
Automatic CUDA Code Synthesis Framework

for Multicore CPU and GPU Architectures

Hanwoong Jung1, Youngmin Yi2, and Soonhoi Ha1

1 School of EECS, Seoul National University,
Seoul, Korea

{jhw7884,sha}@iris.snu.ac.kr
2 School of ECE, University of Seoul,

Seoul, Korea
ymyi@uos.ac.kr

Abstract. Recently, general purpose GPU (GPGPU) programming has
spread rapidly after CUDA was first introduced to write parallel pro-
grams in high-level languages for NVIDIA GPUs. While a GPU exploits
data parallelism very effectively, task-level parallelism is exploited as a
multi-threaded program on a multicore CPU. For such a heterogeneous
platform that consists of a multicore CPU and GPU, we propose an au-
tomatic code synthesis framework that takes a process network model
specification as input and generates a multithreaded CUDA code. With
the model based specification, one can explicitly specify both function-
level and loop-level parallelism in an application and explore the wide
design space in mapping of function blocks and selecting the commu-
nication methods between CPU and GPU. The proposed technique is
complementary to other high-level methods of CUDA programming.

Keywords: GPGPU, CUDA, model-based design, automatic code
synthesis.

1 Introduction

Relentless demand for high computing power is leading us to a many core era
where tens or hundreds of processors are integrated in a single chip. Graphics
Processor Units (GPUs) are the most prevailing many-core architecture today.
Compute Unified Device Architecture (CUDA) is a programming framework re-
cently introduced by NVIDIA, which enables general purpose computing on
Graphics Processing Units (GPGPU). With massive parallelism of GPGPU,
CUDA has been very successful for acceleration of a wide range of applica-
tions in various domains. CUDA is essentially a C/C++ programming language
with several extensions for GPU thread execution and synchronization as well
as GPU-specific memory access and control. Its popularity has grown rapidly,
as it allows programmers to write parallel program in high-level languages and
achieve huge performance gain by utilizing the massively parallel processors in
a GPU effectively.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 579–588, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

580 H. Jung, Y. Yi, and S. Ha

Although GPU computing can increase the performance of the task by ex-
ploiting data parallelism, it is common that not all tasks can be executed in
GPUs as they expose insufficient data parallelism or they require more mem-
ory space than the GPU can provide, and so on. While a GPU exploits data
parallelism very effectively, task-level parallelism is more easily exploited as a
multi-threaded program on a multi-core CPU. Thus, to maximize the overall ap-
plication performance, one should exploit the underlying heterogeneous parallel
platforms that consist of both multi-core CPU and GPU.

It is very challenging to write parallel programs on heterogeneous parallel plat-
forms. It is a well-known fact that high performance is not easily achieved by
parallel programming. It is reported that about 100-fold performance improve-
ment is achieved by optimizing the parallel program in a heterogeneous system
that consists of a host and a GPU [1]. But optimizing a parallel program is very
laborious and time-consuming. To help CUDA programming, several program-
ming models and tools have been proposed, which will be reviewed in the next
section. In this paper, we propose a novel model-based parallel programming
methodology.

We specify a program with a task graph where a node represents a code
segment and an arc represents the dependency and interaction between two
adjacent nodes. The task graph has the same execution semantics as dataflow
graphs: a node becomes executable when it receives data from the predecessor
nodes [2] [3] and an arc represents a FIFO queue that stores the data samples
transferred from the source node to the destination node. Such dataflow models
express the task-level parallelism of an application naturally. A node can be
mapped to a CPU processor core or to a GPU. We identify a data-parallel node
that may be mapped to the GPU, to explicitly express the data parallelism. A
data-parallel node is associated with a kernel to be executed in the GPU.

From this specification, one can explore a wide design space that is constructed
according to how design choices are combined: which node should be mapped
to the CPU and implemented in C, or mapped to the GPU and implemented in
CUDA kernel? And we can select the types of communication APIs between CPU
and GPU and kernel invocation methods. Therefore, in this paper, we propose
an automatic code synthesis framework that takes as input a dataflow graph
(similar to KPN graph) and generates CUDA code for heterogeneous GPGPUs
and multi-core CPU platforms.

2 Related Work

Since CUDA places on the programmer the burden of packaging GPU code in
separate functions, of explicitly managing data transfer, and of manually op-
timizing the utilization of the GPU memory, there is keen interest in develop-
ing a high-level method of CUDA programming without worrying about the
complexity of the underlying GPU architecture.

hiCUDA [4] is an example that has been proposed as a directive-based pro-
gramming language for CUDA programming. It uses compiler directives to spec-
ify parallel execution region of the application similarly to OpenMP. A hiCUDA

CUDA Code Synthesis Framework for Multicore CPUs and GPUs 581

compiler translates it to an equivalent CUDA program without any modification
to the original sequential C code.

In our framework, it is assumed that the kernel function is given. Therefore, if
we assume the kernel function code can be obtained using hiCUDA, our frame-
work is complementary to the works.

GPUSs [5] is a directive-based programming model for exploiting task par-
allelism as well as data parallelism. So it focuses on heterogeneous systems with
general purpose processors and multiple GPUs. Also it supports other targets
such as Cell BE, SMP with almost the same user experience. Although its run-
time system keeps track of the input and output of each kernel in order to reduce
the communication, they do not support asynchronous communication between
the CPU and the GPU for overlapping the data transfer and the kernel execution
yet to our best knowledge.

StreamIt [6] is a programming model especially targeting for streaming ap-
plications. It is based on a dataflow model with a block-level abstraction: a basic
unit for a block is called a filter. The filters can be connected in a commonly
occurred predefined fashion into composite blocks such as pipelines, split-joins,
and feedback loops. Like our framework, StreamIt supports other heterogeneous
platforms such as Cell BE. It is not known to us, however, how to explore the
design space of CUDA programming.

Jacket [7] is a runtime platform for executing MATLAB code on GPG-
PUs. It supports simple casting functions to create GPU data structure allowing
programmers to describe the application with the native MATLAB language.
Through simply casting the input data, native MATLAB functions wrap those
input into GPU functions.

3 Motivation: CUDA Programming

Typical GPUs consist of hundreds of processing cores that are organized in a
hierarchical fashion. A computational unit of GPU that is executed by a number
of CUDA threads is called the kernel. A kernel is defined as a function with the
special annotation, and the kernel is launched in the GPU when the kernel
function is called in the host code. The number of threads to be launched can
be configured when the kernel is called.

CUDA assumes heterogeneous architectures that consist of different type of
processors (i.e., CPUs and GPUs) and separate memory spaces. GPU has its
own global memory separated from the host memory; therefore, to execute a
kernel in GPU, input data needs to be copied to the GPU memory from the
host memory. Likewise, the result needs to be copied from the GPU memory to
the host memory after the kernel is completed.

A CUDA program usually uses a fork-join model of parallel execution: when
it meets a parallelizable section of the code, it defines the section as a kernel
function that will be executed in the GPU by launching a massive number of
threads (fork). And the host CPU waits until it receives the result back from the
GPU (join) and continues. The maximal performance gain can be formulated as
follows:

582 H. Jung, Y. Yi, and S. Ha

G(x) =
S + P

S + C +
P

N

=
1

x+
1− x

N
+

C

S + P

(1)

where S and P mean the execution time of the sequential section and the paral-
lelizable section to be accelerated by GPU and C means the communication and
synchronization overhead between CPU and GPU. N is the effective number of
processors in the GPU, which is usually very large, and x presents the ratio of
the sequential section in the application. It is observed that C is not negligible
and often becomes the limiting factor of the performance gain. In equation (1),
if P increases and C remains small, synchronous communication is commonly
used between the host CPU and the GPU.

In this paper, however, we also consider the case where P is not dominant
so that it is important to use task-parallelism that is included in S, and reduce
the communication overhead C in equation (1). So we utilize the multi-core
CPU maximally by making a multi-threaded program, in which a thread is
mapped to the GPU if the thread has a massive data parallelism inside. And
to overlap kernel execution and data communication between the CPU and the
GPU, asynchronous CUDA APIs are also considered.

Therefore the design space of CUDA programming is defined by the following
design axes: mapping of tasks to the processing elements, number of GPUs,
communication protocols, and the communication optimization methods that
will be discussed later in section 6. In this paper, we explore the design space of
CUDA programming for a given task graph specification graph.

4 The Proposed CUDA Code Synthesis Framework

Fig. 1 illustrates the overall flow of the proposed CUDA code synthesis frame-
work. An application is specified in a task graph based on the CIC model that
has been proposed as a parallel programming model [8]. A CIC task is a concur-
rent process that communicates with other tasks through FIFO channels. We
assume that the body of the task is defined in a separate file suffixed by .cic.
If a task has data-parallelism inside, we assume that two definitions of the task
are given, one for a CPU thread implementation and the other for a GPU kernel
implementation. Architecture information is separately specified that defines the
number of cores in the CPU and the number of GPUs available.

In the mapping stage, the programmer decides which task node to execute on
which component in the target architecture. While multiple tasks can be mapped
onto a single GPU, a single task cannot be mapped onto multiple GPUs. After
mapping is determined, programmers should decide further design configura-
tions such as communication methods between CPU and GPU, and the number
of CUDA threads, and the grid configuration for each GPU task (i.e., CUDA
kernel).

CUDA Code Synthesis Framework for Multicore CPUs and GPUs 583

CIC task graph
(task code: .cic file)

Architecture
information file

(.xml)

Mapping decision

CUDA translator for CIC

Task Code
generation

Scheduler, global
data structures
generation

Communication
code generation

Misc. files
generation

Build & Run Libraries

Fig. 1. Overall flow of the proposed CUDA code synthesis framework

Once these decisions have been made, we generate intermediate files for sub-
sequent code synthesis steps. The code synthesizer generates target executable
code based on the mapping and configuration information. In task code gen-
eration, GPU task is synthesized into a CUDA kernel code. Since the kernel
code itself is already given, the synthesizer only adds variable declarations for
parameters and includes the header files that declare the generic API proto-
types. The code synthesizer also generates a main scheduler function that creates
the threads and manages global data structures for tasks, channels, and ports.
In the current implementation, we support both POSIX threads and Windows
threads. In communication code generation, the synthesizer generates communi-
cation code between CPU host and GPU device by redefining the macros such
as MQ SEND(),MQ RECEIV E(), used as generic communication APIs in
the CIC model. As will be explained in the next section, we support various
types of communication methods. This information is kept in an intermediate
file (gpusetup.xml). There are additional files necessary for building process: for
example Makefile help the developer build programs easier.

global void Vector Add(int* C, int* A, int* B){
const int ix = blockDim.x * blockIdx.x + threadIdx.x;
C[ix] = A[ix] + B[ix];

}
TASK GO {

MQ RECEIVE(port input1, DEVICE BUFFER(input1), sizeof(int) * SIZE);
MQ RECEIVE(port input2, DEVICE BUFFER(input2), sizeof(int) * SIZE);
KERNEL CALL(Vector Add, DEVICE BUFFER(output), DEVICE BUFFER

(input1), DEVICE BUFFER(input2));
MQ SEND(port output, DEVICE BUFFER(output), sizeof(int) * SIZE);

}

Fig. 2. A CUDA CIC task file (VecAdd.cic)

584 H. Jung, Y. Yi, and S. Ha

Fig. 2 shows a simple CIC task code (VecAdd.cic) that defines a CUDA ker-
nel function. The main body of the task is described in the TASK GO section
that uses various macros whose prototypes are given as templates in the user in-
terface of the proposed framework. The DEV ICE BUFFER(port name) API
indicates GPU memory space for the channel and GPU memory allocation code
is automatically generated by the code synthesizer relieving the programmers
burden. GPU memory de-allocation code is also automatically generated at
the wrap-up stage of the task execution. The kernel launch is define by the
KERNEL CALL(kernelfunctionname, parameter1, parameter2, ...) macro.

5 Code Generation for CPU and GPU Communication

5.1 Synchronous/Asynchronous Communication

CUDA programming platform supports both of synchronous and asynchronous
communications. With the synchronous communication method, the CPU task
that calls the methods can only proceed after the communication completes.
Asynchronous communication is usually better for higher throughput but syn-
chronous communication methods require less memory space than the asyn-
chronous ones where additional memory allocations for stream buffers are re-
quired. Kernel launches are by default asynchronous executions so that the
function call returns immediately and the CPU thread can proceed during the
launched kernel is executed. Communications (i.e., memory copy) performed by
CUDA APIs that are suffixed with async also behave in this manner: instead
of blocking the CPU until the memory copy is finished, it returns immediately.
Moreover, using streams the communication and kernel execution can be over-
lapped hiding the communication time as shown in Fig. 3. Kernel executions and
memory copy with different streams do not have any dependency, and therefore
can be executed asynchronously overlapping their operations. On the contrary,
operations with the same stream should be serialized. The same stream is used

#1: HtoD(0)

#1: Kernel(0)

#2: HtoD(1)

#2: DtoH(0)

#2: Kernel(1)

HtoD [0]

Kernel [0]

Iteration
#1

HtoD [1]

Sync [0]

Kernel [1]

DtoH [0]

Sync [0]

Iteration
#2

HtoD [0]

Sync [1]

Kernel [0]

DtoH [1]

Sync [1]

Iteration
#3

#3: HtoD(0)

#3: DtoH(1)

#3: Kernel(0)

#4: DtoH(0)

Fig. 3. (a) Asynchronous calls with the stream ID and (b) the execution timeline of
each stream

CUDA Code Synthesis Framework for Multicore CPUs and GPUs 585

to specify the dependency between CUDA operations and a synchronization
function (i.e., streamSynchronize ()) denoted as ”Sync” in Fig. 3 should be
called later to guarantee the completion of the actual copying.

5.2 Bypass/Clustering Communication

To reduce the communication overhead, we define two optimization methods in
the proposed code synthesizer, bypass and clustering as depicted in Fig. 4. By
default, the data in a channel is copied into the local buffer in a task. If we want
to accelerate the task utilizing GPUs, we should copy the data in the local buffer
into the GPU device memory. Hence, it copies the data twice. To reduce such
a copy overhead, we implement bypass communication. In bypass method, the
data in the channel is copied to the device memory directly, not through the
local buffer.

Task 1 Task 2

 GPGPU
Device

memory

Task 1 Task 2

 GPGPU
Device

memory

Local Buffer

D i

Copy at once!

(a) Bypass communication (b) Cluster communication

Fig. 4. Bypass/Clustering communication

In case there are more than one input/output channels and the size of data is
not large, the setup overhead of Direct Memory Access (DMA) becomes signifi-
cant, sometimes even larger than the actual memory copy overhead. To reduce
this overhead, we support clustering communication: After the data in all of the
input channels are copied into the local buffer inside the task, we send all the
data into the device memory at once. This local cluster buffer is declared and
allocated by the code synthesizer automatically freeing the programmers from
detailed implementation.

N∑

i=1

(Di ∗DMAcost+DMAsettingtime) (2)

N∑

i=1

(Di ∗Memcpycost) +

N∑

i=1

(Di) ∗DMAcost+DMAsettingtime (3)

(Di: Sample data size of channel ith)

The total execution time of the bypass method and the clustering method is
formalized in equation (2) and (3) respectively. Comparing these two values, we
choose the better technique for communication optimization.

586 H. Jung, Y. Yi, and S. Ha

6 Experiments

For experiments, we used Intel Core i7 CPU (2.8GHz) with Debian 2.6.32-29
Linux distribution and two Tesla M2050 GPUs. For CUDA programming, we
used NVIDIA GPU Computing SDK 3.1 and CUDA toolkit v3.2 RC2.

6.1 Matrix Multiplication

We performed experiments with a simple matrix multiplication example to com-
pare communication overhead between the bypass method and the clustering
method. Two tasks send matrices to a task which multiply two matrices. So
there are two input channels in the task.

Fig. 5. Communication cost for two communication methods

Fig. 5 shows the communication time (in usec units) of two methods varying
the data size (in KBs). When the data size is smaller than 128 KB, it takes less
time with the clustering method. Otherwise, the bypass method is better.

6.2 Lane Detection Algorithm

With a real-life example of lane-detection algorithm, we performed the design
space exploration of CUDA programming in the proposed framework. As shown
in the Fig. 6, the algorithm consists of two filter chains; one is for detecting
the lane in the frame and the other is for providing clearer image display to
the driver. Tasks with gray color indicate that they can be mapped to GPU.
We used the Highway.yuv video clip which consists of 300 frames of HD size
(1280x720).

Table 1 shows the execution time of each task on a CPU core and a GPU,
obtained by profiling. As can be seen in the table, filter tasks have enough data
parallelism to be run on a GPU. Since our target platform contains two GPUs,
we can use two GPUs in the mapping stage. As of now we perform manual
mapping based on the profiling information of Table 1.

CUDA Code Synthesis Framework for Multicore CPUs and GPUs 587

Load
Image

KNN

NLM

KNN

NLM

Image
denoising Filter

Gaussian Sobel MergeGaussian Sobel

Edge detection Filter

Blending Sharpen

Non-
Maximum
Suppression

Hough
Transform

Store
Image

YUV to
RGB

RGB to
YUV

Draw
Lane

Fig. 6. Task graph of lane detection application

Table 1. Profiling information of tasks (unit: usec)

Task CPU GPU Task CPU GPU Task CPU GPU

LoadImage 479 - KNN 4963268 1615 YUVtoRGB 70226 265

NLM 6911048 13740 Gaussian 389758 1110 Blending 62069 294

Sobel 36616 181 Sharpen 336404 714 Non-max 473716 1752

Merge 45500 245 Hough 369178 2820 RGBtoYUV 76848 300

Draw Lane 3740 - StoreImage 1068 - - - -

In this experiment, we compared the following three cases: 1) All tasks are
mapped on the CPU 2) All GPU-mappable tasks are mapped on a single GPU
3) All GPU-mappable tasks of each filter chain are mapped on each GPU (tasks
with solid line in Fig. 6: GPU 0, tasks with dashed line in Fig. 6: GPU 1). Since
all tasks have only one or two input ports, we used the bypass method. The
result is shown in Table 2. Note that we also varied the number of streams for
asynchronous communication to change the depth of pipelining.

By using one GPU, we could get about 140X speed-up compared using only
one CPU core. When we used two GPUs, we could further increase the per-
formance by more than 20% from the gain with one GPU. With asynchronous
communications when using one GPU, we could increase the performance gain
by 20%. The gain was reduced to 13% when we used two GPUs because the data
transfer itself between the device memories in GPU took little time compared
to the transfer between the CPU memory and the GPU memory.

Table 2. Results of design space exploration (unit: sec)

CPU 2109.500

Sync Async 2 Async 3 Async 4

1 GPU 12.485 10.654 10.645 10.653

2 GPUs 9.845 9.254 9.168 8.992

* ”Async N” denotes asynchronous communication with N streams.

588 H. Jung, Y. Yi, and S. Ha

7 Conclusions

In this paper, we propose a novel CUDA programming framework that is based
on a dataflow model for application specification. The proposed code synthesizer
supports various communication methods, so that a user can select suitable com-
munication methods by simply changing the configuration parameters through
the GUI. Also we can change the mapping of tasks easily, which increases the
design productivity drastically. The proposed methodology could be applied for
other platforms such as Cell BE and multi-processor systems. We verified the
viability of the proposed technique with the real-life example.

Acknowledgements. This work was supported by Seoul R&BD Program
(JP090955), the 2010 Research Fund of the University of Seoul, the MKE
(The Ministry of Knowledge Economy), Korea, under the ITRC(Information
Technology Research Center), National Research Foundation of Korea Grant
funded by the Korean Government (NRF-2011-0013479) and research Grant
of Education and Research Foundation College of Engineering, Seoul National
University.

References

1. Kirk, D., Hwu, W.: Programming Massively Parallel Processors: A Hands-on Ap-
proach, pp. 78–79. Morgan Kaufmann Publisher (2010)

2. Kahn, G.: The semantics of a simple language for parallel programming. In:
Proceedings of IFIP Congress, vol. 74, pp. 471–475 (1974)

3. Lee, E.A., Messerschmitt, D.G.: Synchronous Data Flow. Proceedings of the
IEEE 75(9), 1235–1245 (1987)

4. Han, T.D., Abdelrahman, T.S.: hiCUDA: A High-level Language for GPU program-
ming. IEEE Transactions on Parallel and Distributed Systems 22(1), 78–90 (2011)

5. Ayguadé, E., Badia, R.M., Igual, F.D., Labarta, J., Mayo, R., Quintana-Ort́ı,
E.S.: An Extension of the StarSs Programming Model for Platforms with Multiple
GPUs. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704,
pp. 851–862. Springer, Heidelberg (2009)

6. Udupa, A., Govindarajan, R., Thazhuthaveetil, M.J.: Software Pipelined Execution
of Stream Programs on GPUs. In: Symposium on Code Generation and Optimiza-
tion, pp. 200–209 (2009)

7. Accelereyes,
http://wiki.accelereyes.com/wiki/index.php/Jacket_Documentation

8. Kwon, S., et al.: A Retargetable Parallel-Programming Framework for MPSoC. In:
TODAES, vol. 13, pp. 1–18 (July 2008)

http://wiki.accelereyes.com/wiki/index.php/Jacket_Documentation

	Automatic CUDA Code Synthesis Framework
for Multicore CPU and GPU Architectures
	Introduction
	Related Work
	Motivation: CUDA Programming
	The Proposed CUDA Code Synthesis Framework
	Code Generation for CPU and GPU Communication
	Synchronous/Asynchronous Communication
	Bypass/Clustering Communication

	Experiments
	Matrix Multiplication
	Lane Detection Algorithm

	Conclusions
	References

