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Abstract. Fault diagnosis in machines that work under a wide range of speeds
and loads is currently an active area of research. Wind turbines are one of the
most recent examples of these machines in industry. Conventional vibration anal-
ysis applied to machines throughout their operation is of limited utility when the
speed variation is too high. This work proposes an alternative methodology for
fault diagnosis in machines: the combination of angular resampling techniques
for vibration signal processing and the use of data mining techniques for the clas-
sification of the operational state of wind turbines. The methodology has been
validated over a test-bed with a large variation of speeds and loads which simu-
lates, on a smaller scale, the real conditions of wind turbines. Over this test-bed
two of the most common typologies of faults in wind turbines have been gen-
erated: imbalance and misalignment. Several data mining techniques have been
used to analyze the dataset obtained by order analysis, having previously pro-
cessed signals with angular resampling technique. Specifically, the methods used
are ensemble classifiers built with Bagging, Adaboost, Geneneral Boosting Pro-
Jection and Rotation Forest; the best results having been achieved with Adaboost
using C4.5 decision trees as base classifiers.

Keywords: fault diagnosis, wind turbines, ensemble classifiers, angular
resampling.

1 Introduction

Vibration analysis has been studied and applied to rotating machinery for decades. It
is widely accepted as one of the main fault diagnosis techniques in machine mainte-
nance [[L1]. As the signal analysis technology has advanced and new sensors have been
developed, fault diagnosis and maintenance of machines working under more severe
conditions have become a new target area for experts. Examples of machines that work
under variable conditions of load and speed are wind turbines, excavators and heli-
copters [2]]; [4]; [S]; [3]. Gear transmission plays a crucial role in the reliability of these
machines.

One of the first research in the field of transmission damage diagnosis focused on
vibration signals analysis [6]. At first, the statistical features of the signal in the time
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domain were the main element of study [18]]. However, the field quickly spread to in-
clude spectral analysis, time-frequency analysis and, finally, models based on artificial
intelligence. All of these approaches are still valid and current. As new techniques of
signal processing arise, they are applied to the problem of damage detection in chain
drives and should be adapted to the needs and specific characteristics of each mechani-
cal system.

The main purpose of this work is to study fault diagnosis in wind turbines. To do so,
the test-bed shown in Figure 1 is used to approximate real conditions and the typical
faults of a real wind turbine.

Many studies have applied several signal analysis methods that are suited to con-
ditions of fluctuating loads. Among these, we may quote works by Stander, Heyns,
Zhan and Barlelmus [21]]; [24]; [3]. However, no studies have yet been completed on
such wide working ranges as those of a wind turbine, in terms of real wind regimes
that therefore have a very wide range of speed and load operating conditions. The de-
velopment of intelligent devices, both for monitoring and for diagnosis of this type of
industrial equipment that operates under highly variable loads and speeds is, therefore,
a highly topical field of research. Vibration monitoring systems require signal process-
ing procedures to compensate for fluctuations in axis speeds and amplitude modulation,
due to the variable wind-resistance loads [20]]; [19].

Although exhaustive research into the analysis of the signals obtained from several
types of sensors and particularly accelerometers has been completed to date, the stan-
dard technique used for fault diagnosis is the identification of critical variables by an
expert and the development of a regression model that forecasts the failure [24]. The
aim of this work is to develop an alternative classification system with greater reliability
using ensemble classifiers.

There are several works in which ensemble classifiers have been used for fault detec-
tion. In Hu [12] Adaboost is used to combine Support Vector Machines (a type of base
classifier) for fault diagnosis in rotating machinery. This method is also used in Donat
[8] for the fault detection of engines in gas turbines. In Alonso [1] , failure identifi-
cation in continuous processes is managed by an ensemble classifier building method
-Stacking- that combines nearest-neighbours base classifiers (k-Neighbours Classifier,
kNN). Furthermore, Adaboost and Bagging of neural networks in El-Gamal [9] are used
for fault diagnosis in analogue circuits.

2 Description of the Test-Bed and Measurement Procedure

The experiments conducted on the test-bed are meant to simulate the behaviour of wind
turbines. This test-bed is used to simulate different defects under variable loads and
speeds. The right side of the test-bed (Figure 1) is composed of an engine, a parallel
gearbox and a planetary gearbox. Both gearboxes resemble a commercial wind turbine
in terms of their configuration and gear ratios (1:61).

To simulate the variable load in the drive train of a wind turbine, due to randomness
of the wind, an electric brake has been added to the right side of the bench.

For the measurement of vibration signals four accelerometers distributed in the axial
and radial position in the gearboxes situated on the right side of the test-bed were used.
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Fig. 1. Test-Bed

Preliminary processing of the vibration signals need to be performed, due to the
speed and load variations caused by the operating conditions of wind turbines, in order
to extract the information on its spectral analysis. The technique of angular sampling, a
methodology that may be found in [22]], appears suitable to solve this problem.

The faults simulated on the test-bed were imbalance and misalignment, starting with
small values and increasing at each measurement to simulate a progressive fault (Table
1). This table illustrates the value of the weight in grams and its equivalent in percent-
ages with regard to the total of the weight of the rotor of the bench, and the thickness
used for producing the misalignment, as well as the resulting value.

Table 1. Types of faults and magnitudes induced in the test-bed

Imbalance Misalignment
g % mm °
Imbalance A 5.79 0.077 Misalignment A 0.75 1.53
Imbalance B 9.13 0.12 Misalignment B 0.75 1.53
Imbalance C 19.5 0.26
Imbalance D 28.8 0.38

To guarantee the speed and load conditions, several profiles were generated to cover
a wide range of speeds from 1000 to 1800 rpm at random, and from O to 100 % of the
load. An example of this profile is shown below in the Figure 2.

These profiles were generated to cover a whole day of measurement (24 hours),
with constant 100 second intervals of speed and load. The speed measurements were
generated from 1000 rpm, which is the approximate speed at which a wind turbine
begins to produce energy. Data acquisition was taken at intervals of 72 seconds from
each of the four accelerometers with a sampling frequency of 25600 Hz. The speed
signal was captured at 6400 Hz.

The set of tests done are reported in [23]].
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Fig. 2. Speed and load profile

3 Variables Analyzed

As explained in the previous section, several working faults in the turbine are analyzed.
For that reason, a discrete output variable was defined, referred to as the fault type, and
several input variables.

The type of fault matches the two previously explained ones; misalignment and im-
balance, for which there are three possible numerical values in the first case (0, 0.75
and 2) and five in the second one (0, 5.79, 9.13, 19.5 and 28.8). We will refer to these
degrees of misalignment as DA1, DA2 and DA3, and to imbalance as DB1, DB2, DB3
DB4, DB5.

There are therefore fifteen possible values for each type of faults, shown below in
Table 2:

Table 2. Fault Classes

DB1 DB2 DB3 DB4 DBS
DA1 0 (CO) 1(C1)2(C2)3(C3) 4 (C4)
DA2 5(C5) 6 7 8 9
DA310(C6) 11 12 13 14(C7)

In the previous table, class O matches the case in which there is no fault (no mis-
alignment nor imbalance), and the 14 remaining classes match several types of faults
that could theoretically occur, but in the experimental trials only 8 classes took place.
These fault classes will be referred to as CO, C1, C2, C3, C4, C5, C6 and C7.

The variables in this problem are, on the one hand, 3 magnitudes which describe the
operational state of the machine in the terms of torque, speed and electric input current
and, on the other, several magnitudes measured with 5 sensors, 1 current sensor and
4 accelerometers, 2 by each of the two gearboxes, distributed along two perpendicular
axis.

The current sensor provides 4 measurements of electric current, and the accelerom-
eters provide the data for a vibration analysis along the axis, by using three aspects
of the vibration spectrum. On the one hand, 5 measurements which summarize their
distribution (average, RMS, skewness, kurtosis and interquartile range); on the other,
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Table 3. Input variables

Operation State

Variable Number of measurments Units
Torque 1 % of maximum torque
Speed 1 Hz
Input current 1 Amperes
Current Sensors
Variable Number of measurments Units
Electrical current in the axis 4 Amperes
Vibration analysis
Variable Number of measurments Units
Harmonics 272 mm/s?
Bands 245 mm/s?
Average 4 mm/s?
RMS 4 mm/s?
Skewness 4 dimensionless
Kurtosis 4 dimensionless
Interquartile Range 4 mm/s?

a harmonic analysis (natural frequency of system vibrations and multiples thereof, 80
measurements in total); and finally, dividing the vibration spectrum into bands of fixed
position (unrelated to the natural frequency of the system), with another 77 measure-
ments. Each accelerometer provides a total of 162 measurements, although the total
number of considered variables in the vibration analysis is 537, as some measurements
with redundant information have been removed.

The final number of variables for the problem is 544, adding to the 537 from the
vibration analysis, the measurements from the current sensor, the torque, the speed and
the electric current. In the next table, a summary of the previously explained variables
is completed, although it is possible to search for a more detailed information in [23]].

During the day of the experimentation, 6551 different conditions in the considered
variables were registered. The data set under study therefore has a size of 6551 instances
with 544 attributes, such that it can be considered a high dimensional problem.

The distribution of the instances among the classes is as shown in Table 4:

Table 4. Distribution of the instances among the classes

CO0 887 (13.54 %)
C1 847 (12.93 %)
C2 856 (13.07 %)
C3 838 (12.79 %)
C4 864 (13.19 %)
CS5 872 (13.31 %)
C6 835 (12.75 %)
C7 552 (8.43 %)
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4 Fault Analysis by Ensemble Classifiers

Forecasting several faults that may occur in turbine operation is included in data mining
classification problems. In this article, the use of techniques to combine several indi-
vidual classifiers is proposed, to obtain an ensemble classifier. These techniques have
developed over the last decade and their output has been proven in several situations.

An ensemble classifier is a classification technique by which the forecasted class is
obtained from the individual forecasts of a series of base classifiers. There are several
ways of combining the various forecasts, the most usual one is to select the most voted
class. The global accuracy of the ensemble classifier depends on the diversity of the
classifiers and their individual accuracy, as an ensemble classifier should be capable
outperforming any individual classifier [7]; [14]].

There are several ways of forcing diversity between base classifiers [[13]; [17], having
taken four of these techniques in this study, Bagging and Adaboost on the one hand,
are the most commonly used, and Rotation Forest and General Boosting Projection
(GBPC) on the other, which are more novel techniques that have been shown to be very
competitive [[16]; [LO].

The algorithm Rotation Forest algorithm is based on Principal Component Analysis
(PCA) extraction procedures that achieve better accuracy in the ensemble classifier, by
acting at the same time on the individual accuracy of each base classifier and on its
diversity [L6]. Thus, a random division of the data is made, in groups of attributes (3 in
this work), and subsequently a PCA analysis is completed over part of the samples of
each group, also random, storing the projection matrix that is used and combined later
on to project all the samples of each group.

The GBPC (General Boosting Projection) is based on the use of supervised pro-
jections to improve global accuracy, due to the individual improvement of each base
classifier as well as its diversity [[LO]. It is an iterative process in which the first base
classifier receives the data set without any modification followed by a projection over
the misclassified instances by the previous classifier. By doing so, we seek to obtain
better results in the next classifier, in cases where the previous classifiers failed. The
Non-parametric Discriminant Analysis (NDA) version proposed by [15] was used as
the supervised projection method.

5 Results

Three methodologies for the classification were tested: C4.5 decision trees, k-Nearest
Neighbour (kNN) and Naive Bayes. These three base techniques were chosen as they
are the three most commonly used in data mining.

These methods have been tested individually as well as with ensemble classifiers
using the techniques of Bagging, Adaboost, GBPC and Rotation Forest, taking in all
cases 100 base classifiers, and performing a 52 cross validation (all the methods are
compared using the same sets for training and testing).
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Two ways to measure the accuracy of each classifier have been taken:

— Success rate in a 5x2 cross validation, indicating the standard deviation of the
iterations.

— Confusion matrix, in which the class forecasted by the classifier is compared against
the class of the instance to which actually belongs.

5.1 Success Rate

The following table illustrates the success rate of both the individual and the different
ensemble classifiers, which includes the standard deviation with regard to the 5 repeti-
tions of the cross validation between parentheses.

In all cases, we can see that decision trees are more suitable as base classifiers, how-
ever we should highlight the notable increase of the GBPC with regard to the efficiency
of the classification with the kNN as base classifier.

Table 5. Average success and standard deviation for the different classifiers

C4.5 trees kNN  Naive Bayes

Classifier individually 92.60 (0.51) 66.12 (0.44) 70.29 (2.68)
Bagging 95.33 (0.23) 66.01 (0.41) 70.73 (1.59)
Adaboost 96.24 (0.12) 67.57 (0.59) 78.96 (0.71)
GBPC (NDA) 90.70 (5.61) 87.45 (1.26) 70.29 (2.68)
Rotation forest 95.84 (0.14) 66.19 (0.54) 71.92 (2.25)

The low performance of the kNN classifier could be caused by the well-known
problem of the "curse of dimensionality" (analyzing high-dimensional spaces). In the
following sections we compare the two methods in which better results are reached,
Adaboost with decision trees versus Rotation Forest with decision trees.

5.2 Confusion Matrix

The next step is to compare the results of Adaboost and Rotation Forest with 100 C4.5
trees as base classifiers, by using the average confusion matrix of the 5x2 ccross val-
idation (the confusion matrix average of those provided by each of the 10 classifiers
obtained in the cross validation has been calculated, and the values have been rescaled
with regard to the total).

Regarding to the operation control, the most critical cases are those registered in the
first column in both tables, as they match with those in which the ensemble classifier
estimates that there are not a fault operation. By analyzing the data of this column, we
can see that the undetected percentage of errors is 0.23 % in the case of Adaboost, and
0.68 % in the case of Rotation Forest.

Using the ¢ test to compare the ensemble classifiers Adaboost and Rotation forest
with a level of significance of 1 %, we may conclude from the statistical evidence that
the first algorithm outperforms the second one with regard to the way it models the data.
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Table 6. Confusion matrix for Adaboost (top) / Rotation Forest (bottom) of C4.5 trees

CO C1 C2 C3 C4 Cs5 Co6 C7
C0 13.40 0.00 0.14 0.00 0.00 0.00 0.00 0.00
C1 0.00 11.53 0.03 1.18 0.19 0.00 0.00 0.00
C2 0.01 0.00 12.87 0.19 0.00 0.00 0.00 0.00
C3 0.02 0.56 0.27 11.23 0.71 0.00 0.00 0.00
C4 0.01 0.04 0.00 0.41 12.73 0.00 0.00 0.00
C5 0.00 0.00 0.00 0.00 0.00 13.31 0.00 0.00
C6 0.00 0.00 0.00 0.00 0.00 0.00 12.750.00
C7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.42

CO C1 C2 C3 C4 C5 C6 C7
C0 13.39 0.00 0.15 0.00 0.00 0.00 0.00 0.00
C1 0.00 11.80 0.03 0.90 0.20 0.00 0.00 0.00
C2 0.03 0.00 12.88 0.15 0.00 0.00 0.00 0.00
C3 0.02 0.78 0.48 10.72 0.79 0.00 0.00 0.00
C4 0.04 0.09 0.02 0.46 12.58 0.00 0.00 0.00
C5 0.00 0.00 0.00 0.00 0.00 13.31 0.00 0.00
C6 0.00 0.00 0.00 0.00 0.00 0.02 12.73 0.00
C7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.43

6 Conclusions

This study has proposed a fault diagnosis system for machines with high variation in the
speed and load conditions, such as wind turbines. These devices have undergone signif-
icant growth over the last five years and require immediate industrial solutions to their
tele-maintenance problems. The failure diagnosis system explained in this work con-
sists of several measurement sensors, especially accelerometers, signal analysis equip-
ment based on resampling angular techniques to process the data from these sensors,
and a module that implements different data mining techniques for the classification
of the operational state of wind turbines. Several methods of combining base classi-
fiers have been applied to identify seven different levels of two typical faults in wind
turbines: misalignment and imbalance. Adaboost using J48 decision trees as base clas-
sifiers achieved high accuracy (correct forecasts in 96.24 % of cases) when analyzing a
wide real dataset measured on a test-bed that simulate real conditions of wind turbines
operation (65551 instances with 544 attributes). Future research will be focused in the
improvement of the industrial application through the testing of the proposed fault di-
agnosis system on a more extensive dataset that includes more fault cases and has been
recorded under real industrial conditions, because the analysed dataset reflects a limited
number cases of two fault types (misalignment and imbalance).
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