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Abstract. In the paper general regression neural networks, based on
the orthogonal series-type kernel, is studied. Convergence in probability
is proved assuming non-stationary noise. The performance is investigated
using syntetic data.

1 Introduction

Let X1, . . . , Xn be a sequence of independent random variables with a common
desity function f . Consider the following model

Yi = φ(Xi) + Zi, i = 1, . . . , n, (1)

where Zi are random variables such that

E(Zi) = 0, EZ2
i = di, i = 1, . . . , n, (2)

and φ(·) is an unknown function.

f(x) ∼
∞∑

j=0

ajgj(x), (3)

where

aj =

∫

A

f(x)gj(x)dx = Egj(Xj). (4)

and {gj(·)}, j = 0, 1, 2, . . . is a complete orthonormal set defined on A ⊂ Rp.
Then the estimator of density f(·) takes the form

f̂n(x) =

N(n)∑

j=0

âjgj(x), (5)
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where N(n)
n−→ ∞ and

âj =
1

n

n∑

k=0

gj(Xk) (6)

Let us define

R(x) = f(x)φ(x). (7)

We assume that function R(·) has the representation

R(x) ∼
∞∑

j=0

bjgj(x), (8)

where

bj =

∫

A

φ(x)f(x)gj(x)dx = E(Ykgj(Xk)) (9)

We estimate function R(·) using

R̂n(x) =

M(n)∑

j=0

b̂jgj(x), (10)

where M(n)
n−→ ∞ and

b̂j =
1

n

n∑

k=0

Ykgj(Xk). (11)

Then the estimator of the regression function is of the following form

φ̂n(x) =
R̂n(x)

f̂n(x)
=

n∑
i=1

M(n)∑
j=0

Yigj(Xi)gj(x)

n∑
i=1

N(n)∑
j=0

gj(Xi)gj(x)

(12)

It should be noted estimate (12) can be presented in the form of general re-
gression neural networks [35] with appropriately selected kernels K1

n(x, u) =
N(n)∑
j=0

gj(x)gj(u) and K2
n(x, u) =

M(n)∑
j=0

gj(x)gj(u). In literature nonparametric es-

tiames have been widely studied both in stationary (see e.g. [3], [5], [6],[8], [10],
[12] - [15], [21] - [23], [26] - [29]) and time-varying case (see [7], [16] -[20], [24],
[25]). In this paper it will be shown that procedure (12) is applicable even if
variance of noise diverges to infinity. Block diagram of general regression neural
network is shown in Fig. 1.
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Fig. 1. General regression neural network

2 Main Result

Let us assume that

max
x

|gj| < Gj . (13)

Let us denote

si = di +

∫

A

φ2(u)f(u)du (14)

Theorem 1. If si < ∞, for all i ≥ 1, and the following conditions hold

1

n2
(

M(n)∑

j=0

G2
j )

2
n∑

i=1

si
n−→ 0, M(n)

n−→ ∞ (15)

1

n
(

N(n)∑

j=0

G2
j )

2 n−→ 0, N(n)
n−→ ∞ (16)

then

Φ̂n(x)
n−→ Φ(x) in probability, (17)

at every point x ∈ A at which series (3) and (8) converge to f(x) and R(x),
respectively.
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Proof. It is sufficient to show that:

E[R̂n(x)−R(x)]2
n−→ 0 (18)

E[f̂n(x)− f(x)]2
n−→ 0, (19)

in probability, at every point x ∈ A, at which series (3) and (8) are convergent.
Observe that

E(R̂n(x) −R(x))2 ≤
M(n)∑

j=0

G2
j

M(n)∑

j=0

E(b̂j − bj)
2 + (

M(n)∑

j=0

bjgj(x)−R(x))2. (20)

One can see that the mean square error E(b̂j − bj)
2 is bounded by

E(b̂j − bj)
2 ≤ G2

j

n2

n∑

i=1

(

∫

A

φ2(u)f(u)du+ di). (21)

Then

E[R̂n(x) −R(x)]2 ≤ 1

n2
(

M(n)∑

j=0

G2
j)2

n∑

i=1

(

∫

A

φ2(u)f(u)du + di) + (

M(n)∑

j=0

bjgj(x) −R(x))2.

(22)

In view of assumption (15), convergence (18) is established. Convergence (19)
can be proved in a similar way. This concludes the proof.

Remark 1. Conditions for convergence of series (3) and (8) can be found in
[1],[33],[38].

Example. Let assume that

M(n) = [c1n
qM ] N(n) = [c2n

qN ] dn = c3n
α Gj = c4j

d, (23)

where qM , qN and α are positive numbers. It is easily seen that if

4dqM + 2qM + α < 1, 4dqN + 2qN < 1, (24)

then Theorem 1 holds. It should be noted that d = − 1
12 for the Hermite sytem,

d = − 1
4 for the Laguerre system, d = 0 for the Fourier system, d = 1

2 for the
Legendre and Haar systems (see [33]).

3 Experimental Results

For computer simulations we use synthetic data. Distribution of random vari-
ables Xi is uniform on the interval [0;π], for i = 1, . . . , n. Consider the following
model

φ(x) = exp(sin(2x)), (25)
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Fig. 2. The MSE as a function of n

Fig. 3. Training set and obtained estimator

with Zi which are realizations of random variables N(0, di), di = iα, α > 0. All
constants (c1, c2, c3) in (23) are equal to 1. Parameters qM and qN are both equal
to 0, 25. The Hermite orthonormal system is chosen to perform calculations.
Number of data set is taken from the interval [500; 10000] and parameter α is
tested in the interval [ 1

10 ,
12
10 ].

Figure 2 shows how the MSE (Mean Square Error) changes with the number of
data elements n for different values of parameter α. For parameter α ∈ [0, 1; 0, 7]
we can see that, when n goes to infinity, the MSE goes to 0. For α = 0, 8 this trend
is not maintained. Moreover, for α = 0, 8, value of the MSE is much bigger than
for lower values of parameter α. Experimental results show that for higher values
of α the MSE is growing. For α = 1, 2 and n = 104, the MSE is equal to 7,37.
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Fig. 4. Function φ(·) and its estimators for different values of parameter α

In Figure 3 input data and the result of estimation for n = 104 and α = 0, 1 is
indicated. As we can see the estimator found in the appropriate manner center
of data and maintained its trend.

Figure 3 shows the course of the function given by (25) and estimators ob-
tained for n = 104, with parameters α equal to 0, 1 and 1, 2.

4 Conclusions

In this paper we studied general regression neural networks, based on the or-
thogonal series-type kernel. We proved convergence in probability assuming non-
stationary noise. In future works alternative methods, based on neural networks
[2], [4], [11] and neuro-fuzzy structures [9], [30] - [32], [34], [36], [37], will be
adopted to handle nonstationary noise.

Acknowledgments. The paper was prepared under project operated within the
Foundation for Polish Science Team Programme co-financed by the EU European
Regional Development Fund, Operational Program Innovative Economy 2007-
2013, and also supported by the National Science Center NCN.

References

1. Alexits, G.: Convergence Problems of Orthogonal Series, Budapest, Academia and
Kiado, pp. 261–264 (1961)

2. Bilski, J., Rutkowski, L.: A fast training algorithm for neural networks. IEEE
Transactions on Circuits and Systems II 45, 749–753 (1998)



On the Weak Convergence of the Regresion Neural Networks 449

3. Cacoullos, P.: Estimation of a multivariate density. Annals of the Institute of Sta-
tistical Mathematics 18, 179–190 (1965)

4. Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks
and optimal linear predictors. Signal Processing: Image Communication - a Eurasip
Journal 15(6), 559–565 (2000)

5. Ga�lkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions
with applications to system identification. Proceedings of the IEEE 73, 942–943
(1985)

6. Ga�lkowski, T., Rutkowski, L.: Nonparametric fitting of multivariable functions.
IEEE Transactions on Automatic Control AC-31, 785–787 (1986)

7. Greblicki, W., Rutkowska, D., Rutkowski, L.: An orthogonal series estimate of time-
varying regression. Annals of the Institute of Statistical Mathematics 35, Part A,
147–160 (1983)

8. Greblicki, W., Rutkowski, L.: Density-free Bayes risk consistency of nonparametric
pattern recognition procedures. Proceedings of the IEEE 69(4), 482–483 (1981)

9. Nowicki, R.: Rough Sets in the Neuro-Fuzzy Architectures Based on Monotonic
Fuzzy Implications. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh,
L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 510–517. Springer, Heidel-
berg (2004)

10. Parzen, E.: On estimation of a probability density function and mode. Analysis of
Mathematical Statistics 33(3), 1065–1076 (1962)

11. Patan, K., Patan, M.: Optimal training strategies for locally recurrent neural net-
works. Journal of Artificial Intelligence and Soft Computing Research 1(2), 103–114
(2011)

12. Rutkowski, L.: Sequential estimates of probability densities by orthogonal series
and their application in pattern classification. IEEE Transactions on Systems, Man,
and Cybernetics SMC-10(12), 918–920 (1980)

13. Rutkowski, L.: Sequential estimates of a regression function by orthogonal series
with applications in discrimination, New York, Heidelberg, Berlin. Lectures Notes
in Statistics, vol. 8, pp. 236–244 (1981)

14. Rutkowski, L.: On system identification by nonparametric function fitting. IEEE
Transactions on Automatic Control AC-27, 225–227 (1982)

15. Rutkowski, L.: Orthogonal series estimates of a regression function with applica-
tions in system identification. In: Probability and Statistical Inference, pp. 343–347.
D. Reidel Publishing Company, Dordrecht (1982)

16. Rutkowski, L.: On Bayes risk consistent pattern recognition procedures in a quasi-
stationary environment. IEEE Transactions on Pattern Analysis and Machine In-
telligence PAMI-4(1), 84–87 (1982)

17. Rutkowski, L.: On-line identification of time-varying systems by nonparametric
techniques. IEEE Transactions on Automatic Control AC-27, 228–230 (1982)

18. Rutkowski, L.: On nonparametric identification with prediction of time-varying
systems. IEEE Transactions on Automatic Control AC-29, 58–60 (1984)

19. Rutkowski, L.: Nonparametric identification of quasi-stationary systems. Systems
and Control Letters 6, 33–35 (1985)

20. Rutkowski, L.: The real-time identification of time-varying systems by nonpara-
metric algorithms based on the Parzen kernels. International Journal of Systems
Science 16, 1123–1130 (1985)

21. Rutkowski, L.: A general approach for nonparametric fitting of functions and their
derivatives with applications to linear circuits identification. IEEE Transactions
Circuits Systems CAS-33, 812–818 (1986)



450 M.J. Er and P. Duda

22. Rutkowski, L.: Sequential pattern recognition procedures derived from multiple
Fourier series. Pattern Recognition Letters 8, 213–216 (1988)

23. Rutkowski, L.: Nonparametric procedures for identification and control of lin-
ear dynamic systems. In: Proceedings of 1988 American Control Conference,
June 15-17, pp. 1325–1326 (1988)

24. Rutkowski, L.: An application of multiple Fourier series to identification of multi-
variable nonstationary systems. International Journal of Systems Science 20(10),
1993–2002 (1989)

25. Rutkowski, L.: Nonparametric learning algorithms in the time-varying environ-
ments. Signal Processing 18, 129–137 (1989)

26. Rutkowski, L., Rafaj�lowicz, E.: On global rate of convergence of some nonparamet-
ric identification procedures. IEEE Transaction on Automatic Control AC-34(10),
1089–1091 (1989)

27. Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of
a wide class of disturbances. IEEE Transactions on Information Theory IT-37,
214–216 (1991)

28. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regres-
sions from noisy data. IEEE Transactions on Signal Processing 41(10), 3062–3065
(1993)

29. Rutkowski, L., Ga�lkowski, T.: On pattern classification and system identification
by probabilistic neural networks. Applied Mathematics and Computer Science 4(3),
413–422 (1994)

30. Rutkowski, L.: A New Method for System Modelling and Pattern Classification.
Bulletin of the Polish Academy of Sciences 52(1), 11–24 (2004)

31. Rutkowski, L., Cpa�lka, K.: A general approach to neuro - fuzzy systems. In: Pro-
ceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne,
December 2-5, vol. 3, pp. 1428–1431 (2001)

32. Rutkowski, L., Cpa�lka, K.: A neuro-fuzzy controller with a compromise fuzzy rea-
soning. Control and Cybernetics 31(2), 297–308 (2002)

33. Sansone, G.: Orthogonal functions, vol. 9. Interscience Publishers In., New York
(1959)

34. Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski,
L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS
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