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Preface

In the pursuit of maintaining exponential growth in the performance of high-
performance computers, the HPC community is currently targeting Exascale sys-
tems. The initial planning for Exascale already started when the first Petaflop
system was delivered. Many challenges need to be addressed to reach the required
performance level. Scalability, energy efficiency, and fault-tolerance need to be
increased by orders of magnitude. The goal can only be achieved when advanced
hardware is combined with a suitable software stack. In fact, the importance of
software is rapidly growing. As a result, many international projects focus on
the necessary software. The International Exascale Software Project (IESP), the
European Exascale Software Initiative (EESI), and the Virtual Institute for High
Productivity Supercomputing (VI-HPS) are examples. They all share the view that
tools are of components of the software stack.

The Parallel Tools Workshop that took place in Dresden on September 26–27,
2011, is the fifth in a series of workshops that started in 2007 at the High Per-
formance Computing Center Stuttgart (HLRS). The goal of this series is to bring
together tool developers and users from science and industry in an interactive
environment. Participants from research and developers from science and industry
were invited to this interactive workshop which attracted scientists from all over the
world.

This year’s presentations have been in the fields of System Management, Parallel
Debugging and Performance Analysis from a wide range of scientific and industrial
tool developers. This includes tools from vendors such as Allinea, ClusterVision,
Intel, Rogue Wave Software, and SysFera, as well as research institutions, including
Technische Universität Dresden, Universität Erlangen, University of Oregon, and
Rice University. Contribution from research and computer centers came from
Barcelona Supercomputing Center, Research Center Jülich, Karlsruhe Institute

v



vi Preface

of Technology, Lawrence Berkeley National Laboratory, Lawrence Livermore
National Laboratory, Pacific Northwest National Laboratory, and the High Perfor-
mance Computing Center Stuttgart.

Dresden, Germany Holger Brunst
Matthias S. Müller
Wolfgang E. Nagel
Michael M. Resch
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Royd Lüdtke Rogue Wave Software, Boulder, CO, USA

Dimitar Lukarski Engineering Mathematics and Computing Lab (EMCL),
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Allen Malony University of Oregon, Eugene, OR, USA

John Mellor-Crummey Department of Computer Science, Rice University,
Houston, TX, USA

Dieter an Mey RWTH Aachen, Aachen, Germany

Wolfgang E. Nagel ZIH, TU Dresden, Dresden, Germany

Andrea Nestler Engineering Mathematics and Computing Lab (EMCL), Karl-
sruhe Institute of Technology (KIT), Karlsruhe, Germany

Christoph Niethammer HLRS, Stuttgart, Germany

Yury Oleynik Technische Universität München, München, Germany

Valerio Pascucci Scientific Computing and Imaging Institute University of Utah,
Salt Lake City, UT, USA

Peter Philippen Forschungszentrum Jülich, Jülich, Germany
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Chapter 1
Creating a Tool Set for Optimizing
Topology-Aware Node Mappings

Martin Schulz, Abhinav Bhatele, Peer-Timo Bremer, Todd Gamblin,
Katherine Isaacs, Joshua A. Levine, and Valerio Pascucci

Abstract Modern HPC systems, such as Cray’s XE and IBM’s Blue Gene line,
feature sophisticated network architectures, often in the form of high dimensional
tori. In order to fully exploit the performance of these systems, it is necessary
to carefully map an application’s communication structure to the underlying
network topology. In this step, both latency (i.e., physical distance between nodes)
and bandwidth (i.e., number of concurrently used links) have to be taken into
account, leading to mappings that are often non-intuitive. To help developers
with this complex problem, we are developing a set of tools that aim at helping
users understand the communication behavior of their codes, map them onto the
network architecture, and create better-performing topology-aware node mappings.
In this paper, we present initial steps towards this goal, including a measurement
environment capturing both communication patterns and network metrics within
the same run, a methodology to compare these measurements, and a visualization
tool that helps users understand the impact of their application’s characteristics on
the network behavior.

1.1 Motivation and Background

Modern HPC architectures typically feature high dimensional tori as their inter-
connection network. Some examples are the IBM Blue Gene line, Cray’s XT/XE
systems, and Fujitsu’s K computer. Because of their constant per-node link count,
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Fig. 1.1 Application performance of an FPMD application on 64 K nodes of Blue Gene/L using
the default (left) and the optimized mapping (right). Blocks of the same color denote nodes
assigned to the same row of the core data structure, a dense 2D matrix

these networks are relatively easy to deploy and scale. However, the resulting high
network diameter creates performance and scaling problems for applications. Thus,
it is critical to lay out the tasks of an application on the underlying network topology
carefully, so that communication is efficient for the specific patterns the application
exhibits.

The topology mapping problem is well-documented in the literature [2–5,10,18].
As one example, during the optimization process of a first principle molecular
dynamics (FPMD) application [10], we found that the performance difference
between the default and the best performing layout was 64 %. Further, the best
mapping was contrary to prior expectations and non-intuitive (see Figure 1.1).

In order to enable such optimizations, we need tools that help users understand
the communication patterns of their application, how they map onto the hardware
topology, how this impacts performance, and ultimately provide efficient node
mappings for their applications. To achieve this goal, we make use of performance
data gathered in multiple independent domains to provide the user with informative
perspectives on the performance of their code [15]. Further, we can map data
gathered in one domain to another domain enabling us to compare and correlate
the performance data and features found in different domains. In particular, we
focus on data from the communication domain, representing the application’s
communication pattern, and the hardware domain, in which we gather network
statistics. This allows us to understand the impact of an application’s communication
behavior on the network for a particular layout.

We present initial steps towards a novel tool set to explore and optimize
topology-aware node mappings for HPC applications, using information mapped
and correlated between multiple performance domains. We make the following
contributions:

• We show the use of a three-domain model of performance data for studying node
mappings in HPC systems.

• We present a flexible measurement tool set that can be used to concurrently track
data from multiple measurement domains.

• We introduce a technique to correlate network measurements with application
communication behavior.
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• We show preliminary results of an Algebraic Multigrid (AMG) solver.

The remainder of this paper is organized as follows: Sect. 1.2 introduces the
underlying domain model as well as the necessary data mappings. Section 1.3
discusses how we gather and interpret the data, Sect. 1.4 shows first preliminary
results, Sect. 1.5 briefly discusses related work, and Sect. 1.6 contains concluding
remarks and an overview of future work.

1.2 Gaining Insight from Multiple Perspectives

Performance data can be gathered and analyzed in multiple domains. In previous
work [15], we provided a structured approach for the three most relevant
performance data domains. In this section, we briefly introduce this model and
show how it applies to the node mapping problem.

1.2.1 The HAC Model

Figure 1.2 shows the basic concept behind our domain model, the HAC model.
We identify the three most relevant domains for performance analysis, namely
the application, the hardware, and the communication domain. The application
domain is used by the application scientist to express the actual problem being
computed. For scientific simulations it often represents some physical simulation
space on which the problem is defined, although more abstract representations
are also possible (e.g., for graph algorithms or sparse matrix representations in
solver libraries). The hardware domain expresses the structure of the underlying
architecture, e.g., a torus with multicore nodes and is often used for hardware
related measurements, such as hardware counters. The communication domain is
used to express the code’s communication pattern, often represented as a graph
with nodes representing application tasks (e.g., MPI processes) and edges showing
communication between nodes.

For each of the three domains we can use specialized analysis techniques that
allow us to extract features from the respective data sets. Additionally, we can define
mappings for data between domains allowing us to compare data from multiple
domains for further analysis. For example, we can map performance data gathered
in the hardware domain, such as hardware counter data, into the application domain
and display it concurrently with simulated features from the application. In our
previous work [15] we have demonstrated that this can show correlations between
simulated features and measured performance data allowing us a clear attribution of
performance data and establishing clear baselines.
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Fig. 1.2 Interplay between the three critical domains for performance analysis

1.2.2 Domains Relevant for Node Mappings

For the node mapping problem, we focus on two of the three domains: the
communication domain showing an application’s communication behavior and the
hardware domain showing its network behavior. By contrasting the data from these
two domains we can analyze the impact of the application’s characteristics on the
network behavior and gain the necessary insight to optimize performance.

In the communication domain we are interested in all communication executed
by the application, in our case in the form of MPI messages. Conceptually, we gather
the full communication graph, although in reality we restrict ourselves to a statistical
summary of the data which is sufficient for our purposes. In the hardware domain we
must acquire the data showing the actual communication executed in the system. For
this work we focus first on Blue Gene systems, which provide a set of performance
counters to monitor the actual number of packets exchanged on each hardware link
in the system.

1.2.3 Mapping Communication to Hardware Data

We must establish a mapping between the two domains in order to allow a
direct comparison of hardware and communication data. This mapping has two
components: we first map MPI processes to physical nodes in the hardware domain.
This is the actual node mapping we are aiming to optimize and hence we will
evaluate how changing this mapping affects performance.

Second, for a concrete node mapping, we map the performance data from one
domain to the other. Ideally, we would map the hardware domain data to the
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communication domain, since this is the most relevant for the user. Unfortunately,
though, this is impossible because each hardware link is potentially used by several
MPI communication pairs, since links are shared for all packets passing through the
connected nodes. Therefore, we cannot cleanly correlate the hardware data back to
individual MPI message events.

We therefore reverse the mapping and map the MPI communication behavior
to the network architecture. We do this by mapping each message individually,
assuming no contention, interference, or bandwidth limits, and with that we emulate
the hardware behavior under ideal load. As a result, we gain a best case view of
how the application’s communication under the given node mapping behaves on
the system. We can contrast this best case estimate with the actual measurements
showing where behavior deviates from the best case estimate and hence where
bottlenecks manifest themselves during execution.

1.3 Creating a Flexible Measurement Environment

Our approach requires the ability to gather data from multiple domains concurrently,
since only this keeps the data comparable and avoids cross-execution variations.
We implement this on top of the PN MPI infrastructure, and develop a series of
plugin modules for the actual data acquisition. We further define structured, self-
explanatory data formats to store the data for post-processing in our analysis and
visualization tools.

1.3.1 Concurrent Measurements Using PN MPI

As most tools targeting MPI, we rely on the MPI Profiling Interface (PMPI),
which allows tools to transparently intercept invocations to MPI routines and
with that to establish wrappers around MPI calls to gather execution information.
However, the usage of this interface is limited to a single tool. We therefore rely
on the PN MPI infrastructure [14], which virtualizes this interface and enables the
concurrent execution of an arbitrary number of PMPI tools, in the extreme case even
without changes to the tool or the application. Figure 1.3 illustrates the principle
behind PN MPI.

In the following we refer to PMPI tools used within PN MPI as tool modules,
since they are used as plugin modules in the overall infrastructure. The modules
used for a specific run are specified in an ASCII configuration file, which PN MPI
loads at startup and then uses to locate, load, and instantiate its modules.

For our experiments we implement the data acquisition in the two domains as
separate PN MPI modules and load them dynamically at runtime. Both are executed
independently and can gather data in their respective domains.
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Fig. 1.3 Usage of the MPI profiling interface (left); combining two measurement tools using
PN MPI (middle); effective tool stack as seen by the application (right)

1.3.2 Gathering Data in the Hardware Domain

In the hardware domain we collect performance counter data from each node in the
application’s partition. In particular, we gather the number of packets sent in each
direction of the torus from each node along with some non-network metrics such
as cache misses or floating point operations. We implement this module on top of
IBM’s Universal Performance Counter (UPC) interface. At program termination,
we gather the data to rank zero and store the result as a table with a row for each
rank and a column for each hardware counter metric.

1.3.3 Gathering Data in the Communication Domain

The data in the communication domain represents the communication patterns
of the application. We gather this information in the form of a communication
matrix that stores aggregated information for all MPI rank pairs that exchange
messages during the application’s execution. In particular, we store the number of
messages sent between two ranks as well as the total number of bytes. Further, we
distinguish the data for three different messages sizes to capture data for different
communication protocols on the Blue Gene systems. The latter is necessary, since
different communication protocols lead to different network traffic and hence
emulating this traffic requires separate handling for each protocol.

1.3.4 Phase Attribution

For both domains we further need to refine the data gathered by the two modules to
expose phase behavior. For this we instrument the application with MPI Pcontrol
calls to specify application specific phase boundaries. We use the level argument
to MPI Pcontrol to indicate the ID of new phases and extend both modules to
recognize these phase transitions and to annotate any performance data with the ID
of the phase during which it was collected.
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---
- !!python/tuple [mpirank, int32]
- !!python/tuple [phase, int32]
- !!python/tuple [x, int32]
- !!python/tuple [y, int32]
...
0 1 4 5
1 1 8 9
0 2 1 1
1 2 6 3

Fig. 1.4 Example of a YAML file (header and body) showing data for a 2D coordinates (x/y) with
data for different ranks (0, 1) and application phases (with IDs 1, 2)

Fig. 1.5 Message traffic on a part of a plane of BG/P nodes for a short message (left) and a long
message (right). Green arrows indicate packets sent in the positive direction of the torus network,
red arrows packets in the negative

1.3.5 Data Storage in Structured YAML Files

The results from both modules are stored in the form of a structured file using ASCII
together with a YAML header [7] describing the contents. An example is shown in
Fig. 1.4. This enables our tools to interpret the data, opens our tools to multiple data
sources, and allows us to implicitly document the data represented in the file.

1.3.6 Investigating Best Case Mappings

Once gathered, we need to map the data from one of the domains to another. As
mentioned in Sect. 1.2.3, we do this by mapping the effect of all messages observed
in the communication domain individually onto the hardware domain. To enable
this, we first studied the network traffic for individual MPI messages (see Fig. 1.5)
and used this data to construct an accurate model for individual messages. To
capture the correct behavior we distinguish short and long messages and model
them separately.

We then apply this model to every communication pair observed in the
communication domain and recorded in the communication matrix during the
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execution of our target application and add up the resulting number of modeled
packets. This gives us an overall estimate of the total traffic in the system. While
this estimate is not accurate since it does not take contention and overlapping and
interfering traffic into account, it still gives a best case estimate of traffic as if the
traffic was executed on a system with unbounded communication capabilities. Any
difference between this estimate and the actual observed traffic is therefore caused
by system limitations or bottlenecks and therefore gives an indication of problems
with the underlying node mappings.

1.3.7 Approximating Collectives

The current approach only covers point to point messages, since we can isolate
their behavior on the network. Collective operations are implemented as a set of
point to point messages themselves, but the exact algorithm used depends on both
the underlying network topology—and with that the node mapping—and the MPI
implementation. In the current version of our tool set we use an idealized model
to represent collectives showing the effectively communicated data rather than
the data exchanges in a specific MPI implementation. While this is sufficient for
most applications, it has the potential of decreasing the estimate’s accuracy. We
are currently working on extending the approach using probabilistic models for
collectives to avoid this drawback.

1.4 Preliminary Results

To demonstrate our techniques, we apply them to an Algebraic Multigrid (AMG)
solver from the hypre library [8]. This codes solves a system of sparse linear
equations using an iterative approach and operates on a V cycle, which means it
starts with a fine grid, coarsens it through multiple levels until it can be solved
directly, and interpolates the coarse grain solution back to the fine grain grid. This
process is then repeated until the system converges to a stable solution.

While finer levels of the AMG computation are compute-dominated and
have regular communication structures with a limited set of neighbors, coarser
levels are communication bound and exhibit more random and input-dependent
communication pattern with a large set of neighbors [9].

We execute the AMG code on 512 nodes of a Blue Gene/P machine at LLNL,
which are organized as a 8 � 8 � 8 torus. We extract both communication and
hardware counter data using our measurement infrastructure. The top row of graphs
in Fig. 1.6 shows the measured link activity visualized on top of the underlying
physical 3D torus structure for two node mappings and for specific AMG levels;
the middle row of graphs shows the communication data mapped into the hardware
domain using our best case network emulation approach introduced above, and
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a b

c d

e f

Fig. 1.6 Measured vs. emulated network traffic for two node mappings of AMG on 512 nodes of
BG/P. (a) 8� 8� 8, level 2, counter data. (b) 2� 4� 16, level 1, counter data. (c) 8� 8� 8, level
2, emulated data. (d) 2 � 4 � 16, level 1, emulated data. (e) 8 � 8 � 8, level 2, emulated/counter.
(f) 2� 4� 16, level 1, emulated/counter

the bottom row shows the ratio between the emulated data and the hardware
measurements.

The left column of the data shows results from a run in which the data set is
decomposed into an 8 � 8 � 8 problem and hence matches the underlying topology.
We can clearly see that the measured and estimated data are close to each other,
indicating a mostly bottleneck free execution. However, looking at the ratio graph,
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we can see a roughly 7 % degradation of the actual measurement compared to
the ideal best case model for links in the Z direction, while the measurements in
the X and Y direction don’t show a significant difference (red vs. orange links).
This asymmetry is unexpected since neither the application nor the system favor
any of the three dimensions.

The right column of the Fig. 1.6 shows a different picture. Here, the input
problem is decomposed into 2 � 4 � 16 blocks and hence does not match the
underlying hardware topology. As a consequence, measured and emulated best
case data no longer match up indicating messaging bottlenecks in the system. In
particular, we see a significant difference on the right side of the torus, as indicated
by the red links in Fig. 1.6f.

Overall, our measurement, analysis, and visualization approach enables users to
understand the behavior of their code under different node mappings and based on
that optimize the node mappings.

1.5 Related Work

A significant body of work on optimizing node mappings exists from the 1980s,
which was targeted towards topologies such as hypercubes and two-dimensional
grids [1, 6, 12]. Recent work has focused on three-dimensional tori, a popular
topology for current supercomputers, and includes techniques to optimize commu-
nication for specific applications [4, 5, 10] as well as general frameworks [2, 3, 18].
However, there are few existing tools to map communication to hardware data and
to visualize the mapping of tasks on processors.

Individual application developers have developed or exploited existing
visualization frameworks such as ParaView to visualize task mapping on the
physical network. SCALASCA [17] and its predecessor Kojak [13] feature a
data browser that presents projections of performance data onto the physical
network topology of supercomputers. The TAU tool set includes support to
specify and visualize mappings within the hardware space using a simple mapping
language [16], but it fails to exploit inter-domain mappings as we do with the HAC
model. The Projections visualization framework [11] has capabilities to show the
average number of hops/links that messages originating from a processor travel on
a 3D torus/mesh. However, it does not have 3D views to visualize this data.

1.6 Conclusions and Future Work

Optimizing the mapping of application processes to nodes in the physical topology
of a machine is a critical performance optimization step on today’s HPC systems.
Without it, applications might pay high messaging costs both in terms of latency and
bandwidth. In this work, we presented an initial step towards a general tool set for
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Fig. 1.7 Screenshot of the Boxfish tool showing the data control panel (right), statistical data on
link usage (middle), and the 3D torus of Blue Gene/P with the nodes highlighted that correspond
to the selected statistical data (left)

optimizing these mappings. Our approach enables users to correlate communication
data with actual observations on the system leading to the detection of bottlenecks in
the communication subsystem. We introduced the base measurement infrastructure
and explored the overall approach using an Algebraic Multigrid solver as a
case study.

We are currently in the process of extending this work in several directions. We
are working on additional application studies using a 3D laser-plasma interaction
code at LLNL as well as an adaptive mesh refinement library. In both cases, the
communication, and consequently the node mappings, have been identified as one
of the critical bottlenecks. We will study these codes both in a static scenario, where
the partition size and shape is known a priori, and in a dynamic scenario, where
the scheduling system decides on the partition shape at job startup. Further, we
are currently developing a flexible data analysis and visualization tool, Boxfish
(see Fig. 1.7), that will enable users to interactively analyze their codes’ behavior
and will guide mapping optimizations.
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Chapter 2
Using Sampling to Understand Parallel
Program Performance

Nathan R. Tallent and John Mellor-Crummey

Abstract Developing scalable parallel applications for extreme-scale systems is
challenging. The challenge of developing scalable parallel applications is only
partially addressed by existing languages, compilers, and autotuners. As a result,
manual performance tuning is often necessary to obtain high application perfor-
mance. Rice University’s HPCTOOLKIT is a suite of performance tools that supports
innovative techniques for pinpointing and quantifying performance bottlenecks in
fully optimized parallel programs with a measurement overhead of only a few per-
cent. Many of these techniques were designed to leverage sampling for performance
measurement, attribution, analysis, and presentation. This paper surveys some
of HPCTOOLKIT’s most interesting techniques and argues that sampling-based
performance analysis is surprisingly versatile and effective.

Keywords Performance tools • Sampling • Call path profiling • Call path
tracing • HPCTOOLKIT

2.1 Introduction

Because of the complexities of modern microprocessor-based supercomputers—
e.g., scale, hierarchical parallelism, heterogeneity, deep memory hierarchies—
typical scientific applications achieve only a small fraction of a supercomputer’s
peak performance. As a result, manual performance analysis and tuning is often
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necessary to identify and resolve performance bottlenecks to avoid wasting precious
computational resources.

Rice University’s HPCTOOLKIT [1, 19] is a suite of performance tools that
has pioneered techniques for pinpointing and quantifying performance bottle-
necks in fully optimized parallel programs with a measurement overhead of only
a few percent [2, 5, 9, 13, 15, 22–24, 26–29]. Many of these techniques were
designed to leverage sampling for performance measurement, attribution, analysis,
and presentation. This paper surveys some of HPCTOOLKIT’s most interesting
techniques and argues that sampling-based performance analysis is surprisingly
versatile and effective.

Prima facie, sampling is both an obvious and questionable technique for
performance analysis. Consider the challenge of collecting both accurate
and detailed performance measurements. There are two basic techniques for
collecting performance measurements: asynchronous sampling and synchronous
instrumentation. Although there is an inverse relationship between accuracy and
precision, the elasticity of that relationship varies with measurement technique.
With instrumentation, collecting context-sensitive measurements at the level
of a procedure can easily lead to hundreds or even thousands of percent
overhead [3, 9, 23]; measuring at finer resolutions such as the loop, statement,
or machine-instruction level is often infeasible. Efforts to address these problems
include statically [4, 10, 21] or dynamically [12, 16, 21] omitting instrumentation,
which leads to blind spots; adjusting measurements based on a model of how
instrumentation affects execution [14]; and other specialized techniques [3, 11, 30].
We argue that, when possible, it is better to simply avoid instrumentation overhead
and its associated distortion. To provide a more elastic trade-off between accuracy
and precision than instrumentation can provide, HPCTOOLKIT collects statistically
representative measurements by periodically interrupting an execution using an
asynchronous event trigger. Just as pollsters query a thousand voters to discern
trends in a population of 300 million, asynchronously sampling the activity in
a program execution can provide representative information about the program’s
behavior.

But if sampling appears an obvious choice, there are a number of considerations
that make it questionable. First, the fact that asynchronous sampling interrupts
an execution at arbitrary points poses certain difficulties. One difficulty is how
to attribute measurements to source-level loops. With source code instrumentation
such attribution is trivial (though costly). With sampling it is difficult because loops
in object code are implemented using unstructured control flow and have been trans-
formed by optimizing compilers. Another difficulty is collecting calling contexts
using stack unwinding. Experience shows that unwinds commonly fail when
using libunwind [17] or GLIBC’s backtrace() routine [7] from within highly
optimized code. Second, the largest supercomputers present challenges of their
own. To avoid idleness in bulk synchronous parallel applications, supercomputer
operating systems frequently attempt to minimize OS ‘jitter’ [18]. Unfortunately
from the perspective of sampling, a standard way to minimize jitter is to forbid
frequent software interrupts. Supercomputer kernels may also leave unimplemented
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the OS support needed to drive asynchronous sampling triggers. Third, it is often
not clear how to use sampling to accomplish a primary goal of performance
analysis: pinpointing root causes of bottlenecks. For instance, because sampling
may miss the first (or any other) link in a chain of events, it may have limited
diagnostic powers. More concretely, consider the problem of pinpointing the causes
of lock contention. A straightforward solution uses instrumentation to time lock
acquisitions and releases and attributes those measurements to their calling context.
However, adding such instrumentation will lengthen critical sections and often
exacerbate lock contention. Is it possible to use a sampling-based technique that
can determine, for only a few percent of overhead, when a thread is working with a
lock, working without a lock, or waiting for a lock? More to the point, is it possible
to not just identify threads that wait for locks, but the threads and critical sections
that cause waiting?

This paper is organized as follows. Section 2.2 summarizes HPCTOOLKIT’s call
path profiling capabilities. Section 2.3 explains how to pinpoint scaling bottlenecks
using differential analysis. Section 2.4 presents techniques for pinpointing the
causes (not effects) of bottlenecks. Section 2.5 describes how to use sampling
for collection and presentation of call path traces. Section 2.6 summarizes HPC-
TOOLKIT’s data-centric attribution capabilities. Finally, Sect. 2.7 summarizes our
conclusions. Because of space constraints and a retrospective perspective, we
delegate a thorough discussion of related work to individual research papers.

2.2 Call Path Profiling

Experience shows that comprehensive performance analysis of modern modular
software requires information about the full calling context in which costs are
incurred. For instance, the costs incurred for calls to communication primitives (e.g.,
MPI Wait) or code that results from instantiating C++ templates for data structures
can vary widely depending upon their calling context. Consequently, HPCTOOLKIT

uses asynchronous sampling to collect call path profiles that attribute costs to the
full calling contexts in which they are incurred.

Collecting a call path profile requires capturing the calling context for each
sample event. To capture the calling context for a sample event, HPCTOOLKIT’s
measurement tool hpcrun must be able to unwind the call stack at any point in
a program’s execution. Obtaining the return address for a procedure frame that
does not use a frame pointer is challenging since the frame may dynamically grow
(space is reserved for the caller’s registers and local variables; the frame is extended
with calls to alloca; arguments to called procedures are pushed) and shrink (space
for the aforementioned purposes is deallocated) as the procedure executes. To cope
with this situation, we developed a fast, on-the-fly binary analyzer that examines a
routine’s machine instructions and computes how to unwind a stack frame for the
procedure [23]. For each address in the routine, there must be a recipe for how to
unwind. Different recipes may be needed for different intervals of addresses within
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the routine. Each interval ends with an instruction that changes the state of the
routine’s stack frame. Each recipe describes (1) where to find the current frame’s
return address, (2) how to recover the value of the stack pointer for the caller’s
frame, and (3) how to recover the value that the base pointer register had in the
caller’s frame. Once we compute unwind recipes for a routine, we memoize them
for later reuse.

To apply our binary analysis to compute unwind recipes, we must know where
each routine starts and ends. When working with applications, one often encoun-
ters partially stripped libraries or executables that are missing information about
function boundaries. To address this problem, we developed a binary analyzer that
infers routine boundaries by noting instructions that are reached by call instructions
or instructions following unconditional control transfers (jumps and returns) that are
not reachable by conditional control flow.

HPCTOOLKIT’s use of binary analysis for call stack unwinding has proven to
be very effective, even for fully optimized code. A detailed study of our unwinder
on versions of the SPEC CPU2006 benchmarks optimized with several different
compilers showed that the unwinder was able to recover the calling context for all
but a vanishingly small number of cases [23].

One particularly useful and novel feature of HPCTOOLKIT’s call path profiles
is that they are enriched with static source code structure. Such call path profiles
are constructed by overlaying hpcrun’s dynamic contexts with static source code
structure computed post mortem by the hpcstruct tool. In an off-line process
called recovering program structure, this tool constructs an object to source code
mapping. As a result, HPCTOOLKIT’s call path profiles expose loops and inlined
frames and attribute metrics to them—all for an average overhead of 1–5 % [23].

2.3 Pinpointing Scaling Bottlenecks

We now present an elegant and powerful way to apply HPCTOOLKIT’s sampling-
based call path profiles to identify scalability bottlenecks in Single-Program
Multiple-Data (SPMD) applications, whether executed on a multicore node or
a leadership-class supercomputer. The basic idea is to compute a metric that
quantifies scaling loss by scaling and differencing call path profiles from a pair
of executions [5, 26].

Consider two parallel executions of an application, one executed on p processors
and the second executed on q > p processors. In a weak scaling scenario,
processors in each execution compute on the same size data. If the application
exhibits perfect weak scaling, then the execution times should be identical on both
p and q processors. In fact, if every part of the application scales uniformly, then
this equality should hold in each corresponding part of the application.

Using HPCTOOLKIT, we collect call path profiles on each of p and q processors
to measure the cost associated with each calling context in each execution.
HPCTOOLKIT’s hpcrun profiler uses a data structure called a calling context tree
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Fig. 2.1 Differencing call path profiles to pinpoint scaling bottlenecks

(CCT) to record a call path profile. Each node in a CCT is identified by a code
address. In a CCT, the path from any node to the root represents a calling context.
Each node has a weight w � 0 indicating the exclusive cost attributed to the path
from that node to the root. Given a pair of CCTs, one collected on p processors
and another collected on q processors, with perfect weak scaling, the cost attributed
to all pairs of corresponding CCT nodes should be identical. Any additional cost
for a CCT node on q processors when compared to its counterpart in a CCT for an
execution on p processors represents excess work. This process is shown pictorially
in Fig. 2.1. The fraction of excess work, i.e., the amount of excess work in a calling
context in a q-process execution divided by the total amount of work in a q-process
execution represents the scalability loss attributed to that calling context. By scaling
the costs attributed in a CCT before differencing them to compute excess work,
one can also use this strategy to pinpoint and quantify strong scalability losses [5].
As long as the CCTs are expected to be similar, this analysis strategy is independent
of the programming model and bottleneck cause.

To enable this simple but powerful scalability analysis on the largest class
of supercomputers—and to pave the way for other sampling-based tools such as
OpenjSpeedShop [20] and CrayPat [6]—the HPCTOOLKIT team engaged kernel
developers at IBM and Cray to address shortcomings in their microkernels that
prevented any sort of sampling-based measurement [26]. We have since applied
our scalability analysis to pinpoint synchronization, communication, and I/O bottle-
necks in applications on several large-scale distributed-memory machines. Because
our analysis is based on differencing comparable executions, we have also used it to
pinpoint and quantify scaling bottlenecks on multicore nodes at the loop level [25].

2.4 Blame Shifting

Standard sampling-based measurement identifies symptoms of performance losses
rather than causes. Although some symptoms may have an obvious cause, simply
knowing symptoms is frequently not sufficient to justify a concrete set of actions
for resolving a bottleneck. For example, consider the case of a parallel run time
system with idle worker threads. A standard call path profile will show that the
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idle threads spend a large percentage of their execution time in a scheduling loop
waiting for work. The cause of these threads’ idleness is that at least some parts of
the application are insufficiently parallel in that they fail to generate enough parallel
tasks to keep other worker threads busy. But which parts? Instead of reporting that
a worker thread frequently idles, it would be better if a tool pinpointed source
code that should generate more parallel tasks to keep idle threads busy. We call
the process of redirecting attribution from symptoms to causes blame shifting.

In general, blame shifting uses either in situ or post mortem analysis to shift the
attribution of metrics from performance symptoms to their causes. The need for
blame shifting is patently obvious because the primary goal of performance tuning
is to find and resolve bottlenecks. However, it is a challenge to make both precise
and accurate causal inferences while inducing minimal measurement perturbation.
This section discusses three types of blame shifting employed by HPCTOOLKIT.

2.4.1 Parallel Idleness and Overhead in Work Stealing

Work stealing is a popular scheduling technique for dynamic load balancing. One
of the most influential versions of work stealing was implemented to support the
Cilk language [8] for shared-memory parallel computing. Cilk—along with its
descendants Cilk++ and Cilk Plus—combines lazy parallel task creation and a work-
stealing scheduler. The Cilk run time maps logically independent asynchronous calls
(tasks) onto worker threads (compute cores) in an efficient way. For a Cilk program
to execute efficiently, an application must generate enough “well sized” parallel
tasks. That is, there should be enough parallel tasks to keep worker threads busy,
but those tasks should be large enough so that the overhead of packaging a task (i.e.,
creating continuations) is insignificant.

The Cilk model challenges existing performance tools. To diagnose causes—not
symptoms—of inefficient execution, a tool must solve at least three problems. First,
a tool must be able to not only detect when worker threads are idling but also identify
the portion of the application causing idleness. Second, a tool must be able to detect
when worker threads, though busy, are executing useless work. Third, a tool must
be able to attribute its conclusions to source code in its calling context. Although
this last challenge may seem trivial, associating costs with the context in which they
are incurred is not as simple as it sounds. With a work stealing scheduler, call paths
become fragmented because procedure frames migrate between worker threads to
balance the work load. Consider a case where thread y steals a task from thread x.
In this case, the procedure frames for a source-level call path become separated
in both space and time: space, because thread x contains y’s parent context; time,
because thread x continues executing rather than blocking and waiting for thread y

to complete the asynchronous call. As a result, a standard call path profile of a Cilk
program yields a result far from what an application developer would expect.

Our solutions to these problems build upon HPCTOOLKIT’s call path profiling.
To attribute metrics to source-level call paths, we developed logical call path
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profiling [22, 24], a generalization of call path profiling that maps system-level to
source-level call paths. To form the source-level call paths, we stitch together path
fragments from a thread’s stack and heap data structures.

To identify the causes of insufficient parallelism in Cilk applications, it is
necessary to establish, with minimal measurement overhead, a causal link between
an idling thread and a working thread that does not generate parallel work. We
establish likely suspects using the following scheme [22, 24]. First we make a
slight adjustment to the Cilk run-time to always maintain W and I , the number of
working and idle threads, respectively. This can be done by maintaining a node-wide
counter representing W ; since the number of worker threads T is constant we have
I D T � W . Second, we slightly modify our sampling strategy. If a sample event
occurs in a thread that is not working, we ignore it. When a sample event occurs in
a thread that is actively working, the thread attributes one sample to the work metric
for its sample context. It then obtains W and I and attributes a fractional sample
I=W to the idleness metric for the sample context. Even though the thread itself is
not idle, it is critical to understand what work the thread is performing when other
threads are idle. Our strategy charges the thread its proportional responsibility for
not keeping the idle processors busy at that moment at that point in the program.
As an example, consider taking a sample of a Cilk execution where five threads
are working and three threads are idle. Each working thread records one sample of
work in its work metric, and 3=5 sample of idleness in its idleness metric. The total
amount of work and idleness charged for the sample is 5 and 3, respectively.

To identify parallel overhead in Cilk applications, we must distinguish between
useful work and overhead. Our solution is based on the observation that it is possible
to use static analysis to classify object code instructions as either useful work or
overhead. Thus, HPCTOOLKIT can attribute a precise measure of parallel overhead
to source-level calling contexts for no additional measurement overhead other than
that induced by logical call path profiling [22, 24].

2.4.2 Lock Contention

Locking is the most common means of coordinating accesses while reading and
writing mutable shared data structures in threaded programs. Thus, it is important
that a performance tool pinpoint causes of lock contention.

There are at least two critical differences between performance monitoring for
locks and for Cilk. First, identifying the cause of lock contention requires a more
precise causal connection than with idleness in Cilk. With Cilk it is sufficient to
observe that at any given instant when threads are idle, all working threads can be
thought of as equally culpable for not generating enough parallel work to keep idle
threads busy. In contrast, with locking, any number of threads may be idling because
exactly one working thread holds a lock. Thus, it makes no sense to blame non-lock-
holders for idleness. Second, with many lock-based programs, it is not tenable to
atomically increment and decrement shared counters on every state change within
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a thread. In a work stealing run time, steals are relatively infrequent. In contrast,
locks may be acquired and released very frequently—and extending key critical
sections with an atomic increment could introduce new bottlenecks. Because of
these differences, the techniques we described for work stealing are insufficient to
offer insight into lock contention. With locks, one must establish causal connections
without significantly increasing critical sections and introducing a new bottleneck.

To solve both problems mentioned above, we use locks themselves as a
communication channel for precise attribution [28]. For now, we limit our attention
to spin (non-blocking) locks. Our technique is based on three rules. First, when
a working thread receives a sample, we increment a thread-local work metric.
Second, when we sample an idle thread spin-waiting for a lock, we (atomically)
increment an idleness metric associated with the lock. The expected number of
samples received for all threads waiting on that particular lock is proportional to
the time spent waiting for that lock. Furthermore, because the expected number
of samples is relatively small when compared with the total number of machine
instructions executed during a long-latency spin-wait, the atomic increments are
relatively inexpensive. Third, when a working thread releases a lock, we associate
all idleness with the lock release point in its full calling context (i.e., as the lock
holder releases the lock, it atomically swaps the idleness counter with 0). In this
way, we precisely blame the lock release point and accurately attribute to it the
idleness that it caused. An important observation is that it is usually straightforward
to identify lock acquire points from release points.

We applied our techniques to the MADNESS quantum chemistry application. For
the particular input we studied, MADNESS represented a significant challenge: it
allocated a total of 65M distinct locks (which were used to implement futures),
had a maximum of 340K live locks at any particular instance in the execution; and
issued an average of 30K lock acquisitions per second per thread. For a monitoring
overhead of a few percent, we found that the primary source of lock contention was
in adding work (futures) to a shared work queue [28].

2.4.3 Load Imbalance

Load imbalance is an important problem in programs based on bulk synchronous
parallelism. Moreover, many load imbalance problems only appear in medium- to
large-scale executions. Even though HPCTOOLKIT can collect detailed call path
profiles in a scalable fashion, with profiles it is often difficult to pinpoint load
imbalance. In contrast, with a trace (which collects performance information with
respect to time) it is relatively easy to identify the effects and possible causes of load
imbalance [31]. However, there are significant challenges to collecting fine-grained
large-scale traces in a scalable fashion.

Exploiting HPCTOOLKIT’s ability to collect large-scale call path profiles, we
developed a post mortem analysis that identifies regions of a call path profile that
cause load imbalance. Our analysis is based on several observations. First, it is
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possible to divide an execution into two components: work and exposed (non-sleep)
idleness. Second, idleness that occurs around synchronization points is a symptom
of load imbalance. Third, the causes of load imbalance are typically reflected in
work variability over processes; and for a given procedure or source line in a
call path profile, one can compute statistics over all processes in an execution
that measure variability. Fourth, with layered software, important imbalance and
synchronization points are often context sensitive. For example, an application may
have many calls to MPI Allreduce. While the work between some pairs of
MPI Allreduce operations may be balanced, between other pairs it may not,
causing lightly-loaded threads to idle. Given these observations, we developed a
post mortem blame shifting analysis of call path profiles that identifies exposed
idleness and associates that idleness with possible causes [27].

2.5 Call Path Tracing

Although tracing is a powerful performance-analysis technique, tools that
employ it can quickly become bottlenecks themselves. To avoid large overheads,
instrumentation-based tracing tools typically monitor only a subset of the
procedures in an application. However, even coarse-grained trace data of large-scale
executions quickly becomes unwieldy and a challenge to present. Unfortunately, to
obtain actionable performance feedback for modular parallel software systems, it is
often necessary to have fine-grained context-sensitive data—the very thing scalable
tools avoid. We have developed sampling-based techniques to collect and present
arbitrary slices of fine-grained large-scale call path traces [29].

Figure 2.2 shows a screen shot of HPCTOOLKIT’s presentation tool hpctrace
viewer. As with other tools that present space-time visualizations, time advances
from left to right on a horizontal axis and MPI-rank space advances from top to
bottom on a vertical axis. Unlike other tools, hpctraceviewer’s renderings are
hierarchical. Since each sample in each process’s time line represents a call path,
we can view the process timelines at different call path depths to show more or less
detailed views of the execution. The Figure shows one slice of the process/time/call-
path space at depth 3; the inset shows the selected region at depths 3, 6 and 7.

To collect traces, HPCTOOLKIT exploits a useful property of our CCT data
structure: a full call path can be represented by a single leaf node. Thus, we can
generate a full call path trace by maintaining a CCT and stream of compact trace
records where each trace record is 12 bytes (4-byte CCT node id and an 8-byte
timestamp). For reasonable sampling rates, the data rate of this trace stream is
extremely low. Moreover, because sampling rates are controllable, the granularity
of the trace and its corresponding data volume can scale to very large or long
executions.

To present traces, hpctraceviewer also uses sampling. Given a display
window of height h and width w (in pixels), the tool simply samples the trace
data records to determine how each pixel should be colored. Using sampling,
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Fig. 2.2 An 8184-core execution of PFLOTRAN on a Cray XT5. The inset exposes call path
hierarchy by showing the selected region (top left) at different call path depths

hpctraceviewer can render call-path depth slices at arbitrary resolutions in
time O.hw log t/, where t is the number of trace records in the largest trace file.
In practice, the log t factor is often negligible because we use linear extrapolation to
predict the locations of the w trace records. The practical upshot of this technique
is that hpctraceviewer can rapidly present trace files of arbitrary length for
executions with an arbitrary number of threads on a laptop.

2.6 Data-Centric Performance Analysis

Sampling-based profilers such as HPCTOOLKIT attribute samples to object and
source code for very low overhead. By exploiting recent hardware support, HPC-
TOOLKIT uses sampling to attribute measurements not only to source code but
also to data objects [13]. With this data-centric attribution, HPCTOOLKIT can
attribute metrics such as memory access latency to program data objects and their
corresponding source code use points—in its full calling context. The results are
especially useful when long-lived data objects are accessed at many places.

2.7 Conclusions

We have found that sampling-based techniques are surprisingly versatile and effec-
tive. Using sampling-based measurement, HPCTOOLKIT can collect exquisitely
detailed call path profiles and traces for an average run-time overhead of less
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than 5 %. Using sampling-based presentation, HPCTOOLKIT effortlessly presents
arbitrary slices of large-scale fine-grained call path traces. To make sampling-
based call path profiling of fully optimized applications possible, HPCTOOLKIT

employs a set of innovative techniques to collect call paths at arbitrary points in
an execution (using stack unwinding) and attribute to loops and inlined functions.
In many cases HPCTOOLKIT’s code-centric profiles are sufficient for understanding
performance problems, but for more difficult problems, it is necessary to understand
how aggregate costs arise over time or with respect to data. To pinpoint and
quantify many scaling bottlenecks, it is sufficient to simply compare two or more
call path profiles—accurate call path profiles that show statements in their full
calling context and expose loops. To offer more insight into the causes of scaling
bottlenecks, we developed several problem-focused analyses that shift blame from
a bottleneck’s effects to its causes or potential causes. Because they are based on
sampling, these techniques incur very low measurement overhead and apply to
problems as diverse as lock contention, load imbalance, insufficient parallelism in
work stealing, and parallel overhead. The ability to collect and present accurate,
detailed and problem-focused measurements for large-scale production executions
has enabled HPCTOOLKIT’s use on today’s grand challenge applications: multi-
lingual programs leveraging third-party libraries for which source code and symbol
information are often unavailable.

In many ways, sampling is a perfect fit for performance analysis. One issue with
sampling-based methods is that while they tend to show representative behavior,
they might miss interesting extreme behavior. While this property may limit the
use of sampling in correctness tools, we have not found it to be problematic for
performance tools. The reason is that, assuming an appropriately sized and uncor-
related sample, sampling-based methods expose anomalies that generally affect an
execution. In other words, although using sampling-based methods can miss any
specific anomaly, those same methods will expose the anomaly’s effects if they are
important for performance. If the anomaly does not interfere with the application’s
execution, then it is not particularly important with respect to performance. If on the
other hand, process synchronization transfers the anomaly’s effects to other process
ranks, we expect sampling-based methods to expose that fact.
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Chapter 3
likwid-bench: An Extensible
Microbenchmarking Platform for x86 Multicore
Compute Nodes

Jan Treibig, Georg Hager, and Gerhard Wellein

Abstract Microbenchmarking is an essential tool for characterizing modern com-
pute nodes. Apart from determining raw performance capabilities microbenchmark-
ing can be used to aquire input parameters for performance models or mimic the
behavior of more complex applications. Many existing microbenchmarks are not
extensible and implemented in C or Fortran. One problem with microbenchmarks
in a high level language is that many performance issues are only apparent on
the instruction level. The code quality of the compiler is an additional source of
variation. likwid-bench is a framework enabling rapid prototyping of loop-based,
threaded assembly kernels. It eases the process of implementing assembly kernels
by providing a portable assembly language independent from any concrete assem-
bler program. likwid-bench already includes many standard microbenchmarking
testcases and can be used out of the box as a microbenchmarking tool.

3.1 Introduction

Microbenchmarking is an essential tool to investigate the interaction of software
with the hardware. It can be used to determine upper limits of performance
characteristics on compute nodes as well as pin down anomalies in the microar-
chitecture of a processor. Another important application is to acquire input param-
eters of performance models. A prominent example for a microbenchmark is the
STREAM benchmark proposed by McCalpin [6], which is the standard for sustained
main memory bandwidth and is often used as baseline for the balance metric
approach [10]. The theoretical performance numbers published by the hardware
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vendors do often not reflect the performance achievable by real applications. Since
instruction code has a large impact on performance, a high level language such
as C is not suited to determine these numbers because it introduces another layer
of abstraction depending on compiler quality. This is even more important in the
x86 world were new instruction set extensions are released with high frequency.
In [8] the Open Source LIKWID tool suite [2] was introduced as a set of lightweight
performance-related command line tools for the Linux operating system. In [9] new
functionality and application scenarios were described, including the benchmarking
application likwid-bench. In this paper we want to cover likwid-bench in more detail
and elaborate on implementation questions. likwid-bench is a microbenchmarking
framework allowing rapid prototyping of stream based, threaded assembly kernels.
Because it comes with a set of common microbenchmarking kernels it can be used
out of the box as a benchmarking application. It is also a valuable tool for measuring
instruction code performance issues for code generators or compilers.

Implementing an assembly kernel with consistent time measurement is non-
trivial. On multicore chips threading is required to determine issues like resource
contention or bottlenecks. Complex node topologies require strict thread core
affinity to get reliable performance characteristics. Finally data placement issues
due to ccNUMA effects have to be taken into account.

likwid-bench provides a framework which allows the implementer to concentrate
on the instruction code of the benchmarking kernel. The high level assembly
language provided eases this process as far as possible without hiding any important
aspect. The runtime cares for threading and affinity, for data allocation and
placement, for accurate time measurement, and for result presentation. All necessary
configuration for benchmark execution is passed on the command line.

This paper is organized as follows. In Sect. 3.3 the software architecture of
likwid-bench is described. The special benchmark text file format used to create
new benchmarks is introduced in Sect. 3.4. Section 3.6 shows application examples,
and Sect. 3.7 presents conclusion and an outlook to future work.

3.2 Related Work

About a decade ago existed benchmarking tools for low level measurement of
latency and bandwidth of the memory hierarchy on modern cache based processors
especially in the UNIX environment. Two prominent examples are LLCBench [4]
and lmbench [5]. In [1] the evaluation of hardware performance counter data
acquired with PAPI using microbenchmarking is described. In [11] a tool is
described to automatically determine hardware parameters later used for automatic
performance optimization. That paper puts much emphasis on the use of C as a
portable “assembly language.” The IPACS project [3] aimed at providing a unified
framework for various benchmarking backends and result presentation.

likwid-bench ultimately tries to provide the user with enough insight into
the microarchitecture to understand the interaction of application code with the
hardware on the lowest sensible level. It does not use C for benchmarking kernels
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a b

Fig. 3.1 Software architecture of likwid-bench. (a) Architecture. (b) Benchmark generation

because the exact instruction code has a crucial influence on performance metrics.
We do not know of any project providing a user configurable runtime environment
for threaded assembly kernels with the same flexibility in thread and data placement.

3.3 Architecture

likwid-bench is builds on the components of the LIKWID toolsuite. It uses the
cpuid module to extract topology information and the affinity module to pin
threads. The allocator module manages aligned data allocation and placement
using the ccNUMA information provided by the numa module. For the threaded
execution the threads module provides a flexible interface with thread groups and
fast synchronization using the pthreads API. Optionally likwid-bench can be
configured to use the libperfctr API instrumentation calls providing very accurate
performance counter measurements. The overall architecture of likwid-bench is
illustrated in Fig. 3.1.

The benchmarking kernels are text files in the .ptt file format, describing the loop
body instruction code accompanied by meta information necessary for the execution
and result presentation. Benchmarks are named according to the ptt file names.
During the build process a perl script reads in all .ptt files in a specific directory
and converts them to a high level assembly file format (.pas) and C header with
prototype declarations of all testcases. For every testcase an assembly function is
generated which is later called from the benchmarking core application.The .pas
files are converted to assembler files (currently for the gas assembler) and finally
assembled to an object file. The intermediate .pas file provides an abstraction from
the assembler format and would allow, e.g., to port likwid-bench to Windows using
the Microsoft assembler. All intermediate build products are available allowing to
closely review the generated assembly code. To add a new benchmark the user must
add a new .ptt file in the bench directory and recompile.
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3.4 Benchmark .ptt File Format

likwid-bench is focused on stream based loop kernels. Still it can be also used for
instruction throughput limited kernels. The following listing shows the file format
on the example of the copy kernel:

STREAMS 2
TYPE DOUBLE
FLOPS 0
BYTES 16
LOOP 8
movaps FPR1, [STR0 + GPR1 * 8]
movaps FPR2, [STR0 + GPR1 * 8 + 16]
movaps FPR3, [STR0 + GPR1 * 8 + 32]
movaps FPR4, [STR0 + GPR1 * 8 + 48]
movaps [STR1 + GPR1 * 8] , FPR1
movaps [STR1 + GPR1 * 8 + 16], FPR2
movaps [STR1 + GPR1 * 8 + 32], FPR3
movaps [STR1 + GPR1 * 8 + 48], FPR4

Data is provided by means of vector streams (STR0, STR1). The necessary
number of streams used by the benchmark must be configured accompanied by
the data type (at the moment single and double precision floats and integers are
supported). For result output it must be further specified how many flops are
executed and how many bytes are transfered in a single scalar update operation.
The LOOP statement marks the beginning of the loop body. The loop control
code is automatically generated, GPR1 being the default loop counter. The number
following the LOOP statement configures how many scalar updates are performed
in one loop body iteration. The loop counter is incremented by this number after the
execution of the loop body. In above example the loop body is four-way unrolled.
Since the code performs two updates per instruction due to SIMD vectorization,
one loop body iteration performs eight updates. The assembly code must use Intel
assembler syntax. For convenience a number of placeholders are provided: Before
the LOOP statement setup instruction code can be placed, e.g. to initialize registers.

FPR[0-15] SIMD vector registers
GPR[0-15] General purpose registers
STR[0-10] Registers with stream addresses
SCALAR Vector double precision constant
SSCALAR Vector single precision constant
ISCALAR Vector integer constant
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3.5 Command Line Syntax

The command line syntax provides a simple and intuitive but yet powerful interface
for thread and data placement. likwid-bench uses the notion of thread groups. A
thread group is a subset of threads operating on the same data set. For every thread
group a workgroup command line option must be present describing the thread and
optionally data placement. For thread and data placement the notion of so called
thread domains introduced is used. A thread domain is an entity on the node shared
by a thread group. The top level thread domain is the node, followed by ccNUMA
locality domains, sockets, and shared caches. If there are multiple domains of the
same type they are numbered consecutively starting with zero. Thread domains are
specified using single characters. This allows a simple interface accounting for all
current and also future topology developments. At the moment the following thread
domains are supported:

N Node
M[0-N] ccNUMA locality domain
S[0-N] Sockets
C[0-N] Last level shared cache

Required information for defining a work group is the thread domain to be used
and the size of the working set. This size is the total size used for all streams
in a benchmark. The necessary vector lengths for each stream is calculated by
the environment (alignment and padding issues are handled automatically). The
simplest invocation for likwid-bench using the copy example is:

$ likwid-bench -t copy -i 1000 -g 1 -w S0:2MB

The -t parameter specifies the benchmark type and -g allows to set the
number of thread groups. At the moment the number of iterations must be given
on the command line with the -i option. It is planned to make this an optional
information with the default ensuring a runtime sufficient to get exact results. The
-w option configures one thread group. Reasonable defaults are used for all omitted
information. In the example above the default is to use all threads available in the
thread domain, including logical cores. The following invocation will use a limited
number of four threads:

$ likwid-bench -t copy -i 1000 -g 1 -w S0:2MB:4

Every successive thread is pinned to distinct cores. This means that for, e.g., an
Intel Quad core Nehalem processor four threads will be pinned to all physical cores.
If six threads are specified the physical cores will be used first and the remaining two
threads will be pinned to the first two logical cores. This simple approach of filling
up the thread domains has one disadvantage: It does not support more sophisticated
thread placement policies. This is apparent on the upcoming AMD “Interlagos”
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processor: Two cores share one floating point unit. With the current approach it is
not possible, e.g., to skip every other core to only use one core per floating point
unit. We plan to extend the current syntax to allow strides without complicating the
basic approach.

For data placement the default is that all data is placed in the same thread domain
the threads are running in. Optionally the exact placement for every stream used
can be configured. The copy benchmark has two streams; this value can be queried
from likwid-bench with the command likwid-bench -l <testcase>. The
following command:

$ likwid-bench -t copy -i 1000 -g 1 \
-w S0:2MB:4-0:S1,1:S1

will place both streams (0 and 1) in the threading domain socket 1 (S1). Each
stream is page aligned per default. Optionally an offset may be specified separately
for each stream.

3.6 Examples

In the following we present possible applications of likwid-bench. The examples
demonstrate critical issues of modern multicore compute nodes: Memory and last
level cache bandwidth saturation, and ccNUMA characteristics.

3.6.1 Identifying Bandwidth Bottlenecks

Determining bandwidth bottlenecks on a compute node is critical for judging
application performance. If it is known what bottlenecks are apparent on a node,
performance limitations can be better understood and techniques can be applied to
work around those bottlenecks. This applies to main memory but also to shared last
level cache bandwidths.

likwid-bench provides special cacheline wise variants of basic data operations
such as load, store, and copy. Because in our case the raw capabilities of the memory
subsystem are needed the runtime spent in executing instructions must be kept at
a minimum [7]. This is ensured by only touching one data item per cacheline,
which forces each cacheline into the L1 cache but minimizes the time spent on
instruction execution. These benchmark variants show the peak cache bandwidths
achievable by software. Figure 3.2a shows last level cache bandwidth scalability
when increasing the number of threads. Clearly the Intel Westmere processor shows
a bandwidth bottleneck starting at three threads. It can also be seen that while for the
load operation the processor is able to saturate its peak cache bandwidth, contention
occurs for the copy operation leading to roughly half of the possible peak bandwidth.
The successor SandyBridge solves both issues, since it incorporates a cache design
which uses multiple segments connected by a segmented ring bus. This makes the
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Fig. 3.2 Bandwidth saturation of shared last level caches (a) and main memory (b). In both cases
special cacheline wise versions of load and copy (a) or copy (b) are used (Intel Westmere Xeon
X5670, Intel SandyBridge Core i7-2600 and a AMD MagnyCours Opteron 6176SE)

L3 cache a parallel device and provides scaling L3 bandwidth. Also the difference
in performance between load and copy is much smaller.

For AMD MagnyCours a six core element as the largest entity with a shared
cache is used for comparison. The L3 cache on MagnyCours is not well suited
for bandwidth-demanding operations. It scales well up to six cores, but on a low
absolute performance level. Up to three cores the bandwidth is not significantly
larger than main memory bandwidth. Still on the full socket it can draw level
with Intel Westmere. There is no difference between load and copy, which can be
attributed to the write allocate exclusive cache design, triggering the same number
of cacheline transfers for load and copy.

Figure 3.2b shows memory bandwidth scaling inside one ccNUMA locality
domain. Both Intel Westmere and AMD MagnyCours show a bandwidth saturation
starting with three threads. The desktop SandyBridge processor is able to saturate
its bandwidth with a single thread.

3.6.2 Characterizing ccNUMA Properties

Cache coherent non-uniform memory architectures are used today to provide
scalable memory bandwidth performance on the node level. This comes at the price
of an increased complexity for the programmer with regard to performance. While
on current Intel machines the ccNUMA locality domain is equivalent to the socket,
on recent AMD processors one physical socket is made up of two dies eachg with
its own locality domains. This means that on a four socket AMD MagnyCours
system eight locality domains exist connected by the Hypertransport bus. To obey
ccNUMA locality is therefore crucial to get good performance on such nodes. With
likwid-bench it is easy to mimic application characteristics with regard to ccNUMA
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a b

Fig. 3.3 NUMA bandwidth map of Intel Nehalem EX four socket node (a) and AMD Magny
Cours two socket node with four ccNUMA locality domains. The Testcase is a standard memory
copy operation with point to point transfer between two locality domains. All cores of a locality
domain are used. Bencwidth result whoen are effective bandwidth seen by the application, i.e., not
counting write allocate transfers. (a) Nehalem EX 4S. (b) Magny Cours 2S

Fig. 3.4 NUMA bandwidth map of four socket AMD MagnyCours system using a standard
memory copy operation

performance. In recent releases of the likwid tool suite a small perl script is included
which automatically creates a graphical ccNUMA bandwidth map of a complete
node based on a memory copy operation.

Figure 3.3a shows the NUMA bandwidth map for an Intel Nehalem EX
four socket node. Surprisingly it has only two performance domains: Local with
15.5 GB/s and remote with 10.5 GB/s bandwidth. On the two socket MagnyCours
node with four locality domains three performance domains can be distinguished.
Still the difference between the remote domains is negligible. The drop from
local to remote is larger on this AMD system than on the Intel Nehalem EX.
Figure 3.4 shows the bandwidth map of a four socket AMD MagnyCours system
with eight locality domains. This system shows a strong NUMA characteristic with
a bandwidth drop for remote accesses to only 25 % of the local bandwidth.There is
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a large variation between remote accesses of over a factor of 2. The results cannot
be fully explained by the Hypertransport topology on the node alone. It is suspected
that routing issues influence the results.

3.7 Conclusion and Outlook

likwid-bench is a flexible microbenchmarking platform for streaming loop kernels.
It offers great flexibility with regard to thread and data placement and allows
to measure many performance-relevant aspects of modern compute nodes. The
inherent limitation to a certain family of architectures can also be seen as an
advantage because it allows full control over the executed instruction code. We have
shown the application of likwid-bench on several examples.

One drawback of the current implementation is that it is restricted to simple
stream based data access. To mimic the behavior of more complex algorithms like,
e.g., stencil codes multi-dimensional data layouts have to be supported. Also the
current syntax specifying thread placement is not flexible enough as it does not
allow free placement but is based on filling up thread domains.

One aspect of likwid-bench is to form a community platform for exchanging
optimal implementations of low level kernels on different platforms. This point will
be in the focus for future activities. There are plans to provide domain specific kernel
packages which can be installed and reviewed to get information how to implement
algorithmic primitives.
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Chapter 4
An Open-Source Tool-Chain for Performance
Analysis

Kevin Coulomb, Augustin Degomme, Mathieu Faverge, and François Trahay

Abstract Modern supercomputers with multi-core nodes enhanced by accelerators
as well as hybrid programming models introduce more complexity in modern
applications. Efficiently exploiting all of the available resources requires a complex
performance analysis of applications in order to detect time-consuming or idle sec-
tions. This paper presents an open-source tool-chain for analyzing the performance
of parallel applications. It is composed of a trace generation framework called
EZTRACE, a generic interface for writing traces in multipe formats called GTG,
and a trace visualizer called VITE. These tools cover the main steps of performance
analysis – from the instrumentation of applications to the trace analysis – and
are designed to maximize the compatibility with other performance analysis tools.
Thus, these tools support multiple file formats and are not bound to a particular
programming model. The evaluation of these tools show that they provide similar
performance compared to other analysis tools.
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4.1 Introduction

Numerical simulation has become one of the pillars of science in many domains:
numerous research topics now rely on computational simulations for modeling
physical phenomenons. The need for simulation in various computer power hungry
research areas, such as climate modeling, computational fluid dynamics, and
astrophysics has led to designing massively parallel computers that now reach
petaflops. Given the cost of such supercomputers, high performance applications
are designed to exploit the available computing power to its maximum. During the
development of an application, the optimization phase is crucial for improving the
efficiency. However, this phase requires extensive understanding of the behavior and
the performance of the application. The complexity of supercomputer hardware,
due to the use of NUMA architectures or hierarchical caches, as well as the use
of various programming models like MPI, OpenMP, MPI+threads, MPI+GPUs and
PGAS models, makes it more and more difficult to understand the performance of
an application. Due to the complexity of the hardware and software stack, the use
of convenient analysis tools is a great help for understanding the performance of an
application. Such tools permit the user to follow the behavior of a program and to
spot its problematic phases.

This paper describes a complete set of tools designed for performance analysis,
from the instrumentation of parallel applications using EZTRACE to the analysis of
their execution with VITE. This open-source tool-chain provides a convenient and
performant means to understand the behavior of an application.

The remainder of this paper is organized as follows: in Sect. 4.2, we present
various research related to performance analysis. The design of EZTRACE – our
instrumentation framework – is described in Sect. 4.3. Section 4.4 presents the GTG
tracing library. Section 4.5 provides an overview of our trace visualization tool
named VITE. The results of experiments conducted on EZTRACE are discussed
in Sect. 4.6. Finally, in Sect. 4.7, we draw a conclusion and introduce future work.

4.2 Related Work

Since the advent of parallel programming and the need for optimized applications,
numerous work has been conducted on performance analysis. Tools were designed
for tracing the execution of parallel applications in order to understand their
behavior. Some of these tools are specific to a particular programming model –
MPE [4] targets MPI applications, POSIX THREAD TOOL [6] aims at applications
that use pthreads, OMPTRACE [3] instruments OpenMP applications, . . . – Others,
such as VAMPIRTRACE [11], TAU [13] or SCALASCA [8], provide multiple
modules and thus support multiple programing models. Instrumenting custom API
or applications can be achieved with these tools by manually or automatically
instrumenting the code.
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The format of the trace generated by a tracing tool is usually specific, leading
to incompatibility between performance analysis tools. Generic trace formats were
designed to meet the needs of several tools. The PAJ format [7] permits the user
to depict the execution of a program in a generic and hierarchic way. The OPEN

TRACE FORMAT [9] (OTF) provides a generic and scalable means of tracing parallel
applications more adapted to MPI applications using various communicators.

Exploring a trace file thus requires a tool designed for a particular trace format.
For instance, OTF traces can be viewed with VAMPIR [10], TRIVA [12] displays PAJ

traces, and the files generated with MPE can be visualized with JUMPSHOT [4]. TAU
and SCALASCA embed their own trace file viewer. The lack of multiformat trace
viewers forces users to switch from one system to another, depending on the tracing
tool in use. A new complete tool-chain – from the application tracing to the trace
analyzer – able to manipulate several trace formats, would allow users to use the
most relevant format for each application to analyze while keeping the same tools.

4.3 Instrumenting Applications with EZTRACE

EZTRACE [14] has been designed to provide a simple way to trace parallel
applications. This framework relies on plugins in order to offer a generic way to
analyze programs; depending on the application to analyze or on the point to focus
on, several modules can be loaded. EZTRACE provides predefined plugins that give
the ability to the user to analyze applications that use MPI libraries, OpenMP or
Pthreads as well as hybrid applications that mix several of these programming
models. However, user-defined plugins can also be loaded in order to analyze
application functions or custom libraries.

EZTRACE uses a two-phases mechanism for analyzing performance. During the
first phase that occurs while the application is executed, functions are intercepted
and events are recorded. After the execution of the application, the post-mortem
analysis phase is in charge of interpreting the recorded events. This two phase
mechanism permits the library to separate the recording of a function call from
its interpretation. Moreover, a post-mortem analysis also reduces the overhead of
profiling a program; during the execution of the application, the analysis tool should
avoid performing time-consuming tasks such as computing statistics or interpreting
function calls. It thus allows the user to interpret a function call event, and so a
complete execution trace, in different ways depending on the point he/she wants to
focus on, just by using different interpretation modules provided by the EZTRACE.

4.3.1 Tracing the Execution of an Application

During the execution of the application, EZTRACE intercepts calls to the functions
specified by plugins and records events for each of them. Depending on the type of
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int submit_jobs(int nb_jobs)
BEGIN
ADD_VAR("Number of jobs", nb_jobs)
CALL_FUNC
EVENT("New jobs")
END

void do_work()
BEGIN
RECORD_STATE("Working")
END

Fig. 4.1 Example of function instrumentation using the script language

functions, EZTRACE uses two different mechanisms for interception. The functions
defined in shared libraries can be overriden using LD PRELOAD. When the
EZTRACE library is loaded, it retrieves the addresses of the functions to instrument.
When the application calls one of these functions, the version implemented in
EZTRACE is called. This function records events and calls the actual function. The
LD PRELOAD mechanism cannot be used for functions defined in the application
since there is no symbol resolution. In that case, EZTRACE uses the DYNINST [2]
tool for instrumenting the program on the fly. Using DYNINST, EZTRACE modifies
the program to record events at the beginning and/or at the end of each function to
instrument.

For recording events, EZTRACE relies on the FXT library [5]. FXT provides
efficient support for recording traces of actions both in kernel and user space.
However, EZTRACE only uses the user space feature. In order to keep the trace
size as compact as possible, FXT records events in a binary format that contains
only the minimum amount of information: a timestamp, an event code and optional
parameters. During the initialization, FXT pre-allocates a buffer. When recording an
event, FXT uses atomic operations for ensuring the trace consistency when multiple
threads are used. At the end of the application, FXT flushes the trace to the disk.

4.3.2 Instrumenting an Application

Since EZTRACE uses a two-phases mechanism, plugins are organized in two parts:
the description of the functions to instrument, and the interpretation of each function
call. During the execution of the application, the first part of the plugin is in charge of
recording calls to a set of functions as described in Sect. 4.3.1. The second part of the
plugin is in charge of adding semantic to the trace. EZTRACE provides plugins for
major parallel programming libraries (MPI, OpenMP, PThread, etc) but also allows
user-defined plugins designed for custom libraries or applications. For example, the
PLASMA linear algebra library [1] is shipped with an EZTRACE plugin.

In order to ease the creation of a plugin, we designed a compiler that generates
EZTRACE modules from a simple script file. As depicted in Fig. 4.1, such a script
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consists of a list of functions to instrument and the interpretation of each function.
In this example, when the function submit jobs is called, EZTRACE increases
the value of a counter, calls the original function, and creates an event. A call
to do work is represented as a change of the state in the output trace. While
some performance analysis tools allow users to specify a set of custom functions
to instrument, choosing the representation of the corresponding function calls is
usually impossible. Our script language gives the possibility to the users to easily
create new EZTRACE modules. Since the compiler generates C files, advanced users
can tune the created module to fit their needs.

4.4 Creating Trace Files with GTG

During the post mortem analysis phase, EZTRACE browses the recorded events and
interprets them. It can then generate statistics – such as the length of messages, the
duration of critical sections, etc. – or create a trace file for visualizing the application
behavior. For generating trace files, the post-mortem analysis of EZTRACE relies on
the Generic Trace Generator (GTG ) library.1 GTG provides an high-level interface
to generate traces in different format such as Paje or OTF. This permits EZTRACE

to use a single interface for creating traces in multiple formats. Thus, it can generate
PAJ traces or OTF files without any modification, just giving at runtime the desired
format. This high-level interface can also be used for any application supervision
by any user who cares less about tracing performance such as to follow memory
consumption and want to combine the tracing and the post-mortem conversion steps.

4.4.1 Overview of GTG

Although trace formats are different, most of them rely on the same structures and
provide similar functionalities as it is depicted in Fig. 4.2. A set of hierarchical
containers (1) represents processing entities such as processes, threads, or GPUs.
These containers have states (2) that depict events that start at time T1 and end
at time T2 – the execution of a function, the processing of a computing kernel, a
pending communication, etc. – Some events (3) (sometimes defined as markers) are
immediate (i. e. T1 D T2), and can represent the release of a mutex, the submission
of a job, etc. Most trace formats also provide a way to track a counter (4) such as the
total allocated memory, the number of pending jobs or the number of floating point
operations per second. In order to symbolize the interaction between containers,
trace formats often provide a link (5) feature: a couple of events that may happen

1Available under the CeCILL-C license at http://gtg.gforge.inria.fr/

http://gtg.gforge.inria.fr/
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Fig. 4.2 Features commonly
provided by trace formats

on different containers. This permits the viewer tool to represent for example:
communications between processes, or signals between threads.

GTG provides a simple interface for manipulating these features. This interface
then calls one of the available modules depending on the output trace format.

4.4.2 Interaction Between GTG and EZTRACE

Once EZTRACE is running along with the application, FXT traces are generated.
The second part of EZTRACE is based on GTG, and transforms the raw traces to
real meaningful traces. First, a meaning is added (for example 42 represents an
MPI Send request according to the MPI plugin). The semantic can represent links,
events, states, etc. The hierarchical structure of the API functions is inspired by the
generic PAJ trace format, thus any trace format should be matched. For instance,
OTF traces can be generated. The containers can have states (‘This thread is in
this function’), notify events, or count relevant data (number of messages, memory
used, number of jobs, etc). This step is based on the plugins (plugins give different
meaning to the symbols). Using the EZTRACE convert tool based on GTG, one can
add meaning, define containers, and describe what is happening in a function.

4.5 Analyzing Trace Files with VITE

The trace files generated by tools such as GTG or VAMPIRTRACE can be parsed for
extracting statistics – such as the average message size – however, understanding
the behavior and the performance of an application requires a more convenient tool.
In this Section, we present VITE2 – which stands for Visual Trace Explorer – an
open-source multi-format trace visualizer.

2Freely available at http://vite.gforge.inria.fr/

http://vite.gforge.inria.fr/
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Fig. 4.3 Modules
architecture in VITE

4.5.1 A Generic Trace Visualizer

Originally, the PAJ [7] trace visualizer was designed to analyze parallel applications
using a simple yet generic trace format. The decline of PAJ led students to design
a new PAJ trace viewer. VITE was designed as a generic trace visualizer, and
additional trace formats such as OTF and TAU were added later. To manage multiple
formats, VITE relies on a module architecture as depicted in Fig. 4.3.

A set of modules are in charge of parsing traces and filling the generic data
structure. VITE implements parsers for several trace formats: OTF, PAJ, extended
PAJ (a multiple files PAJ format), and TAU formats. Filling the generic data structure
is a critical part of VITE : traces may have millions of events and their processing –
storing events, browsing through the event list, finding associated data, etc. – has to
be efficient. The last modules are in charge of rendering traces. Such a module uses
the data structure to display the trace as requested by the user. A graphical interface
based on QT and OpenGL allows an user-friendly browsing of the trace. Additional
rendering modules generate SVG or PNG files depicting traces to easily export the
results.

Although trace formats are different in their design, most of them provide similar
functionalities. VITE implements a generic data structure and manipulates abstract
objects representing the different features defined by trace formats. This abstraction
permits the developers to easily implement additional parsers for new trace formats,
while rendering traces in a homogeneous way.

4.5.2 Displaying Millions of Events

As depicted in Fig. 4.4, VITE is able to display millions of items. To manage such
performances, an efficient data structure and an efficient rendering is needed. The
data structure is based on binary trees, as depicted in Fig. 4.5. Each tree is built over
a sorted list of known size. Hence the construction of the data structure is not optimal
(building lists then trees) but the conversion is not so slow (knowing the size of the
list, the tree is build in linear time) and it offers an efficient data structure. Moreover,
this transformation allows an internal modification, where for instance states are not
recorded but state changes are. It avoids storing both the start and the duration of
the state: we only store a state change that occurs at time t . This avoids storing
an unneeded floating value for each state. Thanks to these trees, any element can
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Fig. 4.4 Example of trace display with VITE. The trace contains ten millions events

Fig. 4.5 Example of sorted binary tree representation of events

be accessed in logarithmic time and unneeded branches of the tree can be avoided
while browsing.

The binary tree structure is also useful for rendering the trace. In order to avoid
creating millions of graphical elements, portions of the trace have to be summarized.
VITE uses a resolution parameter for eliminating the events that are too small to be
rendered: if a node and his father are too close, then the resolution will not be enough
for displaying them, and it is useless to keep on browsing all the nodes between the
two (the subtree of the node on the same side as the father).

For example, when rendering the binary tree depicted in Fig. 4.5 with a resolution
of 1 ms, VITE browses event # 4. It then handles # 2. Since the interval between
events # 2 and # 4 is lower than the resolution (T#4 � T#2 < 1 ms), event # 3 is
not taken into account. Event # 1 is then handled normally. Then, VITE processes
event # 6. Event # 5 is skipped since it is beneath the resolution (T#6 � T#4 < 1 ms)
and event # 7 is handled normally. As a result, the number of elements to display,
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as well as the number of nodes to browse, is limited increasing the rendering
performance. If the user zooms in, the resolution decreases and the same algorithm
is used.

The rendering is also critical; OpenGL has been chosen after benchmarking
several solutions based on Qt, GTK, SDL, GNUStep and JAVA. Despite the fact
that Qt and GTK could provide a better and easier interaction with the trace, the
OpenGL engine, with our own mouse placement detection, appeared to be the most
scalable solution. Moreover, on some machines, OpenGL can benefit from hardware
optimization with the GPU.

4.6 Evaluation

When analyzing the performance of parallel applications that generate millions
of events, the performance of the analysis tool is important. The overhead of the
instrumentation should be as low as possible, and the visualization tool should allow
a smooth browsing of the resulting trace. In this Section, we assess the performance
of EZTRACE. We evaluate the raw performance of the instrumentation mechanisms
used in EZTRACE on a synthetic benchmark as well as on application kernels.

The results of this evaluation were obtained on the CLUSTER0 platform. It is
composed of 32 nodes, each being equipped with two 2.2 GHz dual-core OPTERON

(2214HE) CPUs featuring 4 GB of memory. The nodes are running Linux 2.6.32
and are interconnected through MYRINET MYRI-10G NICs. We compare EZTRACE

with VAMPIRTRACE in its 5.9 version.

4.6.1 Overhead of Trace Collection

In order to evaluate the raw overhead of program instrumentation, we use an
MPI ping pong program. We measure the latency obtained for 16-bytes messages.
We instrument this program using the automatic (i.e. using LD PRELOAD) and
manual (i.e. using DYNINST) mechanisms described in Sect. 4.3.1, then we compare
the overhead of using EZTRACE or VAMPIRTRACE to the performance obtained
without instrumentation. For VAMPIRTRACE, the automatic instrumentation is
obtained by using its MPI module. The manual instrumentation is obtained by
inserting call to VT USER START and VT USER END in the application.

Table 4.1 shows the results we obtained. Using VAMPIRTRACE automatic
instrumentation degrades the latency by 1.1 �s while the manual instrumentation
causes an overhead of 700 ns. The difference is due to the fact that VAMPIRTRACE

generates events at the entry and the exit of functions in both instrumentations, but
it also generates a SendMessage or ReceiveMessage event when the MPI module is
selected.



46 K. Coulomb et al.

Table 4.1 Results of the 16-bytes latency test

Method Open MPI (�s) VampirTrace (�s) EZTrace (�s)

Automatic 4.99 6.12 5.68
Manual 4.99 5.71 5.67

Table 4.2 NAS Parallel Benchmark performance for Class A and B

VampirTrace EZTrace

Time Overhead Time Overhead
Kernel Class # Proc. OpenMPI (s) (s) (%) (s) (%) # Events/s

BT A 4 70.57 70.58 0.01 70.39 �0.26 825
CG A 4 2.64 2.68 1.52 2.68 1.52 12,546
EP A 4 9.61 9.69 0.83 9.72 1.14 5
FT A 4 6.63 6.67 0.55 6.62 �0.20 22
IS A 4 0.63 0.64 2.13 0.62 �1.06 482
LU A 4 42.08 42.15 0.17 41.39 �1.64 12,282
MG A 4 5.04 5.06 0.46 5.07 0.66 2,978
SP A 4 166.25 165.94 �0.18 166.32 0.04 696
BT B 36 26.08 25.83 �0.97 26.37 1.10 59,350
CG B 32 16.29 16.46 1.02 16.60 1.88 192,667
EP B 32 4.81 4.79 �0.42 4.76 �1.04 81
FT B 32 11.76 11.61 �1.30 11.55 �1.81 255
IS B 32 0.97 0.96 �1.03 0.96 �1.03 2,580
LU B 32 33.75 34.11 1.07 33.67 �0.24 �
MG B 32 2.14 2.16 0.78 2.13 �0.62 215,515
SP B 36 51.18 51.98 1.57 52.07 1.75 59 922

Instrumenting the application with EZTRACE causes an overhead of 700 ns for
both mechanisms. This is because EZTRACE records events at the entry and the
exit of functions for both manual and automatic modes. The SendMessage and
ReceiveMessage events are generated during the post mortem phase.

4.6.2 NAS Parallel Benchmarks

In order to evaluate the overhead of EZTRACE on more realistic computing kernels,
we also measure its performance for NAS application kernels. The experiment was
carried out with 4 computing processes for Class A and 32 processes (or 36 for BT
and SP that require a square number of processes) for Class B. We instrument MPI
functions of these kernels with EZTRACE and VAMPIRTRACE automatic modules.

Table 4.2 summarizes the results we obtained. Since EZTRACE post mortem
phase crashes for the LU kernel for Class B, the number of events in the resulting
OTF trace is not reported. The results show that instrumenting these kernels
with EZTRACE or VAMPIRTRACE does not significantly affect the performance:
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variation of the execution time is less than 2 %. This experiments also show that
intensive event recording kernels – such as MG or CG for Class B – do not suffer
from the overhead of the instrumentation.

4.7 Conclusion and Future Work

Programming a parallel application that efficiently exploits a supercomputer
becomes more and more tedious due to the increasing complexity of hardware –
multicore processors, NUMA architectures, GPGPUs, etc. – and the use of hybrid
programming models that mix MPI, OpenMP or CUDA. Tuning such an application
requires the programmer to precisely understand its behavior.

We proposed in this paper an open-source tool-chain for analyzing the per-
formance of modern parallel applications. This software suite is composed of
EZTRACE – a generic framework for instrumenting applications –, GTG – a tool for
generating traces in multiple formats –, and VITE – a trace visualizer that supports
several trace formats –. These tools were designed to provide an open-source
alternative to other performance analysis tools, while allowing interoperability with
other tools such as Vampir or TAU. The evaluation shows that this genericity does
not imply extra overheads since EZTRACE provides similar performance when
compared to VAMPIRTRACE.

In the future, we plan to study more precisely the performance of the whole
software suite and to improve it. Additional modules are to be developped in
EZTRACE in order to allow the analysis of programs running CUDA or OpenCL.
We also plan to improve EZTRACE performance analysis capabilities so that it can
detect programming or runtime issues such as network congestion or insufficient
overlap of communication and computation. Future work concerning GTG includes
the support for other trace formats – such as TAU – and enhancing the API. We also
plan to merge VITE and TRIVA [12] projects. TRIVA is based on PAJ software and
provides new ways of displaying information such as treemaps, or network graphs
that will benefit to ViTE. On the other side, TRIVA will benefit from the multi-format
parser and from the OpenGL display.
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multi-threaded programs executions. In: Euro-Par 2000 Parallel Processing, pp. 133–140.
Springer, Berlin (2000)
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Chapter 5
Debugging CUDA Accelerated Parallel
Applications with TotalView

Chris Gottbrath and Royd Lüdtke

Abstract CUDA introduces developers to a number of concepts (such as kernels,
streams, warps and explicitly multi-level memory) beyond what they are used to
in serial, parallel and multi-threaded applications. Visibility into these elements
is critical for troubleshooting and tuning applications that make use of CUDA.
This paper will highlight CUDA concepts implemented in CUDA 3.0–4.0, the
complications they introduce for troubleshooting, and how TotalView helps the user
deal with these new CUDA specific constructs.

5.1 Introduction

NVIDIA’s CUDA language extension provides a very interesting opportunity for
scientists and developers to accelerate the runtime performance of computationally
intensive applications running on a single workstation or on a cluster of dedicated
nodes augmented with GPU cards. However, as developers begin adapting their
applications for the GPU, they are finding out that harnessing the available
performance requires mastering the concepts of data parallel programming and
developing a fairly sophisticated understanding of the GPU architecture. Parallel
development and debugging tools are being adapted to help developers tackle both
of these objectives. This paper talks about work that has been done to enhance
TotalView so that users can seamlessly debug apps that leverage CUDA in the
context of multiple tiers of parallelism: device host, and cluster.
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5.1.1 HPC Debugging Challenges

HPC applications, which typically run as distributed parallel applications on cluster
type machines, require significant effort to write. Scientists and developers need to
think about breaking tasks down into small units that can be distributed across that
cluster. They need to pay special attention to the sequence of operations and the data
and resource dependencies that different parts of the application have. They need to
be conscious not just about what data is needed where, but also about the bandwidth
and latency involved with moving data around the cluster.

Frameworks, libraries and languages like MPI, UPC, Global Arrays, Co-Array
FORTRAN, OpenMP, and pthreads provide powerful and flexible mechanisms
that can be used to construct parallel applications and address the challenges of
instantiating and managing parallel programs, providing synchronization and data
movement between parallel tasks as required. Regardless of whether it is implicit
or explicit, there is a tremendous degree of complexity that arises from parceling
up the program and data while ensuring data movement and appropriate (but not
too much) synchronization. This complexity becomes an issue when it comes to
validating, troubleshooting and debugging applications.

Debugging has always been challenging; there is an old adage that debugging a
bit of code is at least twice as hard as writing that same bit of code and that statement
was primarily made in the context of serial applications running on a single core.
Taking a given algorithm and making it parallel frequently means introducing (1)
additional code and (2) more complicated data structures to facilitate distributed
execution and data movement. Both cases provide additional opportunities for errors
to creep in.

Parallel applications execute many different bits of code at the same time
across a large set of distinct nodes. They frequently perform computations that are
interconnected enough that an error or oversight anywhere may either cause a local
failure or set in motion a series of events that causes incorrect data to be transmitted
to another node, leading to a wrong answer or crash somewhere else in this
distributed system. A failure to ensure proper synchronization can lead to failures
that may happen only rarely when natural perturbations introduced by the system
or other factors external to the program lead to rare and unexpected sequencing
of operations. Furthermore, synchronization-dependent errors may become visible
only when the program is run at or above some specific scale or is sensitive to details
about how parallel tasks are mapped to compute resources.

All of this adds to the complexity of validating, debugging and tuning parallel
applications. As if distributed architectures weren’t enough, recent trends have
introduced heterogeneous computational elements into the mix.

5.1.2 CUDA and Heterogeneous Acceleration Architectures

Recently, as general-purpose processors have grown more complicated and physical
limits having to do with thermal dissipation have served to limit raw clock
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speed increases, there has been a growing interest in exploring heterogeneous
architectures. Such architectures attempt to blend the benefits of general-purpose
cores that excel at executing a wide range of computation with a set of cores
specifically designed to execute more limited types of computations. These special-
purpose cores typically focus on performing integer and floating point calculations
on vectors of data and may trade off some of the sophisticated predictive control
flow capabilities that are featured on the general purpose cores. A few years ago
IBM and Toshiba introduced the Cell processor, which blended a PowerPC-based
general purpose computing element in a processor package with a set of special
vector processors called Synergistic Processing Elements (SPEs). NVIDIA provides
a solution that uses their extremely capable, mass-market Graphics Processing Units
(GPUs) in the vector processor in conjunction with traditional mass-market Intel or
AMD CPUs.

There are several different techniques for taking advantage of GPUs as com-
putational accelerators. In the 1990s curious users who found clever ways to
repurpose the OpenGL image processing language to accomplish general-purpose
computations. Later NVIDIA introduced the proprietary CUDA for C and C++
language extensions. AMD and Apple sponsored work resulting in OpenCL, and
independent companies like PGI and CAPS introduced techniques like the PGI-
accelerated Fortran and CAPS HMPP. CUDA has a unique position in the market in
terms of widespread adoption and a mature, though still rapidly evolving, tool chain
and runtime environment. While the jury is still very much out on which approach
will be the favored one several years down the road, CUDA is how most ISVs and
users are implementing GPU acceleration for NVIDIA hardware today.

5.1.3 Challenges Introduced by CUDA

Programming for CUDA introduces a series of unique challenges that HCP devel-
opers need to overcome to successfully harness the power of the GPU and reduce
the time that it takes their applications to run and generate results.

The first challenge is a lack of abstraction; CUDA generally exposes quite a bit
about the way that the hardware works to the programmer. In this regard, it is often
compared to assembly language for parallel programming. Explicit concepts such
as thread arrays, discussed below, map directly to the way the hardware groups
computational units and local memory. CUDA compilers and runtimes prior to 3.2
don’t support thread stacks, so programmers had to avoid recursion and generally
be aware that any functions they wrote in CUDA device code would be inlined for
execution. The memory model requires explicit data movement between the host
processor and the device and CUDA makes explicit use of a hierarchy of memory
address spaces, each of which obeys different sharing rules. This is more low-level
detail than the typical application or scientific programmer has to deal with when
programming in C, C++ or Fortran and also raises significant concerns with regard
to portability and maintainability of code.
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The second such challenge is that the programming model for CUDA is one
of data parallelism rather than task parallelism. When divvying up work across
the nodes of a cluster, HPC programmers are used to looking for and exploiting
parallelism at a certain level. The amount of data to assign to each node depends
on a number of factors including computational speed of the node, the available
memory, the bandwidth and latency of the interconnect and the frequency with
which results need to be shared with other processes. Since processors are fast
and network bandwidth is relatively scarce, the balance is typically to put quite a
bit of data on each compute node and to move data as infrequently as possible.
CUDA invites the programmer to think about parallelism of a completely different
order, encouraging the developer to break the problem apart into units that are much
smaller, often as small as the computation that might be required to assign a single
variable into an array. This is often many orders of magnitude more parallelism than
was previously expressed in the code and requires reasoning somewhat differently
about the computations themselves.

The third challenge lies in dealing with data movement and multiple address
spaces. NVIDIA GPUs are external accelerators attached to the host system via the
PCI bus; each GPU has both its own onboard memory and also features smaller
bits of memory attached to each one of the compute elements (see the architecture
review below for more detail). While there are now mechanisms to address regions
of host memory from device kernels, such access is very slow compared to accessing
device memory. CUDA programs therefore use a model in which code running on
the host processor prepares and explicitly dispatches work to the GPU, pauses for
the GPU to complete that work, then reads the resulting data back from the device.
Both the units of code representing computational kernels and the associated data
on which those computational kernels will execute are dispatched to the device. The
data is moved, in whole or part, to the device over the PCI bus for execution and as
results are produced they need to be moved, just as explicitly, back from the device
to the host computer’s main memory.

The device has different kinds of instance memory: either local and reserved
for specific sets of computing elements, or globally addressable from any of
the computing elements on the CUDA device. CUDA makes this distinction
explicit, and requires that developers designate the location of variables at variable
declaration time. A variables location in this memory hierarchy determines how it
can be used, forcing the developer to be cognizant of these issues.

5.1.4 The TotalView Debugger

TotalView is a highly interactive graphical source code debugger that provides
developers working in C, C++ or Fortran with a way to explore and control
their programs. Originally designed to debug one of the first distributed memory
architectures, the BBN Butterfly, TotalView has been continually enhanced with a
focus on multi-process and multithreaded applications. Today TotalView is used to
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develop, troubleshoot and maintain applications in a wide range of situations. One
group uses it to develop Linux-based commercial embedded computing applications
consisting of a single process with a 100 or more separate threads that simultane-
ously interact with a graphical user interface (GUI), sensors, online databases and
network services. Other users troubleshoot sophisticated mathematical models of
complex physical systems in astrophysics, geophysics, climate modeling and other
areas. These models typically consist of thousands of separate processes that run on
large-scale, high performance computing (HPC) clusters on the top 500 list. In both
these use cases, TotalView provides the users with a debugging session in which
they can examine in detail any one of the many threads or processes that make up
the application, controlling each thread or process singly or as a part of various
predefined and user-defined groups, and displaying multiple types of data and state
information from across many processes and threads. With runtimeperformance –
conscious developers now exploring CUDA as a way to accelerate computation,
Rogue Wave Software has enhanced TotalView to support users who are developing
and debugging CUDA C/C++ code.

5.2 TotalView for CUDA

This section of the paper details what Rogue Wave Software has done to adapt the
TotalView debugger to support CUDA development and debugging.

5.2.1 Previous Experience: Cell

The IBM Cell processor technology was a precursor in several ways to GPU
technology. Rogue Wave Software worked with Los Alamos National Lab (LANL)
to provide support for their leadership-class Roadrunner system. The Cell processor
embraces heterogeneity, providing a general purpose POWER core and a set of
eight synergistic processing elements that are somewhat simpler and more restricted
than the POWER core but each capable of performing computations within a
separate memory environment. As with the GPU, user programs run on the general
purpose core, which calls on the special purpose processors to accelerate certain
types of computation.

The architecture of the Cell presents two general challenges for developers
writing new software for or porting existing software to the Cell. The first challenge
is in breaking the key components of a program into small chunks that can execute
on the eight Synergistic Processing Elements (SPEs). In numerical programs, this
often means dividing the data into small independent units. In other cases, individual
tasks or pipeline stages may be delegated to specific SPEs. This issue of problem
decomposition is similar to that of adapting an application to a distributed memory
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cluster environment, although the granularity is different due to the limited memory
space directly available to each SPE.

The second challenge has to do with moving data between different parts of the
processor. Each of the eight SPE cores that is part of the Cell processor has its own
independent registers and a small amount of local memory (256 KB) used for storing
instructions and data. This memory acts similarly to a cache in a general-purpose
processor, in that it has a limited size and can be read and written very quickly.
Unlike a cache, however, its contents are directly managed by the application. The
code units running on the SPE elements are allowed to initiate direct memory access
operations that can copy chunks of data from the main memory into the SPE local
store or back to main memory from the local store. The same memory is used for
the machine instructions and global memory, heap memory and stack. The heap
and the stack change size over time and because there is no memory protection,
the programmer must take care to avoid collisions between these different memory
ranges. Because each processor has a completely separate local store, the structure
of a program for the Cell is very different than the structure of a traditional multi-
threaded application, where all the threads share the same memory.

In order to support the Cell processor TotalView extended the process and
thread model, allowing it to accommodate the idea that a process might contain
a heterogeneous mixture of threads, some of them running in the shared address
space of the host processor and some of them running off in the separate and more
constrained space of the SPE cores. That had implications on the group models that
TotalView uses to decide where to plant breakpoints and what processes to hold and
what processes to run when performing process control operations. The result was a
very natural and powerful user interface paradigm where the user could quite easily
switch between host processor threads and the accelerator threads running on the
SPEs.

5.2.2 The NVIDIA GPU Architecture and CUDA

The CUDA hardware model has some significant similarities and differences from
the Cell processor. Where the Cell had eight synergistic processing elements, the
NVIDIA GPU has an array of streaming multiprocessors (SMs) each of which
provides an execution environment with a bit of local memory and a number of
streaming processors (SP). Older hardware may have as few as 8 SPs per SM and
newer hardware has up to 48. Devices such as the NVIDIA Tesla C2070 have
14 SMs with 32 SPs each and can execute up to 448 operations in parallel.

Each one of those streaming processors may be working on different data and
produce different results but they are not all executing independently. The NVIDIA
hardware introduces the concept of a warp, which is a set of 32 threads that execute
the same instruction together. Branching within the warp is handled by stalling those
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threads that are not participating in a branch to be resumed when the shared program
counter is again executing instructions that are part of the thread occupying that
lane’s execution path.

Logically threads are grouped together into arrays of up to 512 threads (16 warps)
that execute on an SM and share a bit of memory. The geometry of the array is
configurable based on the code and an individual thread is identified by a unique
combination of three coordinate indices. Since each thread array executes on a single
SM, CUDA programs will typically try to start up many more than one thread array
at a time. CUDA provides a way to address sets of thread arrays using a second
set of three coordinate indices that are referred to as the grid coordinates. Threads
are grouped together into arrays. Arrays are grouped together in a grid. The full
combination of six dimensional grid and array coordinates serve to fully specify a
unit of work within a discrete CUDA computation.

5.2.3 The TotalView Model: Extended for CUDA

This section of the paper details Rogue Wave Software’s adaptations to the
TotalView debugger in support of CUDA development and debugging.

TotalView has been extended to provide CUDA support in the same manner that
it was extended for Cell. The new version of TotalView builds on and extends the
model of processes made up of threads to incorporate CUDA. There are two major
differences: first, CUDA threads are heterogeneous, and second, TotalView shows
a representative CUDA thread from among all those created as part of running a
routine on the GPU.

The GPU thread is shown as part of the process alongside other pthreads or
OpenMP threads. Threads created by OpenMP or pthreads in any single process
share an executable image, a single memory address space and other process level
resources like file and network handles. This special CUDA thread, on the other
hand, executes a different image, on a set of processors with a different instruction
set, in a completely distinct memory address space.

Because of the large number of CUDA threads and the fact that only a small
number of this large set of logical threads are likely to actually be instantiated on
the hardware at any given moment in time, the UI has been adapted to display the
thread specific data from a user-selectable representative CUDA device thread.

CUDA is heavily used in conjunction with distributed multi-process program-
ming paradigms such as MPI. As such, the CUDA support in TotalView is
complimentary and additive with the MPI support in TotalView. Users debugging
an MPI+CUDA job see the same view of all their MPI processes running across
the cluster and when they focus on any individual process they can see both what
is happening on the host processor and what is happening in the CUDA kernels
running on the GPU.



56 C. Gottbrath and R. Lüdtke

5.2.4 Challenges and Features

This section will discuss some of the challenges encountered as TotalView was
adapted to allow it to debug CUDA accelerated applications and will highlight some
of the features that were introduced as a result.

5.2.4.1 Extending the Thread Model

TotalView already has a very powerful model for multi-process and multithread
applications. Each program is modeled as a set of processes, which may run on one
or more hosts and which each are comprised of one or more threads. TotalView
has features that allow the user to examine and control each thread separately. Most
programs are comprised of processes that have anywhere from one to a handful of
threads. A few ambitious programs may have a 100 or more threads. The CUDA
runtime allows each thread of a UNIX process to dispatch work to be done on
the attached GPU device. This work is encapsulated in units of work referred to
abstractly as “kernels” and the parallel architecture of the GPU allows it to execute
hundreds of instances of these kernels, called device threads, at a time. In order
to hide latencies the programmer is encouraged to request the creation of large
numbers (many thousands) of such device threads.

The device cannot actually process all of these threads as the same time; instead
it “streams” them – scheduling them onto the hardware in batches, running each
batch to completion while loading the preconditions for the next batch so that it can
immediately run. This streaming technique hides much of the cost of data movement
and context creation.

Ideally each CUDA kernel thread is performing self-contained unit of work with
clearly defined inputs and with no side effects or dependencies on anything that
is meant to happen within any of the other kernel threads that are being executed
at the same time. That allows the device and the device runtime environment a
large degree of freedom in scheduling the kernels. If resources allowed, the runtime
could create all the device threads ahead of time and run them all simultaneously.
Alternately it could create one thread at a time, running it to completion and then
eliminating it (leaving just its output data). Generally the model allows the runtime
to create and run device threads in any order or grouping that make sense based on
hardware resources and the data being processed. This device kernel thread concept
is very different from host processor threads. The creation of a thread in pthreads or
OpenMP is a significant and heavyweight operation; best programming and thread
runtime practices involve keeping those threads around for a relatively long period
of time and using various techniques to have them operate on data structures that are
shared across and between threads. The fact that multiple threads access the same
data structures is the key feature and key challenge to multithreaded programming
with pthreads or OpenMP.
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While CUDA kernel threads are encouraged to be self-contained they are not
forced to be. They can access (both reading from and writing to) global and shared
memory. This is important in that it avoids having the CUDA program duplicate
certain input data structures, but it means that there is the possibility for race
conditions and device threads reading incorrect or invalid data.

In order to give visibility into the dynamically changing set of CUDA kernel
threads without overwhelming the user, TotalView creates a single thread object for
each kernel invocation, called a GPU focus thread, which is displayed next to the
host threads in the debugger’s display. The user selects this thread to get a view into
one of the device threads that are currently executing the kernel on the GPU device.
TotalView gives host threads a positive debugger thread ID and CUDA threads a
negative thread ID. The initial host thread in process “1” might be labeled “1.1” and
the CUDA thread is labeled “1.-1”. See Fig. 5.1 for just such a pair of threads.

At any time the user can control which of the currently active CUDA threads is
displayed through the GPU focus thread. This selection is done using a new set
of controls, called the GPU thread selector, on the TotalView Process Window.
The GPU thread selector reports the device thread currently being displayed, and
can be used to change that selection. CUDA threads can be specified using one
of two coordinate spaces. One is the logical coordinate space that is in CUDA
terms of grid and block indices: <<<(Bx,By,Bz),(Tx,Ty,Tz)>>>. The other is the
physical coordinate space that is in hardware terms of device number, streaming
multiprocessor (SM) number on the device, warp (WP) number on the SM, and lane
(LN) number on the warp. See the GPU thread selector in Fig. 5.1.

Any given thread has both a thread index in this 4D physical coordinate space,
and a different thread index in the 6D logical coordinate space. These indices
are shown in a series of spin boxes in the Process Window, next to a button
that indicates which coordinate system is currently displayed. Pressing this button
switches between the two numbering systems, but does not change the actual thread.

It isn’t always obvious how the logical and physical coordinates are mapped to
one another, nor is it always clear what logical coordinate range designates the set of
threads that are currently mapped to hardware. Therefore TotalView added a CUDA
device display which brings up a separate window specifically designed to display
the hardware’s capabilities (in terms of how many streaming multiprocessors it has
and their compute capability rating) and the logical threads currently mapped to the
hardware resources (Fig. 5.2).

5.2.4.2 Dealing with Different Memory Spaces

TotalView can display variables and data from a CUDA thread. CUDA variables for
a device kernel function are displayed in the stack frame on the Process Window
in the same manner that variables are displayed in C, C++ or Fortran code on the
host processor. The idioms of hovering over variables with the mouse or diving on
variables to open a Variable Window both work just like they do on the host thread,
as does the TotalView expression list and expression system. One thing to note is



58 C. Gottbrath and R. Lüdtke

Fig. 5.1 TotalView Process Window focused on a CUDA device thread. Note the CUDA thread
selector between the toolbar with the stepping controls and the process status ribbon; the CUDA-
specific information in the stack frame, including the qualifiers such as local on the type of variable
Csub; and the CUDA device thread 1.-1 and the host thread 1.1 listed in the Threads Pane at the
bottom of the window

that when you use the CUDA thread selector to change the focus you will see the
values of variables in the newly selected thread replace those from the previous
thread in all the aforementioned places.

Naturally, all variables have addresses, but depending on the variables type, those
addresses may refer to any one of many different places. That’s because CUDA
uses an explicitly hierarchical memory. Each thread has its own local memory; so if
variable X is a local variable and it has address 0 � 14 each thread can have its own
instance of X, all with the same address but each referring to a private instance of
that variable with a different value. Similarly there is a bit of memory associated
with each cooperative thread array and the streaming multiprocessor that the
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Fig. 5.2 Device Status Window, showing the device hierarchy starting with a numbered set of
CUDA devices that are comprised of SMs that include Warps made up of Lanes. This particular
display highlights the 1st of three devices on a system, with four active SMs and their component
Warps and Lanes. The other key information that is presented here is how these hardware resources
are mapped to the logical resources of the CUDA program itself. CTA blocks are mapped to specific
SMs and threads are mapped to warps and lanes. In the example shows the thread with device
coordinates (Device, SM, Warp, Lane) = (0,2,0,3) is mapped to block (0,1,0) thread (1,1,0)

CTA is running on. Variables that reference into that memory refer to data that is
shared by all the threads in the CTA. Finally there are variables that refer into the
global memory that is addressable by and shared by all the threads running on the
device.

TotalView expresses these different kinds of memory (register or local, shared,
constant or global memory) through the notion of a storage qualifier in the type
system. When looking at variables in CUDA these qualifiers appear next to familiar
types such as “int” or “float” so that a local variable X expressing an integer would
have type of “int @local” in the TotalView Variable Window. Like types, these
qualifiers are something that the user can modify. Casting a variable from “int
@local” to “int @global” won’t change the pointer but it will use that pointer to
look in a different place (the same address in a different memory address space)
and will likely refer to a different value. These type qualifiers can be seen both in
Fig. 5.1 above and in Fig. 5.3 below.
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Fig. 5.3 Variable Window displaying a variable called Csub that is at 0x00fffb20 in the thread
local memory. It has a type of Matrix and it contains a pointer named elements that has a type of
float* and points to an address in global memory

5.2.4.3 Dealing with Inlined Functions

The stack trace pane shows the stack backtrace and may include synthetic stack
references for inlined functions. Each stack frame in the stack backtrace represents
either the PC location of GPU kernel code, or the expansion of an inlined function.
Inlined functions can be nested. The return PC of an inlined function is the address
of the first instruction following the inline expansion, which is normally within the
function containing the inlined-function expansion.

5.2.4.4 Thread Control and Single Stepping the GPU

TotalView allows you to single-step GPU code just like normal host code, but its
important to note that a single-step operation steps the entire warp associated with
the GPU focus thread. That’s because at the hardware level, all the threads in the
warp share a single program counter. It is literally not possible for the GPU to
understand the concept of having some of the threads in the warp at location A
and the other threads at location B. In some senses this seems like a limitation on
the freedom TotalView gives developers to arbitrarily control the execution of host
threads. However, the purpose of that control is to allow the developer to explore
alternate possible execution scenarios. Since it isn’t possible for the threads in the
warp to get out of step with one another there is no need to exercise scenarios other
than those with synchronized threads across the warp. Different warps, however,
might examine or modify global memory and might run with different timing, so it
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is both valid and sometimes necessary to explore different sequences of execution
between distinct warps.

5.2.4.5 CUDA Memory Exceptions

The NVIDIA hardware lacks some of the memory protection logic that developers
are likely accustomed to when writing code for the host processor, so mistakes like
de-referencing an uninitialized pointer in CUDA code won’t result in a segmentation
violation, and the program will proceed with undefined consequences. However,
NVIDIA provides a mechanism for emulating the memory protection in software;
that mechanism can be engaged in TotalView by activating the preference “Enable
CUDA Memory Checking”. With CUDA memory checking activated you can run
the device kernel, and when an invalid pointer operation occurs the debugger will
stop the thread with an error message as it does when a host thread encounters a
segmentation error. Note that CUDA memory checking is not active when single-
stepping the CUDA thread.

5.2.4.6 Conclusion

This paper has focused on two main topics. First, it briefly reviewed CUDA and
some of the challenges that CUDA introduces for HPC developers looking to
harness GPU processing power to accelerate their applications. These challenges
center on the conceptual transitions related to moving to (or more often layering in)
fine-grained data parallelism from (or alongside) medium-grained task parallelism,
but also extend to dealing with many low-level details about the NVIDIA GPU
device architecture that are exposed to the CUDA programmer as additional lan-
guage concepts. These features and challenges, while certainly not insurmountable,
definitely complicate the picture; the increased complexity potentially hinders
troubleshooting, validation, and ongoing software maintenance.

The second section of the paper focuses on changes that have been made to adapt
the TotalView parallel debugger for CUDA. The paper shows how the TotalView
process and thread model has been extended to allow users to easily switch back
and forth between what is happening on the host processors, where MPI-level
communication occurs and the program sets the stage for the data parallel work to
happen on the GPU, and what is happening over on the GPU itself where lightweight
threads are being created and destroyed at a furious pace, each one in existence
only long enough to compute one data element. It also details how the TotalView
variable display and type system have been modified to provide developers a clear
understanding of how their data interacts with the various distinct memory address
spaces, each with different characteristics and visibility.
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6.1 Introduction

Parallel programming with the Message Passing Interface MPI [7] as a distributed
memory paradigm is an error-prone process. Great effort has been put into paral-
lelizing libraries and applications using MPI. However when it comes to maintaining
software, optimizing for new hardware, or even porting codes to other platforms and
other MPI implementations, developers will face additional difficulties [2]. They
may experience errors due to hard-to-track interleaving dependent bugs, deadlocks
due to communication characteristics, and MPI-implementation defined or even
hardware dependent behavior. One class of bugs that are hard-to-track are memory
errors, specifically in non-blocking and one-sided communication.

In previous work, we introduced a new implementation of the memchecker
framework within Open MPI to check for memory problems in parallel appli-
cations [4, 11]. It integrates the Valgrind Memcheck tool in memchecker
to observe communication buffers during the communication as well as user
specified parameters. These memory checks only observed memory before a
communication finishes, which can be refered to as a pre-communication check.
However, the functionality of the memory checking framework can be more widely
extended. New memory checking can also be implemented for observing the buffers
after the communication is finished, which we refer to as post-communication
checks, for example, the usage of the received buffer. On the other hand, Open
MPI fully supports Windows platforms, so these correctness features could be
extended to Windows.

In this paper, we introduce an extension of the Memcheck tool of the
Valgrind tool suite [10] and a new memory debugging tool, MemPin, which
provides similar memory checking features as Memcheck for Windows. Both
of these have been integrated into Open MPI for pre- and post-communication
checks. The communication buffers errors, such as accessing buffers of active
non-blocking operations, writing communicated buffer before reading it, or
transferring unused data are being checked and reported. This kind of functionalities
would otherwise not be detectable within traditional MPI-debuggers based on the
PMPI-interface.

The structure of this paper is as follows: Sect. 6.2 shows the basic idea and
functionalities of Memcheck and Intel PIN; Sect. 6.3 first introduces the extension
of the Memcheck and the new Pintool, then it gives an overview of the design
and implementation of the memory debugging frameworks using our extensions
and the Pintool; Sect. 6.4 shows details of the pre- and post-communication
checks for parallel applications; in Sect. 6.5, we show the performance implications
of these two scenarios; then in Sect. 6.6 we give examples of the errors, that are
being detected and have been detected so far; finally; in Sect. 6.7, we make a
comparison with other available tools and conclude the paper with an outlook of
our future work.
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6.2 Overview of Debugging Tools

6.2.1 Valgrind

The tool suite Valgrind [10] may be employed on static and dynamic binary
executables on x86/x86-64 and PowerPC32/64 compatible architectures. It
operates by intercepting the execution of the application on the binary level and
interpreting the instructions. With this instrumentation, Valgrind tools then may
deduce information and perform checks of different methodologies.

The system core of Valgrind provides a synthetic CPU. When the application
starts, Valgrind will “trap” the real CPU and run the machine code on its
synthetic CPU. Meanwhile, the debugging information is read from the executable
and its associated libraries. This instrumentation for the Valgrind parser uses
processor instructions that do not otherwise change the semantics of the application.
By this special instruction preamble, Valgrind detects commands to steer the
instrumentation. On x86 architecture, the right rotation instruction ror is used to
rotate the 32-bit register edi, by 3, 13, 29 and 19, aka 64-Bits, leaving the same
value in edi; the actual command to be executed is then encoded with an register-
exchange instruction (xchgl) that replaces a register with itself (in this case ebx):

#define __SPECIAL_INSTRUCTION_PREAMBLE \
"roll $3, %%edi ; roll $13, %%edi\n\t" \
"roll $29, %%edi ; roll $19, %%edi\n\t" \
"xchgl %%ebx, %%ebx\n\t"

Memcheck, a heavyweight memory checker in the Valgrind tool suite, is well
known for tracking memory definedness down to the bit level, which guarantees
that partialy defined bytes are also correctly dealt with. It stores two kinds of
shadow memory values, for addressability and definedness. Memcheck shadows
each byte in memory with information that represents whether the byte has been
allocated (so-called A-Bits) and for each bit of the byte, whether it contains a
defined value (so-called V-Bits). With this AV-bit pair implementation, Memcheck
is able to provide bit-precision checks of program errors as they run. It tracks the
addressability of every byte of memory and the definedness of every bit of data in
registers and memory, so that it can detect accesses to unaddressable memory errors
and use of undefined values, such as buffer overruns and faulty accesses to the stack.
In total, every byte of memory is shadowed with 9 bits (one A bit plus eight V bits).
Memcheck also tracks all heap blocks allocated with malloc(), new and new[]
to detect bad or repeated frees of heap blocks and memory leaks. Arguments to
functions like strcpy() and memcpy(), are also checked for overlaps.

However, the disadvantage of using Memcheck is the slowdown of the running
application, which is caused by adding code to check every memory access and
every value that is computed. The size of the code is usually increased by a factor
of 12, and runs 25–50 times slower than natively.



66 S. Fan et al.

6.2.2 Intel Pin

Intel Pin [6] is a framework for building robust and powerful software instru-
mentation tools, such as profiling, performance evaluation, and error detection
tools. Intel Pin is capable of analyzing and instrumenting application code, and
it is easy-to-use, portable, transparent, and efficient for building instrumentation
tools (Pintools) written in C/C++. The Pin framework follows the ATOM [12]
model that allows the Pintools to analyze the application at the instruction level
without detailed knowledge of the underlying instruction set. The framework API is
designed to be platform independent in order to make the Pintools compatible across
different architectures. It can provide architecture specific details when necessary.
The instrumentation process is transparent as both the application and the Pintool
observe the original application code. Pin uses techniques like inlining, register re-
allocation, and instruction scheduling, in order to run more efficiently. The basic
overhead of the Pin framework is approximately 10–20 %, and extra overhead might
be caused by the Pintool.

Figure 6.1 shows a basic runtime architecture of Pin on Windows. It consists of
three main processes, the launcher process, the server process and the instrumented
process. The launcher process creates the other two processes, injects the Pin
modules, and instrumented code into the instrumented process, then it waits for the
process to terminate. The server process provides services for managing symbol
information, injecting Pin, or communicating with the instrumented process via
shared memory. The instrumented process includes the Pin Virtual Machine Monitor
(VMM), the user defined Pintool library, and a copy of the application executable
and libraries. The VMM is the core engine of the entire instrumented process that
includes a system call emulator, event and thread dispatchers, and also a (Just In
Time) JIT compiler. After Pin takes over the control of the application, the VMM
coordinates its execution. The JIT compiler instruments the code and passes it to the
dispatcher, which launches the execution. The compiled code is stored in the code
cache. The Pin tool contains the instrumentation and analysis routines. It is a plug-in
and linked with the Pin library, which allows it to communicate with the Pin VMM.

The Pin JIT compiler recompiles and instruments small chunks of binary code
immediately before executing them. The modified instructions are stored in a
software code cache. It allows code regions to be generated once and reused for
the remainder of program execution, in order to reduce the costs of recompilation.
The overhead introduced by the compilation is highly dependent on the application
and workload [6].

In this paper, we will describe the implementation of Memcheck extension and
the integration of a newly developed Pintool as the second memchecker compo-
nent in Open MPI, which may help MPI application and Open MPI developers to
track erroneous use of memory, such as reading or writing buffers of active non-
blocking receive operations, writing to buffers of active one-sided get operations
as well as erroneous use of communicated data, such as writing the communicated
buffer before reading.
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Fig. 6.1 Overview of program execution with an Intel Pin tool on Windows

6.3 Design and Implementation

In previous work, we have taken advantage of an instrumentation API offered by
Memcheck to find MPI-related hard-to-track bugs in applications (and within Open
MPI). In order to allow other kinds of memory-debuggers, such as bcheck [1] or
Totalview’s memory debugging features [14], we have implemented the function-
ality as a module within Open MPI’s Modular Component Architecture [16]. The
module is therefore called memchecker and may be enabled with the configure-
option --enable-memchecker.

However, that did not meet all the requirement of advanced MPI semantic
memory checking, and the current functionalities of Valgrind Memcheck do not
suffice. For example, the future MPI standard will change behavior compared to the
current version of the standard in that it allows read access to send buffers of non-
blocking operations. In order to detect send buffer rewrite errors, Memcheck has
to know which memory region is readable or writable. On the other hand, checking
the communicated buffer is also important, for example, writing the received buffer
before reading may cause computation errors. And for performance concerns, data
transferred but never used (read) might also be necessary to detect. The extensions
for Memcheck have been implemented for this purpose.
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6.3.1 Valgrind Extensions

6.3.1.1 Make Memory Readable and Writable

Making a user buffer readable or writable will make the memory checking more
flexible and accurate, but such functionality is not implemented in the current design
of the Valgrind Memcheck tool. For MPI parallel memory debugging, this
feature will also become important according to the MPI standard, for example,
the current MPI standard defines, that the send buffer of MPI_Send must remain
completely inaccessible during the operation, but the upcoming new standard
will release the read restriction and make the buffer readable [9]. Therefore, the
extension for Memcheck was developed, and two more new Memcheck client
requests were implemented:

• VALGRIND_MAKE_MEM_READABLE(addr,len)
Make the user specified memory region readable.

• VALGRIND_MAKE_MEM_WRITABLE(addr,len)
Make the user specified memory region writable.

This new extension uses the so-called Ordered Set (OSet) architecture originally
from Valgrind’s source base. The storage maintains the memory region with
readable and writable flags in a binary tree. Overlapping and multiple definitions
on the same memory region are handled to avoid redundant records. The basic
searching algorithm is a binary search with the starting address of the memory
region. When a memory region is being accessed, the memory OSet table will be
first searched, if this memory matches any entry in the table, the recorded memory
state will be checked so that to eliminate the read or write limit.

6.3.1.2 Callback Extension on Memory Access

In order to perform a precise data transfer evaluation, for example, whether the
received data has been correctly accessed and used, it is necessary to have a
functionality to monitor on the buffer access for user demand. To achieve this goal,
two more new Memcheck client requests were implemented:

• VALGRIND_REG_USER_MEM_WATCH(addr,len,op,cb,data)
Registers a callback function for the user specified buffer on specific opera-
tion, and the callback function will be called when the operation is triggered.

• VALGRIND_UNREG_USER_MEM_WATCH(addr,len,cb)
Remove the callback function for the memory region.

This Memcheck callback extension uses the Ordered Set to record information
including the memory starting address, size of the block, callback function pointer,
memory operation type, and user callback data. The callback function pointer
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is a user defined checking routine that will be called when the specified memory
operation type is triggered on that registered memory. The callback data is the user
defined argument for the callback function. So the callback routine is able to obtain
information from the checking tool. The algorithm that manages OSet entries uses
binary search with multiple keys. It will search for a match address for the given
key in the OSet, and then search the match of the memory size and finally callback
function pointer. When the OSet entry is found, the watched memory operation is
compared with the current operation, and the callback function could be launched
if they match. Special care must be taken to do correct type-casting in the invoked
callback, as the user data is always passed as a void pointer, it has to be casted
correctly, otherwise run-time errors may occur.

6.3.2 MemPin

As Open MPI is supported on Windows platforms, a debugging tool for checking
memory errors is also necessary. A new tool named MemPin has been designed on
top of Intel Pin framework to meet this need.1

The MemPin tool uses Intel Pin’s instrumentation API to provide the same
callback functionalities as the Memcheck extension for the user application.
Furthermore it may be used to perform the basic functionalities of Memcheck,
such as make memory readable or inacessible, but through a different approach (see
Sect. 6.4.2). The available interfaces and descriptions are:

• MEMPIN_RUNNING_WITH_PIN
Checks whether the user application is running under Pin and Pintool.

• MEMPIN_REG_MEM_WATCH
Registers the memory entry for specific memory operation.

• MEMPIN_UPDATE_MEM_WATCH
Updates the memory entry parameters for the specific memory operation.

• MEMPIN_UNREG_MEM_WATCH
Deregisters one memory entry.

• MEMPIN_SEARCH_MEM_INDEX
Returns the memory entry index from the memory address storage.

• MEMPIN_PRINT_CALLSTACK
Prints the current callstack to standard output or a file.

1The MemPin tool in this work is developed only targeting at Windows platforms, although it may
be used under Linux too.
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The user may use the MemPin API to register memory regions with specific
callback function and parameter pointers. When the user application is not running
with the Pintool, all MemPin calls will be taken as empty macros, and add no
overhead. But if running with MemPin tool, Pin first reads the entire executable,
and all the MemPin calls will be replaced with the corresponding function calls that
are defined inside MemPin. The generated instrumented codes will be then executed
and MemPin will observe and respond to the behavior of the user application.
MemPin uses image and trace instrumentations in user applications. The image

instrumentation is done when the image is loaded. In this stage, all the MemPin
calls used in the user application will be replaced, and the main entry function, like
main will be instrumented for starting the trace engine and the callstack log of
MemPin.

The next stage will mainly take care of the memory access, callback functions
and the user application callstack. The trace instrumentation is analyzed according
to each Basic Block (BBL), and every memory operation in the BBL is checked.
When the memory is read or written, the single instruction of the memory operation
is instrumented with an analysis function with memory information as operands. For
generating useful information of where exactly the memory operation has happened,
a callstack log engine is instrumented also in this stage. The callstack engine is
implemented using a simple C++ stack structure, which stores only the necessary
historical instruction addresses of the application and translates the addresses into
source information when required. The new function entry address from the caller
will be pushed onto the stack, and it is popped off at the end of the callee. To achieve
this goal, the tail instruction of each BBL has to be analyzed. More precisely,
every “call” and “return” instruction are instrumented for pushing and popping the
instruction address stack.

6.4 Memory Checks in Parallel Application

6.4.1 Pre-communication Checks

In Open MPI objects such as communicators, types and requests are declared
as pointers to structures. These objects when passed to MPI-calls are being
immediately checked for definedness and together with MPI_Status are checked
upon exit.2 Memory being passed to send operations is being checked for
accessibility and definedness, while pointers in receive operations are checked
for accessibility, only.

2E.g. this showed up uninitialized data in derived objects, e.g. communicators created using MPI_
Comm_dup.
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Fig. 6.2 An example of non-blocking communication using pre-communication checks with
fragment handling to set accessibility and definedness

Reading or writing to buffers of active, non-blocking receive operations and
writing to buffers of active, non-blocking Send-operations are obvious bugs. Buffers
being passed to non-blocking operations (after the above checking) are being set to
undefined within the MPI-layer of Open MPI until the corresponding completion
operation is issued. This setting of the visibility is being set independent of non-
blocking MPI_Isend or MPI_Irecv function. When the application touches the
corresponding part in memory before the completion with MPI_Wait, MPI_Test
or multiple completion calls, an error message will be issued. In order to allow
the lower-level MPI-functionality to send the user-buffer as fragment, the lower-
layer BTLs (Byte Transfer Layers) are adapted to set the fragment in question to
accessible and defined, as may be seen in Fig. 6.2. Care has been taken to handle
derived datatypes and its implications. Complex datatypes are checked according to
their definitions, which means gaps will be ignored to avoid false positive messages.

For send operations, the MPI-1 standard also defines, that the application may
not access the send-buffer at all (see [7], p. 30). Many applications do not obey this
strict policy, domain-decomposition based applications that communicate ghost-
cells, still read from the send-buffer. To the authors’ knowledge, no existing
implementation requires this policy, therefore the setting to undefined on the Send
side is only done when strict-checking is enabled.

For one-sided communications, MPI-2 standard defines that, any conflicting
accesses to the same memory location in a window are erroneous (see [8], p. 112). If
a location is updated by a put or an accumulate operation, then this location cannot
be accessed by a load or another RMA operation until the updating operation is
completed on the target. If a location is fetched by a get operation, this location
cannot be accessed by other operations as well. When a synchronization call starts,
the local communication buffer of an RMA call and a get call should not be updated
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until it is finished. User buffer of MPI_Put or MPI_Accumulate, for instance,
are set not accessible when these operations are initiated, until the completion
operation finished. Valgrind will produce an error message, if there is any read
or write to the memory area of the user buffer before corresponding completion
operation terminates.

In Open MPI, there are two One-sided communication modules, point-to-point
and RDMA. Similar checks have been implemented for MPI_Get, MPI_Put,
MPI_Fence and MPI_Accumulate in point-to-point module.

For the above communication buffer checking, the original features of
Val-grind are used and integrated in Open MPI on Linux. On the other hand,
in order to implement the same checks on Windows, the callback scenario of
MemPin is used. When the communication starts, for example, the MPI_Isend
and MPI_Irecv are called, all the communication buffers are registered, and
all read and write access on the buffers will be checked whether they are legal
according to the standards. If an illegal access is found, a warning message with
sufficient callstack information will be generated for the user. However, in order
to make the MemPin efficient and lightweight, memory checks for accessibility
and definedness cannot be easily implemented due to complex and large shadow
memory consumption.

6.4.2 Post-communication Checking

For more detailed memory checking, one may further implement an interface
to encode read and write accesses of previously communicated data. This new
analysis mechanism may help user applications to detect whether data has been
sent needlessly, i.e. data that has been sent but might be overwritten before reading
or may be never accessed in the receiving process.

More precisely, read accesses on the received data is counted as meaningful,
while the first write access is not, for the communicated buffer is overwritten
before any actual use. To achieve this goal, we make use of the tools introduced
in Sects. 6.3.1 and 6.3.2, in order to notify Open MPI of the corresponding tasks
based on the type of operations, i.e. read or write to the received buffer.

All the communication buffers are registered when the communication finishes.
For example, in Fig. 6.3, when the MPI_Wait is called for non-blocking commu-
nication, every read and write access on the received buffer will be processed by the
callback implementation in Open MPI, and a write before read is marked as illegal.
In the finalization phase of the parallel application, all registered memory will be
checked for whether there are communicated data but never used, i.e. whether there
are buffers without a read access.

Figure 6.4 shows the overall data allocated to store the corresponding information
within trivial loop of a receiver. One may see, that the first element in buf is
first being accessed as read (meaningful), while the second element is accessed
first as a write (meaningless) – even following accesses will not change the
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outcome of overwriting the communicated data. Upon re-entry into MPI_Recv,
our extension will trigger a warning of unused data, i.e. data that has been transferred
over the wire, but not properly accessed on the receiving side.

6.5 Performance Implications

Adding instrumentation to the code does induce a slight performance hit due to
the assembler instructions as explained above, even when the application is not run
under Valgrind.
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Fig. 6.5 Latencies and bandwidth with and without memchecker instrumentation over IB, running
without Valgrind

Tests have been done for both non-blocking communication IMB benchmark,
and they were run on the DGrid-cluster (Linux) and VISCLUSTER (Windows
HPC 2008 R2) at HLRS. Each DGrid-cluster machine consists of dual-processor
Intel Woodcrest, using Infiniband DDR network with the OpenFabrics stack. And
every machine in VISCLUSTER has two AMD Opteron 250 processors and 4.3 GB
memory.

For IMB, two nodes of DGrid-cluster were used to test in following cases: run-
ning with Open MPI compiled with and without --enable-memchecker and
with --enable-memchecker but disabled MPI-object checking (see Fig. 6.5)
and with and without Valgrind (see Fig. 6.6). We include the performance results
on two nodes using the PingPong test. In Fig. 6.5 the measured latencies (left) and
bandwidth (right) using Infiniband (not running with Valgrind) shows the costs
incurred by the additional instrumentation, ranging from 18 to 25 % when the MPI-
object checking is enabled as well, and 3–6 % when memchecker is enabled, but
no MPI-object checking is performed. As one may note, while latency is sensitive
to the instrumentation added, for larger packet-sizes, it is hardly noticeable anymore
(less than 1 % overhead).

Figure 6.6 shows the cost when additionally running with Valgrind, again
without further instrumentation compared with our additional instrumentation
applied, here using TCP connections employing the IPoverIB-interface.

The large slowdown of the MPI-object checking is due to the tests of every
argument and its components, i.e. the internal data structures of an MPI_Comm
consist of checking the definedness of 58 components, checking an MPI_Request
involves 24 components, while checking MPI_Datatype depends on the number
of the base types.

On the VISCLUSTER, similar results were seen when running the same
benchmark with two nodes over TCP, as shown in Fig. 6.7. The benchmark does
not show any performance implications whether the instrumentation is added or
not. Of course due to the large memory requirements, the execution shows the
expected slow-down when running under Valgrind, as every memory access
is being checked.
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6.6 Detectable Error Classes and Findings from Actual
Applications

The kind of errors, detectable with a memory debugging tool such as Valgrind
in conjunction with instrumentation of the MPI implementation are:

• Wrong input parameters, e.g. wrongly sized send buffers:

char * send_buffer;
send_buffer = malloc (5);
memset(send_buffer, 0, 5);
MPI_Send(send_buffer, 10, MPI_CHAR, 1, 0, \

MPI_COMM_WORLD);

• Uninitialized input buffers:

char * buffer;
buffer = malloc (10);
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MPI_Send(buffer, 10, MPI_INT, 1, 0, \
MPI_COMM_WORLD);

• Writing into the buffer of active non-blocking Send or Recv-operation or
persistent communication:

int buf = 0;
MPI_Request req;
MPI_Status status;
MPI_Irecv(&buf, 1, MPI_INT, 1, 0, \

MPI_COMM_WORLD, &req);
/* Will produce a warning */
buf = 4711;
MPI_Wait(&req, &status);

• Read from the buffer of active non-blocking Send-operation in strict-mode:

int inner_value = 0, shadow = 0;
MPI_Request req;
MPI_Status status;
MPI_Isend(&shadow, 1, MPI_INT, 1, 0, \

MPI_COMM_WORLD, &req);
/* Will produce a warning */
inner_value += shadow;
MPI_Wait(&req, &status);

• Write to the buffer of active get operation:

MPI_Win_create(NULL, 0, 1, MPI_INFO_NULL, \
MPI_COMM_WORLD, &win);

MPI_Win_fence(0, win);
MPI_Get(A, NROWS*NCOLS, MPI_INT, 1, 0, 1, \

xpose, win);
/* Will produce a warning */
A[1][0] = 4711;
MPI_Win_fence(0, win);

• Write before read on received buffer:

MPI_Recv(buffer, 2, MPI_CHAR, 1, 0, \
MPI_COMM_WORLD, &status);

buffer[0] = sizeof(long);
result = buffer[1]*1000;
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During the course of development, several software packages have been tested
with the memchecker functionality. Among them problems showed up in Open
MPI itself (failed in initialization of fields of the status copied to user-space), an
MPI testsuite [3], where tests for the MPI_ERROR triggered an error. In order to
reduce the number of false positives in Infiniband networks, the ibverbs library
of the OFED stack [13] was extended with instrumentation for buffer passed back
from kernel-space.

6.7 Conclusion

We have presented an implementation of memory debugging features into Open
MPI, using the instrumentation of the Valgrind and a newly developed Intel
Pintool, and the performance implication of using the instrumentation with several
benchmarks. This allows detection of hard-to-find bugs in MPI parallel applications,
libraries and Open MPI itself [2]. Up to now, no other debugger is able to find these
kinds of errors.

With regard to related work, debuggers such as Umpire [15], Marmot [5] or the
Intel Trace Analyzer and Collector [2], actually any other debugger based on the
Profiling Interface of MPI, may detect bugs regarding non-standard access to buffers
used in active, non-blocking communication without hiding false positives of the
MPI-library itself.
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Abstract This paper gives an overview about the Score-P performance measure-
ment infrastructure which is being jointly developed by leading HPC performance
tools groups. It motivates the advantages of the joint undertaking from both the
developer and the user perspectives, and presents the design and components of the
newly developed Score-P performance measurement infrastructure. Furthermore, it
contains first evaluation results in comparison with existing performance tools and
presents an outlook to the long-term cooperative development of the new system.

7.1 Introduction

The HPC community knows many established or experimental tools that assist
programmers with the performance analysis and optimization of parallel target
applications. Well known examples are HPCToolkit [1], Jumpshot [20], Paraver
[12], Periscope [2], Scalasca [8], TAU [16], and Vampir [11]. They form an
important contribution to the HPC ecosystem, because HPC is naturally obsessed
with good performance and high efficiency, on one hand, and with more and more
complex hardware and software systems, on the other hand – in this situation,
sophisticated tools are an absolute necessity for analyzing and optimizing compli-
cated parallel performance behavior.
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B. Wesarg � F. Wolf
ZIH, TU Dresden, 01062 Dresden, Germany
e-mail: andreas.knuepfer@tu-dresden.de

H. Brunst et al. (eds.), Tools for High Performance Computing 2011,
DOI 10.1007/978-3-642-31476-6 7, © Springer-Verlag Berlin Heidelberg 2012

79
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There are several established performance tools that co-exist today and
many more experimental ones. They focus on different aspects and provide
complementary specialized features, which makes it worthwhile to use them in
combination. But at the same time, there are many similarities and overlapping
functionality, in particular redundant basic functionality. This is almost necessarily
so, because there is only a small number of options for several aspects, for
example:

• Parallelization models (e.g. message passing, multi-threading, PGAS),
• Performance data acquisition (e.g. instrumentation, sampling, assisted by hard-

ware components),
• Performance data representation (events, statistics).

Usually, a particular tool covers multiple combinations from this list. Therefore,
one finds many redundancies in existing tools that serve the same purpose. Typical
examples are source code instrumentation, profiling or event recording for MPI,
and data formats. Often, one implementation could replace the other in terms of
functionality and only the development histories of different tools prevent them from
(re-)using the same components.

We argue that this fragmentation in the performance tools landscape brings some
disadvantages for both groups concerned, the developers and the users. And we are
convinced that the joint approach presented in this paper will be of mutual benefit.

7.1.1 Motivation for a Joint Measurement Infrastructure

The redundancies found in the tools landscape today bring a number of
disadvantages for the developers as well as the users of the tools. From the tool
developers perspective, redundancies are mostly found in the data acquisition parts,
such as instrumentation, data acquisition from various sources, and in the collected
data and data formats. The actual data evaluation approaches are diverse enough
to justify separate tools. Thus, our goal is a joint measurement infrastructure that
combines the similar components and interfaces to diverse tools. This will save
redundant effort for development, maintenance, porting, scalability enhancement,
support, and training in all participating groups. The freed resources will be
available for enhancing analysis functionality in the individual tools.

From the user perspective, the redundancies in separated tools are a discomfort
because it requires multiple learning curves for different measurement systems.
Incompatible configurations, different options for equivalent features, missing fea-
tures, etc. makes it harder to switch between tools or combine them in a reproducible
manner. Since parallel programming and performance analysis at large scales are
by no means trivial, the fragmentation in tools adds to the existing challenge for the
users. The same is true for incompatible data formats that in principle transport the
same data. At best, unnecessary data conversion is required, at the worst this causes
repeated measurements of the same situations with different tools. Both can become



7 Score-P: A Joint Performance Measurement Infrastructure 81

very expensive for today’s highest-scale use cases. Last but not least, installation and
updates of the software packages require redundant effort on the user side. A joint
infrastructure will remove many of those obstacles and improve interoperability.

In the following section, the paper introduces the SILC and PRIMA projects as
the frame of all presented work. The main components of the joint infrastructure
are discussed in Sects. 7.3–7.7, followed by early evaluations of the run-time
measurement component and the event trace data format in Sect. 7.8. The paper
ends with an outlook to future goals beyond the projects’ funding periods and the
conclusions.

7.2 The SILC and PRIMA Projects

The SILC project1 (“Skalierbare Infrastruktur zur Automatischen Leistungsanal-
yse Paralleler Codes”, Engl. “Scalable Infrastructure for Automatic Performance
Analysis of Parallel Codes”) and the PRIMA project2 (“Performance Refactoring of
Instrumentation, Measurement, and Analysis Technologies for Petascale Comput-
ing”) bring together the following established performance tools groups:

• The Scalasca groups from Forschungszentrum Jlich, Germany and the German
Research School for Simulation Sciences, Aachen, Germany,

• The Vampir group at Technische Universitt Dresden, Germany,
• The Persicope group at Technische Universitt Mnchen, Germany, and
• The TAU group at University of Oregon, Eugene, USA,

and as further partners

• The Computing Center at RWTH Aachen, Germany, and
• The GNS mbH, Braunschweig, Germany, as industry partner.

All partners have a long history of mutual cooperation. The projects’ main goal
is to provide a joint infrastructure to address the disadvantages of separate tools as
discussed above. The new infrastructure created in SILC and PRIMA has to support
all central functionalities that were present in the partner’s tools beforehand:

Periscope is an on-line analysis tool based on profiling information. During
run-time it evaluates performance properties and tests hypotheses about typical
performance problems, which are reported to the user if detected.

Scalasca performs post-mortem analysis of event traces and automatically
detects performance critical situations. The results are categorized and hierarchi-
cally arranged according to types of performance problems, source code locations,
and physical (computing hardware) or logical (computation domain) location.

1The SILC project is funded by the BMBF Germany under grant number 01IH08006.
2The PRIMA project is funded by the US DOE under grant number DE-SC0001621.
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Fig. 7.1 Architecture of the Score-P instrumentation and measurement system with connection
points to the currently supported analysis tools

TAU is a extensive profiling tool-set, which allows to collect various kinds of
profiles such as flat profiles, phase profiles, and call-path profiles. Furthermore, it
provides flexible visualization and correlation of performance data.

Vampir is an interactive event trace visualization software which allows to
analyze parallel program runs with various graphical representations in a post-
mortem fashion.

A number of design goals were formulated to address the needs of the four tools
as well as new tools by other groups in the future. On the one hand, the primary
functional requirements are:

• Support profiling and event tracing,
• Initially use direct instrumentation, later also add sampling,
• Allow off-line access (post-mortem analysis) and on-line access (live analysis),
• Initially target parallelization via MPI 2.1 and OpenMP 3.0 as well as hybrid

combinations, later also include CUDA, OpenCL, and others.

On the other hand, the following non-functional requirements were considered:

• Portability to all major HPC platforms and robustness,
• Scalability to petascale level,
• Low measurement overhead,
• Easy single-step installation (through the UNITE framework),
• Open source with New BSD license.

From those goals and the experience from the existing tools, the architecture
shown in Fig. 7.1 was derived. It contains the high-level components Score-P, OTF2,
CUBE4, and OPARI2 which are presented in detail in the following sections.
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7.3 Score-P

The Score-P component consists of an instrumentation framework, several run-
time libraries, and some helper tools. The instrumentation allows users to insert
measurement probes into C/C++ and Fortran codes that collect performance-related
data when triggered during measurement runs. In order to collect relevant data, e.g.,
times, visits, communication metrics, or hardware counters, the applications need to
link against one of several provided run-time libraries for serial execution, OpenMP
or MPI parallelism or hybrid combinations. Extensions for POSIX threads, PGAS
and CUDA are planned. The collected performance data can be stored in the OTF2,
CUBE4, or TAU snapshot formats or queried via the on-line access interface.

Let’s look at the instrumentor command scorep in more detail. It is used as a
prefix to the usual compile and link commands, i.e., instead of mpicc -c foo.c
one uses the command scorep mpicc -c foo.c. The instrumentor detects
the programming paradigm used, MPI in this case, and adds appropriate compiler
and linker flags before executing the actual build command. Currently, the following
means of instrumentation are supported:

• Compiler instrumentation,
• MPI library interposition,
• OpenMP source code instrumentation using OPARI2 (see Sect. 7.6),
• Source code instrumentation via the TAU instrumentor [6], and
• User instrumentation using convenient macros.

These instrumentation variants are configurable by options to the scorep
command. It is also possible to use the Score-P headers and libraries directly. In
this case, the helper tool scorep-config provides all necessary information.

Once the application is instrumented, the user just needs to run it in order to
collect measurement data. In contrast to the predecessor measurement systems, a
flexible and efficient memory management system was implemented that stores data
in thread-local chunks of pre-allocated memory. This allows an efficient distribution
of the available memory to an arbitrary number of threads and minimizes the
perturbation and overhead due to run-time memory allocations.

By default, Score-P runs in profiling mode and produces data in the CUBE4
format (see Sect. 7.5). This data provides first insight about the hot-spots in the
application and allows to customize options for subsequent measurement runs, for
example, to select MPI groups to record, to specify the total amount of memory the
measurement is allowed to consume, to adapt trace output options, to specify a set of
hardware counters to be recorded, and more. To keep the amount of measurement
data manageable, one can include or exclude regions by name and/or wild-cards
(filtering). In tracing mode, one might restrict the recording to specific executions of
a region (selective tracing). In the end, the recorded data (either profiling or tracing
data or both) is written to a uniquely named experiment directory. When switching
from profiling to tracing or on-line access for successive experiments, there is no
need to recompile or re-instrument the target application.
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Furthermore, two important scalability limitations of former generations of tools
have been addressed. The first affected codes using many MPI communicators,
which were not handled adequately at very large scales. A new model according
to [9] solved this for Score-P. The second affected the unification of identifiers at
the very end of measurement. It generates globally unique identifiers from the local
identifiers used during data recording. In the past, an algorithm with linear com-
plexity with respect to the number of parallel processes was used. Obviously, this
cannot match today’s and future scalability demands. The new implementation uses
a tree-based reduction as presented in [7]. With these fundamental improvements,
Score-P is fit for the scalability levels of future supercomputer generations.

7.4 The Open Trace Format Version 2

The Open Trace Format Version 2 (OTF2) is a newly designed software package
based on the experiences of the two predecessor formats OTF1 [10] and EPILOG
[19], the native formats of Vampir and Scalasca, respectively.

Its main characteristics are similar to other record-based parallel event trace
formats. It contains events and definitions and distributes data storage over multiple
files. It uses one anchor file, one global definition file, n local definition files, and n

local event files for n processes or threads. Inside each event file, the event records
are stored in temporal order. The essence of OTF2 is not only the format specifica-
tion but also a read/write API and a library with support for selective access. OTF2
is available as a separate software package, but also a central part of the Score-P
run-time system where it acts as the memory buffer for event trace collection. It
uses the same binary encoding for the memory buffers and the file representation.

As a special feature, OTF2 supports multiple I/O substrates – these are exchange-
able back-ends that allow different treatment of the I/O. The standard substrate
stores the OTF2 memory buffer representation in multiple files. As an alternative,
a compression substrate uses ZLib for data compression of the individual files. A
future extension plans to pass persistent memory pages from the trace processes
or threads to post-mortem analysis processes and thus avoid I/O altogether. Last
but not least, the SION library [4] substrate will address the challenge of massively
parallel data and meta-data requests which overcharge parallel file systems. This is a
fundamental problem on highest-scale HPC machines today. For more details about
OTF2 in general see [3].

7.4.1 The SIONlib OTF2 Substrate

OTF2 distributes the records for each thread or process into separate files to avoid
additional synchronization during measurement. While this is not problematic for
lower scales (e.g., smaller than 1,000 ranks), it becomes a severe problem for
parallel file systems at large scales. The main reason is insufficient scalability of
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meta-data handling in parallel file systems. The write bandwidth is usually no
limitation.

The problem with huge amounts of file handles is a widely known issue also for
other applications in high-performance computing. SIONlib is a parallel I/O library
which was developed at Forschungszentrum Jülich to overcome this problem by
mapping virtual file handles onto a single physical file. This approach has been
shown to scale up to several thousands of processes [4] and is, therefore, suitable
to enhance the scalability of OTF2. In OTF2, the SION library is integrated as
an additional I/O substrate which produces two separate multi-files, one for all
definitions and one for all events.

7.5 The CUBE4 Format and GUI

CUBE is a profiling data model and file format. The data model describes the
performance behavior of an application along three dimensions. The first dimension
is a set of performance metrics. They characterize the kind of the performance issues
under consideration. The second dimension is the call tree, which shows the place
in the application execution where a certain issue appears. The third dimension is a
description of the system which executed the application. Each triple of coordinates
in this three-dimensional performance space is mapped onto a numeric value, which
represents the severity of a given performance metric while visiting a given call path
at a given system location.

To store measured profile data, Score-P uses the CUBE4 framework [7]. Like
its predecessor CUBE3, CUBE4 provides a set of libraries and tools to store and
analyze performance profiles. It consists of a writer library designed for scalability,
a general-purpose C++ reader and re-writer library, a set of tools for manipulating
measured profiles, and a graphical user interface for visual inspection of profiles.
In contrast to its predecessor, CUBE4 also provides a Java reader library. The data
format differs from CUBE3 in that the severity values, which constitute the bulk of
the data, are now stored in a binary format. XML is retained only for the metadata
part, since using XML for everything turned out to be too inefficient when large-
scale data had to be written. GUI response times are improved using techniques
such as dynamic loading, inclusive storage, and sparse representation of the data.

7.6 The OPARI2 Instrumentor for OpenMP

The source-to-source instrumentor OPARI is used to automatically wrap OpenMP
constructs like parallel regions with calls to the performance monitoring interface
POMP [14]. OPARI is used in many performance tools like Scalasca, Vampir and
ompP [5]. In order to support version 3.0 of the OpenMP specification [15], OPARI
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was enhanced to support OpenMP tasking and to provide POMP implementers with
information for OpenMP nesting.

The new way to exploit parallelism in OpenMP programs using tasks posed two
critical challenges for event-based analysis tools. Firstly, with OpenMP tasking,
where tasks can be suspended and resumed, it is no longer guaranteed that the order
of region enter and exit events follows a strict LIFO semantics per thread (the call
stack). The solution to this problem is to distinguish individual task instances and to
track their suspension and resumption points [13].

Secondly, with OpenMP nesting the number of threads in a parallel region is a
priori unknown and the thread IDs are no longer unique, whereas performance tools
traditionally rely on pre-allocated buffers for a fixed set of threads indexed by the
thread IDs. Therefore, OPARI2 provides an upper bound for the number of threads
used in the next parallel region as assistance for the run-time system.

In addition, OPARI2 comes with an enhanced linking procedure that allows
to keep all instrumentation information within the compilation units themselves.
Additional index files are no longer needed, which improves the usability of
OPARI2 for multi-directory builds and pre-compiled libraries. With the presented
improvements, the new major version OPARI2 addresses all aspects of state-of-the-
art parallelization with OpenMP, either alone or in combination with MPI.

7.7 The On-Line Access Interface

The On-line Access interface offers a remote access path to the rich profiling
capabilities of Score-P. It allows to configure measurement parameters, retrieve
profile data, and to interrupt and resume the application execution. This functionality
enables tools for iterative on-line performance analysis.

The On-line Access interface accepts socket connections from a remote analysis
tool and communicates via the extensible and easy to use text-based Monitoring
Request Interface (MRI) protocol which supports three classes of requests:

• Monitoring requests to select performance metrics to be recorded and to adjust
measurement parameters,

• Data retrieval requests to fetch selected performance data, and
• Application execution control requests to control the measurement window based

on predefined suspension points during application execution.

The main advantage of the Score-P On-line Access is that on-line analysis tools
can decouple measurement from analysis, which reduces perturbation of the results.
Furthermore, profile data don’t need to be stored to files but can be consumed by
analysis components directly. One example is the Periscope on-line analysis tool [2]
which queries profile data for pre-selected phases of an iterative parallel application.
Based on this, it derives hypotheses about performance problems and refines the
measurement for following phases to prove or disprove them.
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Fig. 7.2 Comparison of the run-times of the COSMO code in different modes: without instrumen-
tation (base), with VampirTrace event tracing, with Score-P profiling, and with Score-P tracing. All
times are relative to the uninstrumented run

7.8 Early Evaluation

Minimal overhead and resource consumption are essential requirements for the
Score-P infrastructure. Therefore, the run-time overhead of the Score-P measure-
ment system was compared to the existing VampirTrace infrastructure and the
memory consumption of OTF2 was compared to both well-established predecessor
trace formats OTF and EPILOG and the internal representation in VampirTrace.

7.8.1 Run-Time Measurement Overhead

As initial evaluation of the run-time overhead, the Score-P measurement system was
tested with the COSMO code using 16, 64, and 256 MPI processes on an SGI Altix
4700. COSMO is an atmospheric model code mainly developed by the DWD3 [17].

The baseline of this comparison are executions of the uninstrumented COSMO
code. In addition, the application was executed with VampirTrace event tracing and
with Score-P both in profiling and tracing mode. Figure 7.2 shows the resulting
run-times. All values are normalized to the uninstrumented case and contain only

3Deutscher Wetterdienst (German Meteorological Service), see also http://www.cosmo-model.org/
content/model/general/default.htm

http://www.cosmo-model.org/content/model/general/default.htm
http://www.cosmo-model.org/content/model/general/default.htm
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the measurement phase excluding post-processing or output of measurement results
to the file system. In the typical tools workflow, this indicates how close the
measurement data reflects the original execution situation.

In all cases, Score-P only slightly increases the run-time compared to the
unistrumented case as expected; the overhead stays below 4 %. Score-P profiling
has the largest observed overhead at 16 processes (3.8 %) and the smallest one at
256 processes (0.2 %). Score-P tracing generates an overhead of 1–3.2 %. In all
cases the overhead is below the overhead caused by VampirTrace (4.6–7.3 %). This
indicates that Score-P is competitive in terms of overhead to VampirTrace, which
has long proven its practical usefulness. All numbers show the average of at least
three experiments and there were no notable outliers.

7.8.2 Trace Format Memory Consumption

Secondly, the memory consumption for event trace data is evaluated. The OTF2
data representation, which is identical to the Score-P memory buffer representation,
is compared to the EPILOG format, the OTF (version 1) format, and VampirTrace’s
memory representation. This evaluation reveals how long the event recording can
be continued with a given buffer size before it has to be interrupted for writing out
data. As examples the following applications and benchmarks are used:

• The SPEC MPI20074 benchmarks with the test cases 104.milc . . . 137.lu
• The previously mentioned COSMO code5 from DWD
• The NAS Parallel Benchmarks6 with nas pb bt (block tridiagonal solver)
• The SMG2000 Benchmark7 (semicoarsening multigrid solver)
• The ASCI SWEEP3D benchmark8(3D discrete neutron transport)

Figure 7.3 shows a comparison of the memory consumption of VampirTrace as
the baseline, OTF, EPILOG, and OTF2. The results show that OTF2 and Score-P
perform better than both predecessor tool sets and the situation behaves very
similar for all test cases. OTF2 reduces the memory consumption by about 70 %
compared to VampirTrace, 20–35 % compared to OTF, and 14–17 % compared to
EPILOG.

4http://www.spec.org/mpi/
5http://www.cosmo-model.org/content/model/general/default.htm
6http://www.nas.nasa.gov/Resources/Software/npb.html
7https://asc.llnl.gov/computing resources/purple/archive/benchmarks/smg/
8http://www.ccs3.lanl.gov/pal/software/sweep3d/

http://www.spec.org/mpi/
http://www.cosmo-model.org/content/model/general/default.htm
http://www.nas.nasa.gov/Resources/Software/npb.html
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/smg/
http://www.ccs3.lanl.gov/pal/software/sweep3d/
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Fig. 7.3 Comparison of the event trace data memory consumption of VampirTrace, OTF,
EPILOG, and OTF2 for a series of experiments with typical HPC benchmark codes

7.9 Conclusion and Outlook

With Score-P, the user community will have a single platform for large-scale
performance measurements that can be interpreted with a rich collection of analysis
tools. This is a first big step towards integrating the so far fragmented performance
tools landscape. The primary benefits for the user are simplified installation of
our tool suite, as only one measurement system has to be installed, and reduced
learning effort, as the user has to read only one set of measurement instructions.
Less obvious but equally important, eliminating redundancy among individual tools
will free substantial tool development resources that can from now on be redirected
to more powerful analysis features. At the time of writing, version 1.0 of the Score-P
tool set is going to be released.

While the objective of the projects SILC and PRIMA has been the creation of
an initial version, the software is already subject of a number of ongoing follow-up
projects. The European project H4H (2010–2013) in the ITEA-2 framework will add
extensions needed for heterogeneous architectures to Score-P with funding from the
German Ministry of Education and Research (BMBF). Capabilities for compression
of time-series call-path profiles [18], a feature to study the dynamic performance
behavior of long-running codes, will be integrated in the EU/FP7 project HOPSA.
Finally, the BMBF project LMAC will not only further refine this method but also
provide functionality for the semantic compression of event traces, a prerequisite
for analyzing traces of long-running applications more effectively. In addition to
adding new technical features, it will also establish rules that govern Score-P’s
further evolution, striking a balance between robustness and stability on the one
hand and innovation on the other.
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Chapter 8
Trace-Based Performance Analysis
for Hardware Accelerators

Guido Juckeland

Abstract Hardware accelerators have changed the HPC landscape as they open a
potential route to exascale computing. At the same time they also complicate the tasl
of application development since they introduce another level of parallelism and,
thus, complexity. Performance tool support to aid the developer will be a necessity.
While profiling is offered by the accelerator vendors, tracing tools can also adopt
hardware accelerators. A number of challenges for data acquisition and visualization
and their solutions are presented in this paper.

8.1 Introduction

As the multi-core era is embracing many-core architectures, high performance
computing (HPC) is also gaining an increased momentum using heterogeneous
processing elements. This results in another dimension of parallel computing being
added—apart from message passing and multi-threading—to the already complex
programming ecosystem to harness the capabilities of the heterogeneous hardware.
Balancing the compute load over the three levels of parallelism is a delicate task
which is assisted by tools that can report information about the application’s
performance. While vendor tools for hardware accelerators very well cover the
parallelism at the hardware accelerator level, they usually fail to cover the other
two parallelism levels. The opposite holds for HPC performance tools.

After a brief introduction of performance tools for hardware accelerators this
paper presents the extension of the well renowned tool VampirTrace to capture also
accelerator activity. A general approach for trace-based performance analysis for
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hardware accelerated application is introduced, as well as specific modifications
to cover the current most widely used accelerator paradigms, CUDA and OpenCL.
Furthermore, it discusses how the additional hardware accelerator related data affect
the trace format and data visualization.

8.2 Related Work

The hardware accelerator ecosystems from any vendor includes besides the accel-
erator hardware, also a software environment usually consisting of a compiler,
a debugger and some type of performance analysis tool. The NVIDIA CUDA
environment includes the Visual Profiler [13] which is available on all CUDA
supported platforms and NVIDIA Parallel NSight [14] which can be integrated
into Microsoft’s Visual Studio. OpenCL accelerated applications running on AMD
APUs as well as AMD Radeon GPUs can be profiled with AMD’s APP Profiler
[1]. The tools from both vendors allow profiling of CUDA or OpenCL accelerated
applications even if they are multi-threaded. They do not, however, allow analysis
of message passing based accelerated applications. Other less common accelerator
platforms offer similar tools: the IBM Cell/B.E. offers profiling and tracing tools
for its architecture [8], and the Clearspeed accelerators SDK comes with a Visual
Profiler [2] as well.

Research based performance tools have embraced hardware accelerators as well.
Most work, however, focuses on GPU computing using CUDA or OpenCL. The
tools typically fall into two categories: existing HPC tools that extend to include
hardware accelerators or new tools designed to cope with specific properties of a
single accelerator. Examples of the former are TAU [10], the integrated performance
monitor (IPM) [5], and the HPCToolkit [11]. A common feature of these three
tools is their profiling background. While TAU and HPCToolkit use the callbacks
from the NVIDIA CUPTI API to acquire GPU related performance data, IPM uses
library wrapping to intercept GPU-host interaction on the API level. GPU Ocelot
[4] is a very powerful tool from the second category. While it is primarily a code
development framework, it also allows code instrumentation for parallel thread
execution (PTX) programs and, thus, can be used to gather performance data as
well. Like the vendor tools, however, it lacks the ability to extend to all levels of
parallelism.

8.3 Gathering Accelerator Related Performance Information

The combination of trace-based performance analysis with hardware accelerators
has to find answers to three major challenges: (1) Dealing with asynchronous
accelerator APIs, (2) timing and tracking of evens in a different execution domain,
and (3) gathering useful additional information. This section explains the nature of
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Fig. 8.1 Typical layout of a system using hardware accelerators: it has two disjoint memory
locations and the program execution on the accelerator is host driven

these challenges and how they can be overcome to provide an event logging
infrastructure capable of accurately recording accelerator usage. It, furthermore,
highlights NVIDIA CUPTI as an example how cooperation between well estab-
lished HPC tool developers and vendors can provide a fertile tool infrastructure
adapted to one specific accelerator.

8.3.1 Accelerator APIs

All current HPC related hardware accelerators follow the same principle: A host
program running on the CPU that also runs the operating system connects to the
available accelerator(s) via an API provided by a system library, usually as part of
the accelerator driver or SDK, to offload compute work onto the accelerator device
(see Fig. 8.1). The latest FPGA based acceleration environment from Convey is an
exception to this scheme since the FPGA can also initiate work to be carried out
by the CPU. Other commonalities between the accelerators are that they break up
work into parallel blocks executed in SIMD or SPMD fashion and that there is
usually no direct means to synchronize or communicate between the blocks since
their execution order is not predetermined. Furthermore, the accelerators use an own
instruction set architecture (ISA) with an own compiler but allow for program code
that combines parts to be executed on the accelerator and on the host. The special
compiler separates the two parts, generates an accelerator binary for the accelerator,
and passes the host part to a host compiler. One notable exception to this paradigm
is OpenCL, which only embeds the source code for the accelerator in the host binary
and uses just in time compilation by the accelerator driver at run time.

The IBM Cell/B.E. processor is in itself a special kind of hardware accelerator.
It bears close resemblance to the combined CPU/GPU processors from AMD
(called APUs) and NVIDIA (e.g. Tegra) but was developed earlier. While it also
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Fig. 8.2 A header file is parsed by vtlibwrapgen, all functions are duplicated, and enter and
leave statements from VampirTrace are inserted. As a result the wrapper library records entering
and leaving of library functions while preserving the original library behavior

Algorithm 1 Generic structure of an automatically generated wrapper function
using vtlibwrapgen

foo orig DLSYM(foo)
function FOO(arg1)

RECORD FUNCTION ENTER(foo,arg1)
result FOO ORIG(arg1)
RECORD FUNCTION LEAVE(foo)
return result

end function

contains a (quite small) CPU—the POWER processing element (PPE)—its
accelerator devices (Synergetic processing elements or SPEs) are much loosely
coupled than for example Streaming Multiprocessors in an NVIDIA GPU, SIMD
engines in an AMD GPU or a Clearspeed processor. The SPEs can run arbitrary
programs, communicate via memory transactions and access the same main memory
as the PPE. The Cell/B.E. software ecosystem also shares features described earlier:
The SPEs are based on a different ISA than the PPE, hence they require a special
compiler whose output is embedded in the host program running on the PPE to
launch work on the SPEs during its run time. Previous work [6] has shown that
tracing can be extended to also track execution of hybrid applications on the IBM
Cell/B.E. processor.

Recording Accelerator API Invocations A logical first choice to record hardware
accelerator usage is to extend the measurement infrastructure to also capture
accelerator API invocations. This can be achieved without modifying the library
to be observed, as shown using static relinking in [15]. This approach, however, is
I/O focused and lacks the flexibility to address any kind of programming interface.
As proposed in my previous work such limitations can be overcome by a flexible
dynamic library wrapping infrastructure [3]. In its workflow (see Fig. 8.2) a header
file (e.g. cuda.h) is parsed and a wrapper library is generated. Each call in the
wrapper library has the same generic structure as shown in Algorithm 1. As a result,
VampirTrace can now bind against an unmodified binary program (using vtrun)
and record the usage of the wrapped library by this program. When applied to
hardware accelerator APIs, this method will generate statistics on how the host is
interfacing with the device driver. It does, unfortunately, not cope very well with the
largely asynchronous nature of accelerator APIs as shown in the following section.
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Fig. 8.3 Execution of code on a hardware accelerator is asynchronously launched from the
controlling host process, i.e. the host has no influence when the accelerator will begin executing
the offloaded work

Fig. 8.4 Timing events can be introduced on the device by the wrapper library before and after
the offloaded work. This will generate time stamps for the beginning and the end of the program
executed on the device

8.3.2 Tracking Accelerator Events

Most hardware accelerators simply use execution queues to have work assigned
to them by the controlling host. Just tracing the execution of the host application
and its interaction with the accelerator API is insufficient to draw conclusions as
to how the accelerator is utilized [3, 7] which can be easily seen in Fig. 8.3. In
order to allow the user to time the offloaded work, many accelerator APIs offer
means to generate time stamps on the accelerator. The Cell/B.E. SPE for example
offers the call spu read decrementer(), CUDA CudaEvents, and OpenCL
clGetEventProfilingInfo(...). The wrapper library for the accelerator
API as introduced in Sect. 8.3.1 can be extended to also time accelerator activity by
modifying the respective launch command to also record timing information for
the launched accelerator work as shown in Fig. 8.4 and Algorithm 2.
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Algorithm 2 Modified launch command to time accelerator work
launch orig DLSYM(launch)
device GET HANDLE FOR DEVICE EVENT STREAM(device context)
function LAUNCH(arg1)

RECORD FUNCTION ENTER(launch,arg1)
PUSH WORK NAME(arg1)
ENQUEUE EVENT(t1)
result LAUCH ORIG(arg1)
ENQUEUE EVENT(t2)
RECORD FUNCTION LEAVE(launch)
return result

end function
function SOME SYNCHRONOUS OPERATION

...
t1,t2 READ EVENTS(t1,t2)
name POP WORK NAME

RECORD DEVICE FUNCTION ENTER(name,t1,device)
RECORD DEVICE FUNCTION LEAVE(name,t2,device)
...

end function

This advanced timing is based on the following assumption: the execution
stream of an accelerator device (CUDA stream, OpenCL execution queue, Cell SPE
program) is in its parallel semantics similar to a CPU thread spawned by a CPU
process to offload work [7]. According to this analogy one can reuse the features of
VampirTrace to track CPU threads and invoke them to record accelerator activity.
One major difference between CPU threads and accelerator execution streams is
that due to the disjoint memory locations for the host and the device the latter do not
share the same main memory as CPU threads would. The accelerator programming
paradigms call for explicit data transfers between the two memory locations. They
are, in this regard, very similar to MPI programming where explicit transfers copy
data from one memory location over some kind of network—in the case of hardware
accelerators this would be PCI-Express—to another location. Hence, it is easy to
note that this transfer can be logged just like an MPI message would be. In order to
separate the two kinds of messages in a multi-hybrid program, accelerator transfers
are recorded using a special flag so that they can be easily (de-)selected during later
analysis. In the same manner accelerator threads are also placed into two special
process groups during tracing: The accelerator group contains all accelerator event
streams and the accelerator communication group contains all accelerator event
streams and the governing host processes.

Another challenge when using accelerator-based time stamps—as in the intro-
duced approach—is timer synchronization. This can, however, be solved rather
easily. If one surrounds a synchronous device interaction (e.g., waiting for work
completion or a synchronous data transfer) with device events as well, one will
receive correlated time stamps on the host and the device, since the call of the
accelerator API on the host also generates time stamps on the host on entering
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and leaving the routine. By using these correlated time stamps it is possible to (1)
translate device time stamps into host time stamps and (2) adjust the clock drift
of the two non-synchronized clocks during program execution. Since the Cell/B.E.
offers a synchronized clock signal over all PPEs/SPEs one only has to synchronize
all local clocks once at the beginning and does not have to compensate for clock
drift on this accelerator platform.

8.3.3 Including Accelerator Specific Data

On top of the pure timing information for hardware accelerated code segments,
it is of interest how well the offloaded program code actually runs. Two main
performance questions arise: (1) Is my program execution actually accelerated
by the use of the accelerator device(s) and (2) How close to peak performance
is my accelerator program? To answer these questions the performance tool has
to acquire information from the hardware accelerator while it is executing the
program. This can be done by modifying the accelerator program to generate
performance information, which is impractical for a number of reasons: for one,
most accelerator compilers do not offer an instrumentation interface like CPU
compilers. Thus, for trace-based performance analysis of offloaded routines one
has to inject performance gathering routines into the source code of the device
program either manually or by source-to-source transformations. The means to do
so are accelerator specific and lack some generality that would offer an analogy
to the library wrapping for accelerator API interception. Furthermore, recording
performance data directly on the device requires additional resources to store the
data. This can lead to very large run time modifications due to the measurement, e.g.
due to registers spilling into local memory. In the worst case the accelerated program
does not fit any longer onto the accelerator. This is especially true on FPGAs where
the recompilation would also potentially too time consuming.

A second, more practical, option is to record additional device information,
e.g. hardware performance counters. These counters can also identify good or bad
performance and accelerator utilization. The main challenge is to access them since,
unlike on the CPU and on the Cell/B.E., they are usually not directly accessible from
the accelerator device. Thus, a performance tool is depending on the accelerator
vendor exposing access to the performance counters via an API. Fortunately, for all
major hardware accelerators such an API is now available (Cell: Cell Performance
Counter tool, NVIDIA: CUPTI, AMD: GPUPerfAPI).

The performance counters are usually sampled with registered callbacks from
the accelerator library. This means that a typical usage scheme (with one launch
and one synchronization call as shown in Fig. 8.5) will only provide two counter
samples that, as shown before, do not necessarily align with the beginning and end
of a accelerated program. Currently the only way to overcome this limitation is to
use an additional host thread to frequently poll the performance counters.
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Fig. 8.5 VampirTrace can register callbacks into all CUDA functions to poll performance counter
information whenever a CUDA function is invoked. The quality of the counter values does,
however, highly depend on the frequency of CUDA calls

8.4 Example: Integration of CUDA and OpenCL
into VampirTrace/Vampir

VampirTrace and Vampir are well established performance tools for recording
and visualizing, respectively, traces of massively parallel applications [12]. As
previously discussed the performance data recording tool VampirTrace has been
extended in multiple ways to handle hardware accelerators. While prior work
included a special version of VampirTrace for the Cell/B.E., the library wrapping
approach presented in this paper has been used to cover CUDA and OpenCL.
The automatically generated wrapper libraries have been extended to record device
activity in its own event stream and to record data transfers between the host
and the device as messages. Furthermore, on NVIDIA devices access to hardware
performance counters is available using the CUDA performance tool interface
(CUPTI). VampirTrace will detect a CUDA or OpenCL installation automatically
during its configure run, if they are installed in the default location. It will
then compile the provided CUDA or OpenCL wrapper libraries that include all
previously described enhancements.

The usage of the GPUs can be traced in two different ways: (1) without recom-
piling the application or (2) by recompiling the application using the VampirTrace
compiler wrapper to also instrument the host code. In the former case one has to use
the vtrun utility to execute the application, e.g. by invoking
mpirun -np 4 vtrun ./a.out
where a.out is an MPI application also using CUDA or OpenCL. The vtrun
command uses LD PRELOAD to bind the VampirTrace library against the applica-
tion, thus, intercepting all calls to the MPI, pthread, CUDA, and OpenCL libraries.
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a

b

Fig. 8.6 VampirTrace can track usage of CUDA devices by just intercepting the CUDA library
calls (a) or by also instrumenting the host code (b)

Hence, one will not receive any information about activity on the host and only see
how the processes exchange MPI messages and how they interface with the GPUs.
The GPU activity, however, is complete since all GPU actions are invoked through
the corresponding CUDA or OpenCL library. The timeline of a very simple CUDA
application invoking just one kernel is shown in Fig. 8.6a.

When also instrumenting the host code, one receives a full picture of the
applications behavior on all levels of parallelism. In contrast to the previous
example, Fig. 8.6b also shows detailed host activity. An example of a performance
study of a fully hybrid application using MPI, pthreads, and CUDA simultaneously,
as shown in Fig. 8.7, illustrates how the holistic tracing approach of VampirTrace
offers an unrivaled level of detail. The detailed time stamps for the entire program
activity enable the analysis of load balance on the parallelism levels individually
but also concurrently, so that scalability bottlenecks can be identified. The statistics
displays available within Vampir always produce their content based on the current
time interval selected in the pipeline and the selected event streams. Thus, the
best use of the statistics can be accomplished by looking at the parallelism levels
individually.

It would be helpful, if Vampir were able to distinguish between pro-
cesses, threads, and accelerators. Vampir is limited by the capabilities of the
underlying trace format OTF [9] which treats all event streams the same
regardless of their origin. The trace format does, however, allow a parent definition
for an event stream so that a process-thread-mapping can be accomplished. In
order to keep this behavior—and with it the backwards compatibility of OTF—no
new means to distinguish different kind of children (threads or accelerators) were
introduced. Instead, accelerator event streams are treated the same as host threads
and their ID is chosen by selecting the next available thread ID for the associated
host process. Additionally, the accelerator name and its ID is included in the event
stream label. Vampir will always draw child event streams directly below their
parent so that the program hierarchy is visible in the Master Timeline.
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a

c

b

Fig. 8.7 The analysis of a multi-hybrid application can select different parallelism levels for
visualization. In (a) only the CUDA devices are shown during a phase where all GPUs are idle.
By also showing the activity of the controlling host processes in (b) one can see, that the devices
are idle due to large cudaMemcpys. In (c), where all participating processes, threads, and CUDA
streams are shown concurrently, it becomes clear that this is done prior to a host thread starting its
work. In this case all data is pulled from the GPU to start a host thread for writing the data to disk
for post mortem video generation
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8.5 Summary and Future Work

This paper presented how event logging/tracing can be extended to hardware
accelerators. It demonstrated that trace infrastructures like VampirTrace that can
already handle hybrid applications can be extended to also record accelerator usage.
It has to be noted that this is accomplished by re-utilizing already established metrics
(threads and messages) since it is not desirable to change the fixed trace format
which would influence the whole analysis tool chain. The paper also presented
how CUDA and OpenCL tracing is included in VampirTrace and how this affects
visualization with Vampir. A result of the presented work is that modifications to the
trace format are not really necessary to deal with the additional level of parallelism
introduced by the usage of hardware accelerators. Their performance data can well
be recorded and visualized as is. Nevertheless, the sheer amount of trace data
will overload the current time line visualization. Novel approaches to present very
large amounts the performance data are required to help the performance analyst
in locating e.ġ. load imbalance in parallel applications. Future work also includes
extending VampirTrace to also work with AMD’s GPUPerfAPI.
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Chapter 9
Folding: Detailed Analysis with Coarse
Sampling

Harald Servat, Germán Llort, Judit Giménez, Kevin Huck, and Jesús Labarta

Abstract Performance analysis tools help the application users to find bottlenecks
that prevent the application to run at full speed in current supercomputers. The level
of detail and the accuracy of the performance tools are crucial to completely depict
the nature of the bottlenecks. The details exposed do not only depend on the nature
of the tools (profile-based or trace-based) but also on the mechanism on which they
rely (instrumentation or sampling) to gather information.

In this paper we present a mechanism called folding that combines both instru-
mentation and sampling for trace-based performance analysis tools. The folding
mechanism takes advantage of long execution runs and low frequency sampling to
finely detail the evolution of the user code with minimal overhead on the application.
The reports provided by the folding mechanism are extremely useful to understand
the behavior of a region of code at a very low level. We also present a practical study
we have done in a in-production scenario with the folding mechanism and show that
the results of the folding resembles to high frequency sampling.

9.1 Introduction

Application users are typically delighted when they are granted access to a new
supercomputer because they expect their applications to run at a faster pace than
before. Although that each new supercomputer reports faster results than their
predecessors, it is unquestionable that user applications only reach a portion of the
peak performance of the supercomputer.
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Performance analysis tools aim to explain to the user the reasons why his or
her application cannot reach the supercomputer’s peak performance to eventually
optimize the application and increase its performance. Nowadays we can classify
performance tools by the amount of data gathered at runtime: profile-based and
trace-based. While profile-based tools keep timeless performance data of the exe-
cution run by aggregating the collected data, trace-based tools generate a sequence
of timestamped events that report the progression of the application. In addition,
performance tools can use two different methods to gather performance metrics
sampling and instrumentation. One the one hand, sampling relies on periodic
signaling to gather performance metrics, on the other hand, instrumentation injects
code to specific locations of an application to emit the metrics. To increase the
details of such methods the user may decrease the period of the sampling or
instrument additional code locations, but with the extra overhead drawback. An
alternative is to combine both instrumentation and sampling as in Extrae [4], TAU
[15] or Scalasca [19].

In this paper we describe folding [13, 14], a mechanism for trace-based perfor-
mance tools, that provides high level of detail using Paraver [12] traces. The folding
mechanism combines sampled and instrumented information gathered from the
sample application in order to produce more detailed results than its original form
in the Paraver tracefile. Moreover, folding benefits from long running applications
because it can be combined with high periodicity sampling to produce detailed
results with low overhead cost. We have combined the folding mechanism with
a density-based clustering tool [5, 6] to develop a framework that automatically
provides characteristics of the most time-consuming computation regions in an
application. This allows the analyst to focus on potential performance issues on
specific code locations that represent the relevant part of the application.

The rest of this paper is structured as: Sect. 9.2 reviews both sampling and folding
concepts and describes how the performance counters and the callstack information
is folded. Section 9.3 shows the folding results for a set of analyzed applications.
We compare the quality of the folding results with fine grained sampling results
in Sect. 9.4. Finally, we discuss related and future work in Sects. 9.5 and 9.6,
respectively.

9.2 Folding: Instrumentation and Sampling

We extended the Extrae [4] instrumentation package with sampling capabilities. The
sampling mechanism can either rely on the PAPI middleware (PAPI overflow)
or the regular operating system alarms. The sampling handler is responsible for
gathering hardware performance counters and a segment of the whole callstack at
the sample point. We depict how the overhead increases the execution time of the
application when using smaller sampling periods in Fig. 9.1. Naturally, the more
samples the library gathers the more the application becomes perturbed due to
the intrusion of the library. For example, when the sampling period is 50 � 103
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Fig. 9.1 Overhead of the sampling mechanism at different sampling periods when using different
MPI applications on a Intel Itanium2 supercomputer

Fig. 9.2 Example of the folding mechanism. The top timeline shows the samples belonging to the
different routines. In the bottom figure, we plot how the folding maps the samples on the different
synthetic regions. We have outlined the mapping for the Routine A which involves the samples
labeled as S1, S2 and S5

cycles the application can take up to 100 % more time to run. This large overhead
makes the fine grained sampling not desirable because of the large impact it has on
the application.

The folding mechanism takes benefit of long running applications (which is very
common in the scientific computing) to combine sampled information from different
regions into a single synthetic region. This mechanism combines instrumented and
sampled information to increase the details of the instrumented regions. Within
the folding process, each instrumented and sampled information plays a role.
While instrumented information is used to delimit regions, sampled information
determines how the performance behavior evolves within the region it belongs.
Consider the time-line shown in Fig. 9.2 where an iterative application executes
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three instrumented routines named A, B, C. Each single flag represents a taken
sample. The folding mechanism creates three synthetic regions (one per routine) and
then maps every sample into those regions according to the routine that was being
executed at the sample point. The result is shown below in the same Figure, where
the reader can observe that the mapped samples within the synthetic region preserve
their position in respect of their original region instead of their temporal ordering.

9.2.1 The Hardware Counters

The folding results, regarding the hardware counter information, are plotted in
Fig. 9.3. This plot shows the evolution of the completed instructions counter using
the folding samples in a computation region of the NAS BT benchmark [11].
The folded samples belonging to the selected region are normalized and shown as
red crosses. A red cross in the point (X,Y) means that a sample was taken at the
X % from the beginning of the region and counted the Y % of the total metric in
the region. In both figures, we can infer temporal phases with different performance
characteristics also noting their sequence and duration by solely using the folded
samples.

Once we have the cloud of samples, we perform a polynomial adjustment. The
adjustment serves three purposes: (a) as an analytical model we can compute its
derivative and, from the derivative, we can compute the instantaneous rates, (b)
we sample the result to reintroduce the folded metrics as synthetic events into
the tracefile at a user requested rate, and (c) it serves also as a noise reduction
mechanism.

We explored several approaches to compute the polynomial adjustment:
polynomial fitting, Bézier curves [2] and Kriging [18] interpolation. Poly-
nomial fitting requires choosing the grade of a polynomial which cannot
be done independently from the data. In addition, choosing a low order
polynomial will give soft but inaccurate fitting, while a high order polynomial
will fit better but will result in big fluctuations. Bézier curves do not require
additional data but the points themselves also fitted well on our tests except on the
stationary points. Finally, the Kriging interpolation, which is a general version of
the Bézier curve, works with the sample points plus some interpolation parameters
(including fitting strictness). After some tests, we found a typical combination of
parameters that fitted the samples well even in stationary points.

In Fig. 9.3, the contouring results and the instantaneous rate are shown in
the plot as a green and blue lines, respectively. Now comparing the information
derived from the adjustment and its derivative, we can easily identify four different
phases by their MIPS rate. Each phase involves a period in which the routine
runs really fast (at more than 6,000 MIPS) and follows a period where the
routine runs slower (at 2,000 MIPS, approximately).
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Fig. 9.3 Folding results of the instructions counter for a computation region in the NAS BT
benchmark when executed in a SGI Altix 4700 machine

9.2.2 The Callstack

The folding mechanism is also applied to the sampled callstack information if the
application contained debugging information during the execution. In contrast to the
folded hardware counters, folding the callstack information does not benefit from
an analytical model like Kriging. The folded callstacks are emitted to the tracefile
and can be used to display which code region was being executed at a certain
time in the synthetic regions. Although this method can be sensitive to noise, it
provides an approximate location where to start looking in the application code.
With such information, a time-based analysis tool like Paraver can create
correlations between the folded callstack information and any metric. Such
correlation can subsequently stored and then display those metrics in GVIM (a
vim1 editor using a GNOME2 front-end) using an add-on we built using the GVIM
scripting mechanism. We show a screenshot of this add-on on Fig. 9.4. In this
Figure, the lines that achieved the lowest and the highest MIPS are annotated in
colors, ranging from a minimum in green to a maximum in blue.

1http://www.vim.org
2http://www.gnome.org

http://www.vim.org
http://www.gnome.org
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Fig. 9.4 GVIM capture showing the MIPS within the editor according to the stats captured at
runtime and the results of the folding mechanism

9.3 Example of Usage

To exemplify the usage, we will show the study we did of the Code Saturne
[3] application, which also belongs to the PRACE Benchmark Suite [16]. The
application was executed on MareNostrum, a 10,240 core supercomputer based on
two dual-core PowerPC 2.3 GHz processors per blade interconnected with a Myrinet
network. The application was compiled with the IBM XL Fortran compiler version
12.1 using -O3 -qstrict and the experiment ran 200 time-steps using 32 cores
with a sampling period of 100 ms and MPI instrumentation.

We used a clustering tool [5,6] that characterizes computation regions according
to their metrics characteristics to find the application structure. The results for the
characterization are shown in Fig. 9.5. Each dot within the scatterplot represents a
computation region (i.e., a region within an MPI exit point and the consecutive MPI
entry point). We classified every computation region by two performance metrics
of the region: its executed instructions and its IPC (instructions per cycle). This
classification shows on one hand the total amount of work done by a portion of code
and the speed achieved to execute that amount of work. After the classification, the
computation regions are grouped (colored in the plot) together by their distance to
each other using a density-based algorithm and the grouping information is sent
back to the tracefile for further analyses. From all the resulting groups we focused
on the more relevant ones. Concretely, we will focus on those computation regions
that last more than 50 ms, and from them we will focus on Cluster 1 because
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it has more than 20K occurrences and accounts more than the 35 % of the total
computation time.

To study the internal behavior of Cluster 1, we applied the folding mechanism on
these regions. Due to space restrictions, we have summarized the results we obtained
in Fig. 9.6. In this figure we show the evolution of four different performance
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Table 9.1 Average values for different metrics in Code Saturne code divided by phases using the
slope of the instructions slope

Computation region Cluster 1

Phase name A B C

Location in gradrc.f90 751–753 786–802 972–985
Durationa 20.54 84.82 41.08
MIPS 300 600 300–450
Data cache stall cyclesb 400 1,700 2,000
TLB miss stall cyclesb 160 20 20
FPU stall cyclesb 550 160 75
aIn milliseconds
bIn millions per second

counters (instructions, data cache misses, FPU stalls and TLB misses) within Cluster
1 using the interpolation results of the folded samples. We have manually divided
the plot by the slope of the instructions counter rate to divide different computation
phases (labeled as A, B and C in this Figure) within the same computation region.
In Table 9.1 we show different metrics and the code location for each phase.

According to the metrics we extracted from the Paraver tracefile we obtained
that Cluster 1 ran at approximately 472 MIPS which is very bad for the
MareNostrum processor because it represents that it achieved a CPI (cycles per
instruction) of 4.87. Inside the cluster we can differentiate three phases considering
the instructions slope. First phase goes from the beginning to 0.15, the second
goes from 0.15 to 0.75 and the final goes from 0.75 to the end. According to the
information we have obtained during the execution this cluster is mainly executing
the routine contained in gradrc.f90. After analyzing the folded callstack, we can
relate them to three different loops at the following lines at lines 751–753, 786–802
and 972–985, respectively.

The loop in lines 751–753 shows a CPI between 7 and 9. This loop accesses
seven different vectors and performs a large number of floating point computations.
We observed that this phase ran at 300 MIPS and that the processor was stalled
by TLB misses and by lack of FPU resources. The second loop contains lots of
pointer indirections and some floating point instructions. We observe that 1,700
Mcycles out of 2,300 Mcycles (i.e., the processor frequency) are stalled due to data
cache misses, however the processor is capable of executing instructions at 600
MIPS. Last but not least, we see that the last pointed loop has a worse performance
behavior in terms of stalled cycles due to cache misses resulting in a worse MIPS
rate (ranging from 300 to 450).

We unsuccessfully tried to improve the performance of the application. We
splitted the first loop into three loops to prevent the cache to hold all the vectors
referenced, however after applying this modification the average duration of
Cluster 1 increased by 5 ms. Changing the second loop would need changing
the face numbering algorithm to increase the locality of the accessed data and/or
rethinking this part of the code to reduce the number of indirections. Also, it would
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Table 9.2 Experiment setup for the quality study

Application execution setup

Application name BT.B

Sampling mode Detailed Coarse
Sampling period 50 Kcycles 10 Mcycles
Samples per second 32,000 160
Sampling overhead 89 % 2 %
Number of iterations 1 200
Total number of samples per task 5,661 5,445

be interesting to reduce the number of accesses within the loop because there are
currently 11 arrays accessed. Finally, we applied blocking and splitting techniques
to the third loop to increase the locality of the data accesses. However, when
applying blocking with a block size of 128 elements, it made Cluster 1 3 % slower
whereas splitting the loop made Cluster 1 a 20 % slower, mainly due to the increase
of the TLB misses.

9.4 Validation of the Results

We validated and studied the quality of the folding mechanism by using the BT.B
benchmark from the NAS MPI Parallel Benchmark Suite 3.2 on a SGI Altix machine
with Intel Itanium 2 processors running at 1.6 GHz. Although this benchmark is
heavily optimized, some computing regions of BT.B show a non-uniform behavior
(as seen in Fig. 9.3) making it a nice candidate to study. The Kriging contouring
algorithm used in the folding mechanism behaves as a low-pass filter, so with
the higher number of samples being interpolated the interpolation results are more
detailed. Because of this, the experiments are focused on validating how the folded
and interpolated results resemble finer sampled metrics. Details regarding the
experimentation are shown in Table 9.2.

The first experiment is intended to compare the shape of the hardware counter
metrics in high frequency sampled traces and low frequency folded sampled traces.
We did the comparison with two of the most time consuming computation regions
from the benchmark. To facilitate the reading, each computation region is named
according to the routine to which it belongs. We compare one time-step of the high
frequency trace to the folded results of all iterations. The comparison is done using
different counters available on the chosen processor, namely committed instructions,
executed floating point operations and branches, and L2 cache accesses, hits, and
misses.

The Kriging implementation is limited to return a vector of equidistant points
which prevents us to get the value of the interpolation at any arbitrary point. To
perform the study, we compared the results between the samples of the reference
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Fig. 9.7 Study of absolute mean difference ratios and square mean errors on different applications
comparing high detail sampling and folded results on the NAS BT.B benchmark

time-step and the folded samples by interpolating both of them in the same number
of points and then we compute the absolute mean difference and the square mean
error by comparing every resulting slice.

Results of the comparison are shown in Fig. 9.7. The X-axis on the plot depicts
the representative computation regions in the NAS BT benchmark, whereas the
Y-axis represents the percentage of variation between the detailed sampling and
the folded results using coarse sampling and the square mean error by the bars
and the whiskers respectively. In the plot we observe mean differences up to 5 %
for every pair performance counter and computation region. The coarse-grained
sampling generates approximately the same number of samples for the whole run
as the reference iteration because of the number of the time-steps iterated on
the coarse-grain execution is the ratio between the two sampling frequencies. So
we conclude that using scattered samples on long execution runs we can obtain
a good approximation of the performance metrics without harming the gathered
performance metrics due to the sampling overhead.

In the second experiment we ran measured how the number of folded samples
influences the absolute mean difference shown in the previous experiment. To carry
out the comparison we took as a reference the highly detailed sampled information
of the longest computation regions of the BT.B benchmark from the previous
experiment, and then we computed the mean difference varying the number of
samples folded on the coarse-grained execution.



9 Folding: Detailed Analysis with Coarse Sampling 115

Mean difference between detailed and folded metrics
in x_solve.8 of the NAS T.B benchmark

0 %

2 %

4 %

6 %

8 %

10 %

0 20 40 60 80  100

A
ve

ra
ge

 d
iff

er
en

ce
 r

at
io

150 200 250 300 350 400
0 %

2 %

4 %

6 %

8 %

10 %

Samples used in the folding process

Instructions
Flops

Branches
L2 cache accesses

L2 cache misses
L2 cache hits
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The plot in Fig. 9.8 shows that the absolute mean difference varies depending on
the number of samples folded in the region. This plot shows that the mean absolute
difference decreases as the number of samples increase. Precisely, the number of
samples on which the difference is below 5 % is about 40 for the computation region
we present and using more samples just leads to marginal differences. So we can
conclude that there is no need for extremely long executions to get similar results
between folding coarse grain samples and using detailed sampling, although this
may vary on the application.

9.5 Related Work

The gprof [7] profiler uses sampling and instrumentation to gather function call
counts and estimate the time spent per function. This profiler requires the application
to be compiled and linked with a special flag that instructs the compiler adding
monitoring to count the number of calls to user routines, while it uses sampling to
accumulate time to the user routines. This tool provides summaries for simple met-
rics, whereas the folding mechanism combines both sampling and instrumentation
providing much more details resulting in more helpful analysis.

HPCToolkit [17] uses sampling with trampoline optimizations to provide call-
stack details. HPCToolkit can also show sampled callstack data in a time-line
using a recently added hpctraceview. Our mechanism also provides instrumentation
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and sampling data in a Paraver time-line but is also capable of combining the
performance data within the tracefile to provide highly detailed synthetic regions.
The synthetic information is reintroduced into the Paraver tracefile so all the metrics
can be used together to correlate them easily.

The Sun Studio Performance Analyzer [8] is a set of tools for collecting and
viewing application performance data using tracing and profiling mechanisms.
These tools are able to instrument synchronization calls, heap allocation and
deallocation routines, parallel regions and constructs, and can also sample the
application to profile it. Although being a powerful set of tools, the experiments
needed to be repeated if the results were not detailed enough. The work we propose
is designed to produce highly detailed performance metrics avoiding repetitive data
collection.

Azimi, Stumm and Wisniewski are the authors of [1] where they present an on-
line performance analysis tool that gathers counter values periodically. This tool
displays the evolution among the selected counters in a time-line breakdowns the
cycles-per-instruction using a model called Statistical Stall Breakdown. Although
they offer some instrumentation capabilities, their work is just focused on the
sampling mechanism to characterize the whole system instead of applications.

The TAU framework has recently added sampling capabilities in its measurement
system [10]. And, although they gather performance counter information, their work
is mainly focused on instrumentation cooperating with the sampling to augment
the TAU profiles with PC callstack information instead of increasing the details of
the performance counters. The cooperation to increase their profiles is based on
creating keys to the application callstack and to the TAU event stack during the
application execution to reduce the information presented to the user in order to
produce a summarized view.

Finally, the Scalasca tool has also been extended using sampling. As in TAU,
their developers put the major effort to provide information about application
routines instead of providing performance counters. Scalasca provides accurate time
metrics by subtracting the time in MPI calls of an user routine for a sampling
period when PMPI instrumentation is turned on. Also in Scalasca, as in HPCToolkit,
trampolines are used to replace the returning addresses in the callstack to reduce the
overhead in the unwinding process.

9.6 Conclusions and Future Directions

We have evaluated the quality of the results of using low frequency sampling and
applying the folding mechanism compared with high frequency sampled data. The
results show good resemblance (less than 5 % of difference) between them, even
using only a fraction of the samples of the whole run. It makes low frequency
sampling and folding a good alternative to high frequency sampling without
penalizing the application. We have shown an example of utilization of the folding
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when combined with the clustering. Yet the example we provided was not improved,
we have shown successful studies and optimizations in [14].

Future work could include working on a better correlation between performance
counters at this finer detail to thoroughly describe the performance behavior and
also to locate hot and cold spots within the code. Another interesting future topic
would be to perform an on-line study of the application using the work described in
[9]. The combination of these two mechanism would provide detailed performance
information as the application executes, showing the performance at different
application stages and stop when enough samples have been gathered and study
whether the sampling periodicity matches any period of the computation bursts.
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Chapter 10
Advances in the TAU Performance System

Allen Malony, Sameer Shende, Wyatt Spear, Chee Wai Lee,
and Scott Biersdorff

Abstract Evolution and growth of parallel systems requires continued advances in
the tools to measure, characterize, and understand parallel performance. Five recent
developments in the TAU Performance System are reported. First, an update is given
on support for heterogeneous systems with GPUs. Second, event-based sampling
is being integrated in TAU to add new capabilities for performance observation.
New wrapping technology has been incorporated in TAU’s instrumentation harness,
increasing observation scope. The fourth advance is in the area of performance
visualization. Lastly, we discuss our work in Eclipse Parallel Tools Platform.

10.1 Introduction

The TAU performance system [12] has been in development and use in the high-
performance computing (HPC) community for over 20 years. During this time,
it was the changes in the parallel architectures, systems, software development,
and applications that make up HPC technologies that generated requirements
for continual improvement in the TAU toolset and the methodology it supports.
Today’s HPC evolution is no different in the demands it places on next-generation
performance tools. The benefit of an established system like TAU and others, is in
the ability to leverage existing capabilities to create new and more powerful features.
Of course, it can also be more challenging if advances force re-engineering of the
toolset’s architecture and implementation. The following paper highlights recent
advances in the TAU performance system in five areas that cover different aspects
of the changing needs of HPC. First, we discuss updates on our work to integrate
into TAU support for measurement of heterogeneous systems using GPUs. Second,
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we describe the addition of event-based sampling in TAU to address limitations
of a purely probe-based approach for performance observation. Instrumentation
has always been an important technology for enabling performance measurement.
The third area covers new wrapping technology that has been incorporated in
TAU’s instrumentation harness. The need to makes sense of high-dimensionality
performance data motivates better methods for data analysis and presentation. The
fourth advance we will discuss is in the area of performance visualization. Lastly,
we discuss our work in Eclipse Parallel Tools Platform.

10.2 Instrumentation Of GPU Accelerated Code

Understanding the performance of scalable heterogeneous parallel systems and
applications will depend on addressing new challenges of instrumentation, mea-
surement, and analysis of heterogeneous components, and integrating performance
perspectives in a unified manner. Here we will cover an approach to addressing these
requirements undertaken by the TAU, PAPI [3] and Vampir-Trace [4] development
teams. We will examine the approach in terms of computation and measurement
models in order to ground the discussion on tool implementation. The measurement
techniques supported by the tools are intended to be practical solutions for these
approaches with respect to present technology.

10.2.1 Synchronous Method

The validity of the time measurement is predicated on when the kernel issued to the
accelerator begins execution and when it ends. We use the term synchronous to indi-
cate that it is the CPU (host) who is observing the begin and end events, as denoted
by the diamonds in Fig. 10.1. Measurements are made on the CPU by recording
events before kernel launch and after synchronization. If the host immediately waits
on kernel termination after launch, its kernel measurement is, in effect, synchronized
with the kernel execution. In this case, the measurement method is equivalent
to measuring a subroutine call. In essence, a synchronous approach assumes the
kernel will execute immediately, and the interval of time between the begin and end
events will accurately reflect kernel performance. Unfortunately, this assumption
is overly restrictive and leads to inaccuracies when more flexible modes of kernel
execution are used. As the figure suggests, the host need not block after kernel
launch and it can be a long time before it is synchronized with the kernel, resulting
in poor estimates of actual kernel execution time. Moreover, multiple kernels can
be launched into a stream or multiple streams before a synchronization point is
encountered. The benefit of a synchronous approach is that it does not require
any additional performance measurement mechanisms beyond what is presently
available.
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Fig. 10.1 Synchronous method timeline. Shaded area represents the execution time

Fig. 10.2 Event queue method timeline. Shaded area represents the measured execution time on
the host device

10.2.2 Event Queue Method

The main problem with the synchronous approach is that the kernel execution is
measured indirectly, not by the GPU. Consider a special type of kernel called
an event kernel which will record the state of the GPU when it is executed. If
we could inject an event kernel into the stream immediately before and after the
computational kernel, it would be possible to obtain performance data more closely
linked with kernel begin and end. While it is the responsibility of the host to
generate the event kernels, queue them into the stream, and read the results, it
is the underlying GPU device layer that will take responsibility for making the
measurement. Measurements are made on the event kernels placed in the same
stream as the computational kernel. In theory this method, shown in Fig. 10.2, works
well. It adequately addresses the case where multiple kernels are launched in a
stream, if each is wrapped by an associated event kernel they are all accounted for
even if the synchronization point is not until much later. However, there are a few
practical downsides. First, it relies entirely on the device manufacture to provide
support for the event kernel concept. The notion of events is a part of both the
CUDA and OpenCL specification. However, restrictions on how events can be used
and what performance information is returned is implementation dependent.
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Fig. 10.3 Callback method timeline

10.2.3 Callback Method

A third method relies on a mechanism in the device layer that triggers callbacks
on the host for registered actions, like the begin and end of kernel execution.
Registered callbacks are triggered by GPU actions, allowing more tightly coupled
measurements to take place. The “callback” method portrayed in Fig. 10.3 suggests
that more immediate kernel performance measurement is possible since control
can be given directly to a CPU process via the callback. It is also more flexible
since a wider range of callbacks might be provided, and performance measurement
can be specific to callback type. The process of callback registration makes it
possible to avoid code modification at locations of kernel launch in the application.
Clearly, a callback method is dependent on the device manufacturer to provide
support in the device layer and even the GPU hardware. The research presented
here demonstrates support for GPU performance measurement with CUDA and
OpenCL in three well-known performance tools PAPI, VampirTrace, and the TAU
Performance System. The tools targeted in this paper support performance counter
measurement, profiling, and tracing for scalable parallel applications, and are
generally representative of probe-based measurement systems.

10.2.4 TAU Performance System Implementation

TAU [12] has tools for source instrumentation, compiler instrumentation, and library
wrapping that allows CPU events to be easily observed. In particular, they allow
library wrapping of the CUDA runtime/driver API and preloading of the wrapped
library prior to execution. Then, each call made to a runtime or driver routine is
intercepted by TAU for measurement before/after calling the actual CUDA routine.
TAU library interposition happens dynamically with the Linux LD PRELOAD
mechanism and can be used on an un-instrumented executable. Such features are
commonly used in other performance tools. For instance, VampirTrace also applies
the LD PRELOAD mechanism with the CUDA libraries [5]. Clock synchronization
is needed to correct any time lag between the CPU and the GPU, just as when tracing
events across multiple nodes. This is accomplished by measuring simultaneously
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(or as nearly as possible) at a synchronization point the time on CPU and the time
on the GPU. The GPU time can be obtained at the synchronization event which has
just occurred. By measuring the difference between these two times we can measure
the clock lag between the CPU and GPU.

10.3 Event Based Sampling (EBS)

Our integration of the TAU performance system with event-based sampling mea-
surement, called TAUebs, represents our approach to a hybrid measurement system
which includes both probe-based and sampling-based components. A hybrid mea-
surement system attempts to marry the strengths of both probe- and sampling-based
measurements while mitigating their weaknesses.

Sampling-based measurements determine an application’s performance by statis-
tical observation via some interrupt mechanism. Probe-based measurement systems
instruments the application code at specific points to collect performance data at
the time the instrumented code is executed. Morris et. al. [10] detailed the design
and implementation of a prototype for such a hybrid measurement system. The
initial prototype focused on the generation of sampling traces followed by a post-
mortem merge operation with probe-based TAU profiles generated from the same
application run. Building on this prototype, we have now implemented support for
tighter integration of sampling-based information into TAU’s profile data structures
at application runtime. The tool employs the same sampling technology based on
work by HPCToolkit [1], Perfsuite [11] and PAPI [3].

When a TAU-instrumented application encounters an interrupt to take a sample,
TAU’s event path data structures are consulted to discover the current TAU event
context. A basic information-gathering approach is simply to capture the number of
times a program counter value is encountered. A histogram of sample counts against
encountered program counter values is maintained for each unique TAU event path
context at runtime. At the end of the application, before TAU profiles are written to
disk, TAU’s event paths are augmented by performance information derived from
sampling-based measurements as follows:

1. An intermediate event representing the sum of all sampled events that were
encountered in the context of some TAU event path P is created as a new leaf
node to path P .

2. For each program counter value found in the histogram maintained for path P ,
attempt to resolve the source file name, function name and line number. Multiple
program counter values mapping to the same line number in the code are treated
as the same sample event. Metric values are then assigned by multiplying the
known sample period with the number of samples. Finally, each sample event
are added to TAU’s event path as leaf nodes.

The sample information collected for each TAU event path is flat within the
context of that TAU event path. This design is illustrated in Fig. 10.4. We are
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Fig. 10.4 An illustration of the complementary sampling and instrumentation methodologies.
Instrumentation provides sampling context via an event stack

working toward incorporating stack unwinding for the runtime integration of sample
information to TAU profiles. We are also working on resolving issues associated
with the correct mapping of program counters to code structure in the face of code
optimization. We have implemented several solutions to mitigate issues associated
with asynchronous signal safety and thread safety. In particular, we did not wish to
pre-allocate memory for entire code address spaces for program counter histograms.
As a result, we had to make use of pool storage allocators in C++ to reduce
the chances of making our own memory allocation calls when our signal handle
happened to interrupt some memory allocation event in application code.

Szebenyi et. al. [15] presented results on a similar hybrid measurement effort
developed on top of the Scalasca set of tools. They specifically insert probe-
based measurements on MPI calls while capturing the performance of the rest of
the application through sampling-based measurements. They have described their
approach for addressing some of the common issues we both face in our efforts.

10.4 Automatic Wrapper Library Generation

Many parallel applications are constructed using software library packages with
interfaces callable from standard programming languages. Packages are often
layered, internally calling other libraries to implement underlying functionality,
which can be hidden to the user. Having an ability to intercept package calls
at library routine interfaces enables performance tools to gather both semantic
(contextual) and performance data for analysis purposes. Shende et al. [13] discusses
this wrapper feature in detail in the context of tracking IO events. Below is a
summary of this feature.
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TAU can automate the creation of wrapper libraries using its tau gen wrap
per tool. It parses the interface of a library (as represented in a header file) and
creates an wrapped interface for each routine, as may be specified in a selective
instrumentation file. This interface starts and stops TAU timers around the original
function call. There are three ways to generate the wrapper library:

1. Redefining the function using a pre-processor macro
2. Preloading the wrapper library at runtime
3. Using linker-based substitution of a routine with an alternative implementation.

This tool supports all three cases. It internally uses the Program Database Toolkit
(PDT) to parse the header file.

This can be done by defining a header file that internally redefines the name
of a routine as a macro that redirects all references to the given call with another.
The compiler’s pre-processor then replaces all references to the original call at the
callsite in the source code with the corresponding call defined by the tool (e.g., read
replaced by tau read).

The above approach works well for C and C++ programs where library calls
are replaced explicitly during compilation. Unfortunately, this approach does not
extend well to Fortran programs. Moreover, the instrumentation technique is limited
to application code regions where the source code is available for recompiling.

This method also relies explicit re-compilation but includes support for Fortran.
TAUs instrumentation tool (tau instrumentor) examines the source code, its
PDB file as generated by the Program Database Toolkit (PDT), and re-writes
the Fortran calls in the instrumented source code. In this method, performance
measurement code is inserted directly in the source code.

Many HPC operating systems such as Linux, Cray Compute Node Linux (CNL),
IBM BlueGene Compute Node Kernel (CNK), Solaris permit pre-loading of a
library in the address space of an executing application specifying a dynamic
shared object (DSO) in an environment variable (LD PRELOAD). It is possible
to create a tool based on this technique that can intercept library operations by
means of a wrapper-library where the all calls are redefined to call the global routine
(identified using the dlsym system call) internally. This method only supports
dynamic executables—IBM BlueGene and Cray XE6 and XK6 systems default to
static executables but dynamic executables can be requested.

10.5 3D Visualization

It has always been challenging to create new performance visualizations, for
three reasons. First, it requires a design process that integrates properties of the
performance data (as understood by the user) with the graphical aspects for good
visual form. This is not easy, if one wants effective outcomes. Second, unlike
visualization of physical phenomena, performance information does not have a
natural semantic visual basis. It could utilize a variety of graphical forms and
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visualization types (e.g., statistical, informational, physical, abstract). Third, with
increasing application concurrency, performance visualization must deal with the
problem of scale. The use of interactive three-dimensional (3D) graphics clearly
helps, but the visualization design challenge is still present.

In addition to these challenges, there are also practical considerations. Because
of the richness of parallel performance information and the different relationships to
the underlying application semantics, it is unreasonable to expect just a few perfor-
mance visualizations to satisfy all needs. Where visualization of large performance
information does exist, it is generally embedded as “canned” displays in a profile or
trace analysis tool. If a user has a different concept in mind, they have very limited
ability to make changes.

To move towards a more general method of creating 3D visualizations, we
considered the salient components of the existing versions and the need to specify
aspects of a 3D design in a more flexible manner. Two ideas resulted: (1) separate
the visualization layout design from visualization user interface (UI) design, and
(2) allow the properties of each to be specified by the user. We have added these
capabilities to the ParaProf [2] profile analysis tool.

Visualization layout design is concerned with how the visualization will appear.
Our approach allows the visual presentation to be specified with respect to the
parallel profile data model (events, metrics, metadata) and possible analysis of this
information [14]. Two basic layout approaches we support are mapping to Cartesian
coordinates provided by MPI and filling a space of user-defined dimensions in
order of MPI rank. We have also worked to develop a specification language for
describing more complex layouts of thread performance in a 3D space. In our
initial implementation of these custom layouts, mathematical formulae define the
coordinates and color value of each thread in the layout. The formulae are based on
variables provided by the profile data model. These input variables include event and
metric values for the current thread being processed as well as global values such as
the total number of threads in the profile. The specification is applied successively to
each thread in the profile to determine X, Y and Z coordinate values and color values
which are used to generate the visualization graphics. Our initial implementation for
expression analysis uses the MESP expression parser library [9]. MESP provides
a simple syntax for expressing mathematical formulae but is powerful enough
to allow visualization layouts based on architecturally relevant geometries or the
mathematical relationship of multiple performance variables.

The layout of points in a visualization which conforms to a useful pattern,
reflecting the physical layout of the system or the data decomposition of the
application, may be densely packed or otherwise obscured. Therefore it is also
necessary to provide the user with a means to selectively display salient features
of a performance topology. For example, as shown in Fig. 10.5, we can exclude the
points with middling values and display only the outliers. In addition to clarifying
the structure of performance behavior with respect to machine topology, this also
helps to highlight potential topologically sensitive performance problems such as
oversubscribed or underutilized nodes.
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Fig. 10.5 16k-core 3D topology map of Sweep function in the Sweep 3d application on BG/L.
Only nodes with high (red) and low (blue or green) values are shown

Visualization UI design is concerned with how the visualization will be con-
trolled. The key insight here is to have the UI play a role in “binding” data model
variables used in the layout specification. This approach implements the functional-
ity present in the current ParaProf views, where the user is free to select events and
metrics to be applied in the visualization as inputs to layout formulae. However, for
large performance proles of many threads/processes, the specied layout can result in
a dense visualization that obscures internal structures. The current ability to zoom
and rotate the topology in the UI partially ameliorates this issue. Our model for
visualization UI further allows more sophisticated ltering techniques.

10.6 Eclipse Integration

Tau has supported integration with the Eclipse IDE [6] for some time now. We wrap
the standard command-line based TAU analysis workflow in the graphical Eclipse
interface. This simplifies the process of performance analysis, ties it more closely
with the overall development cycle in Eclipse and exposes the capabilities of the
TAU performance system through the UI. By integrating with the Eclipse Parallel
Tools Platform (PTP) [7] we also take advantage of new IDE-based parallel and
HPC development capabilities.

During the development of the TAU plug-ins it became evident that much of
the work being done was applicable to other performance analysis systems and
similar command-line based tools. At a high level, such tools typically operate on
some combination of compilation, execution, and analysis steps and their inputs
are similar to those of TAU. To take advantage of this congruity, the workflow
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logic and User Interface (UI) elements, which were initially hard-coded into the
original TAU plug-ins, were converted to a generalized API. Additionally, to make
the system more easily accessible and extensible, we developed an XML interface
for defining both performance tool workflows and their UIs within Eclipse/PTP. The
result is the general-purpose External Tools Framework (ETFw). ETFw allows both
tool and application developers to integrate performance analysis systems into an
Eclipse environment without the effort and expertise that are required to develop
new Eclipse plug-ins. In fact, XML workflow definitions for external performance
tools can be added or updated without restarting the Eclipse platform.

Although ETFw generalized much of the hard-coded behavior of the original
TAU plug-ins, advanced TAU-specific functionality remains encapsulated within a
plugin structure. This functionality includes PAPI hardware counter selection, as
shown in the UI example in Fig. 10.6. However, the advanced API extension points
used by the TAU-specific plug-ins are available to other tools that require logic or
UI elements that are too application-specific for the ETFw to handle.

The ETFw’s XML workflow format consists of three fundamental elements,
which define the compilation, execution, and analysis steps of the workflow. The
order, number, and presence of these steps may vary depending on the intent of the
workflow and the employed analysis tools.

• The compilation step assigns compiler commands to be used for the relevant
programming languages.

• The execution step defines commands to be composed with the target executable,
if any. This covers tools such as Valgrind that take the target application as an
input argument.

• The analysis step defines a series of commands that may be run on any data
generated during program execution.

Each application or tool defined in an XML workflow may have its command and
input parameters specified in the XML file. Alternatively, command-line options
may be specified, which will appear in the Eclipse/PTP UI, where the user may
enable, disable, and assign values to them dynamically. Once an XML workflow
has been composed, it can be modified easily to suit different use cases. It also
can be distributed to other users, who can easily load it into their Eclipse/PTP
environments and run their applications with the performance analysis workflow,
without concerning themselves with tool invocation details. In addition to adding
support for arbitrary performance tools, the ETFw’s abstraction of performance
tool operations simplifies the implementation of more complicated workflows. This
includes workflows that require multiple executions of the target application, such
as parametric studies [8]. ETFw is now part of the PTP plug-in and is, thus, available
to all users with a current Eclipse/PTP IDE configuration.

Formerly TAU and other external tools could only be invoked locally. Much of
the power of the PTP lies in its ability to manage development on remote systems.
We have extended the ETFw to take advantage of the PTPs remote capabilities.
Now a user operating on a local workstation can use the Eclipse environment
to build, execute and manipulate performance data from applications on remote,
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Fig. 10.6 Configuration selection UI for the TAU Eclipse plugin, including popup window for
selecting PAPI hardware counters

production machines. This has the potential to make the typical HPC application
development cycle much easier and more closely aligned with the standards of
conventional software development.

10.7 Conclusion

Parallel performance toolsets must continue to improve to keep abreast of HPC
innovations and technology evolution. Five recent advances in the TAU performance
system were presented and discussed with respect to various HPC performance
measurement and analysis requirements. All of them are or will be part of the TAU
open source distribution.
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Chapter 11
Temanejo: Debugging of Thread-Based
Task-Parallel Programs in StarSS

Rainer Keller, Steffen Brinkmann, José Gracia, and Christoph Niethammer

Abstract To make use of manycore processors and even accelerators, several
parallel programming paradigms exist, such as OpenMP, CAPS HMPP and the
StarSs programming model. All of these programming models provide the means
for programmers to express parallelism in the source code, identifying tasks and
for all but OpenMP the dependency between those, allowing the compiler and the
runtime to schedule tasks onto multiple concurrent executing entities, like threads
in a many-core systems. While the programmer may have a good overview of which
parts of the code may be run independently as separate tasks on a fine granular level,
the overall execution behavior may not be obvious at first. This paper describes the
usability features of the newly developed Temanejo debugger.1

11.1 Introduction

Parallel programming adds another level of complexity in every respect, especially
when debugging the application. Different parallel programming models have dif-
ferent perspectives in that regard – parallel programming models based on processes
allow having debuggers attach to each individual process. For programming models
that are based on threads, finding bugs is a more difficult feat due nature of threads.
In Unix environments, threaded programs share resources such as signals, file

1This work was supported by the European Community’s Seventh Framework Programme [FP7-
INFRASTRUCTURES-2010-2] as project grant “Toward Exaflop Applications” (TEXT) under
grant agreement number 261580.
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� �

#include <stdio.h>

#pragma css task input(a) output(out)
void fib ( int a, int �out) f

int tmp1, tmp2;
if (a <= 1)
�out = 1;

else f
fib (a�1, &tmp1);
fib (a�2, &tmp2);
�out = tmp1 + tmp2;

g
g
int main(void)
f

int var = 50;
int result ;

#pragma css start
fib (var�1, &result ) ;

#pragma css finish
printf (” fib (%d) = %dnn”, var, result ) ;
return 0;

g
� �

Listing 11.1 StarSs example of parallel, recursive Fibonacci computation

descriptors, and most importantly the memory address space. In order not to create
race conditions, multiple threads need to synchronize access to shared resources.

The StarSs programming model [5] allows to specify tasks and their inter-
dependencies by annotating the sequential code using pragma statements (in C)
and comments (Fortran). Code 25 shows an example written in C, with the StarSs
statements being followed by the css pragmas.2

While compilers not supporting StarSs ignore the pragmas in Code 25, BSC’s
SmpSs compiler generates wrapper functions out of the specified tasks, with the
StarSs runtime scheduling the tasks to threads calling these wrapper functions,
which then invoke the underlying code generated by the host-compiler. The threads
are beingcreated upon the entering of the start section. Currently, the C, C++ and
Fortran77 and Fortran90 languages are supported – of course, due to it’s thread-
parallel nature, several unsafe practices may not be used in the taskified code,
such as C’s long-jumps, unprotected access to shared resources (mainly global
memory), C++ exceptions, or in Fortran unprotected access to common blocks or
passing temporary arrays. As with OpenMP the details of the underlying Thread-
model (Posix Threads, Solaris Threads) [4] as well as the semantics of the Memory
Model [1] are left to the compiler. Similar to OpenMP, the StarSs programming

2The acronym css is due to BSC first developing the SuperScalar compilers for the IBM Cell.
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Fig. 11.1 Interaction between StarSs runtime, Ayudame and Temanejo

model allows incremental parallelization of the application, focusing first on large,
independent tasks, leaving the source code’s structure mostly intact – even more
so, as soon as future compiler releases allow taskifying code sequences within
functions.

The StarSs’ runtime handles the dependency tracking using the parameter’s
address being passed to the task. As soon as all input dependencies are being met, the
task may be scheduled to run. Compared to the classical OpenMP approach focusing
on parallelising large loops, StarSs allows a much more dynamic execution, possibly
making better use of resources. As will be shown below, the task-graph is a directed
acyclic graph, which is dynamically generated at runtime. This graph may become
very large and is executed non-deterministically.

However, this non-determinism may create problems when debugging the
application. In this paper, we will revisit the Temanejo-debugger [2], developed at
the High Performance Computing Center Stuttgart (HLRS) within the frame of the
TEXT project.

11.2 Implementation

The graphical debugger Temanejo3 is logically separated from the library that
interacts with the runtime, the so-called Ayudame-library.4 This separation allows
to attach to SMPSs instances running on compute nodes, with limited capabilities,
having the graphical display of tasks on the programmer’s workstation. Ayudame
provides multiple hooks for the runtime, e.g. to retrieve the number and names of
tasks in the parallel section and API to steer the runtime. Figure 11.1 shows the
interaction of the library Ayudame, here being LD_PRELOADed to the run-time,
in order to satisfy the callbacks into the hooks. The Master Thread here stands for

3Spanish for ‘I Handle You’.
4Spanish for ‘Help me’.
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Fig. 11.2 Screenshot of the Temanejo GUI zoomed in, while debugging a LU-factorization
example

SMPSs’ runtime scheduling the tasks. The data exchanged between the Ayudame
library and the Temanejo debugger is kept lean as a binary protocol, in principle
allowing to attach and detach from the debugged process. The communication is
currently done using TCP. If the user issues commands from the Temanejo GUI, it
is being forward to the Ayudame library as a requests, which then relays it to the
runtime. All the events on the run-time site are being collected and buffered to be
sent in chunks via a separate thread decoupling the runtime and the GUI. On the
GUI’s side again data is received in a separate thread analyzing the event changes
and updating the graphical representation.

11.3 Debugging Capabilities

Debugging implies seeing, understanding and intercepting the execution of an
application. The Temanejo debugger allows programmers to visualize even large
task graphs and efficiently interact with the run-time to analyze large applications.

Figure 11.2 presents a screenshot (edited for better printing) of Temanejo, here
with full detail and heavily zoomed to enlarge the features of this graph.

Each task is visualized by a node in the main window of Temanejo. The user
may zoom and drag through the main window and click on single nodes, aka the
tasks, offering further functionality as described later. The node’s color and shape
by default encode the task’s function and when the task is scheduled and running,
the actual thread number it is running on. Moreover, the screenshot in Fig. 11.2
additionally shows the dependencies including the address of the dependency.
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Fig. 11.3 Symbols
representing the states within
the life-time of a task, each
change in state will generate
an event in Ayudame

This nicely visualizes the applications capabilities in terms of parallel execution,
e.g. narrow graphs represent situations in the execution where little opportunities
for parallelism exist.

The node’s border or margin encodes the tasks state Fig. 11.3 shows Temanejo’s
representation of the task state life-cycle. Tasks change their state upon the
following conditions and emit the following event (numbering corresponding to
Fig. 11.3):

1. If all input dependencies are fulfilled, the task may be enqueued.
2. If the task is being dequeued from the runable queue it is scheduled for execution

to a thread.
3. If the task is finished running, another event is being generated to update the

display. In reality it is being dropped from all queues.
4. At last, the tasks depending on the output of the finished tasks are being notified.

With the left-most pane of the display, the visualization attributes of the main
window may be changed. Switching away from the default of the task’s function,
one may encode the executing thread (instead of it’s shape), to distinctly visualize
the likelihood of threads executing “close” tasks (the SMPSs runtime assumes
dependent tasks benefit from data reusing the cache). Furthermore, one may set
the node’s color as it’s execution time, showing specifically long-running tasks
after the execution. Within large numbers of tasks the graph may get very bloated.
Using the navigation controls, one may jump to a specific task and within the
left-most pane change the node’s color to encode the distance to the selected
node allowing visual control of which subtree of the graph will remain dominant
consumer of CPU time until the node in question will be executed.

In the toolbar, the application may be steered. By default, after attaching, the
runtime is stopped from executing further tasks. The user may single-step through
the application, receiving control over the SMPSs runtime after each schedule.
Furthermore one may execute ten tasks at a time (or a setable number of steps)
and regain control afterwards with a possibly drastically changed graph (due to
new, added nodes, or lots of dependencies being cleared and many more tasks in
runnable state). A nice feature to interact with the application developer is the export
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functionality, allowing single screenshots of the current graph and even movie
generation of evolving task graphs.

The Ayudame Debug output in the lower right corner shows all the events emitted
by the Ayudame library in human readable text, allowing easy searching for task
numbers if executing multiple tasks at a time.

Most importantly a debugger will allow steering the application. Since Temanejo
is not a full-fledged low-level debugger, the underlying system-debugger, here gdb,
is being integrated. One may at any time attach to a task with the gdb, opening
another terminal and from there use the usual techniques to query memory’s state,
reset variables and single-step through the binary. Temanejo helps in that regard,
that the actual function and not the wrapper function is being attached to.

11.4 Related Work

Debugging multiple threads with it’s many types of possible faults allows for a
multitude of solutions. The standard tools required for debugging are traditional
debuggers such as the GNU debugger (gdb); it allows switching between multiple
threads or issuing specific commands using the thread keyword. However, to gdb
the tasklets being created are functions of different name (including line number
information).

Temanejo aims at a higher level visualizing and steering the task-graph’s
execution. Still, it relys on the underlying debugger, like gdb to attach to the
generated functions to debug the actual source code.

An important class of faults are unprotected access to memory shared between
threads. As of now, this class of bugs may not be found with our tool. However, using
techniques similar to the valgrind- and pin-based tools developed in [3], accesses
to global memory areas registered prior to starting the tasks could be tracked and
checked for unordered access. There has been recent work by BSC to detect memory
overrun and access errors of parameters passed to tasklets using the valgrind-
tool.

11.5 Outlook

The tool has proven useful to programmers of StarSs-parallelized applications. We
aim to extend the tool in other scenarios, such as debugging OpenMP tasking
constructs, even though much of the visual capabilities for dependency tracking
is lost. There are endeavours to abstract the Ayudame library in order to fit into a
Pthread-based custom runtime system in order to visualize a large-scale numerical
simulation. Moreover we hope to make good use of extended three-dimensional
visualization, where one attribute leads to different panes in the third dimension,
allowing spatial separation for better control of large graphs.
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Chapter 12
HiFlow3: A Hardware-Aware Parallel Finite
Element Package
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Abstract The goal of this paper is to describe the hardware-aware parallel
C++ finite element package HiFlow3. HiFlow3 aims at providing a powerful
platform for simulating processes modelled by partial differential equations. Our
vision is to solve boundary value problems in an appropriate way by coupling
numerical simulations with modern software design and state-of-the-art hardware
technologies. The main functionalities for mapping the mathematical model into
parallel software are implemented in the three core modules Mesh, DoF/FEM and
Linear Algebra (LA). Parallelism is realized on two levels. The modules provide
efficient MPI-based distributed data structures to achieve performance on large
HPC systems but also on stand-alone workstations. Additionally, the hardware-
aware cross-platform approach in the LA module accelerates the solution process
by exploiting the computing power from emerging technologies like multi-core
CPUs and GPUs. In this context performance evaluation on different hardware-
architectures will be demonstrated.

Keywords Parallel finite element software • High performance computing •
Numerical simulation • Hardware-aware computing • GPGPU

12.1 Introduction

Scientific computing and numerical simulations are very important tasks in research,
engineering and development. Mathematics combined with new software design
dedicated to state-of-the-art hardware technologies result in high complexity but
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also break new grounds in the area of scientific computing. HiFlow3 [4] is a parallel
hardware-aware finite element software with the goal to provide powerful tools
for the solution of complex problems arising in the area of medical engineering,
meteorology and energy research. A team at the Engineering Mathematics and
Computing Lab (EMCL) at the Karlsruhe Institute of Technology (KIT) is actively
developing the software package. The goal of this paper is to present the concept
of the software and the three core modules. Benchmark results for an advection-
diffusion example comparing different platforms and preconditioners illustrate its
usability and flexibility.

The paper is structured as follows. Chapter 2 outlines the design of HiFlow3.
The core modules are described in more details in Chaps. 3–5. Finally, benchmarks
results for the advection-diffusion example are shown in Chap. 6.

12.2 Motivation, Concepts and Structure of HiFlow3

12.2.1 Fields of Application

A typical application in the research area of medical engineering incorporating
the full complexity of physical and mathematical modeling is the United Airways
project [2]. Within an interdisciplinary framework its objective is the simulation of
the full human respiratory tract including complex and time-dependent geometries
with different length scales, turbulences, fluid-structure interaction (e.g. fine hairs
and mucus), and effects due to temperature and moisture variations. Due to the
complex interaction of the different physical effects it is a great challenge to define
robust numerical methods giving accurate simulation results.

12.2.2 Flexibility

The conceptual goal of HiFlow3 is to be a flexible multi-purpose software package.
Its modular, transparent and documented structure tries to enable the user to set up
a wide range of scenarios with reasonable effort. The core of HiFlow3 is divided
into three main modules: Mesh, DoF/FEM and LA; see Fig. 12.1. These three core
modules are essential for the solution procedure which is based on the finite element
method (FEM) for partial differential equations (PDEs). They are supplemented by
other building blocks consisting of e.g. routines for numerical integration, matrix
assembly, inclusion of boundary conditions, setting up nonlinear and linear solvers,
providing data output for visualization of solutions and error estimators.
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Fig. 12.1 Structure of the
HiFlow3 core divided into
modules and methods

12.2.3 Performance, Parallelism, Emerging Technologies

The huge demand on fast and accurate simulation results for large-scale problems
poses considerable challenges on the implementation on modern hardware. Super-
computers and emerging parallel hardware like GPUs offer impressive computing
power in the range of Teraflop/s for desktop supercomputing up to Petaflop/s for
cutting edge HPC machines. Therefore, an important goal associated with the
design of HiFlow3 is the full utilization of the available resources on heterogeneous
platforms ranging from large HPC systems to a stand-alone workstation or a
coprocessor-accelerated machine. To achieve this goal each core module is in itself
parallel. An MPI-layer [12] realizes the communication between different nodes and
processors. Furthermore, a hardware-aware computing concept, see Sect. 12.2.4,
is implemented on the linear algebra level. This concept and all modules are laid
out with respect to scalability in a generic sense. The design of HiFlow3 aims
at obtaining high standards with respect to the efficiency without sacrificing the
flexibility of the software.

12.2.4 Hardware-Aware Computing

Hardware-aware computing is a multi-disciplinary approach to identify the best
combination of applications, physical models, numerical schemes, parallel algo-
rithms, and platform-specific implementations that gives the fastest and most
accurate results on a particular platform [3]. Since hardware design and mathe-
matical cognition give rise to different implementation concepts, hardware-aware
computing also means to find a balance between the associated opponent guiding
lines while keeping the best mathematical quality. All solutions need to be designed
in a reliable, robust and future-proof context. The goal is not to design isolated
solutions for particular configurations but to develop methodologies and concepts
that preferably apply to a wide range of problem classes and architectures or that
can be easily extended or adapted. The HiFlow3 project realizes related concepts in
the framework of the local multi-platform LAtoolbox [5, 6] within the LA module.
Its use of specific implementations of basic routines like local matrix-vector and
advanced preconditioning techniques is aimed at exploiting the available computing
power of emerging technologies like multi-core CPUs, graphics processing units
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(GPUs) and multi-GPUs. The structure provided by the LA module allows to build
solvers without having detailed information on the underlying platform.

12.3 Mesh Module

The Mesh module provides a set of classes which can be used to represent the
computational mesh in a finite element problem. In this section, the main ideas and
features of the module are summarized. A more detailed description can be found
in [13].

A mesh is a partitioning of a domain into a set of non-overlapping cells. Sup-
ported cell types are triangles and quadrilaterals in 2D, and tetrahedra and hexahedra
in 3D. The description of the supported shapes are encapsulated in a class hierarchy,
whereas the rest of the code is independent of the type and dimension of the cells.

The module can also represent lower-dimensional entities, such as edges and
faces. The computation and storage of incidence relations between entities, which
together make up the topology of the mesh, is performed in a way that closely
follows the approach described in [11].

The geometry of the mesh is defined by assigning coordinates to each vertex, but
the extension to more complete representations that could handle cells with curved
faces is also possible.

The functionality provided through the Mesh module can be divided into three
categories: queries, modifications and communication. The first category includes
functions to iterate over the various entities and the topological incidence relations
between them; as well as access to the geometrical information and other attributes
associated with the entities such as material numbers. The modifying functionality
includes creation, refinement and coarsening. A mesh can be created by specifying
it entirely in code, or by reading a file. The AVS UCD [1] and VTK [15] formats
are supported. For efficient I/O of large meshes, the module supports reading and
writing of parallel VTK files. Refinement and coarsening does not have to be
uniform, and there is functionality for dealing with the hanging nodes that arise
as a result of local refinement.

For large-scale computations, the mesh might not fit into the memory of each
process. For this reason, the HiFlow3 Mesh module makes it possible to work with
meshes that are distributed across a cluster of computers, as shown in Fig. 12.2.

Support for distributed meshes is provided by the functions in the communication
layer. A distributed mesh is represented by a set of local mesh objects, one on
each process. The communication functionality is external to these objects, which
themselves are not aware that they are part of a larger, global mesh. This has the
advantage that calls to query and modification functions are local to each process,
and do not require communication, which facilitates their implementation and use.

The information about how the parts of the global mesh are connected is provided
through a data structure that keeps track of which vertices are shared with other
processes, and maps vertex identities between processes. With this structure on
hand, it is also possible to identify shared entities of higher dimension.
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Fig. 12.2 A mesh of a
human nose distributed in 16
stripes

Fig. 12.3 A part of a mesh
with the ghost layer

To facilitate the exchange of specific information required for finite element
assembly, the Mesh module can also compute and communicate a layer of over-
lapping “ghost cells”, which can be appended to each local mesh (see Fig. 12.3).

Different strategies can be used when deciding how to divide a mesh between
the processes. Currently, the best option is to link via a provided interface to the
popular graph partitioning library METIS [10].This enables the computation of a
well-balanced partitioning of the mesh over the available processes.

12.4 DoF/FEM Module

In the context of FEM solutions are expressed in terms of linear combinations
of some chosen shape functions defined on mesh cells. The degrees of freedom
(DoF), which can easily count up to millions of unknowns, represent the number of
parameters that define such a discrete function. To this end, local basis functions
are defined on reference cells which are mapped into the physical space using
transformations, see Fig. 12.4.

12.4.1 Submodules

The FEM submodule is dedicated to represent a finite element ansatz in a generic
way to ensure extensibility at low memory costs, but still to enable high perfor-
mance assembly. The basic concept lies in defining three major classes FEType,
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Fig. 12.4 Transformations ˚ and � map DoF points of biliinear and biquadratic finite element
ansatz from reference cells to cells A and B of the mesh, respectively

Fig. 12.5 Overview of classes for description of finite element functions

FEManager and FEInstance, see Fig. 12.5. FEType is an interface class that
represents a specific continuous or discontinuous finite element ansatz on a defined
reference cell by utilizing the design-pattern singleton stored within FEInstance.
For establishing the mapping between a tuple of a mesh cell and a variable to their
corresponding singleton, only references are stored. This mapping and all interfaces
to out-of-module classes are managed by the FEManager.

Many practical relevant problems require a great number of DoFs (up to
millions). These DoFs need to be numbered and interpolated in a unique way
depending on arbitrary combinations of finite element ansatz on neighboring cells.
One major task of the DoF submodule is to create a mapping between a local DoF
Id and a global (mesh wide) DoF Id given by the local numbering strategy in the
FEM submodule. The second major task is to interpolate those DoFs, which are
restricted due to conditions provided by FEM and cannot be identified. The DoFs in
any cell of the considered mesh are determined by a transformation [14] that maps
the reference cell to the chosen physical cell and thereby defines the location of the
DoF points (see Fig. 12.4).
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12.4.2 Partitioning

In a domain decomposition setup, i.e. several processes are used for the solution
of one single domain, each part of the domain (subdomain) is dedicated to one
process using MPI. Again a unique DoF numeration of all DoFs in the global
domain must be determined. For good scaling properties, a parallel and distributed
handling of the DoFs is needed, i.e. each process manages the DoFs that are
connected to the cells lying in its domain and the class DofPartition is
used to create the correspondence with other subdomains from other processors
via MPI communication. Each subdomain has information of the neighboring
domains by the ghost cells which is a read-only copy of the neighboring cells
(one layer neighborship of the processor’s subdomain). To create a DoF numbering
with (domain-) global Ids, each process determines in a first step a consecutive
numbering of the DoFs within its subdomain, whereas also the ghost layer is treated
as if it would belong to the subdomain. The antiquated information stored in this
layer must be updated via communication. Hereby, a decision needs to be made,
whether a DoF lying on the skeleton of the domain belongs to a subdomain or not,
i.e. this DoF is lying on two subdomains, which are sharing it. The implemented
procedure states, that the subdomain represented by a unique lower subdomain Id
will own the DoF.

12.5 Linear Algebra Module

The LA module handles the basic linear algebra operations and offers linear solvers
and preconditioners. It is implemented as a two-level library. The upper (or global)
level is an MPI-layer which is responsible for the distribution of data among
the nodes and performs cross-node computations, e.g. scalar products and sparse
matrix-vector multiplications. The lower (or local) level takes care of the on-node
routines offering an interface independent of the given platform.

The MPI-layer of the LA module takes care of communication and computations
in the context of FEM. Given a partitioning of the underlying domain (handed over
by the mesh module, see Sect. 12.3) the DoF module (see Sect. 12.4) distributes
the DoFs according to the chosen finite element approach. This results in a row-
wise distribution of the assembled matrices and vectors. Each local sub-matrix is
divided into two blocks: a diagonal block representing all couplings and interactions
within the subdomain, and an off-diagonal block representing the couplings across
subdomain interfaces.

The highly optimized BLAS 1 and 2 routines are implemented in the local
multi-platform linear algebra toolbox (lmpLAtoolbox) which is acting on each
of the subdomains. By using unified interfaces as an abstraction of the hardware
we provide easy-to-use access to the underlying heterogeneous platforms. In this
respect the application developer can utilize the LA module without any knowledge
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Fig. 12.6 Structure of the lmpLAtoolbox and LA module for distributed computation and node-
level computation across several devices in a homogeneous and heterogeneous environment

of the hardware and the system configuration. The final decision on which specific
platform the application will be executed can be taken at run time. Currently, the
lmpLAtoolbox support sequential, OpenMP parallel and Intel MKL CPU versions,
NVIDIA GPU version and OpenCL back-end which provides access to ATI and
NVIDIA GPUs. Due to the flexible design of the library we can add a new back-end
and still use the same solvers without modifying them.

The layered structure and organization of both the LA module and the lmpLA-
toolbox is depicted in Fig. 12.6. It shows a high-level view of distributed communi-
cation and computation across nodes and the node-level computation across several
devices in a heterogeneous environment. Details on software description and on the
design, as well as performance benchmarks on several platforms can be found in
[5, 6, 9].

Due to the modular setup and the consistent structure, the lmpLAtoolbox can
be used as a standalone library independently of HiFlow3. It offers a complete
and unified interface for many hardware platforms. Hence, the LA module not
only offers fined-grained parallelism but also flexible utilization and cross-platform
portability.

12.5.1 Linear Solvers and Preconditioners

The LA module offers a high-level of abstraction by providing unified interfaces for
basic matrix and vector routines. Platform-specific implementations are transparent
to the user. Thus, linear and non-linear solvers can be implemented easily and
generically without any information on the underlying hardware platform while
keeping platform-adapted and tuned code. The default solvers in HiFlow3 are
preconditioned and non-preconditioned Krylov subspace solvers like – CG and
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GMRES. For the GPU implementation of the CG solver we offload all of the vector
and matrix operations on the device [5, 6], while for the GMRES solver we use
hybrid-parallel approach where the basic vector and matrix routine are offloaded
but the Krylov subspaces in still build on the CPU [9].

On the node level, we provide very fined-grained parallel preconditioners based
on additive, multiplicative (incomplete LU-factorization) and approximate inverse
techniques. In order to obtain high degree of parallelism we use multi-coloring
decomposition of the matrix for the additive preconditioner and for the ILU(0). For
the incomplete factorization with fill-ins we provide new technique for controlling
the additional fill-in entries – power(q)-pattern method [8]. By using this algorithm
we can execute in parallel the forward and backward sweeps of the LU matrix. An
example for a Poisson problem solved with matrix-based multigrid method and with
preconditioned CG solver based on HiFlow3 are reported in [7].

12.6 Example: Advection-Diffussion Equation

The goal of this section is to show the simulation workflow in HiFlow3 and
benchmark results for different platforms and preconditioning techniques. As an
example the well known advection-diffusion equation is chosen. We aim to find
u 2 H 1

0 .˝/ WD fv 2 H 1.˝/ W vj@˝ D 0g such that

Algorithm 3 Overall structure of the advection diffusion simulation
Read mesh, refine and distribute to all processors (Mesh).
Number the DoFs using a defined finite element space (DoF/FEM).
Assemble the system matrix and right-hand-side vector (LA).
Incorporate Dirichlet boundary conditions.
Prepare preconditioners.
Solve system by (preconditioned) linear solver.
Visualize solution.

�.ru; r�/ C .ˇ � ru; �/ D .f; �/ 8� 2 H 1
0 .˝/; (12.1)

where .�; �/ denotes the L2.˝/ scalar product, ˝ 2 Rd .d D 2; 3/ is a Lipschitz
domain and f 2 L2.˝/ given. � 2 R represents the diffusion coefficient and
the vector ˇ 2 Rd the direction of transport and information flow. Numerical
oscillations may occur for small diffusion coefficients, i.e. kˇk2 � �. In order to
prevent this, � and ˇ are chosen depending on the characteristic mesh size h such
that for the Peclet number P e (see [9] and references therein) holds:

P e D hkˇk2

�
< 1:
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Fig. 12.7 Speedup comparing different platforms (eight cores CPU, 1�GPU, 2�GPU) w.r.t. to
single core CPU (left) and speedup of different preconditioners (Multi-colored (symmetric) Gauss-
Seidel and ILU(0), and power(q)-pattern ILU(1; 2)) on the four different platforms w.r.t. Jacobi
preconditioner (right)

For the finite element solution procedure the following steps have to be per-
formed to map the weak formulation of advection diffusion example (12.1) to
HiFlow3, see Algorithm 3. In a preprocessing step the domain of interest is
discretized by means of a finite element triangulation. The spatial grid is read in,
adjusted by global refinement, partitioned using the external library METIS [10] and
distributed via MPI. Then, a problem-adapted finite element space with appropriate
ansatz functions is chosen. Once these two information are provided a unique global
numbering of the DoFs is determined. In the case of distributed memory platforms
the DoF-partitioner is used to create the global numbering throughout the whole
computational domain by only using its local information and MPI communication
across the nodes. In the next step the linear non-symmetric system matrix and the
vector for the right hand side can be assembled by local integration over all elements
within the triangulation. Data structures for matrices and vectors are provided by
the LA module. An adequate linear solver for non-symmetric matrices is combined
with different preconditioners to solve the linear system. Finally, output in either
sequential or parallel format is provided for the visualization.

12.6.1 Numerical Results and Benchmarks

The numerical experiments on multicore-CPUs and multi-GPU configurations are
performed on a dual-socket Intel Xeon (E5450) quad-core platform equipped with
an NVIDIA Tesla S1070 system providing two GPUs per socket. The memory
capacity of the host CPU system is 16 GB and 4 � 4 GB for the GPUs. We are
only using two GPUs associated with a single socket. All simulations are performed
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Table 12.1 Number of iterations and solving time of the preconditioned GMRES solver. With (*)
we denote when the number of iterations exceeds 100,000 and in this case we stop the solver

No
precond Jacobi GS SGS ILU(0) ILU(1, 2)

Sequential # its * 40,103 10,035 6,122 2,185 792
time [s] 28179.3 11722.7 4132.7 3097.6 1105.8 686.1

OpenMP #its * 41,871 10,850 6,238 2,185 792
time 7301.0 3364.1 1381.1 970.8 333.8 184.7

GPU #its 84,800 44,106 10,642 6,050 2,243 792
time [s] 3747.8 1982.2 550.7 369.9 136.1 73.2

2 GPUs #its 87,503 41,618 12,176 10,024 2,571 1,031
time [s] 2889.2 1057.5 356.5 344.0 87.1 53.2

in double precision. For the numerical experiments we consider an exact solution
given in 2 dimensions by

u.x; y/ D x
eˇ1x � eˇ1

eˇ1
sin.�y/; .x; y/ 2 ˝ D .0; 1/ � .0; 1/:

The unit square is discretized by quadrilaterals and globally refined such that
h D 1

29 . Q2 Lagrangian finite elements ansatz function are chosen, which leads to
1; 0252 D 1; 050; 625DoFs. The non-symmetric system matrix has 16�106 non-zero
entries. We use the iterative (preconditioned) GMRES method to solve the problem
[10]. The stop criteria for the solver is set to a relative tolerance of 10�6, which
results for the chosen benchmarks settings in an absolute tolerance about 10�9.

The number of iterations and the performance times for the sequential, OpenMP,
one and two GPUs are shown of Table 12.1. Clearly, the problem is very ill
conditioned and the system is hard to solve without preconditioning. When solving
this system on different parallel architectures due to the parallel reduction and the
different distribution of the floating-point errors, we obtain different number of
iterations. This may be avoided by applying a ‘good’ preconditioner, leading to a
well-conditioned system. The corresponding speedup factors for parallel execution
and for different preconditioners are presented on Fig. 12.7. The speedup depends
on the utilization of the available bandwidth of the platforms – with one core we
can utilize one fourth of the bandwidth and therefore the OpenMP implementation
is three to four times faster then the sequential version on the CPU. The GPU
implementation however is about 9–13 times faster. The speedup profile of the
preconditioners is the same for the sequential, OpenMP and GPU version – this
is an important characteristic predominant with the high degree of parallelism of
our preconditioners.

For the two GPUs case we apply the preconditioners in the block-Jacobi fashion
with two blocks for each GPU. Doing so we decrease the coupling of the precon-
dition matrix, thereby increasing the number of iterations. Even though with two
GPUs we may utilize twice the bandwidth, this limits the speedup to less than two.
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12.7 Conclusion

The creation of a multi-purpose finite element software package that is portable
across a wide variety of platforms including emerging technologies like hybrid CPU
and GPU platforms is a challenging and multi-facetted task. The modules Mesh,
DoF/FEM and Linear Algebra complemented by auxiliary routines and interfaces
provide a broad suite of building blocks for development of modern numerical
solvers and application scenarios. The user is freed from a detailed knowledge of
the hardware – one only has to familiarize with the provided interfaces and needs to
customize the available modules in order to adapt HiFlow3 to his domain-specific
problem settings.

With hardware-aware solvers HiFlow3 allows to compute the linear system
of differential equations on different back-ends with single source code for all
platforms. Besides the solvers, HiFlow3 provides very fined-grain parallel precon-
ditioners for multi- and many-core platforms and to our best knowledge is the first
software package providing incomplete LU factorization preconditioners on the
GPU devices.
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José Gracia, 131

Georg Hager, 27
Tobias Hahn, 139

Andreas Helfrich-Schkarbanenko, 139
Vincent Heuveline, 139
Kevin Huck, 105

Katherine Isaacs, 1

Guido Juckeland, 93

Rainer Keller, 63, 131
Eva Ketelaer, 139
Andreas Knüpfer, 79
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