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Abstract. Due to its important applications in data mining, many techniques
have been developed for outlier detection. In this paper, an efficient three-phase
outlier detection technique. First, we modify the famous k-means algorithm for
an efficient construction of a spanning tree which is very close to a minimum
spanning tree of the data set. Second, the longest edges in the obtained spanning
tree are removed to form clusters. Based on the intuition that the data points in
small clusters may be most likely all outliers, they are selected and regarded as
outlier candidates. Finally, density-based outlying factors, LOF, are calculated
for potential outlier candidates and accessed to pinpoint the local outliers. Ex-
tensive experiments on real and synthetic data sets show that the proposed ap-
proach can efficiently identify global as well as local outliers for large-scale
datasets with respect to the state-of-the-art methods.

Keywords: distance-based outlier detection, density-based outlier detection,
clustering-based outlier detection, minimum spanning tree-based clustering.

1 Introduction

Human species cannot survive without the ability to discover anomalous patterns in
observed data that do not conform to the expected normal behavior. In statistics, the
anomalous patterns are often referred to as outliers. In a classic definition, “an outlier
is an observation that deviates so much from other observations that it aroused suspi-
cions that it is generated by a different mechanism” [1]. Due to its important applica-
tions, outlier detection has found immense use in a wide variety of practical domains,
such as intrusion detection for cyber-security [2,3], fraud detection for credit cards,
insurance and tax [4], early detection of disease outbreaks in the medical field [5],
fault detection in sensor networks for monitoring health, traffic, machine status,
weather, pollution, surveillance [6], and so on [7,8].

As a result, the task of finding outliers in a data set has long been an area of active
research, and different outlier detection techniques, such as distribution-based, depth-
based, distance-based, density-based and clustering-based approaches, have been
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developed and no techniques are completely satisfactory for all the situations. Origi-
nating from statistics, distribution-based methods study the outlier detection problem
in the context of a given distributional model [9,10,11], which is usually not known a
priori for modern large databases. As a result, they have limited usefulness. Stemming
from Computational Geometry, depth-based methods organize the observations into
layers through the computation of k-dimensional convex hulls, believing that the shal-
low layers are more likely to contain outliers than deep ones. But these methods are
very computationally expensive for more than a few dimensions [12]. Distance-based
methods and density-based methods actually address the detection problems of two
different notions of outliers: more globally-oriented outliers (the former) and more
locally-oriented outliers (the latter), and that clustering-based approaches obtain out-
liers as the by-products of clustering, that is, outliers are the data items that reside in
the smallest clusters. Other types of outlier detection algorithms have also been de-
veloped to look into the problem from different aspects [13,14,15]. However, they are
beyond the scope of this study and will not be discussed further here.

In this paper, we propose an in-memory fast outlier detection method which inte-
grates an efficient minimum spanning tree (MST) based clustering algorithm [16]
with outlier concepts [10] for modern large high-dimensional datasets. Basically, our
CPU efficient MST-inspired outlier detection algorithm has three phases. In the first
phase, a spanning tree very close to an MST is constructed. In the second phase, the
longest edges in the spanning tree are identified and removed to form clusters as the
standard MST-based clustering algorithms do, and the data points in those small clus-
ters are selected as outlier candidates. In the third phase, the algorithm assigns an
LOF to a small number of outlier candidates discovered in the second phase so as to
utilize the density-based outlier detection technique to selectively mine the local out-
liers. Our contributions include:

e Extensive experimental evaluation on both synthetic and real datasets demonstrates
the meaningfulness of our approach as a very efficient way for the detection of
global and local outliers.

e The proposed method combines the advantages of distanced-based, density-based
and clustering-based outlier detection techniques to give a better intuition to view
such techniques.

e Compared to the state-of-art distance-based algorithms which need some parame-
ters to be provided by the user, the proposed outlier detection methods overcomes
this limitation, thus proving to be an effective solution in real applications where a
completely unsupervised method is desirable.

e As far as local outliers are concerned, LOF is computationally expensive. Howev-
er, our algorithm checks distance ranking and only calculates LOF when distances
are distributed evenly, that is, when there is not very much density differences. By
this way, only a relatively small computation is sufficient for preserving the good
quality of the detection results.

The rest of the paper is organized as follows. In Section 2, we review some existing
work on distance-based, density-based and clustering-based outlier detection



A Minimum Spanning Tree-Inspired Clustering-Based Outlier Detection Technique 211

algorithms. We next present our proposed approach in Section 3. In Section 4, an
empirical study is conducted to evaluate the performance of our algorithm with re-
spect to some state-of-the-art outlier detection algorithms. Finally, conclusions are
made and future work is indicated in Section 5.

2 Related Work

There are three parts of the unsupervised outlier detection literature that are related to
our study: distance-based outlier detection, density-based outlier detection and clus-
tering-based outlier detection.

2.1 Distance-Based Outlier Detection

Proposed by Knorr and Ng, distance-based outlier detection methods provide a good
way to detect outliers residing in relatively sparse regions. Given a distance measure
on a feature space, the notion of outliers studied by Knorr and Ng is defined as: “An
object O in a dataset T is a distance-based outlier, denoted by DB(p, D)-outlier, if at
least a fraction p of the objects in T lies greater than distance D from O, where the
term DB(p, D)-outlier is a shorthand notation for a Distance-Based outlier (detected
using parameters p and D)” [11]. Beginning with this work, various versions of dis-
tance-based outlier definition have been developed. Three popular ones are:

1. Given a real number d and an integer p, a data item is an outlier if there are fewer
than p other data items within distance d [11,12].

2. Given two integers, n and k, outliers are the data items whose distance to their k-th
nearest neighbor is among top n largest ones [17].

3. Given two integers, n and k, outliers are the data items whose average distance to
their k nearest neighbors is among top n largest ones [18,19].

The first definition does not give a ranking but requires the specification of a distance
parameter d, which may involve trial and error to guess an appropriate value [17].
Eliminating this requirement, the second definition only considers the distance to the
k-th nearest neighbor and ignores information about closer points. The last definition
accounts for the distances to k nearest neighbors and, thus, is slower to calculate than
the first two.

In [11], three approaches were proposed for DB(p, D)-outliers: a O(dN”) block-
oriented nested loop algorithm, a O(NlogN) index-based algorithm for low dimen-
sions [10] and cell-based algorithm (with a time complexity increasing exponentially
with the dimensionality). However, these algorithms can be used to detect outliers
efficiently only for low dimensional data sets. Theoretically, if a (reasonably tight)
cutoff threshold can be determined efficiently, for most normal data, a partial search
through the database is enough to determine it is not an outlier. Only for data objects
that are potential outlier candidates can a full scan through the database be necessary.
Based on this idea, distance-based outlier detection algorithms proposed thereafter
(ORCA method [20], RBRP method [21], DHCA-based methods [22,23]) have been
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focusing on determining the cutoff threshold efficiently and reducing the partial
search sufficiently, by randomizing data and/or using some data structures.

2.2 Density-Based Outlier Detection

Distance-based outlier detection techniques work well for detecting global outliers in
simply-structured data sets that contain one or more clusters with similar density.
However, for many real world data sets which have complex structures in the sense
that different portions of a database can exhibit very different characteristics, they
might not be able to find all interesting outliers. A classic two-dimensional illustration
to show this deficiency is shown in Fig. 1.
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Fig. 1. Two clusters with different densities

This data set contains a dense cluster, C;, a sparse cluster, C,, and three outstand-
ing objects. Obviously, the two well separated objects ol and o2 are outliers no matter
whether we look from a global or local point of view. However, according to any
distance-based outlier definitions, object 03 can not be detected as an outlier, without
all the objects in cluster C, being detected as outliers, though, from a more local point
of view, it should be detected as an outlier. To deal with this situation, Breunig et al.
pioneered the density-based outlier detection research by assigning to each object a
degree of being an outlier, called the Local Outlier Factor (LOF), for judging the out-
lyingness of every object in the data set based on ratios between the local density
around an object and the local density around its neighboring objects [10].

The LOF method works by first calculating the LOF for each object in the data set.
Next, all the objects are ranked according to their LOF values. Finally, objects with
top-n largest LOF values are marked as outliers. Calculating an exact LOF for each
data object can be computationally expensive. To solve this problem, Jin et al. pro-
posed to use the concept of micro-clusters to efficiently mine top-n LOF-based out-
liers in large databases [24]. As a further extension, the algorithm presented in [25]
uses the reverse nearest neighbors additionally and considers a symmetric relationship
between both values as a measure of outlyingness. Several other extensions and re-
finements have been proposed, including a Connectivity-based Outlier Factor (COF)
[26], Local Outlier Integral (LOCI) [9], and a Spatial Local Outlier Measure (SLOM)
[27]. The main difference between LOF and LOCI is that the former uses k nearest
neighbors while the latter uses g-neighborhoods.



A Minimum Spanning Tree-Inspired Clustering-Based Outlier Detection Technique 213

2.3  Clustering-Based Outlier Detection

A problem associated with distance-based as well as density based outlier detection
algorithms is their strong sensitiveness to the setting of some parameters. This can be
illustrated by a 2-dimensional data set shown in Fig. 2. For distance-based outlier
detection techniques, if k = 6 nearest neighbors are considered, all the points in cluster
C3 will not be detected as outliers, while if k = 7, all the data points in cluster C3 are
regarded as outliers. Similar problems exist for density-based outlier detection tech-
niques. The situation could be worse for the detection of outliers in high-dimensional
feature space since data points cannot be visualized there.

Fig. 2. Sample clusters in a 2-D data set

This is where clustering algorithms can be of some help. Being a very important
data mining tool, the main concern of clustering algorithms is to find clusters by op-
timizing some criterion, such as minimizing the intra-cluster distance and maximizing
the inter-cluster distance. As a by-product, data items in small groups can often be
regarded as outliers (noise) that should be removed to make clustering more reliable.
Classic clustering algorithms, such as k-means algorithm or PAM, rely on grouping
the data points around some “centers” and do not work well when the boundaries of
the clusters are irregular. As an alternate, graph theory based methods, typified by the
MST-based clustering algorithms, can find clusters with irregular boundaries.

A minimum spanning tree is a connected weighted graph with no closed paths that
contains every point in the data set and has the minimal total weight. If a weight de-
noting a distance between two end points is assigned to each edge, any edge in an
MST will be the shortest distance between two subtrees that are connected by that
edge. This fact is referred to as the cut property of MSTs. Therefore, removing the
longest edges corresponds to choosing the breaks to form clusters. Based on this find-
ing and initially proposed by Zahn [28], MST-based clustering algorithms have so far
been extensively studied [17]. Regarding data points in smallest clusters formed by
cutting the longest edges in an MST may likely be outliers, several MST-based outlier
detection techniques have been proposed [29,30,31]. But these MST-based clustering
algorithms are very computationally expensive (from O(NlogN) to O(N?)).

Recently, an MST-based clustering algorithm with a near linear performance has
been developed [16], and can be modified to suit for our purpose. Basically, their
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CPU efficient MST-based clustering algorithm has three phases. First, a simple span-
ning tree is constructed. Secondly, in order to quickly identify the longest edges, a
modification of the classic K-means algorithm, called divisive hierarchical clustering
algorithm (DHCA), is used to generate a spanning tree very close to a true minimum
spanning tree. Finally, the cut and the cycle property of the minimum spanning trees
are used to perform the clustering. The main advantage of the algorithm is its compu-
tation efficiency.

For a given data set, DHCA starts with K randomly selected centers, and assigns
each point to its closest center, creating K partitions. Then, for each of these K parti-
tions, it recursively selects K random centers and continues the clustering process
within each partition to form at most K" partitions for the nth stage. In our implemen-
tation, the procedure continues until the number of elements in a partition is below K
+ 2, at which time, the distance of each data item to other data items in that partition
can be updated with a smaller value via a brute-force nearest neighbor search. Such a
strategy ensures that points that are close to each other in space are likely to be collo-
cated in the same partition. A detailed demonstration and proof of the effectiveness of
DHCA on k-nearest neighbors search has been given in [16].

3 An Improved MST-Based Outlier Detection Algorithm

According to the cut property, MST-based clustering algorithms can be very useful in
detecting small clusters that can be selected and regarded as outliers. For example,
after removing the first three longest edges of an MST constructed for the data set
shown in Fig. 1, four clusters result and global outliers such as ol and 02 can be im-
mediately recognized as small clusters. Even for local outlier 03, after clustering, it
can be detected as a global outlier from the viewpoint of cluster C1. However, most
MST-based clustering algorithms require a complete MST be constructed in the first
step. For modern databases typically consisting of millions of high dimensional data
items, this can be very computationally expensive. Motivated by the approach pre-
sented in [17], in this section, we describe a new scheme to facilitate efficient MST-
based outlier detection for modern large databases, which is based on the observation
that, for some MST-based clustering approaches, if we can find the longest edges in
an MST very quickly, there is no need to compute the exact distance values associated
with the shortest ones. Therefore, for cases where the number of the longest edges
that separate the clusters (including the noisy ones) can be much fewer than the num-
ber of the shorter ones (e.g., several dense clusters and a small number of outlier
groups), MST-based outlier detection can be more efficient if the longest edges can be
identified quickly before most of the shorter ones are found, which allows us to re-
duce the number of distance computations to a value smaller than O(N?).

3.1 A Simple Idea

Based on the spanning tree (which is very close to a true MST) constructed following
the first two stages of the approach presented in [16] (i.e., sequential initialization and
DHCA updates), we then search for the edge that has the largest value, called the
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potential longest edge candidate, and cut it to form two partitions. If the number of
data items in one partition is no more than p, we check whether there exists another
edge with a smaller weight crossing the two partitions connected now by this potential
longest edge candidate. This can be done by no more than p(N-p) number of distance
computations. If the result shows that there exists no such edge, we declare these data
items to be outliers. Otherwise, we record the update (i.e., replace the potential long-
est edge candidate with the edge of a smaller weight crossing the two partitions) and
start another search for the longest edge candidate in the MST. The point is that the
current potential longest edge candidate is the longest edge in the tree so far that con-
nects the only partition with no more than p data items to one of the partitions with
more than p data items and provides an upper bound to the distance between the two
partitions now connected by it. Since the number of outliers is expected to be relative-
ly small, the number of distance computations consumed is expected to be relatively
small as well The working idea behind our efficient MST-based outlier detection
algorithm is that some of the longest edges do not correspond to any cluster separa-
tions or breaks but are associated with the outliers.

3.2  Detecting Local Outliers

As mentioned previously, data sets under consideration may have complex structures
in the sense that different portions of a database can exhibit very different density
characteristics. For these cases, the measure of outlyingness only on simple distances
between data points is not sufficient. As a further improvement, we take a step further
by calculating LOF for each outlier candidate until the desired number of outliers are
discovered. The LOF computation for every data point can be expensive. Fortunately,
many indexing structures proposed in recent years for higher dimensional feature
space can be utilized [32]. We are particularly interested in one called iDistance [39],
which consists of three steps. First, the data are clustered into a set of partitions.
Second, a reference point is identified for each partition. Finally, all data points are
represented into a single dimensional space by indexing them based on the distance
from the nearest reference point. In our approach, we choose the origin as the refer-
ence point. When the database is read in, the distance of each data item to the refer-
ence point is calculated. Next, the data items are sorted according to their distances.
To be used as a search structure, given a data point, the search starts from its position
in the sorted distances and proceeds bi-directionally along the radius axis until the "
nearest neighbor is found. Thus, the use of the search structure can reduce the O(N)
time full search to a faster partial search. It is easy to see that the search structure can
be constructed by any one dimensional sorting algorithm.

3.3  Our MST-Clustering Based Outlier Detection Algorithm

Our MST-based outlier detection algorithm can be summarized in the following:

1. initialize a spanning tree sequentially, that is, each data item can be assigned the
distance between itself and its immediate predecessor.
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4. refine the spanning tree by running DHCA multiple times until the percentage dif-
ference between two consecutive tree weights is below a threshold, say 0.001.

5. identify the potential longest edge candidate and remove it to form new clusters in
a recursive fashion until the number of data items in the smallest cluster is below a
predefined size of the largest outlier cluster (denoted by p here).

6. for each data item in the smallest cluster, calculate its distance to every other data
item that is not in its cluster, which is N-p number of distance computations.

7. if no edges with a smaller weight crossing the smallest cluster to the rest of data set
exist, we declare these data items to be outlier candidates, otherwise we update
each data point to its nearest neighbor in the rest of data set.

8. calculate a LOF for each outlier candidates and rank the LOF scores.

9. if a required number of outliers are found, stop, otherwise, start another round of
search, i.e., goto 3

To summarize, the numerical parameters the algorithm needs from the user include
the data set, the loosely estimated numbers of outliers, the input K to DHCA, and the
number of nearest neighbors, k, for LOF calculation, while the outputs will be the
ranked outliers. From the algorithm description, we expect the time spent on the first
phase (including the sequential initialization and the DHCA updates) to scale as
O(fNlogN), where f denotes the number of DHCAs constructed. The second phase
partitions the obtained approximate minimum spanning tree to locate the potential
outliers. Since the number of desired outliers is much smaller than the data set size N,
we expect the second phase to scale as O(Ne), where e denotes the number of data
points checked. We expect the third phase to scale as O(ek*logN) , where k denotes
the number of nearest neighbors predefined to calculate LOF. Therefore, the average
time complexity of our algorithm is O(fNlogN + Ne + ek’logN), though the worst case
could still be O(N?).

4 A Performance Study

In this section, we present the results of an experimental study performed to evaluate
our MST-clustering based outlier detection algorithm. First, we select four 2-
dimensional outlier detection problems and compare the performance of our proposed
algorithm to that of the MST-based clustering method, the ORCA method and the
LOF method. For this comparison, we would like to show that our MST-inspired
clustering-based algorithm can outperform the classic outlier detection algorithms in
both the execution time and the classification accuracy. We also study the behavior of
the proposed algorithm with various parameters and under different workloads. Final-
ly, we evaluate our algorithm on several real higher dimensional large data sets with
no assumptions made on the data distribution and compare it with three state-of-the-
art outlier detection algorithms to check the technical soundness of this study. All the
data sets are briefly summarized in Table 1.

We implemented all the algorithms in C++ and performed all the experiments on a
computer with Intel Core 2 Duo Processor E6550 2.33GHz CPU and 2GB RAM. The
operating system running on this computer is Ubuntu Linux. We use the timer utilities
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defined in the C standard library to report the CPU time. In our evaluation, we use the
total execution time in seconds and the accuracy of the detected outliers as the per-
formance metric. Each result we show was obtained as the average value over 10 runs
of the program for each data set. In all the experiments, the total execution time ac-
count for all three phases of our MST-inspired outlier detection algorithm. The results
show the superiority of our MST-inspired algorithm over the other algorithms.

Table 1. Descriptions of all data sets

Data Name Data Size Dimension # of outliers RT(s) of RT() of
MST LOF
Datal 1 10,180 2 28 23 N/A
Datal2 20,360 2 56 88 N/A
Datal3 30,540 2 84 198 N/A
Data21 11,550 2 30 28 N/A
Data22 23,100 2 60 114 N/A
Data23 34,650 2 90 253 N/A
Data31 16,165 2 34 N/A 89
Data32 32,330 2 68 N/A 360
Data33 48,495 2 102 N/A 798
Data41 20,066 2 36 N/A 137
Data42 40,132 2 72 N/A 546
Data43 60,198 2 108 N/A 1215
Corel 68,040 32 N/A 4,771 13,947
IPUMS 88,443 61 N/A 14,992 43,032
ourData 65,798 10041 N/A 31,610 51,938
Covertype 581,012 55 N/A 602,911 N/A

4.1 Performance of Our Algorithm on Synthetic Data

In this subsection, we investigate the relative performance of our proposed algorithm
on four outlier detection tasks shown in Fig. 3. Datall contains two clusters and 28
global outliers. Data21 contains two curving irregularly shaped bands, and 30 global
outliers. To clearly demonstrate the advantage of our algorithm over classic distance-
based outlier detection algorithms on large data sets, we make the following assump-
tions for these two tasks: the densities of the clusters are similar. Data31 contains two
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clusters of different densities, with 219 data points in the lower-density cluster, and
some local outliers. Data41 contains two clusters of different densities as well, with
1581 data points in the lower-density cluster, and some local outliers. To test the run-
ning time (RT) scalability of our algorithm with the size of the data sets, we double
and then triple these data sets to form their 4-cluster versions (Datal2, Data22, Da-
ta32 and Data42) and 6-cluster versions (Datal3, Data23, Data43 and Data33),
respectively.
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Fig. 3. (a) Datal1 and Data21, (b) Data31 and Data41, (c) two snapshots of local outliers

We first study the effect of K, the input to the DHCA, and the impact of the dimen-
sionality on the performance of our algorithm. Setting the largest number of data
points in an outlying group to be 10, we varied K from 3 to 30 for Datal3 and Data23.
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From the graphs on the left side of Fig. 4, we can see the impact of input to DHCA,
K, on the efficiency of our algorithm. Overall, when K is small, the overhead of con-
structing the DHCA dominates. For large K, more distance computations to the parti-
tion centers are involved and the increases in the distance computations eventually
dominate. Since the number of clusters and the longest edges are relatively small
compared to the number of data points in the data sets, most nearest neighbor dis-
tances obtained using DHCA are much smaller than the longest ones and, therefore,
our algorithm has a better scalability to the data size than the other algorithms. To see
the impact of the dimensionality of data on our algorithm, we increase the data di-
mensionality by appending each data point to itself to result in a similarly distributed
data set of a higher dimension. The results in terms of the running time (RT) on the
first two data sets with extended dimensionality are shown on the left of Fig. 4. The
runs were done to mine the outliers for K = 5 and the largest number of data points in
an outlying group being set to be 10. It can be seen that all the running time increases
with the size of the dimensionality in a linear fashion.
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Fig. 5. Run time performance of our algorithm vs. (left) MST & ORCA (right) LOF

We next investigate the relative performance of our algorithm with respect to the
classic MST- clustering based algorithm and the ORCA algorithm with/without the
number of outliers given on Datall through Data23. This set of experiments is run
with K for the DHCA being set to be 5 and the largest number of data points in an
outlying group being set to be 10. If the number of outliers is not given beforehand,
our algorithm stops when the performance levels off, i.e., when there appears a big
jump (between the (n-1)™ and the n™ longest edges in this experiment) as measured by
above 50% of the (n-1)" longest edge. This is a direct result of our assumptions made
upon the data distribution. The running time results are presented on the left of Fig. 5.
We then investigate the relative performance of our proposed algorithm with respect
to the LOF algorithm on Data31 through Data43 when some local outliers also exist.
The running time performance is shown on the right of Fig. 5.

In both graphs, the top lines represent the running time of the Prim’s MST algo-
rithm and that of the LOF algorithm, respectively, and, clearly, they increase with the
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data set sizes in a quadratic form. The expected execution time to find the small num-
ber of outliers given an NlogN time algorithm and a linear time algorithm are extrapo-
lated from the running time consumed by the Prim's algorithm and the LOF method,
respectively. From the left figure, it can be seen that our algorithm outperforms the
Prim's algorithm by an order of magnitude in running time and exhibits near linear
scalability with the data sizes with 100% correct detection rate. From the right figure,
it can be seen that our algorithm outperforms the LOF algorithm by a factor between
3.0 and 4.0 with 100% correct detection rate.

4.2  Performance of Our Algorithm on Real Data

In this subsection, we investigate the relative performance of our proposed algorithm
on four real data sets. This set of experiments is run to mine top 100 outliers. First, we
show the impact of the input K to DHCA on the run time performance. Setting the
largest number of data points in an outlying group to be 30, we varied K from 3 to 30.
The results are shown on the left side of Fig. 6 and agree with our observation for the
synthesis data sets.
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Fig. 6. (left) Impacts of K to DHCA (right) run time performance of our algorithm vs. ORCA

Setting the input value of K for the DHCA to be 5, we varied the largest number of
data points in an outlying group from 10 to 30 to test the run time performance of our
algorithm against the ORCA method. From the results shown on the right of Fig. 6,
we can see our algorithm outperforms the ORCA method in all group sizes (or k, the
number of nearest neighbors). Also we observe that the running time of our algorithm
on ourData actually decreases with the increase of the outlying group size. This is
intuitive because, when the outlying group size is set small, groups with a little larger
size will be regarded as non-outlying groups, showing the advantage of clustering
based outlier detection technique.

The run time performance of our algorithm vs. the MST-clustering based algorithm
for the largest group size (i.e., 30) is summarized in Table 2, together with the
O(NlogN) (base natural) run time, which is extrapolated from the running time
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consumed by the MST-clustering based method. From the table, we can see that our
algorithm outperforms MST by an order of magnitude (with 100% correct detection
rate) but is near the O(NlogN) running time performance.

Then we investigate the relative performance of our proposed algorithm with re-
spect to the LOF method on the first three real data sets. This set of experiments is run
to mine top 100 outliers with the largest number of data points in an outlying group
being set to 30. The results are shown in Table 3. From the table it can be seen that
our algorithm outperforms the LOF method and has better performance when the
dimensionality of the data set increases. In other words, the distance computation
eventually dominates our algorithm for higher and higher dimensional data sets.

Table 2. Run time performance of OURS vs. MST

Data Name MST/OURS NInN/OURS
Corel histogram 9.6 0.59
IPUMS 54.9 2.15
OURS 44.1 1.29
Covertype 193.4 1.66

Table 3. Run time performance of OURS vs. LOF

Data Name LOF/OURS Dimensionality Data Size
Corel histogram 1.6 32 68,040
IPUMS 32 61 88,443
ourData 5.1 90 65,798

Finally, the agreement of number of outliers detected using the MST-clustering
based method, the ORCA method, the LOF method and our method are summarized
in Table 4.

Table 4. Agreement of the number of outliers between different methods

Data Name MST/OURS ORCA/OURS LOF/OURS
Corel histogram 100% 53% 73%
IPUMS 100% 59% 70%
OURS 100% 71% 65%

5 Conclusion

As a graph partition technique, MST-based clustering algorithms are of growing im-
portance in detecting outlier clusters. A central problem in such applications in large
high-dimensional data mining is usually its O(N?) time complexity. In this paper, we
have presented a new MST-inspired outlier detection algorithm for large data sets by
utilizing a divisive hierarchical clustering algorithm which makes the implementation
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of the clustering-based outlier detection more efficiently. Additionally, our algorithm
can be combined with density-based outlier concept to mine local outliers.

We conducted an extensive experimental study to evaluate our algorithm against
the state-of-the-art outlier detection algorithms. Our experimental results show that
our proposed MST-inspired clustering-based outlier detection algorithm is very effec-
tive and works reasonable well on all the data sets presented. However, the issue still
remains that our algorithm, the ORCA method and the LOF method are based on
different outlier definitions. From our observation, there exist some agreements as
well as differences on the retrieved top outliers between these definitions. Since there
often exist some structures in the data sets, the terminating condition of our algorithm
should be further studied to unify all the outlier definitions.
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