addition
 is used to denote that u satisfy the guard g.

• For , u+d is the clock assignment which maps all to
• For , 0 denote the clock reset mapping all clocks in r to 0 with u

for the other clocks in .
Often a set of timed-automata are used in a networked form with a common set of
clocks and actions. A special synchronization action denoted by an exclamation sign
(!) or a question mark (?) is used for synchronization between different timed automa-
ta. A timed automata in a network is concurrent unless and until mechanisms like
synchronization actions are applied. The readers are referred to [8] for a formal defi-
nition and semantics of a network of timed-automata. .

3.1 UPPAAL

UPPAAL is a timed-automata based model checking tool for modeling, validation
and verification of real-time systems. The tool has three main parts: an editor, a
simulator and a verifier, for modeling, early fault detection (by examination i.e.
without exhaustive checking) and verification (covering exhaustive dynamic
behavior) respectively. A system in UPPAAL is modeled as a network of timed
automata. A subset of CTL (computation tree logic) is used as the query language in
UPPAAL for verification. In addition to the generic timed-automata UPPAAL uses
the concept of broadcast channels for synchronizing more than two automata. The
concept of urgent and committed state is also introduced to force a transition as
soon as it is enabled. The three kinds of properties which can be checked with
UPPAAL are (i) Reachability i.e. some condition can possibly be satisfied, (ii)
Safety i.e. some condition will never occur and (iii) Liveness i.e. some condition
will eventually become true.

308 T.N. Qureshi, D.-J. Chen, and M. Törngren

UPPAAL uses the concept of templates for reusability and prototyping of system
components. Each template can be instantiated multiple times with varying parame-
ters. The instantiation is called a process. The tool has been used in many industrial
cases such as a gear box controller from Mecel AB and Philips Audio protocol and
several more2.

4 EAST-ADL and Timed-Automata Relationship

Both timed-automata and EAST-ADL are developed for real-time embedded systems.
While the purpose of TA is model-checking of generic real-time system, EAST-ADL
on the other focuses on describing structural and some behavioral aspects of embed-
ded systems. There exist at least four different possibilities for mapping and relating
EAST-ADL with timed-automata. (i) One possibility is to use timed-automata for
defining the behavior of a system by exploiting EAST-ADL external behavior repre-
sentation support (FunctionBehavior in Fig. 1) as done in [15]. (ii) Another possibility
is to transform EAST-ADL behavior extension artifacts [9] to timed-automata for
behavioral analysis. (iii) A third possibility is to model timing constraints with timed-
automata with a suitable behavior abstraction. (iv) Finally, a combination of both
timing constraints and EAST-ADL behavior constraints [9] can also be considered for
formal analysis using timed-automata. As the internal functional behavior and hence
the associated constraints are out of scope of the work, only the timing constraints and
design level of abstraction is considered, corresponding to possibilities (iii), with the
following assumptions and limitations:

• Only the Functional Design Architecture (FDA) is considered. The design level
has two parts namely Functional design architecture (FDA) and Hardware Design
Architecture (HDA). While HDA covers hardware topology, FDA is used to model
software components, middleware functions, device drivers and hardware transfer-
functions. Hence, FDA together with and constraints such as time budgets applied
on its contained functions can provide a suitable abstraction for the target analysis.

• Only one function type i.e. the FDA is allowed to have prototypes of other functions
in its composition for the sake of simplicity. An FDA is a DesignFunctionType (Fig.
1) which can contain several parts (DesignFunctionPrototype). Each prototype refers
to a type (DesignFunctionType). This kind of modeling allows a hierarchical compo-
sition with infinite depth. Such concept of hierarchical decomposition is not possible
with timed-automata; therefore, an additional mechanism for flattening the functional
hierarchy (if allowed) of EAST-ADL models will be required if hierarchy is allowed.

4.1 Mapping Scheme

This subsection presents a mapping scheme between EAST-ADL and timed-
automata. The proposed scheme is based on the experiences from a previous work
[10] where a timed-automata model of an existing emergency braking system (EBS)

2 http://www.uppaal.com/

Method to Analyze EAST-ADL Timing Constraint Specifications 309

was utilized to identify relevant EAST-ADL artifacts followed by the verification of
the mapping by transformation of a representative industrial case-study of a brake-by-
wire system in EAST-ADL to timed-automata. The same approach is used for the
proposed mapping scheme and its validation. This mapping consists of templates for
each function and timing constraint type. The templates for the timing constraints act
as monitors indicating if a constraint is met or not. In addition to the description of the
semantics of the mapped EAST-ADL artifacts, template implementations in UPPAAL
are also presented for illustration.

Event. In terms of timed automata, an event can be modeled as a synchronization
action. For example, the synchronization action output! for the transition to the final
from the execute state shown in b can be considered as an event corresponding
to an EventFunctionFlowPort referring to a port with direction out or EventFunc-
tionClientServerPort with kind of either sentRequest or sentResponse.

 (a) Periodic (b) Aperiodic

Fig. 4. Function templates

Function Execution Behavior. As shown in Fig. 4, a function can be modeled with
three or two locations for time-triggered and event triggered systems respectively.
The type is determined by the triggering policy of its function trigger shown in Fig. 1.
In Fig. 4 , the Init, Execute and Finished states represent the initial, execution (related
to internal behavior) and waiting for the execution period to finish. The parameters
maxexecTime and minexecTime are obtained from ExecutionTimeConstraint (Fig. 3)
where max- and minexecTime correspond to the upper and lower limits of timing con-
straint. On the other hand the period is obtained from PeriodicEventConstraint ap-
plied on the EventFunction referring to the DesignFunctionType under consideration.
The input? and output! synchronization actions correspond to reading and writing on
all the input and output ports respectively of an EAST-ADL function.

Timing and Event Constraints. A constraint is either satisfied or not satisfied; there-
fore, four locations corresponding to initial, intermediate, success, fail states are ne-
cessary to model a constraint. On occurrence of an event, the automaton proceeds to
the intermediate state(s). Based on the applicable guard conditions the (fail) success
state is reached if a particular constrained is (not) satisfied. Both the timing (related
to event chain) and event constraints refer to one or more events. The transition(s) to
reach a fail (safe) state is enabled by clock guards and synchronization actions
representing the timing bounds and event occurrences respectively. Each automaton

310 T.N. Qureshi, D.-J. Chen, and M. Törngren

has a local clock denoted by LocalClock in the following text. The event and timing
constraint templates are as follows:

Periodic event constraint: A periodic event constraint is used to specify constraints
on the periodicity of an event. An UPPAAL template for a periodic event constraint is
shown in Fig. 5. The three applied parameters (also shown in Fig. 3) in this template
are period (P), jitter (J) and the minimum arrival time of the event. The synchroniza-
tion action “event?” can refer to any event whose periodicity is required to be con-
strained.

Fig. 5. Periodic event constraint template

Reaction constraint: A reaction constraint specifies a bound between the occurrences
of stimuli? and responses of an event chain. According to [3] there exist five possible
specification combinations ({upper, lower}, {upper, lower, jitter}, {upper}, {lower},
{nominal, jitter}) for a delay constraint. The presented work considers only one com-
bination i.e. {upper} which corresponds to the maximum time allowed.

(a) Reaction constraint (b) Extension illustration

Fig. 6. Reaction constraint template

In the reaction constraint template (Fig. 6a) the clock is reset when a stimulus event
occurs. As soon as the response event occurs the automata transits to Fail or Success
state depending on the elapsed time i.e. the LocalClock value. The template considers
only one stimulus and one response. It can be extended for multiple stimuli and

Method to Analyze EAST-ADL Timing Constraint Specifications 311

responses by adding additional states and parallel transitions. For example, in case of
two stimuli, two states between the Init and Wait states e.g. s1 and s2 can be added
where the transition from Init to s1 can correspond to the first stimulus occurrence, s1
to Wait corresponding to the second stimulus and vice versa. This is illustrated in Fig.
6b.

Precedence constraint: A precedence constraint specifies the constraint on the order
of execution of events. A template for two events is shown in Fig. 7 where input2 is
constrained to occur after input1. In order to extend this template for more events
additional states can be added similar to reaction constraint leading to the Fail and
Success states.

Fig. 7. Precedence event constraint template

Arbitrary event constraint: An arbitrary event constraint specifies bounds on an ape-
riodic event. The event can occur singly, occasionally or irregularly. The bounds can
be specified between two or more occurrences of an event by minimum and maxi-
mum arrival time attributes in the form of an array. The element of the array corres-
ponds to the time between the first and later occurrences of an event. For example, the
third element corresponds to the time constraint between the first and the fourth event
occurrences.

Fig. 8. Arbitrary event constraint template

The template shown in Fig. 8 models bounds on two consecutive occurrence of an
event. If it is desired to constraint occurrence of the first and third event then a new
state and transition can be added before the clock value is checked. The template can
be extended for more than three occurrences in a similar fashion.

312 T.N. Qureshi, D.-J. Chen, and M. Törngren

Fig. 9. Input synchronization constraint template

Input and output synchronization constraints: An input synchronization constraint
specifies the time width within which a set of stimuli of an event chain should occur.
In order to model the input synchronization constraint the automata shown in Fig. 9 is
used. The actions input1? and input2? represent two stimuli and the parameter Time-
Width (represented as width in Fig. 3) determines the maximum time allowed between
two stimuli.

The output synchronization event is similar to the input synchronization except that
instead of response the stimuli are constrained to occur in a specified time width.
Therefore, the same template can be used with the responses as inputs. In order to
incorporate more events, additional states and transitions corresponding to different
combinations of occurrences can be added between Init and Fail states similar to the
reaction time constraint.

Fig. 10. Execution rate difference illustration

Port Buffer and Execution Rate Difference. An EAST-ADL system is inherently
deadlock free due to the semantics of ports discussed in section 2. However, two
UPPAAL processes with different periodicities synchronized using channels can theo-
retically lead to a deadlock situation due to timing mismatch. For example, the two
functions F1 and F2 are in a deadlock condition shown in Fig. 10. Both F1 and F2
have the same minimum and maximum execution time but F1 has a faster rate of
execution (twice in Fig. 10). The deadlock is due to the fact that sender F1 is ready to
output a signal but F2 is not in the state where it can receive it.

Method to Analyze EAST-ADL Timing Constraint Specifications 313

(a) Fast to slow rate transition (b) Slow to fast rate transition

Fig. 11. Rate transition templates

Due to the above mentioned issue, we introduce the concept of rate-transition tem-
plates shown in Fig. 11 inspired by the Matlab rate-transition block3. The template in
Fig. 11a is used when the sender is running at a faster rate (less period) than the re-
ceiver. The actions input? and output! correspond to the input from the sender and
output to the receiver respectively. The difference parameter is the difference of fre-
quency obtained by dividing the period of the receiver with that of sender. For the
case where the sender has low frequency, the template in Fig. 11b is used. This tem-
plate mimics the the EAST-ADL assumed communication mechanism (over-writing
semantics). The parameter Period corresponds to the period of the receiving function.
This solution acts similar to a zero-order hold function in Simulink.

4.2 Verification

With the above defined relationship between EAST-ADL and timed-automata, the
verification essentially becomes a reachability analysis in the following form:

1. A given constraint is satisfied iff for all initial conditions, the state “Fail” is never
reached for all cases.

2. A system is free of any inconsistencies iff there is not deadlock and all the con-
straints are satisfied.

4.3 Usage Considerations and Limitations

Template Usage. The templates discussed above exist in several variants depending
on the composition of EAST-ADL function and the applied timing constraints. The
first variation is the existence of input and output channels. If an EAST-ADL function
does not have any input port then a template without an input channel will be chosen
and vice versa. Such type of function is shown as F1 in Fig. 10. The second variation
is the type of channel used for synchronization where the rule applied is that “if an
output of a function is an input for two or more functions then the channel is of type
broadcast otherwise”. A function in this case also includes the modeled timing con-
straints. For example, the output of F1 in Fig. 10 will be of type broadcast if there

3
 http://www.mathworks.se/help/toolbox/simulink/slref/ratetransition.html

314 T.N. Qureshi, D.-J. Chen, and M. Törngren

another function F3 exists whose input is the output of F1. The function F3 can be
another function or a timing constraint.

In addition to above, consistency between time measurements units have to be en-
sured by the user. For example, it is now allowed to use ms for timing constraint and
ns for another. In addition, the UPPAAL processes have to be updated with new
channel names when rate-transition is used. This is shown in Fig. 13 where BTC and
GBC were supposed to communicate with CalculatedTorque channel but due to the
use of rate-transition CalcualatedTorque2 channel is introduced in the system de-
scription.

To verify a given set of timing constraints of a system specification, the following
two query language syntaxes have to be used.

• A [] (not deadlock) to verify if there exist any deadlock.
─ Two possible reasons for a deadlock can be (i) the absence of one or more rate-

transition templates in case of different frequency between two communicating
functions and (ii) an incorrect synchronization channel type. This typically oc-
curs if an ordinary channel type where a broadcast type is required.

• A [] (not XX.Fail) to verify that a timing constraint modeled with an UPPAAL
process named XX never reaches the failed state.
─ In case a fail state is reached, the timing constraints have one or more inconsis-

tencies.

4.4 Mapping Summary

EAST-ADL UPPAAL Remarks

Function Prototype Fig 4 Type determined by the associated function trigger policy.

Min- and max execution time from the associated execution

time constraint and period from the periodic event constraint

referring to the EventFunction associated with the function.

Periodic event constraint Fig 5 Direct mapping of event name. MinArrivalTime is the lower

time limit specified by the constraint. Other parameters are

directly mapable.

Reaction constraint Fig 6 Stimulus and response names from the event chain in scope,

reaction time from the upper value the timing constraint.

Precedence constraint Fig 7 Direct mapping of event names.

Arbitrary event con-

straint

Fig 8 Direct mapping of event name and parameters.

Input synchronization

constraint
Fig 9 Event names from list of stimuli of the event chain in scope,

time width from the upper time limit of the reaction time
constraint associated with the event chain.

Output synchronization

constraint
Fig 10 Event names from list of responses of the event chain in

scope, time width from the upper time limit of the reaction

time constraint associated with the event chain.

Functional Design Ar-

chitecture
System Each of the prototypes in FDA take the form of a process in

UPPAAL. The connectors will take the form of synchroniza-

tion channel.

Method to Analyze EAST-ADL Timing Constraint Specifications 315

5 Brake-by-Wire Case Study

The brake-by-wire (BBW) system is a representative industrial case study. This case
has been used in several EAST-ADL related projects like ATESST2 and TIMMO. It
provides coverage of EAST-ADL artifacts and methodology at multiple abstraction
levels. A simplified version of the case is shown in Fig. 12. The figure is a snapshot
from its EAST-ADL (UML profile4) implementation. For simplicity, three actuators,
ABS functions and their connections are not shown in the figure. The triggers, events
and constraints of the case study are listed in the following tables:

Fig. 12. UML implementation of the Brake-by-wire system

Table 1. Function Triggers

Trigger Name Attributes

BTCTriggerEvent TargetFunctionPrototype=pBTC, TriggerPolicy = Time

GBCTriggerEvent TargetFunctionPrototype=pGBC, TriggerPolicy = Time

ABSFRTrigger TargetFunctionFlowPort=pABSFR, TriggerPolicy=Event

ABSFLTrigger TargetFunctionFlowPort=pABSFL, TriggerPolicy =Event

ABSRRTrigger TargetFunctionFlowPort=pABSRR, TriggerPolicy =Event

ABSRLTrigger TargetFunctionFlowPort=pABSRL, TriggerPolicy =Event

Table 2. Events

Event Name Type Attributes

BTCTriggerEvent EventFunction TargetFunctionPrototype=pBTC

GBCTriggerEvent EventFunction TargetFunctionPrototype=pGBC

CalculatedTorque EventFunctionFlowPort TargetFunctionFlowPort=DesiredTorque

TargetFunctionPrototype=pBTC

actuation1 EventFunctionFlowPort TargetFunctionFlowPort=ActOut

TargetFunctionPrototype=pABSFR

4 http://www.maenad.eu/public/

EAST-ADL-ProfileSpecification_M2.1.9.pdf

316 T.N. Qureshi, D.-J. Chen, and M. Törngren

Table 3. Event Chain

Event Chain Name Attributes

EC1 Stimulus = CaclulatedTorque, Response = actuation1

Table 4. Constraints

Constraint Name Type Attributes

BTCExecution Execution time TargetFunctionPrototype=pBTC , Lower = 3 , Upper =5

GBCExecution Execution time TargetFunctionPrototype=pGBC, Lower = 2, Upper =6

ABSFRExecution Execution time TargetFunctionPrototype=pABSFR, Lower = 2, Upper =3

ABSFLExecution Execution time TargetFunctionPrototype=pABSFL, Lower = 2, Upper =3

ABSRRExecution Execution time TargetFunctionPrototype=pABSRR, Lower = 2, Upper =3

ABSRLExecution Execution time TargetFunctionPrototype=pABSRL, Lower = 2, Upper =3

RC1 Reaction Scope = EC1, ReactionTime = 50 ms

PEC1 Periodic event TargetEvent= CaclulatedTorque, MinArrivalTime= 3ms, Ideal-

Period = 10 ms, Jitter = 9 ms

PCC1 Precedence Preceding = CalculatedTorque, Successive = actuation1

An UPPAAL model of a subset of the constraints and functions described above is

shown in Fig. 13.

Fig. 13. Brake-by-wire model in UPPAAL

Method to Analyze EAST-ADL Timing Constraint Specifications 317

In the above figure, pBTC, pGBC and pABSFR are function prototypes shown in
Fig. 12b. RT1 is a rate transition process added between pBTC and pGBC. PCC1,
RC1 and PEC1 are listed in Table 4 where clock guards (in green) correspond to the
listed timing values. As listed in Table 1 pABSFR is event triggered whereas pBTC
and pGBC are time triggered. The stimulus and response of the event chain in scope
of RC1 is listed in Table 3 with the corresponding events in Table 2.

All the constraints were found to be satisfying the specifications for the BBW sys-
tem. Experiments were made to validate the templates. It included changing the peri-
odicity of BTC and the order of inputs for the precedence constraint i.e. by using BTC
output as the successive event instead of the preceding one. The latter case is shown
in Fig. 13. Intuitively an increase in the period of BTC to a particular level should
violate the periodicity constraint. The same observation was made with the UPPAAL
model. Similarly, the change in the order of sequence leads to the Fail state of the
precedence constraint.

6 Related Work

A number of efforts have been carried out to enable the analysis, verification and
validation of system architecture design captured in EAST-ADL. This paper is an
extension of [10] where the work was limited to the reaction time constraint and eval-
uation of the possibility of model transformation between EAST-ADL and UPPAAL.
[11] presents an effort to integrate the SPIN model checker for formal verification of
EAST-ADL models. The automata addressed by SPIN are untimed and the SPIN
transformation needs to be updated for the latest EAST-ADL release. Furthermore,
the timing constraint package used in this work is a subset of TADL (Timing Aug-
mented Description Language) [12] developed by the TIMMO project consortium5.
The authors of [13] proposed the use of MARTE6 for complementing EAST-ADL to
enable timing analysis. A method for timed-automata based analysis of EAST-ADL
models is presented in [15] where timed-automata are used for behavior analysis and
modeling. The work in this paper complements the above cited references by provid-
ing a method to check the consistency of the timing constraints before they are actual-
ly used for detailed timing analysis of any kind.

7 Discussion

A method to analyze consistency in timing constraints specified using EAST-ADL is
presented. The proposed mapping scheme is a basis for transformations between
EAST-ADL and timed-automata based tools. Our earlier work [10] shows that it is
possible to automate model transformations between EAST-ADL and UPPAAL based
on their meta-models. The transformation using the concept of templates is a part of
the planned future work where the main challenge is the absence of one-to-one map-
pings, unidirectional links from EAST-ADL extensions to core language constructs
and, the variations due to the usage criteria mentioned in section 4.

5 http://timmo-2-use.org/
6 http://www.omg.org/spec/MARTE/1.0/

318 T.N. Qureshi, D.-J. Chen, and M. Törngren

There also exists possibility to generate test cases from the timing constraints
which can later be used to test the final product or its prototype. A further investiga-
tion of EAST-ADL is required for such support. Another issue which requires inves-
tigation is the combined analysis of internal behavior and timing constraints and the
method to transfer the results of analysis back for storing them as part of the EAST-
ADL model using its verification and validation extension.

References

1. Törngren, M., Chen, D., Malvious, D., Axelsson, J.: Model-Based Development of Auto-
motive Embedded Systems. In: Automotive Embedded Sytems Handbook (2009)

2. Lönn, H., Freund, U.: Automotive Architecture Description Languages. In: Automotive
Embedded Systems Handbook (2009)

3. The ATESST2 Consortium, EAST-ADL Domain Model Specification, Project Deliverable
4.1.1 (June 2010), http://www.atesst.org/home/liblocal/docs/
ATESST2_D4.1.1_EAST-ADL2-Specification_2010-06-02.pdf

4. AUTOSAR Website, http://www.autosar.org/ (accessed January 2011)
5. Road vehicles – Functional Safety, International Organization for Standardization, ISO

26262 (Draft International Standard) (2009)
6. PapyrusUML Website, http://www.papyrusuml.org (accessed January 2011)
7. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on UPPAAL. In: Bernardo, M., Corradi-

ni, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)
8. Bengtsson, J.E., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In: Desel, J.,

Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer,
Heidelberg (2004)

9. The ATESST2 Consortium, Update Suggestions for Behavior Support, Project Deliverable
3.1, Appendix A3.4 (June 2010), http://www.atesst.org/home/liblocal/
docs/ATESST2_Deliverable_D3.1_A3.4_V1.1.pdf

10. Qureshi, T.N., Chen, D.J., Persson, M., Törngren, M.: Towards the Integration of EAST-
ADL and UPPAAL for Formal Verification of EAST-ADL Timing Constraint Specifica-
tion. Presented at TiMoBD (Time Analysis and Model-Based Design, from Functional
Models to Distributed Deployments) Workshop, October 9 (2011)

11. Feng, L., Chen, D.J., Lönn, H., Törngren, M.: Verifying System Behaviors in EAST-
ADL2 with the SPIN Model Checker. In: IEEE International Conference on Mechatronics
and Automation, Xi’an, China, August 4-7 (2010)

12. The TIMMO Consortium, TADL: Timing Augmented Description Language Version 2,
Project Deliverable 6 (2009),
http://www.timmo.org/pdf/D6_TIMMO_TADL_Version_2_v12.pdf

13. Mallet, F., Peraldi-Frati, M.A., André, C.: Marte CCSL to Execute East-ADL Timing Re-
quirements. In: Proceedings of ISORC 2009, pp. 249–253 (2009)

14. Object Management Group. UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded Systems, formal/2009-11-02 (2009),
http://www.omg.org/spec/MARTE/1.0/PDF

15. Kang, E.-Y., Schobbens, P.-Y., Pettersson, P.: Verifying Functional Behaviors of Automo-
tive Products in EAST-ADL2 Using UPPAAL-PORT. In: Flammini, F., Bologna, S., Vit-
torini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 243–256. Springer, Heidelberg
(2011)

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 319–327, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Code Generation Nirvana

Petr Smolik and Pavel Vitkovsky

Metada
{petr.smolik,pavel.vitkovsky}@metada.com

Abstract. Life is fun and prospect of reincarnations is thus very attractive.
People enjoy various ways how models may be transformed to executable code,
how information may be derived, enriched, superimposed. It could take a num-
ber of complex transformations to reach the state of nirvana of a finally running
application. Each such model transformation is like a reincarnation, new exis-
tence in a different body, the spirit mostly staying the same. We have been for
years fascinated with this and tried different ways and approaches and we are
experiencing a progress. We have extensively applied code generation in areas
of enterprise systems integration and enterprise frontends. During time we have
done code generation different ways into different target languages and we have
also done a lot of direct model interpretation. More and more we value nirvana
over many reincarnations, nevertheless there is still place left for code genera-
tion. In this paper we share our model-driven experience.

Keywords: Code Generation, Domain-Specific Modeling (DSM), Domain-
Specific Modeling Languages (DSML), Model-Driven Engineering (MDE),
Model Interpretation, Executable Models, XML, XSLT, XQuery.

1 Introduction

Model-driven approaches deal with system complexity by introducing higher levels of
abstraction. Models abstract from technology specifics and attempt to focus on the
important aspects of a given problem domain. The best models talk in terms of the
domain expert’s concepts and enable definition of systems by means of defining and
relating instances of these concepts. The ability to directly express the domain-
specific knowledge in models leads to higher efficiency in systems design and im-
plementation. [1][2][3][4][5]

Nevertheless there are obstacles. It is hard to identify the right concepts on the
right levels of abstraction. It is always easier to settle down on abstractions that are
closer to the solution space where the resulting systems or applications are actually
implemented, but it is much harder to find the right abstractions that are closer to the
actual problem domain and its concepts.

Our experience comes mostly from the financial services domain, where one would
expect to manipulate concepts like account, payment, transaction, or loan. But we did
not manage to reach this level of abstraction in our models yet. We still do not confi-
gure current accounts and loan accounts, and enact their models in running applica-
tions. One of the reasons may be that financial institutions have many core systems

320 P. Smolik and P. Vitkovsky

already in place and their new needs are being satisfied by introducing dozens of new
systems around the old ones and then heavily integrating their functionalities via inte-
gration layers, while trying to build unified frontends, since it is unbearable for
the branch employees to tackle thirty different unintegrated ways to manage several
customer’s financial products.

For this reason the domain-specific modeling languages that we have so far
designed were centered more around integration and frontends. The abstractions that
are defined, manipulated, related, documented, and managed are not accounts, but
components, operations, action flows, mappings, mapping tables, forms and their
widgets, all this being composed into specific channel applications within multi-
channel solutions. We still consider these modeling languages domain-specific, but
their focus is in the integration or channel application domains, not in the financial
services domain. Nevertheless, our ongoing goal is to reach higher and tackle the real
business.

In the following chapters of this paper we do not present specifics of our metamo-
dels for integration and multi-channel applications. These are not that interesting and
could be shown on tools presentations. What we found interesting during the process
of designing model-driven systems is the process of reaching model execution, either
via code generation, or direct model interpretation, or something between.

2 Model Executability

Executability of models means that it is possible to transform models into executable
form without any further coding in some general-purpose programming language.
Models defined in domain-specific modeling languages (DSMLs) may be executable
if these languages are designed to be executable.

Model is executable when it is possible to create a running application just by
creating the model. The goal is to model as little as possible, but still all that is
needed. The core thing that makes models to be relatively simple and abstract is con-
straint. Only as little as possible set of concepts should be manipulated in the model
and limits should be imposed on the variabilities provided by these concepts. Every-
thing else is „an execution framework“ (or “domain framework”). An execution
framework enables the models to „live“. It interprets the attributes of entities defined
in the model. It enacts them. Framework may be written as components constructed
using a general-purpose programming language. Framework may be composed also
from various interpreters interpreting different transformed representations of models.
It is possible to explore these various ways to make models executable.

We think of code generation as means to make models executable. Not to generate
skeletons that need to be completed with hand-written final code. Code generation
transforms, maybe in several steps (reincarnations), models into machine-executable
code. It is also possible to directly execute models with interpreters specifically writ-
ten to execute them based on their metamodels. Code generation and model interpre-
tation are then two different alternative strategies to "implement" execution tools [6].
Interestingly, the process of code generation is a process of model interpretation. The
execution of the resulting code is not.

3 Chicken or an E

The evolution of program
known [7]. It is interesting
ample a language to define
a relational database. Such
language [8]. This languag
modeling language in the d
Models in the XDA langua
to tables in a relational dat
the graph of related concept

XDA interpreter execute
will always take an XML d
the actual retrieval by calli
into a complex XML docum

(start)-SQL>(XDA\nI
its own model>(XDA\

It starts to be interesting
In such a case, in order to
model itself. Without itsel
chicken and the result of in
chicken. In the beginning
Thus for the XDA interpr
chicken-like XDA model.

This seems to be also ap
an “Editor Interpreter”. Th
structure of data. This struc
the editor interpreter is conf
also expressed as an XML,

The editor interpreter tak
chunk of data. Initially an e
less it is thereafter possible
and expand it to increase i
may also need some expand

1 Images were generated via

ble at http://yuml.me

Code Generation Nirvana

Egg

mming languages in themselves (bootstrapping) is w
to see this in the domain-specific languages. Take for
how specific XML data should be retrieved from table

h language is for example the XML Data Access (XD
ge has been used in our modeling tool and it represent
domain of retrieval of XML data from relational databa
age are mostly concerned with “concepts” that correspo
abase and “concept views” that define tree structures o
ts.
es models defined in the XDA language. This interpr

definition of what data should be retrieved and will perfo
ing a relational database and join data from various tab
ment.

Interpreter)-resulting XML data used a
\nInterpreter)1

g when we store the specific XDA models in the databa
o retrieve the XDA model from the database we need
lf the model could not be retrieved. The model is lik
nterpretation is like an egg. But there is no egg withou
there had to be some, if the simplest, chicken or an e
reter to start working, it is necessary to hand-create

pplicable in the area of GUI interpreters. Take for exam
e purpose of an editor interpreter is to enable editing o
cture may be expressed as an XML. For a specific edi
figured with an editor model. We could imagine that thi
though it generally does not have to.
kes the editor model and provides user a GUI for editin
editor model (a chicken) has to be hand-created, nevert
e to use the proto-editor to edit its own definition (an e
its ability. Of course this means that the editor interpre
ding.

a simple UML activity diagram DSL and image generator ava
/.

321

well
ex-
s of

DA)
ts a
ses.
ond

over

eter
orm
bles

as

ase.
the

ke a
ut a
egg.
the

mple
of a
itor,
is is

ng a
the-
egg)
eter

aila-

322 P. Smolik and P. Vit

(start)-XML>(Editor
edited with its own

When creating executab
It does not matter if interpr
few model transformation
complex transformations an
more directly interpreted so

4 Integration Rein

Enterprise application inte
communicate chunks of da
cally this may be implemen
the modeling perspective th
way how data are structur
mapped to each other.

4.1 Many Reincarnatio

We faced situation that larg
required target language be
then too new and too slow.
integration code we created

In our case integration m
tions. Each operation has a
data that may be composed
operation may directly repr
fine a composite flow tha
composed of actions, main
tions that decide on what r
fined on each action call to
mappings use a simple ex
enables mapping of diverse

Models in the integratio
edited with our generated ed

tkovsky

r\nInterpreter)-XML editor definition
n editor>(Editor\nInterpreter)

le models this self-defining property is often encounter
reters are simple or complex, or whether there are many

stages. Initially we started with interpretation via m
nd intermediary interpretations and later we progressed

olutions as shown in the following sections.

ncarnations

egration (EAI) enables several independent systems
ata among each other to fulfill particular purpose. Tech
nted in various ways based on different technologies. Fr
he format is not really important. What is important is
red, how the system interfaces differ, and how they

ons

ge amount of integration was to be done and C++ was
ecause of speed concerns. XSLT [9] and XQuery [10] w
 In order to get the large amount of production grade C

d an integration modeling language.
models define specific integration services and their ope
an input and output interface defined as a tree structure
d directly or with the help of reusable complex types.
resent some external functionality to be called, or may

at calls several other operations. Each composite flow
nly call actions that call other operations and decision
routes should be taken in the flow. Data mappings are
o provide proper inputs to operations being called. Th
xpression language modeled as a computation tree t

e structures to each other.
on modeling language were persisted in a database
ditors.

red.
y or

many
d to

s to
hni-
rom
the
are

the
were
C++

era-
e of
An
de-

w is
ac-
de-

hese
that

and

(start)-SQL>(XDA)-X
exe>(OS)

XML Data Access (XDA
tional database. We hand-c
terpreter to orchestrate com
C++ code.

(start)->(Genet)-re
(start)->(Genet),
(start)-XML data an

The Genet interpreter its
on a Genet model. Genet is
line. It interprets a network
lar XSLT or XQuery transf
as its sources. So before re
transformations. Intermedia
model, so that it is in the e
ble. Intermediary transform
intermediary languages.

Finally, the resulting ge
ping model contained servi
of backend services, and la
executable implements tran
many message types, data f

In order for the model
many transformations (SQL

4.2 Fewer and Fewer R

The previous many-reincar
new integration solutions c
mapping and routing effect
eration. The models did no
came easier to develop and
C++ compilation was skipp

Code Generation Nirvana

XML>(Genet)-C code>(C compiler)-

A) [8] interpreter was used to obtain the model from a re
created several transformation XSLTs and used Genet

mplex transformations to create high-quality and optimi

esult>(end),

nd XSLs and Genet model>(Genet)

self executes several steps of model transformations ba
s an interpreter of a configuration of a transformation pi
k of gen nodes where each gen node represents one parti
formation that may have outputs of several other gen no
esulting C++ comes out, there may be several intermedi
ary transformations are partial derivations of the sou

end easier to come-up with cleanest and nicest code po
mations are themselves further model reincarnations i

enerated C++ code was compiled and executed. The m
ice interface definitions on a service bus, service interfa
arge amount of mapping and routing rules. The result
nsformation from one structure of message to another,
formats (not only XML), and many integrated systems.
to be morphed into an executable code this way it ta

L->XML...->XML…->XML->C code->exe).

Reincarnations

rnations integration solution lived for several years bef
ame to the market and enabled XQuery to be used for d
tively. We switched from C++ generation to XQuery g
ot have to change, only model transformations did. It
d test the integration solution because the step of leng

ped.

323

ela-
in-

ized

ased
ipe-
icu-

odes
iary
urce
ossi-
into

map-
aces
ting
for

akes

fore
data
gen-
be-

gthy

324 P. Smolik and P. Vit

(start)-SQL>(XDA)-X

Model transformations w
tion language (a transform
The step of lengthy compil
by the XQuery engine.

Further on, it slowly be
place to store models. So
would improve the situation

(start)-XML>(Genet

The situation was better
hundreds to thousands of X
our colleagues wrote a map
tion of the model and direct

(start)-XML>(Mappin

Now there is no transfor
nations. Direct nirvana. N
long-term experience with
tion may or may not have j
del concepts are now repr
language that the interpr
real-time by manipulating t
pletely different than code
code to be executed.

tkovsky

XML>(Genet)-XQuery>(XQuery\nengine)

were now less complex, because XQuery is a transform
mation DSL) whereas C++ is a general-purpose langua
lation was also removed since XQuery is directly execu

ecame clear that the relational database is not the grea
we decided that direct representation of models in XM

n.

)-XQuery>(XQuery\nengine)

r, but it still took quite a while for the whole solution
XQueries to be generated from models. So in the end one
pping interpreter. The interpreter takes an XML represen
tly interprets it to provide the data mapping services.

ng\ninterpreter)

rmation at all. No code generation whatsoever. No reinc
Nevertheless, at the moment we do not have enou
the mapping interpreter. The complexity of code gene
ust moved into the complexity of the interpreter. Metam
resented as entities in the general-purpose programm
reter is written in (Java). Interpretation is provi
the input data based on the metamodel entities. It is co
generation. Interpretation directly produces behavior,

ma-
age.
uted

atest
ML

n of
e of
nta-

car-
ugh
era-
mo-

ming
ded
om-
not

5 User Interface R

To enable creation and use
developed a web-based mo
solution we have also expe
tions. In this case it was ab
editors.

In these user interface
structured editors for indivi
edited, and each object, bas
posite sub-objects that again

(start)->(XDA)-XML>
(start)-SQL>(XDA)-X

We started with a system
quired a set of XML defin
used to obtain XML data fr
effectively, we developed a
and all the XML configura
were suddenly generated fo
XSLTs. This enabled fast
queries or transformations t

Although this solution is
tain and extend. There are p
really executed. Recently w
and would like to reach the

The newly designed edit
model) and enable to edit th
still interpreted at the brows
reincarnations.

(start)->(Editor\ni
editor definition a

Code Generation Nirvana

Reincarnations

of domain-specific modeling languages on our projects
odeling and metamodeling solution. Interestingly, with
erienced similar history of lowering number of transform
out transformations of metamodels into functioning mo

models we are mainly concerned with defining tr
idual model object types. Model objects need to be lis
sed on its type, may have any number of levels with co
n need to be listed and edited.

>(XSLT)-HTML>(Browser),
XML>(Genet)-XSLT>(XSLT)

m that utilized XSLs to build an application GUIs and
nition files to configure the XML Data Access interpre
om a relational database. In order to be able to create G

an editor modeling language that was used to define edit
ations for the data access. All the XSLT transformati
or the GUIs. There were XSLTs that were used to gener
creation of modeling GUIs without having to write S

to HTML.
s quite interesting, it is also very complex and hard to ma
probably too many reincarnations of the model before i

we work on removing this complex set of transformati
nirvana of a running application as fast as possible.
tor interpreter will directly interpret the editor definition
he corresponding data. Apart from producing HTML tha
ser, nirvana will be reached quickly without many comp

interpreter)-HTML>(Browser),(start)-XM
and data>(Editor\ninterpreter)

325

s we
this
ma-
odel

ree-
ted,
om-

d re-
eter

GUIs
tors
ions
rate

SQL

ain-
it is
ions

n (a
at is
plex

ML

326 P. Smolik and P. Vitkovsky

We hypothesize that an ecosystem of various model interpreters will enable faster
construction of applications. It is possible that there will be model interpreters that
will encapsulate within themselves the actual stages of code generation, compilation,
and final execution. The question may not be whether code generation or direct
interpretation. Both may suit some situations better. They may also be combined.
Interpretation and code generation should thus be seen as continuum and not as two
alternatives [11].

6 Conclusion

Reaching code generation nirvana means getting out a running application out of a set
of executable models. Models may be expressed in domain-specific modeling lan-
guages (DSMLs) that are interpreted by code generators that generate executable code
or directly interpreted by purpose-built model interpreters. Such interpreters use their
internal representation of a model to provide expected useful behavior. Direct model
interpretation is different than code generation, because code generation focuses on
creating an executable code. The code generation process itself is the process of mod-
el interpretation, but the final result of code generation is an executable that does the
real work, not interpretation.

There are pros and cons of both approaches [12]. The complexity of code genera-
tion could just move into complexity of interpreters, though we hope not. Code gener-
ation may result in highly optimized code and faster execution, whereas interpretation
removes the steps of generation and code compilation so that the models can be ex-
ecuted directly as they change, which may result in faster development. It is possible
to generate code into several target languages and environments at the same time.
Similarly it is possible to write the same interpreters in different languages or run the
same on different platforms. Model interpreters just may have been undervalued and
should be used more in practice [13]. There are arguments that model interpretation is
a superior approach for developing the models themselves [14] and importance of in-
IDE interpretation and testing is also being stressed [11].

An interesting area of research is what general-purpose languages are best for what
types of model interpreters. Dynamic languages that enable to program themselves
during runtime provide facilities for executing some steps of code generation during
interpretation itself.

Life has its twists and turns and reincarnations will remain attractive. Not all code
generation will be replaced by direct interpretation, but we expect there will be a
growing number of various interpreters of different domain-specific modeling lan-
guages. If these interpreters will internally use code generation or not may remain
their private implementation detail.

References

1. Stahl, T., Völter, M.: Model-Driven Software Development Technology, Engineering,
Management. Wiley (2006)

2. Schmidt, D.: Model-Driven Engineering. IEEE Computer 39(2), 25–32 (2006)

 Code Generation Nirvana 327

3. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling. Enabling Full Code Generation.
John Wiley & Sons, Inc. (2008)

4. Favre, J.M.: Towards a basic theory to model model driven engineering. In: Proceedings of
the Workshop on Software Model Engineering, WiSME (2004)

5. Smolik, P.: Mambo Metamodeling Environment, Doctoral Thesis, Brno University of
Technology (2006), http://www.mambomde.com/MamboMDE.pdf

6. Cabot, J.: Executable models vs code-generation vs model interpretation (2010),
http://modeling-languages.com/executable-models-vs-code-
generation-vs-model-interpretation-2/

7. Terry, P.T.: Compilers and Compiler Generators: An Introduction With C++. International
Thomson Computer Press (1997)

8. Smolik, P., Tesacek, J.: Data Source Independent XML Data Access. In: Proceedings of
Information System Modeling Conference 2000, Rožnov pod Radhoštěm, CZ, MARQ, pp.
17–22 (2000)

9. Kay, M. (ed.): XSL Transformations (XSLT) Version 2.0. W3C Recommendation (Janu-
ary 23, 2007)

10. Boag, S., Chamberlin, D., et al. (eds.): XQuery 1.0: An XML Query Language, 2nd edn.
W3C Recommendation (December 14, 2010)

11. Völter, M.: MD*/DSL Best Practices (2011),
http://www.voelter.de/data/pub/
DSLBestPractices-2011Update.pdf

12. Den Haan, J.: Model Driven Development: Code Generation or Model Interpretation?
(2010), http://www.theenterprisearchitect.eu/archive/2010/
06/28/model-driven-development-code-generation-or-model-
interpretation

13. Völter, M.: Model-Driven Development of DSL Interpreters Using Scala and oAW (2008),
http://www.voelter.de/data/presentations/MDInterpreterDevelo
pment.pdf

14. Chaves, R.: Model interpretation vs. code generation? Both (2010),
http://abstratt.com/blog/2010/08/07/
model-interpretation-vs-code-generation-both/

A Plug-in Based Approach for UML Model

Simulation

Alek Radjenovic, Richard F. Paige, Louis M. Rose, Jim Woodcock,
and Steve King

Department of Computer Science, The University of York, United Kingdom
{alek,paige,louis,jim,king}@cs.york.ac.uk

Abstract. Model simulation is a credible approach for model valida-
tion, complementary to others such as formal verification and testing.
For UML 2.x, model simulations are available for state machines and
communication diagrams; alternative finer-grained simulations, e.g., as
are supported for Executable UML, are not available without significant
effort (e.g., via profiles or model transformations). We present a flexible,
plug-in based approach to enhance UML model simulation. We show how
an existing simulation tool applicable to UML behavioural models can be
extended to support external action language processors. The presented
approach paves the way to enrich existing UML-based simulation tools
with the ability to simulate external action languages.

1 Introduction

The UML 2.x standard supports modelling of behaviour through a number of
mechanisms, including state machines and activity diagrams, and pre– and post-
conditions expressed in OCL. In parallel, executable dialects of UML have been
developed to support more fine-grained specification of behaviour using action
languages. As a result, these languages support rich simulation and code gener-
ation from models, but they are not directly supported by UML 2.x compliant
tools, nor are they based on the same metamodels as UML 2.x. If modellers want
to use action languages (and supporting simulators) with UML 2.x models and
tools, they either have to acquire a tool that already provides such capabilities
(which may not support their exact simulation requirements), or make use of,
e.g., model transformations to a different set of languages and supporting tools.

We present a flexible, plug-in based approach for UML model simulation. We
show how existing modelling and simulation tools capable of processing UML
behavioural models can be extended to support external action language proces-
sors, including for their simulation. This is achieved through precisely modelling
the interfaces between the modelling tool and an external action language pro-
cessor, and implemented using a plug-in mechanism. The approach supports
enrichment of UML modelling and simulation tools with simulation capability
for action languages. The approach even enables addition of further action lan-
guages to UML tools that already possess one, thus allowing engineers to increase
and tailor the simulation support available in the existing tools.

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 328–339, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Plug-in Based Approach for UML Model Simulation 329

This approach has been developed to meet industry requirements, in the con-
text of the European FP7 project INESS, to (i) provide enhanced simulation
support for existing railway interlocking models, particularly for safety analysis
and validation; and (ii) without requiring new modelling tools to be purchased
or developed.

As a result of our work, we have modified an existing UML 2.x modelling and
simulation tool in several ways. We have: (i) extended its internal behavioural
metamodel to support embedded expressions specified in external languages, (ii)
enabled the tool to support a plug-in mechanism, and (iii) extended the tool’s
functionality with a new set of services compliant with the interfaces mentioned
above. Importantly, the operation of the tool in the absence of external plug-
ins is identical to the normal operation of the tool prior to the modifications.
We have also implemented a plug-in based on an existing action language, and
validated our approach using a number of real-world case studies from the railway
signalling domain, as we describe later in the paper.

As opposed to existing approaches, we tried to generalise the interactions
between a UML simulation tool and an external language processor, allowing the
capability of existing tools to be augmented without further tool development.

The remainder of the paper is structured as follows. Section 2 presents the
background and context. Section 3 presents the overall requirements for tool
support (both modelling and simulation), and the mechanisms used to flexibly
extend existing tools to support external action languages. Section 4 presents
examples of industrial application and describes how the approach exploiting
the plug-in based approach was assessed. Section 5 summarises related work,
and we analyse the effectiveness of the approach in the conclusions in Section 6.

2 Context and Background

This work was undertaken within the INESS (Integrated European Signalling
System), funded by the FP7 programme of the European Union. This industrial
project focused on producing a common, integrated, railway signalling system
within Europe. Signalling systems are perhaps the most significant part of the
railway infrastructure. They are essential for the performance and safety of train
operations. A significant number of large UML models produced by the signalling
experts using a tool called CASSANDRA [7] (a plug-in for the UML tool Artisan
[1]) had been developed. The input models comprise UML class and state ma-
chine diagrams and are used to model railway signalling systems and simulate
their execution. In addition, the models were enriched with expressions described
in CASSANDRA’s bespoke action language, SIML. A strict requirement in the
project was that modelling tools (Artisan) remain unchanged, for the purposes
of validation (engineers were unwilling to change the tools or the way in which
they used them, partly because model modification was too expensive).

Engineers also used CASSANDRA to perform simulations, in order to check
functional properties and explore safety requirement violations. The simulations

330 A. Radjenovic et al.

were executed via a Prolog-based engine [8], and as such the simulator was
considered to be slow and inefficient by engineers. Additionally, customisation
of the simulator was not possible. Requirements for more fine-grained control of
simulations were expressed by the industry engineers.

Fig. 1. (a) Class diagram; and (b) State machine for Track class

A simplified excerpt of a class diagram is shown in Fig 1 (a). The UML state
machine in Fig. 1 (b) models the behaviour of Track objects. The expressions
that follow the transition names, such as ‘send not ready’ are written using SIML
[7]. SIML is composed of four parts that roughly deal with the following concerns
of model simulation:

– declaration – allows users to define basic elements, typically corresponding
to the UML model elements (classes, events, etc.) that can be read directly
from the input model only if CASSANDRA is used ; also, define elements
not present in the original model (e.g. inputs from the environment)

– expression – assists users in building and evaluating complex expressions
(classified according to the data type) formed from multiple elements

– action – provides mechanisms to define elementary pieces of behaviour (e.g.
creation/deletion of instances and association links); invocation of behaviours
defined in the source model (e.g. class operations or transition triggers)

– control – allows users to combine elementary actions into ordered sequences
and iterations

Engineers working on INESS had created a substantial number of railway sig-
nalling models using the CASSANDRA extensions to Artisan. The simulation
capabilities of CASSANDRA did not provide adequate performance or scala-
bility to sufficiently validate the models, explore them, and provide assurance
that safety properties were met. As a result, new requirements for simulation
were specified. In particular, it was mandated that engineers would still be able
to use CASSANDRA (and Artisan), that the existing action language would
still be supported, but external simulators (that were more efficient, more scal-
able, or performed better) that would also simulate the action language could
be exploited.

A Plug-in Based Approach for UML Model Simulation 331

To satisfy the industrial requirements to provide richer and higher perfor-
mance simulation capabilities while still retaining use of CASSANDRA/Artisan,
we have developed a plug-in based approach, detailed in the next section. Our
development so far has connected a specific external language processor and a
simulation tool as proof-of-concept to the railway signalling engineers. The exter-
nal processor is capable of parsing an action language and making requests into
the simulation tool’s API (e.g. to create objects, or fire events), but has aware-
ness of the global clock, tasks, message queues, and other standard simulation
tool’s resources. The simulation tool is based on the SMILE platform [15,14].
The tool’s architecture is shown in Fig. 2, and its operation is best described
using the following scenario.

Fig. 2. Simulation tool architecture

The input UML model (created by any UML compatible tool) is first queried
(as explained in [15]) in order to extract the behavioural information from state
diagrams (states, transitions, triggers, etc.). This is then mapped to a state
machine behavioural template defined in one of the SMILE family of languages
to produce a set of types which describe only the behaviour of UML model
components. The set of types is stored in a behavioural model. In parallel, the
input model is also queried to generate structural information (e.g. from class
diagrams). The next step involves using manual configuration (supported graph-
ically by the tool) to create a simulation model. The simulation model is a set of
instances of types from the behavioural model that also take into consideration
the structural hierarchy obtained in the previous step.

The simulation tool supports concurrency in the form of tasks which provide
execution separation. Consequently, in the configuration step, users may define
multiple tasks and map each simulation object to one of them. After selecting
a scheduling mode, the simulation can be run. Optionally, users can define the
system’s environment in the form of one or more stimuli. The tool produces a

332 A. Radjenovic et al.

simulation trace, providing a detailed report on events that occurred during the
simulation (e.g. triggers, transitions, message queues, or unsatisfied conditions).

3 The Plug-in Based Approach

The existing tool could simulate basic UML behaviours (described by standard
UML behaviour diagrams). More fine-grained behaviour descriptions could only
be provided using external action language expressions. Thus, the key objective
was to provide a flexible plug-in mechanism to allow connection and interoper-
ation between the tool and the external language processor, and to allow us to
detach, disable or replace the new simulation capability when not needed. The
work was divided into the following packages:

1. Inclusion of external (SIML) behavioural data from the input model into the
simulation models (Fig. 2.), ensuring additional data in the simulation model
is ignored by default, avoiding disruption of the existing tool operation.

2. Enhancement of the simulation tool so that it provides a mechanism for
plug-ins capable of processing expressions in an action language

3. The implementation of the plug-in for the SIML action language
4. Evaluation by performing simulations and verifying model correctness
5. Generalising and formalising the interface(s) between the tool and the lan-

guage plug-ins, enabling usage with a variety of (Executable UML) notations

3.1 Extensions to the Behavioural Metamodel

Behavioural templates are used to create behavioural types based on informa-
tion extracted from a source UML model. Fig. 3. shows an extended metamodel
for the types created based on the behavioural template for state machines.
We observe that the behavioural types are composed of one or more properties
(e.g. states) and transitions, which in turn comprise a trigger and one or more
conditions (guards) and actions. The existing behavioural type metamodel was
extended with the External class to enable the inclusion of the embedded ac-
tion language expressions from the source model into the simulation. This class
defines three attributes: language – to signify which action language is used, clas-
sifier – to describe which particular part of the behaviour the expression applies
to (e.g. effect, for transitions; exit or entry, for a state change), and a body –
which contains (external notation) expressions unknown to the simulation tool.

3.2 The Simulation Tool Plug-in Mechanism

To allow for an arbitrary action language to be used on the core UML models,
a plug-in mechanism has been chosen. This choice ensures that there will be
no need to modify the simulation tool to accommodate different kinds of exe-
cutable UML. The loading of plug-ins (one per project) is dynamic. (A project
includes input models, queries, a behavioural template, configuration files, sched-
ule, breakpoints, etc.). The mechanism’s implementation details are specific to
the implementation platform and are not relevant here.

A Plug-in Based Approach for UML Model Simulation 333

Fig. 3. Extended behavioural type metamodel

3.3 The SIML Plug-in

The SIML plug-in is the SIML-specific implementation of the external language
processor interface, IPlugin (Fig. 4. (a)), and was developed incrementally,
adding the functionality found in SIML expressions in a gradual manner.

Fig. 4. (a)IPlugin and (b) IPluginServer interfaces

The SetServer method is called when the plug-in is loaded. The simulation
tool then uses the Language attribute in order to determine which action lan-
guage it is capable of processing. The SetServermethod passes a reference to the
simulation tool’s component that is the implementation of the IPluginServer

interface (described in the next section). When the SetServer call is made,
the plug-in resets its internal state to the default initial state. The tool can
also force this operation by using the Reset method. The Execute method is
called when the plug-in is required to process an action language expression.
This method takes two parameters: context – informing the plug-in which (be-
havioural) object is requesting the processing, and expression – the action
language expression that needs to be processed. For debugging, management or
reporting purposes, the tool can also request a snapshot of the plug-in’s internal

334 A. Radjenovic et al.

state through the GetStatus method, as well as issue an Abort request as a
safety mechanism to abandon further proecssing.

3.4 The Simulation Tool Plug-in API

IPluginServer essentially describes an API (a set of simulation tool’s ser-
vices that IPlugin–compatible plug-ins can use). The API is described by the
IPluginServer interface (Fig. 4. (b)), and consists of the following (sub-) inter-
faces grouped by the functionality:

– navigation – providing access to model elements
– object – required to create and destroy objects
– assignment – required to set values to object references and to allocate

values to objects’ attributes
– association – required to create and remove relationships between objects
– interaction – providing mechanisms to pass data between objects in syn-

chronous and asynchronous manner
– notification – asynchronous mechanism for providing management and op-

erational notifications from the plug-in to the tool

Basic methods associated with each section are also shown in Fig. 4(b). With
the exception of those in the INotification interface, these methods represent
a minimum set of services required to ‘drive’ a state-machine based simulation
scenario from an executable UML plug-in.

3.5 Normal Operation, Control, and Exceptions

The simulation tool was also required to implement a mechanism to control the
overall simulation execution in the presence of an external plug-in (e.g. in order
to avoid deadlock scenarios, either because of a faulty or partial plug-in imple-
mentation, or an incomplete/erroneous behavioural specification in the input
model). The tool and the plug-in operate collaboratively during the simulation
runs, using a master-slave mode of operation. The simulation tool is a passive
master of the workflow, at times relinquishing control to the plug-in in full, but
continually monitoring the execution and intervening in case of a problem by:
disabling the plug-in, aborting the simulation, and reporting back to the user.
In a nutshell, a simulation run goes through the following stages and sub-stages:

– Power-up – initialisation of tool and plug-in internal states and variables
– System execution – composed of simulation steps ; in each step, the tool

sequentially executes all system tasks; this stage is repeated until either
(a) the simulation runs its natural course where all simulation objects have
become idle, (b) the users halts the execution, either manually or through
a breakpoint, (c) an error is reported by a plug-in, or (d) the plug-in has
become unresponsive

• Task execution – task’s simulation objects are executed sequentially;
if an object’s message queue is empty or blocked, the object is skipped

A Plug-in Based Approach for UML Model Simulation 335

∗ Object execution – executing object’s current behaviour (e.g. a
transition in a state machine scenario, comprising multiple actions)

– Power-down – in this stage, the simulation trace may be logged, or perhaps
a report generated if particular analysis is required

The above execution flow is controlled by the tool. The control is partially re-
linquished to the plug-in at the object execution level, if and when an external
action language expression is read from the object’s message queue. Before do-
ing so, the tool sets a timer to guard against situations when the plug-in blocks
further operation of the tool. If the control is returned to the tool before the
time-out, the timer is cancelled; if not, the plug-in is forcefully disabled, the
simulation is aborted, and feedback is given to the user.

4 Industrial Application and Assessment

The work presented is in response to strong industrial demands to provide en-
hanced simulation support for railway interlocking models, particularly for safety
analysis and validation, without requiring new modelling tools to be purchased
or developed. The enhanced control of simulations is achieved through external
action languages that allow a more fine-grained specification of behaviours in
UML models. We have demonstrated how to extend a simulation tool’s capabili-
ties to exploit external action languages, achieved through a dynamic integration
of the tool and the external module using the plug-in mechanism. We have also
formalised the interaction between these two by precisely modelling their inter-
faces.

Following the implementation of the extension to the tool and the SIML plug-
in, we have used the following criteria in order to validate our approach, by
verifying the tool operation:

– without a plug-in – in the absence of a plug-in, the tool’s operation must be
equivalent to that prior to the modifications made

– with a plug-in – in the presence of a relevant language plug-in, simulation
is either fully automatic or hybrid (largely driven by the executable UML
expressions embedded in the model, but manual user input is also supported)

– with a malfunctioning plug-in – the tool must prevent the plug-in from block-
ing the simulation indefinitely by disabling the plug-in under such circum-
stances, aborting the execution, and providing the feedback to the user

All scenarios above were tested and the criteria satisfied. In particular, the ‘mal-
functioning plug-in’ was repeatedly tested during the incremental development;
during this period, when the plug-in’s functionality was only partially imple-
mented, blocking situations were in abundance. The verification of the normal
operation of the tool (without a plug-in) was compared against the unmodified
version of the tool on the same set of case studies. Finally, the hybrid opera-
tion was tested by disabling selected functionality in the plug-in (e.g. sending a
message) and replacing it by issuing a prompt to provide a manual user input.

336 A. Radjenovic et al.

The fully-automatic operation was tested on a number of case studies from the
railway signalling domain, the smallest containing 7 classes and 25 SIML state-
ments, and the largest 89 classes and several hundred SIML statements. Every
class had its own state machine defined. Simulation runs were performed on all
case studies, validating the approach and the tool/plug-in operation. Due to
project’s time constraints, it was not possible to fully verify the correctness ([2])
of the larger models. The modified tool outperformed Artisan-CASSANDRA
combination, if only just – possibly attributed to the ‘lightweightedness’ of the
tool, but because of its prototype status, further improvements are expected.
The real power of the approach, however, lies in its extensibility and generalisa-
tion. The SIML plug-in was implemented in 3 weeks, but after the initial learning
curve, we anticipate the future plug-in development to shrink to several days.

The following are typical scenarios in which the integrated solution (the sim-
ulation tool and the plug-in) was (can be) used:

– normal execution – performing a simulation run according to the specifica-
tion derived from the source models. Two most typical outcomes are: (a)
execution runs its natural course (i.e. no further activity detected), a snap-
shot of the current state of the system is taken, then analysed together with
the simulation trace; (b) simulation runs indefinitely; user forcefully halts
the execution and analyses trace.

– property checking – checking if specified property is satisfied. We use con-
ditions (Boolean expressions composed of model elements, attributes, and
Boolean operators) specified in breakpoints to signify properties. A break-
point causes the simulation to pause (or come to a halt) when its condition
evaluates to true.

– error injection – analysing the robustness of the modelled system, i.e. its
behaviour in the presence of errors. Errors are purposely introduced into the
system through user input.

Property checking and error injection are illustrated using the example in Fig. 5.
Two routes R1 and R2 (comprising tracks T, signals S, and points P) are defined
as:

R1 = {S1; T1,P1(left),T3} and R2 = {S1; T1,P1(right),T2}

Fig. 5. An example railway interlocking model used for assessing the approach

We observe that that the routes share elements such as the entry signal S1
or track T1. When specifying properties, we use negative application conditions
(NACs) (e.g. to verify that a system is safe, we define conditions that make

A Plug-in Based Approach for UML Model Simulation 337

the system unsafe). For instance, we may want to verify that signal S1 is not
in the proceed state if, at the same time, track T1 is in the occupied state.
Thus the property that we want to check is defined using the Boolean expression:

(S1.state == ‘proceed’) AND (T1.state == ‘occupied’)

specified as a breakpoint condition. If, during a simulation run, the expression
evaluates to true, the execution of the model is stopped. The user is then able to
see which breakpoint triggered this, and can analyse the trace to find the design
fault.

We can also deliberately inject errors into the system’s behaviour. Using the
same scenario, we can define a different breakpoint, as follows:

(R1.state == ‘active’) AND (R2.state == ‘active’) AND

(T1.state == ‘occupied’)

Routes essentially have two main states: idle and active. Since R1 and R2 share a
common track, they cannot be both active at the same time when T1 is occupied.
During the simulation, for instance, when R1 is active and T1 occupied, we can
(through user input) change R2’s state to ‘active’ and observe how the system
behaves afterwards. This method works well; however, the simulation clock has
to be slowed down substantially in order to inject errors at the right time. Work
is in progress to provide a mechanism to use rule-based scripts for error injection.

5 Related Work

Shlaer and Mellor [18,19,17] developed a method in which objects are given
precise behaviour specifications using state machine models annotated with a
high-level action language. In the late 1990s, OMG started working on Action
Semantics for the UML with an objective to extend the UML with a compatible
mechanism for specifying action semantics in a platform-independent manner.

There are a number of research and academic platforms and tools that at-
tempt to define behaviours in UML models more precisely, and to execute such
enriched models [10,6,16]. There are also several commercial tools that define
their own semantics for model execution [7,5,4,9,3]. They often include a pro-
prietary (action) language. Consequently, models developed with different tools
cannot be easily interchanged and cannot interoperate.

The Foundational UML (fUML) [12] specification (adopted in 2008) provided
the first precise operational and base semantics for a subset of UML encom-
passing most object-oriented and activity modelling. fUML, however, does not
provide a new concrete surface syntax; rather, it ties the precise semantics solely
to the existing abstract syntax model of UML. Subsequently, OMG issued an
RFP for Concrete Syntax for a UML Action Language. Currently, what is known
as the Action Language for fUML (or Alf) [11] is in beta 2 phase (since 2010).

Alf is a textual surface representation for UML behaviours. Expressions in
Alf can be attached to a UML model in any place where a UML behaviour

338 A. Radjenovic et al.

can be. Any Alf text that can be mapped to fUML can be reduced to a set
of statements in first-order logic. Unfortunately, it does not allow us to use
model-checking features or a theorem prover for validation or verification. In that
respect, significant additional work remains in order to provide a complete formal
verification for a system [13]. This is exactly why simulation in combination with
Alf (or indeed any other executable UML language) is beneficial. Simulations do
not provide formal proofs; nevertheless, they can significantly increase confidence
in the tested models.

There is one other significant gap. Although we now have the action semantics
(in fUML) and are close to seeing a fully adopted concrete syntax (in Alf), the
question of how the models will be executed still remains. In other words, there
are currently no attempts to standardise or even specify a simulation environ-
ment for UML that would define how such platform should connect to Alf or
another (proprietary) action language. In the meantime, we should do as best
as we can with what is available and try to adapt the existing UML compati-
ble simulation tools for use with diverse executable UML notations. This paper
contributes to this objective.

6 Conclusion

Model simulation is increasingly seen as a reliable complementary approach to
formal verification or testing that attempts to establish the validity of model
behaviours. Standard UML’s limitation to describe these behaviours in greater
detail is addressed by a number of action languages. Although the majority of
these languages were designed following the same or similar philosophy, there is
no common metamodel from which they can be derived. This presents a signif-
icant challenge for UML tool makers if they were to support a number of such
languages in their tools.

We have tried to address this problem and have proposed a modular approach
to UML model execution through simulation. We have demonstrated a scenario
in which a UML-based simulation tool is extended in a non-disruptive, modular,
manner to accommodate multiple action language ‘engines’ to collaborate with
the tool during simulation runs. This was achieved by augmenting the tool’s
capability using a simple plug-in paradigm. We have formalised the solution by
defining the interfaces required by the plug-in and the tool so that the two can be
integrated. We have also illustrated the normal operation, the workflow control,
as well as the exception handling mechanisms. We have evaluated our approach
on examples from the railway signalling domain. The tool we used in our study
was an in-house tool (based on the SMILE platform), while the language was
CASSANDRA’s action language SIML.

Our next steps will include investigation into more action languages, other
simulation platforms, as well as further generalisation and formalisation of the
approach. We anticipate an increased activity in the model simulation arena
and are also mindful of the fact that new domain-specific action languages may
emerge. As part of our desire for a broader research impact, our intention is to
standardise the interaction between the simulation tools and action languages.

A Plug-in Based Approach for UML Model Simulation 339

References

1. Atego. Artisan Studio (2011), http://www.atego.com/products/artisan-studio/
2. dos Santos, O.M., Woodcock, J., Paige, R.F., King, S.: The Use of Model Trans-

formation in the INESS Project. In: de Boer, F.S., Bonsangue, M.M., Hallerstede,
S., Leuschel, M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 147–165. Springer, Hei-
delberg (2010)

3. Dotan, D., Kirshin, A.: Debugging and Testing Behavioral UML Models. In: Com-
panion to the 22nd ACM SIGPLAN Conference on Object-Oriented Programming
Systems and Applications Companion (OOPSLA 2007), pp. 838–839 (2007)

4. IBM, Rational Rhapsody (2012), www.ibm.com/software/awdtools/rhapsody/
5. IBM, Rational Software Architect RealTime Edition (RSA–RTE) (2012),

http://www.ibm.com/software/rational/products/swarchitect/

6. Jiang, K., Zhang, L., Miyake, S.: An Executable UML with OCL-based Action Se-
mantics Language. In: 14th Asia-Pacific Software Engineering Conference (APSEC
2007), pp. 302–309 (December 2007)

7. Know Gravity. CASSANDRA (2011),
http://www.knowgravity.com/eng/value/cassandra.htm

8. Mellish, C.S., Clocksin, W.F.: Programming in Prolog: Using the ISO Standard.
Springer (2003)

9. Mentor Graphics. BridgePoint (2012)
10. Mooney, J., Sarjoughia, H.: A Framework for Executable UML Models. In: 2009

Spring Simulation Multiconference. Society for Computer Simulation International
(2009)

11. OMG. Action Language for Foundational UML (Alf). Technical Report October
2010, OMG (2011)

12. OMG. Semantics of a Foundational Subset for Executable UML Models (fUML),
v1.0. Technical Report, OMG (February 2011)

13. Perseil, I.: ALF formal. Innovations in Systems and Software Engineering 7(4),
325–326 (2011)

14. Radjenovic, A., Paige, R.F.: Behavioural Interoperability to Support Model-Driven
Systems Integration. In: 1st Workshop on Model Driven Interoperability (MDI
2010), at MODELS 2010, Oslo, Norway. ACM Press (2010)

15. Radjenovic, A., Paige, R.F.: An Approach for Model Querying-by-Example Applied
to Multi-Paradigm Models. In: 5th International Workshop on Multi-Paradigm
Modelling (MPM 2011), at MODELS 2011. ECEASST, vol. 42, pp. 1–12 (2011)

16. Risco-Mart́ın, J.L., de La Cruz, J.M., Mittal, S., Zeigler, B.P.: eUDEVS: Executable
UML with DEVS Theory of Modeling and Simulation. Simulation 85(11-12), 750–
777 (2009)

17. Shlaer, S., Mellor, S.J.: Object-Oriented Systems Analysis: Modeling the World in
Data. Prentice Hall (1988)

18. Shlaer, S., Mellor, S.J.: Recursive Design. Computer Language 7(3) (1990)
19. Shlaer, S., Mellor, S.J.: Object Lifecycles: Modeling the World in States. Prentice

Hall (1992)

http://www.atego.com/products/artisan-studio/
www.ibm.com/software/awdtools/rhapsody/
http://www.ibm.com/software/rational/products/swarchitect/
http://www.knowgravity.com/eng/value/cassandra.htm

MADES: A Tool Chain for Automated

Verification of UML Models of Embedded
Systems

Alek Radjenovic1, Nicholas Matragkas1, Richard F. Paige1, Matteo Rossi2,
Alfredo Motta2, Luciano Baresi2, and Dimitrios S. Kolovos1

1 Department of Computer Science, The University of York, United Kingdom
{alek,nikos,paige,dkolovos}@cs.york.ac.uk

2 Politecnico di Milano, Italy
{rossi,motta,baresi}@elet.polimi.it

Abstract. The benefits of Model Driven Development may be achieved
through exploitation of its potential for automation. Automated model
verification is one of the most important examples of this. The usage of
automated model verification in everyday software engineering practice
is far from widespread. One of the reasons for this is that model designers
do not have the necessary background in mathematical methods. An ap-
proach where model designers can remain working in their domain while
the verification is performed on demand, automatically and transpar-
ently, is desirable. We present one such approach using a tool chain built
atop mature, popular and widespread technologies. Our approach was
verified on industrial experiments from the embedded systems domain
in the fields of avionics and surveillance.

1 Introduction

Our research project – MADES (Model–based methods and tools for Avionics
and surveillance embeddeD SystEmS) [16] – was born out of demand from the
embedded systems industry to develop a model–driven approach to improve cur-
rent practice in the development of embedded systems. This approach was to
cover all phases, from design to code generation and deployment. Many embed-
ded software systems, and particularly those from the avionics and surveillance
domains, require high integrity, where verification is essential before deployment.
Verifying properties of the system at the start of the development is highly desir-
able as the first line of defence against design faults which if detected at a later
stage are very costly. At the same time, system verification at the model level
is hard because model designers typically do not possess the necessary mathe-
matical background. In this paper we present a tool chain that allows system
designers to perform model verification on demand, automatically and trans-
parently (without the need to understand the complexities of the mathematical
formalisms that underpin the approach).

A model designer and a formal methods expert focus on significantly different
things. Even the tools and techniques they use are at the opposite end of the

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 340–351, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

MADES: Automated MDE Verification 341

software engineering spectrum. The former typically uses graphical modelling
tools, whilst the latter uses textual notations that rely heavily on mathematics.
Inadequate knowledge of model checking techniques can limit the scope of the
types of verifications that can be performed. On the other hand, inadequate
knowledge of the system under development can weaken the validity of the ver-
ification itself. The majority of research efforts have been on low–level detail,
such as: how can we translate an OCL constraint into a mathematically sound
form that we can use with a SAT solver? Or, how can we define correctness
properties for UML class diagrams?

This paper addresses the big picture: how can we make the verification process
more practical? How can we provide the model designers with a tool that enables
them to automatically check the correctness of their models without the need to
understand model checking? The solution we provide is a tool chain – a set of
domain–specific tools communicating with each other. Two of the key traits of
a successful tool chain are: (i) transformational capabilities – e.g., to transform
models into transformation scripts and (ii) usability – a tool’s ability to allow the
user to specify another domain’s documents using concepts from its own domain.
Consequently, the work described in this paper focuses on providing one such
tool chain that enables model designers to utilise mathematical methods ‘under
the hood’.

We were able to use and combine several existing and mature technologies.
On the verification side, we build on current model–checking technology to pro-
vide decision procedures more specifically tailored to the project domain. By
exploiting domain abstractions and model fragments, the designers are allowed
to define properties in a way close to their domains that hides the formalism.
An enabling technology that underpins our framework is model transformation.
We provide support via Epsilon [15] for various kinds of model transformations.
The transformations support the verification tasks by allowing platform models
(e.g., in subsets of UML/MARTE [19]) to be mapped to verification technology,
such as Zot [24] or Alloy [17].

Our solution provides model designers with the ability to verify their design
without the need to understand underlying formalisms. It allows on–demand and
automatic verification at any stage of the development process. Our approach
works with the entire system model, a segment of it, or even a partial model im-
plementation. In case of verification failures, counter examples are provided with
the ability to trace back to the source of errors. Our solution is practical, usable,
reusable, generic, and underpinned by proven mature technologies. Importantly,
it is in direct response to specific industrial requirements.

The remainder of the paper is structured as follows. Section 2 presents the
background and context. Section 3 summarises the related work. Sections 4 and
5 present the overview of the approach, and the details of the implementation.
Section 6 presents an example of industrial application and describes how the ap-
proach was assessed. We conclude by analysing the effectiveness of the approach
in Section 7.

342 A. Radjenovic et al.

2 Background

The key ambition of the MADES project [2] is to develop a model–driven ap-
proach to improve the current practice in the development of embedded systems.
The proposed approach is holistic in that it covers all phases of the development
life–cycle, from design to code generation and deployment.

MADES makes several key contributions. Firstly, a dedicated (MADES) lan-
guage was developed as an extension to OMG’s MARTE Profile [19]. Secondly,
approaches have been developed for verification of key properties on designed
artefacts, closed-loop simulation based on detailed models of the environment,
and the verification of designed transformations. And thirdly, code generation
techniques have been devised which addresses both hardware description
languages as well as conventional programming languages, with features for
compile–time virtualisation of common hardware architecture features, including
accelerators, memory, multiprocessor and inter–processor communication chan-
nels, to cope with the fact that hardware platforms are getting more and more
complex.

Our work is part of the validation effort in which we use model transformations
to generate various software artefacts from the MADES models. The documents
include verification scripts, simulation scripts, hardware architecture descrip-
tions, architecture agnostic source code, software and hardware mappings for
compile–time virtualisation, and hardware architecture descriptions for compile–
time virtualisation. The model transformation work is in direct response to the
high level requirements to achieve tool interoperability, code generation, and
traceability of the model–based activities of the development life–cycle of em-
bedded systems.

3 Related Work

3.1 Model Checking

Over three decades ago, two seminal papers [25], [9] founded what has become
the highly successful field ofmodel checking, for automatically assessing whether a
systemmodel satisfies specified properties. In recent times, as model driven devel-
opment (MDD) becamemore widespread, model verification has come at the fore-
front of research in this arena. Model verification can take many different forms,
including formal (mathematical) analyses such as performance analysis based on
queuing theory or safety–and–liveness property checking. Very often, it means ex-
ecuting models on a computer as an empirical approach to verification [27].

Holzmann [13] states that in the classic approach to logic model checking,
verification requires a manually constructed model to be written in the language
that is accepted by the model checker. The construction of such a model typi-
cally requires good knowledge of both the application being verified and of the
capabilities of the model checker that is used for the verification.

Schmidt [26] points out that traditionally model checking has been performed
very late in the development (in the testing phase), though he argues for the

MADES: Automated MDE Verification 343

necessity to be able to do this at any stage of the development lifecycle. More-
over, now that many of the verification technologies have matured, there is an
emergent need for verification to be usable in practice [6].

Unsurprisingly, because of its widespread usage, the focus of attention in
recent years has been the Unified Modeling Language (UML) [20,21]. A lot of
research activity has been around OCL (Object Constraint Language) [23] used
in UML specifications. Some examples include [6,7,5,8,12,28,29]. Despite some
insightful approaches, the majority of these valuable contributions focus solely
on the structural aspects (namely, UML Class Diagrams).

In “Verified Software: A Grand Challenge” [14], Jones et al. point out that for-
mal methods used in verification are intended to predict software behaviour. A
verification method for UML cannot therefore be complete if it does not include
behaviours described, for instance, through UML state machine or sequence dia-
grams. Approaches such as [31] which uses formal analysis on concurrent systems
specified by collections of UML state machines, or [4] that deals with automatic
translation of statecharts and sequence diagrams into generalized stochastic Petri
nets, are a steps in the right direction.

3.2 Model Transformation

Model transformation plays a key role in model driven development. Although
there is still no mature foundation for specifying transformations among models
[10], there are many worthwhile theoretical approaches as well as several that
are practical, too.

One of the platforms that is at the forefront of model transformations, not
only due to its maturity, but more importantly in terms of its usability, is Epsilon
[15] a family of interoperable task specific languages for interaction with EMF
(Eclipse Modeling Framework) [11] models. In particular, the Epsilon Transfor-
mation Language (ETL), a hybrid, rule–based language, provides not only the
usual transformation features but can be used to query, navigate, or modify
both source and target models. ETL can transform many input to many out-
put models. In addition, the Epsilon Generation Language (EGL) is typically
used hand–in–hand with ETL for model–to–text transformations (e.g. translat-
ing UML models into Java code).

The enabling technology that helps us achieve full automation in model driven
system verification is model transformation.

4 Approach/Framework

As stated earlier, the overall objective of the MADES project is to improve
the model–driven design for embedded platforms. The overview of the various
artefacts in the MADES approach can be found in [1]. Verification of system
properties at different phases of the development process plays a key role.

Fundamental to this is reducing the overall effort associated with the verifi-
cation process. One way to achieve this is to hide the complexity of the formal

344 A. Radjenovic et al.

models from the domain experts and allow them to specify the system of inter-
est in a notation they are familiar with. To this end, the MADES approach uses
model transformations to provide a seamless integration between design tools
and the verification tools. We have accomplished this by means of a tool chain
whose workflow has three main stages. In Modelling, a modelling tool (Modelio
[30]) is used to generate design models using the MADES modelling language (a
combined subset of OMG MARTE [19] a UML profile for modelling real–time
embedded systems and SysML [18] – a general–purpose modelling language for
systems engineering applications). These models serve as the input to the next
stage – the Transformation. In this stage, Java code is generated, instantiating
objects needed for the verification platform. The final stage – Verification – uses
the objects from the previous stage to produce verification scripts (containing
lists of temporal logic formulae) as an input to the Zot tool [22] that performs
formal proofs.

Most importantly, users interact only with the modelling tool. The transfor-
mation and the verification take place ‘under the hood’, transparently to the
users, who do not have to deal with anything beyond their domain, making this
a true MDE approach.

5 Implementation

5.1 Modelling

The proposed approach is model–driven. Hence, the verification process is en-
tirely guided by the MADES design model, comprising a set of mandatory and
optional UML/MARTE diagrams, including:

– Class diagrams – besides standard UML features, these may define MARTE
clock types (CT) that constrain the temporal behaviour of components (e.g.
associating a CT with a class is equivalent to declaring clock instance asso-
ciated with all the objects of that class)

– Object diagrams – contain class and clock instances declared in class dia-
grams

– State diagrams – describe the state–based behaviour of system objects. These
include standard features like states, transitions, triggers, guards and actions

– Sequence diagrams – describe partial behaviours in the system, capturing
message (class operation instance) exchanges between objects (as defined
in the Object Diagram). Time constraints (capturing metric timing rela-
tionships between events in the diagram) can be also added using MARTE
stereotypes

– Interaction Overview Diagrams – provide a high–level structuring mecha-
nism to compose sequence diagrams through common operators such as se-
quence, iteration, concurrency, or choice (this compositional solution differs
from the one used in scenario–based approaches, because sequence diagrams
are not used to render valid, invalid, or contingent traces, but rather to
describe portions of the behaviour of the system)

MADES: Automated MDE Verification 345

Finally, diagrams share a common set of events such as interrupts, beginnings
and ends of messages, or clock ticks, enabling different diagrams (system views)
to communicate with each other.

5.2 Tool Chain

In real–time embedded systems, the most intuitive way to describe operational
behaviours has the following main characteristics: (i) time is explicitly repre-
sented in the diagram, (ii) the timing constraints can be represented directly
in the diagram, and (iii) the level of abstraction can be easily refined through
the development process. For example, in this context, the sequence diagrams
represent what is performed by different functional blocks in a time–based vi-
sualisation, and they can be used as a starting point to determine if various
timing properties of interest remain valid during the development process. Some
examples of timing properties are:

– Is the system able to complete Task X within t time units?
– Does Event E always precede Event F?
– If Event E occurs, will Event F occur within t time units?

Fig. 1. Verification workflow

The MADES verification workflow (Figure 1) comprises a modelling stage
and a verification stage (that requires no user intervention). As stated earlier,
the entire verification process is fully automatic. However, minor user input is
required as explained next. During the modelling stage, in addition to the UML
diagrams, the user defines a property to be verified, as well as and the time
bound. In MADES approach, this is achieved through a user–friendly interface
(Figure 2), where users can also choose a SAT solver and a model checker they
wish to use. The current implementation model checker is Zot, but any model
checker that supports TRIO temporal logic can be used instead.

Once the models, the property to be checked, and the time bound are defined,
the user can automatically run the verification and check whether the property
is satisfied or not. If the property is not satisfied, the model checker generates

346 A. Radjenovic et al.

Fig. 2. Property and time bound configuration

a counter–example showing a system execution that violates the property. An
integrated traceability mechanism allows us to trace back from the elements
in the counter–example to the original UML model using trace links that are
visualised in a dedicated editor. As it is apparent from this workflow, the user
does not need to be familiar with temporal logic formulas to be able to formally
verify the design models.

Fig. 3. MADES verification tool chain

MADES verification tool chain is shown in Figure 3. The generated models
(using an XMI–compliant CASE tool, such as Modelio or Papyrus) are trans-
formed (xmi2java) to Java code that acts as an input to the Java–to–Zot tool
(J2Z). J2Z then produces a corresponding set of TRIO formulae that are fed
into the verification engine (Zot). Zot encodes satisfiability (SAT) and validity
problems for discrete time TRIO temporal logic formulae as propositional SAT
problems, which are in turn checked with off–the–shelf SAT solvers. The TRIO

MADES: Automated MDE Verification 347

formulae define the semantic representation and provide a formal semantics to
MADES diagrams [3].

The code snippet below illustrates the Java primitives associated with an
Interaction Overview Diagram, using the API provided by J2Z. The bottom part
shows the commands to start generating the semantic representation written in
Lisp for Zot.

...

//IOD declaration

core.diagrams.IOD CCAS_IOD=new IOD();

iod.Node i_n1= new InitialNode();

iod.Node i_n2= new Merge();

iod.Node i_n3= new InterruptNode(BrakeInterrupt);

iod.Node i_n4= new FlowFinalNode();

CCAS_IOD.addControlFlow(i_n1,i_n2);

CCAS_IOD.addControlFlow(i_n2,SDSendSensorDistance);

CCAS_IOD.addControlFlow(SDSendSensorDistance,i_n2);

CCAS_IOD.addControlFlow(SDSendBrakeCommand,i_n4);

CCAS_IOD.addControlFlow(i_n3,SDSendBrakeCommand);

//J2Z Wrap--up

MadesModel madesModel=new MadesModel();

//[...] Add diagrams to the MADES UML model

madesModel.addIod(CCAS_IOD);

//ZOT Configuration

ZOTConf zot=new ZOTConf(100, ‘‘meezot’’, ‘‘minisat’’, madesModel);

zot.writeZOTFile(‘‘CCAS_Verification.zot’’);

5.3 Transformation

The transformation of XMI files (the output of the modelling stage) into Java
code (the input to the verification stage) is performed using the xmi2Java script
(Figure 3) that uses the model transformation technology in order to convert
various relevant portions of the input model into Java code. The transformations
are specified using ETL (Epsilon Transformation Language) and the output code
is generated in EGL (Epsilon Generation Language).

6 Industrial Application and Assessment

The operation of the MADES verification tool chain is illustrated using a real-
world case study from the real-time embedded systems domain (the automotive
industry) - a Car Collision Avoidance System (CCAS). One of the key functions
of CCAS is to detect the position of the car on which it is installed relative
to other objects in its environment (such as other vehicles or pedestrians). The
distance between the car and the external objects is read through the on-board
Radar that sends data to the Controller every 100ms via the system bus (CAN).

348 A. Radjenovic et al.

The full CCAS specification includes a large number of properties for timing (e.g.
data transfer), safety (e.g. when to brake if in a critical state) or liveness. Using
the MADES modelling language, CCAS is described with one class diagram, one
object diagram, one interaction overview diagram, two sequence diagrams, and
three state diagrams. Examples of these are provided in Figure 4 and Figure 5.

Fig. 4. One of CCAS state diagrams

Fig. 5. An example sequence diagrams in CCAS

Consider the following safety requirement as an example of property checking:
“If the sensor measuring the distance between the car and

the external objects continuously reads a value that is less than
2 meters for a period of 50 time units, then the system should
brake within those same 50 time units.”

This requirement can be expressed as a property formalised by the following
TRIO formula:

Alw(Lasted([distance<2],50)→ WithinP(brakeS braking,50)) (1)

where [distance<2] represents a Boolean predicate. The formula did not ini-
tially hold, and the Zot tool produced a counter-example within around 30 sec-
onds (we used the meezot plugin and the minisat SAT solver, and the time

MADES: Automated MDE Verification 349

bound was set to 100). The counter-example showed that the violation of the
property was the consequence of a cumulative delay composed of the delay re-
lated to the radar component (governed by a logical clock with a period of 10
time units), and the transmission and reaction delays that are present through-
out the model. By modifying the time bounds in above formula we can show
that, by giving the system a little more leeway in the required reaction time,
we can make the property hold. Specifically, the time bounds in formula were
changed from 50 to 56 time units. By repeating the verification with the new
values, the Zot tool reported (within 20 seconds) the UNSAT result. This is in-
terpreted as: “it is not possible to find a system trace that violates the property,
hence the property holds for the system”.

For reference, the output is produced in two steps: (i) initially, Zot shows the
Boolean predicates used to represent the UML model in temporal logic, and (ii)
z3 (a well-known and efficient SMT solver by Microsoft Research) solves the
satisfiability problem and reports the UNSAT result.

This simple example illustrates how the MADES tool chain enables modellers
to conduct their own experiments, detect and better understand design faults,
and improve the system models.

7 Conclusion

This work was done within the MADES project in response to a strong and spe-
cific demand from the real–time embedded (avionics and surveillance) industry
to develop a holistic, model–driven approach to improve the current practice in
the development of hardware and software systems. By holistic we mean encom-
passing all stages of the development life–cycle, from design to code generation,
testing and deployment. In this document we have discussed a particular solu-
tion that addresses the verification aspect of system development. In particular,
this solution was in response to specific industrial requirements to enable mod-
ellers to verify their designs on demand, automatically and transparently (i.e.
protecting them from the need to understand the underlying complexities of the
formal methods).

Here, we have presented an approach in the form of an interoperable tool
chain that builds exclusively on technologies that are mature, widespread and
open source. In addition, all the new tools built for this project are (or will be)
open source and widely available to the public. Importantly, our approach is
complete in that it provides support for both structural models (e.g. UML class
and object diagrams) as well as behaviour models (e.g. UML sequence and state
machine diagrams).

The approach has been evaluated on a number of real world case studies from
the embedded domain in collaboration with our industrial partners Cassidian
and TXT.

Future work includes a more elaborate, bidirectional, traceability mechanism
as well as a tool extension to support system simulation for validating dynamic
behaviours.

350 A. Radjenovic et al.

Acknowledgements. This research was supported by the European Commu-
nity’s Seventh Framework Program (FP7/2007-2013) under grant agreement
n. 248864 (MADES), and by the Programme IDEAS-ERC, Project 227977-
SMScom.

MADES is a Specific Targeted Research Project (STREP) of the Seventh
Framework Programme for research and technological development (FP7) – the
European Union’s chief instrument for funding research over the period 2007 to
2013.

References

1. Audsley, N.C., Gray, I., Indrusiak, L.S., Kolovos, D., Matragkas, N., Paige, R.:
Model-based development of embedded systems - the MADES approach. In: 2nd
Workshop on Model Based Engineering for Embedded Systems Design (MBED
2011), pp. 1–4 (2011)

2. Bagnato, A., Sadovykh, A., Paige, R.F., Kolovos, D.S., Baresi, L., Morzenti, A.,
Rossi, M.: MADES: Embedded Systems Engineering Approach in the Avionics
Domain. In: 1st Workshop on Hands-on Platforms and Tools for Model-Based
Engineering of Embedded Systems (HoPES 2010), p. 5 (2010)

3. Baresi, L., Morzenti, A., Motta, A., Rossi, M.: Towards the UML-Based Formal
Verification of Timed Systems. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 267–286. Springer, Heidelberg (2011)

4. Bernardi, S., Donatelli, S., Merseguer, J.: From UML Sequence Diagrams and
Statecharts to analysable Petri Net models. In: 3rd International Workshop on
Software and Performance, pp. 35–45 (2002)

5. Brucker, A.D., Wolff, B.: HOL-OCL: A Formal Proof Environment for uml/ocl.
In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 97–100.
Springer, Heidelberg (2008)

6. Cabot, J., Clariso, R.: UML/OCL Verification In Practice. In: ChaMDE Workshop
(MODELS 2008), pp. 31–35 (2008)

7. Cabot, J., Clariso, R., Riera, D.: UMLtoCSP: A Tool for the Formal Verification of
UML/OCL Models Using Constraint Programming. In: 22nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2007), pp. 547–548.
ACM, New York (2007)

8. Cabot, J., Clariso, R., Riera, D.: Verification of UML/OCL Class Diagrams using
Constraint Programming. In: IEEE International Conference on Software Testing
Verification and Validation Workshop (ICSTW 2008). IEEE (2008)

9. Clarke, E.M., Emerson, A.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Workshop on Logics of Programs. Springer,
Heidelberg (1981)

10. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621–645 (2006)

11. The Eclipse Foundation. Eclipse Modeling Framework (EMF) (2012),
http://www.eclipse.org/modeling/emf/

12. Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, Independence and Conse-
quences in UML and OCLModels. In: Dubois, C. (ed.) TAP 2009. LNCS, vol. 5668,
pp. 90–104. Springer, Heidelberg (2009)

http://www.eclipse.org/modeling/emf/

MADES: Automated MDE Verification 351

13. Holzmann, G.J., Joshi, R.: Model-Driven Software Verification. In: Graf, S.,
Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 76–91. Springer, Heidelberg
(2004)

14. Jones, C., O’Hearn, P., Woodcock, J.: Verified software: a grand challenge. Com-
puter 39(4), 93–95 (2006)

15. Kolovos, D.S., Paige, R., Rose, L., Polack, F.: The Epsilon Book. Technical report,
The University of York, York, UK (2010)

16. MADES. Model-based methods and tools for Avionics and surveillance embeddeD
SystEmS (2012), http://www.mades-project.org/

17. MIT. alloy (2012), http://alloy.mit.edu/alloy/
18. OMG. OMG Systems Modeling Language (OMG SysML), v1.2. Technical report,

OMG (2007)
19. OMG. UML Profile for MARTE : Modeling and Analysis of Real-Time Embedded

Systems. Technical Report, OMG (November 2009)
20. OMG. Unified Modeling Language - Infrastructure. Technical Report, OMG (May

2010)
21. OMG. Unified Modeling Language - Superstructure. Technical Report, OMG (May

2010)
22. OMG. MOF 2 XMI Mapping Specification. Technical report, OMG (2011)
23. OMG. OMG Object Constraint Language (OCL) v2.3.1. Technical Report, OMG

(January 2012)
24. Pradella, M., Morzenti, A., Pietro, P.S.: The symmetry of the past and of the future:

bi-infinite time in the verification of temporal properties. In: Proceedings of the the
6th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering, ESEC-FSE
2007, pp. 312–320. ACM, New York (2007)

25. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: 5th International Symposium on Programming, Springer, Heidelberg
(1982)

26. Schmidt, D.C.: Model Driven Engineering. Computer 39(2), 25–31 (2006)
27. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5), 19–

25 (2003)
28. Shaikh, A., Wiil, U.K., Memon, N.: UOST: UML/OCL Aggressive Slicing Tech-

nique for Efficient Verification of Models. In: Kraemer, F.A., Herrmann, P. (eds.)
SAM 2010. LNCS, vol. 6598, pp. 173–192. Springer, Heidelberg (2011)

29. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying
UML/OCL Models Using Boolean Satisfiability. In: Conference on Design, Au-
tomation and Test in Europe (DATE 2010). European Design and Automation
Association, pp. 1341–1344 (2010)

30. SOFTEAM. Modelio (2012), http://modelio.org/
31. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-

checking approach for the analysis of abstract system properties. Science of Com-
puter Programming 76(2), 119–135 (2011)

http://www.mades-project.org/
http://alloy.mit.edu/alloy/
http://modelio.org/

Time Properties Verification Framework
for UML-MARTE Safety Critical Real-Time

Systems

Ning Ge and Marc Pantel

University of Toulouse, IRIT/INPT
2 rue Charles Camichel, BP 7122, 31071 Toulouse cedex 7, France

{Ning.Ge,Marc.Pantel}@enseeiht.fr

Abstract. Time properties are key requirements for the reliability of
Safety Critical Real-Time Systems (RTS). UML and MARTE are stan-
dardized modelling languages widely accepted by industrial designers for
the design of RTS using Model-Driven Engineering (MDE). However, for-
mal verification at early phases of the system lifecycle for UML-MARTE
models remains mainly an open issue.

In this paper1, we present a time properties verification framework for
UML-MARTE safety critical RTS. This framework relies on a property-
driven transformation from UML architecture and behaviour models to
executable and verifiable models expressed with Time Petri Nets (TPN).
Meanwhile, it translates the time properties into a set of property pat-
terns, corresponding to TPN observers. The observer-based model check-
ing approach is then performed on the produced TPN. This verification
framework can assess time properties like upper bound for loops and
buffers, Best/Worst-Case Response Time, Best/Worst-Case Execution
Time, Best/Worst-Case Traversal Time, schedulability, and synchroni-
zation-related properties (synchronization, coincidence, exclusion,
precedence, sub-occurrence, causality). In addition, it can verify some
behavioural properties like absence of deadlock or dead branches. This
framework is illustrated with a representative case study. This paper also
provides experimental results and evaluates the method’s performance.

Keywords: Real-Time System, Time Property Verification, Model
Transformation, UML, MARTE, Time Petri Net, Model Checking.

1 Introduction

Safety Critical Real-Time Systems (RTS) have strong timing requirements con-
cerning system’s reliability. Model-Driven Engineering (MDE) allows verifying
system’s properties since the early phases of system lifecycle and iteratively im-
proving the models according to the verification results. One important issue
1 This work was funded by the French ministries of Industry and Research and the

Midi-Pyrénées regional authorities through the ITEA2 OPEES and FUI Projet P
projects.

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 352–367, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Time Properties Verification Framework 353

is how to assess the properties for semi-formal models. UML [14] and its pro-
file for modelling non-functional concerns, MARTE [15] are standardized mod-
elling languages widely accepted by industrial designers for RTS. However, to
our knowledge, no formal specification for the whole language is currently avail-
able. Thus, before verification, UML models must be transformed to executable
and verifiable models, supported by state-of-the-art model checkers. Meanwhile,
time properties must also be transformed to verifiable time assertions. A key
issue in the use of model checkers is to avoid the combinatorial explosion of
state space and to guarantee the verification method’s performance. Combemale
et al. have proposed in [5] to design Property-driven formal verification tools
to handle many different kinds of properties for complex system models. The
translation is thus dedicated to each kind of properties to improve verification
performance. This work follows the same approach to design a time property
verification toolset for UML-MARTE models of safety critical RTS.

This paper presents the resulting verification framework that can assess time
properties like upper bounds for loops and buffers, Best/Worst-Case Response
Time (B/WCRT), Best/Worst-Case Execution Time (B/WCET), Best/Worst-
Case Traversal Time (B/WCTT), schedulability, and synchronization-related
properties (synchronization, coincidence, exclusion, precedence, sub-occurrence,
causality). In addition, it can verify some behavioural properties like absence of
deadlock or dead branches. The framework relies on three steps.

Firstly, the property-driven transformation from UML-MARTE to Time Petri
Nets (TPN). This method translates semi-formal UML models into executable
TPN models for verification purpose. TPN [13] is selected as the verification
model, as it allows expressing and verifying time properties under both logi-
cal and chronometric time models. This framework uses the TINA toolset [3] as
model checker. Fig. 1 is a TPN example. Compared to Petri Nets, the transitions
in TPN are extended with a time constraint that controls the firing time. For
example, transition T1 is attached with time constraint [19,27]. When the token
arrives at place P1, the local timer of T1 starts. Between 19 and 27 time units,
T1 can be fired. This transformation covers UML architecture models (using the
full Composite Structure Diagram) and behaviour models (using the full State
Machine Diagram and a major subset of Activity Diagram). It is property-driven
in order to limit the state space during model checking. Property-driven means
that the transformation of some UML elements can be different depending on the
assessed property; meanwhile the transformation does not conserve all the in-
formation in UML, but only those concerning the property verification. Another
issue is raised from TPN theoretical limits. As model checking and reachability
are undecidable in TPN when using stopwatch [4], the transformation method
should avoid using stopwatches.

Secondly, the translation from time properties into time property patterns.
Time properties are expressed using MARTE. These expressions cannot be di-
rectly verified by TPN model checker. The proposed method translates them
into a set of verifiable property patterns, which are quantitative. Their values
can be computed in our proposal by iterative use of the model checker relying on

354 N. Ge and M. Pantel

[20,40] [3,10]
n

[11,15]

[19,27]

T1P1

Fig. 1. Time Petri Net Example

dichotomy search. The time property patterns are independent of both the user
modelling language and the verification language, making the method reusable
in other verification frameworks. To make our method practical for end users,
we focus on the time properties at both the event and the task levels. For the
synchronization-related properties, we introduce the concept of time tolerance,
because two simultaneous events cannot be measured without errors in the real
world. The related work CCSL [2] focuses only on more symbolic time constraints
at the event level without time tolerance.

Finally, the verification of time property patterns. The usual methods for ver-
ifying time properties in TPN rely mostly on LTL (Linear Time Logic), CTL
(Computation Tree Logic) and μ-calculus. First, end users are not accustomed
to their use. Second, these languages are not always powerful enough for some
quantitative properties, in terms of both their semantic expressiveness and com-
putation resource consummation. This issue is reduced by using the observer-
based model checking. For one property pattern, an additional TPN structure
extends the original TPN, then the reachability graph is generated using the
highest abstraction. Complex LTL assertions become marking existence asser-
tions, which can be cheaply computed. The observers do not change the original
TPN’s behaviour. This observer-based verification method relying on TPN is
independent of the user modelling language, making it reusable.

This paper is structured as follows: Section 2 compares this proposal with the
related works; Section 3 briefly presents the verification framework for UML-
MARTE; Section 4 introduces a representative case study; Section 5 presents
the property-driven transformation method from UML-MARTE models to the
target TPN models; Section 6 proposes the time property translation method
and the time property patterns verification method based on observers in TPN;
Section 7 evaluates the proposed framework by verifying the time property in
the case study and analyses the method’s performance; Finally, comments on
conclusion and further works are discussed in Section 8.

2 Related Works

Some works are also aimed to verify the properties in UML. The difference lies in
the type of verification model and the capacity of the verification methods. Lilius
and Paltor use the PROMELA language in [11] to specify UML models and ex-
ploit the SPIN model checker. This method did not involve LTL verification and
the author thought SPIN is not the most efficient solution. André and Mallet use

Time Properties Verification Framework 355

Esterel in [2] as verification language. Although its time constraint specification
language CCSL covers logical and chronometric constraint in UML, its verifi-
cation approach only supports logical constraints so far to our understanding.
Gagnon et al. translate UML diagrams into Maude language and verify deadlock
property using LTL in [6]. This work does not handle other time properties. In
terms of performance, this work denotes that they still need to test this approach
on larger examples. Knapp1 and Wuttke transform UML to a special class of
timed automaton in [10], then translate them to concrete programs for model
checkers SPIN. It verifies the consistency between different system descriptions.
This work does not concern the time aspect. Medina and Cuesta present in [12]
MARTE2MAST, a tool that enables the extraction of schedulability analysis
models and their direct analysis using MAST [9]. It supports analysis by using
simulation tool and static analysis techniques. It defines a complete package for
system analysis including the scheduling algorithms. However, as the simulation
is not exhaustive, it cannot prove the correctness in all possible cases. Shousha
et al. describe in [16] a search-based UML-MARTE model analysis method for
starvation and deadlock detection. It uses genetic algorithms to search through
the state space. As the genetic search method cannot ensure the building of the
full state space including all the final states, this method cannot guarantee that
the whole space will be exhaustively searched. It can detect errors but cannot
prove their absence, which is a significant drawback for safety critical systems.

Petri Nets are powerful models for describing system behaviour and for verify-
ing the properties. In [1] Andrade et al. map SysML Activity to ETPN (extended
TPN with energy constraints) to estimate the energy consumption and the exe-
cution time of system. Compared with this work, the advantages of our work lie
in 3 aspects: for the time property scope, we verify a large scope of time proper-
ties, while [1] covers only the execution time; for the transformation method, we
propose the property-driven transformation method and consider both the archi-
tecture and the behaviour models, while [1] only considers the behaviour model;
for the verification method, we propose a novel observer-based TPN verification
method.

3 Overview of UML-MARTE Verification Framework

The objective of the UML-MARTE verification framework (Fig. 2) is to verify
whether the design of UML-MARTE RTS Model satisfies the expected Time
Property. The System Model consists of both Behaviour Model and Architec-
tural Model. The former defines how the system will act and response to the
outside world, while the latter describes the interconnection relation between
sub-components of the system. In practice, the behaviour model is described
by Activity and State Machine diagrams, and the architecture is defined by
Composite Structure diagrams. All time related specifications and Time Prop-
erties are modelled using MARTE profile. System Models are translated into
TPN models through Behaviour/Structure Transformation. Time Properties are
translated into Time Property Patterns by Time Property Transformation. All

356 N. Ge and M. Pantel

the transformations are performed automatically and the formal activities are
transparent to the end user. The model checking is performed on the generated
Tag Pattern TPN models and the corresponding LTL/CTL/Marking Assertion
by using TINA model checker. The verification is based on the observers added
in the TPN. An observer is used to observe the value of one Property Pattern.
Finally, Verification Result Computation is performed to combine the Property
Pattern Results, then the target Time Property Verification Result is available.

TPN Tag Pattern
TPN

LTL/CTL

TPN Model Checker

Tag Property
Pattern Result

Behaviour/Structure
Transformation

Property Pattern
TPN Generation

Tag Property
Pattern Result
Interpretation

Iteration
Tag

Preperty
Pattern Result

Time Property
 Transformation

Time
Property
Pattern Verification Result

Computation

Time Property
Verification Result

UML-MARTE
Model

Checker

UML-MARTE RTS Model

System Model
Time

PropertyBehaviour
Model

Architecture
Model

Fig. 2. UML-MARTE Model Checker

4 Case Study

We use a classical asynchronous RTS model, IMA-based airborne system, to
present the application of the proposed methods. According to the general asyn-
chronous message-driven pattern, the sender will regularly distribute data to
the two receivers through the communication networks that have transfer de-
lays and jitters. The receivers will do some computation. Fig. 3 presents the
architecture model. The sender represents a data-collecting sensor. The router
represents a virtual link of Avionics Full DupleX (AFDX). The two receivers
represent two identical calculators that provide redundant control. The input
data of computation is sent by the sender through the router.

Time Properties Verification Framework 357

calculator A : Receiver

<<Allocated>>sig

calculator B : Receiver

<<Allocated>>sig

ADFX virtual link : Router

<<Allocated>>in

<<Allocated>>out_1 <<Allocated>>out_2

Air data sensor : Sender

<<Allocated>>output

Fig. 3. IMA-based Airborne Architecture Model

The elements from MARTE in Table 1 are used to describe time specification.
The redundant controller design requires that the output of the two calculators
must be available at the same time in each working cycle; otherwise, the servo
of the corresponding actuator cannot correctly unify the redundant command.
In this case, we need to verify the coincidence of computation tasks between
calculators A and B. As it is impossible to respect a strict simultaneous timing
with an explicit local synchronisation, a time tolerance is defined. Once the two
time instants fall into the same time window (size of window equals to tolerance),
they are considered as coincident.

Table 1. MARTE Profile Usage

MARTE Profile Time Specification
GRM::ResourceUsage task’s execution time

GRM::CommunicationMedia communication delay
Alloc::Allocated mapping the soft data pin to the hard data port

The AFDX only guarantees the communication delay upper bound, which
means that the delay varies in [tmin, tmax]. Thus, it is obvious that the compu-
tation of calculators A and B are coincident only if the time tolerance is superior
to (tmax − tmin), which is twice of the network jitter. In some cases, however, we
need to design some supplementary protocol between the receivers to decrease
the coincidence time window in order to get better system robustness.

The designer implements a naive protocol relying on the hand shake paradigm
of Fig. 4, in which the two receivers are distinguished by respectively setting as
active and passive modes (Fig. 5). The active one, after getting the data from
the sender, sends an asynchronous notification to the passive one and automati-
cally waits for a fixed time duration to launch its computation. The passive one
will start its redundant computation once it gets the notification from its active
master. As the notification message is also passed by the same AFDX network,
the designer could wonder if this protocol really solves the tolerance-reduction
requirement. By modifying the wait time of the active receiver and the network

358 N. Ge and M. Pantel

jitter, the designer can use the proposed methods to verify whether the compu-
tations are still coincident under the new protocol, and then refine his design
according to the verification results. In this case study, we illustrate how our
approach helps verifying time properties and assists the protocol designer with
guaranteed correctness and performance.

calculator B : ActiveReceiver

<<Allocated>>sig

<<Allocated>>handshake_out

Air data sensor : Sender
<<Allocated>>output

calculator A : PassiveReceive

<<Allocated>>sig

<<Allocated>>handshake_in

AFDX virtual link : Router

<<Allocated>>in

<<Allocated>>out_1 <<Allocated>>out_2

Fig. 4. IMA-based Airborne System Architecture Model with Handshake Protocol

Active Receiver Passive Receiver

Fig. 5. IMA-based Airborne System Behaviour Model with Handshake Protocol

5 Transformation from UML-MARTE to TPN

We present the principles of the UML transformation method and illustrate the
transformation for a significant subset of UML elements of both the architecture
and behaviour models. Due to page limits, the complete transformation rules
for UML Activity Diagram can be consulted in [8]. The description of the UML
State Machine Diagram transformation will be submitted later on.

Time Properties Verification Framework 359

5.1 Principles

The transformation approach is property-driven, aiming to limit the state space
of model checking. The approach respects the following 6 principles:

1. The framework verifies each time property in one state space generation.
This means one transformation keeps only the information for one property
to be verified.

2. The transformation of one UML element may be different according to the
time property.

3. For some UML elements not influencing time properties, the target TPN
semantics can be standardized and homogeneous for all the properties.

4. The transformation should guarantee the consistency between high-level and
lower-level models. However, a correct transformation here does not imply
a 100% semantic preservation, but rather to ensure the semantics necessary
for the property verification are preserved through the transformation.

5. The target TPN models should ensure high performance verification, espe-
cially for large-scale asynchronous applications.

6. The patterns resulted from each element transformation should be easy to
assemble. This may degrease the verification performance. But it can be com-
pensated later by a model optimization phase that eliminates the elements
irrelevant to the verification.

5.2 Architecture Model Transformation

The architecture parts in the model aim to connect the different parts to build
a whole system, using communication media or shared resource. The transfor-
mation method aims to replace each component of the architecture part by its
relevant behaviour part, respecting a correct instance-mapping, context-based
naming and their connection relationship. In the Composite Structure Diagram
(CSD) from the case study, the significant elements are Part, Port and Connec-
tor. The others remain important, but due to page limits, we only describe the
mapping rules for Part and Port in this paper.

Part. There are two patterns for Part : hierarchical and primitive (Fig. 6). The
behaviour is described, for the former, by the Part’s inner structure, and, for
the later, by the Part’s associated behaviour model. For the hierarchic pattern,
the architecture model is considered as a tree-like structure, and the mapping
approach is applied recursively.

No Explicit
Inner Structure

Port1

Port2

PrimitiveHierarchic

Port1

Fig. 6. CSD-Part

360 N. Ge and M. Pantel

Port. Port is used to connect outside structure and inner behaviour. MARTE Al-
loc::Allocated profile is used to map the logical PIN in behaviour model and the
physical Port in architectural model. Port is transformed to an empty TPN place
to represent a data buffer concept. In a bad designed system, data quantity may
overfill the buffer size, it is thus important to detect this undesired property before
doing the verification, as this may cause an undecidable boundedness problem in
TPN verification. In order to avoid a non-terminating verification problem, a sup-
plementary structure is added (Fig. 7). It ensures that if the buffer is overfilled, it
will raise an overflow. The overflow is represented by an ever-large marking that
cannot exist in normal system. As TINA can detect on-the-fly any marking ex-
ceeding the pre-set threshold and stop state graph generation at once, this trans-
formation method guarantees that all verification will finally terminate.

Port

[0,0]

BufferSize
Overflow

Threshold

Fig. 7. CSD-Port

5.3 Behaviour Model Transformation

A general transformation pattern is defined (see Fig. 8) to automate the assembly
of the TPNs generated from the behaviour model. For all non-link elements in
UML, the generated TPN must contain some C_IN transitions to connect with
other predecessors in static model structure. In the same manner, some C_OUT
places must exist to connect with its structural successors.

Transition-place structure

C_IN

C_OUT[0,0]

Fig. 8. General Transformation Pattern

The main elements in the UML Activity Diagram (AD) are related to con-
trol, action, resource, object, and connection. We present the transformation
for OpaqueAction for system with single and multiple clocks (see later). An ac-
tion is the fundamental unit of executable behaviour. It takes a set of inputs
and converts them into a set of outputs. Depending on the abstraction level,
an action could represent either a complex processing flow or a primitive one
carrying out a computation. In UML-AD, there are 55 kinds of actions. Each
kind covers a certain range of semantics for different usage. In order to focus on
the core semantics related to time properties, we generalize the concept using
the OpaqueAction.

Time Properties Verification Framework 361

Action Transformation Pattern. The transformation method is illustrated
by Fig. 9. All input data-related flows should link to B. All output data-related
flows should link to C. All input resource-related flows should link to A. All
output resource-related flows should link to D. The execution time of one action
is specified by the time constraint on transition C.

[0,0] [0,0] [0,0]

C_IN

C_OUT[0,0] [0,0]

Casual
ready

Resource
ready

Input
ready

Output
ready

Resource
released

ENDA B C D

[min,max]

Fig. 9. UML Action Transformation to TPN

Mono-clock & Multi-clock. In the real world, each clock has an independent
drift. For systems with a single clock (mono-clock) this drift can be ignored,
because the difference between tick duration and real physical time is of the
same proportion at any given time for any part of the system. However, in
systems with several clocks (multi-clock), the model transformation should be
able to represent the correct time semantic of the system by considering the
different clocks’ drifts. The solution is to assume a global physical clock and to
project each time consumption and drift on this unique precise time reference.
In our study, we use strictly the physical time notion as the exact reference for
both mono and multi-clock base system.

Mono-clock Action. For mono-clock actions, the execution time is directly
used after a global normalization of the time units. For example, if action A
takes [3.4 ms, 4.7 ms] and actions B [78.9 us, 463.5 us], the correspondent min
time and max time on the TPN transition is [34000, 47000] and [789, 4635]
respectively, with the common unit of 0.1 us.

Multi-clock Action. For multi-clock actions, the execution time is specified by
the expected physical time. Before integrating this time into a multi-clock based
system, first we need to translate the expected physical time into tick numbers.
Then its real physical time can be deduced by associating the clock’s drift. We
use the same example as the previous one. Let clock A and B tick theoretically
every 1 us, and their backward and forward drift are both 1%, therefore action
A’s tick number is [3400, 4700] and B’s is [78.9, 463.5]. As tick number must be
integer, a rounding strategy must be taken, without introducing unreasonable
conversion error. In our study, we use the floor function for tmin and ceiling
function for tmax. Therefore, we have A for [3400, 4700] and B for [78, 464] as
tick numbers after the rounding.

362 N. Ge and M. Pantel

As the method assumes each component has independent clock, the drawback
is that it can be too strict for those devices that share a clock. We still decide to
choose this abstraction paradigm, because in the verification viewpoint, this will
only lead to a false-violation. It means that if a time property is satisfied under
independent-clock hypothesis, it must be also satisfied in a shared-clock system.
This sufficient but not necessary condition may only cause a performance trade-
off in practice, but never gives out a wrong verification result when property’s
proof is positive.

6 Translation and Verification of Time Property

The time properties should be translated into TPN-compatible analyzable for-
malism. In our case study, the property is the coincidence between two tasks.
We illustrate the property translation and verification methods for this property.
The translation for all the synchronization-related properties can be consulted
in [7]. The verification of other properties will be presented in other papers.

6.1 Translation of Coincidence Property

Definition (Task Level Coincidence). Task X and Y are coincident iff. the
nth occurrence of X occurs simultaneously with the nth occurrence of Y , n ∈ N.

X[i] X[i+1]

Y[i] Y[i+1]

Coincidence(X,Y,) = true

X

Y

X[i] X[i+1]

Interleave

Coincidence(X,Y,) = false

Y[i] Y[i+1]

Fig. 10. Coincidence Property

As shown in Fig. 10, the coincidence between two tasks is determinated by
the coincidence between the Eventstart and the Eventend of tasks. For the nth

occurrence of task X and Y, if the two Eventstart are coincident and the two
Eventend are coincident within time tolerant δ, task X and Y are coincident.
Formally, task coincidence is translated into the following 3 equivalent assertions.

Coincidence(X, Y, δ) ≡
∀t ∈ R+ : (|O(Xt

s) − O(Y t
s)| < 2) ∧ (|O(Xt

e) − O(Y t
e)| < 2) (1)

∀t ∈ R+ : (|T (Xt
s) − T (Y t

s)| < δ) ∧ (|T (Xt
e) − T (Y t

e)| < δ) (2)

∀i ∈ N
∗ : (T (X i

e) + δ < T (Y i+1
s)) ∧ (T (Y i

e) + δ < T (X i+1
s)) (3)

Time Properties Verification Framework 363

In the above assertions, X represents task; Xa the inner event a of task X ,
particularly Xs for start event, Xe for end event; X i

a the ith occurrence of inner
event of task X ; Xt

a the occurrence of Xa which is the nearest (forward or
backward) to the time instant t; T (X i

a) the occurring time instant of X i
a; T (Xt

a)
the occurring time instant of Xt

a; O(Xt
a) the occurrence count for Xa at time t;

and δ is the time tolerance for coincidence. There are 4 time property patterns
in the assertions (Table 2). The task-level property is then represented by a set
of event-level property patterns.

Table 2. Time Property Patterns

Time Property Pattern Definition
Xi+k

s Representation of event Xi+k
s

|O(Xt
a) − O(Y t

a)| < δ Occurrence difference between events Xt
a and Y t

a

|T (Xt
a) − T (Y t

a)| < δ Relative Tmax between events Xt
a and Y t

a

T (Xi
e) + δ < T (Y i+1

s) Relative Tmin between events Xt
a and Y t

b

6.2 Verification of Time Property Pattern |T (at) − T (bt)| < δ

To assess the time property, the observer pattern is added into the original
TPN, and then the TINA model checker is used to verify the observer-dedicated
LTL/CTL/Marking assertions for the TPN. As model checking significantly con-
sumes time and memory resource, we use the following 2 approaches to ensure
the verification performance.

– When doing the model checking, the TPN shall perform the highest possible
abstraction to unfold the reachability graph. This high abstraction model
should preserve the desired time property. The model-checking is on-the-fly.

– Each assertion’s verification is independent in terms of reachability graph
generation, so a parallel computation is possible.

We choose one of the property patterns, |T (at) − T (bt)| < δ, to illustrate the
verification method. The principle of deciding whether two events are always
occurring in a given bound is to find out whether one could advance another by
time δ.

An observer pattern (Fig. 11) is added in the original TPN. The middle tran-
sition will always instantly neutralize the tokens from the places Occ A and Occ
B except when one token waits for a time longer than δ that leads to the firing
of Pass transition. To guarantee the termination of model checking, the pattern
is extended by adding a large overflow number on the tester’s incoming arc.
We use places tester A and tester B to detect this exception. In the generated
reachability graph, it only requires to verify if tester A or tester B has marking.
The assertion is: ♦(testerA = 1) ∨ ♦(testerB = 1).

Once it is known how to verify |T (at) − T (bt)| < δ, it is possible to change
δ to compute a near optimal tolerance. If |T (at) − T (bt)| < δ + 1 is verified as
true, but false for |T (at) − T (bt)| < δ, then the near optimal tolerance is δ + 1.

364 N. Ge and M. Pantel

Event A

tester A

overflow

[δ,δ]

Observer

 Event B

tester B

[δ,δ]

overflow

[0,0]

Occ A Occ B

Pass A Pass B

Fig. 11. |T (at) − T (bt)| < δ Pattern TPN Observer

In order to improve the computation efficiency, a dichotomy search is used to
reduce the complexity from O(N) to O(log N).

7 Verification Result and Performance Analysis

7.1 Verification Result

In the case study, the designer aims to design a protocol relying on our verifica-
tion framework, and then evaluate the system performance. The designer alters
the wait time of the active receiver and the jitter, selects the network average
delay and computes the coincidence tolerance. The result is shown in Fig. 12.
Different coloured lines represent the result with different jitters. The variation
is regular and linear because the modelled system is conceptually simple without
resource sharing. It is obvious that the best wait time of the protocol is 1600ms.

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

to
le

ra
nc

e
w

ith
 p

ro
to

co
l (

m
s)

wait time (ms)

Fig. 12. Verification Result: Best Wait Time of Active Receiver

Time Properties Verification Framework 365

Then the user aims to evaluate this protocol by verifying the coincidence prop-
erty. In the verification result (see Table 3), comparing the minimum coincidence
tolerance in original system and that in the protocol system, it is obvious that
the protocol succeeds in decreasing the tolerance value. We can say the system
is more robust than the original.

Table 3. Verification Result: Independence with Designed Hand shake Protocol (ms)

Network Average Delay Network Jitter Time Window Min Coincidence tolerance
Original System Protocol System

1600 100 200 685 617
1600 300 600 1085 817
1600 500 1000 1485 1017
1600 700 1400 1885 1217
1600 900 1800 2285 1417
1600 1100 2200 2685 1617
1600 1300 2600 3085 1817
1600 1500 3000 3485 2017

7.2 Verification Performance Analysis

The performance of model checking is a very important issue for the end user.
In this verification framework, we have used property-driven transformation,
observer-based verification in highest abstraction mode and parallel computation
methods to avoid the explosion of state space problem and to ensure a high
performance. To validate the performance, we focus on two aspects: efficiency
and scalability. The objective is to find out that within an acceptable time range

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000
 14000
 15000
 16000
 17000
 18000
 19000
 20000
 21000
 22000

1 4 7 10 13 15 20

C
om

pu
ta

tio
n

T
im

e
fo

r
C

oi
nc

id
en

ce
 P

ro
pe

rt
y

(m
s)

Performance Test Case (1-20 Receivers)

Orignal
COINCIDE(A,B,2)=false
COINCIDE(A,B,4)=false
COINCIDE(A,B,6)=false
COINCIDE(A,B,8)=false

COINCIDE(A,B,10)=false
COINCIDE(A,B,20)=true
COINCIDE(A,B,30)=true
COINCIDE(A,B,40)=true

Fig. 13. Performance Evaluation

366 N. Ge and M. Pantel

for rapid system prototyping (less than 1 minute), the framework is able to verify
the coincidence property of system with a scale of 2 senders, 2 routers, and 1-
20 pairs of active-passive receivers which is representative of current avionics
systems.

The performance evaluation result (Fig. 13) shows both the efficiency and
the scalability of the performance. The efficiency is shown by the verification’s
computation time. For a system with 20 pairs of receivers, the original reach-
ability graph generation time is less than 1000ms on a common computer; the
computation time proving that the property is true is less than 16000ms, and
the computation time proving that the property is false is about 6000ms. It
is straightforward that proving a property false needs less time than the truth
proof, because once a violation is detected the checking terminates. The scalabil-
ity is shown by the linear relation between the time-over-cost of verification and
the system’s scale. When the increasing ratio is constant, it guarantees that if the
original system reachability graph could be generated, then all the verifications
of its time properties using our framework will take an appropriate time.

8 Conclusion and Further Works

In this paper, we propose a time property verification framework for UML-
MARTE safety critical RTS. This verification framework can assess time prop-
erties like upper bound for loops and buffers, B/WCRT, B/WCET, B/WCTT,
schedulability and synchronization-related properties (synchronization, coinci-
dence, exclusion, precedence, sub-occurrence, causality). In addition, it can ver-
ify some behavioural properties like the absence of deadlock or dead branches.
We evaluate the framework with a representative case study focusing on the
property of coincidence between two tasks. The verification result demonstrates
this framework can not only verify the time properties, but also assist the sys-
tem’s design at early phases of the lifecycle. The performance test and analysis
illustrate the efficiency and scalability of the framework. Due to page limits, we
will present the other properties’ verification in other contributions.

One contribution is the proposition of the property-driven transformation,
time property translation and observer-based verification methods. The time
property translation method is independent of both the design modelling lan-
guage and the verification language; the observer-based verification method is
independent of the design modelling language. This independence allows these
methods to be integrated in other verification frameworks. Another contribution
is the approaches for reducing the state space combinatorial explosion problem,
including the property-driven transformation, the highest abstraction on-the-fly
model checking, and the parallel computation.

In the future, we will focus on extending this framework. On the technical
side, we will optimize the TPN models by finding some reducible structural
patterns without influencing the property. On the methodological side, we will
experiment with other kind of properties, like the functional property, to improve
the Property-driven approach to DSML (Domain Specific Modelling Language)
model verification that started in the TOPCASED project.

Time Properties Verification Framework 367

References

1. Andrade, E., Maciel, P., Callou, G., Nogueira, B.: A methodology for mapping
sysml activity diagram to time petri net for requirement validation of embedded
real-time systems with energy constraints. In: Digital Society, ICDS 2009 (2009)

2. André, C., Mallet, F.: Specification and verification of time requirements with ccsl
and esterel. In: Proceedings of the 2009 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems, LCTES 2009, pp. 167–
176. ACM, New York (2009)

3. Berthomieu, B., Ribet, P.-O., Vernadat, F.: The tool tina - construction of abstract
state spaces for petri nets and time petri nets. International Journal of Production
Research 42(14), 2741–2756 (2004)

4. Berthomieu, B., Lime, D., Roux, O.: Reachability problems and abstract state
spaces for time petri nets with stopwatches. Discrete Event Dynamic Systems 17,
133–158 (2007)

5. Combemale, B., Crégut, X., Garoche, P.L., Thirioux, X., Vernadat, F.: A Property-
Driven Approach to Formal Verification of Process Models. In: Filipe, J., Cordeiro,
J., Cardoso, J. (eds.) ICEIS 2007. LNBIP, vol. 12, pp. 286–300. Springer, Heidelberg
(2008)

6. Gagnon, P., Mokhati, F., Badri, M.: Applying model checking to concurrent uml
models. Journal of Object Technology 7(1), 59–84 (2008)

7. Ge, N., Pantel, M.: Verification of synchronization-related properties for uml-marte
rtes models with a set of time constraints dedicated formal semantic,
http://hal.archives-ouvertes.fr/hal-00677925

8. Ge, N., Pantel, M., Crégut, X.: Time properties dedicated transformation from
uml-marte activity to time petri net. Submitted to 5th International Workshop
UML and Formal Methods (UML&FM 2012) (August 2012),
http://hal.archives-ouvertes.fr/hal-00686986

9. Gonzalez Harbour, M., Gutierrez Garcia, J., Palencia Gutierrez, J., Drake Moyano,
J.: Mast: Modeling and analysis suite for real time applications. In: 13th Euromicro
Conference on Real-Time Systems (2001)

10. Knapp, A., Wuttke, J.: Model Checking of UML 2.0 Interactions. In: Kühne, T.
(ed.) MoDELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007)

11. Lilius, J., Paltor, I.: vuml: a tool for verifying uml models. In: 14th IEEE Inter-
national Conference on Automated Software Engineering, pp. 255–258 (October
1999)

12. Medina, J.L., Cuesta, Á.G.: From composable design models to schedulability anal-
ysis with uml and the uml profile for marte. SIGBED Rev. 8(1), 64–68 (2011)

13. Merlin, P., Farber, D.: Recoverability of communication protocols–implications of a
theoretical study. IEEE Transactions on Communications 24(9), 1036–1043 (1976)

14. Object Management Group, Inc.: OMG Unified Modeling LanguageTM, Super-
structure (February 2009)

15. Object Management Group, Inc.: UML profile for MARTE: modeling and analysis
of real-time embedded systems version 1.0 (November 2009)

16. Shousha, M., Briand, L., Labiche, Y.: A uml/marte model analysis method for
uncovering scenarios leading to starvation and deadlocks in concurrent systems.
IEEE Transactions on Software Engineering 1, 99 (2010)

http://hal.archives-ouvertes.fr/hal-00677925
http://hal.archives-ouvertes.fr/hal-00686986

Unification of Compiled and Interpreter-Based

Pattern Matching Techniques

Gergely Varró�, Anthony Anjorin��, and Andy Schürr

Technische Universität Darmstadt,
Real-Time Systems Lab,

D-64283 Merckstraße 25, Darmstadt, Germany
{gergely.varro,anthony.anjorin,andy.schuerr}@es.tu-darmstadt.de

Abstract. In this paper, we propose a graph pattern matching frame-
work that produces both a standalone compiled and an interpreter-based
engine as a result of a uniform development process. This process uses
the same pattern specification and shares all internal data structures,
and nearly all internal modules. Additionally, runtime performance mea-
surements have been carried out on both engines with exactly the same
parameter settings to assess and reveal the overhead of our interpreter-
based solution.

Keywords: model transformation, pattern matching interpreter, com-
piled pattern matcher.

1 Introduction

As model transformation undoubtedly plays an immense role in the process of
model-driven development, efficiency and scalability are, therefore, important
issues. In many state-of-the-art tools [1,2], model transformations are governed
by imperative control flow statements, which apply declarative rules as basic
transformation units. Such tools offer the usual advantages of declarativity like
an easily understandable specification language, and readily available solutions
provided by the underlying execution engine for many performance-critical tasks,
whose optimal implementation requires years of specialized expertise. One such
task is the efficient checking of the application conditions of rules, which requires
identifying those parts in the system model on which the rule is executable.

This application condition checking process (as well as several other subtasks
in bidirectional model synchronization and on-the-fly consistency checking sce-
narios) can be described as a general pattern matching problem. In this context, a
pattern consists of constraints, and the matching process determines those parts
of the underlying model that fulfill all these constraints. Structural constraints

� Supported by the Postdoctoral Fellowship of the Alexander von Humboldt Founda-
tion and associated with the Center for Advanced Security Research Darmstadt.

�� Supported by the ‘Excellence Initiative’ of the German Federal and State Govern-
ments and the Graduate School of Computational Engineering at TU Darmstadt.

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 368–383, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Unification of Compiled and Interpreter-Based Pattern Matching Techniques 369

express restrictions that can be checked by using the services of the modelling
layer (e.g., type checks, navigation along links), while non-structural constraints
are handled by some other means (like integer or textual comparison). The rest
of the paper will focus on handling structural constraints, which corresponds to
the graph pattern matching problem [3]. Nonetheless, our approach is left open
w.r.t. the integration of non-structural constraints as well.

When implementing a pattern matching engine, developers must decide on
several important issues (see Sec. 2) already in the early phase of design, which
are hardly modifiable in later development phases as they have radical conse-
quences on the overall architecture. One of these critical topics is the decision
whether a compiled or an interpreter-based engine is to be built.

A compiled engine only consists of program code that is directly executable on
a certain platform without an extra module for performing pattern matching. A
compiled engine typically features better runtime performance, as the algorithms
are represented as machine or byte code of the underlying execution system and
no operation handling layer is needed. In contrast, an interpreter-based engine
requires a specific module (the interpreter), which is responsible for executing
the operations needed to perform pattern matching. Such a technique could offer
more flexibility (e.g., model-sensitive performance optimization [4]) and provide
additional services such as high-level debug support, as the interpreter can access
and exploit runtime information more easily.

There exists a large variety of advanced compiled pattern matcher imple-
mentations [1,5], and several sophisticated interpreter-based approaches [2,6] in
different rule-based model transformation tools. Although some of them provide
solutions for both cases, the resulting engines can be considered to be separate
programs. The following statement [7] is, therefore, still valid: “Interpretation
and code generation are often seen as two alternatives, not as a continuum”. In
order to allow different combinations of these alternatives, techniques are needed
that handle compiled and interpreter-based pattern matchers in a uniform and
tightly integrated way.

In this paper, we propose a pattern matching framework that can produce
both a standalone compiled and an interpreter-based engine as a result of a
uniform development process, which shares (i) the pattern specification, (ii) all
internal data structures, and (iii) all internal activities except for one engine-
specific module. Furthermore, applying exactly the same settings in this uniform
process wherever possible, runtime performance measurements are carried out on
both engines to assess and reveal the overhead of our interpreter-based solution.
To our best knowledge, our proposed approach can be considered the first pattern
matcher to support both a compiled and an interpreter-based setup in a unified,
configurable and integrated manner and can, therefore, be easily embedded and
used by different rule-based model transformation tools.

The remainder of the paper is structured as follows. Related work is discussed
in Section 2. Section 3 introduces basic metamodelling terminology, pattern spec-
ification constructs, and the process of pattern matching. Sections 4 and 5 present
our data structures and algorithms used in the unified pattern matching engine.

370 G. Varró, A. Anjorin, and A. Schürr

Section 6 gives a quantitative assessment and performance comparison of our
compiled and interpreter-based engines. Section 7 concludes our paper.

2 Design Space of Pattern Matchers and Related Work

A widely deployable pattern matching engine should support many different ap-
plication scenarios like the execution of rule-based model transformations on a
desktop computer, as well as performing security monitoring tasks on an embed-
ded system. As the computational power and the amount of available resources
of these architectures significantly differ, the development of a pattern matcher
requires considering several design issues that influence the applicability and
performance of the approach.

The design space of pattern matching engines can be characterized by the
following properties:

(1) Dependency on separate pattern matching modules. The first
property, which has the closest relation to the topic of this paper, expresses
whether pattern matching requires a specific interpreter (I), or can be per-
formed without any separate modules in a standalone manner as a compiled
program (C).

(2) Existence and granularity of intermediate data structures. Pat-
tern matching interpreters and code generators that produce compiled engines
usually operate on data structures with different granularity. One group of solu-
tions directly processes the declarative, pattern specification either in a low-level
form as an abstract syntax tree representation (AST), or in a high-level form
as a pattern definition (P). The other group operates on a preprocessed (and
typically optimized) intermediate data structure, which can either be a low-level
byte code representation (BC), or a high-level search plan (SP).

(3) Generation schedule of intermediate data structures. When inter-
mediate data structures are used by the pattern matcher, their generation sched-
ule can also be an important design decision due to its time consuming nature.
Intermediate data structures can be calculated clearly at compile time (CT), at
runtime in an on-demand fashion (OD) by using a caching mechanism, or at
runtime (RT) before each pattern matching process.

(4) Availability of model sensitive pattern matching strategies. The
size and the structure of the underlying model often influence the runtime per-
formance of a pattern matcher. As both characteristics can significantly change
as a transformation proceeds, the runtime selection of a pattern matching strat-
egy in a model sensitive (MS) way (i.e., by using statistics from the model) is a
feasible optimization compared to approaches that rely only on metamodel-level,
domain-specific (DS) information.

(5) Incrementality. As matches for a given pattern are often requested
several times during the life cycle of several application scenarios, exploiting the
reuse of already calculated matches is a feasible optimization possibility. In this
sense, batch engines (B) restart the pattern matching process from scratch at
each invocation, while incremental approaches (I) store a set of (partial) matches,

Unification of Compiled and Interpreter-Based Pattern Matching Techniques 371

and update this set according to a defined schedule that depends on changes in
the underlying model.

(6) Implementation/target language. As the applicability of a pattern
matcher in a specific environment is largely determined by the implementation
language of the interpreter, or the target language of the code generator, this
property has also been included in our survey. The categorization here indicates
support for a single (1) or multiple (*) languages.

(7) Reusability in different modelling spaces. Another important factor,
in the evaluation of pattern matchers, is their reusability in different modelling
environments. In this sense, an engine can operate on non-standard (NS) or
standard (S) (e.g., EMF, MDR) model repositories. In the latter case, a star (*)
suffix is added, if a tool provides clear interfaces to several standard modelling
environments.

(8) Model access. When a tool operates in a standard compliant modelling
environment, the underlying model can be accessed via tailored (T) or reflec-
tive (R) interfaces, which obviously affects both the runtime performance, and
the resource (disk and memory) demand of an approach.

As a categorization of general model transformation tools is already avail-
able [8], this survey, which cannot be complete due to space restrictions, focuses
on the pattern matching modules of state-of-the-art, rule-based transformation
engines, and systematically compares them based on the previously listed cri-
teria, which has been preceded by a manual inspection of the available source
code (or a related publication). Table 1 presents the evaluation of these pattern
matchers, which are enumerated in alphabetical order.

Table 1. Tool comparison

Tool name (1) (2) (3) (4) (5) (6) (7) (8)

ATL [2] I BC CT DS B 1 S* R

Epsilon [9] I AST N/A DS B 1 S* R

Fujaba @ KS [1] C SP CT DS B 1 S* T

Fujaba @ PO [10] I SP RT MS B 1 S T – R

GReAT [11] I C P N/A DS B 1 NS T

GrGen [5] C SP OD MS B 1 NS N/A

Groove [12] I SP OD MS B I 1 NS N/A

Henshin [13] I P N/A DS B 1 S R

PROGRES [14] I C BC OD DS B I * NS N/A

VIATRA [15,6] I SP OD DS MS B I 1 NS S T

Our approach I – C SP CT OD – RT DS B 1 S T

Perfect tool I – C BC,SP CT – OD – RT DS – MS B – I * NS – S* T – R

The N/A mark shows if a categorization is non-applicable, while the ‘–’ nota-
tion is used to express that a tool is able to cover the whole range of values in an
integrated and configurable manner. The last two lines represent the evaluation
of our current approach, and a hypothetic ideal pattern matching engine that
could be deployed in many different application scenarios.

372 G. Varró, A. Anjorin, and A. Schürr

Table 1 clearly shows that many aspects of the ideal solution have already been
solved separately by the different existing tools; however, the coverage of design
space ranges along several properties is still not satisfactory. The main challenge
here is that each of the above-mentioned design space properties represents a
decision that is hard-wired into the tool architecture making reengineering tasks
difficult in this context.

3 Modelling Concepts and Data Structures

In this section, we introduce basic metamodelling terminology required to present
our approach, define concepts related to pattern specification, and illustrate the
process of pattern matching and its runtime data structures.

3.1 Metamodels and Models

A metamodel is the specification of the concepts and relationships in a certain
domain. Figure 1(a) depicts an excerpt of the metamodel from a case study [16]
for the GraBaTs’09 transformation tool contest [17], which poses a program
comprehension challenge based on the Eclipse Java Development Tools (JDT)
API [18]. Using the common UML class diagram notation, parts that are relevant
for our running example are depicted. The metamodel has been taken unchanged
from the case study, and defines concepts as classes (e.g., a CompilationUnit).
Classes can inherit from other classes (e.g., every MethodDeclaration is a
BodyDeclaration), can contain attributes (every Name has an fqn as an at-
tribute of type String), and can reference other classes (CompilationUnits
contain arbitrary many AbstractTypeDeclarations, which each have exactly
one SimpleName). Attributes and references are referred to as structural features
in the rest of the paper.

A model is an abstraction of a system, created with an intended goal in mind.
In alignment with the UML notation, nodes and edges are referred to as objects
and links, respectively. A model that is expressed using concepts specified in a
metamodel is said to conform to the metamodel. Figure 1(b) depicts a model,
which corresponds to the Eclipse JDT representation of a Java class Client with
a single public method, which returns a Client.

3.2 Pattern Specification

This subsection introduces the concepts needed for specifying patterns. The
following definitions are based on [19].

A pattern is a set of constraints over a set of variables. A variable is a place-
holder for an object in a model. Interface variables constitute a subset of all
variables used in a pattern, and represent the variables that can be accessed
outside of the pattern. All other local (i.e., non-interface) variables can only be

Unification of Compiled and Interpreter-Based Pattern Matching Techniques 373

(a) An excerpt of the metamodel of the Eclipse JDT

cu:CompilationUnit

typeDecl:
TypeDeclaration

methodDecl:
MethodDeclaration

modifier:Modifier

- public = true

name:SimpleName

- fqn: String = "Client"

typeName:SimpleName

- fqn: String = "Client"

type:
SimpleType

+name

+modifiers

+returnType
+bodyDeclarations

+name
+types

(b) A sample model

Fig. 1. An excerpt of the metamodel of the Eclipse JDT API and a sample model

accessed and used internally in the pattern. A constraint specifies a condition
on a set of variables that must be fulfilled by the objects, which are assigned to
the variables during pattern matching. A constraint consists of a constraint type
and a set of variables (also referred to as parameters in this context), for which
the constraint must hold. In the following, an explicit reference to the type of a
constraint shall be denoted by adding a ‘type’ suffix.

The pattern matcher has a pluggable infrastructure for the constraints that
can be used for specifying patterns.1 In this paper, only a subset of constraints
is presented. The support for extending the framework with constraints for at-
tribute handling, positive and negative pattern invocations is already available,
however, the implementation for pattern calls is still a task for the future.

A class constraint (cls) restricts the type of the objects that can be assigned
to its single parameter. A structural feature constraint (sf) prescribes the ex-
istence of a link, which connects the assigned objects and conforms to a given
structural feature. Both constraints cls and sf have references to types in the
corresponding metamodel. A Boolean constraint must evaluate to true for the
assigned values to its single parameter.

The textual specification of patterns, used in this paper, is defined by the
following simplified EBNF grammar:

patternSpecification ::= "pattern" signature "=" body

signature ::= NAME "(" interfaceVariables ")"

body ::= "{" constraint* "}"
constraint ::= NAME typeReference? "(" variables ");"

typeReference ::= "<" NAME ">"

1 Quantifiers can be defined at runtime in our framework, when the pattern matching
is invoked, and consequently, they are not part of the pattern specifications.

374 G. Varró, A. Anjorin, and A. Schürr

interfaceVariables ::= variables

variables ::= (NAME ",")* NAME

NAME ::= [a-zA-Z]+

Example. The graphical representation and the textual specification of pattern
publicMethods2 are presented in Fig. 2. This pattern requires the existence of
a compilation unit CU, which has a type declaration TD with a public method
declaration MD. Pattern publicMethods has three interface variables CU, TD, and
MD (line 1). The class constraint on line 3 prescribes that variable CU must be
mapped to a CompilationUnit. The structural feature constraint on line 10 re-
quires a types reference that connects the objects that are assigned to variables
CU and TD. The Boolean constraint on line 16 prescribes that the object assigned
to variable PublicTagmust be true. Please note that (i) the order of constraints
(rows) in the textual representation of a pattern is arbitrary, (ii) constraints on
references and attributes are handled in a uniform way (line 13), and (iii) the
pattern matcher has access to all the properties of a metamodel element (infor-
mation whether a class is abstract, a reference is a composition, etc.) via the
references maintained in the class and structural feature constraints.

pattern publicMethods (CU, TD, MD)

CU:
CompilationUnit

TD:
TypeDeclaration

MD:
MethodDeclaration

Mod:Modifier

PublicTag:
boolean

«Constraint»
{PublicTag
 ==
 true}

public

modifiers

bodyDeclarations

types

1 pattern publicMethods(CU,TD,MD) = {
2 // Class constraints
3 cls <CompilationUnit >(CU);
4 cls <TypeDeclaration >(TD);
5 cls <MethodDeclaration>(MD);
6 cls <Modifier >(Mod);
7 cls <boolean >(PublicTag);
8
9 // Structural feature constraints

10 sf<types >(CU,TD);
11 sf<bodyDeclarations >(TD,MD);
12 sf<modifiers >(MD ,Mod);
13 sf<public >(Mod,PublicTag);
14
15 // Boolean constraints
16 true(PublicTag);
17 }

Fig. 2. Pattern publicMethods in a graphical and textual representation

3.3 Pattern Matching and Runtime Data Structures

Pattern matching is the process of determining mappings for all variables in a
given pattern, such that all constraints in the pattern are fulfilled. The mappings
of variables to objects are collectively called a match, which can be a complete
match when all the variables are mapped, or a partial match in all other cases.

An adornment represents binding information for a sequence of variables and
is indicated in the textual syntax by a sequence of letters B and F of the same
length, which appears as a superscript on the name of the concept to which

2 A more complex example scenario can be found in [4].

Unification of Compiled and Interpreter-Based Pattern Matching Techniques 375

the adornment is attached. The letter B or F in an adornment, means that the
variable in that position is bound or free, respectively.

When pattern matching is invoked, interface variables can be already bound
to objects to restrict the search. The corresponding binding information of all
interface variables is called a pattern adornment.

An operation represents a single atomic step in the matching process and it
consists of a constraint and a constraint adornment. A constraint adornment
prescribes which parameters must be bound when the operation is executed.
A check operation has only bound parameters. An extension operation has free
parameters, which get bound when the operation is executed.

Example. Suppose a matching process for the pattern publicMethods (Fig. 2)
is to be run on the model of Fig. 1(b), with the interface variable CU bound to the
compilation unit cu at pattern invocation. This single mapping itself constitutes
a partial match, and the corresponding pattern adornment is BFF,3 since only
the first interface variable has been bound. When the pattern matching process
terminates, a complete match is returned, which maps variables CU, TD, MD, Mod,
and PublicTag to objects cu, typeDecl, methodDecl, modifier, and a Boolean
true value, respectively.

4 Workflow of Compiled Pattern Matching

This section presents the workflow for generating a compiled pattern matching
engine. In this process, a pattern matcher class is generated for every pattern.
Although an adornment is part of runtime binding information, the generated
engine must be prepared to handle a fixed set of pattern adornments, which
are selected in advance at compile time. For each selected pattern adornment,
a method that performs the actual pattern matching is generated into the cor-
responding pattern matcher class according to the approach depicted in Fig. 3,
which operates as follows:

Section 4.1 For each constraint type used in the pattern specification, the set
of allowed constraint adornments is calculated.

Section 4.2 For each pair of constraint and allowed constraint adornment, an
operation is loaded.

Section 4.3 Operations are filtered and ordered by a search plan algorithm to
produce an efficient search plan.

Section 4.4 Based on the search plan, generators are created, which control
the code generation process.

When the pattern matcher is invoked at runtime, the pattern adornment is de-
termined and used to select and execute the corresponding generated method.4

The selected method performs the complete pattern matching process, collecting

3 The pattern adornment only contains binding information for interface variables (CU,
TD and MD in this example).

4 If no such method exists, an exception is thrown, which might initiate a pattern
matcher regeneration process.

376 G. Varró, A. Anjorin, and A. Schürr

constraint
types (CT)

constraint

calculate allowed
adornments

 allowed
adornments

operation
loader

 set of
operations

search plan
algorithm

 search
plan

generator
builder

type

shared

generators

Java

4.1

4.2 4.3 4.4

compiler-specific

compiler-
specific

Fig. 3. Process for producing a compiled pattern matching engine

complete matches in a result set. The following subsections discuss the steps of
the process in detail.

4.1 Allowed Adornment Calculation

In general, not every possible adornment is valid for every constraint type. Our
framework allows the underlying modelling layer to define the set of allowed
adornments for every available constraint type in a configurable way. For pre-
sentation purposes, standard Ecore/EMF is assumed as the modelling layer in
the following: A structural feature constraint type, referring to a bidirectional
reference, would allow adornments BB, BF, and FB, where BB means checking the
existence of a link, while BF and FB denote forward and backward navigations,
respectively. In the case of unidirectional references, only BB and BF adornments
make sense. Analogously, only BB and BF adornments are allowed for structural
feature constraint types referring to an attribute. Only the adornment B is al-
lowed for class and Boolean constraint types.5

Example. The framed part of Figure 4(a) shows the complete list of constraint
types and allowed adornments for pattern publicMethods. Lines 1–5 show that
class constraint types have the adornment B as type checks can be performed
only on a bound parameter. Line 6 represents a check for the existence of a
types link, while line 7 means a forward navigation along a link of type types.

4.2 Operation Loading

The operation loader prepares all the operations that might be needed to execute
pattern matching by iterating through all constraints of a pattern. It looks up the
allowed adornments for the type of the constraint, and creates a new operation
for each combination of constraint and allowed adornment.

Example. Figure 4(a) lists the set of operations that might be needed to calculate
matches for pattern publicMethods. For example, line 1 shows that variable CU
must already be mapped to an object before a corresponding type check can
be performed. Line 7 expresses that a forward navigation along types links is
executable only when an object has already been bound to variable CU.

5 The set of allowed adornments for standard MOF/JMI, in contrast to Ecore/EMF,
would also allow FF for associations, and F for class constraint types. Similarly, a
modelling layer with additional EMF services could also support an extended set of
allowed adornments for EMF supporting e.g., FB for indexed attributes.

Unification of Compiled and Interpreter-Based Pattern Matching Techniques 377

(a) Operations (b) Search plan for the sample pattern
publicMethods

Fig. 4. Data structures used by both engines

4.3 Search Plan Generation

Operations are filtered and ordered by a search plan algorithm to produce effi-
cient search plans. Due to space restrictions, search plans generation techniques
like [1,4,6] and their details (e.g., cost functions, optimization algorithms) are
not discussed in this paper.

A search plan is defined as a sequence of operations satisfying the following
conditions:

1. Each constraint in the pattern has exactly one corresponding operation in
the search plan.

2. Each variable that must be bound according to the constraint adornment of
an operation is either already bound in the pattern adornment, or appears
as a free variable in one of the preceding operations.

3. Each variable that must be free according to the constraint adornment of
an operation is not bound in the pattern adornment and does not appear in
any of the preceding operations as free variables.

4. Each extension operation must be immediately followed by class check oper-
ations that perform the type checking of the free variables of the extension
operation.

Example. Figure 4(b) shows a search plan for pattern publicMethods, when the
first interface variable (CU) is bound when pattern matching is invoked. The
search plan has been derived from the set of operations (Fig. 4(a)) by filtering
and reordering, and it fulfills all conditions 1–4. The constraint adornment on
line 3, for example, is valid, as CU, which must be bound, is indeed bound in
the pattern adornment. Similarly, TD, which must be free, is free in the pattern
adornment, and does not appear in any preceding operation as a free variable.

378 G. Varró, A. Anjorin, and A. Schürr

4.4 Code Generation for a Compiled Pattern Matcher

The final step is code generation, which is controlled by a set of different genera-
tors that each maintain a link to a template.6 As depicted in detail in Fig. 5 for
the pattern adornment BFF, a method generator references a series of operation
generators, responsible for navigation in the model (e.g., lines 2 and 5), which in
turn reference variable generators, that store the determined values for variables
on the JVM stack (e.g., lines 3–4 and 6–7). A match generator is responsible for
the code that should be executed when a (complete) match is found (line 15).
Code generation is initiated by starting the template of the method generator.

Method Generator (BFF)

Operation
Generator

Variable
Generator

Operation
Generator Variable

Generator
Operation
Generator

next

Variable
Generator

Operation
Generator

Variable
Generator

Operation
Generator Match

Generator

next

next

next

Fig. 5. Generated code to handle pattern matching

5 Workflow of Interpreter-Based Pattern Matching

Interpreter-based engines typically carry out all their pattern matching related
tasks at runtime. As such, the pattern specification should be considered as a
starting point when the matching process is invoked. Furthermore, in order to
avoid any dependencies on generated data structures, interpreter-based pattern
matchers typically use a reflective API of the modelling layer to access objects
and to navigate along links.

In contrast to this general tendency, our interpreter-based solution (whose
workflow is presented in Fig. 6) uses tailored interfaces (just like the compiled
pattern matcher) to completely eliminate the performance effects that would be
caused by the different model access strategies, and thus, to enable a fair quan-
titative comparison of our compiled and interpreter-based engine variants. This
requires generated operation classes (and a loader class), which are subclasses
of their generic counterparts and are produced at compile time (as shown by
the solid arrows). A generated operation, thus, represents an atomic step in the
pattern matching process and uses a tailored interface for model access purposes.

6 Velocity is used as a template language and engine.

Unification of Compiled and Interpreter-Based Pattern Matching Techniques 379

constraint
types (CT)

constraint

calculate allowed
adornments

 allowed
adornments

operation
loader

 set of
operations

search plan
algorithm

 search
plan

generator
builder

type

shared

generators
4.2 4.3

generated
operation

loader

 set of
generated
operations

extends extends

interpretercompile time

runtime

interpreter-
specific

interpreter-specific

5

Fig. 6. Process for producing an interpreter-based engine

Although generated operations are produced at compile time, all the remain-
ing activities are executed at runtime as highlighted by dashed arrows in Fig. 6.
The runtime part of the interpreter-based pattern matching approach, which
reuses all parts from Sec. 4 that are shaded in grey, works as follows:

Section 4.2. When the pattern matcher is invoked, a (generated) operation
is loaded for each pair of constraint and allowed constraint adornment. As
constraints are part of the pattern, this behaviour completely aligns with
the expectation that an interpreter-based engine should start processing the
pattern specification at runtime.

Section 4.3. Operations are filtered and ordered by a search plan algorithm to
produce a search plan. The algorithm is obviously influenced by the pattern
adornment, that has been determined by examining which interface variables
have been mapped to objects in the model at pattern invocation.7

Section 5. Finally, the interpreter performs pattern matching by executing the
search plan. The details of this interpreter module are presented in the re-
maining part of this section.

The interpreter uses a match array for storing the current match and the oper-
ations in the search plan. Every operation has a link to the next operation and
a mapping, that identifies the slots in the match array, which correspond to the
parameters of the operation.

When the interpreter is invoked, it prepares the initial match array, whose
size is determined by the number of variables in the pattern. The initial match
array is filled according to the input mapping of interface variables to objects
in the model, and is passed to the first operation in the search plan. When an
extension operation is performed, the structural feature is traversed forwards
(BF) or backwards (FB) to bind the corresponding free variable, the type of the
accessed object is validated, and the execution is passed on to the following
operation for subsequent processing together with the extended match array.
For a check operation, the operation is performed and, in case of success, the
current match array is simply left unchanged and passed on. When the match

7 Search plans can be cached and reused depending on the configuration settings.

380 G. Varró, A. Anjorin, and A. Schürr

array passes beyond the last operation, it represents a complete match and
is stored in a result set. A single match array is used for storing all (partial)
matches, and only complete matches are copied and stored in a result set.

This behaviour is a depth-first traversal8 of a state space (just like the com-
piled approach), where a state represents the processing of a partial match by
an operation. The state space can alternatively be described as a tree, whose
root is the initial match, while internal nodes and leaves correspond to partial
and complete matches, respectively.

6 Measurement Results

In this section, we present measurement results from comparing our compiled
engine with our interpreter-based pattern matching engine, both produced via
a uniform process, using our framework as discussed in Sec. 4 and Sec. 5. The
pattern used for the measurements is from [16] and describes all classes, excluding
inner classes, that contain at least one public static method, whose return type
is the same as the class itself. Five models (Set0 – 4) of different size were taken
unchanged from the same case study.

A 1.57 GHz Intel Core2 Duo CPU with 2.96 GB RAM was used for all mea-
surements. Windows XP Professional SP 3 and Java 1.6 served as the underlying
operating system and virtual machine, respectively. The maximum heap size was
set to 1536 MB. User time, which is the amount of time the CPU spends per-
forming actions for a program, was measured. On the used machine, this could
only be measured with a precision of ±12.625 ms. As a single pattern matching
task takes less time than this value, each measurement was performed as a series
of blocks. In a measurement block, the pattern matching task of the compiled
engine was performed 100 times, while in the case of the interpreter-based en-
gine, search plan generation and pattern matching were executed 500 times, and
20 times, respectively.9 This block-based measurement was repeated 50 times in
all cases to provide stable average values.

The generated search plans and resulting matches in both cases were validated
manually to be equivalent. To obtain a fair comparison, search plan generation
and pattern matching were measured separately for the interpreter.

Table 2 presents the measured execution times. The first column indicates
the model used (Set0 – 4), the second and third columns the size of the model
in number of Java classes and objects, respectively. The fourth column denotes
the corresponding state space size in number of states, the fifth column the time
(ms) for the compiled engine, while the last two columns show the time (ms) for
search plan generation and pattern matching for the interpreter-based engine.

8 Alternative strategies (e.g., breadth-first traversal) would typically duplicate match
arrays during the execution of extension operations, which would cause an increased
memory consumption.

9 The only reason for selecting different block length values was to have raw data
approximately on the same scale, which already belongs to the measureable range.

Unification of Compiled and Interpreter-Based Pattern Matching Techniques 381

Table 2. Measurement results

Java Model State Compiled
classes size space PM SP PM

ms ms ms
Set0 14 70447 232 0.03 0.12 0.19
Set1 40 198466 549 0.08 0.12 0.53
Set2 1605 2082841 37348 12.99 0.12 41.91
Set3 5769 4852855 94300 31.17 0.41 142.34
Set4 5984 4961779 103122 36.01 0.84 230.38

Interpreter based

Table 2 shows that the compiled engine, which represents algorithms in a
byte code form, and thus, requires no operation handling tasks to be executed,
outperformed the interpreter-based engine in all cases, and was about 4–6 times
faster. For the interpreter-based engine, the time spent for search plan generation
increased for the larger models (Set3 and Set4), which are loaded into memory
prior to search plan generation. We believe this is caused by garbage collection,
which becomes necessary due to the substantial difference in size of the models
as compared to Set0 or Set1.

In order to clarify the exact reason for the large execution times of the
interpreter-based engine in case of large models, and to justify our assumption
on the role of garbage collection, further measurements should be performed in
the future with larger heap size settings, on more patterns and on different appli-
cation domains e.g., like the ones mentioned in [20]. An additional comparison
using reflective interfaces for our engines would also be interesting. Further-
more, other dimensions could be measured including memory footprint, number
of loaded classes and RAM consumption.

Note that the main goal of our measurements was neither to quantitatively
analyze pattern matchers with search plans [4,20], nor to draw any conclusion
regarding the performance of compiled and interpreter-based engines in general,
nor to repeatedly justify the obvious comparative statements about the runtime
superiority of compiled techniques, but to assess the exact extent of performance
differences between our pattern matcher variants. In our measurements, both
variants accessed the EMF-based modeling layer via the same tailored interfaces.
Additionally, they applied the same algorithm to produce the same search plan,
which resulted in the same state space traversed in the same depth-first order.
We think that this unified measurement setup could only be achieved by using
a framework-based solution, and any modification in this setup would introduce
performance influencing factors that are independent from the main issue under
investigation (i.e., the exact effects caused by the selection of our compiled or
interpreter-based engine).

7 Conclusion

In this paper, we proposed a pattern matching framework that can produce both
a standalone compiled and an interpreter-based engine in a uniform process that

382 G. Varró, A. Anjorin, and A. Schürr

shares all internal data structures and the majority of modules. As main advan-
tages, our framework-based solution (1) eases the task of reengineering a tool
with respect to its pattern matcher module, and (2) enables a switching possibil-
ity between the compiled and interpreter-based engines at runtime. Additionally,
we carried out performance measurements on both engines with the same pa-
rameter settings to assess the overhead of our interpreter-based solution.

The proposed approach has been implemented in the context of the Democles
project, whose goal is to provide a model-based pattern matcher implemen-
tation, which integrates several advanced pattern matching algorithms in one
framework, and can be embedded into different tools. Contributions of this pa-
per cover one aspect of this project, which was to present the unified process for
handling compiled and interpreter-based pattern matchers. The model-sensitive
search plan algorithm of the pattern matcher has been published in [4]. The
interpreter additionally supports (a yet unpublished) step by step execution
possibility, which can be the basis of a high-level debugger in the future.

References

1. Geiger, L., Schneider, C., Reckord, C.: Template- and modelbased code generation
for MDA-tools. In: Giese, H., Zündorf, A. (eds.) Proc. of the 3rd International
Fujaba Days, Paderborn, Germany, pp. 57–62 (2005),
ftp://ftp.upb.de/doc/techreports/Informatik/tr-ri-05-259.pdf

2. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

3. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation, vol. 1: Foundations. World Scientific (1997)

4. Varró, G., Deckwerth, F., Wieber, M., Schürr, A.: An Algorithm for Generating
Model-Sensitive Search Plans for EMF Models. In: Hu, Z., de Lara, J. (eds.) ICMT
2012. LNCS, vol. 7307, pp. 224–239. Springer, Heidelberg (2012)

5. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: A Fast SPO-
Based Graph Rewriting Tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro,
L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer,
Heidelberg (2006)

6. Varró, G., Varró, D., Friedl, K.: Adaptive graph pattern matching for model trans-
formations using model-sensitive search plans. In: Karsai, G., Taentzer, G. (eds.)
Proc. of International Workshop on Graph and Model Transformation. ENTCS,
vol. 152, pp. 191–205. Elsevier (2005)

7. Voelter, M.: Best practices for DSLs and model-driven development. Journal of
Object Technology 8(6), 79–102 (2009)

8. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621–645 (2006)

9. Kolovos, D., Rose, L., Paige, R.: The Epsilon book,
http://www.eclipse.org/gmt/epsilon/doc/book/

10. Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and scalability by in-
terpreting story diagrams. In: Margaria, T., Padberg, J., Taentzer, G. (eds.) Proc.
of the 8th International Workshop on Graph Transformation and Visual Modeling
Techniques, ECEASST, vol. 18 (2009)

ftp://ftp.upb.de/doc/techreports/Informatik/tr-ri-05-259.pdf
http://www.eclipse.org/gmt/epsilon/doc/book/

Unification of Compiled and Interpreter-Based Pattern Matching Techniques 383

11. Agrawal, A., Karsai, G., Neema, S., Shi, F., Vizhanyo, A.: The design of a language
for model transformations. Software and Systems Modeling 5(3), 261–288 (2006)

12. Rensink, A.: The GROOVE Simulator: A Tool for State Space Generation. In:
Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–
485. Springer, Heidelberg (2004)

13. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp.
121–135. Springer, Heidelberg (2010)

14. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES Approach: Language and
Environment. In: Handbook on Graph Grammars and Computing by Graph Trans-
formation, vol. 2: Applications, Languages and Tools, pp. 487–550. World Scientific
(1999)

15. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern
matching in the VIATRA model transformation system. In: Karsai, G., Taentzer,
G. (eds.) Proc. of the 3rd International Workshop on Graph and Model Transfor-
mation, pp. 25–32. ACM (2008)

16. Sottet, J.S., Jouault, F.: Program comprehension,
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/

cases/grabats2009reverseengineering.pdf

17. Levendovszky, T., Rensink, A., van Gorp, P.: 5th International Workshop on
Graph-Based Tools: The Contest,
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/

18. Beaton, W., des Rivieres, J.: Eclipse platform technical overview. Technical report,
The Eclipse Foundation (2006)

19. Horváth, Á., Varró, G., Varró, D.: Generic search plans for matching advanced
graph patterns. In: Ehrig, K., Giese, H. (eds.) Proc. of the 6th Int. Workshop on
Graph Transformation and Visual Modeling Techniques, vol. 6 of ECEASST (2007)

20. Varró, G., Schürr, A., Varró, D.: Benchmarking for graph transformation. In: Proc.
of the 2005 IEEE Symposium on Visual Languages and Human-Centric Comput-
ing, Dallas, Texas, USA, pp. 79–88. IEEE Computer Society Press (2005)

http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2009reverseengineering.pdf
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2009reverseengineering.pdf
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/

OCL-Based Runtime Monitoring of Applications

with Protocol State Machines

Lars Hamann, Oliver Hofrichter, and Martin Gogolla

University of Bremen, Computer Science Department
Database Systems Group, D-28334 Bremen, Germany

{lhamann,hofrichter,gogolla}@informatik.uni-bremen.de

Abstract. This paper presents an approach that enables users to mon-
itor and verify the behavior of an application running on a virtual ma-
chine (like the Java virtual machine) at an abstract model level. Models
for object-oriented implementations are often used as a foundation for
formal verification approaches. Our work allows the developer to verify
whether a model corresponds to a concrete implementation by validat-
ing assumptions about model structure and behavior. In previous work,
we focused on (a) the validation of static model properties by monitor-
ing invariants and (b) basic dynamic properties by specifying pre- and
postconditions of an operation. In this paper, we extend our work in or-
der to verify and validate advanced dynamic properties, i. e., properties
of sequences of operation calls. This is achieved by integrating support
for monitoring UML protocol state machines into our basic validation
engine.

1 Introduction

When one faithfully follows the Model-Driven Development (MDD) paradigm,
abstract representations of all artifacts, in particular of code, are needed in form
of models. Model-like descriptions can be used as central parts in the software
development process and are considered to be a promising paradigm for effective
software production. Models can be employed in all development phases and for
different purposes. Consequently and despite all justified criticism, the Unified
Modeling Language (UML) is playing a pivotal role as a modeling language.
Nearly every software engineer understands at least the UML core concepts,
while other more specialized modeling languages first need to be explained from
the scratch. This central role of the UML can also be observed by looking for
transformation approaches from UML to more formal and specialized languages
or tools such as the Alloy [24] language, SAT [25] or model checkers [19].

When using UML models for abstractions of concrete software systems, model
quality is important. It has to be ensured that the developed models correspond
to the implementation to be abstracted from. Otherwise formal quality assurance
techniques would verify some disconnected abstract model and not the concrete
implementation. This is especially true, if the implementation is not fully gen-
erated from the model and finalized by a developer. This is currently the most
common case.

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 384–399, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

OCL-Based Runtime Monitoring of Applications 385

In [17] simulation of the model is proposed in the overall process of model
checking. The process is shown in Fig. 1 which is adapted from [17, p. 8]. Our
contribution and extension to the process is shown in the parts having a grey
background.

�������	�
�

�����������
�

�����
�

���������

����������	

���

������	�

��������	���
�
	��������

�	�
���� ����	����
����	���������

����	���
�����

��
����

�
	��
�
	��

���

�
	��������	��
��������	���

���

�
	����
	��������

Fig. 1. Monitoring in the context of Model Checking (c.f. [17])

In our approach, we do not only simulate the model. We combine the system
model with the implementation (the system) in order to be able to detect mis-
matches between the implementation, the system model and the property spec-
ification. We do so while executing the actual implementation. As systems we
consider applications running inside a virtual machine, such as Java application
running inside the Java Virtual Machine (JVM). Our system model will be de-
fined as a UML class model extended by UML protocol state machines [20] and
augmented with property specifications resp. assumptions formulated as OCL
(Object Constraint Language) [21] state invariants and OCL operation pre- and
postconditions. Since the elements of this system model need to be identified by
our monitor, the system model needs to be aligned to the implementation. We
call such a model a platform aligned model (PAM). We connect these compo-
nents with a monitor in order to verify assumptions about the components at
runtime. Our monitor can be started at any time that the concrete system, i. e.,
the Java application, is running. As an extension to our work presented in [15]
and [16], we show how a state machine extension of the employed validation en-
gine can be used without modifying our monitor component. Here, we show how
UML protocol state machines (psms, singular psm) can be used to validate the
correct sequence of operation calls, i. e., a protocol definition for a given class.
We will further discuss some threads to validity which have to be considered
when using a monitor approach like ours.

The rest of this paper is structured as follows. In Section 2 we put forward
the basic ideas of our proposal for analyzing applications running in the Java
virtual machine. Section 3 gives an overview on the integration of protocol state
machines into our validation engine USE [11]. Section 4 explains the employment
of protocol state machines in combination with our monitoring approach by

386 L. Hamann, O. Hofrichter, and M. Gogolla

means of a middle-sized case study applied in our tool USE. Section 5 discusses
related work. The paper ends with a conclusion and ideas for future work.

2 Monitoring

In this section we explain our monitoring approach. A more detailed description
can be found in [15]. The main idea of our approach is to monitor a running
implementation of a system and to extract a more abstract representation of the
current system state into a validation engine. We call this abstract representation
a snapshot of the system under monitoring (SUM), because in general it is a small
subset of the artifacts of the running system. Since we want to focus only on
central parts of the implementation we leave out unimportant parts. The basis
for this snapshot is a model which is more abstract than the implementation,
e. g., by defining associations which are not present in programming languages,
but specific enough to be able to find relevant parts inside the SUM, e. g., by
specifying concrete package names. Because of this alignment between the most
specific platform model, e. g., byte code and platform independent models we
call this model level platform aligned model (PAM).

(Extractor)

USE

Monitor

VM

Implementation

Assumptions Model (PAM)

Instance

Snapshot

Fig. 2. Overview of the monitoring approach

As shown in Fig. 2 the PAM is enriched with assumptions about the running
system. These assumptions are verified during the monitoring process by our
validation engine USE. In order to be able to verify assumptions specified in a
model USE needs an instance (i. e., objects and links) of it. In the monitoring
context we call this instance a snapshot. Figure 2 shows this relation at the bot-
tom. The monitor ensures, that the instance required by USE is a valid snapshot
of the monitored instance inside the virtual machine. The virtual machine itself
as shown at the top of the figure uses the implementation and an instance, i. e.,
the (heap) memory, stack, stack pointer, etc. of a running program. The PAM
can be defined in several ways. For example, it can be step-wise refined when
developing a system or it can be extracted by using reengineering techniques
as shown in [16]. Furthermore, it can be generated when using model driven
development.

Using modern virtual machine implementations like the JVM or the CLR of
Microsoft .NET allows our monitor to use a rich pool of debugging and profiling

OCL-Based Runtime Monitoring of Applications 387

interfaces. For example, the Java Platform Debugger Architecture[22] enables
third party tools to easily access applications running inside a local or remote
virtual machine. An important part of this interface is the possibility to retrieve
information about instances of a specific type. This is used as an entry point for
our monitoring approach described next.

First, the validation engine needs to be configured with the corresponding
PAM and the SUM needs to be started. Next, the monitor needs to be connected
to the running system. If the startup of a SUM is important, the user can also
start the application with specific parameters, so that it suspends directly when
started and is resumed only if the monitor signals this to the application. When
the monitor is connected after the application is already running, the monitor
creates a snapshot of the current system state. The following descriptions of the
steps to create this abstract snapshot are explained in more detail in [15].

1. For all classes in the PAM which can be matched to an already loaded class in
the VM, all existing instances of them are mapped to newly created instances
of the platform aligned model.

2. For each created instance in the previous step the values of the attributes
defined in the PAM are read. This step includes a mapping for values of
primitive types to built-in OCL types, e. g., String and Real (c. f. [28]). At-
tribute values with a type of a class defined in the PAM need to be mapped
using the mapping created in the first step.

3. For all associations in the PAM, links are created between corresponding
instances.

4. By using the current stack-trace of the monitored system the current oper-
ation call sequence relevant to the monitored elements can be rebuilt. For
this, the deepest operation call to a monitored operation (an operation spec-
ified in the PAM) on the call stack acts as an entry point for the following
monitored operations on the call stack.

After such a snapshot has been constructed, the monitor needs to register to sev-
eral events that occur in the VM in order to keep the snapshot synchronized with
the running system and to allow a dynamic monitoring of the SUM. Currently
our monitor makes use of the following breakpoint and watchpoint locations:

1. At class initialization to allow the registration of all other breakpoints. This
ensures, that classes which were not loaded while taking the snapshot are
also monitored.

2. At constructors of monitored classes. This allows the monitor to keep track
of newly created instances and therefore enables an incremental construction
of the system state in contrast to always construct a new snapshot of the
running system when needed.

3. At the start of a monitored operation. This enables the monitor to validate
preconditions at runtime and to follow the call sequence.

4. Just before the exit of an operation call. This enables the monitor to validate
postconditions. The break must occur after the result of the operation is
calculated.

388 L. Hamann, O. Hofrichter, and M. Gogolla

5. When a monitored attribute is modified. A monitored attribute might be an
attribute or association end inside of the PAM.

Monitoring an application in the presented way in combination with our val-
idation engine USE allows a user to monitor the validity of UML constraints
like multiplicities or composition properties, invaraints, pre- and postconditions
without the need to modify the source code of the application or to use special
bytecode injection mechanism. In addition, without changing the monitor com-
ponent, improvements made to the validation engine can be used. For example
after adding support for protocol state machines to USE, as described next, only
the PAMs of the monitored systems needed to be extended to allow a more de-
tailed monitoring of call sequences. Without the use of protocol state machines,
only a very small part of a call sequence could be validated in one step, because
OCL only allows access to the state just before an operation was called. Us-
ing protocol state machines it is possible to validate operation call sequences of
arbitrary length.

3 Protocol State Machines in USE

The UML specifies two kinds of state machines: behavioral and protocol state
machines [20]. As the name suggest, the former kind is used to specify the behav-
ior of UML elements including actions attached to transitions to specify changes
inside a system while taking a transition. The latter one specifies the allowed call
sequences of a protocol. In USE we added support for protocol state machines
in the context of a class. Following the general idea of USE, we start with a
small well-defined subset of the many features for UML state machines. In the
following we describe this implemented subset and its semantics.

First of all, all state machines in USE are flat, i. e., they have only one region
and no composite states. They have only a single initial and a single end state.
All other states are proper states and no pseudo states, which means that there
are no forks or joins. States can have a state invariant which needs to be valid if
a given psm instance is in the corresponding state. The context of a psm instance
and also for the state invariant (accessed by using self in an OCL expression) is
the instance of the context class of the psm which owns the psm instance. For the
initial state only an unnamed transition or a transition with the event create
is allowed as an outgoing transition. An initial state has no incoming transitions
while an end state has no outgoing transitions. The transitions between states
specify the valid call sequences of operations for the context class. As described
in the UML the protocol state transitions between states consist of three parts:

1. the referred operation (op),
2. an optional guard (G), i. e., a precondition and
3. a postcondition (PC) which is also optional.

In an state machine diagram the transitions are labeled using the following

schema:
[G] op()/ [PC]−−−−−−−−−→. A state can have multiple outgoing transitions that refer

OCL-Based Runtime Monitoring of Applications 389

to the same operation. To be still able to choose a single transition the guard,
post condition and state invariant of the target state for all transitions referring
to the same operations are considered by USE. In some situation the usage
of all this information still leads to multiple possible transitions. When USE
encounters such a situation it reports an error to the user.

When an operation on an object whose class defines at least one psm is called,
the selection of the transition to be taken for each psm is done in the follow-
ing way. First, it is checked if the operation call needs to be ignored, i. e., no
transition must be taken. This is the case if

– none of the transitions inside the protocol state machine covers the called
operation (see [20, p. 545]) or

– the psm is not in a stable state, i. e., a transition is currently active.

If the operation cannot be ignored it is checked

– if at least one outgoing transition of the current state is enabled, i. e., the
state has one or more outgoing transitions which refer to the called operation
while having a valid precondition.

All enabled transitions are saved as possible transitions which could be taken
after the operation call is completed. When the called operation finishes its
execution, for all possible transitions the postcondition and the state invariant
of the target state are validated. If only one transition fulfills the postcondition
and the state invariant the transition is taken. Otherwise an error is reported
which also explains if either no transition could be taken or multiple transitions
would be possible.

3.1 State Determination

One benefit of our monitoring approach is the possibility to connect to a mon-
itored system at any time. While this allows a SUM to run without overhead
until the monitoring starts, this ability leads to some issues to be considered.
One major problem is the lack of information of previously called operations, so
that all protocol state machine instances are in an undefined state. To allow a
correct monitoring of psms it is important to determine the correct states of all
psm instances. To be able to determine the states after an initial snapshot has
been taken we use state invariants. These state invariants need to be well-defined
because otherwise the snapshot would be in an unsound state. For example, all
psm instances should be in a given state after the state determination check. In
this context well-defined means that the state invariants should be independent
of each other, i. e., at any state only one state invariant evaluates to true for
every instance referring to the psm.

When using complex state invariants the task of verifying the independence
of state invariants can be accomplished by using automatic model finding tech-
niques. These are similar to the one presented in [13] which allows a user to
show the independence of invariants. In [13] the independence of invariants is

390 L. Hamann, O. Hofrichter, and M. Gogolla

slightly different form the independence of state invariants we want to achieve.
In [13] an invariant is defined as independent if it cannot be removed without
loss of information meaning, there exists at least one system state where this
single invariant is violated. For the independence of state invariants required for
the state determination, we consider state invariants as independent if for all
system states only a single state invariant is fulfilled.

Formally, given the set of all possible system states σ(M) of a Model M and
the invariants i1, . . . , in the independence of an invariant ik is defined in [13] as

∃σ ∈ σ(M)(σ(i1) ∧ · · · ∧ σ(ik−1) ∧ σ(ik+1) ∧ · · · ∧ σ(in) ∧ ¬σ(ik))

whereas in this work the independence of state invariants i1, . . . , in for a single
psm is defined as

∀σ ∈ σ(M)(σ(ik) ⇒ ¬σ(i1) ∧ · · · ∧ ¬σ(ik−1) ∧ ¬σ(ik+1) ∧ · · · ∧ ¬σ(in))

However, the same validation techniques apply, but as the universal quantifica-
tion indicates, a full verification requires a complete search through all possible
system states, which implies the well-known state space explosion problem and
is therefore not a trivial task and we restrict ourselves to checking occurring test
cases.

4 Case Study

In this section we apply our extensions to the monitoring approach to the public
available, mid-sized application we used in [15]. The case study will demonstrate
the advantages of our approach.

– Assumptions about a running implementation can be validated without the
need to modify the source code.

– The state of an implementation can be examined in an abstract way to
discover inconsistencies or design decisions.

– Using protocol state machines the correct usage of the defined protocol of a
class can be validated.

– Concrete usage scenarios can be visualized by means of a sequence diagram.

This will be exemplified by the following case study using an open source com-
puter game called Free Colonization1 or in short FreeCol. It is a modern Java-
based implementation of the 1994 published game Sid Meier’s Colonization2 .
The game itself is a round-based strategy game with the goal to colonize Amer-
ica and finally to achieve independence. The game takes place on a matrix-like
map which consists of tiles with different types, e. g., water, mountain, forest.
Different units operate on this map and can explore unknown territory, build

1 Project website: http://www.freecol.org
2 The corresponding Wikipedia article gives detailed information about the game play.
http://en.wikipedia.org/wiki/Sid_Meier%27s_Colonization

http://www.freecol.org
http://en.wikipedia.org/wiki/Sid_Meier%27s_Colonization

OCL-Based Runtime Monitoring of Applications 391

colonies, trade goods, etc. Figure 3 shows an example state transition of a run-
ning game. One unit (i. e., a pioneer) is placed in the center of the shown map
on the left side and is surrounded by several different tile types. The right map
shows the game state after the pioneer has build a new colony called Jamestown.
The sketched state machines displayed below the two maps exemplify our new
contribution. We want to be able to monitor the transition of the pioneer state
from one state before she or he built a colony to another state after she or he
joined the colony (note, that this is a single step in the game).

Fig. 3. Sample game situation in FreeCol

To be able to monitor this transition, we extended the PAM presented in
[15] in a step-wise manner. First we added the enumeration UnitState to our
PAM and defined a new attribute state:UnitState to the class Unit as shown
in Fig. 4. The presence of this attribute simplified the definition of the state
invariants as we will see later.

For our purpose the class diagram shown in Fig. 4 with an overall of 14 classes
is detailed enough. When compared to the 551 classes which are present in ver-
sion 0.9.2 of FreeCol we used for the monitoring this illustrates that the PAM
for an application only needs to represent a small subset of the monitored imple-
mentation. Because we focus on state transitions we do not show any constraints
defined for the PAM. Examples can also be found in [15].

Except for one case, we modeled attributes of a Java class which use a class
present in the PAM as associations. The exception is the attribute Tile::type

which reduces the number of links in an object diagram, but still allows to di-
rectly see that tiles differ in their type. For a first definition of a psm which
monitors the entrance and the exit of a colony for a unit, we only need to
consider the class Unit and its operations joinColony(aColony:Colony) and
putOutsideColony() in combination with the attribute state:UnitState.
These elements are present in the concrete implementation of the class Unit

and can directly be monitored. The enumeration UnitState defines nine differ-
ent enumeration literals which express different states of a unit. Since we are
only interested in the state IN COLONY and do not consider the other states we

392 L. Hamann, O. Hofrichter, and M. Gogolla

Fig. 4. Platform aligned model

Fig. 5. Protocol state machine for the class Unit

can specify a protocol machine with two states. One for the state IN COLONY and
one for all other game states. Our assumption about the protocol of the class
Unit is that an operation call to putOutsideColony() is only valid after the
operation joinColony() has been called on the same object sometime before.

To be able to set the correct state of a monitored instance we need to spec-
ify state invariants for these two states. As stated earlier, the presence of the
attribute state for the class Unit simplifies this task, because we only need
to check the value of the attribute to determine the current state after a snap-
shot has been taken. Therefore, the state invariant for the psm state inColony

is self.state = UnitState::IN_COLONY and the other state invariant only
changes the comparison from equal to not equal. Given the previously expressed
assumptions, this leads to a psm which has two states and two transitions leaving
out the transition for the creation. This psm is shown in Fig. 5. A Unit object
starts in the state active after it is created and enters the state inColony

when the operation joinColony(colony:Colony) was executed. If the opera-
tion putOutsideColony() is called the state changes back to active. Any other
operation call to a unit instance is ignored as described in the UML specification
for operation not mentioned in a psm. This means, the psm only allows a state
change when one of the two operations is called.

OCL-Based Runtime Monitoring of Applications 393

Fig. 6. Parts of the snapshot taken at runtime

Figure 6 shows the relevant part of the snapshot after connecting to the run-
ning game when it is in the game state shown on the left of Fig. 3 as an object
diagram. The overall snapshot consists of nearly 6000 objects and 4000 links
which makes it impossible to manually extract an informative object diagram.
USE allows a user to select objects which should be shown or hidden in an ob-
ject diagram by using several features. Two useful ones are the selection by an
OCL expression and the selection of related objects by path length (see [12] for
more information). The shown part of the snapshot is divided into two parts,
which are important while validating the assumptions about the state transi-
tions. Because we monitored a single user game on a single machine the instance
of the game contains both, the data used by the game server and the client. By
looking at the instances Tile3466 on the server side and Tile1583 on the client
side one can see that the server part has more information about the game than
the client part. Both instances represent the same tile on a map, because their
positions are equal, but the client instance does not know of what type the tile
is. To be able to determine if an object belongs to the server or client side we
also monitored the class game with the association ViewOwner. If a game object
is not linked to a player by this association it is the server game. The equivalent
OCL expression (self.owner.ownedView->isEmpty()) is used as a body for
the operation isServerObject() of the class Unit. This operation is marked as
a query operation and is therefore ignored by the monitor. The object diagram
further shows the owned units of the player named ‘ada’ and the object for the
tile on which we want to build a colony (Tile4228 resp. Tile225).

After taking this initial snapshot, the states of the protocol state machines
for the existing unit objects need to be determined. This can be done by a single

394 L. Hamann, O. Hofrichter, and M. Gogolla

command in USE which also informs the user about objects for which the psm
instance could not be set to a single state. This happens, if no state invariant
or multiple state invariants evaluate to true w. r. t. the given snapshot. Because
this state determination is a common task after a snapshot has been taken,
the monitor plugin can automatically execute the state determination after the
construction of a snapshot. After the states have been determined the states
of the relevant units of the snapshot are as expected (active). After resuming
the game and building the new colony Jamestown we get a valid sequence of
operation calls which can be seen in the monitored sequence diagram shown in
Fig. 7. We observed, that the execution of the operation joinColony() indeed
leads to the attribute value IN COLONY of the attribute Unit::state, because
no violation of a transition is reported.

To get further information about our assumptions we can instruct USE to
validate the current state invariants of all psm instances. After the validation
of our current snapshot USE reports an error for the psm instance of the client
object of the unit which has built the colony. This is due to the fact that the
operation buildColony is only called on the server object and only the new
values are transfered to the client object. Therefore, USE did not execute a
transition from the source state active to the target state inColony for the
client unit but monitored the change of the attribute state to IN COLONY. Now,
the new attribute value violates the state invariant of the state active.

Because the separation of the client and server objects seems to be a valid de-
sign decision we can ignore these violations and continue the monitoring process
to retrieve further information about the validity of our assumptions. To test the
defined protocol we use another unit and let it join and exit the colony. While
executing this scenario another issue arises because entering an existing colony,
i. e., a unit only enters a colony without building it before, does not lead to an
operation call to joinColony(). Instead, only setLocation() is called which is
not handled by the psm and therefore does not execute a transition keeping the
psm instance in the state active, but the attribute value of the runtime instance
is set to IN COLONY which violates the state invariant of the state active.

Using this information a user of the monitor needs to decide where the error is
located: in the implementation or in the PAM. For our example, we assume that
the PAM needs to be modified although it seems to be an unsound usage of the
Unit class. This assumption is backed by the fact, that the developers of FreeCol
refactored this part of the game in newer releases. If we want to adapt our psm to
the last discovered facts, we need to handle the client server separation and the
additional operation calls. The modified psm is shown in Fig. 8. The additional
operation setLocation(newLocation:Location) leads to two new transitions
in the psm. Both transitions have as their source state the state active but
differ in their target and guard. If the new location is of type ColonyTile, which
represents special tiles related to a colony, the new state after the execution is
inColony otherwise the state does not change. Interestingly, when a Unit object
leaves a colony this leads always to a call to putOutsideColony().

OCL-Based Runtime Monitoring of Applications 395

Fig. 7. Sequence diagram of the monitored execution

Fig. 8. Extended PSM for the class Unit

However, the problem how to differentiate the server and client objects still
exists. When taking a snapshot all state invariants should be independent to
allow a valid determination of the current state. If we would introduce a new
state for client objects with the state invariant not self.isServerObject()

and add a new conjunction self.isServerObject() to the two existing state
invariants the state determination would work, because each instance can be
mapped to a single state. Either it is a client object or it is a server object
and the two server states are independent because of the different comparison

396 L. Hamann, O. Hofrichter, and M. Gogolla

operators. The problem with this approach is the dynamic monitoring after
existing instances are read. A new instance would be in the state active which
is now only defined for a server object due to the new conjunction. If a new client
instance is created this would violate the state invariant. Further, the new client
instance would never change the state because none of the monitored operations
is called for client objects as described before. Using an implies condition would
violate the independence of the two server states because for client objects both
invariants would be fulfilled.

A simple solution would be to add a transition which covers the operation
that specifies the new instance to be a client instance. However, FreeCol does
this inside of the constructor which is represented as the create transition and
the UML explicitly forbids multiple outgoing transitions for the initial state and
also no post condition on it. If it was allowed the distinction could be done using
postconditions on two different create transitions. Another solution for this is
to use a change event on a transition. By specifying the change expression not

self.isServerObject() a psm instance can move to a specify client state. A
drawback of this solution is the relative high calculation cost of such change
events. Because a change expression can generally access every object or prop-
erty of the current snapshot all currently valid transitions with change events
would need to be checked after every change in the snapshot. The costs can
be reduced by using special analysis algorithms which calculate the change ex-
pressions that need to be checked after a change as presented in [7]. Currently,
such a mechanism is not present in USE, but could be integrated in the future.
For now, we need to ignore state violations of the client objects. Note, that the
validation of the correct transitions for the server objects still works.

When using this modified psm all scenarios described above lead to the ex-
pected changes of the psm states. Beside the manual execution of observed game
situations the presence of computer controlled players in the game can be used
as a test driver. As with the manual play all analyzed operations are also used
by computer controlled players. We used this to strengthen our PAM.

5 Related Work

In our previous work we focused on the runtime verification of static properties
(like multiplicity constraints and invariants) of an application running on a vir-
tual machine [15]. Different approaches for checking information extracted from
a running system for certain properties exist. [10] and [2] make a comparison be-
tween these approaches. According to [10] most constraint validation techniques
for Java are based on the design-by-contract-principle introduced by the Eiffel
programming language. In contrast to our approach, the approaches compared
to each other in [2] require a full access to the source code of the system under
monitoring. The Java Modeling Language (JML) is appropriate both for formal
verification and runtime assertion checking [18].

In this paper, we extended our validation engine by support for UML protocol
state machines in order to be able to verify and validate dynamic sequences of

OCL-Based Runtime Monitoring of Applications 397

operation calls. Our approach applying protocol state machines differentiates
from approaches which are based on the usage of regular expressions. Such an
approach is presented in [5]. It enables programmers to define parameterized
runtime monitors. For this purpose a temporal ordering over breakpoints, which
are used for debugging purposes by programmers, is introduced. The temporal
ordering is defined by regular expressions. Another approach uses tracematches
for runtime verification [6]. As the previous approaches, this one is also based
on regular expressions.

A UML protocol state machine as used in our approach is different from
regular expressions through the information of transitions: protocol state ma-
chines provide the possibility to specify an initial condition (guard) under which
an operation can be called. This possibility makes protocol state machines more
powerful than regular expressions. The authors of [23] present an approach which
applies UML protocol state machines to produce class contracts. For this purpose
they define the structure and the semantics of UML protocol state machines.

With ‘ocl2j’ a tool exists which allows to enforce OCL constraints in Java
through translating OCL expressions into Java code [9]. An analog approach is
presented e. g. in [14]. From the authors runtime verification approach the tool
‘INVCOP’ has arised. The Dresden OCL toolkit makes available two distinctive
approaches for OCL-based runtime verification [8]. While the ‘generative’ ap-
proach is based on the generation of AspectJ code, the ‘interpretative’ approach
integrates the Dresden OCL2 Interpreter into a runtime environment in order
to interpret OCL constraints.

In [4] the monitoring of state machines is focused while the usage of OCL is
relinguished. With the ‘aspect oriented approach’, the ‘listener approach’ and the
‘debugging approach’, the authors describe three possibilities to extract runtime
models.

To synchronize a running system with a runtime model the authors of [26] use
‘synchronizers’. Thus the system can be changed immediately when the model
has been updated and the model can be immediately adapted if the system
progresses.

Java PathFinder (JPF) is a runtime verification and testing environment for
Java developed at NASA Ames Research Center [27]. JPF is based upon a special
Java Virtual Machine which is called from a model checking engine included in
JPF. The authors of [1] present JPF-SE, a symbolic execution extension to
JPF. The framework Polyglot has been integrated with the Java PathFinder [3].
Polyglot enables the execution of multiple variants of statecharts including UML
statecharts and the verification of their models against properties. It uses an
intermediate representation which is translated from a range of modeling tools.
The intermediate representation is used to generate Java code representing the
structure of a statechart which is analyzed by applying JPF.

6 Conclusion

We have presented an extension to our approach for monitoring assumed prop-
erties in form of OCL constraints for a running Java application. Based on this

398 L. Hamann, O. Hofrichter, and M. Gogolla

approach, which takes advantage of the powerful features of the Java virtual
machine, we have added support for protocol state machines to the underlying
validation engine. This allows us to specify assumptions not only formulated as
class invariants or operation contracts, but also as state invariants. By using a
protocol state machine, more knowledge about the history of an object is avail-
able because of the recording of states. We have shown that the definition of
state invariants is important for our approach in order to determine the correct
states of an object when connecting to a running system without the information
about previous operation calls. We explained our work by a non-trivial example
of an open-source game.

As future work we want to extend the support for protocol state machines
within our validation engine. One major improvement would be the support for
change events. To be applicable in practice, an efficient implementation is needed
which considers only the transitions with an effective change event. A more de-
tailed study of similar approaches, for example, based on aspect-orientation or
approaches considering the Java Modeling Language (JML) as a target language,
might introduce alternative features and our monitor could be improved in var-
ious directions. For example, one could consider abstract model breakpoints,
which are configurable by the user or by extended information about elements
that are only present within the running system. Last, but not least, comprehen-
sive case studies must give more feedback about the applicability of our work.

References

1. Anand, S., Păsăreanu, C.S., Visser, W.: JPF–SE: A Symbolic Execution Exten-
sion to Java PathFinder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS,
vol. 4424, pp. 134–138. Springer, Heidelberg (2007)

2. Avila, C., Sarcar, A., Cheon, Y., Yeep, C.: Runtime Constraint Checking Ap-
proaches for OCL, A Critical Comparison. In: SEKE (2010)

3. Balasubramanian, D., Pasareanu, C.S., Whalen, M.W., Karsai, G., Lowry, M.R.:
Polyglot: modeling and analysis for multiple Statechart formalisms. In: Dwyer,
M.B., Tip, F. (eds.) ISSTA, pp. 45–55. ACM (2011)

4. Balz, M., Striewe, M., Goedicke, M.: Monitoring Model Specifications in Program
Code Patterns. In: Proc. of the 5th Int. WS Models@run.time, pp. 60–71 (2010)

5. Bodden, E.: Stateful breakpoints: a practical approach to defining parameterized
runtime monitors. In: ESEC/FSE 2011. ACM, New York (2011)

6. Bodden, E., Hendren, L.J., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative Run-
time Verification with Tracematches. J. Log. Comput. 20(3), 707–723 (2010)

7. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual
schemas. Journal of Systems and Software 82(9), 1459–1478 (2009)

8. Demuth, B., Wilke, C.: Model and object verification by using Dresden OCL. In:
Proceedings of the Russian-German Workshop Innovation Information Technolo-
gies: Theory and Practice, Ufa, Russia, pp. 687–690 (2009)

9. Dzidek, W.J., Briand, L.C., Labiche, Y.: Lessons Learned from Developing a Dy-
namic OCL Constraint Enforcement Tool for Java. In: Bruel, J.-M. (ed.) MoDELS
2005. LNCS, vol. 3844, pp. 10–19. Springer, Heidelberg (2006)

OCL-Based Runtime Monitoring of Applications 399

10. Froihofer, L., Glos, G., Osrael, J., Goeschka, K.M.: Overview and Evaluation of
Constraint Validation Approaches in Java. In: Proc. of ICSE 2007, pp. 313–322.
IEEE Computer Society, Washington, DC (2007)

11. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69, 27–34
(2007)

12. Gogolla, M., Hamann, L., Xu, J., Zhang, J.: Exploring (Meta-)Model Snapshots
by Combining Visual and Textual Techniques. In: Proc. 10th Int. Workshop on
Graph Transformation and Visual Modeling Techniques (GT-VMT 2011) (2011)

13. Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, Independence and Conse-
quences in UML and OCLModels. In: Dubois, C. (ed.) TAP 2009. LNCS, vol. 5668,
pp. 90–104. Springer, Heidelberg (2009)

14. Gopinathan, M., Rajamani, S.K.: Runtime Monitoring of Object Invariants with
Guarantee. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp. 158–172. Springer,
Heidelberg (2008)

15. Hamann, L., Gogolla, M., Kuhlmann, M.: OCL-Based Runtime Monitoring of JVM
Hosted Applications. In: Proc. WS OCL and Textual Modelling. ECEASST (2011)

16. Hamann, L., Vidács, L., Gogolla, M., Kuhlmann, M.: Abstract Runtime Monitoring
with USE. In: Proc. CSMR 2012, pp. 549–552 (2012)

17. Katoen, J.P., Baier, C.: Principles of Model Checking. MIT Press (2008)
18. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of

JML accommodates both runtime assertion checking and formal verification. Sci.
Comput. Program. 55(1-3), 185–208 (2005)

19. Moffett, Y., Beaulieu, A., Dingel, J.: Verifying UML-RT Protocol Conformance
Using Model Checking. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS
2011. LNCS, vol. 6981, pp. 410–424. Springer, Heidelberg (2011)

20. UML Superstructure 2.2. Object Management Group (OMG) (February 2009),
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/

21. Object Constraint Language 2.2. Object Management Group (OMG) (February
2010), http://www.omg.org/spec/OCL/2.2/

22. Oracle: JavaTMPlatform Debugger Architecture - Structure Overview (2011),
http://download.oracle.com/javase/6/docs/

technotes/guides/jpda/architecture.html

23. Porres, I., Rauf, I.: From Nondeterministic UML Protocol Statemachines to Class
Contracts. In: Int. Conf. on Software Testing, Verification, and Validation, pp.
107–116. IEEE Computer Society, Los Alamitos (2010)

24. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to Alloy and Back Again.
In: Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 158–171. Springer, Hei-
delberg (2010)

25. Soeken, M., Wille, R., Drechsler, R.: Encoding OCL Data Types for SAT-Based
Verification of UML/OCL Models. In: Gogolla, M., Wolff, B. (eds.) TAP 2011.
LNCS, vol. 6706, pp. 152–170. Springer, Heidelberg (2011)

26. Song, H., Huang, G., Chauvel, F., Sun, Y.: Applying MDE Tools at Runtime:
Experiments upon Runtime Models. In: Models@run.time, pp. 25–36 (2010)

27. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model Checking Pro-
grams. Autom. Softw. Eng. 10(2), 203–232 (2003)

28. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with
UML, 2nd edn. Addison-Wesley (2003)

http://www.omg.org/spec/UML/2.2/Superstructure/PDF/
http://www.omg.org/spec/OCL/2.2/
http://download.oracle.com/javase/6/docs/technotes/guides/jpda/architecture.html
http://download.oracle.com/javase/6/docs/technotes/guides/jpda/architecture.html

On Model Subtyping

Clément Guy1, Benoît Combemale1, Steven Derrien1,
Jim R.H. Steel2, and Jean-Marc Jézéquel1

1 University of Rennes1, IRISA/INRIA, France
2 University of Queensland, Australia

Abstract. Various approaches have recently been proposed to ease the manipu-
lation of models for specific purposes (e.g., automatic model adaptation or reuse
of model transformations). Such approaches raise the need for a unified theory
that would ease their combination, but would also outline the scope of what can
be expected in terms of engineering to put model manipulation into action. In
this work, we address this problem from the model substitutability point of view,
through model typing. We introduce four mechanisms to achieve model substi-
tutability, each formally defined by a subtyping relation. We then discuss how to
declare and check these subtyping relations. This work provides a formal refer-
ence specification establishing a family of model-oriented type systems. These
type systems enable many facilities that are well known at the programming lan-
guage level. Such facilities range from abstraction, reuse and safety to impact
analyses and auto-completion.

Keywords: SLE, Modeling Languages, Model Typing, Model Substitutability.

1 Introduction

The growing use of Model Driven Engineering (MDE) and the increasing number of
modeling languages has led software engineers to define more and more operators to
manipulate models. These operators are defined in terms of model transformations ex-
pressed at the language level, on the corresponding metamodel. However, new modeling
languages are still generally designed and tooled from scratch with few possibilities to
reuse structure or model manipulations from existing modeling languages.

To address the need for a more systematic engineering of model transformations, var-
ious approaches have recently been proposed. These approaches include model transfor-
mation reuse [1,2,3,4,5,6] and automatic model adaptation [7,8,9,10]. Although these
approaches do meet their goals, they remain somewhat disconnected from each other,
and lack a unified theory enabling both their combination and comparison. Such a for-
malization would also help defining the scope of what can be expected (from a engi-
neering point of view) to put model manipulation into action.

In this paper, we tackle the problem from the model substitutability point of view,
through model typing. Model typing provides a well-defined theory that considers mod-
els as first-class entities, and typed by their respective model types [3]. In addition to the
previous work on model typing focusing on the typing relation (i.e., between a model

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 400–415, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On Model Subtyping 401

and its model types), we introduce four model subtyping relations. These relations pro-
vide model substitutability, that is they enable a model typed by A to be safely used
where a model typed by B is expected, A and B being model types.

This work provides a formal reference specification establishing a family of model
type systems. These type systems enable many facilities that are well known at the pro-
gramming language level, ranging from abstraction, reuse and safety to auto-completion.

This paper is structured as follows. We first illustrate the need for a systematic engi-
neering for model manipulation using examples from the optimizing compilation com-
munity (Section 2). We then provide some background on MDE and model typing as
introduced by Steel et al. [3] in Section 3. In Section 4 we formally define four model
subtyping relations, based on two criteria: the structure and the considered subset of
the involved model types. Section 5 addresses the ways to declare and check these sub-
typing relations. Section 6 classifies existing approaches providing reuse facilities for
model manipulation with respect to the specification of model-oriented type systems
provided in sections 4 and 5. Finally, Section 7 concludes the paper and summarizes
our ideas for future work.

2 Illustrative Examples

Optimizing compilers have always used abstractions (i.e., models) of the compiled pro-
gram to apply numerous analyses, which are often tedious to implement. Thus, opti-
mizing compilation seems a good candidate when looking for a domain in which model
manipulation engineering facilities would be valuable.

Most analyses performed by optimizing compilers leverage sophisticated algorithms
implemented on different types of compilers’ intermediate representations (IRs). Im-
plementation of such algorithms is known to be a tedious and error-prone task. As a
consequence, providing modularity and reuse is a crucial issue for improving compiler
quality but also compiler designer productivity.

Dead Code Elimination (DCE) is an example of such an algorithm. It is a classical
compiler optimization which removes unreachable code from the control flow graph of
a program (e.g., the else branch of a if whose condition is always true) [11]. Although
the DCE algorithm is relatively straightforward, there exist more complex analyses,
such as those leveraging abstract interpretation techniques [12]. Such analyses can infer
accurate invariants over the values of the variables of the analyzed program. These
invariants can then be used to detect possible program errors (e.g., buffer overflows) or
to offer program optimization opportunities.

As with many compiler optimizations, the scope of applicability of these algorithms
is wide, including most imperative programming languages. We consider three exam-
ples of such languages: two compiler IRs, the GeCoS and the ORCC IRs; and a toy
procedural language, Simple. GeCoS1 is a retargetable C compiler infrastructure tar-
geted at embedded processors. ORCC2 is a compiler for CAL3, a dataflow actor lan-
guage in which actions are described with a standard imperative semantics. Both IRs are

1 Cf. http://gecos.gforge.inria.fr
2 Cf. http://orcc.sourceforge.net/
3 Cf. http://ptolemy.eecs.berkeley.edu/papers/03/Cal/index.htm

http://gecos.gforge.inria.fr
http://orcc.sourceforge.net/
http://ptolemy.eecs.berkeley.edu/papers/03/Cal/index.htm

402 C. Guy et al.

metamodel-based: models conforming to these metamodels are used as abstractions of
the compiled program. Finally, Simple is a language on which is defined P-Interproc4,
an interprocedural analyzer implementing several abstract interpretation analyses.

Rather than being reimplemented for each targeted languages (e.g., GeCoS IR, ORCC
IR and Simple), we would expect DCE and our abstract interpretation analyses to be
defined once and then reused across these languages. Of course, this reuse should be
done safely and should be transparent for the programmer. More precisely, the only
thing the programmer should care about when building his compilation flow is whether
his model is eligible (or not) for a given model manipulation.

Facilities such as abstraction (hiding unnecessary details from the programmer),
reuse (sharing a model manipulation between different metamodels), and safety (for-
bidding erroneous reuse) could be provided by a type system specifically targeted at
models. Such a model-oriented type system would greatly help in increasing both pro-
grammers productivity and model-oriented software quality.

3 Background

In this section, we first present the MOF (Meta-Object Facility) metalanguage, the ba-
sis for metamodels, and thus model manipulation operators. We then present model
types as introduced by Steel et al. [3] on which we base our model subtyping relations.
Finally, we discuss the limits of the model subtyping relation proposed by Steel et al.

3.1 Model Driven Engineering

The Meta-Object Facility. (MOF) [13] is the OMG’s standardized meta-language,
i.e., a language to define metamodels. As such it is a common basis for a vast majority
of model-oriented languages and tools. A metamodel defines a set of models on which
it is possible to apply common operators. Therefore, model substitutability must take
into account MOF and the way it expresses metamodels.

Figure 1 displays the structure of EMOF (Essential MOF) which contains the core
of the MOF meta-language in the form of a class diagram. EMOF supports the defini-
tion of the concepts and relationships of a metamodel using Classes and Propertys.
Classes can be abstract (i.e., they cannot be instantiated) and have Propertys and
Operations, which declare respectively attributes and references, and the signatures of
methods available from the modeled concept. Classes can have several superclasses,
from which they inherit all Propertys and Operations. A Property can be composite
(an object can only be referenced through one composite Property at a given instant),
derived (i.e., calculated from other Propertys) and read-only (i.e., cannot be modified).
A Property can also have an opposite Property with which it forms a bidirectional
association. An Operation declares the Types of the exceptions it can raise and ordered
Parameters. Propertys, Operations, and Parameters are TypedElements; their type
can be either: a Datatype (e.g., Boolean, String, etc.) or a Class. Parameters,
Propertys and Operations are Multiplicity Elements. As such, they have a multi-
plicity (defined by a lower and an upper bound), as well as orderedness and uniqueness.

4 Cf. http://pop-art.inrialpes.fr/interproc/pinterprocweb.cgi

http://pop-art.inrialpes.fr/interproc/pinterprocweb.cgi

On Model Subtyping 403

Property
isComposite: Boolean = false
isDerived: Boolean = false
isReadOnly: Boolean = false

Class
isAbstract: Boolean = false

{ordered} 0..*
ownedAttribute

0..1
opposite

NamedElement
name: String

0..*
superClass

Type TypedElementtype
1

DataType
owner

Classifier

MultiplicityElement
lower: Natural = 1
upper : UnlimitedNatural = 1
isUnique : Boolean = true
isOrdered : Boolean = false

Operation Parameter

{ordered} 0..*
ownedOperation

ownedParameter
{ordered} 0..*

0..*
raisedException

Fig. 1. The EMOF core with class diagram notation

Metamodels can be seen as class diagrams, each of their concepts being instantiable
by objects belonging to models. However, metamodel concepts are also instances of
MOF elements and thus a metamodel can be drawn as an object diagram where each
concept is an instance of one of the MOF elements (e.g., classes Class or Property).

Because model subtyping takes place at the metamodel level, the latter representation
facilitates the definition of model subtyping relations by depicting metamodels and their
contained concepts as objects with attributes and properties. Thus, we will use the object
diagram representation in preference to the more common class diagram one.

3.2 Model Typing

Model Types were introduced by Steel et al. [3], as an extension of object typing to
provide abstraction from object types and enable model manipulation reuse.

Definition 1. (Model type) A type of a model is a set of types of objects which may
belong to the model, and their relations.

MOF classes are closer to types (interfaces) than to object classes, thus a model type is
closely related to a metamodel. The difference between model types and metamodels
lies in their respective relations with models. A model has one and only one metamodel
to which it conforms. This metamodel contains all the types needed to instantiate ob-
jects of the model. Conversely, a model can have several model types which are subsets
of the model’s metamodel.

Because model types and metamodels share the same structure, it is possible to ex-
tract the type of a model from its metamodel (we call the model type containing all
the types from a model’s metamodel the exact type of the model). Figure 2 represents
a model m1 which conforms to a metamodel MM1 and is typed by model types MTA

and MTB, MTB being the exact type of m1 extracted from MM1. Both metamodels and
model types conforms themselves to MOF.

MOF delegates the definitions of contracts (e.g., pre and post-conditions or invari-
ants) to other languages (e.g., OCL, the Object Constraint Language [14]). Hence nei-
ther the original paper on model typing [3] nor this one considers contracts in subtyping
relations, but focuses on features of object types contained by model types.

404 C. Guy et al.

�������	
������
�������������
������������
���������������

���

��

��

��

���
���

���

��

������������!! ��������!!

��"

������������!!

��
��

Fig. 2. Conformance, model typing and model subtyping relations

Substitutability is the ability to safely use an object of type A where an object of
type B is expected. Substitutability is supported through subtyping in object-oriented
languages. However, object subtyping does not handle type group specialization (i.e.,
the possibility to specialize relations between several objects and thus groups of types).5

Such type group specialization have been explored by Kühne in the context of MDE [16].
Kühne defines three model specialization relations (specification import, conceptual
containment and subtyping) implying different level of compatibility. We are only in-
terested here in the third one, subtyping, which requires an uncompromised mutator
forward-compatibility, e.g., substitutability, between instances of model types.

Model Type Matching is a model subtyping relation proposed by Steel et al. to enable
safe model manipulation reuse in spite of limits of object subtyping. To this end, they
use the object type matching relation defined by Bruce et al. [17], which is more flexible
than subtyping. For more details, we refer the reader to Steel’s PhD thesis [18].

Definition 2. (Model type matching proposed by Steel et al. [3]) Model Type MTB

matches model type MTA if for each object type C in MTA there is a corresponding object
type with the same name in MTB such that every property and operation in MTA.C also
occurs in MTB.C with exactly the same signature as in MTA.C.

Limits of Model Type Matching. However, model type matching as presented by
Steel et al. is subject to some shortcomings. First, the type rules they present, and their
implementation in Kermeta6, violate their definition of type matching by permitting
the relaxation of lower multiplicities, i.e. by allowing a non-mandatory attribute to be
matched by a mandatory one, which could potentially lead to an invalid model.

In addition, and more significantly, finding a model type common to several model
types (e.g., GeCoS IR, ORCC IR and Simple) is not always possible, even if they
share numerous concepts (e.g., concepts used in DCE). This impossibility is due to
structural heterogeneities between the metamodels [19]. Figure 3 presents such hetero-
geneities between excerpts from the GeCoS IR and the ORCC IR metamodels repre-
senting foreach (from ORCC IR) and for loops (from GeCoS IR, and thus C). The

5 We refer the reader interested in the type group specialization problem to the Ernst’s paper [15].
6 Cf. http://www.kermeta.org

http://www.kermeta.org

On Model Subtyping 405

��������

	

����

������

���������

������
	

�

����������������
	

�

����������

	

�

(a) foreach loop in ORCC IR

��������

�����
	

��	
	������

	

����������

	

�����������

	

����������

���	������

�
������	�

	

�	
����

(b) for loop in GeCoS IR

Fig. 3. Extracts of ORCC IR and GeCoS IR metamodels

former (Figure 3(a)) is a simpler loop than the latter (Figure 3(b)), iterating only by
steps of one on a given variable between bounds, where a C for can have complete
code blocks as initialization, step and test.

Thus to reuse a model manipulation (e.g., DCE), a subtyping mechanism should
provide for the definition of an adaptation, needed to bind different structures to a single
one on which the manipulation is defined. In our example, such an adaptation could be
the transformation of foreach loops into more generic for loops, using the variable and
the lower bound to produce an initialization block, the variable and the upper bound to
produce a test block, and automatically producing a step block with a step of one.

This adaptation should be able to adapt back the result of the manipulation, because
this manipulation could modify the model it processes or return a result containing
elements of the model. For example, DCE modifies the representation of the program by
removing code. Once the optimization has been processed on a common representation,
it should be possible to adapt back the structure to impact the result of DCE in the
original structure (i.e., an ORCC IR or GeCoS IR model).

Although defining common optimizations on a minimal dedicated structure seems to
best fit the need for modularity and reuse, we need to consider the presence of legacy
code. For example, DCE is already implemented for the GeCoS IR. Reusing this im-
plementation on ORCC IR would avoid the creation of a generic model type and the
reimplementation of the optimization. However, the GeCoS IR does not contain only
the concepts required for DCE. More particularly, it contains concepts which do not
exist in ORCC IR (e.g., pointers). Therefore, a model subtyping mechanism should be
able to accept a subtype which only possesses the concepts of the supertype required
for the reuse of a specific model manipulation.

4 Model Subtyping Relations

Object-oriented type systems provide important systematic engineering facilities, in-
cluding abstraction, reuse and safety. We strongly believe that these facilities can also
be provided for model manipulation through a model-oriented type system. However,
the existing model subtyping relation has shown some limitations.

For this reason, in this section we review four subtyping relations between model
types, based on two criteria: the presence of heterogeneities between the two model

406 C. Guy et al.

types (Subsections 4.1 and 4.2) and the considered subset of the model types (Sub-
sections 4.3 and 4.4). Such a model subtyping relation is pictured in Figure 2 by the
generalization arrow between model types MTA and MTB. Through this subtyping re-
lation, models typed by MTA are substitutable to models typed by MTB, i.e., model
manipulations defined on MTB can be safely reused on model typed by MTA.

4.1 Isomorphic Model Subtyping

An obvious way to safely reuse on a model typed by MTB a model manipulation from
a model type MTA is to ensure that MTB contains substitutable concepts (e.g., classes,
properties, operations) for those contained by MTA. As mentioned in Section 3, it is not
possible to achieve type group (or model type) substitutability through object subtyping.

MOF Class Matching. Thus, we use an extended definition of object type matching
introduced by Bruce et al. [17] and used by Steel et al. to define their model type match-
ing relation. Our object type matching relation is similar to, but stricter than the latter,
because class names must be the same, as must lower and upper bounds of multiplicity
elements. Moreover, every mandatory property in the matching type requires a corre-
sponding property in the matched type, in order to prevent model manipulation from
instantiating a type without its mandatory properties.

Definition 3. (MOF class matching) MOF class T ′ matches T (written T ′ <# T) iff:

1 T.name = T ′.name
2 T ′.isAbstract ⇒ T.isAbstract
3 ∀op ∈ T.ownedOperation,∃S′ ∈ SuperClasses(T ′) such that ∃op′ ∈ S′.owned

Operation and:
3.1 op.name = op′.name
3.2 op′.type <# op.type∨op.type<: op′.type
3.3 ∀p ∈ op.ownedParameter,∃p′ ∈ op′.ownedParameter such that:

(a) ∃U ′ ∈ SubClasses(p′.type) such that U ′ <# p.type∨ p.type <: p′.type
(b) p.rank = p′.rank
(c) p.lower = p′.lower
(d) p.upper = p′.upper
(e) p.isUnique = p′.isUnique

3.4 ∀e′ ∈ op′.raisedException,∃e∈ op.raisedException such that e′ <# e∨e′ <: e
4 ∀a∈ T.ownedAttribute,∃S′ ∈ SuperClasses(T ′) such that ∃a′ ∈ S′.ownedAttribute

such that:
4.1 a.name = a′.name
4.2 a′.isReadOnly ⇒ a.isReadOnly
4.3 a.isComposite = a′.isComposite
4.4 a′.type <# a.type∨ (a′.type <: a.type∧a.isReadOnly)
4.5 a.lower = a′.lower
4.6 a.upper = a′.upper
4.7 a.opposite �= void ⇒ a′.opposite �= void ∧ a.opposite.name = a′.opposite.

name
4.8 a.isUnique = a′.isUnique

On Model Subtyping 407

5 ∀a′ ∈ T ′.ownedAttribute, a′.lower > 0 ⇒ ∃S ∈ SuperClasses(T) such that ∃a ∈
S.ownedAttribute∧a.name= a′.name

Where SuperClasses(T), is the set of all superclasses of T , SubClasses(T), the set of
all its subclasses, both including T and <: is the object subtyping relation.

Model Type Matching. Given the conditions under which objects may be substitutable
in the context of a model type, we can define a model type matching relation which en-
sures the safe type group substitutability. Based on the definition of MOF class match-
ing, we redefine the model type matching relation as follows:

Definition 4. (Model type matching) The model type matching relation is a binary
relation � on ModelType, the set of all model types, such that (MTB,MTA) ∈� (also
written MTB � MTA) iff ∀TA ∈ MTA,∃TB ∈ MTB such that TB <# TA.

The model type matching relation can be seen as a kind of subgraph isomorphism which
takes into account the MOF specificities (e.g., inherited properties and operations). For
this reason we call isomorphic model subtyping relation a relation which satisfies the
matching relation.

4.2 Non-isomorphic Model Subtyping

The fact that MTB does not match MTA does not mean that it is not appropriate for
substitution. Indeed, the condition for safely substituting a model m for another is that
m contains all the necessary information expected to be handled safely by the called
model manipulation or to access the desired features. But this information can be under
another form than expected (e.g., with different class names) in which case m may be
substitutable if the expected form of the information is retrieved.

Model Adaptation is the process of retrieving the information from a model in the
form expected. It consists in adapting a model mB into a model mA which can be handled
by the operation or through which it is possible to access to the desired feature. Thus a
model adaptation is a way to create a model type matching relation between two model
types. A model adaptation is a function defined at the model type level and applied
on models. It takes a model mB typed by MTB and returns a model mA with the same
information, but in the form defined by MTA, i.e., a model whose type matches MTA.

Definition 5. (Model adaptation) A model adaptation is a function adaptMTA from
MTB to MTC, where MTA, MTB and MTC are model types and such that MTC � MTA.

One way to achieve such an adaptation is to implement a model transformation from
MTB to MTA, in which case MTC = MTA. Another way is by adding missing types and
derived properties from MTA to MTB, creating a new model type MTC with MTC � MTB

and MTC � MTA. This is the approach followed by Sen et al. [5].

Bidirectional Model Adaptation , that is coupled forward adaptation from MTB to
MTA and backward adaptation from MTA to MTB may be needed, depending whether
the adaptation is done to reuse an endogenous or an exogenous model manipulation [20].

408 C. Guy et al.

If the adaptation to MTA is done in order to reuse an endogenous manipulation, a
backward adaptation is necessary in order to reflect changes made to the adapted model
on the original model. Conversely, a backward adaptation is not necessary if the reused
feature is an exogenous manipulation.

The forward and backward adaptation together form a bidirectional adaptation, which
enables the adaptation of a model typed by MTB into a form which fits the expected
model type MTA but also to reflect the result in the original model. Moreover, a roundtrip
adaptation, i.e., applying the forward adaptation then the backward adaptation to the re-
sult should lead to an unchanged model. To this end, we use here rules defined by Foster
et al. for well-behaved lenses (i.e., bidirectional transformation operators) [21].

Definition 6. (Bidirectional model adaptation) A bidirectional model adaptation
adaptMTA between model types MTB and MTA comprises a function adaptMTA ↗ from
MTB to MTC and a function adaptMTA ↘ from MTB ×MTC to MTB, where MTC is a
model type such that MTC � MTA and:

– adaptMTA ↗ (adaptMTA ↘ (mB,mC)) = mC,∀(mB,mC) ∈ MTB ×MTC

– adaptMTA ↘ (mB,adaptMTA ↗ (mB)) = mB,∀mB ∈ MTB

Bidirectional adaptation can be provided through bidirectional transformations. Bidi-
rectional transformations are studied in different disciplines of computer science (e.g.,
MDE, graph transformations and databases) to synchronize two data structures (a source
and a view) [22,23]. In our case, the source is the model typed by MTB found in a context
where a model typed by MTA (our view) is expected.

4.3 Total Model Subtyping

When a model of type MTB can be used in every context in which a model of type MTA

is expected, we talk about total substitutability. Therefore, a subtyping relation which
guarantees total substitutability is a total subtyping relation.

Definition 7. (Total subtype) MTB is a total subtype of MTA if any model typed by
MTB can be safely used everywhere a model typed by MTA is expected.

4.4 Partial Model Subtyping

Conversely, a partial subtyping relation enable a model typed by MTB to be used in
a given context (e.g., a given model transformation) where a model typed by MTA is
expected. This notion of usage context have been introduced by Kühne in order to define
in which cases a specialization relation holds, while it does not hold in the general
case [16]. Typically, a partial subtyping relation enables a model typed by MTB to be
substituted for a model a of type MTA in the context of the call m(a) if MTB contains
the required features for m, even if MTB is not a total subtype of MTA.

Definition 8. (Partial subtype) MTB is a partial subtype to MTA wrt. f if models typed
by MTB can be safely used where a model typed by MTA is expected to use the feature
f .

On Model Subtyping 409

��������	
���
���������

������� �������

���

����
������������	�� ����
���������	��

(a) Total subtyping

�������	

	����	

���

������������������������

(b) Partial non-isomorphic subtyping

Fig. 4. Two different scenarios of the reuse of DCE between ORCC IR and GeCoS IR

Here, f can be an attribute or an operation from the model or a model manipulation
that takes the model as argument. MTB is a partial subtype to MTA wrt. f if MTB is a
total subtype of MTf , where MTf is a model type which contains only the necessary
information to apply or access f safely and such that MTA is a total subtype of MTf . We
call MTf the effective model type of f .

Definition 9. (Effective model type) The effective model type MTf of a feature f ex-
tracted from a model type MTA is the model type which contains all the required features
to access or call f and such that MTA � MTf .

This effective model type can be processed using a function which analyzes the model
type and extracts its required subset to access a given feature.

Definition 10. (Effective model type extraction) The effective model type extraction
function is a function extractEffectiveMT(MTA, f), with MTA a model type and f a
required feature belonging to MTA, and such that MTf = extractEffectiveMT(MTA, f)
is the effective model type of f extracted from MTA.

One possible way to extract this required subset is to use an approach like the one pro-
posed by Sen et al. [5]. They compute a metamodel (called the effective metamodel)
from a larger metamodel using the footprint of a model manipulation, i.e., the set of
types and features touched by the manipulation. This footprint can be processed stat-
ically, by analyzing the code of the model manipulation or dynamically using a trace
of the execution of the operation [24]. The dynamic footprint is more accurate because
it contains only the types and features of the objects which have been touched by the
operation, whereas the static footprint contains all the types and features which may be
touched by the operation. However, the dynamic footprint is also costlier and cannot be
used for static type checking (cf. Section 5.2).

4.5 Definition of Subtyping Relations for Model Types

From these two criteria (isomorphism of the structures and totality of the subtyping), we
define four model subtyping relations to provide model substitutability. In the following
MTA and MTB are model types and ModelType is the set of all model types.

The first model subtyping relation is the total isomorphic subtyping relation, to
which the three others refer. MTB is a total isomorphic subtype of MTA if it contains one

410 C. Guy et al.

matching object type for every object type of MTA, i.e., if MTB � MTA. For example,
such a subtyping relation could hold between GeCoS IR and a model type extracted
from GeCoS IR by selecting only the relevant concepts for Dead Code Elimination
(DCE). In Figure 4(a), where the DCE arrow represent the DCE model manipulation
defined on a dedicated model type, this case is represented by the generalization arrow
between GeCoS IR and the DCE dedicated model type.

Definition 11. (Total isomorphic subtyping relation) The total isomorphic subtyping
relation is the matching relation, denoted MTB � MTA.

A partial isomorphic subtyping relation wrt. feature f holds between MTB and MTA

if MTB contains matching object types for every object type belonging to the effective
model type of f extracted from MTA, i.e., MTB is partial isomorphic subtype of MTA

wrt. feature f if MTB is a total isomorphic subtype of the effective model type of f
extracted from MTA.

Definition 12. (Partial isomorphic subtyping relation) The partial isomorphic sub-
typing relation wrt. the feature f is a binary relation � f on ModelType such that
(MTB,MTA) ∈<: f (also written MTB � f MTA) iff MT ′ � extractEffectiveMT(MTA, f).

MTB is a total non-isomorphic subtype of MTA if there is a adaptation able to adapt
every model typed by MTB in a model typed by a total isomorphic subtype of MTA. This
adaptation must be bidirectional, or it would be impossible to reuse endogenous model
manipulations from MTA and the subtyping relation would not be total. Figure 4(a)
represents such a subtyping relation between ORCC IR and the model type dedicated
to DCE mentioned above. Loops from the latter are isomorphic to GeCoS IR ones, thus
they cannot be isomorphic to loops from the former. Therefore an adaptation is needed,
as the one described earlier (see 3.2).

Definition 13. (Total non-isomorphic subtyping relation) The total non-isomorphic
subtyping relation is a binary relation �∼ on ModelType such that (MTB,MTA) ∈ �∼
(also written MTB

�∼ MTA) iff ∃adaptMTA a bidirectional adaptation from MTB to MTC

such that MTC � MTA.

Finally, model type MTB is a partial non-isomorphic subtype of MTA wrt. the feature
f if there is an adaptation able to adapt a model typed by MTB in a model typed by
a total isomorphic subtype of the effective model type of f extracted from MTA. This
adaptation must be bidirectional if f is an endogenous feature. Such a partial non-
isomorphic subtyping relation is pictured in Figure 4(b), where ORCC IR is subtype
of GeCoS IR through an adaptation to the effective model type of DCE extracted from
GeCoS IR.

Definition 14. (Partial non-isomorphic subtyping relation) The partial
non-isomorphic subtyping relation wrt. the feature f is a binary relation �∼ f on
ModelType such that (MTB,MTA) ∈ �∼ f (also written MTB

�∼ f MTA) iff ∃adaptMTA

an adaptation from MTA to MTC such that MTC � extractEffectiveMT(MTA, f) and
adaptMTA is a bidirectional adaptation if f is an endogenous model manipulation.

On Model Subtyping 411

5 Putting Subtyping Relations to Work

Defining model subtyping relations is not sufficient to build a type system. Indeed,
a type system implements one or more subtyping relations and provides ways to de-
clare and check them. Thus, we discuss here the ways to declare and check subtyping
relations and the respective drawbacks and advantages of these approaches for an im-
plementation of a model-oriented type system.

5.1 Declaration of Subtyping Relations

Subtyping relations can be declared in two ways: explicitly and implicitly. We call a
subtyping relation declaration explicit when a syntactic construct is used to state the
subtyping relation. Conversely, if the type system infers the subtyping relation from the
information it can gather about the types or the use which is done from their instances,
the declaration of the subtyping relation is implicit. In addition, the declaration of the
subtyping relation can take place either at the definition of a type or after the definition
of the subtype and the supertype involved in the subtyping relation.

The way to declare model subtyping relations may affect the possibilities that these
relations offer through the type system. For example, a non-isomorphic model subtyp-
ing relation can be declared implicitly. To this end, a tool able to infer adaptations is
necessary. Such inference can be done through patterns which are known to be safe
or using ontologies to find corresponding class or feature names. However, an implicit
adaptation mechanism will be more limited in terms of possible adaptations than an
explicit one, which let the user define its adaptation based on its knowledge of the two
model types involved. On the other hand, an explicit adaptation mechanism needs ap-
propriate syntactic constructs and analyses to ensure that an adaptation is safe.

Declaration of a subtyping relation at the definition of a type is a kind of documenta-
tion, letting know what are the subtypes or supertypes of the defined type. Conversely,
it is not always possible or desirable to add this information in a type, particularly if
the subtyping relation is required for a very specific use (e.g., a partial subtyping rela-
tion for a single model manipulation) or legacy code where existing model types should
be modified. In such cases, declaring the subtyping relation after the definition of the
involved types may be a solution.

Finally, declaration of a subtyping relation explicitly at the definition of a model
type could allow inheritance. That is, reuse of the structure of the supertype, with the
possibility to redefine or modify it in the subtype without breaking model subtyping.
Moreover, if explicit declaration at the definition is the only way to declare model sub-
typing relations, it prevents from the type system to use subtyping relations which are
unknown from the user, and thus prevents from accidental substitutability.

5.2 Checking of Subtyping Relations

Checking of the subtyping relations is the verification that a subtyping relation holds.
Regardless of the way the subtyping relation is declared, this check can be processed
either at design time, i.e., during the compilation or interpretation process, or at runtime.

412 C. Guy et al.

Here again, the way to check model subtyping relations can impact the facilities pro-
vided for model manipulations. On the one hand, design time (or static) check enables
earlier detection (i.e., than runtime check) of type errors and programming mistakes
and thus earlier user feedback. It also enables tools to provide more facilities, such
as type-based compiler optimizations, auto-completion or impact analyses. Moreover,
compared to runtime checking, design time checking needs significantly fewer tests to
achieve the same level of runtime safety.

On the other hand, runtime checking can be processed with more precise type infor-
mation. When the program is running, the actual type of a variable is known rather than
its declared type. Although possibly slower because of the process of the check during
the execution of the program, dynamic checking enables valid programs which would
be forbidden by a static type checker because of a lack of information. In the context of
model types, knowing the actual model would enable the extraction of its model type
and would possibly enable subtyping relations forbidden by a static type checker.

6 Discussions

Several approaches have been proposed in the last decade to provide engineering fa-
cilities for model manipulation reuse. We show in this section how the fthe different
model subtyping mechanisms (i.e., total/partial and isomorphic/non-isomorphic model
subtyping, declaration and checking) defined in this paper can be used to classify these
approaches through a unified theory. Figure 5 summarizes this classification. The ques-
tion marks indicate the lack of information about the given mechanism.

6.1 Isomorphic vs. Non-isomorphic Subtyping Relations

To the best of our knowledge, the only approach using an isomorphic subtyping relation
is the bidirectional subset of the adaptation DSL proposed by Babau et al. [9,10]. All

Total / partial Iso / non-iso At / after defini-
tion

Explicit / implicit Checking Legacy tool
reuse

Varró et al. [1] Total Non-iso (Class renam-
ing)

After Implicit ? No

Cuccurru et al. [2] Total Non-iso (Abstract class
renaming)

After Explicit (Genericity and
explicit object subtyp-
ing)

? Yes

Steel et al. [3] Total Non-iso (Class renam-
ing, multiplicities con-
traction)

After Implicit At compile-time, with
possible runtime type
errors

Yes

Sanchez Cuadrado
et al. [4]

Total Non-iso (Class renam-
ing, multiplicities con-
traction)

After Explicit (Binding DSL) ? Yes

Sen et al. [5] Partial (Ef-
fective meta-
model)

Non-iso (Potentially
any adaptation)

After Explicit (Static intro-
duction)

At compile-time, with
possible runtime type
errors

Yes

De Lara et al.
[6,7,8]

Total Non-iso (Class renam-
ing, navigation and fil-
tering of properties, n−
to−1 bindings)

After (Binding),
At definition
(Specialization)

Explicit (Binding DSL) ? No

Babau et al. [9,10] Total (Bidi-
rectional
subset)

Iso (Bidirectional sub-
set)

After Explicit (Adaptation
DSL)

? Yes

Fig. 5. Classification of different model manipulation reuse approaches

On Model Subtyping 413

other approaches either let class names vary or go further, enabling adaptations such as
n− to− 1 concepts binding or navigation and filtering of features. The latter use dif-
ferent mechanisms to bind the subtype to its supertype and express the adaptation (e.g.,
adaptation and binding DSLs or static introduction). The rarity of isomorphic subtyping
relations can be explained by the restrictions such relations impose, restrictions which
can be safely relaxed in some cases, e.g., class names modification.

6.2 Total vs. Partial Subtyping Relations

Excepting one approach which allows the extraction of the effective metamodel from a
model manipulation [5], all existing approaches are total. To be total a non-isomorphic
subtyping relation must handle bidirectional adaptation. Bidirectionality is tackled in
existing approaches by almost isomorphic relations [1,2,3,4,9] or by generating an
adapted model manipulation rather than adapting the model [6,7,8].

6.3 Declaration of Subtyping Relations

All the existing approaches declare the subtyping relation or binding after the definition
of the two model types (or their equivalent). However, de Lara et al. authorize spe-
cialization of model types (called concepts in their terminology) using a mechanism
close to inheritance (i.e., at definition) [6]. Only two approaches declare subtyping
relations implicitly [1,3] whereas the others use explicit mechanisms mainly through
DSLs [4,6,7,8,10,9], with the exception of the approaches from Cuccuru et al. [2] and
Sen et al. [5] which use respectively genericity and static introduction.

6.4 Checking of Subtyping Relations

Little is said about the checking of the subtyping relations, apart from the work of Steel
et al. [3], in which subtyping relations are checked at compile time. De Lara et al. [6]
mention a notion of valid binding, but do not formalize it.

6.5 Legacy Tools Reuse

One group of our examples, abstract interpretation analyses, are implemented in an
existing tool (P-Interproc). Among the existing approaches, some need to specifically
define the model manipulation to be reused [1], or to process it in order to generate
an adapted model manipulation [6,7,8]. By doing so, they prevent from reusing exist-
ing model manipulations which have not been defined using their own mechanisms or
which sources are not available. The other approaches, which enable a subtyping rela-
tion with a legacy tool, are the ones with the fewest possible adaptations [2,3,4,10,9],
or without any guarantee on the bidirectionality of such adaptations [5].

7 Conclusion and Perspective

This paper provides a review of the overall scope of model substitutability through
model typing. To this end we analyze the subtyping relation between two model types
wrt. both their structure, and the context of the need for such a substitutability.

414 C. Guy et al.

First, to be substitutable a model must be structurally equivalent to the expected
one.Such a structural equivalence can be achieved if the structures of the two model
types are isomorphic, or thanks to an adaptation making the two structures isomorphic.

Second, such an isomorphism can be total, i.e., achieved between the whole struc-
tures of the two model types, allowing a substitution of the corresponding models in
every possible context where the substitution is necessary. Otherwise, partial model
substitutability can be achieved according to a given context. In other words, the iso-
morphism can be achieved between a model type and the effective model type of the
feature to be reused, i.e., the subset of the model type used in a given context.

From these distinctions, we define four model subtyping relations providing dif-
ferent kinds of model substitutability: total isomorphic, partial isomorphic, total non-
isomorphic and partial non-isomorphic. We review existing approaches to model ma-
nipulation reuse wrt. these subtyping relations. It appears that few existing approaches
use partial subtyping relations or enable adaptations to handle complex structural het-
erogeneities between model types. Moreover some approaches forbid the reuse of legacy
tools. More importantly, most of the approaches lack of a way to forbid erroneous reuse.

In addition to the comparison of existing approaches, the subtyping relations intro-
duced in this paper provide a specification of a family of model type systems that can
be implanted in a MDE CASE tool to enable safe reuse of model manipulations. In
this context, we thus discuss ways to declare a subtyping relation, and how to check it.
Depending on the chosen subtyping relation, as well as the way to declare and check
it, these type systems enable many facilities that are well known at the programming
language level, such as type-based compiler optimizations and auto-completion.

As a direct perspective of this work, we plan to refactor the existing model typing in
Kermeta to support the subtyping relations identified in this paper. To this end, we plan
to integrate the state-of-the-art of the existing approaches and to study how the work of
Vignaga et al. [25], focusing on the typing of the relations between models as functions,
can be combined with our subtyping relations.

Acknowledgement. This work has been partially supported by VaryMDE, a collab-
oration between Inria and Thales Research and Technology, and by the French ANR
BioWIC (ANR-08-SEGI-005). The authors thank the anonymous reviewers for their
constructive feedback which helped us to considerably improve the article.

References

1. Varró, D., Pataricza, A.: Generic and Meta-transformations for Model Transformation En-
gineering. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML 2004. LNCS,
vol. 3273, pp. 290–304. Springer, Heidelberg (2004)

2. Cuccuru, A., Mraidha, C., Terrier, F., Gérard, S.: Templatable Metamodels for Semantic Vari-
ation Points. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA. LNCS, vol. 4530,
pp. 68–82. Springer, Heidelberg (2007)

3. Steel, J., Jézéquel, J.M.: On model typing. SoSyM 6(4) (2007)
4. Sánchez Cuadrado, J., García Molina, J.: Approaches for Model Transformation Reuse: Fac-

torization and Composition. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008.
LNCS, vol. 5063, pp. 168–182. Springer, Heidelberg (2008)

On Model Subtyping 415

5. Sen, S., Moha, N., Mahé, V., Barais, O., Baudry, B., Jézéquel, J.-M.: Reusable model trans-
formations. SoSyM 11(1) (2010)

6. de Lara, J., Guerra, E.: From types to type requirements: genericity for model-driven engi-
neering. SoSyM (2011)

7. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Generic Model Transformations: Write Once,
Reuse Everywhere. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 62–77.
Springer, Heidelberg (2011)

8. Wimmer, M., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger, W., Cuadrado, J.,
Guerra, E., de Lara, J.: Reusing model transformations across heterogeneous metamodels.
In: International Workshop on Multi-Paradigm Modeling (2011)

9. Kerboeuf, M., Babau, J.-P.: A DSML for reversible transformations. In: OOPSLA Workshop
on Domain-Specific Modeling (2011)

10. Babau, J.-P., Kerboeuf, M.: Domain Specific Language Modeling Facilities. In: MoDELS
Workshop on Models and Evolution (2011)

11. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools,
2nd edn. Addison-Wesley (2006)

12. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL (1977)

13. OMG: Meta Object Facility (MOF) 2.0 Core Specification (2006)
14. OMG: UML Object Constraint Language (OCL) 2.0 Specification (2003)
15. Ernst, E.: Family Polymorphism. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS,

vol. 2072, pp. 303–326. Springer, Heidelberg (2001)
16. Kühne, T.: On model compatibility with referees and contexts. SoSyM (2012)
17. Bruce, K.B., Schuett, A., van Gent, R., Fiech, A.: Polytoil: A type-safe polymorphic object-

oriented language. ACM TOPLAS 25(2) (2003)
18. Steel, J.: Typage de modèles. PhD thesis, Université de Rennes 1 (April 2007)
19. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schoenboeck, J., Schwinger, W.:

From the Heterogeneity Jungle to Systematic Benchmarking. In: Dingel, J., Solberg, A. (eds.)
MODELS 2010. LNCS, vol. 6627, pp. 150–164. Springer, Heidelberg (2011)

20. Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electronic Notes in Theoretical
Computer Science 152 (2006)

21. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators for bidi-
rectional tree transformations: A linguistic approach to the view-update problem. ACM
TOPLAS 29(3) (2007)

22. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidirectional
Transformations: A Cross-Discipline Perspective. In: Paige, R.F. (ed.) ICMT 2009. LNCS,
vol. 5563, pp. 260–283. Springer, Heidelberg (2009)

23. Hu, Z., Schürr, A., Stevens, P., Terwilliger, J.F.: Bidirectional transformation ”bx” (dagstuhl
seminar 11031). Dagstuhl Reports 1(1) (2011)

24. Jeanneret, C., Glinz, M., Baudry, B.: Estimating footprints of model operations. In: ICSE
(2011)

25. Vignaga, A., Jouault, F., Bastarrica, M., Bruneliére, H.: Typing artifacts in megamodeling.
SoSyM (2011)

BOB the Builder: A Fast and Friendly

Model-to-PetriNet Transformer

Ulrich Winkler1, Mathias Fritzsche2, Wasif Gilani1, and Alan Marshall3

1 SAP Research, SAP AG,
The Concourse, Belfast, United Kingdom
{ulrich.winkler,wasif.gilani}@sap.com

2 SAP Modelling and Taxonomy, SAP AG Walldorf, Germany
mathias.fritzsche@sap.com
3 Queen’s Universiy Belfast
Belfast, United Kingdom
a.marshall@ee.qub.ac.uk

Abstract. Petri-Nets are a very expressive modelling concept. However,
modelling industrial problems using Petri-Nets is not a trivial task as
Petri-Nets do not provide support for constructing large models. Mod-
elling a complete business process, for example, with several activities
and associated resources using Petri-Nets becomes a complex task. Model
transformations are a promising technology to address this problem. In
this paper we present an extended Petri-Net model that supports mod-
elling industrial problems via model transformations. We also introduce a
transformation framework that allows to graphically define model trans-
formations by templates.

1 Introduction

Even the simplest form of Petri-Nets (PN), ordinary place/transition nets, are
a very expressive modelling concept. Extension, such as inhibitor arcs, time or
priorities make Petri-Nets Turing complete.

However, the uptake of Petri-Net based simulations in industry is low as mod-
elling of industrial sized problems using Petri-Nets is not a trivial task. Petri-Nets
do not provide support for structuring large models. To model an enterprise scale
business process, for example, with several activities and associated resources us-
ing Petri-Nets becomes a cumbersome task.

We address this problem by utilising model-driven technologies, such as model-
to-model transformations and model tracing. Model transformation allows us to
transform an arbritary model, i.e., a BPMN model, into a Petri-Net model. The
Petri-Net model is then used to conduct various analysis, such as simulations
and model checking. The results are then transformed back and visualised in the
context of the original source model (e.g. the BPMN model). We explain our
transformation approach briefly in Section 2.

In our previous work we used ATL [5] to implement model transformations.
Although ATL is a very powerful and generic transformation language, we found

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 416–427, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

BOB the Builder 417

that developing transformation scripts is time consuming, cumbersome and error
prone. Moreover, script based transformation toolkits, such as ATL, tend to be
slow.

Our approach uses (a) template based method to define a transformation,
(b) graphical editors to model these templates and (c) code generation to trans-
form these templates into the transformation code. Moreover, our framework is
deeply integrated into the Eclipse IDE [11] to provide streamlined design, coding,
testing, and debugging of transformations.

Our framework comprises:

– BEAM - The Behaviour Analysis Model. BEAM is a modular Petri-Net
model with extensions which are useful for model transformations and model
tracing. We briefly discuses BEAM in Section 3

– BOB - The BEAM Orchestration and Builder Framework. BOB is a trans-
formation framework for modularised Petri-Nets. Part of BOB are graphical
tools to define transformations by providing templates. Using these user pro-
vided templates BOB generates the transformer code. We describe BOB in
Section 4.

We discuss related work in Section 5 and conclude this paper with an outlook
in Section 6.

2 BOB Transformations at a Glance

Before going into details, let us briefly introduce the basic idea of the transfor-
mation procedure with modularised Petri-Nets.

Fig. 1. BOB transformation: the business process model and its transformation into a
BEAM instance

In Figure 1 you see a business process modelled in BPMN like notation and
its transformation into a Petri-Net. The process comprises three model elements:
an activity, a gateway and an FlowLink. The FlowLink connects the activity and
the gateway. In bottom half of Figure 1 you see a Petri-Net model which models
the behaviour of this business process. Parts of the Petri-Net are grouped by

418 U. Winkler et al.

rectangles, which we call modules. For example, the left side module describes the
internal behaviour of a process activity, the right side module the functionality
of the gateway. The FlowLink module describes how the FlowLink connects the
activity and the gateway.

The basic idea behind BOB is, that at design time the simulation developer
creates templates of the basic Petri-Net structure for all meta-classes of the
source meta-model, in this case the BPMN meta-model. We call these template
Petri-Net modules class modules. If a meta-class contains a reference to other
meta-classes (or to itself) the simulation developer also provides templates how
class modules should be connected by reference modules. These modules are
compiled by the BEAM compiler into Java code. The simulation developer may
refine this code as required.

At run-time, the BOB transformation process takes a BPMN process model,
the provided transformation code and produces a BEAM Net in three steps:

1. A new, empty BEAM Petri-Net is created.
2. The BOB transformer iterates over all elements in the BPMN model. For

each source model element the transformation determines the meta-model
class of that element and selects the right BEAM module. If a module is
available, the transformer creates an instance of that module and inserts that
instance in the BEAM model. We call that step the class module generation.

3. After all class patterns have been created, the transformer fuses the patterns
together; that is the transformer creates instances of reference modules and
connect places and transitions between different class modules and reference
modules.

3 BEAM Behaviour Analysis Model

BEAM is a generalised stochastic Petri-Net which supports read, reset and in-
hibitor FlowLinks. Places and transitions of a BEAM net are grouped in mod-
ules. There is nothing special about BEAM; from a pure Petri-Net point of view
BEAM is an ordinary Petri-Net as many others, except that we build the sup-
port for transformation into the BEAM meta-model. The general idea how we
transform arbitrary ECORE based models into a Petri-Net can be applied to
other Petri-Net specification as well.

The BEAM meta-model is shown in Figure 2.

BEAM Module: A BEAM module is the basic building block in the BOB trans-
formation framework. A BEAM Module (which is contained in a BEAM file),
groups nodes (places and transitions) and arcs of the BEAM Petri-Net.

Each module (and node) has two identifiers; the module identifier (MID) and
the universal unique identifier (UUID). The UUID, as the name implies, differs
for each element in a BEAM-Net. MIDs are only unique for elements within a
module and might be the same in two or more modules. Two different modules
with the same MID are treated as the same type of module. Module identifiers
are used by the BEAM Synchroniser to synchronise modules across files.

BOB the Builder 419

���*����������������	�
�����

����%�����	�
�����

++����������,, ++����������,,

Fig. 2. BEAM meta-model

Each module has a BOB MODULE TYPE. The BOB MODULE TYPE is used by the
transformer to determine how and when to create and fuse modules. We elabo-
rate on these different module types in Section 4.4 and 4.3.

Furthermore we distinguish between template modules and instance modules.
However, this classification is pure linguistics and not expressed in the BEAM
meta-model. A template module is provided by the developer and serves as
a basic pattern for the BOB transformer to transform a source model object
into its Petri-Net representation. We call that process instantiation. Once the
BOB transformer creates an instance of a template module we call it an instance
module.

Modules may contain other modules and thus may form a hierarchy. This
feature is used by the transformation framework to reflect the internal structure
of the source model.

4 BOB - The BEAM Orchestration and Builder
Framework

Throughout this paper we use a very simple ECORE based meta-model as an
accompanying example. The UML diagram of the meta model is given in Fig-
ure 3. This example meta-model comprises three classes A, B and X. Class X
extends class B. Class A has a zero-to-many reference to B.

420 U. Winkler et al.

Fig. 3. The meta-model simple.Example

4.1 BOB Library Project and BEAM Packages

Let us assume that a simulation developer wants to create an Example-Model-
to-BEAM transformation. The simulation developer would start his modelling
activities by creating a new BOB library project using the BOB project genera-
tor. The BOB project generator loads the source meta-model and initialises the
BOB library project.

BOB Library Project. A BOB library project is an Eclipse Java project with
additional BOB build natures, the BEAM compiler nature and the BEAM syn-
chroniser nature. We elaborate on both natures in Section 4.2. The BOB project
generator also initialised the basic project structure and generates BEAM pack-
ages for all classes of the meta-model.

BEAM package. A BEAM package is a set of template BEAM modules and
auxiliary Java code that define how a source model object is supposed to be
transformed into BEAMmodules, orchestrated and composed by the BOB trans-
former during a transformation. In our example the BOB project generator
would produce three BEAM packages for A, B and X. Let us assume that the
full qualified name of our meta-model is simple.Example. In such a case BOB
would create a package beam.bob.simple.example.a for class A, beam.bob.-
simple.example.b for B and beam.bob.simple.example.x for X.

Once the BOB project generator has initialised the basic project structure and
all BEAM packages, the simulation developer starts to fill in the initial empty
BEAM module templates and models the basic behaviour using a graphical
editors.

4.2 BEAM Module Compiler and Synchroniser

Let us briefly explain what a build-nature does. Every Eclipse project has zero,
one or more associated build-natures. Briefly explained, build-natures work like
this: the Eclipse runtime-environment observers all files within a project. If a
file has been created, changed or deleted all build-natures are notified. Upon a

BOB the Builder 421

notification the build-nature decides what to do with that received notification.
The Java build-nature, for example, would compile a Java source code file into
a Java class code file.

BEAM Module Compiler: The BEAM Module Compiler takes a BEAM module
and generates the Java code that would produce that module. As the BEAM
Module compiler is a part of the build-nature, the BEAM compiler is invoked
whenever the simulation developer or the BEAM synchroniser changes a BEAM
module definition.

BEAM Synchroniser: BEAM modules of the same type may be used in different
BEAM files in a project. We wanted to free the simulation developer of the
burden to keeping all BEAM modules in sync. Therefore we provide the BEAM
synchroniser which detects changes made to a BEAM module and applies these
changes to all BEAM modules in the same project.

4.3 Classes and Interfaces

The Eclipse Modelling Framework and its ECORE meta-model supports object
oriented concepts like classes, interfaces and inheritance.

BEAM does not distinguish between interfaces and classes. The project gen-
erator produces a BEAM file with a single BEAM module for all classes and
interfaces. In our example the project generator would create a single module in
a BEAM file named A.beam in the package bob.simple.example.a

These modules are used to define the internal behaviour of a source model
element, for example the internal behaviour of an activity or gateway.

Fig. 4. Class A template

Figure 4 shows the template module of class A which we will use in our
example.

4.4 References

In our business process example (Figure 1) the FlowLink object has two refer-
ences, one reference source to the activity object and one reference targets to
the gateway object. In this example the only objective of the FlowLink modules
is to transport tokens from the activity module to the gateway module. How-
ever, in other use-case that might be different and the simulation developer has
to module a more complex behaviour of a reference.

422 U. Winkler et al.

A reference may be regarded as a communication channel between objects.
The token would be the message sent over that channel. The transformation of
a reference into a BEAM Petri-Net is defined by three modules: the emitter, the
multiplier and the collector module.

The emitter module is used to define which object should receive a message
and in which order. The multiplier module is the channel itself and might be
used to “delay” a message or to lose a message. The multiplier is used to co-
ordinate how messages are “transmitted” or be used to delay a token on it’s way
to the receiver. The collector might be used to specify in which order a sender
receives messages.

For every reference in a meta-model the BOB project generator generates tem-
plates for the developer to fill in and to change according to the required need. Let
us explain how the developer would model the reference template. In our exam-
ple class A has a reference to class B. The BOB project generator would create a
BEAMfile A referenceA B.beam in package bob.simple.A.This beam file would
contain five modules: the template A, the emitter template, a multiplier template,
the collector template and the class template B as shown in Figure 5. Let us as-
sume that the developer filled these templates in as depicted in Figure 5 and 7.

Fig. 5. Template modules for referenceA

Fig. 6. Transformation result: instance modules (2:2 case)

BOB the Builder 423

Fig. 7. BOB screen shot. This screen shot shows how the developer uses the graphical
BEAM editor (the GBEAM editor) to model the A to B reference templates of the ex-
ample meta-model. The Project Explorer View shows the BOB library project package
layout, generated Java code and the BEAM and GBEAM files. BEAM files contain the
BEAM model whereas GBEAM contain the graphical details, such as layout, positions
and size of elements.

Let us assume that we have a model instance of our example meta-model with
four objects; A1, A2, B1 and B2 as shown in Figure 6. A1 holds two references
to B1 and B2 whereas A3 holds only one reference to B2. The transformer
generates object modules and reference modules as shown in Figure 6 according
to the following rules:

1. For each object that holds a reference r the transformer generates an Emitter
module. A1 and A2 hold a reference to B objects and therefore the trans-
former produces the Emitter modules E1 and E2.

2. For each reference the transformer produces a multiplier module. In our
example we have three references and therefore three multiplier modules.

3. For each referenced object the transformer generates a collector pattern. As
B1 and B2 are referenced objects we have two collectors in our examples.

4. Finally, the BOB transformer creates all arcs between emitter, multiplier
and collector.

This schema of modelling references provides a very flexible way to define various
scenarios. In most of our use-case we could use this approach to model references.

424 U. Winkler et al.

If it was required to model special behaviour we were able to changed the gen-
erated code of the emitter, multiplier or collector.

4.5 Containment References

In some cases we reduce the modelling effort. If, for example a reference is
a containment reference then the contained object does not need a collector
module, as the containing object is the only object that holds a reference to it.
If the reference is a 1:1 reference we can omit the multiplier modules.

4.6 Inheritance

BOB supports inheritance in a very simplistic way. BEAM Modules have the
boolean flag override. This flag is used to indicate whether the BEAM com-
piler should compile a template module. The override flag is also used by the
synchroniser to check whether or not a module should be synchronised with its
parent module.

In our simple example, model X inherits from B. The BOB project generator
creates the same set of empty template modules as for B. If the simulation
developer makes changes in the B module, these changes are applied to the X
template module as well unless the override flag is set. If the developer change
the X module, the override flag is set to true. If the override flag is set, the
synchroniser will no longer synchronise B and X models and the compiler creates
the necessary Java code.

If a meta-class has more than one super type this simple mechanism does not
work anymore. In this case the BOB project generator disables the inheritance
feature by setting the override flag to true and the simulation developer has to
model this class.

4.7 Module Interfaces and Module Re-use

The BEAM synchroniser uses the BEAM module UMD to synchronise modules
across files. This synchronisation mechanism is not limited to modules generated
by BOB. The developer may also create modules and assign a unique Universal
Module ID to it. This allows the developers to create “libraries” of modules. If
they wants to “pull in” a module from a library all they has to do is to create
an empty module and give it the same Universal Module ID as the module in
the library. The synchroniser then replaces the empty module with the module
in the library. With that mechanism we enable the developer to re-use modules
and to create interfaces as well.

4.8 Tracing

Model tracing is essential, as tracing relates source model elements to specific
places and transitions. Take for example a process activity in Figure 1. The Busi-
ness Process Expert wants to learn about the queueing length for that particular

BOB the Builder 425

activity. The queue is symbolised by a place in the BEAM net; the queuing length
would be the number of tokens in that place. Tracing establishes the link between
process activity and the activity module instance.

Model tracing produces additional tracing model [8,3]. We found that using
tracing techniques, as for example used by [2], is cumbersome and not needed for
BEAM. We were able to build bi-directional tracing into BEAM using a simple,
easy to use, and yet sufficient approach: if the source model element has an
unique identifier that unique identifier is stored as an attribute by each BEAM
module. If the source model element has no unique identifier, the source model
URI and the traversal path to the source model element is stored instead.

To identify specific places or transitions, such as the place that symbolises the
queue of an process activity, we are using MIDs as well to tag places, transitions
and arcs. In our example, the queue place would have the MID activity-queue.

Hence, whenever the process expert selects a activity element in the process
modelling environment we are able to identify the instance module for that
activity and the queueing place of the instance module by utilising MIDs.

4.9 Module Unit Tests and Transformation Verification

In software engineering Unit testing is a method to determine if a small testable
part of an application or library meets design requirements and is ready for use.
The smallest testable part of a BOB transformation are modules and the BOB
project generator creates and initialises for each class and reference a Unit Test
case. Unit Tests are used by the developer to verify that each template module
meets a set of initial design requirements and specifications. For example, a Unit
Test for the gateway model may test if the gateway distributes tokens correctly.

BOB provides tools to simplify Unit testing, for example a BEAM simulator
that can be executed step by step thus enabling the developer to observe and
verify each state during a Unit-Test run.

5 Related Work

The problem of modelling industrial sized Petri-Net has been addressed by a large
body of research. Basically four approaches exists: bottom-up/top-down refine-
ments [13,7,1], higher-level Petri-Nets [4], equivalent models [12,6] and Model-to-
Petri-Net transformations [10]. The first three approaches have in common that
the end-user is required to manually construct Petri-Nets. However, as pointed
by Lohmann et al. non-academic people - for example a business process expert
- prefer easy-to-use modelling environments tailored to their specific needs [6].
Refinement strategies and Higher-Level Petri-Net are very academic solutions.
Equivalent models, such as YAWL [12] for analysing business processes, aim to
provide a modelling environment that is less academic, acceptable for a business
process experts in terms of usability, and yet is based on strong Petri-Net seman-
tics. However, most commercial products uses BPMN [9] as BPMN is preferred by
business process experts as it offers a larger number of modelling elements which
YAWL is missing, such as gateway or complex control-flow constructs.

426 U. Winkler et al.

The Petri-Net Kernel (ePNK) is a tool based on Eclipse. It provides graphi-
cal editors and a plug-in mechanism to connect various types of Petri-Nets. The
ePNK is developed in model driven way, just like BEAM, using the Eclipse Mod-
elling Framework and ECORE, and thus existing model-transformation frame-
works as ATL [5] can be used to transform any kind of models to ePNK models.
However ATL is a generic transformation language, but we aim to provide a
domain specific transformation environment which is tailored to BEAM.

6 Conclusion and Future Work

In this paper we presented BEAM and BOB. BEAM, the Behaviour Analy-
sis Model, is a modular Petri-Net model with extensions which are useful for
model transformations and model tracing. BOB, the BEAM Orchestration and
Builder Framework an Eclipse based toolkit that comprises a project generator,
a compiler, a synchroniser, and a graphical editor to define transformations by
providing templates. Using these user templates BOB generates the transformer
code.

We found that BEAM/BOB simplify the way that developer model and imple-
ment a model-to-PetriNet transformation. In our previous work we used either
ATL [5] based scripts or pure Java functions to transform a source model into
a BEAM net. Writing code was cumbersome, time consuming and error-prone.
Using BOB we are able to develop a transformation much faster and in a user-
friendly way using graphical editors to model and test the transformation.

BOB provides a systematic modelling approach to simulation developers. As
the BOB project generator generates a complete set of templates the developer
has to fill in. The developers can go through these set of templates one by one
and model the transformation. If they finished this activity they can be assured
that they modelled a transformation completely.

BOB transformation is compiled code rather than an interpreted script. Com-
pared to other script-based transformation, such as ATL [5], a BOB transfor-
mation is very fast. Initial tests on 2.4 GHz Intel Core 2 Duo processor with 8
GB RAM demonstrated that a BOB transformation can be 4000 times faster
than a ATL based transformation (we compared a BOB transformation with our
previous ATL based work [2]). The main reason is that a BOB transformation
is compiled code whereas ATL is a script-based transformation. ATL needs to
load and parse the transformation scripts, loads the XML models and so on.
These steps are not required by BOB and therefore BOB is much faster. More-
over, BOB executes all transformation solely in memory to avoid any disk IO.
Comprehensive performance tests of BOB are considered as future work.

References

1. Fehling, R.: A Concept of Hierarchical Petri Nets with Building Blocks. In: Rozen-
berg, G. (ed.) APN 1993. LNCS, vol. 674, pp. 148–168. Springer, Heidelberg (1993)

2. Fritzsche, M.: Performance related Decision Support for Process Modelling. Phd,
Queen’s University Belfast (2010)

BOB the Builder 427

3. Fritzsche, M., Johannes, J., Zschaler, S., Zherebtsov, A., Terekhov, A.: Application
of Tracing Techniques in Model-Driven Performance Engineering. In: Proceedings
of the 4th ECMDA Traceability Workshop (ECMDA-TW), pp. 111–120 (2008)

4. Jensen, K.: Coloured petri nets (1987)
5. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation

tool. Science of Computer Programming 72, 31–39 (2008)
6. Lohmann, N., Verbeek, E., Dijkman, R.: Petri Net Transformations for Busi-

ness Processes – A Survey. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC
II. LNCS, vol. 5460, pp. 46–63. Springer, Heidelberg (2009)

7. Mu, D.J., DiCesare, F.: A Review of Synthesis Techniques for Petri Nets. In:
Proceedings of Rensselaer’s Second International Conference on Computer Inte-
grated Manufacturing, Troy, NY, USA, pp. 348–355. IEEE Comput. Soc. Press,
Los Alamitos (1990)

8. Object Management Group: MOF QVT Final Adopted Specification (2005)
9. Object Management Group: Business Process Modeling Notation Specification,

Final Adopted Specification, Version 1.0 (2006)
10. Raedts, I.G.J., Petkovi, M., Usenko, Y.S., van der Werf, J., Somers, J.F.G.L.:

Transformation of BPMN models for behaviour analysis. In: Proceedings 5th In-
ternational Workshop on Modelling, Simulation, Verification and Validation of En-
terprise Information Systems, MSVVEIS 2007, Funchal, Madeira, Portugal, June
12-13, pp. 126–137. INSTICC Press (2007)

11. und Dan Rubel, E.C.: Eclipse. Building Commercial-Quality Plug-Ins. Addison-
Wesley (2006)

12. Vanderaalst, W., Terhofstede, A.: YAWL: yet another workflow language. Infor-
mation Systems (4), 245–275 (2005)

13. Zuberek, W.M.: Petri nets in hierarchical modeling of manufacturing systems. In:
Proc. IFAC Conf. on Control Systems Design (CSD 2000), Bratislava, Slovak Re-
public, June 18-20, pp. 287–292 (2000)

Solving Acquisition Problems Using Model-Driven
Engineering

Frank R. Burton1,2, Richard F. Paige2, Louis M. Rose2, Dimitrios S. Kolovos2,
Simon Poulding2, and Simon Smith1

1 MooD International, York Science Park, YO10 5ZF, UK
{frank.burton,simon.smith}@moodinternational.com

2 Department of Computer Science, University of York, YO10 5GH, UK
{paige,louis,dkolovos,smp}@cs.york.ac.uk

Abstract. An acquisition problem involves the identification, procurement and
management of resources that allow an organisation to achieve goals. Examples
include through-life capability management (in the defense domain), and plan-
ning for the next release of a software system. The latter is representative of the
challenges of acquisition, as solving the problem involves the assessment of the
very many ways in which the different requirements of multiple heterogeneous
customers may be satisfied. We present a novel approach to modelling acqui-
sition problems, based on the use of Model-Driven Engineering principles and
practices. The approach includes domain-specific modelling languages for acqui-
sition problems, and uses model transformation to automatically generate poten-
tial solutions to the acquisition problem. We outline a prototype tool, built using
the Epsilon model management framework. We illustrate the approach and tool
on an example of the next release acquisition problem.

1 Introduction

An acquisition problem involves the identification, procurement and management of
resources to achieve goals. Consider the following scenario.

The National Lifeboats Institution is considering its next-generation capability.
It has a limited budget, and must satisfy numerous stakeholders such as lifeboat
operators, funding bodies, charity workers, and the general public. Its goal is
to provide an efficient and effective lifeboat service that protects the public
and saves lives. It may acquire improved capability through: better training
of current operators, better equipment (e.g., newer lifeboats), better education,
etc. It wants to find the most cost-effective capability solution.

This scenario is representative of acquisition problems in numerous domains, including
defense, aerospace, logistics, software project management and law. Such problems are
complex, and are known to be hard [1,2]. They are challenging for a number of reasons:

– they often involve multiple objectives (e.g., saving lives, minimising cost);
– they are heterogeneous, involving tradeoffs between different types of entities (e.g.,

better training versus better equipment);

A. Vallecillo et al. (Eds.): ECMFA 2012, LNCS 7349, pp. 428–443, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Solving Acquisition Problems Using Model-Driven Engineering 429

– they are often dynamic: different solutions may be optimal or near-optimal at dif-
ferent times.

– there is rarely a single optimal solution.

Not only is determining optimal or near-optimal solutions to acquisition problems dif-
ficult, even understanding the acquisition problem may be challenging, in part because
of the uncertainty and imprecision in the problem definition.

We contribute a general approach, based on Model-Driven Engineering (MDE) con-
cepts and technologies, for modelling acquisition problems and calculating solutions
that are optimal (Pareto optimality as defined in Section 2.1). The approach consists
of a set of domain-specific languages (DSLs) for modelling acquisition goals and sce-
narios; these scenarios are then manipulated, by a chain of model transformations and
model management operations, to produce solutions that are optimal. The advantages of
using DSLs and MDE concepts and technologies for modelling and solving acquisition
problems are multi-fold:

– Existing techniques used for solving acquisition problems are predominantly do-
main dependent: they rely on domain-specific models and algorithms for express-
ing how a capability matches a problem. MDE technologies and concepts offer a
general, domain independent approach to solving such problem while still enabling
a domain specific method of expressing the problem itself.

– In particular, the representation of problem concepts, goals and constraints using a
DSL-based approach may be more accessible by domain experts.

– Acquisition problems conceptually reduce to manipulating graphs, where nodes
typically represent goals and solutions, and edges represent dependencies. MDE
technologies allow us to model and attempt to solve acquisition problems in their
full generality.

– MDE principles and technologies allow us to abstract away from the complexity
of calculating optimal solutions, and to modularise the calculation process. Model
transformation, in particular, simplifies mapping (domain) models of problems to
optimal solutions.

To illustrate the modelling approach, its novelties and limitations, we apply it to a rep-
resentative acquisition problem: the software engineering Next Release Problem (NRP).
The acquisition objective is to find the ‘best’ customer requirements to satisfy in a new
software release, while staying within budget. This problem, defined in detail in Sec-
tion 2, is known to be NP-hard [3]. We use it to demonstrate that the MDE-approach can
successfully model such complex problems, calculate optimal solutions, and also han-
dle a more general version of the problem that includes dependencies between require-
ments. We also demonstrate that we can handle continuous variable requirements [2]
and provide feedback and explanations of the results, via visualisations.

Beyond offering a solution method for NRP, the presented approach makes multi-
ple generic contributions: the automatic generation of goal models from a partial goal
model decomposition with high level descriptions of possible acquirable systems; the
automatic evaluation of the generated goal models; calculation of multiple solutions that
satisfy multiple stakeholder objectives and that are Pareto optimal, allowing decision-
makers to make more informed acquisition; and solution visualisation via MDE tools,
particularly EuGENia [4] and GMF [5].

430 F.R. Burton et al.

The paper is structured as follows. In Section 2 we present related work and introduce
the foundations of NRP, as well as the MDE techniques and technologies we use for our
solution. In Section 3 we present our modelling approach, focusing on the DSLs to be
used by engineers in representing acquisition goals and scenarios; we also outline the
transformations used to produce optimal outputs, and explain how solutions are judged
to be optimal. In Section 4 we apply the approach to an instance of NRP. We conclude
in Section 5.

2 Background and Related Work

In this section we review the key previous work on acquisition problems, focusing
on the Next Release Problem as a representative example. Acquisition problems are,
formally, multi-objective optimisation problems. As described in this section we also
discuss related work on NRP in more detail, then review the MDE technology that
underpins our approach and tools.

2.1 Multi-objective Optimisation Problems

NRP, like other acquisition problems (e.g., Through-Life Capability Management [1]),
is an example of a multi-objective optimisation problem. In contrast to single-objective
problems, when multiple competing objectives exist, there is normally not a single
‘best’ solution. Instead, a solution may be the better at one objective but worse than
other solutions at a different objective. A solution, X, is said to be dominated by an-
other solution, Y, if Y is strictly better than X on at least one objective and as good as X
on the remaining objectives. This leads to the notion of a Pareto front consisting of those
solutions that are not dominated by any other solution. In other words, a solution on the
Pareto front may only be bettered on a particular objective if we are willing to accept
a worse score on another objective. These solutions on the Pareto front are considered
to have Pareto optimality. (Deb in [6] presents a detailed explanation of multi-objective
optimisation and the concept of a Pareto front.)

When applying search techniques to multi-objective problems it is necessary to quan-
tify how ‘good’ all solutions are in terms of Pareto optimality, whether or not they are
on the Pareto front. An appropriate method is to assign solutions on the Pareto front
a non-domination rank of 0, then to temporarily ignore the solutions on this front in
order to find a new Pareto front which is assigned rank 1, repeating this process until all
solutions are ranked [7].

An example of a Pareto front for two objectives, together with solutions having non-
domination ranks of 1 and 2, is shown in Fig. 1. For each solution on the Pareto front,
it can be seen that no other solution dominates it, but no one solution is optimal for
both objectives. Solutions on the Pareto front are the best representatives of different
possible trade-offs beyond the competing objectives, and so when making decisions
about a multi-objective optimisation problem, typically only the solutions on the Pareto
front need be considered.

Solving Acquisition Problems Using Model-Driven Engineering 431

Fig. 1. Example of a Pareto front with the first two non-domination rankings marked. For each
objective, a larger value represents a better solution.

2.2 The Next Release Problem

The Next Release Problem involves finding the ‘best’ set of customer requirements
that will be satisfied in the next software release while staying within budget. In the
NRP there are multiple customers with numerical weights to indicate their importance
to the software company. Each customer requests one or more requirements and each
requirement has an associated cost; requirements may also have causal dependencies.
The original objective of the NRP was to select which customers should have their
requirements satisfied. A consequence of framing the NRP with this objective is that
solutions can be unbalanced: a small proportion of customers might have all of their
requirements satisfied, and the requirements of some customers might be ignored. The
approach to NRP presented by Bagnall et al [3] is limited in this manner, as it is very
likely for some customers to have no requirements satisfied at all.

Later work [8–11] overcomes this limitation by having customers place weights of
importance on each requirement and hence modifying the NRP so that requirements,
instead of customers, are selected for inclusion. The objective in the modified NRP is
to select which requirements to satisfy, in order to maximize the total customer satis-
faction subject to the provided numerical weights. A further variant on the problem [9]
considers the decomposition of a system, where a system is made up of components
(typically software features) that work together, and focuses on selecting which new
components will be added in the next release.

2.3 The Multi-objective NRP

In the multi-objective Next Release Problem (MONRP) [10], the cost becomes an ob-
jective rather than a constraint. The formulation of the problem in terms of customers
and requirements is equivalent to variants of NRP described above that consider weights
on each requirement indicating the importance of that requirement to the customer.
There are now two competing objectives: to maximise the total customer satisfaction,
and to minimise the cost to the company (the sum of all the costs of the selected re-
quirements). The solution of the multi-objective NRP problem is therefore a Pareto

432 F.R. Burton et al.

front of points, each representing a different combination of requirements to include in
the release.

Zhang [10] presents an approach to solving MONRP by calculating maximum cus-
tomer satisfaction for all possible available resources, and hence demonstrates the ef-
fects of varying the budget on customer satisfaction. Zhang shows that it is possible to
determine situations where increasing the budget only slightly can have a large effect on
customer satisfaction, or that the budget can be significantly reduced with only minimal
effect on customer satisfaction. However, this approach does not consider dependen-
cies between requirements. In follow-up work, Zhang [2] identifies multiple challenges
for MONRP, two of which are: providing sensible feedback and explanation of results;
and handling continuous variable requirements (i.e. requirements that can be partially
fulfilled, such as increasing the responsiveness of a system). Besides handling require-
ments dependencies, the modelling approach and tool we present in this paper addresses
the latter completely, and the former partially (via visualisations). MDE technologies
enable both of these contributions, as we discuss in more detail in the following section.

Various optimisation techniques have been applied to the MONRP, including greedy
search, hill climbing, simulated annealing, genetic algorithms, NSGA-II, MoCell and
Ant-based search [3, 8, 11, 12]. Since NSGA-II [7] has demonstrated acceptable results
in a number of empirical studies on MONRP [10, 11, 13], we choose it as the basis of
solution calculation.

2.4 MDE and Model Management

Our modelling approach and supporting tools are based on MDE principles [14] and
technologies. The tools we present in later sections exploit Eclipse’s EMF/Ecore for
defining models and DSLs, and use the Epsilon platform [15] for automatically generat-
ing solutions to acquisition problems. Epsilon is a framework of task-specific languages
for model management, and comprises a core language (EOL) upon which other task-
specific languages are defined. These include a model-to-model transformation lan-
guage (ETL) [16], a model migration language (Flock) [17], a model-to-text language
(EGL), and a tool for generating GMF editors (EuGENia) [4].

The tool that supports our acquisition modelling approach is implemented as a set of
DSLs, general model management code and model-to-model (M2M) transformations.
Graphical editor support for the tool is provided via EuGENiA and GMF [5].

3 Modelling Approach

As part of a collaboration between MooD International and the University of York, we
have developed a general-purpose modelling approach and tool designed to support ac-
quisition problems. The approach is based on a set of DSLs that are used to model an
acquisition problem as well as mechanisms and resources that can contribute towards
fulfilling the problem’s goals. We first describe the modelling approach, and then ex-
plain how the tool calculates solutions, using MDE techniques.

Solving Acquisition Problems Using Model-Driven Engineering 433

3.1 Concept and DSLs

The modelling approach is based on notions of goal modelling [18]. Goal models are
normally applied to acquisition problems by first defining the top-level goals of what is
required; these top-level goals are then decomposed into sub-goals until it is possible
to identify a system or process that enables the goal to be fulfilled. In some cases, it is
possible to determine whether a system or process satisfies a goal; in others, a looser
notion, satisficing, is used to indicate that a system or process goes some way to meeting
a goal.

Most approaches to calculating solutions to goal models terminate after identify-
ing a complete goal model, i.e., one in which all goals are fulfilled. However, this is
insufficient for solving acquisition problems in their full generality. For example, con-
sider Through-Life Capability Management (TLCM) [1]: there are multiple ways for
the same goals to be met by completely different supporting systems. Moreover, differ-
ent acquisition strategies meet the goals to different degrees and have different costs.

Our modelling approach separates the modelling of the goals from the modelling of
the systems and processes and how they interact. By underpinning the goal model and
the system and process models (component models) with domain specific modelling
languages, we can use MDE techniques to freely manipulate them. The use of MDE
allows us to manipulate these models to automatically compose completed goals mod-
els. Additionally, with the aid of a multi-objective search technique, we can search for
a Pareto front of completed goal models representing the various acquisition trade-offs
to aid the acquisition decision makers. Goal models are a generic acquisition technique.
This means that we can perform trade-off analysis on a very general class of acquisition
problem. Being able to manipulate goal models using MDE techniques is the main en-
abling contribution that enables this. The application of our approach to NRP is purely
illustrative.

The modelling of the high level goals and how they decompose is contained in the
Scenario Model, which is captured in the Scenario DSL, illustrated in Fig. 2.

Fig. 2. Scenario Metamodel in Ecore

434 F.R. Burton et al.

The main element in the Scenario DSL is the concept of a Capability, which is
a TLCM term for a Requirement or Goal [1]. Capabilities can be decomposed into
sub-capabilities and can have associated quantitative measures. Capability measure-
ments are either fulfilled directly by a CapabilityProvision (in a Component Model, see
Fig. 3), or indirectly through the CapabilityMeasurementAggregation model element.
This states how the measure is derived from other capability measurements. Capabilities
can either be not fulfilled (typically by the critical value for the measurement not be-
ing reached), partially fulfilled (by the critical measurement being met), or completely
fulfilled by the benchmark value being met.

Fig. 3. Simplified Component Metamodel in Ecore

The modelling of the systems/people/processes that can satisfy the goals in the Sce-
nario Model are captured in Component Models; the abstract syntax is illustrated in
Figure 3. The main element in the DSL is Component, which represents some system
or process that can be acquired. Each component has a name, can provide multiple capa-
bilities, can itself depend on multiple different capabilities, and can have multiple costs
(this last element is essential, because some components will cost more in different
contexts, e.g., a component used in a safety critical project may require more review by
experts, and hence will be more expensive). There is an essential notion of coherency
and completeness with components: if a dependency associated with a component is
unsatisfied, that component cannot satisfy any other component with a provision.

An end-user models their goals (using the Scenario DSL) and the components (us-
ing the Component DSL). We then use MDE techniques to implement search-based
algorithms to calculate optimal solutions; this is described in the next section.

3.2 Calculating Solutions to the Acquisition Problem

After specifying a set of goals and available components that can contribute to solutions,
we want to calculate solutions to the acquisition problem. This is a search problem.
However, it is a non-trivial search problem for reasons discussed earlier: components
can contribute to multiple goals; a goal may have multiple possible components that

Solving Acquisition Problems Using Model-Driven Engineering 435

can fulfil it; and, ultimately, the problem may have an arbitrary number of solutions.
As such, we need to define a notion of what constitutes an optimal solution for such
multi-objective problems. Our modelling approach thus calculates a Pareto front. The
objectives for the Pareto front are set within the Scenario Model.

The goal model is constructed via a chain of M2M transformations that connect
Capability model elements from the Scenario DSL with matching CapabilityProvision
model elements from the Component DSL, thus creating a relationship between them
in the Satisfied Scenario DSL. The CapabilityDependency in the Component DSL will
also be matched with a CapabilityProvision in another Component. During this pro-
cess, when a Capability or CapabilityDependency model element is connected to a
CapabilityProvision model element, the provided values from the CapabilityProvision-
Measurement model elements attached to the CapabilityProvision are compared with
the critical and benchmark values from the CapabilityMeasurements model elements
attached to the Capability or CapabilityDependency model element to determine how
well the Capability or CapabilityDependency is satisfied. There is normally more than
one Component which can satisfy a Capability and in some cases it may be preferable
for a Capability to remain unfulfilled (e.g. to reduce costs). Consequently, the transfor-
mations are stochastic.

The overall approach is illustrated in Fig. 4. An end-user provides a single scenario
model, multiple component models and a user interface model. The user interface model
merely provides the settings for the search algorithm. The scenario model and compo-
nent models are transformed via a M2M transformation into an intermediate DSL which
express a correspondence [19] (Correspondence model). The correspondence model
only holds information on how the models involved in the search can be structurally
connected to each other. The next M2M transformation is stochastic and produces a
completed correspondence model that captures exactly one way in which the models
can be connected. This M2M transformation is executed multiple times to generate an
initial population for the search method (described below). The completed correspon-
dence model does not capture details such as measurements, costs, etc. A final M2M
transformation is used to produce satisfied scenario models, which are the completed
goal models that can be evaluated against their objectives. The transformation takes in
the structural information from the completed correspondence model and the details
from the original scenario and component models. The satisfied scenario metamodel is
a composition of the scenario and component meta models with additional relationship
for connecting them together.

To derive a Pareto front of solutions, we utilise a search method based on the multi-
objective optimisation algorithm NSGA-II [7]. The starting point is the initial popu-
lation, termed the ‘parent’ population, of different completed correspondence models
produced by the stochastic process described above, and the search proceeds as a se-
quence of iterations, typically called ‘generations’, as follows. An ‘offspring’ popula-
tion is created by applying a single-point crossover operator that swaps parts of two
randomly-chosen models from the parent population to produce a new completed cor-
respondence model. Each new model generated in this way is evaluated against the

436 F.R. Burton et al.

objectives using a M2M transformation to create a corresponding satisfied scenario
model. The parent and offspring populations are then combined and the solutions or-
dered by non-domination rank. (The concepts of domination and non-domination rank
are explained in Section 2.1) The better half of the combined population – the solutions
with lowest non-domination rank – are chosen to form a new parent population. The
algorithm continues in this way until a specified number of generations is reached. The
output is a Pareto front of satisfied scenario models representing the different possible
trade-offs between the objectives.

Fig. 4. Solution architecture

The approach offers a number of novelties, including the following.

– Automatic construction and evaluation of goal models. The tool uses model man-
agement to take a partially decomposed goal model along with components models
(representing systems/processes/people) and uses them to automatically generate
multiple completed goal models, which represent different viable acquisition plans.
The completed goal model is automatically evaluated by using the measures con-
tained in the goal model and the component models used in its construction.

– Trade-off support between stakeholder goals. The approach has the ability to find
the Pareto front between different stakeholder goals and the different involved costs
when generating solutions to the acquisition problem of interest. This enables deci-
sion makers to consider trade-offs in the acquisition plans which is useful in cases
where there are limited resources and multiple ways to achieve the same goals such
as in Through Life Capability Management.

– Solution visualisation. The tool generates solutions to acquisition problems using
the satisfied scenario DSL. Since a DSL is used, the model, containing the acquisi-
tion plan, can be visualised using MDE tools such as EuGENia [4] and GMF [5].
The solution visualisation is illustrated briefly in the next section.

Solving Acquisition Problems Using Model-Driven Engineering 437

4 Application to the Next Release Problem

We illustrate the modelling approach on instances of the Multi-Objective Next Release
Problem (MONRP). First, by using a small representative example, we will demon-
strate the modelling approach (and supporting tools, implemented using the Epsilon
framework), the calculation of solutions, show how the approach can support problems
that are not normally supported by NRP tools. Second, to explore scalability, we apply
the approach to a much larger randomly generated dataset for a different instance of the
MONRP.

4.1 Stock Control System Example

Our first example is based on the following scenario. A small shop is considering up-
grading their existing stock control system. There are two main stakeholders: the shop
manager (paying for the upgrade) and shop clerk (who uses the system). The shop man-
ager has three requirements for the upgraded system: monthly reports on the shop’s
stock flow, email notifications for when stock needs to be reordered, and an automatic
ordering system for new stock. The shop clerk also has three requirements: means to
track stock (other than manual stock tracking), a better user interface for the system,
and a requirement shared with the manager: that of automated stock ordering.

Producing email notifications and automatically ordering stock both depend on com-
mon code for determining when stock of an item is likely to run out. There are two
different potential improved stock control systems: a cheaper barcode system and a
more expensive RFID tag system which is easier to use and better at tracking stock.
Such scenarios, where two different component satisfy the same requirement to differ-
ent degrees, are not supported by existing NRP methods. Additionally, the manager’s
requirements are deemed more important than the clerk’s. Moreover, the manager does
not have enough money available to pay for all the upgrades.

4.2 Scenario Model

The first step is to model the acquisition problem in the Scenario DSL (Fig. 5). The
Scenario DSL captures both the structure of the MONRP itself, the details of the two
customers (manager, clerk) and their requirements. The objective is to calculate the
weighted sum of the customer satisfactions. The capability Next Release Problem is
the search objective and its measure is the sum of the shop manager’s and shop clerk’s
satisfaction, which are weighted. The shop manager and shop clerk are modelled as
capabilities which decompose into their requirements, also modelled as capabilities.
A requirement whose satisfaction can be measured by a real value (as opposed to a
requirement that is either fully met or not met at all) is called a continuous variable re-
quirement. Continuous variable requirements are supported by the approach by giving
each requirement a measure with a critical value of 0 and a benchmark value of 1. A

438 F.R. Burton et al.

Fig. 5. Shop Case Study Scenario Model

slight modelling quirk is that because the Scenario DSL cannot hold numerical values,
the weights have to be modelled in the Component DSL and therefore there are capa-
bility decompositions for the shop manager and the shop clerk which take into account
the numerical weights for each 1. The two weight components are set in the User In-
terface model as pre-existing components and so are always included in the generated
goal models. The customer satisfactions have attached measures that are numerical and
match the MONRP definition by using the multiplication and sum aggregations rela-
tionships.

4.3 Component Models

Examples of the component models for this acquisition problem are shown in Fig. 6.
These examples demonstrate, for instance, that the Barcode Scanning System is depen-
dent on the Stock Management System, will cost £120 to implement, and will provide
Easier Stock Handling.

Based on these component models, our approach will generate a Pareto front of goal
models using the Satisfied Scenario DSL. The search space in this illustrative problem
is reasonability small so the tool quickly finds the optimal Pareto front of solutions. The
Pareto front has been extracted from the result set using a model-to-text transformation
in Epsilon; it is presented in Fig. 8. In this example, suppose that the shop manager
has a budget of £250 and initially selects the solution that costs £230. This solution is

1 A dedicated model element for this situation as now been introduced in the tool.

Solving Acquisition Problems Using Model-Driven Engineering 439

Fig. 6. Shop Case Study Example Component Models

visualised in Fig. 7, which demonstrates how the components are related to the capa-
bilities in order to solve the problem. In the figure, Capabilities begin with “Cap:” and
Components begin with “Comp:”.

The shop clerk, seeing that the solution in Fig. 7 only satisfies one of his require-
ments, is unhappy. To resolve this, the search objectives in the Scenario Model are
changed from the Next Release Problem to the two customer satisfactions. This gen-
erates a 3-dimensional Pareto front between the shop manager, shop clerk and the cost
(Fig. 4.4). After some discussion between the shop manager and the shop clerk, they
decide to choose a balanced solution, which gives them both a satisfaction of 0.7 for the
cost of £275. The shop clerk agreed to have the extra £25 deducted from his pay.

This illustrates an advantage of an explicitly multi-objective approach to the prob-
lem. By deriving a set of potential solutions on the Pareto front, the stakeholders are
presented with detailed information on which to base a discussion of trade-offs among
the competing objectives.

4.4 Scalability Example

The previous example is small and illustrative; to better assess scalability, we used
our approach and tool on a much larger, randomly generated MONRP problem with 5
customers, 50 requirements and 50 components. The customer and requirement weights
are all randomly generated and normalised.

440 F.R. Burton et al.

Fig. 7. Shop Case Study Example Solution

Fig. 8. Shop Case Study Pareto Front Fig. 9. Scalability Example Pareto Front

Fig. 10. Shop Case Study 3D Pareto Front

Solving Acquisition Problems Using Model-Driven Engineering 441

For each requirement a component is generated that provides that requirement. Ad-
ditionally, there is a 50% chance the component provides another requirement and a
50% chance the component depends on a randomly chosen requirement. The generated
Pareto front (shown in Fig. 9) shows that the relationship between customer satisfaction
and cost begins near linear, as the software developer can start by selecting software
features that are cheap to implement and are highly desirable to their customers. How-
ever, as more of the software features are implemented by the software developer, the
remaining software features for the software developer to select from contains progres-
sively less desirable and more expensive ones. The result of this is a slight curve in the
Pareto front with the last 20% of the customer satisfaction begin twice as expensive to
gain as the first 20% of the customer satisfaction.

For the search, a typical population size of 100 and generation count of 100 has being
used. The runtime of our prototype on such a problem is approximately 5.5 hours. The
randomly generated test data is larger then the largest real world problem in the NRP
research field, the Motorola Problem [13]. Our tool is, however, several orders of mag-
nitude slower than dedicated tools for MONRP, which can run in under 1 second [13].
Our focus up until now has not been on performance, but on genericity: our approach
supports general acquisition problems and is not specifically tailored for MONRP. Some
of the speed reduction we see is however inherent in using general-purpose modelling
tools instead of bit strings. A significant reason for lower performance is that the M2M
transformation languages are interpreted rather than compiled. In future work, the core
M2M transformations may be reimplemented in a compiled language which should
significantly reduce the execution time.

4.5 Contributions to the Next Release Problem

Our modelling approach and prototypical tool contribute several specific novelties to
the Next Release Problem:

– Trade-offs in software architecture. By applying a principled modelling approach,
we are able to represent the problem domain concept of customer requirements and
the solution domain concept of components separately. In earlier work [9, 10], the
customer requirements and components were treated identically. As a result, our
approach permits situations in which multiple different components can fulfil the
same customer requirement. This corresponds to trade-offs in software architecture
and these are not supported by previous work on the NRP.

– Continuous variable requirements. A proposed research challenge for the NRP is
the handling of continuous variable requirements [2], i.e. requirements whose sat-
isfaction may be partial. For example, a requirement on a web server’s response
time. It could be a critical that the response time (the continuous variable) is un-
der 300ms and desirable for the response time to be under 100ms. This is easily
supported by our tool since it tackles in the problem in a conceptually cleaner way,
whereas in previous work [3,8,10,11] on the NRP problem, a requirement can only
be satisfied or not satisfied.

– Visualisation of solutions. Another research challenge for the NRP is explaining
to the stakeholder why solutions are good [2]. By supporting the visualisation of

442 F.R. Burton et al.

solutions to show how customer requirements are fulfilled by different components,
our tool partially addresses this concern.

– Tool Flexibility. Our tool is generic and allows the end-user to change the prob-
lem definition. Here, for example, we have used this flexibility to produce a 3-
dimensional Pareto Front of two stakeholder’s satisfaction against the cost.

5 Conclusions and Further Work

The paper contributes a general approach, based on Model-Driven Engineering (MDE)
concepts and technologies, for modelling acquisition problems and calculating optimal
solutions. By doing so, the approach supports engineers in carrying out trade-offs be-
tween different acquisition strategies, some of which may never have occurred to the
engineers, because they were unable to exhaustively identify all the potential solutions.

The paper discussed the typical challenges present in acquisition problems, using
the multi-objective Next Release Problem as an example. In particular, we have demon-
strated some of the typical problems associated with calculating solutions and present-
ing them to the end-user. We have presented our modelling approach, which is based on
a number of domain-specific languages and is inspired by goal modelling, and explained
how the languages are used to specify acquisition scenarios and potential capabilities,
and algorithms for matching solutions against acquisition scenarios, in order to present
solutions that are Pareto optimal. A prototype tool was presented, which automatically
generates solution models. Both the automatic generation of goal models from the prob-
lem description, and the descriptions of the available systems, people and processes that
can be acquired, as well as the generation of multiple instead of single goal models to
show tradeoffs, are novelties of this work.

We then applied the modelling approach to concrete instances of the Next Release
Problem, demonstrating that the approach and supporting tool can be used on both
significant examples of the NRP, as well as more general NRP problems than those
handled by other approaches (e.g., with dependencies between requirements). Overall,
the approach that we have taken contributes a more generic capability for handling
NRP problems; the price that we pay comes in the form of performance: because our
tools are based on general-purpose MDE tools (i.e., Eclipse EMF, Epsilon) instead of
dedicated NRP tools, our approach is less efficient; however, the approach does scale,
as our example in the previous section demonstrates.

In future work, the tool will be applied to more general acquisition scenarios and
on real world case studies. Since the work is primary motivated by the Through Life
Capability Management (TLCM), we will enhance the tool to support multiple releases,
similar to earlier work by Greer et al [8]. Additionally, we will manage the additional
complexities that arise through TLCM, most notably the larger time scales involved
(i.e., acquisition processes that take decades). We also intend to investigate mechanisms
for performing sensitivity analysis, to check for robustness of acquisition plans.

Acknowledgements. This work is being sponsored by MooD International and the
EPRSC (EP/F501374/1) under the Large Scale Complex IT System research programme.

Solving Acquisition Problems Using Model-Driven Engineering 443

References

1. McKane, T.: Enabling acquisition change - an examination of the Ministry of Defence’s
ability to undertake Through Life Capability Management. Technical report (June 2006)

2. Zhang, Y.-Y., Finkelstein, A., Harman, M.: Search Based Requirements Optimisation: Exist-
ing Work and Challenges. In: Rolland, C. (ed.) REFSQ 2008. LNCS, vol. 5025, pp. 88–94.
Springer, Heidelberg (2008)

3. Bagnall, A.J., Rayward-Smith, V.J., Whittley, I.M.: The Next Release Problem. Information
and Software Technology 43(14), 883–890 (2001)

4. Kolovos, D.S., Rose, L.M., Abid, S.B., Paige, R.F., Polack, F.A.C., Botterweck, G.: Taming
EMF and GMF Using Model Transformation. In: Petriu, D.C., Rouquette, N., Haugen, Ø.
(eds.) MODELS 2010. LNCS, vol. 6394, pp. 211–225. Springer, Heidelberg (2010)

5. Eclipse GMF - Graphical Modeling Framework, http://www.eclipse.org/gmf
6. Deb, K.: Multi-objective optimization. In: Burke, E.K., Kendall, G. (eds.) Search Method-

ologies, pp. 273–316. Springer, US (2005)
7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
8. Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative approach. In-

formation and Software Technology 46(4), 243–253 (2004)
9. Baker, P., Harman, M., Steinhofel, K., Skaliotis, A.: Search based approaches to component

selection and prioritization for the next release problem. In: 22nd IEEE International Con-
ference on Software Maintenance, ICSM 2006, pp. 176–185 (2006)

10. Zhang, Y., Harman, M., Mansouri, S.A.: The multi-objective next release problem. In: Pro-
ceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 1129–
1137 (2007)

11. Durillo, J.J., Zhang, Y.Y., Alba, E., Nebro, A.J.: A study of the multi-objective next release
problem. In: 1st International Symposium on Search Based Software Engineering, pp. 49–58
(2009)

12. del Sagrado, J., del Águila, I.M., Orellana, F.J.: Ant colony optimization for the next re-
lease problem: A comparative study. In: Second International Symposium on Search Based
Software Engineering, pp. 67–76 (2010)

13. Durillo, J.J., Zhang, Y., Alba, E., Harman, M., Nebro, A.J.: A study of the bi-objective next
release problem. In: Empirical Software Engineering, pp. 1–32 (2011)

14. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. Computer 39, 25–31
(2006)

15. Kolovos, D.S.: An Extensible Platform for Specification of Integrated Languages for Model
Management. PhD thesis, University of York (2008)

16. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Transformation Language. In: Valle-
cillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 46–60. Springer,
Heidelberg (2008)

17. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model Migration with Epsilon Flock.
In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 184–198. Springer, Hei-
delberg (2010)

18. Lamsweerde, A.V., Dardenne, A., Delcourt, B., Dubisy, F.: The KAOS Project: Knowledge
acquisition in automated specifications of software. In: Proceeding AAAI Spring Symposium
Series, Track: Design of Composite Systems (1991)

19. Bézivin, J., Bouzitouna, S., Del Fabro, M., Gervais, M.P., Jouault, F., Kolovos, D., Kurtev,
I., Paige, R.: A canonical scheme for model composition. In: Model Driven Architecture–
Foundations and Applications, pp. 346–360 (2006)

http://www.eclipse.org/gmf

Author Index

Ali, Shaukat 133
Anjorin, Anthony 287, 368
Asztalos, Domonkos 275
Atkinson, Colin 194

Baresi, Luciano 340
Batori, Gabor 275
Behjati, Razieh 226
Blay-Fornarino, Mireille 4
Briand, Lionel 74, 226
Burton, Frank R. 428
Büttner, Fabian 244

Cabot, Jordi 244
Chen, De-Jiu 303
Combemale, Benôıt 400
Cordy, James R. 90

de Lara, Juan 259
Derrien, Steven 400
Dingel, Juergen 90
Duchien, Laurence 4

Elaasar, Maged 49

Fritzsche, Mathias 416

Ge, Ning 352
Gerbig, Ralph 194
Gilani, Wasif 416
Gogolla, Martin 32, 384
Goldschmidt, Thomas 62
Gotlieb, Arnaud 226
Guerra, Esther 259
Guy, Clément 400

Hamann, Lars 384
Hegedüs, Ábel 102
Hofrichter, Oliver 384

Jézéquel, Jean-Marc 400

Kennel, Bastian 194
King, Steve 328

Kolovos, Dimitrios S. 118, 340, 428
Kuhlmann, Mirco 32

Labiche, Yvan 49, 74
Lauder, Marius 287
Liu, Yanhua 74
Lönn, Henrik 2

Mahnke, Wolfgang 62
Marshall, Alan 416
Matragkas, Nicholas 118, 340
Mens, Tom 146
Mosser, Sébastien 4
Motta, Alfredo 340

Nejati, Shiva 226

Paige, Richard F. 118, 328, 340, 428
Pantel, Marc 352
Pfeiffer, Rolf-Helge 178
Pinna Puissant, Jorge 146
Poulding, Simon 428

Qureshi, Tahir Naseer 303

Radjenovic, Alek 328, 340
Ráth, István 102
Regnat, Nikolaus 20
Rieke, Jan 210
Rose, Louis M. 118, 328, 428
Rossi, Matteo 340

Schürr, Andy 287, 368
Seidewitz, Ed 1
Selim, Gehan M.K. 90
Smith, Simon 428
Smolik, Petr 319
Steel, Jim R.H. 400
Stelzig, Philipp Emanuel 20
Sudmann, Oliver 210

Theisz, Zoltan 275
Törngren, Martin 303

446 Author Index

Van Der Straeten, Ragnhild 146
Varró, Dániel 102
Varró, Gergely 287, 368
Vitkovsky, Pavel 319
Votintseva, Anjelika 20

Wang, Shige 90
W ↪asowski, Andrzej 178

Williams, James 118
Winkler, Ulrich 416
Witschel, Petra 20
Woodcock, Jim 328

Yue, Tao 133, 226

Zhang, Gefei 162

	Title
	Preface
	Organization
	Table of Contents
	Executable UML: From Multi-domain to Multi-core
	Models Meeting Automotive Design Challenges
	A Commutative Model Composition Operator to Support Software Adaptation
	Introduction
	Motivations and Challenges
	An Action–Based Approach
	Using Actions to Support || and \bullet
	Sequential Composition: \bullet
	Parallel Composition: ||
	Impact on Model Consistency

	Implementation and Validation
	Implementation
	Validation

	Related Works
	Conclusions and Perspectives
	References

	Comparative Study of Model-Based and Multi-Domain System Engineering Approaches for Industrial Settings
	Introduction
	Application Areas and Proposed Development Processes
	Use Case eCar
	Use Case Artis Floorstand

	Implementation Details
	Use Case eCar
	Use Case Artis Floorstand

	Comparison of the Proposed Approaches
	Advantages and Disadvantages of both Approaches
	Challenges in Industrial Practice

	Conclusion and Outlook
	References

	Strengthening SAT-Based Validation of UML/OCL Models by Representing Collections as Relations
	Introduction
	Model Validation via SAT Solving: Context
	Transforming Collections and Strings into Relations
	The Basic Idea
	Realization of the Transformation Algorithms

	Discussion
	Related Work
	Conclusion
	References

	Model Interchange Testing: A Process and a Case Study
	Introduction
	Model Interchange Testing Process
	Improving Scalability of the Testing Process
	Case Study: Interchange of UML and SysML Models
	Case Study Setup
	Case Study Execution
	Case Study Results

	Discussion
	Related Works
	Conclusion and Future Work
	References

	An Internal Domain-Specific Language for Constructing OPC UA Queries and Event Filters
	Introduction
	OPC Unified Architecture
	Event Filter Creation
	Query Creation
	Queries and Event Filters Metamodel

	The Query/Event Filter DSL
	Event Filter
	Query
	Content Filter
	FilterOperator.RelatedTo

	Discussion
	Conclusions and Future Work
	References

	Combining UML Sequence and State Machine Diagrams for Data-Flow Based Integration Testing
	Introduction
	Related Work
	Message/Event/Action Control Flow Graph (MEACFG)
	From a UML Sequence Diagram to a Control Flow Graph
	Adding State Information

	Coupling-Based Testing of Class Interactions
	Case Study
	Conclusion
	References

	Model Transformations for Migrating Legacy Models: An Industrial Case Study
	Introduction
	VCS Development, Models and Model Transformations
	Source and Target Metamodels
	The GM Metamodel
	The AUTOSAR Metamodel

	GM-to-AUTOSAR Model Transformation
	Selecting Model Transformation Tool and Language
	ATL Pragmatics
	Model Transformation Design and Development
	The Transformation Implementation Using ATL

	Discussion
	Interoperability of MDD Tools
	Optimization in Model Transformations
	Dealing with Semantic Differences between Metamodels

	Conclusions and Future Work
	References

	Derived Features for EMF by Integrating Advanced Model Queries
	Introduction
	Derived Features in EMF
	Definition of Derived Features as Model Queries
	Model Queries by Graph Patterns: An Overview
	Derived Features as Model Queries

	From Incremental Query Evaluation to Notifications for Derived Features
	Incremental Evaluation of Queries
	Integration Architecture
	From Changes of Match Sets to Notifications

	Integration Issues with EMF Tooling
	Integration with Ecore
	Integration with Legacy Java Code for Derived Features

	Related Work
	Conclusion
	References

	A Lightweight Approach for Managing XML Documents with MDE Languages
	Introduction
	Background and Motivation
	Epsilon

	Managing XML Documents in Epsilon
	The Epsilon Model Connectivity Layer
	The Plain XML EMC Driver
	Alternative Design Choices

	Case Study
	Related Work
	Conclusions and Further Work
	References

	Bridging the Gap between Requirements and Aspect State Machines to Support Non-functional Testing: Industrial Case Studies
	Introduction
	Background
	Running Example
	RUCM
	AspectSM

	Approach
	Transformation
	Transition to State Machines for Automated Test Generation

	Industrial Case Studies
	Related Work
	Conclusion
	References

	Badger: A Regression Planner to Resolve Design Model Inconsistencies
	Introduction
	Model Inconsistency Resolution
	Automated Planning
	Badger
	Problem and Problem Domain
	The Algorithm
	Generated Plans

	Scalability Study
	Experimental Results

	Threats to Validity
	Related Work
	Conclusion
	References

	Aspect-Oriented Modeling of Mutual Exclusion in UML State Machines
	Introduction
	UML State Machines
	Syntax and Informal Semantics
	Mutual Exclusion in UML State Machines

	Modeling Mutual Exclusion with HiLA
	HiLA in a Nutshell
	Modeling Mutual Exclusion with HiLA

	Weaving
	Tracking Active States
	Weaving a Single Aspect
	Multiple Aspects

	Related Work
	Conclusions and Future Work
	References

	TexMo: A Multi-language Development Environment
	Introduction
	Taxonomy of Multi-language Development Environments
	Language Representation Types
	Relation Model Types
	Relation Types

	TexMo as an MLDE Prototype
	Evaluation
	Universal Language Representation
	User Test
	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

	On-the-Fly Emendation of Multi-level Models
	Introduction
	Multi-level Modeling
	Ontology Consistency Semantics
	Ontology Consistency
	Classification Correctness
	Generalization Correctness

	Suggested Emendation Service Architecture
	Case Study: Emendation of an Online Pet Store
	Adding New Pets and LikesChildren Attribute - Creating a Program Entity
	Changing the Potency of PetType, LikesChildren and Rating - Changing a Program Entity
	Deleting Rating and HairyCat - Deleting a Program Entity
	Moving LikesChildren - Moving a Member Variable

	Future Work
	Conclusions
	References

	Specifying Refinement Relations in Vertical Model Transformations
	Introduction
	Running Example
	Foundations of Triple Graph Grammars
	Triple Graph Grammar Rules
	Application Scenarios

	Defining Refinements
	Model Synchronization with Refinements
	Related Work
	Conclusion and Discussion
	References

	Model-Based Automated and Guided Configuration of Embedded Software Systems
	Introduction
	Configuration of ICSs: Practice and Problem Definition
	Overview of Our Approach
	Product-Line Modeling
	A Subsea Product-Line Model
	Configuration Activities in a Model-Based Context

	Interactive Model-Based Guided Configuration
	Guided and Automated Configuration
	Constraint Satisfaction to Provide Guidance and Automation

	Prototype Tool
	The clpfd Library of SICStus Prolog
	Mapping to clpfd

	Evaluation
	Inference Percentage
	Reduction of Valid Domains
	Constraint Propagation Efficiency
	Discussion

	Related Work
	Conclusion
	References

	Lightweight String Reasoning for OCL
	Introduction
	State of the Art
	Model Finding
	Model Finding as a CSP
	Formal String Reasoning

	Lightweight String Reasoning for OCL
	Considered OCL String Operations
	String Constraints
	Constraint Handling Rules
	First Rewriting Step: The Length Sub-problem
	Second Rewriting Step: Resolve String Constraints to Element Constraints
	Derivation Example

	Limits and Scalability
	Experimental Results
	General Discussion

	Conclusion
	References

	Domain-Specific Textual Meta-Modelling Languages for Model Driven Engineering
	Introduction
	Related Work
	Deep Meta-Modelling for Domain-Specific Meta-Modelling
	Customising the Meta-Modelling Facilities
	Designing the Concrete Textual Syntax
	Customising the Meta-Modelling Facilities at the Syntax Level
	Refining the Syntax of Domain-Specific Modelling Languages

	Model Management for DSMM Languages
	Discussion and Future Work
	References

	Metamodel Based Methodology for Dynamic Component Systems
	Introduction
	Networked Reconfigurable Dynamic Component System
	Development Process
	Modeling Assets
	Interaction Model
	Structural Model
	Behavior Model
	Deployment Model
	Validation and Verification Model

	Case Studies
	Evaluation
	Conclusion
	References

	Bidirectional Model Transformation with Precedence Triple Graph Grammars
	Introduction
	Fundamentals and Running Example
	Type Graphs, Typed Graphs and Triples
	Triple Graph Grammars and Rules
	Derived Operational Rules

	Related Work on TGG Control Algorithms
	Rule Dependency and Precedence Analysis for TGGs
	Rule Dependency Analysis
	Precedence Analysis

	Precedence TGG Batch Algorithm
	Related Work on Alternative Bidirectional Languages
	Conclusion and Future Work
	References

	A Timed Automata-Based Method to Analyze EAST-ADL Timing Constraint Specifications
	Introduction
	EAST-ADL and Timing Extension – Concept and Notations
	Timed Automata and UPPAAL
	UPPAAL

	EAST-ADL and Timed-Automata Relationship
	Mapping Scheme
	Verification
	Usage Considerations and Limitations
	Mapping Summary

	Brake-by-Wire Case Study
	Related Work
	Discussion
	References

	Code Generation Nirvana
	Introduction
	Model Executability
	Chicken or an Egg
	Integration Reincarnations
	Many Reincarnations
	Fewer and Fewer Reincarnations

	User Interface Reincarnations
	Conclusion
	References

	A Plug-in Based Approach for UML Model Simulation
	Introduction
	Context and Background
	The Plug-in Based Approach
	Extensions to the Behavioural Metamodel
	The Simulation Tool Plug-in Mechanism
	The SIML Plug-in
	The Simulation Tool Plug-in API
	Normal Operation, Control, and Exceptions

	Industrial Application and Assessment
	Related Work
	Conclusion
	Conclusion

	MADES: A Tool Chain for Automated Verification of UML Models of Embedded Systems
	Introduction
	Background
	Related Work
	Model Checking
	Model Transformation

	Approach/Framework
	Implementation
	Modelling
	Tool Chain
	Transformation

	Industrial Application and Assessment
	Conclusion
	References

	Verification of Time Property Pattern $\vert\mathnormal{T}$($\mathnormal{a}^{t}) - \mathnormal{T}(\mathnormal{b}^{t})\vert < \delta$
	Introduction
	Related Works
	Overview of UML-MARTE Verification Framework
	Case Study
	Transformation from UML-MARTE to TPN
	Principles
	Architecture Model Transformation
	Behaviour Model Transformation

	Translation and Verification of Time Property
	Translation of Coincidence Property
	Verification of Time Property Pattern |T(at) − T(bt)| < δ

	Verification Result and Performance Analysis
	Verification Result
	Verification Performance Analysis

	Conclusion and Further Works
	References

	Unification of Compiled and Interpreter-Based Pattern Matching Techniques
	Introduction
	Design Space of Pattern Matchers and Related Work
	Modelling Concepts and Data Structures
	Metamodels and Models
	Pattern Specification
	Pattern Matching and Runtime Data Structures

	Workflow of Compiled Pattern Matching
	Allowed Adornment Calculation
	Operation Loading
	Search Plan Generation
	Code Generation for a Compiled Pattern Matcher

	Workflow of Interpreter-Based Pattern Matching
	Measurement Results
	Conclusion
	References

	OCL-Based Runtime Monitoring of Applications with Protocol State Machines
	Introduction
	Monitoring
	Protocol State Machines in USE
	State Determination

	Case Study
	Related Work
	Conclusion
	References

	On Model Subtyping
	Introduction
	Illustrative Examples
	Background
	Model Driven Engineering
	Model Typing

	Model Subtyping Relations
	Isomorphic Model Subtyping
	Non-isomorphic Model Subtyping
	Total Model Subtyping
	Partial Model Subtyping
	Definition of Subtyping Relations for Model Types

	Putting Subtyping Relations to Work
	Declaration of Subtyping Relations
	Checking of Subtyping Relations

	Discussions
	Isomorphic vs. Non-isomorphic Subtyping Relations
	Total vs. Partial Subtyping Relations
	Declaration of Subtyping Relations
	Checking of Subtyping Relations
	Legacy Tools Reuse

	Conclusion and Perspective
	References

	BOB the Builder: A Fast and Friendly Model-to-PetriNet Transformer
	Introduction
	BOB Transformations at a Glance
	BEAM Behaviour Analysis Model
	BOB - The BEAM Orchestration and Builder Framework
	BOB Library Project and BEAM Packages
	BEAM Module Compiler and Synchroniser
	Classes and Interfaces
	References
	Containment References
	Inheritance
	Module Interfaces and Module Re-use
	Tracing
	Module Unit Tests and Transformation Verification

	Related Work
	Conclusion and Future Work
	References

	Solving Acquisition Problems Using Model-Driven Engineering
	Introduction
	Background and Related Work
	Multi-objective Optimisation Problems
	The Next Release Problem
	The Multi-objective NRP
	MDE and Model Management

	Modelling Approach
	Concept and DSLs
	Calculating Solutions to the Acquisition Problem

	Application to the Next Release Problem
	Stock Control System Example
	Scenario Model
	Component Models
	Scalability Example
	Contributions to the Next Release Problem

	Conclusions and Further Work
	References

	Author Index

