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Abstract. In the paper general regression neural networks, based on
the orthogonal series-type kernel, is studied. Convergence in probability
is proved assuming non-stationary noise. The performance is investigated
using syntetic data.

1 Introduction

Let X1,..., X, be a sequence of independent random variables with a common
desity function f. Consider the following model

}/,Z(ﬁ(X,)—FZ“ 7,217777,7 (1)
where Z; are random variables such that
E(Z) =0, EZ? = d;, i=1,...,n, (2)

and ¢(-) is an unknown function.

Fla) ~ 3 as5(a), )

where
0= [ 1@)g(e)ds = gy (X)) (@)
A

and {g;()}, s = 0,1,2,... is a complete orthonormal set defined on A C RP.
Then the estimator of density f() takes the form

N(n)

ful@) = Z a;g;(z), (5)
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where N(n) - oo and

Let us define

We assume that function R(-) has the representation

z) ~ Y big(x), (8)
=0

where

by = [ 6la)s ()g;(w)dz = E(Vigs(X0) (9)

A

We estimate function R(-) using

M(n)
= bgi(x), (10)

o

where M(n) - oo and
1 n
= D Yeg;(X). (11)
k=0

Then the estimator of the regression function is of the following form

l~<

19;(Xi)g;(z)
' (12
E 9]( )9]( )

i=1 j=0

It should be noted estimate (I2) can be presented in the form of general re-

gression neural networks [35] with appropriately selected kernels K}!(z,u) =
N(n) M(n)
> gj(z)gj(u) and K2(z,u) = > g;j(x)g;(u). In literature nonparametric es-
i=0 §=0

tiames have been widely studied both in stationary (see e.g. [3], [, [6],[8], [10],
[12] - [15], [21] - [23], [26] - [29]) and time-varying case (see [7], [16] -[20], [24],
[25]). In this paper it will be shown that procedure (I2]) is applicable even if
variance of noise diverges to infinity. Block diagram of general regression neural
network is shown in Fig. [
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M(n)

g‘j(x)gj(Xl)

j=0

M(n)
Z g_,r' (x)g f'(Xn)
=0

>'a, (e (1)

j=

N(n)
Z g_j(x)g_,i‘ (Xn)
/=0

Fig. 1. General regression neural network

2 Main Result

Let us assume that
max |g;| < Gj.
xT

Let us denote

si=di + [ ¢*(u)f(u)du
/

Theorem 1. If s; < oo, for all i > 1, and the following conditions hold

1
nQ(Z G?)QZSZ- 250, M(n) " o
§j=0 i=1
1 N(n)
n(z G?)2 — 0, N(n)—
§=0

then
&, (x) — D(x) in probability,

Qo
7
(D

445

at every point x € A at which series (3) and (8) converge to f(x) and R(z),

respectively.
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Proof. 1t is sufficient to show that:

E[R,(z) — R(z)]> 250 (18)
Elfu(z) = f(x)]* =0, (19)

in probability, at every point « € A, at which series @) and () are convergent.
Observe that

A M(n)  M(n) M(n)
E(Ru(x) = R())> < Y G7 > Eb Z bigj(x) — R(z))*. (20)
§=0 §=0

One can see that the mean square error E(b; — b;)? is bounded by

; ., _ G 2
By~ b5 <2 ([ G@sdu+ . (21)
i=1 A
Then
R 1 M(n) n M(n)
Blfa(e) = R < 1, (32 63 [ S @sdutd)+ (Y bigs(@) - R

(22)

In view of assumption (&), convergence (8] is established. Convergence (I9)
can be proved in a similar way. This concludes the proof.

Remark 1. Conditions for convergence of series (3) and () can be found in
11,1331, 138].

Example. Let assume that
M(n) = [c;n®™] N(n) = [can®™] d,, = czn® G = caj?, (23)
where gpr, gy and « are positive numbers. It is easily seen that if
ddgy + 2 +a < 1, 4dgn + 2qn < 1, (24)

then Theorem [ holds. It should be noted that d = 12 for the Hermite sytem,
d= *i for the Laguerre system, d = 0 for the Fourier system, d = 1 for the
Legendre and Haar systems (see [33]).

3 Experimental Results

For computer simulations we use synthetic data. Distribution of random vari-
ables X; is uniform on the interval [0; 7], for i = 1, ..., n. Consider the following
model

6(x) = exp(sin(22)), (25)
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Fig. 3. Training set and obtained estimator

with Z; which are realizations of random variables N(0,d;), d; = %, a > 0. All
constants (c1, ¢z, c3) in [23]) are equal to 1. Parameters ¢ and g are both equal
to 0,25. The Hermite orthonormal system is chosen to perform calculations.
Number of data set is taken from the interval [500;10000] and parameter « is
tested in the interval [, 17].

Figure2lshows how the MSE (Mean Square Error) changes with the number of
data elements n for different values of parameter «. For parameter « € [0, 1;0, 7]
we can see that, when n goes to infinity, the MSE goes to 0. For o = 0, 8 this trend
is not maintained. Moreover, for & = 0, 8, value of the MSE is much bigger than
for lower values of parameter «.. Experimental results show that for higher values
of o the MSE is growing. For o = 1,2 and n = 10*, the MSE is equal to 7,37.
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Fig. 4. Function ¢(-) and its estimators for different values of parameter «

In Figure Jinput data and the result of estimation for n = 10* and a = 0, 1 is
indicated. As we can see the estimator found in the appropriate manner center
of data and maintained its trend.

Figure 3 shows the course of the function given by (28) and estimators ob-
tained for n = 10, with parameters o equal to 0,1 and 1, 2.

4 Conclusions

In this paper we studied general regression neural networks, based on the or-
thogonal series-type kernel. We proved convergence in probability assuming non-
stationary noise. In future works alternative methods, based on neural networks

[2], [, [II] and neuro-fuzzy structures [9], [30] - [32], [34], [36], [37], will be

adopted to handle nonstationary noise.
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