
Chapter 2
Using Sampling to Understand Parallel
Program Performance

Nathan R. Tallent and John Mellor-Crummey

Abstract Developing scalable parallel applications for extreme-scale systems is
challenging. The challenge of developing scalable parallel applications is only
partially addressed by existing languages, compilers, and autotuners. As a result,
manual performance tuning is often necessary to obtain high application perfor-
mance. Rice University’s HPCTOOLKIT is a suite of performance tools that supports
innovative techniques for pinpointing and quantifying performance bottlenecks in
fully optimized parallel programs with a measurement overhead of only a few per-
cent. Many of these techniques were designed to leverage sampling for performance
measurement, attribution, analysis, and presentation. This paper surveys some
of HPCTOOLKIT’s most interesting techniques and argues that sampling-based
performance analysis is surprisingly versatile and effective.

Keywords Performance tools • Sampling • Call path profiling • Call path
tracing • HPCTOOLKIT

2.1 Introduction

Because of the complexities of modern microprocessor-based supercomputers—
e.g., scale, hierarchical parallelism, heterogeneity, deep memory hierarchies—
typical scientific applications achieve only a small fraction of a supercomputer’s
peak performance. As a result, manual performance analysis and tuning is often

N.R. Tallent (�)
Pacific Northwest National Laboratory, Richland, WA 99352, USA
e-mail: tallent@pnnl.gov

J. Mellor-Crummey
Department of Computer Science, Rice University, Houston, TX 77005, USA
e-mail: johnmc@rice.edu

H. Brunst et al. (eds.), Tools for High Performance Computing 2011,
DOI 10.1007/978-3-642-31476-6 2, © Springer-Verlag Berlin Heidelberg 2012

13



14 N.R. Tallent and J. Mellor-Crummey

necessary to identify and resolve performance bottlenecks to avoid wasting precious
computational resources.

Rice University’s HPCTOOLKIT [1, 19] is a suite of performance tools that
has pioneered techniques for pinpointing and quantifying performance bottle-
necks in fully optimized parallel programs with a measurement overhead of only
a few percent [2, 5, 9, 13, 15, 22–24, 26–29]. Many of these techniques were
designed to leverage sampling for performance measurement, attribution, analysis,
and presentation. This paper surveys some of HPCTOOLKIT’s most interesting
techniques and argues that sampling-based performance analysis is surprisingly
versatile and effective.

Prima facie, sampling is both an obvious and questionable technique for
performance analysis. Consider the challenge of collecting both accurate
and detailed performance measurements. There are two basic techniques for
collecting performance measurements: asynchronous sampling and synchronous
instrumentation. Although there is an inverse relationship between accuracy and
precision, the elasticity of that relationship varies with measurement technique.
With instrumentation, collecting context-sensitive measurements at the level
of a procedure can easily lead to hundreds or even thousands of percent
overhead [3, 9, 23]; measuring at finer resolutions such as the loop, statement,
or machine-instruction level is often infeasible. Efforts to address these problems
include statically [4, 10, 21] or dynamically [12, 16, 21] omitting instrumentation,
which leads to blind spots; adjusting measurements based on a model of how
instrumentation affects execution [14]; and other specialized techniques [3, 11, 30].
We argue that, when possible, it is better to simply avoid instrumentation overhead
and its associated distortion. To provide a more elastic trade-off between accuracy
and precision than instrumentation can provide, HPCTOOLKIT collects statistically
representative measurements by periodically interrupting an execution using an
asynchronous event trigger. Just as pollsters query a thousand voters to discern
trends in a population of 300 million, asynchronously sampling the activity in
a program execution can provide representative information about the program’s
behavior.

But if sampling appears an obvious choice, there are a number of considerations
that make it questionable. First, the fact that asynchronous sampling interrupts
an execution at arbitrary points poses certain difficulties. One difficulty is how
to attribute measurements to source-level loops. With source code instrumentation
such attribution is trivial (though costly). With sampling it is difficult because loops
in object code are implemented using unstructured control flow and have been trans-
formed by optimizing compilers. Another difficulty is collecting calling contexts
using stack unwinding. Experience shows that unwinds commonly fail when
using libunwind [17] or GLIBC’s backtrace() routine [7] from within highly
optimized code. Second, the largest supercomputers present challenges of their
own. To avoid idleness in bulk synchronous parallel applications, supercomputer
operating systems frequently attempt to minimize OS ‘jitter’ [18]. Unfortunately
from the perspective of sampling, a standard way to minimize jitter is to forbid
frequent software interrupts. Supercomputer kernels may also leave unimplemented



2 Using Sampling to Understand Parallel Program Performance 15

the OS support needed to drive asynchronous sampling triggers. Third, it is often
not clear how to use sampling to accomplish a primary goal of performance
analysis: pinpointing root causes of bottlenecks. For instance, because sampling
may miss the first (or any other) link in a chain of events, it may have limited
diagnostic powers. More concretely, consider the problem of pinpointing the causes
of lock contention. A straightforward solution uses instrumentation to time lock
acquisitions and releases and attributes those measurements to their calling context.
However, adding such instrumentation will lengthen critical sections and often
exacerbate lock contention. Is it possible to use a sampling-based technique that
can determine, for only a few percent of overhead, when a thread is working with a
lock, working without a lock, or waiting for a lock? More to the point, is it possible
to not just identify threads that wait for locks, but the threads and critical sections
that cause waiting?

This paper is organized as follows. Section 2.2 summarizes HPCTOOLKIT’s call
path profiling capabilities. Section 2.3 explains how to pinpoint scaling bottlenecks
using differential analysis. Section 2.4 presents techniques for pinpointing the
causes (not effects) of bottlenecks. Section 2.5 describes how to use sampling
for collection and presentation of call path traces. Section 2.6 summarizes HPC-
TOOLKIT’s data-centric attribution capabilities. Finally, Sect. 2.7 summarizes our
conclusions. Because of space constraints and a retrospective perspective, we
delegate a thorough discussion of related work to individual research papers.

2.2 Call Path Profiling

Experience shows that comprehensive performance analysis of modern modular
software requires information about the full calling context in which costs are
incurred. For instance, the costs incurred for calls to communication primitives (e.g.,
MPI Wait) or code that results from instantiating C++ templates for data structures
can vary widely depending upon their calling context. Consequently, HPCTOOLKIT

uses asynchronous sampling to collect call path profiles that attribute costs to the
full calling contexts in which they are incurred.

Collecting a call path profile requires capturing the calling context for each
sample event. To capture the calling context for a sample event, HPCTOOLKIT’s
measurement tool hpcrun must be able to unwind the call stack at any point in
a program’s execution. Obtaining the return address for a procedure frame that
does not use a frame pointer is challenging since the frame may dynamically grow
(space is reserved for the caller’s registers and local variables; the frame is extended
with calls to alloca; arguments to called procedures are pushed) and shrink (space
for the aforementioned purposes is deallocated) as the procedure executes. To cope
with this situation, we developed a fast, on-the-fly binary analyzer that examines a
routine’s machine instructions and computes how to unwind a stack frame for the
procedure [23]. For each address in the routine, there must be a recipe for how to
unwind. Different recipes may be needed for different intervals of addresses within



16 N.R. Tallent and J. Mellor-Crummey

the routine. Each interval ends with an instruction that changes the state of the
routine’s stack frame. Each recipe describes (1) where to find the current frame’s
return address, (2) how to recover the value of the stack pointer for the caller’s
frame, and (3) how to recover the value that the base pointer register had in the
caller’s frame. Once we compute unwind recipes for a routine, we memoize them
for later reuse.

To apply our binary analysis to compute unwind recipes, we must know where
each routine starts and ends. When working with applications, one often encoun-
ters partially stripped libraries or executables that are missing information about
function boundaries. To address this problem, we developed a binary analyzer that
infers routine boundaries by noting instructions that are reached by call instructions
or instructions following unconditional control transfers (jumps and returns) that are
not reachable by conditional control flow.

HPCTOOLKIT’s use of binary analysis for call stack unwinding has proven to
be very effective, even for fully optimized code. A detailed study of our unwinder
on versions of the SPEC CPU2006 benchmarks optimized with several different
compilers showed that the unwinder was able to recover the calling context for all
but a vanishingly small number of cases [23].

One particularly useful and novel feature of HPCTOOLKIT’s call path profiles
is that they are enriched with static source code structure. Such call path profiles
are constructed by overlaying hpcrun’s dynamic contexts with static source code
structure computed post mortem by the hpcstruct tool. In an off-line process
called recovering program structure, this tool constructs an object to source code
mapping. As a result, HPCTOOLKIT’s call path profiles expose loops and inlined
frames and attribute metrics to them—all for an average overhead of 1–5 % [23].

2.3 Pinpointing Scaling Bottlenecks

We now present an elegant and powerful way to apply HPCTOOLKIT’s sampling-
based call path profiles to identify scalability bottlenecks in Single-Program
Multiple-Data (SPMD) applications, whether executed on a multicore node or
a leadership-class supercomputer. The basic idea is to compute a metric that
quantifies scaling loss by scaling and differencing call path profiles from a pair
of executions [5, 26].

Consider two parallel executions of an application, one executed on p processors
and the second executed on q > p processors. In a weak scaling scenario,
processors in each execution compute on the same size data. If the application
exhibits perfect weak scaling, then the execution times should be identical on both
p and q processors. In fact, if every part of the application scales uniformly, then
this equality should hold in each corresponding part of the application.

Using HPCTOOLKIT, we collect call path profiles on each of p and q processors
to measure the cost associated with each calling context in each execution.
HPCTOOLKIT’s hpcrun profiler uses a data structure called a calling context tree



2 Using Sampling to Understand Parallel Program Performance 17

Fig. 2.1 Differencing call path profiles to pinpoint scaling bottlenecks

(CCT) to record a call path profile. Each node in a CCT is identified by a code
address. In a CCT, the path from any node to the root represents a calling context.
Each node has a weight w � 0 indicating the exclusive cost attributed to the path
from that node to the root. Given a pair of CCTs, one collected on p processors
and another collected on q processors, with perfect weak scaling, the cost attributed
to all pairs of corresponding CCT nodes should be identical. Any additional cost
for a CCT node on q processors when compared to its counterpart in a CCT for an
execution on p processors represents excess work. This process is shown pictorially
in Fig. 2.1. The fraction of excess work, i.e., the amount of excess work in a calling
context in a q-process execution divided by the total amount of work in a q-process
execution represents the scalability loss attributed to that calling context. By scaling
the costs attributed in a CCT before differencing them to compute excess work,
one can also use this strategy to pinpoint and quantify strong scalability losses [5].
As long as the CCTs are expected to be similar, this analysis strategy is independent
of the programming model and bottleneck cause.

To enable this simple but powerful scalability analysis on the largest class
of supercomputers—and to pave the way for other sampling-based tools such as
OpenjSpeedShop [20] and CrayPat [6]—the HPCTOOLKIT team engaged kernel
developers at IBM and Cray to address shortcomings in their microkernels that
prevented any sort of sampling-based measurement [26]. We have since applied
our scalability analysis to pinpoint synchronization, communication, and I/O bottle-
necks in applications on several large-scale distributed-memory machines. Because
our analysis is based on differencing comparable executions, we have also used it to
pinpoint and quantify scaling bottlenecks on multicore nodes at the loop level [25].

2.4 Blame Shifting

Standard sampling-based measurement identifies symptoms of performance losses
rather than causes. Although some symptoms may have an obvious cause, simply
knowing symptoms is frequently not sufficient to justify a concrete set of actions
for resolving a bottleneck. For example, consider the case of a parallel run time
system with idle worker threads. A standard call path profile will show that the



18 N.R. Tallent and J. Mellor-Crummey

idle threads spend a large percentage of their execution time in a scheduling loop
waiting for work. The cause of these threads’ idleness is that at least some parts of
the application are insufficiently parallel in that they fail to generate enough parallel
tasks to keep other worker threads busy. But which parts? Instead of reporting that
a worker thread frequently idles, it would be better if a tool pinpointed source
code that should generate more parallel tasks to keep idle threads busy. We call
the process of redirecting attribution from symptoms to causes blame shifting.

In general, blame shifting uses either in situ or post mortem analysis to shift the
attribution of metrics from performance symptoms to their causes. The need for
blame shifting is patently obvious because the primary goal of performance tuning
is to find and resolve bottlenecks. However, it is a challenge to make both precise
and accurate causal inferences while inducing minimal measurement perturbation.
This section discusses three types of blame shifting employed by HPCTOOLKIT.

2.4.1 Parallel Idleness and Overhead in Work Stealing

Work stealing is a popular scheduling technique for dynamic load balancing. One
of the most influential versions of work stealing was implemented to support the
Cilk language [8] for shared-memory parallel computing. Cilk—along with its
descendants Cilk++ and Cilk Plus—combines lazy parallel task creation and a work-
stealing scheduler. The Cilk run time maps logically independent asynchronous calls
(tasks) onto worker threads (compute cores) in an efficient way. For a Cilk program
to execute efficiently, an application must generate enough “well sized” parallel
tasks. That is, there should be enough parallel tasks to keep worker threads busy,
but those tasks should be large enough so that the overhead of packaging a task (i.e.,
creating continuations) is insignificant.

The Cilk model challenges existing performance tools. To diagnose causes—not
symptoms—of inefficient execution, a tool must solve at least three problems. First,
a tool must be able to not only detect when worker threads are idling but also identify
the portion of the application causing idleness. Second, a tool must be able to detect
when worker threads, though busy, are executing useless work. Third, a tool must
be able to attribute its conclusions to source code in its calling context. Although
this last challenge may seem trivial, associating costs with the context in which they
are incurred is not as simple as it sounds. With a work stealing scheduler, call paths
become fragmented because procedure frames migrate between worker threads to
balance the work load. Consider a case where thread y steals a task from thread x.
In this case, the procedure frames for a source-level call path become separated
in both space and time: space, because thread x contains y’s parent context; time,
because thread x continues executing rather than blocking and waiting for thread y

to complete the asynchronous call. As a result, a standard call path profile of a Cilk
program yields a result far from what an application developer would expect.

Our solutions to these problems build upon HPCTOOLKIT’s call path profiling.
To attribute metrics to source-level call paths, we developed logical call path



2 Using Sampling to Understand Parallel Program Performance 19

profiling [22, 24], a generalization of call path profiling that maps system-level to
source-level call paths. To form the source-level call paths, we stitch together path
fragments from a thread’s stack and heap data structures.

To identify the causes of insufficient parallelism in Cilk applications, it is
necessary to establish, with minimal measurement overhead, a causal link between
an idling thread and a working thread that does not generate parallel work. We
establish likely suspects using the following scheme [22, 24]. First we make a
slight adjustment to the Cilk run-time to always maintain W and I , the number of
working and idle threads, respectively. This can be done by maintaining a node-wide
counter representing W ; since the number of worker threads T is constant we have
I D T � W . Second, we slightly modify our sampling strategy. If a sample event
occurs in a thread that is not working, we ignore it. When a sample event occurs in
a thread that is actively working, the thread attributes one sample to the work metric
for its sample context. It then obtains W and I and attributes a fractional sample
I=W to the idleness metric for the sample context. Even though the thread itself is
not idle, it is critical to understand what work the thread is performing when other
threads are idle. Our strategy charges the thread its proportional responsibility for
not keeping the idle processors busy at that moment at that point in the program.
As an example, consider taking a sample of a Cilk execution where five threads
are working and three threads are idle. Each working thread records one sample of
work in its work metric, and 3=5 sample of idleness in its idleness metric. The total
amount of work and idleness charged for the sample is 5 and 3, respectively.

To identify parallel overhead in Cilk applications, we must distinguish between
useful work and overhead. Our solution is based on the observation that it is possible
to use static analysis to classify object code instructions as either useful work or
overhead. Thus, HPCTOOLKIT can attribute a precise measure of parallel overhead
to source-level calling contexts for no additional measurement overhead other than
that induced by logical call path profiling [22, 24].

2.4.2 Lock Contention

Locking is the most common means of coordinating accesses while reading and
writing mutable shared data structures in threaded programs. Thus, it is important
that a performance tool pinpoint causes of lock contention.

There are at least two critical differences between performance monitoring for
locks and for Cilk. First, identifying the cause of lock contention requires a more
precise causal connection than with idleness in Cilk. With Cilk it is sufficient to
observe that at any given instant when threads are idle, all working threads can be
thought of as equally culpable for not generating enough parallel work to keep idle
threads busy. In contrast, with locking, any number of threads may be idling because
exactly one working thread holds a lock. Thus, it makes no sense to blame non-lock-
holders for idleness. Second, with many lock-based programs, it is not tenable to
atomically increment and decrement shared counters on every state change within



20 N.R. Tallent and J. Mellor-Crummey

a thread. In a work stealing run time, steals are relatively infrequent. In contrast,
locks may be acquired and released very frequently—and extending key critical
sections with an atomic increment could introduce new bottlenecks. Because of
these differences, the techniques we described for work stealing are insufficient to
offer insight into lock contention. With locks, one must establish causal connections
without significantly increasing critical sections and introducing a new bottleneck.

To solve both problems mentioned above, we use locks themselves as a
communication channel for precise attribution [28]. For now, we limit our attention
to spin (non-blocking) locks. Our technique is based on three rules. First, when
a working thread receives a sample, we increment a thread-local work metric.
Second, when we sample an idle thread spin-waiting for a lock, we (atomically)
increment an idleness metric associated with the lock. The expected number of
samples received for all threads waiting on that particular lock is proportional to
the time spent waiting for that lock. Furthermore, because the expected number
of samples is relatively small when compared with the total number of machine
instructions executed during a long-latency spin-wait, the atomic increments are
relatively inexpensive. Third, when a working thread releases a lock, we associate
all idleness with the lock release point in its full calling context (i.e., as the lock
holder releases the lock, it atomically swaps the idleness counter with 0). In this
way, we precisely blame the lock release point and accurately attribute to it the
idleness that it caused. An important observation is that it is usually straightforward
to identify lock acquire points from release points.

We applied our techniques to the MADNESS quantum chemistry application. For
the particular input we studied, MADNESS represented a significant challenge: it
allocated a total of 65M distinct locks (which were used to implement futures),
had a maximum of 340K live locks at any particular instance in the execution; and
issued an average of 30K lock acquisitions per second per thread. For a monitoring
overhead of a few percent, we found that the primary source of lock contention was
in adding work (futures) to a shared work queue [28].

2.4.3 Load Imbalance

Load imbalance is an important problem in programs based on bulk synchronous
parallelism. Moreover, many load imbalance problems only appear in medium- to
large-scale executions. Even though HPCTOOLKIT can collect detailed call path
profiles in a scalable fashion, with profiles it is often difficult to pinpoint load
imbalance. In contrast, with a trace (which collects performance information with
respect to time) it is relatively easy to identify the effects and possible causes of load
imbalance [31]. However, there are significant challenges to collecting fine-grained
large-scale traces in a scalable fashion.

Exploiting HPCTOOLKIT’s ability to collect large-scale call path profiles, we
developed a post mortem analysis that identifies regions of a call path profile that
cause load imbalance. Our analysis is based on several observations. First, it is



2 Using Sampling to Understand Parallel Program Performance 21

possible to divide an execution into two components: work and exposed (non-sleep)
idleness. Second, idleness that occurs around synchronization points is a symptom
of load imbalance. Third, the causes of load imbalance are typically reflected in
work variability over processes; and for a given procedure or source line in a
call path profile, one can compute statistics over all processes in an execution
that measure variability. Fourth, with layered software, important imbalance and
synchronization points are often context sensitive. For example, an application may
have many calls to MPI Allreduce. While the work between some pairs of
MPI Allreduce operations may be balanced, between other pairs it may not,
causing lightly-loaded threads to idle. Given these observations, we developed a
post mortem blame shifting analysis of call path profiles that identifies exposed
idleness and associates that idleness with possible causes [27].

2.5 Call Path Tracing

Although tracing is a powerful performance-analysis technique, tools that
employ it can quickly become bottlenecks themselves. To avoid large overheads,
instrumentation-based tracing tools typically monitor only a subset of the
procedures in an application. However, even coarse-grained trace data of large-scale
executions quickly becomes unwieldy and a challenge to present. Unfortunately, to
obtain actionable performance feedback for modular parallel software systems, it is
often necessary to have fine-grained context-sensitive data—the very thing scalable
tools avoid. We have developed sampling-based techniques to collect and present
arbitrary slices of fine-grained large-scale call path traces [29].

Figure 2.2 shows a screen shot of HPCTOOLKIT’s presentation tool hpctrace
viewer. As with other tools that present space-time visualizations, time advances
from left to right on a horizontal axis and MPI-rank space advances from top to
bottom on a vertical axis. Unlike other tools, hpctraceviewer’s renderings are
hierarchical. Since each sample in each process’s time line represents a call path,
we can view the process timelines at different call path depths to show more or less
detailed views of the execution. The Figure shows one slice of the process/time/call-
path space at depth 3; the inset shows the selected region at depths 3, 6 and 7.

To collect traces, HPCTOOLKIT exploits a useful property of our CCT data
structure: a full call path can be represented by a single leaf node. Thus, we can
generate a full call path trace by maintaining a CCT and stream of compact trace
records where each trace record is 12 bytes (4-byte CCT node id and an 8-byte
timestamp). For reasonable sampling rates, the data rate of this trace stream is
extremely low. Moreover, because sampling rates are controllable, the granularity
of the trace and its corresponding data volume can scale to very large or long
executions.

To present traces, hpctraceviewer also uses sampling. Given a display
window of height h and width w (in pixels), the tool simply samples the trace
data records to determine how each pixel should be colored. Using sampling,



22 N.R. Tallent and J. Mellor-Crummey

Fig. 2.2 An 8184-core execution of PFLOTRAN on a Cray XT5. The inset exposes call path
hierarchy by showing the selected region (top left) at different call path depths

hpctraceviewer can render call-path depth slices at arbitrary resolutions in
time O.hw log t/, where t is the number of trace records in the largest trace file.
In practice, the log t factor is often negligible because we use linear extrapolation to
predict the locations of the w trace records. The practical upshot of this technique
is that hpctraceviewer can rapidly present trace files of arbitrary length for
executions with an arbitrary number of threads on a laptop.

2.6 Data-Centric Performance Analysis

Sampling-based profilers such as HPCTOOLKIT attribute samples to object and
source code for very low overhead. By exploiting recent hardware support, HPC-
TOOLKIT uses sampling to attribute measurements not only to source code but
also to data objects [13]. With this data-centric attribution, HPCTOOLKIT can
attribute metrics such as memory access latency to program data objects and their
corresponding source code use points—in its full calling context. The results are
especially useful when long-lived data objects are accessed at many places.

2.7 Conclusions

We have found that sampling-based techniques are surprisingly versatile and effec-
tive. Using sampling-based measurement, HPCTOOLKIT can collect exquisitely
detailed call path profiles and traces for an average run-time overhead of less



2 Using Sampling to Understand Parallel Program Performance 23

than 5 %. Using sampling-based presentation, HPCTOOLKIT effortlessly presents
arbitrary slices of large-scale fine-grained call path traces. To make sampling-
based call path profiling of fully optimized applications possible, HPCTOOLKIT

employs a set of innovative techniques to collect call paths at arbitrary points in
an execution (using stack unwinding) and attribute to loops and inlined functions.
In many cases HPCTOOLKIT’s code-centric profiles are sufficient for understanding
performance problems, but for more difficult problems, it is necessary to understand
how aggregate costs arise over time or with respect to data. To pinpoint and
quantify many scaling bottlenecks, it is sufficient to simply compare two or more
call path profiles—accurate call path profiles that show statements in their full
calling context and expose loops. To offer more insight into the causes of scaling
bottlenecks, we developed several problem-focused analyses that shift blame from
a bottleneck’s effects to its causes or potential causes. Because they are based on
sampling, these techniques incur very low measurement overhead and apply to
problems as diverse as lock contention, load imbalance, insufficient parallelism in
work stealing, and parallel overhead. The ability to collect and present accurate,
detailed and problem-focused measurements for large-scale production executions
has enabled HPCTOOLKIT’s use on today’s grand challenge applications: multi-
lingual programs leveraging third-party libraries for which source code and symbol
information are often unavailable.

In many ways, sampling is a perfect fit for performance analysis. One issue with
sampling-based methods is that while they tend to show representative behavior,
they might miss interesting extreme behavior. While this property may limit the
use of sampling in correctness tools, we have not found it to be problematic for
performance tools. The reason is that, assuming an appropriately sized and uncor-
related sample, sampling-based methods expose anomalies that generally affect an
execution. In other words, although using sampling-based methods can miss any
specific anomaly, those same methods will expose the anomaly’s effects if they are
important for performance. If the anomaly does not interfere with the application’s
execution, then it is not particularly important with respect to performance. If on the
other hand, process synchronization transfers the anomaly’s effects to other process
ranks, we expect sampling-based methods to expose that fact.

Acknowledgements HPCTOOLKIT would not be what it is without the efforts of Mark Krentel,
Laksono Adhianto, and Mike Fagan. Xu Liu developed our data-centric analysis.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J.,
Tallent, N.R.: HPCToolkit: Tools for performance analysis of optimized parallel programs.
Concurr. Comput. Pract. Exp. 22(6), 685–701 (2010)

2. Adhianto, L., Mellor-Crummey, J., Tallent, N.R.: Effectively presenting call path profiles
of application performance. In: International Conference on Parallel Processing Workshops,
pp. 179–188. IEEE Computer Society, Los Alamitos (2010)



24 N.R. Tallent and J. Mellor-Crummey

3. Arnold, M., Ryder, B.G.: A framework for reducing the cost of instrumented code. In:
Proceedings of the 2001 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 168–179. ACM, New York (2001)

4. Chung, I.H., Walkup, R.E., Wen, H.F., Yu, H.: MPI performance analysis tools on Blue Gene/L.
In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, p. 123. ACM, New
York (2006)

5. Coarfa, C., Mellor-Crummey, J., Froyd, N., Dotsenko, Y.: Scalability analysis of SPMD codes
using expectations. In: Proceedings of the 21st International Conference on Supercomputing,
pp. 13–22. ACM, New York (2007)

6. De Rose, L., Homer, B., Johnson, D., Kaufmann, S., Poxon, H.: Cray performance analysis
tools. In: Tools for High Performance Computing, pp. 191–199. Springer, Berlin (2008)

7. Free Software Foundation: Glibc. http://www.gnu.org/s/libc/ (2012)
8. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 multithreaded

language. In: Proceedings of the 1998 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 212–223. ACM, New York (1998)

9. Froyd, N., Mellor-Crummey, J., Fowler, R.: Low-overhead call path profiling of unmodified,
optimized code. In: Proceedings of the 19th International Conference on Supercomputing,
pp. 81–90. ACM, New York (2005)

10. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca
performance toolset architecture. Concurr. Comput. Pract. Exp. 22(6), 702–719 (2010)

11. Hollingsworth, J.K., Miller, B.P., Cargille, J.: Dynamic program instrumentation for scalable
performance tools. In: Proceedings of the 1994 Scalable High Performance Computing
Conference, pp. 841–850. IEEE Computer Society, Los Alamitos, CA, USA (1994)

12. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller, M.S.,
Nagel, W.E.: The Vampir performance analysis tool-set. In: Resch, M., Keller, R., Himmler, V.,
Krammer, B., Schulz, A. (eds.) Tools for High Performance Computing, pp. 139–155. Springer,
Berlin (2008)

13. Liu, X., Mellor-Crummey, J.: Pinpointing data locality problems using data-centric analysis.
In: Proceedings of the 2011 IEEE/ACM International Symposium on Code Generation and
Optimization, Chamonix, France, pp. 171–180. IEEE Computer Society, Los Alamitos (2011)

14. Malony, A.D., Shende, S., Morris, A., Wolf, F.: Compensation of measurement overhead in
parallel performance profiling. Int. J. High Perform. Comput. Appl. 21(2), 174–194 (2007)

15. Mellor-Crummey, J., Fowler, R., Marin, G., Tallent, N.: HPCView: a tool for top-down analysis
of node performance. J. Supercomput. 23(1), 81–104 (2002)

16. Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Karavanic,
K.L., Kunchithapadam, K., Newhall, T.: The Paradyn parallel performance measurement tool.
Computer 28(11), 37–46 (1995)

17. Mosberger-Tang, D.: libunwind. http://www.nongnu.org/libunwind (2012)
18. Petrini, F., Kerbyson, D.J., Pakin, S.: The case of the missing supercomputer performance:

achieving optimal performance on the 8,192 processors of ASCI Q. In: Proceedings of the 2003
ACM/IEEE Conference on Supercomputing, p. 55. IEEE Computer Society, Washington, DC
(2003)

19. Rice University: HPCToolkit performance tools. http://hpctoolkit.org (2012)
20. Schulz, M., Galarowicz, J., Maghrak, D., Hachfeld, W., Montoya, D., Cranford, S.:

OpenjSpeedShop: an open source infrastructure for parallel performance analysis. Sci. Pro-
gram. 16(2–3), 105–121 (2008)

21. Shende, S.S., Malony, A.D.: The TAU parallel performance system. Int. J. High Perform.
Comput. Appl. 20(2), 287–311 (2006)

22. Tallent, N.R., Mellor-Crummey, J.: Effective performance measurement and analysis of
multithreaded applications. In: Proceedings of the 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 229–240. ACM, New York (2009)

23. Tallent, N.R., Mellor-Crummey, J., Fagan, M.W.: Binary analysis for measurement and
attribution of program performance. In: Proceedings of the 2009 ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 441–452. ACM, New York (2009)

http://www.gnu.org/s/libc/
http://www.nongnu.org/libunwind
http://hpctoolkit.org


2 Using Sampling to Understand Parallel Program Performance 25

24. Tallent, N.R., Mellor-Crummey, J.M.: Identifying performance bottlenecks in work-stealing
computations. Computer 42(12), 44–50 (2009)

25. Tallent, N., Mellor-Crummey, J., Adhianto, L., Fagan, M., Krentel, M.: HPCToolkit: perfor-
mance tools for scientific computing. J. Phys. Conf. Ser. 125, 012088 (5pp) (2008)

26. Tallent, N.R., Mellor-Crummey, J.M., Adhianto, L., Fagan, M.W., Krentel, M.: Diagnosing
performance bottlenecks in emerging petascale applications. In: Proceedings of the 2009
ACM/IEEE Conference on Supercomputing, pp. 1–11. ACM, New York (2009)

27. Tallent, N.R., Adhianto, L., Mellor-Crummey, J.M.: Scalable identification of load imbalance
in parallel executions using call path profiles. In: Proceedings of the 2010 ACM/IEEE
Conference on Supercomputing, pp. 1–11. IEEE Computer Society, Washington, DC (2010)

28. Tallent, N.R., Mellor-Crummey, J.M., Porterfield, A.: Analyzing lock contention in multi-
threaded applications. In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 269–280. ACM, New York (2010)

29. Tallent, N.R., Mellor-Crummey, J.M., Franco, M., Landrum, R., Adhianto, L.: Scalable
fine-grained call path tracing. In: Proceedings of the 25th International Conference on
Supercomputing, pp. 63–74. ACM, New York (2011)

30. Traub, O., Schechter, S., Smith, M.D.: Ephemeral instrumentation for lightweight program
profiling. Tech. rep., Harvard University (1999)

31. Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Frings, W., Fürlinger, K., Geimer, M.,
Hermanns, M.A., Mohr, B., Moore, S., Pfeifer, M., Szebenyi, Z.: Usage of the Scalasca
toolset for scalable performance analysis of large-scale parallel applications. In: Tools for High
Performance Computing, pp. 157–167. Springer, Berlin (2008)


	Chapter 2 Using Sampling to Understand Parallel Program Performance
	2.1 Introduction
	2.2 Call Path Profiling
	2.3 Pinpointing Scaling Bottlenecks
	2.4 Blame Shifting
	2.4.1 Parallel Idleness and Overhead in Work Stealing
	2.4.2 Lock Contention
	2.4.3 Load Imbalance

	2.5 Call Path Tracing
	2.6 Data-Centric Performance Analysis
	2.7 Conclusions


