
Chapter 11
Temanejo: Debugging of Thread-Based
Task-Parallel Programs in StarSS

Rainer Keller, Steffen Brinkmann, José Gracia, and Christoph Niethammer

Abstract To make use of manycore processors and even accelerators, several
parallel programming paradigms exist, such as OpenMP, CAPS HMPP and the
StarSs programming model. All of these programming models provide the means
for programmers to express parallelism in the source code, identifying tasks and
for all but OpenMP the dependency between those, allowing the compiler and the
runtime to schedule tasks onto multiple concurrent executing entities, like threads
in a many-core systems. While the programmer may have a good overview of which
parts of the code may be run independently as separate tasks on a fine granular level,
the overall execution behavior may not be obvious at first. This paper describes the
usability features of the newly developed Temanejo debugger.1

11.1 Introduction

Parallel programming adds another level of complexity in every respect, especially
when debugging the application. Different parallel programming models have dif-
ferent perspectives in that regard – parallel programming models based on processes
allow having debuggers attach to each individual process. For programming models
that are based on threads, finding bugs is a more difficult feat due nature of threads.
In Unix environments, threaded programs share resources such as signals, file

1This work was supported by the European Community’s Seventh Framework Programme [FP7-
INFRASTRUCTURES-2010-2] as project grant “Toward Exaflop Applications” (TEXT) under
grant agreement number 261580.

R. Keller (�) � S. Brinkmann � J. Gracia � C. Niethammer
HLRS, Nobelstrasse 19, Stuttgart, Germany
e-mail: keller@hlrs.de; brinkmann@hlrs.de; gracia@hlrs.de; niethammer@hlrs.de

H. Brunst et al. (eds.), Tools for High Performance Computing 2011,
DOI 10.1007/978-3-642-31476-6 11, © Springer-Verlag Berlin Heidelberg 2012

131

132 R. Keller et al.

� �

#include <stdio.h>

#pragma css task input(a) output(out)
void fib (int a, int �out) f

int tmp1, tmp2;
if (a <= 1)

�out = 1;
else f

fib (a�1, &tmp1);
fib (a�2, &tmp2);
�out = tmp1 + tmp2;

g
g
int main(void)
f

int var = 50;
int result ;

#pragma css start
fib (var�1, &result) ;

#pragma css finish
printf (” fib (%d) = %dnn”, var, result) ;
return 0;

g
� �

Listing 11.1 StarSs example of parallel, recursive Fibonacci computation

descriptors, and most importantly the memory address space. In order not to create
race conditions, multiple threads need to synchronize access to shared resources.

The StarSs programming model [5] allows to specify tasks and their inter-
dependencies by annotating the sequential code using pragma statements (in C)
and comments (Fortran). Code 25 shows an example written in C, with the StarSs
statements being followed by the css pragmas.2

While compilers not supporting StarSs ignore the pragmas in Code 25, BSC’s
SmpSs compiler generates wrapper functions out of the specified tasks, with the
StarSs runtime scheduling the tasks to threads calling these wrapper functions,
which then invoke the underlying code generated by the host-compiler. The threads
are beingcreated upon the entering of the start section. Currently, the C, C++ and
Fortran77 and Fortran90 languages are supported – of course, due to it’s thread-
parallel nature, several unsafe practices may not be used in the taskified code,
such as C’s long-jumps, unprotected access to shared resources (mainly global
memory), C++ exceptions, or in Fortran unprotected access to common blocks or
passing temporary arrays. As with OpenMP the details of the underlying Thread-
model (Posix Threads, Solaris Threads) [4] as well as the semantics of the Memory
Model [1] are left to the compiler. Similar to OpenMP, the StarSs programming

2The acronym css is due to BSC first developing the SuperScalar compilers for the IBM Cell.

11 Debugging with Temanejo 133

Fig. 11.1 Interaction between StarSs runtime, Ayudame and Temanejo

model allows incremental parallelization of the application, focusing first on large,
independent tasks, leaving the source code’s structure mostly intact – even more
so, as soon as future compiler releases allow taskifying code sequences within
functions.

The StarSs’ runtime handles the dependency tracking using the parameter’s
address being passed to the task. As soon as all input dependencies are being met, the
task may be scheduled to run. Compared to the classical OpenMP approach focusing
on parallelising large loops, StarSs allows a much more dynamic execution, possibly
making better use of resources. As will be shown below, the task-graph is a directed
acyclic graph, which is dynamically generated at runtime. This graph may become
very large and is executed non-deterministically.

However, this non-determinism may create problems when debugging the
application. In this paper, we will revisit the Temanejo-debugger [2], developed at
the High Performance Computing Center Stuttgart (HLRS) within the frame of the
TEXT project.

11.2 Implementation

The graphical debugger Temanejo3 is logically separated from the library that
interacts with the runtime, the so-called Ayudame-library.4 This separation allows
to attach to SMPSs instances running on compute nodes, with limited capabilities,
having the graphical display of tasks on the programmer’s workstation. Ayudame
provides multiple hooks for the runtime, e.g. to retrieve the number and names of
tasks in the parallel section and API to steer the runtime. Figure 11.1 shows the
interaction of the library Ayudame, here being LD_PRELOADed to the run-time,
in order to satisfy the callbacks into the hooks. The Master Thread here stands for

3Spanish for ‘I Handle You’.
4Spanish for ‘Help me’.

134 R. Keller et al.

Fig. 11.2 Screenshot of the Temanejo GUI zoomed in, while debugging a LU-factorization
example

SMPSs’ runtime scheduling the tasks. The data exchanged between the Ayudame
library and the Temanejo debugger is kept lean as a binary protocol, in principle
allowing to attach and detach from the debugged process. The communication is
currently done using TCP. If the user issues commands from the Temanejo GUI, it
is being forward to the Ayudame library as a requests, which then relays it to the
runtime. All the events on the run-time site are being collected and buffered to be
sent in chunks via a separate thread decoupling the runtime and the GUI. On the
GUI’s side again data is received in a separate thread analyzing the event changes
and updating the graphical representation.

11.3 Debugging Capabilities

Debugging implies seeing, understanding and intercepting the execution of an
application. The Temanejo debugger allows programmers to visualize even large
task graphs and efficiently interact with the run-time to analyze large applications.

Figure 11.2 presents a screenshot (edited for better printing) of Temanejo, here
with full detail and heavily zoomed to enlarge the features of this graph.

Each task is visualized by a node in the main window of Temanejo. The user
may zoom and drag through the main window and click on single nodes, aka the
tasks, offering further functionality as described later. The node’s color and shape
by default encode the task’s function and when the task is scheduled and running,
the actual thread number it is running on. Moreover, the screenshot in Fig. 11.2
additionally shows the dependencies including the address of the dependency.

11 Debugging with Temanejo 135

Fig. 11.3 Symbols
representing the states within
the life-time of a task, each
change in state will generate
an event in Ayudame

This nicely visualizes the applications capabilities in terms of parallel execution,
e.g. narrow graphs represent situations in the execution where little opportunities
for parallelism exist.

The node’s border or margin encodes the tasks state Fig. 11.3 shows Temanejo’s
representation of the task state life-cycle. Tasks change their state upon the
following conditions and emit the following event (numbering corresponding to
Fig. 11.3):

1. If all input dependencies are fulfilled, the task may be enqueued.
2. If the task is being dequeued from the runable queue it is scheduled for execution

to a thread.
3. If the task is finished running, another event is being generated to update the

display. In reality it is being dropped from all queues.
4. At last, the tasks depending on the output of the finished tasks are being notified.

With the left-most pane of the display, the visualization attributes of the main
window may be changed. Switching away from the default of the task’s function,
one may encode the executing thread (instead of it’s shape), to distinctly visualize
the likelihood of threads executing “close” tasks (the SMPSs runtime assumes
dependent tasks benefit from data reusing the cache). Furthermore, one may set
the node’s color as it’s execution time, showing specifically long-running tasks
after the execution. Within large numbers of tasks the graph may get very bloated.
Using the navigation controls, one may jump to a specific task and within the
left-most pane change the node’s color to encode the distance to the selected
node allowing visual control of which subtree of the graph will remain dominant
consumer of CPU time until the node in question will be executed.

In the toolbar, the application may be steered. By default, after attaching, the
runtime is stopped from executing further tasks. The user may single-step through
the application, receiving control over the SMPSs runtime after each schedule.
Furthermore one may execute ten tasks at a time (or a setable number of steps)
and regain control afterwards with a possibly drastically changed graph (due to
new, added nodes, or lots of dependencies being cleared and many more tasks in
runnable state). A nice feature to interact with the application developer is the export

136 R. Keller et al.

functionality, allowing single screenshots of the current graph and even movie
generation of evolving task graphs.

The Ayudame Debug output in the lower right corner shows all the events emitted
by the Ayudame library in human readable text, allowing easy searching for task
numbers if executing multiple tasks at a time.

Most importantly a debugger will allow steering the application. Since Temanejo
is not a full-fledged low-level debugger, the underlying system-debugger, here gdb,
is being integrated. One may at any time attach to a task with the gdb, opening
another terminal and from there use the usual techniques to query memory’s state,
reset variables and single-step through the binary. Temanejo helps in that regard,
that the actual function and not the wrapper function is being attached to.

11.4 Related Work

Debugging multiple threads with it’s many types of possible faults allows for a
multitude of solutions. The standard tools required for debugging are traditional
debuggers such as the GNU debugger (gdb); it allows switching between multiple
threads or issuing specific commands using the thread keyword. However, to gdb
the tasklets being created are functions of different name (including line number
information).

Temanejo aims at a higher level visualizing and steering the task-graph’s
execution. Still, it relys on the underlying debugger, like gdb to attach to the
generated functions to debug the actual source code.

An important class of faults are unprotected access to memory shared between
threads. As of now, this class of bugs may not be found with our tool. However, using
techniques similar to the valgrind- and pin-based tools developed in [3], accesses
to global memory areas registered prior to starting the tasks could be tracked and
checked for unordered access. There has been recent work by BSC to detect memory
overrun and access errors of parameters passed to tasklets using the valgrind-
tool.

11.5 Outlook

The tool has proven useful to programmers of StarSs-parallelized applications. We
aim to extend the tool in other scenarios, such as debugging OpenMP tasking
constructs, even though much of the visual capabilities for dependency tracking
is lost. There are endeavours to abstract the Ayudame library in order to fit into a
Pthread-based custom runtime system in order to visualize a large-scale numerical
simulation. Moreover we hope to make good use of extended three-dimensional
visualization, where one attribute leads to different panes in the third dimension,
allowing spatial separation for better control of large graphs.

11 Debugging with Temanejo 137

Acknowledgements We would like to thank Barcelona Supercomputing Center (BSC) and the
partners in the TEXT project for their support in the development of their compiler suite.

References

1. Adve, S.V., Boehm, H.J.: Memory models: a case for rethinking parallel languages and
hardware. Commun. ACM 53(8), 90–101 (2010). doi: 10.1145/1787234.1787255

2. Brinkmann, S., Gracia, J., Niethammer, C., Keller, R.: Temanejo – a debugger for task based
parallel programming models. In: Proceedings of ParCo’11, Gent, vol. abs/1112.4604, Gent,
Belgium (2011)

3. Fan, S., Keller, R., Resch, M.: Advanced memory checking frameworks for MPI parallel
applications in Open MPI. In: Tools for High Performance Computing. Springer, Berlin (2011).
Submitted for publication

4. Northrup, C.J.: Programming with UNIX Threads. Wiley, New York (1996)
5. Perez, J.M., Badia, R.M., Labarta, J.: A dependency-aware task-based programming environ-

ment for multi-core architectures. IEEE Int’l Conference on Cluster Computing (Cluster 2008),
Tsukuba, pp. 142–151 (2008)

	Chapter 11 Temanejo: Debugging of Thread-Based Task-Parallel Programs in StarSS

	11.1 Introduction
	11.2 Implementation
	11.3 Debugging Capabilities
	11.4 Related Work
	11.5 Outlook
	References

