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Abstract. In this paper, we introduce justification counterparts of
distributed knowledge logics. Our justification logics include explicit
knowledge operators of the form [[t]]iF and [[t]]DF , which are interpreted
respectively as “t is a justification that agent i accepts for F”, and “t
is a justification that all agents implicitly accept for F”. We present
Kripke style models and prove the completeness theorem. Finally, we
give a semantical proof of the realization theorem.

1 Introduction

Justification logics (cf. [2]) are a new generation of epistemic logics in which the
knowledge operators KiF (agent i knows F ) are replaced with evidence-based
knowledge operators [[t]]iF (agent i accepts t as an evidence for F ), where t is
a justification term. The first justification logic, Logic of Proofs LP, was intro-
duced by Artemov in [1] as an one-agent justification counterpart of the epis-
temic modal logic S4. The exact correspondence between LP and S4 is given by
the Realization Theorem: all occurrences of knowledge operator K in a theorem
of S4 can be replaced by suitable terms to obtain a theorem of LP, and vise
versa. Artemov used a cut-free sequent calculus of S4 to give a syntactic proof
of the realization theorem ([1]). A semantical proof of the realization theorem is
presented by Fitting in [9].

Logic of proofs is a justification logic with a new operator [[·]] for one agent.
In [15] Yavorskaya (Sidon) studied two-agent justification logics that have in-
teractions, e.g., evidences of one agent can be verified by the other agent, or
evidences of one agent can be converted to evidences of the other agent. Renne
introduced dynamic epistemic logics with justification, systems for multi-agent
communication (see e.g. [13, 14]). Bucheli, Kuznets and Studer in [5] suggested
an explicit evidence system with common knowledge, an attempt to find a justi-
fication counterpart of epistemic logics with common knowledge (although prov-
ing the realization theorem for this system is still an open problem). Dynamic
justification logic of public announcements also studied in [4, 6]. None of the
aforementioned papers deal with the notion of distributed knowledge.

In this paper, we study multi-agent evidence-based systems in a distributed
environment. Distributed knowledge is the knowledge that is implicitly available
in a group, and can be discovered through communication (cf. [8, 12]). We in-
troduce an evidence-based knowledge operator for distributed knowledge [[t]]DF ,

D. Lassiter and M. Slavkovik (Eds.): ESSLLI Student Sessions, LNCS 7415, pp. 91–108, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



92 M. Ghari

with the intuitive meaning “t is an evidence that all agents implicitly accept for
F”. In other words, [[t]]DF states that t is an evidence (or justification) that
could be obtained for F if all agents pooled their knowledge (or justifications)
together. To capture this notion, we present distributed knowledge logics with
justifications JKD

n , JTD
n , JS4D

n , and JS5D
n . We establish basic properties of jus-

tification logics for our logics, and give two examples to show how these logics
can be used to track evidences of distributed knowledge (more information on
tracking evidences and its applications can be found in [3, 16, 17]).

We also present possible world semantics for these logics. In the present paper,
we consider [[·]]D as an agent, and give pseudo-Fitting models with additional
accessibility relation RD and evidence function ED for distributed knowledge.

Finally, by proving the Realization Theorem, we show that our logics are the
justification counterparts of the known distributed knowledge logics KD

n , TD
n ,

S4D
n , and S5D

n . There are several methods for proving the realization theorem,
see e.g. [1, 9, 11]. We employ the technique of Fitting ([9]) to present a semantical
proof of the realization theorem.1

2 Distributed Knowledge Logics

In this paper, we fix a set of n agents G = {1, 2, . . . , n}. The language
of distributed knowledge logics is obtained by adding the modal operators
K1, . . . ,Kn,D to propositional logic. Hence, if A is a formula then KiA, for
i = 1, . . . , n, and DA are also formulas. The intended meaning of KiA is “agent
i knows A”, and of DA is “A is distributed knowledge”. Now, we recall the well
known distributed knowledge logics (for more expositions see [8, 12]).

Definition 1. The axioms of KD
n are (where i = 1, . . . , n):

Taut. Finite set of axioms for propositional logic,
K. Ki(A→ B) → (KiA→ KiB),
KD. D(A→ B) → (DA→ DB),
KiD. KiA→ DA.
The rules of inference are:

Modus Ponens: from A and A→ B, infer B,
Necessitation: from A infer KiA.

If the number of agents n = 1, then we add the additional axiom:

DA→ K1A.

Extensions of KD
n obtain by adding some axioms as follows:

• TD
n = KD

n + (KiA→ A) + (DA→ A),

• S4D
n = TD

n + (KiA→ KiKiA) + (DA→ DDA),
• S5D

n = S4D
n + (¬KiA→ Ki¬KiA) + (¬DA→ D¬DA).

1 Since it seems the method used in the proof of the realization theorem in [10] is not
correct, we use a different method in Section 5 to prove the realization theorem.
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Note that the axioms KiA → A in TD
n are redundant, since they follow from

axioms KiA→ DA and DA→ A.
In what follows, LD is any of the logics KD

n , TD
n , S4D

n , or S5D
n . Next we recall

Kripke models for the logics LD.

Definition 2. A Kripke model M for KD
n is a tuple M = (W ,R1, . . . ,Rn,�)

where W is a non-empty set of worlds (or states), each Ri is a binary accessibility
relation between worlds, and the forcing relation � is a relation between pairs
(M, w) and propositional letters, that can be extended to all formulas as follows:

1. � respects classical Boolean connectives,
2. (M, w) � KiA iff for every v ∈ W with wRiv, (M, v) � A,
3. (M, w) � DA iff for every v ∈ W with wRDv, (M, v) � A, where RD =

∩n
i=1Ri.

For Kripke models of TD
n , S4D

n and S5D
n each Ri should be reflexive, reflexive

and transitive and an equivalence relation, respectively.

Theorem 1. ([7]) KD
n , TD

n , S4D
n and S5D

n are sound and complete with respect
to their models.

3 Distributed Knowledge Logics with Justifications

In this section, we introduce distributed knowledge logics with justifications
JKD

n , JTD
n , JS4D

n , and JS5D
n . In the rest of the paper, we extend our set of

agents by the distributed knowledge operator D, and denote by ∗ one of the
agents in G or D (i.e. ∗ ∈ {1, . . . , n,D}). Similar to the language used in [5] and
[15], we define a set of terms as justifications for each ∗ ∈ {1, . . . , n,D} . We
start by defining the set of justification variables and constants:

V ar∗ = {x∗1, x∗2, . . .} Consi = {ci1, ci2, . . .}.
Now define the set of admissible terms Tm∗ (for each ∗) as follows
1. V ar∗ ⊆ Tm∗,
2. Consi ⊆ Tmi,
3. if s, t ∈ Tm∗, then s+∗ t, s ·∗ t ∈ Tm∗,

for JS4D
n and JS5D

n : if t ∈ Tm∗, then !∗ t ∈ Tm∗,
for JS5D

n : if t ∈ Tm∗, then ?∗t ∈ Tm∗,
4. Tmi ⊆ TmD, for each i ∈ G.

Indeed, each distributed justification logic includes those clauses in the construc-
tion of terms that contains the corresponding operator in its language. Note that
by clause 4 there is no need to define variables V arD for operator D. However,
since using variables in V arD simplifies some arguments (see for instance Lemma
3) we keep it. In addition, as we will see from the formulation of our logics (see
Definition 3), there is no need to define a set of justification constants ConsD

for D.
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Another different alternative is to define only one set of terms Tm that is ad-
missible for all agents as well as for distributed knowledge operator (see e.g. [13,
14], in which Renne considers a set of terms for all agents’ evidences). Neverthe-
less, using labels for justification variables and constants for each agent enables
us to tracking evidences (see Example 1, and the discussion after it).

Formulas of the distributed knowledge logics with justifications are
constructed as follows:

F := P |⊥ |F → F | [[ t]]∗F,
where P is a propositional variable and t ∈ Tm∗. The intended meaning of
[[ t]]iF is “t is a justification that agent i accepts for F”, and of [[t]]DF is “t is
a justification that all agents implicitly accept for F”. We begin by defining the
language and axioms of the basic distributed knowledge logic with justifications.

Definition 3. The language of JKD
n contains only the operators ·∗ and +∗. The

axioms of JKD
n are:

A0. Finite set of axioms for propositional logic,
A1. [[s]]∗A ∨ [[ t]]∗A→ [[s+∗ t]]∗A,
A2. [[s]]∗(A→ B) → ([[ t]]∗A→ [[s ·∗ t]]∗B),
A3. [[ t]]iA→ [[ t]]DA, where t ∈ Tmi.

The rules of inference are:

R1. Modus Ponens: from A and A→ B, infer B,
R2. Iterated Axiom Necessitation: 	 [[cimjm ]]im . . . [[ci1j1 ]]i1A, where A is an axiom,

cikjl ’s are justification constants and i1, . . . , im are in G.

If the number of agents n = 1, then we add the additional axiom:

A4. [[ t]]DA→ [[ t]]1A, where t ∈ Tm1.

The justification system JTD
n is obtained from JKD

n by adding the following
axioms:

A5. [[ t]]∗A→ A.

The justification system JS4D
n is obtained from JTD

n by first extending the lan-
guage with operators !∗ and then adding the following axioms:

A6. [[ t]]∗A→ [[ !∗ t]]∗[[ t]]∗A.

and replacing the rule R2 by the following simple one:

R3. Axiom Necessitation: 	 [[ ci]]iA, where A is an axiom, ci is a justification
constant and i ∈ G.

The justification system JS5D
n is obtained from JS4D

n by first extending the
language with operators ?∗ and then adding the following axioms:

A7. ¬[[ t]]∗A→ [[ ?∗t]]∗¬[[ t]]∗A.
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Notice that, in the axioms A1, A2, A6 and A7 all occurrences of ∗ are the same
agent. Moreover, axioms [[t]]iA → A in JTD

n are redundant, since they can be
obtained from axioms [[ t]]iA→ [[ t]]DA and [[ t]]DA→ A.

By JLD we denote one of the logics JKD
n , JTD

n , JS4D
n , and JS5D

n . Following
[15], we define constant specifications as follows:

Definition 4. A Constant Specification CS for JKD
n (or JTD

n ) is a set of for-
mulas of the form [[cimjm ]]im . . . [[ci1j1 ]]i1A, where A is an axiom of JKD

n (or JTD
n ),

ciljl ’s are justification constants and i1, . . . , im are in G, and moreover it is down-
ward closed:

if [[ cimjm ]]im [[ c
im−1

jm−1
]]im−1 . . . [[ c

i1
j1
]]i1A ∈ CS, then [[ cim−1

jm−1
]]im−1 . . . [[ c

i1
j1
]]i1A ∈ CS.

A constant specification CS is axiomatically appropriate if for each axiom A
and i ∈ G there is a constant ci ∈ Tmi such that [[ ci]]iA ∈ CS and also CS is
upward closed:

if [[ cimjm ]]im . . . [[ ci1j1 ]]i1A ∈ CS, then [[ cim+1

jm+1
]]im+1 [[ c

im
jm

]]im . . . [[ ci1j1 ]]i1A ∈ CS,

for some im+1 ∈ G and constant c
im+1

jm+1
∈ Tmm+1.

Definition 5. A Constant Specification CS for JS4D
n (or JS5D

n ) is a set of
formulas of the form [[ ci]]iA, such that ci is a justification constant in Consi,
A is an axiom of JS4D

n (or JS5D
n ) and i ∈ G. A constant specification CS is

axiomatically appropriate if for each axiom A and i ∈ G there is a constant
ci ∈ Tmi such that
[[ ci]]iA ∈ CS.
Let JLD(CS) be the fragment of JLD where the (Iterated) Axiom Necessitation
rule only produces formulas from the given CS. Thus JLD(∅) is the fragment
of JLD without (Iterated) Axiom Necessitation rule. By JLD 	 F we mean
JLD(CS) 	 F for some constant specification CS.
Definition 6. A substitution σ is a mapping from

⋃
∗ V ar

∗ to
⋃

∗ Tm∗ such
that each justification variable in V ar∗ maps to a term in Tm∗. The domain of
σ is dom(σ) := {x | σ(x) �= x}. The result of substitution σ on the term t and
formula A is denoted by tσ and Aσ respectively.

Distributed knowledge logics with justifications JLD enjoy the deduction theo-
rem and substitution lemma (the proofs are standard and are omitted here).

Lemma 1. Let CS be a constant specification.

1. Deduction Theorem for JLD(CS): Γ,A 	 B if and only if Γ 	 A→ B.
2. Substitution Lemma: (i) If Γ 	 A in JLD(CS), then Γσ 	 Aσ in JLD(CSσ).

(ii) If Γ 	 A in JLD(CS), then Γ (F/P ) 	 A(F/P ) in JLD(CS ′), where
CS ′ = CS(F/P ) and A(F/P ) denotes the result of simultaneously replacing
all occurrences of propositional variable P by formula F in A.
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Distributed knowledge logics with justifications can internalize their own proofs.
This is one of the fundamental properties of justification logics.

Lemma 2 (Internalization Lemma). For each ∗ ∈ {1, . . . , n,D}, the follow-
ing statements hold:

1. If JLD(CS) 	 F , then JLD(CS ′) 	 [[p]]∗F , for some term p in Tm∗ and
some CS ′ ⊇ CS.

2. Suppose CS is axiomatically appropriate. If JLD(CS) 	 F , then JLD(CS) 	
[[p]]∗F , for some term p in Tm∗.

Proof. By induction on the derivation of F . If F is an axiom, then using (It-
erated) Axiom Necessitation rule [[ ci]]iF is derivable in JLD(CS ′) for some
ci ∈ Consti and CS ′ = CS ∪ {[[ ci]]iF}. If CS is axiomatically appropriate then
there is a constant ci ∈ Tmi such that [[ ci]]iF ∈ CS, for each i ∈ G. Hence,
[[ci]]iF is derivable in JLD

n (CS), for each i ∈ G. Moreover, using axiom instance
[[ci]]iF → [[ci]]DF , we can derive [[ci]]DF . If F is obtained by Modus Ponens from
G and G→ F , then by the induction hypothesis, there are terms t, s ∈ Tm∗ such
that [[t]]∗G and [[s]]∗(G→ F ) are provable. By axiom A2, we derive [[s ·∗ t]]∗F .

If F = [[ cimjm ]]im . . . [[ ci1j1 ]]i1A ∈ CS, is obtained by the Iterated Ax-

iom Necessitation rule IAN in JKD
n or JTD

n , then using IAN we obtain
[[ci]]i[[c

im
jm

]]im . . . [[ci1j1 ]]i1A. If CS is axiomatically appropriate then it is upward

closed, and therefore there is a constant ci ∈ Tmi such that [[ ci]]i[[ c
im
jm

]]im . . .

[[ ci1j1 ]]i1A is in CS, and hence is derivable in JKD
n (CS) or JTD

n (CS). Moreover,

using axiom A3, we can derive [[ ci]]D[[ cimjm ]]im . . . [[ ci1j1 ]]i1A.

If F = [[ci]]iA ∈ CS is obtained by the Axiom Necessitation rule AN in JS4D
n

or JS5D
n , then use axiom A6 to derive [[ !i c

i]]iA in JLD
n (CS). Moreover, using

axiom A3, we can derive [[ !i c
i]]DA. ��

Lemma 3 (Lifting Lemma). For each ∗ ∈ {1, . . . , n,D}, the following state-
ments are provable:

1. If [[ t1]]∗A1, . . . , [[ tm]]∗Am, B1, . . . , Bl 	 F in JS4D
n (CS), then

[[ t1]]∗A1, . . . , [[ tm]]∗Am, [[x
∗
1]]∗B1, . . . , [[x

∗
l ]]∗Bl 	 [[p(�t, �x)]]∗F (†)

in JS4D
n (CS ′), for some justification variables x∗i (in V ar∗), term p(�t, �x) in

Tm∗ and CS ′ ⊇ CS (all ∗’s in (†) stand for the same agent).
2. In part (1), if CS is axiomatically appropriate, then (†) is provable in

JS4D
n (CS).

Proof. The proof is similar to the proof of Lemma 2, with two new cases. If
F =
[[ ti]]∗Ai, for some 1 ≤ i ≤ m, then put p(�t, �x) =!∗ ti. If F = Bi, for some
1 ≤ i ≤ l, then put p(�t, �x) = x∗i . ��
It is worth noting that the terms p and p(�t, �x) constructed, respectively, in the
proof of lifting and internalization lemmas depends on the agent ∗.
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Example 1. We prove that JKD
n (∅) 	 [[s]]i(A→ B)∧ [[t]]jA→ [[s ·D t]]DB, where

s ∈ Tmi and t ∈ Tmj. The proof is as follows:

1. [[s]]i(A→ B) ∧ [[t]]jA→ [[s]]i(A→ B), tautology in propositional logic
2. [[s]]i(A→ B) ∧ [[t]]jA→ [[t]]jA, tautology in propositional logic
3. [[s]]i(A→ B)∧ [[t]]jA→ [[s]]D(A→ B), from 1 by reasoning in propositional

logic and axiom A3
4. [[ s]]i(A → B) ∧ [[t]]jA → [[t]]DA, from 2 by reasoning in propositional logic

and axiom A3
5. [[ s]]i(A→ B) ∧ [[t]]jA → [[s]]D(A→ B) ∧ [[t]]DA, from 3 and 4 by reasoning

in propositional logic
6. [[ s]]i(A → B) ∧ [[t]]jA → [[ s ·D t]]DB, from 5 by reasoning in propositional

logic and axiom A2.

This is similar to the fact that KD
n 	 Ki(A → B) ∧ KjA → DB. This theorem

of KD
n states that if agent i knows A → B and agent j knows A, then B

is distributed knowledge, which means if all agents combine their knowledge
together, they can infer B. But, in fact, to obtain knowledge of B we do not
need the information of all agents other than agents i and j.

Distributed knowledge logics with justifications allow us to track evidences
occur in [[·]]D. For instance, Example 1 shows that if s is an agent i’s evidence
for A → B and t is an agent j’s evidence for A, then s ·D t is an evidence
for B that all agents can obtain whenever they combine their knowledge. Since
s ∈ Tmi and t ∈ Tmj, the term s ·D t shows that in order to get knowledge of
B and make a justification for it, we only require information of agents i and j,
and particularly it determines which part of their knowledge is required.

Example 2. The rule

A1 ∧ . . . ∧ An → B

K1A1 ∧ . . . ∧ KnAn → DB
is admissible in LD (see, e.g., [12]). Likewise, we prove that the following rule is
admissible in JLD

n :

A1 ∧ . . . ∧An → B

[[ t1]]1A1 ∧ . . . ∧ [[ tn]]nAn → [[ t]]DB

for some term t in TmD, where ti ∈ Tmi for i = 1, . . . , n. The proof is as follows:

1 . A1 ∧ . . . ∧ An → B, hypothesis
2. [[ t1]]1A1 ∧ . . . ∧ [[ tn]]nAn, hypothesis
3.1. [[ t1]]1A1, from 2 by reasoning in propositional logic
3.2. [[ t2]]2A2, from 2 by reasoning in propositional logic

...
3.n. [[ tn]]nAn, from 2 by reasoning in propositional logic
4.1. [[ t1]]DA1, from 3.1 by axiom A3
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4.2. [[ t2]]DA2, from 3.2 by axiom A3
...

4.n. [[ tn]]DAn, from 3.n by axiom A3
5. A1 → (A2 → . . .→ (An → B) . . .), from 1 by reasoning in propositional logic
6. [[p]]D[A1 → (A2 → . . .→ (An → B) . . .)], from 5 by Lemma 2
7.1. [[p ·D t1]]D[A2 → (A3 → . . .→ (An → B) . . .)], from 4.1 and 6 by axiom A2
7.2. [[ p ·D t1 ·D t2]]D[A3 → (A4 → . . . → (An → B) . . .)], from 4.2 and 7.1 by

axiom A2
...

7.n. [[p ·D t1 ·D . . . ·D tn]]DB, from 4.n and 7.(n-1) by axiom A2
8. [[ t1]]1A1 ∧ . . . ∧ [[ tn]]nAn → [[ t]]DB, from 2 and 8 by the Deduction Theorem

(Lemma 1), where t = p ·D t1 ·D . . . ·D tn.

These two examples show that evidence-based distributed knowledge could be
viewed as the knowledge the agents would have by pooling their individual jus-
tifications together.

4 Semantics

In this section, we consider [[·]]D as an agent, rather than as explicit distributed
knowledge, and give pseudo-Fitting models for all systems JLD. Fitting models
first introduced by Fitting in [9] for LP.

Definition 7. A pseudo-Fitting model M for JKD
n is a tuple

M = (W ,R1, . . . ,Rn,RD, E1, . . . , En, ED,�p)

(or M = (W ,R∗, E∗,�p) for short) where (W ,R1, . . . ,Rn,RD,�p) is a Kripke
model, in which RD is also a binary accessibility relation between worlds such
that RD ⊆ ∩n

i=1Ri. Admissible evidence functions E∗ are mappings from the set
of terms and formulas to the set of all worlds, i.e., E∗(t, A) ⊆ W, for any justi-
fication term t in Tm∗ and formula A, and satisfying the following conditions.
For all justification terms s and t and for all formulas A and B:

E1. E∗(s, A) ∪ E∗(t, A) ⊆ E∗(s+∗ t, A),
E2. E∗(s, A→ B) ∩ E∗(t, A) ⊆ E∗(s ·∗ t, B),
E3. Ei(t, A) ⊆ ED(t, A), for each i ∈ G and t ∈ Tmi.

If n = 1, then R1 = RD and evidence functions should also satisfy:

E4. ED(t, A) ⊆ E1(t, A), for each t ∈ Tm1.

The forcing relation �p is a relation between pairs (M, w) and propositional
letters, that can be extended to all formulas as follows:

1. �p respects classical Boolean connectives,
2. (M, w) �p [[ t]]∗A iff w ∈ E∗(t, A) and for every v ∈ W with wR∗v,

(M, v) �p A.
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We say that A is true in a model M (M �p A) if it is true at each world of
the model. For a set S of formulas, M �p S if M �p F for all formulas F in
S. Given a constant specification CS, a model M respects CS (or meets CS) if
M �p CS. A set S of JLD-formulas is JLD(CS)-satisfiable if there is a model
M for JLD respecting CS and a world w in M such that (M, w) � A for all
A ∈ S.

Pseudo–Fitting models for the other distributed justification logics have more
restrictions on accessibility relations and evidence functions. For JTD

n each R∗
is reflexive. For JS4D

n each R∗ is reflexive and transitive and evidence functions
should satisfy:

E5. If w ∈ E∗(t, A) and wR∗v, then v ∈ E∗(t, A),
E6. E∗(t, A) ⊆ E∗(!∗ t, [[ t]]∗A),
For JS5D

n each R∗ is an equivalence relation and evidence functions should
satisfy:

E7. If [E∗(t, A)]c ⊆ E∗(?∗t,¬[[ t]]∗A), where the superscript operation “c” on sets
is the complement relative to the set of worlds W ,

E8. If w ∈ E∗(t, A), then (M, w) �p [[ t]]∗A.

Next, we prove the completeness theorem for JLD. Since the proof is similar to
the proof of the completeness theorem of justification logics in [2, 9], we omit the
details.

Theorem 2 (Completeness). For a given constant specification CS,
distributed justification logics JLD(CS) are sound and complete with respect to
their pseudo-Fitting models that respect CS.
Proof. Soundness is straightforward, as usual, by induction on derivations in
JLD(CS). Let us only check the validity of axiom A7, ¬[[ t]]∗A → [[ ?∗t]]∗¬
[[t]]∗A, in a model of JS5D

n . Let (M, w) �p ¬[[ t]]∗A. By E8, w �∈ E∗(t, A). By E7,
w ∈ E∗(?∗t,¬[[ t]]∗A), and by E8 we have (M, w) �p [[ ?∗t]]∗¬[[ t]]∗A.

For completeness we first construct a canonical model M = (W ,R∗, E∗,�p)
as follows:

• W is the set of all maximally consistent sets in JLD(CS),
• ΓR∗Δ iff Γ �∗ ⊆ Δ, for Γ,Δ ∈ W ,
• E∗(t, F ) = {Γ ∈ W | [[ t ]]∗F ∈ Γ}
• for each propositional letter P : (M, Γ ) �p P iff P ∈ Γ .

where P is a propositional variable and

Γ �∗ = {A |[[t]]∗A ∈ Γ, for some term t ∈ Tm∗}.

Forcing relation �p on arbitrary formulas is defined as in Definition 7.
Specially, for each JLD the evidence function E∗ in the canonical model M

satisfies the corresponding properties E1−E8 in the definition of pseudo–Fitting
model. We only show the new property E3 (E4 is similar). Let Γ ∈ Ei(t, A).
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Then [[t]]iA ∈ Γ . Since [[t]]iA → [[t]]DA ∈ Γ , we have [[t]]DA ∈ Γ , and therefore
Γ ∈ ED(t, A).

Let us now prove that RD ⊆ ∩n
i=1Ri. Suppose ΓRDΔ and [[t]]iA ∈ Γ , for an

arbitrary i ∈ G. We have to show that A ∈ Δ. Since [[t]]iA → [[t]]DA ∈ Γ , we
have [[t]]DA ∈ Γ , and therefore A ∈ Δ. It is not difficult to verify that for n = 1
we have RD = R1.

We now prove the Truth Lemma: for all formulas F we have

F ∈ Γ iff (M, Γ ) �p F.

The proof is by induction on the complexity of F and is similar to that for
justification logics in [2]. We only show the case when F is [[ t ]]∗G.

If [[ t ]]∗G ∈ Γ , then Γ ∈ E∗(t, G) by the definition of E∗. In addition, for all
Δ ∈ W such that ΓR∗Δ, by the definition of R∗, we have G ∈ Δ. Hence, by the
induction hypothesis, we obtain (M, Δ) �p G. Thus (M, Γ ) �p [[ t ]]∗G.

If [[ t ]]∗G �∈ Γ , then Γ �∈ E∗(t, G). Thus (M, Γ ) ��p [[ t ]]∗G.
Now suppose JLD(CS) �	 A, then {¬A} is a JLD(CS)-consistent set. Extend

it to a maximal consistent set Γ by standard Lindenbaum construction, then by
truth lemma we have (M, Γ ) ��p A. ��
Note that in the canonical model M we have ∪n

i=0Ei(t, A) ⊆ ED(t, A), for every
term t and formula A.

Theorem 3 (Compactness). For a given CS for JLD, a set of formulas S is
JLD(CS)-satisfiable iff any finite subset of S is JLD(CS)-satisfiable.
Proof. Suppose every finite subset of S is JLD(CS)-satisfiable. Clearly S is
JLD(CS)-consistent. Extend S to a maximal consistent set Γ . Thus Γ is a world
in the canonical model M of JLD(CS). Since S ⊆ Γ , by the Truth Lemma,
(M, Γ ) � A for all A ∈ S. Therefore, S is satisfiable. ��
One of the important properties of Fitting models is the fully explanatory prop-
erty, which first proved by Fitting in [9] for models of the logic of proofs.

Definition 8. A JLD-model M is a strong model if it has the fully explanatory
property:

1. if for every v such that wR∗v we have (M, v) �p A, then for some term
t ∈ Tm∗ we have (M, w) �p [[ t]]∗A, and

2. if for every v such that wR1v, . . . , wRnv we have (M, v) �p A, then for
some term t ∈ TmD we have (M, w) �p [[ t]]DA.

It is worth noting that the term t introduced in the above definition depends
on the formula A and world w. Moreover, the definition of the fully explanatory
property of JLD-models is slightly different from that for one agent justification
logics (see [2, 9]). In contrast to the one agent case, in Definition 8 we extended
the fully explanatory property of models to multi-agent case in statement 1, and
add the statement 2.
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Theorem 4 (Strong Completeness). For any axiomatically appropriate con-
stant specification CS, JLD(CS) is sound and complete with respect to their
strong models that respect CS.
Proof. It suffices to prove that, for any axiomatically appropriate constant spec-
ification CS, the canonical model of JLD(CS) satisfies the fully explanatory
property. Let M = (W ,R∗, E∗,�p) be the canonical model of JLD(CS), and
Γ ∈ W .

(1) Suppose ∗ ∈ {1, . . . , n,D} and (M, Δ) �p A for every Δ such that ΓR∗Δ.
Suppose towards a contradiction that there is no justification term t ∈ Tm∗ such
that (M, Γ ) �p [[ t]]∗A. Then, the set Γ �∗ ∪ {¬A} would have to be JLD(CS)-
consistent. Indeed, otherwise

JLD(CS) 	 X1 → (X2 → . . .→ (Xm → A) . . .),

for some [[ t1]]∗X1, . . . , [[ tm]]∗Xm ∈ Γ . Since the constant specification CS is
axiomatically appropriate, by Lemma 2, we would obtain a term s in Tm∗ such
that

JLD(CS) 	 [[s]]∗(X1 → (X2 → . . .→ (Xm → A) . . .)).

By axiom A2,

JLD(CS) 	 [[ t1]]∗X1 → ([[ t2]]∗X2 → . . .→ ([[ tm]]∗Xm → [[ t]]∗A) . . .).

where t = s ·∗ t1 ·∗ . . . ·∗ tm. Hence [[ t]]∗A ∈ Γ . Thus, by the Truth Lemma,
(M, Γ ) �p [[t]]∗A, a contradiction. Now since Γ �∗ ∪{¬A} is JLD(CS)-consistent,
it could be extended to a maximal JLD(CS)-consistent set Δ. Since Γ �∗ ⊆ Δ,
we have ΓR∗Δ. But since A �∈ Δ, by the Truth Lemma, (M, Δ) ��p A, which
contradicts the assumption.

(2) Suppose for every Δ ∈ W such that ΓR1Δ, . . . , ΓRnΔ we have (M, Δ)
�p A, and (M, Γ ) ��p [[t]]DA, for each t ∈ TmD. We show that there is Δ ∈ W
with ΓRDΔ such that (M, Δ) ��p A. We prove that Γ �D ∪ {¬A} is consistent.
Otherwise, for some [[ t1 ]]DX1, . . . , [[ tm ]]DXm in Γ we have

JLD(CS) 	 X1 → (X2 → · · · → (Xm → A) · · ·).
Since the constant specification CS is axiomatically appropriate, by Lemma 2,
there is a term s in TmD such that

JLD(CS) 	 [[s ]]D(X1 → (X2 → · · · → (Xm → A) · · ·)).
By axiom A2, we conclude that

JLD(CS) 	 [[ t1 ]]DX1 → ([[ t2 ]]DX2 → · · · → ([[ tm ]]DXm → [[ t ]]DA) · · ·)

where t = s ·D t1 ·D · · · ·D tm. Hence, [[t]]DA ∈ Γ , and by the Truth Lemma,
(M, Γ ) �p [[t]]DA, which is a contradiction. Thus Γ �D ∪{¬A} is a consistent set.
Now extend it to a maximal consistent set Δ. By the truth lemma (M, Δ) ��p A.
On the other hand, it is obvious that ΓRDΔ, and since RD ⊆ ∩n

i=0Ri, we have
ΓRiΔ, for each i ∈ G, which contradicts the assumption. ��
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5 Realization Theorem

In this section, we prove that each theorem of JLD can be translated into a
theorem of LD, and vise versa. First, we define a translation, called the forgetful
projection, from formulas of JLD to formulas of LD.

Definition 9. For a JLD-formula F , the forgetful projection of F , denoted by
F ◦, is defined inductively as follows:

1. For propositional letter P , P ◦ = P , and ⊥◦=⊥,
2. (A→ B)◦ = A◦ → B◦,
3. ([[ t]]iA)

◦ = KiA
◦,

4. ([[ t]]DA)◦ = DA◦.

For a set S of justification formulas we let S◦ = {F ◦ |F ∈ S}.
Lemma 4. For any formula F of JLD, if JLD 	 F then LD 	 F ◦.

Proof. By induction on a derivation of F in JLD. If F is an axiom of JLD, then
it is easy to verify that F ◦ is provable in LD. For instance, ([[t]]iA→ [[t]]DA)◦ =
KiA

◦ → DA◦, which is an instance of KiD axiom. If F is obtained by Modus
Ponens from G and G→ F , then by the induction hypothesis G◦ and G◦ → F ◦

are provable in LD. Thus, F ◦ is provable in LD. If F = [[cimjm ]]im . . . [[ci1j1 ]]i1A ∈ CS
is obtained by the Iterated Axiom Necessitation rule, then A◦ is provable in LD,
since A is an axiom of JLD

n . Hence, by iterated applications of the Necessitation
rule, we can derive Kim . . .Ki1A

◦. Likewise, If F = [[ ci]]iA ∈ CS is obtained by
the Axiom Necessitation rule, then use the Necessitation rule to derive KiA

◦. ��
Definition 10. Let A be a formula in the language of LD. A realization of the
formula A is a JLD-formula Ar such that (Ar)◦ = A.

More precisely, a realization Ar is obtained by replacing each modality Ki in
A by a term in Tmi, and each modality D in A by a term in TmD. A re-
alization is called normal if all negative occurrences of modalities are replaced
by distinct variables. In the rest of this section we will prove the following results:

JKD
n

◦
= KD

n , JTD
n

◦
= TD

n ,

JS4D
n

◦
= S4D

n , JS5D
n

◦
= S5D

n .
(1)

The existence of an JLD-realization of any theorems of LD can be established
semantically by a method developed in [9].

Definition 11. By JLD− we mean the system JLD in a language without op-
erations +∗ and without axioms A1. Models of JLD− are the same as for those
of JLD except that the evidence function is not required to satisfy the condition
E1.
It is easy to verify that the internalization lemma holds for JLD− and the fully
explanatory property of the canonical model holds for JLD−-models (the canon-
ical models of JLD− are defined similar to the canonical models of JLD).
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Let ϕ be a formula in the language of LD, fixed for the rest of this section. By
subformula we mean subformula occurrence. The set of all subformulas, positive
subformulas and negative subformulas of ϕ are denoted, respectively, by Sub(ϕ),
Sub+(ϕ) and Sub−(ϕ).

Definition 12. Let A be any assignment of justification variables

⋃

∗∈{1,...,n,D}
V ar∗

to negative subformulas of ϕ of the form KiX or DX such that

• If A(KiX) = x, then x ∈ V ari.
• If A(DX) = x, then x ∈ V arD.

We define two mappings wA and vA of subformulas of ϕ to sets of formulas of
JLD and JLD−, respectively, as follows:

1. wA(P ) = vA(P ) = {P}, where P is a propositional variable;
wA(⊥) = vA(⊥) = {⊥}.

2. wA(X → Y ) = {X ′ → Y ′ |X ′ ∈ wA(X), Y ′ ∈ wA(Y )},
vA(X → Y ) = {X ′ → Y ′ |X ′ ∈ vA(X), Y ′ ∈ vA(Y )}.

3. If KiX ∈ Sub−(ϕ), then
wA(KiX) = {[[x]]iX ′ |A(KiX) = x, x ∈ V ari, X ′ ∈ wA(X)},
vA(KiX) = {[[x]]iX ′ |A(KiX) = x, x ∈ V ari, X ′ ∈ vA(X)}.

4. If KiX ∈ Sub+(ϕ), then
wA(KiX) = {[[ t]]iX ′ | t ∈ Tmi, X

′ ∈ wA(X)},
vA(KiX) = {[[ t]]i(X1 ∨ . . . ∨Xm) | t ∈ Tmi, X1, . . . , Xm ∈ vA(X)}.

5. If DX ∈ Sub−(ϕ), then
wA(DX) = {[[x]]iX ′ |A(DX) = x, x ∈ V arD, X ′ ∈ wA(X)},
vA(DX) = {[[x]]iX ′ |A(DX) = x, x ∈ V arD, X ′ ∈ vA(X)}.

6. If DX ∈ Sub+(ϕ), then
wA(DX) = {[[ t]]DX ′ | t ∈ TmD, X ′ ∈ wA(X)},
vA(DX) = {[[ t]]D(X1 ∨ . . . ∨Xm) | t ∈ TmD, X1, . . . , Xm ∈ vA(X)}.

By ¬vA(X) we mean {¬X ′ |X ′ ∈ vA(X)}. It is assumed that A assigns different
variables to different subformulas (this assumption is required in the proof of
Lemma 6).

Let M = (W ,R∗, E∗,�p) be the canonical model of JLD−. We may consider
M as a model for LD, in which the accessibility relation RD and evidence
functions E∗ play no role and �p is defined as in Definition 2. In this case we
write (M, Γ ) �LD A to denote that M is considered as a model of LD.

Lemma 5. Let CS be an axiomatically appropriate constant specification for
JLD−, and M be a canonical model for JLD− that respects CS. Then for each
world Γ of the model:

1. If ψ ∈ Sub+(ϕ) and (M, Γ ) �p ¬vA(ψ), then (M, Γ ) �LD ¬ψ.
2. If ψ ∈ Sub−(ϕ) and (M, Γ ) �p vA(ψ), then (M, Γ ) �LD ψ.
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Proof. The proof is by induction on the complexity of ψ. The proof for proposi-
tional variables and the case for implication is similar to the proof of Proposition
7.7 in [9].

Suppose ψ = KiX ∈ Sub+(ϕ) and (M, Γ ) �p ¬vA(ψ). First we show that
Γ �i ∪ ¬vA(X) is JLD−(CS)-consistent. Indeed, otherwise

JLD−(CS) 	 Y1 → (Y2 → . . . (Ym → X1 ∨ . . . ∨Xk) . . .)

for some [[ t1]]iY1, . . . , [[ tm]]iYm ∈ Γ and X1, . . . , Xk ∈ vA(X). By the internal-
ization lemma, since CS is axiomatically appropriate, there is a term s ∈ Tmi

such that

JLD−(CS) 	 [[s]]i[Y1 → (Y2 → . . . (Ym → X1 ∨ . . . ∨Xk) . . .)]

By axiom A2 and propositional reasoning, we have

JLD−(CS) 	 [[ t1]]iY1 ∧ . . . ∧ [[ tm]]iYm → [[ t]]i(X1 ∨ . . . ∨Xk)

where t = s ·i t1 ·i . . . ·i tm ∈ Tmi. Therefore, (M, Γ ) �p [[ t]]i(X1 ∨ . . . ∨ Xk),
which is impossible since [[ t]]i(X1 ∨ . . . ∨Xk) ∈ vA(ψ). Hence, Γ �i ∪ ¬vA(X) is
JLD−(CS)-consistent, and can be extended to a maximal JLD−(CS)-consistent
set Δ. Thus ΓRiΔ and (M, Δ) �p ¬vA(X). Since X ∈ Sub+(ϕ), by the induc-
tion hypothesis, (M, Δ) �LD ¬X . Hence, (M, Γ ) �LD ¬ψ.

Suppose ψ = DX ∈ Sub+(ϕ) and (M, Γ ) �p ¬vA(ψ). First we show that
Γ �D ∪ ¬vA(X) is JLD−(CS)-consistent. Indeed, otherwise

JLD−(CS) 	 Y1 → (Y2 → . . . (Ym → X1 ∨ . . . ∨Xk) . . .)

for some [[ t1]]DY1, . . . , [[ tm]]DYm ∈ Γ and X1, . . . , Xk ∈ vA(X). By internaliza-
tion, there is a term s ∈ TmD such that

JLD−(CS) 	 [[s]]D[Y1 → (Y2 → . . . (Ym → X1 ∨ . . . ∨Xk) . . .)]

By axiom A2 and propositional reasoning, we have

JLD−(CS) 	 [[ t1]]DY1 ∧ . . . ∧ [[ tm]]DYm → [[ t]]D(X1 ∨ . . . ∨Xk)

where t= s ·D t1 ·D . . . ·D tm ∈TmD. Therefore, (M, Γ ) �p[[ t]]D(X1 ∨ . . . ∨ Xk),
which is impossible since [[ t]]D(X1 ∨ . . .∨Xk) ∈ vA(ψ). Hence, Γ �D ∪¬vA(X) is
JLD−(CS)-consistent, and can be extended to a maximal JLD−(CS)-consistent
set Δ. Thus ΓRDΔ and (M, Δ) �p ¬vA(X). Since RD ⊆ ⋂n

i=1 Ri, we
have ΓRiΔ for any i ∈ G. Since X ∈ Sub+(ϕ), by the induction hypothesis,
(M, Δ) �LD ¬X . Hence, (M, Γ ) �LD ¬ψ.

Suppose ψ = KiX ∈ Sub−(ϕ) and (M, Γ ) �p vA(ψ). Let X ′ be an arbitrary
element of vA(X). Then [[x]]iX

′ ∈ vA(ψ), where A(KiX) = x, and therefore
(M, Γ ) �p [[x]]iX

′. Now for any world Δ such that ΓRiΔ, (M, Δ) �p X ′.
Thus (M, Δ) �p vA(X). Since X ∈ Sub−(ϕ), by the induction hypothesis,
(M, Δ) �LD X . Hence, (M, Γ ) �LD ψ.
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Suppose ψ = DX ∈ Sub−(ϕ) and (M, Γ ) �p vA(ψ). Let X ′ be an arbitrary
element of vA(X). Then [[x]]DX ′ ∈ vA(ψ), where A(DX) = x, and therefore
(M, Γ ) �p [[x]]DX ′. Now for any world Δ such that ΓRDΔ, we have (M, Δ) �p

X ′. Thus (M, Δ) �p vA(X). Since X ∈ Sub−(ϕ), by the induction hypothesis,
(M, Δ) �LD X . Since RD ⊆ ⋂n

i=1 Ri, we have ΓRiΔ for any i ∈ G. Hence,
(M, Γ ) �LD ψ. ��
Corollary 1. Let CS be an axiomatically appropriate constant specification for
JLD−. If LD 	 ϕ then there are ϕ1, . . . , ϕm ∈ vA(ϕ) such that

JLD−(CS) 	 ϕ1 ∨ . . . ∨ ϕm.

Proof. Suppose towards a contradiction that JLD−(CS) �	 ϕ1 ∨ . . . ∨ ϕm for all
ϕ1, . . . , ϕm ∈ vA(ϕ). Thus ¬vA(ϕ) is JLD−(CS)-consistent. For otherwise there
would be ϕ1, . . . , ϕm ∈ vA(ϕ) such that JLD−(CS) 	 ϕ1 ∨ . . . ∨ ϕm, contrary
to assumption. Since ¬vA(ϕ) is JLD−(CS)-consistent, extend it to a maximal
consistent set Γ ∈ W . By Truth Lemma, (M, Γ ) �p ¬vA(ϕ). Hence, by Lemma
5, (M, Γ ) �LD ¬ϕ, contra with the assumption LD 	 ϕ and Theorem 1. ��
Lemma 6. Let CS be an axiomatically appropriate constant specification for
JLD. For every subformula ψ of ϕ and each ψ1, . . . , ψm ∈ vA(ψ), there is a
substitution σ and a formula ψ′ ∈ vA(ψ) such that:

1. If ψ ∈ Sub+(ϕ), then JLD(CS) 	 (ψ1 ∨ . . . ∨ ψm)σ → ψ′.
2. If ψ ∈ Sub−(ϕ), then JLD(CS) 	 ψ′ → (ψ1 ∧ . . . ∧ ψm)σ.

Proof. The proof is by induction on the complexity of ψ. The proof for proposi-
tional variables and the case for implication is similar to the proof of Proposition
7.8 in [9].

Suppose ψ = KiX ∈ Sub+(ϕ), and the result is known for X (which also
occurs positively in ϕ). Let ψ1 = [[t1]]iD1, . . . , ψm = [[tm]]iDm be in vA(ψ), such
that t1, . . . , tm ∈ Tmi and D1, . . . , Dm are disjunctions of formulas from vA(X).
Thus D1, . . . , Dm ∈ vA(X). By the induction hypothesis, there is a substitution
σ and X ′ ∈ vA(X) such that JLD(CS) 	 (D1 ∨ . . . ∨ Dm)σ → X ′. Note that
(D1 ∨ . . . ∨ Dm)σ = D1σ ∨ . . . ∨ Dmσ. Consequently, for each j = 1, . . . ,m,
we have JLD(CS) 	 Djσ → X ′. By the internalization lemma, there are terms
s1, . . . , sm ∈ Tmi such that JLD(CS) 	 [[sj]]i(Djσ → X ′), for each j = 1, . . . ,m.
Hence by axiom A2

JLD(CS) 	 [[ tjσ]]iDjσ → [[sj ·i tjσ]]iX ′.

Note that [[ tjσ]]iDjσ = ([[ tj ]]iDj)σ. Let t = s1 ·i t1σ +i . . .+i sm ·i tmσ ∈ Tmi.
By axiom A1,

JLD(CS) 	 ([[ tj ]]iDj)σ → [[ t]]iX
′,

for each j = 1, . . . ,m. Thus,

JLD(CS) 	
( ∨

1≤j≤m

[[ tj ]]iDj

)
σ → [[ t]]iX

′.

Therefore, letting ψ′ = [[ t]]iX
′, we have
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JLD(CS) 	
( ∨

1≤j≤m

ψj

)
σ → ψ′.

Suppose ψ = DX ∈ Sub+(ϕ), and the result is known for X (which also occurs
positively in ϕ). Let ψ1 = [[ t1]]DD1, . . . , ψm = [[ tm]]DDm be in vA(ψ), such that
t1, . . . , tm ∈ TmD and D1, . . . , Dm are disjunctions of formulas from vA(X). By
the induction hypothesis, there is a substitution σ and X ′ ∈ vA(X) such that
JLD(CS) 	 (D1 ∨ . . . ∨ Dm)σ → X ′. Consequently, for each j = 1, . . . ,m, we
have JLD(CS) 	 Djσ → X ′. By the internalization lemma, there are terms
s1, . . . , sm ∈ TmD such that JLD(CS) 	 [[ sj ]]D(Djσ → X ′), for each j =
1, . . . ,m. Hence by axiom A2

JLD(CS) 	 [[ tjσ]]iDjσ → [[sj ·D tjσ]]DX ′.

Let t = s1 ·D t1σ +D . . .+D sm ·D tmσ. By axiom A1,

JLD(CS) 	 ([[ tj ]]DDj)σ → [[ t]]DX ′,

for each j = 1, . . . ,m. Thus,

JLD(CS) 	
( ∨

1≤j≤m

[[ tj ]]DDj

)
σ → [[ t]]DX ′.

Therefore, letting ψ′ = [[ t]]DX ′, we have

JLD(CS) 	
( ∨

1≤j≤m

ψj

)
σ → ψ′.

Suppose ψ = KiX ∈ Sub−(ϕ), and the result is known for X (which also oc-
curs negatively in ϕ). Let ψ1 = [[x]]iX1, . . . , ψm = [[x]]iXm be in vA(ψ), such
that A(KiX) = x (where x ∈ V ari), and X1, . . . , Xm∈vA(X). By the induction
hypothesis, there is a substitution σ andX ′ ∈ wA(X) such that JLD(CS) 	 X ′→
(X1 ∧ . . . ∧Xm)σ. Since A assigns different variables to different subformulas, x
does not occur in X1, . . . , Xm, and hence x �∈ dom(σ). It follows that, for each
j=1, . . . ,m, JLD(CS)	X ′ → Xjσ. By the internalization lemma, there are terms
t1, . . . , tm ∈ Tmi such that JLD(CS) 	 [[ tj ]]i(X

′ → Xjσ), for each j = 1, . . . ,m.
Thus JLD(CS) 	 [[s]]i(X

′ → Xjσ) for s = t1 +i . . . +i tm. Therefore, for each
j = 1, . . . ,m, JLD(CS) 	 [[x]]iX

′ → [[s ·i x]]i(Xjσ). Letting σ
′ = σ ∪ {(x, s ·i x)}

we have JLD(CS) 	 [[x]]iX
′ → ([[x]]iXj)σ

′, from which we get

JLD(CS) 	 ψ′ → ([[x]]iX1 ∧ . . . ∧ [[x]]iXm)σ′

for ψ′ = [[x]]iX
′.

Suppose ψ = DX ∈ Sub−(ϕ), and the result is known for X (which also
occurs negatively in ϕ). Let ψ1 = [[x]]DX1, . . . , ψm = [[x]]DXm be in vA(ψ),
such that A(DX) = x (where x ∈ V arD), and X1, . . . , Xm ∈ vA(X). By the
induction hypothesis, there is a substitution σ and X ′ ∈ wA(X) such that
JLD(CS) 	 X ′ → (X1 ∧ . . . ∧ Xm)σ. Since A assigns different variables to
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different subformulas, x does not occur in X1, . . . , Xm, and hence x �∈ dom(σ).
It follows that JLD(CS) 	 X ′ → Xjσ, for each j = 1, . . . ,m. By the inter-
nalization lemma, there are terms t1, . . . , tm ∈ TmD such that JLD(CS) 	
[[ tj ]]D(X ′ → Xjσ), for each j = 1, . . . ,m. Thus JLD(CS) 	 [[ s]]D(X ′ → Xjσ)
for s = t1 +D . . . +D tm. Therefore JLD(CS) 	 [[ x]]DX ′ → [[ s ·D x]]D(Xjσ),
for each j = 1, . . . ,m. Letting σ′ = σ ∪ {(x, s ·D x)} we have JLD(CS) 	
[[x]]DX ′ → ([[x]]DXj)σ

′, from which we get

JLD(CS) 	 ψ′ → ([[x]]DX1 ∧ . . . ∧ [[x]]DXm)σ′

for ψ′ = [[x]]DX ′. ��
Corollary 2. Let CS be an axiomatically appropriate constant specification for
JLD. If LD 	 ϕ then there is a substitution σ and ϕ′ ∈ wA(ϕ) such that

JLD(CS ∪ CSσ) 	 ϕ′.

Proof. Suppose LD 	 ϕ. By Corollary 1, there are ϕ1, . . . , ϕm ∈ vA(ϕ) such that
JLD−(CS) 	 ϕ1∨ . . .∨ϕm. By Lemma 6, there is a substitution σ and a formula
ϕ′ ∈ vA(ϕ) such that JLD(CS) 	 (ϕ1 ∨ . . . ∨ ϕm)σ → ϕ′. By the substitution
lemma, JLD(CSσ) 	 (ϕ1 ∨ . . . ∨ ϕm)σ, and therefore JLD(CS ∪ CSσ) 	 ϕ′. ��
Our main theorem in this section is the realization theorem. In fact, we give a
uniform realization theorem for all systems JLD

n .

Theorem 5 (Realization Theorem). JLD◦
= LD

Proof. One direction of the proof is done by Lemma 4. For the other direction sup-
pose LD 	 ϕ. By Corollary 2, there is a formula ψ ∈ wA(ϕ) such that JLD 	 ψ.
Note that, by the definition of wA, ψ is a realization of ϕ, i.e. ψ◦ = ϕ. ��

6 Conclusions

In this paper we study logics of distributed knowledge with justifications. The
advantage of this study is to incorporate the notion of evidence (or justification)
into the distributed knowledge logics. For future work, it is natural to combine
the justified distributed knowledge logic JS4D

n with the explicit evidence system
with common knowledge LPC

n introduced in [5]. There remains also some ques-
tions: Are there Fitting models (that are pseudo-Fitting models without accessi-
bility relationRD) for JLD? Are JLD conservative over multi-agent justification
systems JLn (the systems JLD without distributed knowledge operator)? Are
there cut-free tableau or Gentzen systems for JLD?
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