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Abstract. In the paper general regression neural networks, based on
the orthogonal series-type kernel, is studied. Convergence in probability
is proved assuming non-stationary noise. The performance is investigated
using syntetic data.

1 Introduction

Let X1, . . . , Xn be a sequence of independent random variables with a common
desity function f . Consider the following model

Yi = φ(Xi) + Zi, i = 1, . . . , n, (1)

where Zi are random variables such that

E(Zi) = 0, EZ2
i = di, i = 1, . . . , n, (2)

and φ(·) is an unknown function.

f(x) ∼
∞∑

j=0

ajgj(x), (3)

where

aj =

∫

A

f(x)gj(x)dx = Egj(Xj). (4)

and {gj(·)}, j = 0, 1, 2, . . . is a complete orthonormal set defined on A ⊂ Rp.
Then the estimator of density f(·) takes the form

f̂n(x) =

N(n)∑

j=0

âjgj(x), (5)
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where N(n)
n−→ ∞ and

âj =
1

n

n∑

k=0

gj(Xk) (6)

Let us define

R(x) = f(x)φ(x). (7)

We assume that function R(·) has the representation

R(x) ∼
∞∑

j=0

bjgj(x), (8)

where

bj =

∫

A

φ(x)f(x)gj(x)dx = E(Ykgj(Xk)) (9)

We estimate function R(·) using

R̂n(x) =

M(n)∑

j=0

b̂jgj(x), (10)

where M(n)
n−→ ∞ and

b̂j =
1

n

n∑

k=0

Ykgj(Xk). (11)

Then the estimator of the regression function is of the following form

φ̂n(x) =
R̂n(x)

f̂n(x)
=

n∑
i=1

M(n)∑
j=0

Yigj(Xi)gj(x)

n∑
i=1

N(n)∑
j=0

gj(Xi)gj(x)

(12)

It should be noted estimate (12) can be presented in the form of general re-
gression neural networks [35] with appropriately selected kernels K1

n(x, u) =
N(n)∑
j=0

gj(x)gj(u) and K2
n(x, u) =

M(n)∑
j=0

gj(x)gj(u). In literature nonparametric es-

tiames have been widely studied both in stationary (see e.g. [3], [5], [6],[8], [10],
[12] - [15], [21] - [23], [26] - [29]) and time-varying case (see [7], [16] -[20], [24],
[25]). In this paper it will be shown that procedure (12) is applicable even if
variance of noise diverges to infinity. Block diagram of general regression neural
network is shown in Fig. 1.
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Fig. 1. General regression neural network

2 Main Result

Let us assume that

max
x

|gj| < Gj . (13)

Let us denote

si = di +

∫

A

φ2(u)f(u)du (14)

Theorem 1. If si < ∞, for all i ≥ 1, and the following conditions hold

1

n2
(

M(n)∑

j=0

G2
j )

2
n∑

i=1

si
n−→ 0, M(n)

n−→ ∞ (15)

1

n
(

N(n)∑

j=0

G2
j )

2 n−→ 0, N(n)
n−→ ∞ (16)

then

Φ̂n(x)
n−→ Φ(x) in probability, (17)

at every point x ∈ A at which series (3) and (8) converge to f(x) and R(x),
respectively.
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Proof. It is sufficient to show that:

E[R̂n(x)−R(x)]2
n−→ 0 (18)

E[f̂n(x)− f(x)]2
n−→ 0, (19)

in probability, at every point x ∈ A, at which series (3) and (8) are convergent.
Observe that

E(R̂n(x) −R(x))2 ≤
M(n)∑

j=0

G2
j

M(n)∑

j=0

E(b̂j − bj)
2 + (

M(n)∑

j=0

bjgj(x)−R(x))2. (20)

One can see that the mean square error E(b̂j − bj)
2 is bounded by

E(b̂j − bj)
2 ≤ G2

j

n2

n∑

i=1

(

∫

A

φ2(u)f(u)du+ di). (21)

Then

E[R̂n(x) −R(x)]2 ≤ 1

n2
(

M(n)∑

j=0

G2
j)2

n∑

i=1

(

∫

A

φ2(u)f(u)du + di) + (

M(n)∑

j=0

bjgj(x) −R(x))2.

(22)

In view of assumption (15), convergence (18) is established. Convergence (19)
can be proved in a similar way. This concludes the proof.

Remark 1. Conditions for convergence of series (3) and (8) can be found in
[1],[33],[38].

Example. Let assume that

M(n) = [c1n
qM ] N(n) = [c2n

qN ] dn = c3n
α Gj = c4j

d, (23)

where qM , qN and α are positive numbers. It is easily seen that if

4dqM + 2qM + α < 1, 4dqN + 2qN < 1, (24)

then Theorem 1 holds. It should be noted that d = − 1
12 for the Hermite sytem,

d = − 1
4 for the Laguerre system, d = 0 for the Fourier system, d = 1

2 for the
Legendre and Haar systems (see [33]).

3 Experimental Results

For computer simulations we use synthetic data. Distribution of random vari-
ables Xi is uniform on the interval [0;π], for i = 1, . . . , n. Consider the following
model

φ(x) = exp(sin(2x)), (25)
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Fig. 2. The MSE as a function of n

Fig. 3. Training set and obtained estimator

with Zi which are realizations of random variables N(0, di), di = iα, α > 0. All
constants (c1, c2, c3) in (23) are equal to 1. Parameters qM and qN are both equal
to 0, 25. The Hermite orthonormal system is chosen to perform calculations.
Number of data set is taken from the interval [500; 10000] and parameter α is
tested in the interval [ 1

10 ,
12
10 ].

Figure 2 shows how the MSE (Mean Square Error) changes with the number of
data elements n for different values of parameter α. For parameter α ∈ [0, 1; 0, 7]
we can see that, when n goes to infinity, the MSE goes to 0. For α = 0, 8 this trend
is not maintained. Moreover, for α = 0, 8, value of the MSE is much bigger than
for lower values of parameter α. Experimental results show that for higher values
of α the MSE is growing. For α = 1, 2 and n = 104, the MSE is equal to 7,37.
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Fig. 4. Function φ(·) and its estimators for different values of parameter α

In Figure 3 input data and the result of estimation for n = 104 and α = 0, 1 is
indicated. As we can see the estimator found in the appropriate manner center
of data and maintained its trend.

Figure 3 shows the course of the function given by (25) and estimators ob-
tained for n = 104, with parameters α equal to 0, 1 and 1, 2.

4 Conclusions

In this paper we studied general regression neural networks, based on the or-
thogonal series-type kernel. We proved convergence in probability assuming non-
stationary noise. In future works alternative methods, based on neural networks
[2], [4], [11] and neuro-fuzzy structures [9], [30] - [32], [34], [36], [37], will be
adopted to handle nonstationary noise.
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