Chapter 9
Folding: Detailed Analysis with Coarse
Sampling

Harald Servat, German Llort, Judit Giménez, Kevin Huck, and Jesus Labarta

Abstract Performance analysis tools help the application users to find bottlenecks
that prevent the application to run at full speed in current supercomputers. The level
of detail and the accuracy of the performance tools are crucial to completely depict
the nature of the bottlenecks. The details exposed do not only depend on the nature
of the tools (profile-based or trace-based) but also on the mechanism on which they
rely (instrumentation or sampling) to gather information.

In this paper we present a mechanism called folding that combines both instru-
mentation and sampling for trace-based performance analysis tools. The folding
mechanism takes advantage of long execution runs and low frequency sampling to
finely detail the evolution of the user code with minimal overhead on the application.
The reports provided by the folding mechanism are extremely useful to understand
the behavior of a region of code at a very low level. We also present a practical study
we have done in a in-production scenario with the folding mechanism and show that
the results of the folding resembles to high frequency sampling.

9.1 Introduction

Application users are typically delighted when they are granted access to a new
supercomputer because they expect their applications to run at a faster pace than
before. Although that each new supercomputer reports faster results than their
predecessors, it is unquestionable that user applications only reach a portion of the
peak performance of the supercomputer.
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Performance analysis tools aim to explain to the user the reasons why his or
her application cannot reach the supercomputer’s peak performance to eventually
optimize the application and increase its performance. Nowadays we can classify
performance tools by the amount of data gathered at runtime: profile-based and
trace-based. While profile-based tools keep timeless performance data of the exe-
cution run by aggregating the collected data, trace-based tools generate a sequence
of timestamped events that report the progression of the application. In addition,
performance tools can use two different methods to gather performance metrics
sampling and instrumentation. One the one hand, sampling relies on periodic
signaling to gather performance metrics, on the other hand, instrumentation injects
code to specific locations of an application to emit the metrics. To increase the
details of such methods the user may decrease the period of the sampling or
instrument additional code locations, but with the extra overhead drawback. An
alternative is to combine both instrumentation and sampling as in Extrae [4], TAU
[15] or Scalasca [19].

In this paper we describe folding [13, 14], a mechanism for trace-based perfor-
mance tools, that provides high level of detail using Paraver [12] traces. The folding
mechanism combines sampled and instrumented information gathered from the
sample application in order to produce more detailed results than its original form
in the Paraver tracefile. Moreover, folding benefits from long running applications
because it can be combined with high periodicity sampling to produce detailed
results with low overhead cost. We have combined the folding mechanism with
a density-based clustering tool [5, 6] to develop a framework that automatically
provides characteristics of the most time-consuming computation regions in an
application. This allows the analyst to focus on potential performance issues on
specific code locations that represent the relevant part of the application.

The rest of this paper is structured as: Sect. 9.2 reviews both sampling and folding
concepts and describes how the performance counters and the callstack information
is folded. Section 9.3 shows the folding results for a set of analyzed applications.
We compare the quality of the folding results with fine grained sampling results
in Sect.9.4. Finally, we discuss related and future work in Sects.9.5 and 9.6,
respectively.

9.2 Folding: Instrumentation and Sampling

We extended the Extrae [4] instrumentation package with sampling capabilities. The
sampling mechanism can either rely on the PAPI middleware (PAPI_overflow)
or the regular operating system alarms. The sampling handler is responsible for
gathering hardware performance counters and a segment of the whole callstack at
the sample point. We depict how the overhead increases the execution time of the
application when using smaller sampling periods in Fig.9.1. Naturally, the more
samples the library gathers the more the application becomes perturbed due to
the intrusion of the library. For example, when the sampling period is 50 * 10°



9 Folding: Detailed Analysis with Coarse Sampling 107

Sampling overhead on a Intel ltanium 2 1.6 GHz
100 % T T T T T T T

T
PEPC mmm
BT.B.16 ==
1S.C.16 mmm 7|
1S.C.16 mm
MHD == |

90 %

80 %

70 %

60 %

50 %

40 %

Overhead percentage

30 %

20 %

10 %

0%

50*10° 100*10° 200*10° 350*10° 500*10°  10° 5710°  10*10°
Sampling period (in cycles)

Fig. 9.1 Overhead of the sampling mechanism at different sampling periods when using different
MPI applications on a Intel Itanium?2 supercomputer
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Fig. 9.2 Example of the folding mechanism. The fop timeline shows the samples belonging to the
different routines. In the bottom figure, we plot how the folding maps the samples on the different
synthetic regions. We have outlined the mapping for the Routine A which involves the samples
labeled as S7, S2 and S5

cycles the application can take up to 100 % more time to run. This large overhead
makes the fine grained sampling not desirable because of the large impact it has on
the application.

The folding mechanism takes benefit of long running applications (which is very
common in the scientific computing) to combine sampled information from different
regions into a single synthetic region. This mechanism combines instrumented and
sampled information to increase the details of the instrumented regions. Within
the folding process, each instrumented and sampled information plays a role.
While instrumented information is used to delimit regions, sampled information
determines how the performance behavior evolves within the region it belongs.
Consider the time-line shown in Fig.9.2 where an iterative application executes
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three instrumented routines named A, B, C. Each single flag represents a taken
sample. The folding mechanism creates three synthetic regions (one per routine) and
then maps every sample into those regions according to the routine that was being
executed at the sample point. The result is shown below in the same Figure, where
the reader can observe that the mapped samples within the synthetic region preserve
their position in respect of their original region instead of their temporal ordering.

9.2.1 The Hardware Counters

The folding results, regarding the hardware counter information, are plotted in
Fig.9.3. This plot shows the evolution of the completed instructions counter using
the folding samples in a computation region of the NAS BT benchmark [11].
The folded samples belonging to the selected region are normalized and shown as
red crosses. A red cross in the point (X,Y) means that a sample was taken at the
X % from the beginning of the region and counted the Y % of the total metric in
the region. In both figures, we can infer temporal phases with different performance
characteristics also noting their sequence and duration by solely using the folded
samples.

Once we have the cloud of samples, we perform a polynomial adjustment. The
adjustment serves three purposes: (a) as an analytical model we can compute its
derivative and, from the derivative, we can compute the instantaneous rates, (b)
we sample the result to reintroduce the folded metrics as synthetic events into
the tracefile at a user requested rate, and (c) it serves also as a noise reduction
mechanism.

We explored several approaches to compute the polynomial adjustment:
polynomial fitting, Bézier curves [2] and Kriging [18] interpolation. Poly-
nomial fitting requires choosing the grade of a polynomial which cannot
be done independently from the data. In addition, choosing a low order
polynomial will give soft but inaccurate fitting, while a high order polynomial
will fit better but will result in big fluctuations. Bézier curves do not require
additional data but the points themselves also fitted well on our tests except on the
stationary points. Finally, the Kriging interpolation, which is a general version of
the Bézier curve, works with the sample points plus some interpolation parameters
(including fitting strictness). After some tests, we found a typical combination of
parameters that fitted the samples well even in stationary points.

In Fig.9.3, the contouring results and the instantaneous rate are shown in
the plot as a green and blue lines, respectively. Now comparing the information
derived from the adjustment and its derivative, we can easily identify four different
phases by their MIPS rate. Each phase involves a period in which the routine
runs really fast (at more than 6,000 MIPS) and follows a period where the
routine runs slower (at 2,000 MIPS, approximately).
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Fig. 9.3 Folding results of the instructions counter for a computation region in the NAS BT
benchmark when executed in a SGI Altix 4700 machine

9.2.2 The Callstack

The folding mechanism is also applied to the sampled callstack information if the
application contained debugging information during the execution. In contrast to the
folded hardware counters, folding the callstack information does not benefit from
an analytical model like Kriging. The folded callstacks are emitted to the tracefile
and can be used to display which code region was being executed at a certain
time in the synthetic regions. Although this method can be sensitive to noise, it
provides an approximate location where to start looking in the application code.
With such information, a time-based analysis tool like Paraver can create
correlations between the folded callstack information and any metric. Such
correlation can subsequently stored and then display those metrics in GVIM (a
vim! editor using a GNOME? front-end) using an add-on we built using the GVIM
scripting mechanism. We show a screenshot of this add-on on Fig.9.4. In this
Figure, the lines that achieved the lowest and the highest MIPS are annotated in
colors, ranging from a minimum in green to a maximum in blue.

Thttp://www.vim.org
2http://www.gnome.org
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Fig. 9.4 GVIM capture showing the MIPS within the editor according to the stats captured at
runtime and the results of the folding mechanism

9.3 Example of Usage

To exemplify the usage, we will show the study we did of the Code_Saturne
[3] application, which also belongs to the PRACE Benchmark Suite [16]. The
application was executed on MareNostrum, a 10,240 core supercomputer based on
two dual-core PowerPC 2.3 GHz processors per blade interconnected with a Myrinet
network. The application was compiled with the IBM XL Fortran compiler version
12.1 using -03 -gstrict and the experiment ran 200 time-steps using 32 cores
with a sampling period of 100 ms and MPI instrumentation.

We used a clustering tool [5, 6] that characterizes computation regions according
to their metrics characteristics to find the application structure. The results for the
characterization are shown in Fig.9.5. Each dot within the scatterplot represents a
computation region (i.e., a region within an MPI exit point and the consecutive MPI
entry point). We classified every computation region by two performance metrics
of the region: its executed instructions and its IPC (instructions per cycle). This
classification shows on one hand the total amount of work done by a portion of code
and the speed achieved to execute that amount of work. After the classification, the
computation regions are grouped (colored in the plot) together by their distance to
each other using a density-based algorithm and the grouping information is sent
back to the tracefile for further analyses. From all the resulting groups we focused
on the more relevant ones. Concretely, we will focus on those computation regions
that last more than 50ms, and from them we will focus on Cluster 1 because
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Fig. 9.5 Scatterplot shows the grouping of the different computation regions of the Code_Saturne
application. The Y-axis shows the measured IPC whereas the X-axis the committed instructions
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Fig. 9.6 Plot depicting the evolution of several performance counters (namely: instructions, data
cache misses, FPU stalls and TLB misses) within Cluster 1 in the Code-Saturne application

it has more than 20K occurrences and accounts more than the 35 % of the total
computation time.

To study the internal behavior of Cluster 1, we applied the folding mechanism on
these regions. Due to space restrictions, we have summarized the results we obtained
in Fig.9.6. In this figure we show the evolution of four different performance



112 H. Servat et al.

Table 9.1 Average values for different metrics in Code_Saturne code divided by phases using the
slope of the instructions slope

Computation region Cluster 1

Phase name A B C
Location in gradrc. £90 751-753 786-802 972-985
Duration® 20.54 84.82 41.08
MIPS 300 600 300-450
Data cache stall cyclesb 400 1,700 2,000
TLB miss stall cycles® 160 20 20

FPU stall cycles® 550 160 75

4In milliseconds
°In millions per second

counters (instructions, data cache misses, FPU stalls and TLB misses) within Cluster
1 using the interpolation results of the folded samples. We have manually divided
the plot by the slope of the instructions counter rate to divide different computation
phases (labeled as A, B and C in this Figure) within the same computation region.
In Table 9.1 we show different metrics and the code location for each phase.

According to the metrics we extracted from the Paraver tracefile we obtained
that Cluster 1 ran at approximately 472 MIPS which is very bad for the
MareNostrum processor because it represents that it achieved a CPI (cycles per
instruction) of 4.87. Inside the cluster we can differentiate three phases considering
the instructions slope. First phase goes from the beginning to 0.15, the second
goes from 0.15 to 0.75 and the final goes from 0.75 to the end. According to the
information we have obtained during the execution this cluster is mainly executing
the routine contained in gradrc . £90. After analyzing the folded callstack, we can
relate them to three different loops at the following lines at lines 751-753, 786-802
and 972-985, respectively.

The loop in lines 751-753 shows a CPI between 7 and 9. This loop accesses
seven different vectors and performs a large number of floating point computations.
We observed that this phase ran at 300 MIPS and that the processor was stalled
by TLB misses and by lack of FPU resources. The second loop contains lots of
pointer indirections and some floating point instructions. We observe that 1,700
Mcycles out of 2,300 Mcycles (i.e., the processor frequency) are stalled due to data
cache misses, however the processor is capable of executing instructions at 600
MIPS. Last but not least, we see that the last pointed loop has a worse performance
behavior in terms of stalled cycles due to cache misses resulting in a worse MIPS
rate (ranging from 300 to 450).

We unsuccessfully tried to improve the performance of the application. We
splitted the first loop into three loops to prevent the cache to hold all the vectors
referenced, however after applying this modification the average duration of
Cluster 1 increased by 5ms. Changing the second loop would need changing
the face numbering algorithm to increase the locality of the accessed data and/or
rethinking this part of the code to reduce the number of indirections. Also, it would
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Table 9.2 Experiment setup for the quality study

Application execution setup

Application name BT.B

Sampling mode Detailed Coarse
Sampling period 50 Kcycles 10 Mcycles
Samples per second 32,000 160
Sampling overhead 89 % 2%
Number of iterations 1 200

Total number of samples per task 5,661 5,445

be interesting to reduce the number of accesses within the loop because there are
currently 11 arrays accessed. Finally, we applied blocking and splitting techniques
to the third loop to increase the locality of the data accesses. However, when
applying blocking with a block size of 128 elements, it made Cluster 1 3 % slower
whereas splitting the loop made Cluster 1 a 20 % slower, mainly due to the increase
of the TLB misses.

9.4 Validation of the Results

We validated and studied the quality of the folding mechanism by using the BT.B
benchmark from the NAS MPI Parallel Benchmark Suite 3.2 on a SGI Altix machine
with Intel Itanium 2 processors running at 1.6 GHz. Although this benchmark is
heavily optimized, some computing regions of BT.B show a non-uniform behavior
(as seen in Fig.9.3) making it a nice candidate to study. The Kriging contouring
algorithm used in the folding mechanism behaves as a low-pass filter, so with
the higher number of samples being interpolated the interpolation results are more
detailed. Because of this, the experiments are focused on validating how the folded
and interpolated results resemble finer sampled metrics. Details regarding the
experimentation are shown in Table 9.2.

The first experiment is intended to compare the shape of the hardware counter
metrics in high frequency sampled traces and low frequency folded sampled traces.
We did the comparison with two of the most time consuming computation regions
from the benchmark. To facilitate the reading, each computation region is named
according to the routine to which it belongs. We compare one time-step of the high
frequency trace to the folded results of all iterations. The comparison is done using
different counters available on the chosen processor, namely committed instructions,
executed floating point operations and branches, and L2 cache accesses, hits, and
misses.

The Kriging implementation is limited to return a vector of equidistant points
which prevents us to get the value of the interpolation at any arbitrary point. To
perform the study, we compared the results between the samples of the reference
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Fig. 9.7 Study of absolute mean difference ratios and square mean errors on different applications
comparing high detail sampling and folded results on the NAS BT.B benchmark

time-step and the folded samples by interpolating both of them in the same number
of points and then we compute the absolute mean difference and the square mean
error by comparing every resulting slice.

Results of the comparison are shown in Fig.9.7. The X-axis on the plot depicts
the representative computation regions in the NAS BT benchmark, whereas the
Y-axis represents the percentage of variation between the detailed sampling and
the folded results using coarse sampling and the square mean error by the bars
and the whiskers respectively. In the plot we observe mean differences up to 5%
for every pair performance counter and computation region. The coarse-grained
sampling generates approximately the same number of samples for the whole run
as the reference iteration because of the number of the time-steps iterated on
the coarse-grain execution is the ratio between the two sampling frequencies. So
we conclude that using scattered samples on long execution runs we can obtain
a good approximation of the performance metrics without harming the gathered
performance metrics due to the sampling overhead.

In the second experiment we ran measured how the number of folded samples
influences the absolute mean difference shown in the previous experiment. To carry
out the comparison we took as a reference the highly detailed sampled information
of the longest computation regions of the BT.B benchmark from the previous
experiment, and then we computed the mean difference varying the number of
samples folded on the coarse-grained execution.
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Mean difference between detailed and folded metrics
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Fig. 9.8 Evolution of the mean difference between highly detailed sampling and folded results in
a BT.B compute region of the x_solve routine

The plot in Fig. 9.8 shows that the absolute mean difference varies depending on
the number of samples folded in the region. This plot shows that the mean absolute
difference decreases as the number of samples increase. Precisely, the number of
samples on which the difference is below 5 % is about 40 for the computation region
we present and using more samples just leads to marginal differences. So we can
conclude that there is no need for extremely long executions to get similar results
between folding coarse grain samples and using detailed sampling, although this
may vary on the application.

9.5 Related Work

The gprof [7] profiler uses sampling and instrumentation to gather function call
counts and estimate the time spent per function. This profiler requires the application
to be compiled and linked with a special flag that instructs the compiler adding
monitoring to count the number of calls to user routines, while it uses sampling to
accumulate time to the user routines. This tool provides summaries for simple met-
rics, whereas the folding mechanism combines both sampling and instrumentation
providing much more details resulting in more helpful analysis.

HPCToolkit [17] uses sampling with trampoline optimizations to provide call-
stack details. HPCToolkit can also show sampled callstack data in a time-line
using a recently added hpctraceview. Our mechanism also provides instrumentation
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and sampling data in a Paraver time-line but is also capable of combining the
performance data within the tracefile to provide highly detailed synthetic regions.
The synthetic information is reintroduced into the Paraver tracefile so all the metrics
can be used together to correlate them easily.

The Sun Studio Performance Analyzer [8] is a set of tools for collecting and
viewing application performance data using tracing and profiling mechanisms.
These tools are able to instrument synchronization calls, heap allocation and
deallocation routines, parallel regions and constructs, and can also sample the
application to profile it. Although being a powerful set of tools, the experiments
needed to be repeated if the results were not detailed enough. The work we propose
is designed to produce highly detailed performance metrics avoiding repetitive data
collection.

Azimi, Stumm and Wisniewski are the authors of [1] where they present an on-
line performance analysis tool that gathers counter values periodically. This tool
displays the evolution among the selected counters in a time-line breakdowns the
cycles-per-instruction using a model called Statistical Stall Breakdown. Although
they offer some instrumentation capabilities, their work is just focused on the
sampling mechanism to characterize the whole system instead of applications.

The TAU framework has recently added sampling capabilities in its measurement
system [10]. And, although they gather performance counter information, their work
is mainly focused on instrumentation cooperating with the sampling to augment
the TAU profiles with PC callstack information instead of increasing the details of
the performance counters. The cooperation to increase their profiles is based on
creating keys to the application callstack and to the TAU event stack during the
application execution to reduce the information presented to the user in order to
produce a summarized view.

Finally, the Scalasca tool has also been extended using sampling. As in TAU,
their developers put the major effort to provide information about application
routines instead of providing performance counters. Scalasca provides accurate time
metrics by subtracting the time in MPI calls of an user routine for a sampling
period when PMPI instrumentation is turned on. Also in Scalasca, as in HPCToolkit,
trampolines are used to replace the returning addresses in the callstack to reduce the
overhead in the unwinding process.

9.6 Conclusions and Future Directions

We have evaluated the quality of the results of using low frequency sampling and
applying the folding mechanism compared with high frequency sampled data. The
results show good resemblance (less than 5 % of difference) between them, even
using only a fraction of the samples of the whole run. It makes low frequency
sampling and folding a good alternative to high frequency sampling without
penalizing the application. We have shown an example of utilization of the folding
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when combined with the clustering. Yet the example we provided was not improved,
we have shown successful studies and optimizations in [14].

Future work could include working on a better correlation between performance
counters at this finer detail to thoroughly describe the performance behavior and
also to locate hot and cold spots within the code. Another interesting future topic
would be to perform an on-line study of the application using the work described in
[9]. The combination of these two mechanism would provide detailed performance
information as the application executes, showing the performance at different
application stages and stop when enough samples have been gathered and study
whether the sampling periodicity matches any period of the computation bursts.
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