
Chapter 12
HiFlow3: A Hardware-Aware Parallel Finite
Element Package

H. Anzt, W. Augustin, M. Baumann, T. Gengenbach, T. Hahn,
A. Helfrich-Schkarbanenko, V. Heuveline, E. Ketelaer, D. Lukarski,
A. Nestler, S. Ritterbusch, S. Ronnas, M. Schick, M. Schmidtobreick,
C. Subramanian, J.-P. Weiss, F. Wilhelm, and M. Wlotzka

Abstract The goal of this paper is to describe the hardware-aware parallel
C++ finite element package HiFlow3. HiFlow3 aims at providing a powerful
platform for simulating processes modelled by partial differential equations. Our
vision is to solve boundary value problems in an appropriate way by coupling
numerical simulations with modern software design and state-of-the-art hardware
technologies. The main functionalities for mapping the mathematical model into
parallel software are implemented in the three core modules Mesh, DoF/FEM and
Linear Algebra (LA). Parallelism is realized on two levels. The modules provide
efficient MPI-based distributed data structures to achieve performance on large
HPC systems but also on stand-alone workstations. Additionally, the hardware-
aware cross-platform approach in the LA module accelerates the solution process
by exploiting the computing power from emerging technologies like multi-core
CPUs and GPUs. In this context performance evaluation on different hardware-
architectures will be demonstrated.

Keywords Parallel finite element software • High performance computing •
Numerical simulation • Hardware-aware computing • GPGPU

12.1 Introduction

Scientific computing and numerical simulations are very important tasks in research,
engineering and development. Mathematics combined with new software design
dedicated to state-of-the-art hardware technologies result in high complexity but

H. Anzt � W. Augustin � M. Baumann � T. Gengenbach � T. Hahn � A. Helfrich-Schkarbanenko �
V. Heuveline (�) � E. Ketelaer � D. Lukarski � A. Nestler � S. Ritterbusch � S. Ronnas � M. Schick �
M. Schmidtobreick � C. Subramanian � J.-P. Weiss � F. Wilhelm � M. Wlotzka
Engineering Mathematics and Computing Lab (EMCL), Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany
e-mail: vincent.heuveline@kit.edu

H. Brunst et al. (eds.), Tools for High Performance Computing 2011,
DOI 10.1007/978-3-642-31476-6 12, © Springer-Verlag Berlin Heidelberg 2012

139



140 H. Anzt et al.

also break new grounds in the area of scientific computing. HiFlow3 [4] is a parallel
hardware-aware finite element software with the goal to provide powerful tools
for the solution of complex problems arising in the area of medical engineering,
meteorology and energy research. A team at the Engineering Mathematics and
Computing Lab (EMCL) at the Karlsruhe Institute of Technology (KIT) is actively
developing the software package. The goal of this paper is to present the concept
of the software and the three core modules. Benchmark results for an advection-
diffusion example comparing different platforms and preconditioners illustrate its
usability and flexibility.

The paper is structured as follows. Chapter 2 outlines the design of HiFlow3.
The core modules are described in more details in Chaps. 3–5. Finally, benchmarks
results for the advection-diffusion example are shown in Chap. 6.

12.2 Motivation, Concepts and Structure of HiFlow3

12.2.1 Fields of Application

A typical application in the research area of medical engineering incorporating
the full complexity of physical and mathematical modeling is the United Airways
project [2]. Within an interdisciplinary framework its objective is the simulation of
the full human respiratory tract including complex and time-dependent geometries
with different length scales, turbulences, fluid-structure interaction (e.g. fine hairs
and mucus), and effects due to temperature and moisture variations. Due to the
complex interaction of the different physical effects it is a great challenge to define
robust numerical methods giving accurate simulation results.

12.2.2 Flexibility

The conceptual goal of HiFlow3 is to be a flexible multi-purpose software package.
Its modular, transparent and documented structure tries to enable the user to set up
a wide range of scenarios with reasonable effort. The core of HiFlow3 is divided
into three main modules: Mesh, DoF/FEM and LA; see Fig. 12.1. These three core
modules are essential for the solution procedure which is based on the finite element
method (FEM) for partial differential equations (PDEs). They are supplemented by
other building blocks consisting of e.g. routines for numerical integration, matrix
assembly, inclusion of boundary conditions, setting up nonlinear and linear solvers,
providing data output for visualization of solutions and error estimators.



12 HiFlow3: A Hardware-Aware Parallel Finite Element Package 141

Fig. 12.1 Structure of the
HiFlow3 core divided into
modules and methods

12.2.3 Performance, Parallelism, Emerging Technologies

The huge demand on fast and accurate simulation results for large-scale problems
poses considerable challenges on the implementation on modern hardware. Super-
computers and emerging parallel hardware like GPUs offer impressive computing
power in the range of Teraflop/s for desktop supercomputing up to Petaflop/s for
cutting edge HPC machines. Therefore, an important goal associated with the
design of HiFlow3 is the full utilization of the available resources on heterogeneous
platforms ranging from large HPC systems to a stand-alone workstation or a
coprocessor-accelerated machine. To achieve this goal each core module is in itself
parallel. An MPI-layer [12] realizes the communication between different nodes and
processors. Furthermore, a hardware-aware computing concept, see Sect. 12.2.4,
is implemented on the linear algebra level. This concept and all modules are laid
out with respect to scalability in a generic sense. The design of HiFlow3 aims
at obtaining high standards with respect to the efficiency without sacrificing the
flexibility of the software.

12.2.4 Hardware-Aware Computing

Hardware-aware computing is a multi-disciplinary approach to identify the best
combination of applications, physical models, numerical schemes, parallel algo-
rithms, and platform-specific implementations that gives the fastest and most
accurate results on a particular platform [3]. Since hardware design and mathe-
matical cognition give rise to different implementation concepts, hardware-aware
computing also means to find a balance between the associated opponent guiding
lines while keeping the best mathematical quality. All solutions need to be designed
in a reliable, robust and future-proof context. The goal is not to design isolated
solutions for particular configurations but to develop methodologies and concepts
that preferably apply to a wide range of problem classes and architectures or that
can be easily extended or adapted. The HiFlow3 project realizes related concepts in
the framework of the local multi-platform LAtoolbox [5, 6] within the LA module.
Its use of specific implementations of basic routines like local matrix-vector and
advanced preconditioning techniques is aimed at exploiting the available computing
power of emerging technologies like multi-core CPUs, graphics processing units



142 H. Anzt et al.

(GPUs) and multi-GPUs. The structure provided by the LA module allows to build
solvers without having detailed information on the underlying platform.

12.3 Mesh Module

The Mesh module provides a set of classes which can be used to represent the
computational mesh in a finite element problem. In this section, the main ideas and
features of the module are summarized. A more detailed description can be found
in [13].

A mesh is a partitioning of a domain into a set of non-overlapping cells. Sup-
ported cell types are triangles and quadrilaterals in 2D, and tetrahedra and hexahedra
in 3D. The description of the supported shapes are encapsulated in a class hierarchy,
whereas the rest of the code is independent of the type and dimension of the cells.

The module can also represent lower-dimensional entities, such as edges and
faces. The computation and storage of incidence relations between entities, which
together make up the topology of the mesh, is performed in a way that closely
follows the approach described in [11].

The geometry of the mesh is defined by assigning coordinates to each vertex, but
the extension to more complete representations that could handle cells with curved
faces is also possible.

The functionality provided through the Mesh module can be divided into three
categories: queries, modifications and communication. The first category includes
functions to iterate over the various entities and the topological incidence relations
between them; as well as access to the geometrical information and other attributes
associated with the entities such as material numbers. The modifying functionality
includes creation, refinement and coarsening. A mesh can be created by specifying
it entirely in code, or by reading a file. The AVS UCD [1] and VTK [15] formats
are supported. For efficient I/O of large meshes, the module supports reading and
writing of parallel VTK files. Refinement and coarsening does not have to be
uniform, and there is functionality for dealing with the hanging nodes that arise
as a result of local refinement.

For large-scale computations, the mesh might not fit into the memory of each
process. For this reason, the HiFlow3 Mesh module makes it possible to work with
meshes that are distributed across a cluster of computers, as shown in Fig. 12.2.

Support for distributed meshes is provided by the functions in the communication
layer. A distributed mesh is represented by a set of local mesh objects, one on
each process. The communication functionality is external to these objects, which
themselves are not aware that they are part of a larger, global mesh. This has the
advantage that calls to query and modification functions are local to each process,
and do not require communication, which facilitates their implementation and use.

The information about how the parts of the global mesh are connected is provided
through a data structure that keeps track of which vertices are shared with other
processes, and maps vertex identities between processes. With this structure on
hand, it is also possible to identify shared entities of higher dimension.



12 HiFlow3: A Hardware-Aware Parallel Finite Element Package 143

Fig. 12.2 A mesh of a
human nose distributed in 16
stripes

Fig. 12.3 A part of a mesh
with the ghost layer

To facilitate the exchange of specific information required for finite element
assembly, the Mesh module can also compute and communicate a layer of over-
lapping “ghost cells”, which can be appended to each local mesh (see Fig. 12.3).

Different strategies can be used when deciding how to divide a mesh between
the processes. Currently, the best option is to link via a provided interface to the
popular graph partitioning library METIS [10].This enables the computation of a
well-balanced partitioning of the mesh over the available processes.

12.4 DoF/FEM Module

In the context of FEM solutions are expressed in terms of linear combinations
of some chosen shape functions defined on mesh cells. The degrees of freedom
(DoF), which can easily count up to millions of unknowns, represent the number of
parameters that define such a discrete function. To this end, local basis functions
are defined on reference cells which are mapped into the physical space using
transformations, see Fig. 12.4.

12.4.1 Submodules

The FEM submodule is dedicated to represent a finite element ansatz in a generic
way to ensure extensibility at low memory costs, but still to enable high perfor-
mance assembly. The basic concept lies in defining three major classes FEType,



144 H. Anzt et al.

Fig. 12.4 Transformations ˚ and � map DoF points of biliinear and biquadratic finite element
ansatz from reference cells to cells A and B of the mesh, respectively

Fig. 12.5 Overview of classes for description of finite element functions

FEManager and FEInstance, see Fig. 12.5. FEType is an interface class that
represents a specific continuous or discontinuous finite element ansatz on a defined
reference cell by utilizing the design-pattern singleton stored within FEInstance.
For establishing the mapping between a tuple of a mesh cell and a variable to their
corresponding singleton, only references are stored. This mapping and all interfaces
to out-of-module classes are managed by the FEManager.

Many practical relevant problems require a great number of DoFs (up to
millions). These DoFs need to be numbered and interpolated in a unique way
depending on arbitrary combinations of finite element ansatz on neighboring cells.
One major task of the DoF submodule is to create a mapping between a local DoF
Id and a global (mesh wide) DoF Id given by the local numbering strategy in the
FEM submodule. The second major task is to interpolate those DoFs, which are
restricted due to conditions provided by FEM and cannot be identified. The DoFs in
any cell of the considered mesh are determined by a transformation [14] that maps
the reference cell to the chosen physical cell and thereby defines the location of the
DoF points (see Fig. 12.4).



12 HiFlow3: A Hardware-Aware Parallel Finite Element Package 145

12.4.2 Partitioning

In a domain decomposition setup, i.e. several processes are used for the solution
of one single domain, each part of the domain (subdomain) is dedicated to one
process using MPI. Again a unique DoF numeration of all DoFs in the global
domain must be determined. For good scaling properties, a parallel and distributed
handling of the DoFs is needed, i.e. each process manages the DoFs that are
connected to the cells lying in its domain and the class DofPartition is
used to create the correspondence with other subdomains from other processors
via MPI communication. Each subdomain has information of the neighboring
domains by the ghost cells which is a read-only copy of the neighboring cells
(one layer neighborship of the processor’s subdomain). To create a DoF numbering
with (domain-) global Ids, each process determines in a first step a consecutive
numbering of the DoFs within its subdomain, whereas also the ghost layer is treated
as if it would belong to the subdomain. The antiquated information stored in this
layer must be updated via communication. Hereby, a decision needs to be made,
whether a DoF lying on the skeleton of the domain belongs to a subdomain or not,
i.e. this DoF is lying on two subdomains, which are sharing it. The implemented
procedure states, that the subdomain represented by a unique lower subdomain Id
will own the DoF.

12.5 Linear Algebra Module

The LA module handles the basic linear algebra operations and offers linear solvers
and preconditioners. It is implemented as a two-level library. The upper (or global)
level is an MPI-layer which is responsible for the distribution of data among
the nodes and performs cross-node computations, e.g. scalar products and sparse
matrix-vector multiplications. The lower (or local) level takes care of the on-node
routines offering an interface independent of the given platform.

The MPI-layer of the LA module takes care of communication and computations
in the context of FEM. Given a partitioning of the underlying domain (handed over
by the mesh module, see Sect. 12.3) the DoF module (see Sect. 12.4) distributes
the DoFs according to the chosen finite element approach. This results in a row-
wise distribution of the assembled matrices and vectors. Each local sub-matrix is
divided into two blocks: a diagonal block representing all couplings and interactions
within the subdomain, and an off-diagonal block representing the couplings across
subdomain interfaces.

The highly optimized BLAS 1 and 2 routines are implemented in the local
multi-platform linear algebra toolbox (lmpLAtoolbox) which is acting on each
of the subdomains. By using unified interfaces as an abstraction of the hardware
we provide easy-to-use access to the underlying heterogeneous platforms. In this
respect the application developer can utilize the LA module without any knowledge



146 H. Anzt et al.

Fig. 12.6 Structure of the lmpLAtoolbox and LA module for distributed computation and node-
level computation across several devices in a homogeneous and heterogeneous environment

of the hardware and the system configuration. The final decision on which specific
platform the application will be executed can be taken at run time. Currently, the
lmpLAtoolbox support sequential, OpenMP parallel and Intel MKL CPU versions,
NVIDIA GPU version and OpenCL back-end which provides access to ATI and
NVIDIA GPUs. Due to the flexible design of the library we can add a new back-end
and still use the same solvers without modifying them.

The layered structure and organization of both the LA module and the lmpLA-
toolbox is depicted in Fig. 12.6. It shows a high-level view of distributed communi-
cation and computation across nodes and the node-level computation across several
devices in a heterogeneous environment. Details on software description and on the
design, as well as performance benchmarks on several platforms can be found in
[5, 6, 9].

Due to the modular setup and the consistent structure, the lmpLAtoolbox can
be used as a standalone library independently of HiFlow3. It offers a complete
and unified interface for many hardware platforms. Hence, the LA module not
only offers fined-grained parallelism but also flexible utilization and cross-platform
portability.

12.5.1 Linear Solvers and Preconditioners

The LA module offers a high-level of abstraction by providing unified interfaces for
basic matrix and vector routines. Platform-specific implementations are transparent
to the user. Thus, linear and non-linear solvers can be implemented easily and
generically without any information on the underlying hardware platform while
keeping platform-adapted and tuned code. The default solvers in HiFlow3 are
preconditioned and non-preconditioned Krylov subspace solvers like – CG and



12 HiFlow3: A Hardware-Aware Parallel Finite Element Package 147

GMRES. For the GPU implementation of the CG solver we offload all of the vector
and matrix operations on the device [5, 6], while for the GMRES solver we use
hybrid-parallel approach where the basic vector and matrix routine are offloaded
but the Krylov subspaces in still build on the CPU [9].

On the node level, we provide very fined-grained parallel preconditioners based
on additive, multiplicative (incomplete LU-factorization) and approximate inverse
techniques. In order to obtain high degree of parallelism we use multi-coloring
decomposition of the matrix for the additive preconditioner and for the ILU(0). For
the incomplete factorization with fill-ins we provide new technique for controlling
the additional fill-in entries – power(q)-pattern method [8]. By using this algorithm
we can execute in parallel the forward and backward sweeps of the LU matrix. An
example for a Poisson problem solved with matrix-based multigrid method and with
preconditioned CG solver based on HiFlow3 are reported in [7].

12.6 Example: Advection-Diffussion Equation

The goal of this section is to show the simulation workflow in HiFlow3 and
benchmark results for different platforms and preconditioning techniques. As an
example the well known advection-diffusion equation is chosen. We aim to find
u 2 H 1

0 .˝/ WD fv 2 H 1.˝/ W vj@˝ D 0g such that

Algorithm 3 Overall structure of the advection diffusion simulation
Read mesh, refine and distribute to all processors (Mesh).
Number the DoFs using a defined finite element space (DoF/FEM).
Assemble the system matrix and right-hand-side vector (LA).
Incorporate Dirichlet boundary conditions.
Prepare preconditioners.
Solve system by (preconditioned) linear solver.
Visualize solution.

�.ru; r�/ C .ˇ � ru; �/ D .f; �/ 8� 2 H 1
0 .˝/; (12.1)

where .�; �/ denotes the L2.˝/ scalar product, ˝ 2 Rd .d D 2; 3/ is a Lipschitz
domain and f 2 L2.˝/ given. � 2 R represents the diffusion coefficient and
the vector ˇ 2 Rd the direction of transport and information flow. Numerical
oscillations may occur for small diffusion coefficients, i.e. kˇk2 � �. In order to
prevent this, � and ˇ are chosen depending on the characteristic mesh size h such
that for the Peclet number P e (see [9] and references therein) holds:

P e D hkˇk2

�
< 1:



148 H. Anzt et al.

0

5

10

15

20

CPUseq CPUOpenMP GPU 2xGPUs

S
pe
ed
up

Speedup

Jacobi
GS
SGS
ILU(0)

ILU(1,2)

0

5

10

15

20

25

30

35

40

45

CPUseq CPUOpenMP GPU 2xGPUs

S
pe
ed
up

Speedup

Jacobi
GS
SGS
ILU(0)

ILU(1,2)

Fig. 12.7 Speedup comparing different platforms (eight cores CPU, 1� GPU, 2 � GPU) w.r.t. to
single core CPU (left) and speedup of different preconditioners (Multi-colored (symmetric) Gauss-
Seidel and ILU(0), and power(q)-pattern ILU(1; 2)) on the four different platforms w.r.t. Jacobi
preconditioner (right)

For the finite element solution procedure the following steps have to be per-
formed to map the weak formulation of advection diffusion example (12.1) to
HiFlow3, see Algorithm 3. In a preprocessing step the domain of interest is
discretized by means of a finite element triangulation. The spatial grid is read in,
adjusted by global refinement, partitioned using the external library METIS [10] and
distributed via MPI. Then, a problem-adapted finite element space with appropriate
ansatz functions is chosen. Once these two information are provided a unique global
numbering of the DoFs is determined. In the case of distributed memory platforms
the DoF-partitioner is used to create the global numbering throughout the whole
computational domain by only using its local information and MPI communication
across the nodes. In the next step the linear non-symmetric system matrix and the
vector for the right hand side can be assembled by local integration over all elements
within the triangulation. Data structures for matrices and vectors are provided by
the LA module. An adequate linear solver for non-symmetric matrices is combined
with different preconditioners to solve the linear system. Finally, output in either
sequential or parallel format is provided for the visualization.

12.6.1 Numerical Results and Benchmarks

The numerical experiments on multicore-CPUs and multi-GPU configurations are
performed on a dual-socket Intel Xeon (E5450) quad-core platform equipped with
an NVIDIA Tesla S1070 system providing two GPUs per socket. The memory
capacity of the host CPU system is 16 GB and 4 � 4 GB for the GPUs. We are
only using two GPUs associated with a single socket. All simulations are performed



12 HiFlow3: A Hardware-Aware Parallel Finite Element Package 149

Table 12.1 Number of iterations and solving time of the preconditioned GMRES solver. With (*)
we denote when the number of iterations exceeds 100,000 and in this case we stop the solver

No
precond Jacobi GS SGS ILU(0) ILU(1, 2)

Sequential # its * 40,103 10,035 6,122 2,185 792
time [s] 28179.3 11722.7 4132.7 3097.6 1105.8 686.1

OpenMP #its * 41,871 10,850 6,238 2,185 792
time 7301.0 3364.1 1381.1 970.8 333.8 184.7

GPU #its 84,800 44,106 10,642 6,050 2,243 792
time [s] 3747.8 1982.2 550.7 369.9 136.1 73.2

2 GPUs #its 87,503 41,618 12,176 10,024 2,571 1,031
time [s] 2889.2 1057.5 356.5 344.0 87.1 53.2

in double precision. For the numerical experiments we consider an exact solution
given in 2 dimensions by

u.x; y/ D x
eˇ1x � eˇ1

eˇ1
sin.�y/; .x; y/ 2 ˝ D .0; 1/ � .0; 1/:

The unit square is discretized by quadrilaterals and globally refined such that
h D 1

29 . Q2 Lagrangian finite elements ansatz function are chosen, which leads to
1; 0252 D 1; 050; 625DoFs. The non-symmetric system matrix has 16�106 non-zero
entries. We use the iterative (preconditioned) GMRES method to solve the problem
[10]. The stop criteria for the solver is set to a relative tolerance of 10�6, which
results for the chosen benchmarks settings in an absolute tolerance about 10�9.

The number of iterations and the performance times for the sequential, OpenMP,
one and two GPUs are shown of Table 12.1. Clearly, the problem is very ill
conditioned and the system is hard to solve without preconditioning. When solving
this system on different parallel architectures due to the parallel reduction and the
different distribution of the floating-point errors, we obtain different number of
iterations. This may be avoided by applying a ‘good’ preconditioner, leading to a
well-conditioned system. The corresponding speedup factors for parallel execution
and for different preconditioners are presented on Fig. 12.7. The speedup depends
on the utilization of the available bandwidth of the platforms – with one core we
can utilize one fourth of the bandwidth and therefore the OpenMP implementation
is three to four times faster then the sequential version on the CPU. The GPU
implementation however is about 9–13 times faster. The speedup profile of the
preconditioners is the same for the sequential, OpenMP and GPU version – this
is an important characteristic predominant with the high degree of parallelism of
our preconditioners.

For the two GPUs case we apply the preconditioners in the block-Jacobi fashion
with two blocks for each GPU. Doing so we decrease the coupling of the precon-
dition matrix, thereby increasing the number of iterations. Even though with two
GPUs we may utilize twice the bandwidth, this limits the speedup to less than two.



150 H. Anzt et al.

12.7 Conclusion

The creation of a multi-purpose finite element software package that is portable
across a wide variety of platforms including emerging technologies like hybrid CPU
and GPU platforms is a challenging and multi-facetted task. The modules Mesh,
DoF/FEM and Linear Algebra complemented by auxiliary routines and interfaces
provide a broad suite of building blocks for development of modern numerical
solvers and application scenarios. The user is freed from a detailed knowledge of
the hardware – one only has to familiarize with the provided interfaces and needs to
customize the available modules in order to adapt HiFlow3 to his domain-specific
problem settings.

With hardware-aware solvers HiFlow3 allows to compute the linear system
of differential equations on different back-ends with single source code for all
platforms. Besides the solvers, HiFlow3 provides very fined-grain parallel precon-
ditioners for multi- and many-core platforms and to our best knowledge is the first
software package providing incomplete LU factorization preconditioners on the
GPU devices.

Acknowledgements The Shared Research Group 16-1 received financial support by the Concept
for the Future of Karlsruhe Institute of Technology in the framework of the German Excellence
Initiative and the industrial collaboration partner Hewlett-Packard. The United Airways project
thanks the Städtisches Klinikum Karlsruhe for providing us with CT-data for the simulations of
medical processes.

References

1. Advanced Visual Systems [AVS]: http://help.avs.com/Express/doc/help/reference/dvmac/
UCD Form.htm

2. Baron, L., Gengenbach, T., Henn, T., Heppt, W., Heuveline, V., Kratzke, J., Krause, M.J.:
United airways: numerical simulation of the human respiratory system. http://www.united-
airways.eu (2011)

3. Buchty, R., Heuveline, V., Karl, W., Weiss, J.P.: A Survey on Hardware-aware and Hetero-
geneous Computing on Multicore Processors and Accelerators. EMCL Preprint Series. KIT,
Karlsruhe (2009)

4. Heuveline, V., et al.: HiFlow3 – A Flexible and Hardware-Aware Parallel Finite Element
Package. EMCL Preprint Series. KIT, Karlsruhe (2010)

5. Heuveline, V., Lukarski, D., Weiss, J.P.: Scalable multi-coloring preconditioning for multi-core
CPUs and GPUs. In: UCHPC’10, Euro-Par 2010 Parallel Processing Workshops, vol. 6586,
pp. 389–397. Springer/LNCS, Heidelberg (2010)

6. Heuveline, V., Subramanian, C., Lukarski, D., Weiss, J.P.: A multi-platform linear algebra
toolbox for finite element solvers on heterogeneous clusters. In: PPAAC’10, IEEE Cluster
2010 Workshops. Heraklion, Crete, Greece (2010).

7. Heuveline, V., Lukarski, D., Trost, N., Weiss, J.P.: Parallel Smoothers for Matrix-Based
Multigrid Methods on Unstructured Meshes Using Multicore CPUs and GPUs. EMCL Preprint
Series. KIT, Karlsruhe (2011)

http://help.avs.com/Express/doc/help/reference/dvmac/UCD_Form.htm
http://help.avs.com/Express/doc/help/reference/dvmac/UCD_Form.htm
http://www.united-airways.eu
http://www.united-airways.eu


12 HiFlow3: A Hardware-Aware Parallel Finite Element Package 151

8. Heuveline, V., Lukarski, D., Weiss, J.P.: Enhanced Parallel ILU(p)-Based Preconditioners for
Multi-core CPUs and GPUs – The Power(q)-Pattern Method. EMCL Preprint Series. KIT,
Karlsruhe (2011)

9. Heuveline, V., Subramanian, C., Lukarski, D., Weiss, J.P.: Parallel preconditioning and
modular finite element solvers on hybrid CPU-GPU systems. In: Proceedings of ParEng 2011,
Paper 36. Civil-Comp Press, Stirlingshire (2011)

10. Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1999)

11. Logg, A.: Efficient representation of computational meshes. Int. J. Comput. Sci. Eng. 4(4),
283–295 (2009)

12. MPI Forum: MPI: a message-passing interface standard. Version 2.2. Available at: http://www.
mpi-forum.org (2009)

13. Ronnas, S., Gengenbach, T., Ketelaer, E., Heuveline, V.: Design and Implementation of
Distributed Meshes in HiFlow3. In: Proceedings of CiHPC 2010, Schwetzingen. Proceedings
of CiHPC 2011. (accepted)

14. Schieweck, F.: A General Transfer Operator for Arbitrary Finite Element Spaces. Magdeburg
University, Magdeburg (2000)

15. VTK – The Visualization Toolkit: http://www.vtk.org/

http://www.mpi-forum.org
http://www.mpi-forum.org
http://www.vtk.org/

	Chapter 12 HiFlow3: A Hardware-Aware Parallel Finite Element Package

	12.1 Introduction
	12.2 Motivation, Concepts and Structure of HiFlow3
	12.2.1 Fields of Application
	12.2.2 Flexibility
	12.2.3 Performance, Parallelism, Emerging Technologies
	12.2.4 Hardware-Aware Computing

	12.3 Mesh Module
	12.4 DoF/FEM Module
	12.4.1 Submodules
	12.4.2 Partitioning

	12.5 Linear Algebra Module
	12.5.1 Linear Solvers and Preconditioners

	12.6 Example: Advection-Diffussion Equation
	12.6.1 Numerical Results and Benchmarks

	12.7 Conclusion
	References


