Chapter 4
An Open-Source Tool-Chain for Performance
Analysis

Kevin Coulomb, Augustin Degomme, Mathieu Faverge, and Francois Trahay

Abstract Modern supercomputers with multi-core nodes enhanced by accelerators
as well as hybrid programming models introduce more complexity in modern
applications. Efficiently exploiting all of the available resources requires a complex
performance analysis of applications in order to detect time-consuming or idle sec-
tions. This paper presents an open-source tool-chain for analyzing the performance
of parallel applications. It is composed of a trace generation framework called
EZTRACE, a generic interface for writing traces in multipe formats called GTG,
and a trace visualizer called VITE. These tools cover the main steps of performance
analysis — from the instrumentation of applications to the trace analysis — and
are designed to maximize the compatibility with other performance analysis tools.
Thus, these tools support multiple file formats and are not bound to a particular
programming model. The evaluation of these tools show that they provide similar
performance compared to other analysis tools.
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4.1 Introduction

Numerical simulation has become one of the pillars of science in many domains:
numerous research topics now rely on computational simulations for modeling
physical phenomenons. The need for simulation in various computer power hungry
research areas, such as climate modeling, computational fluid dynamics, and
astrophysics has led to designing massively parallel computers that now reach
petaflops. Given the cost of such supercomputers, high performance applications
are designed to exploit the available computing power to its maximum. During the
development of an application, the optimization phase is crucial for improving the
efficiency. However, this phase requires extensive understanding of the behavior and
the performance of the application. The complexity of supercomputer hardware,
due to the use of NUMA architectures or hierarchical caches, as well as the use
of various programming models like MPI, OpenMP, MPI+threads, MPI+GPUs and
PGAS models, makes it more and more difficult to understand the performance of
an application. Due to the complexity of the hardware and software stack, the use
of convenient analysis tools is a great help for understanding the performance of an
application. Such tools permit the user to follow the behavior of a program and to
spot its problematic phases.

This paper describes a complete set of tools designed for performance analysis,
from the instrumentation of parallel applications using EZTRACE to the analysis of
their execution with VITE. This open-source tool-chain provides a convenient and
performant means to understand the behavior of an application.

The remainder of this paper is organized as follows: in Sect.4.2, we present
various research related to performance analysis. The design of EZTRACE — our
instrumentation framework — is described in Sect. 4.3. Section 4.4 presents the GTG
tracing library. Section 4.5 provides an overview of our trace visualization tool
named VITE. The results of experiments conducted on EZTRACE are discussed
in Sect. 4.6. Finally, in Sect. 4.7, we draw a conclusion and introduce future work.

4.2 Related Work

Since the advent of parallel programming and the need for optimized applications,
numerous work has been conducted on performance analysis. Tools were designed
for tracing the execution of parallel applications in order to understand their
behavior. Some of these tools are specific to a particular programming model —
MPE [4] targets MPI applications, POSIX THREAD TOOL [6] aims at applications
that use pthreads, OMPTRACE [3] instruments OpenMP applications, ... — Others,
such as VAMPIRTRACE [I11], TAU [13] or SCALASCA [8], provide multiple
modules and thus support multiple programing models. Instrumenting custom API
or applications can be achieved with these tools by manually or automatically
instrumenting the code.
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The format of the trace generated by a tracing tool is usually specific, leading
to incompatibility between performance analysis tools. Generic trace formats were
designed to meet the needs of several tools. The PAJ format [7] permits the user
to depict the execution of a program in a generic and hierarchic way. The OPEN
TRACE FORMAT [9] (OTF) provides a generic and scalable means of tracing parallel
applications more adapted to MPI applications using various communicators.

Exploring a trace file thus requires a tool designed for a particular trace format.
For instance, OTF traces can be viewed with VAMPIR [10], TRIVA [12] displays PAJ
traces, and the files generated with MPE can be visualized with JUMPSHOT [4]. TAU
and SCALASCA embed their own trace file viewer. The lack of multiformat trace
viewers forces users to switch from one system to another, depending on the tracing
tool in use. A new complete tool-chain — from the application tracing to the trace
analyzer — able to manipulate several trace formats, would allow users to use the
most relevant format for each application to analyze while keeping the same tools.

4.3 Instrumenting Applications with EZTRACE

EZTRACE [14] has been designed to provide a simple way to trace parallel
applications. This framework relies on plugins in order to offer a generic way to
analyze programs; depending on the application to analyze or on the point to focus
on, several modules can be loaded. EZTRACE provides predefined plugins that give
the ability to the user to analyze applications that use MPI libraries, OpenMP or
Pthreads as well as hybrid applications that mix several of these programming
models. However, user-defined plugins can also be loaded in order to analyze
application functions or custom libraries.

EZTRACE uses a two-phases mechanism for analyzing performance. During the
first phase that occurs while the application is executed, functions are intercepted
and events are recorded. After the execution of the application, the post-mortem
analysis phase is in charge of interpreting the recorded events. This two phase
mechanism permits the library to separate the recording of a function call from
its interpretation. Moreover, a post-mortem analysis also reduces the overhead of
profiling a program; during the execution of the application, the analysis tool should
avoid performing time-consuming tasks such as computing statistics or interpreting
function calls. It thus allows the user to interpret a function call event, and so a
complete execution trace, in different ways depending on the point he/she wants to
focus on, just by using different interpretation modules provided by the EZTRACE.

4.3.1 Tracing the Execution of an Application

During the execution of the application, EZTRACE intercepts calls to the functions
specified by plugins and records events for each of them. Depending on the type of
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‘ int submit_jobs (int nb_jobs) )
BEGIN
ADD_VAR ("Number of jobs", nb_jobs)
CALL_FUNC
EVENT ("New jobs™")
END

void do_work ()
BEGIN
RECORD_STATE ("Working")

END
- /

Fig. 4.1 Example of function instrumentation using the script language

functions, EZTRACE uses two different mechanisms for interception. The functions
defined in shared libraries can be overriden using LD_PRELOAD. When the
EZTRACE library is loaded, it retrieves the addresses of the functions to instrument.
When the application calls one of these functions, the version implemented in
EZTRACE is called. This function records events and calls the actual function. The
LD_PRELOAD mechanism cannot be used for functions defined in the application
since there is no symbol resolution. In that case, EZTRACE uses the DYNINST [2]
tool for instrumenting the program on the fly. Using DYNINST, EZTRACE modifies
the program to record events at the beginning and/or at the end of each function to
instrument.

For recording events, EZTRACE relies on the FXT library [5]. FXT provides
efficient support for recording traces of actions both in kernel and user space.
However, EZTRACE only uses the user space feature. In order to keep the trace
size as compact as possible, FXT records events in a binary format that contains
only the minimum amount of information: a timestamp, an event code and optional
parameters. During the initialization, FXT pre-allocates a buffer. When recording an
event, FXT uses atomic operations for ensuring the trace consistency when multiple
threads are used. At the end of the application, FXT flushes the trace to the disk.

4.3.2 Instrumenting an Application

Since EZTRACE uses a two-phases mechanism, plugins are organized in two parts:
the description of the functions to instrument, and the interpretation of each function
call. During the execution of the application, the first part of the plugin is in charge of
recording calls to a set of functions as described in Sect. 4.3.1. The second part of the
plugin is in charge of adding semantic to the trace. EZTRACE provides plugins for
major parallel programming libraries (MPI, OpenMP, PThread, etc) but also allows
user-defined plugins designed for custom libraries or applications. For example, the
PLASMA linear algebra library [1] is shipped with an EZTRACE plugin.

In order to ease the creation of a plugin, we designed a compiler that generates
EZTRACE modules from a simple script file. As depicted in Fig.4.1, such a script
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consists of a list of functions to instrument and the interpretation of each function.
In this example, when the function submit_jobs is called, EZTRACE increases
the value of a counter, calls the original function, and creates an event. A call
to do_work is represented as a change of the state in the output trace. While
some performance analysis tools allow users to specify a set of custom functions
to instrument, choosing the representation of the corresponding function calls is
usually impossible. Our script language gives the possibility to the users to easily
create new EZTRACE modules. Since the compiler generates C files, advanced users
can tune the created module to fit their needs.

4.4 Creating Trace Files with GTG

During the post mortem analysis phase, EZTRACE browses the recorded events and
interprets them. It can then generate statistics — such as the length of messages, the
duration of critical sections, etc. — or create a trace file for visualizing the application
behavior. For generating trace files, the post-mortem analysis of EZTRACE relies on
the Generic Trace Generator (GTG ) library.! GTG provides an high-level interface
to generate traces in different format such as Paje or OTF. This permits EZTRACE
to use a single interface for creating traces in multiple formats. Thus, it can generate
PA7J traces or OTF files without any modification, just giving at runtime the desired
format. This high-level interface can also be used for any application supervision
by any user who cares less about tracing performance such as to follow memory
consumption and want to combine the tracing and the post-mortem conversion steps.

4.4.1 Opverview of GTG

Although trace formats are different, most of them rely on the same structures and
provide similar functionalities as it is depicted in Fig.4.2. A set of hierarchical
containers (1) represents processing entities such as processes, threads, or GPUs.
These containers have states (2) that depict events that start at time 77 and end
at time 7> — the execution of a function, the processing of a computing kernel, a
pending communication, etc. — Some events (3) (sometimes defined as markers) are
immediate (i.e. 77 = T3), and can represent the release of a mutex, the submission
of a job, etc. Most trace formats also provide a way to track a counter (4) such as the
total allocated memory, the number of pending jobs or the number of floating point
operations per second. In order to symbolize the interaction between containers,
trace formats often provide a link (5) feature: a couple of events that may happen

! Available under the CeCILL-C license at http://gtg.gforge.inria.fr/
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4.4.2 Interaction Between GTG and EZTRACE

Once EZTRACE is running along with the application, FXT traces are generated.
The second part of EZTRACE is based on GTG, and transforms the raw traces to
real meaningful traces. First, a meaning is added (for example 42 represents an
MPI_Send request according to the MPI plugin). The semantic can represent links,
events, states, etc. The hierarchical structure of the API functions is inspired by the
generic PAJ trace format, thus any trace format should be matched. For instance,
OTF traces can be generated. The containers can have states (‘This thread is in
this function’), notify events, or count relevant data (number of messages, memory
used, number of jobs, etc). This step is based on the plugins (plugins give different
meaning to the symbols). Using the EZTRACE convert tool based on GTG, one can
add meaning, define containers, and describe what is happening in a function.

4.5 Analyzing Trace Files with VITE

The trace files generated by tools such as GTG or VAMPIRTRACE can be parsed for
extracting statistics — such as the average message size — however, understanding
the behavior and the performance of an application requires a more convenient tool.
In this Section, we present VITE? — which stands for Visual Trace Explorer — an
open-source multi-format trace visualizer.

2Freely available at http://vite.gforge.inria.fr/
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Fig. 4.3 Modules
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4.5.1 A Generic Trace Visualizer

Originally, the PAJ [7] trace visualizer was designed to analyze parallel applications
using a simple yet generic trace format. The decline of PAJ led students to design
a new PAJ trace viewer. VITE was designed as a generic trace visualizer, and
additional trace formats such as OTF and TAU were added later. To manage multiple
formats, VITE relies on a module architecture as depicted in Fig. 4.3.

A set of modules are in charge of parsing traces and filling the generic data
structure. VITE implements parsers for several trace formats: OTF, PAJ, extended
PAJ (a multiple files PAJ format), and TAU formats. Filling the generic data structure
is a critical part of VITE : traces may have millions of events and their processing —
storing events, browsing through the event list, finding associated data, etc. — has to
be efficient. The last modules are in charge of rendering traces. Such a module uses
the data structure to display the trace as requested by the user. A graphical interface
based on QT and OpenGL allows an user-friendly browsing of the trace. Additional
rendering modules generate SVG or PNG files depicting traces to easily export the
results.

Although trace formats are different in their design, most of them provide similar
functionalities. VITE implements a generic data structure and manipulates abstract
objects representing the different features defined by trace formats. This abstraction
permits the developers to easily implement additional parsers for new trace formats,
while rendering traces in a homogeneous way.

4.5.2 Displaying Millions of Events

As depicted in Fig. 4.4, VITE is able to display millions of items. To manage such
performances, an efficient data structure and an efficient rendering is needed. The
data structure is based on binary trees, as depicted in Fig. 4.5. Each tree is built over
a sorted list of known size. Hence the construction of the data structure is not optimal
(building lists then trees) but the conversion is not so slow (knowing the size of the
list, the tree is build in linear time) and it offers an efficient data structure. Moreover,
this transformation allows an internal modification, where for instance states are not
recorded but state changes are. It avoids storing both the start and the duration of
the state: we only store a state change that occurs at time 7. This avoids storing
an unneeded floating value for each state. Thanks to these trees, any element can
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‘ T=125.79ms H T=126.83ms T=127.12ms H T=132.21ms \

Fig. 4.5 Example of sorted binary tree representation of events

be accessed in logarithmic time and unneeded branches of the tree can be avoided
while browsing.

The binary tree structure is also useful for rendering the trace. In order to avoid
creating millions of graphical elements, portions of the trace have to be summarized.
VITE uses a resolution parameter for eliminating the events that are too small to be
rendered: if a node and his father are too close, then the resolution will not be enough
for displaying them, and it is useless to keep on browsing all the nodes between the
two (the subtree of the node on the same side as the father).

For example, when rendering the binary tree depicted in Fig. 4.5 with a resolution
of 1 ms, VITE browses event # 4. It then handles # 2. Since the interval between
events # 2 and # 4 is lower than the resolution (74 — T4 < 1 ms), event # 3 is
not taken into account. Event # [ is then handled normally. Then, VITE processes
event # 6. Event # 5 is skipped since it is beneath the resolution (Ty — Tys < 1 ms)
and event # 7 is handled normally. As a result, the number of elements to display,
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as well as the number of nodes to browse, is limited increasing the rendering
performance. If the user zooms in, the resolution decreases and the same algorithm
is used.

The rendering is also critical; OpenGL has been chosen after benchmarking
several solutions based on Qt, GTK, SDL, GNUStep and JAVA. Despite the fact
that Qt and GTK could provide a better and easier interaction with the trace, the
OpenGL engine, with our own mouse placement detection, appeared to be the most
scalable solution. Moreover, on some machines, OpenGL can benefit from hardware
optimization with the GPU.

4.6 Evaluation

When analyzing the performance of parallel applications that generate millions
of events, the performance of the analysis tool is important. The overhead of the
instrumentation should be as low as possible, and the visualization tool should allow
a smooth browsing of the resulting trace. In this Section, we assess the performance
of EZTRACE. We evaluate the raw performance of the instrumentation mechanisms
used in EZTRACE on a synthetic benchmark as well as on application kernels.

The results of this evaluation were obtained on the CLUSTERO platform. It is
composed of 32 nodes, each being equipped with two 2.2 GHz dual-core OPTERON
(2214HE) CPUs featuring 4 GB of memory. The nodes are running Linux 2.6.32
and are interconnected through MYRINET MYRI-10G NICs. We compare EZTRACE
with VAMPIRTRACE in its 5.9 version.

4.6.1 Overhead of Trace Collection

In order to evaluate the raw overhead of program instrumentation, we use an
MPI ping pong program. We measure the latency obtained for 16-bytes messages.
We instrument this program using the automatic (i.e. using LD_PRELOAD) and
manual (i.e. using DYNINST) mechanisms described in Sect. 4.3.1, then we compare
the overhead of using EZTRACE or VAMPIRTRACE to the performance obtained
without instrumentation. For VAMPIRTRACE, the automatic instrumentation is
obtained by using its MPI module. The manual instrumentation is obtained by
inserting call to VT_USER_START and VT_USER_END in the application.

Table 4.1 shows the results we obtained. Using VAMPIRTRACE automatic
instrumentation degrades the latency by 1.1 s while the manual instrumentation
causes an overhead of 700 ns. The difference is due to the fact that VAMPIRTRACE
generates events at the entry and the exit of functions in both instrumentations, but
it also generates a SendMessage or ReceiveMessage event when the MPI module is
selected.
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Table 4.1 Results of the 16-bytes latency test

Method Open MPI (jus) VampirTrace (jus) EZTrace (jus)
Automatic 4.99 6.12 5.68
Manual 4.99 5.71 5.67

Table 4.2 NAS Parallel Benchmark performance for Class A and B

VampirTrace EZTrace

Time Overhead Time Overhead
Kernel Class #Proc. OpenMPI (s) (s) (%) (s) (%) # Events/s
BT A 4 70.57 70.58 0.01 70.39 —0.26 825
CG A 4 2.64 2.68 1.52 2.68 1.52 12,546
EP A 4 9.61 9.69 0.83 9.72 1.14 5
FT A 4 6.63 6.67 0.55 6.62 —0.20 22
1S A 4 0.63 0.64 2.13 0.62 —1.06 482
LU A 4 42.08 42.15 0.17 4139 —1.64 12,282
MG A 4 5.04 5.06 0.46 5.07 0.66 2,978
SP A 4 166.25 165.94 —0.18 166.32 0.04 696
BT B 36 26.08 25.83 —0.97 26.37 1.10 59,350
CG B 32 16.29 16.46 1.02 16.60 1.88 192,667
EP B 32 4.81 479 —0.42 476 —1.04 81
FT B 32 11.76 11.61 —1.30 11.55 —1.81 255
IS B 32 0.97 0.96 —1.03 0.96 —1.03 2,580
LU B 32 33.75 34.11 1.07 33.67 —0.24 —
MG B 32 2.14 2.16 0.78 2.13 —0.62 215,515
SP B 36 51.18 51.98 1.57 52.07 1.75 59 922

Instrumenting the application with EZTRACE causes an overhead of 700 ns for
both mechanisms. This is because EZTRACE records events at the entry and the
exit of functions for both manual and automatic modes. The SendMessage and
ReceiveMessage events are generated during the post mortem phase.

4.6.2 NAS Parallel Benchmarks

In order to evaluate the overhead of EZTRACE on more realistic computing kernels,
we also measure its performance for NAS application kernels. The experiment was
carried out with 4 computing processes for Class A and 32 processes (or 36 for BT
and SP that require a square number of processes) for Class B. We instrument MPI
functions of these kernels with EZTRACE and VAMPIRTRACE automatic modules.
Table 4.2 summarizes the results we obtained. Since EZTRACE post mortem
phase crashes for the LU kernel for Class B, the number of events in the resulting
OTF trace is not reported. The results show that instrumenting these kernels
with EZTRACE or VAMPIRTRACE does not significantly affect the performance:
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variation of the execution time is less than 2 %. This experiments also show that
intensive event recording kernels — such as MG or CG for Class B — do not suffer
from the overhead of the instrumentation.

4.7 Conclusion and Future Work

Programming a parallel application that efficiently exploits a supercomputer
becomes more and more tedious due to the increasing complexity of hardware —
multicore processors, NUMA architectures, GPGPUs, etc. — and the use of hybrid
programming models that mix MPI, OpenMP or CUDA. Tuning such an application
requires the programmer to precisely understand its behavior.

We proposed in this paper an open-source tool-chain for analyzing the per-
formance of modern parallel applications. This software suite is composed of
EZTRACE - a generic framework for instrumenting applications —, GTG — a tool for
generating traces in multiple formats —, and VITE — a trace visualizer that supports
several trace formats — These tools were designed to provide an open-source
alternative to other performance analysis tools, while allowing interoperability with
other tools such as Vampir or TAU. The evaluation shows that this genericity does
not imply extra overheads since EZTRACE provides similar performance when
compared to VAMPIRTRACE.

In the future, we plan to study more precisely the performance of the whole
software suite and to improve it. Additional modules are to be developped in
EZTRACE in order to allow the analysis of programs running CUDA or OpenCL.
We also plan to improve EZTRACE performance analysis capabilities so that it can
detect programming or runtime issues such as network congestion or insufficient
overlap of communication and computation. Future work concerning GTG includes
the support for other trace formats — such as TAU — and enhancing the API. We also
plan to merge VITE and TRIVA [12] projects. TRIVA is based on PAJ software and
provides new ways of displaying information such as treemaps, or network graphs
that will benefit to ViTE. On the other side, TRIVA will benefit from the multi-format
parser and from the OpenGL display.
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